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Abstract
We present IRNeXt, a simple yet effective con-
volutional network architecture for image restora-
tion. Recently, Transformer models have dom-
inated the field of image restoration due to the
powerful ability of modeling long-range pixels in-
teractions. In this paper, we excavate the potential
of the convolutional neural network (CNN) and
show that our CNN-based model can receive com-
parable or better performance than Transformer
models with low computation overhead on sev-
eral image restoration tasks. By re-examining
the characteristics possessed by advanced im-
age restoration algorithms, we discover several
key factors leading to the performance improve-
ment of restoration models. This motivates us
to develop a novel network for image restoration
based on cheap convolution operators. Compre-
hensive experiments demonstrate that IRNeXt de-
livers state-of-the-art performance among numer-
ous datasets on a range of image restoration tasks
with low computational complexity, including im-
age dehazing, single-image defocus/motion de-
blurring, image deraining, and image desnowing.
https://github.com/c-yn/IRNeXt.

1. Introduction
Image restoration aims to restore a clean image from its
degraded counterpart, playing an essential role in remote
sensing, self-driving techniques, photography, and medical
imaging (Lim et al., 2020; Rasti et al., 2021; Zang et al.,
2019). Due to the ill-posedness of this inverse problem,
many conventional algorithms have been developed based
on hand-crafted features to reduce the solution space, which

1School of Computation, Information and Technology, Tech-
nical University of Munich, Munich, Germany 2School of Ocean
Information Engineering, Jimei Univeristy, Xiamen, China 3School
of Cyber Science and Technology, Shenzhen Campus of Sun Yat-
sen University, Shenzhen, China. Correspondence to: Wenqi Ren
<renwq3@mail.sysu.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

50 100 150 200 250 300
FLOPs (G)

34

36

38

40

PS
NR

 (d
B) MAXIM

CVPR22
DeHamer
CVPR22

AECR-Net
CVPR21

PMNet
ECCV22

FFA-Net
AAAI20

PFDN
ECCV20

DehazeFormer-L
Arxiv22

MSBDN
CVPR20

IRNeXt
Ours

1 2 3 4 5
Normalized Inference Time

31.0

31.5

32.0

32.5

33.0

PS
NR

 (d
B)

DBGAN
CVPR20

DMPHN
CVPR19

MIMO-UNet++
ICCV21

MPRNet
CVPR21

Restormer
CVPR22Stripformer

ECCV22
IRNeXt
Ours

Figure 1. Comparisons between our IRNeXt and other state-of-the-
art algorithms. Left: PSNR vs. FLOPs on SOTS-Indoor (Li et al.,
2018a) for dehazing. Right: PSNR vs. normalized inference time
(by ours) on GoPro (Nah et al., 2017) for motion deblurring.

are impractical for real-world scenarios (Zhang et al., 2022).

With the rapid development of deep learning, multifarious
CNN-based methods have been proposed based on inge-
nious modules or borrowed units, such as encoder-decoder
architecture (Cho et al., 2021; Lee et al., 2021), dilated
convolution (Son et al., 2021; Li et al., 2021; Ren et al.,
2018), and attention mechanisms (Qin et al., 2020; Za-
mir et al., 2021). Recent years have witnessed a paradigm
shift from CNN-based architectures to Transformer mod-
els (Chen et al., 2021a; Liang et al., 2021). These mod-
els have significantly advanced the performance of image
restoration. However, how to reduce the complexity of self-
attention for image restoration is still a non-trivial problem.

Our main goal is to exploit an efficient and effective image
restoration architecture based on CNNs. By delving into pre-
vious advanced image restoration methods, we summarize
several critical factors that a successful image restoration
model should have as follow: (a) Multi-scale representa-
tion learning. Recent deep architectures resort to a single
encoder-decoder (Chen et al., 2019; Lee et al., 2021; Ruan
et al., 2022) or multi-stage paradigm (Zamir et al., 2021;
Ren et al., 2018; Liu et al., 2019) to learn multi-scale feature
representations, which are helpful for removal of degrada-
tion blurs of different sizes. (b) Spatial attention. Spatial
attention facilitates models to attend to the important region,
which is useful for handling spatially-varying blurs (Qin
et al., 2020; Suin et al., 2020; Cui et al., 2023b). (c) Fre-
quency modulation. Frequency modulation operation is a
powerful complement to the spatial feature refinement by
reducing the frequency discrepancy between sharp and de-
graded images (Zou et al., 2021; Cui et al., 2023a). (d)
Low computational complexity. This is essential for image
restoration, which often involves high-resolution images.
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Figure 2. Comparisons between multi-scale architectures. (a)
Multi-stage isotropic design (Ren et al., 2018; Nah et al., 2017).
(b) Multi-stage U-shaped design (Gao et al., 2019). (c) Single
U-shaped design (Chen et al., 2019; Lee et al., 2021). (d) Our net-
work that imitates the multi-stage design in a U-shaped pipeline.

Taking into account the above analyses, we rethink the de-
sign of convolutional networks and develop an efficient
and effective architecture for image restoration. Firstly, to-
wards multi-scale learning, we review several representative
multi-scale architectures in Figure 2, and propose imitating
the multi-stage mechanism in a single U-shaped network.
Specifically, for each scale, we downsample the feature map
into different sizes such that the model is capable of han-
dling blurs in a coarse-to-fine manner. Secondly, inspired
by (Han et al., 2021), we develop a local attention module,
which not only can perform information aggregation effi-
ciently, but is adaptive to the input feature. Thirdly, since
frequency discrepancies between sharp and degraded im-
age pairs mostly lie in the high-frequency components (Liu
et al., 2020), we accentuate the informative frequency part
for restoration by recalibrating the weight of the high-pass
filter in the obtained attention map of the local attention mod-
ule. Finally, we insert above modules into a convolutional
U-shaped backbone to establish IRNeXt. Our contributions
can be summarized as follow:

• We identify the properties that a successful image
restoration method possesses and propose a novel con-
volutional model, dubbed IRNeXt, which enhances
multi-scale representation learning by incorporating
the multi-stage mechanism into a U-shaped network.

• We present an efficient content-aware local attention
module that can emphasize the useful frequency bands
by reweighing the weight of the high-pass filter.

• Extensive experiments demonstrate that our model de-
livers state-of-the-art performance on 13 benchmark
datasets for five typical image restoration tasks.

2. Related Work
Image Restoration. As a long-standing task, image restora-
tion provides high-quality images for visibility and down-
stream high-level tasks. CNNs have become the mainstream
in this field for several years and achieved many success-
ful stories on various restoration tasks (Nah et al., 2017;
Cai et al., 2016; Liu et al., 2018b; Abuolaim & Brown,
2020). To boost the performance, many advanced mod-
ules have been developed to strengthen the ability of these
CNN-based frameworks, such as encoder-decoder archi-
tecture (Cho et al., 2021; Lee et al., 2021), multi-stage
paradigm (Nah et al., 2017; Gao et al., 2019; Tu et al.,
2022), multi-patch learning (Zhang et al., 2019a; Suin et al.,
2020; Zamir et al., 2021), and attention mechanisms (Qin
et al., 2020; Anwar & Barnes, 2019; Zhang et al., 2018). Re-
cently, numerous Transformer models have been proposed
to capture long-range dependencies, and have significantly
advanced the state-of-the-art performance of image restora-
tion (Chen et al., 2021a; Liang et al., 2021; Guo et al., 2022;
Song et al., 2022). Despite a few remedies (Zamir et al.,
2022; Wang et al., 2022; Tsai et al., 2022), however, how to
reduce the complexity of self-attention remains formidable.

Attention Mechanisms. Driven by the success of attention
mechanisms in high-level tasks, various attention modules
have been proposed to attend to important contents for im-
age restoration (Zamir et al., 2020; Qin et al., 2020; Suin
et al., 2020; Liu et al., 2019). Our local attention module
mimics the depth-wise convolution (Han et al., 2021) to con-
duct information aggregation, which has the content-aware
property as self-attention while remaining computationally
efficient. The most related works to our module are the
methods that learn the dynamic filter for restoration (Lee
et al., 2021; Zhou et al., 2019; Wen et al., 2022). Different
from this kind of approaches, the proposed module does not
produce as many attention weights as them, leading to fewer
parameters and lower complexity. Furthermore, instead of
directly imposing attention weights on the input feature,
we perform filter modulation in advance to accentuate the
informative spectral part of feature by rescaling the weight
of the high-pass filter in the attention map.

Spectral Networks. There is a big difference between the
spectral features of clean/degraded image pairs (Liu et al.,
2020; Mao et al., 2021). A few deep restoration frame-
works have taken measures to bridge this gap by refining
features in the frequency domain. The common practice is
first to transform spatial features into the spectral domain
via wavelet or Fourier transform, and then leverage con-
volutions to modulate features (Zou et al., 2021; Yu et al.,
2022; Chen et al., 2021c). Different from previous methods,
IRNeXt performs filter modulation on the attention weights.
Furthermore, our method does not include extra convolution
layers and inverse transform, e.g., inverse Fourier transform.
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Figure 3. The architecture of the proposed IRNeXt. (a) IRNeXt consists of six CNNBlocks and adopts the multi-input and multi-output
strategies for image restoration. (b) ConvS extracts the shallow features for low-resolution degraded images, which includes a series of
convolutions with kernel sizes of 3× 3, 1× 1, 3 × 3, and 1× 1. (c) CNNBlock contains multiple residual blocks with the proposed
multi-scale module (MSM) inserted into the last one. (d) MSM provides multi-scale representation learning in each scale of the U-shaped
network. (e) Local attention module (LAM) performs information aggregation based on filter modulation (FM).

3. Method
In this section, we first describe the overall pipeline of
IRNeXt. Then we present the core components of IRNeXt:
multi-scale module (MSM) and local attention module
(LAM). The loss functions are introduced in the final part.

3.1. Overall Architecture

As illustrated in Figure 3 (a), the proposed IRNeXt adopts a
single U-shaped architecture for image restoration. Specifi-
cally, given any degraded image I∈ R3×H×W , IRNeXt first
applies a 3 × 3 convolution layer to generate the shallow
features with the size of C ×H ×W , where C denotes the
number of channels and H×W represents spatial locations.
Then the shallow features pass through three CNNBlocks
to obtain the high-level features. Each CNNBlock contains
multiple residual blocks with our MSM inserted into the
last one, as depicted in Figure 3 (c). During this process,
the channels are expanded, whereas the spatial resolution
is reduced. Moreover, following previous algorithms (Cho
et al., 2021; Tu et al., 2022; Mao et al., 2021), multiple
downsampled degraded images are merged into the main
path via the ConvS (Figure 3 (b)) module and concatenation,
followed by a 3×3 convolution to adjust the number of chan-
nels. Next, the high-level features are fed into another three
CNNBlocks to restore the high-resolution features. The
multi-output strategy is adopted, where the low-resolution

predicted image is generated using a 3× 3 convolution and
image-level skip connection (omitted in Figure 3 (a) for
simplicity) after the first two CNNBlocks. Furthermore,
decoder features are concatenated with the encoder features
to assist restoration, and a 1× 1 convolution layer is used
to reduce the number of channels by half. The final clean
image is produced after adding the original degraded input.
Next, we detail the proposed modules: MSM and LAM.

3.2. Multi-Scale Module

The single encoder-decoder paradigm is commonly applied
in recent deep restoration architectures to learn hierarchical
representations efficiently. However, the number of scales
in those works are limited to handle degradation blurs of
different sizes. To enhance multi-scale learning and remove
blurs in a coarse-to-fine manner at each scale, we mimic
the multi-stage network and implement it in each scale of a
single U-shaped framework, as illustrated in Figure 2 (d).

The architecture of MSM is shown in Figure 3 (d). For an
input tensor X∈ RH×W , where the channel dimension is
ignored for clarity, our MSM utilizes average pooling (AP)
operations with different downsampling ratios to convert
X into distinct scale spaces. For each branch, the result-
ing feature after LAM is incorporated into the next branch
via addition operation. In this way, MSM is capable of re-
moving degradations in a progressive manner by imitating
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the multi-stage network. Finally, the output features of all
branches are unified to the input size and added together.
In IRNeXt, we empirically adopt three branches plus the
identity connection, where the downsampling rates are set
to {8,4,2}. For the ith (i ∈ {1, 2, 3}) branch (except the
identity connection), the output features can be obtained by:

X̂i = LAM(AP24−i(X) + X̂i−1 ↑2) ↑24−i (1)

where X̂0=0; AP24−i denotes average pooling with the
downsampling rate as 24−i; and ↑2 represents the bilinear
interpolation with the upsampling rate as 2. To summarize,
the whole process of MSM can be formally expressed as:

X̂ = Conv3×3(

3∑
i=1

X̂i + X) (2)

where Conv3×3 denotes a convolution of 3× 3 kernel size.

3.3. Local Attention Module

To facilitate multi-scale learning, we aim to devise an effi-
cient module inserted into each branch of MSM to refine
features. Equipped with self-attention, Transformer mod-
els have achieved promising performance on various image
restoration tasks (Chen et al., 2021a; Liang et al., 2021). De-
spite a few remedies (Tsai et al., 2022; Wang et al., 2022),
however, the issue of quadratic complexity of self-attention
remains intractable. On the other hand, the convolution op-
erator has the static filter, which is incompetent to deal with
spatially-varying degradation blurs (Zamir et al., 2022).

In this work, we present LAM by combining the merits
of both the self-attention and convolution operator. Our
LAM inherits the content-aware property of the former, and
maintains the efficiency characteristic of the latter. More
concretely, LAM leverages a simple convolution block to
generate attention weights, which are adaptive to the input
feature, and then performs aggregation using convolution
operation. In the canonical self-attention, Softmax is used
to normalize attention weights. However, the resulting sum-
to-one weights can be considered as the kernel of a low-pass
filter (Park & Kim, 2022), which is unsuitable for image
restoration, because the large discrepancies between the
sharp and degraded images mostly lie in the high-frequency
components (Liu et al., 2020; Mao et al., 2021).

In LAM, we resolve the above issue in the attention weights
generation step from two aspects: (i) breaking through the
limitation of the low-pass filter using Tanh; and (ii) empha-
sizing the weight of high-pass filters in attention weights
using the proposed filter modulation (FM) operation.

Utilization of Tanh. We simply substitute the Tanh function
for Softmax. This scheme enjoys two advantages. Firstly,
we break through the limitation of the low-pass filter. Sec-
ondly, since Tanh projects attention weights into (-1, 1), the
negative weights can help suppress the detrimental pixels

when performing information aggregation. Formally, the
attention weights generating process can be expressed as:

A = Tanh(Conv1×1(GAP(Conv3×3(X)))) (3)

where GAP denotes the global average pooling and Tanh
represents the hyperbolic tangent function. To strike a better
tradeoff between the complexity and diversity of attention
weights, instead of producing attention weights for each
channel (Zhou et al., 2019; Lee et al., 2021), we impose
attention weights on the input feature in groups. In each
feature group, attention weights are shared across both chan-
nel and spatial dimensions. A∈ RG×K×K , where G is the
number of groups and K2 is the region size for integration.

FM. In addition to the utilization of Tanh, we further pro-
pose lifting the weight of high-pass filters in the attention
map. To this end, as illustrated in Figure 3 (e), we first de-
compose the attention map A into low-/high-pass filters, and
then reweigh the high-pass one using trainable channel-wise
parameters. Thus, the reassembled filter becomes adap-
tive to emphasize the useful frequency. In practice, due to
its ease of implementation, we refer to the low-pass filter
as a particular filter that only preserves the direct-current
component of the input, which can be extracted from A by:

Al =
1

K2
E (4)

where E∈ RG×K×K has the same shape as A with all values
being 1. See Appendix C for more details of Eq. 4. Then
the high-pass filter can be considered as the complementary
part of the low-pass filter:

Ah = A − Al (5)
Next, the modulated attention map can be obtained by:

A′ = Al +WAh (6)
where W denotes the learnable parameters, which are di-
rectly optimized by backpropagation and initialized as 1. It
is worth mentioning that our design is extremely lightweight,
as it does not introduce additional convolution layers as
other frequency-based networks (Zou et al., 2021; Mao
et al., 2021).

Finally, we apply the resulting attention weights to the input
feature via the convolution operation. For features in each
group, the output can be obtained by:

X̂g,h,w =

K−1∑
i=0

K−1∑
j=0

Xg,h−⌊K
2 ⌋+i,w−⌊K

2 ⌋+jA′
g,i,j + Xg,h,w

(7)
where g is the index of the group.

3.4. Loss Functions

Since we introduce FM in LAM, apart from the spatial L1

loss, we adopt the spectral L1 loss to accentuate the useful
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Figure 4. Single-image defocus deblurring comparisons on the DPDD (Abuolaim & Brown, 2020) dataset.

Indoor Scenes Outdoor Scenes Combined
Method PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓
DPDNet (Abuolaim & Brown, 2020) 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277
KPAC (Son et al., 2021) 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227
IFAN (Lee et al., 2021) 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217
DeepRFT (Mao et al., 2021) - - 25.71 0.801 0.039 0.218
DRBNet (Ruan et al., 2022) - - 25.73 0.791 - 0.183
Restormer (Zamir et al., 2022) 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178
IRNeXt (Ours) 29.22 0.879 0.024 0.167 23.53 0.752 0.049 0.244 26.30 0.814 0.037 0.206

Table 1. Single-image defocus deblurring comparisons on the DPDD (Abuolaim & Brown, 2020) dataset.

frequency. The dual-domain loss functions are given by:

Lspatial =

3∑
i=1

1

Pi
∥Îi − Yi∥1 (8)

Lfrequency =

3∑
i=1

1

Pi
∥F (Îi)− F (Yi)∥1 (9)

where i is the index of multiple outputs as shown in Figure 3
(a); Î and Y represent the predicted image and ground truth;
P denotes the total elements of the image for normalization;
and F is the fast Fourier transform. The final loss function
is given by integrating above two terms:

Ltotal = Lspatial + λLfrequency (10)

where λ is set to 0.1 for balancing dual-domain training.

4. Experiments
To demonstrate the effectiveness of our model, we evalu-
ate IRNeXt on 13 datasets for five image restoration tasks:
single-image defocus deblurring, image dehazing, image
deraining, image desnowing, and image motion deblurring.
We provide more details of the used datasets, training set-
tings, and additional visual results in Appendix. In tables,
the best result is highlighted in bold.
Implementation details. We train separate models for dif-
ferent problems. In all experiments, unless specified other-
wise, the following hyper-parameters are used. We choose

G = 8 and K = 3 in Eq. 7. We train our model using the
Adam optimizer (Kingma & Ba, 2014) with the initial learn-
ing rate as 1e−4, which is gradually reduced to 1e−6 with
cosine annealing (Loshchilov & Hutter, 2016). For data
augmentation, we use random horizontal flips. With the
exception of GoPro (Nah et al., 2017), where n in Figure 3
(c) is set as 13, we set n = 15 for deraining and deblurring
tasks, and n = 3 for dehazing and desnowing datasets. All
models are trained and evaluated on an NVIDIA Tesla V100
GPU. FLOPs are measured on 256× 256 patches.

4.1. Single-Image Defocus Deblurring Results

We conduct single-image defocus deblurring experiments
on the widely used DPDD (Abuolaim & Brown, 2020)
dataset. The image fidelity scores are presented in Table 1.
Our model obtains the highest scores on most categories.
Concretely, IRNeXt outperforms Restormer (Zamir et al.,
2022) by ∼0.3 dB PSNR in all scenes. Compared with
the frequency-based DeepRFT (Mao et al., 2021), IRNeXt
shows a substantial gain of 0.59 dB PSNR on the combined
scene category. Figure 4 illustrates that IRNeXt recovers the
sharper and visually-faithful image than other approaches.

4.2. Image Dehazing Results

We evaluate IRNeXt on the synthetic dataset (RE-
SIDE/SOTS (Li et al., 2018a)) and real-world datasets (NH-
HAZE (Ancuti et al., 2020) and Dense-Haze (Ancuti et al.,
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Figure 5. Image dehazing comparisons on the SOTS-Indoor (Li et al., 2018a) dataset.
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Figure 6. Image deraining comparisons on the Rain100H (Yang et al., 2017) dataset.

SOTS-Indoor SOTS-Outdoor Dense-Haze NH-HAZE
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM #Param (M)

AOD-Net (Li et al., 2017) 20.51 0.816 24.14 0.920 13.14 0.414 15.40 0.569 0.002
GridDehazeNet (Liu et al., 2019) 32.16 0.984 30.86 0.982 13.31 0.368 13.80 0.537 0.956
MSBDN (Dong et al., 2020) 33.67 0.985 33.48 0.982 15.37 0.486 19.23 0.706 31.35
PFDN (Dong & Pan, 2020) 32.68 0.976 - - - 11.27
FFA-Net (Qin et al., 2020) 36.39 0.989 33.57 0.984 14.39 0.452 19.87 0.692 4.456
KDDN (Hong et al., 2020) 34.72 0.985 33.57 0.984 14.28 0.407 17.39 0.590 5.99
AECR-Net (Wu et al., 2021) 37.17 0.990 - 15.80 0.466 19.88 0.717 2.611
DeHamer (Guo et al., 2022) 36.63 0.988 35.18 0.986 16.62 0.560 20.66 0.684 132.45
DehazeFormer-L (Song et al., 2022) 40.05 0.996 - - - 25.44
MAXIM (Tu et al., 2022) 38.11 0.991 34.19 0.985 - - 14.1
FSDGN (Yu et al., 2022) 38.63 0.990 - 16.91 0.581 19.99 0.731 2.73
PMNet (Ye et al., 2022) 38.41 0.990 34.74 0.985 16.79 0.510 20.42 0.730 18.90
IRNeXt (Ours) 41.21 0.996 39.18 0.996 17.60 0.659 20.55 0.813 5.46

Table 2. Image dehazing comparisons on the synthetic dataset (RESIDE/SOTS (Li et al., 2018b)) and real-world datasets (Dense-
Haze (Ancuti et al., 2019) and NH-HAZE (Ancuti et al., 2020)).

Rain100L Rain100H Test100
Method PSNR SSIM PSNR SSIM PSNR SSIM

DerainNet (Fu et al., 2017a) 27.03 0.884 14.92 0.592 22.77 0.810
DIDMDN (Wei et al., 2019) 25.23 0.741 17.35 0.524 22.56 0.818
UMRL (Yasarla & Patel, 2019) 29.18 0.923 26.01 0.832 24.41 0.829
RESCAN (Li et al., 2018b) 29.80 0.881 26.36 0.786 25.00 0.835
PreNet (Ren et al., 2019) 32.44 0.950 26.77 0.858 24.81 0.851
MSPFN (Jiang et al., 2020) 32.40 0.933 28.66 0.860 27.50 0.876
MPRNet (Zamir et al., 2021) 36.40 0.965 30.41 0.890 30.27 0.897
HINet (Chen et al., 2021b) 37.20 0.969 30.63 0.893 30.26 0.905
DRT (Liang et al., 2022) 37.61 0.948 29.47 0.846 27.02 0.847
MAXIM (Tu et al., 2022) 38.06 0.977 30.81 0.903 31.17 0.922
IRNeXt (Ours) 38.14 0.972 31.64 0.902 31.53 0.919

Table 3. Image deraining quantitative comparisons on three widely
used datasets: Rain100L (Yang et al., 2017), Rain100H (Yang
et al., 2017), and Test100 (Zhang et al., 2019b).

2019)). The results are shown in Table 2. Our model re-
ceives the best performance on most metrics. Particularly
on the SOTS-Outdoor scene category, IRNeXt significantly
outperforms the Transformer model DeHamer (Guo et al.,

2022) by 4 dB in terms of PSNR, while having 24× fewer
parameters. On the SOTS-Indoor category, our method re-
ceives a performance gain of 1.16 dB PSNR over the recent
algorithm DehazeFormer (Song et al., 2022) with 85% fewer
FLOPs, as illustrated in Figure 1 (Left). Figure 5 depicts
that our result is visually closer to the ground truth.

We further compare IRNeXt with other state-of-the-art ap-
proaches on the two real-world datasets. IRNeXt is more
effective in removing real hazy blurs than other methods,
outperforming the recent algorithm (Yu et al., 2022) by 0.81
and 0.13 dB on Dense-Haze and NH-HAZE, respectively.

4.3. Image Deraining Results

Following previous methods (Zamir et al., 2021; Tu et al.,
2022), we train IRNeXt on a composite dataset and com-
pute the metrics on the Y channel in YCbCr color space.
Table 3 shows the results on Rain100L (Yang et al., 2017),
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Figure 7. Image desnowing comparisons on the CSD (Chen et al., 2021c) dataset.

Input/18.00 dB GT/PSNR DBGAN/23.27 dB DMPHN/25.14 dB

MIMO-Unet++/24.15 dB MPRNet/24.14 dB Restormer/27.34 dB IRNeXt/28.17 dBBlurry Image

Figure 8. Image motion deblurring comparisons on the GoPro (Nah et al., 2017) dataset.

CSD SRRS Snow100K
Method PSNR SSIM PSNR SSIM PSNR SSIM

DesnowNet (Liu et al., 2018a) 20.13 0.81 20.38 0.84 30.50 0.94
CycleGAN (Engin et al., 2018) 20.98 0.80 20.21 0.74 26.81 0.89
All in One (Li et al., 2020) 26.31 0.87 24.98 0.88 26.07 0.88
JSTASR (Chen et al., 2020) 27.96 0.88 25.82 0.89 23.12 0.86
HDCW-Net (Chen et al., 2021c) 29.06 0.91 27.78 0.92 31.54 0.95
SMGARN (Cheng et al., 2022) 31.93 0.95 29.14 0.94 31.92 0.93
MSP-Former (Chen et al., 2022) 33.75 0.96 30.76 0.95 33.43 0.96
TransWeather (Valanarasu et al., 2022) 31.76 0.93 28.29 0.92 31.82 0.93
IRNeXt (Ours) 37.29 0.99 31.91 0.98 33.61 0.95

Table 4. Image desnowing comparisons on the CSD (Chen et al., 2021c),
SRRS (Chen et al., 2020), and Snow100K (Liu et al., 2018a) datasets.

Method PSNR SSIM

SRN-DeblurNet (Tao et al., 2018) 32.53 0.840
MIMO-UNet (Cho et al., 2021) 32.73 0.846
MIMO-UNet+ (Cho et al., 2021) 33.37 0.856
MPRNet (Zamir et al., 2021) 33.61 0.861
Restormer (Zamir et al., 2022) 33.69 0.863
Uformer (Wang et al., 2022) 33.98 0.866
IRNeXt (Ours) 34.08 0.869

Table 5. Image motion deblurring numerical com-
parisons on the lately proposed real-world dataset
RSBlur (Rim et al., 2022). The proposed model
IRNeXt advances the state-of-the-art performance
by 0.1 dB in terms of PSNR.

Method PSNR SSIM FLOPs/G Params/M Time/s

DBGAN (Zhang et al., 2020) 31.10 0.942 759.85 11.6 1.447
DMPHN (Zhang et al., 2019a) 31.20 0.940 - 21.7 0.405
MIMO-UNet++ (Cho et al., 2021) 32.68 0.959 617.64 16.1 1.277
MPRNet (Zamir et al., 2021) 32.66 0.959 777.01 20.1 1.148
Restormer (Zamir et al., 2022) 32.92 0.961 140.99 26.1 1.218
Stripformer (Tsai et al., 2022) 33.08 0.962 170.46 20.0 1.054
IRNeXt (Ours) 33.16 0.962 114.79 13.21 0.255

Table 6. Image motion deblurring results on the GoPro (Nah et al.,
2017) dataset. The inference time is tested in a synchronized
manner by using torch.cuda.synchronize.

Rain100H (Yang et al., 2017), and Test100 (Zhang et al.,
2019b). Compared with other algorithms, our method re-
ceives the comparable or better performance. On Rain100H,
IRNeXt obtains a performance gain of 0.83 dB over
MAXIM (Tu et al., 2022). Compared with the multi-stage
method MPRNet (Zamir et al., 2021), our method yields
a 1.41 dB improvement when averaged across all datasets.
Figure 6 illustrates that IRNeXt produces a visually pleasant
image on Rain100H.

4.4. Image Desnowing Results

We compare desnowing performance on three datasets:
CSD (Chen et al., 2021c), SRRS (Chen et al., 2020), and
Snow100K (Liu et al., 2018a). The numerical results are
reported in Table 4. Our method significantly outperforms
other algorithms on most categories. In particular, on the
lately proposed CSD dataset, IRNeXt yields a 5.53 dB im-
provement over TransWeather (Valanarasu et al., 2022). Fur-
thermore, compared with MSP-Former (Chen et al., 2022),
which is elaborately designed for desnowing, our model
shows a significant performance boost of 3.54 dB on the
CSD dataset. Figure 7 illustrates that IRNeXt produces
snow-free image without artifacts.

4.5. Image Motion Deblurring Results

We evaluate our model on the synthetic dataset GoPro (Nah
et al., 2017) and real-world dataset RSBlur (Rim et al.,
2022). The overall comparisons in terms of accuracy and
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Method PSNR Params/M FLOPs/G Time/s

(a)Baseline 31.23 6.90 66.32 0.134
(b)Baseline+MSM+Conv 31.46 8.45 71.17 0.152
(c)Baseline+MSM+LAM w/o FM 31.53 8.55 71.19 0.165
(d)Full 31.64 8.56 71.19 0.166

Table 7. Break-down ablation study toward better performance. To separately
study the effect of MSM, we deploy a 3× 3 convolution in each branch to form
variant (b). Here, MSM denotes the pure multi-scale paradigm without LAM.

8 4 2 PSNR Params/M FLOPs/G

31.23 6.90 66.32
✓ 31.33 7.71 70.89

✓ ✓ 31.39 8.13 71.12
✓ ✓ 31.51 8.13 70.26
✓ ✓ ✓ 31.64 8.56 71.19

Table 8. The number of branches in MSM. The number
indicates the downsampling rate of a branch.

Pooling Type PSNR Params

Convolution 31.51 8.58
Max Pooling 31.46 8.56
Average Pooling 31.64 8.56

Table 9. Ablation study on different
pooling operations.

Method PSNR

Softmax 31.50
Sigmoid 31.58
Tanh 31.64

Table 10. Ablation on
different functions.

computational costs on GoPro are shown in Table 6. Com-
pared with Transformer models Restormer (Zamir et al.,
2022) and Stripformer (Tsai et al., 2022), IRNeXt receives
performance gains of 0.24 dB and 0.08 dB respectively with
fewer parameters and lower complexity. Furthermore, our
model runs 4.78× and 4.13× faster than these two algo-
rithms, respectively, demonstrating that our model strikes a
better tradeoff between the accuracy and computation bur-
den. In addition, we report the results on RSBlur in Table 5.
As can be seen, our method outperforms the previous best
approach Uformer (Wang et al., 2022) by 0.1 dB PSNR and
0.003 SSIM. Figure 8 illustrates that IRNeXt reconstructs
more details than others for the difficult example of GoPro.

5. Ablation Study
Following (Tu et al., 2022), we conduct ablation studies on
the GoPro (Nah et al., 2017) dataset with n = 7 (Figure 3
(c)). The baseline is obtained by removing MSM from our
network. All models are trained for 1000 epochs. In tables,
the final choices of IRNeXt are highlighted in gray .

Break-down ablation. We perform the break-down ab-
lation by applying the proposed modules to the baseline
successively. The results are reported in Table 7. The base-
line model receives 31.23 dB (Table 7a). After deploying
MSM with a 3×3 convolution in each branch, the model
achieves a 0.23 dB improvement (Table 7b). Substituting
LAM without FM for the convolution, the model obtains a
further boosted performance of 0.07 dB (Table 7c). When
using all components, the model achieves the best perfor-
mance, 0.41 dB higher than that of the baseline, and only
introduces 1.66 M parameters and 4.87 G FLOPs (Table 7d).
The results demonstrate the effectiveness of our modules.

The number of branches in MSM. The number of
branches plays an essential role in the coarse-to-fine mecha-

nism of MSM. Therefore, we conduct experiments by vary-
ing the number of branches in MSM. The results are pre-
sented in Table 8. Employing more branches leads to better
performance. Specifically, when using a single branch with
the downsampling rate as 2, the model receives a gain of 0.1
dB over the baseline. When equipped with three branches,
the model produces a 0.41 dB improvement, which is 0.03
dB higher than the sum of performance gains brought by sep-
arately using the branches 8,4 and branch 2, demonstrating
the efficacy of the proposed coarse-to-fine mechanism.

Pooling operation choices. We study the influence of us-
ing different pooling techniques in MSM, i.e., depth-wise
convolution, max pooling, and average pooling. We adopt
the same downsampling rate in all variants. These three op-
erations have the same computational complexity, whereas
convolution introduces extra parameters. The results are
shown in Table 9. The average pooling variant achieves
better result than the other two alternatives. Therefore, we
choose average pooling as the default configuration.

Different activation functions. Instead of inheriting Soft-
max from self-attention to normalize attention weights, we
apply Tanh in LAM to generate the negative weights for
detrimental pixels when performing information aggrega-
tion. The comparisons are reported in Table 10. Compared
with Softmax, Sigmoid receives a gain of 0.08 dB by break-
ing through the sum-to-one property. Tanh projects attention
weights into (-1, 1), producing a further improvement of
0.06 dB. Hence, we choose to use Tanh in the final model.

6. Conclusion
In this study, we analyze previous successful image restora-
tion models and identify the good properties owned by them.
Based on the observation, we present a simple convolutional
model IRNeXt for image restoration. Specifically, we intro-
duce a multi-scale module (MSM), which incorporates the
multi-stage mechanism into a single U-shaped network to
remove blurs of different sizes in a coarse-to-fine manner.
Moreover, we propose an efficient local attention module
(LAM) for handling spatially-varying blurs, where informa-
tive spectral features are accentuated via filter modulation
(FM). Extensive experiments on 13 benchmark datasets
demonstrate that the proposed IRNeXt achieves state-of-the-
art performance for several image restoration tasks.
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A. Datasets and Experimental Details
In this section, we introduce more details of the used
datasets and training settings for five image restoration tasks.
The summary of the datasets are shown in Table 14.

Single-Image Defocus Deblurring. Consistent with pre-
vious methods (Zamir et al., 2022; Ruan et al., 2022; Mao
et al., 2021), we use a lately proposed dataset DPDD (Abuo-
laim & Brown, 2020) for evaluation. DPDD contains 500
indoor/outdoor scenes that are captured by a DSLR camera.
In each scene, there are four images, termed as left, right
and center views, and an all-in-focus ground-truth image.
DPDD is split into training, validation, and testing subsets
with 350, 74, and 76 scenes, respectively. The model take
the center view images as input and predicts the sharp image.
The training strategy follows that of (Ruan et al., 2022).

Image Dehazing. We use a synthetic dataset RESIDE (Li
et al., 2018a) and two real-world datasets, Dense-Haze (An-
cuti et al., 2019) and NH-HAZE (Ancuti et al., 2020), to
evaluate IRNeXt. The RESIDE dataset consists of two train-
ing subsets: Indoor Training Set (ITS) that contains 13,990
hazy images produced from 1,399 sharp images, and Out-
door Training Set (OTS) that contains 313,950 hazy images
generated from 8,970 clean images. In addition, RESIDE
includes a Synthetic Objective Testing Set (SOTS), which
consists of 500 indoor and 500 outdoor hazy images. We
evaluate the ITS-trained and OTS-trained models on the cor-
responding SOTS datasets. For ITS and OTS, our models
are trained for 300 and 30 epochs, respectively. And the
batch size is set as 4 and 8, respectively. In addition, we use
two real-world datasets to evaluate the robustness of IRNeXt
in more challenging real-world scenarios. Both datasets con-
tain 55 image pairs. NH-HAZE comprises nonhomogeneous
hazy images while Dense-Haze contains dense and homo-
geneous hazy images. For these two datasets, our models
are trained on 800× 1200 patches with the batch size as 2
and the initial learning rate as 2e−4. Our models are trained
for 5,000 epochs following the method (Guo et al., 2022).

Image Deraining. Following recent methods (Tu et al.,
2022; Zamir et al., 2022; 2021), we utilize a composite train-
ing set to train our model, which consists of 13,712 clean
and rainy image pairs collected from several datasets (Fu
et al., 2017b; Yang et al., 2017; Zhang et al., 2019b; Li et al.,
2016). The model is trained for 300 epochs.

Image Desnowing. For desnowing, we use three datasets
for evaluation: SRRS (Chen et al., 2020), CSD (Chen et al.,
2021c), and Snow100K (Liu et al., 2018a). The dataset
settings are consistent with algorithms (Chen et al., 2022;
2020) where we randomly choose 2,000 images from each
test set for evaluation. All models are trained for 800 epochs.

Image Motion Deblurring. Follow previous methods (Cho
et al., 2021; Zamir et al., 2022; Tu et al., 2022; Wang et al.,

Groups MSM
Method Baseline 2 4 8 16 1 2

PSNR 31.23 31.55 31.57 31.64 31.58 31.64 31.75
Params/M 6.90 8.48 8.51 8.56 8.65 8.56 10.21

Table 11. Ablation studies of the number of groups in LAM and
the number of MSM in CNNBlock on GoPro (Nah et al., 2017).

Method Baseline 1 MSM 2 MSM

PSNR 31.33 38.58 40.23

Table 12. Ablation studies of the number of MSM in CNNBlock
on the RESIDE-Indoor (Li et al., 2018a) dataset.

Blocks 12 14 16

PSNR 33.07 33.16 33.19
FLOPs/G 100.25 114.79 129.33
Params/M 11.66 13.21 14.76

Table 13. Ablation studies of the number of residual blocks in
CNNBlock on the GoPro (Nah et al., 2017) dataset. The number
includes the last one involving our MSM.

2022), we train our model on the GoPro (Nah et al., 2017)
dataset. It consists of 2,103 and 1,111 blurry/sharp image
pairs for training and testing. The model is trained for
3000 epochs. We further evaluate the performance of our
model on the real-world dataset RSBlur (Rim et al., 2022).
It consist of 8,878 and 3,360 blurry/sharp image pairs for
training and evaluation. Our model is trained for 710 epochs.

B. More Ablation Studies
We provide more ablation studies on the GoPro (Nah et al.,
2017) and RESIDE-Indoor (Li et al., 2018a) datasets. The
experimental configurations on GoPro are consistent with
that of the ablation study in the main text. The experimen-
tal settings on RESIDE-Indoor follow the final model in
Table 2, except that n is set to 0 in Figure 3 (c).

The number of groups in LAM. To study the impact of
the diversity of attention weights in LAM, we conduct ex-
periments by varying the number of groups. The results are
presented in Table 11. Generally, as we increase the number
of groups, the performance improves. However, it saturates
at group 8, which is probably caused by overfitting.

The number of MSM. To further evaluate the effectiveness
of MSM, we inject MSM into the last two residual blocks of
each CNNBlock. The results on GoPro and RESIDE-indoor
datasets are shown in Table 11 and Table 12, respectively.
We can see that, deploying two MSM leads to the perfor-
mance improvement on both datasets. To achieve a better
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Task Dataset Training Set Test Set

Defocus Deblurring DPDD (Abuolaim & Brown, 2020) 350 76

Dehazing RESIDE/ITS (Li et al., 2018a) 13990 500
RESIDE/OTS (Li et al., 2018a) 313950 500

Dense-Haze (Ancuti et al., 2019) 50 5
NH-HAZE (Ancuti et al., 2020) 50 5

Draining Rain14000 (Fu et al., 2017b) 11200 2800
Rain1800 (Yang et al., 2017) 1800 0
Rain800 (Zhang et al., 2019b) 700 100
Rain100H (Yang et al., 2017) 0 100
Rain100L (Yang et al., 2017) 0 100

Rain12 (Li et al., 2016) 12 0

Desnowing CSD(Chen et al., 2021c) 8000 2000
SRRS (Chen et al., 2020) 15005 15005

Snow100K (Liu et al., 2018a) 50000 50000

Motion Deblurring GoPro (Nah et al., 2017) 2103 1111
RSBlur (Rim et al., 2022) 8878 3360

Table 14. Details of the used datasets for five image restoration tasks.

balance between accuracy and computational overhead, we
only insert one MSM into each CNNBlock.

The number of residual blocks in CNNBlock. We pro-
vide more model versions on the GoPro dataset for motion
deblurring by varying n. The results are shown in Table 13.
With 12 residual blocks (including the one involving our
MSM), the model receives a performance gain of 0.15 dB
PSNR over Restormer (Zamir et al., 2022). When we set
n = 16, the accuracy increases to 33.19 dB. To compete
with other algorithms in terms of performance and complex-
ity, we finally choose n = 14 in our IRNeXt in Table 6.

C. More Details of the Low-Pass Filter
In Eq. 4, we define the low-pass filter as Al =

1
K2 E. In this

section, we provide more details of this operation. We start
from the 2D discrete Fourier transform:

F (u, v) =
1

K ·K

K−1∑
x=0

K−1∑
y=0

f(x, y)e−j2π(ux
K + vy

K ) (11)

where F and f denote the spectral and spatial features,
respectively. j is the imaginary unit. K ×K represents the
region for Fourier transform. Since our low-pass filter is
defined as a kind of filter that only retains the direct-current
component, similar to (Qin et al., 2021), we suppose u and

v in Eq. 11 are equal to 0, and then we have:

F (0, 0) =
1

K ·K

K−1∑
x=0

K−1∑
y=0

f(x, y)e−j2π( 0·x
K + 0·y

K ) (12)

=
1

K ·K

K−1∑
x=0

K−1∑
y=0

f(x, y) (13)

In our case, where the convolution operation is used for
aggregation, for each pixel, we can obtain its low-frequency
component based on Eq. 13:

X̂
(0,0)

h,w =
1

K ·K

K−1∑
x=0

K−1∑
y=0

1 · Xh−⌊K
2 ⌋+x,w−⌊K

2 ⌋+y (14)

where h and w denote spatial pixels of the feature. Our ag-

gregation is performed on each region of size K×K. X̂
(0,0)

h,w

means that for each region centered at pixel (h,w), we pre-
serve the direct-current component. Comparing Eq.14 with
Eq. 7, we can obtain the low-pass filter as Al =

1
K2 E.

D. Visualization
We visualize intermediate feature maps to demonstrate the
effectiveness of our MSM and FM. We plot results of MSM
by using different numbers of branches, as illustrated in the
first three maps of Figure 9. The quantitative results are
shown in Table 8. The two-branch version uses 4 and 2 as
downsampling rates. We can see that using more branches
generates sharper feature map. We further plot features for
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Blurry Image 1 Branch 3 Branches2 Branches Branch 8 Branch 4 Branch 2

Figure 9. Visualization of intermediate feature maps. The first three feature maps exhibit the difference of using different numbers of
branches in MSM. The last three maps show the difference between branches with different downsampling rates.

Blurry Image w/ FMw/o FM

Figure 10. Visualization of intermediate feature maps of models
with and without FM.

each branch in the three-branch version, which are obtained
before addition in MSM. The last three maps show that the
model restores sharp feature progressively, demonstrating
the effectiveness of the coarse-to-fine mechanism.

Furthermore, we plot resulting feature maps of MSM for
models with and without FM in Figure 10. The quantitative
results are presented in Table 7c and Table 7d. As can be
seen, equipped with FM, the model recovers more high-
frequency signals than that without FM.

E. Additional Visual Results
In this part, we provide additional visual results for five
image restoration tasks, organized as follows:

• Image deraining: Figure 11

• Image deblurring: Figure 12

• Image desnowing: Figure 13

• Image dehazing: Figure 14 and Figure 15
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Figure 11. Image deraining comparisons. The top and bottom images are obtained from the Test100 (Zhang et al., 2019b) and
Rain100L (Yang et al., 2017) datasets, respectively.
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Figure 12. Top: Image motion deblurring comparisons on the real-world dataset RSBlur (Rim et al., 2022). Bottom: Single-image
defocus deblurring comparisons on the DPDD (Abuolaim & Brown, 2020) dataset.
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Figure 13. Image desnowing comparisons on the CSD (Chen et al., 2021c) dataset.

18



IRNeXt: Rethinking Convolutional Network Design for Image Restoration

PSNR
GT

35.63 dB
DehazeFormer-B

30.16 dB
FFA-Net

21.25 dB
Input

27.57 dB
MAXIM

36.80 dB
IRNeXt

12.72 dB
Input

PSNR
GT

29.23 dB
GridDehazeNet

33.75 dB
FFA-Net

32.22 dB
MAXIM

39.19 dB
IRNeXt

Figure 14. Image dehazing comparisons. The top and bottom images are obtained from the SOTS-Indoor (Li et al., 2018a) and SOTS-
Outdoor (Li et al., 2018a) datasets, respectively.
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Figure 15. Image dehazing comparisons. The top and bottom images are obtained from the Dense-Haze (Ancuti et al., 2019) and
NH-HAZE (Ancuti et al., 2020) datasets, respectively.
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