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Abstract: In this work, we adapt a Total Reuse of Krylov Subspaces for usage in a GMRES-
solver and apply it to nonlinear structural-dynamics examples. These examples are then
solved by a multirate FETI-method, the nonlinear BGC-macro method, which allows local
subcycling in time within substructures, such that local time-stepping is performed between
synchronization-time-steps. In these proposed examples, we show that the reuse-method re-
duces the total number of GMRES-iterations and shifts the eigenvalue-spectrum of the global
system towards smaller eigenvalues.

1 INTRODUCTION

Substructuring methods are widely valued for parallelizing large structural mechanics
problems and a popular non-overlapping dual domain decomposition method is the Finite
Elements Tearing and Interconnecting (FETI) method [4]. In cases of local computation-
ally expensive dynamics in a substructure, e.g. due to local damage or contact, it might
be favorable to adjust the time-step-sizes locally. For such an asynchronous or multirate
time-integration, domain-decomposition-based methods have been developed, such as the
linear subcycling-based GC-method by Gravouil and Combescure [10]. However, this method
suffers from energy-dissipation and therefore the non-dissipative linear and nonlinear PH-
methods by Prakash and Hjelmstad [15] and the linear BGC-macro [3] have been developed.
Recently a nonlinear version of the BGC-macro method has been proposed [18] and applied
to an iterative FETI-solver equipped with a Dirichlet-like preconditioner [19]. Hence, the
next natural step is to further improve solver-efficiency by applying recycling-techniques to
this new problem. In this work, we adapt a Total Reuse of Krylov Subspaces (TRKS) ap-
proach [9], successfully applied to linear and nonlinear structural dynamics in [12, 17], to a
GMRES-solver and investigate its applicability to the nonlinear BGC-macro method.

In Section 2.1, we introduce the applied multirate-method nonlinear BGC-macro and, in
Section 2.2, the TRKS and its application in a GMRES is described. Finally, we show in
Section 3 numerical examples with the described methods and conclusions in Section 4.

2 FETI for nonlinear structural dynamics

For the parallelization of a Finite Elements discretized structural dynamics problem, we
divide the structure spacially along the element’s edges in non-overlapping substructures
Ω(s). These substructures are connected with Lagrange-multipliers ~λ, that can be viewed as
interface-forces, as stated in the FETI method [4]. In Section 2.1, we give a brief introduction
to the governing equations and the multirate BGC-macro method and in Section 2.2, we
describe the application of a TRKS method to a GMRES solver.
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2.1 Multirate with nonlinear BGC-macro method
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Figure 1: Multirate time-discretization.

Throughout this work, we consider different time-step-sizes in each substructure, which
is referred to as multirate or asynchronous time-integration. As depicted in Figure 1 for two
substructures A and B, the global time-integration with time-steps n is sub-cycled with Nj

smaller time-steps with size ∆t(B) = ∆t(A)

Nj
on a micro-substructure. The global time-steps are

also referred to as macro-time-steps and the Lagrange-multipliers are interpolated linearly
onto the local micro-timesteps

~λj =

(
1− j

Nj

)
~λn−1 +

j

Nj

~λn (1)

resulting in the local differential equations of motion, written as a force-residual f ~res
(s)
j here

f ~res
(s)
j = M(s)~̈q

(s)
j + ~fint(~q

(s)
j ) + B(s)T~λj − ~f

(s)
ext(tj) = ~0 (2)

at a discrete time-step j with a mass-matrix M(s), nonlinear internal forces ~fint and external
forces ~f

(s)
ext, as well as displacements ~q(s), velocities ~̇q(s) and accelerations ~̈q(s). The Lagrange-

multipliers ~λ are applied to the local degrees of freedom (dof) by a signed Boolean matrix
B(s). The local solutions are then synchronized at the macro-time-scale, which is formulated
by requiring the interface-velocities to coincide at the macro-timestep n in the interface-
residual I ~resn

I ~resn =
Ns∑
s=1

B(s)~̇q(s)
n = ~0. (3)

This approach is known from the linear BGC-macro method [3], which has been recently
extended to nonlinear models [18]. To solve both equations (2) and (3), we choose as time-
integration scheme one of the most popular ones, namely the Newmark-β scheme [14]

a ~res
(s)
j = − 1
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with β ∈ [0, 1/4], γ ∈ [0, 1/2]. The equations have been reformulated in residual-form a ~res
(s)
j

and d ~res
(s)
j here. Analogously to the classical single-rate FETI in Farhat e.a. [6] and the

PH-method [15], all these equations are linearized for ~̈q
(s)
j , ~̇q

(s)
j , ~q

(s)
j and ~λn, resulting in
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where A(s) is invertible due to the regularizing nature of the mass-matrix. This is the so-
called interface-problem and its only unknown are the global interface-forces. In contrast to
the classical FETI-method, the interface-operator F is non-symmetric, which implies that
we have to use a Generalized Minimal Residual (GMRES) method [16] here, as a Conjugate
Gradient requires the problem to be symmetric.

2.2 TRKS for GMRES

The general idea of recycling relies on constructing an auxiliary coarse-space C similarly
to the natural or kernel coarse space in FETI for statical problems. Hence, this is usually
referred to as two-level FETI [7]. This auxiliary coarse-space can be built on FETI-search-
directions from earlier solver-runs in which case these search-directions are projected out
from the overall interface-problem, resulting in the TRKS [9]. This would lead to a reduced
solution space and the iterative solver will not have to find the full set of search-directions
every time anew. The auxiliary coarse-space adds another constraint

CTFT~rk = ~0 (4)

to the interface-problem with search-space C and constraint-space FC according to Gaul [8],
where k is the GMRES-iteration counter. Here, C contains l2-orthonormal search-directions
from previous GMRES-solver-runs. This coarse-space C is filled up until a predefined coarse-
space-size NC is reached. To fulfill constraint (4) in each iteration, we construct an auxiliary
coarse-grid projector PC . In the original TRKS for FETI, the projector was described for
symmetric systems and a Conjugate Gradient method [9]. In our case, the projector

PC = I− FC
(
CTFTFC

)−1
CTFT P̃C = I−C

(
CTFTFC

)−1
CTFTF

required some modifications for general matrices F, as it is described in [8]. The projector
P̃C is required here for correcting the deflated solution.

This projector is then incorporated into the non-preconditioned GMRES algorithm 1. So,
those search-directions, which are stored in C, are the first NC search-directions generated
in the first Newton-Raphson- and GMRES-iterations and reused in all subsequent Newton-
Raphson-iterations. From TRKS for the PCPG-algorithm it is known, that search-directions
corresponding to high convergence-inhibiting eigenmodes are usually generated in the first
iterations, which creates a suitable coarse-space [12]. A similar behavior is expected for the
GMRES algorithm.
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Algorithm 1: Two-level GMRES

∆~λ0 = ~0, ∆λ̂0 = ~0

∆~λC = C
(
CTFTFC

)−1
CTFT

(
~d− F∆~λ0

)
~r0 = ~d− F∆~λC
~w0 = PC~r0

β = ‖~z0‖
V0 = ~w0/‖~w0‖
while ‖~rk‖ > εF,abs and ‖~rk‖/‖~r0‖ > εF,rel and k ← 0 to kend do

~qk = FVk

~wk = PC~qk
for l ← 0 to k do

Hl,k = ~wT
k Vl

~wk = ~wk −Hl,kVl

Hk+1,k = ‖~wk‖, ~e1 =
[
0 . . . 0 1

]
~uk =

(
HTH

)−1
HT (β~e1)T

~vk = P̃CV~uk
~rk = ~r0 − F~vk
Vk+1 = ~wk/‖~wk‖
k ← k + 1

∆~λ = ∆~λ0 + ∆~λC + ~vk
C =

[
C V

]

∆t = 0.00002s
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(a) 10-substructure plate with the upper middle substructure ex-
hibiting a micro-time-stepsize with time-step-ratio 10. All surround-
ing substructures exhibit ∆t = 0.0002s.
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(b) Applied load over time.

Figure 2: 2D benchmark example with multirate time-integration.
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Figure 3: Displacements of converged solution at time 0.001s
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rank(F) F size F symmetry ‖FTF− FFT‖ condition number A(s) PCF symmetry
240 264 x 264 1.19 · 10−3 4.59 · 10−4 2.56 · 1019 6.83 · 10−2

‖FTPT
CPCF−PCFFTPT

C‖ condition number coarse problem
8, 51 · 10−3 7.33 · 102

Table 1: System’s average characteristic numbers for BGC-macro case with TRKS-
projection. Matrix symmetries are checked with ‖AT −A‖ for some square matrix A.

3 Numerical Experiments

Here, we provide our numerical results. Section 3.1 describes the setup of the presented
bending-plate example. In Section 3.2, we investigate the solver’s convergence behavior and
the captured eigenmodes and in Section 3.3 the influence of the micro-time-scale.

3.1 Model setup

Throughout the following experiments, we used a 2D plate under impact-load as benchmark-
example, which is depicted in Fig. 2. This example is composed of 2D rectangular substruc-
tures with Quad-4 elements and a geometrically nonlinear St. Venant-Kirchhoff material
representing an Aluminium beam (Young’s modulus E = 70 · 103N/mm2, Poisson’s ra-
tio ν = 0.34, density ρ = 2.7 · 10−6kg/mm3, thickness h = 5.0mm). The external load
is applied as a ramped up impact-like pressure applied on the middle substructure’s top
edge, as shown in Fig. 2b with fmax = 5.0 · 103N/mm, tmax = 0.001s. This model is
created in our in-house Open-Source Python-Fortran FE-code AMfe [1] and solved with
our Python FETI-library AMfeti [2]. The solvers were set up with absolute tolerances
εN,abs = 1.0 · 10−6 and εF,abs = 1.0 · 10−7 and relative tolerances εN,rel = 1.0 · 10−10

and εF,rel = 1.0 · 10−10, such that the Newton-solver is considered converged if either

max(‖~r(s)
i ‖) < εN,abs or max(‖~r(s)

i ‖)/max(‖~r(s)
0 ‖) < εN,rel and the GMRES is converged

if ‖~rk‖ < εF,abs or ‖~rk‖/‖~r0‖ < εF,rel. The resulting displacements of the solution at time
0.001s are shown in Figure 3. There are some small incompatibilities visible on the interfaces
between the micro- and macro-substructures, resulting from intermediate oscillations in the
velocities [18, 15].

3.2 Convergence behavior and capturing eigenmodes

In singlerate dynamics, the PCPG solver’s convergence behavior is bounded by the condition-
number of the projected preconditioned interface-operator [12, 9]. A GMRES-solver’s con-
vergence behavior is only determined by this condition-number in case of normal matrices
and not necessarily for nonnormal matrices, as pointed out by Greenbaum e.a. [11]. As
shown in Table 1, the F-operator is indeed a non-normal matrix, which is checked by eval-
uating ‖FTF − FFT‖: if this norm is close to 0, F is considered normal. This also applies
for the deflated case with ‖FTPT

CPCF − PCFFTPT
C‖. However, one can still formulate an

upper bound for the residuals by the condition-number of the eigenvector-matrix of PCF,
as proposed by Gaul [8]. In Figure 4, the eigenvalue-spectra for the BGC-macro case and
for the single-rate case (macro-time-step in all substructures) are shown. Note that zero-
eigenvalues have been removed in these plots and the eigenvalues are sorted in ascending
order. Two aspects arise from these spectra: the eigenspectrum is very similar for both, the
BGC-macro and the single-rate case. This implies, that the convergence-behavior is not as
much governed by the micro-time-step, but by the macro-time-step. And the other aspect
concerns differences in the captured eigenmodes associated to the removed eigenvalues by
TRKS. In both cases, the coarse-space-size is limited to 50 and while in the single-rate case
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Figure 4: Eigenvalue-spectrum of the eigenvector-matrix of PCF for multirate and singlerate
cases in macro-timestep 1 and Newton-iteration 2.

some high eigenvalues are kept, they are removed in the BGC-macro case. Krylov solvers
capture high eigenmodes first, which lets the TRKS gather these high convergence inhibiting
modes early [12]. Hence, a reason for this different behavior might be the initial number of
FETI-iterations, as depicted in Figure 5. While in the single-rate case the GMRES-solver
requires only 31 iterations in the first timestep and Newton-iteration, 55 are required to
solve the interface-problem in the BGC-macro case. This difference with respect to the sim-
ilar eigenvalue-spectra again emphasizes the fact that the condition number alone does not
define the convergence behavior, but it provides a good estimate and describes the behavior
of deflation well. That also means that only 31 search-directions are available for the coarse-
space and, besides the large eigenvalues, smaller ones are captured in the singlerate-case
earlier as well and therefore the coarse-space is enriched with less effective modes. During
the subsequent Newton-iterations and time-steps the coarse-space is further filled up. In the
BGC-macro case, the coarse-space is completely filled up in the first Newton-iteration. This
also improves the relative reduction in the first Newton-iterations compared to the singler-
ate case. We have to point out, that the GMRES-solver didn’t reach convergence in some
nondeflated BGC-macro cases, though. However, that is likely a numerical issue related to
the bad local conditioning, as the residuals stagnated at a low level, as depicted in Figure 6.
Here, deflation also improved this stability.

3.3 Influence of the micro-time-scale

Finally, we further reduce the micro-time-step-size to 0.00001s, resulting in a time-step-
ratio of 20. The resulting eigenvalue-spectrum and required FETI-iterations are depicted
in Figure 7a and Figure 7b. The eigenvalue spectrum remains very similar to the one with
a coarse micro-time-scale in Figure 4a. Hence, the micro-time-scale has limited influence
on capturizing the high eigenvalues. The required iterations are slightly reduced, but show
similar convergence behavior as in Figure 5a apart from better stability in the nondeflated
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Figure 5: FETI iterations required to reach convergence for consecutive macro-timesteps
and Newton-iterations (see labels time-step|Newton-iteration).

case.

4 CONCLUSIONS

The TRKS has been successfully applied to a GMRES-method for our multirate nonlinear
BGC-macro FETI-solver. In our examples, the total recycling approach selects the high con-
vergence inhibiting eigenmodes and therefore improves convergence. Of course, this does not
affect the FETI-solver in the first Newton-iteration in the first time-step, as the eigenmodes
are to be gathered in this step. With this reducing behavior of the recycling technique and
the characteristic deflation of the eigenvalue-spectrum, we can say that recycling is also well
applicable to a GMRES-solver and the nonlinear BGC-macro method. Moreover, we found,
that the choice of local time-step-sizes hardly affects the performance of the global iterative
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(b) FETI iterations required to reach conver-
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size 0.00001s.

Figure 7: Eigenvalue-spectrum of the eigenvector-matrix of PCF and required iterations for
multirate case with finer micro-time-scale.

GMRES-solver. The global Newton- and GMRES-solvers’ performances are more governed
by the synchronisation- or macro-timestep-size. We are currently working on the application
of more selective recycling approaches for multirate methods and the application of pre-
conditioning. Our results in this work also imply, that due to the little interface-problem’s
dependency of the micro time-steps, reusing search-directions from the singlerate case might
be beneficial for a time-adaptive approach and will be investigated further in the future.
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