
Training Large-Scale Neural Networks with a
Newton Conjugate Gradient Method (Newton-CG)
Severin Reiz§, Tobias Neckel§, Hans-Joachim Bungartz§
§ Technical University of Munich, reiz@in.tum.de, neckel@in.tum.de, bungartz@in.tum.de

Introduction

Motivation

Gap
in communities:
ML↔ scientific

computing

ML needs
considerable

compute power
→ we need
adequate
software!

Increase
computational density
→ need concurrency

Computations
are free↔
memory is

not

Approach: Newton-CG

•Methods from scientific computing domain
– Previous work on multilayer perceptron with GOFMM1

– Approximation of neural network Hessians
•HPC: Exploit potential of supercomputers

– Concurrency: Choose suitable algorithms for parallel computing
– Performance Portability: For upcoming new GPU and CPU

Example of Machine Learning Tasks: Classification
Weight optimization in neural networks
Feedforward Neural Network

y = f (X,W) = f (n)(. . . f (2)(f (1)(x)))

Minimize function
min

W∈Rn×n
L(X, Y,W)

Loss functions Lentr(x, y,W) = −
N∑
i=1

yi log(f
(n)) or LRMSE =

N∑
i=1
||f − yi||2

(Stochastic) gradient descent Wk+1 = Wk − σk∇wL(X, Y,wk)

AdaGrad (popular in ML, similar to adam) Wk+1 = Wk − αk sk
δ+
√
rk

Newton-Method (problematic in ML due to size of inverse Hessian)Wk+1 = Wk−HL
−1∇L(Wk)

Our approach: Efficient Hessian Newton

1. Fast Hessian Matrix-Vector Multiply (MatVec):
Pearlmutter

2. A few iterative solvers require matvec only: do a few
cg-steps

3. Tikhonov regularization with H̃L = HL + τI

4. Armijo feasibility check and update weights

Integration in TensorFlow for:
Regression, VAE, TensorFlow-Slim image classification model
library , Transformer (loop unroll)

Intro
M

ethodsAlgorithmic ingredients

HL(W)s =



n∑
i=1

si
δ2

δw1δwi
L(W)

n∑
i=1

si
δ2

δw2δwi
L(W)

...
n∑
i=1

si
δ2

δwnδwi
L(W)


=



δ
δw1

n∑
i=1

si
δ
δwi
L(W)

δ
δw2

n∑
i=1

si
δ
δwi
L(W)

...
δ
δwn

n∑
i=1

si
δ
δwi
L(W)


= ∇w(∇wL(W) · s)

1: procedure PEARLMUTTER(X, Y,W, s)
Require: HL, s,X, Y,W : Compute HLs = ∇w(∇wL(W) · s)
Require: W0: Initial estimate for W.

2: g0← gradient(L(W)) . Back-Prop
3: intermediate← matmul(g0, s) . Matrix-Multiplication
4: HLs← gradient(intermediate) . Back-Prop
5: return HLs
6: end procedure

• no direct matrix access neccesary
• cg only needs matvecs

1: procedure CONJUGATE GRADIENTS(H̃L, b)
Require: H̃L, b: Solve H̃Lx = b for x.
Require: x0: Initial estimate for x.

2: r0← H̃Lx0 − b, p0← −r0, k ← 0
3: while rk too large do
4: αk ←

r>k rk
p>k H̃Lpk

Compute step size
5: xk+1← αkpk
6: rk+1← rk + αkH̃Lpk

7: βk+1←
r>k+1rk+1

r>k rk
8: pk+1← −rk+1 + βk+1pk
9: k ← k + 1

10: end while
11: end procedure

1: procedure NEWTON-CG
Require: L (W): Loss function with weights W
Require: W0: Starting point
Require: τ : Tikhonov regularization/damping factor

2: k ← 0
3: while Wk not converged do
4: k ← k + 1
5: pk ← CG((HL + τI) ,−∇L (Wk)) Tikhonov
6: if ∇L (Wk)

> pk > τ then pk ← −∇L (Wk)
7: end if
8: αk ← α Learning rate scheduler
9: Wk ←Wk−1 + αkpk

10: end while
11: end procedure

Results
Comparison: Qualitative behavior of adam, SGD, and newton-cg.
Metrics: Loss, Stability and Epochs

scenario description
optimizer adam SGD newton-cg

life expectancy - - - ++regression boston housing + - - ++
variational autoencoder mnist + + ◦

mnist ◦ + +
wisc ++ + ◦bayesian nn
breakhis - - ++
simple CNN mnist ◦ ◦ +
resnet-50 imagenet ◦ ◦ ◦image-classification
mobile-net imagenet + ◦ -

natural language transformer ◦ ◦ +

For all results and plots check github or see paper2

https://github.com/severin617/Newton-CG Newton-CG
Github arXiv paper

BLEU scores (higher is better) for
Portuguese-English translation
BLEU is measure for translating sentences
(more than 1 word)

• Last-layer training suitable for transfer learning
• Pre-training with SGD
• Flexible Learning rate scheduler
• Bayesian Neural Networks using TF Probability
• Similar training behavior than literature3,4

• For natural language processing (transformer)
validation scores of newton better than adam, sgd
•DGX-1 with horovod GPU parallelization (data

parallelism)

Newton-CG runtimes per epoch with batch-size 512,
ResNet-50 on ImageNet

1 GPU 2 GPUs 4 GPUs 8 GPUs
A100 runtime 238s 121s 65s 37s

A100 parallel efficiency 100% 98.3% 91.5% 80.4%

R
esults

and
com

parison
C

onclusion

•Method design
– Run prominent models from current machine learning peers
– Compare to current second-order literature, no claim to be superior
– Newton-CG is a neat formulation for approximate newton
– Very problem dependent (Convexity?). Less overfitting than SGD, adam

(validation set accuracy often better with ncg, see BLEU scores)
– Works well with data parallelism (80% parallel efficiency on 8 GPUs)

Conclusion
• Library design

– Community/reproducibility: Newton-CG on github
– For public outreach live image classification smartphone app

TUM-Lens runs locally on your smartphone
Use Newton-trained checkpoints from above
Object detection, sign language recognition, model zoo

Google Play Store

References
[1] C. Chen, S. Reiz, C. D. Yu, H.-J. Bungartz, and G. Biros, “Fast approximation of the gauss–newton hessian matrix for the multilayer perceptron,”

SIAM Journal on Matrix Analysis and Applications, vol. 42, no. 1, pp. 165–184, 2021.

[2] S. Reiz, T. Neckel, and H.-J. Bungartz, “Neural nets with a newton conjugate gradient method on multiple gpus,” in accepted for publication, PPAM,

https://arxiv.org/abs/2208.02017, 2022.

[3] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, and S. Matsuoka, “Large-scale distributed second-order optimization using kronecker-factored
approximate curvature for deep convolutional neural networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12359–12367, 2019.

[4] Z. Yao, A. Gholami, S. Shen, K. Keutzer, and M. W. Mahoney, “Adahessian: An adaptive second order optimizer for machine learning,” arXiv
preprint arXiv:2006.00719, 2020.

https://www.in.tum.de/i05/personen/personen/severin-reiz/
mailto:reiz@in.tum.de
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/severin617/Newton-CG
https://github.com/horovod/horovod
https://github.com/severin617/Newton-CG
https://play.google.com/store/apps/details?id=com.maxjokel.lens

