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Abstract—The possibility of decoupling the operation of control
plane from data plane in RANs, which became possible with
the introduction of Software-Defined Networks in 5G, brought a
paradigm shift in cellular network operation. The key element
that enables this is a centralized controller, located away from
base stations. This yields increased flexibility in the functioning
of cellular networks, resulting in considerable enhancements
compared to classical pre-5G resource allocation approaches.
However, so far the range these improvements span is known
only in terms of throughput. The advantages in terms of other
metrics and objectives, like delay fairness, are not yet known.
Therefore, in this paper, we derive analytically the resource
allocation policies that lead to different delay fairness definitions
among the entities in an SD-RAN-enabled network and show
the advantages compared to the classical pre-5G approaches. We
do this for different scenarios. First, we consider the minimum
potential delay fairness in the network. Then, we consider
the min-max delay fairness among base stations, and also the
min-max delay fairness among users. We evaluate performance
extensively with input data from a dataset. The results indicate
that the introduction of SD-RAN improves the objective value
up to 6× compared to policies without SD-RAN.

Index Terms—SD-RAN, 5G, Minimum potential delay fairness,
Min-max fairness.

I. INTRODUCTION

In the previous generations of cellular networks, including
4G, both data plane and control plane operations were per-
formed jointly in Base Stations (BSs). With the advent of
Software Defined Networks (SDNs) [1] and their adaptation
in Radio Access Networks (RANs), widely known as SD-
RAN [2], decoupling the control plane operation from the
data plane became possible for the first time in 5G networks.
The control is transferred to centralized entities, known as
SD-RAN controllers, which are usually not co-located with
BSs. This novelty introduced a paradigm shift in the resource
allocation process in cellular networks in particular, and how
the latter operate in general.

This change in operation brings considerable benefits to cel-
lular networks [2]–[4], with increased flexibility being among
the main ones. This increased degree of flexibility arises from
having a broader view of the network topology, facilitated
by the centralized SD-RAN approach. This way, depending
on the current spread of users across BSs, and their channel
conditions for which users periodically inform their serving
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BSs [5] that forward those data to the SD-RAN controller, the
latter can allocate resources to BSs according to a given policy.
In the second step then, BSs perform the resource assignment
process across users within their region of operation. As a
consequence, exploiting the wide network knowledge leads to
performance improvements by allowing optimal assignment
decisions, depending on the objective of interest. As opposed
to SD-RAN, in a classical RAN, each BS is pre-assigned its
own set of resources (frequencies) and allocates them to the
users receiving service from it.

While the improvements that SD-RAN brings in terms of
throughput and different forms of throughput fairness have
already been documented [6], [7], [8], little is known on
whether there are improvements on the delay at all com-
pared to the traditional resource allocation approaches. Some
open-source SD-RAN prototypes, like FlexRAN [2] and 5G-
EmPOWER [3] already exist, but they do not provide an
answer on the benefits the delegation of traditional RAN
functions to centralized controllers brings in terms of delay.
Moreover, delays can be associated with individual users, BSs,
or the entire network. There may be other objectives related
to delay, like providing delay fairness across different entities.
To our best knowledge, these problems have not been tackled
before in the context of SD-RAN.

Deriving and implementing resource policies in cellular
networks that are delay-fair is quite strenuous mostly because
of the varying nature of wireless channels, stemming from
the mobility of the users and effects characteristic to wireless
communications, like shadowing [9]. This dynamic channel
behavior propels the need to vary the amount of assigned
resources at the same granularity level at which the chan-
nel characteristics change, and also to consider the channel
conditions of all users when making allocation decisions.

Some of the important research and practical questions that
arise relating to provisioning delay fairness in SD-RAN-led
5G networks are:

• Which allocation policy minimizes the overall delay in
the network, also known as minimum potential delay fair-
ness, where the number of users, their channel conditions,
and their association to BSs are known beforehand?

• What is the allocation policy that provides delay fairness
among BSs, i.e., which minimizes the highest delay in a
BS in the network?

• If the goal is to minimize the delay of the worst-
performing user network-wide, which policy enables this?



To answer the aforementioned open questions, here we for-
mulate and solve three optimization problems. In the first one,
the goal is to minimize the total delay in the network when
users send/receive packets. This turns out to be equivalent to
minimizing the potential delay fairness, derived as a special
case of the general Network Utility Maximization (NUM)
problem. We show that minimum potential delay fairness is
achieved if resources are allocated inversely proportionally
to the square root of the channel conditions of the user in
a slot.1 The second problem we solve in this paper is to
provide delay fairness among BSs. It is in fact a min-max
problem in which the goal is to minimize the delay in the
worst-performing BS, i.e., the BS where the sum of delays of
users when transmitting data is the highest in the network. The
solution to this problem results in an optimal allocation policy
in which the amount of allocated resources should be again
inversely proportional to the square root of the user’s channel
conditions, but as opposed to the first problem the impact of
other users is described with a different function. Finally, in
the third problem, we look at minimizing the delay of the
worst-performing user in the network. The optimal solution in
this case, as opposed to the previous two problems, yields an
inverse proportionality of the number of assigned resources
to the channel conditions (not the square root). The results
we provide in this work are especially helpful for the cellular
operator as they can provide an exact prediction of the delay
a user can expect to experience given the network topology in
a slot, without penalizing users with bad channel conditions.
The main message of this paper is that the use of SD-RAN
can improve performance considerably under any number of
BSs and users.

Specifically, our main contributions are:
• We derive the allocation policies which provide minimum

potential delay fairness among all users, min-max delay
fairness among BSs, and min-max delay fairness among
all users, given the channel characteristics of the users
and their spread across BSs.

• We evaluate the performance using input data from real-
life 5G traces.

• We show the concrete performance improvements when
using SD-RAN compared to the traditional approach in
terms of different delay-related fairness objectives.

The remainder of this paper is organized as follows. The
system model and the problem formulations are presented in
Section II. This is followed by the solutions to the optimization
problems in Section III. Section IV introduces the benchmark
models against which the performance of SD-RAN is com-
pared. In Section V, we evaluate the performance and provide
some additional insights. Some related work is discussed in
Section VI. Finally, Section VII concludes the paper.

II. PERFORMANCE MODELING

First, we introduce the system model and then define three
optimization problems that we solve in this paper.

1As will be seen later, the quantity known as per-PRB rate is used to
describe the rate of a user per unit of allocated resources.

Fig. 1. Illustration of the SD-RAN environment.

A. System model

We consider an SD-RAN-led network (Fig. 1) with a single
controller responsible for assigning resources (and the alloca-
tion decisions further to users) to BSs. For every BS there is
an SD-RAN agent that communicates with the controller [10],
using the Transport Control Protocol (TCP). We denote the
set of all BSs by N . There are in total n = |N | BSs in the
coverage area of the controller. We denote by Mi the set of all
users within the operational area of BS i, where mi = |Mi|
is the number of users in BS i. So, there are in total

∑n
i=1 mi

users.
5G uses Physical Resource Blocks (PRBs) as the unit of

allocation on a per-slot basis [11]. Each PRB consists of 12
subcarriers. The slot duration is a function of the subcarrier
spacing. Specifically, if the subcarrier spacing is 15 KHz (PRB
width of 180 KHz), the slot duration is 1 ms. If the subcarrier
spacing is 30 KHz (PRB width of 360 KHz), the corresponding
slot duration is 0.5 ms. The slot duration decreases further
(2×) when switching to subcarrier spacing of 60 KHz, and
another 2× when switching to 120 KHz [5]. Different PRBs
are assigned to different users in a slot. The assignment varies
across slots. Therefore, scheduling needs to be performed
along two dimensions, time and frequency. In total, there are
K available PRBs for n BSs.

Users experience different channel conditions (characterized
by the Channel Quality Indicator (CQI) with discrete values
from 1 (worst channel conditions) to 15 (excellent channel
conditions)) across different PRBs even within the same
slot. Because of the mobility and time-varying nature of the
channels, per-PRB CQI (which is a function of Signal-to-
Interference-Plus-Noise-Ratio (SINR)) changes from one slot
to another, whose value depending on the Modulation and
Coding Scheme (MCS) used sets the per-PRB rate. To keep
the analysis tractable, we make a simplifying assumption.
Namely, we assume that the BS splits the transmission power
equally among all PRBs it transmits on and that the chan-
nel characteristics for a user remain static across all PRBs
(identical CQI over all PRBs for a given user), but change
randomly (according to some distribution) from one slot to
another, and are mutually independent among users (users with
heterogeneous channel conditions). These assumptions reduce
the resource allocation problem to the number of allocated
PRBs and not to which PRBs are assigned to a user.



The previous assumptions imply that in every slot user
(i, j)2, where i ∈ N and j ∈ Mi, will have a per-PRB
rate (i.e., the rate each assigned PRB brings to the user) that
can be modeled with a discrete random variable, Ri,j , with
values in {r1, r2, . . . , r15}, such that r1 < r2 < . . . < r15,
with Probability Mass Function (PMF) pRi,j

(x), which is a
function of user’s (i, j) CQI over time.

B. Problem formulation

Every user sends periodically the information about its
CQI to its serving BS. Then, every BS collects all the CQI
information from the users in its area and forwards them to the
SD-RAN controller (see Fig. 1). Based on the CQI values from
all the BSs (and hence all users), the controller then, depending
on the allocation policy used, decides on the number of PRBs
to assign to each BS in a slot. Then, from the PRBs it receives,
each BS further allocates those PRBs to the users in its area.
Therefore, using SD-RAN, the resource allocation process is
performed in two levels. First, among BSs, and then each BS
allocates the PRBs it received from the controller to its users.

Let Ki,j ,∀j ∈ Mi, denote the number of PRBs user j
gets from BS i.3 If Ki,∀i ∈ N , denotes the number of PRBs
that BS i receives from the controller in a slot, then Ki =∑mi

j=1 Ki,j . The data rate of user (i, j) in a slot is Ki,jRi,j .
The delay user (i, j) experiences when transmitting a packet

of size ∆ is ∆
Ki,jRi,j

. In the analysis to follow, we assume that
all users transmit packets of equal sizes. Therefore, w.l.o.g. we
assume that packets are of unit sizes. Hence, the per-packet
delay for user (i, j) is 1

Ki,jRi,j
. In Section III-D, we provide a

short discussion on the scenario when users transmit packets
of different sizes.

1) Minimum potential delay fairness across users: In the
first scenario, our goal is to minimize the total delay across
the entire set of users in the SD-RAN-enabled network. This
leads to the following optimization problem:

P1 : min
Ki,j

n∑
i=1

mi∑
j=1

1

Ki,jRi,j
(1)

s.t.
n∑

i=1

mi∑
j=1

Ki,j ≤ K, (2)

Ki,j ≥ 0, ∀i ∈ N ,∀j ∈ Mi. (3)

Constraint (2) expresses the total number of PRBs that can
be allocated to all users (which is K), whereas (3) captures
the fact that the number of allocated PRBs to users should be
non-negative. The decision variables are Ki,j .

Note that in the general Network Utility Maximization
framework [12] the objective for α ̸= 1 is max

∑
i
x1−α
i

1−α .
When α = 2, corresponding to minimum potential delay
fairness, this objective reduces to max

∑
i −

1
xi

, which is
equivalent to the objective min

∑
i

1
xi

. Hence, we refer to this
problem as minimizing potential delay fairness across all users.

2We denote every user with the ordered pair (i, j), where i denotes the
BS, and j indicates the user receiving service by that BS.

3Each user can receive resources only from one BS.

2) Delay (min-max) fairness among BSs: In the second
scenario, the goal is to look at fairness among BSs. Namely,
resources should be allocated in such a way that the total
transfer delay among the users in a BS is not much higher than
among the users in another BS. To capture this requirement,
we formulate an optimization problem where the objective is
to minimize the maximum BS delay (where the delay in a
BS is the sum of delays across all users in that BS) in the
entire network, i.e., to minimize the total delay of the worst-
performing BS:

P2 : minmax
Ki,j

mi∑
j=1

1

Ki,jRi,j
(4)

s.t. (2), (3).

The function in objective (4) denotes the total transfer delay
in a BS. The decision variables are again Ki,j . So, here we
are dealing with a min-max optimization problem.

3) Delay (min-max) fairness among users: Another in-
teresting objective is to minimize the delay of the worst-
performing user in the network. This would be of interest,
for example, in a scenario in which all the packets have to be
received within a time window and the latter to be as narrow
as possible. This task translates into the following optimization
problem:

P3 : minmax
Ki,j

1

Ki,jRi,j
(5)

s.t. (2), (3).

We solve these optimization problems in the next section.

III. PERFORMANCE OPTIMIZATION

In this section, first, we determine the optimal policy for
minimum potential delay fairness by solving P1. We proceed
then with the solution to P2 and P3. Finally, we provide a short
discussion on packets of different sizes for different users.

A. Minimum potential delay fairness across users

We start the analysis by solving P1. Objective function (1)
is concave. Namely, the main diagonal elements of the Hessian
matrix A are ∂2

∂K2
i,j

(∑n
i=1

∑mi

j=1
1

Ki,jRi,j

)
= 2

Ri,jK3
i,j

> 0,
whereas the off-diagonal elements are all 0. This implies that
for any non-zero vector x, the following holds always

xTAx > 0,

which is the condition satisfied by convex functions. Fur-
thermore, as constraints (2) and (3) are linear, there exists
a unique solution to P1. As a first step in solving this convex
optimization problem, we define the Lagrangian function as

L = −
n∑

i=1

mi∑
j=1

1

Ki,jRi,j
− λ

 n∑
i=1

mi∑
j=1

Ki,j −K


+

n∑
i=1

mi∑
j=1

µi,jKi,j , (6)



where λ ≥ 0 and µi,j ≥ 0, ∀j ∈ Mi are the slack variables.
It can be shown in a straightforward fashion that P1 satis-
fies Slater’s condition [12]. Hence, the strong duality holds.
Therefore, Karush-Kuhn-Tucker (KKT) conditions [13] can be
applied to the dual optimization problem, where the optimal
solution needs to fulfill the following system of equations:

∂L
∂Ki,j

= 0, ∀i ∈ N ,∀j ∈ Mi, (7)

λ

 n∑
i=1

mi∑
j=1

Ki,j −K

 = 0, (8)

µi,jKi,j = 0, ∀i ∈ N ,∀j ∈ Mi. (9)

Substituting (6) into (7), we obtain

1

Ri,jK2
i,j

− λ+ µi,j = 0, ∀i ∈ N ,∀j ∈ Mi, (10)

or equivalently,

λ =
1

Ri,jK2
i,j

+ µi,j , ∀i ∈ N ,∀j ∈ Mi. (11)

From the objective (1), we can infer that Ki,j > 0, which
together with (9) yields µi,j = 0. Replacing the latter finding
into (11) leads to

λ =
1

Ri,jK2
i,j

> 0, ∀i ∈ N ,∀j ∈ Mi. (12)

From (12) and (8), we obtain
n∑

i=1

mi∑
j=1

Ki,j = K. (13)

This is an expected finding, as to improve the performance in
terms of delay the resources need to be fully utilized. In order
to derive the amount of allocated resources, we express the
term for user (i, j) in (12) through that of user (1, 1), to get

Ri,jK
2
i,j = R1,1K

2
1,1, (14)

yielding

Ki,j =

√
R1,1

Ri,j
K1,1. (15)

Substituting (15) into (13) and performing some simple alge-
bra, we obtain

K1,1 =
K√

R1,1

∑n
i=1

∑mi

j=1
1√
Ri,j

. (16)

Finally, substituting (16) into (15), we have:

Result 1. A minimum potential delay fair allocation policy
across all users in the network with SD-RAN is achieved if
the number of assigned PRBs to user (i, j) follows the policy

Ki,j =
K√

Ri,j

∑n
i=1

∑mi

j=1
1√
Ri,j

. (17)

The most important observation to make from Result 1,
besides that of the policy being dynamic, is the inverse pro-
portionality between the square root of the channel conditions
of the user and the amount of allocated resources; the worse
the channel conditions of a user (lower Ri,j), the higher the
Ki,j , and vice versa.

B. Min-max delay fairness among BSs

When it comes to solving P2, we need to transform it first
to an equivalent problem:

min
Ki,j

Z (18)

s.t.
n∑

i=1

mi∑
j=1

Ki,j = K, (19)

Ki,j ≥ 0, ∀i ∈ N ,∀j ∈ Mi, (20)

Z ≥
mi∑
j=1

1

Ki,jRi,j
, ∀i ∈ N . (21)

Note that constraint (19) is strict equality now. We made
this change because besides being interested in providing
fairness, the users would also be interested to have satisfying
performance (lower delay), which implies full utilization of
network resources (also in line with the discussion of the
solution to P1).

The Lagrangian for this optimization problem is

L = −Z − λ

 n∑
i=1

mi∑
j=1

Ki,j −K


+

n∑
i=1

mi∑
j=1

µi,jKi,j−
n∑

i=1

θi

mi∑
j=1

1

Ki,jRi,j
− Z

(22)

where λ ≥ 0, µi,j ≥ 0, ∀i, j, and θi ≥ 0,∀i are the slack
variables. Applying KKT conditions results in

∂L
∂Ki,j

= −λ+ µi,j +
θi

Ri,jK2
i,j

= 0, (23)

∂L
∂Z

= −1 +

n∑
i=1

θi = 0, (24)

λ

 n∑
i=1

mi∑
j=1

Ki,j −K

 = 0, (25)

µi,jKi,j = 0, ∀i ∈ N ,∀j ∈ Mi, (26)

θi

mi∑
j=1

1

Ki,jRi,j
− Z

 = 0, ∀i ∈ N . (27)

For the same reasons as when solving P1, Ki,j > 0, so from
(26) we have µi,j = 0. Replacing the latter into (23), we get

λ =
θi

Ri,jK2
i,j

. (28)



As λ > 0, from (28) we obtain θi > 0. With the previous
finding, from (27) we get

mi∑
j=1

1

Ki,jRi,j
= Z, ∀i ∈ N . (29)

From Eq.(29), minimizing the maximum total delay across
BSs implies that resources need to be assigned in the way
that total delays are the same in all BSs.

Next, observing (28) for a given BS i, we have that for all
users within the serving area of that BS, it holds

Ri,jK
2
i,j = const.

The previous expression is the same as the adjusted (14). If
Ki denotes the total number of PRBs allocated to users in
BS i, where Ki =

∑mi

j=1 Ki,j , following similar reasoning as
when obtaining (17), for the amount of resources that should
be allocated to users of BS i, we have

Ki,j =
Ki√

Ri,j

∑mi

j=1
1√
Ri,j

, ∀j ∈ Mi. (30)

The next step is to establish the relationship between the
allocated resources among BSs. To that end, substituting (30)
into (29), after some simple algebra, we obtain(∑mi

j=1
1√
Ri,j

)2

Ki
= Z, ∀i ∈ N . (31)

Next, expressing the general term Ki in terms of K1 from
(31), and replacing it into

n∑
i=1

Ki = K, (32)

solving the latter in K1, and after a straightforward procedure
for Ki we obtain

Ki =

K

(∑mi

j=1
1√
Ri,j

)2

∑n
i=1

(∑mi

j=1
1√
Ri,j

)2 . (33)

Finally, substituting (33) into (30), we have:

Result 2. A min-max delay fair resource allocation policy
across all BSs in the network with SD-RAN is achieved if the
number of assigned PRBs to user (i, j) follows the policy

Ki,j =
K

∑mi

j=1
1√
Ri,j√

Ri,j

∑n
i=1

(∑mi

j=1
1√
Ri,j

)2 . (34)

From Result 2 we can observe that the amount of allocated
resources is inversely proportional to (the square root of) the
user’s channel conditions, and also inversely proportional to
the channel conditions of the other users within the same BS
(see the numerator of (34)).

C. Min-max delay fairness across users

The optimization problem, in this case, is P3. The objective
and constraints are already well-known. Similarly to P2,
we introduce the new variable Z, leading to the equivalent
optimization problem:

min
Ki,j

Z (35)

s.t.
n∑

i=1

mi∑
j=1

Ki,j = K, (36)

Ki,j ≥ 0, ∀i ∈ N ,∀j ∈ Mi, (37)

Z ≥ 1

Ki,jRi,j
, ∀i ∈ N ,∀j ∈ Mi. (38)

Note that here as well, for the same reasons as in P2, we
impose the requirement that all PRBs must be allocated.
Forming the Lagrangian, and using KKT conditions, in a
similar vein as before, leads to

Ki,jRi,j = const, ∀i ∈ N ,∀j ∈ Mi. (39)

Using (39) and (36), after some simple calculus, we obtain:

Result 3. A min-max delay fair resource allocation policy
across all users in the network with SD-RAN is achieved if
the number of assigned PRBs to user (i, j) follows the policy

Ki,j =
K

Ri,j

∑n
i=1

∑mi

j=1
1

Ri,j

. (40)

In this case, again, the better channel conditions the user
experiences, the lower the number of PRBs needed. However,
now the amount of PRBs is not inversely proportional to√
Ri,j , but to Ri,j instead. Interestingly, the same policy is

obtained for max-min fairness in cellular networks with SD-
RAN in terms of throughput [6].

D. Different packet sizes

In the analysis so far, we have assumed that all users have
the same packet size. Hence, we normalized it to unity. In case
users transmit packets of different sizes, then we can adapt
each of the optimization problems by adding the corresponding
weights to denote the packet sizes. Then, we would have
weighted delay fairness. Nevertheless, the procedure for the
solution of all the optimization problems would be the same,
and the resource allocation results would be simply adjusted
by the corresponding packet size for each user. Hence, due to
space limitations, we omit further discussions on this.

IV. BENCHMARK MODELS

In order to assess the performance of the SD-RAN-enabled
network in terms of delay fairness, we need benchmark models
(baselines). To that end, in this paper, we use two of them.
The first suitable model is the one in which there is no SD-
RAN, but where there are some delay fairness guarantees (in
this case minimum potential delay fairness). Hence, we choose
the baseline in which RAN operates in a classical way, where
every BS is allocated its set of PRBs beforehand, and the
allocation process undergoes minimum potential delay fairness
within each BS separately. If K is the total number of PRBs



in the system, then w.l.o.g. we assume that each BS operates
on K

n PRBs, where n is the number of BSs.
In the no-SD-RAN setup, the optimization problem for BS

i, whose solution guarantees minimum potential delay fair
resource allocation to the users within its coverage area, can
be formulated as:

P0,1(i) : min
Ki,j

mi∑
j=1

1

Ki,jRi,j
(41)

s.t.
mi∑
j=1

Ki,j ≤
K

n
, (42)

Ki,j ≥ 0, ∀j ∈ Mi. (43)

Basically, for each BS we need to solve P0,1(i) separately.
The function in the objective is apparently concave. Namely,
similar to P1, the main diagonal elements of its Hessian
matrix are equal to 2

Ri,jK3
i,j

> 0, whereas all the off-diagonal
elements are 0, making the Hessian a positive definite matrix,
resulting in a convex objective function [13]. Given also that
the constraints are linear, there exists a solution to the problem,
with the local optimizer being a global optimizer as well. The
Lagrangian of this optimization problem is

L = −
mi∑
j=1

1

Ki,jRi,j
− λ

mi∑
j=1

Ki,j −
K

n

+

mi∑
j=1

µi,jKi,j ,

(44)
where λ ≥ 0 and µi,j ≥ 0, ∀j ∈ Mi. It can be easily shown
that P0,1(i) satisfies Slater’s condition [12]. Therefore, the
strong duality holds in this case too. Therefore, KKT con-
ditions can be applied to the dual optimization problem, and
the optimal solution should satisfy the following conditions:

∂L
∂Ki,j

= 0, ∀j ∈ Mi, (45)

λ

mi∑
j=1

Ki,j −
K

n

 = 0, (46)

µi,jKi,j = 0, ∀j ∈ Mi. (47)

Substituting Eq.(44) into Eq.(45), we obtain

λ =
1

Ri,jK2
i,j

+ µi,j , ∀j ∈ Mi, (48)

implying λ > 0, which in turn, from (46) results in the need
for full utilization of network resources, i.e.,

mi∑
j=1

Ki,j =
K

n
, (49)

as before. Further, since Ki,j > 0, from (47) we obtain µi,j =
0. This reduces (48) to (12). Therefore, the remainder of the
procedure is similar to the one which leads to the solution of
P1. The difference is that we need to use (49) instead. Finally,
for the optimal allocation policy, we have

Ki,j =
K

n
√
Ri,j

∑mi

j=1
1√
Ri,j

, ∀i ∈ N ,∀j ∈ Mi. (50)

The same conclusions as for Result 1 follow, except that now
there is the factor K

n , instead of K, as the available resources
are split equally among the BSs. Also, the summation has
to be performed only across the users of the same BS (the
denominator of (50)).

The previous benchmark model is not suitable for the
optimization problems P2 and P3. Therefore, we use another
baseline, in which the goal is to minimize the maximum delay
in each cell, but without SD-RAN. In that case, each BS is
pre-assigned its set of PRBs, which we assume is K

n . The
optimization formulation for this baseline model is:

P0,2(i) : minmax
Ki,j

1

Ki,jRi,j
(51)

s.t.
mi∑
j=1

Ki,j ≤
K

n
, (52)

Ki,j ≥ 0, ∀j ∈ Mi. (53)

Following a similar procedure as with the other optimization
problems in this paper, we obtain the optimal solution for the
resource allocation in this benchmark model as

Ki,j =
K

nRi,j

∑mi

j=1
1

Ri,j

, ∀i ∈ N ,∀j ∈ Mi. (54)

Having the benchmark models against which we can com-
pare the results obtained with our approaches, we proceed next
with assessing the performance under different policies.

V. PERFORMANCE EVALUATION

In this section, we describe the simulation setup first. Then,
we compare the performance of our three approaches in SD-
RAN-led networks; namely, the minimum potential delay fair-
ness, min-max fairness across all BSs, and min-max fairness
across all users, against the corresponding benchmark optimal
policies without SD-RAN, and the equal-share policy again
operating on a non-SD-RAN setup. We do this for different
cases. This is followed by results on the impact of channel
statistics on the resource allocation process, or more precisely,
on the variability of the allocated resources over time.

A. Simulation setup

In this paper, we have used a 5G trace with data obtained in
a measurement campaign conducted in the Republic of Ireland
as input parameters. These datasets can be found in [14], with
a detailed description in [15], and statistical analysis in [16].
From the trace data, the parameter of interest here is CQI with
15 levels, which is used to quantify the channel conditions of a
user and determines the per-PRB rate of a user in a slot. These
measurements were conducted for one user, but on different
days (hence considering them as different users), for different
services, and both in cases when the user is static and also
when moving around in a vehicle. To mimic the dynamic
nature of these users, we have picked 8 users that were moving
around. Based on the frequency of occurrence of a per-PRB
rate for every user, we obtained the corresponding per-PRB
rate probabilities, which are shown in Table I.



TABLE I
PER-PRB RATES AND THE CORRESPONDING PROBABILITIES FOR EVERY USER FROM THE REPUBLIC OF IRELAND TRACE [15]

R (kbps) 48 73.6 121.8 192.2 282 378 474.2 712 772.2 874.8 1063.8 1249.6 1448.4 1640.6 1778.4
p1,k 0 0 0 0 0 0 0.01 0.05 0.11 0.13 0.14 0.18 0.06 0.11 0.21
p2,k 0 0 0 0 0 0.01 0.02 0.06 0.13 0.14 0.2 0.21 0.07 0.09 0.07
p3,k 0.01 0 0 0 0 0.01 0.01 0.02 0.06 0.13 0.17 0.18 0.08 0.18 0.15
p4,k 0 0 0 0 0 0.02 0.03 0.13 0.06 0.2 0.32 0.11 0.01 0.09 0.03
p5,k 0 0 0 0 0 0 0.04 0.07 0.13 0.17 0.22 0.2 0.05 0.06 0.06
p6,k 0 0 0 0 0.01 0.03 0.11 0.12 0.19 0.15 0.15 0.12 0.05 0.04 0.03
p7,k 0 0 0 0 0 0 0.05 0.06 0.15 0.17 0.2 0.2 0.05 0.07 0.05
p8,k 0 0 0.01 0.01 0.01 0.03 0.15 0.12 0.18 0.14 0.13 0.11 0.06 0.03 0.02

The subcarrier spacing is 30 KHz, with 12 subcarriers per
PRB, making the PRB width 360 KHz. This incurs a slot
duration of 0.5 ms. The total number of PRBs in the system
is considered to be K = 273 [5]. The simulations were
conducted in MATLAB R2022b.

In the simulator, every BS in each slot sends the information
of the CQIs of its users to the SD-RAN controller in cases with
SD-RAN. In the classical network setup without SD-RAN,
users send the information of their CQIs to the associating BS,
where the latter has a fixed set of PRBs. In the SD-RAN setup,
with the full picture of all CQIs in the network, the controller
according to the resource allocation policy used distributes
the resources (PRBs) to BSs together with the information on
how to further assign them to users in their coverage areas.
Depending on the amount of resources assigned, and the user’s
per-PRB rate, we determine the data rate each user experiences
in a slot, and consequently, the delay for transmitting a packet
of a given size.

Unless stated otherwise, we show results for three cases:
• Case 1: 4 BSs; 2 users for BSs 1 and 2, 3 users for BSs

3 and 4.
• Case 2: 5 BSs; 2 users for BSs 1 and 2, 4 users for BSs

3 and 4, 6 users for BS 5.
• Case 3: 7 BSs; 2 users for BSs 1 and 2, 4 users for BSs

3 and 4, 6 users for BSs 5 and 6, 8 users for BSs 7.
Note that in all the cases, a user is chosen randomly from

one of the eight types of Table I. Then, its CQI values across
slots are taken from the trace of the corresponding user.

B. Performance comparisons

We start this section by comparing the performance obtained
with one of our optimal resource allocation policies and
the benchmark models. First, we compare our approach for
minimum potential delay fairness across all users in an SD-
RAN-led network (the solution to P1), to which from now
on we refer to as SD-RAN in the plots, with the benchmark
(the solution of P0,1) and another allocation policy (equal-
share [17] of resources among the users in a BS in a non-SD-
RAN setup).

We show results for the three aforementioned cases. Fig. 2
depicts the results for the sum of the delays across all users
when transmitting unit-size packets (Eq.(1)) in the network
with different policies for Case 1. As shown in Fig. 2, the
solution to P1 always outperforms that of the benchmark P0,1

(marked as no SD-RAN), and equal-share allocation policy.
The improvement is around 15%. As expected, the equal-
share policy yields the worst results because is oblivious to
the channel conditions of the users. On the other hand, as
shown analytically, the optimum is achieved when users with
worse channel conditions received more resources than those
with good channel conditions. Note that we are showing results
for only 30 slots to better emphasize visually the differences
among the results with different policies.

Fig. 3 illustrates the results for Case 2, whereas Fig. 4 does
it for Case 3. Similar to Fig. 2, on the y-axes we depict the
total delay in the entire network for unit-size packets. In both
scenarios, SD-RAN outperforms the other two approaches
in terms of minimum potential delay fairness significantly.
Note that as the number of BSs and users increases, the total
delay is higher because users receive fewer resources, hence,
introducing larger delays individually, and there are more of
them. In Case 3, the total delay is more than an order of
magnitude higher than in Case 1. It is worth mentioning that
the values on the y-axes are always in seconds, while the
packet size is 1 Mbit.

Next, we compare the results in terms of delay fairness
among BSs (min-max fairness of total delay per BS). Fig. 5
shows the outcomes related to Case 1 for the value of the
objective (4), i.e., the sum of delays per BS, with different
policies, whereas Fig. 6 and Fig. 7 portray the results for
Case 2 and Case 3, respectively. The parameters remain
unchanged from the previous scenarios. Our approach, marked
as SD-RAN in the plots, now uses the solution to P2. The
benchmark, in this case, is the solution to P0,2, and marked
as no SD-RAN, whereas the third policy is again the equal-
share policy (without SD-RAN). In all three cases, SD-RAN
outperforms the two no-SD-RAN approaches, up to 6×. In
Figs. 5-7, the results for the equal-share policy are identical to
the solution of benchmark P0,2, and hence cannot be discerned
in the plot. To prove this, we substitute (54) into (4), and after
rearranging we obtain

mi∑
j=1

1

Ki,jRi,j
=

nmi

K

mi∑
j=1

1

Ri,j
. (55)

On the other hand, with the equal-share policy, user (i, j)
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Fig. 2. The evolution of objective (1) for Case 1.
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Fig. 3. The evolution of objective (1) for Case 2.
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Fig. 4. The evolution of objective (1) for Case 3.
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Fig. 5. The evolution of objective (4) for Case 1.
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Fig. 6. The evolution of objective (4) for Case 2.
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Fig. 7. The evolution of objective (4) for Case 3.

receives Ki,j =
K

nmi
PRBs. Substituting this into (4), we get

mi∑
j=1

1

Ki,jRi,j
=

nmi

K

mi∑
j=1

1

Ri,j
, (56)

where the latter is identical to (55), proving that the equal-
share policy is indeed identical to the optimal no-SD-RAN
policy.

Again, as the number of users per BS increases, the total
delay per BS increases (Case 3 has the highest delays).

Finally, we compare the performance in terms of the worst
delay among all the users in the network, i.e., we are interested
in providing min-max fairness among the users. Again, we
compare three policies. The first is the solution to P3. The
second policy is the no SD-RAN policy obtained by solving
P0,2, whereas the third policy is, as before, the equal share.
Needless to say, the latter two pertain to the classical cellular
network operation (no SD-RAN). The other parameters remain
unchanged compared to the previous scenarios. Fig. 8 depicts
the results for Case 1, Fig. 9 shows the outcomes for Case 2,
and Fig. 10 the results pertaining to Case 3. As can be
observed, in all scenarios, our policy outperforms the other
two policies, corroborating the advantages SD-RAN brings to
the operation of cellular networks in this aspect as well.

The effects shown in the previous results can be observed in
other scenarios too (different input parameters). Summarizing,
common to all these is that SD-RAN is always more delay fair.

C. Impact of channel statistics

In the final scenario, we look at the impact of channel
statistics (expressed through the first and second moments of

the per-PRB rate) on the variability of the assigned number
of PRBs to users. We do not look at the impact on the
first moment (average) since from the analytical results it
was clear that the number of allocated PRBs was inversely
proportional to the (square root of) per-PRB rate. Therefore,
users with a higher average per-PRB rate would be receiving
fewer PRBs on average. We do the analysis for the three
problems considered in this paper P1, P2, and P3. We assume
there are 4 BSs, and in each BS there are 8 users (those from
Table I). Of interest to us are user types 1, 3, and 6.

Our focus here is to look at how much varies the number
of assigned PRBs to users with different channel statistics. To
quantify the latter, we use the average per-PRB rate E[R] and
the coefficient of variation (cV ), where the latter is defined
as the ratio of the standard deviation to the mean of the per-
PRB rate. Table II shows those two parameters for our users
of interest in this scenario (row 2 and row 3). As can be seen,
user types 1 and 3 have higher average per-PRB rates than user
type 6. When it comes to the variability of channel conditions,
again user types 1 and 3 are similar, whereas user type’s 6
channel conditions are characterized by higher variability.

As was shown in Section III, the corresponding optimal
allocation policies in this work react according to channel
(CQI) changes at the users. Fig. 11 depicts the coefficient
of variation of the number of assigned PRBs for these three
user types over time. As can be observed from Fig. 11, when
resources are allocated according to the optimal solutions of
P1, P2, and P3, user types 1 and 6 have very similar variability
in the number of allocated PRBs over time. On the other hand,
user type 3 experiences the highest variability.
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Fig. 8. The evolution of objective (5) for Case 1.
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Fig. 9. The evolution of objective (5) for Case 2.
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Fig. 10. The evolution of objective (5) for Case 3.
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Fig. 11. The coefficient of variation of the number of assigned PRBs to users
over time.

Now, when comparing these findings with the first and
second moments of per-PRB rates (rows 2 and 3 in Table II),
we can observe that the results are contradictory. Namely, as
already mentioned, user types 1 and 3 have similar per-PRB
rate statistics but the coefficient of variation of the number of
assigned PRBs over time is much higher for user type 3.

Let us see next how the statistics of the inverse of per-PRB
rate affect the variability of the number of assigned PRBs over
time. Row 4 and row 5 of Table II depict the values of the mean
and the coefficient of variation of 1

R for the three user types
considered in this simulation scenario. Comparing these results
with those of Fig. 11, we can see that the first moment of 1

R
does not exhibit an impact on the variability of the number of
allocated PRBs. But, the coefficient of variation of 1

R does. As
can be observed from Table II, user type 3 has the highest cV, 1

R

(considerably higher than the other two user types), and also
(from Fig. 11) the highest variability (considerably higher) in
the number of assigned PRBs over time. On the other hand,
user type 1 has a slightly lower cV, 1

R
than user type 3, and

this is also reflected in the variability in Fig. 11.
So, to summarize, the variability in the assigned number of

PRBs for a user depends mostly on the coefficient of variation
of the inverse of its per-PRB rate.

VI. RELATED WORK

SD-RAN has since recently attracted considerable attention
both from research and industry players [18], [19]. Transfer-
ring control decisions to a centralized (SD-RAN) controller
as a way to improve performance (via increased flexibility)

TABLE II
THE MEAN AND THE COEFFICIENT OF VARIATION OF PER-PRB RATES AND

THE INVERSE OF PER-PRB RATES FOR USERS FROM TABLE I

user type 1 user type 3 user type 6
E[R] 1.25 1.27 0.92
cV,R 0.31 0.3 0.38
E[ 1

R
] 0.9 1.07 1.27

cV, 1
R

0.36 1.88 0.43

has been suggested first in [20] and [21]. However, none
of these works discuss the exact gains in terms of neither
the throughput nor delay, or objectives like fair resource
allocation.

The first known prototype implementations of SD-RAN are
FlexRAN [2] and 5G-EmPOWER [3]. Both these implemen-
tations are constrained to serve only a limited number of users
with a single server and also are not concerned with matters of
delay, or its fairness. In [22], the problem of minimizing the
number of assigned resources has been considered in an SD-
RAN environment, by taking into account two types of slices,
those for delay-sensitive traffic, and those for throughput-
critical traffic. The other contribution of [22] is that slice
isolation can be maintained. However, there is no discussion
on the resource allocation policy that provides delay fairness.

On a related note, the authors in [23] consider the problem
of allocating resources where network slices can be spread
across multiple BSs. The objective in [23] is to allocate
resources so that the overall throughput (across all users) is
maximized, by guaranteeing a minimum data rate to everyone
first. However, the solution in [23] is based on a non-closed
form approximation approach, which does not allow to express
explicitly the dependency of throughput on different input pa-
rameters. Furthermore, delay fairness is not considered in [23].
As opposed to [23], in this paper, we solve the problem over
the entire network in its most general form for any number
of users, BSs, and heterogeneous channel statistics while
providing closed-form delay-fair resource allocation policies.

Deriving the maximum achievable throughput in an SD-
RAN-enabled network has been the focus of [8], where it
was shown that the maxCQI policy on both levels of resource
allocation leads to maximum possible throughput. However,
there is no fairness in resource allocation in [8]. Two works
that consider different types of fair resource allocation, in



terms of throughput, are [7] and [6]. In [7], the resource allo-
cation policies that provide proportional fairness are derived.
This was done for two scenarios. In the first, the objective is
proportional fairness among all users in the network, whereas
in the second, the goal is proportional fairness among base
stations. A similar approach has been followed in [6], but for
max-min fairness. Both these works are concerned only with
throughput fairness, while delay fairness is not considered,
which we do in this work.

Some forms of delay fairness in cellular networks have
been considered in [24] and [25], wherein the former deep
reinforcement learning has been used to obtain the optimal
allocation policies. However, SD-RAN is not considered and
there are no closed-form expressions for the resource alloca-
tion policies, which is the case with the approach in our work.
In [25], a trade-off between fairness and delay in wireless
packet scheduling is considered. However, the approach there
is not compliant with an SD-RAN setup.

When it comes to delay fairness in SD-RAN, the work
closest in spirit to ours is [19], where the attention is turned
to network slicing in SD-RAN. However, while there is an
implementation of the approach in [19] in existing open-
source SD-RAN systems, there is no closed-form analytical
solution for resource allocation that provides delay fairness,
but only simulation results. In contrast, in our paper, we
derive explicit formulas for the resource allocation policies
for minimum potential delay fairness across all users in the
network and min-max delay fairness across BSs and users,
while providing advantages compared to the traditional non-
SD-RAN approaches.

VII. CONCLUSION

In this paper, we considered the problem of providing
different types of fairness in terms of delay in cellular networks
in an SD-RAN setup. First, we considered the problem of
minimum potential delay fairness, as a special case of network
utility maximization, across all users in the network. The
optimal allocation policy in this case is achieved if the amount
of allocated resources to a user is inversely proportional to the
square root of the per-PRB rate of that user in a slot. Then, we
turned our attention to the delay fairness across base stations.
To that end, we looked at min-max fairness and showed that
the optimum is achieved if the amount of assigned resources is
inversely proportional to the square root of the per-PRB rate of
a user in a slot, but also depends on a function of the inverses
of square roots of the other users’ per-PRB rates. Finally, we
derived the policy which provides min-max fairness across all
users in the network. In this case, the optimal allocation per
user is inversely proportional to its per-PRB rate, as opposed
to the previous two cases. We evaluated the performance
for the three problems on realistic data from traces and
compared the performance against the corresponding optimal
policies without SD-RAN and another classical policy (equal
share). While outperforming considerably the non-SD-RAN
approach, the results demonstrate the obvious advantages SD-
RAN brings into cellular networks in terms of delay fairness.

In the future, we plan to consider the problem of resource
allocation providing delay fairness for time-sensitive traffic.

REFERENCES

[1] L. Cui, R. Yu, and Q. Yan, “When big data meets software-defined
networking: SDN for big data and big data for SDN,” IEEE Network,
vol. 30, no. 1, 2016.

[2] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “FlexRan: A flexible and programmable platform for software-
defined radio access networks,” in Proc. of ACM CoNEXT, 2016.

[3] E. Coronado, S. N. Khan, and R. Riggio, “5G-EmPOWER: A software-
defined networking platform for 5G radio access networks,” IEEE
Transactions on Network and Service Management, vol. 16, no. 2, 2019.

[4] A. Papa, R. Durner, L. Goratti, T. Rasheed, and W. Kellerer, “Control-
ling Next-Generation Software-Defined RANs,” IEEE Communications
Magazine, vol. 58, no. 7, 2020.

[5] ETSI, “5G NR overall description: 3GPP TS 38.300 version 15.3.1
release 15.” www.etsi.org, 2018. Technical specification.

[6] F. Mehmeti and W. Kellerer, “Max-min fair resource allocation in SD-
RAN,” in Proc. of ACM Q2SWinet, 2022.

[7] F. Mehmeti and W. Kellerer, “Proportionally fair resource allocation in
SD-RAN,” in Proc. of IEEE CCNC, 2023.

[8] F. Mehmeti, A. Papa, and W. Kellerer, “Maximizing network throughput
using SD-RAN,” in Proc. of IEEE CCNC, 2023.

[9] A. Goldsmith, Wireless Communications. Cambridge University Press,
2005.

[10] A. Papa, P. Kutsevol, F. Mehmeti, and W. Kellerer, “Effects of SD-
RAN control plane design on user Quality of Service,” in Proc. of IEEE
Netsoft, 2022.

[11] G. Ku and J. M. Walsh, “Resource allocation and link adaptation in
LTE and LTE Advanced: A tutorial,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 3, 2015.

[12] R. Srikant, The Mathematics of Internet Congestion Control. Birkhauser,
2004.

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[14] https://github.com/uccmisl/5Gdataset.
[15] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan, “Beyond throughput,

the next generation: A 5G dataset with channel and context metrics,” in
Proc. of ACM MMSys, 2020.

[16] F. Mehmeti and T. L. Porta, “Analyzing a 5G Dataset and Modeling
Metrics of Interest,” in Proc. of IEEE MSN, 2021.

[17] O. Grøndalen, A. Zanella, K. Mahmood, M. Carpin, J. Rasool, and O. N.
Østerbø, “Scheduling policies in time and frequency domains for LTE
downlink channel: A performance comparison,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 4, 2017.

[18] Z. Zaidi, V. Friderikos, and M. A. Imran, “Future RAN architecture: SD-
RAN through a general-purpose processing platform,” IEEE Vehicular
Technology Magazine, vol. 10, no. 1, 2015.

[19] Q. Qin, N. Choi, M. R. Rahman, M. Thottan, and L. Tassiulas, “Network
slicing in heterogeneous Software-defined RANs,” in Proc. of IEEE
INFOCOM, 2020.

[20] M. Yang, Y. Li, D. Jin, L. Su, S. Ma, and L. Zeng, “OpenRAN: A
software-defined RAN architecture via virtualization,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, 2013.

[21] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software
defined radio access network,” in Proc. of ACM SIGCOMM workshop
on Hot topics in Software Defined Networking, 2013.

[22] A. Papa, M. Klugel, L. Goratti, T. Rasheed, and W. Kellerer, “Optimizing
dynamic RAN slicing in programmable 5G networks,” in Proc. of IEEE
ICC, 2019.

[23] A. Papa, A. Jano, S. Ayvaşık, O. Ayan, H. M. Gürsu, and W. Kellerer,
“User-based Quality of Service aware multi-cell radio access network
slicing,” IEEE Transactions on Network and Service Management,
vol. 19, no. 1, 2022.

[24] M. López-Sánchez, A. Villena-Rodríguez, G. Gómez, F. J. Martín-Vega,
and M. C. Aguayo-Torres, “Latency fairness optimization on wireless
networks through deep reinforcement learning,” IEEE Transactions on
Vehicular Technology, 2022.

[25] A. Dua and N. Bambos, “On the fairness delay trade-off in wireless
packet scheduling,” in Proc. of IEEE GLOBECOM, 2005.


