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Abstract 
 

Metabolic diseases are an increasing threat to the western society. Therefore, the 

metabolomics research branch evolves as a key technology. The germ of the idea is the 

qualitative observation of the metabolome, which is defined as the sum of all 

metabolites in a test matrix, relative to each other. Since the metabolome is directly 

linked to the observable phenotype, a direct link between changes in phenotype and 

metabolic signature can be established through the simultaneous study of these two 

variables. The great benefit is that metabolic signatures can be used to predict changes in 

the phenotype even before observable changes occur. This relatively new research field 

aims to gain a better understanding of disease related risk factors and development. A 

fundamental understanding of underlying mechanisms allows the identification of 

disease risks and of potential targets for new therapeutics. Furthermore, the discovery of 

early disease markers and their establishment in screenings allows early treatment, 

which might reduce harmful health outcomes for the population.  

In the field of metabolomics, two subdisciplines have evolved: mass spectrometry-based 

metabolomics and the approach based on nuclear magnetic resonance spectroscopy 

(NMR). This thesis focuses on the latter.  

As of today, there is little consensus in the scientific community regarding best practice 

guidelines and gold-standards for the metabolomics workflow. A classic NMR 

metabolomics workflow consists of sample preparation, data acquisition, data 

processing, statistical analysis and metabolite identification. These steps were 

investigated in this thesis specifically for the case of urine NMR metabolomics. The 

largest gaps were identified in the areas of sample preparation and data processing. 

Subsequently, guidelines and methods to improve the actual workflows were 

developed. 

The first part of the thesis is describing a hydrogen deuterium exchange in creatinine for 

the use of deuterated buffer systems. As creatinine is a commonly used measure for 

normalization to account for urine dilution, especially in medical investigations, 
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inaccurate results may be generated. To facilitate the use of recorded datasets, a 

correction factor was introduced. 

The second part of the thesis focussed on data analysis, specifically the extraction of 

spectral information from 1-dimensional NMR spectra. Frequently used approaches 

were critically investigated and a novel algorithm was developed and introduced, which 

significantly reduces the spectral noise from large datasets. 

In the frame of this work, it was shown that the NMR-based metabolomics approach is 

an effective method for investigating the influence of various factors on the human 

organism. The need for the development of a universal standard procedure for sample 

preparation and analysis was also demonstrated and suggestions were made to optimise 

this. 
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Zusammenfassung 
 

Stoffwechselkrankheiten stellen eine zunehmende Bedrohung für die westliche 

Gesellschaft dar, daher entwickelt sich der Forschungszweig der Metabolomik zu einer 

Schlüsseltechnologie. Grundlage der Idee ist die qualitative Betrachtung des 

Metaboloms, das als Summe aller Metaboliten in einer Testmatrix relativ zueinander 

definiert ist. Da das Metabolom direkt mit dem beobachtbaren Phänotyp assoziiert ist, 

kann durch die gleichzeitige Untersuchung dieser beiden Variablen eine direkte 

Verbindung hergestellt werden. Der innovative Ansatz besteht darin, dass metabolische 

Signaturen zur Vorhersage von Veränderungen des Phänotyps verwendet werden 

können, noch bevor beobachtbare Veränderungen auftreten. Dieser relativ neue 

Forschungszweig zielt auf ein besseres Verständnis der krankheitsbezogenen 

Risikofaktoren und der Krankheitsentwicklung ab. Ein grundlegendes Verständnis der 

den Krankheiten zugrundeliegenden Mechanismen ermöglicht die Identifizierung von 

Risiken und potenziellen Zielen neuer Therapeutika. Darüber hinaus ermöglicht die 

Entdeckung von frühen Krankheitsmarkern und deren Monitoring in 

Vorsorgeuntersuchungen eine frühzeitige Behandlung und Krankheitsprävention.  

Die Metabolomik wird derzeit von zwei analytischen Methoden dominiert, der 

Massenspektrometrie (MS) und der Kernspinresonanzspektroskopie (NMR). Die 

vorliegende Arbeit befasst sich mit letzterer Methodik.  

Bis heute gibt es in der wissenschaftlichen Gemeinschaft wenig Konsens über -

Richtlinien und Gold-Standards für einen NMR basierten Metabolomik-Workflow. Ein 

klassischer NMR-Metabolomik-Ablauf besteht aus Probenvorbereitung, Datenerfassung, 

Datenverarbeitung, statistischer Analyse und Metabolit-Identifizierung. Diese Schritte 

wurden in der vorliegenden Arbeit speziell für den Fall der Urin-NMR-Metabolomik 

untersucht. Die größten Lücken wurden in den Bereichen der Probenvorbereitung und 

der Datenverarbeitung festgestellt. Es wurden Richtlinien und Methoden zur 

Verbesserung der aktuellen Arbeitsabläufe entwickelt. 



Zusammenfassung 

 

 
vi 

 

Der erste Teil der Arbeit beschreibt einen Wasserstoff-Deuterium-Austausch in 

Kreatinin, der bei Verwendung von deuterierten Puffersystemen auftreten kann. Da 

Kreatinin ein häufig verwendeter Parameter für die Normalisierung von Urinproben ist, 

insbesondere bei medizinischen Untersuchungen, können ungenaue Ergebnisse 

entstehen. Um dennoch die Auswertung und Interpretation bereits erstellter Datensätze 

zu ermöglichen, wurde eine Korrekturgleichung eingeführt. 

Der zweite Teil der Arbeit befasst sich mit der Datenanalyse, insbesondere mit der 

Extraktion von spektralen Informationen aus 1-dimensionalen NMR-Spektren. Häufig 

verwendete Ansätze wurden kritisch untersucht und ein innovativer Algorithmus 

wurde entwickelt und vorgestellt, der das spektrale Rauschen in großen Datensätzen 

deutlich reduziert. 

Im Rahmen dieser Arbeit wurde gezeigt, dass der NMR-basierte Metabolomik-Ansatz 

eine effektive Methode ist, um den Einfluss verschiedener Faktoren auf den 

menschlichen Organismus zu untersuchen. Die Notwendigkeit der Entwicklung eines 

allgemein akzeptierten Standardverfahrens für die Probenvorbereitung und -analyse 

wurde ebenfalls aufgezeigt und es wurden Vorschläge zur Optimierung dieses 

Verfahrens gemacht. 
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Chapter 1|  
1. General Introduction & Methods 

1.1 Metabolomics 

The concept that individuals have metabolic profiles was introduced as early 

as the late 1940s and early 1950s by Roger Williams and his group, who 

applied paper chromatographic methods to determine individual metabolic 

excretion patterns of several analytes in urine and saliva [1]. Although these 

results were promising, the lack of analytical methods to determine individual 

metabolite levels at a sufficient level was a huge drawback. The rise of 

advanced technologies in the second half of the 20th century again brought up 

this research area. Horning et al. introduced the term ‘metabolic profile’ in 

1971, where they demonstrated the applicability of gas chromatography 

coupled to mass spectrometry to analyze multiple components in human 

samples. The group suggested the use of those metabolic profiles to determine 

abnormal conditions, analysis of drug metabolism or the effect of drugs on 

metabolic pathways [2].  

The scientific disciplines ‘Metabolomics’ and ‘Metabonomics’ were defined by 

Nicholson and Fiehn around the turn of the millennium [3–5]. Although the 

two terms are often used interchangeably today, the original definitions differ 

significantly. Whereas metabolomics aims to analyze the relative changes in 

metabolite abundance in comparative studies and identify those [5], 

metabonomics, however, is defined as ‘the quantitative measurement of the 

metabolic response to pathophysiological stimuli or genetic modifications’ 

[4,3].  
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The metabolome itself refers to the totality of all small molecules synthesized 

or metabolized by a biological system [6] and therefore is extremely complex. 

The qualitative or quantitative longitudinal observations of the metabolome 

can detect biological changes in the study group at an early stage due to 

perturbations compared to their basal excretion [7]. Furthermore, case-control 

studies can provide information about the development of the disease or 

specific disease markers [8].  

 

1.1.1.1 The role of Metabolomics in Systems Biology 

The well-known systems theory is the underlying theory of systems biology, 

which declares that the behavior of a system is more than the sum of its 

components. Rather than that, the overall behavior of the system is 

significantly influenced by interactions between the parts of the system. The 

aim to describe biological systems in such a holistic manner requires a 

collaborative synergism between several scientific disciplines, such as biology, 

computer science and bioinformatics. It allows the understanding and 

prediction of how biological systems change over time or under varying 

conditions and opens up new possibilities to develop solutions to current 

health and environmental issues [7].  

The scientific branch of systems biology is commonly known as omics, 

including genomics, transcriptomics, proteomics and metabolomics as main 

sub-disciplines [9]. A schematic depiction of the omics cascade is shown in 

Figure 1. 
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Figure 1: The omics cascade as an entity describing the response of a biological system to genetic 

and environmental influences 

Genomics, as the first level of the omics cascade, studies the structure, 

function, evolution and editing of genomes and the complete genetic 

information of an organism. In humans the genome consists of about 3.2 

billion base pairs. It can be understood as an instruction manual for all 

essential parts for a human existence, the building blocks, reproduction, repair 

mechanisms and the functional assembly. Therefore, the first part of the omics 

cascade gives a holistic overview of what could possibly happen in the 

biological system [10–12]. The human genome project paved the way to 

understand the role of genes in the formation of human phenotypes and the 

individual risks for certain conditions [13]. Genomics aims to identify genetic 

variants associated with a certain disease, the effects of a specific treatment or 

prediction of future conditions [14]. Until today, thousands of genetic variants 

have been linked to common diseases [15,16], such as cancer [17] and type II 

diabetes [18]. Genomics is the most established discipline in the omics field 

[19].  

Genetic information encodes proteins and regulatory components that are 

necessary for the entire life span of the system. It is neither necessary nor 
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energy-efficient for the organism to translate all the information into readable 

molecules at any given time. To move another step toward phenotype, it may 

be useful to focus on the fragments of genetic information that are being read 

at a given time.  

The subsequent part of the omics cascade, transcriptomics, aims to study the 

translated ribonucleic acid (RNA) profile within the biological system. This 

RNA profile describes the parts of the genome actively expressed at the 

investigated time point. The transcriptome can be examined either 

qualitatively to determine which transcripts are present, to identify novel 

splice sites or sites for RNA editing, or to quantitatively determine the amount 

of each transcript [19]. The functional RNA molecules consist of protein-coding 

mRNAs and non-coding RNAs, which do not encode proteins but have 

regulatory functions. The advent of new technologies allowed large scale 

transcriptomics studies which revealed that only ~3% of the genome encodes 

proteins, whereas up to 80% is transcribed [20]. Since then, several studies 

showed the essential role of non-coding RNA in physiological processes, such 

as cell differentiation [21,22], neurogenesis [23] and endocrine regulation [24].  

Transcriptomics data describes what appears to be happening in the biological 

system at given time points [25]. This research field has been broadly applied 

across diverse areas of biomedical research, such as diagnosis and profiling 

[26]. Alternative splicing patterns are of great interest in human health and 

disease, as 15-60% of known disease-causing mutations affect splicing [27,28]. 

Alterations in splicing may cause the disease directly or modify the severity of 

the disease or it can also be linked to disease susceptibility [28]. Frequently, 

transcripts contain alternative exons which increase the diversity and enables 

higher complexity encoded in the genome [29].  

Once mature mRNA is generated, the protein-coding snippets are then 

translated into proteins by decoding the amino acid sequence determined by 
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the order of nucleic acids and further posttranslational modifications, such as 

phosphorylation, glycosylation or methylation [30]. These modifications play a 

crucial role in cell signaling, the maintenance of cell structure, enzyme 

regulations and protein turnover [31]. Proteomics aims to analyze and quantify 

the composition of proteins, interaction, and abundance. This part of the omics 

cascade identifies and describes the functional molecules responsible for any 

biochemical process of a system and its response to internal and external 

stimuli [32].  

As depicted in Figure 1, metabolomics is the ultimate stage of the omics 

cascade providing information about the functional readout of a biological 

system. Contrary to genes, mRNAs and proteins, downstream metabolites 

serve as markers for biochemical activity and hence are strongly linked to the 

observable phenotype [33]. Although it is the closest to the phenotype, this 

discipline emerged rather late. Thus, at this stage of research, no single 

instrument best practice guideline exists.  

 

1.1.2 Metabolomics and the Human Urine Metabolome 

Body fluids frequently used in metabolomics-based studies are urine, blood 

serum or plasma, saliva, tissue or stool homogenates, or cerebrospinal fluid 

[34].  

In Figure 2 the frequency of publications containing the keyword 

‘metabolomics’ and the above-mentioned biological sample types in the title is 

shown. Most publications (66 %) focus on blood metabolomics analyzing the 

non-cellular compounds as either serum or plasma.  Serum remains after the 

blood was allowed to clot, whereas in plasma the clotting is prevented by 

adding an anticoagulant such as e.g., heparin. During the process of 

coagulation, platelets release chemical substances into the serum, as for 
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example proinflammatory cytokines or sphingosine-1-phosphate [35–37]. 

Serum and plasma metabolomics have been applied in colorectal cancer 

research [38], diagnosis of hepatocarcinoma [39], lung cancer [40] and renal cell 

carcinoma [41].  

Urine has been a favorable bio fluid in life science and medicine for decades, as 

it is generally sterile and easy to obtain. Although often considered a waste 

product, urine has considerable value in diagnostics. Through the easy 

accessibility, urine has been valued as early as in the ancient Egypt times for 

medical purposes. Hippocrates, one of the most outstanding personalities in 

the history of medicine, supported the technique of uroscopy, in which urine 

samples were examined for color, smell, sediment and particles for diagnostic 

purposes [42]. Since then, the progress in analytical and microbiological 

methods as well as profiling techniques allows urine examination more 

detailed and informative [43].  

Unlike blood samples, urine is more susceptible to diet and diurnal variation, 

but it plays an important role in acquiring metabolite data. In particular, urine 

is the matrix of choice in some patient populations, such as young children 

[44]. Metabolomics studies based on urine as sample matrix account for 18 % 

of publications listed on PubMed published in 2022. 

Tissue metabolomics account for 9 % of those publications. Although the 

analysis of tissue specimen is generally more invasive compared to body 

fluids, the main interest lies in organ specificity. As the origin of the specimen 

is localized close to the main disease progress, tissue metabolomics are 

considered more sensitive and therefore may provide a robust method for 

biomarker discovery. The sample preparation workflow of tissue 

metabolomics can include lyophilization, homogenization and extraction.  

Several different tissue types have been investigated, such as brain, kidney, 

esophagus, skin wound tissue or ovarian tissue [45].  
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Figure 2: PUBMED query on the likelihood of occurrence of the keyword ‘Metabolomics’ in 

combination with frequently used biological matrices in the title of publications in 2022 

Since salivary metabolomics is a very new field of research, this part is 

relatively small compared to the already established biofluids. Nevertheless, 

this area is very promising. The very simple extraction and general availability 

allow the collection of large sample quantities [46]. Saliva metabolic profiles of 

smokers and nonsmokers have been analyzed and smoking related 

perturbation were found [47]. Also the detection of oral cancer via saliva 

metabolomics was performed successfully [48]. 

The human cerebrospinal fluid metabolome has been described in 2008 by 

Wishart et al. Their attempt was to describe a baseline metabolome in healthy 

individuals and identify the best suited analytical technique to analyze the 

matrix. They identified cerebrospinal fluid as information rich and therefore 

valuable biofluid for metabolomics [49]. Nevertheless, cerebrospinal fluid is 

hard to obtain and therefore leaves the researcher with a small number of 

samples. This might explain the small percentage of metabolomics studies 

performed on cerebrospinal fluid until today. 

When diseases affecting the lower digestive tract are to be investigated, stool is 

the matrix of choice in metabolomics approaches. Studies investigating 

perturbations in the stool metabolome have been performed for inflammatory 

bowel disease, Chron’s disease and ulcerative colitis [50]. Although stool 

samples contain a lot of information about the patient and his gut microbiome, 
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stool is a very complex test matrix due to its inhomogeneity and variability 

and is therefore rarely used compared to other samples. 

 

The different types of bio samples provide different biochemical information 

and must be selected according to the specific research question. In the context 

of this thesis the focus is set on urine as sample matrix.  

Contrary to other bio fluids, such as blood, urine has no homeostatic 

mechanism. Due to this, urine composition can be very diverse without 

harming the body and therefore is a valuable source for early biomarker 

discovery [51]. Several diseases remain silent until the late phase, when 

irreversible progression is made [52]. Urine has proven to be a valuable sample 

type to screen for disease specific signatures in an early stage. For example, a 

metabolomics approach has been used to investigate metabolic profiles and 

biomarkers for chronic obstructive pulmonary disease (COPD), which is an 

increasing health concern. McClay et al. found, that an urinary metabolomics 

approach is an effective diagnostic tool and could therefore be used for early 

screening [53].  

Similarly, Matsumura et al. found biomarker for the diagnosis of lung cancer 

with excellent sensitivity and specificity (93% and 94%) [54].  

Additionally, to the possible simplification of diagnosis, such approaches 

enable the identification of metabolic pathways which are involved in disease 

progression. This may present new possibilities in identification of potential 

drug targets in treatment and lead to a better understanding of disease 

development, which is a basis for prevention measures [55].  

In mammals, urine is produced by the kidneys via extraction of soluble wastes 

from the bloodstream. The excretory function consists of glomerular filtration, 

tubular reabsorption und secretion [56]. An average adult generates between 

1.5 and 2 liters of urine per day [57]. Therefore, sampling is relatively easy and 

non-invasive with simultaneous high information gain.   
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Contrary to other omics disciplines where often a near-complete coverage of 

the genomic or proteomic information can be reached, most of the urinary 

metabolites could not have been identified until today [57]. Progress is made 

towards extension of reference databases, such as the human metabolome 

database (HMDB)[58]. Introduced as early as 2007, the HMDB is considered 

the standard reference database for human metabolomics studies nowadays 

and covers more than 110 000 fully annotated metabolites by 2018 [59].  

The human urine metabolome is very complex and diverse, containing amino 

acids, organic acids, nucleosides, and carbohydrates among other classes [57]. 

Also, xenobiotics, such as drugs, pollutants, cosmetics and their metabolites, 

represent a branch of metabolomics research interests [60,61]. The sheer 

diversity of possible structures and metabolites explains the meagre coverage 

of identification. 

In Figure 3 the chemical composition of urine is pictured. The individual 

components can be classified according to their chemical composition, 

respectively chemical superclasses, as applied in the HMDB [57]. As shown in 

the figure, the compounds can also be classified according to their origin and 

potential information. The concentration of urinary creatinine and the urine-to-

plasma ratio of urea for example have been shown to indicate kidney problems 

[62,63]. Jain et al. found out, that microbial metabolites in urine provide a 

functional read-out of the status of the gut microbiome and probands diet. 

Thus, the analysis of microbial metabolites in urinary metabolomics allows a 

linkage between the metabolic phenotype and microbial population [64].  
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Figure 3: Typical composition of human urine 

Environmental pollutants are a major risk to human health, such as the 

harmful polycyclic aromatic hydrocarbons (PAH). PAHs are known to be 

ubiquitous in the environment. It is also known that PAHs have toxic, 

mutagenic, carcinogenic properties. To study their biological effects in human 

populations, those environmental pollutants are of major interest in 

metabolomics studies. The goal of such studies is to link the environmental 

exposure to specific phenotypes and to gain information about potentially 

affected pathways [65]. 

Monitoring xenobiotics and drug-related metabolites allows evidence to be 

gathered on the biochemical pathways that a drug of interest affects in the 

human body. Studies also have shown that the monitoring of metabolites 

related to a specific drug can detect good responders to the treatment. For 

example was the increase of dibasic acids positively correlated with the 
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response to simvastatin, a drug which is used to lower blood cholesterol and 

prevent heart diseases [66,67].  

In summary, urine as a test substance can answer a wide range of possible 

scientific questions. Since urine is widely available and very stable and less 

complex to process compared to blood derivatives, many metabolomics 

studies are performed using this matrix. 

 

1.1.3 Conceptual Approaches of Metabolomics 

Metabolomics approaches can be performed either targeted or untargeted with 

a vital difference in the concept. Untargeted metabolic profiling is executed 

with no a priori selection of metabolites or the knowledge of their identity, 

whereas a targeted method relies on a selection of specific metabolites or 

metabolite classes prior analysis. The principles of both methods are visually 

compared in Figure 4. 

 

Figure 4: Principles of targeted and untargeted metabolomics 

Untargeted metabolomics can be considered as hypothesis generating 

approach with the aim to measure and compare as many signals as possible 

across a sample set to allow a comprehensive analysis. This top-down 

technique is generating complex and large amounts of data which make the 

subsequent analysis a demanding task [68]. Nevertheless, this method enables 
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to approach new scientific questions. Untargeted metabolomics can 

complement clinical research by biomarker discovery [69], disease early onset 

research [70,71] and precision medicine profiling [72–74]. The main difficulty 

besides the extensive computational effort is the bottleneck of metabolite 

identification, which is described in detail in section 1.2.7.  

 

In contrast, targeted metabolomics is a hypothesis driven approach to 

investigate the effects of a treatment, diet, or environment on levels of a priori 

defined metabolites or spectral features. Contrary to untargeted metabolomics, 

where semi-quantification of interesting metabolites is generally the end point, 

targeted metabolomics usually includes an absolute quantification of the 

investigated metabolites. This difference derives from the varied experimental 

setup. If the analyte identity is known, and with that the chemical structure, 

the experimental design can be optimized towards these metabolites [75,76].  

Both approaches can also be designed to be built on one another starting with 

a hypothesis generating global untargeted approach to identify metabolites or 

clusters of interest and subsequently examine this set of substances with a 

targeted technique.  

Commercially available platforms, such as Bruker’s IVDr software systems 

combine both approaches within one measurement. For each sample an 

untargeted profile is generated and subsequently a set of pre-defined 

metabolites is fully quantified [77].  

 

1.1.4 Human Metabolomics Studies 

Animal models have been the first choice to study molecular pathways of 

diseases, as it allowed researchers to investigate organisms under very defined 

conditions and at low costs. The environment, diet and individual factors can 

be highly controlled in animal studies. The strong level of standardization 
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reduces the inter-individual variation drastically and enables better 

identification of potential effects. Especially when the subject of interest is a 

specific tissue or organ, e.g., liver or brain, animal studies are advantageous, as 

the desired sample can be taken and examined after the animal has been 

euthanized. Furthermore, the bureaucratic burden is significantly lower 

compared to human studies. Although animal models are very efficient in 

many cases, they have significant disadvantages. Differences between the 

model species, e.g., rodents, which are frequently used in animal studies, and 

humans are a major disadvantage. The clean laboratory facilities in which 

those animals grow up lead to immature immune systems and vastly different 

microbiomes. These effects reduce the translatability between animal models 

and humans [78–80]. Furthermore, the ethical aspect plays an important role 

and pushes the development of alternative study designs recently.  

Human studies can be divided into two subgroups, which are observational 

studies and intervention studies. Interventional studies are usually performed 

with a small number of participants and indicated when a certain intervention 

can be performed, e.g. a new treatment versus placebo. The gold standard of 

interventional studies is the randomized controlled trial. The biggest benefit of 

intervention studies is that all other variables can be controlled, especially if 

the volunteers are unaware of the treatment they are getting. Intervention 

studies are limited in time, as it is not possible to monitor the study 

participants over a longer period of time. Thus, only short-term outcomes can 

be monitored. Furthermore, for ethical reasons, it is impossible to carry out an 

intervention study for some questions, for example when investigating the 

effects of exposure to environmental toxins. 

Fortunately, the progression in data handing allows processing large amounts 

of data in short periods of time and therefore allowing the analysis of large-

scale data from observational studies. Observational studies can be divided 

into three sub-groups, cohort studies, case-control studies, and cross-sectional 
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studies. Cohort studies, also known as ecological studies, are designed to 

compare clusters of participants. The aim is to find factors which correlate with 

e.g., the risk of disease development. In case-control studies participants are 

selected based on their medical status, i.e., diseased or healthy. An example of 

a case-control study is analyzing the correlation between smoking habit and 

lung cancer.  A major disadvantage of case-control studies is the potential of a 

recall bias [81]. Cross-sectional studies, also referred to as prevalence studies, 

assess data of a population at a specific timepoint [82].  

Contrary to small-scale animal models and human interventional studies the 

conditions of large-scale observational studies are a lot less controllable. Likely 

sources of variance in urine composition in large scale human studies are e.g., 

diet, drug-intake, environmental influences, or exercise [83,84]. To account for 

these variances, food frequency questionnaires or diet diaries are frequently 

applied [85,86]. Nevertheless, these approaches are limited by misreporting 

and recall bias [87]. Large scale cohort studies, such as the single cohorts 

combined in the Consortium of Metabolomics Studies (COMETS) have applied 

questionnaires assessing smoking status, alcohol intake, body mass index, 

waist circumference, leisure-time physical activity and educational levels 

besides diet. Also, clinical measures were collected for some of the cohorts, 

such as blood pressure, fasting glucose or lipoproteins [88]. All these 

complementary measures were recorded to account for sources of variability in 

the subsequent data analysis. Additionally to variable sources of variance 

longitudinal observation of study cohorts faces other disadvantages. 

Exemplary, incomplete or interrupted follow-up samples of individuals are a 

major problem [89]. Furthermore, the researcher needs to be aware of logistical 

issue need, such as a constant cooling pipeline or batch effects.  

In summary, large-scale human metabolomics studies are an excellent 

approach to study environmental effects on the human metabolism, the 
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detection of biomarkers or disease development. Nevertheless, researchers 

need to be aware of limitations and challenges in subsequent data analysis.      
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1.2 Analytical Methods  

The field of metabolomics is dominated by two main analytical methods, 

mass-spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). 

MS is a technique based on the generation of ions by a variety of methods 

obtaining spectral data from the mass-to-charge ratios (m/z) of compounds, 

respectively their fragments, and their relative abundance. Ionization may be 

performed thermally, by application of electric fields or through the impact of 

energetic electrons [90]. To reduce the total numbers of analytes ionized and 

detected at one time point different chromatographic methods are applied, 

such as liquid chromatography (LC) or gas chromatography (GC) [91,92].  

In Table 1 NMR and MS are contrasted for several aspects relevant in 

metabolomics approaches.  Compared to MS, NMR is typically 10 to 100 times 

less sensitive. NMR techniques detect metabolites with concentration > 1 µM, 

whereas typical LC-MS can detect metabolites > 10 to 100 nM [93,94].  

 

Table 1: Comparison of NMR and MS in metabolomics applications, adapted from Emwas et al. 

[93] 

 NMR MS 

Sensitivity Relatively to MS low High 

Reproducibility High Relatively to NMR low 

Matrix effects Low High 

Sample preparation Low High 

Sample recovery 
Nondestructive, therefore 

high 
Destructive, therefore low 

Selectivity Nonselective Selective 

Quantification Inherently quantitative 
Internal standards necessary for 

quantification 

 

Despite the higher sensitivity, MS approaches have remarkable disadvantages 

compared to NMR based methods. MS is known to be less reproducible and 
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matrix effects are a common issue. Matrix effects occur as signal suppression 

or enhancement in the presence of sample matrix components [95].  

Sample preparation is a relevant point when comparing the two methods, as 

metabolomics studies usually require a large number of samples to be 

processed. In addition to the error-proneness of complex preparation 

procedures, a time factor must also be considered. Depending on the specific 

approach, the separation and purification prior to introduction in the mass 

analyzer can be time consuming and complex. NMR spectroscopy usually 

requires no or si mple sample preparation, whereas MS measurements need 

more elaborate processing.  

Since NMR, unlike MS, is a non-destructive method, it is usually possible to 

measure individual samples again after a longer period of time if they are 

stored adequately. This intrinsic property means that faulty measurements can 

be detected and replaced afterwards. 

Furthermore, the selectivity of GC/LC-MS to different classes of analytes 

requires a sophisticated set-up to allow a maximum coverage of metabolites 

[96]. Contrary, NMR is known to be highly quantitative and reproducible. 

Moreover, NMR is not selective to compound classes [97,98]. These properties 

give a solid basis for analysis of a broad range of analytes under different 

conditions and the quantitative nature of NMR produces data suitable for 

multivariate statistical analysis [99]. The selectivity of GC/LC-MS to different 

classes of analytes requires a sophisticated set-up to allow a maximum 

coverage of metabolites [96]. 

Another intrinsic property of NMR spectroscopy is the quantitative nature of 

the measurement. In contrast to MS, NMR measurements do not require 

individual internal standards for specific constituents if the relaxation time is 

sufficient. Due to varying ionization efficiency, a structurally similar internal 

standard, usually a stable isotope labeled standard, is essential for 

quantification in MS [100]. Therefore, a quantification of various compounds in 
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complex biological samples requires a profound knowledge of the matrix to 

establish an appropriate mixture of internal standards [101].  

In summary, it can be said that both methods have fundamental advantages 

and disadvantages. In general, these specific properties make NMR more 

suitable for untargeted questions, while MS is a good tool for targeted 

questions. 

 

1.2.1 Fundamental Principles of Nuclear Magnetic Resonance 

Spectroscopy 

Nuclear magnetic resonance (NMR) is a spectroscopic method based on the 

magnetic properties of nuclei. The phenomenon of nuclear magnetic resonance 

was discovered as early as the 1940s by Purcell and Bloch [102,103]. The 

method relies on the fact, that many nuclei have spins, such as 1H, 13C, 15N or 

19F to name a few. The nuclear spin (𝐼 ) is a form of angular momentum carried 

by atomic nuclei and can be described using quantum numbers. Atoms with 

an even number of protons and neutrons have a spin equivalent to zero, atoms 

with an uneven number have a non-zero spin. Most nuclei relevant in a 

biological context have the spin ½, such as 1H and 13C. The atoms with a spin 

different from zero have a magnetic moment µ, described by  

Eq. 1 

µ =  𝑔 𝐼 

with 𝑔  being the gyromagnetic ratio, the ratio between the magnetic moment 

to the angular momentum, which is specific for each nucleus. The magnetic 

moment forces the nuclei to precess around the external magnetic field 𝐵0 with 

a characteristic frequency, the Larmor frequency.  

Eq. 2 

ω𝐿  =  γ𝐵0 
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For spin ½, only two energy levels exist. In an external magnetic field (𝐵0), the 

rotation axes of nuclei are forced to align parallel (𝛼 state, low energy) or 

antiparallel (𝛽 state, high energy) to the external magnetic field direction (z 

plane) by their magnetic moment. The nuclei in a sample are distributed 

among the different energy levels, where the number 𝑁  in the respective 

energy level can be described by the Boltzmann distribution, 

Eq. 3 

𝑁𝑢𝑝𝑝𝑒𝑟

𝑁𝑙𝑜𝑤𝑒𝑟
=  𝑒−𝛾𝑁𝐻ℎ/𝑘𝑇 

where ℎ is Planck’s constant, 𝐻(𝐵) is the external magnetic field strength, 𝑘 is 

the Boltzmann constant and 𝑇  is temperature. By exposing the nuclei to a 

second oscillating magnetic field in the form of radiofrequency pulses 

corresponding to the Larmor frequency of a nuclei, energy can be transferred 

into the spin system, which changes the state of the system (often by rotation 

of 90° into the horizontal xy plane). After the pulse energy is introduced, the 

system relaxes back into its equilibrium state inducing weak currents in the 

probe coils. This resonance signal, also known as free induction decay (FID), is 

recorded by the spectrometer as a function of time. The FID is a complex 

pattern describing the exponential decay, which is relatively challenging to 

interpret. By performing a Fourier Transformation (FT), the FID is converted 

from the time domain in the frequency domain producing the actual NMR 

spectrum. The magnitude of a resonance is displayed along the frequency axis. 

NMR spectrometers are classified by their magnetic field strength, ranging 

from 7.05 T to 23.49 T. Also, devices with the same nominal magnetic field 

strength vary in their actual values. To determine the spectrometers operating 

parameters, the strength of it is denoted as the frequency of the water protons, 

which is around 300 MHz for 7.05 T magnet and 1 GHz for 23.49 T magnet.  
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This is the so-called frequency of the spectrometer. To enable a comparison 

between samples recorded on different devices, the chemical shift (𝛿) scale is 

used. The scale is expressed as parts per million (ppm), which is independent 

of the spectrometer frequency. 

Eq. 4 

𝛿 =  
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 (𝑀𝐻𝑧) − 𝑓𝑟𝑒𝑢𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 (𝑀𝐻𝑧)

𝑓𝑟𝑒𝑞𝑢𝑛𝑐𝑦 𝑜𝑓 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟
 𝑥 106 

As the chemical shift scale is an arbitrary scale, a reference standard must be 

used. The most common standards are trimethylsilylpropionat (TSP) in 

aqueous solutions and tetramethylsilane (TMS) in organic solvents. The 

reference standard is always denoted as 𝛿 = 0 𝑝𝑝𝑚. The applied frequency 

increases from left to right, thus the left side of the spectrum is the low field, 

and the right side is the high field region. Although in a one-dimensional 

experiment only one sort of nuclei is observed (mostly 1H or 13C in 

metabolomics), the nuclei differ in their resonance frequencies. This is caused 

by the local chemical environment of a nucleus, which influences the exact 

magnetic field experienced by a particular nucleus. The electrons surrounding 

the nucleus are in motion and thus creating their own magnetic fields. These 

fields counteract the magnetic field generated by the high-frequency pulse and 

thus reduce the field to which the core is subjected. Therefore, the electrons are 

shielding the nucleus and the energy between the spin states is decreasing, 

which results in a smaller chemical shift. The different electron densities 

around the observed nuclei make NMR very useful in structure determination 

and the distinction of molecules within a complex matrix [104–106].  
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1.2.2 Sample Preparation for Urine NMR Metabolomics 

To acquire high quality NMR spectra, care needs to be taken in every step of 

the analysis including sampling and sample preparation. Using urine as test 

substance these steps are relatively straight forward. Urinary excretion was 

found to vary throughout the days, exemplary levels of creatinine, mannitol, 

dimethylamine, 1-methylnicotinamide, xylose, acetone, transaconitate and 

phenylalanine are different between samples collected in the morning versus 

afternoon [107,108]. Therefore 24 h urine sampling is preferred. After 

sampling, the urine must be stored at -80 °C to avoid any microbial or chemical 

alterations in the matrix [109–111].  

Since the subsequent analysis is a bottleneck in NMR metabolomics 

approaches, it is of immense importance to generate high-quality spectra. An 

overview of the quality criteria and the sample preparation factors influencing 

them is shown in Table 2.  

In order to propose standard operating procedures (SOPs) for metabolomics, 

Bernini et al. investigated different pre-analytical treatments [112]. To obtain 

high quality spectra, homogenous samples without debris are required. 

Samples can be either centrifuged or filtered to remove debris. Care must be 

taken to ensure that the timing and intensity of centrifugation are identical, as 

deviations from a standard protocol may alter the metabolic profile. Detailed 

information can be found in the publication by Bernini et al. [112]. 

The pH value of human urine can range from 5 to 8, depending on an 

individual’s acid-base status [113–115]. Variation in pH is strongly affecting 

chemical shifts for some metabolites with ionizable groups [116]. Metabolites 

of this group, such as citric acid, hippuric acid, dimethylamine and some 

amino acids are major components in human urine. To ensure high quality 

data for latter analysis, buffer systems (e.g. a K2HPO4/NaH2PO4) need to be 

added to maintain a constant pH. Additionally to pH, the presence of ionic 
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species such as Ca2+ and Mg2+ affect peak shifts [116]. Efforts were made to 

overcome this issue by adding EDTA [117] or KF [118].  

Table 2: Criteria for spectral quality, their influence factors and crucial steps 

Criteria Influence factors Handling 

Linewidth Sample homogeneity Remove debris via centrifugation or filtration [112] 

Peak shift pH and salt content pH buffering [111] 

  

In Table 3 a review of published methods for urine NMR metabolomics is 

shown. It becomes clear that the methods used in this field differ greatly from 

one another and that no established standard procedure is generally used. A 

major advantage of NMR spectroscopy is the reproducibility of the results. 

Table 3: Comparison of sample preparation and measurement methods 
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[119] 
0.2 mM 

NaN3 
9:1 

1.5 M KH2PO4 in 

D2O 
10 % (v/v) 

Autosampler 

at 6°C. 
300K 

[120] 
0.2 mM 

NaN3 
9:1 

1.5 M K2HPO4 in 

H2O 

no 

information 
- 300 K 

[121] 
1 mM 

NaN3 
2:1 0.24 M Na2HPO4 6.66 % (v/v) 

Autosampler, no 

information about 

temperature 

300K 

[122] 
0.57 mM 

NaN3 
2.5:1 

4.5 M KF and PO4 

in 100% D2O 
28.57% (v/v) 

Autosampler at 

4°C 
300 K 

[123] 
0.5 mM  

NaN3 
3:1 

1.5 M PO4 buffer 

in 100% D2O 
25% (v/v) - 298,15 K 
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However, because the sample preparation and in some cases also the 

measurement differ so greatly, individual study results cannot be directly  

compared with each other. As early as 2007, in the initial state of the research 

field, Lauridsen et al. addressed this issue and published recommendations for 

sample preparation and measurement based on a stability study they had 

conducted [111]. While investigating the consequences of freeze-drying and 

reconstitution in deuterium on the metabolic profile, they observed the effect 

of deuteration of creatinine and the associated shift in creatinine resonance at a 

chemical shift of 4.05 ppm. Although this problem is well known, the extent to 

which the proportion of deuterated buffer, temperature, and time elapsed 

between sample preparation and the actual measurement affect the level of the 

creatinine signal has never been investigated. Since creatinine is an important 

parameter in the field of urine metabolomics, this topic was systematically 

investigated in the first part of this dissertation. 

 

1.2.3 1D-Proton-NMR in Metabolomics Approaches  

As metabolomics is fundamentally based on the relative comparison of 

individual spectra to each other, high-quality spectra are a fundamental step in 

the process. To take a high-resolution spectrum, a stable and homogenous 

magnetic field is required. Even the superconducting magnets used in NMR 

spectrometers experience fluctuations in the magnetic field, additional 

fluctuations arise from environmental effects. To keep the magnetic field 

stable, a lock signal is used. A possible drift in the magnetic field is monitored 

by continuously measuring the absorption of the solvents deuterium signal 

and fixing this signal to a predefined frequency [104]. Without drift 

compensation, frequencies at which sample signals appear would be expanded 

resulting in peak broadening. Sodium azide is often added as bacteriostatic 
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preservative to avoid microbial degradation [109]. In Table 3 frequently used 

concentrations are shown.   

In NMR spectroscopy, the chemical shift is the relative distance of a resonance 

line of the sample from the resonance line of an arbitrarily chosen standard to 

which the chemical shift 0 ppm is assigned. The chemical shift, which is 

independent of the magnetic field strength of the spectrometer used, is given 

in ppm. In urine metabolomics commonly trimethylsilylpropionic acid (TSP) is 

used as such standard, other reference standards are sodium 2,2-dimethyl-2-

silapentane-5-sulfonate (DSS) or trimethylsilane (TMS) in organic solvents 

[121,124]. 

 Metabolomics approaches typically aim to detect minor biological changes in 

metabolite composition and concentration so that additional variance should 

be reduced. Therefore, study design, sample storage and preparation are 

crucial steps in a metabolomics study [125]. Nevertheless, challenges remain in 

reproducible analysis and processing of the acquired data.   

Figure 5 shows the schematic sequence of the elementary steps necessary 

before recording an NMR spectrum. After the introduction of the sample into 

the spectrometer, it must be ensured that the temperature of the sample is 

equilibrated. If the sample has not reached the temperature equilibrium when 

the following parameters are determined or the measurement has already 

started, interfering artefacts may occur. Firstly, the magnet needs to be altered 

to compensate for environmental and sample effects. This procedure is called 

shimming. Most instruments are equipped with an automated gradient shim, 

which adjusts the magnetic field in a decent manner, still manual shimming is 

required to eliminate inhomogeneity. This is performed by stepwise 

adjustment of currents in the shim coils and observation of the peak shape 

from the internal reference standard. A sufficient shim is reached, once the line 

width at half of the peak amplitude is below 1 Hz and the overall peak shape is 

symmetric [126,124].   
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Figure 5: Depiction of steps required to be performed prior to an NMR experiment to obtain 

high quality spectra 

In contrast to sample preparation, for which there is no consensus, this exists 

for experimental setup. The commonly used pulse sequence for 1H spectra is 

the 1D nuclear Overhauser enhancement spectroscopy (NOESY) presat [121]. 

As biological samples and especially urine is constituted mainly from water, 

the optimization of water suppression is a key factor in the experimental setup 

to ensure reproducibility among samples [127]. The excessive presence of 1H 

atoms in the sample overwhelm the available dynamic range determined by 

the instrument and therefore this resonance needs to be suppressed [128]. 

Water suppression in NMR metabolomics must be feasible in a reasonable 

amount of time and result in quantitative as well as reproducible data. The 1D-

NOESY sequence offers those features with generally little optimization effort. 

During the relaxation delay, a long low power pulse is applied at the 

frequency of the signal to be suppressed, which will saturate the unwanted 
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resonance and greatly reduce its intensity. Some parameters, such as the offset 

o1, need to be adjusted carefully to reach high quality results. This parameter 

defines the center point of the recorded spectrum [128].   

Another crucial point is the pulse width and the corresponding power. Prior to 

applying a radiofrequency pulse, most nuclear spins are aligned parallel to the 

magnetic field designated as z-axis. The application of such a pulse will rotate 

the bulk magnetization by a specific angle, depending on the intensity of this 

pulse. As resonance is measured in the xy-plane, an angle of 90° is resulting in 

the maximum signal.   

Besides those parameters, several others need to be adjusted by the 

spectroscopist, such as acquisition time, relaxation delay, spectral width and 

necessary transients. Nevertheless, in NMR approaches these key factors play 

an important role in data interpretability. As large sets of samples are analyzed 

and the individual samples may vary in their ionic strength, attention must be 

put in considerations about these parameters The effects of such variations on 

metabolite identification and quantification have been studied and found to 

significantly affect the results. The importance of a well thought-out and 

perfectly adapted parameter set is indisputable [129,130].  

 

1.2.4 Spectral processing, normalization and scaling 

In order to obtain high-quality spectra, there are other points that must be 

considered in addition to sample preparation and the actual measurement. 

These include the steps of spectra processing. Figure 6 shows the individual 

steps schematically.  

In NMR spectroscopy the signals are generated by the non-equilibrium nuclear 

spin magnetization as a function of time, referred to as free induction decay 

(FID). To convert the data from the time dimension to the frequency 

dimension, a fourier transformation (FT) is performed. To eliminate possible 
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artefacts and confounding factors, some operations can be carried out before 

the data is transformed. This enables a high quality of the resulting spectra. 

One possible manipulation is the application of an apodization function. These 

functions are also called window functions and are typically applied to the FID 

to emphasize regions of the FID over another. The FID is multiplied with this 

function, which leads to a reduction of truncation artifacts at the outer ends of 

the signals and enhances spectral quality. A frequently used function is a 

decaying exponential function, which is multiplied with the FID. By using this 

operation, the weighting of the signal at the beginning of the signal recording 

is increased compared to the end. As the signal to noise ratio of the FID 

decreases towards the end of the recording, multiplying by the decaying 

exponential function generates a better signal to noise ratio. This 

transformation is accompanied by a reduction in resolution. A sensible 

compromise between resolution and sensitivity must be found here, which is 

applied to all spectra of the data set to be analyzed and generates an optimal 

spectrum quality.  

Another frequently used manipulation is zero filling. Here, non-informative 

values with amplitude zero are appended to the end of the FID. Since this 

increases the absolute number of data points, it also increases the digital 

resolution [104]. 

After Fourier transformation, the spectrum needs to be phased correctly to 

result in positive peaks. The spectrometer measures the time dependent 

voltage, which is proportional to the magnetization, on two orthogonal axes 

with one of the voltages being notated as ‘real part’ and the other as 

‘imaginary part’. Both signals together are recorded as FID. The phase of this 

function depends on the value at timepoint zero, which should reach a 

maximum for the real part. In case of a phase offset, and with that a non-

maximum value at timepoint zero, this can be corrected afterwards to obtain 
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peaks with full absorption character. Practically, this means that all parts of the 

peak appear above the baseline rather than below [104].  

 

Figure 6: Overview of necessary steps in spectral pre-processing 

 To make spectra comparable, the resonance frequencies are not given as 

absolute values (in Hz), but according to the general conventions always as 

values relative to a common standard. As already mentioned in the previous 

paragraph, TSP is often used in metabolomics as an internal 

reference.  Regardless of the strength of the magnetic field, the frequency of the 

internal reference is simply defined as the zero point and the frequencies of the 

other resonances are given according to how many parts-per-million they are 

away from the reference standard [104].  

The quantitative character of NMR spectra is based on the fact that the peak 

heights or areas are proportional to the concentration. In order to optimally 

determine these peak heights or areas, baselines that are as flat as possible are 

essential.  Baseline outliers are mainly caused by erroneous values in the first 

data points of the FID. The result of these low-frequency modulations is a 

runaway baseline [131]. There are two categories of methods to correct this 

error. The correction can be done directly in the time domain, in other words 
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by reconstructing the FID, or by constructing a baseline in the frequency 

domain. This is then subtracted from the spectrum resulting in a flat baseline 

[132].  

After all these technical deficiencies have been dealt with as optimally as 

possible, there is still a biological component in the case of urine metabolomics 

that should not be underestimated. As already mentioned in some places, the 

theory of metabolomics is based on the identification of differences between 

samples and the visualization of these differences through intensity 

comparisons. A major advantage of urine as a test matrix is the lack of 

homeostatic regulation of the individual components. However, this also 

means that urine can have very different concentrations. Individual drinking 

behavior can lead to urine samples differing up to 15-fold in concentration 

[133–135].  

To reduce this unwanted variance from dilution while preserving the wanted 

variation introduces the need of reliable data normalization and scaling. The 

possibilities of normalization can basically be divided into two categories. On 

the one hand, there are methods that use a metabolite that is excreted as 

constantly as possible as the characteristic value of the dilution factor. In the 

context of urine metabolomics, this mainly includes creatinine [136,137].  

The second category is based on the assumption that the total amount of 

excreted substances is relatively constant. These include the frequently used 

probabilistic quotient normalization [138], total area normalization [139] and 

quantile normalization [140].  

The normalization on stable endogenous metabolites relies on the assumption, 

that under specific circumstances the excretion of the used metabolite is stable. 

Creatinine levels are described to be relatively stable over a period of 24 h in 

healthy individuals [141–143], however factors such as acute infections, injury, 

severe emotional stress or exercise can affect the extraction levels and therefore 

lead to false results if metabolite-creatinine ratios used for analysis [144]. 
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Furthermore, sample storage and preparation may alter urinary creatinine 

levels [108].  

Probabilistic quotient normalization (PQN) is based on the hypothesis, that the 

variations in concentration which are of interest for the scientific questions 

only affect parts of the spectrum, whereas the dilution affects the whole 

spectrum. Therefore, the PQN approach calculates fold-changes between every 

feature of the spectrum and the corresponding feature of a reference spectrum. 

The mean value of all fold-changes is then used as normalization factor for the 

whole spectrum. This normalization method is robust against large changes in 

few metabolites [138].  

Total area normalization computes a factor from the accumulated sum of all 

features in one spectrum. In this method, alterations of highly concentrated 

metabolites may affect the normalization factor and therefore influence the 

latter analysis [139].   

Quantile normalization forces an identical peak intensity distribution through 

the dataset. To normalize the spectra to each other, each vector of features is 

sorted and then the arithmetic mean of the distribution is calculated. Following 

that, the mean of identical quantiles is calculated and assigned to all features 

realizing the corresponding quantile. This approach can be problematic with 

highly variable metabolites, as these may differ strongly between samples 

[139,145].    

  

This incomplete listing and brief discussion of normalization techniques 

reflects the complexity of metabolomics data processing.  

Because of the necessity to detect minimal variations in highly noise-prone 

datasets, it is important to be extremely precise and thoughtful. Each step must 

be carefully considered with respect to the scientific question. It is therefore 

very difficult to establish a standard procedure, which must be considered on a 

case-by-case basis [146].   
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1.2.5 Peak alignment and data reduction 

As abovementioned, proton resonances can be, besides other reasons, affected 

by variations in ionic strength. Despite thoughtful adjustment of experimental 

parameters, these factors may influence the resulting spectra [147]. The major 

effect of these variations is the so-called positional noise, which is a drift of 

resonance positions along the chemical shift axis [148,149]. In order to provide 

a good foundation for the subsequent statistical analyses, a correction of the 

position noise must be carried out. An optimal result is desired, as the often 

subtle differences of the metabolic fingerprint should be detected [150].  

Over the decades several strategies emerged targeting this issue, including but 

not limited to different warping approaches such as dynamic time warping 

(DTW)[151] or correlation optimized warping (COW) [152] and recursive 

segment-wise peak alignment (RSPA)[153]. 

Warping techniques are based on expanding and contracting the x-axis to 

make the spectrum, or its peaks, as similar as possible to a reference spectrum. 

Since both expansion and contraction may be required within the individual 

regions of a spectrum, the spectra are divided into individual segments. These 

are then either stretched or compressed according to the reference spectrum 

[150,148,154].  

The RSPA approach segmentates the spectrum and iteratively reduces 

segment size and shifts peaks within these segments until a sufficient 

correlation to the reference spectrum segment is reached. The alignment 

process is always a balancing act to find the optimum where slightly shifted 

peaks from the same substance are shifted to the same position without mixing 

spatially close peaks from different substances [155,153]. 

After the position noise has been carried out as best as possible, some kind of 

binning approach usually follows.   
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Binning, also known as bucketing, describes the segmentation of a whole 

spectrum into discrete frequency bands, typically with a size between 0.04 and 

0.001 ppm [156,157,149,158]. These buckets are then integrated and the 

numerical values are used for further analysis.   

Depending on the extent of the peak drift, it can happen that not all peaks 

could be shifted directly over each other after an alignment. One tries to 

compensate for this error by binning, since smaller or larger residual shifts are 

eliminated depending on the width of the bin as the values within the bins 

collapse.  

However, depending on the extent of peak drift and the size of the buckets, 

peaks may be either spread across several buckets between samples or too 

many signals are included in one bucket. If too many peaks fall into a bin, the 

total variation may mask biologically relevant variation within that bin [150].  

 This problem is addressed by intelligent binning approaches. Intelligent 

binning tries to set the binning boundaries sensibly, for example at the local 

minima between two adjacent peaks. The aim of this approach is that large 

peaks, and therefore also wider peaks, are not pulled apart and are distributed 

over several bins, and at the same time smaller peaks are not lost in bins that 

are too large [159–161]. 

 Additionally to other spectral manipulations, sub-spectral filtering can 

improve data quality. This filtering technique eliminates non-informative 

regions, e.g. the water signal region or areas, where no signals occur [162]. An 

inclusion of such noisy regions in multivariate analysis has been shown to 

have a negative impact on model performance [163].  

On top of the position noise, the overlapping of the signals also limits the 

interpretability considerably [164]. In Figure 7 a common urine spectrum is 

shown including some peaks annotated. Especially in the region between 

3 and 4 ppm massive signal overlap occurs. Contrary, between signals in the 

area from 0.9 to 2 ppm non-informative baseline is present. 
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To improve the performance of the analysis, it is advisable to exclude these 

non-informative regions from the statistics. To achieve this goal, one can use 

some intrinsic properties of the NMR spectra. A substance is determined in an 

NMR spectrum mainly by two characteristics, these are the chemical shift and 

the splitting pattern. 

If it is known which substance is being searched for, the corresponding 

splitting pattern can be targeted specifically in the regions where the substance 

resonates. The ratios of the individual peak heights and multiplets to each 

other can be used to extract peaks from overlapping regions.  

Among the metabolomics community a variety of methods and tools are 

applied to perform this kind of data reduction. 

 

 

Figure 7: typical urine spectrum recorded on a 800 MHz spectrometer, 1: 3-Aminoisobutyric 

acid, 2: 4-deoxythreonic acid, 3: lactate, 4: 3-hydroxyisobutyrate, 5: alanine, 6: citrate, 7: 

creatinine, 8: trimethylamine-N-oxide, 9: creatine, 10: urea, 11: p-cresol-sulfate 

Several peak fitting algorithms, such as BATMAN [165], BAYESIL [166] or 

NMRProcFlow [167] are freely available and often used within the research 

community. 
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BATMAN is a frequently used tool for quantification of metabolites in complex 

biological matrices by deconvolution and integration of peaks. The applied 

Bayesian model relies on extensive prior information about the metabolites, 

such as the expected chemical shift, multiplicity, J-coupling constants, and 

intensity ratios and fits Lorentzian shaped peaks into the spectra based on this 

information. BATMAN can be downloaded free of charge as R-package 

[168,165].  

BAYESIL offers a similar approach as web tool but includes besides 

deconvolution and integration based on a reference library also most necessary 

preprocessing steps, such as Fourier transformation, phasing, chemical shift 

referencing and baseline correction. Therefore, it offers the user a complete 

data processing tool with little user input[166]. 

The interactive 1D-1H-NMR processing tool NMRProcFlow is also open-source 

software including Fourier transformation, baseline correction, chemical shift 

referencing, several alignment algorithms, options for equidistant bucketing 

and intelligent bucketing and normalization. The tool also provides options for 

quantification using an external metabolite library [167]. 

There is also commercial software from companies that provide not only the 

evaluation algorithms but also corresponding satellite databases. One example 

is the NMR Suite Software Package (Chenomx Inc., Edmonton, Canada) The 

advantage here is that a large amount of data can be accessed without much 

preparation and precise results can be generated quickly. At the expense of 

convenience is the flexibility of the analyses. If a certain metabolite is not in the 

database, it cannot be qualified with the given workflow. 

Another disadvantage is that usually such software solutions cannot be 

applied to existing data sets unless the conditions specified by the company 

regarding sample preparation and measurement parameters are met. 
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Although the mentioned applications provide easy to use applications for 

metabolite quantification, the major drawback is the necessity of external 

metabolite libraries. This key problem precludes the application of those 

reliable quantification tools in untargeted metabolomics. Biomarker discovery 

therefore remains incredibly challenging, as only full spectra analysis (spectra 

without any form of data reduction) or binned spectra are applicable for this 

research question, where spectral noise hampers the subsequent data analysis.  

The aim of this work was to fill this gap and to develop an approach that 

allows untargeted evaluation while keeping noise to a minimum. Untargeted 

approaches are indispensable, especially for diseases whose origins and 

mechanisms have not yet been fully elucidated by research. This branch of 

research enables the detection and early recognition of diseases, as well as the 

discovery of risk factors.   

 

1.2.6 Statistical Tools in NMR Metabolomics 

Methodologies applied in metabolomics approaches are often adapted from 

earlier omics techniques. Dependent of the method of choice, some 

preliminary considerations are required. Several statistical methods assume 

the data to be normally distributed with a constant variance, however, 

metabolomics data often has skewed distributions across samples, resulting in 

heteroscedastic data. Logarithmic transformation is a frequently used method 

to approximate the data to a normal distribution and therefore utilize it for 

subsequent analysis [169].  
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Figure 8: Schematic overview of strategies for univariate and multivariate statistical analysis 

with frequently used examples for each category 

In general, all techniques can be classified into two main groups, the 

multivariate strategies and univariate strategies. A schematic overview can be 

found in Figure 8. 

Univariate strategies, such as analysis of variance (ANOVA) or a t-test, test the 

effects of e.g., a medical treatment on individual metabolites and thus are 

suitable for hypothesis testing. Multivariate strategies, however, aim to utilize 

dependency structures between metabolites and therefore are suitable for 

hypothesis generation [169]. 

Multivariate techniques themselves can be further classified into unsupervised 

and supervised methods. Supervised methods include additional information 

about the expected phenotype groups within the dataset.  

In unsupervised methods no additional information about underlying 

treatment or intervention groups is included. The group separations are 

entirely data driven and therefore less prone to overfitting.  
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One of the most frequently used methods in this group is principal component 

analysis (PCA). PCA reduces dimensions by projecting a large dataset into a 

smaller one which still contains most of the information. The PCA approach 

determines a new coordinate system in a least squares sense, where the new 

dimensions include the most variance within the dataset. The principal 

components are the eigenvectors of the initial covariance matrix, thus they can 

either be calculated by eigenvector decomposition of the covariance matrix or a 

singular value decomposition of the data matrix. Generally, the first few 

principal components contain the necessary information, which are used as a 

starting point for data analysis [170,171]. Individual component analysis (ICA) 

is closely related to PCA aiming to detect independent components in the data 

and has been shown to perform well in metabolomics approaches [172].  

Cluster analysis represents another unsupervised multivariate method with 

the most prominent method being hierarchal cluster analysis (HCA) [155,173].  

Clustering methods aims to identify hierarchical groups in the original dataset 

according to intrinsic similarities of their features, which are visualized as a 

dendrogram. These nested clusters are determined by the chosen similarity 

metric, which is generally any measure of distance such as Euclidian distance, 

for example. Furthermore, a linkage function needs to be set with single 

linkage, complete linkage and average linkage being the most common [131]. 

Other frequently used applications are k-means clustering [174,175] and self-

organizing maps (SOM) [176,177] 

Popular tools in the category of supervised multivariate analysis tools are 

partial least squares discriminant analysis (PLS-DA) [178], orthogonal 

projection to latent structures discriminant analysis (OPLS-DA) [179], random 

forest (RF) [180] and support vector machines (SVM) [181]. 

PLS-DA is a linear classification model with descriptive and predictive 

properties. This approach relates the data matrix to the response variable, such 

as the class affiliation, by weighting the initial features corresponding to their 
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discriminating ability. The resulting model can be either used to determine the 

variables with maximum predictive ability or to predict class affiliations of 

unknown samples [178,171]. 

The extension of PLS-DA, the OPLS-DA method, enhances the discriminating 

ability of the model by splitting the variance within the data into the between-

group variation and an orthogonal part, the within-groups variation. This 

cleavage enables an easier interpretability and thus is widely used in 

metabolomics approaches, where intra-group variation is generally relatively 

strong [182,179].  

Although less frequently used, RF is a useful addition to the analysis toolbox. 

It is a combination of decision trees to reach best outcomes, thus the class 

selected by most trees. A random forest model also enables to determine the 

feature importance via the Gini index. This index measures the degree of 

probability that a particular feature is wrong when it is randomly chosen 

[183,180,184].  

SVM are supervised learning techniques used for classification in 

metabolomics approaches. The SVM algorithm uses the classified dataset to 

detect a hyperplane with the best separation ability between two groups. The 

best separation is reached, when the distance to the nearest group member is 

largest [181,185].  

 

Contrary to the above-mentioned hypothesis generating tools in metabolomics 

analysis, hypothesis testing techniques are of central importance. ANOVA and 

t-test based methods are deployed if the question needs to be answered 

weather profiles in metabolite excretion differ significantly between treatment 

groups [131]. T-tests are generally suitable for two groups, whereas ANOVA is 

the method of choice for larger group assignments. For both techniques sever 

tests can be applied based on the research question and data structure (e.g., 

paired vs. unpaired samples) [171]. It must be noted that the resulting values 
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form these methods need to be corrected for multiple hypothesis testing. 

Frequently used methods are the correction methods of Bonferroni and 

Benjamini and Hochberg [186–188].  

 

1.2.7 Metabolite identification 

At the preliminary end of the untargeted analysis, one or more NMR signals 

were identified that turned out to be interesting parameters in the context of 

the scientific question. Identifying these signals is a major challenge. The 

identification is important because it allows the biological plausibility to be 

tested. It can happen that signals look very promising, but in retrospect it turns 

out that these signals are only caused by technical differences, e.g. the 

sampling time differs between healthy and sick patients. Furthermore, 

knowledge of the metabolite is important for the follow-up. Usually, 

untargeted approaches are used to identify potentially interesting biomarkers, 

which are then tested in subsequent targeted studies. In order to optimally 

adapt these studies to the analyte, for example with respect to sample stability 

and storage, the analyte must be known.  

The procedure is a little simpler if one already has an idea of what the analyte 

might be. This can be based on previous experience and/or characteristic 

signals. In this case, it is simply a matter of gathering enough evidence to 

confirm the identity of the signal. This can be done, for example, by adding a 

pure substance and observing the resulting signal increase in one-dimensional 

spectra, comparing the signals in two-dimensional spectra with those of a pure 

standard or match them with databases. The significance of the options has to 

be assessed individually. To obtain a high level of security, several of the 

above-mentioned options may need to be combined. 

If no potential candidates are known, a complete identification must be carried 

out. This is usually much more complex and time consuming. NMR signals, 
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especially the signals in two-dimensional spectra, already provide some clues 

to the chemical structure of the molecules. In complex mixtures, however, it is 

often impossible to assign the signals of dingle resonances in the two-

dimensional range due to overlap or low concentrations. It is often necessary 

to apply chromatographic techniques to separate the mixture in advance and 

enrich the analytes to obtain sufficient concentrations to generate a signal. It 

can also be advantageous, if strengths from different techniques are used 

synergistically to obtain meaningful results.  The results of NMR spectroscopy 

are usually complemented by orthogonal methods such as MS, infrared and 

ultraviolet spectroscopy [189]. 

This is usually done by considering the respective properties of the methods 

together, for example the multiplicities, the mass of the molecule and the 

fragmentation pattern. Newer approaches aim to combine different methods 

with computer-based methods. Such a hybrid approach combining NMR with 

MS was introduced by Bingol et al. 2015, which is termed SUMMIT MS/NMR. 

This technique omits the purification step; instead, all masses are assigned to 

their possible chemical formulas and NMR spectra are then predicted. The 

extent of the matches then allows conclusions to be made about the identity of 

individual signals [190].  

 

The identification of individual substances from complex mixtures is a 

challenging field of research. The main problems here are the generally low 

concentration and the overlapping of signals. These disadvantages occur both 

in NMR spectroscopy and in the use of mass-based methods. 

2-dimensonal (2D) NMR techniques, together with databases and statistical 

approaches, can aid to address this problem. 2D spectra resolve the resonances 

by extension into a second dimension according to another physical property. 

This solution solves the problem of peak overlap in many cases and offers new 

information about the metabolite of interest. In the following, selected 2D 
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experiments will be described and their usefulness for metabolite identification 

will be explained. 

Correlation spectroscopy (COSY) is often applied to detect through bond 

coupling between coupled nuclei, as it is a very simple and fast 2D NMR 

experiment, which is also easy to interpret [191,192]. The COSY experiment is 

based on the transfer polarization by a mixing pulse between directly J-

coupled spins and thus providing information about the direct environment of 

the resonance proton. 

Total Correlation Spectroscopy (TOCSY) is an extension of the COSY 

experiment creating correlations between all protons in a given spin system, 

not restricted to only germinal and vicinal protons. Heteroatoms, such as 

oxygen, disrupt the TOCSY transfer. The number of observable transfer steps 

can be adjusted by the mixing time [193,194,104].  

Another one and often underrated experiment is the 2D J-resolved 

spectroscopy experiment (Jres). The Jres, as other 2D experiment, simplifies the 

initial spectrum by the distribution into another dimension, but instead of 

couplings to other resonances, the Jres separates the scalar couplings of a 

resonances multiplet into the second dimension. The multiplicity is displayed 

along f1 axis and chemical shift along f2, which allows the assignment of 

resonances in crowded regions to specific multiplet [195]. 

The 1H,13C Heteronuclear Single Quantum Coherence (HSQC) Spectroscopy 

experiment maps the proton resonances and those of the carbon atoms where 

the protons are directly attached to. This approach is an inverse detection 

method where the magnetization from the sensitive proton nucleus is 

transferred to the less sensitive carbon nucleus, which leads to drastically 

reduced acquisition times compared to direct methods such as 1H,13C COSY 

[189].  

Additional to the HSQC experiment, the Heteronuclear Multiple Bond 

Correlation (HMBC) Spectroscopy reveals correlations between heteroatoms 
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separated by two or more bonds. Here the single bond correlation is 

eliminated by application of a low pass filter only allowing smaller J-

couplings. This experiment is extremely useful for assignment of quaternary 

and carbonyl carbons, which cannot be detected by HSQC [196].  

Although this variety of 2D NMR experiments provides complementary 

information about the resonance of interest, for most metabolites a complete 

assignment and identification is not feasible.  

Additional information can be provided in some cases through the application 

of Statistical Total Correlation Spectroscopy (STOCSY) [197]. This 

computational approach enables the simplified assignment of resonances 

deriving from one metabolite through correlations among the signals. A 

pseudo 2D spectrum is created displaying the correlation of intensities over 

the spectrum. This method can be applied to aid metabolite identification 

without often time-consuming experiments, but it can only be applied on a 

large enough dataset, as otherwise the correlations would not be detected 

properly.  

For final identification of a metabolite, the confirmation either via spiking or 

via comparison with reference spectra is needed. If the intrinsic properties of 

the metabolite, such as multiplicity, chemical shift and coupling pattern align 

with spectra of a pure compound, the analyst can confirm the metabolite 

identity. Several open access databases exist, such as the human metabolome 

database (HMDB) [58], the NMRShiftDB [198] or the MetaboMiner database 

[147]. HMDB is the largest database containing authentic NMR spectra for 

biofluid interpretation. As of March 24th 2023, the database has a total of 

253,245 metabolite entries and contains 242,268 NMR spectra (1D and 2D) for a 

total of 12,345 compounds. From these numbers it can be deduced that only 5% 

of the metabolites have also recorded the corresponding NMR spectra. These 

databases are expanding both in quality and quantity of reference spectra, 

nevertheless they only cover all small number of metabolites completely. 
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As described above, the responsibility for the correct labeling of metabolites 

lies with the users. Since there are no universally accepted principles there is a 

lack of quality control.  The research group around Sumner already proposed 

in 2007 to agree on minimal reporting standards within the community [199]. 

They suggested a rather vague classification into 4 groups, which is shown in 

the following table. 

Table 4: The 4 Levels of metabolite identification proposed by the metabolomics standards 

initiative [199] 

Level 1 
Identified 

Compound 

At least two orthogonal data in direct comparison with 

spiking of an authentic reference standard. 

Level 2 

Putatively 

Annotated 

Compound 

No reference standards are used, annotation is based on 

spectral data and/or the similarity to spectra in data 

repositories. 

Level 3 

Putatively 

Characterized 

Compound 

Class 

Based on physicochemical or spectral properties the 

compound can be assigned to a chemical class of 

compounds. 

Level 4 
Unknown 

Compound 

Only spectral data describes the compound, otherwise it 

is unidentified and unclassified. 

 

In this classification scheme, many points remain very vague, for example, no 

statement is made as to what extent the metabolite to be identified must 

correspond to the reference standard. Nevertheless, this categorization must be 

understood as an important basis for establishing generally applicable 

standards within the community. 

Since this categorization is still not very widespread, more effort must be 

invested in general acceptance and usage. 

1.3 Thesis Structure and Objective 

The aim of this work was to investigate the scientific possibilities in the 

research field of NMR metabolomics and to contribute to the current state of 
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the art by carefully complementing the existing methods and techniques. After 

a thorough literature review, sample preparation, data acquisition, data 

processing, statistical analysis and metabolite identification were identified as 

key issues within the workflow (see Figure 9).  Before this work began, the 

current literature, a summary of which can be found in the previous sections, 

was examined and the points on which there has been little or no focus were 

identified. The research revealed that there is certainly room for improvement 

at each of the individual sticking points, but the points of sample preparation 

and data processing have received the least consensus so far. Figure 9 shows 

each of the key points as hurdles that must be overcome in the context of a 

NMR metabolomics research project. The size of the hurdle is symbolic of the 

amount of work that the author believes is necessary in the respective areas to 

achieve a general consensus and standardized conditions within the 

community. 

As two separate key points could have been identified, a research question was 

defined for each point. 

 

First research question  

How does the amount of deuterium and the storage condition of the finished urine 

samples before and during measurement influence the spectrum, how can this effect be 

described and what are the possibilities to avoid this? 

 

In chapter 2 the influence of sample preparation on interpretability of results in 

NMR metabolomics datasets is described on the example of hydrogen-

deuterium exchange in creatinine, one of the major metabolites in human 

urine. The time and concentration dependency were systematically 

investigated. As the metabolomics community was not aware of this effect, 

several public available metabolomics datasets were affected from the 
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transformation of the creatinine resonance. Therefore, a correction equation 

was introduced to allow the post-analysis adjustment. 

 

Second Research Question 

Is there a way to reduce the noise within the spectral data in a way that improves the 

subsequent statistical analysis without losing the untargeted character? 

 

In chapter 3, the performance of established and frequently used data 

processing methods was evaluated and the strong influence of noisy data is 

shown. To improve data quality and simplify the analysis, a peak fitting 

algorithm based on a Voigt lineshape was developed. Contrary to current 

techniques, the introduced algorithm does not rely on a reference database, 

which enables the use for untargeted analysis. The applicability was shown on 

a real dataset and systematically compared with other methods, such as full 

spectra analysis and equidistant binning. It could have been shown, that using 

Voigt fitted data as input layer for unsupervised (PCA) and supervised (OPLS-

DA) analysis improves the descriptive and predictive ability in untargeted 

NMR metabolomics approaches.   

The appendix contains the original publication of chapter 2 and 3 including the 

supplementary information. 

Summarizing, this thesis pointed out the necessity of coherent sample 

preparation, experimental setup, and data processing in the field of NMR 

metabolomics applying different kinds of analytical and statistical approaches 

with the focus on NMR.  
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Figure 9: Roadmap for a metabolomics workflow 
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Chapter 2| 
Guidelines for the Use of Deuterium Oxide 

(D2O) in 1H NMR Metabolomics 

Abstract 

In metabolomics, nuclear magnetic resonance (NMR) spectroscopy allows to 

identify and quantify compounds in biological samples. The sample preparation 

generally requires only few steps; however, an indispensable factor is the 

addition of a locking substance into the biofluid sample, such as deuterium oxide 

(D2O). While creatinine loss in pure D2O is well-described, the effects of different 

D2O concentrations on the signal profile of biological samples are unknown. In 

this work, we investigated the effect of D2O levels in the NMR buffer system in 

urine samples, in dependence on dwell time and temperature exposition. We 

reveal a decrease of the urinary creatinine peak area up to 35% after 24 h of dwell 

time at room temperature (RT) using 25% (v/v) D2O, but only 4% loss using 2.5% 

D2O. 1H, inverse-gated (IG) 13C, DEPT-HSQC NMR, and mass spectrometry (MS) 

experiments confirmed a proton−deuterium (H/D) exchange at the CH2. This 

leads to underestimation of creatinine levels and has an extensive effect when 

creatinine is used for normalization. This work offers a sample stability 

examination, depending on the D2O concentration, dwell time, and temperature 

and enables a method to correct for the successive loss. We propose an equation 

to correct the creatinine loss for samples prepared with various D2O 

concentrations and storage temperatures for dwell times up to 24 h. The 

correction function was validated against an external data set with n = 26 

samples. To ensure sufficient creatinine stability in future studies, we suggest 
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that a maximum of 10% D2O should be used at 4 °C or 2.5% D2O at RT, 

respectively. 

 

This chapter was published as Haslauer, K. E., Hemmler, D., Schmitt-Kopplin, P., & 

Heinzmann, S. S. (2019). Guidelines for the Use of Deuterium Oxide (D2O) in 1H NMR 

Metabolomics. Analytical chemistry, 91(17), 11063-11069. 

Candidate's contributions: K.E. Haslauer designed the research, performed the NMR 

experiments and analyzed the data. K.E. Haslauer prepared the figures, wrote and 

revised the manuscript. 
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Chapter 3| 
Data Processing Optimization in Untargeted 

Metabolomics of Urine Using Voigt Lineshape 

Model Non-Linear Regression Analysis 

Abstract 

Nuclear magnetic resonance (NMR) spectroscopy is well-established to address 

questions in large-scale untargeted metabolomics. Although several approaches in 

data processing and analysis are available, significant issues remain. NMR 

spectroscopy of urine generates information-rich but complex spectra in which 

signals often overlap. Furthermore, slight changes in pH and salt concentrations 

cause peak shifting, which introduces, in combination with baseline irregularities, 

un-informative noise in statistical analysis. Within this work, a straight-forward 

data processing tool addresses these problems by applying a non-linear curve fitting 

model based on Voigt function line shape and integration of the underlying peak 

areas. This method allows a rapid untargeted analysis of urine metabolomics 

datasets without relying on time-consuming 2D-spectra based deconvolution or 

information from spectral libraries. The approach is validated with spiking 

experiments and tested on a human urine 1H dataset compared to conventionally 

used methods and aims to facilitate metabolomics data analysis. 
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This chapter was published as Haslauer, K. E., Schmitt-Kopplin, P., & Heinzmann, S. S. 

(2021). Data Processing Optimization in Untargeted Metabolomics of Urine Using Voigt 

Lineshape Model Non-Linear Regression Analysis. Metabolites, 11(5), 285. 

Candidate's contributions: K.E. Haslauer designed the research, performed the experiments 

and analyzed the data. K.E. Haslauer prepared the figures, wrote and revised the 

manuscript. 
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Chapter 4| 

Concluding Discussion and Outlook 

 

This thesis reports on methodological tropics in the research field of NMR 

metabolomics. Analytical methods and data analysis strategies were developed to 

enable and simplify the comprehensive study of large cohort datasets. The introduced 

approaches were shown to provide solutions for known (chapter 3) and unknown 

(chapter 2) pitfalls in this research field. The progress towards a suitable workflow for 

NMR metabolomics research is of great importance and one of the fundamentals 

towards the understanding of influence factors of the human metabolism.   

 

 First Research Question  

How does the amount of deuterium and the storage condition of the finished urine samples before 

and during measurement influence the spectrum, how can this effect be described and what are 

the possibilities to avoid this? 

Conclusion 

Chapter 2 started during examination of a NMR metabolomics dataset and some 

remeasurements, where a decrease in the CH2 resonance of creatinine (δ = 4.06 ppm) 

was observable over time with a simultaneous rise of a triplet slightly upfield. 

(δ = 4.04 ppm). The research question for this work was the examination and reveal of 

the underlying mechanisms causing this time dependent transformation. The 

assignment of the triplet resonance was performed via different NMR experiments, such 
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as inverse gated (IG) 13C measurement with proton decoupling using a WALTZ-16 

sequence to eliminate a Nuclear Overhauser effect (NOE) and multiplicity edited 1H-13C-

HSQC (DEPT-HSQC). The selection of those experiments was shown to be appropriate 

for the hypothesis testing of a proton-deuterium (H/D) exchange, as an IG-13C 

experiment is able to conflate the shift changes and observable in 1D experiments with 

the multiplicity. Also peaks for a double H/D exchange were observable, which are not 

detected in a 1D- 1H experiment. The characteristic splitting patterns are due to different 

spin systems and proton decoupling. Splitting of resonances is caused by the influence 

of the small magnetic fields produced by the spin of nuclei. The number of splitting is 

determined by the number of neighboring nuclei following the NI+1 rule with N is the 

number of neighboring protons and I is the nuclear spin quantum number. Hydrogen is 

a spin ½ nucleus, whereas deuterium is a spin 1 nucleus resulting in a triplet for a H/D 

exchange on one position and a quintet for a H/D exchange of both protons at the (3,4)-

position of creatinine. This splitting pattern could have been verified with NMR and 

further confirmed with high-resolution electrospray ionization−mass spectrometry (ESI-

MS) as an orthogonal method. The MS spectrum affirmed the hypothesis of a H/D 

exchange in creatinine through the presence of all three mass-to-charge rations (m/z) 

(m/z 114.069 for [C4H7N3O+H]+, 115.076 for [C4H6DN3O+H]+, and 116.081 for 

[C4H5D2N3O+H]+). The extent of exchange was systematically investigated for the 

dependence on time, temperature and D2O concentration and a sampling handing 

guideline was introduced to avoid such conversions. Additionally, a correction equation 

was proposed to recalculate initial creatinine levels based on the CH2 to CHD ratio. The 

equation then was successfully applied to correct deuterium dependent creatinine loss 

in a test dataset.    

Implications of research 

The fact that creatinine is excreted at a relatively constant rate in healthy individuals is 

widely accepted, especially in the medical field. Therefore, when testing parameters 

from urine, creatinine is often used for normalization in order to compensate for the 
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dilution effect of hydration. When such an assumption is considered to be valid, little 

emphasis is placed on continuous testing of the accuracy of this assumption. Because 

there is usually no possibility of using an internal standard in such applications, errors 

in normalization are rarely detected. 

The characterization of creatinine deuteration and the determination of factors 

influencing this transition raises awareness among the NMR metabolomics community 

towards such seldom noticed but frequently occurring issues. It is of immense 

importance that such phenomena, once observed, are investigated and communicated 

within the research community to enable continuous improvement of techniques and 

applications.   

In order to make already measured data sets, in which this error occurred, nonetheless 

usable, the dynamics of deuteration were investigated with respect to the influence 

factors of time, temperature and final concentration, and a correction equation was 

introduced. Here it was very important not to include such parameters as time and 

temperature in the equation, as these are usually not known and therefore not 

applicable. 

The research work presented in chapter 2 contributes both as a practical guide and as a 

reminder for the ongoing improvement of the research field of untargeted 

metabolomics. Various extraordinary reviews have already pointed to the lack of 

consensus regarding sample preparation within the research community [200,111,125]. 

This work clearly expresses the importance of this topic.  
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 Second Research Question  

Is there a way to reduce the noise within the spectral data in a way that improves the subsequent 

statistical analysis without losing the untargeted character? 

Conclusion  

The aim of the work published in chapter 3 was to establish an algorithm to select peaks 

above a user defined signal to noise ratio and approximate the underlying peak area 

sufficiently. Especially data processing and there within peak fitting and deconvolution 

has been neglected for a long time for untargeted approaches. This may mainly be 

caused by the challenging nature of this task, as peak shapes are influenced by many 

aspects. The peak widths differ among the resonances within a spectrum and their 

affinity for peak broadening is also metabolite specific. Peak broadening can be caused 

by chemical exchange, ionic strength or paramagnetic compounds in the sample. 

Theoretically, NMR peaks have a Lorentzian lineshape, but due to the peak broadening 

Gaussian lineshapes occur. The ratio of Lorentzian and Gaussian components can vary 

between exclusively Lorentzian and exclusively Gaussian. The Voigt lineshape is a 

convolution of Lorentzian and Gaussian shapes and was described as appropriate 

approximation for quantification in NMR [201,202]. 

 

It has been shown, that although without a priori knowledge of multiplicity, ratio 

between resonances and expected chemical shift, a peak fitting based on a Voigt line 

shape provides semi-quantitative data within acceptable deviations.  

Using a peak-fitting approach based on a least-squares approximation of the Voigt line 

model, along with aligning the peak integrals to a reference spectrum, can achieve this 

goal. This type of peak alignment reduces the distortion in data analysis caused by noise 

by eliminating the non-informative regions. This is done automatically and thus sets 

identical benchmarks for all peaks. Where previously there was a lot of room for 

interpretation by the analyst, this newly developed algorithm allows general and, above 
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all, comparable standards to be set. The quality parameters provided, such as the sum of 

squares of the residuals, can then be used to assess the quality of the generated data and 

adjust the settings accordingly if necessary. 

Implications of research  

With the introduction of an untargeted peak fitting algorithm, the naturally occurring 

noise in NMR metabolomics datasets can be drastically reduced and therefore 

subsequent statistical analysis can be enhanced. It was shown that the application of 

such a noise reduced dataset for supervised and unsupervised statistical methods 

improves both, the ability of the models to distinguish between groups of the study 

cohort and the predictive ability for assignment of unknown samples. Through the data 

reduction and simplification of data, the operator’s task is simplified as well and allows 

an extended level of comparability and standardization compared to other methods.  

Because the algorithm determines the quality of the individual fit, individual results can 

be better classified and compared.    

It can be observed that many research groups are working on the extension and 

improvement of database driven (semi) quantification tools. This effort is motivated by 

the fact that for further development of NMR-based metabolomics, it is essential to 

generate numerical values that are as precise as possible and reflect the content of the 

respective metabolite.  

Conversely, the major disadvantage is that only metabolites included in the database 

can be screened. Depending on the database used, there is a greater or lesser risk that the 

biologically interesting changes will go undetected if that metabolite is not reported in 

the library. Especially when referring to untargeted metabolomics, which is meant to be 

used to generate hypotheses, it is obvious that these methods are out of question.  

The algorithm presented here closes this gap by providing a solid compromise between 

absolute undirected binning or full spectra analysis and targeted quantification tools.  

A further development could be thought in the combination of the database supported 

methods with the presented algorithm. One possibility would be to weight the resulting 
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numerical data according to confidence levels and thus create stepwise gradations 

between e.g. quantified with reference database, good fit, medium fit and poor fit. In this way, 

a pre-selection of results could take place (e.g. based on p-values and ranked by 

confidence levels). This combination of the originally two different approaches allows 

simultaneous quantitative and targeted evaluation without losing potentially interesting 

parameters. 
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Outlook  

Metabolomics is a relatively new research discipline and although the potential 

information is extremely promising, the community lacks standard operation 

procedures or on agreed best practice advice. On one hand, this exploratory nature 

allows the researchers the academic freedom to design their very own workflows and 

analytical techniques, on the other side this lack of agreement opens the chances for 

pitfalls. As each research group follows their own practice, almost no external revision 

happens, and analytical and technical procedures are not scrutinized.   

At this point, it should be emphasized how important a certain standardization within a 

research area is for the success of this field [203,204].  

A couple of comments and suggestions have already been made about the importance of 

standardization and harmonization of scientific practice. The main issue is that in our 

now highly interconnected world, the expectations for scientific data in terms of 

usability and comparability have increased. This is partly due to the endeavors of the 

Open Data movements, which want to make science more inclusive as well as more 

sustainable [205]. By providing data sets in public repositories, these resources can be 

reused for other purposes and to investigate further research questions. Furthermore, 

this free availability of data also allows the use by scientists from regions where little 

government funding is available for the purchase of often highly expensive analytical 

equipment. To make this possible, harmonization within the community is important, as 

this is the only way to enable meaningful exchange and reuse and pooling of data sets. 

Another reason why standardization is necessary is the potential to detect errors. 

Through a consensus on best practice, every scientist in the field would be able to 

unambiguously interpret the raw data and, if necessary, indicate errors. And even 

though this correction is often unpleasant, it provides the basis for self-critical, self-

correcting, and continuously evolving science. These are the fundamental principles of 

science that need to be preserved and promoted. 
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The present work has contributed to this further development in two ways. Firstly, 

through concrete proposals that enable standardization, and secondly, through the 

publication of such work, an increasing awareness of these concerns is being created. 

Especially in the early phase of a research field, exchange and discourse within the 

research community is a very valuable asset. 

 

Regarding the general outlook of the research direction of NMR metabolomics, it can be 

summarized that the discipline of NMR metabolomics has become popular as it offers 

the possibilities to answer crucial questions of the nowadays scientific community in the 

biomedical and pharmaceutical field. Metabolomics approaches may contribute to the 

discovery of new diagnostic biomarkers for diseases as well as revealing the underlying 

metabolic alterations. This information can help to understand the dynamics and 

evolution of some of the most dramatic and complex diseases of this century, such as 

diabetes and coronary diseases. The fundamental understanding of a disease and the 

underlying mechanisms how external factors influence the human body is crucial for 

early prevention [206–208]. This understanding will also be important for the further 

development of the personalized medicine approach. 

The scope of this technology has already reached the point where industrial health tech 

companies, such as the Nightingale Health Plc (Finland) or lifespin GmbH (Germany), 

are looking to harness this approach to enable more advanced healthcare.  

 

In order to fully exploit the possibilities of metabolomics, especially by means of NMR, 

several steps are still necessary. Overall, the research field is currently in a very 

explorative initial stage, in which the individual steps of the workflow, the possible 

areas of application and evaluation methods are to be generated and discussed. 

In this work, after extensive literature research, the two points identified by the author 

as the most important key points were addressed. Nevertheless, the other parts of the 

workflow must also be carefully examined. Critical points of the workflow, starting at 

the beginning of sample collection, are described in the following.  
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Sampling time, frequency, storage conditions and on-site preparations (e.g. addition of 

bacteriostatic agents) vary strongly between studies and are often not reported in detail 

[125]. A systematic review of the best-practice sampling method, which finds a good 

compromise between maximizing the scientific significance and the feasibility of the 

study, could provide information here and could serve as a gold standard for further 

studies.  

There is a basic agreement on the measurement method as such, as already described in 

the introduction. Nevertheless, it would be useful to introduce a certain quality 

assurance, e.g. the assessment of the mean peak width and other NMR parameter. The 

obligatory reporting of such standard parameter sets allows the comparison of NMR 

data, the estimation of the dispersion range of different parameters in comparison with 

other laboratories and facilitates the repetition of experiments. 

For the subsequent data processing, including baseline correction, phasing and shift 

referencing, guidelines have already been published [162]. To put it in general terms, it 

would be very desirable to agree on a minimum level of reporting of these values. Often, 

these processing steps are not or only partially reported in publications [209]. 

The following step in the metabolomics workflow represents a greater hindrance in the 

sense of harmonization.  

Methods of statistical analysis are difficult to standardize since they must always be 

adapted to the individual case. Nevertheless, a reporting standard would also have to be 

introduced, covering topics such as the handling of missing values, weightings and 

statistical significance. In particular, the well-known problem of p-hacking is an issue 

when analyzing large amounts of data, as is the case with metabolomics approaches. 

Metabolite identification is likely to be the most developed part of metabolomics 

workflows at this point in time, since, as written in the introduction, the foundations 

have already been laid and proposals have been made to standardize reporting 

standards and to meet certain scientific standards.  
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In summary, there is still a lot of work to be done. However, the relatively short 

existence of this research area also provides many opportunities for scientists to shape 

and contribute to forming the standards. In conclusion, this effort will be worthwhile 

since this technique will be another piece of the puzzle in systems biology, and we will 

be able to continue to deepen our understanding of the human organism. Generation of 

a fundamental and constantly expanding knowledge of the human organism, 

pathogenesis and prevention is the great challenge of our time.
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