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Abstract

This thesis presents the verification of enumeration algorithms for trees. The first algo-
rithm is based on the well known Prüfer-correspondence and allows the enumeration
of all possible labeled trees over a fixed finite set of vertices. The second algorithm
enumerates rooted, unlabeled trees of a specified size up to graph isomorphism. It
allows for the efficient enumeration without the use of an intermediate encoding of the
trees with level sequences, unlike the algorithm by Beyer and Hedetniemi [1] it is based
on. Both algorithms are formalized and verified in Isabelle/HOL. The formalization of
trees and other graph theoretic results is also presented.
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1 Introduction

Graphs are one of the most prominent combinatorial structures in computer science
and mathematics. When one proves a graph theoretic statement and especially when
complicated graph properties are involved, one sometimes resorts to exhaustive search.
This can help find specific instances like counterexamples or count the number of
instances of a specific type of graph. The enumeration of combinatorial structures is
usually done by computer software. Especially in mathematical settings the correctness
of the enumeration algorithm is of utmost importance. This involved using methods of
formal program verification to show correctness.

In this thesis, we will focus on the generation of trees (connected acyclic graphs).
An algorithm for the enumeration of trees over a given set of vertices as well as
an algorithm for the enumeration of unlabeled, rooted trees are described and their
correctness proved in the interactive theorem prover Isabelle/HOL.
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2 Enumeration of Labeled Trees

This chapter describes an algorithm to enumerate all possible labeled trees with a given
set of vertices. Then we show a correctness proof of the algorithm which then can also
be used to determine the number of all possible trees.

2.1 Algorithm

The algorithm is based on Prüfer codes [5] which describe a one-to-one correspondence
from trees with n vertices to sequences of vertices of length n− 2. Thus, to enumerate
all possible trees one can enumerate all (n− 2)-sequences where each entry is one of
the vertex labels and then transform each Prüfer sequence into its corresponding tree.

To understand how Prüfer sequences are constructed, we first describe a function
that determines the Prüfer sequence of a tree. Given a tree T with at least 2 vertices
and an arbitrary linear order on the vertices of T proceed as follows:

1. If the tree has exactly 2 vertices, then the Prüfer sequence is empty.

2. Else, find the leaf a with the smallest label.

3. Let b be the unique neighbor of a, then b is the first element of the Prüfer sequence.

4. The remaining elements are the Prüfer sequence of the tree T′ where leaf a is
removed.

See Figure 2.1 for an example, where we order the nodes by the natural order of
natural numbers.

Instead of defining a linear order on vertex labels explicitly, the algorithm is provided
with a distinct list of vertices which implicitly defines a linear order. The following
function prufer_seq_of_tree implements this algorithm.
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2 Enumeration of Labeled Trees
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Figure 2.1: Tree with Prüfer sequence [5, 4, 5, 4, 7]

definition remove_vertex_edges :: "’a ⇒ ’a edge set ⇒ ’a edge set" where
"remove_vertex_edges v E = {e∈E. ¬ graph_system.incident v e}"

fun prufer_seq_of_tree :: "’a list ⇒ ’a edge set ⇒ ’a list" where
"prufer_seq_of_tree verts E =

(if length verts ≤ 2 then []
else (case find (tree.leaf E) verts of

Some leaf ⇒ (THE v. ulgraph.vert_adj E leaf v) #
prufer_seq_of_tree (remove1 leaf verts) (remove_vertex_edges leaf E)))"

This function describes how Prüfer sequences are constructed and is relevant for the
correctness proof, but for the actual enumeration algorithm the inverse operation is
needed. The following function tree_of_prufer_seq constructs the tree given a Prüfer
sequence. It takes as input the list of all n vertices, as prufer_seq_of_tree does, and a
Prüfer sequences of length n− 2 and works in the following steps:

1. If the Prüfer sequence is empty, the result is a tree containing the two remaining
vertices connected by an edge.

2. Otherwise, let a be the smallest vertex not contained in the Prüfer sequence, b the
first element of the Prüfer sequence and s the remaining elements.

3. Remove a from the list of vertices and construct the tree of the Prüfer sequence s
recursively.

4. Add the vertex a with an edge from a to b to the tree.

3



2 Enumeration of Labeled Trees

fun tree_edges_of_prufer_seq :: "’a list ⇒ ’a list ⇒ ’a edge set"
where

"tree_edges_of_prufer_seq [u,v] [] = {{u,v}}"
| "tree_edges_of_prufer_seq verts (b#seq) =

(case find (λx. x /∈ set (b#seq)) verts of
Some a ⇒ insert {a,b} (tree_edges_of_prufer_seq (remove1 a verts)

seq))"

definition tree_of_prufer_seq :: "’a list ⇒ ’a list ⇒ ’a pregraph" where
"tree_of_prufer_seq verts seq = (set verts, tree_edges_of_prufer_seq

verts seq)"

Then all trees can be enumerated by enumerating all possible Prüfer sequences and
constructing the corresponding tree for each of them. The simple enumeration of all
n-sequences is implemented in the List theory.

definition labeled_tree_enum :: "’a list ⇒ ’a pregraph list" where
"labeled_tree_enum verts = map (tree_of_prufer_seq verts) (List.n_lists

(length verts - 2) verts)"

With this approach to enumeration, it also follows immediately that the number of
labeled trees on n vertices is equal to the number of (n− 2)-sequences of vertices, that
is nn−2. This is known as Cayley’s Formula:

lemma (in valid_verts) cayleys_formula: "card (labeled_trees (set verts))
= length verts ^ (length verts - 2)"

With this number we can also determine the runtime of the algorithm. The nn−2

Prüfer sequences can be enumerated in O(nn−2) time with the implementation in
the List theory. Assuming an efficient set implementation with O(1) lookup and
insertion, the construction of the tree from a Prüfer sequence can be done in O(n2)

time. This mean all trees are generated in O(nn−2 + nn−2 ∗ n2) = O(nn) time. One
could potentially improve the runtime of the algorithm by using a priority queue to
keep track of the number of times a vertex appears in the Prüfer sequence. This would,
however, result in a considerably more complex verification and is not done in this
thesis.
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2 Enumeration of Labeled Trees

2.2 Proof of correctness

To begin the formal verification of the algorithm a formal definition of trees is needed
in Isabelle/HOL. We build upon an existing entry in the Archive of Formal Proofs by
Edmonds [3] in which undirected graphs are formalized. There are other formalizations
of graphs such as the one by Noschinski [4], but the definition of graphs is far more
general and would thus complicate our proofs unnecessarily. Meanwhile, Edmonds’
formalization targets exactly the setting of undirected simple graphs needed in this
thesis. It contains standard definitions for undirected graphs, paths, connectivity and
other useful definitions and lemmas. However, there are no definitions regarding trees
and thus we extend the existing theory with the necessary definitions and lemmas.
Most importantly, we define a tree as a finite, connected, undirected graph with no
cycles.

locale tree = fin_connected_ulgraph +
assumes no_cycles: "¬ is_cycle2 c"

Notice that this definition does not make use of the is_cycle definition of the
existing library as it does not enforce the edges of the cycle to be distinct. Thus, the
path a → b → a would be considered a cycle. Since this is clearly undesired in this
setting we make an alternative definition that restricts the notion of cycles further:

definition is_cycle2 :: "’a list ⇒ bool" where
"is_cycle2 xs ←→ is_cycle xs ∧ distinct (walk_edges xs)"

In addition, we define the set of labeled trees over a fixed set of vertices, which is the
set to be enumerated by the algorithm.

definition labeled_trees :: "’a set ⇒ ’a pregraph set" where
"labeled_trees V = {(V,E)| E. tree V E}"

With this formal definition it can be shown that the Prüfer correspondence is indeed
a one-to-one mapping from Prüfer sequences to trees and thus the correctness of the
algorithm.

Here, and for the remainder of this chapter, we will always assume the elements of
the vertex list given to the algorithm to be distinct. In addition we assume there to be
at least two vertices as Prüfer sequences only exist for trees of size at least two. These
assumptions are combined in the valid_verts locale.
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2 Enumeration of Labeled Trees

locale valid_verts =
fixes verts
assumes length_verts: "length verts ≥ 2"
and distinct_verts: "distinct verts"

First we show that the graph generated by tree_of_prufer_seq is indeed a tree. By
simple induction it can be proved that the graph produced is always connected as every
added vertex is immediately connected with the rest of the graph. In addition, if the
vertex list has n elements the graph has n vertices and n− 1 edges which combined
with the connectivity makes it a tree.

Next to show that the set of elements produced by the algorithm are all possible trees,
it is necessary to prove that every tree has a Prüfer sequence. This is where the inverse
function is useful. That is, prufer_seq_of_tree produces a valid Prüfer sequence for a
tree.

lemma "tree_edges_of_prufer_seq verts (prufer_seq_of_tree verts E) = E"

This requires one observation, namely that the number of times an element occurs in
the Prüfer sequence is one less than its degree in the graph. This means that the vertices
not in the Prüfer sequence are exactly the leaves of the tree. Thus, the operations of
finding the leaf with the smallest label and finding the smallest vertex not in the Prüfer
sequence result in the same vertex. This can be used to prove the above statement.

This means that the algorithm generates all possible trees.

theorem (in valid_verts) "set (labeled_tree_enum verts) = labeled_trees
(set verts)"

The last step is to show that no tree is produced more than once, that is the injectivity
of tree_of_prufer_seq. This can be proved inductively on the length of the Prüfer
sequences. Let s1 and s2 be two different Prüfer sequences producing trees T1 and T2

respectively. We want to show that T1 and T2 are different. Let us only consider the
case that s1 and s2 are of the same length as otherwise they clearly produce trees of
different sizes. Assume for the sake of contradiction that T1 = T2. Then due to the
observation made earlier, finding the smallest vertex not in the Prüfer sequences s1 and
s2 is the same as finding the leaves in T1 and T2 with the smallest label and so they
are equal. Let this leaf be denoted by a. If s1 and s2 differ in their first element, say
b1 and b2 respectively, then T1 contains an edge between a and b1 and T2 contains an
edge between a and b2. In the algorithm a is then removed from the set of considered
vertices and so no further edges containing a will be added. Therefore, T1 does not
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2 Enumeration of Labeled Trees

contain the edge from a to b2 and T2 does not contain the edge from a to b1. That means
the produced trees are not equal which contradicts the initial assumption.

In case s1 and s2 do not differ in their first element, they differ in some later position
and we can use the inductive hypothesis to show the statement. Thus, all trees produced
by the algorithm are distinct.

theorem (in valid_verts) "distinct (labeled_tree_enum verts)"

7



3 Enumeration of Unlabeled Rooted Trees

This Chapter describes the verification of an algorithm enumerating all unlabeled,
rooted trees with a specific number of nodes. Let G = (V, E, r) denote the rooted graph
with vertex set V, edge set E and a distinguished root r ∈ V.

locale rgraph = graph_system +
fixes r
assumes root_wf: "r ∈ V"

Similarly, a rooted tree is a tree with a fixed root.

locale rtree = tree + rgraph

As can be seen in the definition the nodes of rooted graphs are still labeled. To
get a notion of unlabeled trees we define isomorphism on these graphs. A graph
isomorphism for (unrooted) graphs is a bijection between the vertex sets of two graphs
which preserves edge connectivity.

locale graph_isomorphism =
G: graph_system VG EG for VG EG +
fixes VH EH f
assumes bij_f: "bij_betw f VG VH"
and edge_preserving: "((‘) f) ‘ EG = EH"

Similarly, graph isomorphism is defined on rooted graphs with the additional re-
quirement that the isomorphism also preserves the root node.

locale rgraph_isomorphism =
G: rgraph VG EG rG + graph_isomorphism VG EG VH EH f for VG EG rG

VH EH rH f +
assumes root_preserving: "f rG = rH"

Two rooted trees T1 and T2 are isomorphic (denoted with T1 ≃r T2) if there exists an
isomorphism between them.

8



3 Enumeration of Unlabeled Rooted Trees

The algorithm described here produces a list of all rooted trees with n vertices
modulo isomorphism. That is, every rooted tree is isomorphic to exactly one rooted
tree in the resulting list.

3.1 Algorithm

The idea of the algorithm is based on one described by Beyer and Hedetniemi [1]. It
works on ordered, rooted trees. An ordered, rooted tree is a rooted tree with a linear
order with which subtrees can be ordered. We will represent such a tree graphically as
in Figure 3.1 by drawing the root node at the top and the subtrees in the corresponding
order beneath it. Since we are interested in unlabeled trees, node labels will generally
be omitted. The two trees shown differ in the ordering of their subtrees but represent
the same underlying rooted tree. Of the possibly many ordered trees corresponding to
a rooted tree, one canonical tree will be defined. For this, a linear order will be defined
on ordered, rooted trees recursively. First we define the type of ordered, rooted trees as
a root node with a list of ordered subtrees.

datatype tree = Node "tree list"

The order defined on these trees will be the reversed lexicographical ordering. No
tree is smaller than the singleton tree (a tree only containing a root node). The singleton
tree is smaller than every other tree besides itself. Otherwise, the subtrees are compared
elementwise from the back. To simplify the definition in a functional setting, we first
define the regular lexicographical order on trees and then define the desired ordering
by mirroring its arguments.

Figure 3.1: Example rooted trees
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3 Enumeration of Unlabeled Rooted Trees

fun lexord_tree where
"lexord_tree t (Node []) ←→ False"

| "lexord_tree (Node []) r ←→ True"
| "lexord_tree (Node (t#ts)) (Node (r#rs)) ←→

lexord_tree t r ∨ (t = r ∧ lexord_tree (Node ts) (Node rs))"

fun mirror :: "tree ⇒ tree" where
"mirror (Node ts) = Node (map mirror (rev ts))"

definition
tree_less_def: "(t::tree) < r ←→ lexord_tree (mirror t) (mirror r)"

For a rooted tree T, we now define the canonical ordered tree as the greatest ordered
tree corresponding to T. In Figure 3.1 the left tree is the canonical ordered tree.

The algorithm will produce all canonical ordered trees. Instead of working with
rooted trees directly, the algorithm of Beyer and Hedetniemi uses an alternative rep-
resentation of rooted trees, namely level sequences. The algorithm described here
enumerates rooted trees in the same order but is defined recursively on a recursive tree
datatype instead of on the level sequences.

To traverse all rooted trees a successor function is defined giving the next smallest
canonical tree. To accomplish this, some auxiliary functions are needed. We define
a function that trims a tree, trim_tree n t trims t to n nodes by removing nodes in
postorder until the tree has at most n nodes. See Figure 3.2 for an example of how
trim_tree works.

trim_tree 5 trim_tree 3

Figure 3.2: Example of trim_tree
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3 Enumeration of Unlabeled Rooted Trees

fun trim_tree :: "nat ⇒ tree ⇒ nat × tree" where
"trim_tree 0 t = (0, t)"

| "trim_tree (Suc 0) t = (0, Node [])"
| "trim_tree (Suc n) (Node []) = (n, Node [])"
| "trim_tree n (Node (t#ts)) =

(case trim_tree n (Node ts) of
(0, t’) ⇒ (0, t’) |
(n1, Node ts’) ⇒

let (n2, t’) = trim_tree n1 t
in (n2, Node (t’#ts’)))"

With the help of this a function f ill_tree is defined, f ill_tree n t produces a list of
trees with a total number of n nodes. Each tree in the list will be t except the first one
which might be trimmed to a suitable size in order for the total number of nodes to be
n.

fun fill_tree :: "nat ⇒ tree ⇒ tree list" where
"fill_tree 0 _ = []"

| "fill_tree n t =
(let (n’, t’) = trim_tree n t
in fill_tree n’ t’ @ [t’])"

Now we define the successor function which produces, given a tree, the next smallest
canonical tree. Generating the next smallest tree follows these 4 steps:

1. Remove all direct subtrees of the root node which are singleton trees.

2. Find the first node v (in preorder) which has a singleton tree as the first subtree.
Let the subtree of v be Tv.

3. Remove the first singleton subtree of Tv which results in a tree T′v.

4. Let p be the parent of v. Fill the subtree list of p with T′v until the entire tree
consists of n nodes again.

See Figure 3.3 for examples of how the function operates.
This function can be directly defined recursively on the tree datatype.
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3 Enumeration of Unlabeled Rooted Trees

p

v
next_tree

p

p

v

next_tree p

Figure 3.3: Example of next_tree
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3 Enumeration of Unlabeled Rooted Trees

fun next_tree_aux :: "nat ⇒ tree ⇒ tree option" where
"next_tree_aux n (Node []) = None"

| "next_tree_aux n (Node (Node [] # ts)) =
next_tree_aux (Suc n) (Node ts)"

| "next_tree_aux n (Node (Node (Node [] # rs) # ts)) =
Some (Node (fill_tree (Suc n) (Node rs) @ (Node rs) # ts))"

| "next_tree_aux n (Node (t # ts)) =
Some (Node (the (next_tree_aux n t) # ts))"

fun next_tree :: "tree ⇒ tree option" where
"next_tree t = next_tree_aux 0 t"

None will be returned if the argument is already the smallest tree and thus there is
no next smaller tree.

To now enumerate all rooted trees with n nodes, one starts with the greatest tree on
n nodes and repeatedly calls next_tree until the smallest tree is reached.

fun greatest_tree :: "nat ⇒ tree" where
"greatest_tree (Suc 0) = Node []"

| "greatest_tree (Suc n) = Node [greatest_tree n]"

function n_tree_enum_aux :: "tree ⇒ tree list" where
"n_tree_enum_aux t =
(case next_tree t of None ⇒ [t] | Some t’ ⇒ t # n_tree_enum_aux t’)"

by pat_completeness auto

fun n_tree_enum :: "nat ⇒ tree list" where
"n_tree_enum 0 = []"

| "n_tree_enum n = n_tree_enum_aux (greatest_tree n)"

To prove termination of the enumeration we show that the output of next_tree (if it is
not None) is strictly smaller than its input and that there are only finitely many rooted
trees with n nodes.

To determine the runtime of the algorithm let N be the number of rooted trees of size
n. Then next_tree is called N times during the enumeration of all trees. next_tree
traverses each node at most once and since fill_tree runs in linear time with respect
to the number of nodes produced, next_tree runs in O(n). Thus the runtime of
the algorithm is O(n ∗ N). Beyer and Hedetniemi [1] prove that their imperative
implementation of next_tree runs on average in constant time over all N calls. This
means their algorithm runs in O(N) time. Even if the implementation presented here
performs the same operations on the tree, it traverses some extra nodes while doing so.
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3 Enumeration of Unlabeled Rooted Trees

This means the result cannot be transferred directly. However, it may well be possible
to show a better bound or perhaps even O(N) here as well with a more careful analysis,
as on average still only a small portion of nodes is actually traversed.

3.2 Proof of correctness

3.2.1 Totality

Instead of working with canonical rooted trees, we work with an alternative (equiv-
alent) definition of regularity. An ordered, rooted tree is regular iff the subtrees are
ordered with respect to the linear order previously defined and all subtrees are regular
themselves.

fun regular :: "tree ⇒ bool" where
"regular (Node ts) ←→ sorted ts ∧ (∀ t∈set ts. regular t)"

To prove correctness we first show that the algorithm enumerates all regular ordered,
rooted trees and then that the set of regular ordered rooted trees is equivalent to the
set of rooted trees modulo isomorphism.

By simple induction all defined functions can be shown to preserve regularity. In
addition to that, next_tree preserves the size of the tree, again by induction and simple
auxiliary lemmas on the size of the output of the defined auxiliary functions. Since
greatest_tree n is regular and of size n, the algorithm produces only regular trees
of size n. Due to the strict monotonicity of next_tree proven earlier it immediately
follows that no tree is generated twice. In addition, we prove that there is a unique
minimal tree of size n, namely the tree consisting of a root node and n− 1 singleton
subtrees. The enumeration stops only if this minimal tree is reached. What is left
to prove is that the algorithm does not skip any regular rooted tree. For this some
auxiliary lemmas are needed. First, observe that due to the order in which trim_tree
removes nodes, trim_tree n t is the greatest tree with at most n nodes that is smaller
or equal to t. This also means that a tree which has as subtrees the list of trees
generated by fill_tree n t is the greatest tree of size n + 1 (observe the additional
root node) where every subtree is smaller or equal to t. Now to get an intuition of
why next_tree generates the next smallest tree consider counting down numbers as an
analogy. When counting down from 14200 one tries to decrease the rightmost digit that
can be decreased, i.e. the 2. Then set the digits to the right of the decreased number to
their maximum resulting in 14199.

Since subtrees are compared in reverse order, the leftmost subtree that can be
decreased (i.e. is not a singleton) will be decreased by removing its leftmost leaf. Then

14



3 Enumeration of Unlabeled Rooted Trees

using fill_tree the subtree left to the decreased tree is maximized. This argument can
be made formal by induction on next_tree and with some technicalities we omit here.
Thus, we have proven that all regular trees of size n are enumerated by the algorithm.

fun tree_size :: "tree ⇒ nat" where
"tree_size (Node ts) = Suc (∑ t←ts. tree_size t)"

definition regular_n_trees :: "nat ⇒ tree set" where
"regular_n_trees n = {t. tree_size t = n ∧ regular t}"

theorem "set (n_tree_enum n) = regular_n_trees n"

3.2.2 Distinctness modulo Isomorphism

In order for the algorithm to meet its specification we need to show that the regular,
ordered, rooted trees are equivalent to all rooted trees. We define a function to map an
ordered, unlabeled, rooted tree to a rooted, labeled tree in graph form. This is done via
two additional intermediate steps which simplify the proofs. First we define ordered,
rooted, labeled trees which are like ordered, rooted trees except that each node has a
label associated with it. A function is defined to label the nodes of an unlabeled tree.
This can be done arbitrarily as long as the nodes have different labels since any labeling
will produce an isomorphic tree. Next we define unordered, labeled trees where the
subtrees of a node are represented as a finite set instead of an ordered list. As the last
step one can transform an unordered, labeled tree t into its graph representation simply
by the graph G = (V, E) where V is the set of nodes in t and E contains an edge for
every node to the roots of its subtrees. Let t be an ordered, unlabeled, rooted tree, then
Gt denotes the graph representation of t. It can be shown that Gt is indeed a tree, i.e.
connected and acyclic.

We now want to show for every tree graph T there exists exactly one t such that T
and Gt are isomorphic. Let r be the root of T. Moreover, let C be the set of connected
components of T − {r} (the tree without its root). Then one can generate unordered
unlabeled trees for each connected component recursively by taking the unique vertex
in it that is connected to r as its root. The sorted list of these trees will be the subtrees
of t. This construction results in a regular tree t such that Gt is isomorphic to T. Denote
this tree by t(T).

The remaining step to show uniqueness is to show that Gt1 and Gt2 are not isomorphic
for two distinct regular trees t1 and t2, or equivalently that t1 = t2 is implied by Gt1

and Gt2 being isomorphic.

15



3 Enumeration of Unlabeled Rooted Trees

lemma "regular t1 =⇒ regular t2 =⇒ G t1 ≃r G t2 =⇒ t1 = t2"

One can prove that t(Gt) = t for all regular trees t. Also, since the construction of
t(T) does not depend on the labels of the nodes, but only on the structure of the tree,
we have t(Gt1) = t(Gt2) since Gt1 and Gt2 are isomorphic. This means

t1 = t(Gt1) = t(Gt2) = t2

which finishes the proof.
This concludes the entire proof and shows that the described algorithm generates

each tree exactly once modulo isomorphism, that is it generates all unlabeled, rooted
trees.

theorem "G ∈ n_rtree_graphs n
=⇒ ∃ !G’ ∈ set (n_rtree_graph_enum n). G’ ≃r G"

16



4 Formalization of Graph Theoretic Results

In the previous chapters, the main focus was on the algorithms at hand and the
approach to formalize them. While we mentioned some graph theoretic definitions we
took well known definitions and lemmas on trees and graphs for granted. Some results
were already formalized by the undirected graph library but further ones were needed
for this project. This chapter tries to summarize some graph theoretic results that were
formalized in the process. These are well suited to be reused in other projects.

We already discussed the definition of trees as acyclic, connected graphs. We also
provide the standard definition of leaves as vertices of degree 1. When proving
properties of trees it is often useful to prove them by induction on the number of
vertices. To do this we show that removing a leaf from a tree results in another tree. To
simplify proving properties on trees inductively we provide a custom induction rule.
One then only needs to prove the property for the singleton tree and that the property
is preserved when adding a new leaf.

lemma tree_induct [case_names singolton insert, induct set: tree]:
assumes tree: "tree V E"

and trivial: "
∧
v. tree {v} {} =⇒ P {v} {}"

and insert: "
∧
l v V E. tree V E =⇒ P V E =⇒ l /∈ V =⇒ v ∈ V =⇒

{l,v} /∈ E =⇒ tree.leaf (insert {l,v} E) l =⇒
P (insert l V) (insert {l,v} E)"

shows "P V E"

With the additional assumptions in the inductive step, proofs of properties on trees,
such as that a tree with n vertices has n− 1 edges, can be simplified a great deal.

When proving that a graph is a tree, arguing about acyclicity is in many cases difficult
as it can require one to argue about all possible paths in the graphs. Instead, like in
Section 2.2, we use the well-known fact that a connected graph with n vertices and
n− 1 edges is a tree. This lemma turns out to require a fair bit of setup. First, we define
a spanning tree of a graph G to be a subgraph of G that is a tree and that contains all
vertices of G.

locale spanning_tree = ulgraph V E + T: tree V T for V E T +
assumes subgraph: "T ⊆ E"

17



4 Formalization of Graph Theoretic Results

Next, we prove that every finite, connected graph has a spanning tree. This is
done inductively by removing edges of cycles, which keeps the graph connected, until
the graph is acyclic. Now to prove the lemma we were interested in initially, that
every connected graph with n vertices and n − 1 edges is a tree, let us assume for
contradiction that there exists such a graph that is not a tree. As the graph is connected,
it has a spanning tree and since it is not a tree itself, the spanning tree has to be a
strict subgraph. Since a spanning tree is a tree it has n− 1 edges by the statement
proven earlier. That means the original graph has more than n− 1 edges, which is a
contradiction. That concludes the proof.

Another concept that had not yet been formalized is connected components. This was
required for rooted trees, where removing the root node leaves the principal subtrees
as connected components. For a formal definition we first define a relation on nodes
that indicates connectivity.

abbreviation "vert_connected_rel ≡ {(u,v). vert_connected u v}"

We prove this to be an equivalence relation and define connected components to be
the equivalence classes of this relation.

definition connected_components :: "’a set set" where
"connected_components = V // vert_connected_rel"

A couple of interesting properties of connected components that were needed for the
project were proven as well.

Additionally, there are dozens more lemmas for graphs, paths, connectivity, sub-
graphs, vertex degrees etc. formalized. One well known fact which might be of interest
for other projects is the handshaking lemma which relates the number of edges with
the sum of vertex degrees.

lemma (in fin_ulgraph) handshaking: "(∑ v∈V. degree v) = 2 * card E"

The interested reader is referred to the Archive of Formal Proofs entry for the full
development.
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5 Conclusions

The aim of this thesis was to formalize algorithms for the enumeration of trees and to
prove their correctness. Algorithms for the enumeration of labeled trees and unlabeled,
rooted trees were described and successfully verified in Isabelle/HOL. To accomplish
this, trees and other graph theoretic results were formalized as well. These results can
be used by a wide variety of other projects involving trees or undirected graphs in
general.

Furthermore, there are other algorithms for the enumeration of other tree structures
that could be formalized in future projects. This includes algorithms for the generation
of free trees [6] or spanning trees of graphs [2].
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