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Abstract—Sixth-generation (6G) networks propose integrating
multiple networks and domains while improving network perfor-
mance. Hence, today’s networks are becoming increasingly larger
and more complex. Traditional methods to manage networks are
facing significant challenges as the topology sizes, traffic patterns,
and network domains are changing.

This paper presents the state-of-the-art in literature for
network management and proposes a research plan for an
autonomous network management framework fueled by the
Digital Twin (DT) paradigm. Unlike the existing methods such
as Queuing Theory (QT) or network simulation studies, the
proposed framework relies on state-of-the-art Graph Neural Net-
works (GNNs) for network performance analysis. We argue that
seamless integration of networks while improving performance
guarantees can be achieved via autonomous management of
networks and present a research plan in this paper.

Index Terms—network management, digital twins, multi-
domain networks

I. INTRODUCTION

Over the past decades, the integration of technology into
society is accelerating. The increasing popularity of augmented
reality, virtual reality, and telepresence applications shape the
requirements for the next generation of networking. While
the older generations of network technology focus on en-
hancing human-to-human communications, the vision for the
upcoming 6G technology imagines the future of networking
as the integration of the digital and the human world [1]. The
focus on human-machine collaboration paves the way for the
development of novel use cases that will have distinct and
more demanding requirements than the older generations of
networks.

The novel forms of networks (e.g. Body Area Networks,
Vehicular Networks, and Satellite Networks) pose significant
challenges to existing network management paradigms. The
individual networks need to fulfill high throughput, strict la-
tency, and high availability constraints and function seamlessly
across multiple domains to provide a better user experience in
the proposed 6G architectures. The need to integrate multiple
networks while maintaining strict performance guarantees (e.g.
latency, bandwidth, and jitter) introduces a new challenge
to network management. The increasing number of nodes,
distinct network characteristics, topologies, and limited control

over a third-party network render the existing network man-
agement solutions unsuitable for ensuring network guarantees
in real-time.

The research on network management covers an exten-
sive range of methods from manually configured networks
to software defined networks for providing the best overall
network performance. The current trend in the literature is
shifting the focus from manual configurations to self-driving
and autonomously managed networks. The objective of au-
tonomous network management is to analyze the network and
proactively apply better-suited network configurations when
adapting to changes in network conditions. For this reason,
the keys to successful network management are accurate
network performance analysis and the ability to apply what-if
analysis. In recent years, the advent of the DT paradigm [2] is
gaining popularity for autonomous network management as an
alternative method to traditional simulation studies in network
analysis. A DT enables the mapping of physical systems to
their virtual counterparts. The literature focuses on extracting
the potential of DTs for network analysis [3]. Although various
tools are actively being researched for network performance
analysis, an end-to-end framework for autonomous manage-
ment focusing on multi-domain networks is not yet existent.

This paper proposes a research plan to develop a Ma-
chine Learning (ML) based autonomous network manage-
ment framework to shift human-centered network management
solutions into machine-centered alternatives. We focus on
extracting the potential of GNNs for the ML-based modeling
of networks. The remainder of this paper is structured as
follows: Sec. II provides an overview of network management
concepts. Sec. III describes the state of the research in the
literature. Sec. IV discusses the main challenges and proposes
a path for the research forward. We finally conclude and
discuss the next steps in Sec. V.

II. BACKGROUND

The ultimate goal of network management is to provide
the best overall network performance (e.g. high throughput,
low latency, and high availability). This section describes the
traditional network performance analysis strategies and the
state-of-the-art ML-aided methods to benchmark networks.



A. Traditional Network Analysis

Conventional network performance analysis approaches
consist of theoretical analysis, simulation studies, and testbed
measurements. Theoretical approaches (e.g. QT [4]) impose
strict assumptions on network conditions for modeling. How-
ever, these assumptions generally do not hold in real networks
and therefore lead to unrealistic performance benchmarks [5].
An alternative to the theoretical approach is computational
modeling which is also referred to as network simulation
studies in the literature. Such network simulators include
a wide range of network elements and protocols in their
software. The simulation approach is cheap and faster to
implement in comparison to a real testbed setup. However, as
the entities in the simulation are replicas of real objects, the
implementation in software may differ from its real behavior.
The simulation assumes that the hardware behaves as expected,
but the research shows that the behavior of hardware can
be different than the advertised behavior [6]. In addition
to the behavioral differences, simulation is computationally
expensive and network simulators cannot simulate complex
scenarios in real-time, i.e. in the time necessary for network
decisions. Despite its proven potential to accurately predict
key network characteristics, the slow execution times render
simulations an invalid candidate for DTs. The final method of
conventional testbed measurements aims to build a small-scale
prototype to measure network performance. The limitation of
this approach is the cost and complexity of building a setup
consisting of real hardware. Although it is essential to test
the configurations in a prototype hardware setup, the ideal
framework needs to monitor the real system to analyze the
data and manage the network.

Among the existing implementations for network modeling
and analysis, no feasible approach exists to provide accurate
estimates of network characteristics such as the Flow Comple-
tion Time (FCT), delay, and jitter in real-time. Therefore, in
order to analyze more complex scenarios, which are typical
in 6G architectures, consisting of bigger topologies, more
flows, and more packets, the literature has shifted its focus
to ML-based alternative methods in network performance
analysis. ML-based methods provide the opportunity for faster
execution by their lightweight structures, and hence they open
possibilities for building DTs of respective architectures.

B. Digital Twins

A DT is defined as the mapping of a physical world
into a digital space. Fig. 1 shows the typical depiction of a
DT of a Clos topology-based Data Center Network (DCN)
architecture. While the physical DCN is the collection of
hardware and resources, a DT can be software that functions in
real-time or even faster. The networking community’s interest
in DTs is growing enormously in the last few years [7]. The
potential applications of a DT can help to troubleshoot network
problems, detect anomalies and apply what-if analysis faster
than real-time [3]. Hence, the operations, that are unfeasible
in a physical network become viable with DTs.
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Fig. 1. Overview of a digital twin.

ML models are one of the possible components of a DT. ML
applications can learn the behavior of a system after extensive
training, and, in general, the execution time of such models is
fast. Although early ML-based solutions were not success-
ful in modeling network performance, recent development
in GNN-based architectures is gaining popularity. Since the
networks can essentially be modeled as graphs, the state-of-
the-art network performance analysis implementations, such as
RouteNet [8] and xNet [9] rely on GNN-based neural network
architectures. Their performance and ability to be combined
is the key enabler of the multi-domain autonomous network
management framework which will be discussed in Sec. IV.

C. Graph Neural Networks

In recent years, GNNs [10] are widely used for modeling
data which can be expressed as graphs. While traditional
neural networks assume a connection structure with a fixed-
dimension input space (e.g. fully-connected neural networks,
or convolutional neural networks), GNN architecture is deter-
mined dynamically based on the input graphs. This means that
they have the potential to exploit graph-structured character-
istics of the input data to model the relationships between the
graph elements.
Predictions: A network manager’s all-time dream is to sit
back and watch the network, while the maintenance tasks are
autonomously managed. The goal of network management
is to include the human in the loop only for overseeing
the actions the network management framework takes. GNN-
based ML models create opportunities to predict network
characteristics with high accuracy, and therefore serve as a
powerful tool for network analysis and autonomous network
management.
Generalization Capabilities: One of the critical requirements
of a successful network management framework is the ability
to adapt and perform well under unknown circumstances.
GNNs display promising abilities to generalize and perform
well for unseen data, topology, and traffic characteristics [11].
Hence, this makes GNNs a good basis to realize DTs.

In addition to network characteristics, domain-specific infor-
mation can also be modeled as nodes in graphs. Considering
modern network topologies, in which multi-domain character-
istics also need to be taken into account, the incorporation
of domain-specific knowledge plays a key role in a success-
ful network management framework. The remainder of this



work will focus on GNN-based implementations for network
performance analysis and propose an autonomous network
management framework based on GNN-aided DTs.

III. RELATED WORK

With the recent developments in ML, currently, state-of-the-
art network analysis methods rely on ML-based approaches. A
recent survey by Fadlullah et al. [12] discusses different ML-
based methods used in various network analysis tasks such as
traffic classification, FCT prediction, and latency analysis. In
the literature, various approaches are introduced for applying
ML models ranging from Support Vector Regression to model
queuing, latency, and throughput [13] to Causal Bayesian
Networks [14]. These generic approaches can be applied to a
wide range of problems. However, just recently the literature
focuses on extracting the potential of a graph-based data
structure for networks.

GNNs were introduced by Gori et al. [15] with the goal
of representing graph-structured data by applying message
passing among the nodes of a graph until a fixed location is
reached. Until now, GNNs were used in a range of applications
from object localization to web page ranking. Recently, GNNs
are utilized for network analysis as lightweight models which
can be executed much faster than the traditional approaches
for network analysis. Among the existing implementations,
Deep-Q [16] focuses on predicting path delays by leveraging
GNN capabilities. RouteNet [8] also focuses on extracting
key network characteristics as well as generalizing them to
unseen topologies during training. Most recently, xNet [9]
focuses on replacing simulation studies for DCN topologies.
The main limitations of existing approaches are that they rely
on simulation-generated data and include paths, links, and
flows as nodes in their graph. The former limitation leads to
inaccurate consideration of hardware characteristics and puts
a limit on the capability to come up with a DT that will be fed
by real system data. The latter means that the larger and more
complex topologies will be harder to model. These limitations
make the existing GNN-based implementations unsuitable for
large multi-domain network topologies.

One of the main enablers for digital twinning is fast runtime.
With the fast execution time of GNNs, digital twinning is
possible. Ferriol et al. [17] and Almasan et al. [3] discuss the
potentials of GNNs for such DTs. In this work, we propose to
come up with a GNN architecture, which is trained and fed
by real hardware collected data for building an autonomous
network management framework.

IV. RESEARCH METHODOLOGY

The goal of the proposed research path is to create an
autonomous network management framework that will be used
for network performance analysis before deployment to a real
system. This section introduces the proposed network manage-
ment framework, discusses open challenges, and establishes
the initial testbed for measurement studies.

DT1

Autonomous Network Manager (AI)

Physical System of
Networks
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Fig. 2. Proposed autonomous network management framework: AI-aided net-
work manager monitors the network conditions with real-time data collected
from the hardware. Upon analyzing the data, it creates a set of candidate
configurations. These configurations are tested and validated in a network of
DTs. Finally, the selected configuration is applied to the physical system.

A. Framework

Fig. 2 illustrates the proposed autonomous network man-
agement framework. The system is a self-driving framework,
in which the configurations are created, validated, and finally
applied to the real system in an autonomous manner. The
initial step in the framework is the creation of possible
candidate configurations, which can proactively improve the
network state. The possible set of configurations is created
by the Artificial Intelligence (AI) based network manager
through monitoring of the physical system. These created
configurations are then tested in a network of DTs. We define
the network of DTs as the collection of individually twinned
networks. This approach makes it feasible to combine distinct
twins, such as twins of different network domains, and come
up with a functioning validation platform. The final step is
the deployment of a configuration in order to be applied to
the hardware.

Currently, most of the research focuses on fixing network
conditions reactively upon the detection of an anomaly by
a set of rules that are pre-determined via the network man-
ager. Therefore, a completely self-monitoring and self-driving
network does not exist in the literature. To close this gap,
our research will focus on actively monitoring network status
via real-time data collection in a hardware setup. With the
information obtained through real-time data collection, a pre-
trained GNN-based model will be executed to predict the
network condition in the future. The ability to execute such a
model fast is the key enabler to proactively adapt to changes in
network conditions. Future extensions of the framework will
consider the addition of DTs of other network domains and
inter-domain characteristics.

B. Challenges

Effective network monitoring is a necessity for reacting to
changes in network conditions. The real system must be able to
monitor the network conditions appropriately, in order to feed
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Fig. 3. Overview of the proposed testbed.

the DT correctly. As the planned DTs are implementations
of GNNs, correct data collection for successful execution is
the key to accurate network modeling. Our research until now
shows that data collection in the data plane via P4-enabled
devices has the potential to collect meaningful data during
runtime, but the limitations need to be explored further.

Modern networks are becoming more and more complex.
As the topology sizes are getting bigger and distinct networks
are interacting with each other, it is not easy to model the
interaction of networks. To this end, we propose to individually
twin the network elements to model their behavior across
each other. However, due to the limited ability to model the
interaction in hardware, the DT needs to have generalization
capabilities so that it functions well for unseen topologies.

C. Testbed

A functioning DT requires the monitoring and collection
of accurate data in real hardware. Fig. 3 shows the testbed
for the initial measurement study. The formulation of the
testbed is to build a simple leaf-spine topology. The testbed
consists of four servers and three P4 switches. All the links
have 10Gbps capacities. Each of the servers is equipped with
an iPerf tool for traffic generation. Additionally, we install
tcpdump and log collection to servers for traffic collection.
Log and traffic collection in the endpoints exist merely due
to validation reasons for the experiment and they are not
planned to be a part of the network management paradigm.
Initially, the goal of the system is to collect throughput data
and system queue statistics in the data plane. Data collection in
the data plane will enable a centralized and fast data collection
which can be fed into the GNN-based model for training and
execution. P4 programming language enables the successful
and fast collection of data centrally without relying on external
mechanisms. For this reason, with P4 switches, we have shown
that we can append rate statistics to packets in the data plane
at line rate. The later stages of research will focus on training a
custom-built GNN module with the data collected in hardware.
The same model will be the key element of the proactive
autonomous network management framework.

V. CONCLUSION

This paper presents a research plan for an autonomous
network management framework. Based on our initial findings,
we believe that data plane applications provide a wide range
of possibilities for data collection. We envision that our
framework will be fueled by the collected data and result in
a proactive autonomous network management framework.
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