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Abstract

Currently, the automotive sector focuses on three trends: battery electric vehicles, autonomous driv-
ing and connected drive functionalities. Energy management systems can profit from all three trends.
The aim of an energy management system for battery electric vehicles is to maximize the range. This
must be done using the limited computation capacity available during a trip without knowing the whole
trip in advance with certainty. This thesis presents an energy management system that fulfills these
criteria. It is developed and evaluated in a validated simulation environment. It influences three pa-
rameters: the velocity, the heater power, and the air mass flow to the cabin. These parameters are
optimized for one trip and the optimized parameters are applied to other trips on the same route. To
enable this transfer, various adjustments are made to the representation of the variables and to their
integration into the vehicle. Various implementations are compared, for example different optimization
strategies. The results are analyzed in detail. It is found that the approach leads to a considerable
reduction in the energy consumption compared to state-of-the-art energy management systems. In
particular, the transfer to other trips works. This means that the energy management system works
with little data and requires little computation capacity during the trip. Lastly, the holistic approach,
which optimizes all parameters at once, outperforms a serial optimization of the parameters. In sum-
mary, a novel concept has been developed, which shows promising results in a simulated vehicle.
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Zusammenfassung

Derzeit konzentriert sich der Automobilsektor auf drei Trends: elektrisches, autonomes und vernet-
ztes Fahren. Energiemanagementsysteme können von allen drei Trends profitieren. Das Ziel eines
Energiemanagementsystems für batterieelektrische Fahrzeuge ist es, die Reichweite zu maximieren.
Dies muss mit der begrenzten Rechenkapazität, die während einer Fahrt zur Verfügung steht, erreicht
werden, ohne dass die gesamte Fahrt im Voraus mit Sicherheit bekannt ist. In dieser Arbeit wird ein
Energiemanagementsystem vorgestellt, das diese Kriterien erfüllt. Es wird in einer validierten Simu-
lationsumgebung entwickelt und bewertet. Drei Parameter werden beeinflusst: die Geschwindigkeit,
die Heizleistung und der Luftmassenstrom in den Fahrzeuginnenraum. Diese Parameter werden für
eine Fahrt optimiert und die optimierten Parameter werden auf andere Fahrten derselben Strecke
übertragen. Um diese Übertragung zu ermöglichen, werden verschiedene Anpassungen an der
Darstellung der Variablen und an ihrer Integration in das Fahrzeug vorgenommen. Es werden ver-
schiedene Umsetzungen verglichen, zum Beispiel unterschiedliche Optimierungsalgorithmen. Die
Ergebnisse werden detailliert analysiert. Es zeigt sich, dass der Ansatz zu einer erheblichen En-
ergiereduktion im Vergleich zu einem Energiemanagementsystem aus dem Stand der Technik führt.
Insbesondere die Übertragung auf andere Fahrten bringt einen erheblichen Vorteil. Dies bedeutet,
dass das Energiemanagementsystem mit wenigen Daten arbeitet und wenig Rechenkapazität während
der Fahrt benötigt. Schließlich übertrifft der ganzheitliche Ansatz, der alle Parameter auf einmal op-
timiert, eine serielle Optimierung der Parameter. Zusammenfassend wird ein neuartiges Konzept
entwickelt, das in einem simulierten Fahrzeug vielversprechende Ergebnisse zeigt.
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1 Introduction

Currently, three main trends in the automotive industry can be identified [1, p. 99] [2] [3, p. 141] [4]:
Firstly, the spread of electric vehicles, in particular Battery Electric Vehicle (BEV) [5, p. 12]; Secondly,
the development of autonomous vehicles [6]; Thirdly, the rise of connected drive functionality [7].

The increasing number of BEVs is the most important trend in the context of this thesis, as the
topic is an Energy Management System (EMS) for BEVs. During the last years, world-wide sales of
BEVs have increased drastically [8] [9] [10]. Electric vehicles are an answer to some of the world’s
most pressing problems [5, p. 1-19]:

• Climate change: Climate change is turning out to be one of humanity’s main challenges [11]
[12] [13, p. 6]. Headlines of a single German newspaper (Die Zeit) in August 2021 reveal the
prevalence of the topic [14] [15] [16]. To limit the world-wide temperature increase, rapid and
determined actions must be taken on a global scale [11]. One of the necessary measures is
to achieve mobility that does not rely on fossil fuels and does not emit carbon dioxide into the
atmosphere [5, p. 2] [13, p.6, 17]. BEVs are not inherently carbon neutral [5, p. 4] [17]. However,
as they run on the electricity mix of the country they are used in, they enable shifting the problem
to the electric power generation, where it can be handled more easily [17].

• Bad air quality in urban areas: More and more people live in cities [18] [19] [20]. This higher
population density means that the problem of pollution becomes more pressing [20]. Moore et
al. ([20]) identify Internal Combustion Engine Vehicles (ICEVs) as one of the primary sources
of air pollution in cities. They cite that in Mexico City 75 % of the total pollution is caused by
vehicles. Currently, even German cities have problems with air quality [21]. This is mostly due to
the traffic sector, too [21]. Low air quality leads to an increase in lung diseases and cardio-vascular
diseases [22]. Even the risk to die of Covid-19 is increased for people who live in an area with
low air quality [23]. Electric vehicles solve this problem as the engine emission is zero [24]. The
total emission depends on the source of the electric power used by the vehicle [24]. But even a
conventional power plant can be equipped with a better filtering system and can be built outside
densely populated areas [24]. Consequently, the health of city residents can be improved by using
BEVs.

• Noise exposure in urban areas: Residents of cities are not only exposed to pollutants due to ICEVs
but also to noise [24]. The constant exposure to high noise levels can lead to increased stress
and, therefore, negative effects on the health [25]. As the electric machine is far quieter than a
combustion engine, electric vehicles can help to alleviate this problem [24].

• Lack of mobility in poor, rural areas: Many rural areas of developing countries suffer from a lack
of mobility options [26]. People cannot rely on public transport in these sparsely populated areas.
However, personal transport is too expensive for most inhabitants [26]. The existing vehicles are
often not sufficiently adapted to the needs of these areas and are additionally too expensive [26].
Combined with solar power plants and micro-grids, BEVs can help to alleviate these problems
[26].

The second trend mentioned above is the increase of autonomous driving functions in all types of ve-
hicles. Autonomous driving systems encompass low-level functionalities such as a parking assistant
or an Adaptive Cruise Control (ACC) as well as more complex functions allowing driverless vehicles
[27] [28]. The first class of functions is already part of commercially available vehicles, while the
second class is still under development. One purpose of autonomous driving functions is to enhance
the safety of traffic participants. Another important aspect is the convenience of the driver and the
passengers [27]. However, there are also systems which aim to improve the overall efficiency of the
vehicle [29] [30].
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The last-mentioned trend is the growth of connected drive functionalities [3, p.108, 121]. Connected
drive means that vehicles communicate among each other, with the infrastructure or the cloud [31]
[32]. The idea is that this interconnectedness makes the driving experience for the user more enjoy-
able, and the services can therefore create revenue for the Original Equipment Manufacturer (OEM)
[3, p.108, 121]. In the context of BEVs, it is also possible to use connected drive functionality to
enhance the driving experience [33]. Exploiting these potentials can significantly improve individual
mobility.

1.1 Current Challenges for EMSs in BEVs

While the previous section shows the advantages of BEVs, this type of vehicle is also faced with
challenges. In the following, those challenges that can be addressed by an EMS are investigated.
One of the major drawbacks is the limited range compared to an ICEV [34]. Additionally, BEVs face
even more severe range limitations in cold ambient temperatures [35] [36]. Under these conditions
ICEVs have the advantage that the waste heat of the engine can be used for heating. As BEVs are
more efficient, not enough waste heat is available [36]. Moreover, the range is less of an issue for
ICEVs than for BEVs. An EMS can help by synchronizing the heating and the recuperated energy to
achieve maximum overall efficiency [36] [178]. Another challenge for BEVs is the low lifetime of the
Lithium Ion Battery (LIB) [37]. The aging process of the LIB is heavily influenced by the stress-factors
during the operation of the vehicle [38]. Therefore, an EMS can be configured to alleviate the stress
factors and thus influence the endurance of the battery positively [36].

The main aim of an EMS is therefore to increase the range by maximizing the overall efficiency.
Additionally, an EMS can take into account the aging of the LIB. These objectives must be attained
without impacting negatively on those parameters that are directly linked to the user satisfaction. One
of the main challenges for an EMS is therefore to define and resolve the objectives. Moreover, the
scope of the EMS must be defined. This encompasses the definition of the subsystems and param-
eters that are influenced by the EMS. These targets must be attained with the available resources.
The limited resources are forecast data and computing capacity.

The EMS designed for this thesis meets these challenges: The Mixed Optimization- and Rule-
Based Energy Management System (MORE) works with little onboard computing power and does
not rely on forecast data. It encompasses the driving strategy as well as the heating system to
facilitate an optimal trade-off between different objectives.

1.2 Composition

The main part of this thesis is structured as follows: First, the Theoretical Foundation (Chapter
2) gives the reader the necessary background knowledge to understand and assess the presented
EMS. The focus lies on the description and classification of the optimization methods as well as the
tools for modeling BEVs. The topics are selected to be relevant for the thesis but are areas on which
it supplies no original research. Second, in the State of the Art (Chapter 3) the focus lies on EMSs for
BEVs. Moreover, a classification for EMSs is drawn up. The chapter also contains a criticism of the
state of the art that illustrate the weaknesses of the existing literature. Third, the Scientific Objective
(Chapter 4) identifies the research questions and highlights the mission statement for this thesis.
Next, the Approach (Chapter 5) presents how the MORE works. The chapter also explains how the
results needed for this thesis are generated and what tools are used. The highlight is the description
of the optimization problem and the concept for the online application. Subsequently, the Results
(Chapter 6) demonstrate that the concept is feasible and leads to promising results. The results
of selected experiments are presented and discussed in detail. Finally, the Discussion (Chapter 7)
highlights the advantages and disadvantages of the chosen concept and gives an outlook to possible
future work.
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2 Theoretical Foundation

This chapter aims to provide the reader with the necessary background information to under-
stand the Mixed Optimization- and Rule-Based Energy Management System (MORE). It focuses
on Multi–Objective Optimization (MOO) (Section 2.1) and on modeling of BEVs (Section 2.3).

2.1 Basics of Multi-objective Optimization

This section describes the basics of MOO. It concentrates on information that is used for imple-
menting the MORE.

2.1.1 Definition of Multi-objective Optimization
Many real-world optimization problems require MOO, because conflicting objectives must be con-

sidered [39, p. 1] [40, p. 517-518]. Examples for Multi–objective Optimization Problems (MOOPs)
can be found in the optimization of the powertrain in vehicles, in EMSs for different applications, in
the scheduling of power plants and in production planning.

The aim of MOO is to optimize more than one objective at the same time [39, p. 5]. The basic
MOOP without constraints is shown in Equation 2.1 [40, p. 518]. In the following, all notations are
given for minimization problems. According to the duality principle, maximization problems can be
reformulated to minimization problems [39, p. 5][40, p. 13][41, p. 14].

min
y

f(y) = min
y

[f1(y), f2(y) . . . fk(y)],y ∈ Rn (2.1)

The vector y is called decision vector and consists of the decision variables, shown in Equation 2.2
[39, p. 5].

y = [y1, y2, . . . yn]
T (2.2)

In contrast to that, single objective optimization only optimizes one objective. Consequently, the basic
formulation for a single objective optimization problem is as shown in Equation 2.3 [40, p. 13]. In this
case only one objective function exists.

min
y

f(y), y ∈ R (2.3)

Most real-world problems are constrained [40, p. 481]. For these problems, the constraints must be
added to the formulation of the MOOP in Equation 2.2. This is done in accordance with [41, p. 13].

h(y) = [h1(y), h2(y) . . . hl(y)] = 0 (2.4)

g(y) = [g1(y), g2(y) . . . gm(y)] ≥ 0 (2.5)

Equation 2.4 expresses the equality constraints, while Equation 2.5 expresses the inequality con-
straints [41, p. 13]. A vector y must satisfy Equations 2.4 and 2.5 to be a solution to the minimization
problem formulated in Equation 2.1 [41, p. 14]. The functions gi(y) and hj(y) are called constraint
functions [41, p. 14]. The constraint functions define the feasible region or the search space of the
optimization [41, p. 14].

2.1.2 Problem Formulation for Multi-objective Optimization Problems
For a single objective optimization problem, a global or local optimum can be found. The optimum is

the vector minimizing the objective function f(y). For MOOPs, no universal definition for an optimum
exists [43, p. 1]. Which vector or vectors y solve the MOOP depends on the individual user who
applies the optimization procedure. It is assumed that this user is an expert in the problem domain
and therefore knows which solution is satisfying for them. In the following, the user is referred to

3
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Description

Examples

Figure 2.1 : Classification of optimization methods according to the involvement of the DM [42]

as Decision Maker (DM). The MOOP is formulated to allow the DM to interact with the optimization
algorithm. As a result, four different approaches can be chosen.

Figure 2.1 gives an overview of the approaches sorted by the involvement of the DM. The first
possibility is to cut out the DM completely. This method is called no preference. However, the DM
usually formulates the optimization problem in a way that their preferences still shape the outcome of
the optimization. The second approach is called an a priori approach. In this case the DM states their
wishes before the optimization is run. This means the MOOP is transformed into a single objective
problem for which a global or local optimum can be found. One possibility to do that is to use an
aggregating method. The most straight-forward method to transform a MOO into a single objective
problem is the weighted sum method. Equation 2.6 showcases this approach. [42]

min
y

f(y) ⇒ min
y

n∑
i=1

θi · fi, where
n∑

i=1

θi = 1 (2.6)

The vector θ is called DM priority vector, as it expresses how the DM prioritizes the objectives. To
obtain better results, it is possible to normalize the objective function using the Nadir and Utopia
values [42, p. 7]. The Nadir value fN

i (y) is the worst possible outcome of fi(y). The Utopia value f0
i ,

on the other hand, is the optimum of fi(y), if it is optimized separately. The computation of the Utopia
values is straightforward, while the Nadir values often necessitate problem specific knowledge or
cannot be computed at all. How the objective functions fi(y) can be normalized is shown in Equation
2.7 [42, p. 14-15].

fnorm
i (y) =

fi(y)− fN
i (y)

f0
i (y)− fN

i (y)
(2.7)

A posteriori means that the DM decides which solution is used after the optimization is done. The
optimization comes up with a selection of equally good solutions and the DM decides which of these
solutions is acceptable for them. As shown in Figure 2.1, a posteriori approaches require a higher
involvement of the DM than a priori approaches. In particular, the DM must interact with the opti-
mization after every run of the algorithm. For an a priori approach the preferences of the DM must
be stated only once, even if the algorithm is run multiple times. The concept of these equally good
solutions is called Pareto optimality. A solution is Pareto optimal if no objective can be enhanced
without deteriorating another [39, p. 10]. In the following, the most important definitions concerning
Pareto optimality are given. These definitions are in accordance with [39] and [40].
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1. Domination: A point y∗ dominates y ∈ Rn if Equation 2.8 and 2.9 are fulfilled [39, p. 11] [40,
p. 519].

fi(y
∗) ≤ fi(y) for all i ∈ [1, n] (2.8)

fj(y
∗) ≤ fj(y) for one or more j ∈ [1, n] (2.9)

2. Non-dominated: A point y∗ is non-dominated in y, if no point y exists that dominates x∗ [40,
p. 519].

3. Pareto point: A point y∗ is called Pareto point, if it is non-dominated within the search space
[40, p. 519].

4. Pareto set: The set containing all Pareto points y∗ is called Pareto set [39, p. 11] [40, p. 519].

5. Pareto front: The Pareto front contains the function vectors f(y∗) of all Pareto points y∗ in the
Pareto set [39, p. 11] [40, p. 519].

Typically, the result of an a posteriori method is the Pareto set and the resulting Pareto front. The DM
considers these results and chooses the solution that fits their needs best. Many different a posteriori
methods exist. Here, only one example is given: The weighted sum method shown in Equation 2.6
can also be adapted to be used as an a posteriori method. In this case, the weights θ1, θ2 . . . θn are
varied to obtain a Pareto set of solutions. Afterwards the DM chooses one solution.

In the context of EMSs, the DM often cannot influence the results after the optimization. For
example, if the EMS is used during the operation of a vehicle, the DM being the engineer who
designed the EMS has no opportunity to interact with the algorithm after the optimization. However,
they can use an a priori method to state their preferences before the algorithm is implemented in the
vehicle.

The rightmost approach in Figure 2.1, demands the highest involvement of the DM. This approach
is referred to as interactive because the DM continuously interacts with the algorithm during the
optimization procedure.

2.2 Overview of Optimization Methods

In the previous section (Section 2.1.1), a basic MOOP is introduced. Based on the explanations
regarding the MOOP, this section provides an overview of optimization methods. First, a categoriza-
tion of optimization methods is given. Second, the three algorithms used in this thesis are introduced.
These are Genetic Algorithms (GAs), Sequential Quadratic Programming (SQP) and Dynamic Pro-
gramming (DP).

2.2.1 Categorization of Optimization Methods
Figure 2.2 shows how global optimization methods can be categorized. The figure shows a small

excerpt of methods; for a more detailed overview refer to [39]. For enumerative methods, each
possible solution is evaluated, the results are then compared, and the best result is chosen as the
optimum [39, p. 21]. This strategy can only be applied if the number of possible solutions is very
limited [39, p. 21].

Stochastic optimization methods were devised to solve irregular optimization problems [39, p. 22].
For most stochastic optimization procedures, no guarantee is given that they find the global optimum
[39, p. 22-23]. Typically, no domain knowledge is integrated into the approach [39, p. 22]. Basically,
the objective functions fj(y) are used to assign a fitness value to the possible solutions y [39, p.
22]. The optimization algorithm uses these fitness values to find the optimum [39, p. 22]. The most
straightforward stochastic optimization algorithm is the random walk [39, p. 22]: In each iteration a
randomly selected yi is evaluated. The value f(yi) is stored. Then a new yi+1 is chosen by adding
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Figure 2.2 : Overview of the Classification for Global Optimization Methods according to [39, p. 21]

a random vector d to the vector yi. The new value of the objective function f(yi+1) is computed and
compared to f(yi). If f(yi+1) is better than f(yi), yi+1 is taken as the starting point for the next step.
Otherwise, it is discarded and yi remains the starting point for the next step. For most MOOPs, the
random walk is not efficient [39, p. 23]. Over the years several more complex stochastic optimization
algorithms have been developed. One of the most important classes are GAs.

2.2.2 Genetic Algorithm
In the following, an introduction to GAs is given. As shown in Figure 2.2, GAs are a heuristic

optimization method. Their strength is, as with other heuristic approaches, that they can be applied
to a wide variety of optimization problems [41, p. 82]. Two aspects should be noted: Firstly, while
GAs can be applied to a wide variety of optimization problems, this does not mean that they are
necessarily the most efficient approach or that they yield the best possible results. Secondly, not
every GA can be directly applied to every problem.

As already motivated in Section 2.1.2, this thesis focuses on an a priori approach. In this case a
GA for a single objective problem can be used. In the following, the basic working principle of such a
GA is described.

Figure 2.3 exemplifies the sequence of a GA. The terminology for GAs is inspired by the terminol-
ogy used to describe evolution in nature. Table 1 defines the key terms.

As shown in Figure 2.3, in the first step the initial population is created. This means that an initial
set of candidate solutions is generated. Next, each of the individuals is evaluated and assigned a
fitness value. This evaluation can be done using a model. The model takes the individuals as input
and returns the fitness value. In the next step, it is checked whether one or more termination criteria
are met. If this is the case, the individual with the highest fitness value is returned and the algorithm
terminates. If no termination criterion is met, the algorithm continues with the selection. In this
step the individuals for the next population are selected. In general, the aim is to discard the worst
individuals and keep the best, while at the same time maintaining the diversity of the population.
A diverse population helps to prevent getting stuck in a local minimum. After the selection, the
individuals recombine. This means that the information of two individuals is blended. The final step
is the mutation. Mutation means that random changes are applied to selected individuals. After the
mutation, the next iteration of the GA starts with the evaluation. One iteration of the GA is referred to
as generation. [40, p. 50]

The GA contains deterministic as well as random operators. The evaluation of the individuals,
the check for the termination criteria and some variations of the selection are deterministic, while
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Figure 2.3 : Basic sequence of a GA (refer to [40, p. 50])

Table 1 Terminology for GAs (refer for example to [40] [41])

Term Definition in context of GAs

Individual Possible solution in search space; can either be continuous or binary coded

Population Set of individuals

Generation Iteration of GA; population during one iteration

Child Individual of following generation

Parent Individual of current generation

Fitness value Value assigned to individual indicating how well it solves the optimization
problem

Selection Process of choosing the individuals for cross-over

Recombination Transfer of information between individuals; contains random elements

Mutation Random changes made to individuals
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Figure 2.4 : Example of an un-encoded individual

the mutation, the recombination and sometimes the creation of the initial population contain random
elements.

In the following, different ways to implement the individual steps of a GA can be implemented are
introduced. The focus lies on option used in this thesis.

Representation of Individuals: The individuals can either be represented with real values or
be encoded. In this thesis, the individuals are represented with real values. Figure 2.4 shows a
schematic example of an individual consisting of real valued variables. Real valued individuals have
the advantage that they facilitate faster computation because they do not have to be decoded before
evaluation [40, p. 50] [41, p. 86]. Additionally, they are more accurate, and the required accuracy
and range does not have to be defined prior to computation [41, p. 110]. The main disadvantage of
real-valued individuals is that they differ more from the biological model [41, p. 86]. This means that
it is more difficult to draw up meaningful recombination and mutation operators [41, p. 110].

Initialization: Typically, the initialization of the population is done by generating the individuals ran-
domly [40, p. 180]. The user defines the range in which the individuals are created [40, p. 180].
However, sometimes the convergence of the GA can be improved if the creation of the initial popula-
tion is modified. Firstly, more individuals than necessary can be created and only the best individuals
are kept for the initial population [40, p. 180]. Secondly, the initial population can be enhanced by
introducing expert solutions as individuals [40, p. 180].

Mutation: Mutation describes the process of randomly making changes to an individual [41, p. 95].
The mutation rate specifies how likely such a change is [40, p. 49]. Typically, the mutation rate in GAs
is low (about 1-2 %) [40, p. 49]. However, no general rule exists how the mutation rate should be set
[40, p. 49]. Both, a too high and a too low mutation rate, have an adverse impact on the results of the
GA [40, p. 49].

In a GA with encoded individuals, the most straightforward implementation of mutation is that each
bit of each individual has a probability to be switched [40, p. 49]. However, this does not work for real-
valued individuals. The simplest approach to mutation for real-valued GAs is the random mutation
[40, p. 56] [41, p. 122]: With a certain probability each parameter yi is replaced with a random number
within the search space. A more popular method is the normally distributed or Gaussian mutation
[40, p. 215] [41, p. 122]: Each parameter of each individual is replaced by a random number with
a certain probability. This random number is normally distributed around the original value of the
parameter in the parent individual.

Crossover: Crossover describes the combination of the information of two individuals. In general,
it is the dominant factor for change in the population from one generation to the next [41, p. 112].
The different implementations of crossover operators can be categorized into two classes [41, p.
112-113]: Naive and blended crossover.

The simplest implementation of naive crossover is the single-point crossover [41, p. 112-113] [40,
p. 209]: A random position within the individuals is chosen. The child receives all information before
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this point from one parent, and all information after this point from the other. This concept can be
expanded to multiple-point crossover [40, p. 210] and to uniform crossover [41, p. 112] [40, p.
210]. In the case of uniform crossover, a separate decision for each parameter is made. Either the
information from the first or the second parent is chosen for the child [40, p. 210-211]. All variations of
naive crossover can be used with encoded and real-valued individuals [40, p. 209-211][41, p.93-94,
111].

In contrast to that, blended crossover can only be used with real valued individuals [41, p. 113].
The idea is that the two parents are connected by a straight multidimensional line and the children
lie on that line. The exact position of the children is determined by the specific implementation. For
example, a parameter β can be used to compute the children using the following set of equations [40,
p. 213].

ymin(i) = min(ya(i),yb(i))

ymax(i) = max(ya(i),yb(i))

∆y(i) = ymax(i)− ymin(i)

ychild(i) = U(ymin(i)− β∆y(i),ymax(i) + β∆y(i))

(2.10)

In Equations 2.10, ya and yb denote the chosen parents and y the resulting children. The index i
indicates that the i-th feature of the vector is regarded. The children are determined by the uniform
distribution in the area defined by the parents and the parameter β. The parameter β is defined
by the user. For β < 0 the children lie between the parents, for β > 0 the children lie outside the
range defined by the parents. Both configurations are used. This type of crossover is referred to as
heuristic crossover. A related approach is the arithmetic crossover [40, p. 212-213] [41, p. 113]: For
this method the weighted arithmetic mean of the parents is used to create the children.

Selection: The aim of selection is to choose the individuals for crossover and therefore those in-
dividuals whose information is transferred to the next generation [40, p. 45-46]. The most common
approach is the roulette wheel selection [40, p.46-49, 199]: Each individual is assigned a section of
an imaginary roulette wheel according to its fitness value. In the next step a pointer is spun, stopping
randomly in one position of the wheel. The individual that is assigned this section is chosen. Because
individuals with a higher fitness value are assigned a larger section of the wheel, they have a higher
probability of being chosen. The process is repeated until sufficient parent individuals are selected.

The problem with roulette wheel selection is that the fittest individual might not be chosen [40, p.
200]. Consequently, the information of this individual is lost, and the algorithm might move further
away from the optimum [40, p. 200]. To avoid this, the roulette wheel selection can be modified to
stochastic universal sampling [40, p. 199-201]: Again, the sections of the roulette wheel are allocated
according to the fitness value of the individuals. However, the pointer is modified. Instead of spinning
a single pointer multiple times, as many pointers as selected individuals are used. The pointers are
equally spaced and spun only once to select the individuals. This reduces the risk of not choosing
the fittest individual.

Besides roulette wheel selection and its variations, another popular selection method exists: the
tournament selection [40, p. 207] [41, p. 88-89]. Tournament selection means that two or more
individuals are chosen randomly to compete against each other [40, p. 207]. Each of these competi-
tions is called a tournament. The individuals in one tournament are compared to each other and the
fittest individual is selected. Two variations exist [40, p. 207-208]: Strict and soft tournament. In a
strict tournament the fittest individual is chosen with a likelihood of 1. In a soft tournament the fittest
individual only wins with a likelihood smaller than 1. This introduces another stochastic element into
the selection process.

Elitism: Elitism means that not all individuals from one generation are created by crossover of the
parent individuals, but that the best parents survive into the next generation [40, p. 188]. This is
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done to avoid losing good solutions [40, p. 188]. According to Simon [40, p. 190] elitism should
always be used because it significantly improves the algorithm at low computational costs. Mainly
two implementation options exist [40, p. 188]: Firstly, less children can be produced by crossover.
The missing children are the best individuals from the parent generation. Secondly, the full number
of children can be generated by crossover. The worst children are replaced by the best parents.
The second option has the disadvantage that it requires more function evaluations and sorting, but it
usually yields the better results [40, p. 188].

Termination: A variety of termination criteria for GAs exist, which can either be used separately or
be combined [40, p. 181-182]: Firstly, it is possible to stop after a predefined number of generations or
evaluations of the fitness function. The advantage of this approach is that the run-time is predictable.
Secondly, the algorithm can terminate if the solution is satisfactory. The difficulty is to decide when a
solution is satisfactory. Moreover, the change of the fitness values can be used as an indicator. Either
the algorithm stops if the fitness value of the best individual does not change significantly anymore, or
it can terminate if the average fitness value of the population remains more or less constant. Lastly,
the standard deviation of the population can be used as an indicator as when to stop. A low standard
deviation means that the population is uniform.

Constraint Handling: To solve problems that are constrained, as defined in Equations 2.4 and 2.5,
the GA must be adapted [40, p. 481]. In this thesis only linear constraints are considered because
they suffice to define the MOOP. Three main approaches for constrained problems exist [40, p. 481]:
Penalty function approach, special representation of the individuals or special implementations of the
operators and repair algorithms. Additionally, hybrid approaches can be used [40, p. 481].

According to Simon ([40, p. 483]) penalty approaches are the most popular approaches. These
approaches work by adding a penalty term to the fitness function which penalizes infeasible solutions
[40, p. 483]. Alternatively, these solutions can also be eliminated [40, p. 485]. Two kinds of penalty
algorithms exist [40, p. 483-485]: Interior and exterior point methods. While exterior point methods
allow infeasible individuals, interior point methods only permit feasible individuals. Exterior point
methods are more common because the infeasible individuals might still contain valuable information
[40, p. 484].

The special representation of the individuals or special implementations of the operators is specific
to the optimization problems [40, p. 482]. It means that either the individuals are represented in a
way to make infeasible solutions impossible or that the operators (initialization, selection, mutation,
crossover) are implemented so that infeasible individuals are not created [40, p. 482]. Because
these methods are specific to the optimization problem, they must be developed specifically for every
problem and are therefore harder to implement [40, p. 499]. However, they often also lead to the best
results [40, p. 499].

Repair algorithms are used in GAs to repair infeasible individuals so that they become feasible
again [40, p. 482]. Typically, some infeasible individuals remain to preserve the diversity of the
population [40, p. 482].

2.2.3 Sequential Quadratic Programming
SQP is a gradient based optimization method [44, p. 529]. It differs from GAs insofar as it requires

a more precise mathematical description. In the context of this thesis, only the basic concept of SQP
is presented. The aim is to explain the different behavior of the algorithms in the practical application.

The term SQP describes a class of algorithms that all follow the same pattern for solving optimiza-
tion problems but differ in the implementation. SQP algorithms are efficient on small as well as on
large scale problems. Variations exist for unconstrained and constrained problems [44, p. 530]. SQP
optimization works under inequality constraints as well as equality constraints [45, p. 1]. Moreover,
the constraints may be non-linear [45, p. 2]. Like all gradient based optimization methods, SQP
can only guarantee a local optimum [45, p. 6]. As mentioned above, gradient based methods and
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consequently SQP take the structure of the problem into account and the problem must fulfill certain
requirements for gradient based methods to be applicable. In general, SQP methods pose rather
weak requirements on the problem, as the gradient is typically approximated.

SQP solves a constrained nonlinear optimization problem of the form described in Section 2.1.1 in
Equation 2.3. f(y) as well as g(y) and h(y) can be nonlinear [45, p. 2].

For constrained optimization problems, the first order optimality conditions are more difficult to
formulate than for the unconstrained case [44, p. 320]. In the unconstrained case the first order
optimality condition is that the gradient of the objective function is zero [44, p. 14-15]: ∇f(y∗) = 0.
For an exhaustive treatment of all optimality conditions for unconstrained optimization refer to [44, p.
14-17]. For constrained optimization the first order optimality condition is expanded to the Karush-
Kuhn-Tucker (KKT) conditions [44, p. 320-321].

The basic principle of SQP methods is to model the original optimization problem at the current
step k with a Quadratic Programming (QP) subproblem [44, p. 530] [45, p. 2]. This subproblem
is minimized to find the next iterate yk+1 [44, p. 530][45, p. 2]. The subproblem is chosen to be
quadratic because a QP problem reflects the non-linearity of the original problem and can still be
solved efficiently [45, p. 7].

It follows that for the implementation of a SQP method three separate issues must be addressed:
Firstly, how can the QP be formulated [45, p. 10]? Secondly, how can the QP be solved [45, p. 10]?
Thirdly, how can global convergence be ensured [45, p. 27]? These are also the main points in which
SQP methods differ. Moreover, this structure allows to break down the analysis of SQP into smaller
problems [45, p. 10]: For the algorithm to converge the QP subproblem must be solvable and the
resulting steps must lead into the right direction.

First, the formulation of the QP subproblem is looked at. The general form of a QP problem is [45,
p. 7]:

min
dy

(rk)Tdy +
1

2
dy

TBkdy

subject to ∇h(yk)Tdy + h(yk) = 0

∇g(yk)Tdy + g(yk) ≤ 0

(2.11)

dy is defined as dy = y − yk [45, p. 7]. To define a QP for a SQP method rk and Bk must be suitably
defined [45, p. 7]. The most obvious choice for the QP would be the local approximation to f(y) at yk

[45, p. 7]. This approach works only with linear constraints. The QP can be expanded to work with
non-linear constraints [45, p. 7].

The solution of Equation 2.11 is used to update the iterate of the original optimization problem:
yk+1 = yk + dy [45, p. 9]. How the QP problem is solved is one of the design parameters of a SQP
method [45, p. 7]. A possible approach is the Newton method [45, p. 13-15]. One challenge is
that the solution for the QP problem can only be found if the Hessian matrix ∇2

yyL(yk, uk, vk) fulfills
certain conditions. For a discussion of these conditions refer to [45, p. 16-26]. Here, Boggs et al.
also discuss different approaches how the approximation of the Hessian matrix can be adapted to
fulfill these conditions. SQP can be combined with line search as well as with trust region methods
[44, p. 545-546].

The local convergence of SQP methods designed by the above principles can be shown [45, p.
12]. However, for practical applications local convergence is not enough and global convergence is
required [45, p. 10]. To gain a clear understanding of the terms, a short definition is given [45, p.
10]: If an optimization method converges locally, this means that the optimum y∗ can be found from
a starting point y0 that is ’close enough’ to y∗. For real-world problems it is usually not possible to tell
whether y0 is close enough to y∗, because y∗ is of course not known when y0 is chosen. Therefore,
the aim is to develop globally convergent methods. These methods also converge to y∗ from remote
starting points y0. It is important to note that global convergence is different to convergence toward a
global optimum.
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To facilitate global convergence, a merit function approach can be used [44, p. 540] [45, p. 27].
The merit function φ tracks the process of the optimization over the iterations [45, p. 27]. Every step
dy must not only solve the QP sub-problem, but also lead to a minimization of the merit function φ
[45, p. 27]. The step length can be adapted, but the direction of the step remains unchanged [45, p.
27]. For a detailed discussion of merit function approaches and their theoretical background refer to
[44, p. 540-543] [45, p. 27-39].

In accordance with [45, p. 11], a description of the basic SQP algorithm is given in the following.
The approximations (y0, u0, v0), B0 and the merit function φ are given. At the beginning the iterate
counter is set to zero: k = 0.

1. Formulate and solve QP subproblem from Equation 2.11 to obtain (dy, du, dv).

2. Choose step length α to satisfy:
φ(yk + αdy) < φ(yk) (2.12)

3. Set

yk+1 = yk + αdy

uk+1 = uk + αdu

vk+1 = vk + αdv

(2.13)

4. Stop if converged.

5. Compute Bk+1.

6. Set k to k + 1 and go to step 1.

The above algorithm leaves many implementation details open but highlights the basic concept of
SQP. For implementation details both [44] and [45] can be referred to.

2.2.4 Dynamic Programming
DP is a deterministic optimization technique [46, p. 23]. Unlike GA and SQP, it can theoretically

determine the global optimum e.g. the minimal costs of a process [46, p. 23].
To describe DP, the technique is decomposed into two steps: First, the problem at hand must be

reformulated to have the required structure for DP. Second, the reformulated problem is optimized.
At the core of DP lies Bellmann’s principle of optimality [46, p. 18]. It states that, if a problem can

be decomposed into sub-problems, these problems can be optimized separately and be put together
at the end to form an optimal solution [46, p. 18].

According to [47, p. 14] the optimization problem in its most general form can be written as follows:

Problem P 0 : p∗ = opt
yεY

f(y) (2.14)

In Equation 2.14, y denotes the decision variable that is taken from Y and f(y) the objective function.
The decomposition means that each state is expressed as a function of the preceding state [46, p.
2-3]:

sk+1 = qk(sk, yk, wk) (2.15)

In Equation 2.15, sk denotes the state, yk is the decision variable and wk the noise or disturbance.
The index k denotes the discrete time. k lies between 0 and N − 1, with N being the horizon or
number of time-steps in which the control is applied.

This formulation is sometimes referred to as multistage decision model [47, p. 36]. For DP the
model must be Markovian [47, p. 52]. Markovian means that it satisfies the Markov condition [47,
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p. 52]: Every state only depends on the previous state and the transition function. The formulation
in Equation 2.15 shows a Markovian model, because xk+1 is only a function of xk and no previous
states.

Moreover, the objective function must be cumulative [46, p. 3]. The total costs with a cumulative
objective function can be written as follows [46, p. 3]:

fN (sN ) +

N−1∑
k=0

fk(sk, yk, wk) (2.16)

In Equations 2.15 and 2.16, the random disturbance wk cannot be influenced and therefore not be
optimized [46, p. 3]. The objective function can therefore be more meaningfully expressed as the
expected costs [46, p. 3]:

J(s0) = E

{
fN (sN ) +

N−1∑
k=0

fk(sk, yk, wk)

}
(2.17)

In Equation 2.17, J(s0) denotes the expected total costs for the initial state s0 [46, p. 13].
The parameters that can primarily be influenced are the controls yk. A series of functions for the

control parameters is called policy. A policy can be defined as follows [46, p. 13]:

π = {µ0, . . . , µN−1} (2.18)

Each control parameter can be expressed as a function of the current state [46, p. 13]:

yk = µk(sk) (2.19)

The expected costs from Equation 2.17 can be rewritten as follows [46, p. 13-14]:

Jπ(s0) = E

{
fN (sN ) +

N−1∑
k=0

fk(sk, µk(sk), wk)

}
(2.20)

The aim of DP is therefore to find the optimal policy π∗, which minimizes the costs [46, p. 14]. This
can thus be expressed as [46, p. 14]:

Jπ∗(s0) = min
πεΠ

Jπ(s0) (2.21)

In Equation 2.21, Π denotes the set of all admissible policies.
Figure 2.5 shows the representation of a deterministic multistage model with a transition graph.

Each circle represents one state. The system can transition between the states depending on the
control variables uk and the current state sk. A time-step is referred to as stage. The numbering of
the stages is given beneath Figure 2.5. In the figure each arrow is associated with a cost function
fk(sk, yk). It is important to note that the transition can only go from one stage to the next and never
backwards or within one stage.

After the DP problem is formulated, the DP approach is used to solve the problem. First, the ob-
jective function for every state is computed. This is done in accordance with Equation 2.17 by taking
the costs from the previous state and adding the costs for the transition [48, p. 359]. This process
is shown in Figure 2.6. The notation introduced in Equations 2.16 to 2.21 is used. It represents a
detailed example taken out of Figure 2.5. In the example, state s2,1 can be reached by two ways
from the previous state s1,1. One way incurs the costs f1a, the other the costs f1b. Which of the two
possibilities is used depends on the decision variable y1. According to Equation 2.17 the cumulative
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Figure 2.5 : Transition graph for deterministic multistage decision model (refer to [46, p. 65])
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Figure 2.6 : Decomposition of optimization problem, transition between two states

objective function J(s2,1) can be expressed as:

J(s2,1) = J(s1,1) + f1 (2.22)

If f1a < f1b the transition from s1, 1 to s2, 1 via f1a is the optimum for this sub-problem. These costs
are stored by the algorithm [48, p. 359]. Therefore, the computation for every state must be done
only once [48, p. 359]. The least expensive path represents the optimal control policy [46, p. 14]. In
this example the sub-problem is solved by direct enumeration. This is the common DP approach [47,
p. 21-22].

It is evident that this strategy is less computationally expensive than a naive enumerative approach
[48, p. 365]. However, the trade-off for this are higher memory demands [48, p. 365].

Theoretically, DP finds the global optimum [46, p. 18]. In practical applications this is not always
the case. When the problem is formulated for DP, the optimum for this problem can be guaranteed.
However, the challenge is to cast a real-life problem into the correct formulation for DP. If the problem
is not discrete in the first place, discrete states must be defined artificially [46, p. 25]. This might
mean that the optimum found by the DP algorithm is not the optimum for the original continuous
optimization problem [46, p. 18]. Reformulating the problem to satisfy the Markov condition might
also not always be possible or lead to suboptimal solutions [47, p. 56].

An additional challenge for using DP is the curse of dimensionality [47, p. 170] [49, p. 3]. It is
important to note that the curse of dimensionality impacts other optimization methods as well [47, p.
170]. However, in the following it is considered only in connection with DP. Powell [49] describes
three curses of dimensionality [49, p. 5-6]:
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• State Space: The computation time grows exponentially with the number of dimensions of the
state variable s. This can be written as O(LI), with L being the number of values the state variable
can assume and with I being the dimensionality of the state variable.

• Outcome Space: The computation time grows exponentially with the number of dimensions of the
random disturbance w. This can be written as: O(MJ), with M being the number of values the
disturbance can assume and with J being the dimensionality of the random disturbance.

• Action Space: The computation time grows exponentially with the number of dimensions of the
decision variable u. This can be written as: O(NK), with N being the number of values the
decision variable can assume and with K being the dimensionality of the decision variable.

The three curses of dimensionality imply that DP becomes infeasible for many real-world problems
due to the high computation time [47, p. 180].

2.3 Modeling of BEVs

In this section an introduction to the modeling of BEVs is given. This is relevant for the thesis
because the developed EMS is based on a vehicle model.

Models are essential for the development process of all types of vehicles [50, p. 5-6] [51]. They can
facilitate faster and cheaper development, as they can reduce the need for physical prototypes. On
the one hand the components of the vehicle can be modeled individually, on the other hand the entire
powertrain can be modeled [52, p. 3]. This thesis focuses on the latter. Powertrain models often
only model the longitudinal dynamics of the vehicle. Thus, they focus on the energy transformations
done between the power source and the road. Powertrain models are used in combination with
optimization methods [52, p. 42]. Three distinct areas in which optimization methods and models are
combined can be differentiated [52, p. 42]:

• Structural Optimization: The structure of the powertrain is not yet defined. The model needs to be
flexible to compare different powertrain structures [52, p. 44]. An example for this can be found in
Pesce [53].

• Parametric Optimization: The powertrain structure remains fixed and only the parameters are
adapted. This was also done by Pesce [53] and by Tschochner [50].

• Control System Optimization: The supervisory control algorithm is optimized. This is the focus of
the thesis and examples can be found in Chapter 3.

The different applications lead to different requirements for the respective models [52, p. 42]. In
particular, the trade-off between computation time and accuracy needs to be considered [53, p. 20]
[54]: In general, higher accuracy leads to higher computation times.

2.3.1 Energy Conversion Scheme

Primary
Energy
Source

Internal
Energy
Storage

Vehicle’s
Mechanical

Energy

Driving &
Altitude
Profile

Vehicle

well-to-tank tank-to-vehicle vehicle-to-miles

Figure 2.7 : Energy conversions to move a vehicle (refer to [52, p. 4])
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For modeling vehicles, it must be considered how the energy is converted. Figure 2.7 shows
the energy conversions necessary for driving. Three energy conversions can be identified and are
explained in the following [52, p. 4]: Firstly, the Well-to-Tank energy conversion is done. Here, the
energy from the primary source is transformed to facilitate storing the energy within the vehicle [52, p.
4]. For BEVs the primary energy source can be any source of electrical energy, which is transported
to the vehicle and stored in the LIB [52, p. 6]. This upstream energy conversion is not part of the
powertrain simulation as it is performed outside the vehicle [52, p. 5]. Secondly, Tank-to-Vehicle
energy conversion is performed: The energy from the on-board energy storage is converted into the
mechanical energy of the vehicle [52, p. 4]. This mechanical energy is kinetic energy stored in the
movement of the vehicle and potential energy if the vehicle moves up a slope. This conversion is the
core part of powertrain simulation because the powertrain affects the energy conversion [52, p. 12].
The efficiency of this conversion can be optimized by design decisions regarding the powertrain as
well as the EMS [52, p. 12]. Lastly, the Vehicle-to-Miles energy conversion is performed. In this the
mechanical energy stored in the movement and altitude of the vehicle is dissipated while the vehicle
moves forward [52, p. 13]. The dissipation of energy is described by the elementary equation of
longitudinal dynamics [52, p. 13]. It is not influenced by the powertrain. It is for example influenced
by the driving strategy and the design of the vehicle body.

2.3.2 Elementary Equation of Longitudinal Dynamics
As mentioned in Section 2.3.1 the Vehicle-to-Miles energy conversion is described by the elemen-

tary equation of longitudinal dynamics. The equation can be written as follows [52, p. 14]:

mva = Ft(t)− (Fd(t) + Fr(t) + Fg(t) + Fi(t)) (2.23)

In Equation 2.23 mv, denotes the mass of the vehicle and a the acceleration. Ft is the traction force,
Fd are the aerodynamic friction losses, Fr the rolling friction losses, Fg is the uphill driving force, and
Fi(t) is the inertial force.

The aerodynamic friction losses Fa are the losses caused by the friction the vehicle experiences
when moving through air [52, p. 14]. It can be expressed as follows [52, p. 14]:

Fd(v) =
1

2
ρaAfcd(v, ...)v

2 (2.24)

With ρa being the air density, Af the frontal area of the vehicle and cd(v, ...) the aerodynamic drag
coefficient. cd(v, ...) must be approximated either mathematically or experimentally [52, p. 14]. It is
evident that Fd(v) can be influenced only by the velocity and design parameters of the vehicle’s body.

The rolling friction is the friction that is caused by the interactions of the tires with the road [52, p.
15-16]. It can be written as [52, p. 15]:

Fr(v, p, ..) = cr(v, p, ...)mvgcos(λq) (2.25)

In Equation 2.25 cr(v, p, ...) is the rolling friction coefficient [52, p. 15]. It depends on a variety of
factors such as the tire pressure and the texture of the driving surface [52, p. 15]. The term cos(λq)
takes the influence of the slope into account [52, p. 15]. The rolling friction losses Fr can be influenced
via the vehicle mass mv or the rolling friction coefficient cr(v, p, ...) [52, p. 15]. Both parameters are
independent of the powertrain.

The uphill driving force is the force needed for the vehicle to drive up a slope [52, p. 16]. It can be
formulated as [52, p. 16]:

Fg(λqa) = mvgsin(λq) (2.26)

The only parameter in Equation 2.26 that can be influenced in the design process of the vehicle is
the vehicle mass mv.

The last term of Equation 2.23 is the lumped together term to approximate the inertial forces of
the rotating parts of the powertrain [52, p. 16]. The inertia caused by the vehicle mass is already
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considered in the term mva [52, p. 16]. The inertial forces can either be modeled with the powertrain
components or summarized in Equation 2.23 [52, p. 16].

2.3.3 Approaches to Vehicle Modeling
Two basic approaches to vehicle modeling exist [52, p. 37-41] [50, p. 11]: The quasistatic and the

dynamic approach. In the following, both approaches are introduced and subsequently compared.
The quasistatic approach is also called inverse approach [50, p. 11]. Figure 2.8 shows the infor-
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Figure 2.8 : Information flow in vehicle model with quasistatic approach (refer to [52, p. 69], [50, p. 11])

mation flow for this approach. The simulation starts at the wheels and the power required from the
battery is computed in the powertrain [50, p. 11]. The components of the powertrain can for example
be modeled using efficiency maps [50, p. 12]. The Driving Cycle (DC) is divided into sections in
which the velocity is assumed to be constant [52, p. 38]. The choice of this interval influences the
computing time and the accuracy of the simulation. The quasistatic approach is suited to model com-
plex powertrains [52, p. 39]. The main drawback is that the model disregards the physical causality
[52, p. 39]. Moreover, if the battery or another component of the drivetrain cannot supply the required
power, the simulation must be repeated with an adjusted speed [50, p. 12]. This can also deterio-
rate the computation time. The dynamic approach takes the physical causality into account [52, p.

Battery Power
Link

Electrical
Machine

Gear
Box

Vehicle
Driving
Cycle

U

I

U

I

M

ω

F

v

v

Figure 2.9 : Information flow in vehicle model with dynamic approach (refer to [52, p. 69], [50, p. 11]))

40]. Figure 2.9 shows the information flow in the dynamic approach. The dynamic approach is also
referred as forward approach [50, p. 11]. The base of the dynamic approach is the mathematical
description of the system [52, p. 40]. Typically, the model is based on the ordinary differential equa-
tions [52, p. 40]. The dynamic approach is computationally more expensive [52, p. 41]. However,
some optimization problems can only be solved using the dynamic approach [52, p. 41]. Because
the description is based on differential equations, the dynamic approach needs more in-depth knowl-
edge of the modeled system [52, p. 40]. Both approaches can be used with different optimization
problems. As mentioned above not all problems can be represented using the quasistatic approach.
However, the higher computational effort might prevent the use of the dynamic approach. Moreover,
the formulation of a dynamic powertrain model is more difficult because a higher knowledge about
the system is required. For a thorough comparison of both approaches refer to [50, p. 13].
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3 State of the Art

This chapter introduces the research relevant for assessing the Mixed Optimization- and Rule-
Based Energy Management System (MORE). First, term "Energy Management System (EMS)" is
explained (Section 3.1). Next, methods how EMS can be classified are introduced (Section 3.2). In
the final section (Section 3.3) the current state of the art is reviewed and critiqued.

3.1 Terminology

The term EMS is used in different areas of engineering. For example, it is applied in the context
of buildings and comprehensive home EMS [55–57]. Some sources also integrate BEVs in the EMS
of buildings [58–61]. In the automotive sector the term is relatively new, as it is rarely found in the
context of ICEVs. The term emerged in the context of Hybrid Electric Vehicles (HEVs) and is mostly
used in this context [62–65]. Fewer references to EMS exist in literature on purely electric vehicles,
for example [66, 67].

In all the above-named contexts an EMS can be defined as follows: It is the software that distributes
the energy within the respective system. Energy refers to different forms of energy. Some EMS
manage only electrical energy, while others also manage other forms of energy such as thermal or
kinetic energy. An EMS can either manage the energy flows within one component, the whole system
or a subsystem within the superordinate system. The EMS is often the link between other subsystems
actively influencing the energy flows during the operation of the system. The EMS manipulates
control variables to achieve one or more objectives. Typically, one of the aims is to minimize the
energy consumption. Another might be to minimize the component aging. If multiple objectives are
defined the EMS seeks a trade-off between these objectives.

Another term that is sometimes used in a similar context is the term operation strategy or infre-
quently operational strategy. Examples can be found in [68–73]. There is no comprehensive definition
for operation strategies in the context of BEVs. However, in most publications it is used synonymously
with the term EMS. As EMS is the more common term, it is used for this thesis.

Figure 3.1 shows an example for an EMS in a BEV. At the top of the figure possible objectives are
listed. These include but are not limited to the vehicle dynamics, the range of the vehicle, the stress on
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Management

System
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Strategy HVAC
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Figure 3.1 : Example for the requirements and the subsystems managed by an EMS in a BEV
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the individual components and the comfort of the driver. A holistic EMS interacts with several subsys-
tems to optimize these objectives. For example, the EMS can interact with the Thermal Management
System (TMS), the Battery Management System (BMS), the software for the power electronics and
the electric machine, a driving strategy, and the Heating, Ventilation and Air Conditioning (HVAC).

3.2 Classification of EMSs

An overview of the different criteria for classification of EMSs is given in Figure 3.2. The first distinc-

EMS

Optimization based Heuristic

Multi-objective Single-objective

Global Local Online Offline

Rule
based

Fuzzy
Logic

Figure 3.2 : Overview over the classification of EMS

tion can be made between holistic and component-wise EMSs. A component-wise EMS centers on
one component of the vehicle. Component-wise EMS exist for example for the battery (e.g. [74–76]),
the gear set (e.g. [77, 78]) and for the TMS (e.g. [79–81]). One advantage of these EMSs is that
they are limited to one component and therefore their complexity can be low. However, in a BEV such
systems must be implemented for several components to ensure a trouble-free operation. Because
each of the systems has a limited sphere of influence, the solution that is found cannot be optimal for
the overall system.

In contrast, holistic EMSs encompass all or at least several components of the drive train (e.g. [82–
84]). Often a holistic EMSs has only limited influence over the components, as some of the energy
management tasks remain with the EMS of the respective component. The advantage of a holistic
EMS is the possibility to coordinate the operation to attain the optimal energy consumption.

EMSs can also be divided into optimization-based and heuristic systems [85]. An EMS is called
optimization-based if it uses an optimization method to distribute the energy within the system [85].
These systems strive for the optimal solution. They can either search for the global or for a local
optimum [86]. If the EMS searches for a global optimum, it cannot be used for real time optimization
[85].

Heuristic strategies cannot find the optimal solution [85]. One important subcategory of heuristic
strategies are rule-based strategies [85]. These work with a fixed set of rules deciding how the control
variables are adapted to the changing conditions [85]. The second category of heuristic strategies
are EMSs based on Fuzzy Logic Controllers (FLCs) [85]. The rules for heuristic EMSs can be devised
using an optimization method [85].

The final way to categorize EMSs is by distinguishing whether they are applied online or offline
[86]. Online means that the EMS can be used during a trip [86]. Offline strategies can generally not
be used for real world scenarios but are applied to more theoretical questions during the development
of the vehicle [86]. Moreover, they can be used as a point of reference [86]. Heuristic strategies are
online, while optimization-based EMSs are divided between offline and online [86].
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3.3 Review of the State of the Art

This section gives an overview of existing EMS. In Section 3.3.1, literature on component-wise
EMSs is reviewed. Section 3.3.2 deals with holistic EMS. The final subsection (3.3.3) summarizes
the section and provides a criticism of the state of the art.

3.3.1 Component-wise EMSs
In this subsection EMSs for the individual components of the vehicle are introduced. Even though

this thesis focuses on a holistic EMSs, it is relevant to consider component-wise EMSs because they
serve as a point of reference. Moreover, component-wise EMSs can be combined to form a holistic
EMS. The parameters which can be influenced by a component-wise EMS for each component, can
also be used by a holistic EMS. The subsection is organized by components.

Driving Strategies

Driving strategies are a component-wise EMS because one variable—the velocity—is adapted to im-
prove the performance of the vehicle. For this thesis, only driving strategies that optimize the energy
consumption are examined, as only these are directly related to the EMS. All the considered litera-
ture focuses on optimizing the velocity or the acceleration of the vehicle. The optimization objectives
that can be found in the literature beside the energy consumption, are the comfort of the driver, the
aging of the battery, and travel time.

In Table 2 an overview of the cited literature is given. The literature is categorized by whether it can
be applied online, by the objectives of the optimization, and by the applied method.

Yi et al. [87] divide the route into small sections. For every subsection a constant speed is chosen
that minimizes the roll and the air resistance. This simplified approach allows the authors to formulate
a convex optimization problem. The optimization method is not specified in the publication. [87] is set
apart from other publications because the authors consider the weather conditions, the road surface
and especially the wind speed for their optimization.

[88] describes a strategy for autonomous vehicles. The GPS is used to find the most energy
efficient route to reach the destination. This route is subdivided into prediction periods and the speed
profile for every prediction period is optimized using the minimum principle. The authors tested their
method only on a single prediction period. They model the drivetrain in detail including a non-constant
internal resistance of the LIB.

In [89] the authors minimize the aging of the battery in addition to the energy demand. They use
an aging model to compute the State of Health (SoH) of the battery and choose the velocity profile
to maximize both State of Health (SoH) and State of Charge (SoC). For the optimization they use
Pontryagin’s Minimum Principle (PMP) and a Hamiltonian function.

The sources [90, 91, 99] are published by the same team and the research is interlinked. In [90]
the authors optimize the acceleration of the vehicle, in [91] they focus on the deceleration and [99]
places the findings into the context of a larger system. For [90] and [91] the authors employ a similar
methodology: In both cases they only optimize part of the whole DC using GAs. Moreover, both
papers optimize the time for acceleration or deceleration respectively as well as the total jerk. The
jerk is used to measure the comfort of the passengers. For the acceleration they minimize the energy
demand and for the deceleration they maximize the recuperation. In both cases the optimization
variables are the acceleration as a function of time. In [90] the optimization problem is formulated
in three different ways: Firstly, the jerk is only considered as a constraint. Secondly, the jerk is
optimized alongside the other two objectives. Lastly, the jerk is a constraint as well as a part of
the objective function. In both papers the authors choose an a posteriori method. They use GAs to
create a Pareto front and the operator chooses their preferred solution. The authors aim for the online
implementation of their system and only optimize a limited time ahead. However, it does not become
clear how uncertainty in the prediction is handled. In [99] the approaches of [90, 91] are integrated

20



Table 2 Overview of literature on driving strategies

Source offline or online Objectives Method

[87] offline minimize air and roll resis-
tance

not specified

[88] online minimizes energy demand minimum principle

[89] online SoH and SoC of the bat-
tery

Pontryagin Minimum Prin-
ciple (with Hamiltonian
function)

[90] online time for acceleration, jerk,
energy demand

different GAs

[91] online time for deceleration, jerk,
recovered energy

multi-objective GA

[92] online range of vehicle rule-based approach and
DP depending on driving
situation

[93] online energy demand and time rule-based derived from
DP

[94] online energy demand and time DP

[95] online energy demand quadratic programming

[96] offline energy demand and time
for acceleration

multi-objective GA

[30] both implemented energy demand DP, NLP algorithm

[97], [98] online and offline combined energy demand, dynamic
behavior

SQP, NLP algorithm

into a system assisting the driver. Here the objectives are the total energy consumption, the jerk, and
the travel time.

Becker [92] details a driver assistance system that maximizes the range of a BEV. His EMS is
based on a detailed vehicle model and an analysis of the factors influencing the energy consumption.
He identifies three ways to minimize the energy consumption: Firstly, he dampens the velocity profile.
Secondly, he evaluates recuperation. Thirdly, he tries reducing the losses of the components. For
different driving situations he develops different approaches. For the acceleration and deceleration
of the vehicle he optimizes the velocity profile using DP. For driving with a constant speed, he uses
a heuristic strategy. The resulting driving strategy can be used online.

In [93], a so-called Eco-ACC designed by Bosch is discussed. The system was developed to work
with a HEV as well as with a BEV. The classical ACC functionality is expanded to minimize the
energy consumption. The energy consumption and the time needed for a maneuver are optimized
using DP. This approach can only be applied offline. Therefore, the authors use the results from the
optimization as basis to develop a rule-based strategy.
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In [94] the authors suggest a driving strategy based on DP. They express the velocity as a function
of the place and optimize it for the entire trip. To implement this global strategy, they use a prediction
of the future route. They claim that their approach is applicable online in the vehicle.

The authors of [95] also develop an Eco-ACC like [93], which they call ECC for ’Efficient Cruise
Control’. The system is designed with the Tesla Model S as an example. The approach is based
on a vehicle model implemented in MATLAB/Simulink. The power train of the vehicle is not modeled
in detail. This means that no efficiency maps of the individual components are used. The authors
take the status of traffic lights into account to compute the optimum velocity profile. The minimization
problem is formulated with a quadratic cost function consisting only of the energy consumption. The
solution must observe speed limitations. If a preceding vehicle is detected, a minimal distance must
be preserved. The optimization problem is solved using quadratic programming. The authors claim
that the system can be applied online.

Vaz et al. [96] describe a driving strategy that adapts the acceleration of the vehicle. They use two
approaches: Firstly, they use a fixed value for the acceleration for the whole maneuver. Secondly,
the acceleration varies during the maneuver. However, for the changing acceleration there is also a
limited number of different values. In the comparison of the two approaches the changing acceleration
yields better results and is therefore investigated in more detail. The objective function consists of
the energy demand and the time needed to reach the target velocity. The problem is solved using a
multi-objective GA with an a posteriori approach. In the power train model, a direct current machine
is modeled, making the scenario unrealistic. Moreover, the approach cannot be applied online.

In [30] Koch et al. investigate the combination of a driving strategy and the optimization of the
drive-train topology. The authors consider two algorithms: Firstly, they approximate the solution for
the driving strategy using a Non-linear Programming (NLP) algorithm. This algorithm can be applied
online. Secondly, they use a DP to find the global optimum and compare the online solution obtained
with it. They find that the NLP algorithm comes close to the global optimum. Koch et al investigate
two scenarios: On the one hand, they model the case in which the vehicle follows another, and the
velocity can only be varied in a small range. On the other hand, they model a scenario in which the
velocity can be varied in a wider range.

One area in which a driving strategy that minimizes the energy consumption is crucial is racing with
autonomous electric vehicles [97]. For this thesis only one such strategy is discussed as it focuses on
passenger cars. Herrmann et al. [97] develop an energy strategy that interacts with the path planner
and a friction estimation to find the optimal velocity. In [98] the optimization of the velocity using the
subsystems is presented. The energy strategy is based on a model of the drive train including the
thermal behavior of the components. It uses a NLP algorithm. The velocity optimization is solved
using SQP. The velocity is first optimized offline with the information available at the start of the race.
During the race it is updated to account for prediction errors as well as unforeseen events. What sets
[97] and [98] apart from other work in this section is that the concept is integrated in a vehicle and
issues as to the interaction with other controllers in the vehicle are resolved.

Hybrid Energy Storage System (HESS)

The battery is one of the core components of a BEV. Its safe operation is ensured by the BMS. As
the battery supplies the energy requested by the other components, usually no EMS beyond the BMS
is needed for the battery. This is different if a HESS is used.

A HESS is an energy storage system that consists of more than one type of storage [100]. A HESS
combines one storage type with a short response time and a high power density with a storage with
a longer response time and a high energy density [100]. The storage system can for example consist
of a LIB and a Super-Capacitor (SC) [101]. They can also encompass a Fuel Cell (FC) and a LIB
[102] or a FC and a SC [103]. Two types of LIB are also possible [104].

The high power storage - e.g. the SC - supplies the power during dynamic driving situations [105].
However, its energy density is too low to ensure a sufficient range for the vehicle [105]. Therefore,
the additional high energy storage is needed [105].
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Two different configurations exist [105]: Firstly, the LIB and the SC are connected to the electric
machine and with each other. This configuration is called fully connected or fully active [106]. Sec-
ondly, both storage systems are connected to the machine but not with each other. This is referred to
as a partly connected or semi-active configuration [106]. In the fully connected configuration, the two
systems can exchange energy among each other, in the partly connected that is not possible. The
two configurations are shown in Figure 3.3. In this figure the possible energy flows are indicated by
the arrows.

Lithium-ion Battery

Super Capacitor

Electric Drive-Train

(a) Fully connected configuration

Lithium-ion Battery

Super Capacitor

Electric Drive-Train

(b) Partly connected configuration

Figure 3.3 : Possible energy flows for a HESS

The task of the EMS in a HESS is to determine which storage is used to maximize the efficiency of
the drive train. Some systems also include the lifetime of the components especially the LIB [107].

For organizing the literature on EMS for HESS, the system introduced in Section 3.2 is applied.
Table 3 sums up the literature reviewed in this section. The table contains the type of HESS used
as well as all relevant details on the EMS. Every EMS optimizes the power distribution between the
energy sources.

Firstly, EMS for HESS that employ a rule-based strategy are discussed. The authors of [109] use
a rule-based strategy for a system consisting of a SC and a LIB. The system is not fully connected.
The authors develop three distinct strategies for acceleration, constant speed, and braking. The rules
for these strategies are formulated in flow charts and derived from the basic equations governing the
behavior of a vehicle.

In [75] the authors also introduce a rule-based strategy for an urban BEV. The storage consists of
a LIB and a SC, which are fully connected. Similar to [109], the rule-based strategy is expressed as
a flow chart and the goal is to minimize the energy consumption.

The authors of [110] investigate a rule-based EMS, which derives the rules from an optimization
run on a DC using Particle Swarm Optimization (PSO). The system consists of SC and LIB and is
fully connected. Like the other publications, it focuses on minimizing the energy consumption, but
the authors also strive to develop a strategy that minimizes the battery aging. They investigate the
influence of the temperature on the EMS and the authors conclude that the temperature does not
impact the EMS.

Hu et al. [76] also develop a rule-based EMS based on optimization. They use statistical analysis
to define the rules. They express the power provided by the SC as a linear relationship of the power
requested by the machine. This system is complemented with a FLC if traffic information is available.
The aim of the publication is to minimize the energy consumption as well as the battery aging.

In [113], different rule-based strategies are compared with each other. This source also provides
an overview of different approaches to an EMS for HESS and a classification. The strategy that
is proposed is based on a dynamic limitation of the battery power. The considered system is a
combination of a LIB and a SC. The aim of the optimization is to maximize the efficiency of the HESS
and to minimize the battery aging. The battery aging is represented by the Root Mean Square (RMS)
of the battery current. A lower RMS corresponds to less stress for the battery. This criterion ensures
that the system uses the SC for high power demands and to store the recuperated energy. For the
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Table 3 Overview of literature on HESS
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[108] FCV Optimization based
using DP

Fuel consumption (FC) Offline

[75, 109] BEV Rule-based Energy consumption Online

[110] BEV Rule-based derived
from PSO

Energy consumption
and Temperature

Online

[76] BEV Rule-based derived
from DP, secondary
FLC

Energy consumption
and Aging

Online

[107] HEV Optimization based
using DP

Drive train efficiency Online

[111] BEV Optimization based
using PMP

Energy consumption
and aging

Offline

[112] BEV FLC Energy consumption
and aging

Online

[113] BEV Rule-based using
dynamic power
limitation of LIB

Efficiency and RMS Online

[114] BEV Optimization based
using k-nearest
neighbor search

RMS of battery current Online

[115, 116] BEV Rule-based derived
from DP

Total costs of ownership Online

[117]

FC

BEV Filtering based
approach

Aging of FC and LIB Online

[118] BEV Fuzzy Sliding Mode
controller

Energy consumption Online

[103] FC BEV Radial basis NNs Hydrogen consumption Online
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evaluation of the strategy the range of the vehicle is fixed to 150 km and the size of the HESS is
adapted to the strategy.

In [115], a partly connected HESS consisting of a LIB and a SC for an electric city bus is inves-
tigated. The authors propose a rule-based EMS derived from a DP algorithm. Most notably they
employ an elaborate battery model to quantify the aging. This allows them to compute the total costs
of ownership and use them as optimization target. The total costs of ownership are influenced by
the battery aging, the configuration of the HESS and the efficiency. They also use the DP algorithm
for sizing the HESS. In [116] the authors build on the results and consider the influence the battery
pricing and the temperature has on the design of the EMS.

The authors of [117] introduce a HESS consisting of a FC, a LIB and a SC. Both the LIB and the
SC are equipped to store the energy from regenerative braking. These two storage types cannot
exchange energy. The authors address the sizing of the components as well as the EMS. For the
sizing they employ a MOO algorithm. The EMS on the other hand is designed to work online and
uses a filtering-based approach. The power demand is split according to frequency and met by
the individual sources. The FC provides the lowest frequency, the SC the highest and the LIB the
frequency range between the two.

In [103], a fully connected HESS consisting of a FC and a SC is described. The DC/DC-converter
is part of the EMS. The EMS is based on a radial basis function Neural Network (NN). A FLC is
used as a point of reference. The EMS based on the NN outperforms the FLC. The system aims to
minimize the hydrogen consumption and does not take the aging of the FC into account. The authors
focus on the mathematically correct description of the optimization problem.

Secondly, EMSs based on FLCs have been developed. In [112], the combination of a filtering
approach and a FLC is proposed. The system in this publication is a HESS consisting of a lead
acid battery and a SC. The power demand is filtered by frequency. Consequently, high frequency
power demands are met by the SC, while low frequency power demands are met by the battery. As
this is not the only criterion that determines which power source is used, a FLC is implemented that
combines the different criteria. It remains unclear which criteria are considered, but the authors state
that the SoC of both power sources is included. The system can be used online, and it optimizes the
battery lifetime as well as the energy efficiency. Due to the use of a lead acid battery the relevance
of this publication is only limited.

Another instance for a FLC can be found in [118]. Like in [112] the combination of a SC and a
lead acid battery is considered. The system is fully connected. The authors combine the FLC with a
sliding mode controller to optimize the range. Additionally, battery aging is considered, but the focus
remains on the range.

Thirdly, optimization-based strategies are used. In [108], a DP algorithm is used for the EMS of a
HESS consisting of a SC and a LIB for a FC vehicle. The algorithm is implemented in Matlab and
uses its vectorization of Matlab options efficiently. For the optimization, perfect foresight is assumed.
The optimization is therefore global and cannot be used during the operation of the vehicle. The
optimization goal is the reduction of the fuel consumption for the DC.

In [111], the authors propose a HESS consisting of a LIB and a SC. They implement the EMS
using PMP. They consider the aging of the battery as well as the drive train efficiency. The emphasis
of the paper lies finding a problem formulation that allows using PMP. The results are compared
with those of a rule–based approach. They find that their approach yields better results in respect to
energy consumption as well as battery aging. However, their approach requires perfect foresight and
can therefore not be used online.

Styler et al [114] investigate a fully connected HESS consisting of a LIB and a SC. They utilize
a database containing extensive data of real-world trips and avoid artificial DCs. Their aim is to
minimize the RMS of the battery current. This includes the current flow between electric machine
and LIB as well as between SC and battery. The RMS of the battery current serves as a measure for
both the efficiency and the aging of the LIB. A higher battery current leads to decreased efficiency
and accelerated aging. The authors compare three different EMSs: The first is a DP algorithm for
offline use, which provides the optimal solution for the problem. The second is a simple rule-based
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algorithm, which uses the SC whenever possible and does not allow power flow within the HESS.
The last algorithm is the novel approach proposed by the authors. This approach is based on a
k-nearest neighbor search, which can be used offline. The authors find that the k-nearest neighbor
search yields significantly better results than the rule-based approach.

Several extensive comparative studies of HESS exist. In [119] five different approaches are applied
to an EMS for an urban street railway. The HESS integrated into the system consists of a FC, a LIB,
and a SC. The individual storage types are not interconnected among each other. The authors com-
pare a simple rule-based strategy, which is based on threshold values, with other approaches. These
are a FLC, the Equivalent Consumption Minimization Strategy (ECMS) and a Model Predictive Con-
trol (MPC) approach. The optimization aim for all the strategies is the minimization of the hydrogen
consumption. The aging of the FC and the LIB is only briefly mentioned. The authors conclude that
the performance of the approaches is similar. However, the FLC and the MPC are computationally
expensive, while the ECMS leads to the lowest fuel consumption. For these reasons, the authors
recommend the ECMS.

Song et al ([106]) also compare different EMSs for a HESS consisting of a SC and a LIB in an
electric city bus. They compare the overall life-cycle costs of five different strategies. To compute
those costs, an aging model for the LIB is used. The sizing of the storage system is computed at
the beginning and remains the same regardless of the EMS. The considered strategies are two rule-
based strategies; one based on a flow chart, the other on frequency filtering. Moreover, they employ
a FLC and MPC. These systems are all implemented to be used online. A DP approach is used as
an offline strategy to compare with the others. Only the online strategies are considered as an option.
For the comparison, a DC for buses in China is used. The authors conclude that the filtration-based
approach is the least suitable and that the rule-based approach using a flow chart and the FLC are
the most promising for an EMS.

Variable Intermediate Circuit Voltage

Another parameter that can be influenced by an EMS is the intermediate circuit voltage between the
LIB and the electric machine. In the simplest and most common configuration, the battery voltage
is automatically the input voltage of the inverter [74]. However, in different load conditions, different
voltages are optimal for the machine. At full load, a high voltage leads to minimal losses [74]. Typ-
ically, these are the conditions for which the voltage is optimized [74]. Consequently, the losses in
partial load conditions are higher than the minimal losses in full load conditions [74]. One option to
solve the problem is to vary the voltage in the intermediate circuit depending on the load conditions. If
the system is designed for voltage variation, an EMS is needed to find the voltage which leads to the
highest efficiency of the overall system. To vary the intermediate circuit voltage two basic approaches
can be found in literature: Firstly, active battery switching systems are implemented: The LIB con-
sists of two blocks. These can according to the load conditions, either be connected in parallel or in
series. This means the voltage can be switched between two values [74]. Secondly, an additional
DC/DC-converter inserted between the LIB and the inverter. This allows the voltage to adapted to an
arbitrary level [120–124].

The literature on EMSs for variable intermediate circuit voltage is far less extensive than on HESS.
Most of the cited sources do not focus on the EMS but on the basic setup of the system.

The active battery switching system was developed by Wacker ([74]) and is only described in his
publications. The EMS is described in [125]. The parameter that can be influenced in this system
is whether the two blocks of the battery are connected in parallel or in series. The EMS is rule-
based. The rules are determined using a model of the electric machine and the efficiency map for
the machine including the converter.

More researchers investigate using an additional DC/DC-converter. The difference to the active
battery switching system is that the voltage can be set continuously within predefined bounds. How-
ever, most authors focus on the overall setup of the system and not on the EMS. In [120–124] the
EMS is based on a model of the electric machine but is not described in any detail. The reason for
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Table 4 Overview of literature on variable gear ratios

2-gear ratios CVT

Rule-based [127], [128] [129], [130]

Optimization-based [131], [132]

this is that the optimal voltage can be calculated using the machine model. Therefore, the research
focuses on these models.

Variable Gear Ratio

Most BEVs use a single gear ratio [78, 126]. This is feasible in BEVs because an electric machine,
unlike a combustion engine, works for a wide range of rotational speeds. The single gear transmission
can be realized with a higher efficiency and a lower weight for the gear box. Moreover, cutting out the
shifting process reduces the complexity.

However, the use of a single gear transmission also has disadvantages. The most important one
is that the electric machine cannot be operated in the operating range with the highest efficiency for
all velocities. Studies show that this can counteract the higher transmission efficiency [126]. Another
drawback of single gear transmission is the dynamic behavior of the vehicle. Employing multiple
gear transmission allows a faster acceleration and higher maximum speed. For this thesis, variable
transmission ratio is interesting, as it can be interpreted as a component-wise EMS and could be part
of a holistic approach.

A variety of different configurations for the gear box exists. In the context of this thesis the exact
mechanical setup is not relevant. Therefore, the gear box is interpreted as a black box that allows
to choose between a predefined number of transmission ratios and is associated with an efficiency.
Consequently, two main configurations are commonly found in electric vehicles: 2-speed transmis-
sion and Continuously Variable Transmission (CVT). The authors of [126] evaluated different gear
boxes and found these two the most promising to replace single speed transmissions.

Regarding the gear ratio one type of optimization procedure is most relevant for the EMS: A so
called shifting schedule can be optimized. This means that the conditions under which a transmission
ratio is chosen are defined. Typically, they are specified using the required torque and the vehicle’s
speed. The optimization goals are usually the overall efficiency, the driving dynamic and the number
of switching operations.

An overview of the literature can be found in Table 4.
Most literature focuses on rule-based approaches to the shifting schedule. These approaches

are discussed first. In [129] the authors consider a gear box based on CVT in combination with
Permanent Magnet Synchronous Machine (PSM). The CVT is additionally equipped with a gear re-
ducer, to ensure fixed transmission ratios. For the publication a set-up with five gears is implemented.
The goal is to maximize the drivetrain efficiency. To do that, they model the efficiency of the gear box
and the motor efficiency. The shifting schedule is drawn up using an enumerative approach: For sev-
eral combinations of speed and torque the optimal transmission ratio is computed. Based on these
data, regions for every transmission ratio are defined. The resulting rules are used during the opera-
tion of the vehicle. Despite the lower efficiency of the gear box, the authors find that their approach
improves the overall efficiency compared to a single speed transmission.

In [127] a shift schedule for a 2-gear BEV is developed. The authors use techniques developed for
ICEV. They draw up two different shifting schedules: One optimizing the overall efficiency, the other
the dynamic behavior of the vehicle. For both strategies a graphic approach is used. For the dynamic
oriented strategy, the efficiency of the electric machine is considered with both transmission ratios
at different speeds. The shifting point is set according to vehicle speed. For the efficiency-oriented
strategy, the efficiency map of the machine is drawn up with each gear ratio. The shifting points are
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computed as a function of speed and acceleration. To avoid too frequent switching, a hysteresis is
implemented in both strategies. The authors verify the results using a test bench.

The authors of [128] consider the shifting schedule as well as the optimization of the gear ratios
and the switching process itself for a 2-speed transmission. The rule-based shifting schedule and the
gear ratio are optimized together using DP. During vehicle operation, the shifting schedule is used.
The goal of the authors is to maximize the efficiency and the dynamic performance of the vehicle.
The maximum speed, the acceleration time, and the user experience of the shifting process are used
to evaluate the dynamic performance. The concept is applied to a simulation model. For this model
the efficiency of the gear box and the electric machine is modeled, as well as the internal resistance
of the battery.

Further examples for a rule-based approach can be found in [78, 133, 134]. A few alternatives
to rule-based strategies can be found: In [130], the author considers a CVT combined with a direct
current machine. He develops a fuzzy-PI-strategy to maximize the efficiency of the electric machine.
The efficiency of the gear box is not considered. The PI-controller influences the transmission ratio
of the CVT at any given moment. The author compares the FLC with a traditional PI-controller using
a simulation model. In his comparison the FLC outperforms the traditional approach.

The authors of [131] describe what they call an online shift schedule optimization for a 2-speed
transmission. They use an analytical approach for the optimization of the gear ratios, not mixing it
with the optimization of the gear shift schedule. They use the equivalent energy consumption as
objective function. The equivalent energy consumption is computed using the energy consumption
for the driven distance and the distance itself. The focus of this publication lies on the mathematically
correct description of the optimization problem. They assume that during the trip, a prediction for the
speed in the next segment exists. This prediction can be used to minimize the shifting operations and
at the same time maximizing the efficiency. The optimization is done during the simulation of the DC
utilizing PMP. This technique is efficient enough to be applied online. DP is implemented as a point
of reference. The performance of the optimization based on PMP is satisfactory compared with the
DP.

The authors of [132] also present an online optimization of the shifting schedule of a 2-speed
transmission. However, their primary focus lies on the optimization of the gear ratio during the shifting
process using Niche Multi-Objective PSO. During the trip the efficiency of the drive train for both
transmission ratios is computed for every time step. If the other transmission ratio is more efficient,
the gears are switched.

Multiple Electric Machines

Multiple electric machines can be installed in different configurations. An overview of these configu-
rations can be found in [135]. In the following, three options are considered: Firstly, one machine can
be built into each wheel as an in-wheel machine. Secondly, one machine can drive the front and one
the back axle to form an all-wheel drive. Thirdly, the two machines can be connected by a gear box
that drives only one axle thus replacing a single larger machine.

The first two configurations lead to an improved dynamic behavior of the vehicle especially during
cornering [136]. In all configurations it is possible to use the multiple electric machines to improve
the overall efficiency. Consequently, in literature one aim of a control strategy for multiple electric
machines is typically to improve the dynamic performance for the vehicle. In the context of EMS, this
is usually limited to the longitudinal performance, which can for example be quantified using the time
needed to accelerate to a certain speed (e.g., 100 km/h) and the top speed. As stated above, it is
also possible to improve the cornering response using a torque vectoring approach [136]. However,
no source could be found in which this is integrated into the EMS. The second typical optimization
goal is maximizing the overall efficiency. As far as the control variables are concerned, the literature
can be divided into two categories. The first category only considers the torque distribution between
the two or more machines. The second category additionally takes the gear ratio into account.
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The authors of [137] describe a concept with only the torque distribution as control variable. The
considered vehicle is equipped with in-wheel machines and the optimization searches for a compro-
mise between driving dynamics and energy consumption. They use a single-track model for both
the efficiency and the vehicle dynamic concentrating on the mathematically correct description. To
quantify the dynamic performance, they evaluate the capability of the vehicle to track a given speed
profile. They implement three different EMS. Two of the approaches are optimization-based. One
focuses on only the efficiency and the other on the efficiency and the driving dynamic. Both deter-
mine the optimal torque distribution analytically and can only be employed offline. The third strategy
is rule-based and can be employed online. The authors deduce this strategy from their results with
the first two approaches. The rule-based strategy targets both the efficiency and the dynamic.

Another similar approach can be found in [138]. The authors also consider in-wheel machines for
a BEV. The control for two machines is merged: The two rear machines and the two front machines
cannot be actuated independently. The machines at the front are high-speed, low-torque machines.
Those at the rear are high-torque, low-speed electric machines. In this study the sizing of the ma-
chines is done in the same optimization procedure in which the EMS is optimized. This means that
for both types of machines the basic parameters are optimized and at the same time the torque dis-
tribution between front and rear axle is optimized for two selected DCs. The energy consumption for
those cycles is chosen as the objective function. The authors compare the combination of EMS and
design with the separate optimization of the two and find that their approach leads to better results.
However, they do not present a solution to integrate the approach in a vehicle.

Most other sources concentrate on the combination of a variable gear ratio and multiple electric
machines, for example [73]. The focus of this paper lies on the design of the electric machines. The
vehicle is equipped with two electric machines. Each can propel the vehicle alone under partial load
conditions. Both machines are connected to a gear box with two different gear ratios. The EMS can
influence which gear ratio is chosen as well as the torque distribution between the electric machines.
The paper differs from similar publications because the TMS of the machines is integrated into the
optimization. Two EMSs are compared: Both are rule-based, one takes the TMS into account, the
other does not. The objective function consists in both cases of the energy efficiency and vehicle
dynamic. A comparison shows that the strategy encompassing the TMS of the machines does not
lead to a higher energy efficiency, but it is able to avoid de-rating of the machines. This improves the
vehicle dynamics.

The authors of [77] replace a single electric machine with two machines that are connected by
a planetary gear set. Thus, a power split transmission is realized. The transmission ratio can be
adapted to ensure maximum efficiency. The publication concentrates on the torque distribution be-
tween the two machines and on the machine speeds. As the total torque is defined by DC, the torque
and speed of only one machine are optimized. For this optimization an enumerative method is used.
The drive train efficiency is chosen as objective function and the dynamic of the vehicle is defined
in the constraints. This method only determines the torque. The target velocity is found using a PI-
controller. The authors find that their method can improve the overall efficiency compared to using a
single machine.

In [139] the authors also replace a single electric machine with two machines connected with a
planetary gear set. In this case the two machines have different characteristics. The system has the
following options: Each machine can propel the vehicle alone; the machines can be torque coupled
or speed coupled. The EMS works in two stages: First, an efficiency map is used to determine which
of the four modes is used for maximum efficiency. If a mode is chosen in which both machines are
active, the speed or torque distribution is determined in the next step. This is done using SQP. The
authors find that they can improve the efficiency compared to a single electric machine with a 2-speed
transmission.

In [140] the authors develop a comprehensive approach to the use of two electric machines and
a multi-speed gear box. They see the advantages of two machines in both drivability and efficiency.
They describe the design of this system. Moreover, they optimize the switching process itself using
a rule-based strategy to avoid the so-called torque hole. The design variables of the EMS are the
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torque of one motor and the state of the 2-speed gear box. The objective function is the overall
energy consumption. The parameters for the drivability are formulated as constraints. The authors
argue that due to local minima traditional gradient based methods cannot be applied to the problem.
Therefore, the authors discretize the torque and use an enumerative method. Thus, they can find the
optimal combination of the two control variables for all states of the vehicle. This is done offline. For
the online application it is used as a basis to draw up a rule-based strategy.

TMSs

Another aspect of the vehicle that can be viewed as a component-wise EMS is the TMS. The term
TMS is used to describe two different aspects: The hardware that is used to keep the components
of the vehicle within the predefined temperature limits and the strategy or software that is used to
operate the hardware and the components themselves. Not all TMS hardware requires a strategy
for its operation. For this thesis the focus lies on the strategy that is used to operate the hardware.
The hardware of the TMS can be understood as one component of the BEV and the strategy for
its operation as the EMS of this component. The EMS in this case focuses on the thermal energy,
however, the strategy for TMS hardware can also influence the electrical energy consumption. TMS in
BEVs typically have the following goals [141]: Firstly, they keep the drivetrain components within their
safe operation range. Secondly, they keep the cabin within the temperature range comfortable for the
passengers. Thirdly, a TMS can maximize the overall efficiency. Finally, it can aim at minimizing the
component aging, in particular the aging of the LIB.

The components can either be considered separately, or in groups. The literature can be divided
into TMS for the LIB (e.g. [73, 142–144]), for the LIB and HVAC combined (e.g. [145, 146]) and the
entire drivetrain including the HVAC (e.g. [79, 147, 148]).

In [146] a TMS combining the LIB and HVAC is considered. The authors develop an EMS for this
system. The aim is to minimize the battery aging, maximize the range of the BEV and keep up the
comfort of the passengers. The battery aging is quantified by the average SoC and the deviation
from it. The limitations of the systems are formulated as constraints. The state variables are the air
flow rate, the damper ratio, the temperature of the outlet air and that of the supply air. All variables
are directly linked to the HVAC system. The optimization is performed using MPC with SQP as
optimization algorithm. Additionally, a Fuzzy Logic Controller (FLC) is used as point of reference. For
most of the experiments perfect foresight is assumed, but the robustness towards prediction errors is
also investigated.

Lahlou et al [149] present an EMS for the HVAC. They state that their aim is to maximize the
range while maintaining the thermal comfort of the passengers. They investigate cold and warm
weather conditions with varying temperatures during a trip. It is assumed that the route and traffic
information as well as a forecast of the weather conditions is available at the beginning of the trip. This
information is used for estimating the energy consumption. [149] describes a rule-based strategy that
can be used online, and an offline strategy based on a DP. The focus of the description lies in the
online strategy. The strategy is basic: The cabin temperature is adjusted to the target temperature at
the beginning of the trip. This temperature is maintained if it is estimated that the available energy is
sufficient to complete the trip. If that is not the case, the passenger comfort is restricted to reach the
destination.

In [79] the fluid based TMS for the entire drivetrain including the cabin is considered. The optimiza-
tion is based on a detailed vehicle model described in [150]. The goals of the TMS are the same
as in [146]. However, an aging model of the battery is implemented, and the simulations are also
conducted with the characteristics of an aged battery. The optimization is conducted with perfect
foresight and with a more realistic limited foresight. The focus lies on utilizing the waste heat from the
drivetrain for heating the cabin. Preconditioning the cabin is also considered as part of the strategy.
The implemented TMS is optimization based, but no information on the utilized algorithm is given.
Also, the control variables are not listed.
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Table 5 Overview of literature on holistic EMS

Source offline or online Objectives Considered Components

[155] offline minimize energy demand Driving strategy and multiple elec-
tric machines

[156] online minimize energy demand Driving strategy and multiple elec-
tric machines

[157] online minimize energy demand Driving strategy and auxiliary con-
sumers

[158] online maximize range and thermal com-
fort of driver

HVAC and driving strategy

[154] online maximize range, minimize battery
aging, maximize driver comfort
and vehicle dynamics

Driving strategy and auxiliary con-
sumers

[82] online maximize range, vehicle dynamic
and thermal comfort of driver

Auxiliary consumers, driving strat-
egy and multiple electric ma-
chines

The author of [147] also describes a fluid based TMS for the entire drive train and the HVAC. The
variables influenced by the system are compressor power, the cabin blower speed, the power of the
Positive Temperature Coefficient (PTC) heater and the coolant flow into the battery. The aim is to
maximize the range while maintaining the comfort of the passengers. The TMS is rule-based and
combined with a thermostat control. The focus of this work lies on short distances as these are the
typical commuter drives.

Some EMS focus exclusively on maximizing the range in cold weather conditions. These are for
example [36],[151], [152] and [153]. The main objective of these works is to increase the efficiency
of the BEV by using the energy recuperated while braking directly for heating, instead of storing it
in the LIB. This is facilitated by a High Voltage Heater (HVH) which can react quickly. The focus of
these studies lies on estimating the potential of this approach. In [36] the authors develop a rule-
based strategy which reduces the energy consumption and the stress on the LIB while maintaining
the cabin temperature. The effects on the range are mostly due to more energy being recuperated, if
an intelligent heating strategy is applied.

3.3.2 Holistic EMSs in BEVs
This section introduces literature on holistic EMS. Only few authors explicitly concentrate on de-

veloping a holistic EMS. These are namely Basler [82] and Suchaneck [154] in their PhD theses. In
the following, a holistic EMS is defined as an EMS that spans over two or more components. The
components are those for which the EMS is discussed in the previous subsection.

All sources discussed in this section is summed up in Table 5. Most sources focus on the combi-
nation of a driving strategy and the EMS for one component. In all considered sources this is either
the electric machine or the auxiliary consumers. These sources are discussed first. Subsequently,
the two approaches [82, 154] aiming for a holistic EMS are investigated.

Several authors combine a driving strategy with the torque distribution between multiple electric
machines. In [155] the velocity profile and torque distribution between in-wheel machines is optimized
using DP. The authors aim to minimize the energy demand. The velocity is expressed as a function
of the place. No predefined DC is used but the optimization chooses a velocity profile suitable for
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the driven route. The authors model the height profile of the route and employ a traffic model. This
approach cannot be used online but can only serve as a reference.

[156] implements a similar EMS. They also consider a vehicle with in-wheel machines and optimize
the torque distribution as well as the velocity profile. They also use traffic and terrain information
in their model. They minimize the energy demand while maintaining a minimum distance to the
preceding vehicle. The behavior of the preceding vehicle is predicted using Bayes Networks. The
optimization itself is done using non-linear MPC. The optimization only chooses between discrete
velocities. The authors use a vehicle to verify the results from their model.

In [157] the authors present a holistic EMS that computes the driving strategy as well as controlling
the auxiliary consumers in the vehicle. For the driving strategy the system can choose a coefficient
for the original velocity that is valid for a predefined number of time steps. For the control of the
auxiliary consumers, the system can only decide whether they are switched on or off. The authors
do not specify which auxiliary consumers are considered. The system receives the chosen route and
the user preferences as input. It is configured offline with a complex model and then used online. In
both cases the authors employ an enumerative method. The offline search is used to limit the number
of combinations that must be explored during the operation of the vehicle.

Pan et al. [158] investigate an EMS that combines the HVAC with a driving strategy. Their approach
is based on two FLCs and works online. The authors argue that little literature combining these two
systems exists in the state of the art. They focus on categorizing and predicting driving situations
using artificial DCs, Markov chains and machine learning approaches. This knowledge is aggregated
into a driving condition that is used as part of the objective function. The SoC of the LIB is also
used in the objective function. The first FLC controls the target torque of the electrical motor. It takes
the driving condition, the SoC and the pedal opening as an input. The output of the second FLC
is referred to as the power distribution coefficient. It defines how much power is used for the HVAC
dependent on the power allocated to the machine and the total available power. This coefficient links
the two controllers making the EMS holistic. The inputs for the second controller are the deviation
from the target temperature as well as the pedal opening and the SoC. The FLCs are implemented in
Matlab based on a triangular membership function. The authors test their concept using a Hardware
in the Loop (HiL) test. The deviation from the original speed caused by the EMS is small. Altogether
it can be deduced, that the authors aim to minimize the energy while the travel time and the cabin
temperature remain mostly fixed. It should be noted that the authors do not consider the utilization of
the recuperated energy.

Lahlou et al. developed an EMS the description of which spans over several publications: [149],
[159], and [160]. Their focus lies clearly on the HVAC. In the following, only [160] is discussed. They
base their optimization on DP, which makes their approach offline. The authors remain silent on the
computation time. Due to the use of DP, it can be presumed that it is high. The model of the thermal
comfort is elaborate, while the rest of the vehicle is modeled more simply. The optimization goals are
to maximize the thermal comfort of the passengers while also maximizing the range of the vehicle. It
should also be noted that [160] focuses on the cooling in hot ambient temperatures. The EMS itself
only includes the HVAC and not the speed. However, the authors perform one set of experiments in
which they vary the speed by a fixed factor and compare the energy consumption for different factors.
Their focus for these experiments is whether the increase in the travel time has a positive or a negative
effect on the energy consumption. They find that this depends on the original speed profile and the
ambient temperature. The recuperated power is not included in these considerations. The main
accomplishment of this work is the detailed representation of the thermal comfort of the passengers
and the elaborate scenarios which are modeled. This source is not included in the overview table for
this section, as the velocity is not included in the final EMS.

Suchaneck [154] develops an EMS that can be applied online. He does that by first implementing
an optimization-based EMS for the offline use and then evaluating it for online use. He differs from the
previously cited authors in the number of objectives he considers. Besides the range, these are the
aging of the LIB, the comfort of the driver and the dynamic behavior of the BEV. For the battery aging
he implements an aging model. The comfort of the driver and the dynamic behavior of the vehicle
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are expressed by simple indicators. These objectives are aggregated into one objective function. His
optimization variables are the power consumed by HVAC and the velocity profile. For the optimization
he uses Stochastic DP and PMP and compares the two approaches. He finds that Stochastic DP is
too time consuming for online application. In contrast to that, PMP can be employed online. During
most of his thesis Suchaneck assumes perfect foresight. However, a short section is devoted to the
optimization with imperfect knowledge of the future. Here he finds that his approach still works under
changing conditions. He does not explore the topic further. For the optimization he does not consider
a height profile of the route and only optimizes predefined DCs, namely the Worldwide Harmonized
Light Duty Vehicles Test Procedure (WLTP).

Basler [82] also develops a holistic EMS. His optimization aims are the range, the vehicle dynamic
and the thermal comfort. The objective function he uses consists only of the range. The two other
objectives are included into the optimization using constraints. For the optimization he uses black
box models for the components of the drivetrain. These models are drawn up using NNs and are
less computationally expensive than the original white box model. This facilitates the integration into
the vehicle. Basler considers different operational strategies: The first strategy limits the torque of
the electric machine. The second strategy limits the power used for the HVAC system. The third
strategy reduces the battery losses by synchronizing the HVAC system and the power train. The
fourth strategy minimizes the machine losses by distributing the torque in an all-wheel drive. Basler
uses sensitivity analysis to explore the effects of these strategies on the objective function. He also
models uncertainty to evaluate his approaches more realistically.

3.3.3 Criticism of the State of the Art
The analysis of the state of the art shows that some aspects of EMSs are not yet adequately

explored. This subsection gives an overview of the neglected topics regarding EMSs. In the next
chapter (Chapter 4) these findings are used to formulate the scientific objective of this thesis.

The following main shortcomings could be identified:

1. The focus of most literature lies on a single component and not on a holistic EMS. This means
that the potential for an energy reduction that originates from a combination is neither evaluated
nor utilized.

2. Most literature can be divided in optimization-based and rule-based approaches. Literature
that explores hybrid methods exists but is rare. Moreover, the transition between a rule-based
approach and an optimization-based approach is not sufficiently evaluated.

3. Little literature exists that illuminates how a HVH can be integrated into the overall EMS. As
it could be illustrated that HVHs are becoming more important for BEVs, this is likely about to
change.

4. A lot of the literature focuses on vehicles that are fundamentally different from standard BEVs.
For example, the EMS uses a HESS to realize an energy reduction. This research is important,
but the systems cannot be easily integrated into existing vehicles. Therefore, it will take more
time until these systems will reach standard BEVs.

5. Most authors present one system and do little to analyze their approach. They often do not
focus on how the energy reduction is effectuated.
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4 Scientific Objective

The core objective of this thesis is to reduce the consumed energy of a BEV by using an EMS.
For this objective the end of the previous chapter (Subsection 3.3.3) identifies several open research
topics. The following research question for this thesis can be formulated:

1. Which optimization methods are suitable for an EMS?

2. How can an optimization-based approach be adapted to work with little forecast data and on-
board computation capacity?

3. How can an optimization work on a partitioned trip and still lead to acceptable results?

4. Does optimizing two or more components simultaneously using a holistic EMS lead to better
results than separate optimization?

5. How can the resulting EMS be integrated into a vehicle?

The aim of this thesis is to answer the above research questions. The answers that could be found
are summarized in Section 7.2.
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5 Approach

This chapter explains how the MORE is designed and how the results discussed in the next chapter
(Chapter 6) are obtained.

5.1 Concept

This chapter is structured as follows: First, the vehicle model is introduced (Section 5.2). This is
followed by the reference heating strategy in Section 5.3. These two sections provide the basis to
enable the work of this thesis. Next, the optimization problem is described in detail (Section 5.4).
The focus of this section lies on the offline optimization. In the following section (Section 5.5) the
implementation of the two optimization methods used for this thesis is explained. Next (Section 5.6),
the DCs used for the experiments are described. In Section 5.7 the approach to the online application
is explained. The final section (Section 5.8) introduces the results obtained by preliminary research
and explains how these impacted the approach used in this thesis.

The concept developed in this thesis serves three purposes: Firstly, it aims at reducing the energy
consumption by simultaneously optimizing the velocity, the heater power, and the air mass flow.
Secondly, offline optimization is used to analyze the effects that lead to the reduction in the energy
consumption. Thirdly, it aims at showing that the concept can also be used online and draw up a
concept to integrate it into a BEV.

Trip 1

Objective function

Model

Optimization

Trip 1
Trip 2

Model

Trip 3

Model
. . . Trip n

Model

Cloud

Vehicle

Optimized
Parameters

Recorded
Data

Parameters

Fitness Value

Figure 5.1 : Concept for integration into a vehicle

The concept of the MORE is based on the findings of Adermann et al. ([161, 162]). They explore
what they refer to as Commuters’ Cycle Monitoring (CCM). Their CCM is based on the idea that
BEVs are predominately used for commuting or other recurrent routes. Moreover, they found that
repeating the same route under different conditions still leads to a similar driving pattern. They use
these findings to supply optimal SoC and SoH predictions for the LIB.

Figure 5.1 gives an overview of the concept of the MORE. It is assumed that the BEV is used
for driving the same route repeatedly. This can for example be a commute. The idea of the CCM
is applied to an EMS: The BEV is taken for the first trip (Trip 1) using a default EMS. This trip is
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recorded. When the vehicle is parked and has access to the internet it connects to a cloud and
uploads Trip 1. The optimization strategy developed in this thesis is then applied to Trip 1. The
result is a set of optimized parameters. It is important to note that all parameters are a function of the
distance and not the time. Therefore, every location of the trip has a corresponding set of parameters.
In the next step, these optimized parameters are downloaded to the BEV. When the same route is
repeated (Trip 2) the parameters optimized for Trip 1 are applied. All parameters for the heater can
be used directly. How the optimized velocity can be applied, depends on the individual vehicle. Either
the speed is adapted by a recommendation to the driver, or the vehicle is partly autonomous and can
implement the driving strategy directly. This approach presumes no knowledge of Trip 2, other than
that it is a repetition of the commute or other recurring drive. Additionally, no computation resources
are required within the vehicle as all calculations are done offline.

5.2 Vehicle Model

The vehicle model is a key part of the development of an EMS. As explained in Section 2.3, the
vehicle model is closely interlinked with the optimization procedure used for the EMS. In this section
the vehicle model used for this thesis is introduced. The modeling is based on the work of Danquah
et al. [163] and Koch [164]. First, the requirements for the model are collected in Section 5.2.1. In
Section 5.2.2 the component library used for the model is introduced. Lastly, in Section 5.2.3 the
model used for the EMS is described.

5.2.1 Requirements for Vehicle Model
The goal of this thesis is to use an EMS to reduce the energy consumption of a BEV. To do that

and to test the concept of the MORE, the model must meet the below requirements. The list is split
into mandatory requirements and additional requirements that are not mandatory but useful.

1. Mandatory requirements:

• Reproducible results: The model must be fully deterministic and yield reproducible results. A
stochastic model would require multiple runs and would therefore increase the computation
time drastically. Moreover, changing results would complicate the evaluation and would
make it harder for other researchers to reproduce the results of this thesis.

• Reasonably low computation time: The model must have a reasonably low computation
time, as it is run multiple times for the optimization.

• Reproduction of a prevalent BEV: It must be possible to model a relevant type of BEV. This
allows the results to be compared to the state of the art. Furthermore, it ensures that the
findings are relevant for research and industry.

• Integration of user defined DCs possible: The integration of arbitrary DCs must be possible
with minimal effort. This ensures the comparability to the state of the art and facilitates the
use of recorded real-world drives. To implement the concept of this thesis, it is necessary to
integrate the recurring commuter trips into the model.

• Validated components and overall model: The components and the overall BEV model must
have undergone a validation process. This ensures that the findings of this thesis can be
transferred to a real-world BEV.

• Restart from arbitrary starting point: It must be possible to restart the model at an arbitrary
starting point within the DC. For this, the current model parameters must be saved and
reloaded into the model. This enables the optimization of segments of the DC.

2. Additional requirements:
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• Based on Matlab/Simulink: The vehicle model must be based on Matlab/Simulink as it is the
chosen programming environment for the optimization methods (refer to Section 5.2.4).

• Comprehensible model structure: The overall model structure must be comprehensible. This
ensures that the working mechanisms of the optimization can be understood, and the op-
timization can be adapted. This requirement excludes black box models. However, it is
possible to use black box models for individual components or to convert the model into a
black box meta model to reduce computation time.

• Detailed statistics available: For the analysis of the optimization methods, it must be possible
to access the signals passed within the model. This facilitates the detailed analysis needed
for this thesis.

• Representation of velocity as function of the distance: For the optimization, the velocity v
must be represented as a function of the distance x and not the time t. If this is not possible,
the transformation must be done outside of the model as part of the optimization, which is
more complex.

• Implementation effort manageable: As the BEV model is not the core element of this thesis,
the implementation effort must be low. Moreover, the implementation must not require time
and money consuming physical experiments.

• Modular architecture: The architecture must be modular to allow a variation of the scope of
the EMS. Moreover, it should be possible to alter the accuracy with which the components
are modeled.

The last two requirements indicate that the model should be based on an existing framework because
otherwise the implementation effort would be too high. As no commercial tool can be used, the mod-
eling is based on previous work at the Institute for Automotive Technology at the Technical University
Munich (TUM).

5.2.2 Component Library for Modeling BEVs
The BEV model built from the component library developed at the Institute of Automotive Technol-

ogy fulfills the requirements listed above. Hence, the optimization implemented for this thesis uses
that model. The library is described in [163] and [164]. The authors partly reuse previous work done
at the institute. For example, they use machine models developed by [53] and [165]. The overall
structure of the library is based on a longitudinal dynamic model designed by Rohr [166] and Müller
[167], which they use in their respective PhD theses. Their model is also described in [168].

The component library is designed to build a model which represents the powertrain and the lon-
gitudinal dynamics of a BEV. The resulting model is a mixed forward and backward simulation. The
focus of the library is to provide a modular framework in which the components can be developed
and reused by different developers [163]. Koch [164] gives a detailed description of the components
that are initially implemented. The scope of each component is a trade-off between implementation
effort and modularity [163]: A smaller scope increases the implementation effort, but also improves
the modularity.

Another feature of the library that impacts the setup of the vehicle model is the implementation
of the bus system used to transmit information within the model. The implementation of the bus is
based on the work of Rohr and Müller described in [168] and also in [166, p. 37-42]. [163] explains,
how it is integrated into the concept of the library.

In [164] the model is validated for the Ford Focus Electric [164, p. 41-52] and for the Volkswagen
(VW) eGolf [164, p. 53-60]. In [163] the model is validated for an electric Smart Fortwo using data
from [169] and [170]. The vehicle was converted from an ICEV to a BEV and is described in [125] and
[161]. Both approaches have drawbacks. Koch [164, p. 51, 59–60] reveals a significant discrepancy
between the modeled and measured energy consumption. This cannot be fully explained. The
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suggested reason is an imperfect knowledge of the vehicles and therefore problems with the correct
parametrization. Danquah et al. [163] face this problem to a far lesser extent because they have
a more extensive knowledge of their chosen vehicle. However, this particular Smart Fortwo is not
a vehicle produced in series. This makes it hard to compare the results and for other researchers
to comprehend them. Moreover, the power of the vehicle is not sufficient to follow the target speed
of common DCs such as the New European Driving Cycle (NEDC) and the Worldwide Harmonized
Light Duty Vehicles Test Procedure (WLTP). This further decreases the comparability of the results.
The unavailability of a validated parameter set which can be used with the optimization is therefore
the greatest weakness of the component library. To meet this challenge, this thesis uses the vehicle
model based on the component library implemented by Steinstraeter et al. [36].

The component library is a good starting point to build a model that meets the criteria defined in
Subsection 5.2.1. Additionally, it meets some of the desired features listed at the end of Subsection
5.2.1. Moreover, it is possible to adapt the model to fit the optimization procedure. The modular
design makes it possible to exchange and update components.

5.2.3 Vehicle Model

Powertrain

DC
Driver

& Environment
Control

Unit
Battery Drivetrain Dynamics

1
z

Figure 5.2 : Basic structure of model based on component library (refer to [163])

This subsection introduces the model that is used for the optimization. The aim is to provide the
reader with enough information to comprehend and reproduce the results obtained in this thesis.
Figure 5.2 shows the basic setup of the BEV model. It follows [164], [36] and [163]. The figure shows
the information flow within the Simulink model. The arrows symbolize the bus used for the model.
Each component can access all signals from the preceding components and from the previous time
step. The time shift is symbolized by the 1

z -block.
Not only the setup of the model but also the modeling of the components closely follows [163] and

[164]. However, the components are altered for three reasons: Firstly, to form an interface for the
optimization. Secondly, to model components needed for the optimization. Thirdly, to fulfill criteria
needed for the optimization algorithms.

For this thesis the parametrizations of the Bayerische Motoren Werke (BMW) i3 (60 Ah) is used.
The model was built up, parametrized, and validated by Steinstraeter et al. as described in [36]. The
model is based on the component library, but differs in the battery, heater and cabin [36]. The model
is validated with real-life test drives and tests on the roller dynamometer [36]. For the test drives the
same route that is also described in Section 5.6 is used. The tests on the roller dynamometer copy
the WLTP. The model only deviates in one aspect from the commercially available BMW i3 [36]: The
heater itself is exchanged for a different model. Both heaters are HVHs. However, the original heater
reacts more slowly to changes in the power demand. Moreover, it has a smaller overload capacity
and a lower power rating. These features make it less interesting for taking in recuperated power.
As this is the main objective of Steinstraeter et al. they exchanged the heater in the vehicle and in
the model. A detailed description of the modeled heater can be found in [171, p. 61]. The brochure
of the manufacturer also contains a detailed overview of the modeled HVH [172]. How the heater is
modeled can be found in [173]. [36] gives a detailed overview of how the model was validated and
how well it performs.
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In the following paragraphs the parts of the model are introduced. The focus lies on the changes
that were implemented for the MORE.

Driving Cycle (DC)

The block labeled DC is called ’Data’ within the Simulink model. In this block the velocity profile for
the simulation is inputted. In the original model this block simply contains a velocity profile in the form
v(t) [163]. However, to use the model with the optimization, two adaptions must be made. Firstly,
the velocity must be expressed as v(x). The DCs can be transformed from v(t) to v(x) using a pre-
processing function in Matlab. This pre-processing must be done only once. The result is saved in
a .mat-file and can be loaded to the model in every run of the experiment. The transformation and
integration into the model can also be found in [179]. Secondly, the optimization procedure must
be able to adapt the velocity. This is done by multiplying the velocity v(x) defined by the DC with a
vector supplied by the optimization procedure. If all entries of this vector are one, the velocity remains
unchanged. The model uses the adapted velocity. The procedure is described in [178] and [179].
Any DC of the form v(t) can be adapted to be used with the model. For this thesis the recorded drives
described in Section 5.6 are used.

Driver and Environment

The driver translates the current speed and the target speed into an acceleration and a brake pedal
position. This is done using a PID controller to model the human behavior. The block is described
in [164, p. 29]. The environment block supplies a ground slope and a wind speed. In the original
component library both values are set to constants. This simple implementation is retained for the
optimization.

Control Unit

The implementation of the control unit is also not changed. The original implementation can be found
in [164, p. 29]. The main task of this block is to translate the pedal positions into target torques and
to compute the battery current limitations.

Battery

The LIB is part of the powertrain. In the library the powertrain is divided into one block for the LIB
and one for the drivetrain. This can also be seen in Figure 5.2. As already mentioned above, [36]
adapted the battery in comparison to the original library. Their model is more detailed and is based
on the work of [174]. The battery is also validated for the BMW i3. [36] also developed an aging
model. However, this is not used for this thesis. The battery block computes the voltage U available
for the drivetrain. Moreover, the SoC and the battery temperature are updated.

Drivetrain

The drivetrain contains multiple library blocks and additions needed for the optimization.
It contains the electric machine. This block remains unchanged for this thesis. It is described

in [164, p. 30-31]. It computes the analytic efficiency of the electric machine. The detailed imple-
mentation was originally done by Horlbeck and described in [165]. Here also the theory behind the
implementation is explained.

The gear stage is also contained in the drivetrain block. For the gear stage, both the simple gear
stage implemented by Koch [164] and a purpose-built component for the optimization are used. The
original gear stage is a single gear as it is common for BEVs [164, p. 31]. The other block was built
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by Bollongino and described in [183]. This block allows to shift gears and it can be used to expand
the scope of the EMS.

The blocks representing the brake fading and the wheel system are retained in their original form
throughout the experiments. A description can be found in [164, p. 31].

Dynamics

Here the original block described in [164, p. 32-33] is used. The computation is done according to
the elementary equation of longitudinal dynamics (Equation 2.23) described in Section 2.3.2.

Cabin and Heating System

The original component library does not contain a detailed model of the cabin and the heating system.
Therefore, this block is not included in Figure 5.2. The block introduced in [36] is based on the work
described in [152] and validated for the BMW i3. In the following, a short description of the block is
given, more details can be found in the cited papers and in [173]. The block contains the cabin, the
coolant circuit, and the heater itself. The heater heats up the coolant via a heat exchanger. In the
original model the heating power is determined using different rule-based EMSs. For this thesis the
model is expanded to allow integrating the heater power determined by the MORE. This is described
in Section 5.4.5.

The coolant moves through a system with pipes. The heat exchange between coolant and cabin
is done via another heat exchanger and a blower that creates an air mass flow into the cabin. The
air mass flow is determined by a P-controller to maintain the target temperature for the cabin. The
MORE can influence the air mass flow by adapting the target temperature. This again is described in
Section 5.4.5.

The cabin is modeled to portray the influence of the air mass flow, the vehicle speed, and the
ambient temperature on the cabin temperature. The cabin is not partitioned into zones, but a single
cabin temperature is assumed. The solar irradiation is neglected.

5.2.4 Programming Environment
All computer experiments conducted for this thesis are implemented in Matlab/Simulink 2019 by

Mathworks1. Matlab/Simulink is a standard tool used for prototyping software in automotive engineer-
ing and adjacent fields. In particular, it is used at the Institute of Automotive Technology of the TUM.
The interaction between Matlab and the simulation environment Simulink allows the optimization of
vehicle models.

One advantage of Matlab for this thesis is, that optimization methods can easily be implemented:
Firstly, Matlab is a high-level language that can be programmed without much difficulty. Secondly,
Matlab offers toolboxes in which several optimization methods used in this thesis are implemented.
Using toolboxes rather than self-implemented code offers several advantages besides saving time: It
avoids implementation mistakes which impede the comparison of the methods. Furthermore, it allows
a fair comparison of the computation time. Additionally, it ensures the comparability to the state of
the art. Another plus of Matlab is that figures showcasing the results and the working mechanisms of
the algorithm can easily and quickly be drawn up.

However, using Matlab also has some disadvantages. The run-time for Matlab-code is typically
longer than for code written in other programming environments. Additionally, not all parameters in
the optimization algorithms can be adapted by the user. Lastly, no algorithm for DP is implemented in
Matlab. This hinders the comparison of this method to SQP and GA. Nevertheless, Matlab is a fitting
tool for prototyping the MORE because the advantages outweigh the drawbacks.

1 https://de.mathworks.com/products/matlab.html
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Table 6 Overview of the optimization problem formulated for this thesis

Component Chosen Option

Objectives Energy consumption, cabin temperature, arrival time

Parameters Velocity, Heater power, cabin target temperature

Approach to multi-objectivity a priori, weighted sum method

Constraints Maximum and minimum coolant temperature

Bounds Maximum and minimum heater power, maximum and minimum ve-
locity, maximum and minimum cabin target temperature

5.3 Reference Heating Strategy

For the velocity profile the originally not optimized trip is used as a reference. This is done because
currently most commercially available BEVs do not employ a driving strategy to save energy. For
the heating system a rule-based strategy is used as reference. It is one of a set of three rule-based
strategies developed by Steinstraeter and presented in [151]. The three strategies are referred to as
standard strategy, charging-prioritized strategy, and heating-prioritized strategy.

All three strategies can only influence the heater power. The air mass flow is governed by a P-
controller, as described in the previous section. The standard strategy models the behavior of the
vehicle in its original state without an EMS dedicated to the heating system. The charging-prioritized
strategy uses the recuperated energy primarily to recharge the LIB. The energy that cannot be taken
in by the LIB is used for heating. The heating-prioritized strategy takes the recuperated energy first for
heating and stores the rest in the battery. The two latter strategies aim to increase the range and to
alleviate the stress to the LIB. [151] shows that the charging-prioritized strategy leads to the highest
increase in the range of the vehicle. Therefore, it is used as a reference strategy for this dissertation.

The reference strategy is chosen not to resemble the original state of the BMW i3. Instead, an
advanced rule-based EMS is used. It seems likely, that with the use of flexible HVHs, advanced
rule-based strategies will be used in commercially available BEVs and the MORE has to compete
with such approaches.

5.4 Optimization Problem

This section describes the optimization problem that must be solved for the MORE. The optimiza-
tion problem for this thesis is defined according to the basics discussed in Section 2.1 and the basic
form shown in Equation 2.1. In the following, all parts of this equation are defined for the MORE. The
important aspects are the parameters y, the function f(y) and the constraints h(y) and g(y). Table
6 gives an overview of the most important points.

5.4.1 Subdivision of the Optimization Problem into Windows
As discussed in [178] the optimization problem is partitioned into windows. The windows are not all

the same length, but a window begins when the vehicle stops, and it ends at the next stopping point.
In Figure 5.3 the windows are marked for the DC12. In this context two questions must be answered:

1. Why is the DC partitioned into windows?

2. Why do the windows start and stop when the vehicle is in standstill?
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Figure 5.3 : Velocity profile for RF12 with lines that mark the end of each window

The DC is not optimized as a whole for two reasons: Firstly, the length of the optimized time and
distance respectively has a large impact on the computation time of the optimization. For the GA
this correlation is hard to grasp, because the stopping criteria are often based on the experience
of the user and heuristic criteria. However, for the SQP the correlation can be illustrated: In every
step of the SQP the algorithm needs the gradient of f(y). For every element of y = (y1, y2, . . . yn)
the function f(y) must be evaluated once or twice to approximate the gradient using the difference
quotient. The length n of the vector x is directly proportional to the length of the optimized window.
Therefore, the number of function evaluations is directly proportional to the length of the window. It is
safe to assume that each function evaluation takes the same time if the window is constant. However,
the evaluation time is directly proportional to the window length. Therefore, the window length has a
double impact on the computation time of the gradient: Firstly, via the number of function evaluations,
secondly, via the time for one function evaluation. If the whole DC is optimized, its length has a
quadratic impact on the optimization time. If the DC is cut up into windows its length only has a linear
influence. Consequently, the optimization of a partitioned DC is considerably faster than that of the
entire cycle.

Moreover, cutting up the DC into windows is closer to an online application of the MORE. It is
unrealistic that the whole DC is known at the beginning of the trip. However, it is possible that a
forecast exists for the next small section of the cycle. The division of the DC into windows introduces
several challenges that must be addressed in the problem formulation. Therefore, it is important for a
realistic EMS to consider this partition. The impact on the objective function is explained in detail in
Section 5.4.3.

The second question is, why the next window begins when the vehicle is in standstill. The alter-
native would be to partition the DC into windows that either equal length regarding either time or
distance. This would mean that at the end of one window and the beginning of the next window the
speed of the vehicle is not zero. Consequently, the kinetic energy stored in the vehicle is also not
zero. This transfer of energy from one window to the next must be considered in the objective function
and complicates the optimization. For the thermal energy that is stored in the cabin and the coolant
this problem cannot realistically be avoided. How this is treated is discussed in Section 5.4.3.

Another feature that is implemented for the windows is that they overlap by a predefined distance.
This means that a window continues after the vehicle stops. However, as the next window begins at
the stop point, the final values of the first window are discarded. In the following, the effects that make
this procedure advantageous are explained. As the end of each window is not used, effects that occur
because the window ends are neglected. At the end of the window the heating has no effect on the
cabin or coolant temperature that can be discerned by the optimization. This could lead to two effects:
Firstly, heating could be unappealing for the algorithm as energy is spent but no positive effects can
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be found. Secondly, if heating power is available through recuperation, the heater might overheat
the coolant. Both effects are undesirable. Another effect is that the optimization can look ahead and
adapt the parameters accordingly. This is particularly interesting for the recuperation utilization of
the heater: At the end of the window the vehicle brakes. Due to the overlap the algorithm knows
that the next stretch will be an acceleration phase during which no recuperated energy is available.
The optimization can adapt accordingly. For these reasons the optimization profits from overlapping
windows.

5.4.2 Composition of the Optimization Function
This section focuses on the optimization function f(y). f(y) is the central component of the opti-

mization problem: It is the function for which the optimum must be found. In the case of this optimiza-
tion problem f(y) can be split into two functions:

f(y) = o(e(y)) (5.1)

The function e(y) represents the vehicle model implemented in Simulink and discussed in Section
2.3. The function o stands for the objective function. The objective function is drawn up to translate
the output of the model into a fitness value which reflects the aims of the DM. The objective function
is discussed in the next subsection (Subsection 5.4.3).

5.4.3 Objective Function
The objective function is the link between the vehicle model and the optimization method. To draw

up an objective function, first the objectives of the EMS must be defined. These are:

• Energy consumption

• Cabin temperature

• Travel time

The energy consumption can be seen as the main objective. However, the cabin temperature and
the travel time are also relevant for the driver and must therefore also be considered. As there are
three objectives, the problem is a MOOP. The theory of MOO is explained in Section 2.1. For this
thesis an a priori approach is chosen. This has two reasons: Firstly, a priori approaches tend to be
computationally efficient. Secondly, the input of the DM is needed before the optimization. As the DM
is the developer of the EMS, they are not available when the optimization is run in the field. For this
thesis the weighted sum method is used to handle the multi-objectivity. For the basic principle refer
to Equation 2.6.

The objective function can be written as:

min o(y) = min(θenergy · f̄energy + θtemperature · f̄temperature + θtime · f̄time) (5.2)

The vector θ = (θenergy, θtemperature, θtime) is called DM priority vector and reflects how the DM weights
the individual objectives. The functions fenergy, ftemperature and ftime are the objective functions for
the individual objectives. All the functions are normalized using the following equation:

f̄ =
f − fUtopia

fNadir − fUtopia
, f̄ ε[0, 1] (5.3)

The theory behind this normalization can be found in Equation 2.7. How the Nadir and Utopia values
are computed is explained in the following paragraphs for the individual objective functions.

Before starting into the objectives, the conditions the objective functions must fulfill are discussed.
The objective function is used in combination with both the GA and the SQP. The GA makes no
demands in respect to the objective function. In contrast to that, the SQP requires the objective

43



function to be twice differentiable. Another design target is that the objective function reflects what
the DM expects the optimization to do. In the case of the EMS this implies that the objective function
is adapted to the windows described in Section 5.4.1. The sequence in which the computations for

Run Model
(Simulink)

f̄energy f̄temperature f̄time

θenergy · f̄energy + θtemperature · f̄temperature + θtime · f̄time

Individual Objective Functions

Objective
Function

Parameters

FitnessValue

Figure 5.4 : Sequence for the computation of the objective function

the objective functions are performed is summarized in Figure 5.4. The input the objective function
receives from the optimization are the parameters, the output is the scalar fitness value. First, the
model is run in with the parameters. The output of the model is used to calculate and normalize the
fitness values for individual objectives using Equations 5.5, 5.7 and 5.8. These values are aggregated
using the DM priority vector to obtain a scalar fitness value.

In the next paragraphs the individual parts of the objective function are introduced.

Energy consumption For this objective function two variations are implemented: Firstly, a straight-
forward approach based on the total amount of consumed energy is investigated. Secondly, an
implementation based on the losses of thermal energy in the coolant and the cabin is introduced. In
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the following, it will be explained that the former is more suitable, if the entire cycle is optimized, while
the latter yields better results for the window-wise optimization.

The objective function based on the total amount of consumed energy can be written as follows:

fenergy = Ebat + Ebat,loss (5.4)

Here, Ebat is the complete energy taken from the battery. Consequently, it encompasses the energy
for the powertrain as well as the energy for heating. The losses in the powertrain and in the energy
transmission are part of Ebat. Ebat,loss describes the losses that occur within the LIB during charging
or discharging.

The objective function described in Equation 5.4 leads to the expected and desired results if the
whole DC is optimized. If the DC is subdivided into windows, the optimum found with this objective
function for the individual windows differs considerably from the optimum for the whole DC. This has
two reasons: Firstly, the energy stored in the warmth of the coolant and the cabin is not considered.
Consequently, only the heating power taken from the battery is minimized. This means that the
optimum is to let the coolant and the cabin go as cold as possible. Due to the conflicting objective
to keep the cabin temperature as close to the target temperature as possible, it is not viable to
cease heating completely. However, letting the coolant go cold means that to maintain the cabin
temperature in the next window, more energy from the battery must be used. Secondly, when the
window ends, a small part of the energy in the heating system is neither still in the battery nor in the
coolant or the cabin. This "ghost" energy is caused by the delays in the cabin and coolant model.
The first problem can be solved by adding correction factors to the objective function. These factors
emulate the thermal energy that is stored in the cabin and the coolant. To do that an approximation is
made on how much energy is stored in the cabin and the coolant respectively per Kelvin temperature
difference to the ambiance. This is done by determining the pulse response of each system to a
heating pulse. This approach, rather than an analytical computation, ensures that the MORE can be
transferred to other vehicles or used with other models. In the objective function itself the correction
factor is multiplied with the temperature difference to have an approximation of the stored thermal
energy. This approach has two drawbacks: Firstly, the thermal energies are only approximations.
Secondly, the "ghost" energy cannot be integrated into the objective function.

Therefore, a second objective function is drawn up for the window-wise optimization. Figure 5.5
visualizes the second approach, which is based on the thermal energy losses. The main goal remains

Low Energy Consumption

Low Energy Consumption
for Driving Low Thermal Losses Low Battery Losses

CabinCoolantAir

Figure 5.5 : Redrafting the energy objective function

a low energy consumption. This means that little energy is needed to overcome the driving resistance
(refer to Equation 2.23) and little energy is lost within the battery. It also means that as little heat as
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possible is lost. The energy for the drivetrain is not problematic, because the velocity at the end of
each window is zero. Therefore, no kinetic energy is transferred from one window to the next. The
battery losses are also easy to extract from the model. The decisive part are the heat losses. These
can be split into the energy lost via the cabin, the coolant, and via heated air streaming out of the
cabin. The objective function can therefore be written as follows:

fenergy = Ebat − Eheat + Ebat,loss + Ecabin,loss + Ecoolant,loss + Eair,loss (5.5)

The term Ebat − Eheat describes the energy used in the drivetrain. The formulation is chosen be-
cause the energy used by the drivetrain is not directly available in the model. The terms Ecabin,loss,
Ecoolant,loss and Eair,loss describe the thermal energy lost in the cabin, the coolant, and the air stream-
ing out of the cabin, respectively. While the components Ebat, Eheat and Ebat,loss can be taken directly
from the model, the thermal energy losses must be calculated separately using values from the
model. This means that the objective function is closely linked to the model and should be adapted if
the model is exchanged.

For the normalization of the fitness value, the Nadir and Utopia values are needed (refer to Equa-
tion 5.3). The Nadir value is the possibility in which most energy is consumed. Consequently, it is
computed using a simulation with the maximum possible velocity and the reference strategy for heat-
ing. The Utopia value is linked to the lowest possible energy consumption. Therefore, it is extracted
from a simulation with the lowest possible speed and deactivated heater.

The energy objective function also contains a penalty term for the coolant temperature. If the
coolant temperature exceeds a lower limit or an upper limit a quadratic penalty term is added to
fenergy.:

penalty = β ·∆T 2
coolant (5.6)

∆Tcoolant denotes the deviation from the upper or lower limit, respectively. β determines how heavy
the deviation is penalized. The term is set so that small deviations are accepted. The upper limit is
set to 353K and the lower limit to 310K, the factor β is set to 0.01.

The upper and the lower coolant limits differ in their significance for the optimization: The upper
limit serves to protect a physical limit of the system. In a real vehicle the coolant temperature must
not exceed 373 K, as the coolant boils at this temperature. In practice, temperatures over 363 K
are avoided. This limit is not preserved by the model itself and must therefore be protected in the
optimization. The lower limit on the other hand has no physical background. For the window-wise
optimization it helps to avoid local minima due to low coolant temperature. Furthermore, it helps to
limit the search space and therefore accelerates the convergence.

Travel time: The objective function for the travel time is simply the travel time:

ftime = ttravel (5.7)

The Nadir value is the longest time it can take to drive the DC. Therefore, it is computed by running a
simulation with the lowest possible velocity. In contrast to that, the Utopia value is extracted from an
optimization with the highest possible velocity.

Cabin Temperature: The objective function for the cabin temperature is:

ftemperature = norm((|∆Tcab| − |∆Tcab,Utopia|)2) (5.8)

∆Tcab denotes the difference to the desired cabin temperature:

∆Tcab = Tcab − Tcab,target (5.9)
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Equation 5.8 means that the objective function for the cabin temperature is the Mean Squared Error
(MSE) of the cabin temperature deviation. Tcab,target can be varied.

The Nadir value is the highest possible deviation from the target temperature. It can be simulated
by not heating the cabin. The Utopia value is computed using the reference strategy, because it is
known, that this strategy prioritizes reaching the cabin temperature. It is important not to use zero
deviation from the target temperature as Utopia value: When the cabin is heated up, it depends on
the constraints of the heater and vehicle how quickly the target temperature is reached. However, it
is never reached instantaneously.

An additional correction is added to the Nadir and Utopia values: Both values are limited to 4 K.
This is done because the optimization works better if the values for ftemperature are close to zero and
especially in the same range as the values of the other partial objective functions.

Constraints: The coolant temperature must be constrained: If the temperature is too high, it is
implausible as the liquid would start to boil. The model itself does not prevent this from happening.
Therefore, input that leads to an overly high coolant temperature must be avoided within the opti-
mization. Moreover, experiments show that a too low coolant temperature leads to a local minimum
and, therefore, suboptimal results. This can be avoided by adding a lower limit to the coolant temper-
ature. Consequently, values above the highest desirable temperature and below the lowest desirable
temperature are constrained with a quadratic penalty. The constraints are integrated into the energy
objective function.

5.4.4 Parameters
This subsection discusses the final aspect of the optimization problem: the variables for the op-

timization. It fills the gap between the optimization and the vehicle model and describes how the
variables are integrated into the model.

As the aim of the MORE is to work with a BEV that is close to a currently sold vehicle, the number
of variables is limited. This thesis focuses on connecting a driving strategy with the HVAC. Therefore,
the variables are the vehicle velocity, the heater power, and internal parameters of the heating system.
For the internal parameters of the heating system only the air flow into the cabin is considered. In the
following, the individual variables are described.

Velocity: To define how the variable is presented, it is helpful to determine how it can be integrated
into a real-world BEV. For the integration of the velocity two options are viable: The first option is that
the BEV is at least partly autonomous. The second option is that speed is chosen by a human driver
who receives recommendations from the MORE.

For the autonomous vehicle the velocity calculated by the vehicle in accordance with parameters
like the traffic situation can be adapted by the MORE. It is important that the velocity stays within the
limits that the constraints allow.

In the second case the MORE can influence the velocity by recommendation to the driver. For
example, the EMS can recommend decreasing the velocity. Currently commercially available models
are already giving such recommendations for maximizing the fuel efficiency. In other locations the
EMS could indicate that the driver should increase the velocity. The latter is not yet common in
suggestions for a fuel-efficient driving style.

In both cases the MORE does not determine the velocity independently. Therefore, the influence
the MORE can take on the velocity must be modeled. A reasonable assumption is that the MORE
can trigger small deviations from the planned velocity. These deviations must stay within predefined
limits. In this thesis the MORE influences the velocity via a factor that is multiplied with the original
velocity. The range in which the factor can lie can be adjusted when starting the optimization. For the
results discussed in the thesis it lies between 0.7 and 1.1. The range is not symmetric because it is
typically more acceptable to drive slower than faster.
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As already described in [178], the velocity is specified as a function of location, not time. The
main reason is that the locations where the vehicle stops are fixed. However, the exact time when
the vehicle stops is not relevant. The second reason is that for this thesis the optimization results
from one trip are transferred to another. To facilitate this, the variables must also be a function of the
location: The drives are the identical route but not the identical traffic situation. Consequently, the
speed pattern differs but some regularities can be found in the velocity as a function of the location
v(x).

The velocity variable is presented as discussed in [178]: The optimization is provided with a time
step size and with a translation velocity. These two parameters are multiplied to obtain the distance
for which one velocity value is used.

Heater power: The heater power is easier to integrate into a real-life vehicle. Typically, the driver is
not involved in the decision how the target temperature is reached by the HVAC. Moreover, the heater
power is not influenced by external conditions like the traffic situation. Intuitively, the heater power is
a variable that should be formulated as a function of time (refer to [178]). However, for two reasons
it is also beneficial to translate the heater power into a function of location: Firstly, it accelerates the
convergence of both GA and SQP, if the velocity is also optimized. This is because one of the main
mechanisms of the optimization is using the recuperated energy for heating. The braking is often
linked to a certain position of the route. If the optimization algorithm is in an iteration where the usage
of the recuperation is optimal and in the next step the velocity is adjusted, for a time-based heating
power, the heating power no longer aligns with the braking period. If the heating power is based on
the place, this alignment is not lost by an adjustment of the speed.

Secondly, to transfer the results to another drive on the same route, the heater power also needs
to be expressed as a function of the time.

The limits of the heater power originate in the physical limits of the heater. The maximum heating
power is 20kW . This power can only be sustained for 30 s, afterwards the power must be at least 30 s
7 kW or lower [151].

In the vehicle model, the heater power is a time-based variable. Hence, it needs to be translated
into a representation as a function of the distance. This is done by partitioning the DC into sections
that take equally long to drive. The time for one of these short distances is the time step size if it
is driven with the original velocity for the DC. The distance for each segment remains fixed for the
optimization. Consequently, if the velocity is adapted, the time it takes to drive one of the segment
changes. This might change the overall effect a segment has on the coolant or the cabin temperature:
For example, one segment increases the coolant temperature by 1K, if it is driven with the original
velocity. If the same segment is driven 10 % slower, it increases the coolant temperature by 1.1 K.
How this challenge is met is discussed in Section 5.4.5.

Air Mass Flow: The air mass flow describes how much heated air streams into the cabin. While
the heater power influences the cabin temperature only indirectly via the coolant, the air mass flow
directly impacts the cabin temperature. The air mass flow is specified in kg

s . The value for the air
mass must lie between 0.001 kg

s and 0.0833 kg
s . The boundaries are defined by the physical limits of

the blower.
In the reference strategy the air mass flow is determined by a controller that keeps the cabin

temperature as close to the target temperature as possible. Consequently, the cabin temperature
only differs from the target temperature, if the coolant is too cool to sustain target temperature. For
the MORE two options for a variable connected to the air mass flow are implemented: The first
possibility is to take the air mass flow itself as the variable. As the cabin temperature is part of the
objective function (refer to Equation 5.2), the controller becomes unnecessary and the air mass can
directly be used in the model. However, this approach leads to a problem: Regarding the air mass,
the model contains a local minimum. The GA can handle this challenge, as it is a global optimization.
The SQP gets stuck in the local minimum and yields results that are far from the optimum the DM
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expects. One possibility to meet this problem is implementing the air mass flow more indirectly. This
is done by optimizing the target temperature instead of the air mass flow. The controller used by
the reference strategy is retained and inputted with the variable target temperature. To maintain the
comfort of the driver the deviation from the target temperature is limited to 0.5K.

For both approaches the variables can either be expressed as a function of time or place. Only
results for the optimization of the target temperature are presented in this thesis.

5.4.5 Integration of Parameters into the Model
This subsection explains how the integration of the parameters (described in Section 5.4.4) into the

vehicle model (described in Section 5.2.3) works. The integration is discussed for every parameter
separately.

Velocity: The velocity can directly be integrated into the model in the block DC. The only adaption
that must be made is to map the variables from the optimization to the correct part of the route.

Heater Power: Integrating the heater power is more complex than the velocity. This thesis presents
three options:

1. Direct integration: The heater power is directly integrated into the model.

2. Basic controller : A simple controller is used to integrate the optimized heater power into the
model.

3. Recuperation rule controller : A more advanced controller which can independently increase
the utilization of the recuperated power is used.

All options are independent of whether the heater power is presented as a function of time or place.
Translating the location based representation is done via a look-up table before the controllers are
used. The first option is the least complex: The heater power computed by the optimization is directly
inputted into the model. This approach has three disadvantages: Firstly, if the heater power is repre-
sented based on the location and the velocity is varied, the duration for which a certain heater power
is applied is also varied. This effect can lead to a suboptimal coolant temperature. As the heater
power does not directly impact the cabin temperature, the problem is relatively small. Secondly, if the
optimized variables are transferred to another trip, the time span for which each heater power is ap-
plied also varies compared to the original trip. This again means that the coolant temperature might
be suboptimal. For the transfer, this effect is more pronounced than within one trip. Moreover, the
location of the braking might be shifted compared with the original trip. Thirdly, if the heater power is
directly integrated into the model, no pre-existing knowledge of the optimization problem and its solu-
tion is integrated. This means that a chance to accelerate the convergence is lost. For these reasons,
two options for the integration of the heater power with an additional controller are investigated.

Normalization
of Heater Power

P-Controller

Comparison

Pheater,OptimVar

Tcoolant,Target

Pheater,norm

Pheater,controlled

Pheater

Figure 5.6 : Overview of the simple controller for the heater power

First, the simple controller is described. The basic signal flow is shown in Figure 5.6. The input of
the controller is the heater power as it is used by the optimization. In the following, this parameter
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Figure 5.7 : Comparison function in the simple controller for the heater power

is referred to as Pheater,OptimVar. The output is the heater power Pheater as it is used by the model.
In the upper branch shown in Figure 5.6, Pheater,OptimVar is normalized using the maximum and the
minimum values for the heater power. The resulting heater power is referred to as Pheater,norm. In
the lower branch a P-controller is used to determine the heater power Pheater,controlled to attain the
optimum temperature for the coolant. In the final block these two values are compared to get the
value for Pheater. How this comparison works is shown in Figure 5.7. Pheater,norm is shown on the
X-axis. The output of the block, Pheater, is depicted on the Y-axis. The graph that establishes a
relationship between the two values is computed using Pheater,controlled. Figure 5.7 shows that the
correlation between Pheater,norm and Pheater is not linear: it increases between 0 and Pheater,controlled for
Pheater,norm in 0 . . . 0.5 and between Pheater,controlled and the upper limit for Pheater,norm in 0.5 . . . 1. The
target value for the coolant temperature is set in two different modes: Either the target temperature
is fixed or the target temperature of the originally optimized trip is used is used. The first option is
chosen for the optimization of the original trip. The target value for the coolant temperature is based
on experience. The second option is used when the results are transferred to a different trip: The
target value is set to the coolant temperature taken from the original optimization. This is discussed
in more detail in Section 5.7.

The third method to set the heater power is the recuperation rule controller. It incorporates more
previous knowledge than the simple controller. If the heater power is directly integrated into the
model, or if the simple controller is used, it is important that the time step size is chosen to be small
enough to mirror the shifts in the recuperation power. As already discussed in Section 5.4.1, reducing
the time step size increases the computation time. To mitigate that problem, the recuperated power
can be integrated into the controller. Figure 5.8 shows the principle of the proposed controller. The
recuperation-based controller is an enhancement of the simple controller.

The first two blocks are identical to the simple controller: The heater power inputted from the
objective function is normalized to attain a Pheater,norm and a P-controller is used to compute a
Pheater,controlled that is dependent on the coolant temperature. Additionally, the recuperated power
(Precu) and a correction factor are entered into the comparison block. The correction factor is only
used when the optimization is transferred to another trip. The correction factor is computed with a
P-controller from the coolant temperature development from the original trip. This is discussed in
more detail in Section 5.7. As for the simple controller, the core part of the controller is the compar-
ison block. Its working principle is shown in Figure 5.9. The comparison block takes Pheater,norm and
computes Pheater. How this is done for two different amounts of available recuperated power, can be
seen in the Figures 5.9a and 5.9b. In Figure 5.9a, a certain amount of recuperated power is available.
The following sections based on the value for Pheater,norm are defined:

• Pheater,norm = 0: The heater is switched off.
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Figure 5.8 : Overview of the recuperation-based controller for the heater power

• Pheater,norm = 0.25: Only the recuperated power is used for heating.

• Pheater,norm = 0.5: The recuperated power plus 2 kW is used for heating.

• Pheater,norm = 0.75: The recuperated power plus 7 kW is used for heating.

• Pheater,norm = 1: The maximum heater power is used.

Between these values the heater power is linearly interpolated as can also be seen in Figure 5.9.
This linear interpolation leads to problems with the SQP: As described in Section 2.2.3, the objective
function for the SQP must be twice differentiable. The part where the different sections meet is not
twice differentiable as can be seen in Figure 5.9. To solve this problem, the different sections of
the function are blended: 5 % before and after each kink a quadratic function is applied, so that the
gradient of the function changes slowly and does not have a discontinuity.

In Figure 5.9a the comparison block is shown when no recuperated power is available. This means
for the same values of Pheater,norm the output Pheater is different: For example, for Pheater,norm = 0.25
the heating is switched off. This means that if the recuperated power changes, the power used for
heating changes even if the value for Pheater,OptimV ar does not change because it happens within one
time step. This means that the recuperation rule controller opens up the possibility to use larger time
steps.

Air Mass Flow: As described above the air mass flow is integrated via the target temperature. The
controller used for the reference strategy is kept and inputted with the optimized target temperature
instead of the original target temperature. The controller manages to keep the actual cabin temper-
ature at the target temperature. To avoid sudden changes in the air mass flow, the rate at which the
target temperature can change is limited.
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Figure 5.9 : Comparison function for the recuperation-based heater controller

5.5 Optimization Methods

In this section the optimization methods used for this thesis are introduced. The aim is to lay the
foundation for comparing the methods in Chapter 6. This section provides the reader with implemen-
tation details and how the parameters of the algorithms are varied.

5.5.1 Genetic Algorithm
This subsection provides information on the specific implementation of the GA for this thesis. The

working mechanisms of GAs are explained in Section 2.2.2.
For this thesis, a GA is applied because it is not specific to the optimization problem. This means

that it can easily be adapted for different variations of the model. Furthermore, the GA works with a
black-box model, because it only needs the results from evaluating the model and no further data.
This allows the user to replace the Simulink model with a black box model which can be computed
more efficiently. Another advantage is that the GA can be parallelized intuitively: The individuals of
one generation can be evaluated on different cores. This significantly improves the run-time of the
algorithm and allows the user to adapt it to the existing hardware.

How the GA is implemented in Matlab can be found in the documentation for the Global Optimiza-
tion Toolbox [175]. In the following, only those options that are used for this thesis are explained.
Therefore, this subsection reflects both how the algorithm is used for this thesis and how the GA is
implemented in Matlab.
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As explained in Section 5.4, the optimization problem is converted into a single objective problem
using the weighting method. Therefore, a single fitness value can be assigned to every individual.
In Section 2.2.2 the basic options for the different operators are introduced. The chosen implemen-
tation for the following operators is introduced: representation of individuals, initialization, mutation,
crossover, selection, elitism, termination, constraint handling.

Representation of Individuals: For this thesis the individuals are real-valued. In Matlab this option
is set under the keyword population type [175, p. 11.39]. Each individual consists of the parameters
that are optimized for every time-step. In Figure 5.10 the individual for an optimization of the heater
power and the velocity is shown.

v1
v2
v3
...

vk
p1
p2
p3
...

pn

Figure 5.10 : Example of an individual for an optimization with n time-steps and k spatial steps that takes the
heater power p(t) and velocity v(x) as input

Initialization: The initialization of the population can be done by creating a uniformly random dis-
tributed population [175, p. 11.40]. Two subcategories relevant for this thesis exist [175, p. 11.40]:
Either the population is randomly created within user defined boundaries, or it is created to meet the
linear constraints. As the problem in this dissertation is constrained, the second option is chosen.

It is expressed as a function of the number of variables in each individual. This is necessary as the
windows differ in length and therefore different numbers of variables need to be optimized. As the
optimal population size depends on the number of variables an absolute number makes little sense.
With k being the number of spatial steps and n being the number of time steps, the population size
can be expressed as follows:

PopulationSize = β ∗ (k + n) (5.10)

The best value for β must be determined empirically through computer experiments. A larger popu-
lation size might improve the result but can also increase the computation time. While Simon ([40, p.
50]) acknowledges that the population size is an important parameter, he gives no recommendation.

Mutation: For the mutation a user supplied function is integrated into the GA. It is a variation of the
Gaussian mutation that is also integrated in Matlab [175, p. 11.46]: To each variable in the individual a
random number with a Gaussian distribution around zero is added. The difference for the customized
function is that the number of variables in one individual that are mutated changes over the iterations.
This means that the mutation loses importance as the GA draws closer to the optimal solution.

Crossover: For crossover Matlab offers a variety of options. For the MORE the two-point crossover
option implemented in Matlab is used [175, p. 11.50].
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Table 7 Overview of the variations of the GA tested for this thesis

Option Chosen Variation Source

Population Size 1.5 times number of variables [175, p. 11.39]

Crossover Type ’crossovertwopoint’ [175, p. 11.49-11.51]

Mutation Type user supplied mutation function [175, p. 11.46-11.48]

Constraint Handling penalty integrated in objective function

Crossover Fraction 0.8 [175, p. 11.46]

Elitism 0.05 [175, p. 11.46]

Parallel Execution no [175, p. 11.62]

Number of Generations 100 [175, p. 11.57]

Selection: For the selection the options implemented in Matlab are the standard options found in
literature on GAs and, therefore, are the options described in the theoretical foundation. The default
method, which is also used for this thesis, is the stochastic uniform selection [175, p. 11.44].

Elitism: Elite individuals can be used in Matlab [175, p. 11.46]. The number of such individuals is
set as a fraction of the population via the elite count.

Termination: All termination criteria that are discussed in the theoretical foundation are imple-
mented in Matlab [175, p. 11.57-11.58]. For this thesis the maximum number of generations is
used as stopping criterion and is varied.

Constraint Handling: As explained in Section 5.4, the optimization problem discussed in this thesis
is constrained. The constraints are only linear. Therefore, no techniques to handle non-linear con-
straints are discussed. On the one hand, constraint preserving operators in Matlab can be chosen.
This ensures that all individuals satisfy the constraints. This option is mentioned for the respective
operators. On the other hand, a penalty term can be added to the fitness function. This puts pres-
sure on the population to develop individuals that satisfy the constraints. The advantage of the latter
method is - besides the aspects highlighted in the theoretical foundation - that it can be applied in a
similar way to the SQP. This ensures the comparability of the two methods.

5.5.2 Sequential Quadratic Programming
In this subsection the implementation of the SQP method is explained. The theory behind SQP

methods is explained in the theoretical foundation (Section 2.2.3). Like for the GA, Matlab resources
are used to implement a SQP method. The SQP algorithm can be found as part of the Optimization
Toolbox. The SQP algorithm is implemented as part of the fmincon solver [176, p. 2.8].

The implemented SQP follows the description given in the theoretical foundation. In the following,
a short overview of the implementation details is given. In [176, p. 6.31] four main steps for the SQP
algorithm in Matlab are identified:

1. Updating the Hessian matrix: The Hessian matrix is updated using the Broyden–Fletcher-
Goldfarb-Shanno (BFGS) method [176, p. 6.31]. The formula can be found in [176, p. 6.8].
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2. QP solution: The QP subproblem is solved using an active set strategy [176, p. 6.34]. The
exact algorithm can be found in [177] and in [176, p. 6.33-6.35].

3. Initialization: The algorithm for solving the QP subproblem requires a feasible starting point
[176, p. 6.35]. If this is not given by the SQP algorithm, it can be found by solving an additional
linear subproblem. For a detailed description of this process refer to [176, p. 6.35-6.36].

4. Line search and merit function: The exact implementation of the merit function is explained in
[176, p. 6.36]. The description closely follows that given in the Theoretical Foundation.

For the optimization with fmincon the optimization problem is expressed in a similar way as with GA.
The variables that are combined to an individual for the GA are interpreted as the decision variables
and therefore the input for the objective function. In addition to the objective function, the fmincon
solver can take the gradient of the objective function as input [176, p. 2.26]. If no gradient information
is supplied, the solver calculates the gradient. For the considered optimization problem, the Matlab
calculation of the gradient leads to numerical problems. Therefore, only the user supplied gradient is
used. To speed up the calculation, the gradient is computed using the right-sided differential quotient.
Comparisons showed that this leads to the same results as if the central differential quotient is used.

Using the fmincon solver for the SQP algorithm does not allow for many variations of the algorithm.
Most variations that impact the quality of the solution can be made with the problem formulation as
described in Section 5.4. However, a few choices pertaining to the stopping criteria of the algorithm
must be made. The following stopping criteria exist [176, p.2.86-2.87, 2.89]:

• StepTolerance: Step tolerance is a relative lower bound that defines the minimal step length dx
[176, p. 2.86].

• OptimalityTolerance: Optimality tolerance is also a relative lower bound that defines how close the
solution has to be to a first order optimality measure [176, p. 2.86].

• ConstraintTolerance: Constraint tolerance is a relative upper bound that defines how far the con-
straints may be violated [176, p. 2.86-2.87].

• MaxIterations: Maximal iterations limits the number of iterations k before the algorithm terminates
[176, p. 2.87].

• MaxFunctionEvaluations: Maximal function evaluation works similar to maximal iterations but does
not limit the number of iteration but the number of evaluations of the objective function [176, p.
2.87]. This has the advantage that the number of evaluations of the objective function is closely
linked to the computation time, which might be a limiting resource.

As with the GA two or more stopping criteria are often combined.
For the MORE the SQP as it is implemented in Matlab is changed in two aspects due to small prob-

lems that occurred during preliminary computer experiments. Firstly, the last gradient computation is
omitted. Secondly, the concept of super-iterations is introduced.

If the maximum number of iterations is used as a termination criterion, the SQP computes a gradi-
ent in the last step that is not used. As the gradient computation is time consuming, this unnecessary
computation is prevented.

The super-iteration is in effect a restart of the optimization procedure with the last value of the
first optimization as initial value for the next optimization. This feature is introduced for the following
reason: As already mentioned above, Matlab computes the Hesse matrix numerically. In combination
with the recuperation rule controller, the Hesse matrix is computed inaccurately. This leads to the
SQP trying out values that lie in the wrong direction. Because of this, the optimization gets the
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Table 8 Overview of the variations of the SQP tested for this thesis

Option Chosen Variation Source

User Supplied Gradient yes [176, p. 2.26]

Maximum Number of Iterations variable [176, p. 2.87]

Step Tolerance 10−16 [176, p. 2.86]

Optimality Tolerance 10−6 [176, p. 2.86]

Constraint Tolerance 10−6 [176, p. 2.86]

Parallel Execution no [176, p. 1.2]

impression that the solution can no longer be improved and stops prematurely. This can be remedied
by restarting the optimization procedure every three or four iterations. This is referred to as super-
iteration. The Hesse matrix is built up step by step. Therefore, for the first iterations of each run, the
Hesse matrix appears to be still correct. In effect the super-iterations wipe out the memory of the
algorithm. Unfortunately, Matlab does not allow a user supplied Hesse matrix. Moreover, the exact
working mechanism and, therefore, the exact problem also cannot be tracked in Matlab. Extensive
experiments, however, showed that the proposed approach lead to satisfactory results.

5.6 Driving Cycles

For the computer experiments with the EMS a DC is necessary. This cycle must consist of the
velocity as a function of the time: v(t). For this thesis neither the slope nor the wind speed is
considered. Therefore, v(t) suffices to describe the DC completely. In [178] a standard DC, in this
case the New European Driving Cycle (NEDC), and a recorded drive were used. For this thesis the
focus lies on getting as close to a realistic situation as possible. Therefore, only recorded real world
drives are considered. The structure of the used DC also allows to explore the online application as
described in Section 5.7.

The same recorded drives as in [178] are employed. These drives were used by Adermann in his
dissertation ([162]) and were published and described in [161]. Therefore, the reader is referred to
these sources for a detailed description. In the following only the most important points are summa-
rized. The aim of Adermann et al. [161] is to reproduce a typical commute. This aim is reflected in
their choice of route: The distance is 18.79 km and it consists of 67 % on urban streets, 22 % intercity
roads and 11 % motorway. A map on which the route is shown can be found in [161]. The route was
repeated 50 times in the winter of 2016/17. The difference in the driven distance is up to 13 m or
0.07 %. As the focus of Adermann’s thesis lies on the battery, more drivetrain data is recorded. For
this thesis only the velocity profile is used.

To work with the optimization, the recorded drives are transformed from v(t) to v(x). Moreover, the
position and the time, at which the vehicle stops, are extracted to create the windows described in
Section 5.4.1. The trips are automatically transformed into the necessary form and loaded into the
model for the optimization.

5.7 Online Application

Section 5.1 describes the overall concept: The optimization is used to determine the optimal pa-
rameter set for an original trip. These parameters are transferred to a new driving scenario. This
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section explains the concept and the challenges for the transfer. In Figure 5.11 the workflow to simu-
late the online application is depicted. The optimization is done with one trip. The objective function
and the model are used to compute the fitness value. The problem is formulated and optimization
is done as described in the previous sections of this chapter. The optimized parameters are then
transferred to other trips of the same route. The first part is computationally expensive and cannot be
performed online. The transfer, however, needs hardly any computation time and it would be possible
to perform it online.

The main challenge for the transfer to another trip is that the energy reduction can be maintained
while keeping the cabin temperature in the acceptable zone. This can only work if two things are
ensured: Firstly, the concept itself must be designed to enable the transfer. Secondly, the optimization
procedure must be adapted to guarantee the possibility for the transfer. First, the requirements that
must be met by the concept are highlighted: All trips cover the same route and the total distance
differs only slightly (refer to Section 5.6). For an overview of the differences of the trips refer to the
table displayed in [161]. The table shows that especially in regard to the stop times a considerable
difference between the drives can be found. However, the velocities are similar. For the differences
between the trips, solutions have to be found within the optimization.

These solutions within the optimization are discussed next. The first step to enable the transfer to
another trip is that all parameters are expressed as a function of the location and not the time. As
already mentioned in Section 5.6, the distance for the trips varies only slightly while the travel time
fluctuates up to 5.7% [161]. Moreover, the parameters are integrated into the model using controllers
as described in Section 5.4.5. These controllers can compensate small changes in the DC and avoid
distinctly suboptimal developments of the heater power and the air mass flow. Lastly, an additional
correction mechanism is integrated into the model for the transfer to another trip. In Figure 5.8 the
block Correction for Transfer is included. In this block a correction factor is computed using the
coolant temperature at the current location of the optimization of the original trip. This correction
factor means that the heater power is adapted, if the coolant temperature deviates from the original
trip, i.e. the controller tries to reach the same coolant temperature as for the original trip. Hence, local
deviations from the original trip have only limited influence at locations that are passed later. Three

Trip 1

Objective function

Model

Optimization

Trip 2

Model

Trip 3

Model
. . . Trip n

Model

Offline

Online

Optimized
Parameters

Parameters

Fitness Value

Figure 5.11 : Transfer to different trip

other deviations from the planned concept are conceivable and can be solved with minor adaptations
of the concept:

1. Small deviations from original route: The driver varies their commute by adding a detour. For
example, they go shopping on their way back from work. To tackle this scenario, Global Posi-
tioning System (GPS) coordinates can be used. During the detour the last valid set of param-
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eters is used. The controller ensures that the deviation has only a local influence. Once the
original route is picked up again, the variables are used as planned.

2. Large differences of the velocity : If for example an unusual traffic jam happens on the trip, the
velocity might differ significantly from the originally optimized trip. In this case it is possible to
update the optimization for the next segment of the trip using forecast data.

3. The route is not the commute: Firstly, this problem can be alleviated by having a good fall-
back EMS that does not rely on optimization. Secondly, a data base can be built up and the
parameters for a similar trip can be used.

5.8 Preliminary Results

In the following, the research that was conducted to develop the MORE is presented. All results
introduced in this section are either part of master’s theses or published in a peer reviewed journal
or conference. Chapter 6 presents only original research that was not previously published. The
preliminary results are only briefly discussed as they are not part of the final concept and can be
looked up in their original sources.

5.8.1 Model Configuration for Preliminary Results
The model that was used for all the preliminary research is based on the component library de-

scribed in Section 5.2. Compared to the model on which the final results are based, the model is
reduced. It does not contain the cabin model and the heating system is modeled less sophisticated.
The simpler model of the heating and the cabin has the following consequences: The heater power
is the only parameter that can be optimized. The air mass flow is not modeled. The simpler model
has the following features compared to the more complicated model: As the model is not originally
designed to investigate the heating system, no elaborate rule-based strategies exist. Therefore, the
reference strategy is simpler. This makes it easier for the optimization-based EMS to achieve a reduc-
tion of the energy consumption. In the simpler model the following reference strategy is employed:
During the heat-up phase the heater uses its maximum power. When the target temperature of the
cabin is reached, the power is reduced to a constant power that maintains the cabin temperature.
This simple strategy is the best option to keep the cabin temperature close to the target temperature.
However, the energy consumption of the heater is not considered. Consequently, the energy reduc-
tions attained with the reduced model are less meaningful than those for the full model. Moreover,
the model takes less time for a single run. The cabin and heating system are one of the most time-
consuming parts of the model. If they are only rudimentary represented, the overall computation time
is significantly reduced. This allows for more experimentation with the reduced model. Lastly, the
thermal energy stored in the vehicle is negligible. Therefore, the design of the energy fitness function
is less challenging. However, the results differ more from the real vehicle and can therefore not be
transferred seamlessly.

For the reduced model, only the direct input of the heater power is evaluated, and no additional
controllers are used. Moreover, the reduced model does not model the BMW i3, but the Ford Focus
Electric. Only the individual components are validated in the context of the library using existing
literature. In summary, the reduced model focuses on low implementation effort and low computation
times to quickly achieve results. A detailed description can be found in [178] and [184].

5.8.2 Comparison of Different Optimization Methods
Three theses focus on one optimization method each. For the preliminary results the GA was

explored most in depth and the offline optimization-based EMS was also published based on a GA
[178] and a hybrid GA respectively [179]. For the preliminary results the SQP and the GA as well as
DP are investigated. In the following the results are briefly summarized.
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The results using the GA can be found in [178, 179, 184]. It could be shown that the GA leads to
significant energy reductions for both standard DCs and recorded real-world drives. The implemen-
tation of the GA is similar to the approach described in Chapter 5. The main difference is that only
Matlab-implemented mutation functions are used, and not the adaptive mutation function designed
for this thesis. Moreover, [184] and [179] evaluated a hybrid approach that combines the GA with a
gradient-based approach.

The SQP is introduced in [185]. Both a window-wise and an optimization of the entire cycle are
implemented using the NEDC as DC. The thesis also presents a comparison with the GA. It could
be shown that the SQP outperforms the GA for the investigated set-up. The exact implementation of
the SQP is based on the Matlab solver. It is not identical to the concept described in the approach.
The main difference is that it uses no super-iterations. The reason for this is that with the reduced
model no problems with the Hesse matrix were identified.

The last approach that was investigated is DP. It has the disadvantage that no existing Matlab
implementation can be used. Therefore, the algorithm must be built up from scratch using the existing
literature. This was done in [186]. The DP was compared to the implementations of the SQP, and
the GA described above. The structure of the problem formulation is fundamentally different from
the two other approaches. Particularly, the heater power cannot be directly used as a parameter
because the system must have discrete states [186, p. 28]. Therefore, the target temperature for the
cabin is implemented as parameter [186, p. 28]. This allows for discrete states. To determine the
heater power a PID-controller is used [186, p. 26-28]. This thesis also contains the most extensive
comparison of the three approaches implemented with the reduced model [186, p. 57-61]. For the
DP different numbers of states for the variables speed and target temperature are evaluated [186, p.
60]. A higher number of states means a higher computation time (refer to Section 5.5). Therefore, a
trade-off between computation time and quality of results must be found. A comparison shows that
it yields the best results if the target temperature is more coarsely discretized, and the computation
capacity is invested in the speed [186, p.49, 60]. However, even the best configuration for the DP is
not significantly better than the SQP or the GA while taking about five times longer than the GA [186,
p. 59].

For the more detailed model an analysis shows that the computation time for the DP would increase
at least by the factor ten. This has the following reasons: Firstly, the model itself is slower. This also
impacts the other methods, but the DP needs the largest number of model runs and is, therefore,
most affected by the change. Secondly, the coolant temperature needs to be introduced as additional
variable. This would lead to an increase in the number of states. The coolant temperature has a
high variance. Consequently, it would add many additional states. The best implementation for the
reduced model has two values for the cabin temperature and 30 for the velocity [186, p. 59]. This
means that 60 states are modeled for each stage. If the coolant temperature is added and if to attain
satisfactory results 10 discrete values for the coolant temperature are needed the number of states for
each stage would increase to 600. This would also mean that the computation time would increase
by the factor ten. This estimate is a best-case-scenario and contains the following uncertainties: To
map the coolant temperature to ten discrete values might not be sufficient. It might be necessary
to add even more states and therefore computation time to the optimization. Furthermore, the DP
does not work with the proposed recuperation rule controller. Therefore, it could become necessary
to add more stages to the optimization to obtain results that are better than those for the SQP. If
the same number of stages as for the basic configuration of the SQP are necessary, the computation
time would be increased by a factor of 15.

In summary, for the reduced model the DP does not lead to significantly improved results compared
to the SQP and GA but has a higher computation time. For the more detailed model, it is reasonable
to assume that the computation time would be so high that it makes DP infeasible. Therefore, it is not
transferred to the detailed model and not part of the final concept for the MORE. Options how this
can be done in the future are discussed in Section 7.5.
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5.8.3 Integration of Additional Components into the MORE
The integration of two additional components was investigated. These are the gear box and a more

elaborate coolant circuit for all components of the vehicle.
The integration of the gear box is described in [183]. The first step is to model the gear box and

integrate it into the existing vehicle model. In the next step the shifting schedule is integrated into
the existing EMS based on the GA. The combination of modeling and optimization revealed that
the additional weight and lowered efficiency of the gear box cannot be outweighed by the energy
reduction achieved by adding the shifting schedule to the EMS [183, p. 90]. Moreover, it is atypical
for a BEV to have more than one gear stage. Therefore, adding the gear box removes the EMS
further from a commercially available vehicle. For these reasons the gear box is not integrated in the
approach introduced in this thesis.

For the elaborate cooling system, two approaches were implemented. The first can be found in
[187]. Radinger implemented a cooling system that included the battery, the electrical machine and
the converter using Simscape. While he found that the basic approach was feasible [188, p. 80], he
also uncovered several problems: Firstly, the run time of the model is negatively influenced by the
Simscape cooling system [188, p. 80]. Secondly, the validation of the cooling system is difficult as the
publicly available data is not sufficient [188, p. 84-85]. Furthermore, even if a vehicle were available,
it would be difficult to place the sensors for measuring all the necessary temperatures without access
to the proprietary information of the OEM. Thirdly, for the commercially available vehicles that were
investigated it is difficult to identify suitable parameters to integrate in an EMS.

For these reasons the thermal management of the individual power train components was not
directly integrated into the system. However, a hybrid between a rule-based and an optimization-
based approach was developed that focuses on the thermal management [189, 180]. This concept
is not based on the simplified vehicle model as it is solely focused on the TMS. For this concept
a more elaborate cooling system than typical for commercially available vehicles was developed.
The basis of the system are detailed measurements of the energy losses conducted with a Renault
Twizzy [180]. The approach can be described as an optimized rule-based approach [180]: Different
states which the TMS can adopt are defined. The states are changed when the temperature of the
individual components reaches a certain threshold. These threshold temperatures are optimized
using a multi-criteria GA. Consequently, the EMS can be applied online. This approach showcases
an example for a hybridization of optimization- and rule-based approaches. The approach was not
included in the final implementation for this dissertation because the modeled system is much more
elaborate than currently commercially available. Therefore, it was not in accordance with the mission
statement for this thesis. Additionally, the simulation time for the model is also high [189, p. 64]. This
makes a regular repetition of the optimization difficult. Lastly, while the state transition based EMS
is a good fit for a TMS, integrating the cabin temperature and the velocity into the concept would be
difficult. Therefore, the concept mainly serves as an alternative concept for fusion of rule-based and
optimization-based approaches.

This section showcased the preliminary research that was done to develop the EMS that is intro-
duced in the rest of the chapter. This research helped to sharpen the focus for the development of
this concept. Especially, for the optimization method, the preliminary research explains the choice of
methods. For the regarded sub-systems in the vehicle some background can also be supplied.
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6.1 Core Results
6.4 Analysis of

Energy Savings

6.2 Evaluation of Design Decisions
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Figure 6.1 : Structure of Chapter 6

Figure 6.1 illustrates the structure of this chapter. It starts out with the core results in Section 6.1.
The configuration for these core results is based on a detailed evaluation of the design decisions,
which is presented in Section 6.2. The last two sections provide an analysis of two aspects of the
MORE: Section 6.3 shows that the MORE is robust against temperature variations. Section 6.4 gives
a in depth analysis of the energy savings, which can be obtained using the MORE.

6.1 Core Results

This section presents the core results of the MORE and demonstrates that the concept presented
in Chapter 5 yields satisfactory results.

Figure 6.2 illustrates how the MORE reduces the total energy consumption for the trip. The upper
bar shows the energy savings for the direct application of the MORE. This means that the parameters
are applied to the same DC on which they are optimized. The middle bar depicts the energy savings,
if the parameters are transferred to another DC. The lower bar corresponds to the reference strategy
developed by Steinstraeter as described in Section 5.3. This reference strategy adds a HVH to a
commercially available vehicle. Using this HVH, the strategy can reduce the power consumption by
6.28 % for the DC12 and by 5.49 % on average for all DCs. The discrepancy between these values
is a statistical effect. The MORE with perfect foresight, i.e. on the original DC, reduces the energy
consumption by additional 2.65% using only an improved software application. Assuming imperfect
foresight reflected in the transfer to other cycles, the MORE still leads to 1.45 %. This highlights
the advantages of the MORE over a rule-based strategy even if both strategies influence the same
parameters. For a more detailed analysis of the reduced MORE see Appendix A.1.

If the velocity is integrated into the MORE the energy consumption can be reduced by additional
6.21% on the original DC and by additional 4.04% for the transfer. A detailed analysis of these results
is presented in Section 6.4.
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Figure 6.2 : Energy savings achieved with the reference strategy and with the MORE

6.2 Evaluation of Design Decisions

The MORE achieves this energy reduction based on several elements and design decisions devel-
oped in this thesis. This section evaluates these elements and shows that each of them contributes
significantly to the performance of the MORE. As detailed previous chapter, the MORE can be con-
figured in different ways. Table 9 summarizes the configuration used for the results presented in the
previous section (Section 6.1). The table also comprises the configurations of the model. As detailed
in Section 5.4.3 the DM priority vector is used to find a compromise between the different objectives
of the MORE. The values are chosen such that the travel time remains fundamentally unchanged
and that the deviation of the cabin temperature from the target temperature is similar to the reference
strategy.

6.2.1 Comparison to Window-Wise Optimization

0 1 2 3 4 5 6 7 8 9

Transfer to other Cycles

Original Trip

4.41

8.99

5.49

8.86

Energy in % of total energy supplied by battery

Entire Cycle
Window-Wise

Figure 6.3 : Comparison of the energy consumption with the window-wise MORE and MORE based on the
optimization of the entire cycle

As detailed in Section 5.4.1 an alternative to the optimization of the entire cycle is the window-wise
optimization. The two approaches differ in how easily new information can be incorporated into the
simulation. As the number of iterations needed for the SQP is strongly dependent on the starting
point, parameters obtained from a previous trip can be used as a starting point and new information
becoming available during the trip can be used to update the parameters. It is probable that the
prediction is not sufficiently accurate to considerably improve the solution on the time scale of the
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Table 9 Overview of configuration for the MORE and the simulation

Parameter Value

M
O

R
E

Optimization Algorithm SQP

Time Step Size 30 s

Division of Cycle Entire Cycle

Representation of Heater Power Recuperation Rule Controller

M
od

el

Ambient Temperature 273.15K

Target Temperature 293.15K

Original DC DC12

Transfer DC DC13

D
M

pr
io

rit
y Travel Time 0.43

Cabin Temperature 0.05

Energy Consumption 0.52

entire cycle. However, this could work for the next optimization window. Therefore, the window-wise
approach can more easily react to new information made available during the drive.

Another advantage of the window-wise approach is its lower computation time. For a detailed
comparison of the computation time refer to the Appendix (Section A.2). Optimizing the entire cycle
compared to the window-wise approach leads to an increase of the optimization time by 493.6%. The
mechanism behind this is discussed in Section 5.4.1.

Table 10 gives an overview of the parametrization of the optimization and the DM priority vector.
Figure 6.3 shows the energy savings for the window-wise approach and for the optimization of the
entire cycle. The optimization of the entire cycle leads to similar energy savings for the original trip
and to higher energy savings for the transfer to other trips.

Whether the window-wise approach or an optimization of the entire cycle is chosen, depends on
the requirements of the particular application. If computation resources are limited, the window-
wise approach should be chosen. The same is true in situations in which prediction data becomes
available during the trip. If, however, the computation resources suffice and no additional prediction
data is later integrated, the optimization of the entire cycle leads to better results. This could be for
example the case in a set-up in which a daily commute is optimized once and than the optimized
parameters are used every day.

6.2.2 Comparison to Configuration without Controller
This section highlights that for the transfer to other DCs the heater power must be integrated into

the model using a controller. Section 5.4.4 describes the options for representing the heater power.
Figure 6.4 shows the cabin temperature for the transfer to another DC if direct integration of heater

power is used. In the transfer the cabin cannot maintain the target temperature.
The behavior of the cabin temperature can be traced back to the coolant temperature displayed in

Figure 6.5: The coolant is also initially heated up in a manner similar to the reference strategy. When
it reaches a temperature within the acceptable range, the MORE does not maintain that temperature,
but lets the coolant temperature drop again. The low coolant temperature means that irrespective of
the air flow the cabin temperature cannot be maintained.
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Table 10 Overview of configuration for the window-wise MORE

Parameter Value

M
O

R
E

Optimization Algorithm SQP

Time Step Size 30 s

Division of Cycle Window-wise

Representation of Heater Power Recuperation Rule Controller

D
M

pr
io

rit
y Travel Time 0.35

Cabin Temperature 0.08

Energy Consumption 0.57
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Figure 6.4 : Cabin temperature for the transfer to DC13 for the MORE without controller
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Figure 6.5 : Coolant temperature for the transfer to DC13 for the MORE without controller
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Figure 6.6 : Air mass flow for the transfer to DC13 for the MORE without controller

Figure 6.6 displays the air mass flows for the reference and for the MORE. The air mass flow for
the reference strategy starts at the maximum value for the time that the cabin needs for heating up.
After this initial phase the air mass flow fluctuates at a lower level. In contrast to that the MORE
maintains the highest value for the air mass flow for the entire trip. The reason for this is that the
coolant temperature is too low. Therefore, the cabin does not reach its target temperature and the
controller for the cabin temperature continually tries to heat up the cabin with the maximum air flow.

The coolant temperature is too low because the total energy used for heating is too low. The reason
for this is that the same heater power for each location Pheater(x) as for the original trip (DC12) is
used for the DC13. The velocity profiles of the DC12 and the DC13 differ. Consequently, the same
Pheater(x) leads to a different heater power over time Pheater(t).

6.2.3 Comparison to Configuration with Simple Controller
As described in Section 5.4.4 the MORE can also be implemented using no rule-based elements

to integrate the heater power, but only a simple controller. For this option, the time step size must
be small enough for the heater power to emulate the peaks of recuperated power. Preliminary ex-
periments indicate that 2 s is a suitable time step size. This smaller time step size means that only
the window-wise approach is feasible, as the optimization of the entire cycle would take too much
computation time. Table 11 provides an overview of the configuration of the MORE.

0 1 2 3 4 5 6 7 8 9

Transfer to other Cycles

Original Trip

9 · 10−2

7.43

4.41

8.99

Energy in % of total energy supplied by battery

Recuperation Rule Controller
Simple Controller

Figure 6.7 : Comparison of the MORE with a simple controller to the MORE using the recuperation rule
controller

Figure 6.7 shows the energy savings on the original trip for the simple controller compared to the
recuperation rule controller. Both are implemented using the window-wise approach. On the original
trip, the MORE using the recuperation rule controller leads to higher energy savings than the MORE
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Table 11 Overview of configuration for the MORE with a simple controller

Parameter Value

M
O

R
E

Optimization Algorithm SQP

Time Step Size 2 s

Division of Cycle Window-wise

Representation of Heater Power Simple Controller

D
M

pr
io

rit
y Travel Time 0.35

Cabin Temperature 0.08

Energy Consumption 0.57

implemented with the simple controller. For the transfer to the other trips this difference becomes
even more pronounced.

An additional drawback of the MORE based on the simple controller is the higher computation time
due to the necessary smaller time steps. This increases the computation time by 406.4 %. For a
detailed comparison of the computation time refer to the Appendix (Section A.2).

6.2.4 Comparison to Sequential Optimization
The MORE is based on connecting the optimization of the driving strategy and the heating system.

The idea is that this connection allows a higher energy reduction than the separate optimization.
Figure 6.8 contrasts the energy reduction of a sequential optimization with the holistic window-wise

MORE based on the recuperation rule controller. The sequential experiment is undertaken as follows:
First, the velocity is optimized. For this experiment the weight in the DM priority vector for the cabin
temperature is set to zero. Therefore, the heater remains switched off. The velocity that is obtained
by this experiment is used for a second optimization: This time the velocity remains constant and
only the heater power and the target temperature is optimized. This setup corresponds to a separate
optimization of the two systems.

0 1 2 3 4 5 6 7 8 9

Transfer to other Cycles

Original Trip

3.16

7.93

5.49

8.86

Energy in % of total energy supplied by battery

Holistic
Sequential

Figure 6.8 : Comparison of the energy consumption for the MORE based on a holistic approach to the MORE
based on sequential optimization

The figure shows that on the original DC the energy reduction with the holistic approach is higher
than with the sequential approach. The same applies for the transfer to other cycles. Consequently,
the holistic approach outperforms the sequential optimization.
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Figure 6.9 : Comparison of the energy consumption for the MORE based on a GA to the MORE based on
SQP

Table 12 Overview of configuration for the MORE based on a GA

Parameter Value

M
O

R
E

Optimization Algorithm GA

Time Step Size 30 s

Division of Cycle Window Wise

Representation of Heater Power Recuperation Rule Controller

D
M

pr
io

rit
y Travel Time 0.35

Cabin Temperature 0.09

Energy Consumption 0.56

6.2.5 Comparison to Optimization based on GA
The major drawback of the GA is the computation time. For a detailed analysis of the computation

time and an explanation of how the computation time is determined refer to the Appendix (Section
A.2). Because of this higher computation time the GA is only evaluated with a window-wise approach.

Table 12 shows the configuration of the MORE with the GA. Figure 6.9 shows a comparison of the
energy consumption between the MORE based on SQP and on GA. The figure illustrates that the
MORE based on the SQP leads to higher energy savings in particular for the transfer to other trips.
Therefore, the SQP outperforms the GA regarding both energy savings and computation time. An
additional drawback of the GA is that it is a stochastic optimization method (see Section 5.5). Thus,
the quality of results obtained using the GA is likely to vary.

6.3 Robustness of the MORE to Temperature Variations

This section looks at two types of temperature variations: Firstly, different ambient temperatures
are looked at. The experiments replicate the previously discussed experiments only with another
ambient temperature. Secondly, the ambient temperature for which the optimization is done and the
ambient temperature for the transfer differ. Both experiments are done with the MORE based on
an optimization of the entire cycle and use the recuperation rule controller. As the MORE is based
on an optimization of the heater power, only temperatures for which the heater is used are relevant
for this thesis. The previous experiments are done for 0◦C. The additional temperatures that are
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Figure 6.10 : Energy savings for the MORE at different ambient temperatures.
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Figure 6.11 : Energy savings for the MORE transferred to ambient temperatures differing from the original
ambient temperature

investigated are −10◦C (263 K) and 10◦C (283 K) . −10◦C is chosen, because at this temperature
the heater power is high. Moreover, it is a temperature that occurs regularly in a central European
winter. 10◦C is of interest because it is a common temperature for which the heater is still needed,
but the heater power is lower.

Figure 6.10 shows the energy savings for the three ambient temperatures. Firstly, the concept of
the MORE works with all three ambient temperatures as the energy consumption can be reduced
and this reduction can be largely maintained for the transfer to other cycles. Secondly, the energy
reduction is highest at 10◦C and lowest at 0◦C. The reason for this is that the reference strategy is
adapted for 0◦C and therefore it becomes harder for the MORE to reduce the energy consumption
further. Since at the lower temperature the strategy that comprises using as much recuperated energy
for heating as possible already leads to good results, at 10◦C the energy savings are higher than at
−10◦C.

The transfer of the optimized parameters to other ambient temperatures corresponds to using the
MORE with an inaccurate weather forecast. The concept can also be found in Section 5.7. For this
consideration, only temperatures that are close to the original temperature of 0◦C are considered, as
it is assumed that the temperature forecast is close to the actual temperature during the drive. For
this thesis "close" is defined as a deviation of 5 K. Figure 6.11 shows the results for a deviation of
−5K, −2K, +2K and −5K. The figure highlights that a higher deviation from the temperature for
which the parameters were optimized leads to inferior results. However, all experiments still show a
reduction in consumed energy compared with the reference strategy.

Therefore, it can be summarized that the transfer works for small changes in the ambient tempera-
ture. This finding increases the practical use of the MORE because no exact forecast of the ambient
temperature is needed for the optimization.
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6.4 Analysis of Energy Savings

The previous sections highlighted that the MORE can reduce the energy consumption compared
to the reference strategy. This section illustrates what mechanisms lie behind this reduction in energy
consumption. For this investigation the individual components that make up the total consumed
energy are looked at. The same representation of the energy components is also described in [178].
The following components can be identified:

• Ebat is the total electric energy taken from the battery during the trip. Ebat can be expressed as:
Ebat = Ebatt,eff + Ebatt,loss.

• Ebatt,eff is the electric energy that is needed for the trip. It comprises the energy needed for
heating and traction: Ebatt,eff = Etract + Emotor,loss + Eheat.

• EbatLoss represents the energy that is lost in the battery during charging and discharging. It is
computed using the battery model.

• Eheat is the electrical energy used by the heater. It can be expressed as: Eheat =
∫ tmax

0 Pheater(t)dt.
It depends on Pheater and is therefore directly impacted by the optimization.

• Emotor,loss are the losses that occur in the electric machine when the electrical power is transformed
into mechanical energy or vice versa.

• Etract is the total mechanical energy needed for traction. It is computed based on the elementary
equation of longitudinal dynamics. Using Equation 2.23, Etract can be written as: Etract = Eacc +
Eair + Eroll + Esail + Erecu. The electrical energy needed for traction is computed as follows:
Etract + Emotor,loss.

• Eacc is the mechanical energy used for accelerating the vehicle. It is proportional to the acceler-
ation (Eacc ∼ a). The total energy used for braking Ebrake is equal to the negative acceleration
energy: Ebrake = −Eacc. This is true for the whole trip and for all windows because the vehicle
is in standstill at the beginning and the end of the trip, as well as at the beginning and the end of
each window.

• Erecu is the recuperated energy. It is a component of Ebrake, as Ebrake consists of the energy
dissipated in the mechanical brake and the recuperated energy: Ebrake = Ebrake,mechanical+Erecu+
Esail. Like Ebrake, Erecu is negative. Erecu is limited by the maximum battery current. However, the
recuperated energy can also be directly used for heating. By shifting the heating to time periods
when recuperated energy is available, Erecu can therefore be influenced by the MORE.

• Eroll is the mechanical energy needed to overcome the roll resistance. The MORE can influence
it because it is proportional to the speed: Eroll ∼ v.

• Eair is the mechanical energy needed to overcome the air resistance. It is influenced by the
optimization because it is proportional to the square of the speed: Eair ∼ v2.

• Esail is the mechanical energy that is used during the deceleration of the vehicle to overcome the
roll and the air resistance. Like Erecu and Ebrake, it is negative.

All energy components are normalized using the total energy taken from the battery Ebat in the
reference strategy. For the transfer to the other cycles the error bars represent the Standard Deviation
(STD). Therefore, they illustrate the difference between the trips. Because the trips themselves differ
and not primarily the MORE, the reference strategy is also supplied with error bars. Only Ebat of the
reference has by definition no error bar, as all other values are given in relationship to this value.
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Figure 6.12 : Energy components for original trip of the MORE based on window-wise optimization

6.4.1 Window-wise Optimization
This experiment (energy components shown in Figure 6.12) uses the recuperation rule controller

for the heater power as introduced in Section 5.4.5.
First, the results of the parameters used on the original trip are presented. Figure 6.12 shows the

energy components bar graph. It can be seen that the energy consumption can be reduced by 8.99%.
This energy reduction is due to reductions in all relevant components of the total energy: The battery
losses Ebat,loss, the traction energy Etract and the energy used for heating Eheat. In the following the
mechanisms behind each of the energy reductions are discussed: Etract is mostly reduced because
Eacc and Eair are reduced. The travel time increases slightly by 0.05 %. Figure 6.13 shows that
the increase is not caused by an overall lower velocity but by a change in the velocity distribution.
Figure 6.13 shows that the velocity peaks are mitigated. Eheat is the energy component that is most
strongly influenced by the recuperation rule controller. Compared to the simple controller, it can be
significantly reduced. The coolant temperature is displayed in Figure 6.14. As the objective function
for the last window is different from that of the other windows, the optimal strategy for the last window
is to let the coolant grow colder because a high coolant temperature is no longer needed (refer to
Section 5.4.3). Ebat,loss is reduced compared to the reference strategy and compared to the MORE
with the basic controller.

Next, the transfer to other trips is explored. Figure 6.15 shows the energy components bar graph
including the STD. The main finding of this figure is that the implementation with the recuperation
rule controller can reduce the energy consumption for all cycles. The mean energy reduction is
4.41 %. Even though the same effects as for the original trip apply it is worthwhile to take a look
at the individual energy components: Etract is also reduced for the transfer and again this effect is
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Figure 6.13 : Velocity histogram for the MORE and original cycle
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Figure 6.14 : Coolant Temperature for the MORE and reference strategy

mostly due to a reduction of Eair. Table 13 indicates that the maximal velocity has been reduced
compared to the reference strategy. This effect can be preserved for all trips. The reduction of Eheat

could also be sustained for the transfer. The reduction of Ebat,loss can be reproduced for the other
trips. Again the reason is a reduction in Ebatt,eff and the increase in recuperated power that is used
directly for heating. Table 13 shows that the other relevant parameters such as the travel time and the
cabin temperature are also acceptable for all optimizations. The mean travel time is slightly increased
when the MORE is used (0.04 %). The STD for the reference strategy and for the MORE is close to
equal. This suggest that the fluctuations of the travel time over the 49 trips are due to differences in
the trips themselves not the MORE. The maximum of the coolant temperature is also higher for the
MORE than for the reference. However, it is well below the temperature that is detrimental for the
coolant, which is 373K (refer to Section 5.4.3). Moreover, the table shows that the STD is in a similar
range compared to the reference strategy. This means it is significantly lower than for the MORE
with the basic controller. This constitutes another advantage of the recuperation rule controller. The
cabin temperature deviation is slightly increased (by 3.66 %) and the STD is nearly the same for
both approaches. The maximum velocity is reduced. This fits with the velocity histogram, which is
reproduced for the original trip (Figure 6.13).
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Figure 6.15 : Energy components for the transfer of the MORE based on window-wise optimization

6.4.2 Optimization of Entire Cycle
Figure 6.16 displays the energy components for the reference and for the optimization. The overall

energy reduction is 8.86% (compared to 8.99% for the window wise optimization). Like in the previous
sections, this figure is used as a starting point to understand the mechanisms behind this reduction.
Etract is reduced. This is due to a reduction of all its components. Figure 6.17 shows that the reduction
is not due to a longer travel time. Like the previous experiments the high velocities are reduced, and
the lower velocities are increased to adhere to the travel time. This means that especially the air
resistance is significantly reduced as it is proportional to the velocity squared. Figure 6.18 shows the
histogram of the original and of the optimized trip. The relative frequency of each velocity range is
accumulated. Eheat is reduced by 15.30 %. This reduction is significantly higher than for the window-
wise approaches discussed in the previous sections. Figure 6.19 shows the cabin temperature. The
optimization-based EMS heats up the cabin at the beginning of the cycle faster than the reference, but
it lets the temperature drop at the end of the cycle. This behavior is also mirrored in the temperature
of the coolant (Figure 6.20): The coolant is also quickly heated up to a level higher than the reference
strategy. This high temperature is slightly reduced for the main part of the drive. At the end of the cycle
the coolant temperature drops to nearly ambient temperature. Consequently, no or nearly no thermal
energy is stored in the coolant at the end of the drive. As this energy can no longer be used when the
drive is over this is the optimal strategy. That the cabin temperature also drops at the end of the cycle
can be explained with the trade-off between energy consumption and passenger comfort. If the DM
priority vectors are chosen differently, the drop in temperature can be prevented or intensified. For
this thesis the trade-off is chosen as displayed for example in Figure 6.19. This strategy for heating
can be chosen only because the optimization is applied to the whole cycle. Ebat,loss can also be
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Table 13 Overview of key values for the transfer to all trips for the MORE based on window-wise optimization

Name Reference MORE

Energy consumption in kWh 3.69 ± 0.08 3.52 ± 0.09

Travel time in s 1568 ± 84 1569 ± 84

Maximal velocity in m
s 32.65 ± 1.11 25.71 ± 1.23

Maximal coolant temperature in K 345 ± 1.02 354 ± 2.33

Mean cabin temperature deviation
to target in K

3.28 ± 0.17 3.41 ± 0.17
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Figure 6.16 : Energy components for the original trip of the MORE based on optimization of the entire cycle
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Figure 6.17 : Velocity plot for the MORE and reference strategy
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Figure 6.18 : Velocity Histogram for the MORE and the reference strategy

reduced by 17.65 %. This has two reasons: Firstly, the total energy is lower and, consequently, the
battery current that leads to the losses in the battery is also smaller. This effect is a by-product of
the reductions in the other energy components. Secondly, the recuperated power is primarily used
to heat the coolant and not fed back into the battery. This also reduces the battery current. This
approach is also part of the reference strategy. The improvements can be achieved because the
SQP can work with the entire cycle and with perfect foresight. Therefore, it can plan the optimal
utilization of the recuperated power without overheating the coolant. Figure 6.21 shows the utilization
of the recuperated energy. It is evident that most of the heating takes place when recuperated power
is available. Phases with a high power demand for acceleration are counteracted by switching off the
heater. Like for the window-wise approach the Erecu is reduced. Again, this has two reasons: Firstly,
the available Ebrake is lower, because Eacc is smaller due to the lower peak velocities. Secondly,
Figure 6.21 shows that the recuperated energy can be efficiently used for heating. But at the end of
the cycle the maximum heater power is not used to take in the recuperated power. On the surface
this reduces Erecu but it poses no problem for the MORE. Emotor,loss is slightly reduced (by 1.56 %).
Similar to the reduction in Ebat,loss two reasons can be identified: Firstly, the overall energy that is
transformed between mechanical and electrical energy by the machine is reduced. Consequently,
the losses are reduced. Secondly, the adaption of the velocity leads to lower losses in the machine.
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Figure 6.19 : Cabin temperature for the MORE and reference strategy
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Figure 6.20 : Coolant temperature for the MORE and reference strategy

In the following, the parameters optimized for the DC12 are transferred to all other 49 trips. First,
the aggregated results for all of these trips are looked at. Next, the most important features are
explained using a single exemplary trip.

Figure 6.22 shows the energy bar graph. The bars for each component represent the mean for
this component over all trips. This applies to the reference strategy as well as to the MORE. Figure
6.22 shows that the energy consumption can on average be reduced by 5.49 % compared to 4.41 %
for the window-wise approach. The error bar indicates that for every trip the MORE reduces the
energy consumption compared to the reference. Moreover, a comparison with Figure 6.16 reveals
that similar mechanisms are at work for the original optimization and for the transfer. In the following
some findings are highlighted: Etract remains lower than for the reference. This effect is mostly due to
a reduction in Eair. This reduction varies little over the different trips. The reduction in Eacc decreases
with the transfer and it experiences larger fluctuations over the different trips. This fluctuation is
mostly due to fluctuations in the trips themselves and can also be found for the reference strategy.
The reduction in Eheat remains stable for the different trips. The mean reduction is 12.03 % and
with that in a similar range as for the original trip. The reason for this is that the main effect that
is used to reduce Eheat (depleting the stored thermal energy) is independent of the velocity profile.
The recuperation rule controller recreates that behavior for all trips. Ebat,loss also remains lower for
the MORE than for the reference strategy. However, the reduction is smaller than for the original
trip with an average of 8.77 %. The mechanisms are again identical to the original optimization: The
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Figure 6.21 : Negative heating power and battery power for the MORE

recuperated energy can directly be used for heating. This reduces Ebat,loss. The other mechanism
is again the total energy reduction which has a positive effect on the battery losses. Erecu remains
lower for the transferred MORE than for the reference strategy. The reason is the same as for the
original trip. The reduction in Emotor,loss cannot be sustained for the transfer. Probably, the application
of the velocity factor to another trip does not lead to velocities within the optimal efficiency range of
the machine.

Table 14 summarizes the findings for the MORE on all trips. The mean travel time is on average

Table 14 Optimization of entire cycle: Overview of key values for the transfer to all trips (mean value ±STD)

Name Reference MORE

Energy consumption in kWh 3.69 ± 0.08 3.48 ± 0.08

Travel time in s 1568 ± 84 1575 ± 84

Maximal velocity in m
s 32.65 ± 1.11 28.57 ± 1.42

Maximal coolant temperature in K 345 ± 1.02 363 ± 1.47

Mean cabin temperature deviation
to target in K

3.28 ± 0.17 3.14 ± 0.16

slightly higher for the MORE. The maximal coolant temperature is considerably higher for the opti-
mization, but in the acceptable range. The STD for the maximal coolant temperature is higher than
for the reference, but considerably lower than for the approaches without the recuperation rule con-
troller. The cabin temperature deviation is slightly smaller for the MORE than for the reference. This
is because the MORE heats up the cabin more quickly than the reference. The maximal velocity is
reduced. For all values except the coolant temperature the STD is similar for the reference and for
the MORE. This indicates that the MORE performs similar on all trips and the difference is due to the
trips themselves.
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Figure 6.22 : Energy components for the transfer of the MORE based on optimization of the entire cycle
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7 Discussion

In this chapter the results presented in the previous chapter (Chapter 6) are discussed. The aim of
this chapter is to allow the reader to assess the results and understand how they are classified. For
this purpose, Section 7.1 gives a short high-level summary of the results. Next, Section 7.2 provides
answers to the research questions. The following section (Section 7.3) explains how the described
EMS can be integrated into existing classifications of EMS. Subsequently, Section 7.4 qualitatively
compares the presented EMS to selected other approaches. The final section (Section 7.5) provides
an outlook on how the EMS could be improved.

7.1 Summary

Chapter 6 highlights that the concept of the MORE works. In particular, it shows that the MORE
using the recuperation rule controller and based on the optimization of the entire cycle leads to a con-
siderable reduction of the energy consumption (Section 6.1). A window-wise approach to the MORE
also leads to satisfactory results and depending on the set-up this approach might be advantageous.
A direct integration of the heater power does not facilitate the transfer to other cycles. Therefore, at
least a simple controller is necessary for integrating the heater power. However, the simple controller
is outperformed by the recuperation rule controller. A comparison between SQP and GA reveals that
the SQP is better suited for use with the MORE.The chapter also indicates that the MORE is robust
to variations in the ambient temperature.

7.2 Answering the Research Questions

This section presents answers to the initially formulated research questions in Chapter 4. These
questions are discussed in the following. The aim is to answer the research questions with the
findings presented in the results. When no definite answer can be given the findings are discussed.

Which optimization methods are suitable for an EMS? To design the MORE, three optimization
methods were evaluated with a simple vehicle model. The results are presented in Section 5.8. The
GA and the SQP perform well for an offline optimization, while DP is too computationally expensive.
For the MORE both the GA and the SQP are implemented. Section 6.2.5 demonstrates that the
SQP outperforms the GA for the offline optimization and for the integration into the MORE. Moreover,
the section highlights that the GA is not deterministic. In summary, the SQP is the best option for
an optimization procedure. The results illustrate that using a method that exploits the nature of the
optimization problem is advantageous for an EMS.

How can an optimization-based approach be adapted to work with little forecast data and
onboard computation capacity? This question can be answered by the concept of the MORE.
The concept can be found in Section 5.1. The results presented in Section 6.1 show that the MORE
works. The chapter also investigates how the MORE functions and illustrates its basic principles.

How can an optimization work on a partitioned trip and still lead to acceptable results? Sub-
section 5.4.1 explains how each trip can be split into smaller sections. Subsection 5.4.3 illustrates
how the objective function must be adapted to work with the partitioned trip. Section 6.2.1 highlights
that the results for the optimization of the entire cycle are still better than those for the partitioned trip.
The knowledge of the entire trip allows the MORE to utilize effects that cannot be exploited if only
the next window is known. In summary, the partitioning in windows could be realized as part of the
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concept of the MORE. However, the individual windows depend on each other so much that a global
optimum is not possible for the window-wise approach. Therefore, whether the MORE is based on
the entire cycle or on individual windows, should be determined by the concrete application.

Does optimizing two or more components simultaneously using a holistic EMS lead to better
results than separate optimization? As the MORE combines a driving strategy with an EMS for
the heating system, it is a holistic EMS. Additionally, the MORE is open for integrating additional
components. Firstly, it can be shown that the energy reduction the MORE can achieve compared
to the reference strategy is not only due to combining the two systems. Section A.1 illustrates that
the MORE reduces the energy consumption if it has the same scope as the reference strategy. Con-
trasting the results obtained with the reduced MORE in Section A.1 with the full MORE in Section
6.1 reveals that some of the effects of the full MORE are due to the combination of the two compo-
nents. In particular, two mechanisms can be identified: Firstly, the combination of heater power and
traction power can be chosen so that it minimizes the battery losses. This is possible because the
optimization aims can be weighed against each other. For example, at the beginning cycle it is the
better strategy to reduce the traction power. The lost travel time can be made up later during the trip
but reaching the cabin temperature fast is vital for the comfort of the passengers. This balancing of
the sometimes contradictory objectives is not possible if the two are optimized separately.

Secondly, the speed influences the available recuperation power, while the heater helps to take in
the recuperation power. If speed and heater power are optimized at the same time the two can be
attuned to each other. This means that less energy is lost in the mechanical brake.

Consequently, it is plausible that the holistic optimization leads to better results than a separate
optimization.

How can the resulting EMS be integrated into a vehicle? The MORE offers a concept that can
be integrated into a vehicle with little additional effort (refer to 5.1). The results presented in Section
6.1 highlight that the concept of the MORE works. The SQP should be preferred regardless of the
application as it fits better into the concept of the MORE. If additional data becomes available during
the trip, the window-wise approach should be chosen. To enable an online update of the optimization,
the run-time of the model needs to be reduced. For ideas how this can be accomplished refer to
Section 7.5. If no additional forecast data becomes available during the trip, the MORE based on
the entire cycle should be used. Section 6.3 illustrates that slight changes in the temperature do not
make the transfer to other trips impossible. For integration this helps, as temperature forecast is not
always accurate. The MORE in its original form influences the velocity. If this is not possible Section
6.1 illustrates that the application of the MORE is still worthwhile if only the heating system can be
influenced in the available vehicle. The present MORE is limited to recurring drives. In summary,
the thesis presents an EMS that can be integrated into a vehicle. A clear path how this can be
accomplished is sketched.

7.3 Classification of the MORE

The MORE is a hybrid between a rule-based and an optimization-based approach. In this section
it is put in this context. In Chapter 3 the main approaches to EMS are introduced. These are rule-
based, optimization-based and Machine Learning (ML) approaches.

Figure 7.1 shows how the approaches can be categorized. The left part of the figure represents
approaches, which need little data and are based on a well understood system. The far right stands
for systems that either need much data or utilize more complex correlations. Points further up in
the figure stand for more data, points lower down for more complex correlation. These systems are
sometimes hard for a human to understand. Generalized ML approaches stand for an approach that
needs a lot of data, but that are not based on an understanding of complex analytical relationships.
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Figure 7.1 : Classification of EMS based on their rule-based and optimization-based elements

Optimization-based approaches occupy the middle ground. The GA also used in this thesis poses
fewer requirement on the optimization problem than the SQP. The price paid for this is the higher
computation time. On the opposite end of the spectrum lies the reference strategy, which is based
on rules drawn up by an expert. This approach needs little data and is based on understanding the
system well. The approach outlined in this thesis constitutes a journey through the landscape defined
in Figure 7.1: The original starting point (mainly described in [178]) is an optimization-based EMS
that utilizes the GA. In the first step the GA is exchanged for the gradient based SQP. In the next
step the optimization is complemented with the recuperation rule controller. To do this the system
needs to be better understood and the approach loses generality. Finally, the transfer to another trip
is done. This causes the EMS to shift yet further toward a rule-based approach. In particular, it loses
generality as it works best with recurring trips.

7.4 Qualitative Comparison with other Approaches

In Chapter 6 the hybrid approach is directly compared to an optimization based and to a rule-
based approach. A summary is presented in Table 15. In this section the abstract idea behind the
individual approaches is compared with the MORE. The following approaches are considered: rule-
based, optimization-based and based on generalized ML method. All approaches are assumed to be
capable of vehicle integration. Therefore, the optimization must be done online.

1. Rule-based approach: The rule-based approach needs little data because the rules are typi-
cally based on the experience and the expertise of the person drawing up the rules. This also
means that the computing capacity is low offline as well as in the vehicle itself. However, it
also means that the developer can overlook possibilities that an optimization procedure would
have revealed. Moreover, the rules apply to all vehicles and the possibility to customize them
is limited. Additionally, unlike for the MORE, forecast information cannot be integrated. Even
though a rule-based approach is always sub-optimal, it is still the approach implemented in
most series vehicles, because the results are only slightly inferior to more complex methods.
This is for example demonstrated in Section A.1 of this thesis. Compared with the proposed
approach it has the additional advantage that it works on all routes.
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2. Online optimization: The online optimization needs more computing capacity onboard the ve-
hicle than the proposed method. However, it needs no offline computing capacity. Because it
needs to work in real-time it typically is complex to implement. Moreover, it relies on good fore-
cast information for the current trip. If the quality of this data is not sufficient the solution suffers.
Over the MORE it has the advantage that it optimizes the current trip. Consequently, if perfect
foresight is assumed or very good forecast data is available, the optimal solution can be found.
Additionally, it works on every route. In comparison to all other approaches, it performs well in
uncommon but predicted driving situations. The reason for this is that the online optimization
does not rely on information from previous drives. This also means that the solution is specific
for each driver and each route.

3. ML approach: A general ML approach relies heavily on a large data base. Firstly, this means
that this data needs to be made available. Secondly, it needs offline computing capacity to
generate a solution using this data. The updating of the solution when additional data is made
available is also time-consuming. This means that forecast information cannot be easily inte-
grated during the drive. Lastly, the solution is not necessarily easy to comprehend for a human.
Over the MORE it has the advantage that it works in more situations and with more routes, as
a ML approach can further abstract the solution. Moreover, the larger data base means it still
works even if one trip is not representative for the others.

In summary, it could be demonstrated that the MORE adds a relevant new option to the existing
approaches for EMS. It offers advantages over the existing approaches, which make it worthwhile to
further pursue this option. Like all other approaches it has also weaknesses. But it is assumed that
these can be managed with the right implementation.

7.5 Outlook

This section gives an outlook to what future improvements to the system would be possible and
worthwhile. For each improvement a rough outline on how it could be implemented is given.

7.5.1 Improvements to the Model
The model is not the main issue of this thesis. However, an improved model significantly impacts

the quality of the optimization results. The overall concept of this thesis can be adapted to nearly
every vehicle model. If the model is implemented in Matlab/Simulink, doing so is relatively easy. The
model could be improved by making it more detailed. In particular, the following adaptions could be
made:

• Adding the slope: Currently, the slope of the driven route is not implemented. Adding the slope
makes the model more realistic and adds interesting aspects to the EMS as it influences the
optimal velocity and the recuperated energy. The slope would not influence how the parameters
can be transferred to another trip as it depends on the route and not on the particular situation on
the day the trip is taken.

• Adding the wind speed : The wind speed is also not modeled. Like the slope it influences the
optimal velocity and the recuperated energy. Unlike the slope, however, it differs between trips.
Therefore, adding the wind speed could change the transfer behavior of the parameters. This
would also depend on the individual weather conditions in the chosen area. It is possible that the
wind speed does not vary much on different days and that it has no significant influence on the
energy consumption.

• Adding the solar radiation: Currently, the model of the cabin temperature does not include the
solar radiation. Consequently, the model is only accurate at night or during cloudy weather. In-
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Table 15 Qualitative comparison of the implemented EMS with other approaches. All advantages and
disadvantages are described in comparison to the implemented EMS.

Approach Disadvantages Advantages

Rule-based

• Prognosis data cannot be inte-
grated

• Needs to be tuned by developer;
possibilities can be overlooked

• No adjustment for the specific
behavior of the driver possible

• Can by definition not be optimal

• Low computing capacity needed
both in the vehicle and offline

• Most common approach for se-
ries vehicles

• Yields only slightly inferior re-
sults to complex approaches

• Works in all driving situations

• Needs little data

Online Optimization

• High computing capacity inside
the vehicle necessary

• Dependent on a good forecast

• Time-intensive implementation

• Can theoretically find the opti-
mum for the available informa-
tion

• Good results in unusual but pre-
dicted situations

• Specific for each driver

• Needs no information about pre-
vious drives

Machine Learning

• Needs a large data base

• Long training time for updating to
a new driving situation

• Not necessarily comprehensible
for a human

• Forecast information cannot be
integrated

• Large computing capacity offline
needed

• Works for more situations and
new routes

• Does not rely on a single trip that
might not be representative
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cluding the radiation could reduce the overall demand for heating power. Moreover, it adds another
potential difference between the trips that could make the transfer more difficult. However, as the
transfer also works for different ambient temperatures it is likely that it would be salvaged by the
recuperation rule controller.

• Extending the model to include the thermal comfort of the passengers: Currently, the thermal
comfort of the passengers is only reflected by the deviation from the target cabin temperature.
As Chapter 3 highlights, other researchers developed more elaborate models of the passenger
comfort. Such a model could help to increase the energy reduction because the air mass flow and
the heating power can be adapted closer to the requirements of the passengers. Moreover, the
comfort of the passengers would probably be increased.

• Expanding the system to also include air conditioning in hot weather : Currently, only the high
voltage heater for low temperatures is integrated into the model. It may be interesting to also add
the air conditioning. This can enlarge the application area. However, the optimization would also
have to be adapted to work with a full HVAC. Problems with the transfer are not to be expected.

• Including a detailed aging model for the battery : Battery aging is one of the most relevant chal-
lenges for current BEVs. Therefore, it may be interesting to add a detailed validated aging model.
To make this worthwhile the battery aging must be integrated into the objective function. This
could for example be done using stress factors or the predicted remaining useful lifetime if every
trip was driven like the current trip.

• Broaden the model to encompass a traffic model : Currently it is assumed that the velocity can
always be adapted within the predefined limits. It is unlikely that this is actually true in all traffic
situation. The simplest way to encompass this in the simulation is to randomly determine whether
the velocity for a certain segment can be adapted. A more elaborate traffic model is also possible.

• Model more types of BEV: For this thesis only a single vehicle is investigated. However, it may
be interesting to test the approach on different vehicles. In particular different vehicle types would
be relevant. For example, transporters, lorries or electric buses could be integrated. Especially
electric buses used for public transport could profit from the approach as they repeatedly drive the
same routes.

• Add more components relevant for an EMS: The current model closely resembles a series vehicle.
The only marked differences are the high-voltage heater and the assumption that the velocity can
be influenced. This means that few of the component-wise EMS discussed in Chapter 3 could
be implemented. Consequently, it may be worthwhile to add more components to the model. For
example, a second electric machine or a in particular a HESS.

7.5.2 Reduction of Computation Time
Even though the optimization of the parameters for the MORE is not done online, long computation

times are detrimental to the real-life application of the system. Consequently, different options to lower
the computation time could be implemented. To lower the computation time three main options exist:
Firstly, the hardware on which the optimization is run can be changed. Secondly, the computation
time for running the model can be lowered. Thirdly, the time that needs to be simulated can be
reduced.

The first option is scientifically uninteresting. As the optimization is already moved to an arbitrary
location outside the vehicle the user has the free choice of computer. The difference between the
last two options is explained in Subsection A.2. The computation time of the model can for example
be lowered by exchanging the model with a black-box model that only models the relevant effects
for the EMS. Furthermore, the gradient for the SQP can be computed analytically instead of via the
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difference quotient. Both approaches could be combined with an implementation outside of Mat-
lab/Simulink. Even if no other changes are performed an implementation in a different programming
environment should lower the modeling time. The main advantage of Simulink is the user-friendly
interface that allows to draw up complex yet comprehensible models quickly. This advantage is paid
with a higher computation time.

The simulated time can be reduced via the optimization procedure. To this effect a better initial
value can be used. For example, the results from the rule-based strategy can be used as initial
value. Moreover, other gradient-based optimization procedures could be tested or a more efficient
implementation of the SQP.

The last option to reduce the computation time fits in neither of the previous categories: Run
as much of the optimization in parallel as possible. For the GA this would mean to evaluate the
individuals of one generation in parallel. For the SQP the computation of the gradient could be
parallelized.

7.5.3 Integrating Additional Components into the MORE
Currently, the MORE encompasses two parts of the BEV: The driving strategy and the heating

system. To facilitate a truly holistic EMS more components need to be integrated. As a series BEV
does not provide many opportunities for a holistic EMS it is necessary to expand the model. Options
for this are already described in Subsection 7.5.1. For all options it is important to consider whether
they lead to an overall energy reduction or whether the costs outweigh the benefits.

7.5.4 Facilitating Online Updates of the Parameters
Another interesting direction is to further hybridize the MORE. This means that the optimization

of the parameters is done as described in this thesis. However, the model and the optimization are
tuned to a faster computation time. Consequently, it is possible to run one or two iterations of the
SQP online. This means that the parameters are updated during the trip with forecast data. This
option favors a window-wise optimization. It can be assumed that for the next window some traffic
and temperature information is available and can be used for updating the parameters. When no
forecast data are available the MORE falls back to the parameters previously determined. Which of
the two options is used, can be decided for each window of each trip separately.

In this context, it may also be worthwhile to change how the trip is partitioned into windows. For the
current MORE this is done when the vehicle stops. Therefore, no kinetic energy is transferred from
one window into the next. The time scale on which forecast data are available might not align with
this division. If this is the case the fitness function needs to be changed to also encompass the kinetic
energy stored in the movement of the vehicle. If that is done the windows can be chosen arbitrarily.

7.5.5 Integrating the MORE into a BEV
Of course, the biggest step for the concept is to integrate it into a real BEV. Thus, it could be

determined how well the concept would work in a real-world application. The biggest challenges to
do that are listed in the following:

• Acquiring a suitable vehicle: The first challenge is to acquire a BEV that allows to control the
heater power and the velocity in the manner discussed in this thesis.

• Adapt the model to the exact vehicle: It is unlikely that the exact vehicle previously modeled could
be acquired for the experiments. Consequently, the model must be adapted to match the vehicle.

• Establish a procedure that transfers the parameters into the vehicle: For the real-world drives the
parameters need to be first computed offline and then transferred to a computing unit within the
vehicle. This link must be established. Moreover, the computing unit must be put in a position to
correctly set the parameters during the drives.
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• Acquire sufficient data: To assess the EMS, sufficient drive data must be gathered. Probably, this
data must be used to adapt the method.

To evaluate the MORE thoroughly, it would be particularly interesting to give a BEV equipped with
the MORE to a typical user of a BEV. This would enable the researcher to find out the overall energy
reduction of the MORE. If this is not possible the total energy reduction can be estimated using the
recorded driving data of a typical BEV and use the MORE within a simulation.

7.5.6 Adapting DP to the MORE
For this thesis, DP is not implemented because the preliminary results indicated that the compu-

tation time is too high for the concept. However, this applies to an implementation of the original
DP algorithm. Other publications mentioned in Chapter 3 use variations such as stochastic DP to
reduce the computation time. Therefore, it is likely that DP could be adapted to facilitate the offline
optimization needed for the MORE.

7.5.7 Integrating the Approach into a Larger Concept
The final future challenge is to integrate the approach into a larger concept. This would allow a

vehicle manufacturer to create value from the concept. The most obvious is to sell the optimization of
the parameters to premium customers. This can be targeted to costumers with a long and recurring
commute. The costs for the service could be adapted so that they stay below the cost reduction
due to the lower energy consumption. The EMS could also be linked to premium vehicles with
advanced driver assistance functions. These would allow for the velocity to be adapted. Moreover,
these vehicles also have forecast data for the next segment of the trip available, thus enabling the
parameter updates described in Section 7.5.4.

Taking the concept one step further, it is possible to draw up a map that contains parameters
for different segments. Consequently, a trip would constitute individual segments and each segment
would be defined as a window. For each of these windows the BEV is supplied with a set of optimized
parameters. The challenges for this approach are the different driving behavior of individual users
and the different state that the vehicle is in at the beginning of the segment.

In summary, two options exist to generate revenues from the proposed concept. The first requires
little adaption, while the second poses more new challenges. The current concept could only serve
as a steppingstone to implement this larger vision.
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8 Conclusion

This thesis introduces and analyzes an EMS for BEV that is based on a mixture of rule-based
and optimization-based elements: the MORE. The MORE optimizes parameters for a reference trip
and applies them to repetitions of the same route. It can be applied to repeating trips like commutes.
Hence, it is useful for at least a quarter of the driven distance of a BEV. The MORE combines heating
system and driving strategy into a holistic concept. The MORE uses rules to react to high frequency
events like braking as well as to deviations from the original trip.

This thesis shows that the concept of the MORE works on a set of 50 repetitions of the same route.
For this scenario it saves about 3 % energy compared with a recent rule-based approach, another
2 % compared to the industry standard and additional 5 % if the driving strategy is simultaneously
optimized. The thesis also proves that the holistic approach of the MORE is superior to a sequential
optimization. It gives an overview of different optimization algorithms and different options for integrat-
ing the optimization parameters into the system. It analyzes the various configurations of the MORE
and compares them among each other and with the reference strategy. The results are discussed
and compared qualitatively to other state of the art approaches.The thesis also gives an outlook to
future research topics in the context of the MORE.

In summary the thesis shows that the concept of the MORE works. It also sketches a path how the
concept can be integrated in BEVs and motivates why further research of the concept is worthwhile.
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A Appendix

A.1 Reduced MORE without Velocity Optimization

The last section of this chapter introduces a reduced EMS which does not encompass the driving
strategy. Therefore, the velocity from the original trip is not included in the optimization. Only the
target temperature for the cabin and the heater power are optimized. Even though the velocity is
excluded, the parameters are optimized as a function of the position instead of the time. This is done
to ensure that the parameters can be transferred to another trip. This experiment is motivated by
the fact that the heater power and the target temperature are usually easier to influence in a vehicle
than the velocity. Therefore, it is relevant to determine how high the energy reduction is, if only these
two parameters can be influenced. Additionally, this experiment allows a fair comparison with the
reference strategy for heating.

For this experiment, the whole cycle is optimized using the recuperation rule controller. This ap-
proach is chosen as it leads to the highest energy reduction in the previous experiments. The ambient
temperature is set to 0◦C. Figure A.1 shows the energy components for the EMS without speed. For
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Figure A.1 : Reduced MORE: Energy components

this experiment the bar graphs are reduced to those energy components that are influenced by the
heater power. The figure is similar to the results from the entire cycle including the speed displayed in
Figure A.1. Of course, the overall energy reduction is considerably smaller (2.65% versus 8.86%) be-
cause the energy used for traction is the largest share of the total energy. The following components
can be influenced by the heater power and target temperature: Eheat can be reduced by 16.46 %.
This is about the same as could be attained for the MORE based on the entire cycle that includes
the velocity. Ebat,loss is reduced by 5.56 %. Here the reduction is considerably smaller than for the
experiment that includes the velocity, which leads to a reduction of 17.65 %. This has two reasons:
Firstly, the losses also are linked to the total current which runs to the battery. Therefore, the higher
energy reduction for the MORE with velocity also reduces the losses. Secondly, adapting the velocity
allows the MORE to adapt the heater power and the power needed for accelerating such that the
battery is in the optimal operating range. For the experiment without velocity the reduction in Ebat,loss

comes primarily from using more of the recuperated power directly for heating rather than storing it
in the battery. Erecu is reduced as could be seen for the previously discussed configurations of the
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MORE based on the SQP. Again, the reason for this is that the MORE does not store excess energy
that yields no benefits in the coolant.

While the previous subsection showed that the optimization without the velocity leads to an im-
provement on the original trip, the more relevant question is, whether this can be sustained if the
parameters are transferred to the other trips. Figure A.2 shows the energy component for the transfer
of the parameters on all 49 trips in including the STD. Ebat is reduced for all trips. The effects behind
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Figure A.2 : Reduced MORE: Energy components for the reference strategy and for the MORE transferred to
all trips

this reduction are identical to those discussed in the previous section for the original trip. Table 16
summarizes the key values for the transfer. As the velocity is not changed the travel times remain

Table 16 Reduced MORE: Overview of key values for the transfer to all trips (mean value ±STD)

Name Reference MORE

Energy consumption in kWh 3.69 ± 0.08 3.64 ± 0.08

Maximal coolant temperature in K 345 ± 0.98 352 ± 1.24

Mean cabin temperature deviation
to target in K

3.25 ± 0.16 4.10 ± 0.26

unchanged, too. The cabin temperature stays within the same region as for the optimization including
the speed. The coolant temperature also does not exceed the acceptable range.

Figure A.2 shows that the MORE reduces the energy consumption by 1.45 % compared to the
reference heating strategy. The STD indicates that a reduction can be attained for all trips. The
energy reductions of all components remain for the transfer. This finding indicates that the MORE is
as far as energy reduction is concerned superior to the reference strategy.

As the rule-based strategy is in particular adapted to cold climates, Figure A.3 presents the energy
bar graph for the transfer for the 263 K ambient temperature. This figure shows that for the colder
temperature the energy reduction attained with the MORE can be increased. On average Ebat can
be reduced by 4.31%. The reason for this is that the share Eheat and Ebat,loss have in Ebat is larger for
the lower temperature. This gives the reduced MORE a larger leverage to lower the overall energy
consumption.
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Figure A.3 : Reduced MORE (263 K): Energy components for the reference strategy and for the MORE
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0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

0.5

1

1.5

·104

Time in s

H
ea

te
rP

ow
er

in
W

MORE
Reference

Figure A.4 : Reduced MORE and simple reference: Heater power comparison

A.1.1 Comparison to Simpler Reference Strategy
For all experiments the reference strategy that is used for the heating system, is the rule-based

strategy developed by Steinstraeter as described in Section 5.3. This subsection also explains why it
is a sensible option to apply that strategy as a reference. However, the energy reduction of the MORE
is in reality higher because the reference is already better than the strategy currently implemented
in commercially available vehicles. In [151] Steinstraeter et al also recreated the original heating
strategy of the BMW i3. In this subsection the reduced MORE is compared to this original strategy.
This strategy is not designed to optimize the recuperated energy that can be taken in by the HVH.
Figure A.4 contrasts the heater power of this reference with that of the MORE.

Figure A.5 shows the bar graphs for the optimization and simple reference strategy. Compared to
Figure A.1 only the reference strategy is changed. In comparison to the simpler reference the MORE
can reduce the energy consumption by 8.93 %.
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Figure A.5 : Reduced MORE and simple reference: Energy components

A.1.2 Conclusion
The reduced MORE leads to a reduction of the energy consumption. This reduction is considerably

smaller than for the previous experiments which included the speed. However, the reduction can be
maintained if the parameters are transferred for the other trips. The reduced MORE is tested for two
ambient temperatures (263 K and 273 K). For both temperatures the energy consumption can be
significantly decreased. The reduction is higher for the experiment with a lower temperature.

As the heater power can more easily be influenced, the reduced MORE is an option that can
more easily be implemented into a current BEV. It requires nothing that is not available in currently
commercially available vehicles.

A.2 Computation Time Comparison

In this section the optimization time for each approach is compared. It should be noted that only the
time for the original optimization differs. The transfer of the parameters is equal for all implementations
and is not time consuming. As all the EMS are based on the same model, the objective is to compare
the computation time of the optimization approaches, not of the model itself. Moreover, the model
is not the focus of this thesis, and many approaches exist that can lower the computation time for
the model. Consequently, the measure that was chosen is the simulated time as opposed to the
simulation time. The simulated time specifies how much time is simulated by the model for each
optimization. It is irrelevant whether this simulation is done in one run or if the windows are simulated
individually. This approach has several advantages: Firstly, it allows a comparison between the
optimization of the entire cycle and that of each window separately. If the number of model runs
was counted, the two approaches could not be compared meaningfully. For the optimization of the
entire cycle a single model run takes more time than for the optimization of a single window. The
simulated time is a measure that takes these differences into account. Secondly, the simulated time
does not depend on the computer on which the optimization is run. Thirdly, it provides a measure
that is centered on the optimization method and not on the modeling, as it is invariant regarding the
model run time.

The computation time is relevant for this thesis because in a real-life scenario the optimization
needs to be performed more than once. In particular, if it is run over night in a cloud service for
multiple vehicles, it is important to use these resources efficiently.
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Figure A.6 : Reduced MORE and simple reference: Energy components including the STD

Table 17 Overview of the simulated time for the initial optimization

Section Configuration Simulated time in s

Section 6.2.3 Basic controller, SQP, windows 10.28 · 106

Section 6.2.1 Recuperation rule controller, SQP, windows 2.03 · 106

Section 6.1 Recuperation rule controller, SQP, cycle 12.05 · 106

Section 6.2.5 Recuperation rule controller, GA, window 8.64 · 106

Table 17 gives an overview of the simulated times of all experiments. The table verifies the expecta-
tions: The SQP in combination with the recuperation rule controller and the window-wise optimization
needs the lowest simulated time and, therefore, also the lowest computation time. Using the basic
controller leads to more simulated time, because more iterations are needed for convergence and the
smaller time step size means more model runs for the gradient computation. The computation time
is increased by 406.4 %. Still the recuperation rule controller leads to a lower energy consumption.

The optimization of the entire cycle is in general computationally more expensive than the window-
wise approach using the same controller. The mechanism behind this is discussed in Section 5.4.1.
Optimizing the entire cycle leads to an increase of the optimization time by 493.6 %. This increased
computation time leads to better performance for the transfer to other trips.

The GA is also more computationally expensive than the SQP. This can be explained by the work-
ing mechanism behind each algorithm: The SQP uses the gradient to move systematically through
the search space. In contrast to that, the GA uses no additional information beyond the fitness value
and searches less systematically for the optimum. The price that is paid for this is the increase in
simulated time by 325.6 % compared to the same configuration using the SQP. Additionally, the im-
plementation with the SQP saves more energy for the original trip as well as for the transfer to other
trips.
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