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Abstract

Abstract

Metabolic diseases are an increasing threat to the western society. Therefore, the
metabolomics research branch evolves as a key technology. The germ of the idea is the
qualitative observation of the metabolome, which is defined as the sum of all
metabolites in a test matrix, relative to each other. Since the metabolome is directly
linked to the observable phenotype, a direct link between changes in phenotype and
metabolic signature can be established through the simultaneous study of these two
variables. The great benefit is that metabolic signatures can be used to predict changes in
the phenotype even before observable changes occur. This relatively new research field
aims to gain a better understanding of disease related risk factors and development. A
fundamental understanding of underlying mechanisms allows the identification of
disease risks and of potential targets for new therapeutics. Furthermore, the discovery of
early disease markers and their establishment in screenings allows early treatment,
which might reduce harmful health outcomes for the population.

In the field of metabolomics, two subdisciplines have evolved: mass spectrometry-based
metabolomics and the approach based on nuclear magnetic resonance spectroscopy
(NMR). This thesis focuses on the latter.

As of today, there is little consensus in the scientific community regarding best practice
guidelines and gold-standards for the metabolomics workflow. A classic NMR
metabolomics workflow consists of sample preparation, data acquisition, data
processing, statistical analysis and metabolite identification. These steps were
investigated in this thesis specifically for the case of urine NMR metabolomics. The
largest gaps were identified in the areas of sample preparation and data processing.
Subsequently, guidelines and methods to improve the actual workflows were
developed.

The first part of the thesis is describing a hydrogen deuterium exchange in creatinine for
the use of deuterated buffer systems. As creatinine is a commonly used measure for

normalization to account for urine dilution, especially in medical investigations,
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inaccurate results may be generated. To facilitate the use of recorded datasets, a
correction factor was introduced.

The second part of the thesis focussed on data analysis, specifically the extraction of
spectral information from 1-dimensional NMR spectra. Frequently used approaches
were critically investigated and a novel algorithm was developed and introduced, which
significantly reduces the spectral noise from large datasets.

In the frame of this work, it was shown that the NMR-based metabolomics approach is
an effective method for investigating the influence of various factors on the human
organism. The need for the development of a universal standard procedure for sample
preparation and analysis was also demonstrated and suggestions were made to optimise

this.
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Zusammenfassung

Zusammenfassung

Stoffwechselkrankheiten stellen eine zunehmende Bedrohung fiir die westliche
Gesellschaft dar, daher entwickelt sich der Forschungszweig der Metabolomik zu einer
Schliisseltechnologie. Grundlage der Idee ist die qualitative Betrachtung des
Metaboloms, das als Summe aller Metaboliten in einer Testmatrix relativ zueinander
definiert ist. Da das Metabolom direkt mit dem beobachtbaren Phénotyp assoziiert ist,
kann durch die gleichzeitige Untersuchung dieser beiden Variablen eine direkte
Verbindung hergestellt werden. Der innovative Ansatz besteht darin, dass metabolische
Signaturen zur Vorhersage von Veranderungen des Phanotyps verwendet werden
konnen, noch bevor beobachtbare Verdnderungen auftreten. Dieser relativ neue
Forschungszweig zielt auf ein besseres Verstindnis der krankheitsbezogenen
Risikofaktoren und der Krankheitsentwicklung ab. Ein grundlegendes Verstiandnis der
den Krankheiten zugrundeliegenden Mechanismen ermoglicht die Identifizierung von
Risiken und potenziellen Zielen neuer Therapeutika. Dariiber hinaus ermoglicht die
Entdeckung von frithen Krankheitsmarkern und deren Monitoring in
Vorsorgeuntersuchungen eine friihzeitige Behandlung und Krankheitspravention.

Die Metabolomik wird derzeit von zwei analytischen Methoden dominiert, der
Massenspektrometrie (MS) und der Kernspinresonanzspektroskopie (NMR). Die
vorliegende Arbeit befasst sich mit letzterer Methodik.

Bis heute gibt es in der wissenschaftlichen Gemeinschaft wenig Konsens iiber -
Richtlinien und Gold-Standards fiir einen NMR basierten Metabolomik-Workflow. Ein
klassischer NMR-Metabolomik-Ablauf besteht aus Probenvorbereitung, Datenerfassung,
Datenverarbeitung, statistischer Analyse und Metabolit-Identifizierung. Diese Schritte
wurden in der vorliegenden Arbeit speziell fiir den Fall der Urin-NMR-Metabolomik
untersucht. Die grofiten Liicken wurden in den Bereichen der Probenvorbereitung und
der Datenverarbeitung festgestellt. Es wurden Richtlinien und Methoden zur

Verbesserung der aktuellen Arbeitsablaufe entwickelt.




Zusammenfassung

Der erste Teil der Arbeit beschreibt einen Wasserstoff-Deuterium-Austausch in
Kreatinin, der bei Verwendung von deuterierten Puffersystemen auftreten kann. Da
Kreatinin ein haufig verwendeter Parameter fiir die Normalisierung von Urinproben ist,
insbesondere bei medizinischen Untersuchungen, konnen ungenaue Ergebnisse
entstehen. Um dennoch die Auswertung und Interpretation bereits erstellter Datensatze
zu ermoglichen, wurde eine Korrekturgleichung eingefiihrt.

Der zweite Teil der Arbeit befasst sich mit der Datenanalyse, insbesondere mit der
Extraktion von spektralen Informationen aus 1-dimensionalen NMR-Spektren. Haufig
verwendete Ansidtze wurden kritisch untersucht und ein innovativer Algorithmus
wurde entwickelt und vorgestellt, der das spektrale Rauschen in grofien Datensétzen
deutlich reduziert.

Im Rahmen dieser Arbeit wurde gezeigt, dass der NMR-basierte Metabolomik-Ansatz
eine effektive Methode ist, um den Einfluss verschiedener Faktoren auf den
menschlichen Organismus zu untersuchen. Die Notwendigkeit der Entwicklung eines
allgemein akzeptierten Standardverfahrens fiir die Probenvorbereitung und -analyse
wurde ebenfalls aufgezeigt und es wurden Vorschlige zur Optimierung dieses

Verfahrens gemacht.
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General Introduction & Methods

Chapter 1|

1. General Introduction & Methods

1.1 Metabolomics

The concept that individuals have metabolic profiles was introduced as early
as the late 1940s and early 1950s by Roger Williams and his group, who
applied paper chromatographic methods to determine individual metabolic
excretion patterns of several analytes in urine and saliva [1]. Although these
results were promising, the lack of analytical methods to determine individual
metabolite levels at a sufficient level was a huge drawback. The rise of
advanced technologies in the second half of the 20" century again brought up
this research area. Horning et al. introduced the term ‘metabolic profile” in
1971, where they demonstrated the applicability of gas chromatography
coupled to mass spectrometry to analyze multiple components in human
samples. The group suggested the use of those metabolic profiles to determine
abnormal conditions, analysis of drug metabolism or the effect of drugs on
metabolic pathways [2].

The scientific disciplines ‘Metabolomics’ and ‘Metabonomics” were defined by
Nicholson and Fiehn around the turn of the millennium [3-5]. Although the
two terms are often used interchangeably today, the original definitions differ
significantly. Whereas metabolomics aims to analyze the relative changes in
metabolite abundance in comparative studies and identify those [5],
metabonomics, however, is defined as ‘the quantitative measurement of the
metabolic response to pathophysiological stimuli or genetic modifications’

[4,3].
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The metabolome itself refers to the totality of all small molecules synthesized
or metabolized by a biological system [6] and therefore is extremely complex.
The qualitative or quantitative longitudinal observations of the metabolome
can detect biological changes in the study group at an early stage due to
perturbations compared to their basal excretion [7]. Furthermore, case-control
studies can provide information about the development of the disease or

specific disease markers [8].

1.1.1.1 The role of Metabolomics in Systems Biology

The well-known systems theory is the underlying theory of systems biology,
which declares that the behavior of a system is more than the sum of its
components. Rather than that, the overall behavior of the system is
significantly influenced by interactions between the parts of the system. The
aim to describe biological systems in such a holistic manner requires a
collaborative synergism between several scientific disciplines, such as biology,
computer science and bioinformatics. It allows the understanding and
prediction of how biological systems change over time or under varying
conditions and opens up new possibilities to develop solutions to current

health and environmental issues [7].

The scientific branch of systems biology is commonly known as omics,
including genomics, transcriptomics, proteomics and metabolomics as main
sub-disciplines [9]. A schematic depiction of the omics cascade is shown in

Figure 1.
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Figure 1: The omics cascade as an entity describing the response of a biological system to genetic
and environmental influences

Genomics, as the first level of the omics cascade, studies the structure,
function, evolution and editing of genomes and the complete genetic
information of an organism. In humans the genome consists of about 3.2
billion base pairs. It can be understood as an instruction manual for all
essential parts for a human existence, the building blocks, reproduction, repair
mechanisms and the functional assembly. Therefore, the first part of the omics
cascade gives a holistic overview of what could possibly happen in the
biological system [10-12]. The human genome project paved the way to
understand the role of genes in the formation of human phenotypes and the
individual risks for certain conditions [13]. Genomics aims to identify genetic
variants associated with a certain disease, the effects of a specific treatment or
prediction of future conditions [14]. Until today, thousands of genetic variants
have been linked to common diseases [15,16], such as cancer [17] and type II
diabetes [18]. Genomics is the most established discipline in the omics field

[19].

Genetic information encodes proteins and regulatory components that are

necessary for the entire life span of the system. It is neither necessary nor
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energy-efficient for the organism to translate all the information into readable
molecules at any given time. To move another step toward phenotype, it may
be useful to focus on the fragments of genetic information that are being read

at a given time.

The subsequent part of the omics cascade, transcriptomics, aims to study the
translated ribonucleic acid (RNA) profile within the biological system. This
RNA profile describes the parts of the genome actively expressed at the
investigated time point. The transcriptome can be examined either
qualitatively to determine which transcripts are present, to identify novel
splice sites or sites for RNA editing, or to quantitatively determine the amount
of each transcript [19]. The functional RNA molecules consist of protein-coding
mRNAs and non-coding RNAs, which do not encode proteins but have
regulatory functions. The advent of new technologies allowed large scale
transcriptomics studies which revealed that only ~3% of the genome encodes
proteins, whereas up to 80% is transcribed [20]. Since then, several studies
showed the essential role of non-coding RNA in physiological processes, such
as cell differentiation [21,22], neurogenesis [23] and endocrine regulation [24].
Transcriptomics data describes what appears to be happening in the biological
system at given time points [25]. This research field has been broadly applied
across diverse areas of biomedical research, such as diagnosis and profiling
[26]. Alternative splicing patterns are of great interest in human health and
disease, as 15-60% of known disease-causing mutations affect splicing [27,28].
Alterations in splicing may cause the disease directly or modify the severity of
the disease or it can also be linked to disease susceptibility [28]. Frequently,
transcripts contain alternative exons which increase the diversity and enables

higher complexity encoded in the genome [29].

Once mature mRNA is generated, the protein-coding snippets are then

translated into proteins by decoding the amino acid sequence determined by
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the order of nucleic acids and further posttranslational modifications, such as
phosphorylation, glycosylation or methylation [30]. These modifications play a
crucial role in cell signaling, the maintenance of cell structure, enzyme
regulations and protein turnover [31]. Proteomics aims to analyze and quantify
the composition of proteins, interaction, and abundance. This part of the omics
cascade identifies and describes the functional molecules responsible for any
biochemical process of a system and its response to internal and external

stimuli [32].

As depicted in Figure 1, metabolomics is the ultimate stage of the omics
cascade providing information about the functional readout of a biological
system. Contrary to genes, mRNAs and proteins, downstream metabolites
serve as markers for biochemical activity and hence are strongly linked to the
observable phenotype [33]. Although it is the closest to the phenotype, this
discipline emerged rather late. Thus, at this stage of research, no single

instrument best practice guideline exists.

1.1.2 Metabolomics and the Human Urine Metabolome

Body fluids frequently used in metabolomics-based studies are urine, blood
serum or plasma, saliva, tissue or stool homogenates, or cerebrospinal fluid
[34].

In Figure 2 the frequency of publications containing the keyword
‘metabolomics” and the above-mentioned biological sample types in the title is
shown. Most publications (66 %) focus on blood metabolomics analyzing the
non-cellular compounds as either serum or plasma. Serum remains after the
blood was allowed to clot, whereas in plasma the clotting is prevented by
adding an anticoagulant such as e.g., heparin. During the process of

coagulation, platelets release chemical substances into the serum, as for
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example proinflammatory cytokines or sphingosine-1-phosphate [35-37].
Serum and plasma metabolomics have been applied in colorectal cancer
research [38], diagnosis of hepatocarcinoma [39], lung cancer [40] and renal cell
carcinoma [41].

Urine has been a favorable bio fluid in life science and medicine for decades, as
it is generally sterile and easy to obtain. Although often considered a waste
product, urine has considerable value in diagnostics. Through the easy
accessibility, urine has been valued as early as in the ancient Egypt times for
medical purposes. Hippocrates, one of the most outstanding personalities in
the history of medicine, supported the technique of uroscopy, in which urine
samples were examined for color, smell, sediment and particles for diagnostic
purposes [42]. Since then, the progress in analytical and microbiological
methods as well as profiling techniques allows urine examination more
detailed and informative [43].

Unlike blood samples, urine is more susceptible to diet and diurnal variation,
but it plays an important role in acquiring metabolite data. In particular, urine
is the matrix of choice in some patient populations, such as young children
[44]. Metabolomics studies based on urine as sample matrix account for 18 %
of publications listed on PubMed published in 2022.

Tissue metabolomics account for 9 % of those publications. Although the
analysis of tissue specimen is generally more invasive compared to body
fluids, the main interest lies in organ specificity. As the origin of the specimen
is localized close to the main disease progress, tissue metabolomics are
considered more sensitive and therefore may provide a robust method for
biomarker discovery. The sample preparation workflow of tissue
metabolomics can include lyophilization, homogenization and extraction.
Several different tissue types have been investigated, such as brain, kidney,

esophagus, skin wound tissue or ovarian tissue [45].
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Figure 2: PUBMED query on the likelihood of occurrence of the keyword ‘Metabolomics” in
combination with frequently used biological matrices in the title of publications in 2022

Since salivary metabolomics is a very new field of research, this part is
relatively small compared to the already established biofluids. Nevertheless,
this area is very promising. The very simple extraction and general availability
allow the collection of large sample quantities [46]. Saliva metabolic profiles of
smokers and nonsmokers have been analyzed and smoking related
perturbation were found [47]. Also the detection of oral cancer via saliva
metabolomics was performed successfully [48].

The human cerebrospinal fluid metabolome has been described in 2008 by
Wishart et al. Their attempt was to describe a baseline metabolome in healthy
individuals and identify the best suited analytical technique to analyze the
matrix. They identified cerebrospinal fluid as information rich and therefore
valuable biofluid for metabolomics [49]. Nevertheless, cerebrospinal fluid is
hard to obtain and therefore leaves the researcher with a small number of
samples. This might explain the small percentage of metabolomics studies
performed on cerebrospinal fluid until today.

When diseases affecting the lower digestive tract are to be investigated, stool is
the matrix of choice in metabolomics approaches. Studies investigating
perturbations in the stool metabolome have been performed for inflammatory
bowel disease, Chron’s disease and ulcerative colitis [50]. Although stool

samples contain a lot of information about the patient and his gut microbiome,
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stool is a very complex test matrix due to its inhomogeneity and variability

and is therefore rarely used compared to other samples.

The different types of bio samples provide different biochemical information
and must be selected according to the specific research question. In the context
of this thesis the focus is set on urine as sample matrix.

Contrary to other bio fluids, such as blood, urine has no homeostatic
mechanism. Due to this, urine composition can be very diverse without
harming the body and therefore is a valuable source for early biomarker
discovery [51]. Several diseases remain silent until the late phase, when
irreversible progression is made [52]. Urine has proven to be a valuable sample
type to screen for disease specific signatures in an early stage. For example, a
metabolomics approach has been used to investigate metabolic profiles and
biomarkers for chronic obstructive pulmonary disease (COPD), which is an
increasing health concern. McClay et al. found, that an urinary metabolomics
approach is an effective diagnostic tool and could therefore be used for early
screening [53].

Similarly, Matsumura et al. found biomarker for the diagnosis of lung cancer
with excellent sensitivity and specificity (93% and 94%) [54].

Additionally, to the possible simplification of diagnosis, such approaches
enable the identification of metabolic pathways which are involved in disease
progression. This may present new possibilities in identification of potential
drug targets in treatment and lead to a better understanding of disease
development, which is a basis for prevention measures [55].

In mammals, urine is produced by the kidneys via extraction of soluble wastes
from the bloodstream. The excretory function consists of glomerular filtration,
tubular reabsorption und secretion [56]. An average adult generates between
1.5 and 2 liters of urine per day [57]. Therefore, sampling is relatively easy and

non-invasive with simultaneous high information gain.
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Contrary to other omics disciplines where often a near-complete coverage of
the genomic or proteomic information can be reached, most of the urinary
metabolites could not have been identified until today [57]. Progress is made
towards extension of reference databases, such as the human metabolome
database (HMDB)[58]. Introduced as early as 2007, the HMDB is considered
the standard reference database for human metabolomics studies nowadays
and covers more than 110 000 fully annotated metabolites by 2018 [59].

The human urine metabolome is very complex and diverse, containing amino
acids, organic acids, nucleosides, and carbohydrates among other classes [57].
Also, xenobiotics, such as drugs, pollutants, cosmetics and their metabolites,
represent a branch of metabolomics research interests [60,61]. The sheer
diversity of possible structures and metabolites explains the meagre coverage
of identification.

In Figure 3 the chemical composition of urine is pictured. The individual
components can be classified according to their chemical composition,
respectively chemical superclasses, as applied in the HMDB [57]. As shown in
the figure, the compounds can also be classified according to their origin and
potential information. The concentration of urinary creatinine and the urine-to-
plasma ratio of urea for example have been shown to indicate kidney problems
[62,63]. Jain et al. found out, that microbial metabolites in urine provide a
functional read-out of the status of the gut microbiome and probands diet.
Thus, the analysis of microbial metabolites in urinary metabolomics allows a

linkage between the metabolic phenotype and microbial population [64].
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Figure 3: Typical composition of human urine

Environmental pollutants are a major risk to human health, such as the
harmful polycyclic aromatic hydrocarbons (PAH). PAHs are known to be
ubiquitous in the environment. It is also known that PAHs have toxic,
mutagenic, carcinogenic properties. To study their biological effects in human
populations, those environmental pollutants are of major interest in
metabolomics studies. The goal of such studies is to link the environmental
exposure to specific phenotypes and to gain information about potentially
affected pathways [65].

Monitoring xenobiotics and drug-related metabolites allows evidence to be
gathered on the biochemical pathways that a drug of interest affects in the
human body. Studies also have shown that the monitoring of metabolites
related to a specific drug can detect good responders to the treatment. For

example was the increase of dibasic acids positively correlated with the

10



General Introduction & Methods

response to simvastatin, a drug which is used to lower blood cholesterol and
prevent heart diseases [66,67].

In summary, urine as a test substance can answer a wide range of possible
scientific questions. Since urine is widely available and very stable and less
complex to process compared to blood derivatives, many metabolomics

studies are performed using this matrix.

1.1.3 Conceptual Approaches of Metabolomics

Metabolomics approaches can be performed either targeted or untargeted with
a vital difference in the concept. Untargeted metabolic profiling is executed
with no a priori selection of metabolites or the knowledge of their identity,
whereas a targeted method relies on a selection of specific metabolites or
metabolite classes prior analysis. The principles of both methods are visually

compared in Figure 4.

Metabolomics
Untargeted Targeted
“* Hypothesis generating **» Hypothesis driven
% Comprehensive analysis ** Subset analysis
<+ Biomarker identification ++ Biomarker validation
% Semi-quantitative s+ Quantitative

Figure 4: Principles of targeted and untargeted metabolomics

Untargeted metabolomics can be considered as hypothesis generating
approach with the aim to measure and compare as many signals as possible
across a sample set to allow a comprehensive analysis. This top-down
technique is generating complex and large amounts of data which make the

subsequent analysis a demanding task [68]. Nevertheless, this method enables

11
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to approach new scientific questions. Untargeted metabolomics can
complement clinical research by biomarker discovery [69], disease early onset
research [70,71] and precision medicine profiling [72-74]. The main difficulty
besides the extensive computational effort is the bottleneck of metabolite

identification, which is described in detail in section 1.2.7.

In contrast, targeted metabolomics is a hypothesis driven approach to
investigate the effects of a treatment, diet, or environment on levels of a priori
defined metabolites or spectral features. Contrary to untargeted metabolomics,
where semi-quantification of interesting metabolites is generally the end point,
targeted metabolomics usually includes an absolute quantification of the
investigated metabolites. This difference derives from the varied experimental
setup. If the analyte identity is known, and with that the chemical structure,
the experimental design can be optimized towards these metabolites [75,76].
Both approaches can also be designed to be built on one another starting with
a hypothesis generating global untargeted approach to identify metabolites or
clusters of interest and subsequently examine this set of substances with a
targeted technique.

Commercially available platforms, such as Bruker’s IVDr software systems
combine both approaches within one measurement. For each sample an
untargeted profile is generated and subsequently a set of pre-defined

metabolites is fully quantified [77].

1.1.4 Human Metabolomics Studies

Animal models have been the first choice to study molecular pathways of
diseases, as it allowed researchers to investigate organisms under very defined
conditions and at low costs. The environment, diet and individual factors can

be highly controlled in animal studies. The strong level of standardization

12
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reduces the inter-individual variation drastically and enables better
identification of potential effects. Especially when the subject of interest is a
specific tissue or organ, e.g., liver or brain, animal studies are advantageous, as
the desired sample can be taken and examined after the animal has been
euthanized. Furthermore, the bureaucratic burden is significantly lower
compared to human studies. Although animal models are very efficient in
many cases, they have significant disadvantages. Differences between the
model species, e.g., rodents, which are frequently used in animal studies, and
humans are a major disadvantage. The clean laboratory facilities in which
those animals grow up lead to immature immune systems and vastly different
microbiomes. These effects reduce the translatability between animal models
and humans [78-80]. Furthermore, the ethical aspect plays an important role
and pushes the development of alternative study designs recently.

Human studies can be divided into two subgroups, which are observational
studies and intervention studies. Interventional studies are usually performed
with a small number of participants and indicated when a certain intervention
can be performed, e.g. a new treatment versus placebo. The gold standard of
interventional studies is the randomized controlled trial. The biggest benefit of
intervention studies is that all other variables can be controlled, especially if
the volunteers are unaware of the treatment they are getting. Intervention
studies are limited in time, as it is not possible to monitor the study
participants over a longer period of time. Thus, only short-term outcomes can
be monitored. Furthermore, for ethical reasons, it is impossible to carry out an
intervention study for some questions, for example when investigating the
effects of exposure to environmental toxins.

Fortunately, the progression in data handing allows processing large amounts
of data in short periods of time and therefore allowing the analysis of large-
scale data from observational studies. Observational studies can be divided

into three sub-groups, cohort studies, case-control studies, and cross-sectional

13
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studies. Cohort studies, also known as ecological studies, are designed to
compare clusters of participants. The aim is to find factors which correlate with
e.g., the risk of disease development. In case-control studies participants are
selected based on their medical status, i.e., diseased or healthy. An example of
a case-control study is analyzing the correlation between smoking habit and
lung cancer. A major disadvantage of case-control studies is the potential of a
recall bias [81]. Cross-sectional studies, also referred to as prevalence studies,
assess data of a population at a specific timepoint [82].

Contrary to small-scale animal models and human interventional studies the
conditions of large-scale observational studies are a lot less controllable. Likely
sources of variance in urine composition in large scale human studies are e.g.,
diet, drug-intake, environmental influences, or exercise [83,84]. To account for
these variances, food frequency questionnaires or diet diaries are frequently
applied [85,86]. Nevertheless, these approaches are limited by misreporting
and recall bias [87]. Large scale cohort studies, such as the single cohorts
combined in the Consortium of Metabolomics Studies (COMETS) have applied
questionnaires assessing smoking status, alcohol intake, body mass index,
waist circumference, leisure-time physical activity and educational levels
besides diet. Also, clinical measures were collected for some of the cohorts,
such as blood pressure, fasting glucose or lipoproteins [88]. All these
complementary measures were recorded to account for sources of variability in
the subsequent data analysis. Additionally to variable sources of variance
longitudinal observation of study cohorts faces other disadvantages.
Exemplary, incomplete or interrupted follow-up samples of individuals are a
major problem [89]. Furthermore, the researcher needs to be aware of logistical
issue need, such as a constant cooling pipeline or batch effects.

In summary, large-scale human metabolomics studies are an excellent

approach to study environmental effects on the human metabolism, the
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detection of biomarkers or disease development. Nevertheless, researchers

need to be aware of limitations and challenges in subsequent data analysis.
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1.2 Analytical Methods

The field of metabolomics is dominated by two main analytical methods,
mass-spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR).
MS is a technique based on the generation of ions by a variety of methods
obtaining spectral data from the mass-to-charge ratios (m/z) of compounds,
respectively their fragments, and their relative abundance. Ionization may be
performed thermally, by application of electric fields or through the impact of
energetic electrons [90]. To reduce the total numbers of analytes ionized and
detected at one time point different chromatographic methods are applied,
such as liquid chromatography (LC) or gas chromatography (GC) [91,92].

In Table 1 NMR and MS are contrasted for several aspects relevant in
metabolomics approaches. Compared to MS, NMR is typically 10 to 100 times
less sensitive. NMR techniques detect metabolites with concentration > 1 uM,

whereas typical LC-MS can detect metabolites > 10 to 100 nM [93,94].

Table 1: Comparison of NMR and MS in metabolomics applications, adapted from Emwas et al.

[93]
NMR MS
Sensitivity Relatively to MS low High
Reproducibility High Relatively to NMR low
Matrix effects Low High
Sample preparation Low High

Nondestructive, therefore

Sample recovery Destructive, therefore low

high
Selectivity Nonselective Selective
cpe . oL Internal standards necessary for
Quantification Inherently quantitative Y

quantification

Despite the higher sensitivity, MS approaches have remarkable disadvantages

compared to NMR based methods. MS is known to be less reproducible and
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matrix effects are a common issue. Matrix effects occur as signal suppression
or enhancement in the presence of sample matrix components [95].

Sample preparation is a relevant point when comparing the two methods, as
metabolomics studies usually require a large number of samples to be
processed. In addition to the error-proneness of complex preparation
procedures, a time factor must also be considered. Depending on the specific
approach, the separation and purification prior to introduction in the mass
analyzer can be time consuming and complex. NMR spectroscopy usually
requires no or si mple sample preparation, whereas MS measurements need
more elaborate processing.

Since NMR, unlike MS, is a non-destructive method, it is usually possible to
measure individual samples again after a longer period of time if they are
stored adequately. This intrinsic property means that faulty measurements can
be detected and replaced afterwards.

Furthermore, the selectivity of GC/LC-MS to different classes of analytes
requires a sophisticated set-up to allow a maximum coverage of metabolites
[96]. Contrary, NMR is known to be highly quantitative and reproducible.
Moreover, NMR is not selective to compound classes [97,98]. These properties
give a solid basis for analysis of a broad range of analytes under different
conditions and the quantitative nature of NMR produces data suitable for
multivariate statistical analysis [99]. The selectivity of GC/LC-MS to different
classes of analytes requires a sophisticated set-up to allow a maximum
coverage of metabolites [96].

Another intrinsic property of NMR spectroscopy is the quantitative nature of
the measurement. In contrast to MS, NMR measurements do not require
individual internal standards for specific constituents if the relaxation time is
sufficient. Due to varying ionization efficiency, a structurally similar internal
standard, usually a stable isotope labeled standard, is essential for

quantification in MS [100]. Therefore, a quantification of various compounds in
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complex biological samples requires a profound knowledge of the matrix to
establish an appropriate mixture of internal standards [101].

In summary, it can be said that both methods have fundamental advantages
and disadvantages. In general, these specific properties make NMR more
suitable for untargeted questions, while MS is a good tool for targeted

questions.

1.2.1 Fundamental Principles of Nuclear Magnetic Resonance

Spectroscopy

Nuclear magnetic resonance (NMR) is a spectroscopic method based on the
magnetic properties of nuclei. The phenomenon of nuclear magnetic resonance
was discovered as early as the 1940s by Purcell and Bloch [102,103]. The
method relies on the fact, that many nuclei have spins, such as 'H, *C, >N or
F to name a few. The nuclear spin (I ) is a form of angular momentum carried
by atomic nuclei and can be described using quantum numbers. Atoms with
an even number of protons and neutrons have a spin equivalent to zero, atoms
with an uneven number have a non-zero spin. Most nuclei relevant in a
biological context have the spin %4, such as 'H and *C. The atoms with a spin
different from zero have a magnetic moment p, described by

Eq.1
n= gl

with g being the gyromagnetic ratio, the ratio between the magnetic moment
to the angular momentum, which is specific for each nucleus. The magnetic
moment forces the nuclei to precess around the external magnetic field B, with
a characteristic frequency, the Larmor frequency.

Eq.2

w;, = YB,
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For spin %, only two energy levels exist. In an external magnetic field (By), the
rotation axes of nuclei are forced to align parallel (a state, low energy) or
antiparallel (f state, high energy) to the external magnetic field direction (z
plane) by their magnetic moment. The nuclei in a sample are distributed
among the different energy levels, where the number N in the respective
energy level can be described by the Boltzmann distribution,

Eq. 3

M = e YNHR/KT
Niower

where h is Planck’s constant, H(B) is the external magnetic field strength, k is
the Boltzmann constant and T is temperature. By exposing the nuclei to a
second oscillating magnetic field in the form of radiofrequency pulses
corresponding to the Larmor frequency of a nuclei, energy can be transferred
into the spin system, which changes the state of the system (often by rotation
of 90° into the horizontal xy plane). After the pulse energy is introduced, the
system relaxes back into its equilibrium state inducing weak currents in the
probe coils. This resonance signal, also known as free induction decay (FID), is
recorded by the spectrometer as a function of time. The FID is a complex
pattern describing the exponential decay, which is relatively challenging to
interpret. By performing a Fourier Transformation (FT), the FID is converted
from the time domain in the frequency domain producing the actual NMR
spectrum. The magnitude of a resonance is displayed along the frequency axis.
NMR spectrometers are classified by their magnetic field strength, ranging
from 7.05T to 23.49 T. Also, devices with the same nominal magnetic field
strength vary in their actual values. To determine the spectrometers operating
parameters, the strength of it is denoted as the frequency of the water protons,

which is around 300 MHz for 7.05 T magnet and 1 GHz for 23.49 T magnet.
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This is the so-called frequency of the spectrometer. To enable a comparison
between samples recorded on different devices, the chemical shift (&) scale is
used. The scale is expressed as parts per million (ppm), which is independent

of the spectrometer frequency.

Eq. 4

frequency of signal (MHz) — freuquency of standard (MHz)
= X

6 106

frequncy of spectrometer

As the chemical shift scale is an arbitrary scale, a reference standard must be
used. The most common standards are trimethylsilylpropionat (TSP) in
aqueous solutions and tetramethylsilane (TMS) in organic solvents. The
reference standard is always denoted as § = 0 ppm. The applied frequency
increases from left to right, thus the left side of the spectrum is the low field,
and the right side is the high field region. Although in a one-dimensional
experiment only one sort of nuclei is observed (mostly 'H or *C in
metabolomics), the nuclei differ in their resonance frequencies. This is caused
by the local chemical environment of a nucleus, which influences the exact
magnetic field experienced by a particular nucleus. The electrons surrounding
the nucleus are in motion and thus creating their own magnetic fields. These
fields counteract the magnetic field generated by the high-frequency pulse and
thus reduce the field to which the core is subjected. Therefore, the electrons are
shielding the nucleus and the energy between the spin states is decreasing,
which results in a smaller chemical shift. The different electron densities
around the observed nuclei make NMR very useful in structure determination

and the distinction of molecules within a complex matrix [104-106].
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1.2.2 Sample Preparation for Urine NMR Metabolomics

To acquire high quality NMR spectra, care needs to be taken in every step of
the analysis including sampling and sample preparation. Using urine as test
substance these steps are relatively straight forward. Urinary excretion was
found to vary throughout the days, exemplary levels of creatinine, mannitol,
dimethylamine, 1-methylnicotinamide, xylose, acetone, transaconitate and
phenylalanine are different between samples collected in the morning versus
afternoon [107,108]. Therefore 24h wurine sampling is preferred. After
sampling, the urine must be stored at -80 °C to avoid any microbial or chemical
alterations in the matrix [109-111].

Since the subsequent analysis is a bottleneck in NMR metabolomics
approaches, it is of immense importance to generate high-quality spectra. An
overview of the quality criteria and the sample preparation factors influencing
them is shown in Table 2.

In order to propose standard operating procedures (SOPs) for metabolomics,
Bernini et al. investigated different pre-analytical treatments [112]. To obtain
high quality spectra, homogenous samples without debris are required.
Samples can be either centrifuged or filtered to remove debris. Care must be
taken to ensure that the timing and intensity of centrifugation are identical, as
deviations from a standard protocol may alter the metabolic profile. Detailed
information can be found in the publication by Bernini et al. [112].

The pH value of human urine can range from 5 to 8, depending on an
individual’s acid-base status [113-115]. Variation in pH is strongly affecting
chemical shifts for some metabolites with ionizable groups [116]. Metabolites
of this group, such as citric acid, hippuric acid, dimethylamine and some
amino acids are major components in human urine. To ensure high quality
data for latter analysis, buffer systems (e.g. a KeHPOs/NaH2POs) need to be

added to maintain a constant pH. Additionally to pH, the presence of ionic
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species such as Ca?* and Mg?* affect peak shifts [116]. Efforts were made to
overcome this issue by adding EDTA [117] or KF [118].

Table 2: Criteria for spectral quality, their influence factors and crucial steps

Criteria Influence factors Handling
Linewidth Sample homogeneity Remove debris via centrifugation or filtration [112]
Peak shift pH and salt content pH buffering [111]

In Table 3 a review of published methods for urine NMR metabolomics is
shown. It becomes clear that the methods used in this field differ greatly from
one another and that no established standard procedure is generally used. A

major advantage of NMR spectroscopy is the reproducibility of the results.

Table 3: Comparison of sample preparation and measurement methods
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0.2 mM 1.5 M KH2POx in Autosampler
[119] 9:1 10 % (v/v) 300K
NaNs D20 at 6°C.
0.2 mM 1.5 M KoHPOx in no
[120] 9:1 - 300 K
NaNs H0 information
Autosampler, no
1 mM
[121] 2:1 0.24 M Na2HPO4 6.66 % (v/v)  information about 300K
NalNs
temperature
0.57 mM 4.5 M KF and POxs Autosampler at
[122] 2.5:1 28.57% (v/v) 300 K
NaNs in 100% D20 4°C
0.5 mM 1.5 M POs buffer
[123] 3:1 25% (v/v) - 298,15 K
NaNs in 100% D20
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However, because the sample preparation and in some cases also the
measurement differ so greatly, individual study results cannot be directly

compared with each other. As early as 2007, in the initial state of the research
field, Lauridsen et al. addressed this issue and published recommendations for
sample preparation and measurement based on a stability study they had
conducted [111]. While investigating the consequences of freeze-drying and
reconstitution in deuterium on the metabolic profile, they observed the effect
of deuteration of creatinine and the associated shift in creatinine resonance at a
chemical shift of 4.05 ppm. Although this problem is well known, the extent to
which the proportion of deuterated buffer, temperature, and time elapsed
between sample preparation and the actual measurement affect the level of the
creatinine signal has never been investigated. Since creatinine is an important
parameter in the field of urine metabolomics, this topic was systematically

investigated in the first part of this dissertation.

1.2.3 1D-Proton-NMR in Metabolomics Approaches

As metabolomics is fundamentally based on the relative comparison of
individual spectra to each other, high-quality spectra are a fundamental step in
the process. To take a high-resolution spectrum, a stable and homogenous
magnetic field is required. Even the superconducting magnets used in NMR
spectrometers experience fluctuations in the magnetic field, additional
fluctuations arise from environmental effects. To keep the magnetic field
stable, a lock signal is used. A possible drift in the magnetic field is monitored
by continuously measuring the absorption of the solvents deuterium signal
and fixing this signal to a predefined frequency [104]. Without drift
compensation, frequencies at which sample signals appear would be expanded

resulting in peak broadening. Sodium azide is often added as bacteriostatic
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preservative to avoid microbial degradation [109]. In Table 3 frequently used
concentrations are shown.

In NMR spectroscopy, the chemical shift is the relative distance of a resonance
line of the sample from the resonance line of an arbitrarily chosen standard to
which the chemical shift 0 ppm is assigned. The chemical shift, which is
independent of the magnetic field strength of the spectrometer used, is given
in ppm. In urine metabolomics commonly trimethylsilylpropionic acid (TSP) is
used as such standard, other reference standards are sodium 2,2-dimethyl-2-
silapentane-5-sulfonate (DSS) or trimethylsilane (TMS) in organic solvents
[121,124].

Metabolomics approaches typically aim to detect minor biological changes in
metabolite composition and concentration so that additional variance should
be reduced. Therefore, study design, sample storage and preparation are
crucial steps in a metabolomics study [125]. Nevertheless, challenges remain in
reproducible analysis and processing of the acquired data.

Figure 5 shows the schematic sequence of the elementary steps necessary
before recording an NMR spectrum. After the introduction of the sample into
the spectrometer, it must be ensured that the temperature of the sample is
equilibrated. If the sample has not reached the temperature equilibrium when
the following parameters are determined or the measurement has already
started, interfering artefacts may occur. Firstly, the magnet needs to be altered
to compensate for environmental and sample effects. This procedure is called
shimming. Most instruments are equipped with an automated gradient shim,
which adjusts the magnetic field in a decent manner, still manual shimming is
required to eliminate inhomogeneity. This is performed by stepwise
adjustment of currents in the shim coils and observation of the peak shape
from the internal reference standard. A sufficient shim is reached, once the line
width at half of the peak amplitude is below 1 Hz and the overall peak shape is
symmetric [126,124].
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‘ 1. Insert Sample 2. Temperature equilibration 3. Shimming

.

NMR

4. Optimization of water suppression 4. Optimization of pulse length

Figure 5: Depiction of steps required to be performed prior to an NMR experiment to obtain
high quality spectra

In contrast to sample preparation, for which there is no consensus, this exists
for experimental setup. The commonly used pulse sequence for 'H spectra is
the 1D nuclear Overhauser enhancement spectroscopy (NOESY) presat [121].
As biological samples and especially urine is constituted mainly from water,
the optimization of water suppression is a key factor in the experimental setup
to ensure reproducibility among samples [127]. The excessive presence of 'H
atoms in the sample overwhelm the available dynamic range determined by
the instrument and therefore this resonance needs to be suppressed [128].
Water suppression in NMR metabolomics must be feasible in a reasonable
amount of time and result in quantitative as well as reproducible data. The 1D-
NOESY sequence offers those features with generally little optimization effort.
During the relaxation delay, a long low power pulse is applied at the

frequency of the signal to be suppressed, which will saturate the unwanted
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resonance and greatly reduce its intensity. Some parameters, such as the offset
ol, need to be adjusted carefully to reach high quality results. This parameter
defines the center point of the recorded spectrum [128].

Another crucial point is the pulse width and the corresponding power. Prior to
applying a radiofrequency pulse, most nuclear spins are aligned parallel to the
magnetic field designated as z-axis. The application of such a pulse will rotate
the bulk magnetization by a specific angle, depending on the intensity of this
pulse. As resonance is measured in the xy-plane, an angle of 90° is resulting in
the maximum signal.

Besides those parameters, several others need to be adjusted by the
spectroscopist, such as acquisition time, relaxation delay, spectral width and
necessary transients. Nevertheless, in NMR approaches these key factors play
an important role in data interpretability. As large sets of samples are analyzed
and the individual samples may vary in their ionic strength, attention must be
put in considerations about these parameters The effects of such variations on
metabolite identification and quantification have been studied and found to
significantly affect the results. The importance of a well thought-out and

perfectly adapted parameter set is indisputable [129,130].

1.2.4 Spectral processing, normalization and scaling

In order to obtain high-quality spectra, there are other points that must be
considered in addition to sample preparation and the actual measurement.
These include the steps of spectra processing. Figure 6 shows the individual
steps schematically.

In NMR spectroscopy the signals are generated by the non-equilibrium nuclear
spin magnetization as a function of time, referred to as free induction decay
(FID). To convert the data from the time dimension to the frequency

dimension, a fourier transformation (FT) is performed. To eliminate possible
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artefacts and confounding factors, some operations can be carried out before
the data is transformed. This enables a high quality of the resulting spectra.
One possible manipulation is the application of an apodization function. These
functions are also called window functions and are typically applied to the FID
to emphasize regions of the FID over another. The FID is multiplied with this
function, which leads to a reduction of truncation artifacts at the outer ends of
the signals and enhances spectral quality. A frequently used function is a
decaying exponential function, which is multiplied with the FID. By using this
operation, the weighting of the signal at the beginning of the signal recording
is increased compared to the end. As the signal to noise ratio of the FID
decreases towards the end of the recording, multiplying by the decaying
exponential function generates a better signal to noise ratio. This
transformation is accompanied by a reduction in resolution. A sensible
compromise between resolution and sensitivity must be found here, which is
applied to all spectra of the data set to be analyzed and generates an optimal
spectrum quality.

Another frequently used manipulation is zero filling. Here, non-informative
values with amplitude zero are appended to the end of the FID. Since this
increases the absolute number of data points, it also increases the digital
resolution [104].

After Fourier transformation, the spectrum needs to be phased correctly to
result in positive peaks. The spectrometer measures the time dependent
voltage, which is proportional to the magnetization, on two orthogonal axes
with one of the voltages being notated as ‘real part’ and the other as
‘imaginary part’. Both signals together are recorded as FID. The phase of this
function depends on the value at timepoint zero, which should reach a
maximum for the real part. In case of a phase offset, and with that a non-

maximum value at timepoint zero, this can be corrected afterwards to obtain
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peaks with full absorption character. Practically, this means that all parts of the

peak appear above the baseline rather than below [104].
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Figure 6: Overview of necessary steps in spectral pre-processing

To make spectra comparable, the resonance frequencies are not given as
absolute values (in Hz), but according to the general conventions always as
values relative to a common standard. As already mentioned in the previous
paragraph, TSP is often used in metabolomics as an internal
reference. Regardless of the strength of the magnetic field, the frequency of the
internal reference is simply defined as the zero point and the frequencies of the
other resonances are given according to how many parts-per-million they are
away from the reference standard [104].

The quantitative character of NMR spectra is based on the fact that the peak
heights or areas are proportional to the concentration. In order to optimally
determine these peak heights or areas, baselines that are as flat as possible are
essential. Baseline outliers are mainly caused by erroneous values in the first
data points of the FID. The result of these low-frequency modulations is a
runaway baseline [131]. There are two categories of methods to correct this

error. The correction can be done directly in the time domain, in other words
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by reconstructing the FID, or by constructing a baseline in the frequency
domain. This is then subtracted from the spectrum resulting in a flat baseline
[132].

After all these technical deficiencies have been dealt with as optimally as
possible, there is still a biological component in the case of urine metabolomics
that should not be underestimated. As already mentioned in some places, the
theory of metabolomics is based on the identification of differences between
samples and the visualization of these differences through intensity
comparisons. A major advantage of urine as a test matrix is the lack of
homeostatic regulation of the individual components. However, this also
means that urine can have very different concentrations. Individual drinking
behavior can lead to urine samples differing up to 15-fold in concentration
[133-135].

To reduce this unwanted variance from dilution while preserving the wanted
variation introduces the need of reliable data normalization and scaling. The
possibilities of normalization can basically be divided into two categories. On
the one hand, there are methods that use a metabolite that is excreted as
constantly as possible as the characteristic value of the dilution factor. In the
context of urine metabolomics, this mainly includes creatinine [136,137].

The second category is based on the assumption that the total amount of
excreted substances is relatively constant. These include the frequently used
probabilistic quotient normalization [138], total area normalization [139] and
quantile normalization [140].

The normalization on stable endogenous metabolites relies on the assumption,
that under specific circumstances the excretion of the used metabolite is stable.
Creatinine levels are described to be relatively stable over a period of 24 h in
healthy individuals [141-143], however factors such as acute infections, injury,
severe emotional stress or exercise can affect the extraction levels and therefore

lead to false results if metabolite-creatinine ratios used for analysis [144].
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Furthermore, sample storage and preparation may alter urinary creatinine
levels [108].

Probabilistic quotient normalization (PQN) is based on the hypothesis, that the
variations in concentration which are of interest for the scientific questions
only affect parts of the spectrum, whereas the dilution affects the whole
spectrum. Therefore, the PQN approach calculates fold-changes between every
feature of the spectrum and the corresponding feature of a reference spectrum.
The mean value of all fold-changes is then used as normalization factor for the
whole spectrum. This normalization method is robust against large changes in
few metabolites [138].

Total area normalization computes a factor from the accumulated sum of all
features in one spectrum. In this method, alterations of highly concentrated
metabolites may affect the normalization factor and therefore influence the
latter analysis [139].

Quantile normalization forces an identical peak intensity distribution through
the dataset. To normalize the spectra to each other, each vector of features is
sorted and then the arithmetic mean of the distribution is calculated. Following
that, the mean of identical quantiles is calculated and assigned to all features
realizing the corresponding quantile. This approach can be problematic with
highly variable metabolites, as these may differ strongly between samples

[139,145].

This incomplete listing and brief discussion of normalization techniques
reflects the complexity of metabolomics data processing.

Because of the necessity to detect minimal variations in highly noise-prone
datasets, it is important to be extremely precise and thoughtful. Each step must
be carefully considered with respect to the scientific question. It is therefore
very difficult to establish a standard procedure, which must be considered on a

case-by-case basis [146].
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1.2.5 Peak alignment and data reduction

As abovementioned, proton resonances can be, besides other reasons, affected
by variations in ionic strength. Despite thoughtful adjustment of experimental
parameters, these factors may influence the resulting spectra [147]. The major
effect of these variations is the so-called positional noise, which is a drift of
resonance positions along the chemical shift axis [148,149]. In order to provide
a good foundation for the subsequent statistical analyses, a correction of the
position noise must be carried out. An optimal result is desired, as the often
subtle differences of the metabolic fingerprint should be detected [150].

Over the decades several strategies emerged targeting this issue, including but
not limited to different warping approaches such as dynamic time warping
(DTW)[151] or correlation optimized warping (COW) [152] and recursive
segment-wise peak alignment (RSPA)[153].

Warping techniques are based on expanding and contracting the x-axis to
make the spectrum, or its peaks, as similar as possible to a reference spectrum.
Since both expansion and contraction may be required within the individual
regions of a spectrum, the spectra are divided into individual segments. These
are then either stretched or compressed according to the reference spectrum
[150,148,154].

The RSPA approach segmentates the spectrum and iteratively reduces
segment size and shifts peaks within these segments until a sufficient
correlation to the reference spectrum segment is reached. The alignment
process is always a balancing act to find the optimum where slightly shifted
peaks from the same substance are shifted to the same position without mixing
spatially close peaks from different substances [155,153].

After the position noise has been carried out as best as possible, some kind of

binning approach usually follows.
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Binning, also known as bucketing, describes the segmentation of a whole
spectrum into discrete frequency bands, typically with a size between 0.04 and
0.001 ppm [156,157,149,158]. These buckets are then integrated and the
numerical values are used for further analysis.

Depending on the extent of the peak drift, it can happen that not all peaks
could be shifted directly over each other after an alignment. One tries to
compensate for this error by binning, since smaller or larger residual shifts are
eliminated depending on the width of the bin as the values within the bins
collapse.

However, depending on the extent of peak drift and the size of the buckets,
peaks may be either spread across several buckets between samples or too
many signals are included in one bucket. If too many peaks fall into a bin, the
total variation may mask biologically relevant variation within that bin [150].
This problem is addressed by intelligent binning approaches. Intelligent
binning tries to set the binning boundaries sensibly, for example at the local
minima between two adjacent peaks. The aim of this approach is that large
peaks, and therefore also wider peaks, are not pulled apart and are distributed
over several bins, and at the same time smaller peaks are not lost in bins that
are too large [159-161].

Additionally to other spectral manipulations, sub-spectral filtering can
improve data quality. This filtering technique eliminates non-informative
regions, e.g. the water signal region or areas, where no signals occur [162]. An
inclusion of such noisy regions in multivariate analysis has been shown to
have a negative impact on model performance [163].

On top of the position noise, the overlapping of the signals also limits the
interpretability considerably [164]. In Figure 7 a common urine spectrum is
shown including some peaks annotated. Especially in the region between
3 and 4 ppm massive signal overlap occurs. Contrary, between signals in the

area from 0.9 to 2 ppm non-informative baseline is present.
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To improve the performance of the analysis, it is advisable to exclude these
non-informative regions from the statistics. To achieve this goal, one can use
some intrinsic properties of the NMR spectra. A substance is determined in an
NMR spectrum mainly by two characteristics, these are the chemical shift and
the splitting pattern.

If it is known which substance is being searched for, the corresponding
splitting pattern can be targeted specifically in the regions where the substance
resonates. The ratios of the individual peak heights and multiplets to each
other can be used to extract peaks from overlapping regions.

Among the metabolomics community a variety of methods and tools are

applied to perform this kind of data reduction.
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Figure 7: typical urine spectrum recorded on a 800 MHz spectrometer, 1: 3-Aminoisobutyric
acid, 2: 4-deoxythreonic acid, 3: lactate, 4: 3-hydroxyisobutyrate, 5: alanine, 6: citrate, 7:
creatinine, 8: trimethylamine-N-oxide, 9: creatine, 10: urea, 11: p-cresol-sulfate

Several peak fitting algorithms, such as BATMAN [165], BAYESIL [166] or
NMRProcFlow [167] are freely available and often used within the research

community.
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BATMAN is a frequently used tool for quantification of metabolites in complex
biological matrices by deconvolution and integration of peaks. The applied
Bayesian model relies on extensive prior information about the metabolites,
such as the expected chemical shift, multiplicity, J-coupling constants, and
intensity ratios and fits Lorentzian shaped peaks into the spectra based on this
information. BATMAN can be downloaded free of charge as R-package
[168,165].

BAYESIL offers a similar approach as web tool but includes besides
deconvolution and integration based on a reference library also most necessary
preprocessing steps, such as Fourier transformation, phasing, chemical shift
referencing and baseline correction. Therefore, it offers the user a complete
data processing tool with little user input[166].

The interactive 1D-'H-NMR processing tool NMRProcFlow is also open-source
software including Fourier transformation, baseline correction, chemical shift
referencing, several alignment algorithms, options for equidistant bucketing
and intelligent bucketing and normalization. The tool also provides options for
quantification using an external metabolite library [167].

There is also commercial software from companies that provide not only the
evaluation algorithms but also corresponding satellite databases. One example
is the NMR Suite Software Package (Chenomx Inc., Edmonton, Canada) The
advantage here is that a large amount of data can be accessed without much
preparation and precise results can be generated quickly. At the expense of
convenience is the flexibility of the analyses. If a certain metabolite is not in the
database, it cannot be qualified with the given workflow.

Another disadvantage is that usually such software solutions cannot be
applied to existing data sets unless the conditions specified by the company

regarding sample preparation and measurement parameters are met.
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Although the mentioned applications provide easy to use applications for
metabolite quantification, the major drawback is the necessity of external
metabolite libraries. This key problem precludes the application of those
reliable quantification tools in untargeted metabolomics. Biomarker discovery
therefore remains incredibly challenging, as only full spectra analysis (spectra
without any form of data reduction) or binned spectra are applicable for this
research question, where spectral noise hampers the subsequent data analysis.

The aim of this work was to fill this gap and to develop an approach that
allows untargeted evaluation while keeping noise to a minimum. Untargeted
approaches are indispensable, especially for diseases whose origins and
mechanisms have not yet been fully elucidated by research. This branch of
research enables the detection and early recognition of diseases, as well as the

discovery of risk factors.

1.2.6 Statistical Tools in NMR Metabolomics

Methodologies applied in metabolomics approaches are often adapted from
earlier omics techniques. Dependent of the method of choice, some
preliminary considerations are required. Several statistical methods assume
the data to be normally distributed with a constant variance, however,
metabolomics data often has skewed distributions across samples, resulting in
heteroscedastic data. Logarithmic transformation is a frequently used method
to approximate the data to a normal distribution and therefore utilize it for

subsequent analysis [169].
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Figure 8: Schematic overview of strategies for univariate and multivariate statistical analysis

with frequently used examples for each category

In general, all techniques can be classified into two main groups, the
multivariate strategies and univariate strategies. A schematic overview can be
found in Figure 8.

Univariate strategies, such as analysis of variance (ANOVA) or a t-test, test the
effects of e.g., a medical treatment on individual metabolites and thus are
suitable for hypothesis testing. Multivariate strategies, however, aim to utilize
dependency structures between metabolites and therefore are suitable for
hypothesis generation [169].

Multivariate techniques themselves can be further classified into unsupervised
and supervised methods. Supervised methods include additional information
about the expected phenotype groups within the dataset.

In unsupervised methods no additional information about underlying
treatment or intervention groups is included. The group separations are

entirely data driven and therefore less prone to overfitting.
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One of the most frequently used methods in this group is principal component
analysis (PCA). PCA reduces dimensions by projecting a large dataset into a
smaller one which still contains most of the information. The PCA approach
determines a new coordinate system in a least squares sense, where the new
dimensions include the most variance within the dataset. The principal
components are the eigenvectors of the initial covariance matrix, thus they can
either be calculated by eigenvector decomposition of the covariance matrix or a
singular value decomposition of the data matrix. Generally, the first few
principal components contain the necessary information, which are used as a
starting point for data analysis [170,171]. Individual component analysis (ICA)
is closely related to PCA aiming to detect independent components in the data
and has been shown to perform well in metabolomics approaches [172].
Cluster analysis represents another unsupervised multivariate method with
the most prominent method being hierarchal cluster analysis (HCA) [155,173].
Clustering methods aims to identify hierarchical groups in the original dataset
according to intrinsic similarities of their features, which are visualized as a
dendrogram. These nested clusters are determined by the chosen similarity
metric, which is generally any measure of distance such as Euclidian distance,
for example. Furthermore, a linkage function needs to be set with single
linkage, complete linkage and average linkage being the most common [131].
Other frequently used applications are k-means clustering [174,175] and self-
organizing maps (SOM) [176,177]

Popular tools in the category of supervised multivariate analysis tools are
partial least squares discriminant analysis (PLS-DA) [178], orthogonal
projection to latent structures discriminant analysis (OPLS-DA) [179], random
forest (RF) [180] and support vector machines (SVM) [181].

PLS-DA is a linear classification model with descriptive and predictive
properties. This approach relates the data matrix to the response variable, such

as the class affiliation, by weighting the initial features corresponding to their
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discriminating ability. The resulting model can be either used to determine the
variables with maximum predictive ability or to predict class affiliations of
unknown samples [178,171].

The extension of PLS-DA, the OPLS-DA method, enhances the discriminating
ability of the model by splitting the variance within the data into the between-
group variation and an orthogonal part, the within-groups variation. This
cleavage enables an easier interpretability and thus is widely used in
metabolomics approaches, where intra-group variation is generally relatively
strong [182,179].

Although less frequently used, RF is a useful addition to the analysis toolbox.
It is a combination of decision trees to reach best outcomes, thus the class
selected by most trees. A random forest model also enables to determine the
feature importance via the Gini index. This index measures the degree of
probability that a particular feature is wrong when it is randomly chosen
[183,180,184].

SVM are supervised learning techniques used for Cclassification in
metabolomics approaches. The SVM algorithm uses the classified dataset to
detect a hyperplane with the best separation ability between two groups. The
best separation is reached, when the distance to the nearest group member is

largest [181,185].

Contrary to the above-mentioned hypothesis generating tools in metabolomics
analysis, hypothesis testing techniques are of central importance. ANOVA and
t-test based methods are deployed if the question needs to be answered
weather profiles in metabolite excretion differ significantly between treatment
groups [131]. T-tests are generally suitable for two groups, whereas ANOVA is
the method of choice for larger group assignments. For both techniques sever
tests can be applied based on the research question and data structure (e.g.,

paired vs. unpaired samples) [171]. It must be noted that the resulting values
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form these methods need to be corrected for multiple hypothesis testing.
Frequently used methods are the correction methods of Bonferroni and

Benjamini and Hochberg [186-188].

1.2.7 Metabolite identification

At the preliminary end of the untargeted analysis, one or more NMR signals
were identified that turned out to be interesting parameters in the context of
the scientific question. Identifying these signals is a major challenge. The
identification is important because it allows the biological plausibility to be
tested. It can happen that signals look very promising, but in retrospect it turns
out that these signals are only caused by technical differences, e.g. the
sampling time differs between healthy and sick patients. Furthermore,
knowledge of the metabolite is important for the follow-up. Usually,
untargeted approaches are used to identify potentially interesting biomarkers,
which are then tested in subsequent targeted studies. In order to optimally
adapt these studies to the analyte, for example with respect to sample stability
and storage, the analyte must be known.

The procedure is a little simpler if one already has an idea of what the analyte
might be. This can be based on previous experience and/or characteristic
signals. In this case, it is simply a matter of gathering enough evidence to
confirm the identity of the signal. This can be done, for example, by adding a
pure substance and observing the resulting signal increase in one-dimensional
spectra, comparing the signals in two-dimensional spectra with those of a pure
standard or match them with databases. The significance of the options has to
be assessed individually. To obtain a high level of security, several of the
above-mentioned options may need to be combined.

If no potential candidates are known, a complete identification must be carried

out. This is usually much more complex and time consuming. NMR signals,
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especially the signals in two-dimensional spectra, already provide some clues
to the chemical structure of the molecules. In complex mixtures, however, it is
often impossible to assign the signals of dingle resonances in the two-
dimensional range due to overlap or low concentrations. It is often necessary
to apply chromatographic techniques to separate the mixture in advance and
enrich the analytes to obtain sufficient concentrations to generate a signal. It
can also be advantageous, if strengths from different techniques are used
synergistically to obtain meaningful results. The results of NMR spectroscopy
are usually complemented by orthogonal methods such as MS, infrared and
ultraviolet spectroscopy [189].

This is usually done by considering the respective properties of the methods
together, for example the multiplicities, the mass of the molecule and the
fragmentation pattern. Newer approaches aim to combine different methods
with computer-based methods. Such a hybrid approach combining NMR with
MS was introduced by Bingol et al. 2015, which is termed SUMMIT MS/NMR.
This technique omits the purification step; instead, all masses are assigned to
their possible chemical formulas and NMR spectra are then predicted. The
extent of the matches then allows conclusions to be made about the identity of

individual signals [190].

The identification of individual substances from complex mixtures is a
challenging field of research. The main problems here are the generally low
concentration and the overlapping of signals. These disadvantages occur both
in NMR spectroscopy and in the use of mass-based methods.

2-dimensonal (2D) NMR techniques, together with databases and statistical
approaches, can aid to address this problem. 2D spectra resolve the resonances
by extension into a second dimension according to another physical property.
This solution solves the problem of peak overlap in many cases and offers new

information about the metabolite of interest. In the following, selected 2D
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experiments will be described and their usefulness for metabolite identification
will be explained.

Correlation spectroscopy (COSY) is often applied to detect through bond
coupling between coupled nuclei, as it is a very simple and fast 2D NMR
experiment, which is also easy to interpret [191,192]. The COSY experiment is
based on the transfer polarization by a mixing pulse between directly ]-
coupled spins and thus providing information about the direct environment of
the resonance proton.

Total Correlation Spectroscopy (TOCSY) is an extension of the COSY
experiment creating correlations between all protons in a given spin system,
not restricted to only germinal and vicinal protons. Heteroatoms, such as
oxygen, disrupt the TOCSY transfer. The number of observable transfer steps
can be adjusted by the mixing time [193,194,104].

Another one and often underrated experiment is the 2D J-resolved
spectroscopy experiment (Jres). The Jres, as other 2D experiment, simplifies the
initial spectrum by the distribution into another dimension, but instead of
couplings to other resonances, the Jres separates the scalar couplings of a
resonances multiplet into the second dimension. The multiplicity is displayed
along f1 axis and chemical shift along f2, which allows the assignment of
resonances in crowded regions to specific multiplet [195].

The 'H,3C Heteronuclear Single Quantum Coherence (HSQC) Spectroscopy
experiment maps the proton resonances and those of the carbon atoms where
the protons are directly attached to. This approach is an inverse detection
method where the magnetization from the sensitive proton nucleus is
transferred to the less sensitive carbon nucleus, which leads to drastically
reduced acquisition times compared to direct methods such as 'H,3C COSY
[189].

Additional to the HSQC experiment, the Heteronuclear Multiple Bond

Correlation (HMBC) Spectroscopy reveals correlations between heteroatoms
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separated by two or more bonds. Here the single bond correlation is
eliminated by application of a low pass filter only allowing smaller ]J-
couplings. This experiment is extremely useful for assignment of quaternary
and carbonyl carbons, which cannot be detected by HSQC [196].

Although this variety of 2D NMR experiments provides complementary
information about the resonance of interest, for most metabolites a complete
assignment and identification is not feasible.

Additional information can be provided in some cases through the application
of Statistical Total Correlation Spectroscopy (STOCSY) [197]. This
computational approach enables the simplified assignment of resonances
deriving from one metabolite through correlations among the signals. A
pseudo 2D spectrum is created displaying the correlation of intensities over
the spectrum. This method can be applied to aid metabolite identification
without often time-consuming experiments, but it can only be applied on a
large enough dataset, as otherwise the correlations would not be detected
properly.

For final identification of a metabolite, the confirmation either via spiking or
via comparison with reference spectra is needed. If the intrinsic properties of
the metabolite, such as multiplicity, chemical shift and coupling pattern align
with spectra of a pure compound, the analyst can confirm the metabolite
identity. Several open access databases exist, such as the human metabolome
database (HMDB) [58], the NMRShiftDB [198] or the MetaboMiner database
[147]. HMDB is the largest database containing authentic NMR spectra for
biofluid interpretation. As of March 24™ 2023, the database has a total of
253,245 metabolite entries and contains 242,268 NMR spectra (1D and 2D) for a
total of 12,345 compounds. From these numbers it can be deduced that only 5%
of the metabolites have also recorded the corresponding NMR spectra. These
databases are expanding both in quality and quantity of reference spectra,

nevertheless they only cover all small number of metabolites completely.
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As described above, the responsibility for the correct labeling of metabolites
lies with the users. Since there are no universally accepted principles there is a
lack of quality control. The research group around Sumner already proposed
in 2007 to agree on minimal reporting standards within the community [199].
They suggested a rather vague classification into 4 groups, which is shown in

the following table.

Table 4: The 4 Levels of metabolite identification proposed by the metabolomics standards
initiative [199]

Identified At least two orthogonal data in direct comparison with
Level 1 gy .
Compound spiking of an authentic reference standard.
Putatively No reference standards are used, annotation is based on
Level 2 Annotated spectral data and/or the similarity to spectra in data
Compound repositories.
Putativel
ua 1ve. y Based on physicochemical or spectral properties the
Characterized . .
Level 3 compound can be assigned to a chemical class of
Compound compounds
Class p ]
Unknown Only spectral data describes the compound, otherwise it
Level 4 . . s cp
Compound is unidentified and unclassified.

In this classification scheme, many points remain very vague, for example, no
statement is made as to what extent the metabolite to be identified must
correspond to the reference standard. Nevertheless, this categorization must be
understood as an important basis for establishing generally applicable
standards within the community.

Since this categorization is still not very widespread, more effort must be

invested in general acceptance and usage.

1.3 Thesis Structure and Objective

The aim of this work was to investigate the scientific possibilities in the

research field of NMR metabolomics and to contribute to the current state of
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the art by carefully complementing the existing methods and techniques. After
a thorough literature review, sample preparation, data acquisition, data
processing, statistical analysis and metabolite identification were identified as
key issues within the workflow (see Figure 9). Before this work began, the
current literature, a summary of which can be found in the previous sections,
was examined and the points on which there has been little or no focus were
identified. The research revealed that there is certainly room for improvement
at each of the individual sticking points, but the points of sample preparation
and data processing have received the least consensus so far. Figure 9 shows
each of the key points as hurdles that must be overcome in the context of a
NMR metabolomics research project. The size of the hurdle is symbolic of the
amount of work that the author believes is necessary in the respective areas to
achieve a general consensus and standardized conditions within the
community.

As two separate key points could have been identified, a research question was

defined for each point.

First research question

How does the amount of deuterium and the storage condition of the finished urine
samples before and during measurement influence the spectrum, how can this effect be

described and what are the possibilities to avoid this?

In chapter 2 the influence of sample preparation on interpretability of results in
NMR metabolomics datasets is described on the example of hydrogen-
deuterium exchange in creatinine, one of the major metabolites in human
urine. The time and concentration dependency were systematically
investigated. As the metabolomics community was not aware of this effect,

several public available metabolomics datasets were affected from the
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transformation of the creatinine resonance. Therefore, a correction equation

was introduced to allow the post-analysis adjustment.

Second Research Question

Is there a way to reduce the noise within the spectral data in a way that improves the

subsequent statistical analysis without losing the untargeted character?

In chapter 3, the performance of established and frequently used data
processing methods was evaluated and the strong influence of noisy data is
shown. To improve data quality and simplify the analysis, a peak fitting
algorithm based on a Voigt lineshape was developed. Contrary to current
techniques, the introduced algorithm does not rely on a reference database,
which enables the use for untargeted analysis. The applicability was shown on
a real dataset and systematically compared with other methods, such as full
spectra analysis and equidistant binning. It could have been shown, that using
Voigt fitted data as input layer for unsupervised (PCA) and supervised (OPLS-
DA) analysis improves the descriptive and predictive ability in untargeted
NMR metabolomics approaches.

The appendix contains the original publication of chapter 2 and 3 including the
supplementary information.

Summarizing, this thesis pointed out the necessity of coherent sample
preparation, experimental setup, and data processing in the field of NMR
metabolomics applying different kinds of analytical and statistical approaches

with the focus on NMR.
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Figure 9: Roadmap for a metabolomics workflow
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Chapter 2|

Guidelines for the Use of Deuterium Oxide
(D20) in 'H NMR Metabolomics

Abstract

In metabolomics, nuclear magnetic resonance (NMR) spectroscopy allows to
identify and quantify compounds in biological samples. The sample preparation
generally requires only few steps; however, an indispensable factor is the
addition of a locking substance into the biofluid sample, such as deuterium oxide
(D20). While creatinine loss in pure D20 is well-described, the effects of different
D20 concentrations on the signal profile of biological samples are unknown. In
this work, we investigated the effect of D20 levels in the NMR buffer system in
urine samples, in dependence on dwell time and temperature exposition. We
reveal a decrease of the urinary creatinine peak area up to 35% after 24 h of dwell
time at room temperature (RT) using 25% (v/v) D20, but only 4% loss using 2.5%
D:0. 'H, inverse-gated (IG) *C, DEPT-HSQC NMR, and mass spectrometry (MS)
experiments confirmed a proton—deuterium (H/D) exchange at the CH:. This
leads to underestimation of creatinine levels and has an extensive effect when
creatinine is used for normalization. This work offers a sample stability
examination, depending on the D20 concentration, dwell time, and temperature
and enables a method to correct for the successive loss. We propose an equation
to correct the creatinine loss for samples prepared with various D20
concentrations and storage temperatures for dwell times up to 24h. The
correction function was validated against an external data set with n = 26

samples. To ensure sufficient creatinine stability in future studies, we suggest
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that a maximum of 10% D20 should be used at 4 °C or 2.5% D:0 at RT,

respectively.

This chapter was published as Haslauer, K. E., Hemmler, D., Schmitt-Kopplin, P., &

Heinzmann, S. S. (2019). Guidelines for the Use of Deuterium Oxide (D20) in 1H NMR
Metabolomics. Analytical chemistry, 91(17), 11063-11069.

Candidate’s contributions; K.E. Haslauer designed the research, performed the NMR
experiments and analyzed the data. K.E. Haslauer prepared the figures, wrote and

revised the manuscript.
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Chapter 3|

Data Processing Optimization in Untargeted
Metabolomics of Urine Using Voigt Lineshape
Model Non-Linear Regression Analysis

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is well-established to address
questions in large-scale untargeted metabolomics. Although several approaches in
data processing and analysis are available, significant issues remain. NMR
spectroscopy of urine generates information-rich but complex spectra in which
signals often overlap. Furthermore, slight changes in pH and salt concentrations
cause peak shifting, which introduces, in combination with baseline irregularities,
un-informative noise in statistical analysis. Within this work, a straight-forward
data processing tool addresses these problems by applying a non-linear curve fitting
model based on Voigt function line shape and integration of the underlying peak
areas. This method allows a rapid untargeted analysis of urine metabolomics
datasets without relying on time-consuming 2D-spectra based deconvolution or
information from spectral libraries. The approach is validated with spiking
experiments and tested on a human urine 'H dataset compared to conventionally

used methods and aims to facilitate metabolomics data analysis.
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This chapter was published as Haslauer, K. E., Schmitt-Kopplin, P., & Heinzmann, S. S.

(2021). Data Processing Optimization in Untargeted Metabolomics of Urine Using Voigt

Lineshape Model Non-Linear Regression Analysis. Metabolites, 11(5), 285.

Candidate’s contributions: K.E. Haslauer designed the research, performed the experiments
and analyzed the data. K.E. Haslauer prepared the figures, wrote and revised the

manuscript.
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Chapter 4|

Concluding Discussion and Outlook

This thesis reports on methodological tropics in the research field of NMR
metabolomics. Analytical methods and data analysis strategies were developed to
enable and simplify the comprehensive study of large cohort datasets. The introduced
approaches were shown to provide solutions for known (chapter 3) and unknown
(chapter 2) pitfalls in this research field. The progress towards a suitable workflow for
NMR metabolomics research is of great importance and one of the fundamentals

towards the understanding of influence factors of the human metabolism.

First Research Question

How does the amount of deuterium and the storage condition of the finished urine samples before
and during measurement influence the spectrum, how can this effect be described and what are

the possibilities to avoid this?

Conclusion

Chapter 2 started during examination of a NMR metabolomics dataset and some
remeasurements, where a decrease in the CH: resonance of creatinine (0=4.06 ppm)
was observable over time with a simultaneous rise of a triplet slightly upfield.
(0=4.04 ppm). The research question for this work was the examination and reveal of
the underlying mechanisms causing this time dependent transformation. The

assignment of the triplet resonance was performed via different NMR experiments, such
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as inverse gated (IG) *C measurement with proton decoupling using a WALTZ-16
sequence to eliminate a Nuclear Overhauser effect (NOE) and multiplicity edited '"H-*C-
HSQC (DEPT-HSQC). The selection of those experiments was shown to be appropriate
for the hypothesis testing of a proton-deuterium (H/D) exchange, as an IG-3C
experiment is able to conflate the shift changes and observable in 1D experiments with
the multiplicity. Also peaks for a double H/D exchange were observable, which are not
detected in a 1D-'H experiment. The characteristic splitting patterns are due to different
spin systems and proton decoupling. Splitting of resonances is caused by the influence
of the small magnetic fields produced by the spin of nuclei. The number of splitting is
determined by the number of neighboring nuclei following the NI+1 rule with N is the
number of neighboring protons and | is the nuclear spin quantum number. Hydrogen is
a spin %2 nucleus, whereas deuterium is a spin 1 nucleus resulting in a triplet for a H/D
exchange on one position and a quintet for a H/D exchange of both protons at the (3,4)-
position of creatinine. This splitting pattern could have been verified with NMR and
further confirmed with high-resolution electrospray ionization—mass spectrometry (ESI-
MS) as an orthogonal method. The MS spectrum affirmed the hypothesis of a H/D
exchange in creatinine through the presence of all three mass-to-charge rations (m/z)
(m/z 114.069 for [CdH/NsO+HJ:, 115.076 for [CdHsDNsO+H]J*, and 116.081 for
[CsHsD2N3O+H]*). The extent of exchange was systematically investigated for the
dependence on time, temperature and D20 concentration and a sampling handing
guideline was introduced to avoid such conversions. Additionally, a correction equation
was proposed to recalculate initial creatinine levels based on the CH2 to CHD ratio. The
equation then was successfully applied to correct deuterium dependent creatinine loss

in a test dataset.

Implications of research

The fact that creatinine is excreted at a relatively constant rate in healthy individuals is
widely accepted, especially in the medical field. Therefore, when testing parameters

from urine, creatinine is often used for normalization in order to compensate for the
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dilution effect of hydration. When such an assumption is considered to be valid, little
emphasis is placed on continuous testing of the accuracy of this assumption. Because
there is usually no possibility of using an internal standard in such applications, errors
in normalization are rarely detected.

The characterization of creatinine deuteration and the determination of factors
influencing this transition raises awareness among the NMR metabolomics community
towards such seldom noticed but frequently occurring issues. It is of immense
importance that such phenomena, once observed, are investigated and communicated
within the research community to enable continuous improvement of techniques and
applications.

In order to make already measured data sets, in which this error occurred, nonetheless
usable, the dynamics of deuteration were investigated with respect to the influence
factors of time, temperature and final concentration, and a correction equation was
introduced. Here it was very important not to include such parameters as time and
temperature in the equation, as these are usually not known and therefore not
applicable.

The research work presented in chapter 2 contributes both as a practical guide and as a
reminder for the ongoing improvement of the research field of untargeted
metabolomics. Various extraordinary reviews have already pointed to the lack of
consensus regarding sample preparation within the research community [200,111,125].

This work clearly expresses the importance of this topic.
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Second Research Question

Is there a way to reduce the noise within the spectral data in a way that improves the subsequent

statistical analysis without losing the untargeted character?
Conclusion

The aim of the work published in chapter 3 was to establish an algorithm to select peaks
above a user defined signal to noise ratio and approximate the underlying peak area
sufficiently. Especially data processing and there within peak fitting and deconvolution
has been neglected for a long time for untargeted approaches. This may mainly be
caused by the challenging nature of this task, as peak shapes are influenced by many
aspects. The peak widths differ among the resonances within a spectrum and their
affinity for peak broadening is also metabolite specific. Peak broadening can be caused
by chemical exchange, ionic strength or paramagnetic compounds in the sample.
Theoretically, NMR peaks have a Lorentzian lineshape, but due to the peak broadening
Gaussian lineshapes occur. The ratio of Lorentzian and Gaussian components can vary
between exclusively Lorentzian and exclusively Gaussian. The Voigt lineshape is a
convolution of Lorentzian and Gaussian shapes and was described as appropriate

approximation for quantification in NMR [201,202].

It has been shown, that although without a priori knowledge of multiplicity, ratio
between resonances and expected chemical shift, a peak fitting based on a Voigt line
shape provides semi-quantitative data within acceptable deviations.

Using a peak-fitting approach based on a least-squares approximation of the Voigt line
model, along with aligning the peak integrals to a reference spectrum, can achieve this
goal. This type of peak alignment reduces the distortion in data analysis caused by noise
by eliminating the non-informative regions. This is done automatically and thus sets
identical benchmarks for all peaks. Where previously there was a lot of room for

interpretation by the analyst, this newly developed algorithm allows general and, above
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all, comparable standards to be set. The quality parameters provided, such as the sum of
squares of the residuals, can then be used to assess the quality of the generated data and

adjust the settings accordingly if necessary.

Implications of research

With the introduction of an untargeted peak fitting algorithm, the naturally occurring
noise in NMR metabolomics datasets can be drastically reduced and therefore
subsequent statistical analysis can be enhanced. It was shown that the application of
such a noise reduced dataset for supervised and unsupervised statistical methods
improves both, the ability of the models to distinguish between groups of the study
cohort and the predictive ability for assignment of unknown samples. Through the data
reduction and simplification of data, the operator’s task is simplified as well and allows
an extended level of comparability and standardization compared to other methods.
Because the algorithm determines the quality of the individual fit, individual results can
be better classified and compared.

It can be observed that many research groups are working on the extension and
improvement of database driven (semi) quantification tools. This effort is motivated by
the fact that for further development of NMR-based metabolomics, it is essential to
generate numerical values that are as precise as possible and reflect the content of the
respective metabolite.

Conversely, the major disadvantage is that only metabolites included in the database
can be screened. Depending on the database used, there is a greater or lesser risk that the
biologically interesting changes will go undetected if that metabolite is not reported in
the library. Especially when referring to untargeted metabolomics, which is meant to be
used to generate hypotheses, it is obvious that these methods are out of question.

The algorithm presented here closes this gap by providing a solid compromise between
absolute undirected binning or full spectra analysis and targeted quantification tools.

A further development could be thought in the combination of the database supported

methods with the presented algorithm. One possibility would be to weight the resulting
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numerical data according to confidence levels and thus create stepwise gradations
between e.g. quantified with reference database, good fit, medium fit and poor fit. In this way,
a pre-selection of results could take place (e.g. based on p-values and ranked by
confidence levels). This combination of the originally two different approaches allows
simultaneous quantitative and targeted evaluation without losing potentially interesting

parameters.
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Outlook

Metabolomics is a relatively new research discipline and although the potential
information is extremely promising, the community lacks standard operation
procedures or on agreed best practice advice. On one hand, this exploratory nature
allows the researchers the academic freedom to design their very own workflows and
analytical techniques, on the other side this lack of agreement opens the chances for
pitfalls. As each research group follows their own practice, almost no external revision
happens, and analytical and technical procedures are not scrutinized.

At this point, it should be emphasized how important a certain standardization within a
research area is for the success of this field [203,204].

A couple of comments and suggestions have already been made about the importance of
standardization and harmonization of scientific practice. The main issue is that in our
now highly interconnected world, the expectations for scientific data in terms of
usability and comparability have increased. This is partly due to the endeavors of the
Open Data movements, which want to make science more inclusive as well as more
sustainable [205]. By providing data sets in public repositories, these resources can be
reused for other purposes and to investigate further research questions. Furthermore,
this free availability of data also allows the use by scientists from regions where little
government funding is available for the purchase of often highly expensive analytical
equipment. To make this possible, harmonization within the community is important, as
this is the only way to enable meaningful exchange and reuse and pooling of data sets.
Another reason why standardization is necessary is the potential to detect errors.
Through a consensus on best practice, every scientist in the field would be able to
unambiguously interpret the raw data and, if necessary, indicate errors. And even
though this correction is often unpleasant, it provides the basis for self-critical, self-
correcting, and continuously evolving science. These are the fundamental principles of

science that need to be preserved and promoted.
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The present work has contributed to this further development in two ways. Firstly,
through concrete proposals that enable standardization, and secondly, through the
publication of such work, an increasing awareness of these concerns is being created.
Especially in the early phase of a research field, exchange and discourse within the

research community is a very valuable asset.

Regarding the general outlook of the research direction of NMR metabolomics, it can be
summarized that the discipline of NMR metabolomics has become popular as it offers
the possibilities to answer crucial questions of the nowadays scientific community in the
biomedical and pharmaceutical field. Metabolomics approaches may contribute to the
discovery of new diagnostic biomarkers for diseases as well as revealing the underlying
metabolic alterations. This information can help to understand the dynamics and
evolution of some of the most dramatic and complex diseases of this century, such as
diabetes and coronary diseases. The fundamental understanding of a disease and the
underlying mechanisms how external factors influence the human body is crucial for
early prevention [206-208]. This understanding will also be important for the further
development of the personalized medicine approach.

The scope of this technology has already reached the point where industrial health tech
companies, such as the Nightingale Health Plc (Finland) or lifespin GmbH (Germany),

are looking to harness this approach to enable more advanced healthcare.

In order to fully exploit the possibilities of metabolomics, especially by means of NMR,
several steps are still necessary. Overall, the research field is currently in a very
explorative initial stage, in which the individual steps of the workflow, the possible
areas of application and evaluation methods are to be generated and discussed.

In this work, after extensive literature research, the two points identified by the author
as the most important key points were addressed. Nevertheless, the other parts of the
workflow must also be carefully examined. Critical points of the workflow, starting at

the beginning of sample collection, are described in the following.
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Concluding Discussion and Outlook

Sampling time, frequency, storage conditions and on-site preparations (e.g. addition of
bacteriostatic agents) vary strongly between studies and are often not reported in detail
[125]. A systematic review of the best-practice sampling method, which finds a good
compromise between maximizing the scientific significance and the feasibility of the
study, could provide information here and could serve as a gold standard for further
studies.

There is a basic agreement on the measurement method as such, as already described in
the introduction. Nevertheless, it would be useful to introduce a certain quality
assurance, e.g. the assessment of the mean peak width and other NMR parameter. The
obligatory reporting of such standard parameter sets allows the comparison of NMR
data, the estimation of the dispersion range of different parameters in comparison with
other laboratories and facilitates the repetition of experiments.

For the subsequent data processing, including baseline correction, phasing and shift
referencing, guidelines have already been published [162]. To put it in general terms, it
would be very desirable to agree on a minimum level of reporting of these values. Often,
these processing steps are not or only partially reported in publications [209].

The following step in the metabolomics workflow represents a greater hindrance in the
sense of harmonization.

Methods of statistical analysis are difficult to standardize since they must always be
adapted to the individual case. Nevertheless, a reporting standard would also have to be
introduced, covering topics such as the handling of missing values, weightings and
statistical significance. In particular, the well-known problem of p-hacking is an issue
when analyzing large amounts of data, as is the case with metabolomics approaches.
Metabolite identification is likely to be the most developed part of metabolomics
workflows at this point in time, since, as written in the introduction, the foundations
have already been laid and proposals have been made to standardize reporting

standards and to meet certain scientific standards.
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Concluding Discussion and Outlook

In summary, there is still a lot of work to be done. However, the relatively short
existence of this research area also provides many opportunities for scientists to shape
and contribute to forming the standards. In conclusion, this effort will be worthwhile
since this technique will be another piece of the puzzle in systems biology, and we will
be able to continue to deepen our understanding of the human organism. Generation of
a fundamental and constantly expanding knowledge of the human organism,

pathogenesis and  prevention is the great challenge of our time.
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ABSTRACT: In metabolomics, nudear magnetic msonance
(NMR) spectroscopy allows to identify and quantify
compounds in biological samples. The sample preparation
generally requires only few steps; however, an indispensable
factor i the addition of a locking substance into the biofhuid
sample, such s deuteriom oxide [Dy0). While creatinine loss
in pure DyO is well-described, the effects of different D,O
concentrations on the signal profile of biological samples are
unknown. In this work, we investigated the effect of D0 levels
in the NMR buffer system in urine samples, in dependence on
dwell time and temperature exposition. We reveal a decrease of
the udnary creatinine peak area up to 35% after 24 h of dwell
time at room temperature (RT) wing 25% (v/v) DyO, but
only 4% loss using 2.5% D,0. 'H, inversegated (IG) “C,

CH; .
craatinine |
NH | I* E
T
N re o w
L L E
o H s 1
P | +HO | .

paak area (CHON

DEPT-HSQC NMR, and mass spectrametry (MS) experiments confirmed a proton—denterinm (H/D) exchange at the CH,.
This leads to underestimation of creatinine levels and has an extersive eflect when creatinine is used for normalization. This
work offers 3 sample stability emsmination, depending on the DO concentration, dwell time, and temperature and emables a
method to correct for the successive los. We propose an equation to comect the creatinine Joss for sumples prepared with
various D, O concentrations and storage temperatures for dwell times up to 24 h. The comection function was validated against
an extermal data set with n= 26 samples. To ensure sufficient creatinine stabiity in future tudies, we suggest that 2 mazimum of
10% D0 should be used at 4 °C or 2.5% D0 at RT, respectively.

etabolomics alms to comprebemsively chamcterze

(identify and quantify) metabolites in biological fuids
and tissues and to study underlying pathways and biological
implications.' ™" Metabolome research offers the posibility to
revesl valuable knowledge, which helps to address various
agpects, induding personalired medidne, the estimation of
environmental or dietary impacts on individuals, and
biomarker discovery.”™"

Unine is a widely used biofhad, becawse of its availability m
large quantibies and the nonimvasiveness of sampli ng.
Mudesr magnetic resonance (NMR) and mas spectrometry
(MS) are the key technigues used in urine metabolomics.” The
former technique benefits from high robustness and
quantitation in nontargeted amalysis”

Standard operation procedures (SOPs) for NMB-based
metabolomics reached some level of agmement, but still some
variation: exst, in terms of phosphate buffer concentration,
concentration of DOy and addition of chemicals for positional
noise reduction.” " While phosphate buffer is added to
malntain a comstant pH of 74, D30 & necessary to ersure a
sufficient locking for stabilization of the magnetic field strength

- ACS Publications  © 0000 Americam Chumical Socisey

and to avoid "H containing solvents that would unnecessary
inflate the NMR spectmml""'” Keeping mexsurement
condiions constant is esential in metabolomics because of a
general large sample quantity and high-throughput measure-
ments over several hours wsing autosam pling devices.

In addition to the varistion in sample prepamtion
procedures, udne as a biosample matriz poses the challenge
of handling inherent urinary dilution Several methods are
avalable, with the most common being probabilistic quotient
pomalization (PON)™ and nommalbation 1o udmary cres
tinine. Creatinine is a breakdown product of creatine
phesphate in muscle tsme It & removed Bom the body by
the Kdneys through urinary excretion and known to be a useful
marker for renal function.™ I no el dysfuncion exiss
creatimne is excreted at a constant rate via unne in 24 h and
therefore can be uwsed as nomalization fctor to cormect urinary
dilution™'® Furthermore, creatinine is an important bio-
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marker especially in investigations regarding kidney diseases
and renal function.””

Yet, 1,0 is known to affect hydrogen—deuterium exchange
in creatinine, especally in freese-dried samples, which are
reconstituted in pure D0 In this case, the CH, creatinine
peak disappears or & redoced, which leads to inaccurate
quantification

In this study, we investigated the effects of D0
concentraions in udne buffers on metabolites with a focus
on creatinine. Creatinine underwent a convesion over Hme,
which resulted in a decrease of the creatinine peak at & 4.06
ppm and an increase of a triplet uplield (5 4.04 ppm ). We
describe the undedying mechaniam and propose an optimal
sample handling guideine for urinary NMB. metabolomics to
emsure stable creatinine quantification for high-throeglpuat
M easu e menis.

B MATERIALS AND METHODS

Sample Preparation. Udne samples Fom two distinet
groups were wsed: group A comsisted of pooled spot urine from
5 healthy individuak, whereas group B contained 26 samples
from a previows intervention study, & described in the 2015
work of Laghowvardes et al." All experiments concerning the
impact, mechamsm, and mathematical comection of the
deuterium oxide effect on wrine were performed on samples
from group A. These were collected in 50 mL polypropylene
tubes (Faloon), pooled, and aliguoted into volumes of 150 gL
for amlysis. A second dataset from group B was wsed for
validation of the correction equation. Each volunteer provided
written infomed comsent.

Samples were stored ot —80 “C untll analysis Aliquots were
thawed on ice, homogenired by vortexing, and transferred into
vials containing buffer solstion. A 18 M KPP0, solution (pH
74) wa wed as a buffer that contaned 0L1% trimethyisld-
propionic add (TSP) in elther 10% D0 (buffer I) ar 100%
D0 (buffer ). Buffers Tand 1T were mized to obtain required
total D0 concentration for amalyss of final D0 concen-
trations from 25% to 25%. Buffer solutions and udne were
mized in a mio of 1:3 (50 pL bufer and 150 pl wrine) and
centrifuged at 4 “C far 10 min at 13000 g A quantity of 180
4L of supermatant was transiecred into 3-mm NMR glass vials.
For eluddation of the mechanism, 100 gL of a 033 M
creatinine standard solution in HaO (~75 mg/sample) wa
diluted in 50 pL of buffer I and 30 gL of H, (), resulting in a
total D0 concentration of 2.5%. Equivalently, a sample with a
fimal concenteation of 50% Dy was prepared by miving 100
oL of the gandard solution in 50 gL of bufer 0 and 50 gL of
D40, The standard samples were left at BT at least for 24 b to
emsure that equilibdum is reached

The impact of creatinine loss was estimated using 2.5%,
1%, and 25% Dy samples. Between sample prepamation and
mesurement, samples were stored ot BT and 4 °C. RT
samples were prepared once and remessured after the defined
time increments, whereas cooled samples were prepared 13
times and, for every increment, a new sample wa measured to
exclude the effect of temperature increase durng scquistion.

For caleulation of the comection equation, samples were
prepared from pooled udne. Dy concentrations in these
samples were adjusted to 2.5%, 5%, 10%, 15%, 20%, and 25%,
respectively. Samples were meamired in ncrement s of 1 b from
t=0h to t =24 h Between sample preparation and
measurement, samples were stored at RT. All sample
preparation geps were pedormed on ice until analysis

NMR Instrumentation and Data Processing. Urine
samples were amalyzed on a Bruker 800 MHz spectrometer
that was operating at 80035 MHz and was equipped with a
quadrupole inverse oryogenic probe {Bruker BioSpin); the 907
pube was set to 14 5. Sixteen scans were reconded into 64 K
data points with a spectral width of 16 ppm. As a quality
marker, the peak width at halFmasimum for the TSP peak was
monitared and spectra with a peak width at halfF maximum of
»1.0 Hz were excluded. All spectra were scquired at 300 K
One-dimensomal proton spectra were acguired using a
standard 1D-pulse sequence with water suppression (noe
sygpprid) during an BD of 4 5, an acquisition time of 3 s,and a
midng time (tm) of 200 ms. To awoid integration of
neighboring agmls, integration boundaries of +8 5 Hz around
the centroid value were set.

One-dimensional (1D) carbon spectra were acquired using
an inversegated (1G) decoupling pulse (agig) with proton
decoupling (WALTZ-16) during the recycle delay (RD) of 58
s to eliminate a nuclear Overlouser effect (NOE), a 90 puke
fior YC at 13 g, a decoupler pulse at 12 ps, and a decoupler
power level at 1.11 dB. Multiplicity edited HSQUC spectra were
recorded wing a DEPT-HSQC (distostionless enhanced
polarization trander heteronudear dngle quantum coberence)
pulse sequence (hsgeedetgpsisp2 2). Spectral width was set to
13 and 530 ppm in the proton (F2) and cadbon (F1)
dimensions, respectively. For each 2D spectrum, 3578 X
072 data points were collected using 2 scans per increment
with an acquisition time of 025 5 and 16 dummy scans.

Acquisition and processing were perfomed using TopSpin
35 software (Bruker BioSpin). Free induction decay (FID)
were multiplied by an exponential function corresponding to
lise brosdening of 0.3 Hz prior to Fourier trangdformation. All
spectra were manually phased, baseline corrected and
calibrated to TSP (6 TSP = 0 ppm) before exporting into
Matlab software (R201 1y Mathworks) for futher data
processing,

The water region wa removed (§ 4.6-50 ppm). Spectra
were aligned wsing a recusive segment-wise peak aligroment
(RSPA) algorithun.™ Orthogomal partial least-squares (OPLS)
analysis was performed x5 described by Cloarec et al™
Integrals were caleulated using trapezoldal mamerical integra-
tion Local baseline comection was pedormed by genermting
linearly spaced wvectors between integration boundaries and
subtracting the resulting integrals from peak integrak. Negative
peak integral of the deuterated creatinine triplet (e, in the
absence of deuterated creatinine ) were set to zero. All integral
areas were nomalized to the coresponding TSP peak area as
an intemal standard For mvestigation of creatinine loss over
time, mexsured CH, integrals were expressed in % of CH, peak
area recorded at ¢ = 0 (CH,/CH,, [%]).

M5 Measurements. Analysis of the isotope distribution
was pedformed vsng a maXis qTOE-MS equipped with an
APOLLO I eectrospray ion (ESI) sounce (Bruker Daltonics).
Samples were mexsured via direct injection and in electrospray
podtive mode Soupce setngs were the same s ebewhere
deseribed:™ nebulizer pressure = 2 bar, dry gas flow = 10 L/
min, dry gas temperature = 200 “C, capillary woltage = 4.5 kV,
end plate offiet = +300 V, mass range = m/z 50— 1500,

W RESULTS AND DISCUSSION

To imtially investigate the impact of sample preparation
condiions on udne samples, we mexsured pooled urine
samples with altering Dy 0 after an equilibration time of 24 h

D D 0 i s, TS
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after buffer contact. In Figure 1, an ovedap of dx urdne spectm
with altedng D0 concentrations shows a dear decrease in
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Figure 1. Froton speara (—Q1—55 ppm) of creatinine stndard in
Hz0/D, 0 and butfer with peak annotation to creatinine strocture and
enlargement of CH creatinine peak area as stacked plot with DO
concentrations ranging from 25% (red) to 25% (purple).

creatinine CH, peak intensity after 24 h and an increase in an
uplield trplet, depending on DO concentration. At a DO
concentration of 1.5%, no triplet was observed, Le, the DO
concentration was too low to indoce an effect To systemati-
cally investigate further effects of D0 over time at RT, besides
creatinine, we analyred samples under the two extreme DO
comcentrations (2 5% and 25%) every 2 h for 24 b, taking 2 5%
D0 & a control. No other sigrak were found (thredsold
correlation coeffidents of B* = 05} Yel, several urne
metabolites are known to be susceptible to proton—deuterium
exchange, such as histidine,™ which was not seen here Our
results suggest that, under the sample preparation conditions of
25% D0 within 24 h, no other metabolites are affected by the
H-D exdhange Therefore, the following evahuation focuses on
the observed effects on creatinine

The main ssue with a decrease in creatinine peak area i
derived from the usage of creatinine as a normalization Factor
and its utilization a5 an important marker for renal activity. To
circumvent this ksue, dtermatively to the CH, peak, the CH,
moiety could serve for creatinine quantification. The standand
deviation of peak area of CH) was very low [ <2% ). However, a
2D-HSQC spectrum of a QC sample fom a dinical study (for
details, see the 2018 work of Gil el al™) revealed overhip in
the CH, peak area but not for the CH, peak (see Figure 514 in
the Supporting Infommation). This ovedap & dedved from 1,1-

dimethybigumide (metfomin). Metformin & a firstline
medication for type-1 diabetes. Type-1 diabetes had a gobal
total prevalence of 8.4% in 2014, maging fom 7.3% to 13.7%,
depending on the :egm,“" and i therefore expected to cause
substantial problems, especially in epidemiological studies or
studies that inclade disbetes patients. Selected 'H NMR
specitra of type-l disbetes patients highlight this problem
(Figure SIB). For these spectra, the CHy/CH, peak integral
has a standard deviation of 3% Therefore, we conduded tlat
the CH, peak is not suitable for creatinine quantification.

Elucidation of H/D-Exchange Mechanism. As auggested
by Ledbskitz et a,"* we hypothesbed the cwuse of this
creatinne conversion to adse from a H/D exchange We
examined the undedying mechanism by a combimation of (A}
solvent-suppressed "H NMR for the quantitative estimation of
creatinine degradation, (B) inverse-gated (IG) “C NMR to
study changes in the chemical shift due to proton—deutedum
exchange and splitting pattems Fom carbon-deuterium bonds
(C) Multiplicity edited '"H=""C-HSQC (DEPT-HSQC) were
mecorded to link the features revealed by the individual
experiments together. This confirmed a D,0-dependent
proton—denterium exchange at the [34)-position (see Figure
2} Meither the addition of potassum fuodde (EF) nor the
vatance of the phosplate concentration influenced proton—
deutedum  exchange However, a5 expected, the proton—
deutedum excdhange did not occur in the complete absence of
phosplate (data not shown ). A decrease of the CH, creatinine
peak occurs simultanecusly with the increase of the
monodenterated (CHD) paak (IG) YIC spectra allowed us
to quantitatively study carbon nucleotides without NOE and
uncover a triplet for monodemerated (I1*) Y'C and a quintet
for polpdenterated (IM**) “C. To investigate the extent of
CHD and CD, formation under relevant operating condibons,
we recorded an IG UC spectrum of human wrine with 25%
D0, As expected, monodeuteration occumed, but the
formation of double deuteration was below a 5/N mtio of 3
(see Figure 54 in the Supporting Information ).

Pattern splitting occurred because of diferent nudear spin
systems and proton decoupling (INT + 1, with TH) = 1/2,
D) =1, and N being the number of nuclei, no splitting for
protons ), resulting in a singlet for CH,, 2 tdplet for CHD, and
a quintet for CDy, respectively. Equivalent splifting pattems
were found for CH, and CHD peals in DEPT-HSQCspectra
(Figure 2), inclading a muliplicity invesion for the singe
resonating proton in the CHD peak.

To confirm the eucidated mechanism, high-resohtion
electraspray onizstion—mass spectromelry (ESI-MS) was
wed & an orthogoml amalytical method to NME The
proton—denterium exchange was vedfied for the 50% DO
stored for 48 b, after applying positive ESI mode (Figure 3]
The spectrum dearly shows the presence of all three atates
(mi/z 114069 for [C,HN,O+H], 115076 for [CHDN,0
+HJ*, and 116,081 for [C,HD,N,O=H]". As expected, the
H/D-exchange did not occur at the CH, of creatinine (5 3.05)
sigmal in creatinine.

Impact of the H/D Exchange on the Creatinine CH,
Peak Area under Different Conditions. The described
H/D-exchange leads to a loss in CH, creatinine peak area. In
this work, we investigated to which extent sample preparation
(ie, DD concentraion of the buffer) and measurement
conditions (ie, temperature during dwell time) afieat the
resulting peak area Six different conditions were examined
regarding their CH, peak area stabiity over 24 b We dhose

o 3 I o P, 04 Y
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three different D, O concentrations: 2.5% D, as minimal D0
concentration, 10% D0 as recommended in widely used urine
NMR protocols ™ and 25% because this sample preparation
(225%) was used in seversl previowly published studied ™
Samples were kept at BT and 4 “C to cover the conditions of
an avallability of a cooled autosampler versus amalysds at RT.
Prior to the amalyds of creatinine conversion, a general
estimation of accuracy and robustness was perfomed, resulting
in a rebtive standard deviation (RSD) of <1% for multiple
mexsurements of the same sample (n = 24) and up to ~10%
vartation for mexurements of identical samples prepared
multiple times and mexsured on difierent days (n = 24). This

originates from vadous impact Betors on the overall technical
error (sample prepamtion, analytical emor, speciral processing,
and peak imtegration variability ). Since temperature-contmolled
time-couse mexured samples (e, 4 “C) were individually
prepared and 25 *C samples were prepared only once, the
results of the cooled samples are expected to result in a larger
inherent vadability. Comsidering this vadability, we set an
acceptance level for values to be true to +5% of the CH,, peak
area (1= 0).

In Figure 4, we show the impact of D0 concentrations at
RT and 4 “C for dwell time up to 24 . At RT (Figure 44,
only samples containing 2.5% Dy0 are sufficiently stable to
allow 24 h of mexurements, whereas 10% and 25% Dy0 show
losses up to 14% and 35% of the initial peak area, with losses of
»5% after 4 and 0 b For cooled samples (Figure 4B), the
decrease in peak area s of lesser extent, but still sigmificant:
25% and 10% DyO concentration showed to be sufficiently
stable for 24 b, whereas samples containing 25% D,0 showed
significant decrease after B b In summary, the availability ofa 4
“C cooled autosampling device allows for the use of 10% Dy0,
while amalysis at BT needs mindmization of the D0 content to
no mone than 2.5%.

Correction Equation to Compensate Creatinine Loss.
In order to wse datasets that were analyzed under suboptimal
conditions, we went on to investigate the possibility of

DChE 10 0 e e, e
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Figure 4. Ratio of measured creatinine CH, integral area over time relafive to initial aeatinine CH; for [, O concentration of 25%, 10% and 25%
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correcting creatinine, based on the remaining creatinine CH,
singlet peak and the emerging CHD trplet.

Using the complete dataset from group A (n = 214), we
found a linear comelation (B = 0.94) between the relative
change in CHy and CHD peak integrals to the initid CHy
integral (Figure 5). The equation, = obtained by linear fitting
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Figure 5. Linear comelation of CHD and CH, peak aress after
mahMmﬁiﬁpulmut:ﬂh,mﬁn-mdndbyﬂkﬂ
mm;hewmhmammnm (B =0.94)

(Figure ), can be converted and utilized to estimate initial
values at £ =0 (CH,), based on CHD and CH, peak areas:

CH,, = L8CHD + CH,

This equation allows one to estimate the initial creatinine
concentration in already analyzed samples, based on the peak
imtegral of the reddual creatinine pesk (CH,) and its
conversion product, the emerged deuterated creatimine peak
(CHD). We hypothested the empirically found factor of
monodeuterated peak aea mesults from two mpects: (1) the
relaxation time of hydrogen neighbored to deuterium i larger
than bydrogen alone and (2) the CHD peak onginated from
one instead of two hydrogen atoms since deuterum & 'H
NMR invisible.

Indeed, an inversion—recovery T; experiment revealed that
T, relmation Hmes change fom 20 s for undewterated
creatinine to 5.8 & for monodeutersted creatinine (see Figures
52 and 53 in the Suppoting Ifomation). This resulls in a
significant Jos in signal intensty when recyde delays and
acquisition tmes are kept rather shot. This sigral los can be
corrected by applying the formula for the compensation factor

used in the 2017 work of Maitre et al.*” which results in a
factor of 1.4, Together with the stolichiometrde correction of
the mumber of hydrogen atoms, this explains the Fsctor of 18
presented herein.

Application of the Corection Equation. We applied
this comection to the tmining datasel wed for caleulation of
the equation (n = 214) and an independent test dataset (n =
26) in order to compare the gained improvement for creatinine
quantification (see Figure 6).
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CHIY peak area and for the i nt test dataset B with m = 26
samples for £= G 12, and 24 h with 25% D0 with (filled rhombus )

Table | shows creatimine peak areas before and after
application of correction for datasets A and B. Remarkably, the
result was achieved for different D0 concentration and
independent of tme. No systematic emor toward DO
concentration was observed in dataset A, This allows
application of the correction for diferent 0,0 concentrations
i the bufer and without knowledge of the dwell time (ie.,
sample preparation to time of analyds ). Potential variation can
be introduced by independent ovedays of dgnals in the region
of the triplet area This result alo suggests that other
degradation and conversion effects are negligible under the
investigated conditions of up to 24 h dwell time, RT, and a
mamimuam of 25% D0 o mean wles remain within the
accepted error level.
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Table 1. Comparison of 24 h Measurement with and
without Application of Correction for Datasets A and B

Dataset Alm = 214) Datset Bl = 26)
anmeded na Fes na "
2 LY FEA% TRE% 100.5%
& B5.9% 98 5% T1i% 100.5%
min 20 0.5% 567% EE 4%
ma 1004% 103E% 10008 110.3%
# in +5% CHy 11.5% 91.5% EEE ) FL5%
# In £10% CHy L% 1000% EEE ) A%

This result shows a significant comection of the creatinine
peak exchsively based on the CH, and CHD peaks in the
acquired spectra.

W CONCLUDING REMARKS

In this study, we determined the effect of adding D,0 s buffer
solution on metabolite mexsurements in NMR spectroscopy
with a focus on urine as a test matric. We highlighted that
creatinine rapidly undergoes conversions by H/D exchange in
contact with D0, This leads to underestimated creatinine
level in NMR studies and has an estersive effect when
creatinine i used for normalbation Espedally in dindcal
studies, creatinine is a significant mader for renal fundion
therefore, accurate values are essential for precise data
interpretation. As metabolomics studies are generally based
on luge sample quantities, measurements are executed over
several hows, wtiiding sutcsampling devices, and therefore
emable the successive creatinne loss. In this study, we
introduced a recommendstion to address this issue and
provide a guideline for future NMR metabolomics studies.

Crur results show the importance of sample storage at low
temperatures (e, 4 “C) pror to amlyds, to minimize the
creatinine-conversion effect to <5% for at least 24 h. This
guideline should be considered for future study designs. In the
absence of a cooled device, where mesturements are esecuted
at RT, a redoction of Dy0 to 25% reduces the loss in
creatinine peak area to <5% in 24 b

For already completed mexurements under suboptimal
conditions, the comection factor ntroduced here can be
applied to comect for loss in integral areas.

The findings in this study show the importance of wel-
defined and tested standardized operating procedures and
sample preparation methodology for wrinary NMR metab-
olomics to produce sccurate and significant biclogical results.
Although our application is lmited to udne, an sdaption to
other sample matrices may be of interest for further
investigations
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Experimental Section

Superposition of creatinine CHb sigmal with metformin in 2D HSQC and "H spectra

A ID-H5QC NME. experiment (hsqeetgpsisp2 1) was acquired using a pooled urine sample (QC, based on n=227
samples) from a cobort including patients with various systemic diseases (Gil et al., 2018)". Parameters were used as
follows: 4096 x 840 data points were collected using 512 scans per increment, an acquisition time of §.25 5, and 16
dummy scams. The spectra width was set to 12 and 230 ppm in the 1H and 13C dimension. In addition, 7 selected
samples with visible overlap of crestinine and metformin were selected fom the dataset to dlnsirate the overlap of
creatinine-CH; and metformin.

T1 measurements for CH: and CHIY creatinine peaks

The determination of T; was executed using a pooled urine sample via an inversion recovery experiment The standard
experiment (t1ir) contzining the excitation sequence was complemented by addition of a solvent suppression array”
(tliresgp). Delays were defined to be 0.05,0.1,02,03,05,08, 1,15 2,25 3,35,4,45,5,55,6,65,7,75and 3
sec. Following parameters were used: ns = 72 and ds = 4 per increment, sw = 16 ppm, ag =1 sec_

Spectra were imported into Matlsb sefrware (F2011b; Mathworks). Integrals were calcmlzted using wapezoidal
numerical integration. T relaxatdon times were caloulated via polynomial fiting of peak areas over relaxation delays
(1) 2nd determinstion of zero-crossing points.
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Figure S1: (A) 2D-HSQC from a QC sample highlighting the metformin-overlap of the creatinine-CH;, while the cqeatinine-
CH: and creatinine-CHD show little to no overlap with other signals. (B) Overlap of selected unne samples from a chronic
kidney diseases (CED) smdy containing metformin with annotation of creatinine CH, and metformin CH; moieties.
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Fagure S2: Stacked plot for inversion recovery expenment for unne sanple with t ranging from 0.05 sec to 8.5 sec, enlargad
in CH:/CHD peak area; zero qossing of CH: protons at ~ 1.5 sec: CHD protons between 3.5 sec — 4.5 sec

72



A. Appendix Chapter 2

g 3
fom
- CH- creatimime
'
.
5 " -
- ]
-
i
L]
- CHD creatimine
- - * -
[ - " - =
-
.
— =
L]
.
-1
a ~ I:,
9 L :
T T =1.38 sc 40 s
T'= 200 s T'\= 580 sec
3

Relaxation delay [sec]
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Figure 54 IG YC for estimation of CD: ocowrence wnder realistic measurement conditions: A urine sample
containing 2 5% D20 was analyzed after a dwell time of 24 b. The singlet of creatimme-CH: and the triplet of CHD
are clearly visible, the quntet of creatimme-CD; 15 below ST Paak area mtegration was performed m TopSpin
161,
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Abstract Nuckar magnetic tesonance (NMR) spectroscopy is wellestablished to address questions
i large-scale untargeted metabolomacs, Although several approaches in data processing and analysas
are available, sigmificant issues remamn. NME spectroscopy of urine generates information-rich
bul complex spectra in which signals often overlap. Furthermore, slight changes in pH and salt
concentrabions cause peak shafting, which miroduces, in combination with baseline irregularibes,
urn-informative nodse in stabistical analysis. Within this work a straight-forward data processing tool
addmesses these problems by applying a nos-hnear curve Atting model based on Veigt funchion lne
shape and integration of the underlying peak areas. This method allows a rapid untangeted analysis
of urine metabolomics datasets withoul relymng on bime-consuming 2D-specira based deconvolution
or information from spectral libraries. The approach is validated wath spiking experiments and
tested on a human urine TH dataset compared lo conventionally used methods and aims to facilitate
metabolomics data analysis

Keywords: NMR; metabolomacs; data processing; voigh-hlimg

L Introduction

The field of metabolomics aims to study the complex mixture of metabolites in any
tissue or organism and is widely used in several research fields for biomarker discovery, in
nutritional studies or to personalized medicine-related scientific questions [1-4]. Two main
spectroscopic methods dominate this field, namely mass-spectrometry (MS) and nuclear
magnetic resonance spectroscopy (NMR) [5]. Despite the lower sensitivity, proton-NMR
spectroscopy has the advantage of directly producing quantitative measures and addi-
tionally offers structural information, as well as high reproducibility [—5]. Nevertheless,
drawbacks and challenges exist. Proton signals underlie the sensitivity against minor
changes in pH or matrix composition, which results in drifts along the chemical shift axis
of some metabolites whereby the extend differs between resonances [9-11]. This positional
noise adds variation to the dataset and therefore affects subsequent analysis. Sewveral
alignment algorithms, e.g., recursive segment wise peak alignment (RSPA) [12], address
the problem of peak shifting, but they are not optimal Furthermaore, baseline irregularities
occur based on spectral artefacts from electronic distortions, incomplete digital sampling
or cumulative underlying signals [13]. Metabolites with similar chemical shifts exhibit
peak overlap, which also affects further analysis. As metabolomics often aim to identify
biomarkers from datasets, which tend to have high variances in metabolite presence and
concentration by nature, additional variance should be kept as low as possible.

Matabolites 2021, 11, 285. https/ /doi ong 103390/ metabol 1050285
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Various tools have been published, which circumvent these drawbacks and facilitate
data analyses, utilizing defined metabaolite libraries and fitting peaks, according to their
pre-defined multiplicities and characteristics within defined matrices [14-16]. A compre-
hensive overview can be found in Bingol et al (2018) [5]. These methods have been shown
to produce reliable and quantitative results, but rely on databases, which are often limited
to a specific biofluid, and fail to extract unknown informative features. Non-commercial
untargeted approaches are made up from two main strategies, full spectra analysis, which
uses all points of the spectrum and various binning methods, where equidistant binning
with a binsize of 0.01 — 0,001 ppm is prevalent [17]. Both methods ame affected by peak
shifting, baseline influence and signal overlap, which adds uninformative noise. Further-
mone, full spectra analysis results in large datasets which are bulky to process. Binning has
the advantage of a reduction in dimensionality, which speeds up analysis, but limits the
ability of detecting metabolites of interest as some peaks may shift between bins through
the dataset. In particular, binning either sums up all data points within a certain bin or
determines the area under the curve (AUC), significant changes in minor peaks may be
covered by general variance caused by baseline differences or signal everlap. To address
these issues an easy-to-use and straightforward processing step is introduced, which is
based on a peak-picking algorithm follewed by a Voigt lineshape model fitting. In theory,
NME peaks are Lorentzian However, slight variations in peak linewidth {e.g., due to
shimming imperfection) lead to random error in the Lorentzian model. To account for this
issue, a Voigt lineshape model, which is a convelution of Lorentzian and Gaussian shapes,
has shown to be more accurate [15,19]. As both binning and full spectra analysis are widely
used methods for NMRE metabolomics processing, the performance of the Voigt fitting
workflow is validated by comparison to these methods. The introduced workflow aims
to prowide an enhanced processing method that extracts information from NME spectra
without limitations set by the necessity of pre-defined databases.

To overcome these drawbacks we introduce an untargeted workflow for complex
NMER spectra, which consists of 6 main steps that are shown in Figure 1. As with the
input information, the workflow uses aligned, normalized NMR spectra and a reference
spectrum (e.g., quality control or mean spectrum (mean ix ). First, a peak picking approach
is performed on the full dataset for every single spectrum by finding all local maxima.
This is followed by an optional noise reduction step, wheme all peaks with a net intensity
between the local maximum and the neighboring minimum are discarded. Therefore, an
adjustment for the noise level, especially in regions with a baseline above zero, as well
as in overlapping peak regions is achieved. In the next step, the non-linear peak fitting
algorithm constructs Voigt line-shaped approximated peaks to the experimental data by
optimizing amplitudes, peak maxima, the ratio between Gaussian and Lorentzian and peak
width. Peak fitting is based on the 1sqourvefit function inbuilt in MATLAB, emploving
a trust-region-reflective algorithm. In the following step, the AUC of fiteed peaks are
calculated over a defined integration range (ie., multiple of optimized peak width). The
chemical shift (Le., their local maxima) of these peak integrals vary slightly, even in aligned
datasets. Therefore, peak shifts are adjusted to the reference spectrum by an alignment step
that iterates through every processed spectrum to find peaks within a user defined peak
shift window. The generated dataset of integrated peaks can now be further reduced by
applying a frequency filter to exclude peaks that are present in less than a set percentage
in the dataset. Finally, the workflow gives as output: a list of peak integrals, a plot of
each fitted spectrum and quality metrics, such as the residual sum of squares and the
standard error of fit for the fitting parameters. These metrics, as well as the graphical
results (see Figure 2) allow a quality assessment of the obtained data and consider it for
further processing, e.g., applying weighting function.

77



Mstabolites 7021, 11, 785

3ofd

-lgﬂ"-lmm (am)

7

=

-

=
-

DA AL

756 FTERL" 357
chemical shift [ppm]

Figure 1. Typacal fit iesulls for an exemplary urine spectrum mn thee regions where signals overlap and /or small peaks are
present; imtial spectrum 18 shoewn as black line, ftted peaks are depicied in colored lines.

2 Results
Error Estimation over Matrices

Efficient metabolomics analysis aims to uncover patterns and trends within the data.
However, in NME metabolomics analysis, such trends are ofien covered by background
noise and peak shifts. The comparability of the introduced approach with con
used methods, full spectra (ie., peak height) and binned data analysis (ie., AUC of
spectral bin), is shown using a standard addition of three metabolites (Alanine, Caffeine
and Micotinamide) with three spiked concentrations in four different urine samples,
which results in 12 data points. The data ame used to calculate a standard curve for every
method. These equations wemne used to re-calculate the concentration for all 12 individual
values. Boxplots (see Figure 3} are employed to illustrate the error proneness for all three
methods sorted by the respective metabolite including standard errors. Averaging the
mean standard errors over the three investigated metabolites for every method gives total
mean relative standard errors (R5E) (13.31% for full spectra analysis, 11.02% for binned
data and 7.33%, using Voigt fitted data). The metabolites differ, shown in this study, in
their chemical shift, their tendency to shift and/ or overlap, thus, the large span of relative
errors (see Figure 3) is somew hat expectable. Overall, these results indicate that applying
the Voigt fitting algorithm does not artificially increase the variation in comparison
to full spectra and binned data analysis. The main advantage of the Voigt function

78



Matabolites 2021, 11, 285

dof9

integral lies in the removal of background noise, illustrated by large improvements in
RSE for the overlapped signal of caffeine and similar RSE for relatively large and/or
non-overlapped peaks, such as alanine and nicotinamide and is therefore applicable for
usage in metabolomics approaches.

Full Spectra __Binned Voigt Fitted
RSE=13.31% RSE =11.02% RSE=7.33%
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Figure 3. Boxplots of standard errors of relative quantification for all theee spiked metabolites and
methods, individual relative standard errors (RSE) are given as well as the mean RSE (RSE) for
each method.

The publicly available dataset MTBLS1 [20] from the MetaboLights repaository [21]
was processed using the full spectra, binned data and Voigt fitted data approach. The
MTBLS]1 study contains 132 spectra of human urine samples from patients with Type 2
diabetes mellitus (T2DM) and a control group. A principal component analysis (PCA)was
performed to determine the areas of highest variance using the different data processing
methods as input data. In Figure 4A-C scores plots of the first two principal components
(PC1 and PC2) are shown for all three methods, which are colored according to their
groups (T2DM/ Control). Both full spectra and binned data scores plots fail to separate
healthy and diseased individuals. Using Voigt fitted peak integrals as the input data for
PCA, a separation can be cbserved between patients with type 2 diabetes mellitus (T2DM)
and the control group, which was intuitively expected. The loadings plot of full spectra
analysis (Figure 4D) shows that the majority of variance arises from high amplitudes in
the upfield region (6 < 1 ppm), around the residual water signal (8~4.7 ppm) and in the
very downfield region (8 > 8.5 ppm). In these regions, generally, few or no peaks occur
in urine samples and they are mainly dominated by bare baseline. Similar results are
observed for binned spectra, where high variations in uninformative regions also dominate
the principal components (Figure 4E). The Voigt peak fitting approach reduces the spectral
data to informative peak areas. Here, the loadings for PC2 (Figure 4F) show high variance
of urinary glucose levels between patients and the control group (ratio between mean
relative intensities (a.u.): 2.09 T2DM/Control, which is expected in an unmedicated cohort
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Intriguingly, this obvious information could not be extracted from PCA loadings of the full
spectra and binned data analysis, as it was covered by background noise.
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Figure 4. Scoms plots of PCI and PC2 using full epectra (A}, binned data (B} and Veigt Atted data {C) including 95%-
confidence ellipses foreach group (Type 2 diabetes mellitus (T2ZOM) and control); loadings plot for PC1 for all three methods
(black) with fefeence spectrum (blue) (D-F).

In summary, these results show that using Voigt fitted peak integrals instead of the
whole spectrum (as is or binned) allows a crucial reduction of noise, and thus, facilitate the
unsupervised data analysis,

Supervised methods, such as orthogonal projection on latent structures (OPLS) [22],
aims to separate the total variation within a dataset into a predictive (ie., information
related to the sample class) and an orthogonal (Le., unrelated) component. This method
is generally accepted to exclude norrinformative noise and thus uncover the relevant
information related to the sample class. In Figure 54-C OFLS discriminant analysis scores
plots are shown including their R? and Q2 values. Although all three methods yield avalid
model to distinguish diabetic and non-diabetic individuals, both B* and F are higher
using the Voigt fitted dataset. Furthermore, the loadings plots of the predictive component
(Figure 5D,E) still show a considerable influence of non-informative regions (~0 ppm,
~5 ppm, >8.5 ppm).

A Full Spectra By Binned ) Voigt fitted
B2 = 06096 Q°=04195 R2=0.6075 Q*=0.4260 R?=0.6908 2 =0.5430
1w - T :: T2 * © T20M
- /":'_h. « Condrol . .1 . Canieal - "_-'“'} « Contral
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AW A 0 W w18 -“33.1 Wb W W " - [ s 0o
(8] H - El el Fi H .
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Figure 5. Scores plots of predictive and orthogonal vanation using full spectra (A}, binned data (B) and Voigl fitted data
(C) including 95%~confidence ellipses for each group (Type 2 diabetes mellitus (T2OM) and control); loadings plot for frst
predictive component for all three methods (black) with reference spectrum (blue) (D-F).

Owerall, these results indicate that the noise reduction achieved by applying the
introduced peak fitting using a Voigt approximation enables a more comvenient analysis
of NME metabolomics datasets. Through the reduction of the dataset, a yet inevitable
visual inspection of results becomes more simple and false positive results caused by
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baseline differences are reduced. Furthermore, the impact of different data analysts is
largely reduced.

3. Discussion

The field of untargeted NME metabolomics became increasingly important over the
past few years. However, effective and reliable data processing remains a bottleneck. The
majority of studies published in the field of untargeted metabolomics rely on, either full
spectra analysis or on different binning methods. Although NME is generally highly
reproducible, minor changes in baseline intensities may occur due to accumulation of
underlying signals, as well as line broadening due to inhomogeneity of the magnetic
field. Both conventionally used methods are limited in their ability to compensate for
this non-informative varianoe. Mevertheless, a reduction of this noise is a crucial aspect
in uncovering relevant variance and allow identification of biomarkers. The introduced
approach aims to improve the efficiency of untargeted NMR metabolomics data analysis
by using a peak fitting approach, based on a Voigt line shape model approximation in a
least square sense, along with alignment of peak integrals to a eference spectrum. Peak
fitting reduces the noise driven bias by reduction of the data. Regions containing mere
baseline or very small peaks below a defined 5/N ratio are excluded from further analysis,
and thus, reduce the influence of the measurement error, which is usually relatively large
for small values, and the irrelevant variation within the data. A comparison of all three
data processing methods (full spectra, binning and Voigt fitting) demonstrates the reduced
extend of noise influence of analysis performed using Voigt fitted data compared to conven-
tionally used processing methods for both unsupervised and supervised analysis methods
A significant influence of noise within the first principal components is a well-known
feature and generally accepted as fact within the NMRE metabolomics community. An
orthogonal PLS is typically the method of choice to segregate this noise from the biological
variation of interest. Although an orthogonal filter is applied, a significant influence of
non-informative variance is demonstrated using conventional data processing. Several
research artickes have been published, optimixing both integration and data reduction in
various biofluids. From these, several approaches need input data, such as a predefined
target list or spectral libraries and deliver a targeted metabolomics cutput, as reviewed
by Bingol et al. [5], while our approach remains untargeted. Other workflows, such as
SigMa [23] require exfensive compound libraries. Applied to serum and plasma samples,
Takis et al. [24] introduced a deconvolution-free integration method, SMolESY, which
enables a suppression of the macromolecular background, which is particularly important
in blood samples. Its application to urine samples emains unclear, as plasma, unlike urine,
does not face extensive peak shifting. Cur project contributes to the continuous progress in
the field of optimized data processing in untargeted NME metabolomics.

WVoigh-fitting decreases the chance of detecting false positive markers by general data
reduction and simplifies the interpretation, and analysis of loadings, respectively weights.
Mevertheless, thresholds for 5/N and frequency filter must be adjusted carefully to avoid
rejection of relevant signals. The Voigt fitting approach was developed and fested on
human urine samples as representative biofluid for complex mixtures. However, this
method can also be adapted and optimized for other biological matrices.

The relevance of improved data processing methods is clearly supported by the
comparison of performance of data processing methods in this work. Peak fitting using a
Voigt line shape model has been demonstrated to enhance the power of statistical analysis
in contrast to comventionally used methods. The used script is written in MATLAB R2020a
and can be obtained for implementation by contacting the corresponding author.

4. Materials and Methods

4.1. Study Cohort

For illustration of performance improvement the fitting approach in comparison with
full spectra and binning approach the MTBLS1 dataset (raw spectra) from the MetaboLight
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repository [21]. The MTBLS1 dataset consists of 48 samples from unmedicated patients
with Type 2 diabetes mellitus (T2DM) and 84 samples from healthy individuals as control
group. The study was conducted to examine urinary metabolic changes in patients with
T2DM in comparison to the control group. Details about sampling, sample preparation,
acquisition along with main findings are available in the original manuscript [20].

4.2, Validation Dataset

The error estimation of the three tested methods was calculated using four different
urine samples each spiked with L-alanine, Caffeine and Nicotinamide in three concentra-
tions by comparing the results to peak height in full spectra analysis and AUC in binned
spectra analysis. L-alanine was used because its resonance appears in a non-crowded
region and shows a distinct doublet as easy-to-integrate standard. Caffeine has resonances
in a crowded region where baseline effects do ocour (34 ppm) and Nicotinamide causes
resonances in the downfield area to comprehensively cover the whole spectrum. A stock
solution of 1 mg mL ! Hy0 was prepared. A total of 135 ul. urine was combined with
either 5, 10 or 15 pL stock solution resulting in an addition of 5 10 and 15 pg standard. The
samples were then filled up to a total volume of 150 pl, 50 pl. 1.5 M EyPOy-buffer (pH7 4)
containing 0.1% Trimethylsilylpropionic acid (TSP} in 100% Dy(O was added, samples werne
thoroughly vortexed and centrifuged at 4 *C for 10 min at 12,700= ¢. A volume of 180 ul. of
supernatant was transferred into 3mm NME tubes. Samples were measured immediately
after preparation.

4.3, NME Data Acquisition and Processing

The samples wene analyzed on a Bruker 800 MHz spectrometer operating at 800.35 MHz
equipped with a quadrupole inverse cryogenic (QCT) probe probe (Bruker BioSpin, Ehein-
stetten, Germany). A total of 256 scans were recorded into 64 K datapoints with a spectral
with of 16 ppm and a %0% pulse of 13 ps. All spectra were acquired at 300 K using a standard
1D-pulse sequence with water suppression (noesygpprld) during an recycle delay of 4 5 an
acquisition time of 3 s, and a mixing time (tm) of 200 ms. Spectra were manually phased
and baseline corrected in TopSpin 3.6.1 (Bruker BioSpin, Rheinstetten, Germany).

4.4, Dt Processing

Spectra weme imported into Matlab software (R2020a; Mathworks) for data processing
with a resolution of 2.5 = 1074 ppm, resulting in 44,001 data points per spectrum (-1 to
10 ppm). The water region was emoved (& 470—4.85 ppm). Spectra were aligned using
a recursive segment-wise peak alignment (ESPA) algorithm [12], probabilistic quotient
normalization was used to account for biological variation in urine dilution [25]. To
compare the performance of the here introduced approach, two corventionally used
prowessing methods (full spectra analysis and binning of spectra) were used as state of
the art reference for untargeted metabolomics [4,.26]. For full spectra analysis the data
matric was used as is after water removal and alignment resulting inm a 132 = 43,400 matrbc
Binning was performed by dividing every spectrum in equidistant buckets with a bin
width of (01 ppm and determining the area under the curve (AUC) for every bin by
trapezoidal integration. The resulting data matrix has a size of 132 » 1085 Peak fitting
was performed using the above described workflow and is resulting in a 132 = 432 data
matrix. A threshold was set to a minimum of 30% abundance through the samples with a
signal to noise (5 /IN) ratio above 5.

Principal component analysis (PCA) was performed in Matlab software (R2020a;
Mathw orks) using unit variance (UV) scaling prior to analysis.

Orthogonal projection on latent structures (OPLS) discriminant analysis was per-
formed according to the method described in Cloarec et al. (2005) [27].

82



Metabolites 2021, 11, 285 Bofd

Author Contributions: Conceptuahizabon, K.EH.; methodelogy, KEH.; software, K.EH.; vahdabon,
KE.H. and 55.H,; formal analysis, K.E.H.; investigation, K.E H.; resources, P5-K; data curation,
E.EH,; wnbmg—ongmal draft preparabon, K. EH; wnbng—review and editing, P5-K. and 55.H.;
visnalization, K.EH,; supervision, PS-E. and S5 H.; project administration, PS-K and S5 H;
funding scquisition, E5-K. and 5.5H. All authors have sead and agreed to the published version of
the manuseripl

Funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG) Research Unat
52 muTarget “The mucrobwme as a thetapeubc targe b i inflammatory bowel diseases”.
Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board as staked Salek et al [20].

Informed Consent Statement: Informed consent was obtamed from all subjects invelved m the study.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found hepe: http:i:_-" _-"wwwn:‘hi.ac.uk_-"mnrlﬂbuliﬁhbi_-" MTBLS1/ Iil."‘.'ﬁCl."iPli.lfB.

Conflicts of Interest: The authors declane no conflict of inberest.

References

1

1L

12

13

14

15

14

17.

18

Everelt, | R NME-based pharmacometabonomics: A new paradigm for personalised or precision medicine. Prog. Nucl Magn.
Reson. Spectrosc. 2017, 102-103, 1-14. [CrossRef]

Trimigno, A ; Khakimov, B.; Savorani, E; Tenori, L; Hendrissen, V; Civilis, A; Glibetic, M.; Gurinovic, M.; Pentikiinen, 5 ;
Sallinen, ].; et al. lnwestigation of Varations in the Human Urine Metabolome amongst European Populations: An Exploratory
Search for Biomarkers of People at Risk-of-Peverty. Mol. Nutr. Food Res. 2019, 63, 1800216, [CrossRef] [PubMed]

Ussher, |.E.; Elmariah, 5; Gerszten, RE; Dyek, R The Emerging Role of Metabolomics in the Diagnosis and Prognosis of
Cardiovascular Disease. . Am Coll. Cardiol 2016, 68, 28502670, [CrosaFef] [PubMed]

Hednz mann, 5.5.; Brown, L].; Chan, ; Bictash, M.; Dumas, M.-E.; Kochhar, 5.; Stamler, |.; Holmes, E.; Elliott, B; Micholson, [LE
Metabohe prohling stratepy for discovery of nutnibonal lhomarkers: Probne betame as a marker of atrus consumphon. Am .
in. Nutr. 2000, 92, 43643, [CrossRef] [PubMed]

Bingol, K. Recent Advances in Targeted and Untarge ted Metabolomics by NME and MS/ NME Methods, High Throughpt 2018,
7,9 [CrossFef]

Alonso, A.; Marsal, 5,; Julih, A Analytical methods in untargeted metabolomics: State of the art in 2015, Fron!. Bioeng. Biofechnd.
25 3, 23 [CrossRef]

Fan, TW-M,; Lane, A N. Applications of NMR spectroscopy bo systems biochenistry. Prog. Nucl. Magn. Reson. Spectrosc. 20186,
92-93, 18-53. [CrossHKef]

Nagana Gowda, GA.; Raftery, 1. Can NMR solve some significant challenges mn metabolomacs? |. Magn Resan. 35 260,
144-160. [CroasRef]

Beneduci, A; Chidichimo, G.; Dardo, G.; Pontens, G. Highly routinely seproducible abgnment of 1H NMR spectral peaks of
metabolites in huge sets of urines. Anal Chime Acta 2011, 685, 186-195. [CrossHef]

Nichelsen, ] K; Wilson, LD High resolulion proton magnetic resenance spectroscopy of biological fluids. Prog. Nucl Magn.
Reson. Spectrosc. 1989, 21, 449-501. [CrossFed]

Takas, P.G.; Schiifer, H; Spraul, M.; Luchinat, C. Deconvoluling mterrelationships between concentrations and chemical shifts in
urine provides a powerful analysis tool. Nal. Commum. 2017, 8, 1662 [CrossHed]

Veselkow, KA ; Lindon, [.C.; Ebbels, TM.ID,; Crockford, D.; Volynkin, V.V,; Holmes, E.; Davies, DB ; Nicholson, ] K Recursive
Sepment-Wise Peak Alignment of Biological 1H NMR Spectra for Improved Metabolic Biomarke s Recovery. Anad. Chen. 2009, 81,
55-64. [CrossRef] [PubMed]

Emwas, A -H.; Roy, B; McKay, R T; Byan, 1; Brennan, L.; Tenori, L.; Luchinat, C; Gao, X; Zeri, A C; Gowda, GAN,; et al
Fecommendations and Standardization of Biomarker Quantification Using NME-Based Metabolonucs with Particular Focus on
Urinary Analysis. |. Profeome Res N6, 15, 360-373. [CrossRef] [FubMed]

Hao, ].; Astle, W; de lorio, M.; Ebbels, TM.D. BATMAN—An R package for the automated quantification of metabolites from
nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics 2002, 28, 2088-2090. [CrossHef]

Lefort, G.; Liaubet, L; Canlet, C; Tardivel, B; Pére, M-C; Quesnel, H; Pans, A ; lannuccell, M.; Vialaneix, M.; Servien, R ASICS:
An R package for a whole analyss workflow of 10 1TH NMR spectra. Biotformatics 2019, 35, 43564363, [CrossRef] [Pubbed]
Haa, |; Liehake, M. ; Aatle, W; De lorio, M_; Bundy, | G.; Ebbels, TM. Bayesian deconvolubion and quantification of metabolites i
complex 10 NMR spectra using BATMAN. Nit. Protoc. 2014, 9, 1416-145. [CrossRed]

Zacharias, HU.; Altenbuchanger, M.; Gronwald, W. Statistical Analysis of NME Metabolic Fingerprints Established Methods
and Recent Advances. Metabolites 2018, §, 47. [CrossRef]

Marshall, L; Bruce, S.10.; Higmbotham, |.; MacLullich, A, Wardlaw, J.M.; Ferguson, KJ.; Seckl, |. Choiee of spectroscopic ineshape
mode] affects metabolile peak aneas and area ratios. Magn. Reson. Med. 2000, 44, 646-649. [CrossBei]

83



Matabolites 2021, 11, 285 9of9

19.

21

BR

27

Marshall, L; Higinbotham, ].; Bruce, S.; Freise, A. Use of Voigl lineshape for quantification of in vivo 1H spectra. Magn. Reson.

Med. 1997, 37, 651-657. [CrossRed]

Salek, RM.; Maguire, M.L.; Bentley, E; Rubtsov, D.V.; Hough, T.; Cheeseman, M.; Nunez, D.; Sweat B.C.; Haselden, J.N.;

Cox, RD; et al A metabolomic comparnison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genam.

2007, 29, 99-108. [CrossRef]

Haug, K; Salek, RM,; Conesa, P; Hastings, |.; de Matos, P; Rinbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S; Rocca-

Serra, P; et al. MetaboLights-An open-access general-purpose nepository for metabolomics studies and associated meta-data.

Nudac Acids Res. 2013, 41, D781-D786. [CrossRef] [PubMed]

Trygs, I.; Wold, S. Orthogonal projections to latent steuctures (O-PLS). J. Chemom. 2002, 16, 119-128. [CrossRef]

Khakimov, B.; Mobaraki, N.; Tamigno, A.; Ary, V.; Engelsen, SB. Signatune Mapping (SigMa): An efficient approach for
1 h urine TH NMR metabolomics data. Anal. Cliim. Acta 2020, 1108, 142-151. [CrossRed] [PubMed]

Talus PG jnménez, B.; Sands, C]; Chekmeneva, E; Lewis, M.R. SMolESY: An efficent and quantitative altemative to on-

mstrument ameromoleouhrl H-NMR signal suppression. Chem. Sa. 2020, 11, 6000-6011. [CrossRef]

Dieterle, E; Ross, A ; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to account for dilution of

complex biclogical mixtunes. Application i 1H NMR metabonomics. Anal Cren. 2006, 78, 4281-42%). [CrossRef] [PubMed]

Euceda, LR ; Giskeadegard, G.E; Bathen, TF. Preproc:ssing of NMR metabolomics data. Scand. J. (in. Lab. Investig. 2015, 75,

193-203. [CrossRef]

Cloaree, O.; Dumas, M.E; Trygg, |.; Craig, A ; Barton, RH.; Lindon, ].C; Nicholson, ] K.; Holmes, E. Evaluation of the orthogonal

projection on latent structuse model imitations caused by chemical shift vaability and improved visualization of biomarker

changes in 1H NMR spectroscopic metabonomac studies. Anal. Chem. 2005, 77, 517-526. [CrossRef]

84



This page intentionally left blank

85



Bibliography

Bibliography

[1] Roger J. Williams, Individual Metabolic Patterns and Human Disease: An
Exploratory Study Utilizing Predominantly Paper Chromatographic Methods,
University of Texas Publications (1951) 204 pp.

[2] E.C. Horning, M.G. Horning, Metabolic Profiles: Gas-Phase Methods for Analysis of
Metabolites, Clinical Chemistry 17 (1971) 802-809.

[3] J.K. Nicholson, J.C. Lindon, E. Holmes, 'Metabonomics": understanding the metabolic
responses of living systems to pathophysiological stimuli via multivariate statistical
analysis of biological NMR spectroscopic data, Xenobiotica; the fate of foreign
compounds in biological systems 29 (1999) 1181-1189.

[4] J.K. Nicholson, Wilson I.D., Understanding ‘Global” Systems Biology: Metabonomics
and the Continuum of Metabolism, Nature Reviews Drug Discovery 2 (2003) 668
676.

[5] O. Fiehn, Metabolomics — the link between genotypes and phenotypes, Functional
genomics (2002) 155-171.

[6] S. Oliver, Systematic functional analysis of the yeast genome, Trends in
Biotechnology 16 (1998) 373-378.

[7] B. Karahalil, Overview of Systems Biology and Omics Technologies, Current
medicinal chemistry 23 (2016) 4221-4230.

[8] G.G. Harrigan, R. Goodacre, Metabolic Profiling: Its Role in Biomarker Discovery
and Gene Function Analysis, Springer US, Boston, MA, 2003.

[9] K. Dettmer, B.D. Hammock, Metabolomics-a new exciting field within the "omics"
sciences., Environmental health perspectives 112 (2004) A396-A397.

[10]  C. Town (Ed.), Functional Genomics, Springer Netherlands, Dordrecht, 2002.

[11]  S. Gravel, B.M. Henn, R.N. Gutenkunst, A.R. Indap, G.T. Marth, A.G. Clark, F.
Yu, R.A. Gibbs, C.D. Bustamante, Demographic history and rare allele sharing
among human populations, Proceedings of the National Academy of Sciences of the
United States of America 108 (2011) 11983-11988.

[12]  R.Kandpal, B. Saviola, J. Felton, The era of 'omics unlimited, BioTechniques 46
(2009) 351-2, 354-5.

86



Bibliography

[13]  E.S. Collins, V.A. McKusick, Implications of the Human Genome Project for
medical science, JAMA 285 (2001) 540-544.

[14] S. Calvo, M. Jain, X. Xie, S.A. Sheth, B. Chang, O.A. Goldberger, A. Spinazzola,
M. Zeviani, S.A. Carr, V.K. Mootha, Systematic identification of human
mitochondrial disease genes through integrative genomics, Nature genetics 38 (2006)
576-582.

[15] L.A.Hindorff, P. Sethupathy, H.A. Junkins, E.M. Ramos, ].P. Mehta, F.S. Collins,
T.A. Manolio, Potential etiologic and functional implications of genome-wide
association loci for human diseases and traits, PNAS 106 (2009) 9362-9367.

[16] T.A.Manolio, F.S. Collins, N.J. Cox, D.B. Goldstein, L.A. Hindorff, D.J. Hunter,
M.I. McCarthy, E.M. Ramos, L.R. Cardon, A. Chakravarti, ].H. Cho, A.E.
Guttmacher, A. Kong, L. Kruglyak, E. Mardis, C.N. Rotimi, M. Slatkin, D. Valle, A.S.
Whittemore, M. Boehnke, A.G. Clark, E.E. Eichler, G. Gibson, J.L. Haines, T.F.C.
Mackay, S.A. McCarroll, P.M. Visscher, Finding the missing heritability of complex
diseases, Nature 461 (2009) 747-753.

[17]  F. Martinez-Jiménez, F. Muinos, I. Sentis, J. Deu-Pons, I. Reyes-Salazar, C.
Arnedo-Pac, L. Mularoni, O. Pich, J. Bonet, H. Kranas, A. Gonzalez-Perez, N. Lopez-
Bigas, A compendium of mutational cancer driver genes, Nature reviews. Cancer 20
(2020) 555-572.

[18] I Barroso, Genetics of Type 2 diabetes, Diabetic medicine : a journal of the British
Diabetic Association 22 (2005) 517-535.

[19] Y. Hasin, M. Seldin, A. Lusis, Multi-omics approaches to disease, Genome Biol 18
(2017) 83.

[20]  Anintegrated encyclopedia of DNA elements in the human genome, 2015.

[21]  J.R. Alvarez-Dominguez, Z. Bai, D. Xu, B. Yuan, K.A. Lo, M.J. Yoon, Y.C. Lim, M.
Knoll, N. Slavov, S. Chen, C. Peng, H.F. Lodish, L. Sun, De Novo Reconstruction of
Adipose Tissue Transcriptomes Reveals Long Non-coding RNA Regulators of Brown
Adipocyte Development, Cell Metabolism 21 (2015) 764-776.

[22]  C.Trapnell, B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.]. van Baren, S.L.
Salzberg, B.]. Wold, L. Pachter, Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell differentiation,
Nat Biotechnol 28 (2010) 511-515.

87



Bibliography

[23] S.-Y.Ng, G.K. Bogu, B.S. Soh, L.W. Stanton, The long noncoding RNA RMST
interacts with SOX2 to regulate neurogenesis, Molecular cell 51 (2013) 349-359.

[24] M. Knoll, H.F. Lodish, L. Sun, Long non-coding RNAs as regulators of the
endocrine system, Nat Rev Endocrinol 11 (2015) 151-160.

[25] R.Lowe, N. Shirley, M. Bleackley, S. Dolan, T. Shafee, Transcriptomics
technologies, PLoS computational biology 13 (2017) e1005457.

[26] F.Ozsolak, P.M. Milos, RNA sequencing: advances, challenges and
opportunities, Nat Rev Genet 12 (2011) 87-98.

[27]  T.W. Nilsen, B.R. Graveley, Expansion of the eukaryotic proteome by alternative
splicing, Nature 463 (2010) 457—-463.

[28] G.-S. Wang, T.A. Cooper, Splicing in disease: disruption of the splicing code and
the decoding machinery, Nat Rev Genet 8 (2007) 749-761.

[29] O.Kelemen, P. Convertini, Z. Zhang, Y. Wen, M. Shen, M. Falaleeva, S. Stamm,
Function of alternative splicing, Gene 514 (2013) 1-30.

[30] B.T.Dye, B.A. Schulman, Structural mechanisms underlying posttranslational
modification by ubiquitin-like proteins, Annual review of biophysics and
biomolecular structure 36 (2007) 131-150.

[31] R.Wu, W. Haas, N. Dephoure, E.L. Huttlin, B. Zhai, M.E. Sowa, S.P. Gygi, A
large-scale method to measure absolute protein phosphorylation stoichiometries,
Nature methods 8 (2011) 677-683.

[32] M. Tyers, M. Mann, From genomics to proteomics, Nature 422 (2003) 193-197.

[33] G.J. Patti, O. Yanes, G. Siuzdak, Innovation: Metabolomics: the apogee of the
omics trilogy, Nature reviews. Molecular cell biology 13 (2012) 263-269.

[34] S.Zhang, G.A. Nagana Gowda, T. Ye, D. Raftery, Advances in NMR-based
biofluid analysis and metabolite profiling, The Analyst 135 (2010) 1490-1498.

[35] R.B. Schnabel, J. Baumert, M. Barbalic, ]J. Dupuis, P.T. Ellinor, P. Durda, A.
Dehghan, J.C. Bis, T. Illig, A.C. Morrison, N.S. Jenny, J.F. Keaney, C. Gieger, C. Tilley,
J.F. Yamamoto, N. Khuseyinova, G. Heiss, M. Doyle, S. Blankenberg, C. Herder, ]J.D.
Walston, Y. Zhu, R.S. Vasan, N. Klopp, E. Boerwinkle, M.G. Larson, B.M. Psaty, A.
Peters, C.M. Ballantyne, ].C.M. Witteman, R.C. Hoogeveen, E.J. Benjamin, W. Koenig,

R.P. Tracy, Duffy antigen receptor for chemokines (Darc) polymorphism regulates

88



Bibliography

circulating concentrations of monocyte chemoattractant protein-1 and other
inflammatory mediators, Blood 115 (2010) 5289-5299.

[36] Z.Yu, G. Kastenmiiller, Y. He, P. Belcredi, G. Mdller, C. Prehn, J. Mendes, S.
Wahl, W. Roemisch-Marg]l, U. Ceglarek, A. Polonikov, N. Dahmen, H. Prokisch, L.
Xie, Y. Li, H.-E. Wichmann, A. Peters, F. Kronenberg, K. Suhre, J. Adamski, T. Illig, R.
Wang-Sattler, Differences between human plasma and serum metabolite profiles,
PloS one 6 (2011) €21230.

[37]  Yatomi, Yutaka, et al., Sphingosine 1-phosphate, a bioactive sphingolipid
abundantly stored in platelets, is a normal constituent of human plasma and serum,
The journal of biochemistry 121 (1997) 969-973.

[38] Y.Ma, P. Zhang, F. Wang, W. Liu, J. Yang, H. Qin, An integrated proteomics and
metabolomics approach for defining oncofetal biomarkers in the colorectal cancer,
Annals of surgery 255 (2012) 720-730.

[39] E.Chen,]. Xue, L. Zhou, S. Wu, Z. Chen, Identification of serum biomarkers of
hepatocarcinoma through liquid chromatography/mass spectrometry-based
metabonomic method, Anal Bioanal Chem 401 (2011) 1899-1904.

[40] N. Kumar, M. Shahjaman, M.N.H. Mollah, S.M.S. Islam, M.A. Hoque, Serum and
Plasma Metabolomic Biomarkers for Lung Cancer, Bioinformation 13 (2017) 202-208.

[41] L.Lin, Z. Huang, Y. Gao, X. Yan, J. Xing, W. Hang, LC-MS based serum
metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker

discovery, Journal of proteome research 10 (2011) 1396-1405.

[42]  G. Echeverry, G.L. Hortin, A.J. Rai, Introduction to Urinalysis: Historical
Perspectives and Clinical Application, in: The Urinary Proteome, Humana Press,
2010 pp. 1-12.

[43] G. Eknoyan, Looking at the urine: the renaissance of an unbroken tradition,
American journal of kidney diseases : the official journal of the National Kidney
Foundation 49 (2007) 865-872.

[44] N.J. Serkova, T.J. Standiford, K.A. Stringer, The emerging field of quantitative
blood metabolomics for biomarker discovery in critical illnesses, American journal of

respiratory and critical care medicine 184 (2011) 647-655.

[45] M. Saoi, P. Britz-McKibbin, New Advances in Tissue Metabolomics: A Review,
Metabolites 11 (2021).

89



Bibliography

[46] K. Tzimas, E. Pappa, Saliva Metabolomic Profile in Dental Medicine Research: A
Narrative Review, Metabolites 13 (2023) 379.

[47] D.C. Mueller, M. Piller, R. Niessner, M. Scherer, G. Scherer, Untargeted
metabolomic profiling in saliva of smokers and nonsmokers by a validated GC-TOF-
MS method, Journal of proteome research 13 (2014) 1602-1613.

[48]  S.Ishikawa, M. Sugimoto, K. Kitabatake, M. Tu, A. Sugano, I. Yamamori, A. Iba,
K. Yusa, M. Kaneko, S. Ota, K. Hiwatari, A. Enomoto, T. Masaru, M. Iino, Effect of

timing of collection of salivary metabolomic biomarkers on oral cancer detection,
Amino acids 49 (2017) 761-770.

[49] D.S. Wishart, M.J. Lewis, ].A. Morrissey, M.D. Flegel, K. Jeroncic, Y. Xiong, D.
Cheng, R. Eisner, B. Gautam, D. Tzur, S. Sawhney, F. Bamforth, R. Greiner, L. Li, The
human cerebrospinal fluid metabolome, Journal of chromatography. B, Analytical
technologies in the biomedical and life sciences 871 (2008) 164-173.

[50] D.G.Brown, S. Rao, T.L. Weir, J. O'Malia, M. Bazan, R.]. Brown, E.P. Ryan,
Metabolomics and metabolic pathway networks from human colorectal cancers,
adjacent mucosa, and stool, Cancer Metab 4 (2016) 11.

[51] Y. Gao, Urine-an untapped goldmine for biomarker discovery?, Science China.
Life sciences 56 (2013) 1145-1146.

[52] A.Zhang, H. Sun, P. Wang, Y. Han, X. Wang, Future perspectives of
personalized medicine in traditional Chinese medicine: a systems biology approach,

Complementary therapies in medicine 20 (2012) 93-99.

[63] J.L.McClay, D.E. Adkins, N.G. Isern, T.M. O'Connell, ].B. Wooten, B.K. Zedler,
M.S. Dasika, B.T. Webb, B.-]. Webb-Robertson, J.G. Pounds, E.L. Murrelle, ML.E.
Leppert, E.J.C.G. van den Oord, (1)H nuclear magnetic resonance metabolomics
analysis identifies novel urinary biomarkers for lung function, Journal of proteome
research 9 (2010) 3083-3090.

[54] K. Matsumura, M. Opiekun, H. Oka, A. Vachani, S.M. Albelda, K. Yamazaki,
G.K. Beauchamp, Urinary volatile compounds as biomarkers for lung cancer: a proof
of principle study using odor signatures in mouse models of lung cancer, PLOS ONE
5 (2010) e88109.

[55] A.Zhang, H. Sun, X. Wu, X. Wang, Urine metabolomics, Clinica chimica acta;
international journal of clinical chemistry 414 (2012) 65-69.

90



Bibliography

[56] R.T. Krediet, Preservation of Residual Kidney Function and Urine Volume in
Patients on Dialysis, Clinical journal of the American Society of Nephrology : CJASN
12 (2017) 377-379.

[57] S.Bouatra, F. Aziat, R. Mandal, A.C. Guo, M.R. Wilson, C. Knox, T.C. Bjorndahl,
R. Krishnamurthy, F. Saleem, P. Liu, Z.T. Dame, J. Poelzer, ]J. Huynh, F.S. Yallou, N.
Psychogios, E. Dong, R. Bogumil, C. Roehring, D.S. Wishart, The human urine
metabolome, PloS one 8 (2013) €73076.

[58] D.S. Wishart, D. Tzur, C. Knox, R. Eisner, A.C. Guo, N. Young, D. Cheng, K.
Jewell, D. Arndt, S. Sawhney, C. Fung, L. Nikolai, M. Lewis, M.-A. Coutouly, L.
Forsythe, P. Tang, S. Shrivastava, K. Jeroncic, P. Stothard, G. Amegbey, D. Block,
D.D. Hau, J. Wagner, J. Miniaci, M. Clements, M. Gebremedhin, N. Guo, Y. Zhang,
G.E. Duggan, G.D. Maclnnis, A.M. Weljie, R. Dowlatabadi, F. Bamforth, D. Clive, R.
Greiner, L. Li, T. Marrie, B.D. Sykes, H.J. Vogel, L. Querengesser, HMDB: the Human
Metabolome Database, Nucleic Acids Res 35 (2007) D521-6.

[59] D.S. Wishart, Y.D. Feunang, A. Marcu, A.C. Guo, K. Liang, R. Vazquez-Fresno, T.
Sajed, D. Johnson, C. Li, N. Karu, Z. Sayeeda, E. Lo, N. Assempour, M. Berjanskii, S.
Singhal, D. Arndt, Y. Liang, H. Badran, J. Grant, A. Serra-Cayuela, Y. Liu, R. Mandal,
V. Neveu, A. Pon, C. Knox, M. Wilson, C. Manach, A. Scalbert, HMDB 4.0: the
human metabolome database for 2018, Nucleic Acids Res 46 (2018) D608-D617.

[60]  C. Chen, F.J. Gonzalez, ].R. Idle, LC-MS-based metabolomics in drug metabolism,
Drug Metabolism Reviews 39 (2007) 581-597.

[61] C.H.Johnson, A.D. Patterson, J.R. Idle, F.]. Gonzalez, Xenobiotic metabolomics:
major impact on the metabolome, Annual review of pharmacology and toxicology 52
(2012) 37-56.

[62]  E.Tynkevich, M. Flamant, J.-P. Haymann, M. Metzger, E. Thervet, ].-J. Boffa, F.
Vrtovsnik, P. Houillier, M. Froissart, B. Stengel, Decrease in urinary creatinine
excretion in early stage chronic kidney disease, PLOS ONE 9 (2014) €111949.

[63] ].Liu, L. Bankir, A. Verma, S.S. Waikar, R. Palsson, Association of the Urine-to-
Plasma Urea Ratio With CKD Progression, American journal of kidney diseases : the

official journal of the National Kidney Foundation (2022).

[64]  A.Jain, X.H. Li, W.N. Chen, An untargeted fecal and urine metabolomics
analysis of the interplay between the gut microbiome, diet and human metabolism in
Indian and Chinese adults, Sci Rep 9 (2019) 9191.

91



Bibliography

[65] P.Gao, E. Da Silva, L. Hou, N.D. Denslow, P. Xiang, L.Q. Ma, Human exposure
to polycyclic aromatic hydrocarbons: Metabolomics perspective, Environment
International 119 (2018) 466-477.

[66] M. Trupp, H. Zhu, W.R. Wikoff, R.A. Baillie, Z.-B. Zeng, P.D. Karp, O. Fiehn,
R.M. Krauss, R. Kaddurah-Daouk, Metabolomics reveals amino acids contribute to
variation in response to simvastatin treatment, PLOS ONE 7 (2012) e38386.

[67]  D.S. Wishart, Applications of metabolomics in drug discovery and development,
Drugs in R&D 9 (2008) 307-322.

[68] A.Alonso, S. Marsal, A. Julia, Analytical methods in untargeted metabolomics:
state of the art in 2015, Front. Bioeng. Biotechnol. 3 (2015) 23.

[69] FE.G.Pinto, I. Mahmud, T.A. Harmon, V.Y. Rubio, T.]J. Garrett, Rapid Prostate
Cancer Noninvasive Biomarker Screening Using Segmented Flow Mass

Spectrometry-Based Untargeted Metabolomics, Journal of proteome research 19
(2020) 2080-2091.

[70]  V.Mardegan, G. Giordano, M. Stocchero, P. Pirillo, G. Poloniato, E. Donadel, S.
Salvadori, C. Giaquinto, E. Priante, E. Baraldi, Untargeted and Targeted
Metabolomic Profiling of Preterm Newborns with EarlyOnset Sepsis: A Case-Control
Study, Metabolites 11 (2021) 115.

[71]  P.Reveglia, C. Paolillo, G. Ferretti, A. de Carlo, A. Angiolillo, R. Nasso, M.
Caputo, C. Matrone, A. Di Costanzo, G. Corso, Challenges in LC-MS-based
metabolomics for Alzheimer's disease early detection: targeted approaches versus

untargeted approaches, Metabolomics 17 (2021) 78.

[72]  R.D.Beger, W. Dunn, M.A. Schmidt, S.S. Gross, J.A. Kirwan, M. Cascante, L.
Brennan, D.S. Wishart, M. Oresic, T. Hankemeier, D.I. Broadhurst, A.N. Lane, K.
Suhre, G. Kastenmidiller, S.J. Sumner, 1. Thiele, O. Fiehn, R. Kaddurah-Daouk,
Metabolomics enables precision medicine: "A White Paper, Community Perspective",
Metabolomics 12 (2016) 149.

[73]  D.S. Wishart, Emerging applications of metabolomics in drug discovery and
precision medicine, Nat Rev Drug Discov 15 (2016) 473-484.

[74]  C.B. Clish, Metabolomics: an emerging but powerful tool for precision medicine,
Cold Spring Harb Mol Case Stud 1 (2015) a000588.

[75] K. Bingol, Recent Advances in Targeted and Untargeted Metabolomics by NMR
and MS/NMR Methods, High-throughput 7 (2018).

92



Bibliography

[76] A.M. Weljie, ]. Newton, P. Mercier, E. Carlson, C.M. Slupsky, Targeted profiling:
quantitative analysis of 1H NMR metabolomics data, Analytical chemistry 78 (2006)
4430-4442.

[77]  D.S. Wishart, NMR metabolomics: A look ahead, Journal of magnetic resonance
(San Diego, Calif. : 1997) 306 (2019) 155-161.

[78] N.T. Doncheva, O. Palasca, R. Yarani, T. Litman, C. Anthon, M.A.M. Groenen,
P.F. Stadler, F. Pociot, L.J. Jensen, J. Gorodkin, Human pathways in animal models:
possibilities and limitations, Nucleic Acids Res 49 (2021) 1859-1871.

[79] D.G. Hackam, D.A. Redelmeier, Translation of research evidence from animals to
humans, JAMA 296 (2006) 1731-1732.

[80] B.R.Berridge, Animal Study Translation: The Other Reproducibility Challenge,
ILARJ 62 (2021) 1-6.

[81] S.Tenny, C.C. Kerndt, M.R. Hoffman, StatPearls. Case Control Studies, Treasure
Island (FL), 2022.

[82]  M.S. Thiese, Observational and interventional study design types; an overview,
Biochemia Medica 24 (2014) 199-210.

[83] E.P.Rhee, R.E. Gerszten, Metabolomics and cardiovascular biomarker discovery,
Clinical Chemistry 58 (2012) 139-147.

[84] W.B. Dunn, L.D. Wilson, A.W. Nicholls, D. Broadhurst, The importance of
experimental design and QC samples in large-scale and MS-driven untargeted
metabolomic studies of humans, Bioanalysis 4 (2012) 2249-2264.

[85] AlJ.Lloyd, N.D. Willis, T. Wilson, H. Zubair, E. Chambers, I. Garcia-Perez, L. Xie,
K. Tailliart, M. Beckmann, J.C. Mathers, J. Draper, Addressing the pitfalls when
designing intervention studies to discover and validate biomarkers of habitual
dietary intake, Metabolomics 15 (2019) 72.

[86] L.Penn, H. Boeing, C.J. Boushey, L.O. Dragsted, J. Kaput, A. Scalbert, A.A.
Welch, J.C. Mathers, Assessment of dietary intake: NuGO symposium report, Genes
& nutrition 5 (2010) 205-213.

[87]  S.A.Bingham, C. Gill, A. Welch, K. Day, A. Cassidy, K.T. Khaw, M.]. Sneyd, T.J.
Key, L. Roe, N.E. Day, Comparison of dietary assessment methods in nutritional
epidemiology: weighed records v. 24 h recalls, food-frequency questionnaires and
estimated-diet records, The British journal of nutrition 72 (1994) 619-643.

93



Bibliography

[88]  B.Yu, K.A. Zanetti, M. Temprosa, D. Albanes, N. Appel, C.B. Barrera, Y. Ben-
Shlomo, E. Boerwinkle, J.P. Casas, C. Clish, C. Dale, A. Dehghan, A. Derkach, A.H.
Eliassen, P. Elliott, E. Fahy, C. Gieger, M.]. Gunter, S. Harada, T. Harris, D.R. Herr, D.
Herrington, ].N. Hirschhorn, E. Hoover, A.W. Hsing, M. Johansson, R.S. Kelly, C.M.
Khoo, M. Kivimaki, B.S. Kristal, C. Langenberg, J. Lasky-Su, D.A. Lawlor, L.A. Lotta,
M. Mangino, L. Le Marchand, E. Mathé, C.E. Matthews, C. Menni, L.A. Mucci, R.
Murphy, M. Oresic, E. Orwoll, J. Ose, A.C. Pereira, M.C. Playdon, L. Poston, ]J. Price,
Q. Qi, K. Rexrode, A. Risch, J. Sampson, W.]J. Seow, H.D. Sesso, S.H. Shah, X.-O. Shu,
G.C.S. Smith, U. Sovio, V.L. Stevens, R. Stolzenberg-Solomon, T. Takebayashi, T.
Tillin, R. Travis, I. Tzoulaki, C.M. Ulrich, R.S. Vasan, M. Verma, Y. Wang, N.J.
Wareham, A. Wong, N. Younes, H. Zhao, W. Zheng, S.C. Moore, The Consortium of
Metabolomics Studies (COMETS): Metabolomics in 47 Prospective Cohort Studies,
American journal of epidemiology 188 (2019) 991-1012.

[89] E.J. Caruana, M. Roman, J. Herndndez-Sanchez, P. Solli, Longitudinal studies,
Journal of thoracic disease 7 (2015) E537-40.

[90] A.El-Aneed, A. Cohen, J. Banoub, Mass Spectrometry, Review of the Basics:
Electrospray, MALDI, and Commonly Used Mass Analyzers, Applied Spectroscopy
Reviews 44 (2009) 210-230.

[91] K. Dettmer, P.A. Aronov, B.D. Hammock, Mass spectrometry-based
metabolomics, Mass spectrometry reviews 26 (2007) 51-78.

[92] S.G. Villas-Boas, S. Mas, M. Akesson, J. Smedsgaard, J. Nielsen, Mass

spectrometry in metabolome analysis, Mass spectrometry reviews 24 (2005) 613-646.

[93] A.-H.Emwas, R. Roy, R.T. McKay, L. Tenori, E. Saccenti, G.A.N. Gowda, D.
Raftery, F. Alahmari, L. Jaremko, M. Jaremko, D.S. Wishart, NMR Spectroscopy for
Metabolomics Research, Metabolites 9 (2019).

[94] A.M. Tsedilin, A.N. Fakhrutdinov, D.B. Eremin, S.S. Zalesskiy, A.O. Chizhov,
N.G. Kolotyrkina, V.P. Ananikov, How sensitive and accurate are routine NMR and

MS measurements?, Mendeleev Communications 25 (2015) 454-456.

[95] H. Trufelli, P. Palma, G. Famiglini, A. Cappiello, An overview of matrix effects in
liquid chromatography-mass spectrometry, Mass spectrometry reviews 30 (2011)
491-509.

[96] Z.Pan, D. Raftery, Comparing and combining NMR spectroscopy and mass
spectrometry in metabolomics, Anal Bioanal Chem 387 (2007) 525-527.

94



Bibliography

[97] A.-H.M. Emwas, The strengths and weaknesses of NMR spectroscopy and mass
spectrometry with particular focus on metabolomics research, Methods in molecular
biology (Clifton, N.J.) 1277 (2015) 161-193.

[98] N.V.Reo, NMR-based metabolomics, Drug and Chemical Toxicology 25 (2002)
375-382.

[99] D. Djukovic, G.A. Nagana Gowda, D. Raftery, Mass Spectrometry and NMR
Spectroscopy—-Based Quantitative Metabolomics, in: Proteomic and Metabolomic

Approaches to Biomarker Discovery, Elsevier, 2013 pp. 279-297.

[100] J. Wieling, LC-MS-MS experiences with internal standards, Chromatographia 55
(2002) S107-S113.

[101] A.K.Boysen, K.R. Heal, L.T. Carlson, A.E. Ingalls, Best-Matched Internal
Standard Normalization in Liquid Chromatography-Mass Spectrometry

Metabolomics Applied to Environmental Samples, Analytical chemistry 90 (2018)
1363-1369.

[102] E.M. Purcell, H.C. Torrey, R.V. Pound, Resonance Absorption by Nuclear
Magnetic Moments in a Solid, Phys. Rev. 69 (1946) 37-38.

[103] F.Bloch, Nuclear Induction, Phys. Rev. 70 (1946) 460-474.
[104] J. Keeler, Understanding NMR Spectroscopy, John Wiley & Sons, 2011.

[105] M.A.Hemminga, Introduction to NMR, Trends in Food Science & Technology 3
(1992) 179-186.

[106] V. Mlynarik, Introduction to nuclear magnetic resonance, Analytical
biochemistry 529 (2017) 4-9.

[107] C.M. Slupsky, K.N. Rankin, J. Wagner, H. Fu, D. Chang, A M. Weljie, E.J. Saude,
B. Lix, D.J. Adamko, S. Shah, R. Greiner, B.D. Sykes, T.]. Marrie, Investigations of the
effects of gender, diurnal variation, and age in human urinary metabolomic profiles,
Analytical chemistry 79 (2007) 6995-7004.

[108] E.J. Saude, D. Adamko, B.H. Rowe, T. Marrie, B.D. Sykes, Variation of

metabolites in normal human urine, Metabolomics 3 (2007) 439-451.

[109] E.J. Saude, B.D. Sykes, Urine stability for metabolomic studies: effects of
preparation and storage, Metabolomics 3 (2007) 19-27.

95



Bibliography

[110] M.J. Rist, C. Muhle-Goll, B. Gorling, A. Bub, S. Heissler, B. Watzl, B. Luy,
Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-
Based Metabolomics, Metabolites 3 (2013) 243-258.

[111] M. Lauridsen, S.H. Hansen, J.W. Jaroszewski, C. Cornett, Human urine as test
material in 1TH NMR-based metabonomics: recommendations for sample preparation
and storage, Analytical chemistry 79 (2007) 1181-1186.

[112] P. Bernini, I. Bertini, C. Luchinat, P. Nincheri, S. Staderini, P. Turano, Standard
operating procedures for pre-analytical handling of blood and urine for metabolomic
studies and biobanks, ] Biomol NMR 49 (2011) 231-243.

[113] E. Martin Herndndez, C. Aparicio Lépez, G. Alvarez Calatayud, M.A. Garcia
Herrera, Litiasis vesical por dcido trico en un nifio con hipouricemia renal, Anales
espanoles de pediatria 55 (2001) 273-276.

[114] R. Rylander, T. Remer, S. Berkemeyer, J. Vormann, Acid-base status affects renal
magnesium losses in healthy, elderly persons, The Journal of nutrition 136 (2006)
2374-2377.

[115] A.A. Welch, A. Mulligan, S.A. Bingham, K.-T. Khaw, Urine pH is an indicator of
dietary acid-base load, fruit and vegetables and meat intakes: results from the
European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk
population study, The British journal of nutrition 99 (2008) 1335-1343.

[116] C. Xiao, F. Hao, X. Qin, Y. Wang, H. Tang, An optimized buffer system for NMR-
based urinary metabonomics with effective pH control, chemical shift consistency
and dilution minimization, The Analyst 134 (2009) 916-925.

[117] V.M. Asiago, G.A. Nagana Gowda, S. Zhang, N. Shanaiah, J. Clark, D. Raftery,
Use of EDTA to minimize ionic strength dependent frequency shifts in the 1TH NMR
spectra of urine, Metabolomics 4 (2008) 328-336.

[118] R.B. Gil, R. Lehmann, P. Schmitt-Kopplin, S.S. Heinzmann, (1)H NMR-based
metabolite profiling workflow to reduce inter-sample chemical shift variations in
urine samples for improved biomarker discovery, Anal Bioanal Chem 408 (2016)
4683-4691.

[119] A.C.Dona, B. Jiménez, H. Schifer, E. Humpfer, M. Spraul, M.R. Lewis, ].T.M.
Pearce, E. Holmes, ].C. Lindon, ]J.K. Nicholson, Precision high-throughput proton
NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic
phenotyping, Analytical chemistry 86 (2014) 9887-9894.

96



Bibliography

[120] A. Vignoli, V. Ghini, G. Meoni, C. Licari, P.G. Takis, L. Tenori, P. Turano, C.
Luchinat, High-Throughput Metabolomics by 1D NMR, Angewandte Chemie
(International ed. in English) 58 (2019) 968-994.

[121] O. Beckonert, H.C. Keun, T.M.D. Ebbels, J. Bundy, E. Holmes, J.C. Lindon, J.K.
Nicholson, Metabolic profiling, metabolomic and metabonomic procedures for NMR

spectroscopy of urine, plasma, serum and tissue extracts, Nat Protoc 2 (2007) 2692—
2703.

[122] S.S. Heinzmann, M. Waldenberger, A. Peters, P. Schmitt-Kopplin, Cluster
Analysis Statistical Spectroscopy for the Identification of Metabolites in 1H NMR
Metabolomics, Metabolites 12 (2022) 992.

[123] V. Falaina, C. Fotakis, T. Boutsikou, T. Tsiaka, G. Moros, S. Ouzounis, V.
Andreou, Z. lliodromiti, T. Xanthos, Y. Vandenplas, N. Iacovidou, P. Zoumpoulakis,
Urine Metabolomic Profile of Breast- versus Formula-Fed Neonates Using a

Synbiotic-Enriched Formula, International journal of molecular sciences 23 (2022).

[124] A. Shimizu, M. Ikeguchi, S. Sugai, Appropriateness of DSS and TSP as internal
references for (1)H NMR studies of molten globule proteins in aqueous media, ]
Biomol NMR 4 (1994) 859-862.

[125] A.-H. Emwas, C. Luchinat, P. Turano, L. Tenori, R. Roy, R.M. Salek, D. Ryan, J.S.
Merzaban, R. Kaddurah-Daouk, A.C. Zeri, G.A. Nagana Gowda, D. Raftery, Y.
Wang, L. Brennan, D.S. Wishart, Standardizing the experimental conditions for using

urine in NMR-based metabolomic studies with a particular focus on diagnostic
studies: a review, Metabolomics 11 (2015) 872-894.

[126] C. Deborde, J.-X. Fontaine, D. Jacob, A. Botana, V. Nicaise, F. Richard-Forget, S.
Lecomte, C. Decourtil, K. Hamade, F. Mesnard, A. Moing, R. Molinié, Optimizing 1D
1H-NMR profiling of plant samples for high throughput analysis: extract
preparation, standardization, automation and spectra processing, Metabolomics 15
(2019) 28.

[127] N. Aranibar, K.-H. Ott, V. Roongta, L. Mueller, Metabolomic analysis using
optimized NMR and statistical methods, Analytical biochemistry 355 (2006) 62—-70.

[128] R.T. McKay, How the 1D-NOESY suppresses solvent signal in metabonomics
NMR spectroscopy: An examination of the pulse sequence components and
evolution, Concepts Magn. Reson. 38A (2011) 197-220.

97



Bibliography

[129] S. Sokolenko, R. McKay, E.J.M. Blondeel, M.]. Lewis, D. Chang, B. George, M.G.
Aucoin, Understanding the variability of compound quantification from targeted
profiling metabolomics of 1D-1H-NMR spectra in synthetic mixtures and urine with

additional insights on choice of pulse sequences and robotic sampling, Metabolomics
9 (2013) 887-903.

[130] S.K.Bharti, R. Roy, Quantitative 1H NMR spectroscopy, TrAC Trends in
Analytical Chemistry 35 (2012) 5-26.

[131] S. Ren, A.A. Hinzman, E.L. Kang, R.D. Szczesniak, L.J. Lu, Computational and
statistical analysis of metabolomics data, Metabolomics 11 (2015) 1492-1513.

[132] Y. Xi, D.M. Rocke, Baseline correction for NMR spectroscopic metabolomics data
analysis, BMC Bioinformatics 9 (2008) 324.

[133] R.A.Scott, L.J. Scott, R. Mégi, L. Marullo, K.J. Gaulton, M. Kaakinen, N.
Pervjakova, T.H. Pers, A.D. Johnson, J.D. Eicher, A.U. Jackson, T. Ferreira, Y. Lee, C.
Ma, V. Steinthorsdottir, G. Thorleifsson, L. Qi, N.R. van Zuydam, A. Mahajan, H.
Chen, P. Almgren, B.F. Voight, H. Grallert, M. Miiller-Nurasyid, J.S. Ried, N.W.
Rayner, N. Robertson, L.C. Karssen, E.M. van Leeuwen, S.M. Willems, C.
Fuchsberger, P. Kwan, T.M. Teslovich, P. Chanda, M. Li, Y. Lu, C. Dina, D. Thuillier,
L. Yengo, L. Jiang, T. Sparso, H.A. Kestler, H. Chheda, L. Eisele, S. Gustafsson, M.
Franberg, R.J. Strawbridge, R. Benediktsson, A.B. Hreidarsson, A. Kong, G.
Sigurdsson, N.D. Kerrison, J. Luan, L. Liang, T. Meitinger, M. Roden, B. Thorand, T.
Esko, E. Mihailov, C. Fox, C.-T. Liu, D. Rybin, B. Isomaa, V. Lyssenko, T. Tuomi, D.].
Couper, J.S. Pankow, N. Grarup, C.T. Have, M.E. Jorgensen, T. Jorgensen, A.
Linneberg, M.C. Cornelis, R-M. van Dam, D.J. Hunter, P. Kraft, Q. Sun, S. Edkins,
K.R. Owen, ].R.B. Perry, A.R. Wood, E. Zeggini, ]. Tajes-Fernandes, G.R. Abecasis,
L.L. Bonnycastle, P.S. Chines, H.M. Stringham, H.A. Koistinen, L. Kinnunen, B.
Sennblad, T.W. Miihleisen, M.M. Nothen, S. Pechlivanis, D. Baldassarre, K. Gertow,
S.E. Humpbhries, E. Tremoli, N. Klopp, J. Meyer, G. Steinbach, R. Wennauer, J.G.
Eriksson, S. Mannist0, L. Peltonen, E. Tikkanen, G. Charpentier, E. Eury, S. Lobbens,
B. Gigante, K. Leander, O. McLeod, E.P. Bottinger, O. Gottesman, D. Ruderfer, M.
Bliiher, P. Kovacs, A. Tonjes, N.M. Maruthur, C. Scapoli, R. Erbel, K.-H. Jockel, S.
Moebus, U. de Faire, A. Hamsten, M. Stumvoll, P. Deloukas, P.J. Donnelly, T.M.
Frayling, A.T. Hattersley, S. Ripatti, V. Salomaa, N.L. Pedersen, B.O. Boehm, R.N.
Bergman, F.S. Collins, K.L. Mohlke, J. Tuomilehto, T. Hansen, O. Pedersen, 1.
Barroso, L. Lannfelt, E. Ingelsson, L. Lind, C.M. Lindgren, S. Cauchi, P. Froguel,
R.J.F. Loos, B. Balkau, H. Boeing, P.W. Franks, A. Barricarte Gurrea, D. Palli, Y.T. van

98



Bibliography

der Schouw, D. Altshuler, L.C. Groop, C. Langenberg, N.]. Wareham, E. Sijbrands,
C.M. van Duijn, J.C. Florez, ].B. Meigs, E. Boerwinkle, C. Gieger, K. Strauch, A.
Metspalu, A.D. Morris, C.N.A. Palmer, F.B. Hu, U. Thorsteinsdottir, K. Stefansson, J.
Dupuis, A.P. Morris, M. Boehnke, M.I. McCarthy, I. Prokopenko, An Expanded
Genome-Wide Association Study of Type 2 Diabetes in Europeans, Diabetes 66
(2017) 2888-2902.

[134] Y. Chen, G. Shen, R. Zhang, J. He, Y. Zhang, J. Xu, W. Yang, X. Chen, Y. Song, Z.
Abliz, Combination of injection volume calibration by creatinine and MS signals'
normalization to overcome urine variability in LC-MS-based metabolomics studies,
Analytical chemistry 85 (2013) 7659-7665.

[135] S.L.Nam, A.P. de La Mata, R.P. Dias, J.J. Harynuk, Towards Standardization of
Data Normalization Strategies to Improve Urinary Metabolomics Studies by GCxGC-
TOFMS, Metabolites 10 (2020).

[136] Y. Wnu, L. Li, Sample normalization methods in quantitative metabolomics,
Journal of chromatography. A 1430 (2016) 80-95.

[137] D.Ryan, K. Robards, P.D. Prenzler, M. Kendall, Recent and potential
developments in the analysis of urine: a review, Analytica chimica acta 684 (2011) 8-
20.

[138] F. Dieterle, A. Ross, G. Schlotterbeck, H. Senn, Probabilistic quotient
normalization as robust method to account for dilution of complex biological
mixtures. Application in 1TH NMR metabonomics, Analytical chemistry 78 (2006)
4281-4290.

[139] I Karaman, Preprocessing and Pretreatment of Metabolomics Data for Statistical

Analysis, Advances in experimental medicine and biology 965 (2017) 145-161.

[140] B.M. Bolstad, R.A. Irizarry, M. Astrand, T.P. Speed, A comparison of
normalization methods for high density oligonucleotide array data based on
variance and bias, Bioinformatics 19 (2003) 185-193.

[141] N. Knudsen, E. Christiansen, M. Brandt-Christensen, B. Nygaard, H. Perrild,
Age- and sex-adjusted iodine/creatinine ratio. A new standard in epidemiological
surveys? Evaluation of three different estimates of iodine excretion based on casual

urine samples and comparison to 24 h values, Eur ] Clin Nutr 54 (2000) 361-363.

[142] T.I. Justesen, J.L.A. Petersen, P. Ekbom, P. Damm, E.R. Mathiesen, Albumin-to-

creatinine ratio in random urine samples might replace 24-h urine collections in

99



Bibliography

screening for micro- and macroalbuminuria in pregnant woman with type 1
diabetes, Diabetes Care 29 (2006) 924-925.

[143] P. Shaffer, THE EXCRETION OF KREATININ AND KREATIN IN HEALTH
AND DISEASE, American Journal of Physiology-Legacy Content 23 (1908) 1-22.

[144] F. Spierto, W. Hannon, E. Gunter, S. Smith, Stability of urine creatinine, Clinica
Chimica Acta 264 (1997) 227-232.

[145] S.M. Kohl, M.S. Klein, J. Hochrein, P.J. Oefner, R. Spang, W. Gronwald, State-of-
the art data normalization methods improve NMR-based metabolomic analysis,
Metabolomics 8 (2012) 146-160.

[146] A. Craig, O. Cloarec, E. Holmes, ].K. Nicholson, J.C. Lindon, Scaling and
normalization effects in NMR spectroscopic metabonomic data sets, Analytical
chemistry 78 (2006) 2262-2267.

[147] ]. Xia, T.C. Bjorndahl, P. Tang, D.S. Wishart, MetaboMiner--semi-automated
identification of metabolites from 2D NMR spectra of complex biofluids, BMC
Bioinformatics 9 (2008) 507.

[148] J. Forshed, I. Schuppe-Koistinen, S.P. Jacobsson, Peak alignment of NMR signals
by means of a genetic algorithm, Analytica chimica acta 487 (2003) 189-199.

[149] E. Holmes, P.J. Foxall, J.K. Nicholson, G.H. Neild, S.M. Brown, C.R. Beddell, B.C.
Sweatman, E. Rahr, ].C. Lindon, M. Spraul, Automatic data reduction and pattern
recognition methods for analysis of 1H nuclear magnetic resonance spectra of human
urine from normal and pathological states, Analytical biochemistry 220 (1994) 284—
296.

[150] L. Csenki, E. Alm, R.J.O. Torgrip, K.M. Aberg, L.I. Nord, I. Schuppe-Koistinen, J.
Lindberg, Proof of principle of a generalized fuzzy Hough transform approach to
peak alignment of one-dimensional 1H NMR data, Anal Bioanal Chem 389 (2007)
875-885.

[151] V. Pravdova, B. Walczak, D.L. Massart, A comparison of two algorithms for
warping of analytical signals, Analytica chimica acta 456 (2002) 77-92.

[152] G. Tomasi, F. van den Berg, C. Andersson, Correlation optimized warping and
dynamic time warping as preprocessing methods for chromatographic data, J.
Chemometrics 18 (2004) 231-241.

100



Bibliography

[153] K.A. Veselkov, J.C. Lindon, T.M.D. Ebbels, D. Crockford, V.V. Volynkin, E.
Holmes, D.B. Davies, ].K. Nicholson, Recursive segment-wise peak alignment of
biological (1)h NMR spectra for improved metabolic biomarker recovery, Analytical
chemistry 81 (2009) 56-66.

[154] W. Wu, M. Daszykowski, B. Walczak, B.C. Sweatman, S.C. Connor, J.N.
Haselden, D.J. Crowther, RW. Gill, M.W. Lutz, Peak alignment of urine NMR
spectra using fuzzy warping, Journal of chemical information and modeling 46
(2006) 863-875.

[155] E. Holmes, R.L. Loo, J. Stamler, M. Bictash, LK.S. Yap, Q. Chan, T. Ebbels, M. de
Iorio, I.]. Brown, K.A. Veselkov, M.L. Daviglus, H. Kesteloot, H. Ueshima, L. Zhao,
J.K. Nicholson, P. Elliott, Human metabolic phenotype diversity and its association
with diet and blood pressure, Nature 453 (2008) 396—400.

[156] E. Holmes, J.K. Nicholson, A.W. Nicholls, J.C. Lindon, S.C. Connor, S. Polley, J.
Connelly, The identification of novel biomarkers of renal toxicity using automatic
data reduction techniques and PCA of proton NMR spectra of urine, Chemometrics
and Intelligent Laboratory Systems 44 (1998) 245-255.

[157] M. Spraul, P. Neidig, U. Klauck, P. Kessler, E. Holmes, ].K. Nicholson, B.C.
Sweatman, S.R. Salman, R.D. Farrant, E. Rahr, C.R. Beddell, ].C. Lindon, Automatic
reduction of NMR spectroscopic data for statistical and pattern recognition
classification of samples, Journal of Pharmaceutical and Biomedical Analysis 12
(1994) 1215-1225.

[158] H.U. Zacharias, M. Altenbuchinger, W. Gronwald, Statistical Analysis of NMR
Metabolic Fingerprints: Established Methods and Recent Advances, Metabolites 8
(2018).

[159] P.E. Anderson, D.A. Mahle, T.E. Doom, N.V. Reo, N.J. DelRaso, M.L. Raymer,
Dynamic adaptive binning: an improved quantification technique for NMR
spectroscopic data, Metabolomics 7 (2011) 179-190.

[160] R.A. Davis, A.]. Charlton, J. Godward, S.A. Jones, M. Harrison, J.C. Wilson,
Adaptive binning: An improved binning method for metabolomics data using the
undecimated wavelet transform, Chemometrics and Intelligent Laboratory Systems
85 (2007) 144-154.

[161] B. Worley, R. Powers, Generalized adaptive intelligent binning of multiway data,
Chemometrics and Intelligent Laboratory Systems 146 (2015) 42—46.

101



Bibliography

[162] A.-H. Emwas, E. Saccenti, X. Gao, R.T. McKay, V.A.P.M. Dos Santos, R. Roy, D.S.
Wishart, Recommended strategies for spectral processing and post-processing of 1D
1H-NMR data of biofluids with a particular focus on urine, Metabolomics 14 (2018)
31.

[163] S. Halouska, R. Powers, Negative impact of noise on the principal component
analysis of NMR data, Journal of Magnetic Resonance 178 (2006) 88-95.

[164] A.-H. Emwas, R. Roy, R.T. McKay, D. Ryan, L. Brennan, L. Tenori, C. Luchinat,
X. Gao, A.C. Zeri, G.A.N. Gowda, D. Raftery, C. Steinbeck, R.M. Salek, D.S. Wishart,
Recommendations and Standardization of Biomarker Quantification Using NMR-

Based Metabolomics with Particular Focus on Urinary Analysis, Journal of proteome
research 15 (2016) 360-373.

[165] ]. Hao, M. Liebeke, W. Astle, M. de Iorio, ].G. Bundy, T.M.D. Ebbels, Bayesian
deconvolution and quantification of metabolites in complex 1D NMR spectra using
BATMAN, Nat Protoc 9 (2014) 1416-1427.

[166] S. Ravanbakhsh, P. Liu, T.C. Bjorndahl, T.C. Bjordahl, R. Mandal, J.R. Grant, M.
Wilson, R. Eisner, I. Sinelnikov, X. Hu, C. Luchinat, R. Greiner, D.S. Wishart,
Accurate, fully-automated NMR spectral profiling for metabolomics, PLOS ONE 10
(2015) e0124219.

[167] D.Jacob, C. Deborde, M. Lefebvre, M. Maucourt, A. Moing, NMRProcFlow: a
graphical and interactive tool dedicated to 1D spectra processing for NMR-based
metabolomics, Metabolomics 13 (2017) 36.

[168] J. Hao, W. Astle, M. de lorio, T.M.D. Ebbels, BATMAN--an R package for the
automated quantification of metabolites from nuclear magnetic resonance spectra
using a Bayesian model, Bioinformatics 28 (2012) 2088-2090.

[169] M.R. Viant, B.G. Lyeth, M.G. Miller, R.F. Berman, An NMR metabolomic
investigation of early metabolic disturbances following traumatic brain injury in a
mammalian model, NMR in biomedicine 18 (2005) 507-516.

[170] L Jollitfe, Principal Component Analysis, in: B.S. Everitt, D.C. Howell (Eds.)
Encyclopedia of Statistics in Behavioral Science, John Wiley & Sons, Ltd, Chichester,
UK, 2005.

[171] J. Bartel, J. Krumsiek, F.J. Theis, Statistical methods for the analysis of high-
throughput metabolomics data, Computational and structural biotechnology journal
4 (2013) €201301009.

102



Bibliography

[172] M. Scholz, S. Gatzek, A. Sterling, O. Fiehn, J. Selbig, Metabolite fingerprinting:
detecting biological features by independent component analysis, Bioinformatics 20
(2004) 2447-2454.

[173] O. Beckonert, M. E. Bollard, T.M. Ebbels, H.C. Keun, H. Antti, E. Holmes, ].C.
Lindon, J.K. Nicholson, NMR-based metabonomic toxicity classification: hierarchical
cluster analysis and k-nearest-neighbour approaches, Analytica chimica acta 490
(2003) 3-15.

[174] X.Li, X. Lu, J. Tian, P. Gao, H. Kong, G. Xu, Application of fuzzy c-means
clustering in data analysis of metabolomics, Analytical chemistry 81 (2009) 4468—
4475.

[175] J.A.Hageman, R.A. van den Berg, J.A. Westerhuis, H.C.J. Hoefsloot, A K. Smilde,
Bagged K-Means Clustering of Metabolome Data, Critical Reviews in Analytical
Chemistry 36 (2006) 211-220.

[176] T. Kohonen, The self-organizing map, Proc. IEEE 78 (1990) 1464-1480.

[177] V.-P. Mékinen, P. Soininen, C. Forsblom, M. Parkkonen, P. Ingman, K. Kaski, P.-
H. Groop, M. Ala-Korpela, 1H NMR metabonomics approach to the disease
continuum of diabetic complications and premature death, Molecular Systems
Biology 4 (2008) 167.

[178] M. Barker, W. Rayens, Partial least squares for discrimination, Journal of
Chemometrics 17 (2003) 166-173.

[179] . Trygg, S. Wold, Orthogonal projections to latent structures (O-PLS), Journal of
Chemometrics 16 (2002) 119-128.

[180] L. Breiman, Random Forests, Machine Learning 45 (2001) 5-32.

[181] C.J. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data
Mining and Knowledge Discovery 2 (1998) 121-167.

[182] M. Bylesjo, M. Rantalainen, O. Cloarec, J.K. Nicholson, E. Holmes, J. Trygg, OPLS
discriminant analysis: combining the strengths of PLS-DA and SIMCA classification,
Journal of Chemometrics 20 (2006) 341-351.

[183] T. Chen, Y. Cao, Y. Zhang, ]. Liu, Y. Bao, C. Wang, W. Jia, A. Zhao, Random
forest in clinical metabolomics for phenotypic discrimination and biomarker

selection, Evidence-based complementary and alternative medicine : eCAM 2013
(2013) 298183.

103



Bibliography

[184] B. Xi, H. Gu, H. Baniasadi, D. Raftery, Statistical analysis and modeling of mass
spectrometry-based metabolomics data, Methods in molecular biology (Clifton, N.J.)
1198 (2014) 333-353.

[185] S. Mahadevan, S.L. Shah, T.]. Marrie, C.M. Slupsky, Analysis of metabolomic
data using support vector machines, Analytical chemistry 80 (2008) 7562-7570.

[186] A.Camargo, F. Azuaje, H. Wang, H. Zheng, Permutation - based statistical tests
for multiple hypotheses, Source code for biology and medicine 3 (2008) 15.

[187] J.M. Bland, D.G. Altman, Multiple significance tests: the Bonferroni method, BM]
310 (1995) 170.

[188] Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing, Journal of the Royal Statistical Society:
Series B (Methodological) 57 (1995) 289-300.

[189] A.C.Dona, M. Kyriakides, F. Scott, E.A. Shephard, D. Varshavi, K. Veselkov, J.R.
Everett, A guide to the identification of metabolites in NMR-based
metabonomics/metabolomics experiments, Computational and structural
biotechnology journal 14 (2016) 135-153.

[190] K. Bingol, L. Bruschweiler-Li, C. Yu, A. Somogyi, F. Zhang, R. Briischweiler,
Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the
rapid identification of new metabolites in complex mixtures, Analytical chemistry 87
(2015) 3864-3870.

[191] A. Le Guennec, . Tea, I. Antheaume, E. Martineau, B. Charrier, M. Pathan, S.
Akoka, P. Giraudeau, Fast determination of absolute metabolite concentrations by

spatially encoded 2D NMR: application to breast cancer cell extracts, Analytical
chemistry 84 (2012) 10831-10837.

[192] H.K. Kim, Y.H. Choi, R. Verpoorte, NMR-based metabolomic analysis of plants,
Nat Protoc 5 (2010) 536-549.

[193] K. Bingol, L. Bruschweiler-Li, D.-W. Li, R. Briischweiler, Customized
metabolomics database for the analysis of NMR 'H-'H TOCSY and 3C-'H HSQC-
TOCSY spectra of complex mixtures, Analytical chemistry 86 (2014) 5494-5501.

[194] ].L. Markley, R. Briischweiler, A.S. Edison, H.R. Eghbalnia, R. Powers, D. Raftery,
D.S. Wishart, The future of NMR-based metabolomics, Current Opinion in
Biotechnology 43 (2017) 34—40.

104



Bibliography

[195] C.Ludwig, M.R. Viant, Two-dimensional J-resolved NMR spectroscopy: review
of a key methodology in the metabolomics toolbox, Phytochemical analysis : PCA 21
(2010) 22-32.

[196] P. Bernini, I. Bertini, C. Luchinat, S. Nepi, E. Saccenti, H. Schéfer, B. Schiitz, M.
Spraul, L. Tenori, Individual human phenotypes in metabolic space and time,
Journal of proteome research 8 (2009) 4264—-4271.

[197] O. Cloarec, M.-E. Dumas, A. Craig, R.H. Barton, J. Trygg, ]. Hudson, C. Blancher,
D. Gauguier, J.C. Lindon, E. Holmes, J. Nicholson, Statistical total correlation
spectroscopy: an exploratory approach for latent biomarker identification from
metabolic 1TH NMR data sets, Analytical chemistry 77 (2005) 1282-1289.

[198] C. Steinbeck, S. Krause, S. Kuhn, NMRShiftDB-constructing a free chemical
information system with open-source components, Journal of chemical information
and computer sciences 43 (2003) 1733-1739.

[199] L.W.Sumner, A. Amberg, D. Barrett, M.H. Beale, R. Beger, C.A. Daykin, T.W.-M.
Fan, O. Fiehn, R. Goodacre, J.L. Griffin, T. Hankemeier, N. Hardy, J. Harnly, R.
Higashi, J. Kopka, A.N. Lane, J.C. Lindon, P. Marriott, A.W. Nicholls, M.D. Reily, J.J.
Thaden, M.R. Viant, Proposed minimum reporting standards for chemical analysis
Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative
(MSI), Metabolomics 3 (2007) 211-221.

[200] C. Martias, N. Baroukh, S. Mavel, H. Blasco, A. Lefevre, L. Roch, F. Montigny, J.
Gatien, L. Schibler, D. Dufour-Rainfray, L. Nadal-Desbarats, P. Emond, Optimization
of Sample Preparation for Metabolomics Exploration of Urine, Feces, Blood and
Saliva in Humans Using Combined NMR and UHPLC-HRMS Platforms, Molecules
(Basel, Switzerland) 26 (2021).

[201] S.D. Bruce, J. Higinbotham, I. Marshall, P.H. Beswick, An analytical derivation of
a popular approximation of the Voigt function for quantification of NMR spectra,
Journal of Magnetic Resonance 142 (2000) 57-63.

[202] I. Marshall, J. Higinbotham, S. Bruce, A. Freise, Use of Voigt lineshape for
quantification of in vivo 1H spectra, Magnetic Resonance in Medicine 37 (1997) 651—
657.

[203] A.W.Brown, K.A. Kaiser, D.B. Allison, Issues with data and analyses: Errors,
underlying themes, and potential solutions, PNAS 115 (2018) 2563-2570.

105



Bibliography

[204] S. Hollmann, A. Kremer, S. Baebler, C. Trefois, K. Gruden, W.R. Rudnicki, W.
Tong, A. Gruca, E. Bongcam-Rudloff, C.T. Evelo, A. Nechyporenko, M. Frohme, D.
Safranek, B. Regierer, D. D'Elia, The need for standardisation in life science research -
an approach to excellence and trust, F1000Research 9 (2020) 1398.

[205] R.R. Downs, Improving Opportunities for New Value of Open Data: Assessing
and Certifying Research Data Repositories, Data Science Journal 20 (2021).

[206] T. Gebregiworgis, R. Powers, Application of NMR metabolomics to search for

human disease biomarkers, Bentham Science Publishers, 2012.

[207] M. Mora-Ortiz, P. Nufiez Ramos, A. Oregioni, S.P. Claus, NMR metabolomics
identifies over 60 biomarkers associated with Type II Diabetes impairment in db/db
mice, Metabolomics 15 (2019) 89.

[208] G.D. Lewis, A. Asnani, R.E. Gerszten, Application of metabolomics to
cardiovascular biomarker and pathway discovery, Journal of the American College
of Cardiology 52 (2008) 117-123.

[209] W. Pathmasiri, K. Kay, S. McRitchie, S. Sumner, Analysis of NMR Metabolomics
Data, Methods in molecular biology (Clifton, N.J.) 2104 (2020) 61-97.

106



This page intentionally left blank

107



List of figures

List of figures

Figure 1: the Omics-cascade as an entity describing the response of a biological system to
genetic and environmental inflUeNCes.............ooviiieiiiiiiiici 3
Figure 2: PUBMED query on the likelihood of occurrence of the keyword ‘Metabolomics’

in combination with frequently used biological matrices in the title of publications in

2022 e et 7
Figure 3: Typical composition of human urine...........cccoevoioiiceiiiicccce e 10
Figure 4: Principles of targeted and untargeted metabolomics...........ccccoooeviviieieiiiiiiinnnnes 11

Figure 5: Depiction of steps required to be performed prior to an NMR experiment to
obtain high quality spectra..........ccccviiiiiiiiiiiii 25
Figure 6: Overview of necessary steps in spectral pre-processing..........c.ccccceevvvuerevrurnnne. 28
Figure 7: typical urine spectrum recorded on a 800 MHz spectrometer, 1: 3-
Aminoisobutyric acid, 2: 4-deoxythreonic acid, 3: lactate, 4: 3-hydroxyisobutyrate, 5:
alanine, 6: citrate, 7: creatinine, 8: trimethylamine-N-oxide, 9: creatine, 10: urea, 11: p-
CrESOI-SUILALE. ..o 33
Figure 8: Schematic overview of strategies for univariate and multivariate statistical
analysis with frequently used examples for each category ..........cccccoeeveveirciinininicccnnnnn. 36

Figure 9: Roadmap for a metabolomics WOrkflow............cccoeveeniiiniiinnniiiccccnes 46

108



This page intentionally left blank

109



