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A B S T R A C T

This article proposes a novel high-performance computing approach for the prediction of the temperature field
in powder bed fusion (PBF) additive manufacturing (AM) processes. In contrast to many existing approaches
to part-scale simulations, the underlying computational model consistently resolves physical scan tracks
without additional heat source scaling, agglomeration strategies or any other heuristic modeling assumptions.
A growing, adaptively refined mesh accurately captures all details of the laser beam motion. Critically,
the fine spatial resolution required for resolved scan tracks in combination with the high scan velocities
underlying these processes mandates the use of comparatively small time steps to resolve the underlying
physics. Explicit time integration schemes are well-suited for this setting, while unconditionally stable implicit
time integration schemes are employed for the interlayer cool down phase governed by significantly larger
time scales. These two schemes are combined and implemented in an efficient fast operator evaluation
framework providing significant performance gains and optimization opportunities. The capabilities of the
novel framework are demonstrated through realistic AM examples on the centimeter scale including the first
scan-resolved simulation of the entire NIST AM Benchmark cantilever specimen, with a computation time of
less than one day. Apart from physical insights gained through these simulation examples, also numerical
aspects are thoroughly studied on basis of weak and strong parallel scaling tests. As potential applications,
the proposed thermal PBF simulation approach can serve as a basis for microstructure and thermo-mechanical
predictions on the part-scale, but also to assess the influence of scan pattern and part geometry on melt pool
shape and temperature, which are important indicators for well-known process instabilities.
1. Introduction

Metal additive manufacturing (AM) offers a variety of advantages
over conventional manufacturing techniques [1,2]. This contribution
focuses on powder bed fusion AM (PBFAM) where the desired part
geometry is molten into a powder bed by means of a laser (or elec-
tron) beam. However, the approach presented in this article is also
transferable to other processes such as directed energy deposition
(DED).

One of the most commonly cited advantages of AM is the ability to
produce complex geometries in a near net shape manner. As exciting
as this promise may be for the industry as a whole, it also poses new
challenges for part design: due to the high geometrical complexity a
part may not be manufacturable with the desired quality or adequate
process parameters are hard to find. Various defects such as porosity,
dimensional warping and delamination are known in the literature [3],
and it remains difficult to predict where and when any of these will
appear during the build process of a given part.
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Instead of experimentally tuning the process parameters or part
geometry, predictive simulation tries to offer an alternative. The dif-
ferent kinds of modeling approaches for PBFAM can be characterized
by the length scales they operate on [4,5]. Mesoscale models are used
to analyze the melt pool on length scales from a few powder particles
up to one laser scan track [6–13]. They can also be used to study the
powder recoating process [14–17]. Microscale models are concerned
with the formation of anisotropic metallurgical microstructures during
solidification [18–23]. In this contribution, we investigate the problem
on the macroscale. Since practically relevant geometries are complex,
in general, the build process of whole parts needs to be simulated in
order to answer questions about the build quality. For this, the term
part-scale simulation or model is often used in the literature. Virtually
all existing part-scale models employ the finite element method (FEM)
due to its excellent suitability for thermo(-mechanical) simulations. In
this work, we develop an efficient simulation approach for part-scale
simulations of the thermal problem.
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Fig. 1. The different phases of the PBFAM build process come with different requirements for the time step size.
The fundamental computational challenge in part-scale simulation
lies not so much in the spatial approximation. Although millions of
unknowns are necessary to resolve the geometry, state-of-the-art codes
and libraries are well-suited to handle this task with mesh adaptivity
and parallel processing. Rather, the challenge lies in the temporal
domain. Taking the recent ‘‘AM Bench 2022’’ [24] build setup as an
example, one finds that in order to simulate one of its cantilever
specimens with a total scan track of approximately 853 m a total of
around 44 million time steps (of step size 20 μs) are necessary. Put
differently, to obtain a solution to this problem within 10 days, one
time step may not take longer than 20 ms of wall time. Most classical
implementations of FEM models of PBFAM [25–27], including some
of the authors’ work [28,29], are suitable for the simulation of a few
tracks or layers but do not achieve the level of performance necessary
for part-scale simulations. Instead, existing part-scale models use one
or more of the following techniques.

A straight-forward approach to part-scale simulations uses a layer-
based approach, where whole layers (or parts thereof) are heated at
once and the scanning pattern is neglected [30–33]. To speed up the
simulation further, multiple physical powder layers can be lumped into
larger process layers [34,35]. Typically, these agglomerated models are
calibrated with experimental data or resolved single-track or single-
layer simulations. Despite the strong simplifications, these models are
able to predict, e.g., thermal hot spots or dimensional warping —
but only when calibrated correctly, which can act as a bottleneck or
limitation of such approaches.

In contrast to the literature cited so far, the aim of this contri-
bution is an efficient implementation of PBFAM process simulation
with resolved scan tracks on hundreds of realistically-sized layers. One
prerequisite to enable efficient simulations on that scale is adaptive
mesh refinement (AMR). This technique has been employed in various
contributions and in different forms [36–40]. Generally speaking, in
AM applications AMR means that the mesh is not static but adapted
dynamically over the course of the simulation to be as fine as necessary
in the vicinity of the heat source and coarse in regions further away. In
addition, the geometry needs to grow to represent the layer deposition
in the manufacturing process [41]. Building on top of the deal.II
library [42], its parallel data structures [43,44], and the p4est [45]
library, we develop our own methodology for AMR and growing do-
mains in the targeted PBFAM application. Our approach is to some
extent inspired by a similar strategy, also based on parallel distributed
octree meshes, previously presented in [39]. While not discussed here,
the presented method complements the dual-mortar approach shown
in [29], which is still relevant for meshing complex geometries.

A rarely discussed aspect of efficiency in PBFAM simulations is
the choice of time discretization scheme. The PBFAM process can
be split into a highly dynamic, active laser phase and a subsequent
interlayer cool down phase governed by significantly larger time scales,
see Fig. 1. Traditionally, the heat equation is discretized with an
2

unconditionally stable, implicit scheme such as the backward Euler
method or generalized trapezoidal scheme. In many applications an
implicit scheme seems appropriate as it enables large time steps. This
is the case in our application for the cool down phase. Explicit schemes
have considerably cheaper evaluation costs per time step and offer
better parallel scalability since they can circumvent the assembly of
global matrices and the solution of (non)linear systems. However, they
are restricted to smaller time steps by a stability limit. It turns out
that in the specific scenario of the active laser phase of a scan-resolved
PBFAM simulation, the stability limit is not restrictive compared to the
time step limitation mandated by the moving heat source. Importantly,
the time step limitation due to the moving heat source is required for
accuracy and not stability: it holds for explicit and implicit schemes,
and thus can be considered an inherent characteristic of the physical
problem when modeled in a scan-resolved manner. This consideration
has also been stated independently of the authors in the very recent
contribution [46]. Explicit time stepping has been used for the sim-
ulation of PBFAM in [47], directed energy deposition in [48] and
wire arc AM in [49]. In this work, we employ an explicit scheme
for the active laser phase and an implicit scheme for the cool down
phase. Potential future extensions include a local time stepping scheme
or multi-rate time integration [50,51] and techniques for temporal
decoupling [47,52].

For the active laser phase, the evaluation time of FEM integrals
becomes the main focus of performance engineering, since a linear
system solve can be avoided by using explicit schemes. Some recent
contributions in the AM community use GPUs to accelerate the evalu-
ation [40,48,49]. In [40] the authors presented a matrix-free implicit
solver for scan-resolved PBFAM simulations.

In this contribution, we will focus on an implementation for CPUs.
Notable other CPU-based implementations of PBFAM models that

investigate computational performance make use of AMR and load
balancing [39]. In addition to AMR, different techniques to scale up
the heat source either by elongating it [53], layer-averaging [54] or
layer-agglomeration [37] are applied in the literature. The present con-
tribution does not use such techniques to stay as close to the physical
process as feasible but the methods presented are general enough to
incorporate any of these in the future.

To the best of our knowledge, our implementation, facilitated by
the deal.II library and fast application of FEM operators [55,56],
outperforms competing implementations for the thermal PBFAM prob-
lem in terms of time to solution. The performance is a result of the
parallel distributed, high-performance implementation of a single time
step. The implementation integrates modern hardware features such as
vectorized CPU instructions and tries to alleviate the memory-bound
nature (i.e., overall performance is mainly limited by the memory band-
width rather than the necessary CPU cycles) by the efficient utilization
of caches. Another reason for considering CPU-based implementations
in this work is that strong scaling is highly relevant for the present



Additive Manufacturing 79 (2024) 103921S.D. Proell et al.

t

𝜌

w
h
t
H
i
s
𝑘
l

𝑔

application, where CPU-based systems with appropriate tuning often
have an edge over GPU systems [57].

The capabilities of the proposed approach are demonstrated on the
basis of some challenging examples, the first one being a bridge geom-
etry. Various performance studies show the scalability of the approach
on large distributed machines. Finally, and, to the best of the authors’
knowledge, for the first time, we present a full scan-resolved simulation
of all 312 layers of the NIST AM Bench 2022 cantilever specimen [24].
The proposed thermal PBF simulation approach already allows to assess
the influence of scan pattern and part geometry on melt pool shape,
overheated zones, zones with residual porosity, which are important
indicators for process instabilities. Furthermore, it can serve as a future
basis for a thermo-mechanical model to predict thermal distortion and
residual stresses or the microstructure in terms of homogenized phase
fractions [20] on the scale of real parts.

The remainder of this article is structured as follows: first, we
present the mathematical model of the physical process and subse-
quently derive the spatially and temporally discrete numerical model
from it. Next, we discuss aspects of the high-performance implemen-
tation with a focus on mesh adaptivity and fast operator evaluation.
We present two exemplary numerical simulations of PBFAM on repre-
sentative geometries and study the performance of the proposed model
before we conclude with a short summary and an outlook on future
research.

2. Mathematical model

The present model seeks the solution for the temperature field 𝑇 in
he domain 𝛺, which is governed by the heat equation:

𝑐 𝜕𝑇
𝜕𝑡

= −∇ ⋅ 𝒒 + 𝑞vol, 𝒒 = −𝑘(𝑇 )∇𝑇 in 𝛺, (1)

ith the following parameters: 𝜌 is the density and 𝑐 is the specific
eat capacity of the material. The heat capacity could be used to model
he effects of latent heat through an apparent capacity model [28].
owever, the contribution of latent heat to the overall energy balance

s rather small and often neglected in the literature on part-scale AM
imulations. For the modeling of a phase-dependent heat conductivity
we briefly summarize the approach from our previous work [28]. The

iquid fraction 𝑔(𝑇 ) is defined as

(𝑇 ) =

⎧

⎪

⎨

⎪

⎩

0, 𝑇 < 𝑇𝑠,
𝑇−𝑇𝑠
𝑇𝑙−𝑇𝑠

, 𝑇𝑠 ≤ 𝑇 ≤ 𝑇𝑙
1, 𝑇 > 𝑇𝑙 ,

(2)

where 𝑇𝑠 and 𝑇𝑙 are the solidus and liquidus temperature. The time-
dependent consolidated fraction

𝑟𝑐 (𝑡) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑟𝑐 (0) = 1 (i.e. initially consolidated)
max
𝑡<𝑡

𝑔(𝑇 (𝑡)), if 𝑟𝑐 (0) = 0 (i.e. initially powder) . (3)

captures the irreversible powder-to-melt phase transition and allows to
set the initial material state. From (2) and (3), the actual fractions of
powder (𝑝), melt (𝑚) and solid (𝑠) material are computed as

𝑟𝑝(𝑟𝑐 ) = 1 − 𝑟𝑐 , 𝑟𝑚(𝑇 ) = 𝑔(𝑇 ), 𝑟𝑠(𝑇 , 𝑟𝑐 ) = 𝑟𝑐 − 𝑔(𝑇 ), (4)

and finally, the temperature- and history-dependent heat conductivity
𝑘(𝑇 , 𝑟𝑐 ) is found:

𝑘(𝑇 , 𝑟𝑐 ) = 𝑟𝑝(𝑟𝑐 )𝑘𝑝 + 𝑟𝑚(𝑇 )𝑘𝑚 + 𝑟𝑠(𝑇 , 𝑟𝑐 )𝑘𝑠, (5)

where 𝑘𝑝, 𝑘𝑠 and 𝑘𝑚 are the single phase parameters. Within each state
of the material, all material parameters are fixed, i.e., the single phase
problems are linear. This choice is made for the sake of simplicity since
the focus of this work lies on a HPC implementation of the model rather
than on calibration of material data although the implementation pre-
sented in this work also supports temperature-dependent parameters.
3

Note that the history variable 𝑟𝑐 necessitates a proper handling of
history data when using mesh adaptivity, e.g., a consistent interpolation
of tensor-valued history data [58].

The volumetric heat source 𝑞vol models the incident energy from
a laser (or electron) beam. In this work, it is given by the following
cylindrical model:

𝑞vol =

⎧

⎪

⎨

⎪

⎩

2𝑊eff
𝜋𝑅2ℎpowder

exp
(

−2(𝑥̂2+𝑦̂2)
𝑅2

)

, if 0 < 𝑧̂ < −ℎpowder

0, otherwise,
(6)

which is formulated in a local coordinate system (𝑥̂, 𝑦̂, 𝑧̂) moving along
the scan track. The shape in the 𝑥𝑦-plane is described by a normal
distribution with mean (𝑥̂, 𝑦̂) = (0, 0) and standard deviation 𝜎 =
𝑅∕2. Thus, 𝑅 can be interpreted as an effective beam radius of the
incident energy beam. Furthermore, 𝑊eff is the effective power, which
is reduced compared to the nominal power due to various losses and
the material’s absorptivity, and ℎpowder is the powder layer thickness.
The chosen heat source (6) is deliberately kept simple. Other often
employed models such as a Gusarov [59] or Goldak [60] heat source
could be easily used instead. In the authors’ experience the exact choice
does not notably influence the simulation results on the part-scale.

The heat equation (1) is completed by the following initial and
boundary conditions:

𝑇 = 𝑇0 in 𝛺 for 𝑡 = 0, (7)

𝑇 = 𝑇∞ on 𝛤𝐷, (8)

𝒒 ⋅ 𝒏 = 0 on 𝛤𝑁 , (9)

𝒒 ⋅ 𝒏 = 𝑞rad + 𝑞evap on 𝛤𝑅𝐸 , (10)

𝑞rad = 𝜖𝜎𝑆 (𝑇 4 − 𝑇 4
∞), (11)

𝑞evap = 0.82𝐶𝑃 exp
[

−𝐶𝑇

(

1
[𝑇 ]

− 1
𝑇𝑣

)]

√

𝐶𝑀
[𝑇 ]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
evaporation mass flux 𝑚̇

× (ℎ𝑣 + 𝑐([𝑇 ] − 𝑇ℎ,0)), if [𝑇 ] > 𝑇𝑣. (12)

Initially, the whole domain is set to a fixed temperature 𝑇0 as stated
in (7). This is also true for parts of the domain which only become
activated at a later stage. The temperature is kept fixed at the ambient
temperature 𝑇∞ on the Dirichlet part of the boundary 𝛤𝐷 at the bottom
of the baseplate (8). Both a radiation and evaporation condition (10)
are applied on the free surface 𝛤𝑅𝐸 at the top of the built part. Inclusion
of a convection boundary condition would be straight-forward but not
done in this work as the influence is considered small as compared
to radiation and evaporation. The remaining part of the boundary 𝛤𝑁
is modeled as thermally insulating (9). These conditions include the
following constants and parameters: For the radiation term (11), 𝜖 is the
emissivity and 𝜎𝑆 the Stefan–Boltzmann constant. For the evaporation
condition based on [10,61], 𝐶𝑃 = 0.54𝑝𝑎 is a factor with the dimension
of pressure computed from the atmospheric pressure 𝑝𝑎 and 𝐶𝑇 ≈ ℎ̄𝑣∕𝑅
a factor with the dimension of temperature computed from the molar
latent heat of evaporation ℎ̄𝑣 and the molar gas constant 𝑅. Moreover,
𝑇𝑣 is the boiling temperature, ℎ𝑣 the specific latent heat of evaporation
and 𝑇ℎ,0 is a reference temperature for the enthalpy calculation. The
constant 𝐶𝑀 = 𝑀∕(2𝜋𝑅) is computed from the molar mass 𝑀 and the
molar gas constant 𝑅. Overall this leads to an expression for the heat
flux 𝑞evap from evaporation that consists of an evaporative mass flux 𝑚̇
multiplied by a specific enthalpy. To avoid numerical issues with the
strong nonlinearity in the evaporation term (12), the temperature [𝑇 ]
used for its evaluation is limited to a maximum value 𝑇max > 𝑇𝑣 by
setting [𝑇 ] = min(𝑇 , 𝑇max). In this work, we choose 𝑇max = 𝑇𝑣 + 1000K.
This choice does not influence the overall results and leads to a robust

numerical scheme.
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3. Numerical discretization and solution schemes

3.1. Weak form and spatial discretization

In order to solve the heat equation (1) numerically we employ a
finite element (FE) discretization for the spatial dimension. First, the
heat equation is multiplied with a test function 𝑣 and the diffusive term
is integrated by parts, yielding
(

𝑣, 𝜌𝑐 𝜕𝑇
𝜕𝑡

)

𝛺
= (∇𝑣, 𝒒)𝛺 − (𝑣, 𝒒 ⋅ 𝒏)𝛤𝑅𝐸 +

(

𝑣, 𝑞vol
)

𝛺 , (13)

where (𝑎, 𝑏)□ ∶= ∫□ 𝑎𝑏. The weak form (13) is equivalent to the strong
form (1) if the test function is chosen from the weighting space  =
{𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣 = 0 on 𝛤𝐷} and the solution function is chosen from
the trial space  = {𝑇 ∈ 𝐻1(𝛺) ∶ 𝑇 = 𝑇∞ on 𝛤𝐷}, where 𝐻1(𝛺)
is the Sobolev space containing functions with square-integrable first
derivatives. The solution and test functions are discretized in space
based on a (continuous) Bubnov–Galerkin ansatz:

𝑇ℎ(𝒙, 𝑡) =
∑

𝜑𝑗 (𝒙)𝑇𝑗 (𝑡), 𝑣ℎ(𝒙, 𝑡) =
∑

𝜑𝑗 (𝒙)𝑣𝑗 (𝑡), (14)

where 𝒙 is the spatial coordinate, 𝜑𝑗 (𝒙) are the space-dependent shape
functions used for solution and test functions. The discrete degrees of
freedom (DoFs) 𝑇𝑗 (𝑡) and 𝑣𝑗 (𝑡) only depend on time. In this work, we
exclusively use first-order Lagrange polynomials but the implementa-
tion supports higher order functions as well. After inserting the spatial
discretization (14) into the weak form (13) we obtain the following
semi-discrete problem:

𝑪𝑻̇ = 𝒇 (𝑻 ) = 𝒇diff(𝑻 ) + 𝒇RE(𝑻 ) + 𝒇 vol, (15)

where 𝑪 is a capacity matrix, 𝑻 and 𝑻̇ are the global vectors of nodal
temperatures and their time derivatives and 𝒇 (𝑻 ) is composed of the
nonlinear diffusive term 𝒇diff(𝑻 ) as well as the boundary term 𝒇RE(𝑻 )
and source term 𝒇 vol. These terms are given in the same order as their
equivalent weak form contributions in (13).

3.2. Time integration and solution procedure

In this contribution, an implicit and an explicit time integration
scheme are combined. When a layer is scanned, the explicit time
integration scheme is used, while the interlayer cool down phase is
simulated with the implicit time integration scheme. Since the scanning
phase requires most of the computational time, we mainly tune the
performance of the explicit scheme, as discussed in the next section.

Explicit scheme. For the active laser phase we apply the forward Euler
scheme to (15):

𝑻 𝑛+1 = 𝑻 𝑛 + 𝛥𝑡𝑪̃−1𝒇 (𝑻 𝑛), (16)

where the consistent capacity matrix 𝑪 is replaced with a lumped,
diagonal variant [62],

𝐶̃𝑖𝑖 =
∑

𝑗
𝐶𝑖𝑗 , (17)

which is trivially invertible. In the implementation, the diagonal matrix
can be precomputed and stored as a vector such that its application
becomes a simple scaling operation. The computationally most chal-
lenging task in (16) is the efficient evaluation of 𝒇 (𝑻 𝑛). Note that any
other explicit time stepping scheme could be used as well. We found
the explicit Euler scheme to provide sufficient accuracy for the small
time steps sizes (demanded by the moving heat source).

Explicit time integration schemes are not unconditionally stable. In
order to find the largest stable time step for the explicit Euler scheme,
we replace the nonlinear function in (16) with a linearized version
which only considers the critical diffusive term 𝒇diff ≈ 𝑲diff𝑻 :

𝑻 𝑛+1 ≈ 𝑻 𝑛 + 𝛥𝑡𝑪̃−1𝑲diff𝑻 𝑛 =
(

𝑰 + 𝛥𝑡𝑪̃−1𝑲diff

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑻 𝑛 = 𝑨𝑛𝑻 0, (18)
4

=∶𝑨
where 𝑰 is the identity matrix. The approximation performed in (18)
only neglects the nonlinearity in the heat conductivity which is limited
to the small phase change interval [𝑇𝑠, 𝑇𝑙]. Since the matrix 𝑨 is
repeatedly applied to the temperature vector, its spectral radius must
be 𝜌(𝑨) ≤ 1, i.e., its largest absolute eigenvalue needs to be smaller
than 1. After some rearrangement one finds for the critical time step:

𝛥𝑡 ≤ 2

𝜌
(

𝑪̃−1𝑲diff

) . (19)

A more detailed discussion of stability limits in the context of explicit
time integration for PBFAM problems can be found in [46]. In addition
to (19), the admissible time step size is also limited by the velocity
𝑣scan of the moving heat source: we do not want the heat source to
ravel further than the radius 𝑅 of the laser beam in one time step and

therefore require:

𝛥𝑡 ≤ 𝑅
𝑣scan

. (20)

t is crucial to realize that (20) is required to achieve a continuous melt
rack in a scan-resolved simulation. Thus, this restriction also holds for
n implicit scheme which might allow much larger time steps from a
ure stability perspective. With our choice of heat source model (6),
f one were to use a larger time step than (20) allows, the melt track
ould break up into disjoint segments. Note that this restriction could
e weakened by the use of elongated line heat sources of equivalent
nergy [63,64] but since such an approach requires calibration, we do
ot follow it here. Together (19) and (20) form a combined criterion
or the maximum time step size:

𝑡 ≤ min

⎧

⎪

⎨

⎪

⎩

𝑅
𝑣scan

, 2

𝜌
(

𝑪̃−1𝑲diff

)

⎫

⎪

⎬

⎪

⎭

. (21)

stimation of the spectral radius is rather expensive; consequently, the
tability criterion should only be evaluated in the setup phase of a simu-
ation. In the numerical examples we found it sufficient to only evaluate
21) once for the critical values in a given set of parameters since the
haracteristics involved in the criterion do not change over layers. For
he parameters used in the numerical examples, we found the accuracy
riterion (20) (which is independent of the time integration scheme)
o be around 5–10 times smaller than the stability criterion for the
xplicit scheme (19). Evaluation of an explicit time step will be faster
han the (iterative) solution of a linear system arising from an implicit
cheme. Therefore, we conclude that an explicit scheme is superior for
he simulation of the active laser phase.

mplicit scheme. The following implicit scheme can be applied to (15):

∶= 1
𝛥𝑡

𝑪(𝑻 𝑛+1 − 𝑻 𝑛) − 𝒇diff(𝑻 𝑛+1) − 𝒇RE(𝑻 𝑛) − 𝒇 vol = 𝟎. (22)

ote that the radiation and evaporation boundary terms are evaluated
or the previous time step. Since the implicit scheme is only used for
he interlayer cool down phase (which does not exhibit high temper-
ture gradients and rates compared to the active laser phase), this
hoice has no influence on the robustness and accuracy of the solution
s verified by our investigations. To solve the nonlinear system of
quations in residual form (22) for the unknown temperatures 𝑻 𝑛+1 a
ewton–Raphson scheme is used:

(

1
𝛥𝑡

𝑪 −
𝜕𝒇diff
𝜕𝑻 𝑛+1

(𝑻 𝑖
𝑛+1)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑱 𝑖
𝒓,𝑛

𝛥𝑻 𝑖+1
𝑛+1

= −
( 1
𝛥𝑡

𝑪(𝑻 𝑛+1 − 𝑻 𝑛) − 𝒇diff(𝑻 𝑛+1) − 𝒇RE(𝑻 𝑛) − 𝒇 vol

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒓𝑖𝑛

, (23)

𝑻 𝑖+1
𝑛+1 = 𝑻 𝑖

𝑛+1 + 𝛥𝑻 𝑖+1
𝑛+1, (24)
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Fig. 2. Adaptive mesh refinement concept applied in AM context. The proposed framework can work with (a) boundary-fitted meshes and (b) build chamber meshes.
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where 𝑱 𝑖
𝒓,𝑛 = 𝜕𝒓

𝜕𝑻 𝑛+1
(𝑻 𝑖

𝑛+1) is the Jacobian of the residual evaluated at
the current temperature iterate 𝑻 𝑖

𝑛+1. This iterative scheme (23)–(24)
s applied until convergence of the residual (22) is achieved up to a
rescribed tolerance. In this contribution, we use the implicit scheme
ith matrix-free evaluation in combination with an infrequently up-
ated preconditioner (incomplete LU-factorization) for the linear solver
nly to solve the large time steps in the interlayer cool down phase.
hile technically, this scheme could be used to obtain a stable result

or large time step sizes during the active laser phase, this is not done
n this work for the accuracy reasons stated in (20). In Appendix A,
e demonstrate temporal convergence and robustness of the combined

ime integration scheme.

. High-performance implementation

The numerical model summarized in the previous section is imple-
ented in an in-house research code based on the deal.II finite

element library [42]. General-purpose functionality developed in the
context of this work has been contributed to the main deal.II
repository. In this section, we discuss implementation details. Note, that
in this section the term process refers to either an evaluation process
(the act of computing a result, an algorithm) or a computer process
(a program instance executed by the CPU). It does not refer to the
simulated AM process.

4.1. Mesh adaptivity and layer activation

Adaptive meshes can enable large savings in CPU time and memory
usage and ultimately speed up the solution time considerably. For the
present AM application, we can predict a priori when and where a fine
mesh is needed without the need for an a posteriori error estimator.
Therefore, we suggest the following procedure for mesh adaptivity and
activation of new layers as illustrated in Fig. 2.

The complete part geometry is created in the beginning and meshed
with a coarse mesh consisting of hexahedral cells of uniform edge
length. In the current implementation, the edge length ℎcoarse of the
coarse mesh should be related to the desired powder layer height
ℎpowder via

ℎcoarse = 2𝑛refine ⋅ ℎpowder, (25)

such that 𝑛refine is the number of necessary isotropic refinements (by
subdivision) of a coarse cell to obtain cells of the same height as
the powder layer ℎpowder. This procedure allows for a straight-forward
application of new powder layers as the boundaries of the powder
layer always coincide with cell boundaries. The coarse mesh size ℎcoarse
(or, equivalently, the number of refinements 𝑛refine) should be chosen
as large as possible to realize the largest computational savings. This
approach works well for the geometries investigated so far and allows
for a simple transfer of data across matching mesh hierarchies. Should
5

more complex meshes be necessary, one could relax the constraint
(25) and use more general transfer operations (e.g., based on mor-
tar meshtying schemes) between potentially non-matching meshes as
demonstrated in our previous work [29].

For mesh generation, one option is a coarse mesh which directly
represents the final part geometry as a boundary-fitted voxel mesh. In
this case, no surrounding powder is modeled, i.e., the boundaries of the
coarse mesh are the boundaries of the part, see Fig. 2(a). This approach
is justified by the very low thermal conductivity of the powder, which
can be approximated by a thermally isolating boundary condition.
Alternatively, the coarse mesh can represent a powder-filled build
chamber and the boundaries of the coarse mesh can be interpreted
as the boundaries of the build chamber. In this case, the final part
geometry is defined implicitly from the consolidation status of every
material point, see Fig. 2(b). Both geometry descriptions are possible
within our framework and they both have specific advantages: the
boundary-fitted coarse mesh allows to coarsen most cells that are far
away from the currently scanned layer but generation of such a coarse
mesh that still represents the part shape accurately can be cumbersome.
On the other hand, the non-fitted build chamber mesh is trivial to
generate as the domain will be a cuboid. However, there is a certain
overhead in areas that are meshed, although they are not necessary
for the representation of the final part shape and, in addition, cells
close to the implicit part boundary need to stay refined throughout
the simulation to capture the final part shape. We present examples
utilizing both meshing approaches. Note that the approximation of the
part geometry can also be realized via other methods, e.g., the finite
cell method [30] or CutFEM [65,66].

Whenever a new powder layer is added, refinement, coarsening and
activation of cells takes place according to the following rules: cells are
refined such that the currently scanned, top-most layer is represented
with a desired number of cells over the layer height. Note that all cells
in the current layer are refined upon activation, regardless of when
or if the laser reaches them. This avoids the computational effort for
frequent remeshing within a layer at the cost of slightly more DoFs.
Cells in the heat affected zone (HAZ) – a few layers below the current
layer – also stay refined. Cells which have a distance greater than 𝑑HAZ
(which we choose as 𝑑HAZ = 4ℎpowder) from the current layer may
e coarsened with the following restriction: for any set of eight cells,
hich are octants of a previously subdivided parent cell, coarsening
nly takes place if the material history state – the consolidation state
𝑐 defined in (3) – across this set lies above a threshold of 𝑟coarsen = 0.9.
his restriction ensures that potential porosity defects are not smoothed
ut over neighboring cells of full density and that the part boundaries
tay refined up to the necessary level when using a build chamber mesh.
t should be mentioned that the employed p4est library enforces a 2:1
alance between refinement levels of neighboring cells, i.e. for any two
eighboring cells the refinement level may differ by at most one.

To save computational resources, all cells that lie above the cur-
ently active layer are inactive and coarsened as much as possible.
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No DoFs are assigned to them and they need not be evaluated; thus,
hey implicitly represent void. When discussing the parallel distribution
f the cells, two aspects should be distinguished: first, how many
rocesses should be used in total, and second, how to distribute the cells
mong the processes. In this work, the maximum number of unknowns
etermines the allocated number of processes. No dynamic resource
llocation takes place in the current implementation and the same
umber of processes is used throughout the entire simulation. Due
o the growing geometry, it seems reasonable to allocate more and
ore processes as the simulation progresses. However, such a dynamic

esource allocation scheme is expected to save resources but not neces-
arily speed up the overall simulation, since we are not typically limited
y the spatially distributed scale of the problem but rather by the
emporal scale. In practical AM simulation setups, the number of CPUs
ill be increased until the scaling limit is reached, i.e., until no further

peedup can be achieved due to an increasing communication overhead
nd the parallel efficiency drops below an acceptable threshold. Next,
egarding the distribution of cells among all processes, the inactive
ells are not weighted differently compared to active cells. Instead, all
arallel processes receive roughly the same number of cells regardless
f the computational effort within the cell. This implies that for large
rocess counts some processes will not have any work in the initial
ayers. A first attempt at a weighted redistribution of the active cells,
hat tries to utilize more processes for actual work, did not result in

noticeable speedup, possibly due to non-negligible communication
atency for such configurations introduced by the specific Z-curve
rdering of cells [45]. Thus, detailed investigations of these aspects are
eft for future work. The interested reader is referred to [39], where the
erformance of a similar AMR strategy was also rather insensitive to a
eighted partitioning.

In the context of AM problems, the new deal.II class Field-
Transfer was developed which allows to transfer global state vectors
between meshes after coarsening and refinement in the presence of
inactive cells (that do not have any DoFs). This class was initially
developed by the authors of [67] and improved by us; it is thus
applicable to various types of growing domain problems encountered
when modeling different AM processes.

4.2. Fast operator evaluation

In the discrete problem statement in (16) and (23) we need to evalu-
ate volume and boundary face integrals. Their efficient implementation
uses the same techniques and, for the sake of brevity, we demonstrate
the fast operator evaluation on the diffusive term in (13), which is
a crucial term both in the explicit and implicit formulation of our
problem. This global integral over the heat flux 𝒒 can be transformed
into a sum of element-level integrals, which are assembled into a global
vector 𝒇diff:

(∇𝒙𝑣, 𝒒)𝛺 =
∑

𝑒
(∇𝒙𝑣𝑒,−𝑘(𝑇𝑒)∇𝒙𝑇𝑒)𝛺𝑒

=
∑

𝑒
𝑣𝑒,𝑖 (∇𝒙𝑁𝑖,−𝑘(𝑇𝑒)∇𝒙𝑇𝑒)𝛺𝑒

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓𝑒,𝑖,diff

=
∑

𝑒
𝒗𝑇𝑒 𝒇 𝑒,diff =∶ 𝒗𝑇 𝒇diff,

(26)

where the index 𝑒 indicates a quantity restricted to a single element
and the operator ∇𝒙 is used to represent the gradient in physical space.
Following [55], we now break down the computation further:

𝑓𝑒,𝑖,diff = ∫𝛺𝑒

(∇𝒙𝑁𝑖)𝑇 (−𝑘(𝑇𝑒)∇𝒙𝑇𝑒) d𝒙

= ∫𝛺𝑒

(𝑱−𝑇
𝑒 ∇𝝃𝑁𝑖)𝑇 (−𝑘(𝑁𝑎𝑇𝑒,𝑎)(𝑱−𝑇

𝑒 ∇𝝃𝑁𝑏)𝑇𝑒,𝑏) det 𝑱 𝑒 d𝝃

≈
∑

𝑞
(∇𝝃𝑁𝑖)𝑇
⏟⏞⏟⏞⏟
(𝑺𝑇

grad)𝑖𝑐

𝑱−1
𝑒 𝑤(det 𝑱 𝑒)𝑱−𝑇

𝑒 (−𝑘 (𝑁𝑎𝑇𝑒,𝑎)
⏟⏞⏟⏞⏟
𝑺val𝑻 𝑒

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(∇𝝃𝑁𝑏)𝑇𝑒,𝑏
⏟⏞⏞⏞⏟⏞⏞⏞⏟
(𝑺grad𝑻 𝑒)𝑑

. (27)
6

∶=(𝑫𝑒)𝑐𝑑
u

In the second line, the element integral is transformed from the physical
space (parametrized by coordinates 𝒙) into reference space
(parametrized by coordinate 𝝃), thereby introducing the Jacobian map-
ping 𝑱 𝑒 between these spaces. Also, the temperature 𝑇𝑒 is discretized
in space with the element-wise shape functions 𝑁𝑎 which correspond
to the global spatial discretization introduced in (14). To shorten
the notation, we employ the Einstein summation convention. In the
third line, the integration is replaced by a weighted sum according
to a numerical quadrature rule. Here, the shape functions 𝑁𝑖, their
derivatives ∇𝝃𝑁𝑖 and the Jacobian mapping 𝑱 𝑒 are all evaluated at
those quadrature points and 𝑤 is the quadrature weight. Although
the final Eq. (27) is lengthy, it illustrates the sequential nature of the
element-level evaluation: first, we obtain the values and gradients of
the temperature at the quadrature points through the interpolation
𝑺val and 𝑺grad. In the implementation, we use a technique known as
sum-factorization, which has been established in the spectral element
community [68–70] and is available via deal.II [55,56]. Sum-
factorization is especially beneficial for tensor-product shape functions
of polynomial degree two and higher. However, in the present case of
linear shape functions it provides more opportunities for the compiler
to optimize code, e.g., through register blocking. Given the values and
gradients of 𝑇 , all physics-related operations happen on quadrature
point level inside 𝑫𝑒. In this example, we compute the heat flux from
the nonlinear conductivity and thus need to evaluate the value of
the temperature via 𝑺val. Finally, these quadrature point contributions
are multiplied with 𝑺𝑇

grad (the shape gradients resulting from the test
function) and summed up.

There is one missing link for the complete picture, namely the
relation between element-level quantities and global quantities. For this
purpose, we introduce a gather operation 𝑮𝑒 which extracts local DoFs
from a global vector via

𝑻 𝑒 = 𝑮𝑒𝑻 . (28)

The transpose of the gather operations 𝑮𝑇
𝑒 scatters an element contri-

bution back into a global vector such that we can write for the whole
evaluation process:

𝒇diff =
∑

𝑒
𝑮𝑇

𝑒 𝑺
𝑇
grad𝑫𝑒𝑺grad𝑮𝑒𝑻 . (29)

Note that internally 𝑫𝑒 also requires the values of the temperature
at quadrature points (computed via 𝑺val𝑮𝑒𝑻 ), since the conductivity
𝑘 depends on it, see (27). Eq. (29) demonstrates how to assemble a
global vector from cell-wise contributions. Interestingly, an equivalent
strategy can be applied to compute a matrix–vector product without
assembling the matrix first. As an example, we look at the matrix–
vector product on the left-hand side in (23). Following the same steps
as before and taking into account the definition of 𝑪 and 𝒇diff according
to (13) and (15), we arrive at the following evaluation process:

𝑱 𝑖
𝒓,𝑛𝛥𝑻

𝑖+1
𝑛+1 =

∑

𝑒
𝑮𝑇

𝑒 𝑺
𝑇
val

[𝜌𝑐
𝛥𝑡

𝑰
]

𝑺val𝑮𝑒𝛥𝑻 𝑖+1
𝑛+1

−
∑

𝑒
𝑮𝑇

𝑒 𝑺
𝑇
grad

[

𝑫𝑒𝑺grad +𝑳𝑒𝑺val
]

𝑮𝑒𝛥𝑻 𝑖+1
𝑛+1, (30)

here (𝑳𝑒)𝑐 = 𝑱−1
𝑒 𝑤 det 𝑱 𝑒𝑱−𝑇

𝑒

⎡

⎢

⎢

⎢

⎢

⎣

− 𝜕𝑘
𝜕𝑇

(𝑁𝑎𝑇𝑒,𝑎)
⏟⏞⏟⏞⏟
𝑺val𝑻 𝑒

∇𝝃𝑁𝑏𝑇𝑒,𝑏
⏟⏞⏞⏟⏞⏞⏟
(𝑺grad𝑻 𝑒)𝑐

⎤

⎥

⎥

⎥

⎥

⎦

(31)

q. (30) illustrates another feature of the evaluation process: in con-
rast to classical FEM implementations no global matrix is assembled.
nstead, we directly compute the effect of the Jacobian 𝑱 𝑖

𝒓,𝑛 on the
ector 𝛥𝑻 𝑖+1

𝑛+1 and obtain the result as another global vector. Thus, the
lobal Jacobian needed in the implicit time integration scheme (23)
oes not need to be assembled explicitly. Due to the aforementioned
roperty the whole evaluation process is often termed matrix-free eval-

ation. Essentially, this process moves the bottleneck from the memory
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Fig. 3. Illustration of fast operator evaluation on a vectorized cell batch. The operation 𝑫𝑒 is simultaneously performed on the same relative quadrature points in a vectorized
cell batch with vectorized CPU instructions.
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transfer of matrix entries (matrix-based implementation) to a more in-
tense calculation (repeated calculation of (30) for every matrix–vector
product). This trade-off is often preferable in modern hardware and
especially pronounced for higher-order shape functions [71]. Similar
to [72] we use the presented algorithm for explicit time integration in
(29) (which is inherently matrix-free) due to its mature and optimized
implementation in deal.II [55,56].

The process illustrated so far is very general and does not require
any assumptions on the integrated term. In fact, the diffusive term
includes nonlinear and history-dependent behavior which can be eval-
uated at each quadrature point. Furthermore, the procedure transfers
seamlessly to (boundary) faces and integrals over them. The different
steps of the evaluation still allow for a multitude of optimizations
that can be chosen under specific circumstances: such optimization
strategies and their trade-offs are discussed in detail in [56]. Some
algorithmic aspects of special relevance to this article are presented in
the following subsections.

Remark. The various operations that make up the whole evaluation
process described in this section have been written in a matrix–vector
product notation to better illustrate the process. This has only been
done for readability, as they are not necessarily implemented with
matrix–vector products as this does not lead to the most efficient
implementation as discussed in [55,56].

Remark. Note that we can still assemble a global matrix via the
matrix-free evaluation in (30) (e.g. to construct a reusable matrix-based
preconditioner) by multiplying with each unit vector and assembling
the result vectors as the columns of a global matrix.

4.2.1. Vectorization over cell batches
Modern CPUs come with single-instruction-multiple-data (SIMD)

apabilities for basic arithmetic operations and loading and storing of
emory. For instance, the AVX2 instruction set architecture allows to
erform a single operation on 4 different values of type double at
he same time. The more recent AVX512 instruction set even allows
or 8 values of type double. Although optimizing compilers will try
o identify loops that benefit from a vectorization of instructions on
heir own, the effectiveness of compiler optimizations depends on the
pecific implementation of the FEM model. If one were to rely only
n the compiler for auto-vectorization and if the quadrature point
peration is simple enough, the compiler might vectorize the operations
one at a single quadrature point or reorder operations to process op-
rations at different quadrature points of the same cell simultaneously.
owever, data dependencies and non-unit-stride access often prevent
7

his automatic approach from utilizing SIMD effectively, and much
etter performance is possible by processing the operations of different
ells in each vector lane, as demonstrated in [56]. This outer-loop
ectorization ensures that all SIMD lanes can be filled with useful work,
voiding remainder loops or mask operations that a compiler would
enerate for auto-vectorization. In this contribution, intrinsics-based
xplicit vectorization is facilitated by abstractions of the deal.II
ibrary, without leaking the details of the loop for vectorization to the
ser code.

Fig. 3 illustrates how the operator evaluation described in the last
ection works on a batch of cells simultaneously. The number of cells
n a batch is determined by the hardware which supports a number
f lanes 𝑛lanes. In the illustration the vectorization width is 4. In our
BFAM application, vectorization is performed separately over the
ctivated cells in/below the current layer and the inactive void cells
bove (where we do not evaluate the weak form but perform post-
rocessing operations for visualization). The vectorization concept also
xtends to the evaluation of integrals on (boundary) faces of cells.

For the full performance of the vectorized instructions, the non-
inear history behavior of the material is fully vectorized. For linear
hape functions, the quadrature point operation constitutes more than
alf of the arithmetic work. The original formulation [29] contains
ranching conditions (e.g. in the liquid fraction evaluation (2)) which
s often implemented with if-statements in unvectorized codes. These
tatements can be reformulated via masking operations. For a value 𝑎
et us denote its vectorized version as 𝑎̌ and access to entry 𝑖 by 𝑎̌[𝑖].
or instance, we can define various masks that filter for temperatures
n a given interval:

𝑀̌𝑇<𝑇𝑠 =
̌mask<(𝑇̌ , 𝑇̌𝑠, 1̌, 0̌), (32)

̌ 𝑇𝑠<𝑇<𝑇𝑙 =
̌mask>(𝑇̌ , 𝑇̌𝑠, 1̌, 0̌) ⋅ ̌mask<(𝑇̌ , 𝑇̌𝑙 , 1̌, 0̌), (33)

𝑀̌𝑇>𝑇𝑙 =
̌mask>(𝑇̌ , 𝑇̌𝑙 , 1̌, 0̌), (34)

where ̌mask□(𝑎̌, 𝑏̌, 𝑡, 𝑓 )[𝑖] =
{

𝑡[𝑖], if 𝑎̌[𝑖] □ 𝑏̌[𝑖],
𝑓 [𝑖], otherwise

for 0 ≤ 𝑖 < 𝑛lanes. (35)

Each of these masks 𝑀̌𝐶 contains a one in every lane where the condi-
ion 𝐶 in the subscript is true, and a zero otherwise. To get a filtering
ffect, the masks can be multiplied with any quantity that should
nly be considered when the condition is true. The C++ language
upports operator overloading such that the vectorized result of the
ǎsk-function and the final masks 𝑀̌𝐶 support the usual arithmetic

operations. Note that the ̌mask-function is implemented with intrinsic
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SIMD-calls specific to a given architecture and (35) only documents
its behavior. In our framework, the complete material behavior and
weak form are consistently implemented on vectorized data types. For
instance, a vectorized version of the liquid fraction (2) can be written
with the help of the masks (32)–(34) as

𝑔̌(𝑇̌ ) = 𝑀̌𝑇<𝑇𝑠 ⋅ 0̌ + 𝑀̌𝑇𝑠<𝑇<𝑇𝑙 ⋅
𝑇̌ − 𝑇𝑠
𝑇̌𝑙 − 𝑇̌𝑠

+ 𝑀̌𝑇>𝑇𝑙 ⋅ 1̌. (36)

This illustrates that we can compute the liquid fraction for 𝑛lanes
quadrature points simultaneously, while the computational cost is com-
parable to a single quadrature point evaluation in the unvectorized
implementation. The liquid fraction 𝑔̌ is used to compute the consol-
idated fraction history variable 𝑟̌𝑐 according to (3) which needs to be
stored for every quadrature point and is transferred to a new mesh upon
coarsening.

4.2.2. Further aspects
So far, the discussion of performance has been about the cell-local

operation of a single operator evaluation only. However, we would
like to note that we do not evaluate the terms of the weak form
(13) separately as the notation in (30) might suggest at first glance.
Instead, the gather and scatter operations as well as the interpolation
and integration operations are performed only once for every cell, and
they are combined with all the different quadrature point contributions
(e.g. 𝜌𝑐

𝛥𝑡 𝑰 , 𝑫𝑒 and 𝑳𝑒 in (30)). Thus, only one loop over all cells is
required, increasing data locality.

Additionally, we have adopted a concept from [73] which allows
to load 𝑻 𝑛 only once from main memory during the evaluation of
(16). For this purpose, we interleave cell operations and operations
run on ranges of indices. Before an index 𝑖 is first used in the source
vector 𝑻 𝑛, we clear the content of the destination vector for this index,
𝑇𝑛+1,𝑖 ← 0. Then, as an intermediate result, we assemble the right-
hand side 𝑇𝑛+1,𝑖 ← 𝑓𝑖(𝑻 𝑛) via the fast operator evaluation. After all
contributions to an index in this vector have been added, we run the
update of the temperature vector 𝑇𝑛+1,𝑖 ← 𝑇𝑛,𝑖 + 𝛥𝑡𝐶̃𝑖𝑖𝑇𝑛+1,𝑖. This update
is cache-efficient since 𝑇𝑛,𝑖 and 𝑇𝑛+1,𝑖 are likely still in the cache from
the operator evaluation.

For the parallel, distributed computation we utilize MPI (Message
Passing Interface). To see the highest possible throughput on the global
level, the implementation in deal.II takes care of MPI communica-
tion and overlaps it with local computations.

By basing our work on the high-performance implementation for
operator evaluation in the deal.II library and actively contribut-
ing new features developed for our specific application, we are well-
equipped for future extensions of our framework. The main feature
that was added to the deal.II library in the context of this work is
related to growing geometries by activating cells. The fact that some
cells are inactive and do not carry any DoFs means that they must
be skipped within the matrix-free evaluation framework. However,
the interface between the active cells in the top-most layer and the
inactive cells above them represents a boundary for the currently
active domain and we want to evaluate the boundary conditions (11)
and (12) on these internal faces. These challenges are solved by the
new class ElementActivationAndDeactivationMatrixFree,
which allows to ignore non-active cells and perform integrals at faces
shared by active and non-active cells.

5. Results and discussion

All examples are run on our own compute cluster which consists of
52 compute nodes with a dual-socket Intel Xeon E5-2680 v3 CPU with
2 × 12 cores running at 2.5 GHz and 8 DDR4 memory channels running
at 2.13 GHz (measured STREAM memory bandwidth of 82 GB∕s).
For this hardware the code is compiled with the AVX2 instruction-
set extension. Importantly, we compared our model implementation on
this hardware with a simple Laplace operator with constant coefficient
8

Fig. 4. Bridge geometry: outline of ideal geometry design (solid line) and discretized
voxel geometry (gray area). This geometry is investigated for different scalings
controlled by a single parameter 𝑏.

implemented within the matrix-free deal.II framework. On one
compute node, a full explicit time step of our model implementation
reaches 44% of the throughput of the Laplace operator. Note that our
explicit operator performs significantly more computations (nonlinear
material evaluation) and needs to load more data (material history
data on quadrature points) than the Laplace operator. Thus, we can
say that our implementation is already well-optimized and only fur-
ther improvements in deal.II might give additional speedup in the
future.

5.1. Bridge example

As a first example we investigate a bridge geometry, schematically
depicted in Fig. 4. We use a boundary-fitted voxel mesh that approx-
imates the arc with a stair case profile. The geometry is parametrized
by a single parameter 𝑏 to study different scalings of the problem.
The coarsest cell size, which is equal to the voxel discretization size,
is computed as 𝑏∕80. The bottom of the base plate is kept at a fixed
temperature 𝑇0. The top surface (with positive 𝑧 normal vector) is
subject to radiation (11) and evaporation (12) boundary conditions.
All other parts of the boundary are assumed to be thermally insulating,
since they would be surrounded by powder (not modeled). Note that
the small base plate section is intentionally reduced in size compared
to a large, realistic base plate with dimensions in the decimeter scale,
since we want its size to also scale with the parameter 𝑏. For the studies
conducted in this work we found from our previous work [29] that
the effect of a large base plate on the global temperature response
is negligible. Our framework is capable to include a large base plate,
which is adaptively refined in the vicinity of the attached parts, should
this become necessary in future validation examples.

The scan pattern consists of serpentine tracks. The laser beam
input parameters are given in Table 1. For the material behavior
and radiation and evaporation boundary conditions, we choose values
representative of the metals used in application, see Table 2. With
these material parameters we obtain 𝛥𝑡max = 2.9 × 10−4 s as an estimate
for the critical time step from condition (19). The actually used time
step is 𝛥𝑡 = 2.0 × 10−5 s so that the laser beam travels half a cell
(less than one laser beam radius of 𝑅 = 50 μm) within one step.
As mentioned earlier, for these material parameters and mesh sizes
the stability limit (19) turns out to be not restrictive compared to
the accuracy requirement of the moving heat source (20). After every
layer, we simulate 1 s of interlayer cool down time as follows: the first
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Fig. 5. Scaling study for bridge example. The number of DoFs increases quadratically, while the number of time steps increases cubically. The wall time increases cubically because
the number of CPU cores is increased such that the number of DoFs per core stays approximately constant. Therefore, the throughput in DoFs per second per core stays roughly
constant as well.
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Table 1
Scan parameters for bridge example.

Symbol Property Value Unit

𝑣scan Scan velocity 1000 mms−1

𝑑ℎ Hatch spacing 80 μm
𝑅 Beam radius 50 μm
ℎpowder Powder layer thickness 40 μm
𝑡cool Cool down time 1 s

Table 2
Material parameters for bridge example. The parameters are representative for stainless
steel and taken from our previous publication [10].

Symbol Property Value Unit

𝑘𝑚𝑠 Thermal conductivity in melt and solid phase 20 Wm−1 K−1

𝑘𝑝 Thermal conductivity in powder phase 0.2 Wm−1 K−1

𝜌 Density 7430 kgm−3

𝑐 Specific heat capacity 965 J kg−1 K−1

𝑇𝑠 Solidus temperature 1500 K
𝑇𝑙 Liquidus temperature 1900 K
𝑇0 , 𝑇∞ Initial and ambient temperature 303 K
𝜖 Emissivity 0.7 –

𝑇𝑣 Boiling temperature 3000 K
𝐶𝑃 Recoil pressure factor 54 kPa
𝐶𝑇 Recoil pressure temperature factor 50 000 K
𝐶𝑀 Heat loss temperature factor 0.001 K s2 m−2

𝑀 Molar mass 0.052 kgmol−1

ℎ𝑣 Latent heat of evaporation 6.0 MJkg−1

𝑇ℎ,0 Enthalpy reference temperature 663 K

1000 time steps of the cool down phase are still simulated with the
explicit time integration scheme of the active laser phase to capture
the highly dynamic behavior. Afterwards, the time step is increased to
𝛥𝑡 = 2.0 × 10−2 s and the implicit time integration scheme is used to
simulate the remaining 0.98 s of cool down time.

First, we perform a type of weak-scaling study, where we increase
the dimension parameter 𝑏 as indicated in Table 3 and at the same time
ncrease the computational resources. The scaling of the mentioned
uantities is also visualized in Fig. 5. The scalability of the implemen-
ation in the deal.II library has already been demonstrated [71,74].
he goal of this type of scaling study is to illustrate the various scaling
ffects that occur in a part-scale PBFAM simulation. Since we repeat-
dly increase the domain size by a factor of 2 in each dimension (via
arameter 𝑏), the build volume increases cubically, i.e., by a factor of 8.

Remember that – compared to many other works – we do not artificially
scale up the heat source (nor the layer thickness) in this contribution.
Therefore, the length of the complete laser track and consequently the
number of time steps scales directly with the build volume, i.e., it
increases by factor 8 as well (Fig. 5, panel 2). Notice that, as the domain
grows larger and more refinement levels are necessary, the number of
cells and total DoFs only increases by a factor of approximately 4 per
scaling step (Fig. 5, panel 1). This is a consequence of AMR: the number
of top-most layers with the highest refinement is constant. When the
geometry is scaled up, a relevant increase of DoFs only happens in these
top-most layers in the 𝑥- and 𝑦-directions
9
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To understand how our framework behaves for growing domain
sizes, we scale the computational resources by a factor of 4, i.e., the ex-
pected scaling of the number of DoFs in the later layers. The reasoning
behind this choice is the good parallel scalability of the spatially dis-
tributed single-step evaluation: by scaling the computational resources
by the same factor as the number of DoFs, we keep the work per process
approximately constant in the later scaling steps. Therefore, assuming
weak scalability, we expect the wall time to grow proportional to the
number of time steps, i.e., by a factor 8 per scaling step, as observed
in Fig. 5, panel 3. Perfect weak scaling is observed for the last scaling
step where the throughput, defined as

throughput = number of DoFs
eval time per step × number of cores , (37)

stays constant (Fig. 5, panel 4). Note that we cannot simply scale up the
computational resources by an additional factor 8 to counteract the in-
creased number of time steps, since the work is not parallelized in time.

As a second study, we investigate the strong scaling capabilities
of the framework. To this end, the largest geometry of the first study
(with 𝑏 = 51.2 mm) is simulated with a varying number of CPU cores
𝑛core ∈ {24, 48, 96, 192, 384, 768}. Since we are now interested in the
scalability over different layers, we only simulate 1000 steps of the
active laser phase per layer. The results are transferable to the whole
layer because layers are activated in full at the beginning of a new layer
and all cells are immediately active (though still in powder state).

The resulting average evaluation time for a single step in different
layers is shown in Fig. 6. The strong scaling is close to the ideal
behavior in the higher layers and, in the lower to medium layers, we
are approaching the scaling limit of 1 × 10−4 s reported in [71]. In the
first layer, there is not enough work for the assigned cores such that
an increased number of cores does not result in an equivalent speedup.
This is further illustrated by the total throughput (measured in DoFs
per second per core per time step) and the parallel efficiency 𝜂, defined
here as

𝜂 =
𝑇ref𝑁ref

𝑇scaled𝑁scaled
, (38)

here 𝑇ref and 𝑁ref are the wall time and resources used for a reference
un (in this case, a run on one compute node with 24 CPUs). 𝑇scaled is
he wall time for a run with 𝑁scaled = 𝑠𝑁ref (𝑠 times more) resources.
he parallel efficiency 𝜂 is a measure for the efficient use of resources,
here a value of 1 means the additional resources manifest in a perfect

peedup. In Fig. 6, the parallel efficiency is mostly close to 1. It drops
o around 50% for the first layer when run with the largest number of
ores. However, in the last layer 1280, the parallel efficiency stays at
round 90% even for the highest core count which justifies the use of
hese computational resources. Note that we sometimes see a parallel
fficiency slightly greater than one, e.g. in layer 500. This happens since
he work per process and especially the number of ghosted cells varies
ith the layer number and the number of processes which can lead to a

ase where communication overhead is slightly worse for smaller core

ounts.
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Table 3
Weak scaling study for bridge examples. Geometry and mesh information as well as performance results (only for the active laser phase).
𝑏 [mm] Build vol. [mm3] Layers Cores ℎcoarse [mm] 𝑛ref ine Max. DoFs (per core) Time steps Wall time

6.4 59 160 12 0.08 1 177k (14.8k) 956,504 0.55 h
12.8 469 320 48 0.16 2 357k (7.44k) 7,425,200 2.7 h
25.6 3,749 640 192 0.32 3 1070k (5.57k) 59,187,712 18.3 h
51.2 29,991 1280 768 0.64 4 3850k (5.01k) 468,263,936 128.9 h
Table 4
Single-step solution time and relative speedup for different time stepping schemes and vectorization levels in the active laser
phase. To get a direct comparison of evaluation costs, a linear problem is solved such that the implicit∗ scheme only performs
one nonlinear iteration.

26 × 103 DoFs/core 6.5 × 103 DoFs/core

No vectorization 4-wide SIMD No vectorization 4-wide SIMD

Implicit∗ 1.07 s
×1.79
←←←←←←←←←←←←←←←←←←←→ 0.598 s 0.323 s

×1.77
←←←←←←←←←←←←←←←←←←←→ 0.182 s

↓ ×99.1 ↓ ×114 ↓ ×89.2 ↓ ×143

Explicit 0.0108 s
×2.07
←←←←←←←←←←←←←←←←←←←→ 0.00524 s 0.00362 s

×2.85
←←←←←←←←←←←←←←←←←←←→ 0.00127 s
Fig. 6. Strong scaling study for different layers of 1280 layer bridge example: evaluation time for a single time step (left), throughput (middle) and parallel efficiency (right).
Fig. 7. Imbalance in work across cores in different layers of 1280 layer bridge example: percentage of idle cores without any DoFs (left), coefficient of variation (CV) of the DoFs
per core (middle) and hypothetical speedup, if the DoFs were distributed evenly among cores and additional communication overhead is neglected.
More detailed insights into the imbalance of the DoF distribution
among cores is shown in Fig. 7. Only a small fraction of cores is idle,
i.e, has no DoFs at all. This fraction increases with larger core counts
and decreases in the higher layers. As another metric, the coefficient
of variation (CV) of the DoFs assigned to a core is defined as the ratio
between standard deviation and mean of that same quantity. The CV
reveals a strong imbalance in layer 800, which once again shows that
the quality of the partitioning is layer-dependent. We can estimate
an upper bound for the hypothetical speedup obtained by a better
distribution, if we divide the maximum number of DoFs per core by the
mean. This yields the speedup factor for an even distribution of DoFs
among cores when additional communication overhead is neglected.
The hypothetical speedup is at most 1.5 (layer 100 in Fig. 7), although
it can never be fully realized and the estimate is very optimistic. Since
this hypothetical gain is lower in most layers, we did not yet work on
a more optimal parallel distribution in this paper. A simple weighting
of active cells by a factor of 10 or 100 (compared to inactive cells)
combined with a parallel redistribution when a new layer is activated
did not produce a notable speedup which is in line with results reported
in [39] for an adaptive mesh similar to the one investigated here.

In order to analyze the impact of different implementation aspects,
we present relative speedup data in Table 4. This data was obtained
10
from running the active laser phase in the last layer of the 1280 layer
bridge example. For a fair comparison, we deliberately do not include a
comparison with less optimized code and all cases use the matrix-free,
highly-optimized code infrastructure from deal.II. Also, we choose
the parameters such that the implicit system is linear and solved within
a single nonlinear iteration to get a better comparison of the inherent
cost associated with an implicit linear solve step. Since the actual
problem is nonlinear, in practice, the evaluation costs for an implicit
scheme are even higher when a few nonlinear iterations are required.
As Table 4 reveals, an explicit step is around 100 times cheaper than
an implicit step. However, it should be emphasized that our implicit
scheme together with the preconditioner for the linear solver has not
been optimized to the same degree as the explicit scheme since it does
not present a bottleneck when only using it for the cool down phase.
The speedup obtained from vectorization is more pronounced for the
explicit than the implicit scheme since the operator evaluation is fully
vectorized while the implicit linear solver also contains unvectorized
code. Notably, for the explicit scheme the benefit of vectorization is
higher at a lower load per CPU core because the problem is small
enough to fit in the cache which in turn makes SIMD parallelism
more impactful. The results further illustrate how the implementation
approach scales well also for low loads per CPU core.
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Fig. 8. Temperature distribution in 640-layer variant of the bridge geometry at different stages of the build process. Regions with temperature above 𝑇𝑚 are defined as ‘molten’
(surrounded by a black solid line), otherwise as ‘solid’. The heat affected zone (HAZ) with temperatures between 1000 K and melt temperature is visualized in gray color.
To conclude this section, we show the temperature distribution on
the bridge geometry with 640 layers in Fig. 8. In the beginning of the
AM process, when the two legs are still separated, the region of high
temperatures in the solid material (indicated in gray color) is localized
around the melt pool (Fig. 8(a)). Once the legs join up into a continuous
layer the heat affected zone (HAZ) – with temperatures between 1000 K
and melt temperature visualized in gray color – stretches over the
strongly overhanging middle region on top of a powder domain, which
is thermally insulating in good approximation (Fig. 8(b)). Note the
complex and asymmetric shape of this region, which can only be
captured by a scan-resolved simulation as performed in this work.
In the future, the model can be extended to predict the influence of
this overheated region on the microstructure evolution and, ultimately,
residual stress formation. In the last layer (see Fig. 8(c)) the enlarged
high-temperature region still persists. This is a result of the parameters
11
chosen in this example, especially the cool down time between layers,
which is 1 s in this example. As a result, the initial temperature when
the scanning of a new layer begins, increases with increasing number
of layers.

To further motivate the utility of the model in the present state let
us mention a few more highly relevant and AM-specific effects that can
be studied with it. As seen in this example, the melt pool length can be
easily extracted from the temperature results (or, even be calculated
while running the simulation) which allows a prediction of balling due
to the Plateau–Rayleigh instability. An analysis of the peak tempera-
tures would allow us to predict zones of excessive evaporation and
gas-bubble-induced porosity. Residual porosity due to lack-of-fusion
can be directly determined from the consolidation history (as shown
in the next example). The presented model is still a part-scale model
and all of the mentioned effects are captured in a qualitative manner.
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Fig. 9. Overview of NIST AM Benchmark 2022 cantilever geometry and special features. Detailed information about the dimensions, geometry and scan strategy can be found
in [24].
Table 5
Scan parameters for cantilever example.

Symbol Property Value Unit

𝑣scan Scan velocity 960 mms−1

𝑑ℎ Hatch spacing 110 μm
𝑅 Beam radius 60 μm
ℎpowder Powder layer thickness 40 μm
𝑡cool Cool down time 1 s

For a detailed quantitative analysis one needs to resort to mesoscale
models.

5.2. Cantilever benchmark

As a second numerical example, we investigate the cantilever struc-
ture shown in Fig. 9, which was designed for the NIST AM Benchmark
series 2022 [24]. The purpose of this example is not yet to validate
the model against experimental measurements. Rather we want to
demonstrate the capabilities of the framework on realistic geometries.
Since the geometry is more complex than in the previous example,
we use a build chamber mesh of dimensions 76.8 × 6.4 × 12.8mm3

which also discretizes the remaining powder. The path of the laser
beam is used as an input for the active laser phase and the tracks are
scanned into a box that encloses the desired geometry such that a small
buffer of remaining powder lies around the final part. Such a tightly
fitting build chamber mesh is deemed acceptable due to the negligible
powder conductivity. A base plate section of 2.56mm thickness is added
below the build chamber. Its bottom face is kept fixed at the initial
temperature 𝑇0.

The active scan phase in every layer is followed by a cool down
phase of 1s, which uses the same time step sizes as described in the last
section. After simulating all 312 layers, the built geometry is implicitly
defined by the solid phase fraction at each quadrature point according
to Eq. (4). The scan parameters are given in Table 5 while the same
material parameters as for the bridge examples are reused, see Table 2.

The temperature distribution in the part at difference points in time
of the process is shown in Fig. 10. A video of the complete process may
12
also be found in the supplementary material of this article. In the first
layers the temperature quickly drops to the initial temperature 303K
after the laser passed, see Fig. 10(a–b). This fact can be explained by
the small total heat capacity of the consolidated material and the small
distance to the base plate with prescribed temperature at its bottom
face. As more and more layers are processed, the residual temperature
steadily rises but the HAZ with 𝑇 > 1000K (indicated in white color) is
always limited to the direct vicinity of the melt pool (Fig. 10(c–d)).
High temperature gradients are thus also limited to this area which
justifies the use of a refined mesh only in these areas. A detailed view of
the melt pool in layer 120 is shown in Fig. 11. Fig. 10(e) illustrates the
different cooling rates resulting from the different geometrical features:
the thin legs are at an elevated temperature compared to the thicker leg
due to the smaller thermal conductivity (and heat flux concentrations)
in these regions. An exception is the thick but internally hollow leg
which exhibits an equally poor heat conduction to the base plate as
the thin legs.

In layer 174 the initially separate legs join up into a continuous
layer (Fig. 10(f)). The melt pool and the HAZ surrounding it are
elongated when the beam travels over the overhanging regions and the
hollow leg. A detailed view of the melt pool is shown in Fig. 12. For
the depicted point in time, the laser beam travels across the hollow leg
and previously across an overhang region which leads to an elongated
melt pool and an enlarged HAZ due to the decreased conductivity to
the base plate. This effect persists in higher layers whenever the laser
beam is moving across the hollow leg (Fig. 10(g)). Note that such
geometrical influences cannot be predicted with layer-wise part-scale
models or melt pool models but only with scan-resolved, true part-scale
models. The residual heat after cool down of the final part is shown in
Fig. 10(h). In Fig. 13 we compare the final temperature distribution
when the (previously used) cool down time of 1 s or an (alternative)
cool down time of 5 s is used after every layer. The cool down time
has a strong influence on the temperature level after cool down. A
systematic investigation of the impact of cool down time is thus possible
with the approach presented in this work since the real scan and cool
down times are used consistently in this model (in contrast to layer-
wise simulation approaches, where heating and cooling times are often
calibration parameters).
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Fig. 10. Temperature distribution in cantilever at various stages in the build process. Regions with temperature above 𝑇𝑚 are defined as ‘molten’, otherwise as ‘solid’. A video of
the complete process is attached as supplementary material to this article.

Fig. 11. Detailed view of the melt pool (indicated by solid black line) at a turning point and start of a new track segment during processing of layer 120. Regions with temperature
above 𝑇𝑚 are defined as ‘molten’, otherwise as ‘solid’.
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Fig. 12. Detailed view of the melt pool (indicated by solid black line) during processing of layer 174. In this layer the separate legs join up into a continuous layer. Regions with
temperature above 𝑇𝑚 are defined as ‘molten’, otherwise as ‘solid’.
Fig. 13. Residual heat after completed build process (a) for 1s cool down time and (b) for 5 s cool down time.
Fig. 14. Detailed view of the part buildup and adaptive mesh in the symmetry (𝑥𝑧-) plane of the cantilever. The finest mesh resolution is only kept when necessary to capture
the final part shape. Any cell with more than 50% solid fraction is visualized. The baseplate is overlaid in dark gray.
To illustrate the adaptive meshing strategy, Fig. 14 shows the
growing part geometry on a slice. The coarse mesh uses a cell size
ℎcoarse = 640 μm, i.e., four refinement levels are necessary to reach
a cell size of ℎpowder. The number of DoFs grows linearly with the
number of layers, see Fig. 16, with a visible kink once the initially
separate legs of the cantilever join up into a continuous layer in layer
174. Since the interface surface between solid and powder is larger
as long as the legs are separated and consequently more refined cells
are necessary to capture this interface, the number of DoFs grows
more quickly before layer 174 than afterwards. Fig. 14 also shows how
well the build chamber mesh in combination with the adaptive mesh
strategy can capture the final part geometry: the detail view in layer
14
200 overlays the target geometry outline over the built geometry in
the overhang region. The solidified part shape agrees very well with
this target geometry. Only in some places a small amount of partially
molten powder sticks to the surface. Note that we can also capture
an area where lack of fusion occurred and a refined mesh remains
necessary. This illustrates a further aspect relevant for AM applications
that can be predicted on the part-scale with the help of this model.

The example was run on the same hardware as the previous bridge
example. The simulation of the process for the total build volume of
3770mm3 requires around 44 million time steps and a maximum of 8.7
million DoFs. With 480 CPU cores, the total simulation time was 51.9
h. As an extension to the strong scaling study performed in the last



Additive Manufacturing 79 (2024) 103921S.D. Proell et al.
Fig. 15. Percentage of wall time spent in the different parts of the algorithm for the 1248 core simulation compared to the 480 core simulation. Timings averaged over all 312
layers.
Fig. 16. Number of DoFs, throughput, average evaluation time per step and parallel efficiency over all 312 layers of the cantilever example for the 1248 core simulation compared
to the 480 core simulation. Layer 174, where the separate legs join up into a continuous layer, is indicated by a dashed line. The plotted data only includes the active laser phase
solved with the explicit time stepping scheme.
section we increased the number of cores to 1248 (all cores available
on the test machine), giving a total simulation time of 23.7 h (which is
an overall parallel efficiency of 84% compared to the previous run). In
both cases, most of the time is spent in the active laser phase, with the
cool down phase (1 s of simulated time per layer) only taking around
5% of the total wall time, see Fig. 15. The implementation of the cool
down phase has not been optimized as much as the active laser phase in
this contribution since we would not see a significant overall speedup
in our numerical examples. Note that in another recent and performant
model for scan-resolved part-scale analysis [40], the authors simulate
only four sets of four successive layers of a similar cantilever geometry.
No exact timings are given. To the best of the authors’ knowledge, no
other scan-resolved model has been published so far which simulates,
in practice, the build process on the scale of a real part. For numerical
examples with around 2 million DoFs other authors report single step
solution times in the range of a few seconds in [39] or a few hundred
milliseconds in [31]. By comparison, our presented approach is several
orders of magnitude faster.

The average throughput of the evaluation in terms of DoFs per
second and the average time for one time step are also shown in
Fig. 16. The throughput in the first few layers for the high core count
indicates that we initially underutilize the assigned computational re-
sources. Indeed, when examining the parallel efficiency for every layer
separately it becomes clear that the core count and distribution of the
problem could be improved in the first layers. As already mentioned,
in the future dynamic resource allocation could be used so that shared
computational resources are only used when necessary. In the later
layers we reach a very good parallel efficiency of 80%–90%, which still
justifies the use of the increased computational resources.

Note that the throughput and evaluation time in Fig. 16 show
outliers which occur exactly every 64 layers. In these layers, processes
need a comparatively large number of ghosted information from other
processes. This behavior can be linked back to the way deal.II
distributes the cells and DoFs among processes [45], which might
lead to non-contiguous subdomains and a non-uniform distribution of
expensive hanging nodes [75]. Again, fine tuning might give a speedup
in the problematic configuration but is not further investigated in this
work since on a global view it would only give a negligible speedup.
15
Fig. 17. Example used to judge temporal convergence.

6. Conclusion and outlook

A high-performance approach for the simulation of part-scale laser
powder bed fusion additive manufacturing (LPBFAM) with a resolved
scan track has been proposed. The physics-based model includes phase-
dependent material parameters and consistent boundary conditions.
The dynamic heat equation is discretized with an explicit time stepping
scheme which has a smaller computational cost per time step and better
parallel scalability compared to implicit schemes. The stability limit
inherent to explicit schemes is found to be less restrictive than the
restriction imposed by the moving heat source (which, in the scan-
resolved regime, should not travel further than its own radius within
one step).

We studied numerical aspects on basis of weak and strong parallel
scaling tests. The implementation shows excellent scalability on a
moderately-sized distributed compute cluster. Due to the explicit time
stepping scheme and the high-performance implementation the time to
solution for application-relevant problems is superior to other imple-
mentations in the literature that try to solve this problem. Notably, we
achieve wall clock times per time step of a few milliseconds which is
several order of magnitudes lower than the timings reported in other
implementations in the literature.

Although we were able to reduce the cost of a single time step
significantly within this work, scan-resolved simulation of LPBFAM
parts on the scale of several decimeters or more most likely remains
unrealistic due to the excessive number of time steps to be solved.
Therefore, in future work the advances in this contribution could be
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Fig. 18. Temporal convergence of temperature for the combined explicit-implicit time stepping scheme with different time step sizes. Left: detailed view of heat source moving
over the observation point. Middle: switch from explicit to implicit scheme during cool down. Right: heat source in the second layer passes above the observation point.
Fig. 19. Rate of convergence for time integration schemes. Left: convergence of the explicit scheme used during the active laser phase in layer 1. Middle: convergence of the
mplicit scheme used during the cool down phase after layer 1. Right: convergence of the explicit scheme used during the active laser phase in layer 2.
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ombined with techniques that try to tackle the temporal scale, such as
arallel-in-time methods [47,52] or space–time formulations [76].

With the presented adaptive mesh refinement strategy, using either
boundary-fitted or build chamber mesh, we are able to simulate

eneral problem settings of LPBFAM as demonstrated on two realistic
M geometries. Notably, we performed the first full scan-resolved
imulation of the NIST AM Benchmark cantilever in just below one day.
ince the framework does not make any strong physical assumptions
hat require detailed calibration (such as layer-wise heat source models
ould), the obtained results already show interesting physical effects

hat are relevant for designers. A validation with real material data
gainst measurements is a next step. The proposed thermal simulation
odel can serve as a basis for microstructure predictions on the part-

cale, but also to study the influence of scan pattern and part geometry
n melt pool shape and temperature, which are important indicators
or process defects. These opportunities have been indicated throughout
he discussion of the results.

A natural extension of the current framework will deal with the
hermo-mechanical problem. The groundwork has been laid in our con-
ribution [29] and needs to be incorporated into the high-performance
ramework presented in this work. Matrix-free implementations with
fficient solution strategies exist for the solid mechanics problem [77,
8]. They will likely require application-specific adaptations to com-
lement the high-performance implementation of the thermal problem
resented in this work.

Although the current implementation can be said to be optimized
hen compared to a benchmark, a few performance-related topics for

uture investigation remain unresolved. In this work, we only looked
t performance on CPUs. Due to the increasing popularity and avail-
bility of powerful GPUs, a compliant implementation might make the
ethodology available to a wider audience. Using deal.II’s GPU fea-

ures, we are planning an extension of the framework in this direction.
s we saw in the results sections, the required resources that can be
fficiently used vary over the layers: in the first layer, many processes
o not receive any work and if they do, the communication overhead is
oo high to justify their use. Dynamic reallocation of more CPU cores as
he problem domain grows would free the claimed but unused resources
16
for other users of a compute cluster during the processing of the earliest
layers.
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Appendix A. Temporal convergence

A representative example of two layers with a single track each is
used to analyze temporal convergence of the time stepping scheme for
the parameters used in the numerical examples. The geometry consists
of a 1.0 × 0.2 × 0.2mm3 base plate (𝑥 × 𝑦 × 𝑧 dimensions) with two
powder layers of 40 μm on top as illustrated in Fig. 17. Starting at
𝑥 = 0, 𝑦 = 0), a single track is scanned along the (1, 0, 0) direction

in both layers with a 0.06 s cool down time in between layers. All
other material and scan parameters are identical to Tables 2 and 5. The
temperature at the observation point (0.5mm, 0.0, 0.24mm) (top of first
layer, middle of track) is shown in Fig. 18 for three different time step
sizes, where 𝛥𝑡ref is the time step size used in the numerical examples
(2 × 10−5 s in the explicit phase, 2 × 10−2 s in the implicit phase). The
switch between explicit and implicit time stepping and activation of a
new layer is robust and the results are well converged for the desired
level of accuracy in a part-scale model.

To judge the rate of convergence, we extend the example described
above to another small time step size 𝛥𝑡ref∕4 and compare the L2 norm
of the difference between the temperature fields of every experiment
and a reference solution computed with a time step size of 𝛥𝑡ref∕8. The
results for the explicit and implicit scheme are shown in Fig. 19 at
selected points in time. The plot shows the expected linear convergence
of both the explicit and implicit scheme. Note that we integrate the
boundary terms explicitly, even in the implicit scheme, as indicated
in (22). Due to their low contribution in the cool down phase, we still
obtain the expected linear convergence rate. A more detailed discussion
and proof of convergence for such a combined implicit–explicit Euler
scheme can be found in [79].

The convergence rate appears to accelerate towards the right end of
the graphs. It has been verified that this effect is caused by the finite
precision of the reference solution. For the intermediate results (further
to the left in the graphs), for which the reference solution is accurate
enough, the expected (𝛥𝑡) behavior can be seen. The numerical values
for the rate of convergence for the three points in time shown in Fig. 19
are, from left to right, 1.02, 0.96 and 1.04.

Appendix B. Supplementary data

Supplementary material related to this article can be found on-
line at https://doi.org/10.1016/j.addma.2023.103921. Video 1: Scan-
resolved thermal simulation of the manufacturing of all 312 layers of
a cantilever specimen. The interlayer cool down phase of 1 s is not
visualized.
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