
Technical University of Munich
TUM School of Engineering and Design

Doctoral Thesis

COMPUTATIONAL KNOWLEDGE GENERATION FOR
COOPERATIVE SET-BASED CONCEPT OPTIMIZATION

Nidhi Nivesh Varma Dommaraju

Technische Universität München
TUM School of Engineering and Design

COMPUTATIONAL KNOWLEDGE GENERATION FOR
COOPERATIVE SET-BASED CONCEPT OPTIMIZATION

Nidhi Nivesh Varma Dommaraju

Vollständiger Abdruck der von der TUM School of Engineering and De-
sign der Technischen Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:

Prof. Dr.-Ing. Kai-Uwe Bletzinger

Prüfer*innen der Dissertation:

1. Prof. Dr.-Ing. habil. Fabian Duddeck

2. Priv.-Doz. Dr.-Ing. habil. Stefan Kollmannsberger

3. Assoc. Prof. Dr. Jun Wu

Die Dissertation wurde am 14.06.2023 bei der Technischen Universität
München eingereicht und durch die TUM School of Engineering and
Design am 06.12.2023 angenommen.

Abstract

Computer-aided engineering has greatly supported the product development cycle through sim-
ulations and computational optimization of products according to design requirements. In the
early stages of the design process, topology optimization methods are widely used to generate
novel structural concepts by optimizing the material layout in a fixed domain for a given ob-
jective, such as structural compliance or crash energy absorption, subject to given constraints
and boundary conditions. Multi-objective optimization methods can further help incorporate
multiple objectives across disciplines and yield a large number of potentially useful solutions,
which challenges the identification of promising concepts for further analysis and development.
While knowledge generation methods such as clustering enable the selection of designs based
on experience, manufacturing cost, or other performance attributes, more sophisticated met-
rics for distinguishing designs are needed for complex engineering applications. Furthermore,
topology optimization requires expensive simulations to find solutions in a high-dimensional
decision space. So, it is economical to identify regions of interest and generate only the pre-
ferred solutions; this approach is used by the so-called interactive methods in multi-objective
optimization. In this thesis, we adapt this approach for multi-objective topology optimization
and develop a novel interactive framework that uses a reference input of solutions to generate
the desired solutions. Existing clustering methods are used to conveniently select desired solu-
tions. Since the topology of structures is important in structural and crash mechanics because
of performance and aesthetics, we also investigate the use of state-of-the-art deep learning
methods such as autoencoders in analyzing complex topologies. For this purpose, we intro-
duce a novel comparison method for metrics of geometry and evaluate them using synthetic
datasets representative of optimized structures. Given a reference set of solutions, identified
for example using clustering methods with a suitable metric, our main objective is to develop
an interactive method to generate designs similar to the reference set using multi-objective
topology optimization algorithms, where state-of-the-art methods specify solution preference
using weights for the objectives. To avoid unnecessary computations, metamodels are used
to predict if a given set of weights will result in the preferred solution. We demonstrate our
cooperative framework using a cantilever multi-load-case problem, a crashworthiness optimiza-
tion problem, and finally a hood optimization problem. Using the proposed method, I could
successfully generate designs that are similar to preferred solutions based on geometry or per-
formance. Such cooperative optimizers with surrogate models can significantly improve the
applicability of multi-objective topology optimization in solving real-world design problems.

Cooperative Set-based Optimization 3

Zusammenfassung

Die computergestützte Entwicklung hat den Prozess der Produktentwicklung durch Simulatio-
nen und rechnerische Optimierung von Produkten erheblich unterstützt. In den Anfangsphasen
des Entwurfsprozesses werden häufig Topologieoptimierungsverfahren eingesetzt, um neuartige
Strukturkonzepte zu entwickeln, indem die Materialauslegung in einem festen Bereich im Hin-
blick auf ein bestimmtes Ziel optimiert wird, z. B. die strukturelle Nachgiebigkeit oder die
Energieabsorption bei einem Crash, vorbehaltlich vorgegebener Beschränkungen und Randbe-
dingungen. Mehrzieloptimierungsmethoden können dazu beitragen, mehrere Ziele über ver-
schiedene Disziplinen hinweg zu berücksichtigen und eine große Anzahl potenziell nützlicher
Lösungen zu erhalten, was die Identifizierung vielversprechender Konzepte für die weitere Un-
tersuchung und Entwicklung erschwert. Obwohl Methoden zur Wissensgenerierung wie das
Clustering die Selektion von Designs auf der Grundlage von Erfahrung, Herstellungskosten
oder anderen Leistungsmerkmalen ermöglichen, sind für komplexe technische Anwendungen
anspruchsvollere Metriken zur Unterscheidung von Designs erforderlich. Außerdem erfordert
die Topologieoptimierung teure Simulationen, um Lösungen in einem hochdimensionalen Lö-
sungsraum zu finden. Daher ist es wirtschaftlicher, Regionen von Interesse zu identifizieren
und nur die bevorzugten Lösungen zu generieren; dieser Ansatz wird von den interaktive Meth-
oden in der Mehrzieloptimierung verwendet. In dieser Arbeit adaptieren wir diesen Ansatz für
die Mehrziel-Topologie-Optimierung und entwickeln ein neuartiges interaktives Framework, das
Referenzlösungen verwendet, um die gewünschten Lösungen zu generieren. Bestehende Clus-
termethoden werden verwendet, um die gewünschten Lösungen bequem auszuwählen. Da die
Topologie von Strukturen in der Struktur- und Crash-Mechanik aus Gründen der Leistung und
der Ästhetik wichtig ist, untersuchen wir auch den Einsatz Deep-Learning-Methoden wie Au-
toencoder bei der Analyse komplexer Topologien. Zu diesem Zweck führen wir eine neuartige
Vergleichsmethode für Geometriemetriken ein und bewerten sie anhand synthetischer Daten-
sätze, die für optimierte Strukturen repräsentativ sind. Unser Hauptziel ist die Entwicklung
einer interaktiven Methode zur Generierung von Entwürfen, die der Referenzmenge ähnlich sind,
unter Verwendung von Algorithmen zur Mehrziel-Topologie-Optimierung, bei denen modernste
Methoden die Lösungspräferenz mithilfe von Gewichten für die Ziele spezifizieren, wobei eine
Referenzmenge von Lösungen gegeben ist, die beispielsweise durch Clustering-Methoden mit
einer geeigneten Metrik identifiziert wurde. Um unnötige Berechnungen zu vermeiden, wer-
den Metamodelle verwendet, um vorherzusagen, ob ein bestimmter Satz von Gewichtungen
zu einer bevorzugten Lösung führen wird. Wir demonstrieren unserem kooperativen Frame-
work anhand eines cantilever Multi-Load-Case-Problems, eines Crash-Problem und schließlich
eines Optimierungsproblems für die Motorhaube. Mit der vorgeschlagenen Methode konnten
wir erfolgreich Designs generieren, die den bevorzugten Lösungen in Bezug auf Geometrie
oder Leistung ähnlich sind. Wir glauben, dass solche kooperativen Optimierungsverfahren mit
Ersatzmodellen die Anwendbarkeit der Mehrziel-Topologie-Optimierung bei der Lösung realer
Designprobleme erheblich verbessern können.

Cooperative Set-based Optimization 4

Acknowledgement

For the past 4 years, I have worked on my doctoral thesis at the Technical University of Munich
(TUM) in the School of Engineering and Design. I am grateful for the funding provided for
my research by Honda Research Institute Europe GmbH (HRI), Germany. I am grateful for
the constant guidance and support provided by my advisors Prof. Dr. Fabian Duddeck from
TUM, Dr. Stefan Menzel, and Dr. Markus Olhofer from HRI. I am deeply grateful to Dr.
Mariusz Bujny who was strongly involved in my day-to-day research activities when he was
working at HRI. Special thanks to my mentor Dr. Michael Gienger at HRI for his guidance
and support.

I wish to express my sincere thanks to Prof. Dr.-Ing. Fabian Duddeck for securing funding for
my research. As my advisor, he constantly helped me understand the research methodology
and guided me with his experience. I would like to thank Mariusz Bujny, who was my supervisor
at HRI. Thanks to the regular meetings with Prof. Duddeck and Mariusz, I could make steady
progress in my research. I developed the data and software used in this project with help from
Mariusz. I am thankful to Markus Olhofer for his extremely helpful insights and for supervising
my research in the past year. I would like to also thank Stefan Menzel who always found the
time to give feedback about my research and publications. Finally, I once again express my
gratitude to all my advisors for their research insights, time, support, and patience.

I am happy to have collaborated with Ernest Hutapea, Yasuyuki Shimizu, and Yuanze Wu
for their master’s thesis at TUM. Thanks to them I could explore new research ideas and
questions.

I would like to thank my good friends and colleagues from the TUM and HRI. During the Covid
pandemic when everyone was working from home, we would regularly meet online to discuss
research and our daily activities. I will fondly remember my regular discussions with Tobias
Lehrer, Sheikh Hoque, Felix Lanfermann, and Sneha Saha. Thank you, Arne Kaps, Norbert
Ludwig, and Catherina Czech for your warm welcome and support throughout my Ph.D.

I am joyful about the time I could spend with my friends and family. It had always been
relaxing and rejuvenating to visit my brother and parents back home. I am truly thankful to
my friends and family for their help and support.

Cooperative Set-based Optimization 5

Contents

Abstract .. 3

Zusammenfassung ... 4

Acknowledgement ... 5
Acronyms .. 8
Symbols .. 11

I Introduction 15
1 Motivation .. 16
2 Aims and Objectives ... 21
3 Design Optimization ... 22

3.1 Topology Optimization .. 23
3.2 Multi-objective Topology Optimization ... 26
3.3 TO Datasets .. 28

II Methodology 33
4 Knowledge Generation... 34

4.1 Data Mining .. 34
4.2 Clustering .. 36
4.3 Geometric Clustering ... 40
4.4 Deformation Clustering .. 44

5 Metric Comparison Method for Geometric Feature Vectors 48
5.1 Geometric Data for Metrics Evaluation ... 49
5.2 Reference Metrics ... 51
5.3 Dimensionality Reduction ... 52
5.4 Methods for Evaluating Metrics ... 53

6 Cooperative Topology Optimization... 58
6.1 Interactive Set-based Multi-objective Optimization.. 59
6.2 Evaluation Methods .. 65

III Results 69
7 Evaluation of Geometric Features using Test Datasets .. 70

7.1 Dataset Generation ... 70
7.2 Evaluation on Design Datasets .. 76
7.3 TO Results .. 85
7.4 Discussion ... 87

Cooperative Set-based Optimization 6

8 Cooperative Topology Optimization... 90
8.1 Simple Example: BNH Problem... 91
8.2 Topology Optimization using iSMO.. 95
8.3 Discussion ... 100

9 Engineering Example: Hood Optimization... 102
9.1 Problem Description .. 102
9.2 Performance Clustering .. 104
9.3 Geometric Clustering ... 106
9.4 Discussion ... 108

10 Conclusion .. 109

Cooperative Set-based Optimization 7

Acronyms

AMI Adjusted mutual information score

BESO Bi-directional evolutionary structural optimization

CAE Computer-aided engineering

CD Chamfer distance

CDO Cooperative design optimization

CV Cross-validation

DBSCAN Density-based spatial clustering of applications with noise

DE Differential evolution

DM Decision-maker

DR Dimensionality reduction

DTW Dynamic time warping

EA Evolutionary algorithm

ED Euclidean distance

EMD Earth mover distance

FE Finite element

GA Genetic algorithm

GD Generational distance

GMM Gaussian mixture models

GPR Gaussian process regressor

HCA Hybrid cellular automata

HV Hyper volume

Cooperative Set-based Optimization 8

IR Inclusion ratio

iSMO Interactive framework for set-based multi-objective optimization

KNN Prediction model: 𝑘-nearest neighbors

MMA Method of moving asymptotes

MMC Moving morphable component

MOEA Multi-objective evolutionary algorithm

MOP Multi-objective optimization problem

MSE Mean square error

MTO Multi-objective topology optimization

NMF Non-negative matrix factorization

NVH Noise, vibration, and harshness

OC Optimality criteria

OPTICS Ordering points to identify the clustering structure

PCA Principal component analysis

PCAE Pointcloud autoencoder

PF Pareto front

RC Rejection criterion

RM Reference metric

RR Rejection ratio

SEW-HCA Scaled energy weighting - hybrid cellular automata

SIMP Solid isotropic material with penalization

SOM Self-organizing map

Cooperative Set-based Optimization 9

t-SNE Manifold learning method: t-distributed stochastic neighbor em-
bedding

TM Target metric

TO Topology optimization

UMAP Uniform manifold approximation and projection

w-MTO Weighted-sum method for MTO

Cooperative Set-based Optimization 10

Symbols

p Input hyperparameters of TO

F Pareto front

𝐸 Young’s modulus

𝐸tan Hardening modulus

𝜈 Poisson’s ratio

𝜎𝑌 Yield strength

Ω Solution space

𝑁𝑓 Number of objectives

𝑠𝑚 Scaling factor of an objective

Φ Level-set function

𝑟min Minimum filter radius

𝜈𝑓 Volume fraction

𝑝′ Penalization parameter

𝐾𝑝 Parameter for the proportional controller

𝑆 Field variable

𝑆𝑒 Field value of an element

𝑆𝐸 Average field value of neighboring elements

𝑆* Target set-point for field variable

𝑃0 Material property without penalization

𝑃 Material property after penalization

𝑉0 Volume of the design space

Cooperative Set-based Optimization 11

𝑣𝑒 Volume of an element

�̃�𝑗 An inequality constraint

�̃�𝑖 An equality constraint

𝑢𝑢𝑢 State vector of the structure

𝜌𝑒 Element density value

𝜌𝜌𝜌 Density vector

𝑁𝑒 Number of elements

f Vector of objective functions

𝑓𝑖 An objective function

w Set of weights for the objectives

𝑤𝑖 Weight for an objective

𝑈 Uniform distribution

𝑝 Cluster label

𝐶𝑝 Cluster with a label 𝑝

𝐽𝑝 Feature variance of a cluster

𝜇𝜇𝜇𝑝 Mean of samples in a cluster

𝑠 Silhouette score

𝑠 Average silhouette score of the clusters

𝐷 Distance measure (metric)

𝐷M Distance value measured using a metric M

g Geometric feature-vector

𝑝𝑘 Principal component score

G A collection of geometries

Cooperative Set-based Optimization 12

𝐺𝑚 A geometry

𝜃 Geometric property

𝜌𝑝 Pearson correlation

𝜌𝑠 Spearman correlation

𝑔𝑖 Ground-truth label

S Preferred/reference set of solutions

S′ Non-preferred solutions

P Preferred region

𝑑 Number of features

d Optimal design

𝐶(w) Constraint function of iSMO

𝐶S Class of preferred solutions

𝐶S′ Class of non-preferred solutions

𝑃f Regressor model for objective values

𝑃𝑝 Regressor model for cluster labels

Δ Spacing metric

𝑠sil Average silhouette score

𝑠div Diversity score

E Euler angles

L Principal axes

C Center of mass

𝑞 Form factor of MMC

W Set of weight-vectors

Cooperative Set-based Optimization 13

F Set of objective-vectors

𝑠𝐶𝑉 Cross-validation score

𝐵 Boundary patch

Cooperative Set-based Optimization 14

Part I

Introduction

Cooperative Set-based Optimization 15

1. Motivation

Computer-aided engineering (CAE) has greatly supported the product development process
through the creation, analysis, and optimization of designs. Recent advances in simulation tools
and high-performance computing enable numerical optimization techniques to automatically
generate a large set of concepts satisfying design requirements. Engineers can iteratively
analyze the resultant designs and use computer-aided optimization methods to develop better
products. Topology optimization (TO) methods, e.g., [1–6], are widely used to generate novel
structural concepts; they optimize material layout—subject in general to a volume constraint
in a given design space—for an objective such as structural stiffness or crash absorption under
specific loads and supports. TO methods are more flexible than shape or size optimization
methods [7] since the design can occupy any shape and have any topological structure within
the design space. Despite its origins in structural mechanics, TO has found applications in
a wide range of physical disciplines such as fluid mechanics [8], electromagnetics [9], and
acoustics [10]; it is widely used in the aerospace and automotive industry, civil engineering,
materials science, and biomechanics.

Design optimization methods such as TO can generate numerous designs using one or more
of the following approaches:

1. Parameter sampling. Novel designs can be generated by varying the material prop-
erties, boundary conditions, and hyperparameters used by the optimization algorithm
(e.g., [11]). Figure 1 shows exemplary designs that are generated using TO with
different values for a hyperparameter called volume fraction.

2. Multimodal optimization. Highly complex and nonlinear objectives are normally mul-
timodal, i.e., they have several local optima. Since not all the constraints are known
in the early development phase, having a set of local optima is useful, in case some of
them violate unknown constraints in the future. Such designs can be identified using
evolutionary algorithms (EAs) [12] or by restarting gradient-based optimization algo-
rithms, such as TO, from different initial configurations [13], converging to a different
optimum in each of the runs.

3. Multi-objective optimization. In practice, designs may need to be optimized for multi-
ple objectives, e.g., energy absorption under crash loads, and structural stiffness under
smaller static loads. Multi-objective TO [14] with conflicting objectives yields a set
of Pareto-optimal designs, where choosing a design with better performance for one
objective results in performance deterioration of at least one other objective.

Using these methods, a large number of potentially useful solutions can be generated, which
makes it challenging for an engineer to find interesting solutions. Knowledge generation meth-

Cooperative Set-based Optimization 16

(a) 𝜈𝑓 = 0.3 (b) 𝜈𝑓 = 0.5 (c) 𝜈𝑓 = 0.7

Figure 1 TO can be used to generate multiple optimized structures by varying the allowed
volume fraction 𝜈𝑓 of material in the design space. We minimize the compliance of an MBB
beam, given a 2D rectangular design space of 100 × 60 elements with the fixed left boundary
and a static load of 1 unit, using the 88 line code developed by Andreassen et al. [15]. Some
of the hyperparameters used are: filter radius is 2.5, penalization factor is 3, and sensitivity
filtering (ft = 1). The remaining hyperparameters and the material properties are as described
in the reference paper/code.

ods such as statistical analysis [16], visualization tools [17], and clustering [18] can assist
engineers in exploring the design dataset and result in concept identification, i.e., selection
of promising concepts for further analysis and development among the given set of solutions.
Despite the availability of such methods, engineers still need to formulate the criteria for selec-
tion based on the application. Furthermore, TO methods need to incorporate user preference
to explore regions of interest in the solution space.

In practice, TO methods may need to yield designs similar to a reference design chosen because
of economical or manufacturing limitations. Yousaf et al. [19] use similarity constraints to
adapt TO methods such as SIMP (solid isotropic material with penalization) and HCA (hybrid
cellular automata) for generating solutions similar to a reference solution. Zhang et al. [20]
use neural style transfer to embed artistic flavor into designs by adapting the SIMP method.
However, it is still challenging to identify a single reference solution or style. Furthermore,
these methods cannot directly handle multi-objective TO methods.

Multi-objective TO typically needs expensive simulations to find solutions in a high-dimensional
solution space. In multi-objective optimization, so-called interactive methods [21] generate
only the preferred solutions given reference solutions or directions, which is more economical
since solutions are found only in the region of interest. In this thesis, we generalize this
notion to multi-objective topology optimization (MTO) and refer to it as cooperative design
optimization (CDO), as outlined in Figure 2. As part of this, we propose a cooperative
framework, which emphasizes the cooperation between users and a computer, where users
select preferred solutions with help from the framework, which then predicts inputs required
by TO to generate more solutions similar to the preferred set.

As mentioned previously, design exploration is a challenging task and is critical in the concept
identification task. The preferred designs can be selected based on experience, manufacturing
cost, or other performance attributes. For instance, the dream lens tool [11] is an interactive

Cooperative Set-based Optimization 17

Figure 2 Cooperative design optimization: Generate a set of solutions using a design
optimization method. Analyze solutions using knowledge generation methods and identify
preferred concepts based on user criteria. Based on the preferred designs, the cooperative
framework predicts the inputs required by the optimization method to yield a new set of
preferred solutions.

framework that guides a designer to a set of interesting designs using, for example, range
constraints on a performance attribute. By contrast, clustering is an unsupervised machine
learning method that can be used for exploring designs; it partitions the designs into groups of
designs, where each group contains similar designs according to a metric [22]. For example,
airplanes can be grouped into shapes that have similar performance features (say, lift and drag
values), if the Euclidean distance in the feature space is used as the metric for clustering. Hagg
et al. [23] recommend the use of representative solutions from each cluster for presenting the
user with diverse solutions. So, given a set of optimized designs, we can identify structures with
distinct properties, provided a metric is available to measure differences between designs. While
simple metrics such as Euclidean distance in objective space can be used, more sophisticated
metrics are needed for complex engineering applications. In this work, our first aim is to develop
metrics for distinguishing geometrical structure and deformation behavior of TO results; these
design properties are of critical importance in the field of structural mechanics. Furthermore,
such metrics along with clustering are very useful in selecting solutions, which are used to
demonstrate our cooperative framework later in this thesis.

Multi-objective evolutionary algorithms (MOEAs) such as NSGA-II [24] are successful in identi-
fying diverse Pareto-optimal solutions. Furthermore, interactive methods exist in MOEAs that
can generate only the preferred solutions, given reference solutions or directions [21, 25]. Since
the search space in TO problems is in general high-dimensional, it is difficult or not feasible
to use MOEAs. Feature mapping methods can reduce the dimensionality of the problem so
that TO methods such as the evolutionary level set method [3, 26] can be used. However,
MOEAs require a large number of objective function evaluations, and using them for MTO can
be prohibitively expensive. It is more economical to use weighted-sum approaches for MTO
such as scaled energy weighting - hybrid cellular automata (SEW-HCA) [27], where the users
specify their preferences with a set of weights associated with the objectives. In particular,
SEW-HCA is useful for optimizing crash performance, where analytical gradient information is
not available. So, the second and final aim of this thesis is to develop a cooperative framework
for such methods. Since TO is computationally expensive, we research the use of metamodels
that can predict when a given parameter will lead to a desired solution. Chapter 2 summarizes

Cooperative Set-based Optimization 18

the aims and objectives of this research.

While there are different approaches for TO (Chapter 3), each method can be understood as
an operator with input hyperparameters p = {𝑝1, 𝑝2, ..., 𝑝𝑛p}. By varying the values of p,
a set of feasible solutions can be generated. For example, in SEW-HCA [27], one may vary
the weights (p := w) for different objectives to yield multiple non-dominated solutions. Using
knowledge generation methods such as clustering, the user can find preferred solutions in the
dataset (Chapter 4), which can be used as input to the cooperative framework. Here, we use
clustering to conveniently identify preferred solutions using the following approach: (i) cluster
designs into distinct groups, and (ii) choose one or more clusters as the preferred set. Our
objective is then to find the new input p that will result in more of the desired solutions.

Concept identification: A critical component in CDO is the reference set of solutions used
to generate the new iteration of solutions. Given a criterion for selecting solutions, clustering is
an effective data mining tool that can help identify diverse solutions without supervision [23].
Clustering requires a suitable metric that measures the degree of similarity between designs
based on the user-defined criterion. In multi-objective optimization, the difference between
the objective values is a commonly used criterion to select designs [17]. In practice, engineers
may need more sophisticated metrics based on the application. In MTO, differences in the
topology of structures might be critical because of aesthetics or engineering performance; the
latter being very important in the field of structural mechanics [28, 29]. While state-of-the-
art deep learning methods exist for distinguishing 3D shapes such as pointcloud autoencoder
(PCAE) [30, 31], it is not clear if they can be used with TO results, which tend to have very
complex topologies. Here, we evaluate the utility of PCAE in clustering designs based on the
3D geometrical structure using the methods and data described in Chapter 5. PCAE is found
to be extremely useful in object classification of TO results, as shown in Chapter 7.

Cooperative optimization: Interactive MOEAs can be efficiently used to generate only
the desired solutions in a high-dimensional solutions space by formulating user preference
through reference directions or solutions [21]. Since MOEAs are very expensive to use as an
MTO, we focus on weighted-sum approaches such as SEW-HCA, where the user preference as
weights for the objectives is needed but is unknown in practice. It is easier for an engineer to
select solutions—e.g., using clustering—instead of specifying the exact inputs needed by the
MTO method to generate the new solutions. So, we develop a novel and general interactive
framework for set-based multi-objective optimization (iSMO) that can predict the required
inputs, given a set of reference solutions (Chapter 6). MOEAs such as NSGA-II are very
effective in generating diverse solutions in the Pareto front while also addressing the user
constraints [24]. Following the framework of NSGA-II, we use a genetic algorithm (GA) with
the input p of MTO as the decision variable and evolve the populations of solutions into the
preferred region in the Pareto front, while using crowding distance [24] for diversity in the

Cooperative Set-based Optimization 19

objective space. The diversity measure ensures that the solutions are well-distributed in the
objective space. To avoid too many expensive simulations, we propose the use of machine
learning models for the following tasks in iSMO: (i) A classifier model that can decide if a
given input p will result in the preferred solution; (ii) A regression model to predict from an
input p the objective values, which are required by the crowding distance operator to ensure
diversity.

In this work, we demonstrate our iSMO approach with SEW-HCA as the MTO method. In
Chapter 8, we use two optimization problems, a static compliance problem with a cantilever
plate and a crashworthiness optimization problem with a simply supported beam, to generate
initial solutions. Clustering methods are conveniently used to find desired solutions based
on objective values or the geometrical structure. iSMO is then successfully used to generate
more of the desired solutions. In Chapter 9, we choose a more complex engineering problem
of optimizing a hood model for crashworthiness. Once again, iSMO is used to generate the
preferred solutions, which are then evaluated using measures of diversity and similarity to the
reference solutions.

In the following, we summarize the aims and objectives of this thesis in Chapter 2 followed by
Chapter 3 on various design optimization methods such as SEW-HCA. Chapter 4 discusses the
challenge of design exploration using methods such as clustering that can be used to select
preferred solutions. Furthermore, we research the use of autoencoders in identifying distinct
structures in TO results as well as develop novel metrics of geometry and deformation behavior,
which are critical properties for analyzing structural and crash mechanics. Chapter 5 introduces
a new approach for evaluating different metrics of geometry while considering the topological
complexity of TO results. Chapter 6 introduces the proposed cooperative method for MTO,
which uses an evolutionary algorithm (EA) for evolving solutions while avoiding expensive
simulations using machine learning models. We demonstrate our cooperative framework using
different TO problems in Chapters 8 and 9. Finally, we have the discussion and conclusion in
Chapter 10.

Cooperative Set-based Optimization 20

2. Aims and Objectives

The following are the aims and corresponding objectives of this work. As mentioned previously,
design selection is a challenging task. So, the first aim is related to analyzing and identification
of preferred designs among a set of given solutions. Given the preferred designs, the second
aim is to develop a cooperative method that yields a new set of hyperparameters needed by
TO for generating more of the preferred solutions. This integrated approach helps to efficiently
generate only the desired designs, and hence avoid expensive simulations for cases where they
provide no relevant new information.

1. Aim: Develop a method to analyze TO results and support the identification of a set
of preferred solutions.

Objectives:

• Investigate the use of clustering, an unsupervised machine learning method,
for design selection.

• Develop and evaluate methods to cluster designs based on their geometrical
structure, which is a critical attribute of the TO results.

• Develop other novel metrics for distinguishing designs such that they can be
used with clustering for design selection.

2. Aim: Given a set of preferred designs, develop a cooperative method to generate more
of such designs.

Objectives:

• Develop the cooperative method to use multi-objective TO methods that are
based on the weighted-sum approach. This class of TO methods can poten-
tially generate a large set of distinct structures and are indispensable in the
multi-disciplinary design process.

• Incorporate metamodels in the cooperative method such that expensive sim-
ulations are avoided while predicting the new set of hyperparameters.

• Investigate the use of a cooperative method to find solutions similar to a
preferred set based on objectives and geometrical structure.

Cooperative Set-based Optimization 21

3. Design Optimization

In computer-aided design, engineers iteratively improve solutions based on certain desirable
properties while also satisfying multi-disciplinary requirements. For example, lightweight vehi-
cles result in the reduction of required material, manufacturing costs, and fuel consumption.
However, vehicles should also fulfill regulatory requirements for crashworthiness as well as the
customer requirements for noise, vibration, and harshness (NVH) characteristics [7].

The design optimization process using physical prototypes and experiments is very expensive
and hence restricts the available solution space for exploration. By contrast, computational de-
sign optimization using virtual models and simulations allows engineers to easily find potential
solutions, analyze their properties using simulations, and obtain suggestions for improvement.
Furthermore, we can generate novel solutions that meet multi-disciplinary requirements.

In design optimization, engineers first define parameters that can be varied to modify the
structure of a design. In size or shape optimization, parameters controlling the size or shape
of different components of the design are identified [32–35]. Given an objective, optimal
parameters are derived using optimization algorithms such as the gradient-descent method
[36] or evolutionary algorithms [37]. By contrast to size and shape optimization methods, TO
methods parametrize a fixed design domain using a set of material distribution functions to
determine the optimal size, shape, and topology of the design [1]. TO typically needs to find
solutions in high-dimensional decision space and needs efficient optimization algorithms such
as solid isotropic material with penalization (SIMP) [1], bi-directional evolutionary structural
optimization (BESO) [38], hybrid cellular automata (HCA) [39], and level-set methods [40,
41]. Level-set methods optimize the boundary between the material and void space [42].
Evolutionary algorithms can even be used with geometric basis functions for level-sets as
proposed by Bujny et al. [3, 26, 43]. At the early stages of design, these TO methods are
especially useful since they automatically yield optimized concepts.

In this thesis, the cooperative approach uses multi-objective TO methods (Chapter 6), where
we find the weight-vectors for objectives that can generate the preferred solutions. For other
methods such as ESO/BESO and level-set methods—or even SIMP and HCA, our approach
needs to be tailored to use the relevant hyperparameters, e.g., volume fraction or/and filter
radius for SIMP, HCA, and level-set methods; rejection and inclusion ratio may be varied for
BESO. Given a set of preferred designs, new hyperparameters can be found by our approach
so that more of the preferred solutions can be generated. In this work, as a start, we restrict
the investigation to multi-objective TO methods that integrate weighted-sum approaches with
SIMP and HCA. These TO methods can yield distinct structures that are trade-offs and might
be equally interesting to the user. As background knowledge, the following sections describe the
TO methods from the literature: Section 3.1 describes single-objective TO methods including

Cooperative Set-based Optimization 22

SIMP and HCA, which form the basis for the multi-objective TO methods in Section 3.2.

3.1. Topology Optimization

TO methods optimize the material distribution within a given design space for a given objective.
Among the different approaches, density-based TO methods discretize the design space into
elements, whose density is used as a decision variable for optimization. An exemplary density-
based TO called SIMP uses the power-law approach to penalize material properties of elements
with intermediate densities [1]. So, SIMP results in a continuous optimization problem, which
enables the use of gradient information, unlike the discrete optimization problem which allows
elements to either have a fixed material density or no density at all.

Given an objective function 𝑓 , density-based TO discretizes the design space into 𝑁𝑒 elements
and optimizes the density vector 𝜌𝜌𝜌 = [𝜌𝑒]𝑁𝑒

𝑒=1 (decision variables), i.e., the vector of relative
densities of the elements. A general density-based TO problem can be formulated as follows:

min
𝜌𝜌𝜌

𝑓(𝜌𝜌𝜌,𝑢𝑢𝑢(𝜌𝜌𝜌))

𝑠.𝑡. : 𝐻0(𝜌𝜌𝜌) =
𝑁𝑒∑︁
𝑒=1

(𝑣𝑒𝜌𝑒) − 𝑉0 = 0,

�̃�𝑗(𝜌𝜌𝜌,𝑢𝑢𝑢(𝜌𝜌𝜌)) ≤ 0, 𝑗 = 1, ..., 𝐽,

0 ≤ 𝜌min ≤ 𝜌𝑒 ≤ 1, 𝑒 = 1, ..., 𝑁𝑒,

(3.1)

where 𝑢𝑢𝑢(𝜌𝜌𝜌) is a state vector representing the response of the structure to specific load condi-
tions, with the material distribution in the structure given by 𝜌𝜌𝜌. The volume of an element
𝑒 is 𝑣𝑒 and the constraint 𝐻0 restricts the cumulative volume to 𝑉0. Additionally, there can
be 𝐽 inequality constraints �̃�𝑗 that depend on the state and density vectors. Depending on
the optimization algorithm, each elemental density 𝜌𝑒 may need to have a minimum value
𝜌min > 0 to avoid numerical issues. In the following, we briefly describe the methods SIMP
and HCA used for TO in this thesis.

3.1.1. Solid isotropic material with penalization (SIMP)
Since the dimension of the density vector is generally in the order of 103 to 106, global
search algorithms such as evolutionary algorithms cannot be used for TO. So, sensitivity values
(gradients) of the objective function with the decision variables need to be used for solving the
TO problem efficiently. For example, SIMP with optimality criteria (OC) [1] or the method
of moving asymptotes (MMA) [44] can use gradient information to iteratively optimize the
structures. The OC method can also be extended to handle multi-objective problems [45].

Given a base material property 𝑃0, the material property of an element with intermediate
density 𝜌𝑒 is given by

𝑃 (𝜌𝑒) = 𝜌𝑝′
𝑒 𝑃0, (3.2)

Cooperative Set-based Optimization 23

where 𝑝′ is the penalization parameter. Using this method, material properties such as Young’s
modulus are penalized and used in finite element simulations. To use SIMP with the OC
method, we calculate the sensitivity (gradient) of the objective function with respect to changes
in element densities, and the OC method uses the sensitivity values to iteratively optimize the
densities.

In vehicle design, gradient-based methods such as SIMP cannot be easily used with crash
simulations, which involve highly nonlinear phenomena due to multiple contact surfaces with
friction, nonlinear materials with strain-rate effects, material failure, and significant element
rotations. Using simplified crash models, it is possible to use gradient-based optimization
such as the ground structure approach [46]. However, in industrial applications, the gradient
information cannot be used for optimization because of the complexity of crash models, strong
nonlinearities, and numerical noise. Furthermore, crash simulation software does not generally
give access to the underlying methods and gradients. Therefore, heuristic approaches such as
HCA [39] are preferred.

3.1.2. Hybrid cellular automata
HCA [39] is a non-gradient-based approach that can be used to minimize the compliance for
a static load or to maximize the energy absorption under a crash load. Since the response of
structures to crash loads is noisy and the gradients are not reliable, HCA is preferred to SIMP
in crash applications since HCA does not require gradients. Furthermore, HCA can be easily
extended to include multi-objective problems using the approach proposed by Aulig et al. [27],
as described in the next section.

HCA is based on the idea of a cellular automaton which consists of a regular grid of cells.
In each generation, the state of each cell is updated based on the states of its neighboring
cells in the previous generation. HCA tries to achieve a uniform distribution of a field variable
𝑆 among the elements of the design domain, which results in optimal structures for certain
objectives. In linear elastic problems with static loads, HCA yields structures with minimum
compliance by defining strain energy density as 𝑆 [39]. Similarly, for crash loadcases, HCA
yields structures with improved crashworthiness performance by defining internal energy density
as 𝑆 [47]. While HCA includes material plasticity and contact mechanics in the optimization,
Patel et al. [47] indicate that HCA is not suitable for large deformations due to buckling,
where homogenization of internal energy is not an appropriate optimization criterion.

HCA uses a control-based update scheme to achieve a uniform distribution of field variables
𝑆 throughout the design space, which corresponds to the idea of distributing the load equally
throughout the structure. As described previously, this approach can yield structures with
minimal compliance or maximal crash energy absorption depending on the load case and the
field variable. For the density update, we use the proportional controller with a parameter 𝐾𝑝,
as described by Tovar et al. [48]:

Cooperative Set-based Optimization 24

Δ𝜌(𝑘)
𝑒 = 𝐾𝑝(𝑆(𝑘)

𝑒 − 𝑆*(𝑘)), ∀𝑒 ∈ {1, ..., 𝑁𝑒}, (3.3)

where Δ𝜌
(𝑘)
𝑒 is the required change in the density of element 𝑒 at iteration 𝑘. Additionally,

the changes are limited by a move limit parameter to avoid numerical instability. The effective
field state 𝑆𝑒 is defined as the average of field states of the neighboring elements which are
defined by the filter radius parameter 𝑟min. The usage of 𝑆𝑒 prevents numerical issues such as
the checkerboard patterns [13] and imposes a minimum length scale. For dynamic loadcases
such as crash loads, the 𝑆𝑒 is additionally averaged over time. The target set-point 𝑆* is
iteratively adjusted such the volume constraint is satisfied when the density is updated using
𝑆* (3.3). The optimization process is stopped when the changes in density are smaller than a
prescribed tolerance or when the maximum iterations are reached. The latter is more common
in practice, given that the simulations are expensive and satisfactory design improvements may
be achieved with a fixed number of iterations. For more details on HCA, see [5, 6, 48–50].

To calculate the field states, HCA uses the same material interpolation method as SIMP. For
crash loadcases, additional properties such as yield stress and the strain-hardening modulus are
also interpolated. However, the penalization for different properties can be different. HCA is
suitable for optimizing energy absorption in crash scenarios but not for other crash objectives
such as minimization of intrusion, forces, or acceleration under impact loads. In this thesis,
we use HCA for the optimization of crash energy absorption.

3.1.3. Other approaches
ESO [51] is a simple evolutionary structural optimization method that removes material based
on a hyperparameter called rejection ratio (RR) based on a rejection criterion (RC) such as
von Mises stress. ESO removes elements in the design space whose RC (e.g., von Mises stress)
value is less than the RR times the maximum RC value over the structure. This process is
repeated until a steady state is reached, completing an iteration of ESO. Material is gradually
removed in multiple iterations by increasing the RR value in steps from an initial value (e.g.,
0.01) to a final value (e.g., 0.10).

BESO [38] is a bidirectional ESO method since it allows for the addition and removal of
elements, unlike ESO which only allows for the removal of material. Hence, BESO can yield
better solutions since it uses a larger search space. Material is added or removed in the
structure using RR and inclusion ratio (IR) respectively. Given an optimization criterion such
as von Mises stress, under-stressed elements, whose criterion value is less than RR times the
max value, are removed. Similarly, over-stressed elements with values greater than IR times
the max value are marked and new elements are added in their vicinity.

Allaire et al. [42] describe a level-set method, which progressively changes the boundary of the
structure using a shape sensitivity analysis, while constrained to a fixed volume fraction of the
design space. The structure is represented by a level-set function (Φ), whose value is positive,

Cooperative Set-based Optimization 25

zero, and negative in the interior, boundary, and exterior of the structure respectively. In each
iteration, the level-set function value changes and the boundary advances with normal velocity
given by the shape derivative. Bujny et al. [3] propose an evolutionary level-set method, which
can handle highly nonlinear and discontinuous problems, such as crashworthiness optimization
problems, where sensitivity analysis is not possible or too expensive. Each design is represented
using a finite set of elementary components; each component is defined by a simple level-set
function that can be morphed using a small set of design variables. This approach reduces
the dimensionality of the problem and enables the use of evolutionary algorithms. For a given
objective, Bujny et al. use an evolutionary strategy to find the design variables of the optimal
solution.

For design generation, given a TO method, we need to select relevant hyperparameters whose
variation results in a distinct set of structures. As described later in Chapter 6, given a set
of preferred solutions and the associated hyperparameters that generated them, the proposed
cooperative method can learn to find the hyperparameters required to generate solutions similar
to the given set. In this work, instead of using the single-objective TO methods described
in this section, we use a multi-objective TO described in the next section. We chose the
latter class of methods since they provide a convenient way to generate multiple solutions
with distinct structures. However, the choice is arbitrary to some extent. By changing the
input features (hyperparameters) used to train the regression and classification models in the
presented collaborative approach, one can directly incorporate other TO methods.

3.2. Multi-objective Topology Optimization

In automotive design, engineers need to consider a large number of multi-disciplinary require-
ments. For example, Duddeck [7] investigates use cases with multiple requirements related
to structural statics/dynamics, crashworthiness, and NVH properties. If the design goals are
conflicting, this can lead to multi-objective optimization problems. Focusing on topology
optimization, we describe the methods for MTO starting with the general formulation of
multi-objective optimization.

3.2.1. Multi-objective Optimization
In an optimization problem, we search for a solution, represented using a vector x of decision
variables, which is to be found in a feasible space of solutions Ω. In a multi-objective opti-
mization problem (MOP), the multiple criteria used to select solutions can be represented by
a vector of 𝑁𝑓 objective functions: f(x) = [𝑓𝑖(x)]𝑁𝑓

𝑖=1. MOP can be formulated as follows:

min
x∈Ω

f(x),

subject to : �̃�𝑗(x) ≤ 0 𝑗 = 1, ..., 𝐽,

�̃�𝑖(x) = 0 𝑖 = 1, ..., 𝐼,

(3.4)

Cooperative Set-based Optimization 26

Hence, in an MOP, we are trying to minimize the objective functions subject to equality
and inequality constraints. If we need to maximize an objective function 𝑓𝑖, we can always
reformulate it as 𝑓 ′

𝑖(x) = −𝑓𝑖(x) so that it fits the above definition. For conflicting objectives,
MOP does not have a single solution that optimizes all the objectives. Instead, we have multiple
solutions—called non-dominated or Pareto-optimal solutions—that are equally important. This
can be understood based on the concept of dominance among solutions.

A solution x is said to dominate y, i.e., x ≺ y, if the following conditions are satisfied:

𝑓𝑖(x) ≤ 𝑓𝑖(y) ∀ 𝑖 ∈ {1, ..., 𝑛},

𝑓𝑗(x) < 𝑓𝑗(y) ∃ 𝑗 ∈ {1, ..., 𝑛}.
(3.5)

So, x is better than y for at least one of the objectives. Any optimal solution of MOP is a
non-dominated solution x, where no other solution y ∈ Ω dominates x. The set of all non-
dominated solutions is the Pareto-optimal set; the set of corresponding objectives is the Pareto
front (PF). Since the Pareto-optimal set can have unlimited solutions, we typically approximate
it using a set of solutions near the PF.

MOEAs are widely used methods for solving MOPs. Diverse solutions can be obtained using
MOEAs such as NSGA-II [24] or NSGA-III [52, 53]. MOEAs find the Pareto set, the set
of all the Pareto-optimal solutions, in a single run. However, they need a large number of
objective function evaluations, which may be prohibitive when the number of decision variables
is high and/or the objective functions are expensive to evaluate. MTO problems generally have
extremely high-dimensional decision space (in the order of millions) and expensive objective
evaluations since every evaluation corresponds to a finite-element solution. Therefore, MOEAs
cannot be directly used for solving MTOs. The problem of high-dimensionality can be alleviated
to some extent by using feature mapping methods such as the evolutionary level-set method
[3, 26]. Instead of MOEAs, weighted-sum MTO approaches such as SEW-HCA [27] can be
used to efficiently optimize the material distribution. We will discuss this approach next.

3.2.2. Weighted-sum Approach
As discussed previously, SIMP can efficiently optimize the material layout for a single objective
by calculating the sensitivities of the objective function with respect to each element density
in each iteration. For multiple objectives, we can use the weighted sum of the sensitivities for
different objectives to obtain for each element an aggregate sensitivity value. Using these new
sensitivity values for elements, any of the single-objective TO methods can be used for solving
multi-objective problems. Similarly in HCA, where the goal is to homogenize a field variable
across the elements, a weighted-sum of field variable values in a given element can be used to
handle the multi-objective problem.

Aulig et al. [27] proposed a method called SEW-HCA, which can concurrently minimize
compliance of a structure for one or more static loadcases as well as maximize its energy

Cooperative Set-based Optimization 27

absorption for one or more crash loadcases. Given a set of weights for the objectives by the
user, SEW-HCA scales the weights since each objective may involve different scales of element
sensitivities. Due to rescaling, SEW adheres better to user preference. For example, consider
an MOP with equal weights, say (0.5, 0.5), for two objectives: (i) minimize the structural
compliance under a static load, which is measured by the total strain energy stored, and (ii)
maximize the energy absorption under a crash load, which is measured by the total internal
energy absorbed. Since energies involved in crash loads are generally much higher than in static
loadcases, directly using the weights may give higher importance to the elemental sensitivities
of the crash loadcase. So, SEW-HCA scales the weights and the user can express his/her
preference more easily.

Given a set of weights {𝑤𝑚}𝑁𝑓

𝑚=1 for the 𝑁𝑓 objectives, SEW-HCA weighs the field variables
as follows:

𝑆𝑒 =
𝑁𝑓∑︁

𝑚=1
𝑤𝑚𝑆𝑚

𝑒 /𝑠𝑚, (3.6)

where 𝑆𝑚
𝑒 is the field state of element 𝑒 for 𝑚-th objective function. 𝑠𝑚 is the corresponding

scaling factor used to account for the magnitude of objective values to avoid the dominance
of crash loadcases whose energies are usually orders of magnitude higher than those of static
loadcases. The scaling factor is given by

𝑠𝑚 = 𝑊𝑚/𝑊min, (3.7)

where 𝑊min = min 𝑊𝑚. For static loads, 𝑊𝑚 is the total strain energy stored. For crash
loads, 𝑊𝑚 is the total internal energy absorbed. Aulig et al. [27] indicate that the scaling
factor is usually calculated only at the initial iteration since the energy levels change only
slightly during the optimization. Depending on the use case, they may need to be calculated
at every iteration. Note that Aulig et al. refer to 𝑤𝑚 in Eq. (3.7) as user preferences in the
original paper.

While SEW-HCA decouples the weight-vectors from the scale of objective function values, it
is still not easy to choose the weight-vectors required to generate desired solutions. A possible
approach is to analyze a sample set of diverse solutions, using an appropriate weight sampling
method [54–56], before deciding on a particular design using data analysis techniques. In this
thesis, I sample a set of weight-vectors using the Das-Dennis approach [57] and then generate
a solution using SEW-HCA for each weight-vector.

3.3. TO Datasets

In this section, we describe TO methods as well as the material properties used to obtain three
datasets. Later, in the following chapters, we analyze these datasets based on geometrical
structure, deformation behavior, and other performance attributes of the designs.

Cooperative Set-based Optimization 28

3.3.1. Dataset-1: Cantilever Plate with Two Static Loads
For this dataset, the cantilever plate is optimized for two objectives corresponding to two static
loads (Figure 3). For each static load 𝑖 ∈ [1, 2], the objective 𝑓𝑖 is to minimize the structural
compliance which is measured by the total internal strain energy stored in the structure after
load application. SEW-HCA iteratively optimizes the design by calculating the strain energies
for each load case separately using the simulation software LS-DYNA® [58].

Figure 3 A cantilever plate with fixed nodes and two applied loads. The magnitude of each
load is 0.2 N.

The design with the dimensions 400 mm×200 mm×10 mm is discretized into 40×20×1 = 800
solid elements (8-noded hexahedrons). The design contains a bilinear elastoplastic aluminum
material (MAT 24 in LS-DYNA) with the following properties: maximum mass density 𝜌max =
2.7 × 103 kg/m3, Young’s modulus 𝐸 = 70 GPa, Poisson’s ratio 𝜈 = 0.33, yield strength
𝜎𝑌 = 117 MPa, and hardening modulus 𝐸tan = 49 GPa. For a given set of weights, SEW-
HCA iteratively optimizes the elemental densities using the following hyperparameters: the
maximum number of iterations is 25, the allowed volume fraction is 0.4, the move limit is 0.1,
and the penalization factor is 3.

3.3.2. Dataset-2: Simply Supported Beam with a Crash and a Static load
A simply supported beam is optimized for two objectives: maximize energy absorbed 𝑓1 for
a crash load and minimize compliance 𝑓2, i.e., total strain energy stored, for a static load.
Figure 4 shows the load configurations and the boundary conditions. The static and crash
objective values are calculated using implicit and explicit LS-DYNA solvers respectively. Once
again, for a given set of weights for the objectives, SEW-HCA iteratively optimizes the design
by calculating the objective values for each load case separately.

The design shown in Figure 4 has the dimensions 600 mm×50 mm×50 mm and is discretized
into 120×10×10 = 12, 000 elements. The material properties and hyperparameters for SEW-
HCA are as in test-case 1 (Section 8.2.1) except that a smaller move limit of 0.05 is chosen
for stabilizing the optimizer. The crash load is applied using a rigid hollow cylinder with the
following properties: thickness is 3 mm, inner diameter is 30 mm, and length is 100 mm. The
cylinder weighs 0.2 kg while the beam weighs 4.2 kg.

Cooperative Set-based Optimization 29

Figure 4 A simply supported beam is optimized for a crash load from a cylinder (top) and a
static load (right face). The supports are implemented using fixed nodes with zero prescribed
displacement. The crash load is applied using a rigid hollow cylinder, which crashes into the
beam and travels a displacement of 100 mm in 0.1 s, while constrained to move only along the
z-axis without rotation. The static load of 104 𝑁 is radially distributed at the center of a
lateral face with a radius of 20 mm.

3.3.3. Dataset-3: Cube Design Space
For this dataset, TO [1] is used to generate designs with widely varying topologies. We optimize
the material layout in a unit cube to have minimal structural compliance for arbitrary loads
and fixed nodes (Figure 5). Hence, we simulate an extreme use case with flexible boundary
conditions and obtain a set of designs with widely different geometrical structure. Note that
in practice, boundary/load conditions are generally fixed for a given design task [1]. However,
here we generate a dataset by using varied boundary conditions in order to generate an artificial,
yet, challenging dataset that can be used to evaluate the clustering approach discussed in the
next chapter.

Each boundary configuration, defined by the fixed nodes and load conditions, is obtained using
the following method:

• Nodes are fixed (zero displacements in all directions) in an arbitrary rectangular patch
B in the face with 𝑥 = 0 (Figure 5). The edges of rectangle B are parallel to the edges
of the face with 𝑥 = 0. The bounds of B along 𝑦 and 𝑧 are obtained by drawing four
samples from the uniform distribution 𝑈(0, 1).

• Two arbitrary unit loads are applied to the design. Each load is distributed in a radius
of 0.1 units about a randomly chosen center 𝑐 in the unit cube. The three coordinates
of 𝑐 are sampled from a uniform distribution 𝑈(0, 1). The components of each load
vector are also sampled using 𝑈(0, 1), but are normalized after obtaining the three
components.

For each boundary configuration, SIMP [1] is used as TO for generating an optimized design
with minimal structural compliance. We use a linear elastic material for steel with the following
properties: mass density of 7.83 · 103 kg/m3, Young’s modulus of 207 GPa, and Poisson’s
ratio of 0.33. By iterating over multiple configurations, a total of 100 designs are generated.
This dataset has no prescribed subclasses, but it is representative of TO results obtained in

Cooperative Set-based Optimization 30

Figure 5 Two possible boundary configurations for the unit cube. TO minimizes structural
compliance under radially distributed loads F1 and F2 with centers at c1 and c2, respectively
while the nodes are fixed in the patch 𝐵.

Figure 6 The optimized design occupies a volume fraction of 0.3 with the maximum stiffness
when the given two loads are applied (white arrows). The dotted points on the face to the
right mark the boundary patch 𝐵.

practice. Figure 6 shows an example design from this dataset. Using this dataset, geometric
feature-vectors can be qualitatively evaluated as discussed later in Chapter 7.

Summary

In this chapter, we presented two TO methods: SIMP and HCA. SIMP with OC method is
a gradient-based TO widely used for structural optimization. HCA is a non-gradient-based
heuristic method that can optimize for crash energy absorption or static load compliance.
SEW-HCA is an extension of HCA that can concurrently optimize for multiple objectives such
as compliance under static loadcases and energy absorption under crash loadcases.

Most of the TO methods involve several hyperparameters that need to be chosen. For example,
both SIMP and HCA require a filter radius and a volume fraction; each choice of parameter
results in a different design. For SEW-HCA, the weights for different objectives need to be
chosen as well. In this thesis, we addressed this problem and provided methods to support

Cooperative Set-based Optimization 31

the user in choosing the weight-vectors. We believe that the proposed methods in the later
chapters can be directly extended to handle any optimization method and for choosing the
hyperparameters required to generate desired solutions.

Cooperative Set-based Optimization 32

Part II

Methodology

Cooperative Set-based Optimization 33

4. Knowledge Generation

As discussed in the previous chapter, design optimization methods can potentially generate
a multitude of designs. One of the challenges is to explore and select interesting solutions
for further analysis. Furthermore, the set of desired solutions can be used to inspire a new
generation of solutions, e.g., using interactive multi-objective optimization. In this thesis,
methods for analyzing designs are referred to as knowledge generation methods.

In this chapter, we describe different methods for analyzing a given set of solutions to identify
desired solutions based on different criteria. Section 4.1 describes the state-of-the-art methods
for knowledge generation using descriptive statistics [16], visualization tools [17], and clustering
methods [22]. Clustering can be used to group structures that are similar based on a given
metric, where each group (cluster) of solutions can be analyzed and the desired cluster can be
chosen (Section 4.2).

In this thesis, we emphasize the use of clustering as a basis for design selection in topology
optimization. Depending on the application and the selection criteria, different metrics can be
used for clustering, some of which are discussed at the end of this chapter. Section 4.3 describes
geometrical clustering, where designs are clustered based on their geometrical structure using
autoencoders from literature [30]. The key contribution of this thesis is to evaluate geometric
clustering on diverse TO results. Furthermore, I helped develop novel metrics to compare the
topology and deformation behavior of designs. In collaboration with us, Yuanze Wu developed
a novel metric to compare the topology of complex TO structures, as part of her master
thesis [59]. We also proposed new methods in Section 4.4 to cluster designs based on their
deformation behavior under the application of given loads. These metrics for deformation
behavior are developed as part of the master’s theses and resulted in conference papers by
Ernest Hutapea et al. [60] and Yasuyuki Shimizu et al. [61] in collaboration with the main
author of this thesis.

4.1. Data Mining

In multi-objective optimization, the decision-maker (DM) can decide on the importance of
different objectives (performance attributes) through a weight-vector to generate the desired
solutions [62, 63]; however, it is difficult to define the weights, especially for a large number
of objectives [64]. Furthermore, it is not feasible or practical to consider every performance
attribute while optimizing a design. Therefore, data mining methods may be preferred to
analyze a given set of solutions.

An intuitive method is to filter designs based on attributes such as manufacturing cost or other
performance attributes. For example, the dream lens tool [11] is an interactive framework that

Cooperative Set-based Optimization 34

guides a designer to a set of interesting designs using, for example, range constraints on the
performance attributes. However, this framework may not be useful if a large number of
parameters have to be simultaneously considered.

More sophisticated data mining approaches can assist in identifying interesting solutions in a
large database of solutions based on certain desired properties. In data mining, each solution is
associated with a feature-vector which comprises the values of certain desired properties called
features associated with the solution. For example, in the automotive domain, each design
can be analyzed based on the drag coefficient and fuel efficiency values. In multi-objective
optimization, the objective values may be considered as the feature-vector. Given a dataset
of solutions, designs with desired feature-vector values can be identified using one or more of
the following analysis methods: (i) descriptive statistics [16], (ii) data visualization tools such
as manifold learning techniques, box plots, and parallel coordinate plots [17], or (iii) clustering
methods [22, 65].

Statistical quantities describe the multivariate distribution of the features and help summarize
the data. The simplest way to describe individual features is to use univariate descriptors, such
as mean, median, variance, and quartiles. Higher-order statistical measures such as skewness or
kurtosis contain more information about the shape of the distribution but they require a larger
dataset for accurate computation. However, these measures are more difficult for engineers to
interpret and identify desired solutions.

Visual descriptors are more useful in design selection when a small number of features has to
be considered. The distribution of a given feature can be analyzed using histograms, box plots
[66], violin plots [67], and bean plots [68] to name a few of the methods. Biplots [69] use
principal component analysis (PCA) to visualize data in a 2D plot. Each of the input features
is shown as directed vectors in the biplot. Bar plots or pie charts are simple methods to
show the distribution of categorical variables. Scatter plots can reveal the correlation between
quantitative variables whereas mosaic plots reveal the relation between the categorical features
[70]. Coplots [71] use conditionals on a variable to yield subsets of solutions whose features
are analyzed two at a time, using scatter plots. These methods allow visualization of the data
and the selection of multiple desired solutions.

Using one or more of the methods discussed in this section, an engineer can select desired
solutions. However, a class of algorithms called clustering is more useful in summarizing
data in an unsupervised manner, especially when the number of features is high. Furthermore,
clustering methods can be combined with other data mining methods to select desired solutions,
as described in the next section.

Cooperative Set-based Optimization 35

4.2. Clustering

Classification algorithms organize data—a collection of objects—into sensible groups. Clus-
tering is an unsupervised classification method that clusters data without using any prior
information related to the classes of objects. By contrast, supervised classification models are
trained using labeled data—where the classes of the objects are known—to predict the classes
of unknown objects.

Clustering methods discover the underlying structures in a given data; they identify groups
of similar objects in the data based on certain intrinsic properties. In general, the clustering
algorithms require a metric which quantifies the distance between the objects, where a smaller
distance implies that the objects are more similar. Note that metrics (e.g., Euclidean distance)
should satisfy the axioms of non-negativity, null condition, symmetry, and triangle inequality.
However, in practice, semi-metrics—which do not satisfy the triangle inequality—are still useful
for clustering similar objects. For example, chamfer distance (CD), a semi-metric, is used to
cluster 3D objects [30]. In this thesis, CD is loosely referred to as a metric for brevity. Data
representation and the corresponding metric influence the clusters found in the data. These
depend on the domain of data and the goals of clustering.

The clustering method used also plays a strong role since each method has its own objective
and hence, its own definition for clusters. 𝑘-means method [72] tries to minimize the variance
of data in each cluster, which leads to the identification of spherical clusters. Clustering
using Gaussian mixture models (GMM) assumes that data contains clusters that arise from a
summation of Gaussian models [73]. In contrast to these definitions, algorithms such as density-
based spatial clustering of applications with noise (DBSCAN) [74] and ordering points to
identify the clustering structure (OPTICS) [75] define clusters as high-density regions separated
by low-density regions. Here, density in a region is inversely related to the average distance
between neighbors.

Clustering can be done using certain performance features of designs, e.g., lift or drag values
for cars/airplanes. If an input vector of features is used for clustering, Euclidean distance
in feature space is used implicitly as the metric by most of the clustering algorithms, e.g.,
𝑘-means, GMM, DBSCAN, and OPTICS. However, some of the algorithms such as DBSCAN
and OPTICS, also accept an arbitrary metric for comparing designs, in which case, we provide
distances from each sample to other samples as a pair-wise distance matrix.

In the following, we briefly describe 𝑘-means and OPTICS, which are primarily used for cluster-
ing in this thesis. 𝑘-means is probably the most commonly used clustering method because of
its simplicity and efficiency [76] but the number of clusters needs to be pre-specified. OPTICS
is a density-based algorithm that discovers the natural clusters in the data based on density
without specifying the number of clusters. Unlike DBSCAN, OPTICS can identify clusters

Cooperative Set-based Optimization 36

with different densities; in addition, it is easier to tune its hyperparameters.

4.2.1. 𝑘-means clustering
The 𝑘-means method [72] is a partitioning algorithm that identifies a given number of clusters
in the data. It clusters a collection of objects, where each object has a set of 𝑑 features,
x = {𝑥𝑖}𝑑

𝑖=0. The 𝑘-means method splits the data into a fixed 𝑘 number of clusters, with
the objective of minimizing the feature variance in the clusters. We define below the feature
variance 𝐽𝑝 in the cluster 𝐶𝑝 of 𝑚𝑝 objects, whose summation over the clusters gives the
objective to be minimized in 𝑘-means:

𝑘∑︁
𝑝=1

𝐽𝑝, where

𝐽𝑝 =
𝑚𝑝∑︁
𝑖=1

‖x𝑖 − 𝜇𝜇𝜇𝑝‖2, x𝑖 ∈ 𝐶𝑝,

(4.1)

𝜇𝜇𝜇𝑝 is the mean of samples x𝑖 ∈ 𝐶𝑝 and ‖.‖ is the Euclidean norm.

Since the above minimization problem is NP-hard, the 𝑘-means method uses a heuristic al-
gorithm [72] to obtain a local minimum, which tends to be close to the global minimum for
well-separated clusters [77]. The main steps of the 𝑘-means algorithm can be summarized as
follows:

1. Initialize a random partition with 𝑘-clusters.

2. Calculate cluster means and assign each object to its nearest cluster mean.

3. Compute new cluster means and repeat from step 2 until convergence.

𝑘-means is a fast algorithm. Since it implicitly uses Euclidean distance as the metric, it
finds spherical clusters irrespective of the data. A variation of 𝑘-means called 𝑘-medoids uses
arbitrary metrics but is computationally more expensive since the distance between every pair
of samples needs to be measured [78].

For contiguous data, any value of 𝑘 is equally good. However, if the data contains well-
separated clusters, there is an optimal choice of 𝑘. For example, we can select 𝑘 that yields
the smallest objective value 𝑗. Alternatively, the silhouette score can be used [79] (see Section
4.2.4).

4.2.2. Density-based clustering
Examples of density-based methods are DBSCAN [74] and OPTICS [75]. Density-based ap-
proaches identify clusters by high-density regions where the average distance between neighbors
is high. While the density in the clusters needs to be specified for DBSCAN, OPTICS auto-
matically finds the appropriate densities for the different clusters in the data.

Cooperative Set-based Optimization 37

These methods are expensive and may fail for high-dimensional data where the data tends to be
sparse which makes it difficult to distinguish high- and low-density regions. Furthermore, these
algorithms may identify only a single cluster depending on the data. While this information
is useful, a partitioning algorithm such as 𝑘-means may be more useful for contiguous data.
More sophisticated clusterings of design concepts are possible which consider multiple metrics
concurrently [80].

4.2.3. Dimensionality Reduction
For high-dimensional data, dimensionality reduction (DR) techniques are needed to process
the data before clustering. This alleviates the so-called curse of high-dimensionality, where the
relative difference of the distances of the closest and farthest data points goes to zero as the
dimensionality increases. So, it is challenging for clustering methods—or any other machine
learning method—to process high-dimensional data. Some examples of these methods are
principal component analysis (PCA) [81] and non-negative matrix factorization (NMF) [82].
PCA extracts non-redundant features using linear transformations [83, 84]. Similar to PCA,
NMF is a linear transformation but is constrained to extract non-negative components, which
can be more easily interpreted compared to PCA.

Manifold learning methods can be used to further reduce the dimensions to 2D or 3D with-
out losing the cluster structure in the data. For example, t-distributed stochastic neighbor
embedding (t-SNE) [85], uniform manifold approximation and projection (UMAP) [86], and
self-organizing map (SOM) [87] are widely popular in the machine learning field for cluster visu-
alization [18]. Therefore, it is easier to interactively explore the clusters and identify preferred
solutions.

Empirical studies using t-SNE [85] and UMAP [86] show how data can be embedded into
2D while preserving the cluster structure. For example, image data of handwritten digits can
be visualized as clusters in 2D, where images of different digits belong to a distinct cluster.
UMAP preserves the intercluster distance better than t-SNE. SOM is a neural network model
that maps the nearby points in the input space to nearby points in the low-dimensional output
space, typically with 2 or 3 dimensions. t-SNE and UMAP are relatively inexpensive methods
for visualizing clusters and design exploration.

4.2.4. Cluster Evaluation using Silhouette Score
We will now discuss a method called silhouette score [79] to evaluate a set of clusters identi-
fied using a clustering method. This will help us to choose for the given data an appropriate
clustering method as well as tune its hyperparameters to obtain optimal clustering. For exam-
ple, the appropriate number (𝑘) of clusters for the 𝑘-means method can be chosen using the
silhouette score [79].

Silhouette score indicates the quality of clustering; a high score means that dissimilarities
between the objects within the cluster are smaller compared to the objects outside the cluster.

Cooperative Set-based Optimization 38

The silhouette sample score of an object reveals if it belongs to the interior or boundary of a
cluster or the region between clusters.

Figure 7 Silhouette score 𝑠 for a sample x ∈ 𝐶1 uses 𝑎, the average distance to other samples
in 𝐶1, and 𝑏, the average distance to the nearest cluster: 𝑠 = 𝑏−𝑎

max(𝑏,𝑎) .

Given a set of clusters {𝐶}𝑘
𝑖=0, obtained using a given metric, the silhouette score 𝑠 of a

sample x in 𝐶𝑖 is a measure of its closeness to other samples in 𝐶𝑖, relative to samples in other
clusters 𝐶𝑗 . 𝐷(x, y) is the distance measured by the given metric between two samples 𝑥 and
𝑦. Before we can define 𝑠, the following terms need to be defined. The average distance 𝑑

from a sample x to a set 𝑆 of samples is

𝑑(x, 𝑆) = mean {𝐷(x, y) | y ∈ 𝑆}. (4.2)

The average distance of x to other solutions in its cluster is

𝑎 = 𝑑(x, {y | y ∈ 𝐶𝑖/{x}}). (4.3)

The average distance of x to its nearest cluster is

𝑏 = min
𝑗

𝑑(x, 𝐶𝑗). (4.4)

Finally, the silhouette score 𝑠 of x is given by

𝑠 = 𝑏 − 𝑎

max(𝑏, 𝑎) . (4.5)

The above calculation is defined only when the data contains at least two clusters. The
sample score ranges from [−1, 1]. Figure 7 illustrates the different terms used in the definition.
For samples that are between the clusters, 𝑎 ≈ 𝑏 =⇒ 𝑠 ≈ 0. For samples that are
well within the clusters, 𝑎 << 𝑏 =⇒ 𝑠 ≈ 1. For samples assigned to a wrong cluster,
𝑎 >> 𝑏 =⇒ 𝑠 ≈ −1.

The average score 𝑠 over all the samples indicates how well the clusters are separated. When
the clusters are not well-separated, i.e., the data is contiguous, the average score is expected

Cooperative Set-based Optimization 39

to be low since the sample score is low for samples on the boundary of clusters.

Silhouette score can be used to find the best of a given set of clusterings [79]. For example,
with the 𝑘-means method, we can vary 𝑘 to obtain different clusterings. The optimal 𝑘opt

results in the clustering with the optimal score, i.e., the largest 𝑠. For 𝑘 < 𝑘opt, 𝑠 is lower than
the optimal value because certain separate clusters are combined, which increases the average
𝑎 value in those clusters. For 𝑘 > 𝑘opt, 𝑠 is lower than the optimal value because one or more
natural clusters are partitioned, which decreases the average 𝑏 value in those clusters. Further,
the average 𝑠 for a cluster indicates how well-separated it is from other clusters.

4.2.5. Cluster Analysis and Preferred Designs
As discussed previously, clustering methods can be used to classify the designs into groups,
where each group contains similar designs according to a metric. Here, we discuss methods
for analyzing different clusters, which support an engineer in selecting a preferred cluster of
designs.

Parallel coordinates [88] contrast the ranges of objective functions for different subsets of
solutions in a single plot. Since this approach allows different scales for objectives, i.e. no
normalization step, it is preferred to star plots (spider/radar plots) [89]. Radial coordinate
visualization [90] represents different objectives as vertices of a polygon and the proximity of
each data point to the vertices is influenced by the corresponding objective values. Other
techniques that may be of interest are dimensional stacking [91] and glyph plots [92]. Using
these approaches, the properties of different clusters can be contrasted.

A simpler approach for analyzing a cluster is to obtain a representative design in the cluster.
For example, the cluster medoid can be used as the cluster representative, where medoid is
defined as the solution with the least average distance to other solutions in the cluster [23].
If a cluster representative has desired properties, the complete cluster may be chosen as a set
of preferred solutions. This is better than selecting a single solution as the preferred solution
since it may become infeasible with emerging constraints in the design process; this is less
likely to occur if a set of preferred solutions is available.

Until now, we discussed how data mining and clustering methods can be used to identify
preferred solutions. For the remainder of the chapter, we discuss different metrics to compare
solutions. Depending on the application, one or more of these metrics can be used for clustering
and data mining.

4.3. Geometric Clustering

Clustering is a flexible method that can be tailored to an application using custom metrics.
Since the geometrical structure of designs is critical for their performance, engineers might be

Cooperative Set-based Optimization 40

interested in identifying distinct structures in a design database. Clustering based on geometry
referred to henceforth as geometrical clustering, is interesting in the initial stages of product
development.

In this thesis, we build two methods for geometrical clustering: (i) using a pointcloud au-
toencoder proposed by Achlioptas et al. [30] with our preprocessing framework for optimized
designs [93], and (ii) using a novel method that compares topologies of designs. The latter is
developed by Yuanze Wu [59] under the supervision of the author of this thesis. These two
methods are described below.

4.3.1. Pointcloud Autoencoders
Pointcloud autoencoder (PCAE) can be used to extract features that are useful in clustering
geometries with a similar structure. In the literature, PCAE has been used to identify everyday
objects such as chairs, cars, and airplanes in public datasets [30, 94, 95]. PCAE model is trained
using a set of pointclouds; each pointcloud represents the surface of a geometry using a set of
3D points. Compared to mesh or voxel representations of geometry, pointcloud representation
is simpler and compact since it takes up smaller space without losing necessary geometric
details. After training, PCAE can extract for each geometry a latent code, which can be used
for clustering geometries. The latent code is low-dimensional compared to pointclouds. Rios
et al. [96] show that PCAE can identify nonlinear subregions in the design space that are
preferentially occupied by a subclass of designs. So, PCAE achieves non-linear dimensionality
reduction of geometric data and can help in geometric clustering. Interestingly, latent code
can also be used in building surrogate models for predicting the performance of car models
[97], proving their use as an effective dimensionality-reduction tool.

Typically, density-based TO methods discretize the design space using a regular grid. Additional
preprocessing methods are needed to convert TO results into pointclouds. Each cell in the
grid can be treated as a voxel. The voxel data is converted to a surface mesh and then to
pointcloud data. Finally, the pointcloud data of the designs are analyzed by the autoencoder
[30] to yield a feature-vector, called latent code, which can be used to cluster designs with a
similar geometrical structure.

Here, we discuss the method used in this thesis to convert voxel data to pointclouds. The
voxel data of the design is a binary vector x ∈ {0, 1}𝑛, where 𝑛 is the number of voxels and
each component of the x: 𝑥𝑖 corresponds to a specific voxel in the grid. If the voxel 𝑖 contains
material, 𝑥𝑖 = 1, otherwise, 𝑥𝑖 = 0. For partially occupied voxels, we assign 𝑥𝑖 = 1 if the center
of the voxel has material. In TO, the voxels are associated with the elements in the design
space whose density is optimized; if they do not correspond, additional mapping methods need
to be developed to determine if a voxel is occupied. Using the marching cubes algorithm [98,
99], the voxel data can be converted to a triangulated surface mesh. For pointcloud data,
points are uniformly sampled on the triangulated surface mesh using the trimesh library [100,
101]. Here, the points are proportionally sampled according to the area of the triangular faces

Cooperative Set-based Optimization 41

in the surface mesh.

PCAE used by Achlioptas et al. [30] consists of two stacks of neural-network layers: encod-
ing and decoding stack (Figure 8). The encoding stack reduces the dimension of the input
pointcloud and yields a so-called latent code, which the decoding stack uses to reconstruct
a pointcloud similar to the input. The encoder uses five 1D convolution layers of kernel size
1, where each layer is followed by a ReLU unit and a batch normalization layer [102], whose
final output is reduced by a max pool layer to a latent code of size 128 (also called bottleneck
layer), which ensures that permutations of the input points for a given design will always result
in the same latent code. The decoder consists of two fully connected dense layers, whose final
output is reshaped into a set of 2048 3D points representing the reconstructed pointcloud.
As discussed previously, the PCAE model uses the chamfer distance as the loss function. For
more details, refer to the work of Achlioptas et al. [30].

Before training, the network weights used by the PCAE are randomly initialized using the
Glorot uniform method [18] to ease training but the reconstruction is inaccurate as expected.
By comparing the input and reconstructed pointclouds using a loss function, the autoencoder
learns the network weights needed to reconstruct the input accurately. Chamfer distance
(CD) and earth mover distance (EMD) are exemplary metrics used to measure the differences
between any two pointclouds [30]. Since the latent code is restricted to having fewer dimensions
than the input, PCAE reduces the dimensionality of the input.

Figure 8 Schematic representation of PCAE.

After training with an input set of pointclouds, the autoencoder can transform each design
into a latent code. Using clustering methods such as 𝑘-means or OPTICS, structures can be
grouped. The effectiveness of this method for geometrical clustering of TO results is evaluated
in Chapter 7 using the methods described in Chapter 5. Since this method concurrently
analyzes the topology, size, and shape of the designs, we introduce next a metric that can
better analyze the topological differences exclusively.

4.3.2. Topology Clustering
Comparing the topology of designs provides distinct advantages over metrics based on voxel
or pointcloud differences discussed in the previous section. Topology captures the connectivity
between different components of the structure, which may provide insights into the load paths

Cooperative Set-based Optimization 42

[28, 29, 103]. Light-weight designs tend to be composed of beam-like components which can
be better analyzed by describing the topology of the design. In this section, we describe the
skeletonization method to obtain for a given design a skeleton, which is a low-dimensional
interpretation of the high-dimensional material layout.

Figure 9 Skeletonized TO results obtained using SEW-HCA. The first row shows the first two
problems discussed in Section 3.3. For each problem, we show in the second row the optimized
design obtained using SEW-HCA with equal weights on the corresponding loads. In the last
row, we show the skeletons, whose thickness is equal to that of a voxel.

Skeletonization methods [104–106] extract a skeleton from a design while preserving the topol-
ogy. While 2D objects yield a curve skeleton, 3D objects can yield either a curve skeleton or
a surface skeleton. For 3D objects—such as the TO results—Lee et al. [107] propose an
iterative thinning process that deletes the border points while satisfying the topological and
geometrical constraints, i.e., preserving the number of connected parts, cavities, and holes in
the original design. We use Scikit-image Python library [99] to convert 3D voxel data to voxel
skeletons using the method proposed by Lee et al. [107]: each skeleton is represented by a
set of voxels. For example, see Figure 9, which shows optimized designs for different load
configurations and the resultant skeletons.

Voxel skeletons can be easily converted to pointclouds by identifying the center of each voxel

Cooperative Set-based Optimization 43

as a 3D point. As discussed previously, pointclouds can be compared using CD or EMD. Using
these metrics, pair-wise distance matrices can be generated and used for clustering similar
skeletons using methods such as 𝑘-medoids or OPTICS.

4.4. Deformation Clustering

The deformation behavior of a design is yet another interesting property for an engineer. Here,
deformation behavior refers to the response of a structure to a given set of loads constrained to
certain boundary conditions. Skylar et al. [108] parametrize the nonlinear plastic deformation
of geometries, which is used to identify similar simulation results. However, their method
analyzes the surface deformation but not the volumetric deformation, which may involve more
complex phenomena. Furthermore, we need methods that can analyze TO results, where
designs can have different material layouts and nodes.

In this section, we first discuss the use of dimensionality reduction techniques to analyze
volumetric deformation. Later, we describe a method to analyze the evolution of deformation
as time series (sequential) data. The main contribution is to evaluate and adapt these state-
of-the-art methods to the deformation behavior observed in structural mechanics.

4.4.1. Dimensionality Reduction
As a first step, we regard the use of manifold learning techniques such as t-SNE [85] and
UMAP [86] to analyze the nodal displacements for a single time step. We obtain reasonable
results for the dataset discussed in Section 3.3.3, which are partially published in [60].

Since TO results tend to have different material distributions, it is necessary to identify common
nodes before the dimensionality reduction techniques can be used. In our dataset (Section
3.3.3), SIMP is used to optimize the densities of elements in the design space. The relative
density is allowed to vary from a minimum value of 0.05 to 1. So, no elements are removed
and all the TO results have the same nodes and the dimensionality reduction methods can be
directly applied to the nodal displacement data.

Figure 10 shows the clusters in the dataset. UMAP is used to reduce the displacement data of
each design into a 2D point. 𝑘-means method is used to cluster the UMAP coordinates. The
number of clusters 𝑘 = 18 is chosen since it yields the highest silhouette score (Section 4.2.4).
Note that the clusters are arbitrarily numbered. The coordinate values in a UMAP visualization
do not have any significance. However, the relative distance between points indicates data
similarity [86]. Figure 11 shows a sample set of designs in a cluster. Qualitatively, we can see
that the deformation pattern is similar for all the designs. The designs tend to have the largest
deformation in the foremost corner.

Garcke et al. [109] recommend clustering as a preprocessing step before analyzing the volu-

Cooperative Set-based Optimization 44

Figure 10 TO designs are mapped to 2-D using UMAP components, where each point
represents a design. The data samples are colored according to the clusters obtained by using
the 𝑘-means method on the reduced UMAP data. A sample design in cluster/class 11 is shown
to the right.

(a) Design 36 (b) Design 43 (c) Design 95

(d) Design 97

(e) Design 36 (f) Design 43 (g) Design 95

(h) Design 97

Figure 11 Different designs from cluster 1. The top row shows the design space with the
elements colored according to the displacement magnitude. The bottom row shows the
underlying design, i.e., only the elements with high-density elements.

metric deformation in finite element (FE) simulations. They cluster the FE nodes with similar
displacement, followed by an analysis of each cluster of nodes using dimensionality reduction
techniques such as PCA [81] and diffusion maps [110]. Therefore, it would be interesting to
research in the future if the preprocessing step has an effect with t-SNE and UMAP as the

Cooperative Set-based Optimization 45

reduction methods. Further research is needed to select the appropriate nonlinear reduction
method for displacement data.

4.4.2. Time-series Analysis
As mentioned previously, dimensionality reduction methods are pivotal in analyzing high-
dimensional displacement data. Furthermore, nodal displacements can involve multiple time
steps and time series analysis may be needed. Given these challenges, we propose an alternative
approach for analyzing volumetric deformation in TO results. First, we identify the common
nodes among the designs. Depending on the application, the nodes to be analyzed could be
further reduced, e.g., by choosing the node near the center of mass or nodes on the boundary
for analysis. When the number of nodes is large, clustering based on displacement magnitude
can be used to group nodes, and the cluster medoids can be chosen for analysis. In the second
step, the displacement time series of the nodes are compared using state-of-the-art metrics
such as dynamic time warping (DTW) [111].

DTW is a metric used to compare multi-dimensional time series data. The displacement of each
common node 𝑛𝑖 is a 3D time series denoted as d𝑖. For a pair of time series samples (d𝑖, d𝑗),
DTW warps the temporal sequences nonlinearly in the time dimension. Loosely speaking, this
allows the DTW to ignore phase shifts. Given a set of TO results and their common nodes,
each TO result has a distinct deformation subject to the given load configuration. So, each
design will assign a distinct temporal sequence to each of the common nodes: 𝐷𝐼 = {d𝑖

𝐼}𝑁
𝑖=1,

where 𝑁 is the number of common nodes and 𝐼 is the identification number for the design. So,
given two designs and their corresponding deformation behavior 𝐷𝐼 and 𝐷𝐽 , the dissimilarity
can be defined using DTW as follows:

𝑁∑︁
𝑖=1

DTW(d𝐼
𝑖 , d𝐽

𝑖). (4.6)

We validated the above method using the dataset-2 described in Section 3.3 and the results
are partially published in [61]. Figure 12a shows the common nodes, which are clustered based
on the displacement magnitude using the 𝑘-means method. 𝑘 = 3 is arbitrarily chosen, which
results in 3 selected nodes. Since dataset-2 is optimized for two static loads, the Pareto front
is two-dimensional, as shown in Figure 12b. For different designs, the deformation behavior
under the static load 1 is compared using the metric defined in Equation (4.6). The metric can
be used to calculate the pair-wise distance matrix, which can be used to cluster deformation
behavior. 𝑘-medoids with 𝑘 = 3 is used to cluster the dataset-2 (Figure 12b). Finally, UMAP
can be used with the pair-wise distance matrix to reduce each deformation into a 2D point. The
UMAP visualization of the three contiguous clusters is shown in Figure 12c. Since we expect
the deformation pattern to gradually change, the clusters identified seem to be qualitatively
correct. However, further research with engineering datasets is needed to evaluate our proposed
method.

Cooperative Set-based Optimization 46

(a) Common nodes

(b) Pareto front (c) UMAP visualization

Figure 12 Deformation behavior analysis of cantilever plate dataset.

Summary

In this chapter, we discussed different knowledge generation methods for TO results, with
emphasis on using clustering to group similar designs. Multiple clustering methods, as well as
cluster analysis methods, are briefly described. Since the clustering method requires a metric
to measure the dissimilarity between designs, we develop different metrics for clustering in this
thesis. We discussed the metrics for distinguishing the geometrical structure as well as the
deformation behavior. Since the literature is lacking on the use of metrics of geometry with
TO results, we discuss next the evaluation methods for different metrics of geometry while
also validating the use of PCAE with pointcloud data.

Cooperative Set-based Optimization 47

5. Metric Comparison Method for Geometric Feature
Vectors

At the early stages of product development, the differences in geometric properties such as size,
shape, and topology can be as important as the performance requirements. Different metrics
of geometry can be used for geometric clustering, i.e., cluster designs with similar geometrical
structures, which provides insights into the material distribution of different designs. Further-
more, the metrics can be integrated with the similarity-controlled optimization methods [19,
112] to yield designs similar to a reference design that is chosen because of economic reasons
or manufacturing limitations.

In this chapter, we discuss numerous metrics of geometry from literature with varying degrees
of accuracy and computational complexity. Furthermore, we use existing dimensionality tech-
niques on voxel representation to yield simple metrics of geometry. Finally, we present a novel
method to validate a given metric with desirable properties by comparing it with a metric
that is accurate but is not preferable, e.g., because of its computational cost. The metric
comparison methods discussed in this chapter have been partially published by the author of
this thesis [93, 113].

While numerous metrics of geometry exist, some of the metrics assign each design with a
feature-vector obtained through processing the geometric data that encapsulates the material
distribution. The feature-vector, hereafter referred to as a geometric feature-vector (g), can
be directly used for geometrical clustering. If the Euclidean distance in the space of g is a
meaningful metric of geometry, the 𝑘-means method can be used inexpensively for clustering.
Furthermore, it simplifies the building of a metamodel to judge if a design is desirable based
on geometry, which will form the basis of our cooperative optimization framework (Chapter
6).

Due to the high-dimensionality of 3D geometric data, any metric can only compare a few of
the geometric properties, e.g., hand-crafted metrics may use the distribution of surface curva-
ture, mass, or spectral descriptors [114]. By contrast, data-centric methods—which are more
successful in practice—extract features relevant to a specific 3D geometric dataset. For exam-
ple, from voxel data of geometries, different g vectors can be extracted using dimensionality
reduction techniques such as PCA [81], NMF [82], t-SNE [85], or UMAP [86]. Neural network
models called autoencoders can also reduce high-dimensional data: for example, Qi et al. [94]
use an autoencoder to learn features from the pointcloud data which is obtained by sampling
points on the surface of the design. However, it is not clear if a given feature-vector (g) and
the corresponding Euclidean metric is as meaningful as a reference metric which is a baseline
metric that is demonstrated in the literature to accurately identify different classes of objects
based on geometry, e.g., chamfer distance for pointclouds [94]. So, we present a method to

Cooperative Set-based Optimization 48

evaluate novel metric systems with different g using the reference metrics.

We evaluate different metrics of geometry based on the following criteria:

• Metrics should be sensitive to differences in size, shape, topology, position, and orien-
tation of a design. Invariance to rotation, reflection, and translation operations is an
advantage in 3D design classification, but not for TO designs, where the configuration
of a design relative to the boundary conditions is important.

• Metrics that associate each design with a feature-vector g are preferred, where the
Euclidean distance in the space of g is meaningful. This allows the use of 𝑘-means
clustering which is computationally inexpensive and widely used in machine learning
[22].

• Metrics should be able to cluster designs with similar geometrical structures, even for
datasets with topologically complex designs.

In what follows, Section 5.1 presents exemplary voxel and pointcloud data of 3D geometries,
followed by a few intuitive reference metrics of geometry from literature (Section 5.2). Several
of these metrics do not fulfill the above requirements. So, Section 5.3 introduces appropriate
dimensionality reduction techniques to develop new metrics that yield g from the voxel and
pointcloud data. In Section 5.4, we propose a new method for comparing reference metrics
with the Euclidean metric that uses g as input. Besides this, we need to evaluate the metrics
using exemplary data, which will be presented later in Chapter 7.

5.1. Geometric Data for Metrics Evaluation

The type of geometric data extracted from a design determines the applicable metrics and
feature extraction methods. Figure 13 shows the underlying representations of voxel and
pointcloud data used in this study. The former is easily available in TO since the design
domain is generally already discretized for the optimization into voxels [1], while the latter
is a compact and expressive datatype popular in 3D object recognition, classification, and
segmentation, e.g., [30, 94]. Both data types as understood in this thesis are defined in the
following.

Voxel data: A cuboidal domain containing the design is discretized into voxels using a regular
grid. The voxel data of the design is a binary vector x ∈ {0, 1}𝑛, where 𝑛 is the number of
voxels and each component of the x: 𝑥𝑖 corresponds to a specific voxel in the grid. If the design
occupies the voxel 𝑖, 𝑥𝑖 = 1, otherwise, 𝑥𝑖 = 0. For partially occupied voxels, we assign 𝑥𝑖 = 1
if the design occupies the center of the voxel. The dimension of x can be large, depending on
the grid resolution required to capture the complexity of the design. When the voxel grids of
two designs do not match, a common space containing them is discretized into voxels, where

Cooperative Set-based Optimization 49

each voxel may be marked as occupied if a majority of the voxel is occupied according to the
original grid. In this thesis, we ensure that the underlying voxel grid is common among the
designs.

Voxel data can be extracted for TO results since, in general, TO optimizes material in a
voxelized domain [1]. An interesting research question that we address later is how well
the dimensionality reduction techniques, popular in machine learning, can identify underlying
design patterns and extract g from voxel data of designs.

Pointcloud data: Compared to voxels, a pointcloud is a compact representation that uses
sampled points on the surface to represent the design. Geometric learning methods such as
autoencoders with pointclouds as the input are interesting since they can identify different
classes of shapes such as cars and airplanes [30, 94].

Octrees and meshes, among numerous other representations [115], can also be used to represent
3D data. The octree-based representation [116] alleviates the high memory usage of uniform
voxel size by varying the resolution of voxels in different regions, e.g., by using a higher
resolution near the surface of a design. Surface meshes use a set of polygon faces to represent
the surface of a geometry and are more widely used in object recognition [117] than volumetric
meshes, which are more predominant in finite element analysis but are high-dimensional [118].
Since the dimensionality of pointclouds is very low, it is increasingly used by researchers in 3D
object recognition [30]. For our initial analysis of TO results, we consider the metrics using
voxel data for their simplicity and pointcloud data for their usefulness in object recognition.
More sophisticated autoencoders using pointcloud data with surface normals [119] or 3D mesh
data [120] are possible and can be the subject of future research.

Figure 13 Geometric representations of TO results

Cooperative Set-based Optimization 50

5.2. Reference Metrics

In this section, we describe a few intuitive metrics used in the literature to quantify geometrical
differences between designs. These metrics serve as a reference to evaluate the g described
later. For the sake of clarity and brevity, we choose a few popular and reference metrics from
the literature, although there are other variants and methods to define metrics.

Voxel distance (VD): Voxel data of two designs can be compared directly when they corre-
spond to the same regular grid in the 3D domain. The Euclidean distance between the voxel
data of the two designs is equal to the square root of the number of non-overlapping voxels
that are only occupied by one of the two designs. A disadvantage of this metric is that it
is insensitive to the position of non-overlapping voxels. For example, given any two designs
without any overlap, the metric is invariant to their relative position as long as the designs do
not overlap.

Chamfer distance (CD): Normally, chamfer distance is used to compare pointcloud data
of geometries [30]. CD between two pointclouds, say 𝑆1, 𝑆2 ⊂ R3, is defined as follows:

CD(𝑆1, 𝑆2) =
∑︁

a∈𝑆1

min
b∈𝑆2

‖a − b‖2
2 +

∑︁
a∈𝑆2

min
b∈𝑆1

‖a − b‖2
2, (5.1)

where a, b ∈ R3 are points in the pointcloud.

Earth mover distance (EMD): Similar to CD, EMD [30] or Wasserstein metric [121] com-
pares the pointcloud data 𝑆1, 𝑆2 ⊂ R3 of two designs. It solves an optimization problem to
find a mapping Ψ : 𝑆1 → 𝑆2 such that the objective ∑︀

a∈𝑆1 ‖a − Ψ(a)‖2 is minimized. We
use an approximate but fast algorithm for EMD calculation proposed by Achlioptas et al. [30].
EMD is still much slower than CD.

The metrics—VD, CD, and EMD—are sensitive to changes in rotation, translation, or re-
flection. While VD compares very high-dimensional voxel data, CD and EMD compare the
pointcloud data. These metrics are sufficient since we only need a few reference metrics to
demonstrate our metric evaluation method. As discussed previously, the emphasis of this study
is to evaluate g, the benefits of which will be discussed next.

Cooperative Set-based Optimization 51

5.3. Dimensionality Reduction

Dimensionality reduction techniques identify the underlying patterns in a dataset and summa-
rize them in a lower-dimensional feature space. Each dimensionality reduction method can
extract features from the high-dimensional 3D geometric data, yielding a new set of g. In this
thesis, we investigate the following dimensionality reduction methods to extract g from voxel
data: PCA [84], NMF [82], t-SNE [85], and UMAP [86] which are widely used in different
fields. PCA extracts non-redundant features using linear transformations [83, 84]. Similar to
PCA, NMF is a linear transformation but is constrained to extract non-negative components,
which can be more easily interpreted compared to PCA. t-SNE and UMAP are nonlinear man-
ifold learning methods used in machine learning to visualize high-dimensional data. Note that
voxel data can itself be used as g without any reduction since the Euclidean distance leads to
a meaningful metric called voxel distance. However, Euclidean distance with pointcloud data
is not meaningful since it is sensitive to the order of points in each pointcloud. For example,
given two pointclouds of the same size, the Euclidean distance between them is not unique
since it will change with the order of points in either of the pointclouds. While it is not clear if
PCA, NMF, t-SNE, and UMAP can be used for pointclouds; autoencoder is an effective fea-
ture extractor with pointcloud data as demonstrated by its use in object classification [30, 94].
The main aspects of these methods are given in the following. For details, see the references
mentioned in the text.

Principal component analysis: PCA analyzes a set of 𝑛 data points each with 𝑑 features,
𝑋𝑛,𝑑 = {x𝑖 | x𝑖 ∈ R𝑑, 𝑖 = 1, ..., 𝑛}, to linearly project each sample x𝑖 to a new set of orthonor-
mal basis vectors: {b𝑖 | b𝑖 ∈ R𝑑, 𝑖 = 1, ..., min(𝑛, 𝑑)}, i.e., x𝑖 =

∑︀
𝑝𝑘b𝑘. The new basis is

constructed such that the principal component scores 𝑝𝑘 are uncorrelated and the variance in
the components 𝑝𝑖 decreases as the order 𝑖 increases [122]. It is often sufficient to consider only
a few initial principal components to represent the data, resulting in dimensionality reduction.
For voxel data, 𝑛 is the number of designs and 𝑑 is the number of voxels.

Non-negative matrix factorization: NMF [123] factorizes the input matrix X𝑑×𝑛 = [x𝑖]𝑛𝑖=1 =
W𝑑×𝑟 H𝑟×𝑛 where 𝑑 is the number of features, 𝑛 is the number of data samples; W and H
are matrices with non-negative entries. In general, 𝑟 ≪ min(𝑛, 𝑑) such that each sample x𝑖

(column 𝑖 of X) can be expressed as a linear combination of columns of W, i.e., x𝑖 = Wh𝑖,
where h𝑖, a 𝑟-dimensional column vector of H, is the reduced representation of x𝑖. Since H
has non-negative entries, voxel data is decomposed into interpretable components.

t-distributed stochastic neighbor embedding: t-SNE embeds the high-dimensional data
in 2D or 3D such that the clusters in the data become visible [85]. It achieves this by keeping

Cooperative Set-based Optimization 52

data samples, that are close as per a given metric, i.e., close in the reduced coordinates with
high probability. So, t-SNE is a nonlinear transformation that preserves the cluster structure.

Uniform manifold approximation and projection: UMAP, similar to t-SNE, is a manifold
learning technique, useful in visualizing high-dimensional data [86]. UMAP preserves the inter-
cluster distance better than t-SNE. Empirical studies using t-SNE [85] and UMAP [86] show
how data can be embedded into 2D while preserving the cluster structure. For example, image
data of handwritten digits can be visualized as clusters in 2D, where images of different digits
belong to a distinct cluster.

Pointcloud autoencoder: As discussed in Section 4.3.1, PCAE is a nonlinear dimensionality
reduction method that uses deep neural-networks. PCAE learns to reconstruct the input
pointcloud from a low-dimensional latent code. It is demonstrated later in Chapter 7.2 that
PCAE with CD loss function provides meaningful g vectors that can be used to cluster similar
TO results.

Autoencoders were effectively used with pointclouds to extract features from everyday objects
such as chairs, cars, and airplanes [30, 94, 95]. Rios et al. [96] demonstrate that a pointcloud
autoencoder identifies nonlinear subregions that are preferentially occupied by a subclass of
designs. This explains the usefulness of the latent code in object classification. In this thesis,
we use the PCAE architecture proposed by Achlioptas et al. [30] since it is simple, effective,
and has no additional assumptions on the shape.

Euclidean distance with g as input, when meaningful, allows the use of 𝑘-means clustering
(Chapter 4.2.1) as well as simplify the process of building metamodels that can predict the
geometric properties without actually running an expensive design generation method. Since it
is not clear if the Euclidean distance with g obtained using different methods is a valid metric,
we propose a method to compare it with reference metrics. The proposed method can also
be used to compare any new metric with the reference metric. Furthermore, we introduce
measures to evaluate the clustering accuracy of a given metric.

5.4. Methods for Evaluating Metrics

Until now, we discussed existing metrics of geometry and dimensionality reduction methods
from the literature. In this section, we propose two general methods to validate a new metric,
referred to as the target metric (TM) hereafter, by comparing it with a reference metric (RM),
which is a baseline metric known to be useful in capturing geometrical differences.

Cooperative Set-based Optimization 53

Reference metric (RM): For example, chamfer distance or other metrics from Section 5.2 may
be chosen as the RM. For a given dataset, other metrics may also be used as RM. For example,
if the designs only differ in a single geometric property 𝜃, we can also use the difference in
𝜃 as RM. For more complex cases, we need more advanced approaches using more than a
single property. Hence, we are looking for an evaluation method that can handle both of these
cases.

Target metric (TM): Similarly, a dimensionality reduction method from Section 5.3, say PCA,
can be chosen to yield a vector g and the Euclidean distance in g is a TM to be validated.
Since each dimensionality reduction method results in a different g, we have multiple TMs to
validate.

In summary, any proven metric can be used as RM and the metric to be tested is referred to
as TM. Next, we describe the two proposed methods for comparing metrics in the thesis: the
first method measures the correlation between distances measured by TM and RM while the
second method compares the clustering performance of TM and RM for one or more datasets.
If TM and RM are found to be similar, then we can safely use TM instead of RM if it has
better properties, e.g., when it uses Euclidean distance with some vector g.

5.4.1. Comparison with a Reference Metric
As discussed before, the first method compares a TM and the baseline metric called RM based
on the distances measured. Our method is based on the following idea: If a given TM is a valid
metric, the distances measured by TM should be similar to that of RM. So, a high correlation
between the distances measured by TM and RM indicates that TM is a valid metric since RM
is known to be valid.

Consider a collection of 𝑁 geometries G = {𝐺𝑒}𝑁
𝑒=1 and its pairs P = {𝑝𝑖 = (𝐺𝑚, 𝐺𝑛) | 𝑚 ̸=

𝑛}. A metric M measures the distance between 𝐺𝑚, 𝐺𝑛 of a pair 𝑝𝑖 and the distances measured
are given by 𝐷M = {M(𝑝𝑖) | 𝑝𝑖 ∈ P}. The similarity between RM and TM is given by the
correlation between 𝐷RM and 𝐷TM, where a high correlation value implies a high degree of
similarity. Figure 14 illustrates the proposed method.

Correlation measures: Pearson correlation (𝜌𝑝) [124] calculates the linear correlation be-
tween any two input variables, which are 𝐷RM, 𝐷TM in our case. 𝜌𝑝 ranges from -1 to +1.
For a positive linear correlation, 𝜌𝑝 ≈ 1. In general, the values of 𝐷RM𝑎𝑛𝑑𝐷TM may not be
linearly related. However, it is enough for the measured distances to have a monotonic relation
if the metrics are similar. To this end, we need to measure Spearman correlation (𝜌𝑠) [124]
rather than Pearson correlation (𝜌𝑝) to measure the metric correlation. Spearman correlation
measures the Pearson correlation of rank values of the given data, which are obtained by or-
dering all the values and assigning a rank to each value based on their position in the order.

Cooperative Set-based Optimization 54

Figure 14 Measuring similarity between two metrics RM and TM. For each pair of geometries,
RM and TM yield two different distance values. A high correlation between the measured
distances 𝐷RM and 𝐷TM validates the TM.

Spearman correlation then uses the rank values to obtain a Pearson correlation coefficient,
which is useful in measuring the monotonic relationship, whether linear or not, between the
given two variables.

In this thesis, when the correlation between the measured distances is high, i.e., 𝜌 ≈ 1, we say
that the metric correlation is high. Note that the meaningfulness of a correlation depends on
the number of points. So, the significance of the correlation may need to be measured if the
dataset contains very few samples.

The proposed method can empirically determine if a TM is at least as good as the RM in
quantifying geometrical differences. When the metric correlation is high, we expect TM to
yield similar clusters as RM. However, we verify this by evaluating the clustering accuracy with
labeled test datasets, using the methods discussed in the next section.

5.4.2. Comparison based on clustering performance
One of our objectives is to inexpensively identify groups/clusters of designs with similar ge-
ometrical structure. So, we need to measure the clustering performance of different metrics
from Section 5.2 and 5.3. In this thesis, we use test datasets where the expected subclasses are
known and the metrics are challenged to identify these subclasses. In these labeled datasets,
designs belonging to a subclass 𝑖 have a common ground-truth label 𝑔𝑖. By clustering the
dataset using a metric, we can identify the clusters in the dataset where designs in each cluster
𝑖 have a common cluster label 𝑐𝑖. Clustering performance can be evaluated by comparing the
ground-truth and cluster labels using classification errors such as precision, recall, and F1-score
[18, 125] as described below.

Label remapping: In general, due to the stochastic nature of clustering algorithms, the
cluster labels and the ground-truth labels are not the same, even if the clustering is accu-
rate in finding the subclasses (Figure 15). So, before using the classification measures, the
cluster labels need to be remapped to match the ground-truth labels. Here, we propose a
simple method for relabeling cluster labels. In practice, when the clustering is not perfect,

Cooperative Set-based Optimization 55

Figure 15 An example where clustering identifies the subclasses accurately. However, the
cluster labels (shown beside clusters) are different from the corresponding ground-truth labels.
For this example, the majority label method would relabel the cluster label 2 to 1 since a
majority of its samples have the ground-truth label 2.

designs in a cluster 𝑖 may not have a common ground-truth label but we can set the cluster
label 𝑐𝑖 to the ground-truth label 𝑔𝑖 used by the majority of samples in the cluster 𝑖 (Figure
15). After relabeling, measures of classification error can be used to measure the clustering
performance.

Here, we provide brief definitions for precision, recall, and F1-score. For each cluster 𝑖, precision
is the fraction of samples that have the ground-truth label 𝑔𝑖 among the total samples that
have the cluster label 𝑐𝑖 = 𝑔𝑖. Recall measure is the fraction of samples that have the cluster
label 𝑐𝑖 among the total samples with the ground-truth label 𝑔𝑖 = 𝑐𝑖. F1-score is the harmonic
mean of precision and recall. Since both high precision and high recall are desired, the F1-score
is more useful than precision and recall. Weighing each of the scores (say, F1-score) with the
cluster size gives a corresponding average score (i.e., average F1-score).

In addition to the classification errors, one can use adjusted mutual information score (AMI)
[126], a state-of-the-art method to measure multi-label classification accuracy without the re-
labeling step mentioned above. AMI is invariant to permutations of the labels and is adjusted
for the chance, i.e., random labeling gives a zero AMI score. However, AMI is not as intu-
itive as the classification error measures using the majority label method discussed previously.
Furthermore, by analyzing the classification errors for each cluster, one can better identify the
mislabeled designs.

Summary

In this Chapter, we presented numerous metrics for identifying geometrical differences using
voxel and pointcloud representations. Furthermore, we discussed a method for evaluating a new

Cooperative Set-based Optimization 56

metric with respect to a proven reference metric. We also presented clustering performance as
a method to evaluate metrics quantitatively using labeled test datasets. Since the benchmark
datasets for computer vision such as ShapeNet [127] are topologically not as complex as the
TO results, later in Chapter 7, we discuss methods to generate test datasets with complex
topologies as well as evaluate the Euclidean metric based on different geometric feature-vectors
using our datasets.

Cooperative Set-based Optimization 57

6. Cooperative Topology Optimization

In engineering, TO requires expensive simulations to find structures in a high-dimensional
design space while considering multiple objectives. MTO methods can potentially yield an
unlimited number of Pareto optima. Therefore, some of the challenges in MTO are:

1. How to generate diverse Pareto optima?

2. How to incorporate user feedback and generate desired solutions?

3. How to avoid expensive simulations while addressing the above challenges?

MOEAs can generate diverse optimal solutions as well as incorporate user feedback [25].
When the objectives are expensive to evaluate, as in TO, it is economical to use the so-
called interactive methods [21], which progressively generate only the preferred solutions.
However, the application of MOEA in the high-dimensional decision space of MTO problems
is prohibitively expensive. The dimensionality of such a decision space can be reduced using
feature mapping methods such as the evolutionary level-set method [3, 26]. However, even if
the dimensionality is reduced, MOEAs still require a large number of objective evaluations and
hence are computationally expensive. If we can reduce the number of expensive evaluations,
we can use MOEAs to generate diverse, desired solutions.

State-of-the-art TO methods iteratively optimize the material by efficiently analyzing the effect
of each decision variable (called sensitivities) on the given objective in each iteration (Chapter
3). Examples of these methods are gradient-based SIMP [1] and heuristic-based HCA [39].
At each iteration, one can combine the effect of multiple objectives using the weighted-sum
method for MTO (w-MTO) to develop efficient algorithms such as SEW-HCA [27], where the
user preferences are included by an appropriate weighting of the objectives. For more details
on SEW-HCA, see Chapter 3. However, it is difficult to articulate the preferences for the
objectives without analyzing a representative set of solutions.

In this chapter, we propose the use of the interactive method, as proposed by Miettinen et al.
[21], to incorporate user preferences and generate preferred solutions. In this method, a given
set of solutions is analyzed and the user modifies her/his preference to generate a new set of
solutions; this process is repeated until the user is satisfied. In the literature, preferred solutions
are defined using reference directions, points, or other supervised methods [25]. In Chapter
4, we discussed the use of clustering methods to support an engineer in the identification of
preferred solutions. In this chapter, we develop a novel cooperative algorithm that uses a
preferred cluster of solutions as the input and generates only the preferred solutions. For this
purpose, we combine an EA with metamodeling techniques to predict weights required by a
w-MTO to generate the preferred set of solutions. The method is referred to as iSMO since
it uses a set of solutions as a reference. For a given set of weights, iSMO uses inexpensive

Cooperative Set-based Optimization 58

machine learning models to predict the objectives and therefore allows one to decide if a set
of weights will result in a preferred solution. Although we use weights as the input to iSMO
in this thesis, it may be generalized to handle other hyperparameters of a design optimization
method.

In the next part, Section 6.1, we introduce a novel cooperative optimization method called
iSMO. In Section 6.2, we describe evaluation measures for the new solutions generated by
iSMO: These measures evaluate the new solutions based on their similarity to the preferred
set as well as their diversity. While these methods are taken from literature, we improve here
the diversity measure by using normalization. Later in Chapter 8, we will present corresponding
test problems and the results.

6.1. Interactive Set-based Multi-objective Optimization

As discussed in Chapter 4, the preferred set of solutions S can be found in an input set of
solutions I using methods such as clustering. The objective of iSMO is to generate new
solutions similar to the reference set S. A user can repeat this process of identifying preferred
solutions and generating more of such solutions as many times as required. This leads to a
better understanding of the local Pareto front in the vicinity of the preferred region of the
design space. In this chapter, we develop iSMO to work with any w-MTO method such as
SEW-HCA. However, using the components developed in this section, iSMO may be extended
to handle any design optimization whose hyperparameters can be tuned to yield different
solutions.

Figure 16 illustrates two iterations of iSMO to progressively generate solutions in the preferred
regions of a Pareto front. In each iteration, clustering is used to select a preferred set of
solutions. iSMO is used to predict the new weights required to generate diverse solutions in
the preferred region.

Problem Formulation
TO optimizes material layout in a design domain Ω. For example, in a density-based TO,
Ω is discretized into 𝑁𝑒 number of elements and the TO determines the relative density
𝜌 ∈ [0, 1] of each of the elements: the optimized design d is given by a vector of element
densities 𝜌𝜌𝜌 = [𝜌𝑒]𝑁𝑒

𝑒=1. For multiple objectives f = [𝑓𝑚]𝑁𝑓

𝑚=1 and the corresponding weights
w = [𝑤𝑚]𝑁𝑓

𝑚=1, a w-MTO determines the optimal design d(w) (see Chapter 3 for more details).
Given a reference set S that defines a preferred region P, iSMO needs to find the set W =
{w𝑛}𝑁

𝑛=1 of weight-vectors which will result in a diverse set D of 𝑁 Pareto-optimal solutions:
D = {d(w𝑛)}𝑁

𝑛=1 ⊂ P. So, iSMO solves the following problem:

min
w

f = [𝑓𝑚(w)]𝑁𝑓

𝑚=1,

s.t. 𝐶(w) = 0,
(6.1)

Cooperative Set-based Optimization 59

Figure 16 Two iterations of iSMO for a MOP with objectives 𝑓1, 𝑓2. In each iteration, (i) the
solutions are clustered, (ii) a cluster is selected, and (iii) new solutions are generated for the
selected cluster by iSMO. The new solutions in an iteration are used as input for clustering in
the next iteration.

where each objective 𝑓𝑚(w) corresponds to the design d(w) obtained using w-MTO and the
constraint function 𝐶(w) = 0 only if d(w) belongs to the preferred region, i.e., d(w) ∈ P. We
propose an EA to solve the above problem.

In the following, we will discuss the different components of iSMO, given by Equation (6.1).
First, we need to choose a preferred set as input to iSMO (Section 6.1.1). Since EAs need to
consider multiple solutions before reaching the desired optima and w-MTO is expensive, we
use regression models to predict f from w (Section 6.1.2). Furthermore, we need to constrain
the solutions to the preferred region, which can be achieved by using a classifier model (Section
6.1.3). Different regressors and classifier models can be compared using the cross-validation
method [18], which is briefly described in Section 6.1.4. Finally, we will present an EA to
obtain a set of w that will result in a diverse set of solutions (Section 6.1.5).

6.1.1. Identification of Preferred Solutions using Clustering
As discussed in Chapter 4, clustering methods can be used to find the preferred solutions. Given
a metric for comparing solutions, a clustering method such as 𝑘-means organizes the input
data into clusters (Section 4.2). After analysis, an engineer may choose one or more clusters
as the preferred set S. For example, designs can be grouped based on similar performance
[55] or geometrical structure [113]. A cluster of solutions with the desired performance or
geometrical structure can be chosen as S.

For a set of 𝑁𝑓 objectives and the corresponding weights, w-MTO yields an optimal design.
So, w-MTO with an input weight-vector w = {𝑤𝑚}𝑁𝑓

𝑚=1 results in an optimal solution d(w)
with the objective values: f = {𝑓𝑚}𝑁𝑓

𝑚=1. Using w-MTO with a sampled set of weight-vectors

Cooperative Set-based Optimization 60

W0 = {w𝑛}𝑁
𝑛=1, an initial set of 𝑁 solutions I = {d(w𝑛)}𝑁

𝑛=1 can be generated. Using a
clustering method, I is split into clusters. If there are 𝑘 number of clusters, each solution
d𝑖 ∈ I is assigned a cluster label 𝑝𝑖 ∈ {1, ..., 𝑘} according to the cluster it belongs to. If the
user chooses a cluster 𝑝ref , then the preferred set S = {d𝑖 | 𝑝𝑖 = 𝑝ref}.

6.1.2. Prediction of Objectives Using a Regressor
iSMO needs to inexpensively evaluate the objectives f for different weight-vectors w. To
generate I, w-MTO uses a sample of weights W0 = {w𝑛}𝑁

𝑛=1 to generate designs with objective
values F0 = {f𝑛}𝑁

𝑛=1. Using F0 and W0, we can train a regressor model 𝑃f to predict f from
an arbitrary w. Some of the criteria for choosing an appropriate model for 𝑃f are as follows:

• Redundant weights: Changing w by multiplying a positive value does not change
the resultant design of w-MTO. So, it might be easier to train better models, if the
redundancy is removed in the inputs. For example, we can normalize the weights
using L1-norm such that ‖w‖1 =

∑︀
𝑚=1,...,𝑁𝑓

𝑤𝑚 = 1 (weights are always positive)
and remove the last weight to yield the input vector [𝑤𝑚]𝑁𝑓 −1

𝑚=1 for the regressor model.

• Dimension of input: If the dimension w is large, the input may need to be preprocessed
by dimensionality reduction techniques such as PCA for better models.

• Dimension of output: If the dimension of f is greater than 1, we need to ensure that
the regression models can output multiple values.

• Size of input: Since w-MTO is expensive, the size of training data might be small, in
which case simpler models such as random forest regressors [128] might be preferred
over complex models such as neural-network regression models to avoid overfitting
[18, 129].

6.1.3. Prediction of Cluster Labels using a Classifier
The constraint function 𝐶(w) = 0 is used to check if a weight vector w results in a solution
that is similar to the preferred set S, and hence is in the preferred region P. So,

𝐶(w) = 0 iff d(w) ∈ P. (6.2)

As discussed in Section 6.1.1, S is selected among a given I, where I−S = S′ are the remaining
solutions. It is difficult to define a preferred region explicitly but we can treat S and S′ as
two classes of solutions 𝐶S (class label = 0) and 𝐶S′ (class label = 1), and train a binary
classifier to distinguish the classes. We propose to build a classifier with w as input and the
corresponding class labels as output. If clustering is used to find the classes in the solutions,
as in this thesis, we can predict the cluster labels from w, in which case we are building a
multi-class classifier model 𝑃𝑝(w) to predict the cluster labels.

Cooperative Set-based Optimization 61

The constraint function is then given by:

𝐶(w) = |𝑃𝑝(w) − 𝑝ref |, (6.3)

where 𝑃𝑝(w) is the multi-class classifier model and 𝑝ref is the preferred cluster label. To train
the model, we can use the w (weights) and 𝑝 (cluster labels) of the initial solutions I.

Other Classifier Models for Predicting Cluster Labels
If clustering uses the features y of designs d(w), then the classifier model can be trained with
y as input. While this might lead to an improvement in the classifier accuracy, it requires
an additional regressor model 𝑃y(w) to predict the features y which are used by 𝑃𝑝(y) to
predict cluster labels 𝑝. Using these two models in serial may negatively affect the overall
accuracy since the errors propagate through the models. Especially, if the dimension of y is
large compared to that of w, the accuracy of 𝑃y(w) can be low. For these reasons, we have
chosen not to investigate in this direction. However, one may compare these models with our
proposed classifier model using the cross-validation method.

6.1.4. Evaluation Methods for Metamodels
The regression performance of metamodels can be measured using mean square error (MSE)
or the coefficient of determination (R2 score). The classification performance of models can
be measured using precision, recall, or F1 score. MSE, precision, and recall measure model
errors and need to be small. By contrast, measures that are called scores need to be high.
With accurate metamodels, iSMO will more likely yield more diverse solutions. However, if
the training data is used to measure the model error/score (called training error/score), we
will overestimate the model performance [18].

We can determine whether a model will perform well on new data using cross-validation.
First, the dataset is split into training and validation sets. The training set is used to train
the model while the validation set is used to measure the model’s performance. For example,
in 𝑘-fold cross-validation [16, 18], the dataset is split into 𝑘-folds, where 𝑘-1 folds are used
for training, and the remaining fold is used for measuring the error/score of the model (called
cross-validation error/score); there are 𝑘 possible ways of selecting unique folds here. This
process may be further repeated by reshuffling the data. Using different cross-validation splits,
we can analyze the variation in the model performance.

If both cross-validation and training scores of a model are low, the model is underfitting and
we need a more complex model or more data. If only the cross-validation performance is bad,
the model is overfitting to the data, in which case the model needs to be regularized by adding
constraints or a simpler model is chosen [18].

Each regressor or classifier models have multiple hyperparameters that can be tuned to obtain
the best model for a given task. Cross-validation scores can help choose the model class as

Cooperative Set-based Optimization 62

well as tune its hyperparameters. It is recommended that apart from the training and the
cross-validation dataset discussed above, an unused test dataset is used to report the model
accuracy [18]. However, in this thesis, we do not perform additional hyperparameter tuning
since the model accuracy is sufficient for our test cases without it. Hence, we do not use
any separate test dataset. However, depending on the use case, one may do hyperparameter
tuning and use a test dataset.

In this thesis, we use the scikit-learn [130] library in Python to build the models as well as
evaluate them using cross-validation. Unless otherwise specified, we use the hyperparameters
shown in Table 3 for different regressors and classifiers in this thesis. These are the default
values used by the scikit-learn library (version 1.0.2). For further details, see scikit-learn
documentation [130].

Table 3 Default hyperparameters used by regressors and classifiers in this thesis. The
parameter name is given with value in brackets.

Metamodels Default values for hyperparameters

Gaussian process regressor kernel (radial basis function)

Random forest regressor number of estimators (100), split criterion (mean
squared error), limits on depth/leaf size (None)

𝑘-nearest neighbor regressor number of neighbors (5), metric (Euclidean dis-
tance), weight function (uniform)

𝑘-nearest neighbor classifier same as above

Linear regressor least squares method without regularization

Random forest classifier number of estimators (100), split criterion (gini im-
purity), limits on depth/leaf size (None)

Support vector classifier regularization parameter (C = 1), kernel (radial ba-
sis function), decision function (one-vs-rest)

Logistic regression classifier penalty (l2 norm), regularization parameter (C =
1), maximum iterations (100)

Linear support vector classifier penalty (l2 norm), loss (squared hinge), regulariza-
tion parameter (C=1), maximum iterations (1000)

6.1.5. Identification of Desired Weight-vectors
As discussed previously, the 𝑃f(w) can predict the objectives from weights, and 𝐶(w) can be
used to restrict the weights such that the resultant solutions belong to the selected cluster.
Using these inexpensive metamodels, EA can be used to find the new weights that will result
in a diverse set of preferred solutions, completing a single iteration of iSMO (Figure 17). In
this thesis, the EA step in iSMO follows the framework of MOEAs, which have been very
successful in identifying a multitude of Pareto-optimal solutions [25].

Cooperative Set-based Optimization 63

Figure 17 An iteration of iSMO. Given an initial set of designs and a preferred set among
them (Step: A), we build a regressor with a weight-vector w as input to predict objectives f
(Step: B) and a constraint function that selects w based on the preferred set (Step: C). Using
EA, we find the set of w (Step: D) that will result in the desired designs.

MOEAs iteratively apply so-called mutation, crossover, and selection operators to evolve a
population of solutions. In each iteration, crossover and mutation operators are used to
generate a wide range of solutions, which are then filtered by the selection operator such that
they (1) satisfy the constraints of the given problem, (2) are Pareto-optimal, and (3) are well-
spread (diverse) in the objective space. Following the framework of an MOEA, iSMO uses
these operators iteratively to find the desired weights.

In this thesis, the EA step of iSMO is based on NSGA-II [24], a widely used genetic algorithm
(GA) for multi-objective optimization. iSMO uses the same crossover and mutation operators
used by NSGA-II. Since NSGA-II is a real-coded GA, we do not encode solution values into
binary strings. Therefore, the crossover operator uses the simulated binary method, which
simulates the single-point crossover operator for binary-coded inputs. The mutation operator
uses the polynomial method, as in NSGA-II. These operators may also be replaced by other
variations of crossover and mutation operators [25].

For the selection step, iSMO uses only some of the selection criteria used by NSGA-II. First,
we select only the solutions that satisfy the relevant constraint for our problem, i.e., the cluster
constraint (𝐶(w) = 0). Since the decision variable is the weight-vector w, any resultant solu-
tion will automatically be near the Pareto-front if w-MTO is efficient. So, we do not need to
ensure Pareto-optimality as in NSGA-II, which uses the non-dominance ranking to move solu-
tions towards the Pareto front. In fact, due to inaccuracies of 𝑃f(w), the predicted objectives
may not be strictly non-dominated. Therefore, using the non-dominance ranking might be

Cooperative Set-based Optimization 64

detrimental to our application. Finally, iSMO ensures diversity in the objective space using the
crowding distance [24], which roughly measures the average distance to the nearest neighbors.
For diversity, solutions with higher crowding distances need to be preferentially selected. So,
iSMO uses only the given constraints and diversity criterion in the selection operator. By re-
peated application of crossover, mutation and selection operators, iSMO provides the weights
required by TO to generate more solutions in the desired cluster.

6.2. Evaluation Methods

Some of the objectives of a multi-objective algorithm ensure that solutions are close to the
Pareto front (in short, optimality), a good distribution of solutions in the objective space
(diversity), and a large range of solutions (range). Measures such as generational distance
(GD), and hyper volume (HV) quantify optimality, while measures such as spacing distance
and Pareto spread quantify diversity [131–133]. Hypervolume or other measures can be an
indicator of range [134].

In this thesis, our objective is to find new solutions similar to a preferred set S, which we
refer to as preferredness. The underlying w-MTO method used by iSMO is responsible for
the optimality of a solution. Hence, we can ignore the optimality measures and only measure
preferredness, diversity, and range of the new solutions. In this thesis, we use the following
methods to measure preferredness and diversity.

Figure 18 Silhouette score 𝑠 for each new solution d, given a preferred cluster S. 𝑎 is the
average distance to other solutions in the same cluster and 𝑏 is the minimum average distance
to other clusters. The score 𝑠 = (𝑏−𝑎)

max (𝑏,𝑎) .

6.2.1. Silhouette Score
Constraint functions used by iSMO cannot be used to evaluate the new solutions, which always
satisfy the constraints. However, silhouette score [79] (Section 4.2.4) can be used to quantify
the preferredness of the new solutions to the selected cluster. Figure 18 illustrates a method
to obtain the silhouette score of a new solution in cluster S. In this calculation, the metric
used for clustering should be used to measure the distances. The average silhouette score for

Cooperative Set-based Optimization 65

a set of new solutions indicates the quality of preferredness to the preferred set S. While a
high score (𝑠 ≈ 1) is preferred, the silhouette score is expected to be low for contiguous data,
where the clusters are not well-separated. In particular, the score is low for samples on the
boundary of clusters.

The silhouette score may penalize the boundary solutions to large clusters since the average
distance tends to be large for such clusters. For the 𝑘-means method, which identifies clusters of
similar sizes, this is less of a problem. However, for density-based algorithms that yield clusters
of unequal sizes, the silhouette score may not be the right measure. A promising alternative
is to use the minimum distance, instead of the mean distance, to the set of solutions while
defining 𝑎 and 𝑏 in the silhouette score. In this thesis, we do not investigate this further and
use the silhouette score as a measure of preferredness.

6.2.2. Diversity Score
In multi-objective optimization, multiple measures of diversity are available [133, 135]. The
distribution of non-dominated individuals can be measured using the variance of niche count
of each individual [135, 136]. However, it is difficult to define the niche size required to
calculate the niche count. Deb et al. [24] measure the spread of Pareto optima in 2D using
the consecutive distance between the solutions, where no pairwise distance is used more than
once. However, this definition cannot be easily extended to higher dimensions. To alleviate this
problem, we can use the Spacing metric that measures the variance of the shortest distance
between samples, even if certain values may be repeatedly used [137]. In the following, we
generalize the definition of the Spacing metric to higher dimensions.

(a) Δ = 0 for well-spread samples.
x0 = (0.5, 0.5). Other points are along

the x- or y-axis at a distance of 0.5 units.

(b) Δ for variation of x0: In the plot, (x, y)
are the coordinates of x0. Along z is the
corresponding spacing metric Δ([x𝑖]4𝑖=0).

Figure 19 Measuring Δ of five 2D points: [x𝑖]4𝑖=1. The data can be understood as a projection
of a 3D Pareto front onto a plane. For each point x𝑖, we show the shortest distance 𝑑𝑖 to other
samples. Δ is smallest when x0 = (0.5, 0.5), and is equidistant from the other points. Δ is
high when x0 coincides with another point. Δ is moderately small when x0 is at the corners of
the dotted square in (a).

Cooperative Set-based Optimization 66

For a given data 𝑋 = {x𝑖}𝑛
𝑖=1 with 𝑛 samples, the spacing metric Δ is defined as follows:

Δ = std [𝑑𝑖]𝑛𝑖=1,

where 𝑑𝑖 =
𝑛

min
𝑗=1

𝐷(x𝑖, x𝑗),
(6.4)

𝐷 is a distance measure for the given data, and std measures the standard deviation of the
distance values. Typical choices for 𝐷 are Euclidean distance or the Manhattan distance
(L1-distance) in the objective space. For simplicity, std is calculated using the biased sample
variance (second central moment of the sample), where the bias decreases with the increase in
the number of distance values. Δ ∈ [0, inf) and the higher the value, the lower the diversity.
For evenly spread samples, Δ = 0.

Figure 19 illustrates the definition of Δ using a small number of samples. Δ = 0 when the
shortest distance to other points does not vary, i.e., 𝑑𝑖 = 𝑑𝑗 ∀ 𝑖, 𝑗. To better understand Δ,
we can change the position of one of the points and measure Δ (Figure 19b), whose variation
agrees with our intuition.

(a) Δ when the input has a large variation
along an axis.

(b) Δ with standard scaling of input.

Figure 20 Δ is sensitive to the variation of input along different axes. When the input points
of Figure 19 are scaled along the x-axis by 10 times, i.e., 𝑑0 = 𝑑1 = 𝑑3 = 5 and 𝑑2 = 𝑑4 = 0.5,
Δ is skewed along the x-axis. If the input is normalized, we can eliminate this problem.

One disadvantage of using Δ is that it is sensitive to the variation of input along different
axes. For example, we can increase the distance between the points along the x-axis (Figure
19) and observe the variation of Δ in Figure 20a. To avoid this, we normalize the data before
measuring Δ. Figure 20b shows that after normalization, we can treat variation along with
different features (e.g., objective values) of the data equally. In this study, we use the Spacing
metric with normalization, referred to as Δ′ hereafter. Min-max scaling is used to normalize
the data such that for any given sample x ∈ 𝑋, each feature 𝑥𝑖 ∈ [0, 1].

Cooperative Set-based Optimization 67

Since score measures are defined such that higher values are preferred, we define the diversity
score to be −Δ′, which then lies in the range: [−∞, 0]. Samples with low diversity have
significant negative scores. If there are no samples or just one sample, we define the diversity
score to be −∞, since they are undesirable outcomes.

Other metrics worth investigating are diversity metrics using entropy (e.g., [138]) and metrics
of the solution range (e.g., [134]).

Summary

In this chapter, we presented a cooperative framework called iSMO that generates diverse
solutions similar to the preferred set of solutions identified using clustering. To this end, iSMO
predicts the weight-vectors required by a multi-objective TO such as SEW-HCA to generate
the desired solutions. A critical component of iSMO is an EA based on NSGA-II, which can
identify diverse solutions in objective space. Since TO requires expensive simulations and EA
requires multiple evaluations of objective functions and constraint equations, I proposed using
metamodels with weights as input to predict objective values and the cluster label needed by
the constraint equation. After initial training, metamodels are effectively used by EA to find
the new desired weights. Finally, we described quantitative measures—silhouette and diversity
scores—to evaluate the solutions obtained by iSMO.

Cooperative Set-based Optimization 68

Part III

Results

Cooperative Set-based Optimization 69

7. Evaluation of Geometric Features using Test Datasets

In this chapter, we evaluate the different feature extraction methods for geometry using the
methods discussed in Chapter 5. An extraction method is regarded as successful here if the
identified geometric feature-vector (g), whose Euclidean distance (ED) shows the required
invariance properties and is a meaningful metric of geometry. For this purpose, we design
artificial datasets in Section 7.1. First, we use simple datasets, rather than more complex ones,
to easily verify if the ED in g is sensitive or not to transformations such as rotation, elongation,
and translation. Then, with more topologically complex design sets, different g are challenged
and compared with proven reference metrics. Since we intend to cluster geometrically similar
structures in a dataset, we evaluate next the suitability of different g vectors for clustering
using an additional, more challenging test set. Finally, in Section 7.3, we explore topologically
optimized designs using g vectors extracted with the Autoencoder, which had the best overall
performance, followed by a discussion in Section 7.4.

7.1. Dataset Generation

First, we introduce simple datasets, each of which contains the designs that are generated by
simple transformations of a template design. Then, we describe datasets with topologically
complex designs and well-defined subclasses.

7.1.1. Ellipsoidal designs
We generate three datasets where the geometrical differences are easy to measure. Within
a dataset, designs are obtained by transforming a template design using rotation, elongation,
or translation. Hence, the reference metric (RM) for these designs is easy to define, e.g., for
rotated designs, RM is the difference in the rotated angle. Although these datasets are simple,
we can evaluate if the Euclidean distance with g is similar to RM. Furthermore, by testing
the more complicated metrics discussed in Section 5.2, we can gain an intuition for different
metrics.

The template for these datasets is an ellipsoid, which can be generated using a moving mor-
phable component (MMC) with a form factor (or modeling exponent) 𝑞 = 2 [43]. Using large
even values for 𝑞, we can change the form of the MMC component, e.g., using 𝑞 = 2 and
𝑞 = 6 results in ellipsoidal and cuboidal MMCs, respectively. The reference MMC ellipsoid,
also called beam here, can be transformed by varying the Euler angles (E ∈ R3), lengths along
the three principal axes (L ∈ R3), and the position of the center of mass (C ∈ R3), generating
three different datasets.

MMC defines a design using a level-set function Φ : R3 → R, where the surface is given by
{x ∈ R3 | Φ(x) = 0} and the interior is given by {x ∈ R3 | Φ(x) > 0}. Using level-sets,

Cooperative Set-based Optimization 70

we can generate complex topologies along with the relevant voxel and pointcloud data. For
a given dataset, to generate voxel data, a common domain containing all the designs is split
into voxels (Section 5.1). If a common domain is not used, the voxel data cannot be directly
compared. For each design, to verify if 𝑖-th voxel is occupied, we check if Φ(x𝑖) ≥ 0 at the
voxel center x𝑖. Using the marching cubes algorithm [98, 99], the voxel data can be converted
to a triangulated surface mesh. For pointcloud data, points are uniformly sampled on the
triangulated surface mesh using the trimesh library [100, 101].

Beam-rotation dataset: An ellipsoidal beam is rotated by different angles along one of the
principal axes to generate 20 different designs (Figure 21). RM measures the difference in the
rotated angle. The rotation angle ranges from 0° to 90°, otherwise, the difference in angle is
not a good metric. For example, consider a beam 𝐵1 rotated by a 𝜃 ∈ [0°, 90°] to give a beam
𝐵2 and by an 𝛼 = 180°−𝜃 ∈ [90°, 180°] to give a beam 𝐵3. RM shows that 𝐵1 is more similar
to 𝐵2 (Δ = 𝜃) than to 𝐵3 (Δ = 𝛼), which is incorrect since 𝐵2 and 𝐵3 fully overlap.

3
4

5
6

7 4
5

6

4
5
6

3
4

5
6

7 4
5

6

4
5
6

3
4

5
6

7 4
5

6

4
5
6

Figure 21 Beam-rotation dataset: An ellipsoidal beam is rotated by different angles.

Beam-elongation dataset: An ellipsoidal beam is elongated by different lengths along a
fixed principal axis to generate 20 new designs (Figure 22). RM measures the difference in
lengths along the fixed axis.

Beam-translation dataset: An ellipsoidal beam is translated by different amounts along a
fixed principal axis to generate 20 new designs (Figure 23). RM measures the difference in the
translated distance.

7.1.2. Topologically-complex designs
In the following, we discuss methods to generate complex truss-like designs by combining
MMCs. Furthermore, we use different template frames to generate designs that distinctly
belong to different subclasses.

Cooperative Set-based Optimization 71

2
4

6
8 2

4
6

8
2
4
6
8

2
4

6
8 2

4
6

8
2
4
6
8

2
4

6
8 2

4
6

8
2
4
6
8

Figure 22 Beam-elongation dataset: An ellipsoidal beam is elongated by different lengths.

5
10

2 4 6 8
2
4
6
8

5
10

2 4 6 8
2
4
6
8

5
10

2 4 6 8
2
4
6
8

Figure 23 Beam-translation dataset: An ellipsoidal beam is translated by different amounts.

MMCs and other feature mapping techniques [139–142] are increasingly used in TO to con-
struct complex structures using a few design variables. For example, Zhang et al. could
generate arbitrarily curved beams by overlapping ellipsoids [139]. With a relatively small num-
ber of MMCs, Bujny et al. generated complex topologies using evolutionary algorithms [26,
43]. Even the optimal structures for highly nonlinear crash TO problems have been derived
using a union of MMC beams [3].

Complex structures can be composed using MMCs: the interior of a design with 𝑛 MMCs
is defined by max

𝑖=1,...,𝑛
Φ𝑖 > 0. As discussed previously, using the level-set function, voxel,

and pointcloud representations can be generated. In this study, we use ellipsoidal MMCs to
construct designs with different topologies. The shapes of MMCs are not changed, since we
are interested in the geometric structure rather than the subtle differences in shape. In the
future, the effects of shape may be further studied.

In this thesis, I propose using 3D geometric graphs to generate datasets with well-defined
subclasses. A 3D geometric graph contains nodes corresponding to points in 3D Euclidean
space. The graph edges correspond to line segments connecting the 3D points. Figure 24
shows exemplary graphs based on cubes, where vertices of cubes indicate the graph nodes and
the edges of cubes form the connections/edges in the graph. Given such a 3D graph, MMCs
are positioned using their principal axis along a distinct edge of the graph (Figures 24, 25). By
varying the thickness of beams, one can generate multiple designs with a similar structure. We

Cooperative Set-based Optimization 72

can also truncate or remove a few of the beams to affect the topology of structures slightly.
Using this method, we can generate multiple designs with the same underlying structure but
with differences in topology, size, and shape. Repeating this process with distinct graphs
yields a dataset with well-defined subclasses. In this study, we generate three such datasets
with increasing complexity.

Three-cube trusses: Firstly, we construct 6 distinct subgraphs using a subset of nodes and
edges of the basegraph shown in Figure 24. Each subgraph is used to generate a subclass of
designs with similar structure. Figure 25 shows a sample design from each of the 6 subclasses.
Note that the center of the underlying graphs (mean of the graph nodes) changes from subclass
to subclass.

Figure 24 Three-cube basegraph and its subgraphs: The vertices of the cubes are graph
nodes. Line segments joining any two vertices of the same cube are graph edges. For clarity,
only some of the graph edges, i.e., the cube edges are shown in the figure. Hidden edges of the
cubes are shown as dashed lines.

Single-cube trusses: This dataset is based on the basegraph shown in Figure 26. The
basegraph is used to generate 11 different connected subgraphs, where each subgraph generates
a subclass of designs. Figure 27 shows samples from six of the subclasses. The designs from
different subclasses differ in orientation or/and topology.

Randomized topologies: This dataset consists of 50 subclasses with 20 designs per class,
with complex variations in topology. Figure 24 shows the relevant basegraph but the subgraphs
are constructed randomly using the following steps:

1. Construct a subgraph for each subclass.

a. Randomly pick 5 to 10 vertices from the basegraph (Figure 24).

Cooperative Set-based Optimization 73

5
10

15
10

20
30

5
10
15

5
10

15
10

20
30

5
10
15

5
10

15
10

20
30

5
10
15

5
10

15
10

20
30

5
10
15

5
10

15
10

20
30

5
10
15

5
10

15
10

20
30

5
10
15

Figure 25 Three-cube truss dataset: Sample designs from 6 different subclasses.

Figure 26 Single-cube basegraph and subgraphs: Graph nodes are the cube vertices and graph
edges exist between every pair of nodes. Each subgraph of the basegraph yields a subclass of
designs. Hidden edges in the graphs are shown as dashed lines.

b. The subgraph then contains every possible edge connecting the vertices.

2. Generate multiple designs for a given subgraph.

a. Align MMCs along the edges. Vary the edge thickness by sampling from a
uniform distribution in [1.5, 4] (each cube edge is 10 units).

b. Randomly remove a few of the beams with a low probability of 0.2 using a
Bernoulli trial.

Note that for each subgraph, beams are removed with low probability since the resultant designs
should still belong to the same subclass. Figure 28 shows 3 samples from 3 subgraphs.

Cooperative Set-based Optimization 74

5
10

15 15
20

25

5
10
15

5
10

15 15
20

25

5
10
15

5
10

15 15
20

25

5
10
15

5
10

15 15
20

25

5
10
15

5
10

15 15
20

25

5
10
15

5
10

15 15
20

25

5
10
15

Figure 27 Single-cube truss dataset: sample designs from 6 different subclasses.

15
20

25
10

20
30

5
10
15

15
20

25
10

20
30

5
10
15

15
20

25
10

20
30

5
10
15

15
20

25
10

20
30

5
10
15

15
20

25
10

20
30

5
10
15

15
20

25
10

20
30

5
10
15

15
20

25
10

20
30

5
10
15

15
20

25
10

20
30

5
10
15

15
20

25
10

20
30

5
10
15

Figure 28 Randomized topologies: Each row shows designs from a subclass based on a
subgraph. Beam thicknesses are varied as well some beams are removed with low probability.

Cooperative Set-based Optimization 75

7.2. Evaluation on Design Datasets

In this section, we evaluate the Euclidean distance (ED) with geometric feature-vectors (g vec-
tors) as input using the methods and datasets from Section 5.4 and Section 7.1 respectively.

7.2.1. Naming convention
In general, a metric M may use a specific input data (I) which is processed by one or more
dimensionality reduction methods before applying the metric M. So, in this study, we specify
a metric along with its input data and the dimensionality reduction techniques for clarity. For
brevity, the metrics are defined using a tuple: (I, D, M), which means that the input data I is
reduced using a dimensionality reduction technique D whose output is analyzed using a metric
M to yield the final distance measure. If D is not used, it may be skipped to give the metric:
(I, M). Table 4 shows short names for different I, D, and M for further brevity. Table 5 shows
the metrics used in this study.

Table 4 Short names used for input data, dimensionality reduction techniques, and metrics.

Description Abbreviation Input

MMC parameters MMC par -

Voxel data Voxel -

Principal Component Analysis PCA Voxel

Non-negative Matrix Factorization NMF Voxel

t-distributed Stochastic Neighbor Embedding t-SNE Voxel

Uniform Manifold Approximation and Projection UMAP Voxel

Pointcloud AutoEncoder PCAE Pointcloud

Euclidean distance ED -

Chamfer distance CD Pointcloud

Earth mover distance EMD Pointcloud

As an example metric, consider (MMC par, ED) which measures the Euclidean distance (ED)
using the MMC parameters. For a dataset obtained using simple transformations of a template
design, this results in a metric that measures the changes in a single MMC parameter, e.g.,
the changes in an Euler angle, or a single dimension. The metric (Voxel, ED) uses voxel data
as input, whose Euclidean Distance (ED) gives the distance between designs. Since ED is
used in this metric, voxel data can be considered as a geometric feature-vector (g vector).
Other g vectors are possible; for example in metric (Voxel, PCA, ED), voxel data is processed
using PCA to yield a different g vector. In this study, we use PCA, NMF, t-SNE, and UMAP
reduction methods with voxel data to yield different g vectors which results in different metrics.
We also consider the metrics (Pointcloud, CD) and (Pointcloud, EMD) with pointcloud data
as input. Since ED is not involved, we do not refer to pointcloud data as a g vector. However,

Cooperative Set-based Optimization 76

the metric (Pointcloud, PCAE, ED) uses ED with latent code obtained using PCAE. So the
latent code will be referred to as a g vector.

7.2.2. Hyperparameters
To convert any design to the voxel data, we use a resolution of 25 × 25 × 25 units. For PCA
and NMF, we propose to reduce the voxel data using 10 components. UMAP and t-SNE use
2 components and hence, allow the 2D visualization of clusters in datasets. Each pointcloud
contains 2048 points and is used as input to PCAE. The dimension of latent code used by
PCAE is 128 for all the datasets except for the last one with TO designs, where 500 dimensions
are used. For our datasets, the above parameters are set when a further increase did not seem
to significantly improve the results.

Table 5 List of 9 metrics evaluated in this study. For simple datasets, (MMC par, ED) as RM
can be used to evaluate the remaining 8 metrics (TMs). For complex data, (MMC par, ED) is
not useful. So, we use (Pointcloud, CD) as RM to evaluate the other 7 metrics (TMs).

Metric Remarks

(MMC par, ED) RM for simple datasets.

(Pointcloud, CD) RM for complex geometries.

(Voxel, ED) Voxel distance is the simplest voxel metric.

(Pointcloud, EMD) EMD is more expensive than CD.

(Pointcloud, PCAE, ED) ED with latent code of autoencoder.

(Voxel, PCA, ED) PCA reduces voxel data to 10 components.

(Voxel, NMF, ED) NMF reduces voxel data to 10 components.

(Voxel, t-SNE, ED) t-SNE reduces voxel data to 2 components.

(Voxel, UMAP, ED) UMAP reduces voxel data to 2 components.

7.2.3. Metric correlations
As discussed in Section 5.4, we measure the correlation between distances measured by a
given target metric (TM) with a proven reference metric (RM) of geometrical differences. For
brevity, when the values measured by TM and RM are highly correlated, we say that the metric
correlation is high between TM and RM. A valid metric is chosen as RM if it makes sense
intuitively or is found useful in the literature. Therefore, if the metric correlation between RM
and TM is high, TM is also meaningful at least for the given dataset. For more details on the
following datasets, see Section 7.1.

Beam-rotation dataset: Figure 29 shows the metric correlations for this dataset. RM is the
difference in rotated angle: so, RM is (MMC par, ED) for this dataset. Figure 29a shows that
the correlation between voxel distance and RM is high. So, the voxel distance is meaningful,
as expected. Since the correlation is nonlinear, the Pearson and the Spearman correlation

Cooperative Set-based Optimization 77

(P
oi

n
tc

lo
u
d
,

PC
A
E
,

E
D

)

Figure 29 Metric correlations for the beam-rotation dataset: An ellipsoid is rotated by
different amounts to yield 20 designs. Distance values measured by RM and TM, i.e., 𝐷RM
and 𝐷TM, are shown along x- and y-axes respectively. Here, RM is (MMC par, ED), i.e., the
difference in orientation.

Cooperative Set-based Optimization 78

values are different and we have 𝜌𝑝 < 𝜌𝑠. Metrics using g obtained by NMF and t-SNE do
not perform well since 𝜌𝑠 < 0.7 with RM, while PCA and UMAP perform reasonably well
(𝜌𝑠 > 0.95). Note that here the metrics with pointcloud as input (pointcloud metrics) have a
high correlation with RM.

Interestingly, for certain values of 𝐷RM, there are several values for 𝐷TM, which results in a
vertical segment of dotted points and can be explained as follows. In this dataset, one can find
multiple pairs of designs with the same value of 𝐷RM, i.e., the difference in orientation is the
same for different pairs. Yet, 𝐷TM can take different values due to the discretization errors
in the voxel data and the randomization errors in the pointcloud data. Even if the relative
angle between the two designs is held constant, the actual voxel data depends on the absolute
orientation in the design domain. For pointcloud data, this effect occurs because the points
are randomly sampled on the surface.

PCAE results in a meaningful TM with 𝜌𝑠 = 0.99 (Figure 29d). PCA reduction of voxel
data with 10 features is still useful even if the dimension of voxel data ≈ 1.5 · 104 is large
(Figure 29e). Figure 29f shows that ED with t-SNE features is not very meaningful since
it is designed only for the visualization of clusters. However, UMAP, although designed for
the same application as t-SNE, leads to more meaningful ED with g (Figure 29g). Figure
29h shows NMF with slightly worse performance than PCA, possibly due to the additional
non-negativity constraints on the reduced components. In summary, PCA and PCAE yield
meaningful features despite being very low-dimensional compared to voxel data.

Beam-elongation dataset: Figure 30 shows the metric correlations for this dataset. Here,
RM measures the difference in elongation lengths. The metric correlations are similar to those
of the beam-rotation dataset (Figure 29). Measured values of Voxel distance, CD, and EMD
have a high correlation (𝜌𝑠 ≥ 0.98) with those of RM. Among the dimensionality reduction
techniques, PCAE and PCA perform the best with 𝜌𝑠 = 0.99. UMAP also performs reasonably
well with 𝜌𝑠 = 0.95.

Beam-translation dataset: Figure 31 shows the metric correlations for this dataset. Here,
RM measures the difference in the translated distance. In Figure 31a, voxel distance (𝑦-
value) does not change when 𝐷RM > 4. This is because the designs stop overlapping for
this range and the number of voxel differences (𝐷TM) does not change. So, voxel distance
is disadvantageous compared to pointcloud metrics, which are sensitive to the position of the
non-overlapping material. Other metric correlations are similar to previous results. Measured
values of voxel distance, CD, and EMD still have a high correlation (𝜌𝑠 ≥ 0.98) with those of
RM. Among the dimensionality reduction techniques, PCAE and PCA perform the best with
𝜌𝑠 ≥ 0.97. UMAP also performs reasonably well with 𝜌𝑠 = 0.93.

Cooperative Set-based Optimization 79

(P
oi

n
tc

lo
u
d
,

PC
A
E
,

E
D

)

Figure 30 Metric correlations for the beam-elongation dataset: An ellipsoid is elongated by
different amounts to yield 20 designs. So, each comparison plot above contains 190 points.
Compare different metrics with RM: (MMC par, ED), i.e., the difference in elongation.

Cooperative Set-based Optimization 80

(P
oi

n
tc

lo
u
d
,

PC
A
E
,

E
D

)

Figure 31 Metric correlation for beam-translation dataset: An ellipsoid is translated by
different amounts to yield 20 designs. So, each comparison plot above contains 190 points.
Compare different metrics with RM: (MMC par, ED), i.e., the difference in position.

Cooperative Set-based Optimization 81

(P
oi

n
tc

lo
u
d
,

PC
A
E
,

E
D

)

Figure 32 Metric correlations for random topologies dataset. Each correlation measure uses
nearly 5 × 105 distance measures. Since (MMC par, ED) is not useful for complex datasets, we
only have 7 TMs and 1 RM among the metrics (Table 5).

Cooperative Set-based Optimization 82

The three datasets discussed here use an MMC beam with a form factor 𝑞 = 2. We repeated
each of the experiments above with other MMC shapes with 𝑞 ranging from 1 (bipyramids)
to 6 (cuboids). For a given 𝑞 value and dataset, the results are similar. CD (RM) and
EMD values are strongly correlated (𝜌𝑠 ≥ 0.99). (Pointcloud, PCAE, ED) is comparable
to CD (𝜌𝑠 ∈ [0.96, 1]). Measured values of voxel distance and CD are highly correlated
(𝜌𝑠 ∈ [0.98, 1]). Except for t-SNE, dimensionality reduction techniques can be used with voxel
data to yield useful g (𝜌𝑠 ∈ [0.95, 1]). The metric correlation of RM and t-SNE is quite low
(𝜌𝑠 ∈ [0, 0.3]) even for these simple datasets. Since the results do not strongly depend on the
MMC form factors, we expect similar results with other shapes such as cones, plates, etc.

For complex datasets, geometrical differences cannot be quantified by using (MMC par, ED)
since more than one MMC parameter is varying and MMC parameters may be redundant as
discussed previously. So, for the following datasets, RM is (Pointcloud, CD) which is proven to
be effective in 3D object recognition [30]. For brevity, we do not show any metric comparison
plots for the single-cube truss dataset and three-cube truss dataset; we report only the metric
correlation values. However, for the more complex dataset with random topologies, we show
the metric comparison plots as well.

Single-cube truss dataset: Voxel distance has a low metric correlation with CD as RM
(𝜌𝑠 = 0.14). By contrast, EMD and CD values are strongly correlated. ED with PCAE latent
code also has a strong metric correlation with CD (𝜌𝑠 = 0.96). Other dimensionality reduction
techniques with voxel data yield less useful g with 𝜌𝑠 ∈ [0.4, 0.6], which is still better than
that of voxel data (𝜌𝑠 = 0.14).

Three-cube truss dataset: For this dataset, the metric correlation between voxel distance
and CD is low (𝜌𝑠 = 0.55). Using dimensionality reduction techniques, we can extract g and
improve the metric correlation with CD (𝜌𝑠 ∈ [0.6, 0.8]). Among these, ED with PCAE latent
code has the strongest metric correlation with CD (𝜌𝑠 = 0.93).

Random topologies: Among the synthetic datasets, this dataset has the most complex and
diverse topologies. As expected, voxel distance, unlike EMD (𝜌𝑠 ≈ 1), differs from CD. Using
dimensionality reduction methods with voxel data does not result in meaningful g whereas the
autoencoder extracts meaningful g (𝜌𝑠 = 0.88). The results indicate that Euclidean distance
in latent code is similar to CD, which is the loss function used to train PCAE for extracting
the latent code.

Summary: The key finding from this section is that the g vector obtained by PCAE is the
most useful compared to the g vectors obtained by other dimensionality reduction techniques

Cooperative Set-based Optimization 83

such as PCA, NMF, t-SNE, and UMAP with voxel data. Metric correlation studies show
the deficiencies of the voxel distance and Euclidean distance with g vectors obtained from
voxel data using dimensionality reduction techniques. By contrast, the pointcloud metrics
CD and EMD can effectively identify geometrical differences. Furthermore, PCAE can reduce
pointcloud data to yield a latent code whose Euclidean distance values strongly correlates
with those obtained by CD. Since the last few datasets have complex and diverse topologies
with similar metric correlations, we expect similar results with TO designs as demonstrated in
Chapter 8.

7.2.4. Using clustering performance
For evaluating the clustering performance of different metrics, we use the dataset with random
topologies (Section 7.1). As discussed previously, the dataset contains diverse topologies from
50 subclasses, where each subclass has 20 designs. The clustering methods (OPTICS and
𝑘-means) and evaluation measures (precision, AMI, F1-score) used here are already mentioned
in Section 5.4.2.

First, we use 𝑘-means clustering to identify the different classes in the dataset. Since the
𝑘-means method implicitly assumes ED of its input as the metric, we cannot use the 𝑘-
means method with general metrics such as CD and EMD. However, as discussed previously,
dimensionality reduction methods can yield g vectors which can be used as input to 𝑘-means
clustering. For example, (Voxel, PCA, ED) reduces voxel data using PCA to yield a g vector
which can be used as input for the 𝑘-means method since (Voxel, PCA, ED) uses ED to
compare g vectors. Since the dataset contains 50 subclasses, we set 𝑘 = 50 in the 𝑘-means
method.

Table 6 compares the clustering performance of the metrics that use ED in the last stage.
PCA yields better input/g vectors than NMF since it yields higher clustering scores. Using
PCAE, UMAP, or t-SNE, we can identify all the subclasses accurately using the 𝑘-means
method. The dimensions of resulting g vectors of PCAE, t-SNE, and UMAP are 128, 2, and
2 respectively. So, t-SNE and UMAP coordinates can be used to visualize the clusters in a 2D
plane. Furthermore, the clusters in PCAE latent code can also be visualized in 2D, if UMAP
or t-SNE is used to reduce the latent code from 128 dimensions to 2. For example, Figure 33
shows the clusters using UMAP reduction of PCAE latent code.

Table 7 shows the classification accuracy of different metrics using OPTICS clustering, which
is a density-based algorithm that identifies the appropriate number of clusters automatically.
For this dataset, the 𝑘-means method has better clustering performance than OPTICS for a
given g. However, the order of performance is the same as before for NMF, Voxels (Voxel,
ED), PCA, UMAP, and PCAE (Table 6). CD and EMD perform better than UMAP, which
outperforms both PCA and t-SNE. PCAE latent code is still the best input for clustering.

Cooperative Set-based Optimization 84

Table 6 Classification accuracy of different metrics with 𝑘-means clustering (𝑘 = 50).

Metric Precision F1 score AMI score

(Voxel, NMF, ED) 0.88 0.86 0.92

(Voxel, ED) 0.96 0.95 0.98

(Voxel, PCA, ED) 0.97 0.96 0.98

(Voxel, UMAP, ED) 1.00 1.00 1.00

(Voxel, t-SNE, ED) 1.00 1.00 1.00

(Pointcloud, PCAE, ED) 1.00 1.00 1.00

Table 7 Classification accuracy of different metrics with OPTICS as the clustering method.

Metric Precision F1 score AMI score

(Voxel, NMF, ED) 0.60 0.68 0.61

(Voxel, ED) 0.66 0.64 0.80

(Voxel, t-SNE, ED) 0.69 0.77 0.67

(Voxel, PCA, ED) 0.72 0.78 0.75

(Voxel, UMAP, ED) 0.74 0.82 0.68

(Pointcloud, CD) 0.86 0.88 0.90

(Pointcloud, EMD) 0.86 0.88 0.90

(Pointcloud, PCAE, ED) 0.94 0.95 0.95

7.3. TO Results

As discussed in Section 7.2, PCAE can extract latent code, which is low-dimensional and
can be used to identify designs with similar geometrical structures. As demonstrated in the
previous section, PCAE is very useful since ED with the latent code is still meaningful. In this
section, we qualitatively evaluate it using dataset 3 discussed in Section 3.3.3. The dataset
uses a cubic design space for TO with randomized load and boundary conditions.

Since Euclidean distance with latent code is meaningful, 𝑘-means clustering can be used with
PCAE latent code as input. The corresponding clusters can be visualized using UMAP with
PCAE latent code as input (Figure 34). Furthermore, since ED in the UMAP space still makes
sense (see previous results), close points in the UMAP space indicate similar designs (Figure
34). Here, the clusters are not well-separated in the UMAP space, indicating that the designs
gradually change in topology across the dataset. In the plot, a few samples of each cluster are
located in a faraway cluster since it is not always possible to reduce high dimensional data to

Cooperative Set-based Optimization 85

20 10 0 10 20

20

10

0

10

20

0

1

2

3

45

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

4445

46

47

48

49

Figure 33 A UMAP visualization of clusters. Each cluster is a set of designs, which are
represented here as points in a 2D plane. The clusters are numbered from 0 to 49 and are
annotated in the figure using arrows. The inset shows cluster 4 and three sample designs from
it. Designs and clusters are colored to ease visualization.

low dimensions without loss of information [85, 86].

Figure 35 shows samples from each cluster in each row. Each cluster has a medoid which
is defined as the cluster representative (d𝑟) [23]. Given a metric, the design in the cluster
with the smallest (or largest) distance to d𝑟 is referred to as the closest (or farthest) design
in the figure. For selected clusters, we also show the corresponding d𝑟 along with its closest
and farthest design using (Pointcloud, PCAE, ED) as the metric. For brevity, (Pointcloud,
PCAE, ED) is referred to as AD here. In each cluster, the closest design has a similar material
distribution as d𝑟, unlike the farthest design. However, the load conditions of similar designs
are not related.

We also indicate the relative distance between the designs and d𝑟 measured using CD and AD.
For a given cluster 𝐶, the relative distance between any two designs d1 and d2 is the actual
distance between d1 and d2 divided by the farthest distance, i.e., the distance between farthest
design in 𝐶 and d𝑟. The figure also shows that the distances measured by (Pointcloud, PCAE,
ED) and (Pointcloud, CD) are similar.

Table 8 summarizes the benefits of the metrics studied in this chapter. According to clustering
accuracy, CD, EMD, UMAP, t-SNE, and latent code are ranked high. According to the quality
of geometric features, (Pointcloud, PCAE, ED) is ranked the highest, since Euclidean distance
with latent code is similar to the reference metric CD. Metrics such as CD and EMD do not

Cooperative Set-based Optimization 86

Figure 34 Clusters in the TO design-set are visualized in 2D using UMAP reduction of PCAE
latent code. UMAP values are not shown along axes since they do not yield additional insights.
𝑘-means method identifies 4 clusters (labeled 0-3). The representative design for each cluster
is shown near the respective cluster. The identified clusters are not separated, which is often
the case with engineering data.

yield g and are hence ranked low for this criterion. According to ease of calculation (i.e.,
computational effort), voxel distance ranks the highest but it cannot be used for clustering or
as a meaningful g vector. CD and EMD are moderately expensive. Similar to PCA or NMF,
PCAE requires a training stage to extract the latent code, but once the models are trained,
the feature extraction is inexpensive. According to clustering ease, metrics that use ED at
the last stage rank the highest, e.g., the 𝑘-means method can be used to quickly calculate
clusters using latent code as input. Clustering with CD and EMD requires that all pair-wise
distances are calculated and more expensive clustering algorithms such as OPTICS need to be
used. Considering these criteria, latent code is an ideal choice for clustering and analyzing TO
results.

7.4. Discussion

In this chapter, we addressed the problem of finding geometric features (g) that can be used
to explore TO results with varying topology, size, shape, and orientation in a design space.
We investigated different machine learning methods to generate features that can be accu-
rately and inexpensively used to cluster designs based on geometrical structure. Furthermore,

Cooperative Set-based Optimization 87

Figure 35 TO designs similar to cluster representatives found using latent code (Figure 34).
The first column (a) contains the four design representatives. For each cluster representative,
three designs from the same cluster are shown in a row with decreasing similarity in columns
b-d. For each design, we show the corresponding loads as brown arrows. In each row, we
measure the relative distance from the representative (a) to each design in columns b-d using
latent code (AD) and chamfer distance (CD).

we evaluated if a particular g is meaningful, i.e., if the Euclidean distance with g measures
geometrical differences.

One of the challenges is to evaluate different g obtained using PCA, NMF, t-SNE, UMAP, or
PCAE. We proposed to choose the g based on two properties: Euclidean distance with g is
meaningful and the clustering with g as input is accurate. Furthermore, we proposed new test
datasets that are topologically more complex than the public datasets such as those provided
in ShapeNet [127]. The new datasets are publicly available at Zenodo [143]. To validate ED
with g, we propose a novel method to compare it with a demonstrated reference metric such as
chamfer distance (CD). For different labeled datasets, the clustering performance is evaluated
using the AMI score and by measuring the classification errors using precision and F1-score
(after label remapping).

Cooperative Set-based Optimization 88

Table 8 Advantages and disadvantages of different metrics. For each attribute column, values
are put into three categories: low (L), medium (M), and high (H).

Metric
Clustering

accuracy

Quality of

geometric features

Metric

calculation ease

Clustering

ease

(Voxel) L L H H

(Voxel, NMF) M M M H

(Voxel, PCA) M M M H

(Voxel, t-SNE) H L M H

(Voxel, UMAP) H M M H

(Pointcloud, CD) H L L L

(Pointcloud, EMD) H L L L

(Pointcloud, PCAE, ED) H H M H

In the experiments with different datasets, we derive the following conclusions. More meaning-
ful features are obtained by reducing voxel data using NMF or more preferably by using PCA.
Euclidean distance with t-SNE is not useful, unlike the UMAP features. Euclidean with latent
code is the most meaningful among the reduced features. For clustering, UMAP, t-SNE, and
latent code have high accuracy.

Autoencoder (PCAE) can extract meaningful geometric features as latent code (or latent code),
which is good for clustering. Furthermore, measured values of CD and Euclidean distance with
latent code are strongly correlated. Since CD is used to train PCAE, the latter learns to imitate
its loss function (CD in our case). It would be interesting to see if an autoencoder can learn
useful features for any metric. From our experiments, we conclude that latent code can be
used to address our two objectives: cluster similar structures in TO results as well as build
metamodels of a design optimization method.

Cooperative Set-based Optimization 89

8. Cooperative Topology Optimization

In this chapter, we demonstrate the iSMO method (Chapter 6) using a simple MOP and two
MTO problems: a static compliance problem with a cantilever plate and a crashworthiness
optimization problem with a simply supported beam. For each of the problems, clusters are
identified in the initial set of solutions and iSMO generates new solutions in each of the clusters.
Furthermore, we investigate the effect of different regressor and classifier metamodels on iSMO.
The hyperparameters of the metamodels are as described in Section 6.1.4.

iSMO can be used with any MOP that is based on a weighted-sum approach. For example, the
first problem (Section 8.1) has only two decision variables and the weighted-sum method can
directly combine the two objectives to yield a single scalarized objective, which can be solved
using any global optimizer. By contrast, the MTO problems—the subject of this thesis—
have millions of decision variables and are efficiently solved using SEW-HCA [27] for a given
set of weights for objectives. For each MTO, we cluster the initial solutions either based on
performance or geometry. For each cluster C𝑖, iSMO then generates new solutions that are
similar to C𝑖 by controlling the input weight-vectors to the SEW-HCA.

Figure 36 BNH problem: 3D surface plots showing the effect of decision variables on the two
objective functions 𝑓1 and 𝑓2.

Cooperative Set-based Optimization 90

8.1. Simple Example: BNH Problem

The BNH [144] problem has two decision variables x = [𝑥1, 𝑥2], two minimization objectives
f = [𝑓1, 𝑓2] and two constraints. For simplicity, we remove the constraints in the BNH problem
to yield the following test MOP for iSMO. Figure 36 plots the objective functions 𝑓1, 𝑓2.

Minimize 𝑓1(x) = 4𝑥2
1 + 4𝑥2

2,

Minimize 𝑓2(x) = (𝑥1 − 5)2 + (𝑥2 − 5)2,

subject to 0 ≤ 𝑥1 ≤ 5,

0 ≤ 𝑥2 ≤ 3.

(8.1)

For a given set of weights w = [𝑤1, 𝑤2], where 𝑤1 ≥ 0 and 𝑤2 = 1 − 𝑤1 ≥ 0, the scalarized
objective 𝑓(x) = w · f = 𝑤1𝑓1(x) + 𝑤2𝑓2(x) is minimized using the differential evolution (DE)
to find the optimal x [145]. We use the DE algorithm implemented in SciPy Python library
with the following hyperparameters: DE strategy is "best1bin", maximum iteration limit is 100,
population size is 15, mutation value is uniformly sampled from 0 to 2, crossover probability
is 0.7, and Latin hypercube sampling is used to initialize the population [145, 146].

(a) Initial Pareto front (b) New solutions in Pareto front

Figure 37 iSMO generates new solutions (b) for each of the clusters in (a). Solutions are
colored according to their cluster ids (labels).

The initial set of solutions is obtained using a set of uniformly sampled weights, W = {w𝑖}𝑁
𝑖=1,

obtained using the Das-Dennis approach [57]. The corresponding Pareto set (Figure 37a), given
by F = {f(w𝑖)}𝑁

𝑖=1, is slightly non-uniform in the objective space since the range of the two
objective functions is different. These initial solutions are clustered based on objective values
using the 𝑘-means method (𝑘 = 3). Since the data samples are contiguous in this example,
𝑘-means partitions the dataset instead of separating the data into well-defined clusters. iSMO
can now generate new and diverse solutions in any preferred cluster.

In this example, iSMO uses metamodels that predict the objectives and cluster labels from

Cooperative Set-based Optimization 91

weights using a regressor and a classifier respectively. iSMO then ensures that the new solutions
belong to the selected cluster according to the metamodels. For example, Figure 37b shows the
new solutions in the Pareto front obtained using a Gaussian process regressor and a 𝑘-nearest
neighbors (𝑘 = 1) classifier. While training the metamodels, the redundancy in input weights
is removed by normalizing the weights and excluding one of the weights before training the
metamodels (Section 6.1).

The regression and classification algorithms need to be chosen based on the given data. Here,
we experiment with multiple regression models: Gaussian process regressor (GPR), random
forests regressor, 𝑘-nearest neighbors (KNN) regressor, and linear regressor [18]. Table 9
shows the accuracy of the regressors as well as the preferredness and diversity of the resultant
solutions (Section 6.2). The R2 score is used to measure the 𝑘-fold cross-validation (CV) score
as well as the training score of regressors. The preferredness and diversity of new solutions are
measured using the silhouette score (𝑠𝑠𝑖𝑙) and the diversity score (𝑠𝑑𝑖𝑣) respectively (Section
6.2). Since the clustering is based on Euclidean distance in the objective space, the same metric
is used to evaluate 𝑠𝑠𝑖𝑙 and 𝑠𝑑𝑖𝑣. Furthermore, each set of new solutions yields a different 𝑠𝑠𝑖𝑙

(or 𝑠𝑑𝑖𝑣) score; we report only the average scores for 𝑠𝑠𝑖𝑙 (or 𝑠𝑑𝑖𝑣) across different preferred
clusters.

Table 9 A comparison of different regressor models

Regressors
R2 score

(CV)

R2 score

(training)
𝑠𝑠𝑖𝑙 𝑠𝑑𝑖𝑣

GPR 0.99 ± 0.02 1.00 0.51 -0.05

Random forests regressor 0.92 ± 0.08 0.99 0.59 -0.08

KNN regressor 0.52 ± 0.75 0.90 0.29 -0.07

Linear regressor/least squares -0.25 ± 2.11 0.84 0.24 -0.07

For each regressor, the resultant new solutions in all the clusters are shown in Figure 38. In
this experiment, a 𝑘-nearest neighbors classifier (𝑘 = 1) is used with all the regressors. As
shown in Table 9, the Gaussian process regressor (GPR) has the best model performance since
the CV score and the training score are high. Other models have reduced performance and
the gap between CV and training score is higher which indicates overfitting. GPR also has
the best diversity score. Since the clusters seem contiguous, any 𝑠𝑠𝑖𝑙 ∈ [0, 1] is acceptable so
that the solutions are either on the border or interior of clusters. So, all the models seem to
perform well based on the preferredness of solutions. Based on these results, GPR is the best
choice for this example problem.

We also investigate if it is better to remove the redundancy of weights before using them as
input for the different regressors. For GPR, if the weights are only normalized and no weights
are removed, the CV score drops to 0.85 and 𝑠𝑑𝑖𝑣 drops to -0.08. For other regressors, 𝑠𝑠𝑖𝑙

Cooperative Set-based Optimization 92

(a) Gaussian process regressor (b) Random forests regressor

(c) 𝑘-nearest neighbors regressor (d) Linear regressor

Figure 38 iSMO yields different solutions when different regressor models are used.

scores do not change but 𝑠𝑑𝑖𝑣 is even lower. So, it is beneficial to remove the redundancy in
weights before training a regressor.

Table 10 A comparison of different classifier models

Classifiers
F1 score

(CV)

F1 score

(training)
𝑠𝑠𝑖𝑙 𝑠𝑑𝑖𝑣

k-nearest neighbors classifier 0.89 ± 0.14 1.00 0.51 -0.05

Random forests classifier 0.86 ± 0.19 1.00 0.47 -0.06

SVC 0.73 ± 0.23 0.93 0.49 -0.08

Logistic regression classifier 0.53 ± 0.00 0.53 -0.03 -inf

Linear SVC 0.56 ± 0.05 0.64 0.35 -inf

Next, we fix the regressor model to GPR in iSMO and compare in Table 10 the use of different
classifier models: 𝑘-nearest neighbors (KNN) classifier with 𝑘 = 1, random forests classifier,
support vector machine classifier (SVC) with radial basis functions (RBF) as kernel, logistic

Cooperative Set-based Optimization 93

(a) 𝑘-nearest neighbors classifier (b) Random forests classifier

(c) SVC (d) Linear regression classifier

(e) Linear SVC

Figure 39 iSMO yields different solutions when different classifier models are used.

regression classifier (regression to labels), and linear SVC. Note that the random forests clas-
sifier is a different algorithm from the random forests regressor. The same is true for the KNN
regressor and the KNN classifier. Figure 39 shows the resultant new solutions in all the clusters.
The classifier performance is measured using an F1 score with CV and training sets. Here, we
treat each class equally and report the average F1 score without weighing each class with its

Cooperative Set-based Optimization 94

sample size. This is called the "F1 macro" score in scikit-learn [130]. KNN and random forests
have the highest accuracy as well as the best 𝑠𝑠𝑖𝑙 and 𝑠𝑑𝑖𝑣 scores. Logistic regression and linear
SVC yield no new solutions for some of the clusters (Figures 39d,e); hence, 𝑠𝑑𝑖𝑣 = −∞.

Based on these results, we choose the Gaussian process regressor and the KNN classifier
(𝑘 = 1) to build the metamodels in iSMO, especially if the initial solutions are not many.
For larger and/or more complex datasets, one may choose more accurate models based on
cross-validation scores.

8.2. Topology Optimization using iSMO

In this section, we test iSMO using two exemplary MTO problems. In a real-world application,
the user chooses one of the clusters and iSMO generates new solutions for the preferred cluster.
Here, we use different clusters as input to iSMO and recommend new solutions. For each MTO
problem, we perform clustering either based on performance or geometrical structure and iSMO
generates new solutions for each of the possible clusters.

Performance clustering
The solutions can be clustered in the objective space. If the objective values are used as input
to clustering algorithms such as 𝑘-means or OPTICS, Euclidean distance in the objective space
is used implicitly as the metric for clustering.

Geometrical clustering
As discussed in Section 4.3.1, a pointcloud autoencoder (PCAE) is useful in finding geometrical
clusters, i.e., clusters of designs with similar geometrical structure. PCAE converts each design
into a pointcloud and extracts a latent code, which can be inexpensively used for clustering.
For the following datasets, the latent code is extracted using the following process. Each
optimized design is defined by a set of elements with relative densities 𝜌 ∈ [0, 1]. The design
is converted to a surface mesh using the marching cubes algorithm [98] with a threshold of
𝜌 = 0.1. The mesh is then converted to a 2048-dimensional pointcloud. Using an initial set of
pointclouds, we train a PCAE model to extract a 128-dimensional latent code, which is used
as input for clustering.

8.2.1. Test Case 1: Cantilever Plate with Two Static Loads
As described in the first example in Section 3.3, a cantilever plate is optimized for two objectives
using SEW-HCA. A set of weight-vectors are uniformly sampled and an initial set of solutions is
generated. Using the initial solutions, iSMO trains a Gaussian process regressor to predict the
objectives f = [𝑓1, 𝑓2] from a given set of positive weights w = [𝑤1, 𝑤2], where 𝑤1 + 𝑤2 = 1.
A 𝑘-nearest neighbor classifier with 𝑘 = 1 is trained to predict cluster labels 𝑝 from w. 𝑘-fold
cross-validation (𝑘 = 5) for the regressor yields a CV score 𝑅2 = 0.83 ± 0.14; the training
score is 0.99. Although there is some overfitting, this model gives the best score and the least

Cooperative Set-based Optimization 95

amount of overfitting compared to other regressors: random forests, a linear regressor, and a
support vector regressor (RBF kernel).

Performance clusters are obtained using 𝑘-means method with objective values as input (Figure
40a). For each performance cluster, iSMO is used to generate more solutions within the cluster.
Figure 40b shows that the new solutions seem to belong to their preferred clusters. The average
silhouette score 𝑠𝑠𝑖𝑙 = 0.48 and the diversity score 𝑠𝑑𝑖𝑣 = -0.09, which are lower compared to
the best scores for the BNH case (previous section). The lower scores can be attributed to the
lower accuracy of the metamodels. However, the solutions still seem to be well-distributed in
the objective space (Figure 40b).

(a) Initial set of solutions. Solutions are
colored based on their cluster.

(b) New solutions for each cluster in (a)

Figure 40 For each performance cluster (a), iSMO generates new solutions (b). Subfigure b
shows only the new solutions.

Geometrical clusters are obtained using the 𝑘-means method with the PCAE latent code as
input (Figure 41). Once again, iSMO generates new solutions in each cluster with an average
silhouette score 𝑠𝑠𝑖𝑙 = 0.41 and a diversity score 𝑠𝑑𝑖𝑣 = −0.11, which are lower compared to
performance clusters. Although the metamodel accuracy is similar in this case, the preferred
clusters are closer to each other, and hence are more challenging for iSMO.

Figure 42 shows the representative solutions in each geometrical cluster and the corresponding
new solutions generated by iSMO. In fact, for a preferred cluster, we show the most dissimilar
design to the cluster representative as measured by the chamfer distance; we observe that the
structural similarity between them is very high. Note that each optimized design consists of
high-density elements with 𝜌 ∈ [0.1, 1] and low-density elements with 𝜌 < 0.1. Even after
convergence, a few optimized designs have unsupported high-density (colored brown) parts
embedded in the low-density material since the latter can still support loads, albeit with high

Cooperative Set-based Optimization 96

(a) Initial set of solutions. Solutions are
colored based on their cluster.

(b) New solutions for each cluster in (a)

Figure 41 For each geometric cluster (a), iSMO generates new solutions (b). Subfigure b
shows only the new solutions.

compliance. In practice, one may interpret such designs as multi-material composites or post-
process designs to remove low-density material and any unsupported high-density parts. In
this thesis, we interpret such designs as composites, and the pointcloud representation uses
the boundary of high-density material.

Figure 42 contains pairs of designs that are almost mirror images of each other along the
horizontal axis. For example, prototypes of clusters 1 and 3 are one such pair. These two
clusters are on the opposite ends of the Pareto front in Figure 41 and hence, contain designs
that are preferentially optimized for the top load or the bottom load. Since these two loads are
symmetric w.r.t the horizontal axis, the designs from one cluster are almost mirror images of
the other. For each geometric cluster, Figure 42 shows the most dissimilar solution generated
by iSMO, which typically lies on the boundary of that cluster. Therefore, the new solution
may be similar to the designs in the neighboring cluster. For example, the new solution for
cluster 0 is very similar to the cluster 3 representative.

For this dataset, iSMO recommends useful new solutions for both performance and geometrical
clusters. Even for sparse input clusters, the new solutions belong to the preferred cluster and
are well-distributed, especially in comparison to the initial solutions. Next, we discuss a more
complex MTO example with a crash load.

8.2.2. Test Case 2: Simply Supported Beam with a Crash and a Static load
As described in the second example in Section 3.3, a simply supported beam is optimized for
two objectives using SEW-HCA. Once again, a set of weight-vectors are uniformly sampled
and an initial set of solutions are generated using SEW-HCA. Since SEW-HCA is a heuristic
algorithm, a few solutions are not Pareto-optimal but are near the Pareto front. Using the
initial solutions, a Gaussian process regressor and a 𝑘-nearest neighbor classifier (𝑘 = 1) are
trained to predict objectives and cluster labels respectively. Gaussian process regressor yields

Cooperative Set-based Optimization 97

Figure 42 Comparing the geometrical structures of initial and new solutions generated by
iSMO. In each design, low-density and high-density elements are indicated by blue and brown
color respectively. In each row, we show a cluster representative in the initial solutions (left
image), followed by its most dissimilar design—as measured by chamfer distance (CD)—in the
new solutions generated for that cluster (right image).

the best CV score of 0.90±0.04 and a training score of 0.99 when compared to random forests,
a linear regressor, and a support vector machine (RBF kernel).

Similar to test-case 1, 𝑘-means clustering is used to find performance and geometrical clusters.
Figure 43a shows the performance clusters in the objective space. Figure 43b shows the new
solutions generated by iSMO which seem to belong to their preferred clusters in the objective
space, which is confirmed by the values of 𝑠𝑠𝑖𝑙 = 0.53 and 𝑠𝑑𝑖𝑣 = −0.07.

Figure 44a shows the geometrical clusters obtained using PCAE (Section 4.3.1). Figure 44b

Cooperative Set-based Optimization 98

(a) Initial set of solutions. Solutions are
colored based on their cluster.

(b) New solutions for each cluster in (a)

Figure 43 For each performance cluster in test case 2 (Figure 4), iSMO generates new
solutions. Note that since we are maximizing 𝑓1 and minimizing 𝑓2, the Pareto front is towards
the bottom-right corner.

(a) Initial set of solutions colored
according to the geometric cluster.

(b) New solutions for each cluster in (a)

Figure 44 For each geometric cluster in test case 2 (Figure 4), iSMO generates new
solutions.

shows that the new solutions generated by iSMO seem to belong to their preferred clusters, at
least as seen in the objective space. Compared to the new solutions in the performance clusters,
the score for new solutions in geometric clusters is lower with 𝑠𝑠𝑖𝑙 = 0.34 and 𝑠𝑑𝑖𝑣 = −0.08.
The silhouette score is worse because of the slight mixing of clusters 0 and 2 at their boundary
(Figure 44b), while the diversity score is relatively similar.

For this dataset, similar structures tend to have similar performance. Even when cluster "0"
is split in the objective space (Figure 44), the new solutions are similarly split in the Pareto
front. In Figure 45, we compare the geometrical structure of the initial and new solutions.

Cooperative Set-based Optimization 99

Figure 45 Comparing the geometrical structures of initial and new solutions generated by
iSMO. Each design is shown using the surface mesh obtained using the threshold 0.1. Similar
to Figure 42, we compare the representative in each preferred cluster with its most dissimilar,
new solution. Note that in cluster 0 (middle row), the most dissimilar design has a different
structure since it is on the boundary.

8.3. Discussion

In this chapter, we addressed the challenge of minimizing expensive simulations in multi-
objective topology optimization using iSMO (Chapter 6). As an example, we consider SEW-
HCA, which optimizes the design given a set of weights for multiple objectives as input. Each
run of SEW-HCA requires expensive simulations. By contrast, iSMO iteratively generates new
solutions in the preferred regions using metamodels, which are much cheaper to evaluate than
simulations.

We analyzed the performance of iSMO with 2-objective problems using quantitative measures,
namely, silhouette and diversity scores (Section 6.2). Furthermore, we evaluate the results
qualitatively through visual inspection of the 2D Pareto front. The initial solutions generated
by SEW-HCA for uniformly sampled weights are reasonably uniform owing to its preference
scaling strategy. We can then choose a preferred cluster among the performance/geometrical
clusters in the sparse initial dataset and generate new solutions using iSMO in the chosen
cluster. The preferredness of the new solutions is measured using the silhouette score and

Cooperative Set-based Optimization 100

is found to be reasonably high. From diversity scores, the new solutions are found to be
well-distributed along the Pareto front. Since we used two-objective MTO problems in this
chapter, the new solutions can be visually evaluated on the Pareto front. Interestingly, given
a clustering of initial solutions, if new solutions are generated for all the clusters using iSMO,
the resulting solutions are better distributed on the Pareto front than the initial solutions.

For each cluster in the objective space (i.e., performance cluster), it is easy to see from the
Pareto front that the new solutions generated by iSMO belong to the preferred cluster. This
is reflected in the relatively high silhouette score (𝑠𝑠𝑖𝑙 ∈ [0.5, 0.6]). We also have silhouette
scores in the same range for geometric clusters, indicating that the new solutions belong to
the preferred clusters. The diversity scores 𝑠𝑑𝑖𝑣 range from [−0.05, −0.11], where 0 score
indicates the ideal diversity. From visual inspection of the Pareto front, this range for diversity
scores seems to be good. However, in practice, the desired diversity score is dependent on the
application.

From the results, we believe iSMO is an interesting method to efficiently generate new solutions
in the preferred regions for solutions to multi-objective optimization problems. Furthermore,
iSMO can avoid expensive optimization runs by building metamodels (or surrogate models).
In the following chapter, we explore the solutions for complex optimization problems using
iSMO.

Cooperative Set-based Optimization 101

9. Engineering Example: Hood Optimization

In this chapter, iSMO is used to cooperatively generate preferred solutions for an engineering
example. A hood model is optimized for three crash objectives using SEW-HCA. Once again,
a set of weight-vectors are uniformly sampled and an initial set of solutions near the Pareto
front are generated using SEW-HCA. Given the initial solutions, performance and geometrical
clusters are found using the methods discussed in Chapter 4. For each selected cluster, we
demonstrate the use of iSMO to generate new solutions.

Figure 46 A hood model is optimized for three crash load configurations where an impactor
crashes into the hood in three different locations. MOP is to maximize the crash energy
absorbed for the loadcases.

9.1. Problem Description

A hood design, modeled using a non-linear elastoplastic material, is optimized for three crash
objectives, where each objective function 𝑓𝑖 (𝑖 ∈ {1, 2, 3}) is the negative of total internal
energy absorbed for the crash loadcase 𝑖 (Figure 46). For a given crash load 𝑖, we simulate
the crash for a certain number of time steps. For each element, we find the maximum internal
energy absorbed across the time steps. By summing the maximal internal energies of all the
elements, we obtain 𝑓𝑖. SEW-HCA minimizes the objective 𝑓 =

∑︀3
𝑖=1 𝑤𝑖 𝑓𝑖 = w · f for a given

weight-vector w = [𝑤𝑖]3𝑖=0 by trying to homogenize the energy absorbed, i.e., −𝑓 . Fixed nodes
in the model are shown in Figure 47. The absorbed internal energies are calculated using an
explicit LS-DYNA solver. For a given set of weights for the objectives, SEW-HCA iteratively
optimizes the design by calculating the objective values for each load case separately. For more
details on SEW-HCA, see Chapter 3.

Cooperative Set-based Optimization 102

Figure 47 Boundary conditions: multiple nodes in the colored locations (blue, red, green,
yellow, brown) are constrained to have zero displacements.

Figure 48 Deformation in the hood with crash loadcase 1 at the last time step (𝑡 = 0.01s).

The hood model has an approximate span of 1.73 m×1.25 m along x- and y-axes respectively,
and contains 195, 830 solid elements. The thickness of the hood skin is approximately 25mm
with an average of 4 elements across the skin. The material properties and hyperparameters
for SEW-HCA are as in test-case 1 (Section 8.2.1) except for the following changes. A smaller
move limit of 0.05 is chosen for stabilizing the optimizer. A volume fraction of 0.3 is chosen
with a filter radius of 50 mm. The number of iterations of SEW-HCA is limited to 25,
given that a complete optimization run lasts 24 hrs with our computing resources and we have
reasonable convergence in objectives after 25 iterations. A uniform gravity of 9.8 m/s2 is used.
The crash load is applied using a hemispherical rigid impactor with a diameter of 150 mm and
a mass of 0.5 kg. The impact velocity is 9.9 m/s in the 𝑧 direction and the simulation time
is 0.01s. Figure 48 shows a sample deformation for the first crash loadcase.

Cooperative Set-based Optimization 103

We first build metamodels needed by iSMO for predicting objective values from weight-vectors.
Gaussian process regressor is trained to predict objective values from weight-vectors, which
yields a training score of 0.98 and a CV score 𝑠𝐶𝑉 = 0.57. The low CV score is because
of very few training samples, where the CV split strongly affects the score. Gaussian process
regressor performs better compared to the scores obtained for other models: random forests
(𝑠𝐶𝑉 = 0.36), a linear regressor (𝑠𝐶𝑉 = −0.11), and a support vector machine with RBF
kernel (𝑠𝐶𝑉 = −0.08).

Next, we use iSMO to generate new solutions in selected performance and geometric clusters.
Performance clusters are obtained by clustering solutions using objective values as input. Ge-
ometrical clustering uses the autoencoder latent code as input. For more information on these
two kinds of clustering, see Chapter 4.

9.2. Performance Clustering

Figure 49a shows the performance clusters in the objective space. Note that even for a
uniform sampling of weight-vectors using the Das-Dennis approach [57], SEW-HCA is unable
to generate a uniform set of solutions. For illustrating the iSMO method, two of the clusters,
labeled 0 and 2 are chosen and new solutions are generated (Figure 49b). For the generation
of new solutions, iSMO uses metamodels with weight-vectors as input to predict objective-
vector and cluster labels using a Gaussian process regressor and 𝑘-nearest neighbor classifier
(𝑘 = 1) respectively. The objective predictor has a training accuracy of 0.99, a CV score of
0.62 ± 0.54 with a median of 0.80. The label predictor has a training accuracy of 1, a CV
score of 0.51 ± 0.17 with a median of 0.5. The scores indicate that the metamodels overfit
the data, which results in the spread of new solutions outside their preferred clusters to some
extent (Figure 49b).

(a) Initial set of solutions (b) New set of solutions

Figure 49 For selected performance clusters 0 and 2 in initial solutions (Subfigure a), new
solutions are generated using iSMO (Subfigure b).

The silhouette score 𝑠𝑠𝑖𝑙 = 0.15 of the new solutions is low while the diversity score 𝑠𝑑𝑖𝑣 =
−0.15 is close to 0 as desired. Even if the new solutions seem to be in the correct neighborhood

Cooperative Set-based Optimization 104

of the reference set of solutions, the spread of solutions into other clusters and the resultant
low silhouette score might be due to the inadequacy of SEW-HCA to find the global minimum
for the given weight-vector.

(a) Initial set of solutions (b) New set of solutions

Figure 50 Parallel coordinates plot of initial and new solutions. Normalized objective values
are shown along the vertical axes. For a given cluster label, the connecting lines have similar
changes in slope, and the intersection points along each objective share a common region.

Figure 50 compares the objective values for the initial and new solutions using a visualization
tool called parallel coordinates plot [88]. Before plotting, values for each objective 𝑓𝑖 are
normalized using the min/max values of 𝑓𝑖 in the initial solutions. This allows us to compare
the two plots since the values for each objective are scaled and shifted by the same pair of
values. The initial and new solutions have a similar pattern in their plots even if the latter
occupy a wider region for each objective.

Figure 51 UMAP visualization of the geometrical clusters shows that there are two
well-separated clusters. Each solution is shown here using its two UMAP coordinate values.

Cooperative Set-based Optimization 105

9.3. Geometric Clustering

The initial set of solutions is clustered based on the geometric structure using an autoencoder,
as discussed in Chapter 4. Pointcloud autoencoder (PCAE) is used to extract a low-dimensional
latent code of size 128 from a 3D pointcloud of size 2048 used to represent the surface of
each geometry. The latent code can then be used as input for clustering based on geometrical
structure. Here, we use the initial set of solutions as input for training PCAE. An alternative
training approach is to use a larger dataset such as the publicly available Carhoods10k dataset
[147] and then extract the latent code. This might avoid overfitting to the given dataset and
lead to a better PCAE model, which as mentioned before can be verified by using CV score
(Section 6.1.4).

(a) Initial set of solutions (b) New set of solutions

Figure 52 Given an initial set of solutions and its geometric clusters (Subfigure a), iSMO is
used to generate new solutions in a selected cluster 0 (Subfigure b).

UMAP visualization of the clusters shows that there are two well-separated clusters in the
data, as shown in Figure 51. For UMAP visualization, we use UMAP to reduce the latent code
(128 dimensions) to 2D data. We use UMAP instead of t-SNE or PCA because it preserves
inter-cluster distance as well as achieves a non-linear reduction of data while preserving the
cluster relations in the data.

Since we expect two clusters in the data, we use 𝑘-means clustering method with 𝑘 = 2 and
latent code as input to find the two geometrical clusters, which are shown in Figure 52a.
Samples of geometries from each of the two clusters are shown in Figure 53. The optimized
geometry is shown here using only the elements with relative density 𝜌 ≥ 0.05. Note, that
some of the geometries contain groups of elements that are connected through low-density
elements. So, such concepts are to be post-processed to remove unconnected parts and obtain
contiguous structures before further development in the design process. Figure 53 shows that
the solutions in the two clusters have different structures and topologies.

To illustrate the use of iSMO, the cluster 0 is chosen as the preferred set of solutions, and
iSMO is then used to generate new solutions in cluster 0, which are shown in Figure 52b. iSMO

Cooperative Set-based Optimization 106

Figure 53 Top view of the optimized designs in the initial set of solutions. In the top row,
samples in cluster 0 are shown, which have an arm-like structure on the left/right sides of the
subfigures. In the bottom row, samples in cluster 1 are shown, which have empty holes at the
bottom side.

Figure 54 Top view of the optimized designs in the new set of solutions generated by iSMO in
cluster 0. Most of the samples (4 of 6 subfigures) tend to have arm-like structures to the
left/right sides similar to samples in cluster 0, shown in Figure 53.

uses the same metamodel to predict the objective-vector from weight-vector. Since geometric
cluster labels are different from performance clusters, a new metamodel is built to predict
cluster labels from weight-vector. The preferredness and diversity scores for the new solutions
are 𝑠𝑠𝑖𝑙 = 0.11 and 𝑠𝑑𝑖𝑣 = −0.08 respectively. Figure 54 shows that the new solutions have a
similar structure to the initial solutions in the selected cluster 0. A few of the samples on the
cluster boundary have a structure similar to the other cluster (label = 1), which is indicated
by the lower silhouette score.

Cooperative Set-based Optimization 107

9.4. Discussion

Similar to the previous chapter, iSMO is used again to minimize expensive simulations while
using SEW-HCA. We analyzed the performance of iSMO with a 3-objective hood optimization
problem using silhouette and diversity scores (Section 6.2). Since we only have 3 objectives,
we can evaluate the results qualitatively through visual inspection of the 2D Pareto front. The
initial solutions generated by SEW-HCA for uniformly sampled weights are not uniform despite
the preference scaling strategy of SEW-HCA. However, we can still choose a preferred cluster
among the performance/geometrical clusters in the sparse initial dataset and generate new
solutions using iSMO in the chosen cluster.

For each cluster in the objective space (i.e., performance cluster), it is easy to see from the
Pareto front that the new solutions generated by iSMO are near the preferred cluster, with
some solutions spread into the nearby clusters. This is reflected in the relatively low average
silhouette score (𝑠𝑠𝑖𝑙 = 0.10) of the new solutions in the selected performance clusters. When
a geometric cluster is chosen, new solutions yield a slightly better score (0.15). Since there are
only two geometric clusters, it is less challenging for iSMO to generate new solutions compared
to performance clustering. The diversity scores 𝑠𝑑𝑖𝑣 range from [−0.15, −0.8], where 0 score
indicates the ideal diversity. From visual inspection of the Pareto front, this range for diversity
scores seems to be good.

From the results, we believe iSMO can efficiently generate new solutions in the preferred re-
gions for solutions to multi-objective optimization problems. iSMO could successfully generate
solutions near the selected cluster since we could build metamodels with high accuracy for pre-
dicting objectives and cluster labels. However, some of the solutions spread beyond the selected
clusters, which might be due to SEW-HCA finding a local minimum for a given weight-vector.
Possibly, solutions could be restricted to the preferred clusters by using a smaller move limit.
Due to time constraints, we did not investigate this further.

Cooperative Set-based Optimization 108

10. Conclusion

Design generation methods such as topology optimization (TO) [1–6] and multiobjective op-
timization methods [7, 24, 54, 55, 148–150] can be used to yield multitudes of promising
concepts for designing and developing products in automotive and aerospace industries. While
significant advances in high-performance computing and simulation tools have been made,
expensive simulations still hinder the process of TO, which typically requires several simula-
tions to iteratively optimize structural solutions. This problem is exacerbated when multiple
objectives need to be simultaneously considered for optimization. Furthermore, each optimiza-
tion method tends to have hyperparameters such as filter radius in TO that need to be tuned
according to user requirements. So, typically, an engineer needs to tune the optimizer and
generate numerous solutions, of which a few solutions are selected for further development. In
this thesis, we addressed two of the challenges in multi-objective TO: design exploration and
expensive simulations.

Designs can be easily explored using clustering, an unsupervised machine learning method
that can group solutions into classes, which can be more easily analyzed by an engineer. In
Chapter 4, we discussed how some of the methods available in literature can be used to analyze
solutions obtained using TO. While several clustering methods are available in literature [22,
75, 151], the metric used to cluster still needs to be tailored based on the application and design
requirements. In this thesis, we investigated the use of pointcloud autoencoders developed by
Achlioptas et al. [30] to cluster solutions based on geometrical structure. Furthermore, we
compared multiple metrics of geometry based on their ability to cluster complex topologies
obtained from structural optimization. We published some of this work already [93, 113, 152].
As discussed in Chapters 5 and 7, autoencoders show promise in geometrical clustering and
enable engineers to find interesting concepts in the solutions.

In the literature, two general strategies are available to avoid expensive simulations in design
generation methods: (i) generate only the preferred solutions [64, 153–155], and (ii) build
metamodels (surrogate models) to predict the behavior of an optimizer [33, 150]. We propose
a novel method called iSMO which builds metamodels for SEW-HCA [27], a weight-based
approach for multiobjective TO. Given a reference set of solutions, iSMO uses an evolutionary
algorithm to generate weight-vectors that will result in diverse solutions in the objective space.
Furthermore, iSMO can restrict the weight-vectors using metamodels to predict if they will
result in a solution similar to the reference set of solutions. In this work, the reference set is
chosen using one of the clusters obtained by clustering solutions with a given metric. This
allows us to simultaneously tackle the challenges of finding and generating desired solutions
while minimizing expensive simulations. Finally, we propose new methods for evaluating pre-
ferredness and diversity of new solutions based on the silhouette score [79] and the spacing
metric [137] respectively. The proposed method iSMO has been partially published by us

Cooperative Set-based Optimization 109

[143].

The initial solutions generated by SEW-HCA for uniformly sampled weights are reasonably
spread owing to its preference scaling strategy. Using iSMO, we could choose a preferred cluster
among the performance or geometrical clusters in the sparse initial dataset and successfully
generate preferred solutions. The preferredness of the new solutions is found to be high,
provided the optimization method and the metamodels are accurate. From diversity scores,
the new solutions are found to be well-distributed in the objective space. Since we used two-
objective and three-objective MTO problems in this thesis, the new solutions can be visually
evaluated on the Pareto front as well. Interestingly, given a clustering of initial solutions, if
new solutions are generated in all the clusters using iSMO, the resulting solutions are better
distributed on the Pareto front than the initial solutions obtained by the uniform sampling of
weight-vectors.

From the results, we believe clustering is a valuable tool for identifying interesting subsets of so-
lutions without supervision. We propose the use of iSMO to efficiently generate new solutions
in the preferred regions for solutions to multi-objective optimization problems. Furthermore,
iSMO can avoid expensive optimization runs by building metamodels (or surrogate models).
Although we use iSMO with a weight-based approach for multiobjective optimization, it can
be easily extended to handle any other optimizer with different inputs and hyperparameters.
Furthermore, the reference set of solutions could be obtained by methods other than clustering.
We only need to build a classifier to judge if the solutions are desirable or not. Such coop-
erative optimizers with surrogate models could greatly improve the applicability of topology
optimization in the industry.

Cooperative Set-based Optimization 110

List of Figures

Figure 1 TO can be used to generate multiple optimized structures by varying the

allowed volume fraction 𝜈𝑓 of material in the design space. We minimize the

compliance of an MBB beam, given a 2D rectangular design space of 100×60

elements with the fixed left boundary and a static load of 1 unit, using the 88

line code developed by Andreassen et al. [15]. Some of the hyperparameters

used are: filter radius is 2.5, penalization factor is 3, and sensitivity filtering

(ft = 1). The remaining hyperparameters and the material properties are as

described in the reference paper/code... 17

Figure 2 Cooperative design optimization: Generate a set of solutions using a design

optimization method. Analyze solutions using knowledge generation methods

and identify preferred concepts based on user criteria. Based on the pre-

ferred designs, the cooperative framework predicts the inputs required by the

optimization method to yield a new set of preferred solutions. 18

Figure 3 A cantilever plate with fixed nodes and two applied loads. The magnitude of

each load is 0.2 N. .. 29

Figure 4 A simply supported beam is optimized for a crash load from a cylinder (top)

and a static load (right face). The supports are implemented using fixed

nodes with zero prescribed displacement. The crash load is applied using a

rigid hollow cylinder, which crashes into the beam and travels a displacement

of 100 mm in 0.1 s, while constrained to move only along the z-axis without

rotation. The static load of 104 𝑁 is radially distributed at the center of a

lateral face with a radius of 20 mm. ... 30

Figure 5 Two possible boundary configurations for the unit cube. TO minimizes struc-

tural compliance under radially distributed loads F1 and F2 with centers at

c1 and c2, respectively while the nodes are fixed in the patch 𝐵. 31

Figure 6 The optimized design occupies a volume fraction of 0.3 with the maximum

stiffness when the given two loads are applied (white arrows). The dotted

points on the face to the right mark the boundary patch 𝐵. 31

Cooperative Set-based Optimization 111

Figure 7 Silhouette score 𝑠 for a sample x ∈ 𝐶1 uses 𝑎, the average distance to other

samples in 𝐶1, and 𝑏, the average distance to the nearest cluster: 𝑠 = 𝑏−𝑎
max(𝑏,𝑎) . 39

Figure 8 Schematic representation of PCAE... 42

Figure 9 Skeletonized TO results obtained using SEW-HCA. The first row shows the

first two problems discussed in Section 3.3. For each problem, we show in

the second row the optimized design obtained using SEW-HCA with equal

weights on the corresponding loads. In the last row, we show the skeletons,

whose thickness is equal to that of a voxel. ... 43

Figure 10 TO designs are mapped to 2-D using UMAP components, where each point

represents a design. The data samples are colored according to the clusters

obtained by using the 𝑘-means method on the reduced UMAP data. A sample

design in cluster/class 11 is shown to the right... 45

Figure 11 Different designs from cluster 1. The top row shows the design space with the

elements colored according to the displacement magnitude. The bottom row

shows the underlying design, i.e., only the elements with high-density elements. 45

Figure 12 Deformation behavior analysis of cantilever plate dataset. 47

Figure 13 Geometric representations of TO results.. 50

Figure 14 Measuring similarity between two metrics RM and TM. For each pair of ge-

ometries, RM and TM yield two different distance values. A high correlation

between the measured distances 𝐷RM and 𝐷TM validates the TM. 55

Figure 15 An example where clustering identifies the subclasses accurately. However,

the cluster labels (shown beside clusters) are different from the corresponding

ground-truth labels. For this example, the majority label method would relabel

the cluster label 2 to 1 since a majority of its samples have the ground-truth

label 2. ... 56

Figure 16 Two iterations of iSMO for a MOP with objectives 𝑓1, 𝑓2. In each iteration, (i)

the solutions are clustered, (ii) a cluster is selected, and (iii) new solutions are

generated for the selected cluster by iSMO. The new solutions in an iteration

are used as input for clustering in the next iteration. 60

Cooperative Set-based Optimization 112

Figure 17 An iteration of iSMO. Given an initial set of designs and a preferred set

among them (Step: A), we build a regressor with a weight-vector w as input

to predict objectives f (Step: B) and a constraint function that selects w

based on the preferred set (Step: C). Using EA, we find the set of w (Step:

D) that will result in the desired designs. .. 64

Figure 18 Silhouette score 𝑠 for each new solution d, given a preferred cluster S. 𝑎 is the

average distance to other solutions in the same cluster and 𝑏 is the minimum

average distance to other clusters. The score 𝑠 = (𝑏−𝑎)
max (𝑏,𝑎) 65

Figure 19 Measuring Δ of five 2D points: [x𝑖]4𝑖=1. The data can be understood as a

projection of a 3D Pareto front onto a plane. For each point x𝑖, we show the

shortest distance 𝑑𝑖 to other samples. Δ is smallest when x0 = (0.5, 0.5),

and is equidistant from the other points. Δ is high when x0 coincides with

another point. Δ is moderately small when x0 is at the corners of the dotted

square in (a). ... 66

Figure 20 Δ is sensitive to the variation of input along different axes. When the input

points of Figure 19 are scaled along the x-axis by 10 times, i.e., 𝑑0 = 𝑑1 =

𝑑3 = 5 and 𝑑2 = 𝑑4 = 0.5, Δ is skewed along the x-axis. If the input is

normalized, we can eliminate this problem. .. 67

Figure 21 Beam-rotation dataset: An ellipsoidal beam is rotated by different angles. 71

Figure 22 Beam-elongation dataset: An ellipsoidal beam is elongated by different lengths. 72

Figure 23 Beam-translation dataset: An ellipsoidal beam is translated by different amounts. 72

Figure 24 Three-cube basegraph and its subgraphs: The vertices of the cubes are graph

nodes. Line segments joining any two vertices of the same cube are graph

edges. For clarity, only some of the graph edges, i.e., the cube edges are

shown in the figure. Hidden edges of the cubes are shown as dashed lines. 73

Figure 25 Three-cube truss dataset: Sample designs from 6 different subclasses. 74

Figure 26 Single-cube basegraph and subgraphs: Graph nodes are the cube vertices

and graph edges exist between every pair of nodes. Each subgraph of the

basegraph yields a subclass of designs. Hidden edges in the graphs are shown

as dashed lines. .. 74

Figure 27 Single-cube truss dataset: sample designs from 6 different subclasses. 75

Cooperative Set-based Optimization 113

Figure 28 Randomized topologies: Each row shows designs from a subclass based on a

subgraph. Beam thicknesses are varied as well some beams are removed with

low probability. ... 75

Figure 29 Metric correlations for the beam-rotation dataset: An ellipsoid is rotated by

different amounts to yield 20 designs. Distance values measured by RM and

TM, i.e., 𝐷RM and 𝐷TM, are shown along x- and y-axes respectively. Here,

RM is (MMC par, ED), i.e., the difference in orientation.............................. 78

Figure 30 Metric correlations for the beam-elongation dataset: An ellipsoid is elongated

by different amounts to yield 20 designs. So, each comparison plot above

contains 190 points. Compare different metrics with RM: (MMC par, ED),

i.e., the difference in elongation. .. 80

Figure 31 Metric correlation for beam-translation dataset: An ellipsoid is translated

by different amounts to yield 20 designs. So, each comparison plot above

contains 190 points. Compare different metrics with RM: (MMC par, ED),

i.e., the difference in position. ... 81

Figure 32 Metric correlations for random topologies dataset. Each correlation measure

uses nearly 5×105 distance measures. Since (MMC par, ED) is not useful for

complex datasets, we only have 7 TMs and 1 RM among the metrics (Table 5). 82

Figure 33 A UMAP visualization of clusters. Each cluster is a set of designs, which are

represented here as points in a 2D plane. The clusters are numbered from 0

to 49 and are annotated in the figure using arrows. The inset shows cluster

4 and three sample designs from it. Designs and clusters are colored to ease

visualization. .. 86

Figure 34 Clusters in the TO design-set are visualized in 2D using UMAP reduction of

PCAE latent code. UMAP values are not shown along axes since they do

not yield additional insights. 𝑘-means method identifies 4 clusters (labeled

0-3). The representative design for each cluster is shown near the respective

cluster. The identified clusters are not separated, which is often the case with

engineering data. .. 87

Cooperative Set-based Optimization 114

Figure 35 TO designs similar to cluster representatives found using latent code (Figure

34). The first column (a) contains the four design representatives. For each

cluster representative, three designs from the same cluster are shown in a

row with decreasing similarity in columns b-d. For each design, we show the

corresponding loads as brown arrows. In each row, we measure the relative

distance from the representative (a) to each design in columns b-d using latent

code (AD) and chamfer distance (CD). .. 88

Figure 36 BNH problem: 3D surface plots showing the effect of decision variables on

the two objective functions 𝑓1 and 𝑓2. .. 90

Figure 37 iSMO generates new solutions (b) for each of the clusters in (a). Solutions

are colored according to their cluster ids (labels). 91

Figure 38 iSMO yields different solutions when different regressor models are used......... 93

Figure 39 iSMO yields different solutions when different classifier models are used. 94

Figure 40 For each performance cluster (a), iSMO generates new solutions (b). Sub-

figure b shows only the new solutions. .. 96

Figure 41 For each geometric cluster (a), iSMO generates new solutions (b). Subfigure

b shows only the new solutions.. 97

Figure 42 Comparing the geometrical structures of initial and new solutions generated

by iSMO. In each design, low-density and high-density elements are indicated

by blue and brown color respectively. In each row, we show a cluster repre-

sentative in the initial solutions (left image), followed by its most dissimilar

design—as measured by chamfer distance (CD)—in the new solutions gener-

ated for that cluster (right image).. 98

Figure 43 For each performance cluster in test case 2 (Figure 4), iSMO generates

new solutions. Note that since we are maximizing 𝑓1 and minimizing 𝑓2, the

Pareto front is towards the bottom-right corner. ... 99

Figure 44 For each geometric cluster in test case 2 (Figure 4), iSMO generates new

solutions.. 99

Cooperative Set-based Optimization 115

Figure 45 Comparing the geometrical structures of initial and new solutions generated

by iSMO. Each design is shown using the surface mesh obtained using the

threshold 0.1. Similar to Figure 42, we compare the representative in each

preferred cluster with its most dissimilar, new solution. Note that in cluster

0 (middle row), the most dissimilar design has a different structure since it is

on the boundary.. 100

Figure 46 A hood model is optimized for three crash load configurations where an im-

pactor crashes into the hood in three different locations. MOP is to maximize

the crash energy absorbed for the loadcases. .. 102

Figure 47 Boundary conditions: multiple nodes in the colored locations (blue, red, green,

yellow, brown) are constrained to have zero displacements. 103

Figure 48 Deformation in the hood with crash loadcase 1 at the last time step (𝑡 = 0.01s).103

Figure 49 For selected performance clusters 0 and 2 in initial solutions (Subfigure a),

new solutions are generated using iSMO (Subfigure b). 104

Figure 50 Parallel coordinates plot of initial and new solutions. Normalized objective

values are shown along the vertical axes. For a given cluster label, the con-

necting lines have similar changes in slope, and the intersection points along

each objective share a common region. ... 105

Figure 51 UMAP visualization of the geometrical clusters shows that there are two

well-separated clusters. Each solution is shown here using its two UMAP

coordinate values. ... 105

Figure 52 Given an initial set of solutions and its geometric clusters (Subfigure a), iSMO

is used to generate new solutions in a selected cluster 0 (Subfigure b)............ 106

Figure 53 Top view of the optimized designs in the initial set of solutions. In the top

row, samples in cluster 0 are shown, which have an arm-like structure on the

left/right sides of the subfigures. In the bottom row, samples in cluster 1 are

shown, which have empty holes at the bottom side. 107

Figure 54 Top view of the optimized designs in the new set of solutions generated by

iSMO in cluster 0. Most of the samples (4 of 6 subfigures) tend to have arm-

like structures to the left/right sides similar to samples in cluster 0, shown in

Figure 53... 107

Cooperative Set-based Optimization 116

List of Tables

Table 3 Default hyperparameters used by regressors and classifiers in this thesis. The

parameter name is given with value in brackets. .. 63

Table 4 Short names used for input data, dimensionality reduction techniques, and

metrics... 76

Table 5 List of 9 metrics evaluated in this study. For simple datasets, (MMC par, ED)

as RM can be used to evaluate the remaining 8 metrics (TMs). For complex

data, (MMC par, ED) is not useful. So, we use (Pointcloud, CD) as RM to

evaluate the other 7 metrics (TMs). .. 77

Table 6 Classification accuracy of different metrics with 𝑘-means clustering (𝑘 = 50).... 85

Table 7 Classification accuracy of different metrics with OPTICS as the clustering

method. ... 85

Table 8 Advantages and disadvantages of different metrics. For each attribute column,

values are put into three categories: low (L), medium (M), and high (H). 89

Table 9 A comparison of different regressor models ... 92

Table 10 A comparison of different classifier models ... 93

Cooperative Set-based Optimization 117

Bibliography

[1] M. P. Bendsøe and O. Sigmund. Topology optimization. Springer Berlin Heidelberg,
2004. doi: 10.1007/978-3-662-05086-6.

[2] K. Liu and A. Tovar. “An efficient 3D topology optimization code written in Matlab”.
In: Structural and Multidisciplinary Optimization 50.6 (2014), pp. 1175–1196. doi:
10.1007/s00158-014-1107-x.

[3] M. Bujny, N. Aulig, M. Olhofer, and F. Duddeck. “Identification of optimal topologies
for crashworthiness with the evolutionary level set method”. In: International Journal of
Crashworthiness 23.4 (2017), pp. 395–416. doi: 10.1080/13588265.2017.1331493.

[4] E. Raponi, M. Bujny, M. Olhofer, N. Aulig, S. Boria, and F. Duddeck. “Kriging-assisted
topology optimization of crash structures”. In: Computer Methods in Applied Mechanics
and Engineering 348 (2019), pp. 730–752. doi: 10.1016/j.cma.2019.02.002.

[5] D. Zeng and F. Duddeck. “Improved hybrid cellular automata for crashworthiness op-
timization of thin-walled structures”. In: Structural and Multidisciplinary Optimization
56.1 (2017), pp. 101–115. doi: 10.1007/s00158-017-1650-3.

[6] F. Duddeck, S. Hunkeler, P. Lozano, E. Wehrle, and D. Zeng. “Topology optimization
for crashworthiness of thin-walled structures under axial impact using hybrid cellular
automata”. In: Structural and Multidisciplinary Optimization 54.3 (2016), pp. 415–428.
doi: 10.1007/s00158-016-1445-y.

[7] F. Duddeck. “Multidisciplinary optimization of car bodies”. In: Structural and Multidis-
ciplinary Optimization 35.4 (2008), pp. 375–389. doi: 10.1007/s00158-007-0130-6.

[8] T. Borrvall and J. Petersson. “Topology optimization of fluids in Stokes flow”. In:
International Journal for Numerical Methods in Fluids 41.1 (2002), pp. 77–107. doi:
10.1002/fld.426.

[9] S. Sanogo and F. Messine. “Topology optimization in electromagnetism using SIMP
method”. In: COMPEL - The International Journal for Computation and Mathematics
in Electrical and Electronic Engineering 37.6 (2018), pp. 2138–2157. doi: 10.1108/

compel-04-2017-0170.

[10] G. H. Yoon, J. S. Jensen, and O. Sigmund. “Topology optimization of acoustic-structure
interaction problems using a mixed finite element formulation”. In: International Journal
for Numerical Methods in Engineering 70.9 (2007), pp. 1049–1075. doi: 10.1002/

nme.1900.

[11] J. Matejka, M. Glueck, E. Bradner, A. Hashemi, T. Grossman, and G. Fitzmaurice.
“Dream Lens”. In: Proc. of the 2018 CHI Conference on Human Factors in Computing
Systems. ACM, 2018, pp. 1–12. doi: 10.1145/3173574.3173943.

Cooperative Set-based Optimization 118

https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1007/s00158-014-1107-x
https://doi.org/10.1080/13588265.2017.1331493
https://doi.org/10.1016/j.cma.2019.02.002
https://doi.org/10.1007/s00158-017-1650-3
https://doi.org/10.1007/s00158-016-1445-y
https://doi.org/10.1007/s00158-007-0130-6
https://doi.org/10.1002/fld.426
https://doi.org/10.1108/compel-04-2017-0170
https://doi.org/10.1108/compel-04-2017-0170
https://doi.org/10.1002/nme.1900
https://doi.org/10.1002/nme.1900
https://doi.org/10.1145/3173574.3173943

[12] G. Fender, S. Marburg, and F. Duddeck. “Identification of a Set of Candidate Solutions
for Optimal Positioning of Damping Layers”. In: SAE International Journal of Passenger
Cars - Mechanical Systems 9.3 (2016), pp. 987–994. doi: 10.4271/2016-01-1778.

[13] O. Sigmund and J. Petersson. “Numerical instabilities in topology optimization: A sur-
vey on procedures dealing with checkerboards, mesh-dependencies and local minima”.
In: Structural Optimization 16.1 (1998), pp. 68–75. doi: 10.1007/BF01214002.

[14] S. Ramnath, N. Aulig, M. Bujny, S. Menzel, I. Gandikota, and K. Horner. “Load Case
Preference Patterns based on Parameterized Pareto-Optimal Vehicle Design Concept
Optimization”. In: 12th European LS-DYNA Conference. 2019, pp. 1–9.

[15] E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov, and O. Sigmund. “Efficient
topology optimization in MATLAB using 88 lines of code”. In: Structural and Multi-
disciplinary Optimization 43.1 (2011), pp. 1–16. doi: 10.1007/s00158-010-0594-7.

[16] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2009. 745 pp. isbn: 0387848576.

[17] S. Bandaru, A. H. C. Ng, and K. Deb. “Data mining methods for knowledge discovery
in multi-objective optimization: Part A - Survey”. In: Expert Systems with Applications
70 (2017), pp. 139–159. doi: 10.1016/j.eswa.2016.10.015.

[18] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Con-
cepts, tools, and techniques to build intelligent systems. O’Reilly UK Ltd., 2019. isbn:
9781492032649.

[19] M. S. Yousaf, M. Bujny, N. Zurbrugg, D. Detwiler, and F. Duddeck. “Similarity control
in topology optimization under static and crash loading scenarios”. In: Engineering
Optimization 53.9 (2021), pp. 1523–1538. doi: 10.1080/0305215x.2020.1806257.

[20] W. Zhang, Y. Wang, Z. Du, C. Liu, S.-K. Youn, and X. Guo. “Machine-learning as-
sisted topology optimization for architectural design with artistic flavor”. In: Com-
puter Methods in Applied Mechanics and Engineering 413 (2023), p. 116041. doi:
10.1016/j.cma.2023.116041.

[21] K. Miettinen, J. Hakanen, and D. Podkopaev. “Interactive Nonlinear Multiobjective
Optimization Methods”. In: Multiple Criteria Decision Analysis. Springer New York,
2016, pp. 927–976. doi: 10.1007/978-1-4939-3094-4_22.

[22] P. Berkhin. “A Survey of Clustering Data Mining Techniques”. In: Grouping Multidi-
mensional Data. Springer-Verlag, 2006, pp. 25–71. doi: 10.1007/3-540-28349-8_2.

[23] A. Hagg, A. Asteroth, and T. Bäck. “Prototype Discovery Using Quality-Diversity”. In:
Parallel Problem Solving from Nature – PPSN XV. Springer International Publishing,
2018, pp. 500–511. doi: 10.1007/978-3-319-99253-2_40.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist multiobjective
genetic algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary Computation 6.2
(2002), pp. 182–197. doi: 10.1109/4235.996017.

Cooperative Set-based Optimization 119

https://doi.org/10.4271/2016-01-1778
https://doi.org/10.1007/BF01214002
https://doi.org/10.1007/s00158-010-0594-7
https://doi.org/10.1016/j.eswa.2016.10.015
https://doi.org/10.1080/0305215x.2020.1806257
https://doi.org/10.1016/j.cma.2023.116041
https://doi.org/10.1007/978-1-4939-3094-4_22
https://doi.org/10.1007/3-540-28349-8_2
https://doi.org/10.1007/978-3-319-99253-2_40
https://doi.org/10.1109/4235.996017

[25] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang. “Multiobjective
evolutionary algorithms: A survey of the state of the art”. In: Swarm and Evolutionary
Computation 1.1 (2011), pp. 32–49. doi: 10.1016/j.swevo.2011.03.001.

[26] M. Bujny, M. Olhofer, N. Aulig, and F. Duddeck. “Topology Optimization of 3D-
printed joints under crash loads using Evolutionary Algorithms”. In: Structural and
Multidisciplinary Optimization 64.6 (2021), pp. 4181–4206. doi: 10.1007/s00158-

021-03053-4.

[27] N. Aulig, E. Nutwell, S. Menzel, and D. Detwiler. “Preference-based topology opti-
mization for vehicle concept design with concurrent static and crash load cases”. In:
Structural and Multidisciplinary Optimization 57.1 (2018), pp. 251–266. doi: 10 .

1007/s00158-017-1751-z.

[28] D. W. Kelly and M. W. Tosh. “Interpreting load paths and stress trajectories in elas-
ticity”. In: Engineering Computations 17.2 (2000), pp. 117–135. doi: 10 . 1108 /

02644400010313084.

[29] L. Song, F. Duddeck, and J. Fender. “Commonality Optimization for Components
in Vehicle Families with respect to Crashworthiness Design”. In: VII Europ. Congr.
on Computational Methods in Applied Sciences and Engineering (ECCOMAS). 2016,
pp. 1–12.

[30] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. “Learning Representations and
Generative Models for 3D Point Clouds”. In: Proc. of the 35th Int. Conf. on Machine
Learning. Vol. 80. Proc. of Machine Learning Research (PMLR). 2018, pp. 40–49.

[31] S. Saha, S. Menzel, L. L. Minku, X. Yao, B. Sendhoff, and P. Wollstadt. “Quantifying
The Generative Capabilities Of Variational Autoencoders For 3D Car Point Clouds”. In:
2020 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2020. doi:
10.1109/ssci47803.2020.9308513.

[32] C. H. Chuang, R. J. Yang, G. Li, K. Mallela, and P. Pothuraju. “Multidisciplinary design
optimization on vehicle tailor rolled blank design”. In: Structural and Multidisciplinary
Optimization 35.6 (2007), pp. 551–560. doi: 10.1007/s00158-007-0152-0.

[33] M. Kiani, I. Gandikota, A. Parrish, K. Motoyama, and M. Rais-Rohani. “Surrogate-
based optimisation of automotive structures under multiple crash and vibration design
criteria”. In: International Journal of Crashworthiness 18.5 (2013), pp. 473–482. doi:
10.1080/13588265.2013.805294.

[34] A.-B. Ryberg, R. D. Bäckryd, and L. Nilsson. “A metamodel-based multidisciplinary
design optimization process for automotive structures”. In: Engineering with Computers
31.4 (2014), pp. 711–728. doi: 10.1007/s00366-014-0381-y.

[35] C. Li and I. Y. Kim. “Topology, size and shape optimization of an automotive cross car
beam”. In: Proc. of the Institution of Mechanical Engineers, Part D: Journal of Automo-
bile Engineering 229.10 (2014), pp. 1361–1378. doi: 10.1177/0954407014561279.

Cooperative Set-based Optimization 120

https://doi.org/10.1016/j.swevo.2011.03.001
https://doi.org/10.1007/s00158-021-03053-4
https://doi.org/10.1007/s00158-021-03053-4
https://doi.org/10.1007/s00158-017-1751-z
https://doi.org/10.1007/s00158-017-1751-z
https://doi.org/10.1108/02644400010313084
https://doi.org/10.1108/02644400010313084
https://doi.org/10.1109/ssci47803.2020.9308513
https://doi.org/10.1007/s00158-007-0152-0
https://doi.org/10.1080/13588265.2013.805294
https://doi.org/10.1007/s00366-014-0381-y
https://doi.org/10.1177/0954407014561279

[36] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441.

[37] D. Simon. Evolutionary optimization algorithms. John Wiley & Sons, 2013.

[38] O. M. Querin, G. P. Steven, and Y. M. Xie. “Evolutionary structural optimisation (ESO)
using a bidirectional algorithm”. In: Engineering Computations 15.8 (1998), pp. 1031–
1048. doi: 10.1108/02644409810244129.

[39] A. Tovar, N. M. Patel, G. L. Niebur, M. Sen, and J. E. Renaud. “Topology optimization
using a hybrid cellular automation method with local control rules”. In: Journal of
Mechanical Design, Transactions of the ASME 128.6 (2006), pp. 1205–1216. doi:
10.1115/1.2336251.

[40] N. P. van Dijk, K. Maute, M. Langelaar, and F. van Keulen. “Level-set methods for
structural topology optimization: a review”. In: Structural and Multidisciplinary Opti-
mization 48.3 (2013), pp. 437–472. doi: 10.1007/s00158-013-0912-y.

[41] M. Bujny, N. Aulig, M. Olhofer, and F. Duddeck. “Evolutionary level set method for
crashworthiness topology optimization”. In: ECCOMAS Congress 2016 - Proc. of the
7th European Congress on Computational Methods in Applied Sciences and Engineer-
ing. Vol. 1. 2016, pp. 309–322. isbn: 9786188284401. doi: 10.7712/100016.1814.

11054.

[42] G. Allaire, F. Jouve, and A.-M. Toader. “Structural optimization using sensitivity anal-
ysis and a level-set method”. In: Journal of Computational Physics 194.1 (2004),
pp. 363–393. doi: 10.1016/j.jcp.2003.09.032.

[43] M. Bujny. “Level set topology optimization for crashworthiness using evolutionary al-
gorithms and machine learning”. PhD thesis. Munich: Technical University of Munich,
Germany, 2020. url: http://mediatum.ub.tum.de/doc/1540709/document.pdf.

[44] K. Svanberg. “The method of moving asymptotes—a new method for structural opti-
mization”. In: International Journal for Numerical Methods in Engineering 24.2 (1987),
pp. 359–373. doi: 10.1002/nme.1620240207.

[45] R. J. Yang. “Multidiscipline topology optimization”. In: Computers & Structures 63.6
(1997), pp. 1205–1212. doi: 10.1016/s0045-7949(96)00402-6.

[46] C. B. W. Pedersen. “Topology optimization design of crushed 2D-frames for desired
energy absorption history”. In: Structural and Multidisciplinary Optimization 25.5-6
(2003), pp. 368–382. doi: 10.1007/s00158-003-0282-y.

[47] N. M. Patel, B. S. Kang, J. E. Renaud, and A. Tovar. “Crashworthiness design using
topology optimization”. In: Journal of Mechanical Design, Transactions of the ASME
131.6 (2009). doi: 10.1115/1.3116256.

[48] A. Tovar, N. M. Patel, A. K. Kaushik, and J. E. Renaud. “Optimality Conditions of the
Hybrid Cellular Automata for Structural Optimization”. In: AIAA Journal 45.3 (2007),
pp. 673–683. doi: 10.2514/1.20184.

Cooperative Set-based Optimization 121

https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1108/02644409810244129
https://doi.org/10.1115/1.2336251
https://doi.org/10.1007/s00158-013-0912-y
https://doi.org/10.7712/100016.1814.11054
https://doi.org/10.7712/100016.1814.11054
https://doi.org/10.1016/j.jcp.2003.09.032
http://mediatum.ub.tum.de/doc/1540709/document.pdf
https://doi.org/10.1002/nme.1620240207
https://doi.org/10.1016/s0045-7949(96)00402-6
https://doi.org/10.1007/s00158-003-0282-y
https://doi.org/10.1115/1.3116256
https://doi.org/10.2514/1.20184

[49] S. Hunkeler. “Topology Optimisation in Crashworthiness Design via Hybrid Cellular
Automata for Thin Walled Structures”. PhD thesis. Queen Mary University of London,
UK, 2013.

[50] D. Zeng. “Enhanced Hybrid Cellular Automata Method for Crashworthiness Topology
Optimization of Thin-walled Structures”. PhD thesis. Technical University of Munich,
Germany, 2019.

[51] Y. M. Xie and G. P. Steven. “A simple evolutionary procedure for structural optimiza-
tion”. In: Computers & Structures 49.5 (1993), pp. 885–896. doi: 10.1016/0045-

7949(93)90035-c.

[52] K. Deb and H. Jain. “An Evolutionary Many-Objective Optimization Algorithm Using
Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With
Box Constraints”. In: IEEE Transactions on Evolutionary Computation 18.4 (2014),
pp. 577–601. doi: 10.1109/tevc.2013.2281535.

[53] H. Jain and K. Deb. “An Evolutionary Many-Objective Optimization Algorithm Using
Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints
and Extending to an Adaptive Approach”. In: IEEE Transactions on Evolutionary Com-
putation 18.4 (2014), pp. 602–622. doi: 10.1109/tevc.2013.2281534.

[54] I. Y. Kim and O. L. de Weck. “Adaptive weighted sum method for multiobjective
optimization: a new method for Pareto front generation”. In: Structural and Multidisci-
plinary Optimization 31.2 (2005), pp. 105–116. doi: 10.1007/s00158-005-0557-6.

[55] Y. Sato, K. Izui, T. Yamada, and S. Nishiwaki. “Pareto frontier exploration in multiob-
jective topology optimization using adaptive weighting and point selection schemes”.
In: Structural and Multidisciplinary Optimization 55.2 (2016), pp. 409–422. doi: 10.

1007/s00158-016-1499-x.

[56] N. Ryu and S. Min. “Multiobjective optimization with an adaptive weight determina-
tion scheme using the concept of hyperplane”. In: International Journal for Numerical
Methods in Engineering 118.6 (2019), pp. 303–319. doi: 10.1002/nme.6013.

[57] I. Das and J. E. Dennis. “Normal-Boundary Intersection: A New Method for Generating
the Pareto Surface in Nonlinear Multicriteria Optimization Problems”. In: SIAM Journal
on Optimization 8.3 (1998), pp. 631–657. doi: 10.1137/s1052623496307510.

[58] LIVERMORE SOFTWARE TECHNOLOGY CORPORATION (LSTC). LS-DYNA Soft-
ware. Version R10.0. Feb. 19, 2010. url: lsdyna.ansys.com.

[59] Y. Wu. “Skeleton Analysis of Topology Optimization Results”. Master’s thesis. Tech-
nical University of Munich, Germany, 2021.

[60] E. Hutapea, N. Dommaraju, M. Bujny, and F. Duddeck. “Clustering Topologically
Optimized Designs Based on Structural Deformation”. In: Proc. of the Munich Sym-
posium on Lightweight Design 2021. Springer Berlin Heidelberg, 2022, pp. 104–114.
doi: 10.1007/978-3-662-65216-9_10.

Cooperative Set-based Optimization 122

https://doi.org/10.1016/0045-7949(93)90035-c
https://doi.org/10.1016/0045-7949(93)90035-c
https://doi.org/10.1109/tevc.2013.2281535
https://doi.org/10.1109/tevc.2013.2281534
https://doi.org/10.1007/s00158-005-0557-6
https://doi.org/10.1007/s00158-016-1499-x
https://doi.org/10.1007/s00158-016-1499-x
https://doi.org/10.1002/nme.6013
https://doi.org/10.1137/s1052623496307510
lsdyna.ansys.com
https://doi.org/10.1007/978-3-662-65216-9_10

[61] Y. Shimizu, N. Dommaraju, M. Bujny, S. Menzel, M. Olhofer, and F. Duddeck. “Defor-
mation Clustering Methods for Topologically Optimized Structures under Crash Load
based on Displacement Time Series”. In: World Congress on Computational Mechanics.
2022. doi: 10.23967/wccm-apcom.2022.037.

[62] J. C. Ferreira, C. M. Fonseca, and A. Gaspar-Cunha. “Methodology to select solu-
tions from the pareto-optimal set: a comparative study”. In: Proc. of the 9th annual
conference on genetic and evolutionary computation - GECCO ’07. ACM Press, 2007,
pp. 789–796. doi: 10.1145/1276958.1277117.

[63] H. K. Singh, T. Ray, T. Rodemann, and M. Olhofer. “Identifying solutions of interest
for practical many-objective problems using recursive expected marginal utility”. In:
Proc. of the Genetic and Evolutionary Computation Conference Companion. ACM,
2019, pp. 1734–1741. doi: 10.1145/3319619.3326804.

[64] D. Cvetkovic and I. C. Parmee. “Preferences and their application in evolutionary
multiobjective optimization”. In: IEEE Transactions on Evolutionary Computation 6.1
(2002), pp. 42–57. doi: 10.1109/4235.985691.

[65] Y. Sato, K. Izui, T. Yamada, and S. Nishiwaki. “Data mining based on clustering and
association rule analysis for knowledge discovery in multiobjective topology optimiza-
tion”. In: Expert Systems with Applications 119 (2019), pp. 247–261. doi: 10.1016/

j.eswa.2018.10.047.

[66] R. Mcgill, J. W. Tukey, and W. A. Larsen. “Variations of Box Plots”. In: The American
Statistician 32.1 (1978), pp. 12–16. doi: 10.1080/00031305.1978.10479236.

[67] J. L. Hintze and R. D. Nelson. “Violin Plots: A Box Plot-Density Trace Synergism”. In:
The American Statistician 52.2 (1998), pp. 181–184. doi: 10.1080/00031305.1998.

10480559.

[68] P. Kampstra. “Beanplot: A Boxplot Alternative for Visual Comparison of Distributions”.
In: Journal of Statistical Software 28.Code Snippet 1 (2008). doi: 10.18637/jss.

v028.c01.

[69] K. R. Gabriel. “The biplot graphic display of matrices with application to principal
component analysis”. In: Biometrika 58.3 (1971), pp. 453–467. doi: 10.1093/biomet/

58.3.453.

[70] M. Friendly. “Mosaic Displays for Multi-Way Contingency Tables”. In: Journal of
the American Statistical Association 89.425 (1994), pp. 190–200. doi: 10 . 1080 /

01621459.1994.10476460.

[71] W. S. Cleveland. “Coplots, Nonparametric Regression, and Conditionally Parametric
Fits”. In: Lecture Notes-Monograph Series 24 (1994), pp. 21–36. url: http://www.

jstor.org/stable/4355791.

[72] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on Information
Theory 28.2 (1982), pp. 129–137. doi: 10.1109/TIT.1982.1056489.

Cooperative Set-based Optimization 123

https://doi.org/10.23967/wccm-apcom.2022.037
https://doi.org/10.1145/1276958.1277117
https://doi.org/10.1145/3319619.3326804
https://doi.org/10.1109/4235.985691
https://doi.org/10.1016/j.eswa.2018.10.047
https://doi.org/10.1016/j.eswa.2018.10.047
https://doi.org/10.1080/00031305.1978.10479236
https://doi.org/10.1080/00031305.1998.10480559
https://doi.org/10.1080/00031305.1998.10480559
https://doi.org/10.18637/jss.v028.c01
https://doi.org/10.18637/jss.v028.c01
https://doi.org/10.1093/biomet/58.3.453
https://doi.org/10.1093/biomet/58.3.453
https://doi.org/10.1080/01621459.1994.10476460
https://doi.org/10.1080/01621459.1994.10476460
http://www.jstor.org/stable/4355791
http://www.jstor.org/stable/4355791
https://doi.org/10.1109/TIT.1982.1056489

[73] G. J. McLachlan and K. E. Basford. Mixture models: Inference and applications to
clustering. Vol. 38. New York: Dekker, 1988.

[74] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. “A Density-Based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise”. In: Proc. of the 2nd Int. Conf.
on Knowledge Discovery and Data Mining. 1996, pp. 226–231.

[75] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander. “OPTICS: Ordering Points to
Identify the Clustering Structure”. In: SIGMOD Record (ACM Special Interest Group
on Management of Data) 28.2 (1999), pp. 49–60. doi: 10.1145/304181.304187.

[76] A. K. Jain. “Data clustering: 50 years beyond K-means”. In: Pattern Recognition Letters
31.8 (2010), pp. 651–666. doi: 10.1016/j.patrec.2009.09.011.

[77] M. Meilă. “The Uniqueness of a Good Optimum for K-Means”. In: Proc. of the 23rd
Int. Conf. on Machine Learning. ICML ’06. Pittsburgh, Pennsylvania, USA: Association
for Computing Machinery, 2006, pp. 625–632. isbn: 1595933832. doi: 10.1145/

1143844.1143923.

[78] L. Kaufman and P. J. Rousseeuw. “Partitioning Around Medoids (Program PAM)”. In:
Finding Groups in Data. John Wiley & Sons, Inc., 1990, pp. 68–125. doi: 10.1002/

9780470316801.ch2.

[79] P. J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis”. In: Journal of Computational and Applied Mathematics 20 (1987),
pp. 53–65. doi: 10.1016/0377-0427(87)90125-7.

[80] F. Lanfermann, S. Schmitt, and S. Menzel. “An Effective Measure to Identify Mean-
ingful Concepts in Engineering Design optimization”. In: 2020 IEEE Symposium Series
on Computational Intelligence (SSCI). IEEE, 2020. doi: 10.1109/ssci47803.2020.

9308484.

[81] H. Hotelling. “Analysis of a complex of statistical variables into principal components”.
In: Journal of Educational Psychology 24.6 (1933), pp. 417–441. doi: 10 . 1037 /

h0071325.

[82] Z. Bozakov, L. Graening, S. Hasler, H. Wersing, and S. Menzel. “Unsupervised extrac-
tion of design components for a 3D parts-based representation”. In: 2008 IEEE Interna-
tional Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence). IEEE, 2008, pp. 2009–2016. doi: 10.1109/ijcnn.2008.4634074.

[83] E. Ulu, R. Zhang, and L. B. Kara. “A data-driven investigation and estimation of
optimal topologies under variable loading configurations”. In: Computer Methods in
Biomechanics and Biomedical Engineering: Imaging & Visualization 4.2 (2015), pp. 61–
72. doi: 10.1080/21681163.2015.1030775.

[84] D. Feldman, M. Schmidt, and C. Sohler. “Turning Big Data Into Tiny Data: Constant-
Size Coresets for 𝑘-Means, PCA, and Projective Clustering”. In: SIAM Journal on
Computing 49.3 (2020), pp. 601–657. doi: 10.1137/18m1209854.

Cooperative Set-based Optimization 124

https://doi.org/10.1145/304181.304187
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1145/1143844.1143923
https://doi.org/10.1145/1143844.1143923
https://doi.org/10.1002/9780470316801.ch2
https://doi.org/10.1002/9780470316801.ch2
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/ssci47803.2020.9308484
https://doi.org/10.1109/ssci47803.2020.9308484
https://doi.org/10.1037/h0071325
https://doi.org/10.1037/h0071325
https://doi.org/10.1109/ijcnn.2008.4634074
https://doi.org/10.1080/21681163.2015.1030775
https://doi.org/10.1137/18m1209854

[85] L. van der Maaten and G. Hinton. “Visualizing data using t-SNE”. In: Journal of
Machine Learning Research 9.86 (2008), pp. 2579–2625.

[86] L. McInnes, J. Healy, N. Saul, and L. Großberger. “UMAP: Uniform Manifold Approxi-
mation and Projection”. In: Journal of Open Source Software 3.29 (2018), p. 861. doi:
10.21105/joss.00861.

[87] T. Kohonen. “The self-organizing map”. In: Proc. of the IEEE 78.9 (1990), pp. 1464–
1480. doi: 10.1109/5.58325.

[88] A. Inselberg. “The plane with parallel coordinates”. In: The Visual Computer 1.2
(1985), pp. 69–91. doi: 10.1007/bf01898350.

[89] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graphical Methods for
Data Analysis. Chapman and Hall/CRC, 2018. doi: 10.1201/9781351072304.

[90] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, and E. Stanley. “DNA visual and analytic
data mining”. In: Proc.. Visualization ’97 (Cat. No. 97CB36155). IEEE, 1997. doi:
10.1109/visual.1997.663916.

[91] J. LeBlanc, M. O. Ward, and N. Wittels. “Exploring N-dimensional databases”. In:
Proc. of the First IEEE Conference on Visualization: Visualization ‘90. IEEE Comput.
Soc. Press, 1990. doi: 10.1109/visual.1990.146386.

[92] M. O. Ward. “Multivariate Data Glyphs: Principles and Practice”. In: Handbook of Data
Visualization. Springer Berlin Heidelberg, 2008, pp. 179–198. doi: 10.1007/978-3-

540-33037-0_8.

[93] N. Dommaraju, M. Bujny, S. Menzel, M. Olhofer, and F. Duddeck. “Identifying Topo-
logical Prototypes using Deep Point Cloud Autoencoder Networks”. In: 2019 Int. Conf.
on Data Mining Workshops (ICDMW). IEEE, 2019, pp. 761–768. doi: 10 .1109 /

icdmw.2019.00113.

[94] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas. “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation”. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2017, pp. 77–85. doi: 10.1109/cvpr.

2017.16.

[95] Y. Yang, C. Feng, Y. Shen, and D. Tian. “FoldingNet: Point Cloud Auto-Encoder via
Deep Grid Deformation”. In: 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. IEEE, 2018, pp. 206–215. doi: 10.1109/cvpr.2018.00029.

[96] T. Rios, B. Van Stein, S. Menzel, T. Back, B. Sendhoff, and P. Wollstadt. “Feature
Visualization for 3D Point Cloud Autoencoders”. In: Proc. of the International Joint
Conference on Neural Networks. 2020, pp. 1–9. isbn: 9781728169262. doi: 10.1109/

IJCNN48605.2020.9207326.

[97] S. Saha, T. Rios, L. L. Minku, et al. “Exploiting Generative Models for Performance
Predictions of 3D Car Designs”. In: 2021 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2021. doi: 10.1109/ssci50451.2021.9660034.

Cooperative Set-based Optimization 125

https://doi.org/10.21105/joss.00861
https://doi.org/10.1109/5.58325
https://doi.org/10.1007/bf01898350
https://doi.org/10.1201/9781351072304
https://doi.org/10.1109/visual.1997.663916
https://doi.org/10.1109/visual.1990.146386
https://doi.org/10.1007/978-3-540-33037-0_8
https://doi.org/10.1007/978-3-540-33037-0_8
https://doi.org/10.1109/icdmw.2019.00113
https://doi.org/10.1109/icdmw.2019.00113
https://doi.org/10.1109/cvpr.2017.16
https://doi.org/10.1109/cvpr.2017.16
https://doi.org/10.1109/cvpr.2018.00029
https://doi.org/10.1109/IJCNN48605.2020.9207326
https://doi.org/10.1109/IJCNN48605.2020.9207326
https://doi.org/10.1109/ssci50451.2021.9660034

[98] T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. “Efficient Implementation of
Marching Cubes’ Cases with Topological Guarantees”. In: Journal of Graphics Tools
8.2 (2003), pp. 1–15. doi: 10.1080/10867651.2003.10487582.

[99] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, et al. “Scikit-image: image
processing in Python”. In: PeerJ 2 (2014), e453. doi: 10.7717/peerj.453.

[100] E. W. Weisstein. Triangle point picking. 1999. url: https://mathworld.wolfram.

com/TrianglePointPicking.html (visited on 09/01/2022).

[101] M. Dawson-Haggerty. trimesh (3.2.0). 2019. url: http://trimsh.org (visited on
09/01/2022).

[102] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”. In: 32nd Int. Conf. on Machine Learning, ICML 2015
1 (2015), pp. 448–456.

[103] K. Marhadi and S. Venkataraman. “Comparison of Load Path Definitions in 2-D Contin-
uum Structures”. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference. American Institute of Aeronautics and Astronautics,
2009. doi: 10.2514/6.2009-2354.

[104] Y. Zhou and A. W. Toga. “Efficient skeletonization of volumetric objects”. In: IEEE
Transactions on Visualization and Computer Graphics 5.3 (1999), pp. 196–209. doi:
10.1109/2945.795212.

[105] P. K. Saha, G. Borgefors, and G. S. di Baja. “A survey on skeletonization algorithms
and their applications”. In: Pattern Recognition Letters 76 (2016), pp. 3–12. doi:
10.1016/j.patrec.2015.04.006.

[106] A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, and A. Telea. “3D Skeletons:
A State-of-the-Art Report”. In: Computer Graphics Forum 35.2 (2016), pp. 573–597.
doi: 10.1111/cgf.12865.

[107] T. C. Lee, R. L. Kashyap, and C. N. Chu. “Building Skeleton Models via 3-D Medial
Surface Axis Thinning Algorithms”. In: CVGIP: Graphical Models and Image Processing
56.6 (1994), pp. 462–478. doi: 10.1006/cgip.1994.1042.

[108] S. Skylar, I.-T. Rodrigo, G. Jochen, A. Nikola, and W. Patricia. “A Compact Spectral
Descriptor for Shape Deformations”. In: European Conference on Artificial Intelligence.
Vol. 325. IOS Press, 2020, pp. 1930–1937. doi: 10.3233/FAIA200311.

[109] J. Garcke and R. Iza-Teran. “Machine Learning Approaches for Data from Car Crashes
and Numerical Car Crash Simulations”. In: Int. Conf. Simulation Process & Data Man-
agement (SPDM). 2017.

[110] R. R. Coifman and S. Lafon. “Diffusion maps”. In: Applied and Computational Har-
monic Analysis 21.1 (2006), pp. 5–30. doi: 10.1016/j.acha.2006.04.006.

[111] M. Müller. Dynamic Time Warping. Springer Berlin Heidelberg, 2007, pp. 69–84. doi:
10.1007/978-3-540-74048-3_4.

Cooperative Set-based Optimization 126

https://doi.org/10.1080/10867651.2003.10487582
https://doi.org/10.7717/peerj.453
https://mathworld.wolfram.com/TrianglePointPicking.html
https://mathworld.wolfram.com/TrianglePointPicking.html
http://trimsh.org
https://doi.org/10.2514/6.2009-2354
https://doi.org/10.1109/2945.795212
https://doi.org/10.1016/j.patrec.2015.04.006
https://doi.org/10.1111/cgf.12865
https://doi.org/10.1006/cgip.1994.1042
https://doi.org/10.3233/FAIA200311
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1007/978-3-540-74048-3_4

[112] S. Oh, Y. Jung, S. Kim, I. Lee, and N. Kang. “Deep Generative Design: Integration
of Topology Optimization and Generative Models”. In: Journal of Mechanical Design
141.11 (2019). doi: 10.1115/1.4044229.

[113] N. Dommaraju, M. Bujny, S. Menzel, M. Olhofer, and F. Duddeck. “Evaluation of geo-
metric similarity metrics for structural clusters generated using topology optimization”.
In: Applied Intelligence (2022). doi: 10.1007/s10489-022-03301-0.

[114] G. L. López, A. P. P. Negrón, A. D. A. Jiménez, J. R. Rodríguez, and R. I. Paredes.
“Comparative analysis of shape descriptors for 3D objects”. In: Multimedia Tools and
Applications 76.5 (2016), pp. 6993–7040. doi: 10.1007/s11042-016-3330-5.

[115] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris. “Deep Learning Ad-
vances in Computer Vision with 3D Data”. In: ACM Computing Surveys 50.2 (2017),
pp. 1–38. doi: 10.1145/3042064.

[116] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. “O-CNN: Octree-Based Con-
volutional Neural Networks for 3D Shape Analysis”. In: ACM Transactions on Graphics
36.4 (2017), pp. 1–11. doi: 10.1145/3072959.3073608.

[117] H. Zhang, O. V. Kaick, and R. Dyer. “Spectral Mesh Processing”. In: Computer Graph-
ics Forum 29.6 (2010), pp. 1865–1894. doi: 10.1111/j.1467-8659.2010.01655.x.

[118] T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements Continua and
Structures. John Wiley & Sons, Dec. 27, 2013. 834 pp. isbn: 1118632702.

[119] M. Maimaitimin, K. Watanabe, and S. Maeyama. “Stacked convolutional auto-encoders
for surface recognition based on 3d point cloud data”. In: Artificial Life and Robotics
22.2 (2017), pp. 259–264. doi: 10.1007/s10015-017-0350-9.

[120] Q. Tan, L. Gao, Y.-K. Lai, and S. Xia. “Variational Autoencoders for Deforming 3D
Mesh Models”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. IEEE, 2018. doi: 10.1109/cvpr.2018.00612.

[121] G. Peyré and M. Cuturi. “Computational Optimal Transport: With Applications to Data
Science”. In: Foundations and Trends® in Machine Learning 11.5-6 (2019), pp. 355–
607. doi: 10.1561/2200000073.

[122] I. T. Jolliffe. Principal component analysis. Springer-Verlag, 2002. isbn: 9780387224404.
doi: 10.1007/b98835.

[123] D. D. Lee and H. S. Seung. “Learning the parts of objects by non-negative matrix
factorization”. In: Nature 401.6755 (1999), pp. 788–791. doi: 10.1038/44565.

[124] P. Schober, C. Boer, and L. A. Schwarte. “Correlation coefficients: Appropriate use
and interpretation”. In: Anesthesia & Analgesia 126.5 (2018), pp. 1763–1768. doi:
10.1213/ane.0000000000002864.

[125] S. Godbole and S. Sarawagi. “Discriminative Methods for Multi-labeled Classification”.
In: Advances in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg,
2004, pp. 22–30. doi: 10.1007/978-3-540-24775-3_5.

Cooperative Set-based Optimization 127

https://doi.org/10.1115/1.4044229
https://doi.org/10.1007/s10489-022-03301-0
https://doi.org/10.1007/s11042-016-3330-5
https://doi.org/10.1145/3042064
https://doi.org/10.1145/3072959.3073608
https://doi.org/10.1111/j.1467-8659.2010.01655.x
https://doi.org/10.1007/s10015-017-0350-9
https://doi.org/10.1109/cvpr.2018.00612
https://doi.org/10.1561/2200000073
https://doi.org/10.1007/b98835
https://doi.org/10.1038/44565
https://doi.org/10.1213/ane.0000000000002864
https://doi.org/10.1007/978-3-540-24775-3_5

[126] N. X. Vinh, J. Epps, and J. Bailey. “Information Theoretic Measures for Clusterings
Comparison: Variants, Properties, Normalization and Correction for Chance”. In: J.
Mach. Learn. Res. 11 (2010), pp. 2837–2854.

[127] A. X. Chang, T. Funkhouser, L. Guibas, et al. ShapeNet: An Information-Rich 3D
Model Repository. Tech. rep. arXiv:1512.03012 [cs.GR]. Stanford University — Prince-
ton University — Toyota Technological Institute at Chicago, 2015.

[128] L. Breiman. “Random forests”. In: Machine Learning 45.1 (2001), pp. 5–32. doi:
10.1023/a:1010933404324.

[129] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep feedforward neu-
ral networks”. In: Proc. of the Thirteenth Int. Conf. on Artificial Intelligence and Statis-
tics. Ed. by Y. W. Teh and M. Titterington. Vol. 9. Proc. of Machine Learning Research.
PMLR, 2010, pp. 249–256. url: https://Proc..mlr.press/v9/glorot10a.html.

[130] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. “Scikit-learn: Machine learning in
Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[131] M. P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations to the non-
dominated set. IMM, Department of Mathematical Modelling, Technical University of
Denmark, 1994.

[132] J. Knowles and D. Corne. “On metrics for comparing nondominated sets”. In: Proc. of
the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600). IEEE,
2002. doi: 10.1109/cec.2002.1007013.

[133] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. “Performance
assessment of multiobjective optimizers: an analysis and review”. In: IEEE Transactions
on Evolutionary Computation 7.2 (2003), pp. 117–132. doi: 10.1109/tevc.2003.

810758.

[134] H. Ishibuchi and Y. Shibata. “Mating Scheme for Controlling the Diversity-Convergence
Balance for Multiobjective Optimization”. In: Genetic and Evolutionary Computation –
GECCO 2004. Springer Berlin Heidelberg, 2004, pp. 1259–1271. doi: 10.1007/978-

3-540-24854-5_121.

[135] K. C. Tan, T. H. Lee, and E. F. Khor. “Evolutionary Algorithms for Multi-Objective
Optimization: Performance Assessments and Comparisons”. In: Artificial Intelligence
Review 17.4 (2002), pp. 251–290. doi: 10.1023/a:1015516501242.

[136] N. Srinivas and K. Deb. “Muiltiobjective Optimization Using Nondominated Sorting
in Genetic Algorithms”. In: Evolutionary Computation 2.3 (1994), pp. 221–248. doi:
10.1162/evco.1994.2.3.221.

[137] T. Okabe, Y. Jin, and B. Sendhoff. “A critical survey of performance indices for multi-
objective optimisation”. In: The 2003 Congress on Evolutionary Computation, 2003.
CEC ’03. Vol. 2. IEEE, 2003, pp. 878–885. doi: 10.1109/cec.2003.1299759.

Cooperative Set-based Optimization 128

https://doi.org/10.1023/a:1010933404324
https://Proc..mlr.press/v9/glorot10a.html
https://doi.org/10.1109/cec.2002.1007013
https://doi.org/10.1109/tevc.2003.810758
https://doi.org/10.1109/tevc.2003.810758
https://doi.org/10.1007/978-3-540-24854-5_121
https://doi.org/10.1007/978-3-540-24854-5_121
https://doi.org/10.1023/a:1015516501242
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1109/cec.2003.1299759

[138] A. Farhang-Mehr and S. Azarm. “Diversity assessment of Pareto optimal solution sets:
an entropy approach”. In: Proc. of the 2002 Congress on Evolutionary Computation.
CEC’02 (Cat. No.02TH8600). Vol. 1. IEEE, 2002, pp. 723–728. doi: 10.1109/cec.

2002.1007015.

[139] W. Zhang, J. Yuan, J. Zhang, and X. Guo. “A new topology optimization approach
based on Moving Morphable Components (MMC) and the ersatz material model”.
In: Structural and Multidisciplinary Optimization 53.6 (2016), pp. 1243–1260. doi:
10.1007/s00158-015-1372-3.

[140] X. Lei, C. Liu, Z. Du, W. Zhang, and X. Guo. “Machine Learning-Driven Real-Time
Topology Optimization Under Moving Morphable Component-Based Framework”. In:
Journal of Applied Mechanics 86.1 (2018). doi: 10.1115/1.4041319.

[141] J. Bai and W. Zuo. “Hollow structural design in topology optimization via moving
morphable component method”. In: Structural and Multidisciplinary Optimization 61.1
(2020), pp. 187–205. doi: 10.1007/s00158-019-02353-0.

[142] F. Wein, P. D. Dunning, and J. A. Norato. “A review on feature-mapping methods for
structural optimization”. In: Structural and Multidisciplinary Optimization 62.4 (2020),
pp. 1597–1638. doi: 10.1007/s00158-020-02649-6.

[143] N. Dommaraju, M. Bujny, S. Menzel, M. Olhofer, and F. Duddeck. “Cooperative Multi-
objective Topology Optimization Using Clustering and Metamodeling”. In: 2022 IEEE
congress on evolutionary computation (CEC). IEEE. 2022.

[144] T. B. To and B. Korn. “MOBES: A Multiobjective Evolution Strategy for Constrained
Optimization Problems”. In: The Third Int. Conf. on Genetic Algorithms (Mendel 97).
Vol. 25. 1997, p. 27.

[145] K. V. Price. “Differential Evolution”. In: Handbook of Optimization. Springer Berlin
Heidelberg, 2013, pp. 187–214. doi: 10.1007/978-3-642-30504-7_8.

[146] P. Virtanen, R. Gommers, T. E. Oliphant, et al. “SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:
10.1038/s41592-019-0686-2.

[147] P. Wollstadt, M. Bujny, S. Ramnath, J. J. Shah, D. Detwiler, and S. Menzel. “Car-
Hoods10k: An Industry-grade Data Set for Representation Learning and Design Opti-
mization in Engineering Applications”. In: IEEE Transactions on Evolutionary Compu-
tation (2022), pp. 1–1. doi: 10.1109/tevc.2022.3147013.

[148] J. Lin, Z. Luo, and L. Tong. “A new multi-objective programming scheme for topology
optimization of compliant mechanisms”. In: Structural and Multidisciplinary Optimiza-
tion 40.1-6 (2009), pp. 241–255. doi: 10.1007/s00158-008-0355-z.

[149] S. Doi, H. Sasaki, and H. Igarashi. “Multi-Objective Topology Optimization of Rotating
Machines Using Deep Learning”. In: IEEE Transactions on Magnetics 55.6 (2019),
pp. 1–5. doi: 10.1109/tmag.2019.2899934.

Cooperative Set-based Optimization 129

https://doi.org/10.1109/cec.2002.1007015
https://doi.org/10.1109/cec.2002.1007015
https://doi.org/10.1007/s00158-015-1372-3
https://doi.org/10.1115/1.4041319
https://doi.org/10.1007/s00158-019-02353-0
https://doi.org/10.1007/s00158-020-02649-6
https://doi.org/10.1007/978-3-642-30504-7_8
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/tevc.2022.3147013
https://doi.org/10.1007/s00158-008-0355-z
https://doi.org/10.1109/tmag.2019.2899934

[150] P. A. Pour, T. Rodemann, J. Hakanen, and K. Miettinen. “Surrogate assisted interactive
multiobjective optimization in energy system design of buildings”. In: Optimization and
Engineering (2021). doi: 10.1007/s11081-020-09587-8.

[151] D. Arthur and S. Vassilvitskii. “K-means++: The advantages of careful seeding”. In:
Proc. of the Annual ACM-SIAM Symposium on Discrete Algorithms. Ed. by H. Gabow.
2007, pp. 1027–1035. isbn: 9780898716245.

[152] N. Dommaraju, M. Bujny, S. Menzel, M. Olhofer, and F. Duddeck. “Simultaneous
Exploration of Geometric Features and Performance in Design Optimization”. In: 16th
International LS-DYNA Conference. 2020, p. 12.

[153] K. Deb and J. Sundar. “Reference point based multi-objective optimization using evolu-
tionary algorithms”. In: Proc. of the 8th annual conference on Genetic and evolutionary
computation - GECCO ’06. ACM Press, 2006. doi: 10.1145/1143997.1144112.

[154] M. Luque, K. Miettinen, P. Eskelinen, and F. Ruiz. “Incorporating preference informa-
tion in interactive reference point methods for multiobjective optimization”. In: Omega
37.2 (2009), pp. 450–462. doi: 10.1016/j.omega.2007.06.001.

[155] N. Aulig and M. Olhofer. “Evolutionary computation for topology optimization of me-
chanical structures: An overview of representations”. In: 2016 IEEE Congress on Evolu-
tionary Computation (CEC). IEEE, 2016, pp. 1948–1955. isbn: 9781509006229. doi:
10.1109/CEC.2016.7744026.

Cooperative Set-based Optimization 130

https://doi.org/10.1007/s11081-020-09587-8
https://doi.org/10.1145/1143997.1144112
https://doi.org/10.1016/j.omega.2007.06.001
https://doi.org/10.1109/CEC.2016.7744026

	Abstract
	Zusammenfassung
	Acknowledgement
	Acronyms
	Symbols
	Introduction
	Motivation
	Aims and Objectives
	Design Optimization
	Topology Optimization
	Multi-objective Topology Optimization
	TO Datasets

	Methodology
	Knowledge Generation
	Data Mining
	Clustering
	Geometric Clustering
	Deformation Clustering

	Metric Comparison Method for Geometric Feature Vectors
	Geometric Data for Metrics Evaluation
	Reference Metrics
	Dimensionality Reduction
	Methods for Evaluating Metrics

	Cooperative Topology Optimization
	Interactive Set-based Multi-objective Optimization
	Evaluation Methods

	Results
	Evaluation of Geometric Features using Test Datasets
	Dataset Generation
	Evaluation on Design Datasets
	TO Results
	Discussion

	Cooperative Topology Optimization
	Simple Example: BNH Problem
	Topology Optimization using iSMO
	Discussion

	Engineering Example: Hood Optimization
	Problem Description
	Performance Clustering
	Geometric Clustering
	Discussion

	Conclusion

