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Introduction

Motivation

Gap
in communities:
ML↔ scientific

computing

ML needs
considerable

compute power
→ we need
adequate
software!

Increase
computational density
→ need concurrency

Computations
are free↔
memory is

not

Approach: Newton-CG

•Methods from scientific computing domain
– Previous work on multilayer perceptron with GOFMM1

– Approximation of neural network Hessians
•HPC: Exploit potential of supercomputers

– Concurrency: Choose suitable algorithms for parallel computing
– Performance Portability: For upcoming new GPU and CPU

Example of Machine Learning Tasks: Classification
Weight optimization in neural networks
Feedforward Neural Network

y = f (X,W) = f (n)(. . . f (2)(f (1)(x)))

Minimize function
min

W∈Rn×n
L(X, Y,W)

Loss functions Lentr(x, y,W) = −
N∑
i=1

yi log(f
(n)) or LRMSE =

N∑
i=1
||f − yi||2

(Stochastic) gradient descent Wk+1 = Wk − σk∇wL(X, Y,wk)

AdaGrad (popular in ML, similar to adam) Wk+1 = Wk − αk sk
δ+
√
rk

Newton-Method (problematic in ML due to size of inverse Hessian)Wk+1 = Wk−HL
−1∇L(Wk)

Our approach: Efficient Hessian Newton

1. Fast Hessian Matrix-Vector Multiply (MatVec):
Pearlmutter

2. A few iterative solvers require matvec only: do a few
cg-steps

3. Tikhonov regularization with H̃L = HL + τI

4. Armijo feasibility check and update weights

Integration in TensorFlow for:
Regression, VAE, TensorFlow-Slim image classification model
library , Transformer (loop unroll)

Intro
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1: procedure PEARLMUTTER(X, Y,W, s)
Require: HL, s,X, Y,W : Compute HLs = ∇w(∇wL(W) · s)
Require: W0: Initial estimate for W.

2: g0← gradient(L(W)) . Back-Prop
3: intermediate← matmul(g0, s) . Matrix-Multiplication
4: HLs← gradient(intermediate) . Back-Prop
5: return HLs
6: end procedure

• no direct matrix access neccesary
• cg only needs matvecs

1: procedure CONJUGATE GRADIENTS(H̃L, b)
Require: H̃L, b: Solve H̃Lx = b for x.
Require: x0: Initial estimate for x.

2: r0← H̃Lx0 − b, p0← −r0, k ← 0
3: while rk too large do
4: αk ←

r>k rk
p>k H̃Lpk

Compute step size
5: xk+1← αkpk
6: rk+1← rk + αkH̃Lpk

7: βk+1←
r>k+1rk+1

r>k rk
8: pk+1← −rk+1 + βk+1pk
9: k ← k + 1

10: end while
11: end procedure

1: procedure NEWTON-CG
Require: L (W): Loss function with weights W
Require: W0: Starting point
Require: τ : Tikhonov regularization/damping factor

2: k ← 0
3: while Wk not converged do
4: k ← k + 1
5: pk ← CG((HL + τI) ,−∇L (Wk)) Tikhonov
6: if ∇L (Wk)

> pk > τ then pk ← −∇L (Wk)
7: end if
8: αk ← α Learning rate scheduler
9: Wk ←Wk−1 + αkpk

10: end while
11: end procedure

Results
Comparison: Qualitative behavior of adam, SGD, and newton-cg.
Metrics: Loss, Stability and Epochs

scenario description
optimizer adam SGD newton-cg

life expectancy - - - ++regression boston housing + - - ++
variational autoencoder mnist + + ◦

mnist ◦ + +
wisc ++ + ◦bayesian nn
breakhis - - ++
simple CNN mnist ◦ ◦ +
resnet-50 imagenet ◦ ◦ ◦image-classification
mobile-net imagenet + ◦ -

natural language transformer ◦ ◦ +

For all results and plots check github or see paper2

https://github.com/severin617/Newton-CG Newton-CG
Github arXiv paper

BLEU scores (higher is better) for
Portuguese-English translation
BLEU is measure for translating sentences
(more than 1 word)

• Last-layer training suitable for transfer learning
• Pre-training with SGD
• Flexible Learning rate scheduler
• Bayesian Neural Networks using TF Probability
• Similar training behavior than literature3,4

• For natural language processing (transformer)
validation scores of newton better than adam, sgd
•DGX-1 with horovod GPU parallelization (data

parallelism)

Newton-CG runtimes per epoch with batch-size 512,
ResNet-50 on ImageNet

1 GPU 2 GPUs 4 GPUs 8 GPUs
A100 runtime 238s 121s 65s 37s

A100 parallel efficiency 100% 98.3% 91.5% 80.4%
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C
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•Method design
– Run prominent models from current machine learning peers
– Compare to current second-order literature, no claim to be superior
– Newton-CG is a neat formulation for approximate newton
– Very problem dependent (Convexity?). Less overfitting than SGD, adam

(validation set accuracy often better with ncg, see BLEU scores)
– Works well with data parallelism (80% parallel efficiency on 8 GPUs)

Conclusion
• Library design

– Community/reproducibility: Newton-CG on github
– For public outreach live image classification smartphone app

TUM-Lens runs locally on your smartphone
Use Newton-trained checkpoints from above
Object detection, sign language recognition, model zoo

Google Play Store
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