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Abstract — The 2-site TDVP algorithm modifies
MPS bond-dimensions on the fly, speeding up when
entanglement is low. However, this comes at the cost
of slowing down simulations when entanglement is
high. The most time consuming part of the TDVP
is solving the Schrödinger Equation for its effective
Hamiltonians. In the 2-site variant, the effect of this is
made worse by the increased dimension of combined
2-site tensors. However, limiting the time evolution to
1-site tensors complicates deciding when to grow the
bond dimensions.
This article presents a new version of the TDVP al-
gorithm, inspired by the existing A1TDVP algorithm
which enables dynamic bond dimensions while avoid-
ing to solve 2-site SEs. Like the A1TDVP, the new
algorithm is also capable of changing bond dimen-
sions on the fly, without solving SEs on combined ten-
sors. By relying on Singular Value Decompositions
and approximate time evolutions, accurate estimations
for good bond dimensions can be calculated

1 Introduction

Cellular automata (CAs) have historically been a sur-
prisingly plentiful source of research, considering the
simplicity of their definition. The usefulness of CAs
ranges over many different fields, with applications in
cryptography [1], molecular dynamics [2], and chem-
istry [3], to just name a few. As a consequence, every
advancement in the study of CAs potentially impacts
advancements in many other connected fields. The
incentive is therefore high to improve on the concept.

One such improvement are quantum cellular au-
tomata (QCAs), which translate operations of a clas-
sical CA into the frame of quantum computing. By
leveraging the computational power and information
density of quantum systems, QCAs will potentially re-
veal new insights into the world of CAs, or even pose
a completely new model with previously unknown ca-
pabilities [4]. Already QCAs are showing potential for
simulating quantum computers or modelling a system
of quantum particles [5].

However, in the current NISQ era, without the help
of powerful quantum computers [6], quantum systems
like QCAs have to be simulated on classical hard-
ware. Unfortunately, the vast memory and computing
power required to classically represent quantum sys-
tems sets constraints on what can be simulated and
what is unfeasible, see Section 2.5. That’s why ef-
ficient algorithms like the time-dependent variational
principle (TDVP), see Section 4, are needed to alle-
viate the issue. This article presents the new 1TDVP
(n1TDVP), a new version of the TDVP. The goal of
the n1TDVP is to improve on the time efficiency of
existing TDVP-versions, without sacrificing accuracy.

Alongside this paper, I implemented a classical sim-
ulation of Quantum Cellular Automata which was used
for the simulations shown in Section 5.1. The new
n1TDVP emerged as an idea during the implementa-
tion of the simulation, so all simulations in this paper
are limited to QCA. The code of the project is available
on GitHub [7].

2 Quantum Cellular Automata

A CA consists of a regular grid in an arbitrary dimen-
sion, a finite amount of states each grid point can be in,
and a set of rules that determine if and how the state of
a grid point changes depending on its current state and
the states of its neighbor cells. Given an initial state of
the grid, the automaton can then be simulated step by
step, often displaying unexpectedly complex behavior.

2.1 Classical Cellular Automata

One of the best known examples of a classical CA is
Conway’s Game of Life, named after its discoverer
John Horton Conway in 1970 [8]. It consists of a two-
dimensional grid with two possible grid states “alive”
and “dead”, and a set of rules inspired by cells dying or
coming alive due to under- or overpopulation in their
immediate neighborhood.

There are a lot of known initial states in the Game of
Life with predictable behavior, like the “pulsar” with a
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Figure 1 All 3 states of a pulsar with period 3 in Conway’s Game of Life, with time advancing from left to right

Figure 2 A glider in the rule-110 elementary cellular au-
tomaton with space along the x-axis and time along the
y-axis Image source: [10]

period of three time steps shown in Figure 1. However,
for random initial states the time evolution generally
does not converge to static or periodic behavior and is
therefore not easily predictable [9].

Conway’s Game of Life and other two-dimensional
CAs are great examples of how complex behavior can
arise from simple rules. An even simpler, but not less
interesting, class of CAs is found by limiting the scope
to one dimension, where the same surprising com-
plexity as in higher dimensions can be found. Figure 2
shows a glider in a one-dimensional automaton.

As it turns out, nearest-neighbor interactions on a
one-dimensional chain like this have similarities to
quantum Ising-models [11]. Inspired by these similar-
ities, a quantum-analogue of a cellular automaton can
be created.

2.2 Quantum State

Moving from classical CAs to QCAs, the first goal is
to represent the automaton state as a quantum state
vector. To find an quantum-analogue of a classical
1-dimensional chain of cells, an obvious choice is
to work with states on a 1-dimensional chain of N-

quantum systems. By choosing |0⟩ and |1⟩ as basis
states with

|0⟩ B 𝑑𝑒𝑎𝑑, |1⟩ B 𝑎𝑙𝑖𝑣𝑒, (1)

the full system state |𝜓⟩ exists in a Hilbert space with
dimension 2𝑁 , where 𝑁 is the number of cells [4]. For
a given initial state, the state can be expressed via the
Kronecker product [12]:

000101000 −→ |0⟩⊗3 ⊗ |1⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |0⟩⊗3

=⇒ |𝜓⟩ = |000101000⟩ .
(2)

To compute the probability of a cell at index 𝑗 being
alive or dead, the corresponding observables

ˆ̄𝑛 𝑗 = |0⟩ 𝑗 ⟨0| �̂� 𝑗 = |1⟩ 𝑗 ⟨1| , (3)

are used to measure the system state [13]:

𝑃(𝑑𝑒𝑎𝑑) 𝑗 = ⟨𝜓 | ˆ̄𝑛 𝑗 |𝜓⟩
𝑃(𝑎𝑙𝑖𝑣𝑒) 𝑗 = ⟨𝜓 | �̂� 𝑗 |𝜓⟩ .

(4)

2.3 Hamiltonian

Additionally, a unitary time evolution following the
analogue of classical automaton rules must be cre-
ated. An intuitive way of achieving this is by creating
a Hamiltonian first. The Hamiltonian is constructed
based on the set of rules the QCA should follow. To
change a given cell 𝑗 of the chain according to some
chosen rule, the Hamiltonian governing this change
can be constructed with an operation gate 𝑆 𝑗 and a
projection operator �̂� 𝑗 [13]:

�̂� 𝑗 = 𝑆 𝑗 �̂� 𝑗 . (5)

Operator �̂� 𝑗 is chosen “to be different from zero over
the set of states where” [13] the rule should act on cell
𝑗 , and 𝑆 𝑗 describes the change that happens in this case.
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Figure 3 Time evolution of the initial state |𝜓⟩0 = |0⟩⊗5⊗ |101⟩⊗ |0⟩⊗5 according to Equation (12), showing the probability
that a cell is alive (first), the single-site entropy of a cell vs. the rest of the state (second), a rounded version of the probability
plot (third), and a non-quantum evolution according to classical rules (fourth)

The complete Hamiltonian can then be constructed by
taking a sum over all singe-site Hamiltonians:

�̂� =
∑︁
𝑗

𝑆 𝑗 �̂� 𝑗 . (6)

One possible set of rules in a one-dimensional clas-
sical automaton is called 𝐹12 [13]:
𝐹12 B A cell is flipped iff the number of alive cells
among its nearest and next-nearest neighbors is

exactly 2 or 3.

The projection operator �̂� 𝑗 for 𝐹12 can be constructed
from

�̂�
(2)
𝑗

= ˆ̄𝑛 𝑗−2 ˆ̄𝑛 𝑗−1�̂� 𝑗+1�̂� 𝑗+2 + ˆ̄𝑛 𝑗−2�̂� 𝑗−1 ˆ̄𝑛 𝑗+1�̂� 𝑗+2

+ ˆ̄𝑛 𝑗−2�̂� 𝑗−1�̂� 𝑗+1 ˆ̄𝑛 𝑗+2 + �̂� 𝑗−2 ˆ̄𝑛 𝑗−1 ˆ̄𝑛 𝑗+1�̂� 𝑗+2

+ �̂� 𝑗−2 ˆ̄𝑛 𝑗−1�̂� 𝑗+1 ˆ̄𝑛 𝑗+2 + �̂� 𝑗−2�̂� 𝑗−1 ˆ̄𝑛 𝑗+1 ˆ̄𝑛 𝑗+2

(7)

�̂�
(3)
𝑗

= ˆ̄𝑛 𝑗−2�̂� 𝑗−1�̂� 𝑗+1�̂� 𝑗+2 + �̂� 𝑗−2 ˆ̄𝑛 𝑗−1�̂� 𝑗+1�̂� 𝑗+2

+ �̂� 𝑗−2�̂� 𝑗−1 ˆ̄𝑛 𝑗+1�̂� 𝑗+2 + �̂� 𝑗−2�̂� 𝑗−1�̂� 𝑗+1 ˆ̄𝑛 𝑗+2,
(8)

which are non-zero over the set of states where 2 or 3
cells are alive, respectively [13]. The flip itself is done
by the Pauli-X gate on cell 𝑗 :

𝜎𝑥
𝑗 =

(
0 1
1 0

)
𝑗

. (9)

With everything in place, the Hamiltonian govern-
ing the 𝐹12 rule can be assembled, following Equa-
tion (6) [13]:

�̂�𝐹12 =

𝐿−2∑︁
𝑗=3

𝜎𝑥
𝑗

(
�̂�

(2)
𝑗

+ �̂�
(3)
𝑗

)
. (10)

This Hamiltonian describes the desired property for all
cells, except the outermost and second-outermost ones,
which are excluded because they don’t have enough
neighbors. These cells are controlled by separate terms
with reduced versions of the projection operators from
Equations (7) and (8) that only take the existing neigh-
bors into account.

2.4 Time Evolution Operator

With the finished Hamiltonian, a unitary time evolu-
tion operator can be derived by solving the Schrödinger
equation (SE) [12]

i𝜕𝑡 |𝜓⟩ = �̂� |𝜓⟩ −→ �̂� (𝑡) = 𝑒−i�̂�𝑡 , (11)

and using �̂� (𝑡) to evolve an initial state |𝜓⟩𝑡 over time
𝑡 into a state |𝜓⟩𝑡 :

|𝜓⟩𝑡 = �̂� (𝑡) |𝜓⟩0 . (12)

The time 𝑡 needed for a state to flip under the ac-
tion of operator 𝜎𝑥𝑖 from Equation (10) is 𝜋

2 , so since
the automaton was inspired by its classical counterpart
where one flip also takes one time step to complete, 𝑡
is set to 𝜋

2 in Equations (11) and (12). By evolving an
initial state |𝜓⟩0 with �̂� (𝑡) multiple times and measur-
ing the updated state after each step, as described in
Equation (4), the evolution of the state can be observed
and compared to its classical counterpart. The result
is plotted in Figure 3.
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Figure 4 A tensor ∈ ℂ𝑛1×𝑛2×...×𝑛𝑑−1×𝑛𝑑 of order 𝑑

𝐴 𝑣

𝐴 𝑣

𝐴𝑣

Figure 5 Creation and contraction of a tensor network rep-
resenting a matrix-vector multiplication 𝐴𝑣 with 𝐴 ∈ ℂ𝑚×𝑛

and 𝑣 ∈ ℂ𝑛

2.5 Curse of Dimensionality

Calculating an exact solution to the SE is fast and
simple for a small number of cells. However, due to the
dimension of the Hilbert space growing exponentially
with the number of cells, this method quickly becomes
inviable at more than around 13 cells, depending on
hardware capabilities.

The general reason for the exponentially growing
size of Hilbert spaces describing quantum systems is
the possible entanglement between system states [12].
However, for many simulations only a small set of
states show a significant measure of correlation. This
results in redundancies that can be leveraged to effi-
ciently represent a close approximation of the original
system. As a consequence, many simulations can be
approximated with negligible errors in exponentially
smaller subspaces, compared to an exact time evolu-
tion approach, thus making simulations with an arbi-
trary number of cells viable again. One such method
are tensor networks and corresponding tensor network
algorithms.

3 Tensor Networks

Tensors are “generalizations of vectors and matrices
to multi-dimensional arrays” [14] of the form

𝑇 = 𝑡 𝑗1, 𝑗2,..., 𝑗𝑑−1, 𝑗𝑑 ∈ ℂ𝑛1×𝑛2×...×𝑛𝑑−1×𝑛𝑑 , (13)

where 𝑑 is called the order of the tensor [15]. In this
paper, all graphically represented tensors follow the
convention of drawing tensors introduced in [16].

3.1 Contracting

A tensor of order 𝑑 can be graphically represented by
drawing one “leg” for each dimension like in Figure 4.
Multiplying tensors can then be achieved by connect-
ing legs and contracting the resulting tensor network,
equal to a summation over the respective tensor in-
dices, while multiplying elements with the same index
value [15]. As an example, for 𝐴 ∈ ℂ𝑚×𝑛 and 𝑣 ∈ ℂ𝑛,
a matrix-vector multiplication equivalent to

𝐴𝑣 =

𝑛∑︁
𝑗=1

𝑎𝑖, 𝑗 𝑣 𝑗 (14)

can be graphically represented as shown in Fig-
ure 5 [14]. The index 𝑗 runs over both 𝑎 and 𝑣 in
Equation (14), which was signalled by the contracted
leg in Figure 5 connecting 𝑎 and 𝑣.

3.2 Reshaping

A tensor can be reshaped to change its order. Re-
shaping a tensor does not change its data, instead the
resulting new tensor has to be interpreted differently.
A state vector |𝜓⟩ ∈ ℂ2𝑁 , representing a system of 𝑁
sites with basis states |0⟩ and |1⟩, is a tensor of order 1.
By reshaping |𝜓⟩ into a tensor |𝜙⟩ ∈ ℂ2×2𝑁−1 , a new
tensor with order 2 is created [14]. The left leg of |𝜙⟩
represents the system of the leftmost site of |𝜓⟩, while
the right leg represents the rest of the system. |𝜓⟩ can
be recovered by reinterpreting |𝜙⟩ as

|𝜙⟩𝑖, 𝑗 = |𝜓⟩ (𝑖∗2𝑁−1+ 𝑗 ) . (15)

Similarly to increasing the order this way, multiple
legs of a tensor can be merged to one, thus reducing
the tensor’s order [14].

Tensors follow the same principles as flat arrays,
representing multi-dimensional data. Increasing the
order of a tensor is equivalent to splitting its data
into equally sized, continuous chunks of data, but not
changing the order. Similarly, decreasing the order is
equivalent to flattening a multi-dimensional array.

3.3 Splitting

Tensors can be split into multiple connected tensors
forming a tensor network, such that the single ten-
sor and the network represent the same data. To split
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𝑇
reshape

𝑇

SVD

𝑇1 𝑇2
reshape

𝑇1 𝑇2

Figure 6 A splitting operation, shown as a sequence of first
reshaping a tensor into a tensor of order 2, splitting the
matrix via SVD, and finally reshaping the resulting tensors
to match the shape of the original tensor. From outside of
the dotted circle, the original tensor and the network are
equivalent.

a tensor, it first has to be reshaped into a tensor of
order 2. The splitting is then performed by matrix
decomposition operations like the singular value de-
composition (SVD) [17]. The singular values can be
truncated or padded to increase the dimension of its
connecting legs, before absorbing them into either of
the two isometric matrices [18]. After the split, the
resulting matrices have to be reshaped to match the
shape of the tensor network to the shape of the orig-
inal tensor. The process is graphically represented in
Figure 6. The original tensor can be recovered by
contracting the network.

3.4 Matrix Product States

A state vector |𝜓⟩ ∈ ℂ2𝑁 representing a system of 𝑁
sites with basis states |0⟩ and |1⟩ can be graphically
represented as a tensor of order 1. By repeatedly
applying the reshape and split operations, similar to
Figure 6, a tensor network of 𝑁 connected tensors can
be created, with each tensor having one open leg of
dimension 2. The result is called a matrix product
state (MPS) [19], graphically represented for 𝑁 = 5 in
Figure 7a. By convention, a MPS with upward-facing
legs are the conjugate transpose of the same MPS with
downward-facing legs [15].

The connecting legs of the MPS are called bonds,
and allow for entanglement between sites [17]. The
size of the bond dimensions can be controlled by trun-

(a) A general MPS

(b) A MPS site-canonical form

(c) A MPS in bond-canonical form

(d) A general MPO

Figure 7 A MPS in different canonical forms (a,b,c) and a
MPO (d)

cating or padding the singular values after a SVD dur-
ing the splitting of a tensor, as described in Section 3.3.
If all bonds only have one non-zero singular value, the
state |𝜓⟩ represented by the MPS is not entangled and
is called a product state [18]. Product states can be
expressed with the Kronecker product

𝑁⊗
𝑖=1

𝑠𝑖 , (16)

where 𝑠𝑖 are the site-states. This makes product states
especially efficiently representable in MPS form, by
setting 𝐴𝑖 = 𝑠𝑖 for 𝑖 ∈ {1, ..., 𝑁} and adding bonds of
dimension 1 to connect the tensors. For high values
of 𝑁 , efficient MPS construction methods like this
are necessary to avoid ever creating a full state vector
representation, which would not be feasible because
of its exponential growth.

For a fixed state, the size of a state vectors is con-
stant, whereas the size of a MPS depends on the mea-
sure of entanglement and therefore the bond dimen-
sions. If the sites of |𝜓⟩ are not entangled, the size of
a MPS describing |𝜓⟩ grows only linearly in 𝑁 .

For entangled states, the bond dimensions of a MPS
has to be higher than 1 to accurately represent the
state [18]. Despite this, the total size of the MPS
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Figure 8 Multiplying a MPS in canonical form with its
conjugate transpose simplifies to a single tensor contraction.

is often still much less than the size of the full state
vector, depending on the measure of entanglement.
The space requirement can be lowered even further
by truncating bond dimensions to values lower than
necessary to exactly represent the state, dramatically
reducing the size of the MPS, especially if errors are
acceptable [18].

3.5 Canonical Forms

After a SVD, the resulting singular values can be ab-
sorbed into either of the two resulting isometric ma-
trices, while the other matrix keeps its isometric prop-
erties [18]. In a MPS, isometric tensors are called
left orthonormal or right orthonormal, and are graph-
ically represented by drawing a triangle instead of a
circle [18]. Following this, a MPS is in site-canonical
form if there is a tensor, called the orthogonality cen-
ter, such that all other tensors are in orthonormal form,
like in Figure 7b [18].

The singular values do not have to be absorbed into
either tensor, and can instead be kept as a part of the
MPS. The result is a MPS with an additional bond
tensor of order 2 connecting two site tensors, graph-
ically represented as a diamond [18]. A MPS is in
bond-canonical form if there is a bond tensor, called
the orthogonality center, such that all other tensors the
MPS consists of are site tensors in orthonormal form,
shown in Figure 7c [18].

By virtue of the orthonormality of its tensors, a MPS
in canonical form can be efficiently multiplied with its
conjugate transpose. The multiplication can be graph-
ically represented like in Figure 8, where the tensor
net can be reduced to a single tensor contraction [18].

𝑀 𝑗

𝑀∗
𝑗

(a) 𝜌 𝑗 : Partial trace of site 𝑗

𝑀 𝑗

�̂� 𝑗

𝑀∗
𝑗

(b) Measurement using 𝜌 𝑗

Figure 9 Tensor networks illustrating the partial trace of site
𝑗 of a state and how it can be used to measure an observable
�̂� 𝑗 at site 𝑗

3.6 Measurement & SSE

Expressing the site-measurement from Equations (3)
and (4) in the MPS framework results in Figure 9b.
The observable �̂� 𝑗 is contracted with a MPS in site-
canonical form and its conjugate transpose, the or-
thonormal tensors simplify to identities and the result-
ing tensor net can be contracted efficiently.

By omitting the tensor ˆ̄𝑛 𝑗 and leaving the legs con-
necting to it open, the resulting tensor network repre-
sents the density matrix 𝜌 𝑗 of the partial trace of site
𝑗 . 𝜌 𝑗 can be used for the measurement of any observ-
able on site 𝑗 or interpreted as a matrix to compute the
single-site entropy (SSE) of site 𝑗 :

𝑆(𝜌 𝑗) = −𝑇𝑟 (𝜌 𝑗 𝑙𝑜𝑔2(𝜌 𝑗)). (17)

𝑆(𝜌 𝑗) provides a measure of entanglement between
site 𝑗 and the rest of the system. Its values range from
0 (no entanglement) to 1 (maximal entanglement) [12].

3.7 Matrix Product Operators

Analogously to a MPS describing a state vector, a ma-
trix product operator (MPO) is a tensor network de-
scribing an operator. While a MPS consists of tensors
of order 3, a MPO consists of tensors of order 4 having
an additional free leg, as shown in Figure 7d [18].

Given some operator �̂� in matrix form, a MPO
representing the same operator can be constructed by
repeated reshaping and splitting operations, similarly
to constructing MPSs. However, just like with state
vectors, the size of �̂� grows exponentially with 𝑁 .
Therefore, the MPO has to be constructed without
constructing �̂� in matrix form. For the case like this,
where Ising Hamiltonians are used, this can be done by
using state automata to construct an Ising-Hamiltonian
in MPO-form [20, 21].
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4 TDVP

The TDVP reduces the time evolution of a complete
MPS to evolutions per site and per bond. Each site or
bond tensor is evolved one after the other, by sweep-
ing back and forth through the MPS in a Trotter
scheme [22]. The bond dimensions are often con-
strained to some upper limit by projecting the time
evolution into a manifold of MPSs of some initial bond
dimension [22].

4.1 1TDVP

A single-site variation of a state in MPS form |𝜓⟩ is
another MPS obtained by changing a single-site tensor
of |𝜓⟩ [23]. Furthermore, the single-site tangent space
𝑇|𝜓⟩ is a space spanned by all single-site variations of
|𝜓⟩. The projector �̂�𝑇|𝜓⟩ which projects on this tangent
space is given by

�̂�𝑇|𝜓⟩ =

𝐿∑︁
𝑗=1

�̂�
𝐿, |𝜓⟩
𝑗−1 ⊗ 1̂ ⊗ �̂�

𝑅, |𝜓⟩
𝑗+1

−
𝐿−1∑︁
𝑗=1

�̂�
𝐿, |𝜓⟩
𝑗

⊗ �̂�
𝑅, |𝜓⟩
𝑗+1 ,

(18)

where �̂� 𝐿, |𝜓⟩
𝑗

and �̂�
𝑅, |𝜓⟩
𝑗

are projectors onto the sites
left or right of and including site 𝑗 of |𝜓⟩ [23]. “The
first contributing sum of Equation (18) filters for all
MPSs which differ at most on one site from |𝜓⟩” [23],
represented as a tensor net for 𝑗 = 4 in Figure 10. The
second contributing sum removes all states which are
equivalent to |𝜓⟩ [23].

To arrive at the desired Trotter splitting, �̂�𝑇|𝜓⟩ is
used to project the Hamiltonian into the single-site
tangent space and mapping the resulting SE to the
corresponding site or bond [23]. The result is a set
of new SEs, a forwards evolution for each site and a
backwards evolution for each bond:

𝜕

𝜕𝑡
𝑀 𝑗 = −i�̂�eff

𝑗 𝑀 𝑗 (19)

𝜕

𝜕𝑡
𝐶 𝑗 = +i�̂�eff

𝑗 𝐶 𝑗 . (20)

�̂�eff
𝑗

and �̂�eff
𝑗

are the effective Hamiltonians for site 𝑗

and bond 𝑗 , respectively [23], shown in Figures 11a
and 11b.

Finally, the sites and bonds are updated in an order
to facilitate sweeping back and forth through the MPS,
updating site and bond tensors with the solutions from
the SEs (19) and (20) [23].

The measure of entanglement between sites often
fluctuates during a simulation, requiring a growth or
reduction of the bond dimensions to avoid errors or
redundancies. However, because of the projection of
the Hamiltonian in this 1-site TDVP (1TDVP) and the
time evolution being constrained to the subspace of
MPSs of the chosen initial bond dimension, projection
errors are hard to predict. Therefore, the bond dimen-
sions of the MPS are kept constant, so the dimension
of the initial state must be padded to be high enough
to avoid errors during the simulation.

The time needed to solve the SEs is in O(𝑛3) [24],
quickly growing with the size 𝑛 of the combined ten-
sor. Consequently, unnecessarily high bond dimen-
sions, and therefore larger than needed tensors should
be avoided. At the same time, bond dimensions must
be large enough for the MPS to be able to accurately
represent the state. Ideally the bond dimension should
be adjusted over time to match a value dictated by the
measure of entanglement and some error tolerance.
Methods for doing this will be discussed in the follow-
ing.

4.2 2TDVP

The 1TDVP can be extended from a single site variant
to the 2-site TDVP (2TDVP) [16]. This is achieved
by performing time evolutions on the combined 2-site
tensor governed by a 2-site effective Hamiltonian, as
shown in Figure 11c [23]. Two neighboring tensors
have to be contracted before evolving the combined
tensor, and split afterwards. Subsequently, the same
backwards bond evolution Equation (20) as for the
1TDVP is performed for the tensor further along the
sweep direction [23]. The order of evolutions follows
a back and forth sweeping pattern like in the 1TDVP.

An advantage of the 2TDVP is the possibility to
change the bond dimensions of the MPS on the fly [16].
The forwards evolution is done on a combined tensor,
enabling entanglements between both sites without the
constraint of a bond leg. After splitting a 2-site ten-
sor, the dimension of the bond leg connecting the two
resulting tensors can be adjusted by inspecting the sin-
gular values, as described in Section 3.3. This way,
the bond dimensions of the MPS can grow to accom-
modate the new state, depending on a chosen error
tolerance. However, in cases where the bond dimen-
sion reaches its peak, this flexibility comes at the cost
of having to solve a SE in the higher dimension of a
combined 2-site tensor, compared to the 1TDVP.

Whether the 2TDVP is faster than the 1TDVP for a
given simulation depends on how much the required
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𝐴3 𝐵5

𝐴3 𝐵5

𝐴2 𝐵6

𝐴2 𝐵6

𝐴1 𝐵7

𝐴1 𝐵7

�̂�
𝐿, |𝜓⟩
3 �̂�

𝑅, |𝜓⟩
5

Figure 10 �̂�𝑇|𝜓⟩ : A tensor net filtering for all MPSs which may differ from |𝜓⟩ only on site 4, equivalent to �̂�
𝐿, |𝜓⟩

3 ⊗ 1̂ ⊗
�̂�

𝑅, |𝜓⟩
5 , where 𝐴 𝑗/𝐵 𝑗 and 𝐴 𝑗/𝐵 𝑗 are the left orthonormal and right orthonormal site tensors of |𝜓⟩ and their complex

conjugates, respectively

bond dimension fluctuates and whether or not a good
estimate for an initial bond dimension in the 1TDVP
is available.

4.3 A1TDVP

One variant of the TDVP with dynamically evolv-
ing bond dimensions is the adaptible 1TDVP
(A1TDVP) [19]. The algorithm aims to modify the
1TDVP algorithm with the ability to change the bond
dimensions of the MPS on the fly, without having
to work with the expensive 2-site tensors from the
2TDVP. However, choosing to dispense with com-
bined tensors means the required bond dimensions
have to be estimated in a different way.

In the A1TDVP, this is done by calculating a con-
vergence measure for each site 𝑖, depending on its
dimension 𝑑 [19]:

𝑓 (𝑖)𝑑 = | |�̂�eff
𝑖 𝑀𝑖 | |2+||�̂�eff

𝑖 𝐶𝑖 | |2+||�̂�eff
𝑖+1𝑀𝑖+1 | |2, (21)

with �̂�eff
𝑖

and �̂�eff
𝑖

the effective site and bond Hamil-
tonians from Equations (19) and (20). The dimen-
sion of bond 𝑖 is then increased and 𝑓 (𝑖) is recalcu-
lated. Convergence is reached when the quotient of
the new convergence measure and its previous conver-
gence measure are smaller than some error tolerance
𝑝 [19]:

𝑓 (𝑖)𝑑+1
𝑓 (𝑖)𝑑

− 1 ≤ 𝑝. (22)

“The absolute value of 𝑓 (�̃�𝑖) has no meaning” [19],
however, its convergence indicates that increasing 𝑑

will have a negligible effect on the projection error.
The new bond dimensions are chosen to be the smallest
𝑑 for which Equation (22) holds [19].

Due to variable bond dimensions, while also pre-
venting large combined site tensors, the A1TDVP is

more efficient than the 2TDVP in some scenarios.
However, determining new bond dimensions works
very differently in both algorithms which complicates
comparisons between the two. The only tweaking
parameter, error tolerance, has a different meaning
in both algorithms. In order to make a compari-
son between the algorithms, a pair of tolerances has
to be found that produces a similar bond dimension
growth pattern in both algorithms. In my testing how-
ever, most often the bond dimensions in the A1TDVP
seemed to grow more quickly and to higher values than
in the 2TDVP, regardless of the error tolerance. This
in turn produced larger tensors and increased the time
needed to solve the respective SEs.

5 New A1TDVP and Results

Faced with the potentially high efficiency of the
A1TDVP, but also the difficulty to predict when it will
produce good results, I implemented a new variant of
the TDVP. The n1TDVP combines the idea of calcu-
lating new bond dimensions between sweeps, like in
the A1TDVP, with the accuracy of determining new
bond dimensions via the SVD like in the 2TDVP.

The key to reducing calculation time is to avoid solv-
ing SEs for combined tensors, because of the rapidly
growing time requirement to do so for large tensors.
However, if a time evolution is only performed on
single-site tensors, no SVD can be done to decide
whether to change the bond dimensions. It turns out
that approximating the effect of an exact time evolution
on a combined tensor is much faster than solving the re-
spective SE, while still providing insight into the mea-
sure of entanglement. In the n1TDVP, this is done for
each bond by contracting its neighboring tensors, per-
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Figure 11 Tensor networks representing the product of a tensor and an effective Hamiltonian governing the evolution of a
single site (a), a bond (b), or two combined sites (c) in the TDVP algorithm
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forming some approximative evolution method, split-
ting the tensor via a SVD, and deciding a new bond
dimension by inspecting the singular values. The evo-
lution method can be anything that approximates an
exact time evolution. The Taylor expansion of the ma-
trix exponential is an obvious choice, as the number
of steps can be just high enough to provide a good
approximation, while still being time efficient.

5.1 Results

Figures 12b to 12d show plots done with the n1TDVP
for different amounts of taylor steps and their respec-
tive running times. Compared with the 2TDVP, shown
in Figure 12a, the n1TDVP is faster in every case, while
producing almost identical plots. The result also indi-
cates that 1 Taylor step is already enough to produce a
good approximation, speeding up the simulation con-
siderably.

The growth of the bond dimensions is similar for all
methods, growing slightly slower for the 2TDVP case.
The 2TDVP serves as a reference of how the bond
dimension should grow according to the chosen error
tolerance. The slightly higher bond dimensions in the
n1TDVP slow down the calculation while providing a
negligible increase in accuracy. The difference in bond
dimension growth is expected due to the inaccuracies
in the Taylor method for approximating a time evolu-
tion. However, as long as the bond dimensions are not
lower than in the 2TDVP case, the simulation will not
be less accurate than dictated by the error tolerance.

Unfortunately, the n1TDVP is not strictly faster than
other variants of the TDVP algorithm. Similar to the
A1TDVP, for some configurations the bond dimen-
sions grow a lot faster than in the 2TDVP. In some
cases where the highest bond dimension needed can
be approximated beforehand, the issue can be allevi-
ated by limiting the bond dimension, preventing un-
controlled growth.

5.2 Conclusion and Future Work

The n1TDVP is yet another spin on the TDVP algo-
rithm with much more left to explore. For simulating
QCAs, the algorithm shows potential in some scenar-
ios, outpacing the known 2TDVP algorithm without
sacrificing accuracy. In other scenarios however, it
grows the MPS bond dimension to larger-than-needed
values, slowing down dramatically. Future work could
therefore consist of using approximative evolution
methods that show a more accurate behavior than the

Taylor series, with one potential candidate being the
Krylov time evolution.

Faster MPS time evolution methods in turn enable
deeper investigation of QCAs. Regarding other areas,
future research could study the effect of changing the
observable for site measurements in Equation (4), or
explore periodic behavior for different automata rules
and cell numbers. Furthermore, the n1TDVP is not
limited to QCAs and could be tested for other MPS-
based simulations, unrelated to automata.

Glossary

1TDVP 1-site TDVP.

2TDVP 2-site TDVP.

A1TDVP adaptible 1TDVP.

CA cellular automaton.

MPO matrix product operator.

MPS matrix product state.

n1TDVP new 1TDVP.

QCA quantum cellular automaton.

SE Schrödinger equation.

SSE single-site entropy.

SVD singular value decomposition.

TDVP time-dependent variational principle.
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