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Abstract

Topology optimization is a tool to design lightweight structures with maximum performance.
However, their scope of application is limited due to the high computational cost associated
with large-scale problems. This work presents new approaches that improve the efficiency
of existing methods by combining conventional acceleration methods with neural networks.
Based on the standard solid isotropic material with penalization method, a higher-order
multi-resolution scheme is employed, which utilizes higher-order shape functions and
different resolutions for the finite element mesh and the density mesh. A parametric
model order reduction method is proposed to condense the internal modes out of the
stiffness matrix. Additionally, neural networks are used to reparameterize the density field
in the optimization process. In an alternative approach, a UNet++ is trained to predict
near-optimal density distributions based on local stress and strain fields. All methods
are applied to the Messerschmitt-Bolkow-Blohm beam, where the results are analyzed
regarding their solution quality and efficiency. The use of convolutional neural networks
for the density parameterization leads to improved designs and the total computation
time is reduced by a factor of 2.5. Similarly, designs with lower compliance and faster
convergence are obtained by integrating predictions from the UNet++ into the optimization
process.
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Chapter 1

Introduction

Topology Optimization (TO) is a structural design method for creating lightweight structures
with maximum performance. It can be defined as an optimal material distribution problem,
in which the TO algorithm determines the location where material should be present and
where it can be removed. Essentially, it determines the number, position, and shape
of holes within a given design space. The goal is to find the optimal material layout
with respect to some objective function, certain boundary conditions, loads, and other
constraints. Constraints may relate to the maximum amount of material in the final design
or the maximum stress that occurs in the structure. The resulting lightweight structures
not only benefit from a reduced material cost but can also reduce the impact on the
environment by decreasing material waste and emissions from lightweight vehicles. TO
is therefore increasingly used in almost every engineering field, including aerospace,
automotive, and medical engineering. It is a powerful tool that is becoming an integral part
of early design processes and that helps the designer make informed decisions during
development.

Many different TO approaches have been introduced in the past few decades and their
development is still an active field of research. The most popular method is probably the
Solid Isotropic Material with Penalization (SIMP) method (BENDSØE, 1989; M. ZHOU &
ROZVANY, 1991), a density-based approach in which the design domain is discretized by
a fixed mesh. The topology is then found by varying the virtual densities of each element,
which define whether the corresponding element represents a solid or a void. These
densities are thus the design variables of the underlying optimization problem. In the most
simple case, a minimum compliance problem is considered. Here, the goal is to minimize
the compliance of the structure, which is equivalent to maximizing the global stiffness.
The optimization problem is constrained by a simple volume constraint that prescribes the
maximum amount of material allowed in the final structure.

As the computing power of modern computers continues to increase, TO is becoming
increasingly accessible. Still, conventional TO methods are facing some challenges that
limit their scope of application. One important aspect is the manufacturability of the
optimized designs. Designs obtained from TO often exhibit organic or lattice-like shapes
that are difficult to fabricate. In order to prevent a time-consuming post-processing by the
engineer, manufacturing constraints can be integrated into the optimization process (LIU &
MA, 2016). Due to the recent advancement of additive manufacturing techniques and their
capabilities to manufacture geometries with complex shapes, the focus has been shifted
towards linking TO with additive manufacturing constraints (JIHONG et al., 2021). This new
trend presents new possibilities since more complex designs can be realized.
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The second issue, which is also the focus of this thesis, is the high computational cost
associated with TO. TO methods are based on iterative design updates, either with
gradient-based methods, such as the Optimality Criteria (OC) method, or gradient-free
methods, like genetic algorithms. In order to decide how the design variables should be
updated, the current design performance needs to be evaluated. This is most commonly
done with the Finite Element (FE) method. The FE method is an established numerical
method that can return accurate and reliable results as long as the underlying problem
is modeled with sufficient accuracy. The drawback is that a rather involved FE analysis
has to be performed in every iteration and standard TO methods often require hundreds
of iterations. This can lead to extremely high computational costs, especially when large-
scale problems are considered. The optimization process of a three-dimensional, dynamic
problem with millions of Degrees of Freedom (DOFs) can take days, if not weeks, on a
supercomputer to finish. This is one of the main reasons why the use of TO is still limited
in industry. Especially in the design and development phase, in which requirements on the
structure change frequently, repeated TO is simply unfeasible.

Many approaches addressing the issue of the high computational cost have been intro-
duced in the literature. The majority focuses on the FE analysis, as it constitutes most of
the computation time. Common approaches make use of high-performance computing
methods, Model Order Reduction (MOR) methods, or multi-grid methods. The overall goal
is to reduce the number of time-consuming operations by introducing approximations or
simpler models with less DOFs while still maintaining high accuracy. NGUYEN et al. (2013)
proposed to separate the FE mesh from the density mesh, making the FE analysis on a
coarser mesh less expensive. They also used higher-order shape functions to increase
the analysis quality. Similarly, GROEN et al. (2017) integrated the finite cell method into
TO and used static condensation to reduce the number of DOFs even further. Recent
advances in Machine Learning (ML) methods have opened new opportunities also in the
context of TO. In the past few years, many contributions in the literature focused on the
potential of Neural Networks (NNs) to accelerate different parts of the TO process. One
of the most popular approaches is to directly predict the final or near-final design without
any expensive iterations (SEO & KAPANIA, 2023). This is often connected to an extremely
large data set and poor generalization capabilities. In another approach, NNs are used
to reparameterize the design variables of the optimization problem (CHANDRASEKHAR &
SURESH, 2021). Variants of both approaches will be investigated in this thesis.

The goal of this thesis is to develop a TO algorithm that can further improve the effi-
ciency of existing methods. The proposed algorithms combine conventional acceleration
methods with NNs, which can be mutually beneficial. As reference example, the con-
ventional SIMP method will be used to solve the minimum compliance problem of the
static, two-dimensional Messerschmitt-Bolkow-Blohm (MBB) beam, a well-known bench-
mark example. In this thesis, two different approaches are introduced. The first one
combines the higher-order multi-resolution scheme proposed by NGUYEN et al. (2013)
with a parametric MOR method, and NNs are used to parameterize the material distri-
bution (CHANDRASEKHAR & SURESH, 2021; HOYER et al., 2019). Both the use of Fully

2



Connected Neural Networks (FCNNs) and Convolutional Neural Networks (CNNs) will
be investigated. It will be shown that the parametric MOR leads to disconnections and
artifacts in the final design, but NNs can eliminate this problem, allowing the use of this
highly efficient reduction method. The NN thus benefits from an efficient FE analysis, and
the FE analysis benefits from the reparameterization by the NN. Especially the use of
CNNs returns a wide range of promising results and the average computation time of the
complete optimization process is significantly reduced to less than half of the reference
time. In the second approach, a NN, more specifically a UNet++ (Z. ZHOU et al., 2018), is
employed to accelerate the TO process by locally predicting near-optimal density values.
These predictions are based on physical quantities of the structure, which are obtained
from a FE analysis. In the scope of this thesis, the integration of the UNet++ is limited to
the conventional SIMP method only. Although the total number of iterations can not be
reduced with this approach, a faster convergence can be achieved, leading to improved
designs already in the early stage of the optimization process. All methods will be applied
to the MBB beam problem and the results will be analyzed with respect to the solution
quality and the computation time.

The rest of the thesis is structured as follows: Chapter 2 gives a brief literature review of
the main approaches for accelerating TO. In chapter 3 the basics of TO are summarized
and the theoretical background of the conventional SIMP method is explained in detail.
This will serve as reference method in the final evaluation. The method is then extended
to a higher-order multi-resolution scheme in chapter 4. The corresponding stiffness matrix
integration as well as the condensation methods will also be covered in this chapter.
Chapter 5 is divided into two main parts. The first part covers the basics of NNs and their
usage as a representation tool for the density distribution. In the second part, the proposed
method to predict near-final density fields is explained. This section also covers the data
generation process as well as the architecture and training of the UNet++. In chapter 6
the results obtained from the different methods are compared and evaluated with respect
to their quality and efficiency. Finally, some concluding remarks and recommendations for
further work are summarized in chapter 7.
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Chapter 2

Literature Review

Since the introduction of the homogenization method for TO (BENDSØE & KIKUCHI, 1988),
great effort has been made to develop further, more efficient approaches. These include
for example, level set methods (ALLAIRE et al., 2004; M. Y. WANG et al., 2003), phase field
methods (WALLIN et al., 2012) and methods using evolutionary algorithms (XIE & STEVEN,
1993). Over the past decades, the density approach, more specifically the SIMP method
(BENDSØE, 1989; M. ZHOU & ROZVANY, 1991), has gained large popularity and is today
the common method of choice. For a comparative review of different TO approaches the
reader is referred to the paper of SIGMUND and MAUTE (2013).

In general, structural TO problems suffer from high computational costs associated with
the repeated FE analysis in each iteration. Various techniques have been proposed to
accelerate the procedure for large-scale problems. These can be roughly categorized into
the following categories:

High Performance Computing The computational power of modern computers is in-
creasing rapidly. However, large-scale problems can still lead to unreasonable optimization
times, when only one processing unit is used. The use of multiple cores and parallel
architectures is a powerful tool that can significantly improve computation times when
the underlying problems are independent and parallelizable. BORRVALL and PETERS-
SON (2001) were likely the first ones to introduce parallel computing to TO. They used
a combination of physical domain decomposition and an iterative solver to parallelize
algorithms both in the FE part and in the optimization part. VEMAGANTI and LAWRENCE

(2005) presented parallel algorithms based on the SIMP method and the OC method.
The use of Graphics Processing Units (GPUs) for general problems in scientific com-
puting is also becoming more and more popular due to their high computing capacity.
The first contribution in the context of TO was by WADBRO and BERGGREN (2009), who
utilized a GPU to accelerate the complete TO process of heat conduction problems. Later,
MARTÍNEZ-FRUTOS et al. (2017) proposed a multi-granular GPU implementation based
on the SIMP and OC method. The use of one GPU can be further extended to the use of
multiple GPUs (HERRERO-PÉREZ & CASTEJÓN, 2021), leading to higher speed-ups and
increased memory availability.

Approximate Reanalysis and Reduced Order Modeling In the classical TO process,
structural responses, such as the displacements, are calculated in every iteration by solving
a high-fidelity model. This model is solved using; for example, the FE method, which can
become computationally expensive for large problems. The idea of approximate reanalysis
is to approximately determine these structural responses without solving the high-fidelity
model equations. This is done by finding an appropriate reduced basis based on previous
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iterations. KIRSCH and PAPALAMBROS (2001) introduced a unified approach for structural
reanalysis based on the Combined Approximations (CA) method and considering different
types of topological modifications. Later, AMIR et al. (2009) integrated the CA method for
approximate reanalysis into TO problems, considering also the corresponding sensitivities.
Since then, several approaches from the field of projection-based reduced order modeling
were used to build the set of reduced bases. A promising approach is the principal
components analysis based on a singular value decomposition (CHOI et al., 2019; XIAO

et al., 2020). In general, the high-fidelity model has to be resolved every few iterations
to update the reduced basis vectors in order to achieve good approximations during the
complete process.

Multi-Grid Methods Another promising technique is the use of multi-grid methods. The
idea is to define multiple computational grids with different resolutions so that the costly
evaluation of the equilibrium equation on a high-resolution mesh is prevented. Y. Y. KIM

and YOON (2000) were the first to suggest a multi-resolution multi-scale TO based on
wavelet transforms, where the design progresses from a low-resolution level to a high-
resolution level. Similarly, STAINKO (2006) suggested an adaptive mesh refinement at
the interface between solid and void regions. AMIR et al. (2014) introduced the use of a
multi-grid preconditioned conjugate gradients solver, a multilevel iterative method based
on relaxation steps, coarse-grid corrections, and transformations from fine to coarse grids
and vice versa. NGUYEN et al. (2010) proposed to completely separate the density mesh
from the FE analysis mesh. This results in a cheap analysis performed on the coarse FE
mesh while a high-resolution design can be maintained on the fine density mesh. The
drawback of many multi-grid approaches is the possible loss of fine features that cannot
be represented by the coarse resolution.

The methods summarized in these three categories constitute only a subset of all pro-
posed methods. Often, a combination of the aforementioned methods can decrease the
computation time even further. One straightforward example would be to incorporate
parallel programming in the other reduction methods. For more detailed insights, the
reader is referred to the paper of MUKHERJEE et al. (2021).

Recent advances in ML methods have opened new possibilities in many areas, including
engineering. Besides solving traditional tasks in computer vision, ML methods, and
especially NNs, are being increasingly used in computational mechanics tasks. The
introduction of physics-informed NNs (RAISSI et al., 2019) has motivated researchers to
explore the possibilities of replacing conventional solving methods with NNs. The field
of structural TO has been no exception and the number of relevant papers is increasing
rapidly. The paper of WOLDSETH et al. (2022) gives a comprehensive overview of the
use of artificial NNs in TO. Here, only a brief summary is given. According to this paper,
the main approaches relevant to this thesis can be classified into the following three
categories:

Direct Design The goal of direct design methods is to remove the expensive iterations
usually needed in TO algorithms and to directly obtain the final optimized design. This
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can be achieved by predicting the final design using for example CNNs or Generative
Adversarial Networks (GANs). YU et al. (2019) first predict a low-resolution design using
a CNN with encoder-decoder architecture, where the input consists of the force and
geometric boundary conditions. The low-resolution image is then mapped to a higher
resolution by a conditional GAN, which is trained with optimized structures generated
both at low and high resolutions. In another approach, D. WANG et al. (2022) tried to
directly predict the final design with CNNs. They adopted the famous U-Net architecture
(RONNEBERGER et al., 2015) and consider as input the displacements and strains of the
initial design as well as the prescribed volume constraint. Similarly, SEO and KAPANIA

(2023) used squared strain terms from the initial static analysis as input and extended
the network architecture to a UNet++ (Z. ZHOU et al., 2018). One of the main drawbacks
of direct design methods is the large amount of training data that is usually necessary
to obtain results with sufficient quality. For each data sample, a complete TO has to be
performed and thousands of those samples are needed. Despite the huge data set, poor
generalization properties to unseen problem settings are often encountered.

Acceleration A wide range of approaches falls under the category of acceleration. These
approaches aim to accelerate the TO process by either reducing the number of iterations
or by eliminating time-consuming computations in each iteration. CHI et al. (2021) used
a FCNN to directly predict the sensitivities from the current design variables and the
current strains computed on a coarse mesh. The number of high-fidelity FE analyses
on the fine mesh is thus greatly reduced. In their work, an online training-and-updating
concept is employed, which means that the model is trained and updated during the
optimization process with data from earlier iterations. This enables a high generalization
ability and eliminates the need for an expensive training data generation process. Another
way of accelerating the process is by reducing the total number of iterations and thereby
achieving a faster convergence. The general idea is to map an intermediate design to
the final or near-final design since it is observed that using the SIMP method the main
design changes happen only in the first few iterations. Afterward, the overall silhouette
of the design remains almost unchanged. The mapping can be done on the full model
(SOSNOVIK & OSELEDETS, 2019), on smaller subdomains (JOO et al., 2021), or individual
pixels (KALLIORAS et al., 2020), each affecting the generalization capability of the trained
model.

Reduction The methods that fall into this category aim to reduce the size of the design
space, similar to the idea of MOR methods. This is usually done by reparameterizing the
design variables by extracting relevant features or by surrogate modeling. GUO et al. (2018)
introduced a low-dimensional design representation by using a variational autoencoder
to encode the full design space into a lower-dimensional latent space. Design updates
are then conducted in the latent space and interpretable structures are obtained again
by the decoder. Alternatively, NNs can be used as a direct surrogate for the design
representation. CHANDRASEKHAR and SURESH (2021) and DENG and TO (2020) used
FCNNs to parameterize the density field, making it independent of the FE mesh. Similarly,
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HOYER et al. (2019) proposed a CNN for the reparameterization of the design variables.
In these latter two approaches, the NN is only used as a parameterization tool.
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Chapter 3

Conventional Topology Optimization

In this chapter, a conventional approach based on the SIMP method is introduced and
demonstrated on a typical example, the MBB beam. The MBB beam is a popular, well-
known benchmark example often used to validate new methods in TO. Figure 3.1 shows
the general problem setup. The beam is supported at the bottom left and right corners

Figure 3.1: The complete MBB beam model on the top and the half MBB beam model
used for TO on the bottom.

and a force is applied in the middle of the structure. Due to the symmetry of the problem,
only half of the design domain needs to be modeled.

3.1 General Problem Formulation

The goal of TO is to find the optimal material layout of a structure with respect to some
objective function, within a specified design space and under given support conditions,
loads, and constraints. In the simplest case, the objective is to minimize the compliance
of the system while a global volume constraint is imposed. The material distribution is
described by a virtual density function ρ (x), which can take values between 0 and 1. A
virtual density value of ρ (x) = 1 indicates a material point at location x and a value of
ρ (x) = 0 represents a void. In the ideal case, the TO should therefore return discrete 0− 1

values. Given the virtual density function ρ (x), the volume constraint takes the form

V (ρ) =

∫
Ω
ρ (x) dΩ ≤ V ∗, (3.1)
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where V ∗ describes the total allowed volume. The variable Ω represents the design space.
In this thesis, only two-dimensional examples with a design space in R2 are considered.

Minimizing the compliance, or maximizing the global stiffness, is equivalent to minimizing
the strain energy of the system. This can be interpreted as finding the optimal choice of
the elasticity tensor Cijkl (x) within the design domain Ω (BENDSOE & SIGMUND, 2003).
The equilibrium equation for a displacement u in the weak variational form is

a (u, v) = l (v) , ∀v ∈ U, (3.2)

where U is the space of kinematically admissible displacement fields and v is an arbitrary,
admissible virtual displacement. The energy bilinear form is defined as

a (u, v) =

∫
Ω
Cijkl (x) ϵij (u) ϵkl (v) dΩ (3.3)

with linearized strains ϵij (u) =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
. The load linear form is given by

l (u) =

∫
Ω
fu dΩ+

∫
ΓT

tu ds, (3.4)

where f describes the body forces and t the boundary tractions. The general minimum
compliance optimization problem thus takes the following form:

min : l (u)

s.t. : a (u, v) = l (v)

V (ρ) ≤ V ∗

0 ≤ ρ ≤ 1


. (3.5)

3.2 Solid Isotropic Material with Penalization

The equilibrium equation 3.2 introduced in the previous section is commonly solved using
numerical methods, such as the FE method. Therefore, the design domain Ω is discretized
into FEs. In the standard density approach, the virtual density distribution is discretized in
the same manner as the FE mesh. This means that one density value is assigned to each
finite element and the design variables of the optimization problem are the discretized
densities collected in the vector ρ. This vector can take continuous values in the interval
[0, 1]. In the SIMP, or power-law, approach, the Young’s modulus Ee of each element is
then defined as

Ee (ρe) = ρpeEs, (3.6)

where Es is the Young’s modulus of the underlying solid material and p is a penalty factor.
Within each element, the material properties are assumed to be constant. In order to
avoid singularities during the FE analysis, a small lower bound is imposed on the virtual
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densities:

0 < ρmin ≤ ρe ≤ 1. (3.7)

A common choice is to set ρmin = 10−3 for all design variables. As mentioned before,
the TO should ideally result in discrete 0 − 1 solid-void designs and intermediate gray
elements should be suppressed. A penalty factor p > 1 is thus introduced in the SIMP
method to penalize these gray elements with intermediate values. A common choice for
the penalty factor is p = 3 as this leads to physically realizable elements for a Poisson ratio
of ν = 0.3 (BENDSØE & SIGMUND, 1999). With the definition of the Young’s modulus in
3.6, the constitutive matrix of the material under plane stress is defined as

C(ρe) =
E(ρe)

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2

 = E(ρe)C0. (3.8)

The corresponding element stiffness matrix is then given by

ke =

∫
Ωe

BTC(ρe)BdΩe = Ee (ρe)

∫
Ωe

BTC0BdΩe = Ee (ρe)ke,0, (3.9)

where B is the strain-displacement matrix containing the shape function derivatives and
ke,0 is the element stiffness matrix corresponding to a unit Young’s modulus. The integral
can be solved using numerical integration schemes, such as Gaussian quadrature. If a
regular mesh is employed, the strain-displacement matrix B is the same for all elements
and the integral needs to be solved only once. The resulting matrix ke,0 can then be used
for all elements in the design domain by simply multiplying it with the actual stiffness value.
In the simplest case, quadrilateral elements with bilinear shape functions are employed.

In an alternative modified version of the SIMP interpolation scheme (SIGMUND, 2007), the
Young’s modulus of an element is defined as

Ee (ρe) = Emin + ρpe (Es − Emin) . (3.10)

Here, a lower bound is set directly for the Young’s modulus, which is now independent
of the underlying solid material and the penalty factor. No lower bound is needed for
the virtual densities anymore which can therefore take values of zero. Additionally, the
modified formulation covers two-phase design problems and generalizes better to various
filtering schemes. In this thesis, the modified SIMP approach is employed with a lower
bound of Emin = 10−9.

11



The final discretized optimization problem hence takes the following form:

min
ρ

: c (ρ) = FTu = uTK (ρ)u =

N∑
e=1

E (ρe)u
T
e ke,0ue

s.t. : K (ρ)u = F

V (ρ) =
N∑
e=1

veρe ≤ V ∗

0 ≤ ρ ≤ 1


, (3.11)

where c is the compliance of the system. The vector F is the load vector, K is the global
stiffness matrix, and the nodal displacements are collected in the vector u. The variable ve

describes the volume of the individual elements. The volume constraint is often defined by
prescribing a volume fraction f = V ∗

V0
, where V0 is the volume of a completely filled design

space.

3.3 Sensitivity Analysis

In order to find the best material layout, the optimization problem has to be solved using
an appropriate optimization algorithm. Existing optimization algorithms can in general be
divided into gradient-based methods and gradient-free methods. Gradient-free methods,
such as genetic algorithms, often suffer from a large number of necessary function
evaluations. This can become very expensive since a FE analysis has to be performed for
each function evaluation. In the context of TO, gradient-based methods have therefore
proven to be advantageous. The design variables are updated in an iterative manner
using sensitivity information until a termination criterion is met. Thus the sensitivities of
the compliance with respect to the design variables need to be computed.

In typical TO problems, the number of objective functions and constraint equations is
usually much smaller than the number of design variables. The adjoint method is therefore
an efficient method to compute the sensitivities. Following the discussion of BENDSOE

and SIGMUND (2003), the objective function is first extended to

c = FTu− ũT (Ku− F) , (3.12)

where ũ is an arbitrary, but fixed vector. Rearranging the terms leads to the following
expression:

c =
(
FT − ũTK

)
u+ ũTF. (3.13)

The partial derivative of this expression with respect to the density of an element is then

∂c

∂ρe
= −ũT ∂K

∂ρe
u+

(
FT − ũTK

) ∂u

∂ρe
. (3.14)
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When ũ satisfies the adjoint equation

FT − ũTK = 0, (3.15)

the sensitivities are found as

∂c

∂ρe
= −ũT ∂K

∂ρe
u (3.16)

and the derivatives of the displacements do not need to be computed explicitly. Fur-
thermore, as the problem under consideration is self-adjoint, ũ = u and no additional
computations are needed for the adjoint problem. The sensitivities of the minimum compli-
ance problem are therefore simply

∂c

∂ρe
= −uT ∂K

∂ρe
u. (3.17)

Adding the formulation from the modified SIMP method, see equation 3.9 and 3.10, to
equation 3.17 the final expression becomes

∂c

∂ρe
= −pρp−1

e (Es − Emin)u
T
e ke,0ue. (3.18)

3.4 Optimality Criteria Method

Two very popular gradient-based methods are the OC method and the method of moving
asymptotes (SVANBERG, 1987). The method of moving asymptotes is a flexible, general-
purpose algorithm that can handle multiple constraints and a large number of different
objectives, but is typically more costly than the OC method. On the other hand, the OC
method can only be applied to a limited number of structural optimization settings. For the
minimum compliance problem considered in this thesis, the OC method is implemented
since the very simple computation of the gradients allows a fast updating scheme.

Following the discussion of N. H. KIM et al. (2021), which is based on the update scheme
introduced in BENDSØE (1995), the constrained optimization problem from 3.11 is first
converted into an unconstrained problem using Lagrange multipliers:

L (ρ, λ) = c (ρ) + λ (V (ρ)− fV0) . (3.19)

Here, only the volume constraint is added to the Lagrange function, as the state equation
is fulfilled in every iteration by the FE analysis and the bounds on the design variables can
be enforced directly during the design variable update. The corresponding Karush-Kuhn-
Tucker conditions are∂L

∂ρ = ∂c
∂ρ + λ∂V

∂ρ = 0,

∂L
∂λ = V − fV0 = 0.

(3.20)
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The update scheme of each design variable is then based on a scaling factor

Be = −
∂c
∂ρe

λ ∂V
∂ρe

, (3.21)

which takes a value of Be = 1 when the first optimality condition is satisfied. When Be < 1,
the corresponding density should be decreased, as increasing ρe has a larger effect on
the volume than on the compliance. On the other hand, when Be > 1, increasing ρe is
more efficient in reducing the compliance than in increasing the volume and the density
should therefore be increased. This leads to the following update scheme:

ρnewe =


max(ρmin, ρe −m), if ρeB

η
e ≤ max(ρmin, ρe −m),

ρeB
η
e , if max(ρmin, ρe −m) < ρeB

η
e < min(1, ρe +m),

min(1, ρe +m), if min(1, ρe +m) ≤ ρeB
η
e ,

(3.22)

where η is a numerical damping coefficient and m is the move limit defining the maximum
change in each iteration. The typical choice for these parameters is η = 0.5 and m = 0.2.

In order to satisfy the volume constraint, an appropriate value needs to be determined for
the Lagrange multiplier λ. Following SIGMUND (2001), this can be done with an iterative
bi-sectioning algorithm, where, starting from an initial interval

[
0, 105

]
, the interval is halved

until the range is smaller than a chosen tolerance. The value of the trial Lagrange multiplier
in each iteration is defined as the midpoint of the current interval. If the volume constraint
is violated with the current value, the upper half of the interval is chosen for the next
iteration; otherwise, the lower half is chosen.

For the scaling factors Be the gradients of the compliance and the gradients of the volume,
both with respect to the design variables, are needed. The previous section 3.3 already
covered the computation of the compliance sensitivities ∂c

∂ρe
. The sensitivities of the volume

∂V
∂ρe

depend in general on the discretization mesh and the shape of the individual elements.
In this thesis, only rectangular elements of unit length are considered. Therefore, each
element has a unit volume and the gradients are simply

∂V

∂ρe
= 1. (3.23)

3.5 Sensitivity Filtering

Without any additional regularization measures, the design variable update entails two
significant numerical problems. The first one is the development of so-called checkerboard
patterns and the second one is the nonexistence or mesh-dependency of solutions.
Checkerboard patterns can occur in the final optimized design and are regions with
alternating solid and void elements, as shown in figure 3.2. These patterns arise when
low-order finite elements are used since they are unable to accurately model the stiffness
of checkerboards (DIAZ & SIGMUND, 1995). Structures that exhibit these patterns are
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Figure 3.2: The optimized MBB beam solved with bilinear quadrilaterals and without any
regularization method. Checkerboard patterns occur in the final design.

artificially stiff, thus the stiffness of these structures is highly overestimated. The second
issue, which is the nonexistence or mesh-dependency of solutions, refers to the problem
that the TO will result in different optimal structures dependent on the resolution of the
mesh. This is because more holes in the design lead in general to a smaller compliance
value. Ideally, the final structure should converge to the same topology, independent of
the mesh, and a finer mesh discretization should only result in a higher resolution.

Different prevention methods addressing these issues were introduced in the litera-
ture. These include for example the perimeter control method (HABER et al., 1996),
the monotonicity-based minimum length scale method (POULSEN, 2003), and filtering
methods. The filtering methods can be divided into density-based (BOURDIN, 2001; BRUNS

& TORTORELLI, 2001) and sensitivity-based (SIGMUND, 1994, 1997) methods and have
become very popular due to their simple and efficient implementation. The basic idea of
both filtering approaches is to compute the weighted average of the quantity of interest in
a mesh-independent neighborhood. In this work, sensitivity filtering is employed. Inspired
by image blurring filters, a convolutional filter is applied to the sensitivities:

∂̂c

∂ρe
=

1

max (ρe, γ) ·
∑Ne

f=1 Ĥe,f

Ne∑
f=1

Ĥe,fρf
∂c

∂ρf
(3.24)

with

Ĥe,f = max (0, rmin − dist (e, f)) , (3.25)

where rmin is the filter radius and dist (e, f) the center-to-center distance between elements
e and f . Since the densities can become zero in the modified SIMP formulation, a small
positive parameter γ = 10−3 is introduced to avoid divisions by zero (ANDREASSEN et al.,
2011). The filter radius rmin imposes a minimum feature size and therefore restricts the
formation of arbitrarily many holes. This means that a smaller radius will lead to topologies
with finer structures, whereas a larger radius leads to simpler designs. The modified
sensitivities from equation 3.24 replace the unfiltered, real sensitivities and are used in the
update scheme of the OC method.

Figure 3.3 shows the final topology of the MBB beam for different discretizations Nx ×Ny

and different filter radii. The filter radius can be defined in terms of the finite element size
h or the length L of the design domain. It can be observed that a finer mesh with a filter
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(a) Mesh: 90× 30, rmin = 1.5h = L
60

(b) Mesh: 180× 60, rmin = 1.5h = L
120

(c) Mesh: 180× 60, rmin = 3h = L
60

Figure 3.3: Final topology of the MBB beam for different discretizations and different filter
radii.

radius spanning the same amount of finite elements leads to a different, more detailed
topology, see figure 3.3a and figure 3.3b. If the filter radius is accordingly increased, such
that it stays the same with respect to the length L, a topology very similar to the original
structure, but with a higher resolution, is obtained, compare figure 3.3a and figure 3.3c.
Sensitivity filtering hence does not only prevent the formation of checkerboard patterns
but also resolves the issue of mesh-dependent solutions.

3.6 General Workflow

The general workflow of the minimum compliance problem using the conventional SIMP
method is visualized in figure 3.4. In the first step, the optimization problem is defined and
the design variables are initialized. For volume-constrained problems, a straightforward
initialization is to set all design variables to the prescribed volume fraction f . Afterward, an
iterative process is started, where a FE analysis is performed with the current design. The
displacements obtained from the FE analysis are then used to compute the corresponding
compliance and to perform the sensitivity analysis. In the next step, the sensitivities
are modified with the filtering method introduced in the previous section and finally, the
design variables are updated following the OC update scheme. These steps are repeated
until a termination criterion is met and the design has converged to the optimized, final
topology. In this thesis, the optimization is stopped when the maximum change between
two iterations is smaller than ϵ = 0.01 (SIGMUND, 2001).
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Figure 3.4: The general workflow of a conventional TO.
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Chapter 4

Higher-Order Multi-Resolution Topology
Optimization

In the previous chapter, a conventional and well-studied method for solving minimum
compliance problems was introduced. This method has served as basis and reference
for several researchers, trying to develop algorithms that further improve the efficiency of
TO solution schemes. Especially the computational cost related to the FE analysis can
make large-scale TO problems with millions of DOFs unfeasible to solve. In this chapter,
a multi-resolution scheme using higher-order shape functions is introduced, which can
reduce the cost related to the FE analysis.

4.1 Multi-Resolution Scheme

In the conventional SIMP method, the number of design variables determines the resolution
of the final design. For many applications, a well-defined solution with a high resolution
is desired. Thus, the design domain has to be discretized with a corresponding fine
mesh. When the FE mesh is defined in the same manner as the design variable mesh,
the large number of DOFs related to this fine mesh lead to a computationally costly FE
analysis. To address this problem, NGUYEN et al. (2010) proposed a multi-resolution
TO scheme, where different discretization levels are employed. The authors distinguish
between a FE mesh used for the analysis, a design variable mesh for performing the
optimization, and a density mesh that represents the material distribution. The idea is to
have a relatively coarse FE mesh, such that the resulting DOFs of the system are reduced,
while maintaining a high-resolution design by employing a fine density mesh. In the paper
of NGUYEN et al. (2010) the design and density mesh share the same discretization,
but the values do not necessarily coincide. A projection method is used to obtain the
densities from the design variables, as this will prevent the formation of checkerboard
patterns and also solves the problem of mesh-dependent designs. In this thesis, the
density mesh is chosen to be identical to the design variable mesh, so only two distinct
meshes are employed. Checkerboard patterns and mesh dependencies are eliminated by
applying sensitivity filtering as explained in section 3.5. Figure 4.1 schematically shows
the difference between the conventional discretization approach and the multi-resolution
scheme. On the left, the number of design variables, and thus the number of density
values, is equal to the number of finite elements, and one density value is assigned to each
four-noded quadrilateral element. On the right, the multi-resolution scheme is visualized,
where the density or design variable mesh is decoupled from the analysis mesh. Here,
each four-noded quadrilateral element is described by 6×6 density variables, thus allowing
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Figure 4.1: Identical discretizations for the FE mesh and the density mesh on the left and
the multi-resolution scheme with distinct meshes on the right.

density variations within one finite element. In order to have a clear distinction between the
two discretization meshes, an element of the FE mesh will from now on also be referred to
as a cell, and density elements are henceforth also called voxels.

Figure 4.2 shows the result of this multi-resolution scheme applied to the MBB beam.
The design domain is discretized with 30 × 10 cells, each containing 6 × 6 voxels. The
topology is thus described by 180× 60 density elements, just as in figure 3.3b. Bilinear
shape functions are employed and a sensitivity filter radius of rmin = 1.5hv is chosen,
where hv describes the voxel size. From the figure, it is apparent that artifacts occur in

Figure 4.2: The optimized MBB beam solved with bilinear quadrilaterals and the multi-
resolution scheme. Sensitivity filtering with a radius of rmin = 1.5hv is applied. QR-patterns
occur in the final design.

the final design. These artifacts are referred to as QR-patterns and their properties as
well as the reason for their formation were analyzed by GUPTA et al. (2018). QR-patterns
are, similar to checkerboard patterns, artificially stiff and occur because of insufficient
model capabilities of lower-order finite elements. Filtering techniques, such as sensitivity
filtering, can prevent the formation of these QR-patterns when a sufficiently large filter
radius is chosen. In traditional TO problems, a filter radius slightly larger than the density
element is sufficient to eliminate checkerboard patterns. In the multi-resolution approach,
on the other hand, a FE is usually much larger than a density element and a filter radius
considerably larger than one voxel is needed to prevent the formation of QR-patterns.
Increasing the filter radius can lead to reasonable designs, see figure 4.3, but at the same
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time, fine features are lost and less sharp results with more gray elements are obtained.
As the formation of QR-patterns is linked to the limitations of lower-order elements, the

Figure 4.3: The optimized MBB beam solved with bilinear quadrilaterals and the multi-
resolution scheme. Sensitivity filtering with a radius of rmin = 7hv is applied.

use of higher-order shape functions can effectively prevent their occurrence. In general,
the higher the order, the smaller the necessary filter radius. Higher-order shape functions
can thus enable crisp edges and fine features within the multi-resolution scheme.

4.2 Higher-Order Shape Functions

The FE method can in general be divided into two versions, the h-version and the p-version.
In the h-version of the FE method, lower-order finite elements are usually employed and
the accuracy is improved by refining the mesh. In the p-version, on the other hand, the
mesh is fixed while the degree q of the shape functions is increased (BABUSKA et al.,
1981). NGUYEN et al. (2013) proposed to integrate the p-version of the FE method into
the multi-resolution scheme, taking full advantage of both the high analysis quality and the
decoupled meshes. In a similar approach, PARVIZIAN et al. (2012) suggested using the
finite cell method in TO problems.

In this section, higher-order Legendre shape functions are introduced and in the next
section, it is shown how the corresponding stiffness matrix within the multi-resolution
scheme is built. The set of one-dimensional, hierarchical Legendre shape functions on the
standard element Ω1D

st = [−1, 1] is given by (SZABÓ & BABUŠKA, 2021):

N1D
1 (ξ) =

1

2
(1− ξ) ,

N1D
2 (ξ) =

1

2
(1 + ξ) ,

N1D
i (ξ) =

√
2i− 3

2

∫ ξ

−1
Pi−2 (t) dt, i = 3, 4, ...

(4.1)

where Pi (t) are the Legendre polynomials. The Legendre polynomials are solutions of
the Legendre differential equation and the first eight polynomials are given in appendix A.
The corresponding shape functions are called hierarchic because all lower-order shape
functions are contained in the higher-order basis. The one-dimensional shape functions
for a polynomial degree of q = 3 are visualized in figure 4.4.
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Figure 4.4: Legendre shape functions in one dimension for a polynomial degree of q = 3.

In two dimensions, there exist two types of polynomial spaces: the trunk space and the
tensor product space. In this thesis, only the tensor product space is considered, which is
spanned by the set of all monomials ξkηl, with k, l = 0, 1, ..., q. The polynomial degree in
both dimensions is thus assumed to be the same and the two-dimensional shape functions
on the standard element Ω2D

st = ([−1, 1]× [−1, 1]) are defined as the tensor product of the
one-dimensional shape functions:

N2D
i,j (ξ, η) = N1D

i (ξ)N1D
j (η) , i, j = 1, 2, ..., q + 1. (4.2)

The two-dimensional shape functions can be divided into three different modes, which are
also shown in figure 4.5:

(a) Nodal mode (b) Edge mode (c) Internal mode

Figure 4.5: Two-dimensional Legendre shape functions on the standard quadrilateral
element.

- Nodal modes: The nodal modes are the bilinear shape functions of the standard
four-noded quadrilateral. These four shape functions

N2D
1,1 (ξ, η) , N2D

1,2 (ξ, η) , N2D
2,1 (ξ, η) , N2D

2,2 (ξ, η) , (4.3)

each take a unit value at one of the four nodes and vanish at all other nodes.
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- Edge modes: For the edge modes, a linear shape function is combined with any
higher-order shape function:

N2D
i,j (ξ, η) = N1D

i (ξ)N1D
j (η) , i = 1, 2, j = 3, 4, ..., q + 1

or j = 1, 2, i = 3, 4, ..., q + 1.
(4.4)

They are therefore defined separately for each edge, vanishing at all other edges.

- Internal modes: Internal modes are local to one element as they become zero at all
four nodes and edges. They are built by combining two higher-order shape functions:

N2D
i,j (ξ, η) = N1D

i (ξ)N1D
j (η) , i, j = 3, 4, ..., q + 1. (4.5)

If chosen properly, the use of higher-order shape functions can increase the analysis
quality and prevent the formation of QR-patterns. When the filter radius is held fixed, a
higher number of voxels per cell also requires shape functions of higher order. In the
rest of this thesis, cells with 6× 6 voxels and shape functions of order q = 4 are used as
recommended by GROEN et al. (2017).

4.3 Stiffness Matrix Integration

For the FE analysis, the cell stiffness matrices are needed to assemble the global stiffness
matrix of the system. In the multi-resolution scheme, the material of each cell is described
by multiple voxels. Thus, the contribution of each voxel needs to be considered in the
cell stiffness matrix. Within each voxel, the material is assumed to be constant and the
corresponding voxel stiffness matrix is defined in the same manner as in equation 3.9:

kv =

∫
Ωv

BTC(ρv)B dΩv = Ev (ρv)kv,0. (4.6)

This integral can be solved using for example Gauss-Legendre quadrature. For an exact
integration, nGP = q + 1 Gauss points are required in each direction. This means that for
a quadrilateral element with shape functions up to order q = 4, a 5× 5 integration scheme
is employed for each voxel. This is visualized in figure 4.6. Using the Gauss-Legendre
quadrature rule, the integral in equation 4.6 becomes

kv =

∫ 1

−1

∫ 1

−1
BTC(ρv)BJ dξ dη ≈

nGP∑
i=1

nGP∑
j=1

((
BTC (ρv)B

) ∣∣∣
(ξi,ηj)

wiwjJ

)
, (4.7)

where J is the Jacobian, (ξi, ηj) denote the integration point coordinates and wi and wj are
the corresponding weights. The stiffness matrix of the cell is then obtained by summing
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Figure 4.6: A cell containing 6× 6 voxels. The stiffness matrix of each voxel is computed
with a 5× 5 integration scheme.

up the contributions of all N voxels contained in the cell:

kc =
N∑
v=1

kv. (4.8)

The expression for the sensitivities is accordingly modified from equation 3.18 to:

∂c

∂ρv
= −pρp−1

v (Es − Emin)u
T
c kv,0uc. (4.9)

4.4 Static Condensation

The higher accuracy that is achieved with higher-order shape functions also comes with
an increasing number of DOFs. For high polynomial degrees q, the majority of the DOFs
are related to internal modes as their number grows quadratically with increasing q. A
large number of DOFs will inevitably lead to a computationally expensive FE analysis.
When simple static problems are considered, internal modes, which are local to one cell,
can be condensed out of the stiffness matrix. This can significantly reduce the number of
DOFs and thus the computational cost of the analysis. In this section, the standard Guyan
reduction and a variation inspired by parametric MOR are introduced. These reduction
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methods are applied on the cell level and the reduced global stiffness matrix is obtained
by directly assembling the condensed cell stiffness matrices.

4.4.1 Standard Guyan Reduction

For readability reasons, the subscript c, used to denote a cell, is dropped in the following
discussion. According to GUYAN (1965), the equilibrium equation ku = f of each cell can
be rearranged such that[

kbb kbi

kib kii

][
ub

ui

]
=

[
fb

fi

]
. (4.10)

Here, the subscript b describes entries related to the boundary DOFs and internal DOFs
are denoted with the subscript i. The boundary DOFs are constituted by nodal and edge
modes while the internal DOFs correspond to internal modes. Assuming that no external
forces are acting on the internal DOFs, the second equation of 4.10 can be rewritten to

ui = −k−1
ii kibub. (4.11)

Inserting the formulation from 4.11 into the first equation of 4.10 leads to the following
expression:

kbbub − kbik
−1
ii kibub =

[
kbb − kbik

−1
ii kib

]
ub = fb. (4.12)

The system of equations is thus reduced to the boundary DOFs and the reduced cell
stiffness matrix is defined as

kred = kbb − kbik
−1
ii kib. (4.13)

From the reduced solution vector ub, the full solution vector u can be reconstructed by

u = Tub, (4.14)

where the matrix T is the coordinate transformation matrix defined as

T =

[
I

−k−1
ii kib

]
(4.15)

and I is the identity matrix. The reduced stiffness matrix can therefore also be expressed
in terms of the transformation matrix T as

kred = TTkT. (4.16)

The reconstructed solution vector is in the static case identical to the solution vector
obtained from the full system. The solution quality is therefore not impaired, but for
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high polynomial degrees q, the inversion of kii for each cell can be computationally very
expensive, making this approach even less efficient than the standard TO.

4.4.2 Parametric Model Order Reduction

Although static condensation can significantly reduce the number of DOFs, a matrix
inversion is needed for each transformation matrix T, see equation 4.15. This can make
the analysis even more costly, as these transformation matrices have to be calculated
anew for each new set of density values, i.e. for each iteration and each cell. The goal of
parametric MOR, which is often applied to dynamic systems, is to find a reduced model
that retains the parameter dependency. Hence, a parametric model is obtained that can
be used for a wide range of different parameter settings without the need to repeat the
reduction. In general, it is not possible to find a model that is exact for all parameter
settings, so parametric MOR methods are usually accompanied by approximation errors.

One approach is to use the reduced matrices obtained from different parameter sets to
interpolate the reduced matrix at a new sample set. Following this idea, simple linear
scaling is employed in this thesis. The stiffness matrix of a unit cell with N voxels of unit
stiffness, i.e. Ev = 1, is

kc,0 =

N∑
v=1

kv,0. (4.17)

With the corresponding transformation matrix T0, computed as in equation 4.15, the
condensed cell stiffness matrix is

kred
c,0 = TT

0 kc,0T0 = TT
0

(
N∑
v=1

kv,0

)
T0 =

N∑
v=1

TT
0 kv,0T0. (4.18)

For each new set of density values, the reduced cell stiffness matrix is then approximated
by scaling each unit voxel contribution with the corresponding Young’s modulus:

k̃red
c =

N∑
v=1

Ev (ρv)T
T
0 kv,0T0. (4.19)

Here, the condensed stiffness matrices of the unit voxels TT
0 kv,0T0 are only computed

once for all parameter settings, thus eliminating the need for costly matrix inversions in
each iteration.

The proposed reduction scheme can be interpreted as a linear inter- or extrapolation of the
reduced matrices with unit and zero stiffness. This is a simplified parametric MOR method
and for an overview of more sophisticated state-of-the-art methods, the reader is referred
to the survey of BENNER et al. (2015). As it will be shown later, the application of this
reduction scheme can lead to designs very similar to those obtained with the conventional
SIMP method, but small disconnections will occur in the design. In the next chapter, a new
representation method for the density field is proposed, which may overcome this problem.
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Chapter 5

Topology Optimization Using Neural
Networks

The use of ML methods in computational mechanics tasks is increasingly gaining attention
and popularity. Especially the potential of NNs is extensively explored in the scientific
community. In many existing methods, NNs are used to overcome shortcomings inherent
in conventional TO methods. In this chapter, two different approaches are proposed. In
the first approach, NNs are used to reparameterize the optimization problem and in the
second approach, a UNet++ (Z. ZHOU et al., 2018) is trained to accelerate the TO by
predicting near-optimal density values.

5.1 Density Parameterization Using Neural Networks

Using NNs instead of discretized grids to represent the density field in TO can come with
several advantages. These include a possible reduction of the design space, smooth
boundaries in the final topology, and a broader range of solutions. In this section, a
short introduction to the basics of deep learning is given and it is demonstrated how NNs,
more specifically FCNNs and CNNs, can be used to reparameterize the density field in
TO problems. For more in-depth explanations of deep learning principles, the reader is
referred for example to the textbook of GOODFELLOW et al. (2016).

5.1.1 Fully Connected Neural Networks

Fundamentals of Fully Connected Neural Networks

FCNNs, or multilayer perceptrons, form the basis of many ML applications. A FCNN
usually consists of many layers in a chain:

NN (x;θ) = f (L)
(
f (L−1)

(
. . . f (2)

(
f (1) (x)

)
. . .
))

, (5.1)

where x is the input to the NN and θ are the learnable parameters of the NN. These
learnable parameters include for example the weights W and biases b of each layer. An
example of a simple FCNN with two input features and one output is visualized in figure
5.1. The shown network consists of five layers: the input layer, the output layer, and three
hidden layers with six neurons each. It is called fully connected because every neuron
is connected to all neurons in the subsequent layer. In the standard case, each layer l
consists of a linear mapping of the output z(l−1) from the previous layer and an activation

27



Figure 5.1: A simple FCNN with three hidden layers and six neurons per hidden layer.

function a(l) that introduces nonlinearity to the network. The formulation of layer l is thus
defined as

f (l)
(
z(l−1)

)
= a(l)

(
W(l)z(l−1) + b(l)

)
. (5.2)

If no nonlinear activation function is employed in the network, the input to the NN would
be mapped linearly to the output, regardless of the number of layers, and the network’s
learning capabilities would be strongly limited. The right choice of activation functions is
therefore an essential part of designing network architectures. One of the most popular
activation functions is the Leaky Rectified Linear Unit (ReLU) function, defined as

LeakyReLU (x) =

x, ifx ≥ 0,

αx otherwise,
(5.3)

where α defines a small negative slope, for example α = 0.01. In general, the input to
the activation function is a multi-dimensional vector. Consequently, the function is applied
element-wise to each vector entry.

The NN is then trained by iteratively updating the learnable parameters θ of the network
such that a loss function L (θ) is minimized. For supervised learning, the loss function
should quantify the deviation from the current NN output to the desired target output. For
the parameter update, an appropriate optimization method needs to be chosen. A popular
optimizer is the Adam optimizer (KINGMA & BA, 2014), which implements a stochastic,
gradient-based optimization method. Hence, the gradients of the loss function with respect
to the network parameters ∂L

∂θi
have to be computed. These can be efficiently computed

by automatic differentiation methods, such as backpropagation.

Overview of the Proposed Method

CHANDRASEKHAR and SURESH (2021) and DENG and TO (2020) proposed to use FCNNs
to describe the density field in TO problems. The network thus defines a mapping

ρ (x) = NN (x;θ) , (5.4)
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where the density is now parameterized by the learnable parameters θ of the NN. The
input x consists of the spatial x- and y-coordinates and the output is the virtual density
value ρ at the corresponding position. The NN thus maps a density value to each point in
the design domain. The design variables of the optimization problem are now the learnable
parameters θ of the NN, which are updated iteratively during the optimization process.

Following the proposed method of CHANDRASEKHAR and SURESH (2021), the new opti-
mization process is schematically visualized in figure 5.2. Firstly, the density values at the

Figure 5.2: Workflow of the proposed method that uses FCNNs to represent the density
field.

positions needed for the FE analysis are obtained through the NN. These values are then
used to build the stiffness matrix of the system, following the higher-order multi-resolution
scheme introduced in the previous chapter. The resulting state equation is solved and
the solution is used to compute the current compliance value. The resulting compliance
value and the volume constraint are combined to define the loss function L(ρ;θ). The
sensitivities of the loss function with respect to the design variables ∂L

∂θi
can be obtained

with the help of the chain rule and backpropagation. Giving these sensitivities to a suitable
optimizer, the design variables are updated iteratively until a termination criterion is met.

For the update of the learnable parameters θ, the Adam optimizer (KINGMA & BA, 2014)
is selected with a learning rate of 0.01. This optimizer is designed for unconstrained
problems, so the constrained minimization problem is transformed into an unconstrained
one by integrating the volume constraint into the loss function

L(ρ;θ) =
c (ρ)

c0
+ α

(
V (ρ)

V ∗ − 1

)2

, (5.5)

where c0 is the compliance of the initial system. The volume constraint is integrated by
defining a quadratic penalty function, where α is the penalty parameter (NOCEDAL &
WRIGHT, 2006). By increasing the penalty parameter α to infinity, the constraint violation
is penalized more and more severely, forcing the constraint to be satisfied eventually.
According to NOCEDAL and WRIGHT (2006), the penalty parameter α should start at a
relatively small initial value α0 and then increase each iteration until a maximum limit is
reached.
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The gradients of the loss function with respect to each parameter θi can be computed with
the chain rule:

∂L

∂θi
=

∂L

∂ρv

∂ρv
∂θi

, (5.6)

with

∂L

∂ρv
=

1

c0

∂c

∂ρv
+ 2α

(
V

V ∗ − 1

)
∂V

∂ρv
. (5.7)

The sensitivities of the compliance with respect to the voxel densities ∂c
∂ρv

are computed in
the same manner as in equation 4.9 and the sensitivities of the volume with respect to
the densities ∂V

∂ρv
are equal to one as the voxels are defined to have a unit volume. The

gradients of the voxel densities with respect to the parameters of the NN ∂ρv
∂θi

are obtained
through an automatic differentiation technique called backpropagation.

In all previously introduced methods, the optimization process was stopped when the
maximum change of the discretized density values fell below a tolerance of ϵ = 0.01.
Now that the density is defined as a continuous, global function, CHANDRASEKHAR and
SURESH (2021) propose to take the fraction of gray elements as convergence measure.
Gray elements are here defined as elements with a density value between 0.05 and 0.95.
If the fraction of gray elements is less than ϵ = 0.05, the process is terminated.

Comparable to the continuation scheme of the penalty parameter α, a continuation scheme
is also employed for the penalty factor p. Starting from a small initial value p0, the penalty
factor is increased in every iteration until the upper limit is reached. This stepwise increase
can prevent an early convergence to local minima (SIGMUND & MAUTE, 2013).

DENG and TO (2020) follow a similar approach as CHANDRASEKHAR and SURESH (2021)
by using FCNNs to parameterize the density field. In their paper, they focus on the
capability of NNs to represent complex geometries and investigate the influence of different
activation functions and network architectures. The authors have shown that when the
Gaussian function is used as the activation function, highly nonlinear problems can be
fitted. The Gaussian function is defined as

Gaussian (x) = exp

(
− x2

2σ2

)
, (5.8)

where σ is the Gaussian kernel width. The authors have also demonstrated that the kernel
width σ can control the minimum length scale of features in the final design: A larger value
generally leads to simpler topologies and a smaller value to more complex structures
with finer features. In contrast to the piecewise linear Leaky ReLU activation function, the
Gaussian function is not only nonlinear but also infinitely differentiable at all points. Both
the Leaky ReLU and the Gaussian activation function are plotted in figure 5.3.

Another advantage of using FCNNs for the density representation is that the density field
is now described by a continuous function independent of the FE mesh. This means that
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Figure 5.3: The Leaky ReLU function on the left and the Gaussian function on the right.

after the optimization process is finished, the density can be sampled at every location in
the design domain, leading theoretically to an infinitely high resolution.

Network Architecture and Training

The FCNNs employed in this thesis consist of several layers. Starting from two input
neurons, which represent the x- and y-coordinates, the number of neurons in each layer is
increased and then decreased to two output neurons. In each layer, except for the final
layer, a linear mapping is followed by a batch normalization (IOFFE & SZEGEDY, 2015) and
a nonlinear activation function. Batch normalization can accelerate the training process
and is a technique, where the output from the previous layer is normalized using the batch
mean and batch standard deviation. Usually, NNs are trained in batches so that in each
iteration the optimizer is looking at a different subset from the complete data set. In the
context of TO, all coordinate points are considered at once in one single batch. In the final
layer, a Softmax function is applied directly after the linear mapping to scale the output of
the NN to values between 0 and 1. The Softmax function is defined as

Softmax (xi) =
exp (xi)∑
j exp (xj)

(5.9)

and is often implemented in the last layer of classification problems. It takes multiple
inputs, where each input is related to a different class. Here, two inputs are considered,
where the first one is associated with a solid element and the second one with a void. The
output from the Softmax function represents probability values for each class. The second
output can thus be disregarded and the first one is interpreted as the density value ρ.

Besides batch normalization, other measures can also help the training process. The
initialization of the weights in linear layers plays an important role in obtaining stable
gradients. Dependent on the selected activation function, a proper initialization method
has to be chosen. Common choices are the Xavier normal initialization (GLOROT &
BENGIO, 2010) or the Kaiming normal initialization (HE et al., 2015). In the last layer,
the weights are initially chosen to be very small and the biases are set to the prescribed
volume fraction f . In this way, the initial density field is nearly uniform and equal to the
prescribed volume fraction. The gradients can be further stabilized by applying gradient
norm clipping, where the gradients with a norm exceeding a certain threshold, here set to
0.1, are scaled down.
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5.1.2 Convolutional Neural Networks

Basics of Convolutional Neural Networks

CNNs are a special kind of NN, where, as the name indicates, convolutions are performed
in at least one layer. This kind of NN has been applied very successfully to image-
processing tasks. The improved performance is owed to sparse interactions, parameter
sharing, and equivariant representations (GOODFELLOW et al., 2016). In general, the input
to a CNN is a multi-dimensional tensor. If the input is for example an RGB image, then the
input consists of three channels, where each channel is a two-dimensional array of the
same size as the image size. The values in the three channels describe the pixel-wise
intensity of the three primary colors red, green, and blue. A convolutional operator is then
applied to the input, which is schematically visualized in figure 5.4. Here, a 3× 3 kernel

Figure 5.4: Schematic representation of a convolutional operator.

is applied to an input with a single channel. The same filter strides over the complete
input, which is usually much larger than the kernel size. For each output value, the entries
of the corresponding input window marked in gray are multiplied element-wise with the
kernel entries and then summed up. Additionally, a bias can be defined for each filter that
is added on top of the sum. If the output dimensions should remain the same as the input
dimensions, a padding can be applied to the input, which increases its spatial dimensions.
The entries of the kernel represent learnable parameters of the NN, which are updated
during the optimization process. Usually, multiple filters are applied to the same input
so that different features can be learned. Each filter results in an additional feature map,
represented by the channels of the output.

A typical layer in a CNN consists of different operations. After the convolutional operator, a
nonlinear activation function is usually applied, just like in fully connected layers. Often,
a pooling function modifies the feature maps even further. The most commonly used
pooling method is max pooling, where each output is defined as the maximum value within
a rectangular neighborhood. Max pooling can therefore be seen as a feature selection
process, picking the strongest activation in a neighborhood and thereby downsampling
the corresponding input. When the spatial dimensions need to be increased again, for
example to perform pixel-wise image segmentation, the corresponding feature maps are
upsampled with an appropriate upsampling algorithm.
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Overview of the Proposed Method

In the context of TO, the use of CNNs can be advantageous as they are suited for spatially
correlated data. The method described in section 5.1.1 is hence modified to replace the
FCNN with a CNN. The rest of the workflow, including the definition of the loss function
and the update scheme, stays the same. In a similar approach, HOYER et al. (2019)
reparameterized the TO problem with a CNN and used the limited-memory BFGS method
for the optimization. For a detailed description of the limited-memory BFGS method, the
interested reader is referred to the book of NOCEDAL and WRIGHT (2006).

The input to the CNN is now a two-dimensional array with random values sampled from a
uniform distribution in the interval [0, 1]. The output has the same size as the input and
can be interpreted as the density field given by the current parameters of the NN. The
network thus defines a mapping

ρ = NN (θ) , (5.10)

where the density field is again represented by discretized density values. The property
of an infinitely high resolution, which can be obtained with FCNNs, is therefore lost with
CNNs.

Network Architecture and Training

Similar to the FCNN, the CNN also consists of several layers, where the number of
channels is at first increased and then decreased to a single output channel. Since no
features are learned from the input, but only the representation capabilities of the CNN are
of interest, no pooling is implemented and the spatial dimensions stay the same throughout
the entire network. The structure of each layer is comparable to the structure defined
in the FCNN, only that the fully connected linear mapping is replaced by a convolutional
operator. The convolutional operator is again followed by a batch normalization (IOFFE &
SZEGEDY, 2015) and a nonlinear activation function. In the final layer, a Softmax function
is applied to scale the output values between 0 and 1. The rest of the training procedure,
regarding weight initialization and gradient norm clipping, is defined in the same manner
as for the FCNN.

5.2 Acceleration with Local Stress and Strain Fields

In the previous approach, NNs are only used to parameterize the density distribution, but
they do not learn anything. For each TO, the parameters of the NN have to be optimized
anew. In this section, another approach is proposed, where a UNet++ (Z. ZHOU et al.,
2018) is trained to learn the mapping between the physical properties of an optimization
problem and the corresponding near-optimal density distribution.
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5.2.1 Overview of Proposed Method

The initial analysis of a structure under certain boundary conditions already contains useful
information on the final design. Following this idea, different direct design methods and
acceleration methods have been proposed that consider these initial conditions as input to
a NN. The NN then predicts the final or near-final design, skipping the costly iterations in
between. The inputs consist, for example, of the support conditions and loads (YU et al.,
2019) or the initial displacements and strains (ZHANG et al., 2019) of the optimization
problem. In this thesis, the proposed input by YAN et al. (2022) is combined with the
input proposed by SEO and KAPANIA (2023). In both papers, physical quantities obtained
from an initial static analysis are used to predict the final design without any iterations.
Directly predicting the final design element by element can lead to disconnections and a
violation of the volume constraint, assuming that these conditions are not enforced by the
NN. Because of this, it is proposed to perform further iterations with the standard SIMP
method after the NN prediction. The output from the NN can thus be interpreted as an
improved initial guess, closer to the final design than an initially uniform density distribution.
The purpose of the NN prediction is therefore to obtain a better starting point for the initial
design and thereby to accelerate the convergence of the TO. A similar workflow was
also proposed by JOO et al. (2021), where the near-final design prediction from the NN is
further optimized in a conventional optimization process. The overall workflow is visualized
in figure 5.5.

Figure 5.5: General workflow of the proposed method that uses a NN to predict near-
optimal density distributions based on an initial static FE analysis. Additional SIMP
iterations are performed after the NN prediction.

In minimum compliance TO problems, the internal strain energy of the system represents
the objective function that is minimized. In the framework of YAN et al. (2022), the input to
the NN thus consists of some strain terms representing this strain energy. Additionally, the
initial geometry density is also given as input. In this thesis, a prescribed volume fraction
of f = 0.5 is considered for all examples. The initial geometry density is thus set to ρ = 0.5

for all elements and can be omitted from the input. The internal strain energy of the system
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is computed by

U =
1

2

∫
Ω
ϵTCϵ dΩ, (5.11)

where the strains ϵ of each element are obtained from a FE analysis performed on the
initial structure. Given the nodal displacements u and the strain-displacement matrix B of
each element, the corresponding strains are found by

ϵ =

 ϵx

ϵy

γxy

 = Bu. (5.12)

Here and in the rest of this discussion, the subscript e, used to denote an element, is
dropped for readability reasons. For linear elastic materials, the relationship between the
tensor shear strain and the engineering shear strain is given by ϵxy = 0.5γxy. The internal
strain energy density for homogeneous elements can thus be derived as

Û =
E

2 (1− ν2)

(
ϵ2x + ϵ2y + 2νϵxϵy

)
+

E

1 + ν
ϵ2xy (5.13)

and the input to the NN consists of the four normalized terms ϵ2x, ϵ2y, ϵxϵy and ϵ2xy evaluated
at the element center. The strain values at the center of each element are evaluated
by substituting ξ = η = 0 into the corresponding strain-displacement matrix B. Each
second-order strain term is then normalized to the interval [0, 1] so that all input features
share the same scale. The normalization is calculated with the respective minimum and
maximum strain values as

x =
x− xmin

xmax − xmin
. (5.14)

In a similar approach, YAN et al. (2022) proposed to learn the optimized topology from the
major principal stresses of the initial homogeneous structure. From the calculated strains
the stresses are obtained by

σ =

σxσy
τxy

 = Cϵ. (5.15)

The major principal stress for each element is then calculated as

σmax =

∣∣∣∣σx + σy
2

∣∣∣∣+
√(

σx − σy
2

)2

+ τ2xy, (5.16)

which is again normalized in the same manner as the second-order strain terms.

In order to eliminate singularities caused by point loads or point supports, strain and stress
components with a value higher than a respective upper threshold are lowered to the
corresponding threshold value. Similarly, values smaller than a lower threshold are raised.
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The upper and lower thresholds are defined as the 95-th percentile, or respectively the
5-th percentile of the corresponding strain or stress field. These modified fields are then
used to compute the second-order strain terms and the major principal stress.

With the strain and stress terms as input, an element-wise classification is employed as
suggested by SEO and KAPANIA (2023). The corresponding label is obtained by performing
a TO using the conventional SIMP method. In order to obtain discrete 0 − 1 labels, a
threshold of ρt = 0.5 is set for the final design. If the final density of an element is smaller
than this threshold, it is set to ρ = 0 and otherwise to ρ = 1. The element-wise output
of the NN can then be interpreted as the probability of having a material element and
therefore represents the continuous density of that element. The binary cross entropy loss
is employed for the classification task at hand and is defined as

L = − 1

Nspl

Nspl∑
s=1

(
1

Nele

Nele∑
e=1

ρe · log (ρ̂e) + (1− ρe) · log (1− ρ̂e)

)∣∣∣∣∣
s

, (5.17)

where Nspl is the total number of samples given to the NN and Nele is the number of
elements per sample. The variable ρ̂e is the predicted density value of element e. The loss
value is averaged over all samples and over each element to make it independent of the
sample and element size.

Direct design and acceleration methods that aim to predict the final or a near-final design
often suffer from poor generalization properties. Large data sets are usually used for the
training of the NN, but it is challenging to represent all types of problems. The prediction
quality for unseen boundary conditions or mesh resolutions is thus often reduced. The goal
of this thesis is to develop an efficient algorithm that is not limited to specific optimization
settings. Ideally, the NN should learn local features only dependent on the physical
properties within a small observation window. Motivated by this idea, the computed stress
and strain fields are divided into subdomains of 32 × 32 elements. The input to the NN
thus consists of five channels, the four strain terms and the principal stress term, each
with a spatial dimension of 32 × 32. These 5 × 32 × 32 blocks are independently fed to
the NN and the density distribution is predicted separately for each block, as shown in
figure 5.6. In a similar approach, JOO et al. (2021) generated their data set by performing
optimizations on design spaces with 64× 64 elements. The near-final density distribution
of arbitrarily large design spaces is then obtained by decomposing the corresponding
design space into a set of these 64× 64 subdomains. In contrast to their approach, the
data generated in this thesis is not limited to the design space with only 32× 32 elements,
but larger problems, which are divided after the TO, are also considered.

The predictions for the individual subdomains have to be combined to continue the
optimization with conventional SIMP iterations. If the original design space cannot be
divided exactly by 32, a higher number of overlapping subdomains is chosen. If the height
of the design space is for example discretized with 90 elements, it can be decomposed
into three subdomains, each overlapping the previous subdomain by three elements, see
figure 5.7. In general, two different density values will be predicted for each element in the
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Figure 5.6: Workflow of the proposed method using local stress and strain fields. The input
to the NN consists of 5× 32× 32 blocks. The density distribution is predicted separately
for each block.

Figure 5.7: Overlapping areas occur if the design space can not be decomposed exactly
into subdomains of size 32× 32.

overlapping region. Following the framework proposed by JOO et al. (2021), the higher
density value is chosen between the two density values at the same position.

In the proposed method, the local stress and strain terms are obtained from the initial
static analysis. It can be argued that these physical fields computed on the homogeneous
structure do not hold enough information for the mapping to the final topology. This is
especially evident in cases where fine features are found in the optimized design. In a
modified approach, it is therefore proposed to calculate the stress and strain distributions
after performing a small number of SIMP iterations. The intermediate designs can then be
given to the NN as additional input. The modified input thus consists of six channels and a
better approximation of the final design can be expected.

5.2.2 Data Generation

In order to cover a wide range of local stress and strain fields, 20 different mesh resolutions
and five different boundary conditions are used for the training data generation. Since
subdomains of size 32× 32 are considered by the NN, all design spaces have dimensions
dividable by 32. The 20 different mesh resolutions Nx × Ny are listed in table 5.1. The
number of elements in y-direction is increased from Ny = 32 to Ny = 160 in steps of
32. For each height, starting from a square design domain, the number of elements in
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Table 5.1: The 20 different mesh resolutions used for the data generation.

32× 32 64× 64 96× 96 128× 128 160× 160

96× 32 128× 64 160× 96 192× 128 224× 160

192× 64 224× 96 256× 128 288× 160

288× 96 320× 128 352× 160

384× 128 416× 160

480× 160

x-direction is increased in steps of 64 until a length-to-height ratio of 3 : 1 is reached.
For each mesh, five different support conditions are employed. In the first case, the left
boundary is fixed as shown in figure 5.8a. The support condition shown in figure 5.8b is
the same as for the MBB beam, where a symmetric condition is applied on the left side and
the bottom right node is restricted to horizontal movements. In figure 5.8c and figure 5.8d,
the same type of support conditions, but applied to the lower edge, are shown. Finally,
the fifth support condition consists of two fixed nodes, which are chosen randomly each
time. For each mesh resolution and each support condition, three different optimizations

(a) (b)

(c) (d)

Figure 5.8: Four out of the five support conditions used for the training data generation.

are performed, where one, two, or respectively three nodes are loaded. The nodes are
chosen randomly from the free DOFs and the corresponding x- and y-components are set
randomly between −1 and 1. Using 20 different design domains, each with five different
support conditions and three different load cases, leads in total to 300 optimized topologies.
Decomposing these designs into subdomains of dimension 32× 32 results in 8, 400 data
samples. This process can be repeated any number of times to generate more training
data.

Only using the five support conditions described above restricts the range of problem
settings considered by the NN. Data augmentation is thus applied to the generated
data set to further increase the sample size without performing additional optimizations.
Important to note is that data augmentation should only be applied to the samples in the
training set and not to those in the validation set. Each training data sample is first rotated
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clockwise by 90◦, 180◦, and 270◦ and then flipped across the x-axis and again rotated by
the aforementioned angles, leading to seven additional examples. The NN will consider
these augmented samples as new information. Assuming that the x- and y-axis stay the
same independent of the modification made to the data, the input channels describing the
squared strain terms ϵ2x and ϵ2y have to switch position when a rotation about 90◦ or 270◦

is conducted, compare figure 5.9a and figure 5.9c. In figure 5.9c, the topology is rotated
clockwise by 90◦ and the first channel, originally describing the normalized squared strain
in x-direction, now represents the strain in y-direction. In all other cases the input is simply
modified according to the label, compare figure 5.9a with figure 5.9b.

(a) Original sample

(b) Flipped across x-axis (c) Rotated clockwise by 90◦

Figure 5.9: Data augmentation performed on the generated training data samples.

5.2.3 Network Architecture and Training

Following the paper of SEO and KAPANIA (2023), a UNet++ (Z. ZHOU et al., 2018) is
employed for the density prediction. The architecture of the UNet++ is based on the U-Net
architecture (RONNEBERGER et al., 2015), a state-of-the-art model for image segmentation
tasks. The U-Net is a CNN composed of an encoder-decoder architecture with skip
connections. The feature maps from the encoder sub-network are concatenated with the
feature maps in the decoder sub-network before the convolutional operators are applied.
A UNet++ extends the classical U-Net by adding deep supervision and dense convolution
blocks on the skip pathways. Figure 5.10 shows the general UNet++ architecture for three
down- and three upsampling layers. The blue components indicate the original U-Net. By
adding the three additional nodes, the concatenated feature maps are assumed to be
semantically more similar, thus making the optimization easier. Assuming that xi,j denotes
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Figure 5.10: The UNet++ architecture for three down- and three upsampling layers.

the output of node Xi,j , it is computed as

xi,j =

H
(
D
(
xi−1,j

))
, if j = 0 and i > 0,

H
([[

xi,k
]j−1

k=0
,U
(
xi+1,j−1

)])
, if j > 0.

(5.18)

H represents a convolutional block consisting of multiple convolutional operators. D
describes a downsampling layer, where a 2× 2 max pooling is applied, and the operator U
is the corresponding upsampling layer using a bilinear upsampling algorithm. The square
brackets [·] denote concatenation layers, where different feature maps are stacked together.
When deep supervision is activated, the loss from all segmentation branches is averaged.
Z. ZHOU et al. (2018) have shown in their experiments that deep supervision improves
the performance or, in the worst case, maintains a comparable performance compared
to using only one segmentation layer. Since no significant improvement is observed with
deep supervision in this context, only the last segmentation map is considered in the loss
function.

Each convolutional block H consists of two convolutional layers, each followed by a batch
normalization and a Leaky ReLU activation function. For the NN training, the training data
is divided into batches with a batch size of 256. Due to the choice of the Leaky ReLU
activation function, the weights of the NN are initialized with Kaiming normal initialization.
In order to reduce overfitting, a dropout layer is added at the end of the convolutional
block. In a two-dimensional dropout layer, entire channels of the input are independently
zeroed out with a chosen probability pd. Hence, different channels are dropped in each
forward pass, which can be interpreted as training a large number of NNs with different
architectures in parallel.

In the final classification layer, one filter is applied to the output of the last node to reduce
it to one single channel. A Sigmoid function is then used to scale the output to values
between 0 and 1. The Sigmoid function is commonly used in binary classification problems
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and is defined as

Sigmoid (x) =
1

1 + exp (−x)
. (5.19)

For the NN training, 80% of the data is assigned to the training set and the remaining 20%

to the validation set. The parameter updates are then based on the data of the training
set and the validation set is only used to monitor the generalization ability of the NN. The
Adam optimizer (KINGMA & BA, 2014) with a learning rate of 10−4 is implemented for the
parameter updates.
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Chapter 6

Results and Discussion

6.1 Problem Definition

In this chapter, all methods will be applied to the MBB beam, which was already introduced
in chapter 3. Due to the symmetry of the model, only half of the design domain is modeled
as shown in figure 6.1. The length of the design domain is set to L = 360 and the

Figure 6.1: The MBB beam model used for TO.

height to H = L
3 = 120. The design domain is discretized by squares of unit volume, so

Nx ×Ny = 360× 120 density elements are considered for the optimization. This results
in a relatively high resolution and a FE model with 87, 362 DOFs, assuming that the FE
mesh and the density mesh share the same resolution. Unless stated otherwise, the
optimization parameters for the following examples are set as follows:

- Applied force F = 1

- Young’s modulus Es = 1 and Emin = 10−9

- Poisson’s ratio ν = 0.3

- Penalty factor p = 3

- Prescribed volume fraction f = 0.5

- Filter radius rmin = 2

6.2 Implementation Details

All numerical examples were implemented in Python using the 99-line Matlab code from
SIGMUND (2001) as starting point.
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The equilibrium equation is solved with the Python package PyPardiso1, which provides a
Python interface to the Intel oneAPI Math Kernel Library PARDISO solver2. This solver
is designed for large sparse linear systems of equations and expects as input a square
sparse matrix in Compressed Sparse Row (CSR) or Compressed Sparse Column format.
In this thesis, the function

csr_matrix((data, (row_ind, col_ind)), [shape=(M, N)])

from the Python library SciPy3 is used to construct the sparse input matrices in CSR
format. It takes three arrays as input, where the first one holds the non-zero values and
the others the corresponding row and column indices. This function is very convenient
for assembling element stiffness matrices as duplicate entries are summed together. The
computational cost related to the construction of the global stiffness matrix is minimized by
taking all operations independent of the current design variables out of the iterative loop.
These include, for example, the computation of the element stiffness matrix corresponding
to a unit stiffness, see equation 3.9.

In order to avoid expensive for-loops, the sensitivities are computed with the Einstein
summation convention4. A multidimensional convolution designed for image processing5

is used to conduct the sensitivity filtering. The code for evaluating higher-order shape
functions and their corresponding derivatives is taken from the repository introduced in the
paper of KOPP et al. (2022)6. All NNs were implemented with PyTorch7, an open-source
ML framework and the implementation of the UNet++ was taken from the GitHub repository
pytorch-nested-unet8.

It is important to note that a computationally efficient implementation of the optimization
process is not the main focus of this thesis. More importantly, the effect of different
methods and parameterizations is analyzed. The computation time needed for each
example is measured with the function

time.process_time()

from the Time module9. This function returns the sum of the system and user CPU time of
the current process in seconds. In order to compare the effect of the different methods,
the code is executed with a single thread only.

1https://github.com/haasad/PyPardisoProject
2https://www.intel.com/content/www/us/en/develop/documentation/onemkl-developer-reference-

fortran/top/sparse-solver-routines/onemkl-pardiso-parallel-direct-sparse-solver-iface.html
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
4https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
5https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.convolve.html
6https://gitlab.com/hpfem/publications/2021_nd-mlhp
7https://pytorch.org/
8https://github.com/4uiiurz1/pytorch-nested-unet
9https://docs.python.org/3/library/time.html
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6.3 Comparison of Designs and Computational Cost

In the following section, the results obtained by the different methods will be compared
with respect to the solution quality and the computation time. The final output from
all optimizations is a density field with continuous density values between 0 and 1. A
corresponding discrete 0 − 1 density field can be obtained by a post-processing step,
where the f · Nx · Ny elements with the highest density values are chosen to be solid
elements. In this way, the volume constraint is fulfilled exactly.

Reference Solution

The reference solution is obtained with the conventional SIMP method introduced in
chapter 3. As mentioned before, the optimization terminates as soon as the maximum
change of the densities between two iterations is smaller than ϵ = 0.01. Figure 6.2 shows
the resulting continuous and discrete designs and their compliance values c after 352
iterations. The corresponding computation times in milliseconds are listed in table 6.1. The

(a) Continuous design, c = 190.35 (b) Discrete design, c = 187.50

Figure 6.2: The optimized MBB beam using the conventional SIMP method.

values describe the average time needed for each process in one iteration. Each iteration
can be divided into the FE analysis, the sensitivity analysis, here denoted as SA, the
sensitivity filtering, and the update of the design variables. The FE analysis is again split
into two parts, in the first part the global stiffness matrix is built and in the second part the
resulting system of equations is solved. In general, the measured computation time varies
slightly every time the code is executed. In order to obtain numbers as representative as
possible, the average time of three consecutive runs is taken. It is apparent that the FE

Table 6.1: Average time in milliseconds needed for each part of the optimization process
for one iteration using the conventional SIMP method.

FE analysis
SA Filtering Update Total

Build Solve

215.35 405.97 53.02 0.62 9.23 684.19

analysis, here with 87, 362 DOFs, constitutes the majority of the computation time with
approximately 90% of the total time. This becomes even worse for larger systems, for
example in three dimensions. The sensitivity analysis is considerably less expensive due
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to its simple computation, but a relatively large number of matrix multiplications is still
needed. Compared to these two processes, the time spent in the sensitivity filtering and
the design variable update is almost negligible. The majority of scientific contributions
therefore focus on reducing the cost related to the FE analysis.

Higher-Order Multi-Resolution Scheme

The multi-resolution scheme introduced in section 4.1 aims to reduce the FE analysis
cost by employing a coarse FE mesh with less DOFs. As already shown in this section,
QR-patterns will occur when the multi-resolution scheme is implemented with bilinear
shape functions and too-small filter radii. The optimized topologies for different filter radii
are visualized in figure 6.3. The underlying FE mesh consists of 60× 20 elements, each
containing 6× 6 density elements. The resulting 360× 120 density field thus shares the
same resolution as the reference model, but the FE model with bilinear shape functions
has only 2, 562 DOFs. For a filter radius of rmin = 2 and rmin = 4, QR-patterns appear

(a) rmin = 2 (b) rmin = 4

(c) rmin = 5 (d) rmin = 6

Figure 6.3: The optimized MBB beam using the multi-resolution scheme with bilinear
shape functions and different radius sizes. QR-patterns occur for small filter radii.

in the final topology. A relatively high filter radius must be chosen to eliminate these
QR-patterns. This in turn leads to a loss of fine features as the filter radius imposes a
minimum feature size. At the same time, the number of gray elements is increased and
the boundaries of the structure become less crisp. Although reasonable results can be
achieved with higher filter radii, the fine discretization of the underlying density mesh is
not fully exploited. A similar topology as shown in figure 6.3d could be obtained with the
conventional SIMP method by choosing a smaller filter radius and correspondingly fewer
density elements, see figure 6.4.

As suggested in section 4.2, the use of higher-order shape functions within the multi-
resolution scheme can increase the analysis quality and thereby prevent the formation of
QR-patterns. The same discretization as before is employed, with 60× 20 finite elements
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Figure 6.4: The optimized MBB beam using the conventional SIMP method with 90× 30
density elements and a filter radius of rmin = 1.5.

and 6 × 6 density elements each. In figure 6.5, the continuous and discrete designs,
obtained with rmin = 2 and shape functions of order q = 4, are shown. 415 iterations
were needed for the solution to converge. The resulting designs and compliance values

(a) Continuous design, c = 190.38 (b) Discrete design, c = 187.53

Figure 6.5: The optimized MBB beam using the multi-resolution scheme and higher-order
shape functions of order q = 4.

are almost identical to the results obtained by the conventional SIMP method. Due to
the higher-order shape functions, the number of DOFs increases from 2, 562 to 39, 042.
Nevertheless, the number is still more than halved compared to the reference example
with 87, 362 DOFs.

Table 6.2 compares the computation time of the reference method, here denoted as cSIMP,
with the multi-resolution scheme. When bilinear shape functions of order q = 1 are used,
the method is abbreviated with MTOP1. The expression MTOP4 respectively describes
the use of higher-order shape functions of order q = 4. For the multi-resolution TO with
bilinear shape functions, the computation time is measured for a filter radius of rmin = 6.

Table 6.2: Average time in milliseconds needed for each part of the optimization process
for one iteration. The conventional SIMP method is compared with the multi-resolution
scheme and different shape functions.

Method DOFs
FE analysis

SA Filtering Update Total
Build Solve

cSIMP 87, 362 215.35 405.97 53.02 0.62 9.23 684.19

MTOP1 2, 562 7.68 8.20 7.03 3.97 8.67 35.55

MTOP4 39, 042 246.41 288.52 91.55 0.54 10.81 637.83

The time needed for the update of the design variables is roughly the same for all three
methods since the number of design variables does not change. For the multi-resolution

47



scheme with bilinear shape functions, fine features are lost, but the computational cost
is greatly reduced due to the significantly smaller number of DOFs. Only the sensitivity
filtering becomes more expensive as the filter size is increased. For higher-order shape
functions of order q = 4, the numerical integration of the cell stiffness matrices becomes
more involved. As expected, the time needed to build the equation system and the time
spent on the sensitivity analysis are thus increased. Still, the total time for one iteration is
slightly reduced compared to the conventional SIMP method because the reduced number
of DOFs leads to a smaller system that can be solved faster. In the rest of this section,
shape functions of order q = 4 are chosen when the higher-order multi-resolution scheme
is employed.

The number of DOFs can be further reduced by eliminating the internal modes from the
higher-order shape functions. The two reduction methods introduced in section 4.4, the
standard Guyan reduction and the parametric MOR, are thus applied to the optimization
of the MBB beam. In this static example, the condensation of the internal DOFs with the
standard Guyan method leads to the same result as shown in figure 6.5. The corresponding
number of DOFs is reduced from 39, 042 to 17, 442. With the proposed parametric MOR,
the reduction is performed only once at the beginning of the optimization process, but the
equilibrium equations are not solved exactly. The final continuous and discrete designs,
obtained with the higher-order multi-resolution scheme and parametric MOR, are shown
in figure 6.6. The corresponding computation times are summarized in table 6.3, where
the letter G stands for Guyan reduction and the letter P for parametric MOR.

(a) Continuous design, c = 199.06 (b) Discrete design, c = 212.49

Figure 6.6: The optimized MBB beam using the higher-order multi-resolution scheme and
parametric MOR.

Table 6.3: Average time in milliseconds needed for each part of the optimization process
for one iteration. The standard Guyan reduction is compared with parametric MOR.

Method DOFs
FE analysis

SA Filtering Update Total
Build Solve

MTOP4 39, 042 246.41 288.52 91.55 0.54 10.81 637.83

MTOP4-G 17, 442 301.39 156.50 88.72 0.54 9.24 556.39

MTOP4-P 17, 442 100.97 145.06 37.96 0.58 10.33 294.90

Evaluating the computation time, it is apparent that the time spent in the FE solver
decreases for both condensation methods. This is as expected since the number of DOFs
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is reduced in both examples to 17, 442. The main bottleneck with the standard Guyan
condensation is now found in building the reduced global stiffness matrix. As explained
in section 4.4, a matrix inversion is needed for each cell in each iteration, making the
reduction process very expensive. In this example, approximately one-third of the building
time is spent on the reduction of the cell stiffness matrices. When parametric MOR
is employed, the reduction is performed just once at the beginning of the optimization
process, and within the iterations, the reduced voxel matrices are simply scaled with the
corresponding Young’s moduli. This leads to a significant drop in the building time. Due to
the simpler relation between the reduced cell stiffness matrices and the density values of
each voxel, the sensitivity analysis also becomes faster.

From figure 6.6, it is visible that, although the overall topology obtained with parametric
MOR is very similar to the reference solution, disconnections appear in the final design.
The final compliance values are accordingly high. This problem is likely related to the
inexact solution of the equilibrium equations and further measures are necessary to obtain
viable results.

Density Parameterization using Neural Networks

It was proposed in section 5.1 to use NNs for the reparameterization of the density field
in addition to the higher-order multi-resolution scheme. It will be shown that this new
representation method can effectively eliminate the disconnections that occur in the final
design when parametric MOR is employed. For all network architectures, continuation
schemes are implemented for the penalty parameter α and the penalty factor p. The initial
value for the penalty parameter α is set to α0 = 0.5 and the value is increased with a
step size of ∆α = 0.05 until a maximum of αmax = 100 is reached. For the penalty factor
p, the initial value is set to p0 = 2 and the upper limit to pmax = 4. The value increases
by ∆p = 0.01 in each iteration. The optimization terminates when the fraction of gray
elements falls under the value of ϵ = 0.05.

Firstly, a FCNN with Leaky ReLU activation functions, see equation 5.3, is employed for
the density parameterization. The weights are correspondingly initialized with a Kaiming
normal initialization. The FCNN consists of 13, 186 learnable parameters that represent
the design variables of the optimization problem. The detailed network architecture can be
found in appendix B.1.1. In the conventional TO approach, the number of design variables
is defined by the density mesh. A density mesh with 360× 120 elements thus corresponds
to 43, 200 design variables. With the FCNN, the number of design variables is reduced
to less than one-third of the original problem. Figure 6.7a shows the resulting optimized
topology. Interesting to note is that no sensitivity filtering was necessary to eliminate
checkerboard patterns and QR-patterns. Although the filtering can be implemented very
efficiently, more crisp edges and designs with fewer gray elements are achieved when
the filtering step is omitted. There are also no visible disconnections in the design, even
though parametric MOR was applied to the system. However, it is apparent from the
figure that a relatively simple structure without any fine features is obtained. A possible
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(a) Learnable parameters: 13,186 (b) Learnable parameters: 154,562

Figure 6.7: The optimized MBB beam using FCNNs for the density parameterization and
Leaky ReLU as activation function. The result for two different network sizes is shown.

explanation might be that the small network with only 13, 682 learnable parameters is
not able to represent more complex topologies. For the design shown in figure 6.7b, the
number of learnable parameters was thus increased to 154, 562. The definition of each
layer can be found in appendix B.1.2. The overall topology shows no significant difference
compared to the topology obtained with the smaller network. The optimization simply
terminates in a different optimum when FCNNs are employed. It is important to note that
the weights in NNs are, in general, initialized stochastically. The final design is thus not
deterministic but varies every time the optimization is performed. Nonetheless, repeated
optimizations have shown that the designs visualized in figure 6.7 are representative of
their corresponding network architectures.

Since the larger network comes with a significantly increased computational cost but
without any improvements in the design, the smaller network architecture is selected
for the rest of this analysis. As mentioned in section 5.1.1, the Gaussian function, see
equation 5.8, might provide better fitting capabilities than the Leaky ReLU function due
to its nonlinear characteristics. The Leaky ReLU function is hence replaced with the
Gaussian function and the weights of the FCNN are initialized with the Xavier normal
initialization. Example results for different kernel sizes σ are shown in figure 6.8. In
general, a larger kernel width leads to simpler structures, while reducing σ also reduces
the minimum feature size. It can be seen that with smaller values of σ, more complex
designs with finer features are obtained. The final topology obtained with a kernel size
of σ = 0.5 has a compliance value of c = 190.76 and exhibits fine features comparable to
those obtained with the conventional approach. Although reasonable results are possible
with this kernel size, it was observed quite often how disconnections and artifacts appear in
the final design. This effect is even more pronounced when the kernel width is decreased
further. Figure 6.8d shows such an example, where the kernel width is set to σ = 0.3. The
final design has a compliance value of c = 743.79 and is not usable anymore.

Until now, no filtering was applied to the sensitivities when FCNNs were used for the density
representation, and the TO was terminated when the fraction of gray elements reached the
defined tolerance of ϵ = 0.05. Adding a filter could reduce the number of disconnections
and artifacts, but the number of gray elements would increase. The termination criterion
would therefore have to be relaxed to achieve convergence within a reasonable number of
iterations. In an alternative approach, the FCNN is replaced with a CNN. CNNs are suited
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(a) Kernel width σ = 2.0, c = 195.28 (b) Kernel width σ = 1.0, c = 193.17

(c) Kernel width σ = 0.5, c = 190.76 (d) Kernel width σ = 0.3, c = 743.79

Figure 6.8: The optimized MBB beam using FCNNs for the density parameterization and
the Gaussian function as activation function. The result for four different kernel widths is
shown.

for spatially correlated data and might therefore be advantageous in the context of TO.
Since the CNN does not treat each voxel individually, but the complete design space is
considered, artifacts as in figure 6.8d might be eliminated. For the following topologies, a
CNN with 13, 818 learnable parameters is employed. It implements the Gaussian activation
function with a kernel width of σ = 0.5. In each convolutional layer, a convolution filter with
a spatial dimension of 7× 7 is applied. The network architecture is described in detail in
appendix B.2. It is important to note that the network architecture of the CNN affects the
resulting designs. After some parameter tuning, the architecture delivering the best results
was selected. Around 30 optimization runs were conducted with this architecture for the
following discussion.

In figure 6.9, two example results are shown. Due to the stochastic initialization of the
weights, different optima are found each time an optimization is performed. This can be
very advantageous, as the designer can choose among multiple designs and consider,
for example, other constraints and preferences. From the resulting compliance values,

(a) Iterations: 197, c = 187.70 (b) Iterations: 192, c = 189.97

Figure 6.9: The optimized MBB beam using CNNs for the density parameterization and
the Gaussian function as activation function.

it is apparent that the quality of the results can compete with the quality obtained from
the conventional SIMP method, where a compliance value of c = 190.35 was achieved
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for the continuous design. Out of all conducted optimizations, the best and worst results,
determined by their compliance value, are visualized in figure 6.10. The best continuous

(a) Continuous design, iterations: 182, c = 186.22 (b) Discrete design, iterations: 182, c = 184.87

(c) Continuous design, iterations: 190, c = 190.93 (d) Discrete design, iterations: 190, c = 189.11

Figure 6.10: The best and worst designs that were obtained.

design has a compliance value of c = 186.22 and even the topology with the worst
performance achieved a compliance value very close to the reference solution. The
compliance values of all other designs lie in between these limits.

Although, in general, there are no artifacts in the final design, disconnections were ob-
served in a total of two cases. These are shown in figure 6.11. The disconnections

(a) Iterations: 197 , c = 187.24 (b) Iterations: 218, c = 189.38

Figure 6.11: Disconnections occurring in the final topology.

appearing in these topologies are not of the same nature as the disconnections occur-
ring in figure 6.8d. With CNNs, they only appear in isolated cases and locations, and
the corresponding compliance values are still comparable to other examples without
disconnections.

The goal of the thesis is to reduce the computational cost inherent with large-scale TOs.
Thus, the average time needed for one iteration is documented in table 6.4. The elapsed
computation time is again obtained by averaging three optimization runs and is given
in milliseconds. In the second column, the respective number of design variables is
compared. Within the underlying FE analysis, the higher-order multi-resolution scheme
with parametric MOR is implemented for both the FCNN and the CNN. Compared to the
previous methods, no filtering is implemented, but instead, a forward pass through the NN
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Table 6.4: Average time in milliseconds needed for each part of the optimization process
for one iteration. NNs are used to parameterize the density field.

Method DVs Forward
FE analysis

SA Filtering Update Total
Build Solve

MTOP4-P 43, 200 - 100.97 145.06 37.96 0.58 10.33 294.90

FCNN 13, 186 109.36 101.02 143.49 223.97 - 1.29 579.13

CNN 13, 818 34.88 102.62 140.79 113.77 - 0.84 392.90

is necessary. In order to obtain the density values used in the FE analysis, the input to
the NN is fed through the layers to the output. This step constitutes a significant part of
each iteration, especially for the FCNN. The time spent on the sensitivity analysis also
increases, since not only the sensitivities of the compliance with respect to the density
values have to be computed, but also the sensitivities of the density values with respect
to the learnable parameters of the network. The time spent in the FE analysis stays
approximately the same since the same algorithm is implemented for all three approaches.
Finally, the update of the design variables is accelerated, since the OC method is not
needed for the unconstrained optimization problem at hand.

Taking the sum of all sub-processes in the optimization, an average iteration with the
CNN takes 392.90ms. Although this is longer than the time needed for an iteration in the
parametric higher-order multi-resolution approach with 294.90ms, artifacts and defects as
shown in figure 6.6 are effectively eliminated. Compared to the computation time of the
fastest deterministic method without any defects, namely the higher-order multi-resolution
approach with standard Guyan reduction and 556.39ms per iteration, the use of CNNs
is much more efficient. Table 6.5 gives a final comparison between the conventional
SIMP method and the method using CNNs. The average time per iteration is reduced
from 684.19ms to 392.90ms. It is also important to note that the new parameterization

Table 6.5: A final comparison of the conventional SIMP method and the new parameteri-
zation method with CNNs. The average time in milliseconds needed for each part of the
optimization process for one iteration is given.

Method Forward
FE analysis

SA Filtering Update Total
Build Solve

cSIMP - 215.35 405.97 53.02 0.62 9.23 684.19

CNN 34.88 102.62 140.79 113.77 - 0.84 392.90

method with CNNs in combination with the new termination criterion leads to a faster
convergence in fewer iterations. For all examples that were conducted, the maximum
number of iterations is 269, while most examples converged in less than 200 iterations.
This leads to a total computation time of approximately 100 s for the complete optimization
of the MBB beam. Compared to that, the total computation time using the conventional
SIMP method is approximately 250 s for 352 iterations. The total computation time is thus
reduced by a factor of roughly 2.5.
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Acceleration with Local Stress and Strain Fields

The NNs used for the density parameterization do not save any information on the op-
timized topologies and the parameters of the NN are optimized anew for each TO. In
another approach, a NN is trained with TO data to predict near-optimal designs in new
problem settings. The goal is to accelerate the TO by achieving a faster convergence and
thereby reducing the number of iterations after the prediction. The approach was intro-
duced in section 5.2 and is based on the conventional SIMP method only. Hence, it serves
as a proof-of-concept and none of the conventional acceleration methods introduced so
far are integrated.

The first model is trained with local stress and strain fields computed on the initial homoge-
neous design. The corresponding data set was generated as described in section 5.2.2.
The process described in this section was repeated five times, so 1500 designs were
generated in total. Dividing these designs into subdomains with 32× 32 elements results in
42, 000 data samples. The samples are randomly split into a training set with 33, 600 entries
and a validation set with the remaining 8, 400 samples. Data augmentation performed on
the training samples leads to a final training data set of size 268, 800. Since from almost
each TO, multiple training samples are generated, the necessary number of optimization
runs is significantly smaller than the number used in comparable approaches. SEO and
KAPANIA (2023), for example, conducted 12, 500 optimizations for their training and JOO

et al. (2021) consider 5, 000 optimized topologies. The proposed Unet++ is trained for 300
epochs, where in each epoch, the complete training set is passed through the network in
batches of size 256. The network has over 5.98 million parameters and a dropout value
of pd = 0.4 is introduced to prevent overfitting. The detailed network architecture is given
in appendix B.3. The training and validation loss for each epoch and the corresponding
validation accuracy are plotted in figure 6.12. The accuracy is defined as the fraction of
correctly classified elements when a threshold of ρ̂t = 0.5 is set for the predicted densities.
From the loss history, it is visible that the training loss is still decreasing after 300 epochs.

Figure 6.12: The training and validation loss history and the corresponding validation
accuracy for each epoch. The input consists of the initial stress and strain terms.

This indicates that the proposed UNet++ architecture could have enough capacity to model
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the mapping between the input and the corresponding label of the given training set. The
validation loss, on the other hand, reaches its minimum value after epoch 254 with a loss
value of Lmin = 0.318, and the highest accuracy is achieved in the same epoch with
Amax = 0.855. After that, the network overfits the training samples and the prediction
quality on the unseen validation set decreases. The model parameters in epoch 254 are
thus saved for the density prediction in new examples. This trained model is now used
to predict the density distribution of the MBB beam. The corresponding input computed
on the initial structure is visualized in figure C.1 in appendix C. The density prediction
of the MBB beam is shown in figure 6.13. The discrete final design, representing the
label, is given on the right for comparison. Since the Nx ×Ny = 360× 120 design space

(a) Predicted density values (b) Reference solution

Figure 6.13: Prediction of the density field based on the initial stress and strain terms. The
individual subdomains are joined after the NN prediction.

cannot be divided exactly into subdomains of size 32 × 32, the next larger number is
chosen. The design space is thus divided into 12 subdomains in x-direction and four in
y-direction. Each subdomain, except for the last two of each row and column, overlaps
the previous subdomain by two elements. For the last two subdomains, the overlapping
region is increased to three, such that the complete design domain is fitted exactly. The
average prediction accuracy is A = 0.778 and the binary cross entropy loss is L = 0.411.
It is apparent that the NN can predict the rough structure of the optimized design but in
regions where finer features occur, it is not able to learn the complex relationship between
the input and the label. In those regions, the NN simply predicts density values close to
the average of 0.5. Considering the input fields visualized in figure C.1, this result is not
surprising. The information on these fine features is just not present in the stress and
strain terms computed on the initial homogeneous beam. Using the predicted density
distribution from figure 6.13a as starting point for a conventional SIMP based TO, the final
design is obtained after 349 iterations. The continuous design achieves a compliance
value of c = 187.91 and the discrete design a value of c = 184.25. The resulting topologies
are visualized in figure 6.14. Due to the different density initialization, the optimization
converges to a different minimum. In this case, the final topology obtained with the NN
prediction achieves better compliance values than the reference solution. However, the
number of iterations is not significantly reduced. The total computation time is thus approx-
imately the same, if not slightly increased, considering that the prediction by the UNet++
takes additional time. For the example at hand, the total time needed for the initial FE
analysis, the generation of the input to the NN, the loading of the pre-trained model, the
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(a) Continuous design, c = 187.91 (b) Discrete design, c = 184.25

Figure 6.14: The optimized MBB beam using the density prediction from the UNet++ as
starting point. The input to the UNet++ is obtained from the initial structure.

forward pass, and the combination of the predicted subdomains is about 4.56 s. This value
was obtained by taking the average time of three consecutive runs.

As discussed in section 5.2.1, the stress and strain fields obtained from the initial structure
might not hold enough information to predict density fields with fine features. Alternatively,
the stress and strain fields can be computed after some iterations when the basic structure
has already evolved. In this thesis, the FE analysis for the input data is performed after 10
iterations. In addition to the five input channels, consisting of the quadratic strain terms and
the principal stress term, the intermediate density field after 10 iterations is also given to
the NN. The input thus consists of six channels. The remaining architecture of the UNet++
stays the same as before, only the dropout parameter is increased to pd = 0.5. Figure 6.15
shows the loss and validation accuracy history of the model for 200 epochs. With the new

Figure 6.15: The training and validation loss history and the corresponding validation
accuracy for each epoch. The input consists of the stress and strain terms computed after
10 SIMP iterations.

input data, the NN can predict density values with higher accuracy. The smallest validation
loss is obtained after 134 iterations with a value of Lmin = 0.105. The corresponding
classification accuracy is increased to Amax = 0.953. The model parameters after this
epoch are saved for the density prediction.

For the optimization of the MBB beam, the conventional SIMP method is used to perform
10 iterations. The resulting density distribution is shown in figure 6.16. The corresponding
stress and strain fields are computed and visualized in figure C.2 in appendix C. Together
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Figure 6.16: The MBB beam using the conventional SIMP method after 10 iterations.

with the density distribution shown in figure 6.16, these fields are given to the trained
model. Figure 6.17 shows the output of the NN and the reference solution for comparison.
The average prediction accuracy for this example is A = 0.907 and the binary cross

(a) Predicted density values (b) Reference solution

Figure 6.17: Prediction of the density field based on the stress and strain terms computed
after 10 SIMP iterations. The individual subdomains are joined after the NN prediction.

entropy loss is L = 0.205. From the result, it is apparent that the input computed after
a few iterations contains much more information on the optimized design. The NN can
predict more detailed features and fewer gray regions are present. The predicted density
field is already quite close to the final optimized topology. Continuing the optimization
after the prediction leads to a converged design in altogether 423 iterations. Figure 6.18
shows the final continuous and discrete designs, as well as the corresponding compliance
values. Again, a different minimum is reached and slightly better compliance values are

(a) Continuous design, c = 188.02 (b) Discrete design, c = 184.51

Figure 6.18: The optimized MBB beam with a density prediction from the UNet++ after 10
iterations.

achieved. Although the prediction quality of the NN is significantly improved compared
to the previous model, the number of iterations until the termination criterion is satisfied
increases. If the design development in each iteration is analyzed, it becomes clear that
significant changes in the topology and compliance value are found only in the first few
dozen iterations. Therefore, it may be interesting to evaluate the design development in the
early stages of the TO in more detail. Figure 6.19 shows the development of the topology
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for the different approaches. For all methods, the structure after 20 iterations is already

(a) Conventional SIMP method (b) Density prediction at the begin-
ning

(c) Density prediction after 10 itera-
tions

Figure 6.19: The design at different stages of the optimization without density prediction,
with a density prediction at the beginning, and with a density prediction after 10 iterations.

close to the final optimized design, even more for the two cases where the UNet++ was
used to predict the density. Interesting to note is that after 20 iterations, both the designs
shown in figure 6.19b and figure 6.19c already achieve a compliance value close to the
final compliance value of the reference design. The evolution of the compliance value for
all three optimizations is plotted in figure 6.20. On the left figure, the compliance history is

Figure 6.20: The compliance history for all three optimization methods.

plotted from the eleventh iteration to the 40-th iteration. The values decrease rapidly in the
first iterations and then begin to stagnate. The relative change in the compliance value for
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an iteration i is defined as

ri =
|ci−1 − ci|

ci−1
. (6.1)

For the conventional SIMP method, three consecutive iterations with a relative change
smaller than r = 0.003 are achieved after 25 iterations. For both the NN based optimiza-
tions, this condition is fulfilled after 19 iterations. A faster convergence is thus achieved by
the NN prediction. In the right plot, the compliance history is extended to the 140-th itera-
tion. As determined before, using a Unet++ to predict density fields leads to compliance
values close to the final reference compliance already after a few iterations. The dashed
horizontal line is placed at c = 190.66, which corresponds to the compliance value after 20
iterations when the density is predicted at the beginning of the TO. The conventional SIMP
method needs approximately 130 iterations to achieve a design with similar compliance.
The use of NNs thus leads to improved designs in the early stage of the optimization.

Another interesting aspect is the development of the number of gray elements. In the
previous section, where NNs were used to reparameterize the design field, the fraction of
gray elements was used as the termination criterion. In the same manner as before, an
element is categorized as gray, if the density is between 0.05 and 0.95. The evolution of
the number of gray elements until the 40-th iteration is plotted in figure 6.21. Comparable

Figure 6.21: The evolution of gray elements for all three optimization methods.

to the compliance value, the number of gray elements decreases rapidly in the first few
iterations and reaches a plateau afterward. When a NN is used, the point where this
plateau starts to emerge is shifted forwards by a few iterations, similar to the behavior of
the compliance history. From this plot and figure 6.19, it is apparent that, compared to the
conventional SIMP method, clearer structures with fewer gray elements can be achieved
earlier in the optimization.

Although the use of NNs for the density prediction cannot reduce the total number of
iterations, better designs with lower compliance values and faster convergence properties
are achieved. The use of UNet++ for the density prediction can be interpreted as an
accelerator that skips some of the iterations. Thus, an even faster convergence might be
achieved if this prediction is performed more than once. For this purpose, a new model
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needs to be trained, for example, based on the designs obtained after an initial prediction
and 10 additional iterations. Also, the definition of the convergence criterion should be
questioned. As seen from the previous figures, the design and compliance values do
not change significantly after the first few dozen iterations. Another, more appropriate
definition of the termination condition, based, for example, on the compliance evolution or
the number of gray elements, could take full advantage of the faster convergence of the
proposed method and terminate the optimization earlier.
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Chapter 7

Conclusion

The goal of this thesis was to develop a more efficient TO algorithm by combining conven-
tional acceleration methods with NNs. In the first approach, these conventional methods
were combined with NNs for the reparameterization of the density field. The final results
obtained with CNNs achieved, in most cases, lower compliance values, and the corre-
sponding computation time was reduced by more than half. Starting with the conventional
SIMP method, a multi-resolution scheme was introduced. By separating the FE analysis
mesh from the density mesh, the DOFs of the resulting system are greatly reduced and a
much faster FE analysis was achieved. When bilinear quadrilaterals are used for the FE
mesh, a relatively high filter radius must be chosen to avoid the formation of QR-patterns.
This leads to a loss of fine features and, at the same time, to an increase in gray ele-
ments. In order to achieve designs similar to the reference design, higher-order shape
functions were added to the multi-resolution scheme. The use of higher-order shape
functions improves the analysis quality, and filter radii much smaller than one FE cell can
be chosen. The drawback of higher-order shape functions is the increased number of
DOFs, which inevitably leads to higher computation times. The higher the order, the higher
the number of DOFs. Although the overall computation time for one iteration is slightly
reduced compared to the reference method, the gain is not sufficient. Higher-order shape
functions come with internal DOFs that are local to one cell. These internal DOFs can be
condensed out of cell stiffness matrices to reduce the computation time further. Using the
standard Guyan reduction, an exact solution can be achieved, but a costly matrix inversion
is needed for each cell in each iteration. It was therefore proposed to use a parametric
MOR technique, which retains the parameter dependency. The costly reduction is then
performed only once at the beginning of the TO and within the iterations, the reduced
matrices can be used directly. The resulting FE analysis is about 2.5 times faster than
in the conventional SIMP method. The drawback of parametric MOR is that the reduced
system of equations is not exact anymore. This leads to artifacts and disconnections in the
final structure and thus to unusable designs. To prevent this issue, NNs were employed to
reparameterize the design variables of the optimization problem. Indeed, the use of NNs
can effectively eliminate these artifacts and promising results were achieved, especially
with CNNs. In the second approach, NNs were used to locally predict near-optimal density
values from stress and strain properties. These properties were either computed on
the initial structure or the design obtained after 10 SIMP iterations. In contrast to the
first approach, no other acceleration method was combined with the prediction from the
NN, and the optimization was continued with conventional SIMP iterations. The NNs in
this case do not only serve as a representation tool but are trained with data generated
from standard optimizations. The UNet++ network architecture was implemented for this
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purpose. Although the total number of iterations could not be reduced, better designs with
lower compliance values were achieved and a faster convergence was observed in the
early stage of the optimization.

The performance of the introduced methods was compared on the two-dimensional MBB
beam. From the results it is apparent that some of the different acceleration methods
benefit from each other: A simple reparameterization with CNNs without any additional
measures would still require a costly FE analysis in each iteration, and applying parametric
MOR without the use of NNs would lead to infeasible results. The use of NNs in this
context comes with two further advantages. The first one is the wide range of different
designs that can be obtained. Due to the random initialization of the weights in the NN, the
optimization procedure terminates in a different local minimum each time an optimization is
conducted. Most of the designs obtained by the proposed algorithm achieved a compliance
value better than the reference value of c = 190.35. Even the compliance of the worst
design with c = 190.93 was only slightly higher. Although the overall performance is very
promising, some disconnections were observed in rare cases. These disconnections occur
only in isolated locations and do not significantly influence the overall performance. In the
scope of this thesis, no further investigation was conducted on why these disconnections
occur or how they can be avoided. Nevertheless, it would be desirable to eliminate these
disconnections to ensure robust and high-quality solutions. The second advantage is
the reduced number of iterations. The average number of iterations for the developed
algorithm was less than 200, while the reference problem solved with the conventional
SIMP method terminated after 352 iterations. The total computation time is thus reduced
from approximately 250 s to 100 s.

As demonstrated in the last chapter, the network architecture of the NN for the density
parameterization has a significant influence on the resulting designs. Although CNNs
seem to perform better than FCNNs, the outcome is affected by different factors such as
the choice of the activation function, the choice of the network hyperparameters, but also
the choice of the optimizer, and the way the constraints are taken into account. Thus,
the potential of FCNNs should not be completely disregarded. In the case of CNNs, it is
likely that even better results can be obtained by tuning the network architecture. Further
research should be conducted to determine the most efficient and robust architecture.
Related to this, the generalization ability of the chosen network should also be analyzed.
The CNN introduced in this thesis may work well for similar mesh resolutions, but might
not have enough representation power for much larger examples. The efficiency gain is
lost, if too much time and effort is spent on defining the network architecture every time
the problem scale changes. Ideally, some general rules should be defined that relate the
network architecture to the problem’s complexity.

The second approach proposed in this thesis, where a UNet++ is used to accelerate
the TO, can be seen as a first proof of concept. The results have shown that a faster
convergence was achieved and in combination with a different convergence criterion, a
significant acceleration of the TO can be expected. Learning a useful mapping in the
context of TO is still in its infancy and an active field of research. Many existing attempts
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struggle with the huge amount of required data and poor generalization abilities. In the
current work, the trained models should, to some degree, be able to generalize to unseen
problem settings as local features were given to the NN during the training. However,
many configurations were not considered in the training data. The prescribed volume
fraction was, for example, fixed to f = 0.5, the filter radius to rmin = 2, and no distributed
load conditions were applied. The limits of the proposed model thus need to be analyzed
in more detail. In the ideal case, the trained model should continuously collect new data
and update itself as soon as a new optimization is conducted. Additionally, some of the
conventional acceleration methods introduced in the first chapters could be integrated into
the subsequent optimization iterations.

The motivation behind this work was to make large-scale TO more accessible. The pro-
posed algorithms led to promising designs with better compliance values and to reduced
computation times or an accelerated convergence. The analysis of static, minimum compli-
ance problems in two dimensions should only pose the starting point. The generalization
ability of the proposed methods can be investigated by integrating different objectives
and constraints and the efficiency gain is expected to be even more significant when the
algorithm is extended to large-scale problems in three dimensions.
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Appendix A

Legendre Polynomials

The first eight Legendre polynomials are defined as:

P0 (t) = 1,

P1 (t) = t,

P2 (t) =
1

2

(
3t2 − 1

)
,

P3 (t) =
1

2

(
5t3 − 3t

)
,

P4 (t) =
1

8

(
35t4 − 30t2 + 3

)
,

P5 (t) =
1

8

(
63t5 − 70t3 + 15t

)
,

P6 (t) =
1

16

(
231t6 − 315t4 + 105t2 − 5

)
,

P7 (t) =
1

16

(
429t7 − 693t5 + 315t3 − 35t

)
.

(A.1)
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Appendix B

Neural Network Architectures

B.1 Fully Connected Neural Network

B.1.1 Small Network

Table B.1: The network architecture of the FCNN with 13, 186 learnable parameters.

Layer Type Output Dimension Learnable Parameters

1 Input 2 0

2

Dense 32 96

Batch normalization 32 64

Activation function 32 0

3

Dense 64 2, 112

Batch normalization 64 128

Activation function 64 0

4

Dense 64 4, 160

Batch normalization 64 128

Activation function 64 0

5

Dense 64 4, 160

Batch normalization 64 128

Activation function 64 0

6

Dense 32 2, 080

Batch normalization 32 64

Activation function 32 0

7
Dense 2 66

Classification 2 0
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B.1.2 Large Network

Table B.2: The network architecture of the FCNN with 154, 562 learnable parameters.

Layer Type Output Dimension Learnable Parameters

1 Input 2 0

2

Dense 32 96

Batch normalization 32 64

Activation function 32 0

3

Dense 64 2, 112

Batch normalization 64 128

Activation function 64 0

4

Dense 128 8, 320

Batch normalization 128 256

Activation function 128 0

5

Dense 256 33, 024

Batch normalization 256 512

Activation function 256 0

6

Dense 256 65, 792

Batch normalization 256 512

Activation function 256 0

7

Dense 128 32, 896

Batch normalization 128 256

Activation function 128 0

8

Dense 64 8, 256

Batch normalization 64 128

Activation function 64 0

9

Dense 32 2, 080

Batch normalization 32 64

Activation function 32 0

10
Dense 2 66

Classification 2 0
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B.2 Convolutional Neural Network

Table B.3: The network architecture of the CNN with 13, 818 learnable parameters.

Layer Type Output Dimension Learnable Parameters

1 Input 1× 360× 120 0

2

Convolution, 7× 7 8× 360× 120 400

Batch normalization 8× 360× 120 16

Activation function 8× 360× 120 0

3

Convolution, 7× 7 16× 360× 120 6, 288

Batch normalization 16× 360× 120 32

Activation function 16× 360× 120 0

4

Convolution, 7× 7 8× 360× 120 6, 280

Batch normalization 8× 360× 120 16

Activation function 8× 360× 120 0

5
Convolution, 7× 7 2× 360× 120 786

Classification 2× 360× 120 0

B.3 UNet++

Table B.4: The network architecture of one convolutional block.

Layer Type Output Dimension Learnable Parameters

1 Input Cin ×W ×H 0

2

Convolution, 3× 3 Cout ×W ×H Cout · (Cin · 3 · 3 + 1)

Batch normalization Cout ×W ×H 2 · Cout

Activation function Cout ×W ×H 0

3

Convolution, 3× 3 Cout ×W ×H Cout · (Cout · 3 · 3 + 1)

Batch normalization Cout ×W ×H 2 · Cout

Activation function Cout ×W ×H 0

4 Dropout Cout ×W ×H 0
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Table B.5: The network architecture of the UNet++ with 5.98M learnable parameters.

Layer Type Output Dimension Learnable Parameters

Input 5× 32× 32 0

0,0
ConvBlock(Cin = 5, Cout = 64,

64× 32× 32 40, 128
W = 32, H = 32)

1,0
ConvBlock(Cin = 64, Cout = 128,

128× 16× 16 221, 952
W = 16, H = 16)

2,0
ConvBlock(Cin = 128, Cout = 256,

256× 8× 8 886, 272
W = 8, H = 8)

3,0
ConvBlock(Cin = 256, Cout = 256,

256× 4× 4 1, 181, 184
W = 4, H = 4)

0,1
ConvBlock(Cin = 192, Cout = 64,

64× 32× 32 147, 840
W = 32, H = 32)

1,1
ConvBlock(Cin = 384, Cout = 128,

128× 16× 16 590, 592
W = 16, H = 16)

2,1
ConvBlock(Cin = 512, Cout = 256,

256× 8× 8 1, 771, 008
W = 8, H = 8)

0,2
ConvBlock(Cin = 256, Cout = 64,

64× 32× 32 184, 704
W = 32, H = 32)

1,2
ConvBlock(Cin = 512, Cout = 128,

128× 16× 16 738, 048
W = 16, H = 16)

0,3
ConvBlock(Cin = 320, Cout = 64,

64× 32× 32 221, 568
W = 32, H = 32)

Convolution, 3× 3 1× 32× 32 577

Classification 1× 32× 32 0
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Appendix C

Computed Stress and Strain Fields

Figure C.1: The normalized elemental stress and strain terms computed on the initial
structure.

Figure C.2: The normalized elemental stress and strain terms computed on the structure
obtained after 10 iterations.
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