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Abstract

Vine copulas allow for separate modeling of marginal distributions and the dependence
structure, and can be specified by a sequence of linked trees, together with a set of
bivariate copulas, with corresponding copula families and parameters. This thesis
extends the existing literature on vine copula based models by several novel aspects:
extension of vine based regression to allow for a less greedy forward selection algorithm
using nonparametric pair copulas; proposal of a new vine structure, called Y-vine, for
bivariate responses, where the conditional density can be specified without integration;
development of estimation and prediction methods for Y-vine based regression, new
methods for the determination of bivariate (un)conditional level curves, a simulation
based approach for the determination of bivariate (un)conditional quantile curves; and
proposal and estimation of new risk measures derived from the Y-vine model.

Quantile regression is a complementary method to linear regression, since computing
a range of conditional quantile functions provides more accurate modeling of the
stochastic relationship of the response variable given as set of predictor variables,
especially in the tails. We introduce a nonrestrictive and highly flexible nonparametric
quantile regression approach (for univariate response) based on vine copulas. This way,
we obtain a model that overcomes typical issues of quantile regression such as quantile
crossings or collinearity, the need for transformations and interactions of variables. We
compare two different forward selection methods for predictors, based on maximizing
the conditional log-likelihood, while taking into account one- or two-steps ahead in the
next tree sequence.

Next, we introduce a novel vine tree sequence, that allows modeling of two response
variables in a symmetric manner, so that the aforementioned benefits of vine copula
based models are still valid. The main objective is estimating the joint conditional
distribution of two response variables, given a set of predictor variables. We develop a
forward selection of predictors for the bivariate response regression modeling. Also, we
propose prediction and simulation methods for the novel regression model. Then, we
dive into the topic of bivariate unconditional and conditional quantiles. We propose a
new simulation based method of deriving bivariate quantiles connected with the usage
of vine copulas.

Finally, utilizing the regression methods developed, we define univariate and bivari-
ate vine copula based conditional probability risk measures, that are applied to a large
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Abstract

data set, involving climatological measurements in Bavaria over a sequence of years.
Our focus is modeling the univariate frost and drought risks, and their associated
bivariate joint risk, given a set of possible predictor variables.
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Zusammenfassung

Vine Copulas ermöglichen eine separate Modellierung von Randverteilungen und
der Abhängigkeitsstruktur und können durch eine Folge verknüpfter Bäume zusam-
men mit einem Satz bivariater Copulas mit entsprechenden Copula-Familien und
Parametern spezifiziert werden. Diese Dissertation erweitert die bestehende Liter-
atur zu Vine Copula basierten Modellen um mehrere neue Aspekte: Erweiterung
der Vine basierten Regression, um einen weniger gierigen Vorwärtsselektionsalgo-
rithmus mit nichtparametrischen bivariaten Copulas zu ermöglichen; Vorschlag einer
neuen Vinestruktur namens Y-Vine für bivariate Zielvariablen, bei der die bedingte
Dichte ohne Integration angegeben werden kann; Entwicklung von Schätz- und Vorher-
sagemethoden für die Y-Vine basierte Regression, neue Methoden zur Bestimmung
bivariater (nicht) bedingter Niveaukurven, ein simulationsbasierter Ansatz zur Bestim-
mung bivariater (nicht) bedingter Quantilkurven; und Vorschlag und Schätzung neuer
Risikomaße, die aus dem Y-Vine Modell abgeleitet werden.

Die Quantilregression ist eine ergänzende Methode zur linearen Regression. Die
Berechnung einer Reihe von bedingten Quantilfunktionen ermöglicht eine genauere
Modellierung der stochastischen Beziehung der Zielvariablen gegeben einen Satz von
Prädiktorvariablen, insbesondere in den tails. Wir stellen einen nicht restriktiven und
hochflexiblen nichtparametrischen Quantil-Regressionsansatz (für eine univariate Ziel-
variable) basierend auf Vine-Copulas vor. Auf diese Weise erhalten wir ein Modell, das
typische Probleme der Quantilregression wie Quantilkreuzungen oder Kollinearität,
die Notwendigkeit von Transformationen und Wechselwirkungen von Variablen über-
windet. Wir vergleichen zwei verschiedene Vorwärtsauswahlmethoden für Prädiktoren,
basierend auf der Maximierung der bedingten Log-Likelihood, während wir in der
nächsten Baumsequenz einen oder zwei Schritte voraus berücksichtigen.

Als nächstes führen wir eine neuartige Vinestruktur ein, welche die symmetrische
Modellierung von zwei Zielvariablen ermöglicht, sodass die oben genannten Vorteile
von Vine Copula basierten Modellen weiterhin gültig sind. Das Hauptziel ist die
Schätzung der gemeinsamen bedingten Verteilung zweier Zielvariablen, gegeben einen
Satz von Prädiktorvariablen. Wir entwickeln einen Vorwärtsselektionsalgorithmus
von Prädiktoren für die bivariate Regressionsmodellierung. Außerdem schlagen wir
Vorhersage- und Simulationsmethoden für das neuartige Regressionsmodell vor. Dann
tauchen wir in das Thema der bivariaten nicht bedingten und bedingten Quantile ein.
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Zusammenfassung

Wir schlagen eine neue simulationsbasierte Methode zur Herleitung bivariater Quantile
vor, die mit der Verwendung von Vine Copulas verbunden ist.

Schließlich definieren wir unter Verwendung der entwickelten Regressionsmethoden
univariate und bivariate Vine Copula basierte bedingte Wahrscheinlichkeitsrisikomaße,
die auf einen großen Datensatz angewendet werden, der klimatologische Messungen in
Bayern über eine Folge von Jahren beinhaltet. Unser Fokus liegt auf der Modellierung
der univariaten Frost- und Dürrerisiken und des damit verbundenen gemeinsamen
Risikos, wenn eine Reihe möglicher Prädiktorvariablen gegeben ist.
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1. Introduction

"Data is the new oil" is a quote from the British mathematician Clive Humby, who
coined the phrase in 2006. Later this quote was expanded on as "Data is just like crude.
It’s valuable, but if unrefined it cannot really be used. It has to be changed into gas, plastic,
chemicals, etc. to create a valuable entity that drives profitable activity; so must data be broken
down, analyzed for it to have value." 1 However, it was not until 2017 that this idea gained
significant traction when "The Economist" published an article titled "The world’s
most valuable resource is no longer oil, but data" 2. This article sparked widespread
discussions and became a well-adopted tagline for the upcoming Fourth Industrial
Revolution, mainly based on data driven solutions and data analytics. These statements
lay out the foundation why it is imperative to be able to analyze data in a proper
manner, by making less assumptions (about the data generating process, the underlying
distribution and similar) and introduce more flexible approaches.

Nowadays, given the huge computational capabilities we have, data collection and
data mining is very cheap and easy. This results in the creation of data sets that have a
significant amount of dependencies among the collected variables. However, the usual
statistical tools for data analysis are not able nor are flexible enough to capture and
explain these dependencies. Thus, models that can deal with dependencies and extract
insights from it are of paramount importance. A possible solution to this, are copula
based models. The copula approach is a multivariate modeling approach that can
handle complex dependence structures. It allows for separate modeling of the copula
function and its arguments, the univariate marginal distributions functions. As a result,
a wide range of dependence structures can be modeled by utilizing different functional
forms for both, the copula function and the marginal distribution functions.

However, the number of parameters required to estimate a copula function increases
in many cases quadratically with the number of variables. Thus, generalization to
higher dimensions of copulas is rather complicated. Multivariate Gaussian and Student-
t copulas have been widely used, for example in Lasmar and Berthoumieu (2014) for
texture image retrieval or in Renard and Lang (2007) for multivariate extreme value
analysis in hydrology using a multivariate Gaussian copula; in Liang et al. (2013) for

1https://www.theguardian.com/technology/2013/aug/23/tech-giants-data
2https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-

oil-but-data
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1. Introduction

independent vector analysis in non-stationary signal processing or in W. Sun et al.
(2008) for modeling the comovement of indexes in the German equity markets using a
multivariate Student-t copula. However, they are not suited for asymmetric dependence
structures. Copulas based on generator functions such as the class of Archimedean
copulas, have only one or two parameters and thus, are very restrictive. They however
can deal with asymmetry. High-dimensional hierarchical Archimedean copulas are
more flexible, (see Savu and Trede (2010) for portofolio risk management), however
they impose constraints as well (Berg and Aas, 2009).

Nevertheless, it is possible to overcome all of these aforementioned limitations by
using vine copulas. Using the fact that there is an abundance of bivariate copulas or
pair copulas (more details in Czado (2019, Chapter 3)), Joe (1996) and later Bedford
and Cooke (2002) pioneered a pair copula construction (PCC) method. PCC is a
flexible way of high-dimensional copula construction that uses a set of pair copulas.
These pair copulas are chosen independent of each other, based on the (conditional)
dependence characteristics of each pair of variables. The resulting multivariate copula
of the PCC method is a so-called regular vine copula. A regular (R-)vine copula is
characterized by a sequence of trees which define the unconditional and conditional
pairwise dependencies that are considered in the model. This flexible model can
handle high-dimensional data with asymmetric dependencies and tail-dependencies,
which is the main benefit of their usage. Later, Aas et al. (2009) introduced statistical
inference techniques, such as maximum likelihood estimation for R-vine copulas and
Dissmann et al. (2013) introduced a sequential top-down approach for selecting and
fitting an R-vine copula to given data. Ever since then, the theory of R-vine copulas has
undergone constant refinement.

Another important advance is also the development of the R statistical software
package rvinecopulib (Nagler and Vatter, 2021), which has made R-vine copula-based
modeling accessible to a diverse range of statisticians and practitioners. More recently,
vine copulas have been investigated in the areas of regression modeling (Kraus and
Czado, 2017; Chang and Joe, 2019; Zhu et al., 2021), clustering and mixture models
(Kim et al., 2013; M. Sun et al., 2016; Sahin and Czado, 2022), time-series modeling
(Vatter and Nagler, 2018; Kreuzer and Czado, 2021; Nagler et al., 2022), structural
equation models and Bayesian networks (Haff et al., 2016; Cooke et al., 2022; Czado and
Scharl, 2021) and other areas. Further, R-vine copulas have been applied in a variety
of research areas, such as climatology and environmental sciences (T. Wu et al., 2022;
Tao et al., 2021; H. Li et al., 2021; Niemierko et al., 2019; Bevacqua et al., 2017; Ansell
and Valle, 2021), health sciences (D’Urso et al., 2022; Barthel et al., 2018; Ye et al., 2022),
finance and economics (Kielmann et al., 2022; Czado et al., 2022) or engineering (Torre
et al., 2019; Cheng et al., 2020; Qian and Dong, 2022).

In this thesis we extend the current research in statistical learning using vine copulas

2



1. Introduction

in a regression setting. Our main goal is adapting and developing new regression
frameworks, which implies modeling a continuous response/s, using all the benefits
a vine copula model offers. Comprehending the dependence of response variable/s
and determining their statistical properties in connection to a set of predictor variables
is an very important topic in statistical learning. Being able to do so using a very
flexible framework that does not make strict distributional assumptions and can handle
complex dependencies is a major advantage.

The assumption made by the most widely used quantile regression method, the
linear quantile regression (Koenker and Bassett, 1978), that the dependence between a
normally distributed response and predictors is a Gaussian copula, is overly restrictive
and is rarely satisfied in real-world applications, thus resulting in quantile crossings and
model-misspecification (Bernard and Czado, 2015). Thus, our main motivation for the
first new contribution is the fact that flexible models without restrictive assumptions are
of interest in practise. It is centered around introducing a fully nonparametric quantile
regression framework based on two different R-vines structures: C-vine copulas and
D-vine copulas. The class of C-vine copulas are characterized by a sequence of stars
(a tree with one node having edges with all the other nodes) and D-vine copulas
are characterized by a sequence of paths (a tree with a sequence of edges, each one
incident to the next). In this approach both the marginal distribution functions and
the pair copulas are estimated nonparametrically, to reduce possible bias introduced
by parametric assumptions. Also, quantile crossings and collinearity are avoided by
construction, and there is no need for transformations or interactions of variables.

The vine copula models are constructed in a way that the conditional distribution
function of the response, given the predictors, or the conditional quantile function, can
be calculated in an analytic manner, which quarantees precise and computationally
inexpensive results. It is also constructed in a sequential manner, adding one predictor
at a time, using two different forward selection approaches. One is a greedy approach
by only considering the benefit of adding a predictor one-step ahead in the model
(Kraus and Czado, 2017) and the other proposal considers two-steps ahead in the model
construction. This way we also order the predictors by their influence on the response
variable. The nonparametric estimation approaches we use are very fast for estimation,
and we test the different approaches introduced in both low- and high-dimensional
data (with the help of a newly introduced variable selection reduction for the two-step
ahead approach).

The next contribution introduces a vine based regression framework that is able
to handle two response regression modeling. It is motivated by a large number of
data applications where the main interest is modeling the joint conditional distribution
function of two responses given a set of any number of predictors (Frees et al., 2016;
Singh et al., 2022; Bevacqua et al., 2017). In many such data studies there exist

3



1. Introduction

dependence, not only among the predictor variables, but also between the two response
variables. Ignoring this dependence between the response variables is not advisable,
as it produces biased results. Thus, we introduce a novel vine tree sequence, called
a Y-vine tree sequence that has the ability for a symmetric treatment of two response
variables in a regression setting. The resulting Y-vine copula has the usual benefits of
vine copula modeling and in addition, the joint conditional density of the responses
given the predictors is analytically expressible using only pair copulas that are part of
the Y-vine copula specification, making it computationally inexpensive. For bivariate
response regression modeling, we also introduce an appropriate fit measure to be used
for an automatic forward selection algorithm. It is able to construct the Y-vine in a
sequential manner and exclude non-influential predictors. This results in a predictor
order based on their influence on the two response variables. In addition, we develop a
method to predict the bivariate conditional distribution given a set of predictor values,
and show how to simulate bivariate response data from a Y-vine copula model.

Next, we utilize the proposed Y-vine regression framework to analyse and estimate
conditional level curves and bivariate quantile curves based on a bivariate conditional
distribution function. The bivariate conditional level curves and quantiles are especially
important for modeling joint risks of events while adjusting for tail and asymmet-
ric dependencies. We develop a numerical method for the estimation of bivariate
(un)conditional level curves and a simulation based method to adjust them to bivariate
quantile curves, so that the probability coverage below and above the quantile curves is
exact. This way we are able to construct bivariate confidence regions, which are gener-
alizations of confidence intervals in the univariate case. They can be used to identify
bivariate outliers, visualize trends and identify parts of the conditional distribution
having high density values, given observations of the predictors. This allows us to
observe how the joint conditional distribution changes as the conditioning values of
the predictors change.

The final contribution in this thesis, is a large data application of the vine copula
based regression methods suggested. We use a data set, containing annual data for the
period between 1952-2020 having values for 26 variables on a fine 5km by 5km grid
of Bavaria, Germany. These 26 variables include, drought and late-frost indices, and
bioclimatic and topographical (terrain) variables that are influencing the occurrence
of extreme drought and frost events. Motivated by the issues the changing climate
might impose on the forest ecosystems, mainly influenced by extreme drought and
late-frost occurrences, we do a historical data analysis on the univariate drought and
late-frost risks and a joint risk analysis of these extremes. For the univariate analyses,
we fit a D-vine regression model, for which we propose a conditional probability risk
measure of extreme drought or late-frost risk conditioned on a set of predictors. For the
bivariate analysis, we fit a Y-vine regression model to both responses, and propose a
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1. Introduction

corresponding joint conditional probability risk measure conditioned on a set of chosen
predictor values. We also develop methods to obtain temporal and spatial "at-risk"
regions, so that forest management recommendations can be suggested.

Outline of the thesis
The content in the thesis is based on 3 manuscripts:

• Tepegjozova, M., J. Zhou, G. Claeskens, and C. Czado (2022).
“Nonparametric C- and D-vine based quantile regression.”
Dependence Modeling 10.1, pp. 1–21.

• Tepegjozova, M. and C. Czado (2022).
“Bivariate vine copula based quantile regression.”
Under revision at Computational Statistics & Data Analysis, arXiv:2205.02557.

• Tepegjozova, M., B. Meyer, A. Rammig, C. Zang and C. Czado (2023).
“Univariate and bivariate risk analysis of late-frost and drought conditions
using vine copulas in Bavaria.”
To be submitted to the Journal of the Royal Statistical Society, Series C (Applied Statistics).

For the thesis some content of these papers has been revised and extended in various
sections, including additional methodology, illustrations or explanations.

We start with a brief introduction of the foundational concepts of copulas and vine
copulas in Chapter 2. Section 2.1 deals with the basic properties of copulas, the de-
pendence measures used in the thesis and the introduction to some parametric and
nonparametric bivariate (or pair) copulas that we use. Section 2.2 introduces the concept
of a pair copula construction (PCC) and vine copulas.

Chapter 3 is mainly based on Tepegjozova et al. (2022) with some modifications.
Motivated by a thorough literature review in Section 3.1, we propose a nonparametric
vine copula based quantile regression framework in Section 3.2. The algorithms that
we use for forward selection of predictors, in order to construct the vine copula model,
are explained in Section 3.3. Section 3.3.1 deals with the one-step ahead approach,
while Section 3.3.2 deals with the two-step ahead approach. We explain the algorithms
in detail, in a way that the difference between the two different forward selection
approaches is evident. Also, the algorithms are presented in a uniform manner, so
that either a C-vine or a D-vine structure can be constructed, based on the data at
hand. Additionally, we extend the two-step ahead approach with a variable selection
reduction in Section 3.3.2, so that the two-step ahead models are applicable to many
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1. Introduction

predictors which would be impossible otherwise, due to the increased computational
cost of the two-step ahead approach.

The finite sample performance of the nonparametric vine copula based conditional
quantile estimator is evaluated in Section 3.4 by several performance measures suitable
for quantiles in various low- and high-dimensional simulation settings. We explore the
performance of the 4 newly introduced models in both low- and high-dimensional real
data application in Section 3.5. We dive deeper especially in the data analysis of the
Concrete data set (Yeh, 1998) in Section 3.5.1, so that we can analyse and compare how
the 4 different approaches choose different orders of the predictors. We also explore
what is the optimal order of the predictors (ordered by their influence on the response
variable) that each model finds after 100 replications of data splitting and model fitting.
In a similar manner, using the optimal orders we find the most influential predictors in
a high-dimensional setting, faced in the Riboflavin data set in Section 3.5.2.

In Section 3.6, we explore a possible stopping criteria for the nonparametric case,
which we use to recompute the models on the Concrete data set and compare the
out-of-sample statistics with the usage of the stopping criteria. However, the results are
ambiguous and more research is needed in this area. Finally, in Section 3.7 we conclude
and discuss possible directions of future research.

Chapters 4 and 5 are mainly based on Tepegjozova and Czado, 2022 with major
modifications. We start by motivating the problem of conditional distribution function
estimation of multiple responses given a set of predictor variables in Section 4.1. Then,
in Section 4.2 we introduce the Y-vine copula based regression model for bivariate
responses. Here we introduce a novel vine tree structure, specifically designed for a
bivariate response regression. In Section 4.3, we propose an automatic forward selection
algorithm of predictors. It is based on a novel adjusted conditional log-likelihood
fit measure, that sequentially adds predictors to the model based on quantifying
the influence of the predictors on the two responses. For application purposes, in
Section 4.4 we present a prediction method for Y-vine copulas. Section 4.5 deals with
the simulation of a bivariate response data from a specified Y-vine copula.

The implementation of the Y-vine regression together with all the other tools dis-
cussed in this whole chapter is discussed in Section 4.6. For demonstration of the
usefulness of this novel method we include a real data example in Section 4.7 that con-
tains dependent bivariate responses, the minimum and maximum daily temperatures.
Finally, in Section 4.8 we give conclusions and areas of future research.

Section 5.1 motivates the problem of construction of multivariate quantiles and the
lack of a consensus of the generalization of univariate quantiles to the multivariate
case. It also deals with applications where multivariate quantiles based on copulas
have been used. Next, in Section 5.2 we define bivariate (un)conditional level curves
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associated with (Y-vine) copula derived distribution functions. Section 5.3 develops a
numerical method used for the construction of the bivariate (un)conditional level curves.
In Section 5.3.2, we employ and test this numerical procedure for known parametric
pair copulas and a 3-dimensional vine copula model.

For the Y-vine regression model, we present a possible adjustment of the bivariate
level curves to provide bivariate quantile curves, with exact coverage probabilities. We
propose a simulation based method for the estimation of the bivariate quantile curves
and also a construction of bivariate confidence regions. We continue the data analysis
started in Section 4.7, in Section 5.5. Here we illustrate the bivariate (un)conditional
level curves for the temperature data set, the bivariate (un)conditional quantile curves
and the corresponding confidence regions. We also highlight the advantages of bi-
variate response modelling over standard univariate models that assume (conditional)
independence between the two responses.

Chapter 6 forms the basis of Tepegjozova et al. (2023). It contains a vine copula based
analysis of a large real data set in the area of climatology. Section 6.1 discusses the need
and importance of statistical methods to be able to analyse the joint occurrence of two
extremes, drought and frost, given a set of possible predictor variables, among which
there is high dependence. Next, Section 6.2 describes the data set utilized. Section
6.3 introduces the data modeling approaches we use, by employing the D-vine and
Y-vine copula regression previously introduced. It contains an exploratory dependence
analysis of the data at hand and an exploration of the fitted models, by studying the
pair copula families that are fitted and the orders of the predictors the models choose.

Section 6.4 suggests novel conditional risk probability measures for the D-vine and
Y-vine regression models. These vine copula based risk measures are used to identify
high risk years and regions, for both univariate and bivariate responses. We also
estimate corresponding survival probabilities and analyse how these conditional proba-
bilities vary over all locations in Section 6.5. Based on the survival probabilities, we also
estimate return periods for each extreme in Section 6.6. All these measures are used
for finding temporal and spatial "at-risk" regions. Finally, we conclude and propose
possible areas of future research in Section 6.7.

Finally, in Chapter 7 we summarize the overall contributions of the thesis, and
propose future areas of research.
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2. Preliminaries

2.1. Copulas

Let X be a continuous d-dimensional random vector X = (X1, . . . , Xd)
T with observed

values x = (x1, . . . , xd)
T. Assume X have joint distribution function F, joint density

f and marginal distributions FXi , i = 1, . . . , d. The fundamental representation the-
orem for multivariate distributions in terms of their marginal distributions and a
corresponding d-dimensional copula C, by Sklar (1959) states the following

F (x1, . . . , xd) = C (FX1(x1), . . . , FXd(xd)) . (2.1)

The copula C : [0, 1]d 7→ [0, 1] corresponds to the distribution of the random vector
U = (U1, . . . , Ud)

T , where the components of U (u-scale) are the probability integral
transforms (PITs) of the components of X (x-scale), Ui = FXi (Xi) for i = 1, . . . , d.
Every Ui is uniformly distributed and their joint distribution function C is the copula
associated with X. If all marginal distributions FXi are continuous, then Sklar’s Theorem
implies that C is unique. If derivatives of the marginal distributions FXi exist, then the
density f can be derived as

f (x1, . . . , xd) = c (FX1(x1), . . . , FXd(xd)) ·
d

∏
i=1

fXi (xi) , (2.2)

where c is the d-dimensional density corresponding to the copula C and fX1 , . . . , fXd

are the univariate marginal densities. (see more in Nelsen (2007)). Throughout this
thesis, we assume that all considered random variables to be continuous.

2.1.1. Dependence measures

To quantify and characterize the dependence between random variables measures of
dependence are needed. In the thesis, we will use the Kendall’s τ and the

Kendall’s τ is a rank based dependence measure with range of values in the interval
[−1, 1] defined in M. G. Kendall (1938). It is defined as the probability of concordance
minus the probability of discordance of two continuous random variables, say X1 and
X2

τ(X1, X2) = P ((X11 − X21)(X12 − X22) > 0)− P ((X11 − X21)(X12 − X22) < 0) ,
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2. Preliminaries

where (X11, X12) and (X21, X22) are independent and identically distributed copies of
the pair (X1, X2).

Closer values to the boundaries of the interval [−1, 1] mean greater dependence.
Positive values indicate positive dependence, while negative values of the Kendall’s
τ indicate negative dependence between two random variables. A value of Kendall’s
τ = 0 indicated independence. Also, Kendall’s τ being a rank-based dependence
measure is invariant with respect to monotone transformations of the margins.

The partial correlation is a dependence measure between two variables after the
linear effect of the remaining variables is been removed. Let X1, . . . , Xd be random
variables with zero mean and variance σ2

i for i = 1, . . . , d. Let Id
−(i,j) be the set {1, . . . , d}

with indices i and j removed, for i ̸= j. Following Udny Yule, M. Kendall, et al. (1950),
define partial regression coefficients bi,j;Id

−(i,j)
for i < j as the quantities that minimize

E[(Xi −
d

∑
j=2,j ̸=i

ai,j;Id
−(i,j)

Xj)
2].

Then, the partial correlation ρi,j;Id
−(i,j)

is defined as

ρi,j;Id
−(i,j)

:= sign(bi,j;Id
−(i,j)

)×
√

bi,j;Id
−(i,j)

× bi,j;Id
−(i,j)

.

2.1.2. Bivariate (pair) copulas

To adequately model various types of dependencies, there is a wide range of para-
metric and nonparametric bivariate or pair copulas. For example, a Clayton copula
can characterize lower tail dependence, while a Gumbel copula characterizes upper
tail dependence. Gaussian copula characterizes symmetric dependence with no tail
preference, while Student-t characterizes symmetric lower and upper tail dependence,
governed by the same parameter (Czado, 2019).

Parametric pair copulas

The parametric pair copulas are characterized by the copula family and corresponding
parameters. Depending on their construction, there is a distinction between elliptical
copulas, which are based on elliptical distributions and are constructed by applying
the inverse statement of Sklar’s Theorem (Sklar, 1959), such as Gaussian and Student-t
copula, and Archemedian copulas, constructed using a generator function ϕ.

Examples of elliptical copulas and the corresponding bivariate distribution functions
are listed below.
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2. Preliminaries

• Bivariate Gaussian copula
Let Φ1(·) be the distribution function of a univariate standard normal distribution
(with zero mean and unit variance) denoted as N(0, 1) and let Φ2(·) be the
distribution function of a bivariate standard normal distribution, denoted as
N2
(
(0, 0)T, Σ

)
, with zero mean vector and where Σ is a symmetric positive

definite 2 × 2 correlation matrix with unit variance. Then, by applying the inverse
Sklar’s theorem (Sklar, 1959) the bivariate Gaussian copula distribution function
is given as

C(u1, u2) = Φ2

(
Φ−1

1 (u1), Φ−1
1 (u2)

)
. (2.3)

• Bivariate Student-t copula
Let T1,v(·) be the distribution function of a univariate standard Student-t distribu-
tion with v > 0 degrees of freedom, zero mean, and unit scale parameter, denoted
as t1(v, 0, 1) and let T2,v(·) be the distribution function of a bivariate standard
Student-t distribution, denoted as t2(v, (0, 0)T, Σ), with v > 0 degrees of freedom,
zero mean vector, and Σ ∈ [−1, 1]2×2 is a scale parameter matrix. By applying
the inverse Sklar’s theorem the bivariate Student-t copula distribution function is
given as

C(u1, u2) = T2,v

(
T−1

1,v (u1), T−1
1,v (u2)

)
. (2.4)

Examples of Archimedean bivariate copulas with a single parameter and the corre-
sponding bivariate distribution functions are listed below.

• Clayton copula

C(u1, u2) = (u−θ
1 + u−θ

2 − 1)−
1
θ , (2.5)

where 0 < θ < ∞ is the parameter controlling the degree of dependence. Inde-
pendence correspond to θ → 0, and full dependence to θ → ∞.

• Gumbel copula

C(u1, u2) = exp[−{(− ln u1)
θ + (− ln u2)

θ} 1
θ ], (2.6)

where θ ≥ 1 is the parameter controlling the degree of dependence. Independence
correspond to θ = 1, and full dependence to θ → ∞.

• Frank copula

C(u1, u2) = −1
θ

ln
(

1
1 − e−θ

[(1 − e−θ)− (1 − e−θu1)(1 − e−θu2)]

)
,

where θ ∈ [−∞, ∞] \ {0}.
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2. Preliminaries

• Joe copula

C(u1, u2) = 1 −
(
(1 − u1)

θ + (1 − u2)
θ − (1 − u1)

θ(1 − u2)
θ
) 1

θ
,

where the parameter is θ ≥ 1.

Further, there is a one-to-one correspondence between the copula parameter and the
Kendal’s tau for elliptical copulas (Embrechts et al., 2003), and for the one-parameter
Archimedean copulas (Hürlimann, 2003). There are also Archimedean copulas with
two parameters, such as the BB copulas introduced in (Joe, 1997).

Nonparametric pair copulas

There are many approaches how to estimate bivariate copula densities in a nonparamet-
ric manner. Examples include the mirror-reflection estimator (Gijbels and Mielniczuk,
1990), the transformation estimator (Charpentier et al., 2007), the transformation local
likelihood estimator (Geenens et al., 2017), the tapered transformation estimator (Wen
and X. Wu, 2015) and the beta kernel estimator (Charpentier et al., 2007). Among the
above-mentioned estimators, the transformation local likelihood estimator (Geenens
et al., 2017) was found by Nagler et al. (2017) to have an overall best performance.
Therefore, following Nagler et al. (2017) and Tepegjozova et al. (2022) we review shortly
the construction of the transformation local likelihood estimator.

Let the N × 2 transformed sample matrix be D = (S, T), where the transformed
samples Dn =

(
Sn = Φ−1(U(n)

i ), Tn = Φ−1(U(n)
j )
)
, n = 1, . . . , N, and Φ denotes the

cumulative distribution function of a standard Gaussian distribution. The logarithm
of the density fS,T of the transformed samples (Sn, Tn), n = 1, . . . , N is approximated
locally by a bivariate polynomial expansion Pam of order m with intercept ãm,0 such that
the approximation is given by

f̃S,T(Φ−1(u(n)
i ), Φ−1(u(n)

j )) = exp
{

ãm,0(Φ−1(u(n)
i ), Φ−1(u(n)

j ))
}

.

The transformation local likelihood estimator for the copula density is then defined as

c̃(u(n)
i , u(n)

j ) =
f̃S,T(Φ−1(u(n)

i ), Φ−1(u(n)
j ))

ϕ(Φ−1(u(n)
i ))ϕ(Φ−1(u(n)

j ))
.

To get the local polynomial approximation, we need a kernel function K with 2×2
bandwidth matrix BN . For some pair (š, ť) close to (s, t), log fST(š, ť) is assumed to be
well approximated, locally, by for instance a polynomial with m = 1 (log-linear)

Pa1(š − s, ť − t) = a1,0(s, t) + a1,1(s, t)(š − s) + a1,2(s, t)(ť − t),
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or m = 2 (log-quadratic)

Pa2(š − s, ť − t) = a2,0(s, t) + a2,1(s, t)(š − s) + a2,2(s, t)(ť − t)

+a2,3(s, t)(š − s)2 + a2,4(s, t)(ť − t)2 + a2,5(s, t)(š − s)(ť − t).

The coefficient vector of the polynomial expansion Pam is denoted by am(s, t), where
a1(s, t) = (a1,0(s, t), a1,1(s, t), a1,2(s, t)) for the log-linear approximation and a2(s, t) =
(a2,0(s, t), . . . , a2,5(s, t)) for the log-quadratic. The estimated coefficient vector ãm(s, t) is
obtained by a maximization problem in

ãm(s, t) = arg max
am

{ N

∑
n=1

K
(

B−1/2
N

(
s − Sn

t − Tn

))
Pam(Sn − s, Tn − t)

−N
{ ∫ ∫

R2
K
(

B−1/2
N

(
s − š
t − ť

))
exp

(
Pam(š − s, t − t)

)
dšdť

}}
.

Also, note that even though it is well-known that kernel estimators suffer from the curse
of dimensionality (more in Scott (2008) for example), in our case only two-dimensional
functions need to be estimated, thus problems with high-dimensionality are avoided.

Rotated pair copulas

Some pair copulas as the Clayton and Gumbel for example, only allow for positive
dependence. To overcome this drawback, also counterclockwise rotated versions of the
copula density c(·, ·) are considered. These are:

• 90 degrees rotation: c90(u1, u2) := c(1 − u1, u2),

• 180 degrees rotation: c180(u1, u2) := c(1 − u1, 1 − u2),

• 270 degrees rotation: c270(u1, u2) := c(u1, 1 − u2).

2.2. Vine copulas

Joe (1996) has shown that a d-dimensional copula density can be decomposed into
d (d − 1) /2 bivariate copula densities. However, the decomposition is not unique. A
graphical model introduced by Bedford and Cooke (2002) called regular vine copulas
(R-vines), organizes all such decompositions that lead to a valid density. Thus, the
estimation of any d-dimensional copula density can be divided into the estimation of
d(d − 1)/2 two-dimensional pair copula densities, which can be chosen completely
independent of each other.
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A regular vine copula consists of a regular vine tree sequence (or tree structure),
denoted by V , a set of bivariate copula families (also known as pair copulas) B (V), and
a set of parameters corresponding to the bivariate copula families Θ (B (V)). Given d
uniformly distributed random variables U1, . . . , Ud, the vine tree sequence V consists of
a sequence of d− 1 linked trees, Tk = (Nk, Ek) , k = 1, . . . , d− 1, satisfying the following
conditions:

(i) T1 is a tree with node set N1 = {U1, . . . , Ud} and edge set E1.

(ii) For k ≥ 2, Tk is a tree with node set Nk = Ek−1 and edge set Ek.

(iii) (Proximity condition) For k ≥ 2, two nodes of the tree Tk can be connected by an
edge if the corresponding edges of Tk−1 have a common node.

The tree sequence uniquely specifies which bivariate (conditional) copula densities
occur in the decomposition. Each edge e ∈ Ek for k = 1, . . . , d − 1 is associated with
a bivariate copula family cUje ,Uke ;UDe

∈ B (V) , and a corresponding set of parameters
θje,ke;De ∈ Θ (B (V)). Uje and Uke are the conditioned variables and UDe represents the
conditioning set corresponding to edge e, UDe = (Ui)i∈De

. Denote the conditional dis-
tribution of Uje |UDe = uDe as CUje |UDe

(
uje |uDe

)
. In a similar manner, CUke |UDe

(uke |uDe)

is defined. Then cUje ,Uke ;UDe

(
CUje |UDe

(
uje |uDe

)
, CUke |UDe

(uke |uDe) |uDe

)
corresponds to

the copula density of (Uje , Uke) given UDe = uDe evaluated at Uje = uje , Uke = uke and
UDe = uDe . The corresponding copula distribution function is denoted as CUje,Uke ;UDe

.
However, the pair copulas cUje ,Uke ;UDe

dependent on the value of uDe . This represents
the different conditional dependencies between Uje and Uke for different conditioning
values of uDe . To allow for computational tractability, it is customary to ignore this
influence and simplify it to cUje ,Uke ;UDe

(
CUje |UDe

(
uje |uDe

)
, CUke |UDe

(uke |uDe)
)

. This
simplification is known as the simplifying assumption (more in Haff et al. (2010),
Stoeber et al. (2013), Spanhel and Kurz (2015), and Kurz and Spanhel (2022)).
In this simplified case, we talk about pair copula constructions (PCC) of multivariate
densities instead of decompositions. Bedford and Cooke (2002) have shown that regular
vines lead to a construction of the joint density using the pair copulas defined via the
tree sequence as

c (u1, . . . , ud) =
d−1

∏
k=1

∏
e∈Ek

cUje ,Uke ;UDe

(
CUje |UDe

(
uje |uDe

)
, CUke |UDe

(uke |uDe)
)

. (2.7)

To derive the conditional distributions in Equation (2.7), we use the recursion formula
from Joe (1996). It defines a recursion for conditional distributions of a regular vine
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over its tree sequence. Let l ∈ De and D−l := De \ {l}. Further, let hUje |Ul ;UD−l
(·|·)

denote the so-called h-function associated with the pair copula cUje ,Ul ;UD−l
, defined as

hUje |Ul ;UD−l
(uje |ul) := ∂

∂ul
CUje ,Ul ;UD−l

(uje , ul). Then the following recursion is valid

CUje |UDe

(
uje |uDe

)
= hUje |Ul ;UD−l

(
CUje |UD−l

(
uje |uD−l

)
|CUl |uD−l

(
ul |UD−l

))
. (2.8)

There are few subclasses of vine copulas that are widely used, as canonical (C-) and
drawable (D-) vine copulas (Aas et al., 2009). C-vine copulas are characterised by a
sequence of stars (a tree with one node having edges with all the other nodes) and
D-vine copulas are characterised by a sequence of paths (a tree with sequence of edges,
each one incident to the next). An illustration of a C-vine and a D-vine copula in 4
dimensions is given in Figure 2.1 and 2.2, respectively. More details on vine copula
estimation can be found in Czado (2019, Chapter 7).
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T1 : U1

U4

U3

U2

CU1U4

CU1U3

CU1U2

T2 : U1U2

U1U4

U1U3

CU2U4;U1

CU2U3;U1

T3 : U2U3;U1 U2U4;U1

CU3U4;U1U2

U3U4;U1U2

Figure 2.1.: A C-vine copula in 4 dimensions.
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T1 : U1 U2 U3 U4

CU1U2
CU2U3

CU3U4

T2 : U1U2 U2U3 U3U4

CU1U3;U2
CU2U4;U3

T3 : U1U3;U2 U2U4;U3

CU1U4;U2U3

U1U4;U2U3

Figure 2.2.: A D-vine copula in 4 dimensions.
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3. Univariate response vine copula based
regression

Parts of Chapter 3 are very similar to the publication Tepegjozova et al. (2022). However,
Sections 3.5.1 and 3.6 contain new material.

3.1. Introduction

The topic of predicting quantiles of a response variable conditioned on a set of predictor
variables taking on fixed values, continuously attracts interest. Since the introduction
of the linear quantile regression by Koenker and Bassett (1978) many extensions have
been developed for the case of a univariate response variable. A short summary of
developments in quantile regression modelling is given in Koenker (2017).

The pioneer literature by Koenker (2005) investigated linear quantile regression
systematically. It presented properties of the estimators including asymptotic normality
and consistency, under various assumptions such as independence of the observations,
independent and identically distributed (i.i.d.) errors with continuous distribution,
and predictors having bounded second moment. Subsequent extensions of linear
quantile regression have been intensively studied, see for example adapting quantile
regression in the Bayesian framework (Yu and Moyeed, 2001), for longitudinal data
(Koenker, 2004), time-series models (Xiao and Koenker, 2009), high-dimensional models
with l1-regularizer (Belloni and Chernozhukov, 2011), nonparametric estimation by
kernel weighted local linear fitting (Yu and M. Jones, 1998), and by additive models
(Koenker, 2011; Fenske et al., 2011), etc. The theoretical analysis of the above-mentioned
extensions is based on imposing additional assumptions such as samples that are
i.i.d. (see for example Yu and M. Jones (1998) and Belloni and Chernozhukov (2011)),
or that are generated by a known additive function (see for example Koenker (2011)
and Koenker (2004)). Such assumptions, which guarantee the performance of the
proposed methods for certain data structures, cause concerns in applications due to the
uncertainty of the real-world data structures.

Bernard and Czado (2015) addressed other potential concerns such as quantile
crossings and model-misspecification, when the dependence structure of the response
variables and the predictors does not follow a Gaussian copula. Flexible models
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without assuming homoscedasticity, or a linear relationship between the response and
the predictors are of interest. Recent research on dealing with this issue includes
quantile forests (Meinshausen, 2006; Hanbo Li and Martin, 2017; Athey et al., 2019)
inspired by the earlier work of random forests (Breiman, 2001) and modeling conditional
quantiles using copulas (see also Noh et al. (2013), Noh et al. (2015), and Chen et al.
(2009)).

One of the most recent approaches for quantile regression are vine copula based
quantile regression methods (Kraus and Czado, 2017; Chang and Joe, 2019; Zhu
et al., 2021). Copulas allow for separate modelling of the marginal distributions
and the dependence structure in the data, while vine copulas allow the multivariate
copula to be constructed using bivariate building blocks only, a so-called pair copula
construction. This way, a very flexible model, without assuming homoscedasticity, or
a linear relationship between the response and the predictors, is constructed. Thus,
vine based quantile regression methods overcome two drawbacks of the standard
quantile regression methods. First, by construction quantile crossings and collinearity
are avoided, and second, there is no need for transformations or interactions of variables
Kraus and Czado (2017).

There are several different vine copula tree structures that can be considered, resulting
in the most general regular (R-)vine copulas, or its subsets as drawable (D-vines whose
tree structure is a sequence of paths) and canonical (C-vines whose tree structure
is a sequence of stars) vines. Kraus and Czado (2017) developed a parametric one-
step ahead D-vine based quantile regression method by optimizing the conditional
log-likelihood and adding predictors until there is no improvement, thus introducing
an automatic forward variable selection method. This approach was extended in
Tepegjozova (2019) where a C-vine copula based quantile regression was introduced.
They also follow the approach to maximize the conditional log likelihood, but introduce
an additional step to check for future improvement of the conditional log likelihood, a
so called two-step ahead approach. Chang and Joe (2019) introduced an R-vine based
quantile regression by first finding the optimal R-vine structure among all predictors
and then adding the response variable to each tree in the vine structure as a leaf node.
Another R-vine based regression was introduced in Zhu et al. (2021) by optimizing
the R-vine structure which gives the largest sum of the absolute value of the partial
correlations in each step of the forward extension with predictor variables, while
keeping the response as a leaf node. This approach is motivated by the algorithm
and results from Zhu et al. (2020). All these selected structures allow to express the
conditional density of the response given the predictors without integration.

The main contribution of this chapter is the adaptation of the one-step (Kraus and
Czado, 2017) and the two-step ahead forward selection algorithms (Tepegjozova, 2019),
from a parametric set up to a fully nonparametric set up, where both the marginal

18



3. Univariate response vine copula based regression

distributions and the pair copulas are estimated in a nonparametric manner. This
approach allows more flexibility than parametric specifications, and Kraus and Czado
(2017) addressed the necessity and possible benefit of a nonparametric estimation of
bivariate copulas in the quantile regression framework. We implement the D-vine
and C-vine one- and two-step ahead algorithms in the nonparametric setting in the R
programming language. Also, we extend the two-step ahead algorithm to allow for
a variable selection reduction, so that the models can be used when there are many
possible predictors available. We present an extensive simulation study in both low
and high-dimensional data, which compares the above mentioned algorithms to a
benchmark, which is the nonparametric version of the D-vine one step-ahead algorithm
by Kraus and Czado (2017).

3.2. Vine based quantile regression

3.2.1. General framework

In the general regression framework the predictive ability of a set of variables X =

(X1, . . . , Xp)T for the response Y ∈ R is studied. The main interest of vine based quan-
tile regression is to predict the α ∈ (0, 1) quantile qα(x1, . . . , xp) = F−1

Y|X1,...,Xp
(α|x1, . . . , xp)

of the response variable Y given X by using a copula based model on (Y, X)T. As
shown in Kraus and Czado (2017), the quantile function qα can be expressed in terms
of a conditional univariate distribution derived from a joint copula as

F−1
Y|X1,...,Xp

(α|x1, . . . , xp) = F−1
Y
(
C−1

V|U1,...,Up
(α|FX1(x1), . . . , FXp(xp))

)
, (3.1)

where CV|U1,...,Up is the conditional distribution function of V = FY(Y) given Uj =

FXj(Xj) = uj for j = 1, . . . , p with corresponding density cV|U1,...,Up . The conditional
distribution function in Equation (3.1) can be obtained from the (p + 1)-dimensional
copula CV,U1,...,Up associated with the joint distribution of (Y, X)T.

In general CV,U1,...,Up can be any (p + 1)-dimensional multivariate copula, however
only for certain vine structures the corresponding conditional distribution function
CV|U1,...,Up can be obtained in a closed form not requiring numerical integration. For
D-vine structures this has been already utilized in Kraus and Czado (2017). Tepegjozova
(2019) showed that this is also the case for certain C-vine structures. More precisely, the
copula CV,U1,...,Up with D-vine structure allows to express CV|U1,...,Up in a closed form
if and only if the response V is a leaf node in the first tree of the tree sequence. For a
C-vine structure we require, that the node containing the response variable V in the
conditioned set, is not a root node in any tree. Additional flexibility in using such D-
and C-vine structures can be achieved by allowing for nonparametric pair copulas as
building blocks.
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3. Univariate response vine copula based regression

The order of the predictors within the tree sequences itself is a free parameter
with direct impact on the target function CV|U1,...,Up and thus, on the corresponding
prediction performance of qα(x1, . . . , xp). For this we recall the concept of a node order
for C- and D-vine copulas introduced in Tepegjozova (2019). A D-vine copula denoted
by CD has order OD(CD) = (V, Ui1 , . . . , Uip), if the response V is the first node of the
first tree T1 and Uik is the (k + 1)-th node of T1, for k = 1, . . . , p. For example, the
D-vine copula in Figure 2.2 has an order (U1, U2, U3, U4). A C-vine copula CC has order
OC(CC) = (V, Ui1 , . . . , Uip), if Ui1 is the root node in the first tree T1, Ui2Ui1 is the root
node in the second tree T2, and Uik Uik−1 ; Ui1 , . . . , Uik−2 is the root node in the k-th tree
Tk for k = 3, . . . , p − 1. For example, the D-vine copula in Figure 2.1 has an order
(U1, U2, U3, U4).

In order to find an optimal order of D- or C-vine copula model a fit measure is
required. This measure has to quantify the explanatory power of a model. One
such measure is the estimated conditional copula log-likelihood function. For N i.i.d.
observations v := (v(1), . . . , v(N))T and uj := (u(1)

j , . . . , u(N)
j )T, for j = 1, . . . , p of the

random vector (V, U1, . . . , Up)T we fit a C- or D-vine copula with order (V, U1, . . . , Up).
We denote this vine copula by Ĉ, and then the fitted conditional log-likelihood can be
determined as

cll(Ĉ, v, (u1, . . . , up)) =
N

∑
n=1

ln ĉV|U1,...,Up(v
(n)|u(n)

1 , . . . , u(n)
p ) =

N

∑
n=1

[
ln ĉV,U1(v

(n), u(n)
1 )+

p

∑
j=2

ln ĉV,Uj|U1,...,Uj−1
(ĈV|U1,...,Uj−1

(v(n)|u(n)
1 , . . . , u(n)

j−1), ĈUj|U1,...,Uj−1
(u(n)

j |u(n)
1 , . . . , u(n)

j−1))
]
.

Penalizations for model complexity when parametric pair copulas are used, can be
added as shown in Tepegjozova (2019). To define the appropriate penalty in the case
of using nonparametric pair copulas, is an open research question, which we shortly
discuss in Section 3.6.

3.2.2. Nonparametric estimation of marginals and bivariate copulas

One of the simplest nonparametric estimation methods for marginal distributions is
the empirical distribution function, but due to its discrete nature and the fact that we
need inverses for calculating qα, we opt against it. Instead we use the univariate local
polynomial kernel density estimators. Given a sample (x1, . . . , xN) from a random
variable X, the univariate local polynomial kernel density estimator is defined as

F̂ (x) =
1

Nb

N

∑
i=1

K
(

x − xi

b

)
, x ∈ R,
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3. Univariate response vine copula based regression

where K (x) : =
∫ x
−∞ k (t) dt with k (·) being a symmetric probability density function

and b > 0 is a bandwidth parameter. In the following we use the Gaussian kernel
defined as

K (x) =
1√
2π

e−x2/2,

with the optimal bandwidth parameter b developed in Sheather and M. C. Jones (1991)
can be used. The bandwidth b controls the smoothness or complexity of the estimate
F̂ (x). Thus, b plays the main role in the bias-variance trade off of the nonparametric
estimator. This univariate local polynomial kernel density estimator is implemented in
the R library kde1d (Nagler and Vatter, 2020) and we use it for the marginal distribution
estimation.

The nonparametric pair copula densities are estimated using the transformation
local likelihood estimator, as discussed in Section 2.1.2. The choice of the bandwidth
parameter follows Geenens et al. (2017, Section 4). For the estimation, we use the R
package rvinecopulib (Nagler and Vatter, 2021).

3.3. Forward selection algorithms

Having a set of p predictors, there are p! different orders that uniquely determine
p! C-vines and p! D-vines. Fitting and comparing all of them is computationally
inefficient. Thus, the idea is to have an algorithm that will sequentially choose the
elements of the order, so that at every step the resulting model for the prediction
of the conditional quantiles has the highest conditional log-likelihood. For the C-
vine one-step ahead algorithm, we use the forward selection algorithm based on the
conditional log-likelihood by Kraus and Czado (2017) and for the D- and C-vine two-
step ahead algorithms we use the two-step ahead approach from Tepegjozova (2019).
The algorithms build the C- or D-vine sequentially, starting with an order consisting of
only the response variable V. Each step adds one of the predictors to the order based
on the improvement of the conditional log-likelihood, and the two-step ahead approach
takes into account the possibility of future improvement, i.e. extending our view two
steps ahead in the order.

We present the implementation for both C-vine and D-vine in a single algorithm,
in which the user decides whether to fit a C-vine or D-vine model based on the
background knowledge of dependency structures in the data.

Input and data preprocessing: Consider N i.i.d observations y := (y(1), . . . , y(N)) and
xj := (x(1)j , . . . , x(N)

j ) for j = 1, . . . , p, from the random vector (Y, X1, . . . , Xp)T. The
input data is on the x-scale, but in order to fit bivariate copulas we need to transform it
to the u-scale using the probability integral transform. Since the marginal distributions
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3. Univariate response vine copula based regression

are unknown we estimate them using a univariate nonparametric kernel density esti-
mator from the R package kde1d (Nagler and Vatter, 2020). This results in the pseudo
copula data v̂(n) := F̂Y(y(n)) and û(n)

j := F̂Xj(x(n)j ), for n = 1, . . . , N, j = 1, . . . , p.
The normalized marginals (z-scale) are defined as Zj := Φ−1(Uj) for j = 1, . . . , p, and
ZV := Φ−1(V), where Φ denotes the standard normal distribution function.

3.3.1. One-step ahead algorithm

Step 1: The k candidate predictors and the corresponding candidate index set of
step 1 are defined as Uq1 , . . . , Uqk and K1 = {q1, . . . , qk}, respectively. In the first step
k = p. For all c ∈ K1 the bivariate copulas C1

V,Uc
are estimated and the predictor that

maximizes the log-likelihood of this copula is chosen as the first predictor in the order.
The conditional log-likelihood is just the density of this copula in the first step

cll
(
C1

V,Uc
, v̂, ûc

)
=

N

∑
n=1

[
log ĉV,Uc(v̂

(n), û(n)
c )
]
.

The maximal conditional log-likelihood at step 1, cll1
c is defined as

cll1
c := maxc∈K1 cll

(
C1

V,Uc
, v̂, ûc

)
. Based on the maximal conditional log-likelihood

at step 1, cll1
c , the index t1 is chosen as t1 := arg maxc∈K1

cll1
c , and the corresponding

candidate predictor Ut1 is selected as the first predictor to be added to the order. Figure
3.1 illustrates the first step in the one-step ahead algorithm.

Step r: After r − 1 steps, the current optimal fit is the C- or D-vine copula Cr−1 with
order O(Cr−1) = (V, Ut1 , . . . , Utr−1). At each previous step i, the order of the current
optimal fit is sequentially updated with the predictor Uti for i = 1, . . . , r − 1. The
remaining k = p − (r − 1) candidate predictors and the corresponding candidate index
set of step r are defined as Uq1 , . . . , Uqk and the set Kr = {q1, . . . , qk}, respectively. For
all c ∈ Kr, the vine copulas Cr

c with order O(Cr
c) = (V, Ut1 , . . . , Utr−1 , Uc) are estimated.

Their corresponding conditional log-likelihood functions are given as

cll (Cr
c , v̂, (ût1 . . . ûtr−1 , ûc)

)
= cll

(
Cr−1, v̂, (ût1 . . . ûtr−1)

)
+

N

∑
n=1

log ĉVUc ;Ut1 ,...,Utr−1

(
ĈV|Ut1 ,...,Utr−1

(
v̂(n)|û(n)

t1
, . . . , û(n)

tr−1

)
, ĈUc |Ut1 ,...,Utr−1

(
û(n)

c |û(n)
t1

, . . . , û(n)
tr−1

))
.

The r-th predictor is then added to the order based on the maximal conditional
log-likelihood at Step r, cllr

c , defined as

cllr
c := max

c∈Kr
cll (Cr

c , v̂, (ût1 . . . ûtr−1 , ûc, )) .

The index tr is chosen as tr := arg maxc∈Kr
cllr

c , and the predictor Utr is selected as the
r−th predictor of the order. At this step, the current optimal fit is the C-vine or D-vine

22



3. Univariate response vine copula based regression

V •

U1

U2

...

Up

CV •

Figure 3.1.: Step 1 for the one-step ahead algorithm.
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3. Univariate response vine copula based regression

copula Cr, with order O(Cr) = (V, Ut1 , . . . Utr). The iterative procedure is repeated until
all predictors are included in the order of the C- or D-vine copula model.

3.3.2. Two-step ahead algorithm

Step 1: To reduce computational complexity, we perform a pre-selection of the predic-
tors based on Kendall’s τ. This is motivated by the fact that Kendall’s τ is rank-based,
therefore invariant with respect to monotone transformations of the marginals and
can be expressed in terms of pair copulas. Using the pseudo copula data (v̂, ûj) =

{v̂(n), û(n)
j |n = 1, . . . , N}, estimates τ̂VUj of the Kendall’s τ values between the response

V, and all possible predictors Uj for j = 1, . . . , p, are obtained. For a given k ≤ p, the
k largest estimates of |τ̂VUj | are selected and the corresponding indices q1, . . . , qk are
identified such that |τ̂VUq1

| ≥ |τ̂VUq2
| ≥ . . . ≥ |τ̂VUqk

| ≥ |τ̂VUqk+1
| ≥ . . . ≥ |τ̂VUqp

|. The
parameter k is a hyper-parameter, chosen by the user in advance and subject to tuning.
To obtain a parsimonious model, we suggest a k corresponding to 5% - 20% of the total
number of predictors. The k candidate predictors and the corresponding candidate
index set of step 1 are defined as Uq1 , . . . , Uqk and K1 = {q1, . . . , qk}, respectively. For
all c ∈ K1 and j ∈ {1, . . . , p} \ {c} the candidate two-step ahead C- or D-vine copulas
are defined as the 3-dimensional copulas C1

c,j with order O(C1
c,j) = (V, Uc, Uj). The first

predictor is added to the order based on the conditional log-likelihood of the candidate
two-step ahead C- or D-vine copulas, C1

c,j given as

cll
(
C1

c,j, v̂, (ûc, ûj)
)
=

N

∑
n=1

[
log ĉV,Uc(v̂

(n), û(n)
c )+ log ĉV,Uj |Uc

(
ĥV|Uc(v̂

(n)|û(n)
c ), ĥUj |Uc(û

(n)
j |û(n)

c )
)]

.

For each candidate predictor Uc, the maximal two-step ahead conditional log-likelihood
at step 1, cll1

c , is defined as cll1
c := maxj∈{1,...,p}\{c} cll

(
C1

c,j, v̂, (ûc, ûj)
)

, ∀c ∈ K1.
Finally, based on the maximal two-step ahead conditional log-likelihood at step 1,

cll1
c , the index t1 is chosen as t1 := arg maxc∈K1

cll1
c , and the corresponding candidate

predictor Ut1 is selected as the first predictor added to the order. An illustration of the
two-step ahead forward selection algorithm is given in Figure 3.2. Comparing it to the
first step of the one-step ahead algorithm in Figure 3.1 we can easily see the difference
in these two approaches. Finally, the current optimal fit after the first step is the C-vine
or D-vine copula, C1 with order O(C1) = (V, Ut1).
Step r: After r − 1 steps, the current optimal fit is the C- or D-vine copula Cr−1 with
order O(Cr−1) = (V, Ut1 , . . . , Utr−1). At each previous step i, the order of the current
optimal fit is sequentially updated with the predictor Uti for i = 1, . . . , r − 1. At the
r-th step the next predictor candidate is to be included. To do so, the set of potential
candidates is narrowed based on a partial correlation measure. Defining a partial
Kendall’s τ is not straightforward and requires the notion of a partial copula, which
is the average over the conditional copula given the values of the conditioning values
(for example see Gijbels and Matterne (2021) and the references given there). In

24



3. Univariate response vine copula based regression
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Figure 3.2.: Step 1 for the two-step ahead algorithm.
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addition, the computation in the case of multivariate conditioning is very demanding
and still an open research problem. Therefore we took a pragmatic view and base
our candidate selection on partial correlation. Due to the assumption of Gaussian
margins inherited to the Pearson’s partial correlation, the estimates are computed on
the z-scale. Estimates of the empirical Pearson’s partial correlation, ρ̂ZV ,Zj;Zt1 ,...,Ztr−1

,
between the normalized response variable ZV = Φ−1(V) and available predictors
Zj = Φ−1(Uj) for j ∈ {1, 2, . . . , p} \ {t1, . . . , tr−1} are obtained. Similar to the first
step, a set of candidate predictors of size k is selected based on the largest values of
|ρ̂ZV ,Zj;Zt1 ,...,Ztr−1

| and the corresponding indices q1, . . . , qk. The k candidate predictors
and the corresponding candidate index set of step r are defined as Uq1 , . . . , Uqk and the
set Kr = {q1, . . . , qk}, respectively. For all c ∈ Kr and j ∈ {1, 2, . . . , p} \ {t1, . . . , tr−1, c}
the candidate two-step ahead C- or D-vine copulas are defined as the copulas Cr

c,j
with order O(Cr

c,j) = (V, Ut1 , . . . , Utr−1 , Uc, Uj). There are k(p − r) different candidate
two-step ahead C- or D-vine copulas Cr

c,j (since we have k candidates for the one-step
ahead extension Uc, and for each, p − (r − 1)− 1 two step ahead extensions Uj). Their
corresponding conditional log-likelihood functions are given as

cll
(
Cr

c,j, v̂, (ût1 . . . ûtr−1 , ûc, ûj)
)
= cll

(
Cr−1, v̂, (ût1 . . . ûtr−1)

)
+

N

∑
n=1

log ĉVUc ;Ut1 ,...,Utr−1

(
ĈV|Ut1 ,...,Utr−1

(
v̂(n)|û(n)

t1
, . . . , û(n)

tr−1

)
, ĈUc |Ut1 ,...,Utr−1

(
û(n)

c |û(n)
t1

, . . . , û(n)
tr−1

))
+

N

∑
n=1

log ĉVUj ;Ut1 ,...,Utr−1 ,Uc

(
ĈV|Ut1 ,...,Utr−1 ,Uc

(
v̂(n)|û(n)

t1
, . . . , û(n)

tr−1
, û(n)

c
)
,

ĈUj |Ut1 ,...,Utr−1 ,Uc

(
û(n)

j |û(n)
t1

, . . . , û(n)
tr−1

, û(n)
c
))

.

The r-th predictor is then added to the order based on the maximal two-step ahead
conditional log-likelihood at Step r, cllr

c , defined as

cllr
c := max

j∈{1,2,...,p}\{t1,...,tr−1,c}
cll
(
Cr

c,j, v̂, (ût1 . . . ûtr−1 , ûc, ûj)
)

, ∀c ∈ Kr. (3.2)

The index tr is chosen as tr := arg maxc∈Kr
cllr

c , and the predictor Utr is selected as the
r−th predictor of the order. At this step, the current optimal fit is the C-vine or D-vine
copula Cr, with order O(Cr) = (V, Ut1 , . . . Utr). The iterative procedure is repeated until
all predictors are included in the order of the C- or D-vine copula model.

Additional variable reduction in higher dimensions

In order to be able to decrease computational intensity, a variable reduction is possible.
The two-step ahead algorithm requires calculating p − r conditional log-likelihoods
for each candidate predictor at a given step r. This leads to calculating a total of
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3. Univariate response vine copula based regression

(p − r)k conditional log-likelihoods, where k is the number of candidates. For p large,
this procedure would cause a heavy computational burden. Hence, the solution is
to reduce the number of conditional log-likelihoods calculated for each candidate
predictor. This is achieved by reducing the size of the set, over which the maximal
two-step ahead conditional log-likelihood cllr

c in (3.2), is computed. Instead of over the
set {1, 2, . . . , p} \ {t1, . . . , tr−1, c}, the maximum can be taken over an appropriate subset.
This subset can be then chosen either based on the largest Pearson’s partial correlations
in absolute value denoted as |ρ̂ZV ,Zj;Zt1 ,...,Ztr−1 ,Zc |, by random selection, or a combination
of the two. The selection method and the size of reduction are user-decided.

Implementation

The two-step ahead forward selection algorithms for C- and D-vine based quantile
regression, from Section 3.3.2, and the additional variable selection we implement in
the statistical language R (R Core Team, 2020). We also implement the C-vine one-
step ahead algorithm in the statistical language R, while the D-vine one-step ahead
algorithm is already implemented and available in the R package vinereg (Nagler,
2022).

3.4. Simulation study

In the simulation study from Kraus and Czado (2017), it is shown that the D-vine
one-step ahead forward selection algorithm performs better or similar, compared to
other state of the art quantile methods, such as boosting additive quantile regression
(Koenker, 2005; Fenske et al., 2011), nonparametric quantile regression (Q. Li et al.,
2013), semi-parametric quantile regression (Noh et al., 2015), and the linear quantile
regression (Koenker and Bassett, 1978). Thus we use the one-step ahead algorithm as
the benchmark competitive method in the simulation study.

We set up the following simulation settings given below. Each setting is replicated
for R = 100 times. In each simulation replication, we randomly generate Ntrain samples
used for fitting the appropriate nonparametric vine based quantile regression models.
Additionally, another Neval =

1
2 Ntrain samples for Settings (a) – (f) and Neval = N train for

Settings (g) and (h) are generated for predicting conditional quantiles from the models.
Settings (a) – (f) are designed to test quantile prediction accuracy of nonparametric C-
or D-vine quantile regression in cases where p ≤ N; hence, we set Ntrain = 1000 or 300.
Settings (g) and (h) test quantile prediction accuracy in cases where p > N; hence, we
set Ntrain = 100.
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3. Univariate response vine copula based regression

(a) Simulation Setting M5 from Kraus and Czado (2017):

Y =
√
|2X1 − X2 + 0.5|+ (−0.5X3 + 1)(0.1X3

4) + σε,

with ε ∼ N(0, 1), σ ∈ {0.1, 1}, (X1, X2, X3, X4)
T ∼ N4(0, Σ), and the (i, j)th com-

ponent of the covariance matrix given as (Σ)i,j = 0.5|i−j|.

(b) (Y, X1, . . . , X5)T follows a mixture of two 6-dimensional t copulas with degrees of
freedom equal to 3 and mixture probabilities 0.3 and 0.7. Association matrices R1,
R2 and marginal distributions are recorded in Table 3.1.

R1 =



1 0.6 0.5 0.6 0.7 0.1
0.6 1 0.5 0.5 0.5 0.5
0.5 0.5 1 0.5 0.5 0.5
0.6 0.5 0.5 1 0.5 0.5
0.7 0.5 0.5 0.5 1 0.5
0.1 0.5 0.5 0.5 0.5 1


R2 =



1 −0.3 −0.5 −0.4 −0.5 −0.1
−0.3 1 0.5 0.5 0.5 0.5
−0.5 0.5 1 0.5 0.5 0.5
−0.4 0.5 0.5 1 0.5 0.5
−0.5 0.5 0.5 0.5 1 0.5
−0.1 0.5 0.5 0.5 0.5 1


Y X1 X2 X3 X4 X5

N(0, 1) t4 N(1, 4) t4 N(1, 4) t4

Table 3.1.: Association matrices of the multivariate t-copula and marginal distributions
for Setting (b).

.

(c) Linear and heteroscedastic (Chang and Joe, 2019):
Y = 5(X1 + X2 + X3 + X4) + 10(U1 + U2 + U3 + U4)ε, where (X1, X2, X3, X4)

T ∼
N(0, Σ), Σi,j = 0.5I{i ̸=j}, ε ∼ N4(0, 0.5), and Uj, j = 1, . . . , 4 are obtained from the
Xj’s by the probability integral transform.

(d) Nonlinear and heteroscedastic (Chang and Joe, 2019):
Y = U1U2e1.8U3U4 + 0.5(U1 +U2 +U3 +U4)ε, where Uj, j = 1, . . . , 4 are probability
integral transformed from N4(0, Σ), Σi,j = 0.5I{i ̸=j}, and ε ∼ N(0, 0.5).

(e) R-vine copula (Czado, 2019): (V, U1, . . . , U4)
T follows an R-vine distribution with

pair copulas given in Table 3.2.

(f) D-vine copula (Tepegjozova, 2019): (V, U1, . . . , U5)T follows a D-vine distribution
with pair copulas given in Table 3.3.

(g) Similar to Setting (a),

Y =
√
|2X1 − X2 + 0.5|+ (−0.5X3 + 1)(0.1X3

4) + (X5, . . . , X110)(0, . . . , 0)T + σε,
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Tree Edge Conditioned ; Conditioning Family Parameter Kendall’s τ

1 1 U1, U3 ; Gumbel 3.9 0.74
1 2 U2, U3 ; Gauss 0.9 0.71
1 3 V , U3 ; Gauss 0.5 0.33
1 4 V , U4 ; Clayton 4.8 0.71
2 1 V , U1 ; U3 Gumbel(90) 6.5 -0.85
2 2 V , U2 ; U3 Gumbel(90) 2.6 -0.62
2 3 U3, U4 ; V Gumbel 1.9 0.48
3 1 U1, U2 ; V , U3 Clayton 0.9 0.31
3 2 U2, U4 ; V , U3 Clayton(90) 5.1 -0.72
4 1 U1, U4 ; V , U2, U3 Gauss 0.2 0.13

Table 3.2.: Pair copulas of the R-vine CV,U1,U2,U3,U4 , with their family parameter (rotation)
and Kendall’s τ for Setting (e).

where (X1, . . . , X110)
T ∼ N110(0, Σ) with the (i, j)th component of the covariance

matrix (Σ)i,j = 0.5|i−j|, ε ∼ N(0, 1), and σ ∈ {0.1, 1} .

(h) Similar to (g),
Y = (X3

1 , . . . , X3
110)β + ε, where (X1, . . . , X10)

T ∼ N10(0, ΣA) with the (i, j)th com-
ponent of the covariance matrix (ΣA)i,j = 0.8|i−j|, (X11, . . . , X110)

T ∼ N100(0, ΣB)

with (ΣB)i,j = 0.4|i−j|. The first 10 entries of β are a descending sequence between
(2, 1.1) with increment of 0.1 respectively, and the rest are equal to 0. We assume
ε ∼ N(0, σ) and σ ∈ {0.1, 1}.

Since the true regression quantiles are difficult to obtain in most settings, we consider
the averaged check loss (Komunjer, 2013) and the interval score (Chang and Joe, 2019;
Gneiting and Raftery, 2007), instead of the out-of-sample mean averaged square error
used in Kraus and Czado (2017), to evaluate the performance of the estimation methods.
For a chosen α ∈ (0, 1), the averaged check loss is defined as

ĈLα =
1
R

R

∑
r=1

{
1

Neval

Neval

∑
n=1

{
γα

(
Yeval

r,n − q̂α(Xeval
r,n )

) }}
, (3.3)

where γα is the check loss function.
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3. Univariate response vine copula based regression

Tree Edge Conditioned ; Conditioning Family Parameter Kendall’s τ

1 1 V , U1 ; Clayton 3.00 0.60
1 2 U1, U2 ; Joe 8.77 0.80
1 3 U2, U3 ; Gumbel 2.00 0.50
1 4 U3, U4 ; Gauss 0.20 0.13
1 5 U4, U5 ; Indep. 0.00 0.00
2 1 V , U2 ; U1 Gumbel 5.00 0.80
2 2 U1, U3 ; U2 Frank 9.44 0.65
2 3 U2, U4 ; U3 Joe 2.78 0.49
2 4 U3, U5 ; U4 Gauss 0.20 0.13
3 1 V , U3 ; U1, U2 Joe 3.83 0.60
3 2 U1, U4 ; U2, U3 Frank 6.73 0.55
3 3 U2, U5 ; U3, U4 Gauss 0.29 0.19
4 1 V , U4 ; U1, U2, U3 Clayton 2.00 0.50
4 2 U1, U5 ; U2, U3, U4 Gauss 0.09 0.06
5 1 V , U5 ; U1, U2, U3, U4 Indep. 0.00 0.00

Table 3.3.: Pair copulas of the D-vine CV,U1,U2,U3,U4,U5 , with their family parameter and
Kendall’s τ for Setting (f).

The interval score, for the (1 − α)× 100% prediction interval, is defined as

ÎSα =
1
R

R

∑
r=1

{
1

Neval

Neval

∑
n=1

{(
q̂α/2(Xeval

r,n )− q̂1−α/2(Xeval
r,n )

)
(3.4)

+
2
α

(
q̂1−α/2(Xeval

r,n )− Yeval
r,n
)

I{Yeval
r,n ≤ q̂1−α/2(Xeval

r,n )}

+
2
α

(
Yeval

r,n − q̂α/2(Xeval
r,n )

)
I{Yeval

r,n > q̂α/2(Xeval
r,n )}

}}
,

and smaller interval scores are better.
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Setting Model ÎS0.05 ĈL0.05 ĈL0.5 ĈL0.95 ÎS0.05 ĈL0.05 ĈL0.5 ĈL0.95
Ntrain = 300 Ntrain = 1000

(a) D-vine One-step 55.54 0.66 0.16 0.51 55.89 0.67 0.15 0.50
σ = 0.1 D-vine Two-step 43.33 0.47 0.10 0.41 40.74 0.45 0.09 0.37

** C-vine One-step 53.51 0.64 0.16 0.49 54.52 0.66 0.15 0.49
C-vine Two-step 42.01 0.45 0.10 0.40 40.04 0.44 0.09 0.37

(a) D-vine One-step 154.35 1.63 0.45 1.62 162.12 1.70 0.43 1.66
σ = 1 D-vine Two-step 148.53 1.57 0.45 1.56 156.77 1.63 0.42 1.62

** C-vine One-step 151.60 1.61 0.45 1.60 160.78 1.68 0.43 1.65
C-vine Two-step 148.41 1.56 0.45 1.56 156.79 1.63 0.42 1.62

(b) D-vine One-step 118.75 1.29 0.42 1.30 125.33 1.37 0.40 1.36
* D-vine Two-step 119.10 1.30 0.42 1.30 125.24 1.36 0.40 1.36

C-vine One-step 119.08 1.30 0.41 1.30 125.12 1.36 0.40 1.36
C-vine Two-step 118.90 1.30 0.42 1.30 125.30 1.36 0.40 1.36

(c) D-vine One-step 2908.90 30.54 8.55 30.42 3064.78 31.69 8.15 31.47
** D-vine Two-step 2853.52 30.21 8.70 29.95 3041.95 31.61 8.20 31.26

C-vine One-step 2859.23 30.24 8.59 29.95 3046.52 31.64 8.18 31.25
C-vine Two-step 2850.10 30.19 8.64 29.84 3042.46 31.62 8.20 31.23

(d) D-vine One-step 86.40 0.92 0.24 0.91 91.11 0.96 0.22 0.95
** D-vine Two-step 83.54 0.90 0.24 0.88 89.56 0.96 0.22 0.92

C-vine One-step 84.99 0.91 0.24 0.90 90.40 0.96 0.22 0.94
C-vine Two-step 83.33 0.90 0.24 0.87 89.47 0.96 0.22 0.92

(e) D-vine One-step 10.59 0.11 0.03 0.11 10.49 0.11 0.03 0.11
* D-vine Two-step 10.32 0.10 0.03 0.11 10.26 0.09 0.02 0.11

C-vine One-step 10.23 0.11 0.03 0.10 10.02 0.10 0.02 0.10
C-vine Two-step 10.35 0.10 0.03 0.11 10.33 0.10 0.02 0.11

(f) D-vine One-step 13.79 0.16 0.04 0.14 13.70 0.16 0.04 0.14
** D-vine Two-step 8.44 0.09 0.02 0.08 8.28 0.09 0.02 0.08

C-vine One-step 12.62 0.14 0.04 0.13 12.23 0.13 0.04 0.13
C-vine Two-step 9.09 0.10 0.02 0.09 8.93 0.09 0.02 0.08

Table 3.4.: Out-of-sample predictions ÎS0.5, ĈL0.05, ĈL0.5, ĈL0.95 for Settings (a) – (f) with Ntrain = 300 and Ntrain =

1000. Lower values, indicating better performance, are highlighted in gray. With ** we denote the
scenarios in which there is an improvement through the second step and with * we denote scenarios in
which the models perform similar.
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3. Univariate response vine copula based regression

Model ÎS0.05 ĈL0.05 ĈL0.5 ĈL0.95 ÎS0.05 ĈL0.05 ĈL0.5 ĈL0.95

(g), σ = 0.1 * (g), σ = 1 **
D-vine One-step 19.63 0.26 0.25 0.23 53.38 0.69 0.67 0.65
D-vine Two-step 20.48 0.26 0.26 0.25 52.17 0.68 0.65 0.63
C-vine One-step 19.73 0.25 0.25 0.24 53.62 0.69 0.67 0.65
C-vine Two-step 19.79 0.25 0.25 0.25 52.35 0.67 0.65 0.64

(h), σ = 0.1 ** (h), σ = 1 **
D-vine One-step 558.36 6.92 6.98 7.04 554.18 6.87 6.93 6.99
D-vine Two-step 529.51 6.46 6.62 6.78 531.30 6.64 6.64 6.64
C-vine One-step 514.08 6.05 6.43 6.81 512.96 6.39 6.41 6.44
C-vine Two-step 479.66 5.87 6.00 6.12 483.92 6.05 6.05 6.05

Table 3.5.: Out-of-sample predictions ÎS0.5, ĈL0.05, ĈL0.5, ĈL0.95 for Settings (g) – (h) with
Ntrain = 100. Lower values, indicating better performance, are highlighted
in gray. With ** we denote the scenarios in which there is an improvement
through the second step and with * we denote scenarios in which the models
perform similar.

For Settings (a) – (f), the estimation procedure for the two-step ahead C- or D-vine
quantile regression follows exactly Section 3.3.2 where the candidate sets at each step
include all possible remaining predictors. The additional variable reduction described
in Section 3.3.2 is not applied; thus, we calculate all possible conditional log-likelihoods
in each step. On the contrary, due to computational burden in Settings (g) and (h),
we set the number of candidates to be k = 5 and the additional variable reduction
from Section 3.3.2 is applied. The chosen subset contains 20% of all possible choices,
where 10% are predictors having the highest Pearson’s partial correlation with the
response and the remaining 10% are chosen randomly from the remaining predictors.
Performance of the C- and D-vine two-step ahead quantile regression is compared
with the C- and D-vine one-step ahead quantile regression. The performance of the
competitive methods, evaluated by the averaged check loss at 5%, 50%, 95% quantile
levels and interval score for the 95% prediction interval, are recorded in Tables 3.4
and 3.5. All densities are estimated nonparametrically for a fair comparison. Table 3.4
shows that the C- and D-vine two-step ahead regression models outperform the C-
and D-vine one-step ahead regression models in five out of seven settings, except
Settings (b) and (e), in which all models perform quite similarly to each other. Again,
when comparing regression models within the same vine copula class, the C-vine
two-step ahead regression models outperform the C-vine one-step ahead models in
five out of seven settings. Similarly, the D-vine two-step ahead models outperform the
D-vine one-step ahead models in six out of seven scenarios, except Setting (b) only.
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3. Univariate response vine copula based regression

In scenarios where there is no significant improvement through the second step, both
one-step and two-step ahead approaches perform very similar. All of that implies that
the two-step ahead vine based quantile regression improves the performance of the
one-step ahead quantile regression. Table 3.5 indicates that in the high-dimensional
settings, where the two-step ahead quantile regression was used in combination with
the additional variable selection from Section 3.3.2, in three out of four simulation
settings, the two-step ahead models outperform the one-step ahead models. In Setting
(g), we can see that all models show similar performance. In Setting (g) with standard
deviation σ = 0.1, the D-vine one-step ahead model outperforms the other models,
while in Setting (g) with σ = 1, the D-vine two-step ahead model shows a better
performance. In Setting (h), we see a significant improvement in the two-step ahead
models compared to the one-step ahead models. For both σ = 0.1 and σ = 1, the best
performing model is the C-vine two-step ahead model. These results indicate that the
two-step method improves the accuracy of the one-step ahead quantile regression in
high dimensions, even with an attempt to ease the computational complexity of the
two-step ahead model with a low number of candidates, compared to the number of
predictors.

The proposed two-step algorithms, as compared to the one-step algorithms are
computationally more intensive. We present the averaged computation time over
R = 100 replications on 100 paralleled cores (Xeon Gold 6140 CPUSs@2.6 GHz) in
Settings (g), (h) where p > Ntrain, for the one step ahead and the two-step ahead
approach. The high-dimensional settings have similar computational times since the
computational intensity depends on the number of pair copula estimations and the
number of candidates, which are the same for Settings (g), (h). Hence, we only report
the averaged computational times for Settings (g), (h). The average computation time in
minutes for the one-step ahead (C- and D-vine) approach is 83.01, in contrast to 200.28
by the two-step ahead (C- and D-vine) approach. With the variable reduction from
Section 3.3.2, the two-step algorithms double the time consumption of the one-step
algorithms in exchange for prediction accuracy.

3.5. Data application

We test the proposed methods on two real data sets, i.e., the Concrete data set from
Yeh (1998) corresponding to p ≤ N, and the Riboflavin data set from Bühlmann and
Geer (2011) corresponding to p > N. For both, performance of the four competitive
algorithms is evaluated by the averaged check loss defined in (3.3) at 5%, 50% and 95%
quantile levels, and the 95% prediction interval score defined in (3.4), by randomly
splitting the data set into training and evaluation sets 100 times.
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3. Univariate response vine copula based regression

3.5.1. Concrete data set

The concrete dataset was originaly used in Yeh (1998) , and is available at the UCI
Machine Learning Repository (Dua and Graff, 2017). The dataset has in total 1030
samples. Our objective is quantile predictions of the concrete compressive strength,
which is a highly nonlinear function of age and ingredients. The predictors are age
( AgeDay, counted in days) and 7 physical measurements of the concrete ingredients
(given in kg in a m3 mixture): cement (CementComp), blast furnace slag (BlastFur), fly
ash (FlyAsh), water (WaterComp), superplastizer (Superplastizer), coarse aggregate
(CoarseAggre) and fine aggregate (FineAggre).

We randomly split the dataset into training set with 830 samples and evaluation set
with 200 samples; the random splitting is repeated for 100 times. Performance of the
proposed C- and D-vine two-step ahead quantile regression, compared with the C-
and D-vine one-step ahead quantile regression, is evaluated by several measurements
reported in Table 3.6 after 100 repetitions of fitting the models. The results are quite
close to each other, but given the small number of predictors, that is what one would
expect of the forward sequential algorithm. However, there is an improvement in the
performance of the two-step ahead approach compared to the one-step ahead approach
for both C- and D-vine based models. Also, the C-vine model seems more appropriate
for modelling the dependency structure in the dataset, because the C-vine based models
show better results. Finally, out of all models, the C-vine two-step ahead algorithm is
the best performing algorithm in terms of out-of-sample predictions ÎS0.5, ĈL0.05, ĈL0.5,
ĈL0.95 on the concrete dataset, as seen in Table 3.6 .

Model ÎS0.05 ĈL0.05 ĈL0.5 ĈL0.95

D-vine One-step 1032.32 10.75 2.76 10.52

D-vine Two-step 987.10 10.54 2.78 9.82

C-vine One-step 976.75 10.65 2.70 9.45

C-vine Two-step 967.00 10.52 2.64 9.45

Table 3.6.: Concrete data set: Out-of-sample predictions ÎS0.5, ĈL0.05, ĈL0.5, ĈL0.95. The
best performing model is highlighted in gray.

Order analysis

In order to explain the different approaches of the one-step ahead and the two-step
ahead, we consider the order of the predictors which the algorithms provide. The
order of the predictors that enter the model is based on maximising the conditional log
likelihood, thus it provides a descending order of influence of the predictors on the
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conditional quantile function of the response.
Figure 3.3 shows the individual distribution of positions for each predictor in the

four different models, i.e. each individual bar plot has all the possible positions in the
order on the x-axis and the counts of how many times the given predictor appeared on
a specific position of the order on the y-axis out of the 100 repeated model fits.
From Figure 3.3 we can indeed see the greedy approach of the one-step algorithms. Both
one-step ahead C- and D- vine models always choose the same predictor as the first
predictor to enter the model. That is because the pair copula between the response and
the predictor AgeDay has the biggest likelihood, out of the possible pair copula between
the response and each of the predictors. Next, as second predictor both one-step ahead
algorithms always choose the predictor CementComp, because, similarly as before, the
bivariate copula between the response and CementComp conditioned on the already
chosen AgeDay has the biggest likelihood out of the possible pair copula between the
response and the other possible predictors conditioned on AgeDay. Note that in only
3 dimensions the models for both C- and D-vines are equivalent (in 3 dimensions a
path is also a star, and vice versa). On other side, the two-step ahead approaches do
not make such a uniform decision about the first predictor to be included. Instead
of choosing AgeDay as a first predictor, the algorithms consider the future possible
improvement and based on that, they choose the predictor CementComp as the first to
enter the model in 70 cases out of 100. The most influential predictor from the one-step
ahead models, the AgeDay, is chosen to be second or third predictor of the two-step
ahead models, more precisely is it second in 24 cases and third in 37 for the C-vine
two-step ahead, and it is second in 41 cases and third in 27 for the D-vine two-step
ahead, which turns out to be better ordering.

Next, we look at the so-called optimal orders of each algorithm. The optimal order
is defined as the order in which the first element corresponds to the predictor that
appeared the most in the first place over the 100 iteration, then the second element
is defined as the element that appeared the most in the second position among the
elements not chosen as first and so on. Figure 3.4 shows the optimal orders of the four
different algorithms. Each plot shows the predictors on the x-axis in the optimal order
and the corresponding counts of each predictor.

There is almost no difference in the orders of the D-vine one-step ahead algorithm and
the C-vine one-step ahead algorithm. The first five predictors, i.e. AgeDay, CementComp,
WaterComp, BlastFur and FlyAsh, have almost identical distributions of order position
in both algorithms. Further, the optimal orders of the one-step ahead algorithms coin-
cide in the first five places. The other three predictors do differ in the distribution. On
the other hand the two-step ahead algorithms show more difference in the distributions
of all predictors. The optimal orders of the two-step ahead algorithms do coincide on
the first, fourth and fifth place but they differ on the second and third place.

35



3. Univariate response vine copula based regression

Figure 3.3.: Individual distribution plots. Column 1: D-vine one-step ahead, Column
2: D-vine two-step ahead, Column 3: C-vine one-step ahead, Column 4:
C-vine two-step ahead.
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Figure 3.4.: Optimal orders of the algorithms. x-axis shows the optimal order, y-axis
shows the count of how many times the corresponding predictor appeared
in the 100 iterations at the position the predictor occupies in the optimal
order.

37



3. Univariate response vine copula based regression

3.5.2. Riboflavin data set

The Riboflavin data set, available in the R package hdi, aims at quantile predictions
of the log-transformed production rate of Bacillus subtilis using log-transformed ex-
pression levels of 4088 genes. To reduce the computational burden, we perform a
pre-selection of the top 100 genes with the highest variance (Bühlmann and Geer, 2011),
resulting in a subset with p = 100 log-transformed gene expressions and N = 71 sam-
ples. Random splitting of the subset into training set with 61 samples and evaluation
set with 10 samples, is repeated for 100 times. For the C- and D-vine two-step ahead
quantile regression the number of candidates is set to k = 10. Additionally, to further
reduce the computational burden the additional variable selection from Section 3.3.2
is applied with the chosen subset containing 25% of all possible choices, where 15%
are predictors having the highest partial correlation with the log-transformed Bacillus
subtilis production rate and the remaining 10% are chosen randomly from the remain-
ing predictors. Performance of competitive quantile regression models is reported in
Table 3.7, where we see that the proposed C-vine two-step ahead quantile regression is
the best performing model and outperforms both the D-vine one-step ahead quantile
regression from Kraus and Czado (2017) and the C-vine one-step ahead quantile re-
gression to a large extent. Further, the second best performing method is the D-vine
two-step ahead model which, while performing slightly worse than the C-vine two-step
ahead model, also significantly outperforms both the C-vine and D-vine one-step ahead
models. Since the predictors entering the C- and D-vine models yield a descending

Model ÎS0.05 ĈL0.05 ĈL0.5 ĈL0.95

D-vine One-step 33.83 0.44 0.42 0.41

D-vine Two-step 30.57 0.44 0.38 0.33

C-vine One-step 34.52 0.49 0.43 0.38

C-vine Two-step 28.59 0.41 0.36 0.30

Table 3.7.: Out-of-sample predictions ÎS0.5, ĈL0.05, ĈL0.5, ĈL0.95. The best performing
model is highlighted in gray.

order of the predictors contributing to maximizing the conditional log-likelihood, the
order indicates the influence of the predictors to the response variable. It is often of
practical interest to know which gene expressions are of the highest importance for
prediction. Since we repeat the random splitting of the subset for R = 100 times, the
importance of the gene expressions is ranked sequentially by choosing the one with the
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highest frequency of each element in the order excluding the gene expressions chosen
in the previous steps. For instance, the most important gene expression is chosen
as the one most frequently ranked first; the second most important gene is chosen
as the one most frequently chosen as the second element in the order, excluding the
most important gene selected in the previous step. The top ten most influential gene
expressions using the C- and D-vine one- or two-step ahead models are recorded in
Table 3.8.

Model/Position 1 2 3 4 5 6 7 8 9 10

D-vine One-step GGT YCIC MTA RPSE YVAK THIK ANSB SPOVB YVZB YQJB

D-vine Two-step MTA RPSE THIK YMFE YCIC sigM PGM YACC YVQF YKPB

C-vine One-step GGT YCIC MTA RPSE HIT BFMBAB PHRC YBAE PGM YHEF

C-vine Two-step MTA RPSE THIK YCIC YURU PGM sigM YACC YKRM ASNB

Table 3.8.: The 10 most influential gene expressions on the conditional quantile function,
ranked based on their position in the order.

3.6. On the stopping criteria

In the parametric set up of the D-vine regression (Kraus and Czado, 2017), there is a
possibility of having a selection criteria penalization based on the number of parameters
used for the fitted vine copula model. They utilize the selection criteria of Akaike
information criterion (AIC) (Akaike, 1973b) and the Bayesian information criterion
(BIC) (Schwarz, 1978). However, in the nonparametric setting the number of parameters
is an open research question.

Usually in this case the effective degree of freedom (or edf) is used as a selection criteria.
One possibility for its estimation is following Loader (2006, Section 5.3.2), using a
so-called influence function and method of infinitesimal perturbations. This approach
is implemented in the rvinecopulib library, so we do a short study on the possible
advantages or disadvantages of its usage. Because of the low number of variables
and the data sample size, we investigate adjusted AIC and BIC penalized conditional
log-likelihoods as a selection criteria for the nonparametric case on the real life Concrete
data set from Section 3.5.1.

3.6.1. AIC and BIC penalization

Let C be a C- or D-vine copula with order O (C) =
(
V, U1, . . . , Up

)
. Additionally,

assume that we are given N observations v and uj for j = 1, . . . , p. Let the effective
degree of freedom be denoted as |Θ|. To be able to properly compare these values for
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this nonparametric approach, we consider slightly different versions of the AIC and BIC
criterion. We define the adjusted AIC- and BIC-penalized conditional log likelihood
functions as

clla
AIC

(
C, v,

(
u1, . . . , up

))
= 2cll

(
C, v,

(
u1, . . . , up

))
− 2|Θ|,

clla
BIC
(
C, v,

(
u1, . . . , up

))
= 2cll

(
C, v,

(
u1, . . . , up

))
− log(N)|Θ|. (3.5)

The more standard way to define these values is to change the signs in the above
equations, but for the sake of the analysis, we chose to consider these values, so that
greater values of all 3 selection criteria indicate a better fit than lower values. In Table
3.9 we show the log-likelihoods and effective degrees of freedom of the pair copulas
contributing to the conditional log-likelihood, the conditional log-likelihood cll, the
penalized conditional log-likelihoods clla

AIC and clla
BIC at each step of the algorithm for

each of the 4 considered algorithms with the optimal orders as shown in Figure 3.4.
Next, in Figure 3.5 we show how the conditional log-likelihood cll, the clla

AIC and
the clla

BIC change for each model as a predictor is being included in the model at each
step. On one side, in all 4 panels we can see that both the cll and penalized conditional
log-likelihood clla

AIC have an increasing trend at the beginning, somewhere until the
5-th predictor is included in the model, and then they level off at a certain value. On
the other side, the clla

BIC curve has a type of upside down u-shape. First, there is an
increasing trend, and after 5 predictors are included in the model, the clla

BIC starts to
decrease. This is the case as the BIC selection criteria usually penalizes more than the
AIC criteria. Thus, if one would use the penalized clla

BIC or clla
AIC as a selection criteria,

the algorithm would include only the first 5 predictors, since there is no significant
improvement in the conditional log-likelihoods to justify including more predictors.

3.6.2. Recomputed models with a cut-off

Having the optimal orders of each algorithm and seeing that using a penalized clla
AIC

or clla
BIC only the first 5 predictors in each model will be chosen, we can recompute

the statistics of Table 3.6 such that the 100 iterations of splitting the data set remain
the same (830 points training sample and 200 points evaluation sample), but at each
iteration instead of searching the optimal order on the training set, the models are fitted
with the first five elements of the optimal orders provided in Figure 3.4 (note that for
every algorithm the order was taken as the first five elements of the orders in Figure
3.4 and this is done because the last three predictors were not influential based on both
clla

BIC and clla
AIC ). Table 3.10 shows the out-of-sample statistics for the models fitted

with the optimal order.
Comparing Tables 3.6 and 3.10 we can see that both one-step ahead algorithms and

the two-step ahead D-vine did not manage to improve the out-of-sample statistics
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Predictor Pos Logliki Edfi cll clla
AIC clla

BIC
D-vine One-step

AgeDay 1 255.38 22.45 255.38 465.86 359.86
CementComp 2 285.70 25.11 541.08 987.04 762.49
WaterComp 3 163.88 23.43 704.96 1267.94 932.77
BlastFur 4 174.52 18.34 879.48 1580.30 1158.54
FlyAsh 5 79.41 16.92 958.89 1705.28 1203.63

CoarseAggre 6 36.19 18.73 995.08 1740.20 1150.12
Superplasticizer 7 28.51 20.89 1023.59 1755.44 1066.73

FineAggre 8 19.10 18.54 1042.69 1756.56 980.31
D-vine Two-step

CementComp 1 179.19 24.51 179.19 309.36 193.64
AgeDay 2 365.88 26.61 545.07 987.90 746.54

WaterComp 3 170.94 27.63 716.01 1274.52 902.71
BlastFur 4 219.90 20.21 935.90 1673.90 1206.67
FlyAsh 5 78.52 20.76 1014.42 1789.42 1224.17

FineAggre 6 41.19 41.27 1055.61 1789.26 1029.16
CoarseAggre 7 26.17 24.10 1081.79 1793.40 919.51

Superplasticizer 8 38.94 23.86 1120.73 1823.56 837.02
C-vine One-step

AgeDay 1 255.28 22.92 255.28 464.72 356.50
CementComp 2 285.65 25.41 540.93 985.20 757.01
WaterComp 3 165.83 25.69 706.76 1265.48 916.00
BlastFur 4 201.88 20.45 908.64 1628.34 1182.31
FlyAsh 5 79.90 19.73 988.63 1748.68 1209.49

FineAggre 6 28.07 52.75 1016.70 1699.32 911.08
CoarseAggre 7 41.30 28.72 1058.00 1724.48 800.64

Superplasticizer 8 30.92 18.98 1088.93 1748.36 734.91
C-vine Two-step

CementComp 1 179.20 24.36 179.20 309.68 194.67
WaterComp 2 118.71 28.75 297.90 489.60 238.85
AgeDay 3 428.35 25.63 726.26 1295.04 923.27
BlastFur 4 227.42 25.24 953.67 1699.40 1208.47
FlyAsh 5 99.21 21.07 1052.88 1855.68 1265.27

FineAggre 6 36.45 22.25 1089.32 1884.08 1188.61
CoarseAggre 7 37.98 23.63 1127.31 1912.78 1105.75

Superplasticizer 8 21.74 16.30 1149.04 1923.66 1039.67

Table 3.9.: Log-likelihood, edf for the pair copulas contributing to the cll, the conditional
log-likelihood cll, the penalized clla

AIC and clla
BIC .
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D-vine one D-vine two

C-vine one C-vine two

Figure 3.5.: Conditional log-likelihood cll and AIC/BIC penalized clla
AIC, clla

BIC plot.

with the new order. However, the two step-ahead C-vine algorithm showed a slight
improvement in all four statistics.

Model ÎS0.05 ĈL0.05 ĈL0.5 ĈL0.95

D-vine One-step ahead 1078.73 11.27 2.80 10.91

D-vine Two-step ahead 1018.72 10.98 2.77 9.98

C-vine One-step ahead 1038.93 11.18 2.69 9.95

C-vine Two-step ahead 949.42 10.49 2.57 9.09

Table 3.10.: Statistics on the models computed with the optimal fit using only the first 5
predictors.

3.7. Conclusion and outlook

In this chapter, we introduce a fully nonparametric vine based quantile regression
framework. We suggest the usage of either one-step ahead or two-step ahead forward
selection of predictors, which automatically orders predictors by their influence on the
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target quantile function. Also, two possibilities for the selection of the tree structure
can be used in such framework, either D- or C-vines. We compare these 4 models in
an extensive simulation study including several different settings and data sets with
different dimensions, strengths of dependence and tail dependencies.

Based on the simulation study, inclusion of future information, obtained through
considering the next tree in the two-step ahead algorithm, yields a significantly less
greedy sequential selection procedure in comparison to the already existing one-step
ahead algorithm for D-vine based quantile regression in Kraus and Czado (2017). This
is especially visible in the real data Concrete analysis, where we compare the orders
of the predictors of the 4 models selected. However, the cost of this advantage is
that the two-step ahead approach is more computationally expensive compared to the
one-step ahead approach. But the usage of the variable reduction aids the two-step
ahead approach to be less computationally expensive and work good in both low- and
high-dimensional settings.

Further, for the first time, nonparametric bivariate copulas are used to construct vine
copula-based quantile regression models. The nonparametric estimation overcomes the
problem of possible family misspecification in the parametric estimation of bivariate
copulas and allows for even more flexibility in dependence estimation. Additionally,
under mild regularity conditions, the nonparametric conditional quantile estimator is
shown to be consistent (Tepegjozova et al., 2022).

A further open research area is developing similar forward selection algorithms
for R-vine tree structures while optimising the conditional log-likelihood (or shortly
cll). However, in this case obtaining the conditional log-likelihood and estimating
the quantile function can be computationally expensive, as numerical integration will
be required. The standard lack of ability of copula based models to include discrete
variables is also an ongoing research topic. Some results from Schallhorn et al. (2017)
are available, however more research on this topic is required.

Also, there is no single ’best’ model between the different vine structures, but it
depends on the data at hand. Therefore, it would be useful to be able to choose
between a C-vine, D-vine or R-vine information criteria. When maximum likelihood
estimation is employed, the selection criteria by Akaike (AIC) (Akaike, 1973b), the
Bayesian information criterion (BIC) (Schwarz, 1978) and the focussed information
criterion (FIC) (Claeskens and N. Hjort, 2003) might be used immediately. Ko et
al. (2019) studied FIC and AIC specifically for the selection of parametric copulas.
The copula information criterion in the spirit of the Akaike information criterion by
Grønneberg and N. L. Hjort (2014) can be used for selection among copula models with
empirically estimated margins, while Ko and N. L. Hjort (2019) studied such a criterion
for parametric copula models only. Another open research area is the information
criteria for nonparametrically estimated copulas and for vines in particular, as our
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small study in Section 3.6.2 did not show advantages in using the edf from Loader
(2006) as a stopping criteria.

Nonparametrically estimated vines are offering considerable flexibility. Their para-
metric counterparts, on the other hand, are enjoying simplicity. An interesting route
for further research is to combine parametric and nonparametric components in the
construction of the vines in an efficient way to bring the most benefit, which should be
made tangible through some criterion such that guidance can be provided about which
components should be modeled nonparametrically and which others are best modeled
parametrically. For some types of models, such choice between a parametric and a
nonparametric model has been investigated by Jullum and N. L. Hjort (2017) via the fo-
cussed information criterion. This and alternative methods taking the effective degrees
of freedom into account are worth further investigating for vine copula models.
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Parts of Chapter 4 are similar to the publication Tepegjozova and Czado (2022). How-
ever, Sections 4.1 and 4.5 contain new material.

4.1. Introduction

Comprehending the dependence of a set of response variables and determining their
statistical properties in relation to a set of predictor variables is the mathematical basis
for many practical usages. For example, when it comes to analyzing insurance data,
insurance providers keep track of the quantity of claims (frequency) over a subset of
policyholders and the mean amount of claim sizes made (severity). Investigating the
joint conditional distribution of these variables, with consideration of the policyhold-
ers’ attributes, is a crucial aspect of insurance companies decision-making and risk
assessment procedures. In Frees et al. (2016), the authors use a multivariate frequency-
severity regression modeling for each of the response variables, and a joint copula
for modeling the dependence among these outcomes. In advance, utilizing the joint
conditional distribution in relation to a specific set of predictors can establish a strong
statistical foundation for calculating and optimizing conditional risk metrics, such as
Value-at-Risks and Expected Shortfall (Noyan and Rudolf, 2013).

Also, in climatological applications there has been an increased need for joint model-
ing of more than one response variable. For example, Singh et al. (2022) model the joint
distribution of temperature and precipitation using a hierarchical Bayesian framework
to analyse the bias in different weather simulations. Bevacqua et al. (2017) studied
compound floods in the coastal region of Ravenna, Italy based on the joint occurrence
of storm surges and high river levels using vine copulas. In Shiau and Modarres (2009),
Sarhadi et al. (2016), and Kwon and Lall (2016) copulas are employed to construct the
joint distribution function of drought severity and duration. Copula based methods
are used for downscaling climate simulations and bias correction, based on the copula
between the observed and the simulated values of precipitation measurement (Laux
et al., 2011).
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However, usually in the applications using copula modeling, either the marginal
distributions are modeled first using univariate regression models, and then a copula is
used to model their joint dependence, or the joint dependence between two variables is
modeled with a copula, ignoring any predictor variables that may influence this depen-
dence. There is a need for a joint modeling of more than one response variable, given a
set of predictor variables, especially if there is dependence in the data (either among
the responses, among the predictors, or between the responses and the predictors).
The one response vine based regressions, discussed in Chapter 3, are able to handle
modeling dependence among the predictors and between a response variable and a set
of predictors, but we would like to introduce a model that can handle modeling the
dependence between more than one response variable. We start by introducing a vine
copula based regression model that can handle modeling of two response variables and
a set of predictor variables.

The first heuristic for a vine based regression with multiple responses is given in
Zhu et al. (2021). However, this approach has an asymmetric treatment of the response
variables. This might lead to different performance of the regression methods when
the order of the response variables is exchanged. Further, the suggested heuristic for
the bivariate response case is limited to modelling only, but not prediction. Therefore,
we tackle the problem of proposing a vine copula based regression framework that can
handle two responses in a symmetric manner and for which prediction methods would
be obtainable.

We propose a novel vine tree structure or sequence, called Y-vine tree sequence,
which is a member of the set of regular vine tree sequences. It is designed to allow for
a symmetric treatment of the responses. Moreover, we show that using the Y-vine tree
sequence the associated bivariate conditional density is analytically expressible as a
product of all the pair copula terms involving one or both of the response variables.
In the case of more than one conditioning variable (predictor) we develop a forward
selection method. For this we propose an appropriate fit measure for the predictors to
prevent overfitting and remove non-significant predictors.

Further, for applicability of the proposed method we develop a prediction method.
We extend the methodology with a simulation method of bivariate copula data as well.
Finally, we give an application involving a data set with minimal and maximal daily
temperatures together with other weather variables. For this application we show that
the conditional dependence cannot be ignored between the response variables and that
it is non-Gaussian dependence structure, thus requiring the full class of pair copula
families.
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4.2. Vine copula based bivariate regression

4.2.1. General framework

Consider the variables (Y1, Y2)T as the 2-dimensional response vector and X = (X1, . . . ,
Xp
)T as the p-dimensional predictor vector. The main interest of the bivariate regres-

sion is to model the joint conditional distribution function of the response variables
Y = (Y1, Y2)

T given the outcome of some predictor variables X = x, denoted as
FY1,Y2|X (y1, y2|x).

This can be achieved by joint modelling of (Y, X)T and subsequently estimating the
conditional distribution of the bivariate response vector Y given X = x. The same can
be achieved by joint modelling of the PIT values of the responses V = (V1, V2)

T, the
predictors U =

(
U1, . . . , Up

)T , and the corresponding conditional distribution function
of V given U = u, denoted as CV1,V2|U (v1, v2|u). The connection between these two
approaches for the joint conditional distribution, on the x- and u-scale, is derived in
Proposition 1.

Proposition 1 The conditional distribution of Y = (Y1, Y2)
T given X =

(
X1, . . . , Xp

)T , with
corresponding PITs Vj := FYj

(
Yj
)

, j = 1, 2 and Ui := FXi (Xi) , i = 1, . . . , p can be expressed
in terms of a conditional distribution function associated with a copula as

FY1,Y2|X (y1, y2|x) = CV1,V2|U
(

FY1(y1), FY2(y2)|FX1(x1), . . . , FXp(xp)
)

.

Proof of Proposition 1 is given in Appendix A.1.1. Here CV1,V2|U denotes the bivariate
conditional distribution associated with the p + 2 dimensional copula CV1,V2,U and does
not need to have uniform margins. In general, CV1,V2|U is different than CV1,V2;U, as
CV1,V2;U is a bivariate copula with uniform marginal distributions and corresponds to
the copula associated with the bivariate conditional distribution of (Y1, Y2) given X = x.

From Proposition 1, in order to model the bivariate conditional distribution function,
we need to estimate the marginal distributions FYj , FXi for j = 1, 2, i = 1, . . . , p, and
the bivariate conditional distribution CV1,V2|U. To obtain the later, we need to estimate
the p + 2 dimensional copula CV1,V2,U describing the joint distribution of (V1, V2, U).
Following Kraus and Czado (2017) and Noh et al. (2013), we estimate the marginal
distributions nonparameterically to reduce the bias caused by model misspecification.
The same nonparametric estimation of the marginal distribution functions is used in
Chapter 3 as well. A more complex task is estimating the p + 2 dimensional copula
CV1,V2,U and subsequently, deriving the bivariate conditional distribution from this
copula. We propose to model the copula CV1,V2,U using regular vine copulas. However,
we also have to take care that deriving the bivariate conditional distribution CV1,V2|U
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remains numerically tractable. Thus, to obtain the joint conditional distribution of
the response variables using only pair copulas estimated in the vine copula model,
additional constraints are required.

The constraint for a univariate vine regression is that the node containing the response
in the conditioned set is a leaf node in each tree of the tree sequence, as discussed in
Section 3.2. Following these results, the constraint for the bivariate vine regression
model is that the two response variables are exactly the conditioned set of the edge
of the last tree in the vine tree sequence, as also used by Zhu et al. (2021). However,
in their approach there is no symmetric treatment of the two responses, which is a
drawback. Therefore, we propose a novel vine tree sequence specifically designed for
bivariate regression modelling allowing for a symmetric treatment of the responses.

4.2.2. Y-vine copula model

Let X−i be a (p − 1)-dimensional vector defined as X−i := (X1, . . . , Xi−1, Xi+1, . . . Xp)T

and let Xi:i+k be a (k+ 1)-dimensional vector defined as Xi:i+k := (Xi, . . . , Xi+k)
T. Similar

definitions hold for the vectors x−i, U−i, u−i, and for xi:i+k, Ui:i+k ui:i+k, respectively.

Definition 1 Given the marginal PIT transformed response variables V1, V2 and predictor
variables U1, . . . , Up, we define the p+ 1 trees of the Y-vine tree sequence for bivariate regression
as the following:

T1 with N1 =
{

V1, V2, U1, . . . , Up
}

and E1 = {(V1, U1) , (V2, U1)}
⋃p−1

i=1 (Ui, Ui+1) .

T2 with N2 =
{

V1U1, V2U1, U1U2, . . . , Up−1Up
}

and

E2 = {(V1U1, U1U2) , (V2U1, U1U2)}
⋃p−2

i=1 (UiUi+1, Ui+1Ui+2) .

Tk for 3 ≤ k ≤ p with Nk =
⋃

j=1,2
{

VjUk−1; U1:k−2
}⋃p−k+1

i=1 {UiUi+k−1; Ui+1:i+k−2}
and Ek =

⋃
j=1,2

{(
VjUk−1; U1:k−2, U1Uk; U2:k−1

)}
⋃p−k

i=1 {(UiUi+k−1; Ui+1:i+k−2, Ui+1Ui+k; Ui+2:i+k−1)} .

Tp+1 with Np+1 =
⋃

j=1,2
{

VjUp; U1:p−1
}

and Ep+1 =
{(

V1Up; U1:p−1, V2Up; U1:p−1
)}

.

The newly proposed Y-vine tree sequence is graphically illustrated in Figure 4.1. In
each tree of the vine tree sequence the nodes containing the predictor variables in
the conditioned set are arranged in a path, while the nodes containing the response
variables in the conditioned set are added as leafs of the path on one end. The subset
of the sequence that contains a single response and all predictors forms a D-vine tree
sequence. In addition, this tree structure allows for symmetric treatment of the response
variables, especially important since an asymmetric treatment might lead to different
performances of the regression models on different responses.
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T1 :

V1

V2

U1 U2 · · ·· · · Up−1 Up

T2 :

V1U1

V2U1

U1U2 U2U3 · · ·· · · Up−1Up

T3 :

V1U2;U1

V2U2;U1

U1U3;U2 U2U4;U3 · · ·· · · Up−2Up;Up−1

... ......... ...... ......

Tp−1 :

V1Up−2; U1:p−3

V2Up−2; U1:p−3

U1Up−1; U2:p−2 U2Up; U3:p−1

Tp :

V1Up−1; U1:p−2

V2Up−1; U1:p−2

U1Up; U2:p−1

Tp+1 : V1Up; U1:p−1 V2Up; U1:p−1

V1V2; U1:p

Figure 4.1.: Y-vine tree sequence on the u-scale.
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Proposition 2 The Y-vine tree sequence from Definition 1, satisfies the regular vine tree
sequence conditions (i)-(iii) from Section 2.2 and thus, represents a valid regular vine tree
sequence.

Proof of Proposition 2 is given in Appendix A.1.2.
A regular vine copula associated with a Y-vine tree sequence, denoted as V , together

with a set of bivariate copulas B (V) and the corresponding pair copula parameters
Θ (B (V)) is called a Y-vine copula and we denote it by Y . The joint density fY1,Y2,X

using a Y-vine tree sequence can be expressed by Equation(4.1) as

fY1,Y2,X (y1, y2, x) =
p−1

∏
k=1

[
p−k

∏
i=1

cUi ,Ui+k ;Ui+1:i+k−1

(
FXi |Xi+1:i+k−1

(xi|xi+1:i+k−1),

FXi+k |Xi+1:i+k−1
(xi+k|xi+1:i+k−1)

) ]

·
p

∏
i=1

[
∏

j=1,2
cVj,Ui ;U1:i−1

(
FYj|X1:i−1

(
yj|x1:i−1

)
, FXi |X1:i−1

(xi|x1:i−1)
) ]

· cV1,V2;U
(

FY1|X (y1|x) , FY2|X (y2|x)
)
·

p

∏
i=1

fXi(xi) · ∏
j=1,2

fYj(yj).

(4.1)

Theorem 1 The joint conditional density of (Y1, Y2) given the predictors X = (X1, . . . , Xp)T

denoted by fY1,Y2|X in a Y-vine copula is given as

fY1,Y2|X (y1, y2|x) =
p

∏
i=1

[
∏

j=1,2
cVj,Ui ;U1:i−1

(
FYj|X1:i−1

(
yj|x1:i−1

)
, FXi |X1:i−1

(xi|x1:i−1)
)]

· cV1,V2;U
(

FY1|X (y1|x) , FY2|X (y2|x)
)
· ∏

j=1,2
fYj(yj).

(4.2)

Proof of Theorem 1 is given in Appendix A.1.3.

In order to determine the joint and the bivariate conditional density, cV1,V2,U and
cV1,V2|U, we only need to set the marginals to uniform densities, i.e. fYj(yj) = 1 , j = 1, 2
and fXi(xi) = 1 , i = 1, . . . , p in Equation (4.1) and Equation (4.2) respectively. Thus,
with the proposed Y-vine copula we can express the conditional bivariate density as
a product of pair copula densities occurring in the Y-vine tree sequence that contain
a response in the conditioned set, and the marginal densities of the responses. No
integration is needed.
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In addition to the analytic form of the joint conditional density fY1,Y2|X, from the
Y-vine we can also derive other conditional densities in an analytic form.

Corollary 1 From the Y-vine copula associated with the Y-vine tree sequence of Definition 1,
we can derive the following conditional densities:

a. for j = 1, 2 it holds

fYj|X
(
yj|x

)
= fYj(yj) ·

p

∏
i=1

cVj,Ui ;U1:i−1

(
FYj|X1:i−1

(
yj|x1:i−1

)
, FXi |X1:i−1

(xi|x1:i−1)
)

; (4.3)

b. for j, k ∈ {1, 2} with j ̸= k, it holds

fYk |X,Yj

(
yk|x, yj

)
=

p

∏
i=1

[
cVk ,Ui ;U1:i−1

(
FYk |X1:i−1

(yk|x1:i−1) , FXi |X1:i−1
(xi|x1:i−1)

) ]
· cV1,V2;U1:p

(
FY1|X1:p

(y1|x) , FY2|X (y2|x)
)
· fYk(yk).

(4.4)

Proof of Corollary 1 is given in Appendix A.1.4. For the associated univariate condi-
tional densities cV1|U (v1|u) , cV2|U (v2|u) , and cV1|U,V2

(v1|u, v2) , cV2|U,V1
(v2|u, v1) , we

set fYj(yj) = 1, j = 1, 2, in Equation (4.3) and Equation (4.4) respectively. The univariate
conditional distribution functions CV1|U, CV2|U, and CV1|U,V2

, CV2|U,V1
can be obtained

through integration of these associated conditional densities. The bivariate conditional
distribution function CV1,V2|U1:p

is obtained as:

CV1,V2|U1:p

(
v1, v2|u1:p

)
=
∫ v1

0

∫ v2

0
cV1,V2|U1:p

(
v′1, v′2|u1:p

)
dv′2dv′1

=
∫ v1

0

∫ v2

0
cV2|U1:p

(
v′2|u1:p

)
· cV1|V2,U1:p

(
v′1|v′2, u1:p

)
dv′2dv′1

=
∫ v2

0
cV2|U1:p

(
v′2|u1:p

)
·
[∫ v1

0
cV1|V2,U1:p

(
v′1|v′2, u1:p

)
dv′1

]
dv′2

=
∫ v2

0
cV2,U1:p

(
v′2, u1:p

)
· CV1|V2,U1:p

(
v1|v′2, u1:p

)
dv′2.

(4.5)
One can also condition on V1 instead of V2 in Equation (4.5).

4.3. Sequential forward selection of predictors

Until now, we ordered the predictors as U1 to Up, however other permutations are
possible. Let’s denote the associated permutation of the Y-vine Y from Figure 4.1 by
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OY (Y) := (U1, U2, . . . , Up−1, Up). It is the order in which the predictors appear in T1 of
the tree sequence. Compared to the univariate case in Section 3.2 for the order of C-
and D-vines, here we don’t include the responses in the order as they have symmetric
treatment, so we do not order them too.

Similar to the univariate case, one can choose the order of the predictors randomly,
but the predictive power of the fit greatly depends on the chosen order. Different orders
will produce different Y-vine fits, as the influence over the two responses varies with the
predictors. There are p! possible permutations of this order, computing and comparing
each of them is not feasible and the optimal permutation is in general unknown. Thus,
we propose an algorithm that automatically constructs a Y-vine by sequentially ordering
predictors. In addition, we apply a stopping criteria to prevent overfitting, meaning that
the least influential predictors will not be considered in the model. This way we obtain
an automatic forward selection of predictors for the bivariate regression model. Other
approaches can be developed based, for example, on the two-step ahead approach from
Section 3.3.2 or approaches based on background knowledge specifying a predefined
order, or different fit measures and selection criteria.

Joint conditional log-likelihood

The goal is to find the order of the predictors that has the greatest explanatory power.
To compare and quantify the explanatory power of different bivariate regression models
again we propose a log-likelihood approach. Inspired by the one response vine based
regression in Chapter 3, we would like to associate the fit measure with the target
function of the bivariate vine based regression. A suitable choice is the log-likelihood of
cV1,V2|U1:p

, since cV1,V2|U1:p
is the corresponding density of the target function. However,

before deciding on the fit measure we take a more precise look at the proposed log-
likelihood.

Following Killiches et al. (2018), the conditional copula density cVj|U1:p
can be rewritten

as a product of all pair copulas that contain the response Vj in a D-vine copula. In the
bivariate response case using Y-vines, we can express cV1,V2|U1:p

as a product of all pair
copulas that contain the responses V1 and V2, as shown in Equation (4.2) by setting the
marginals to uniform densities. Thus, the log-likelihood of cV1,V2|U1:p

associated with a
Y-vine, can be written as

ℓ
(

cV1,V2|U1:p

)
= ℓ

(
cV1,V2;U1:p

)
+ ℓ

(
cV1|U1:p

)
+ ℓ

(
cV2|U1:p

)
= ℓ

(
cV1,V2;U1:p

)
+ ∑

j=1,2

[
ℓ
(

cVj,U1

)
+

p

∑
k=2

ℓ
(

cVj,Uk ;U1:k−1

)]
,

where ℓ( f ) denotes the log-likelihood associated to a statistical model with density
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f and a given independent and identically distributed sample. Here we used the
predictor order as given in Figure 4.1. The pair copula density cVj,Uk ;U1:k−1 represents
the behaviour between Uk and Vj given that the effects of the conditioning values

U1, . . . , Uk−1 are adjusted. Therefore, a large value of the log-likelihood ℓ
(

cVj,Uk ;U1:k−1

)
indicates an influence of Uk on the response Vj after U1:k−1 are already in the model.
This implies that the log-likelihoods associated with the pair copulas cVj,Uk ;U1:k−1 are
suitable for a fit measure since we can interpret an increase in the fit measure as an
increase in influence from a certain predictor. But what importance does the copula
between the responses given the predictors cV1,V2;U1:k have on the predictive power of the
model is a valid question for k = 2, . . . , p. The term cV1,V2;U1:k represents the behaviour
between V1 and V2 given that the effects of U1, . . . , Uk are adjusted. This implies that
neither an increase nor a decrease in the log-likelihood ℓ (cV1,V2;U1:k) can be interpreted
as an increase in influence for a single predictor. Thus, cV1,V2;U1:k for k = 2, . . . , p fails
to quantify the marginal effect of any predictor on the responses and we exclude it
from our proposed fit measure. Finally, we formally introduce the adjusted conditional
log-likelihood as our fit measure.

Definition 2 The adjusted conditional log-likelihood of a bivariate Y-vine based regression
model, denoted by acℓℓ, with PIT transformed response and predictor variables V1, V2, U1, . . . , Up,
is defined as

acll (Y) := ℓ
(

cV1,V2|U1:p

)
− ℓ

(
cV1,V2;U1:p

)
= ∑

j=1,2

[
ℓ
(

cVj,U1

)
+

p

∑
k=2

ℓ
(

cVj,Uk ;U1:k−1

)]
.

(4.6)

Since we are interested in forward selection of predictors, we need to easily compare
nested models with one predictor difference. Let Yp−1 and Yp be two nested Y-vine
based regression models with response variables V1, V2, where Yp−1 includes the
predictors U1, . . . , Up−1 in that order and Yp includes the predictors U1, . . . , Up−1, Up.
Then the connection between the adjusted conditional log-likelihoods of those nested
models is given as

acll
(
Yp
)
= ℓ

(
cV1,Up;U1:p−1

)
+ ℓ

(
cV2,Up;U1:p−1

)
+ acll

(
Yp−1

)
, (4.7)

and we use this result for forward selection of predictors.

Automatic forward selection algorithm

Assume we start with the PIT transformed response and predictors V1, V2, U1, . . . , Up,

and their observations vn = (vn
1 , vn

2)
T , un =

(
un

1 , . . . , un
p

)T
, for n = 1, . . . , N. We would
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V1

V2

•

U1

U2

U3

...

Up

CV1•

CV2•

Figure 4.2.: Step 1 for the forward selection algorithm.

like to fit a Y-vine copula model to the data, given that V1, V2 are the responses. First,
we build a Y-vine copula model with one predictor only. To see which predictor needs
to be on the first place in the order, we fit all possible one-predictor Y-vines. See
Figure 4.2 for an illustration of the step 1 of the algorithm. We derive their adjusted
conditional log-likelihoods using Equation (4.6), and the predictor that maximizes it,
say U1 becomes the first predictor in the order of the Y-vine model. Let’s denote the
fitted Y-vine model with one predictor as Ŷ1 with order OY (Ŷ1) = (U1).

In the next step, we need to choose the second predictor to be added to the model.
See Figure 4.3 for an illustration of the step 2 of the algorithm. We fit the additional
pair copulas that need to be estimated for the adjusted conditional log-likelihood.
Following Equation (4.7), we need to estimate two more copulas for each of the
remaining predictors, derive the adjusted conditional log-likelihoods and the predictor
that maximizes it, say U2 becomes the second predictor in the order. Thus, at the
end of the second step we have a fitted Y-vine model with two predictors denoted
as Ŷ2 with order OY (Ŷ2) = (U1, U2). We continue this forward selection algorithm
until we order all predictors or if none of the remaining predictors is able to increase
the conditional log-likelihood of the model. Other options are available, based on the
AIC/BIC penalized conditional log-likelihood, similar as in Kraus and Czado (2017)
and defined in Equation (3.5) in Section 3.6, where |Θ| is the number of parameters of
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Figure 4.3.: Step 2 for the forward selection algorithm.

the pair copulas that are used to calculate the adjusted conditional log-likelihood. In
the Y-vine automatic forward selection algorithm, we use a semi-parametric approach,
since a stopping criteria for a fully nonparametric approach is still an open question,
as discussed in Section 3.7. This implies that we estimate the marginal distribution
function in a nonparametric way, as in Section 3.2.2 and use parametric pair copulas,
discussed in Section 2.1.2 to construct the Y-vine, to be able to utilize a stopping
criteria. The full estimation procedure and the pseudo code for the algorithm is given
in Appendix A.2.
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4.4. Prediction method for bivariate regression

Assume we have fitted a bivariate Y-vine regression model Ŷ on a bivariate response
vector (V1, V2)T with order of predictors OY (Ŷ) = (U1, . . . , Up). The fitted vine has a
tree sequence and pair copula family sets denoted by V̂ and B̂(V̂), respectively. Given a
new realization unew = (unew

1 , . . . , unew
p )T, our target is to evaluate the function CV1,V2|U

at every integration point vinp = (vinp
1 , vinp

2 )T ∈ [0, 1]2 and determine the integral given
in Equation (4.5).

We apply the chosen adaptive quadrature algorithm for integration (see more in
Piessens et al. (2012)), which requires the ability to evaluate the function under the
integral at all points of the integration interval. Therefore, given a point vinp =

(vinp
1 , vinp

2 )T we define the integrand associated with Equation (4.5) and denoted by
IN (z) for any 0 < z < vinp

2 , as

IN(z) := cV2|U (z|unew) · CV1|V2,U

(
vinp

1 |z, unew
)

. (4.8)

The integration is carried out over the interval (0, vinp
2 ). While the first term in

Equation (4.8) is available analytically since it is the conditional density associated
with the D-vine with order (V2, U1, . . . , Up), the second term needs further consider-
ation. For this we define the pseudo copula data for unew as the following unew

i|i−1 =

hUi |Ui−1

(
unew

i |unew
i−1

)
, unew

i−1|i = hUi−1|Ui

(
unew

i−1 |unew
i
)

∀i = 2, , . . . , p, where the h-functions

hUi |Ui−1
and hUi−1|Ui

are obtained from the pair copula cUi ,Ui−1 ∈ B̂(V̂), as defined in
Section 2.2.

For any k = 2, . . . , p− 1 it holds unew
i|i−k:i−1 = hUi |Ui−k ;Ui−k+1:i−1

(
unew

i|i−k+1:i−1|unew
i−k|i−k+1:i−1

)
,

and similarly unew
i−k|i−k+1:i = hUi−k |Ui ;Ui−k+1:i−1

(
unew

i−k|i−k+1:i−1|unew
i|i−k+1:i−1

)
∀i = 2, , . . . , p,

where the h-functions hUi |Ui−k ;Ui−k+1:i−1
and hUi−k |Ui ;Ui−k+1:i−1

are determined from the pair
copula cUi ,Ui−k ;Ui−k+1:i−1 ∈ B̂(V̂). In addition, based on this pseudo-copula data esti-
mated from the fitted Y-vine we introduce the following two matrices, W ∈ [0, 1]p×p

and W ′ ∈ [0, 1]p×p, as

W
(
unew; B̂(V̂)

)
:=



unew
1 unew

2 unew
3 . . . unew

p−1 unew
p

unew
2|1 unew

3|2 unew
4|3 . . . unew

p|p−1
...

...
... . . .

unew
p−1|1:p−2 unew

p−2|2:p−3
unew

p|1:p−1
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W ′ (unew; B̂(V̂)
)

:=



unew
1 unew

2 unew
3 . . . unew

p−1 unew
p

unew
1|2 unew

2|3 unew
3|4 . . . unew

p−1|p
...

...
... . . .

unew
1|2:p−1 unew

2|3:p−2
unew

1|2:p


.

Using matrices W and W ′ , we define the following pseudo copula data for j = 1, 2,
uvj|1 = hVj|U1

(w|unew
1 ) and u1|vj

= hU1|Vj
(unew

1 |w), where hVj|U1
and hU1|Vj

are esti-
mated from the pair copula cVj,U1 ∈ B̂. Further, for i = 2, . . . , p, define uvj|1:i =

hVj|Ui ;U1:i−1

(
unew

vj|1:i−1|unew
i|1:i−1

)
and ui|vj1:i−1 = hUi |Vj;U1:i−1

(
unew

i|1:i−1|unew
vj|1:i−1

)
. These h-function

are estimated from the pair copula cVj,Ui ;U1:i−1 ∈ B̂. Then, we also define the matrix
W2 ∈ [0, 1](p+1)×2 with j ∈ {1, 2} as

W2 (w, j; W, W ′) :=



w w
uvj|1 u1|vj

uvj|12 u2|vj1

uvj|1:3 u3|vi12
...

...
uvj|1:p up|vj1:p−1


.

For a fixed input vinp
1 we can evaluate

CV1|V2,U

(
vinp

1 |znew, unew
)
= hV1|V2;U

(
uv1|1:p|uv2|1:p

)
, (4.9)

at z = znew, such that uv1|1:p is obtained from W2
(

w = vinp
1 , j = 1; W, W ′

)
and uv2|1:p is

obtained from W2 (w = znew, j = 2; W, W ′). The h-function hV1|V2;U is estimated from
the pair copula cV1,V2;U ∈ B̂(V̂).

cV2|U is evaluated as

cV2|U (znew|unew) =
cV2,U

cU
= cV2,U1 (z

new, unew
1 )

p

∏
i=2

cV2,Ui ;U1:i−1

(
uv2|1:i−1, unew

i:i−1
)

, (4.10)

where cV2,U1 , cV2,Ui ;U1:i−1 ∈ B̂(V̂) for i = 1 . . . , p. Therefore, the integrand in Equation
(4.8) can be evaluated with no further calculations from the Y-vine copula, by combining
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Equations (4.9) and (4.10), as

IN (znew) =cV2,U1 (z
new, unew

1 )
p

∏
i=2

cV2,Ui ;U1:i−1

(
uv2|1:i−1, unew

i|1:i−1

)
· hV1|V2;U

(
uv1|1:p|uv2|1:p

)
.

(4.11)

To summarize, given the integration point vinp = (vinp
1 , vinp

2 )T, the integrand IN (znew)

at a point znew ∈ (0, vinp
2 ) conditioned on unew, can be computed using the matri-

ces W, W ′, W2 (w = znew, j = 2; W, W ′), W2
(

w = vinp
1 , j = 1; W, W ′

)
and h-functions

obtained from the pair copulas defined by B̂(V̂). This implies that we can efficiently
evaluate the function CV1,V2|U using Equation (4.11).

4.5. Simulation of bivariate data in a Y-vine copula

Since the joint bivariate density cV1,V2|U (v1, v2|u) can be expressed as the product of
cV1|U (v1|u) and cV2|V1,U (v2|v1, u) , bivariate samples (v1(u), v2(u)) ∼ CV1,V2|U (·, ·|u)
can be generated as follows.

For the first term, the conditional distribution function CV1|U (v1|u) is available
analytically, since it is the conditional distribution associated with the D-vine with
order (V1, U1, . . . , Up) from Section 3.2. Its inverse C−1

V1|U (v1|u) corresponds to the
quantile function in Equation (3.1), which is also analytically available. This allows us
to get a sample v1(u), by setting v1(u) = C−1

V1|U(a1|u) for a value a1 sampled from a
uniform distribution on [0, 1].

For the second term, the conditional density cV2|V1,U (v2|v1, u) can be obtained using
Equation (4.4), by setting the marginal density to 1, i.e. fY2(y2) = 1. However, the
conditional distribution CV2|V1,U (v2|v1, u) can be obtained only numerically using
integration, i.e.

CV2|V1,U (v2|v1, u) =
∫ v2

0
cV2|V1,U

(
v′2|v1, u

)
dv′2.

Thus, also the inverse C−1
V2|V1,U (v2|v1, u) can be obtained numerically. Then, a sampled

value v2(u) from CV2|V1,U (·|v1, u) is obtained by setting v2(u) = C−1
V2|V1,U (a2|v1, u) for a

uniform [0, 1] sampled value a2. This allows us to get the desired sample (v1(u), v2(u))
from CV1,V2|U (·, ·|u) in a step wise fashion shown in Algorithm 1. More details on
simulation from general R-vines can be found in Dißmann (2010, Chapter 5).
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Algorithm 1: Algorithm for simulating a bivariate sample (v1(u), v2(u)) from
CV1,V2|U (·, ·|u)
Input: N - sample size,

u - conditioning value of the vector u,
Y - Y-vine model

for n = 1, . . . , N do

Sample independently an
1 and an

2 from U (0, 1).

For fixed U = u, set
vn

1(u) = C−1
V1|U(an

1 |u),
using h-functions from the Y-vine Y .

For fixed U = u and V1 = vn
1(u), set

vn
2(u) = C−1

V2|V1,U (an
2 |vn

1 , u) ,

using numerical integration and h-functions from the Y-vine Y .

end
return Bivariate samples (vn

1(u), vn
2(u)) ∼ CV1,V2|U (·, ·|u) for n = 1, . . . , N.
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4.6. Implementation

The implementation of the Y-vine regression, together with all the other tools discussed
in this chapter is done in the statistical software R (R Core Team, 2022). In the esti-
mation of our Y-vine regression model we model the marginals distributions using a
nonparametric approach, while we model the pair copulas in a parametric approach,
resulting in a semiparametric model. Modeling the marginals as well as the copulas
parametrically might cause the resulting fully parametric estimator to be biased and
inconsistent if one of the parametric models is misspecified (Noh et al., 2013). Modeling
them both using a nonparametric approach leads to a fully nonparametric approach
that might overfit the data, because penalization is still an open research topic in
the nonparametric case, as noted in Section 3.7. Thus, we opt for a semiparametric
approach. The marginals are estimated using a univariate nonparametric kernel density
estimator implemented in the R package kde1d (Nagler and Vatter, 2020), and the pair
copulas are fitted using a parametric maximum-likelihood approach with the Akaike
Information Criterion penalization (Akaike, 1973a) (AIC) implemented in the R package
rvinecopulib (Nagler and Vatter, 2021). However, a user can also specify to use para-
metric marginal distributions, nonparametric pair copulas, different penalizations on
the family selection, as the BIC penalization (Schwarz, 1978) and so on. Also, instead
of the adjusted conditional log-likelihood, we can use the AIC/BIC penalized adjusted
conditional log-likelihood as selection criteria in the forward selection of predictors.

4.7. Data application

As an application to real data we consider the Seoul weather data set, which con-
tains two dependent responses, daily minimum and maximum air temperature. The
data originates from the UCI machine learning repository (Dua and Graff, 2019), it
can be downloaded from https://archive.ics.uci.edu/ml/datasets/Bias+correction+
of+numerical+prediction+model+temperature+forecast and was first studied by Cho
et al. (2020). It contains daily data for 25 weather stations in Seoul, South Korea
between June 30th and August 30th in the period 2013-2017. Cho et al. (2020) use it for
enhancing next-day maximum and minimum air temperature forecasts based on the
Local Data Assimilation and Prediction System (LDAPS) model.

To illustrate the proposed vine based bivariate regression model, we consider the
station located in central Seoul (station 25) and we model the temporal dependence
in the responses, by considering the present minimum and maximum air temperature
(including two lagged variables into the regression model) when modeling next day
values. Disregarding geographical markers and precipitation measurements, we are left
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with a data set containing two response variables and 13 continuous predictors, with
307 data points representing summer days of the years 2013 to 2017. Table 4.1 gives a
variable description, the unit of measurement and the range of possible values for the 2
predictors Next_Tmax or T_max, Next_Tmin or T_min and the 13 possible continuous
predictors we consider. We divide the data set into a training and testing set, consisting
of 246 data points from 2013-2016, and 61 data points from 2017, respectively.

In Figure 4.4 shown are the empirical marginally normalized contour plots for pairs
of variables from the training set. On this lower diagonal, any deviance from elliptical
shapes indicates a non-Gaussian dependence structure in the data (see Section 3.8
of Czado (2019) for a precise definition). This is the case in almost all marginally
normalized contour plots and it supports our non-Gaussian approach with flexible vine
copulas over any other modeling approach that assumes Gaussianity. On the upper
diagonal, we see a scatter plot of the estimated u-data together with the corresponding
pairwise empirical Kendall’s τ̂. There are many large values of the Kendall’s tau esti-
mated, between pairs of the possible predictors, like a value of 0.6 between LDAPS_CC1
and LDAPS_CC2 or a value of 0.59 between LDAPS_RHmin and LDAPS_CC2; and
also between the responses and the possible predictors.

The highest estimated pairwise dependence for the response Next_Tmax is with the
predictor LDAPS_Tmax_lapse with a Kendall’s tau value of 0.68. The highest estimated
dependence for the response Next_Tmin is with the predictor LDAPS_Tmin_lapse
with a Kendall’s tau value of 0.75. This is an expected result and these predictors
are suggested to be included the model for enhancing the forecast using the LDAPS
models. Also, the response variables, minimum and maximum air temperature, are
not independent of each other either and are expected to rise and fall together. This
dependence is emphasized by an estimated pairwise Kendall’s τ value of 0.46. Thus,
using vine copulas we can efficiently model and capture these high non-Gaussian
dependencies between pairs of variables.

In the estimation of the Y-vine regression model we model the marginals distributions
using a nonparametric approach, while we model the pair copulas in a parametric
way using the AIC penalization criteria for pair copula family selection, resulting in
a semiparametric model. Further, the selection criteria for the forward selection of
predictors is a AIC penalized adjusted conditional log likelihood.

The automatically chosen order of the predictors in the fitted Y-vine regression model
Ŷ is given by

O(Ŷ) = ( LDAPS_Tmin_lapse, LDAPS_Tmax_lapse, LDAPS_CC1, LDAPS_WS,

Present_Tmin, LDAPS_RHmax, LDAPS_CC3, LDAPS_LH, Present_Tmax) .

It orders the predictors by their influence over the two responses. Also, only 9 out of
13 possible predictors are chosen to be in the model. The 4 non-influential predictors,
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based on the Y-vine model are LDAPS_CC2, LDAPS_CC4, LDAPS_RHmax and solar
radiation. More details on the fitted pair copulas selected by the Y-vine regression
model is given in the Appendix A.3.2.

The fitted pair copula between the responses given the 9 chosen predictors, ĉV1,V2;U is
a Joe copula with an estimated Kendall’s τ of 0.09. This implies that after the effect
of the predictors is adjusted in the model, there is almost no dependence between the
responses. All of this, implies the benefits of having a model able to consider two
dependent responses and model their joint conditional distribution using a set of highly
dependent variables, with non-Gaussian dependence structure. We dive deeper into
the analysis on this data set in the next Chapter 5, Section 5.5.
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Table 4.1.: Variable description, the unit of measurement and the range of possible values the considered variables
can take.

Variable name Description(unit) Range
Next_Tmax The next-day maximum air temperature (◦C) 17.4 to 38.9
Next_Tmin The next-day minimum air temperature (◦C) 11.3 to 29.8
Present_Tmax Maximum air temperature between 0 and 21 h on the present day (◦C) 20 to 37.6
Present_Tmin Minimum air temperature between 0 and 21 h on the present day (◦C) 11.3 to 29.9
LDAPS_RHmin LDAPS model forecast of next-day minimum relative humidity (%) 19.8 to 98.5
LDAPS_RHmax LDAPS model forecast of next-day maximum relative humidity (%) 58.9 to 100
LDAPS_Tmax_lapse LDAPS model forecast of next-day maximum air temperature applied lapse rate (◦C) 17.6 to 38.5
LDAPS_Tmin_lapse LDAPS model forecast of next-day minimum air temperature applied lapse rate (◦C) 14.3 to 29.6
LDAPS_WS LDAPS model forecast of next-day average wind speed (m/s) 2.9 to 21.9
LDAPS_LH LDAPS model forecast of next-day average latent heat flux (W/m2) -13.6 to 213.4
LDAPS_CC1 LDAPS model forecast of next-day 1st 6-hour split average cloud cover (0-5 h) (%) 0 to 0.97
LDAPS_CC2 LDAPS model forecast of next-day 2nd 6-hour split average cloud cover (6-11 h) (%) 0 to 0.97
LDAPS_CC3 LDAPS model forecast of next-day 3rd 6-hour split average cloud cover (12-17 h) (%) 0 to 0.98
LDAPS_CC4 LDAPS model forecast of next-day 4th 6-hour split average cloud cover (18-23 h) (%) 0 to 0.97
Solar radiation Daily incoming solar radiation (wh/m2) 4329.5 to 5992.9
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Figure 4.4.: Lower diagonal: marginally normalized contour plots, upper diagonal:
pairwise scatter plots with the associated empirical Kendall’s τ̂ values and
on the diagonal: histograms of the u-data.
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4.8. Conclusion and outlook

We studied the problem of two response joint conditional distribution function es-
timation using a very flexible class of models, vine copulas. They are multivariate
distributions constructed from bivariate blocks (pair copulas) using conditioning. We
develop a novel vine tree structure, the Y-vine tree structure, that is suitable for a
regression problem containing bivariate response variables. Also, a forward selection of
predictors gives the best suitable fitted Y-vine, by ordering the predictors based on their
joint influence over the two responses. In addition, the Y-vine tree structure enables
an easy way of obtaining the bivariate conditional density. This way a joint analysis of
the dependence structure of the responses given the predictors is possible. This is a
significant result especially when dealing with responses that are not (conditionally)
independent. We also develop a prediction method for the joint conditional distribution
function using the Y-vine regression. This enables us to not only jointly model, but
also predict the joint conditional distribution, given a set of observed predictors. This
way, we can study how the conditional distribution changes for different observations
of the predictors and do a corresponding risk analysis (more details on this topic are
discussed later in Section 5.5).

Additionally, simulation of bivariate data from a Y-vine copula model is available.
This is one of the very few methods that can generate bivariate data, conditioned
on a specific value of the predictors, with possible tail dependence and asymmetric
dependence structures. We apply our proposed model to a real life data set containing
a bivariate response, minimal and maximal daily temperature. We analyse the data
with our new approach for dependent responses and provide a joint vine copula model
for the two responses.

For future possible applications we think of adding a spatial and/or temporal com-
ponent to our Y-vine based regression. It would be interesting to see how the response
dependence changes when the spacial and/or temporal dependence component is also
accounted for, but that is out of the scope of this thesis. The standard lack of ability
of copula based models to include discrete variables is also an ongoing research topic,
as also discussed in Section 3.7. Further, it would be an area of possible extension
to include a mix of continuous and discrete response variable. Also, applications of
different vine structures and variable selection methods, and subsequent comparisons
of the performance, are left for further investigation and are expected to be heavily
data specific problems.

In addition, we can use the Y-vine tree structure for testing of conditional indepen-
dence between two variables given a set of conditioning variables. The Y-vines provide
a very symmetric treatment of the two variables whose conditional independence
is being tested. Using this way of testing for conditional independence we do not
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need any asymptotic results, as we use a very flexible modeling approach. A similar
approach was proposed in Bauer and Czado (2016) using R-vines, for non-Gaussian
conditional independence testing in continuous Bayesian networks. However, their
approach needed, possibly high dimensional, integration for determining the required
conditional distribution function and thus, is not applicable for large network problems.
In contrast, we expect our approach to remain tractable in large networks.

A possible further extension is to develop a similar new tree structure that will be
suitable for more than two responses. The Y-vine tree structure, resembles a C-vine
tree structure between the responses and a D-vine tree structure between the predictor
variables. Thus, we can extend the C-vine part between the responses to include any
number of responses and still the conditional distribution of the responses given the
predictors should be available in no computationally expensive manner. However,
usually there is no need for more than two responses in real life data, but it is an
interesting further research area, if a need for such modeling is to appear.
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5. Bivariate unconditional and conditional
level curves and quantile curves

Parts of Chapter 5 are similar to the publication Tepegjozova and Czado (2022). How-
ever, Sections 5.4 and 5.5 contain new material.

5.1. Introduction

Despite the great attention univariate quantiles have received, the extension to multi-
variate response quantiles is not trivial nor well-defined. Several theoretical notions of
multivariate quantiles have been introduced, but there is no consensus which one is
the corresponding generalization of the univariate quantiles. These include geomet-
ric quantiles based on halfspace depth contours with different concepts of statistical
depth (e.g. see Tukey (1975), Chaudhuri (1996), Hallin et al. (2010), Chernozhukov
et al. (2017)), vector quantiles (see Carlier et al. (2016) and Carlier et al. (2017)), spatial
quantiles (see Abdous and Theodorescu (1992)).

Copula based models are known to be excelling at modeling tail events and asym-
metric dependencies. Bivariate quantiles arising from copula based models are advan-
tageous in assessing the joint risk of failure or occurrence of two events. One example
of specifically bivariate quantiles being applied is the work of Chebana and Ouarda
(2011) in flood analysis. The risk of flood is studied through a joint analysis of flood
peaks and flood volumes, using level sets of bivariate copulas. Requena et al. (2013)
present a similar analysis of the risk of flood, focusing on hydrologic dam designs.
Additionally, the authors use the same approach for a joint analysis of reservoir volume
and spillway crest length as indicators for the risk of dam overtopping. A multivariate
risk of failure analysis based on copulas is presented in Salvadori et al. (2015) for
structural failure assessment in engineering. An application in financial mathematics
can be found in Di Bernardino and Prieur (2014). The authors propose estimation of
a tail event risk measure based on multivariate level sets of copulas. However, in all
these approaches there is modelling of two responses with a copula, disregarding any
explanatory variables or predictors. It would be even more beneficial to jointly model
two response variables, taking into account the influence of a set of possible predictors.
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5. Bivariate unconditional and conditional level curves and quantile curves

Thus, to fill in this gap, we focus on bivariate conditional quantiles and their estimation
using a very flexible vine copula model, the Y-vine regression, introduced in Chapter 4.

In the examples we provided, the notion of multivariate quantiles is linked to the
notion of level curves of multivariate distribution functions. However, in Belzunce et al.
(2007) it is noted that for some α ∈ (0, 1), the α-th level curve of a bivariate distribution
function does not provide exact coverage probability. Thus, we look at the extension of
the univariate quantiles (Koenker and Bassett, 1978), defined as cut points that divide
the range of a univariate distribution into intervals with given probabilities, to bivariate
quantiles having this exact property.

Thus, there is still a need for: (1.) a valid definition of (unconditional and conditional)
level curves of (vine) copula based derived distributions and their connection to level
curves defined on the x-scale; (2.) a numerical method for obtaining the bivariate
(unconditional and conditional) level curves from the estimated (vine) copula based
model; (3.) a valid definition of (unconditional and conditional) bivariate quantiles
linked to the usage of (vine) copulas.

For (1.) we extend the definitions of bivariate unconditional and conditional level
curves in terms of a (vine) copula based distribution function. For (2.) we develop a
numerical method to evaluate the bivariate unconditional and conditional level curves.
Further, we illustrate the bivariate unconditional level curves for known bivariate copula
distributions and the bivariate conditional level curves for a 3-dimensional vine copula
distribution and analyse the performance of our numerical estimation algorithm. For
(3.), we show results about the coverage probability of the level curves and suggest a
new definition for bivariate quantiles, as adjusted level curves that have exact coverage
probabilities. Based on the estimated quantiles, we can construct bivariate confidence
regions, which are a generalization of univariate confidence intervals. They are used
to locate parts of a distribution with high density values. Such confidence regions
can be also effective for visualizing trends, patterns and outliers (Korpela et al., 2014;
Korpela et al., 2017; Guilbaud, 2008). In addition, we illustrate our confidence regions
and compare them to alternative ways of construction of confidence regions, assuming
independence between the responses. We highlight the advantages of our modeling
approach and its usability in data analysis.

5.2. Bivariate level curves

The notion of multivariate quantiles is linked to the notion of multivariate level curves,
so we start by defining and exploring the level curves of bivariate unconditional and
conditional distribution functions.

68



5. Bivariate unconditional and conditional level curves and quantile curves

5.2.1. Bivariate unconditional level curves

Let Y1 and Y2 be two continuous random variables with observed values y1, y2 and a
joint distribution function FY1,Y2(y1, y2).

Definition 3 The bivariate level curve for continuous random variables Y1, Y2 at level α ∈
(0, 1) is a curve in R2 defined by the set

QY
α :={(y1, y2) ∈ R2 ; FY1,Y2(y1, y2) = α}
={(y1, y2) ∈ R2 ; PY1,Y2(Y1 ≤ y1, Y2 ≤ y2) = α}.

Define the probability integral transforms of the random variable Yj as Vj := FYj

(
Yj
)
,

with corresponding observed values vj := FYj

(
yj
)

for j = 1, 2. Applying Sklar’s Theo-
rem (Equation (2.1)) to the joint distribution function of Y1, Y2, we obtain FY1,Y2(y1, y2) =

C(FY1(y1), FY2(y2)) = CV1,V2(v1, v2). So we can rewrite the bivariate level curves from
Definition 3 in terms of copulas as, QY

α = {(F−1
Y1

(v1), F−1
Y2

(v2)) ∈ R2 ; CV1,V2(v1, v2) =

α, v1, v2 ∈ (0, 1)}. We can also define the bivariate level curves of the probability
integral transformed variables on the unit square [0, 1]2.

The bivariate level curves at α ∈ (0, 1) for the continuous random variables Y1, Y2

with random PITs V1, V2 is a curve in [0, 1]2 defined by the set

QV
α :={(v1, v2) ∈ [0, 1]2 ; CV1,V2(v1, v2) = α}

={(v1, v2) ∈ [0, 1]2 ; P(V1 ≤ v1, V2 ≤ v2) = α}.
(5.1)

The difference between QY
α and QV

α is that QY
α is defined on R2, while QV

α is defined
on [0, 1]2. The connection between the two is given as QY

α = {(F−1
Y1

(v1), F−1
Y2

(v2)) ∈
R2 ; (v1, v2) ∈ QV

α }. Sklar’s Theorem implies that a transformation of the bivariate
level curves between the x- and u-scale is obtained using inverses of the univariate
marginal distributions F−1

Y1
, F−1

Y2
, rather that the bivariate joint distribution FY1,Y2 .

5.2.2. Bivariate conditional level curves

Let Y = (Y1, Y2)
T and X =

(
X1, . . . , Xp

)T , p ≥ 1, be two continuous random vectors,
with the corresponding marginal distribution functions Yj ∼ FYj , for j = 1, 2 and
Xi ∼ FXi , for i = 1, . . . , p. Our interest is the bivariate conditional level curves of Y given
X = x. Denote the conditional distribution function of Y1, Y2|X = x as FY1,Y2|X(y1, y2|x).
Definition 4 The bivariate conditional level curves for a continuous bivariate vector Y =

(Y1, Y2)
T given the outcome of a p-dimensional random vector (p ≥ 1), X = x at level

α ∈ (0, 1) is a curve in R2 defined by the set

QY
α (x) :={(y1, y2) ∈ R2 ; FY1,Y2|X(y1, y2|x) = α}

={(y1, y2) ∈ R2 ; PY1,Y2|X(Y1 ≤ y1, Y2 ≤ y2|X = x) = α}.
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5. Bivariate unconditional and conditional level curves and quantile curves

In order to derive the level curves in terms of copulas, we need to express the conditional
distribution of Y1, Y2|X in terms of a copula distribution function. For this we use the re-
sults from Section 4, Proposition 1. Thus, the bivariate level curve QY

α (x) can be rewrit-
ten as QY

α (x) = {(F−1
Y1

(v1), F−1
Y2

(v2)) ∈ R2 ; CV1,V2|U(v1, v2|u) = α, v1, v2 ∈ (0, 1)},

where u =
(
u1, . . . , up

)T are realizations of the random vector U =
(
U1, . . . , Up

)T.
Similarly, we define the bivariate conditional level curves of the probability integral

transformed variables on the unit square [0, 1]2. The bivariate conditional level curves
at α ∈ (0, 1) for the continuous random variables Y1, Y2 with random PITs V1, V2 given
the outcome of the random vector X = x, with PITs U = u is a curve in [0, 1]2 defined
by the set

QV
α (u) :={(v1, v2) ∈ [0, 1]2 ; CV1,V2|U(v1, v2|u) = α}

={(v1, v2) ∈ [0, 1]2 ; PV1,V2|U(V1 ≤ v1, V2 ≤ v2|U = u) = α}.
(5.2)

However, note that the bivariate conditional and unconditional level curves as defined
in Equation (5.1) and (5.2), do not have the property that the α-th level curve separates
the lowest α × 100 percent of the observations from the remaining (1 − α)× 100 percent
of the observations, as discussed later in Section 5.4.2.

5.3. Numerical evaluation of bivariate level curves

5.3.1. Algorithms

Let C (a, b) be a bivariate (conditional) distribution defined on the unit square [0, 1]2

with no closed form solution for the bivariate level curve. Assume that C (a, b) can
be evaluated at all points (a, b) ∈ [0, 1]2. The goal is to obtain a numerical estimate
of the set defining the (conditional) bivariate level curves, given in Equation (5.1) (or
Equation (5.2) for the conditional case). Given a granularity parameter m ∈ N+ and
α ∈ (0, 1) we employ the following procedure:

1. The set M = {w1, . . . , wm} is initialized as m equidistant points in the interval
[0, 1].

2. We define the set of lines L as follows:

L = {((0, 0) , (wi, 1)) |∀wi ∈ M} ∪ {((0, 0) , (1, wi)) |∀wi ∈ M} .

3. Each line ls ∈ L is treated as a separate optimization problem and a line search
procedure is employed to obtain the point (as, bs) ∈ ls for which C (as, bs) = α.
Consider any line ls and two points on the line, denoted as (a1, a2) and (b1, b2),
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5. Bivariate unconditional and conditional level curves and quantile curves

(0,0)

(1,1)

(1,0)

(0,1) (w1,1)

l1

(w2,1)

l2 l3

(1,w1)l5

(1,w2)l4

α = 0.1

α = 0.7

α = 0.4

Figure 5.1.: Graphical representation of the numerical estimation procedure.

such that a1 ≤ b1 and a2 ≤ b2. Then, P(V1 ≤ a1, V2 ≤ a2) ≤ P(V1 ≤ b1, V2 ≤ b2)

holds. This follows since C is a bivariate distribution function and is continuous.
Given the condition that the margins of C (as, bs) are monotonically increasing, this
implies that values of C(·, ·), along any line ls starting from (0, 0), are increasing.

4. For each ls ∈ L a line search is guaranteed to converge to a solution, if C (ws1 , ws2) ≥
α, where (ws1 , ws2) is the endpoint of line ls. In the case C (ws1 , ws2) < α there is
no solution on the line ls. (The same arguments hold for the conditional copula
distribution function as well.)

5. Finally, the remaining points (as, bs) for s = 1, . . . , 2m for which a solution exists,
are smoothed to obtain a curve representing an estimate of the (conditional)
bivariate level curve for a given α.

The algorithms used for this numerical evaluation of bivariate level curves are given
in Algorithm 2 and 3. The bivariate distribution function C (a, b) is equivalent to
CV1,V2(v1, v2) (or CV1,V2|U(v1, v2|u)) if unconditional (or conditional) bivariate level
curves are evaluated.

In Figure 5.1 we show a graphical representation of the numerical procedure for
evaluating bivariate level curves. In the left panel, on the unit square [0, 1]2 shown are
5 exemplary lines, l1 = ((0, 0), (w1, 1)), l2 = ((0, 0), (w2, 1)), l3 = ((0, 0), (1, 1)), l4 =

((0, 0), (1, w2)), l5 = ((0, 0), (1, w1)) on which a line search is employed to find the pair
(a∗, b∗) such that C(a∗, b∗) = α holds. The dotted lines represent the solution of the line
search, in our case, the bivariate level curves for α = 0.1, 0.4, 0.7. In the right panel, we
illustrate the binary line search for an exemplary line, say line l1 = ((0, 0), (w1, 1)). First,
the desired function is evaluated at the middle point of the line l1, at C(w1

2 , 1
2 ). Here
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5. Bivariate unconditional and conditional level curves and quantile curves

Algorithm 2: PseudoInverse
Input: m - granularity parameter (default = 1000),

eq - function based on which C (u, v) is to be evaluated,
err - accuracy of algorithm,
α - alpha level

Initialization:

M =
m⋃

i=1

{
i
m

}
,

L = {line ((0, 0) , (q1, q2))} , (q1, q2) ∈ {(wi, 1) |∀wi ∈ M} ∪ {(1, wi) |∀wi ∈ M} ,

Points = ∅.

for ls ∈ L do
if C (q1, q2) ≥ α then

point = BinaryLineSearch (ls, eq, err, α)

Points = Points ∪ point

else

Points = Points

end
end
return Points
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5. Bivariate unconditional and conditional level curves and quantile curves

Algorithm 3: BinaryLineSearch
Input: l - line defined by two coordinates,

eq - function based on which C (u, v) is to be evaluated,
err - accuracy of algorithm,
α - alpha level

Initialization:
Introduce notation l = line (pstart = (0, 0) , pend = (wi, 1)).

evl = eq
(

pstart + pend

2

)
di f f = α − evl

while di f f > err do
if di f f > 0 then

pstart =
pstart+pend

2
else

pend = pstart+pend
2

end

evl = eq
(

pstart+pend
2

)
end
return pstart+pend

2
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5. Bivariate unconditional and conditional level curves and quantile curves

it holds C(w1
2 , 1

2 ) > α, so the middle point of the line ((0, 0), (w1
2 , 1

2 )) is evaluated next,
C(w1

4 , 1
4 ). Then, it holds C(w1

4 , 1
4 ) < α, so the middle point of the line ((w1

4 , 1
4 ), (

w1
2 , 1

2 )) is
evaluated next, C( 3w1

8 , 3
8 ). Here C( 3w1

8 , 3
8 ) > α, so we consider the middle point of the

line ((w1
4 , 1

4 ), (
3w1

8 , 3
8 )) next and iteratively continue until the algorithm converges to a

solution. The red dot (star), say (a∗, b∗) is the point at which C(a∗, b∗) = α.

5.3.2. Illustration of bivariate level curves on the unit square

We illustrate the bivariate unconditional level curves for known pair copula distributions
and the bivariate conditional level curves for a 3-dimensional vine structure. They
correspond to the case of no predictors or 1 predictor in a regression setting, respectively.

In Figure 5.2 we explore plots of the unconditional level curves on the unit square
for the bivariate Gauss, Student-t, Clayton and Gumbel copulas (rows) with different
strengths of dependency, expressed through Kendall’s τ (defined in Section 2.1.1), with
τ = 0.25, 0.5, 0.75 (columns). The level curves can be obtained in an analogous way for
any other copula family, given that the margins are strictly monotonic, othervise level
sets can be obtained. The theoretical level curves of a bivariate random vector (V1, V2)

T

with bivariate distribution function CV1,V2 (v1, v2; θ) and a parameter θ are derived using
Equation (5.1) for a given α and are depicted with thick black lines.

Further, we estimate the bivariate level curves for the given pair copulas. For this we
simulate data from the given copula and based on the simulated data, a pair copula
is estimated. The gray points are 300 data points simulated from the given copulas.
Subsequently, level curves are evaluated and plotted. The coloured lines represent
the corresponding estimated level curves. In the Appendix B.1, we give a detailed
description on how the theoretical and the estimated level curves are obtained for each
of the four copula families. The panels of Figure 5.2 showcase bivariate level curves at
α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95.

Differences can be spotted between estimated and theoretical level curves only for
the Gumbel level curves, in the case when Kendall’s τ = 0.25. In all other cases,
differences between the theoretical and estimated level curves are not visible. When
it comes to differences in the level curves for different copula families, the Clayton
copula level curve has a significantly smaller surface below the α = 0.05 level curve
caused by its heavy lower tail (expected realizations are closer to the lower diagonal as
compared to a lighter lower tail copula) compared to the other copula families at the
α = 0.05 level curve. On the other hand, the heavy upper tail of the Gumbel copula
is causing a bigger surface above the α = 0.95 level curve compared to the Clayton
copula. In contrast, the Gaussian copula has no tails at all and the Student-t copula has
a symmetric tail dependence governed by a single parameter. Their surface below the
α = 0.05 level curve is greater than the corresponding surface in the lower heavy-tailed
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5. Bivariate unconditional and conditional level curves and quantile curves

Figure 5.2.: x-axis: V1, y-axis: V2. Gray points: simulated data from copula (n=300).
Black curves: theoretical level curves. Colored curves: estimated level
curves. Depicted are level curves at α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95
(left bottom to right top in each panel) for Gaussian, Student-t (d f = 5),
Clayton and Gumbel copulas (top to bottom) and τ = 0.25, 0.5, 0.75 (left to
right).
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Figure 5.3.: A 3-dimensional plot of bivariate copula distributions with theoretical
level curves at α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95. Shown are Gaussian,
Student-t (d f = 5), Clayton and Gumbel copulas (top to bottom) and
τ = 0.25, 0.5, 0.75 (left to right).
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T1 V1 U1 V2

Clayton(τ = 0.6) Gumbel(τ = 0.8)

T2 V1, U1 U1, V2

Clayton(τ = 0.4)

T3 V1,V2;U1

Figure 5.4.: Vine tree sequence of D3 with the pair copula families and Kendall’s τ

corresponding to parameters.

Clayton copula, and the surface above the α = 0.95 level curve is smaller than the upper
heavy-tailed Gumbel copula. Considering the α = 0.5 level curve, the greatest surface
below it has the Gumbel copula, due to it upper heavy tail, and the smallest surface
below the α = 0.5 level curve has the Clayton copula, again due to the heavy lower tail.
This holds for all Kendall’s τ values. Also, as the dependence between the variables
increases, the data is more centered around the diagonal, so the curves have sharper
curvature around the diagonal. Further, in Figure 5.3 we show the associated bivariate
distribution functions in a 3-dimensional plot in which the theoretical level curves are
shown at given α levels.

Next we consider conditional bivariate level curves arising from a 3-dimensional
regular vine distribution D3. Let (V1, V2, U1)

T ∼ D3 with vine tree sequence and pair
copulas of D3 given by Figure 5.4. The corresponding parameters to the copulas are
θV1,U1 = 3 (τ = 0.6), θU1,V2 = 5 (τ = 0.8 )and θV1,V1;U1 = 1.33 (τ = 0.4). To obtain
theoretical level curves from D3 we employ the following procedure. First, to evaluate
CV1,V2|U1

at a specific point (ṽ1, ṽ2) conditioned on U1 = ũ1 we use

CV1,V2|U1
(ṽ1, ṽ2|ũ1) =

∫ ṽ1

0

∫ ṽ2

0
cV1,V2|U1

(
v′1, v′2|ũ1

)
dv′2dv′1

=
∫ ṽ1

0

∫ ṽ2

0
cV2|U1

(
v′2|ũ1

)
· cV1|V2,U1

(
v′1|v′2, ũ1

)
dv′2dv′1

=
∫ ṽ2

0
cV2|U1

(
v′2|ũ1

) [∫ ṽ1

0
cV1|V2,U1

(
v′1|v′2, ũ1

)
dv′1

]
dv′2

=
∫ ṽ2

0
cV2,U1

(
v′2, ũ1

)
CV1|V2,U1

(
ṽ1|v′2, ũ1

)
dv′2.

(5.3)

We can also condition on V1 instead of V2. The corresponding conditional level curve
is evaluated using the numerical evaluation procedure from Section 5.3 and Equation
(5.3).

We are also interested in the estimated conditional level curves. To obtain them,
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5. Bivariate unconditional and conditional level curves and quantile curves

Figure 5.5.: x-axis: V1, y-axis: V2. Gray points: simulated data from vine distribu-
tion (n=500). Black curves: theoretical conditional level curves. Colored
curves: estimated conditional level curves. Depicted are level curves at
α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95 (left bottom to right top in each panel).
Red dot: associated values of (v1, v2) with u1 as conditioning value.

we simulate a data set W ∈ [0, 1]504×3 from D3 and split W into Wtrain ∈ R500×3

and Wtest ∈ R4×3. On the training set Wtrain we fit a vine model D̂3 with the same
vine tree structure and order of the variables as the data generator D3. In 3 dimen-
sions, a C- and a D-vine tree structure coincide, so by order we mean the order from
left to right in which the variables appear in the first tree of the sequence, as de-
fined for a general D-vine copula (or C-vine copula in 3 dimensions) is Section 3.2.
The estimated pair copulas are ĈV1,U1 ∼ Clayton

(
τ̂ = 0.57, θ̂V1,U1 = 2.65

)
, ĈU1,V2 ∼

Gumbel
(
τ̂ = 0.79, θ̂U1,V2 = 4.92

)
, ĈV1,V2;U1 ∼ Clayton

(
τ̂ = 0.40, θ̂V1,V2;U1 = 1.34

)
.

The corresponding conditional level curves of D̂3 are obtained using the numerical
evaluation procedure from Section 5.3 and evaluating ĈV1,V2;U1 in a similar manner as
in Equation (5.3), using the estimates of each term. Note that the estimated and the
data-generating vine are approximately very close, due to the use of the same tree
structure in both data generation and estimation. But in practice this is not the case, as
the underlying tree structure is unknown. However, we can use the Y-vine regression
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5. Bivariate unconditional and conditional level curves and quantile curves

model developed in Chapter 4 to model the tree structure and the pair copulas, in a
way that the joint conditional distribution is easy to be estimated.

Figure 5.5 shows the theoretical and the estimated level curves for 4 conditioning
values of u1. The values of u1 are chosen from Wtest. The level curves depend on the
conditioning value. If the value of u1 is low (top-left and bottom-right plot) the level
curves are more restricted to the lower left corner. For greater values of u1 (top-right
and bottom-left plot) the level curves are more restricted to the top right corner. These
occurrences can be explained by the high positive dependence of the pairs (V1, U1) and
(V2, U1) in the first tree of the vine structure, meaning that low values of u1 correspond
to low values of both v1, v2.

Thus, Figures 5.2 and 5.5 show that the numerical procedure for obtaining both
unconditional and conditional level curves is properly estimating the bivariate level
curves and we will employ it to estimate conditional level curves in the case of more
than 1 conditioning value (corresponding to more than one predictor in a regression
setting).

5.4. Bivariate quantile curves

The notion of multivariate quantiles is not trivial nor well-defined. Usually, in literature
the level sets or curves of a multivariate distribution are considered as multivariate
quantile, however in this case the coverage probability is not exact. For example, in
Fernández-Ponce and Suárez-Lloréns (2002) the bivariate unconditional quantiles are
defined as the level sets of a bivariate distribution function. The authors state that
this definition is a natural generalization of the univariate quantile sets (Lewis and
Thompson, 1981), however later in Belzunce et al. (2007) it is shown that the level curves
do not have the property that the α-th level curve separates the lowest α × 100 percent
of the observations from the remaining (1 − α)× 100 percent of the observations. Thus,
we suggest to define the bivariate quantile curves as adjusted level curves where
the coverage probability is exact. Since we are interested in a regression setting, the
following study is done on the conditional case, however, the same methodology can
be applied for the unconditional case. Also, we define the bivariate quantiles on the
u-scale (copula level), and to transform the bivariate quantiles on the x-scale, we use
the same analogy as for the level curves.
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(0,0)

(1,1)

QY
α (u)

q = (q1, q2)q2

q1

A

BSq

Figure 5.6.: A randomly chosen q = (q1, q2) vector, its corresponding Sq and Slower
α ,

where Slower
α = Sq

⋃
A
⋃

B.

5.4.1. General framework

Consider any bivariate vector q = (q1, q2) ∈ QV
α (u) that lies on the level set QV

α (u) for
some α ∈ (0, 1). Further, let Sq be a set of bivariate vectors defined by

Sq := {(v1, v2) ∈ [0, 1]2 ; v1 ≤ q1, v2 ≤ q2}.

Then for any random vector W = (W1, W2)T ∼ CV1,V2|U(·, ·|u) it holds that

P
(
W ∈ Sq

)
= α, (5.4)

by following Equation (5.2). In Figure 5.6 we can see an exemplary illustration for the
set Sq. Let the region Slower

α be defined as the set of bivariate vectors below the level
curve QV

α (u),

Slower
α :=

⋃
∀(q1,q2)∈QV

α (u)

{
(v1, v2) ∈ [0, 1]2; v1 < q1, v2 < q2

}
.

Then for the random vector W = (w1, w2)T it holds that

P
(

W ∈ Slower
α

)
> α, (5.5)

since Sq ⊂ Slower
α for all q = (q1, q2) ∈ QV

α (u), as also noted in Fernández-Ponce and
Suárez-Lloréns (2002). (See Figure 5.6 to observe the Slower

α region.)
This implies that the level curve QV

α (u) divides the [0, 1]2 square into a region for
which it holds that P

(
W ∈ Slower

α

)
̸= α. It also follows that P

(
W /∈ Slower

α

)
< 1 − α.
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Thus, for the definition of a α− quantile curve we want to find an adjusted β(α) level
curve which will divide the observation space into α and 1 − α percent, i.e. for which
P
(

W ∈ Slower
β(α)

)
= α holds.

Definition 5 The bivariate conditional quantile for α ∈ (0, 1), a transformation β : (0, 1) 7−→
(0, 1) and continuous random variables Y1, Y2 with random PITs V1, V2 given the outcome of
the random vector X = x, with PITs U = u is a curve in [0, 1]2 defined by the set

qV
α (u) := {(v1, v2) ∈ [0, 1]2 ; CV1,V2|U(v1, v2|u) = β(α)}, (5.6)

so that the observation space is divided into α and 1− α percent regions, i.e. P
(

W ∈ Slower
β(α)

)
=

α holds.

The estimation of the transformation β(α) is discussed later in Section 5.4.2. Following
Definition 5, we can also define the exact 100 × (1 − α)% confidence region arising
from the quantile curves qV

α/2(u) and qV
1−α/2(u).

Definition 6 The 100 × (1 − α)% bivariate confidence region for α, β ∈ (0, 1) and a contin-
uous bivariate vector continuous random variables Y1, Y2 with random PITs V1, V2 given the
outcome of the random vector X = x, with PITs U = u, is set of points in [0, 1]2 enclosed by
the quantile curves qV

α/2 (u) and qV
1−α/2 (u), i.e.

CIV1,V2|U
α :=

{
(w∗

1 , w∗
2) ∈ [0, 1]2

∣∣ ∃ (v1
1, v1

2

)
∈ qV

α/2 (u) ,
(

v2
1, v2

2

)
∈ qV

1−α/2 (u) such that :

v1
1 ≤ w∗

1 ≤ v2
1 and v1

2 ≤ w∗
2 ≤ v2

2

}
.

In this case,

P(W ∈ CIV1,V2|U
α ) = P(W ∈ Slower

β(α/2))− P(W ∈ Slower
β(1−α/2)) = α/2 − (1 − α/2) = 1 − α,

implying that CIV1,V2|U
α is an exact 100 × (1 − α)% confidence region.

5.4.2. From level curves to quantile curves

Returning back to the problem of estimating the transformation β(α), for β : (0, 1) 7−→
(0, 1), so that the quantile curves qV

α (u) are estimated, we suggest a numerical procedure.
Basically, we need to change the α-level curve to a new β(α)- level curve so that
P(W ∈ Slower

β(α) ) = α holds true. To achieve this, we define the function

G(β) := P
(

W ∈ Slower
β

)
= P

(
CV1,V2|U(·, ·|u) ≤ β

)
∀ β ∈ (0, 1).

(5.7)
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5. Bivariate unconditional and conditional level curves and quantile curves

From Equation (5.5) we can see that G(α) > α. However, we are interested to find
the value β(α) so that it holds that G(β(α)) = α, thus β(α) = G−1(α). To do so, we
suggest a numerical procedure. As the function G(β) is difficult to evaluate (more
details follow below in this section), we suggest to estimate it using a simulated sample
from the Y-vine copula with U = u fixed. For n = 1, · · · , N we simulate observations
(vn

1(u), vn
2(u)) ∼ CV1,V2|U (·, ·|u), as described in Section 4.5. Then, we estimate G(β) as

the proportion of the simulated data below the α-quantile over the sample size N, i.e.

Ĝ (β) =
1
N

N

∑
n=1

I
(
(vn

1(u), vn
2(u)) ∈ Slower

β

)
,

where I is an indicator function, being equal to 1 when the condition (vn
1(u), vn

2(u)) ∈
Slower

β is satisfied, and equal to 0, otherwise. To find the desired β(α) we use a line search
algorithm on the (0, 1) interval and obtain the estimated β̂(α) such that Ĝ(β̂(α)) = α.
This way the suggested methodology from Section 5.2 can be extended to find the
bivariate quantiles qV

α (u) such that Ĝ(β(α)) = P
(

W ∈ Slower
β(α)

)
= α, holds, i.e. the

β(α)-th level set separates the lowest α × 100 percent of the observations from the
remaining (1 − α)× 100 percent of the observations.

Theoretical formulation

The theoretical derivation of P
(
CV1,V2|U(v1, v2|u) ≤ β

)
∀ β ∈ (0, 1) from Equation

(5.7) is the following. Consider the case when we look for a solution of the equation
CV1,V2|U(v1, 1|u) = β. This can be written as

β =CV1,V2|U(v1, 1|u)
=P(V1 ≤ v1, V2 ≤ 1|U = u)

=P(V1 ≤ v1|U = u)

=CV1|U(v1|u).

(5.8)

Then, denote the solution of Equation (5.8) for v1 as C−1
V1|U(β|u). Now consider the case

when we look for a solution of the equation CV1,V2|U(v1, 1|u) = β for v2, when β, v1 and
u are fixed. Denote the solution for v2 for fixed β, v1 and u as C−1

V1,V2|U(β|v1, u). Then,
we have
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5. Bivariate unconditional and conditional level curves and quantile curves

P
(

CV1,V2|U(v1, v2|u) ≤ β
)
=1 − P

(
CV1,V2|U(v1, v2|u) > β

)
=1 −

∫ 1

C−1
V1 |U(β|u)

P
(
(v1, v2) /∈ Slower

β |U = u, V1 = v1

)
· cV1|U(v1|u)dv1

=1 −
∫ 1

C−1
V1 |U(β|u)

[∫ 1

C−1
V1,V2 |U(β|u,v1)

cV1,V2|U(v1, v2|u)dv2

]
· cV1|U(v1|u)dv1.

(5.9)
However, to numerically evaluate in stable fashion the integrals needed in Equation
(5.9) is very difficult and it remains an open task.

Kendall distribution function extension

Another concept for the construction of exact confidence regions is been developed in
Coblenz et al. (2018). The authors propose, to construct an exact confidence region for
unconditional bivariate copula distribution functions. They use the Kendall distribution
function of a bivariate copula C at a level α ∈ (0, 1), K(C, α) defined as

K(C, α) := P (C(U, V) ≤ α, (U, V) ∼ C) ,

in Genest and Rivest (1993) and Barbe et al. (1996). In comparison to our methodology it
holds that G(β(α)) = K(C, α) in the unconditional case, as shown in Chakak and Ezzerg
(2000). For bivariate copula distribution functions computing the Kendall distribution
function is possible and certain approaches are available (Chakak and Ezzerg, 2000;
Ezzerg et al., 1999), however it is very computationally expensive (Brechmann, 2013).
Once K is estimated, β(α) can be obtained as the inverse of the Kendall distribution
function evaluated at α, i.e. β(α) = K−1(C, α).

However, estimating the Kendall distribution functions in the conditional case is
difficult in general and computationally expensive. We shortly provide an idea for a
future research topic using the non-simplified conditional copula (Gijbels and Matterne,
2021). We are interested in the joint conditional distribution function of Y1, Y2 given
X = x, i.e. FY1,Y2|X(y1, y2|x) with conditional marginal distributions FY1|X(y1|x) and
FY2|X(y2|x). If the conditional marginal distributions are continuous, Sklar’s Theorem
(2.1) applied to the conditional marginals ensures the existence of a unique copula
CV1,V2|U=u for any fixed U = u. In particular, we have for u = (FX1(x1), . . . , FXp(xp))

that
FY1,Y2|X(y1, y2|x) = CV1,V2|U=u (FY1|X(y1|x), FY2|X(y2|x)

)
.

This is a so-called conditional copula of (Y1, Y2) given X = x. The conditional copula
function fully describes the conditional dependence of Y1 and Y2 given the observed
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5. Bivariate unconditional and conditional level curves and quantile curves

vector X = x (see more in Gijbels et al. (2011) and Veraverbeke et al. (2011)). Then, the
corresponding conditional Kendall’s tau can be determined by

τCV1,V2 |U=u = 4
∫ 1

0

∫ 1

0
CV1,V2|U=u (FY1|X(y1|x), FY2|X(y2|x)

)
dCV1,V2|U=u − 1.

However, estimation of this conditional copula is, up to this moment, a very unex-
plored topic and estimation of the conditional Kendall’s tau is very sensitive to bias
properties of the underlying copula estimator (Gijbels et al., 2011), so further research is
needed in this area. Further, estimation of the conditional Kendall’s function associated
K(CV1,V2|U=u, α) := P

(
CV1,V2|U=u ≤ α

)
, is an even more involved topic, and based on

our knowledge, a completely unexplored topic.

5.5. Data application

We continue the data analysis on the data set introduced in Section 4.7. Here we explore
the unconditional and conditional level curves, quantiles curves and corresponding
confidence regions.

5.5.1. Bivariate level curves

For illustrating the unconditional level curves of the joint unconditional bivariate
distribution of the two responses, U_max and U_min we fit a pair copula between
them. The estimated pair copula is the Gaussian copula with a parameter of 0.66. The
unconditional quantile curves are defined as in Definition 5 by using the pair copula
distribution function between the responses CV1,V2 , instead of the bivariate conditional
distribution CV1,V2|U, and we denote them as qV

α for α ∈ (0, 1). The level curves of this
copula, on both the x- and the u-scale are given in Figure 5.7. Due to constraints of
the weather system in question, the maximum temperature is always required to be
greater than the minimum temperature. However, this ordering constraint does not
imply an ordering constraint on the PITs on the u-scale (as the marginal distributions
are separately and independently modeled). For illustration see Figure 5.7, where the
ordering is visible in panel (a), as all the data is below the diagonal, while this ordering
is lost in panel (b).

Next, we show conditional level curves for 3 chosen days from the testing set,
estimated using the fitted Y-vine model Ŷ . The estimated level curves for the chosen
3 days of the testing set are given in Figure 5.8. The top row are estimates on the
x-scale and the bottom row are on the u-scale. The ranges of the x-scale plots are the
ranges of the minimum and maximum possible temperatures, which are (22, 38) for
the maximum temperature and (16, 29) for the minimum temperature.
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5. Bivariate unconditional and conditional level curves and quantile curves

(a) x-scale (b) u-scale

Figure 5.7.: Black points: data from 2013-2016 (n=246). Colored curves: estimated un-
conditional level curves at α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95 (left bottom
to right top).

Comparing the 3 days shown in Figure 5.8, we can see very different level curves de-
pending on the observed conditioning variables, i.e. predictors. For the day 10.08.2017
we observe that higher minimum and maximum temperatures are observed compared
to the other days. The estimated level curves on the u-scale for 10.08.2017 are more
skewed to the upper tail, compared to the estimates for 25.08.2017, which are skewed
towards the lower tail. Thus, the extreme case of very high maximum and minimum
temperatures, is very probable on 10.08.2017, opposite of 25.08.2017 when the probabil-
ity is lower. Opposite to this, the extreme case of a very small minimum temperature
and small to moderate maximum temperatures is very probable on 25.08.2017 and
highly not probable on 10.08.2017. The estimates obtained for 18.08.2017 are very
moderate and extreme values for both responses have very low probabilities on this
date. The different shapes of the level curves for the three chosen days, coming from
conditional distributions with different conditioning values, also show that the depen-
dence structure between the response variables is not static and it changes based on
the conditioning variables. Ignoring this dependence can lead to a significant underes-
timation of extreme events, encoded in the tail dependencies of the joint conditional
distribution of the responses.
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10.08.2017 18.08.2017 25.08.2017

Figure 5.8.: The plots correspond to the days 10.08.2017, 18.08.2017 and 25.08.2017 (left to right). Shown are
estimated conditional level curves at α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95 (left bottom to right top). Row
1 are estimates on the x-scale and row 2 is on the u-scale. The blue triangle is the true observed value.
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5. Bivariate unconditional and conditional level curves and quantile curves

5.5.2. Bivariate quantile curves, confidence regions and advantages of joint
modeling of dependent responses

Unconditional case

First, we consider the unconditional quantile curves and the corresponding confidence
region obtained from fitting a bivariate pair copula between the responses Umax and
Umin, and the confidence region obtained by assuming dependence between the re-
sponses. The unconditional quantile curves are defined as in Definition 5 by using the
pair copula between the responses CV1,V2 , instead of the bivariate conditional distribu-
tion CV1,V2|U, and are denoted as qV

α for α ∈ (0, 1). Using Definition 6, by substituting
the conditional quantile curves with the unconditional ones, we can define the corre-
sponding unconditional confidence region CIV1,V2

α as set of points in [0, 1]2 enclosed by
the quantile curves qV

α/2 and qV
1−α/2 for some α ∈ (0, 1), i.e.

CIV1,V2
α :=

{
(w∗

1 , w∗
2) ∈ [0, 1]2

∣∣ ∃ (v1
1, v1

2

)
∈ qV

α/2,
(

v2
1, v2

2

)
∈ qV

1−α/2 such that :

v1
1 ≤ w∗

1 ≤ v2
1 and v1

2 ≤ w∗
2 ≤ v2

2

}
.

The case when we assume independence between the responses, we construct a bivariate
quantile region from the univariate empirical quantiles, denoted as qV1

α,emp for α ∈ (0, 1),
using the Bonferroni correction for multiple testing (Bonferroni, 1936). We are interested
in the bivariate quantile region with coverage probability at 50%, α = 0.50 meaning
that the two univariate empirical quantiles, from which we construct the bivariate
quantile region, need to be evaluated at α

4 = 0.125 and 1 − α
4 = 0.875, and we denote

the corresponding confidence region of the univariate empirical quantiles as CIV1⊥V2
0.50 ,

i.e.
CIV1⊥V2

0.50 :=
[
qV1

0.50
4 ,emp

, qV1
1− 0.50

4 ,emp

]
×
[
qV2

0.50
4 ,emp

, qV2
1− 0.50

4 ,emp

]
.

Also, we are interested in the bivariate quantile region with coverage probability of 90%,
α = 0.10, meaning that the two univariate empirical quantiles, from which we construct
the bivariate quantiles, need to be evaluated at α

4 = 0.025 and 1 − α
4 = 0.975, and we

denote the corresponding confidence region of the univariate empirical quantiles as
CIV1⊥V2

0.90 , i.e.

CIV1⊥V2
0.90 :=

[
qV1

0.10
4 ,emp

, qV1
1− 0.10

4 ,emp

]
×
[
qV2

0.10
4 ,emp

, qV2
1− 0.10

4 ,emp

]
.

The first row of Figure 5.9, shows the bivariate unconditional level curves (solid lines)
and quantile curves (dashed lines) (left panel is on the u-scale, right panel on the
x-scale). The adjusted level curves, the bivariate quantiles are estimated using the
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u-scale x-scale

Figure 5.9.: First row: unconditional level curves (solid lines) and corresponding quan-
tile curves (dashed lines) at α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95. Second
row: CIV1,V2

0.50 (green region) and CIV1⊥V2
0.50 (gray region). Third row: CIV1,V2

0.90
(red region) and CIV1⊥V2

0.90 (gray region).
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proposed method introduced in Section 5.4.2. From the fitted pair copula, we simulate
10 000 data points from which the unconditional quantile curves are estimated and
the simulated points are shown as well. Table 5.1 shows for all α levels, the estimated
coverage probabilities Ĝ(α) and the estimated adjustment β̂(α) for the corresponding
unconditional quantile levels.

α 0.05 0.10 0.25 0.50 0.75 0.90 0.95
Ĝ(α) 0.10 0.20 0.41 0.67 0.89 0.97 0.99
β̂(α) 0.02 0.05 0.14 0.32 0.59 0.76 0.86

Table 5.1.: For all α levels, estimated coverage probabilities Ĝ(α) and estimated adjust-
ment β̂(α) for the corresponding unconditional quantile levels.

The second row shows the CIV1,V2
0.50 (green shaded region) and CIV1⊥V2

0.50 (gray shaded
region). The estimated values for the adjustment to quantile curves (dashed lines) are
β̂(0.25) = 0.14 and β̂(0.75) = 0.59. Using these values, we construct the confidence
region CIV1,V2

0.50 , shown in the green shaded region between the bivariate quantile curves.
The coverage probability for the confidence region is 0.50, while the coverage probability
below the level curve at α = 0.25 is 0.41, and below the level curve at α = 0.75 is 0.89.
Also, we show the difference between the confidence interval constructed from the fitted
pair copula model, which jointly models the responses and the Bonferroni corrected
confidence regions, constructed from the empirical quantiles. The gray shaded region is
the CIV1⊥V2

0.50 region. The panels additionally contain horizontal lines whose y-intercepts
correspond to the 0.125 and 0.875 univariate empirical quantiles for the minimum
temperature. Moreover, it contains vertical lines with x-intercepts corresponding to the
0.125, 0.875 empirical quantiles for the maximal temperature.

The last row shows the CIV1,V2
0.90 (red shaded region) and CIV1⊥V2

0.90 (gray shaded region).
The estimated values for the adjustment to quantile curves (dashed lines) are β̂(0.05) =
0.02 and β̂(0.95) = 0.86. Using these values, we construct the confidence region CIV1,V2

0.90 ,
shown in the red shaded region between the bivariate quantile curves. The coverage
probability for the confidence region is 0.90, while the coverage probability below
the level curve at α = 0.05 is 0.10, below the level curve at α = 0.95 is 0.99. Also,
we show the difference between the confidence interval constructed from the fitted
pair copula model, which jointly models the responses and the Bonferroni corrected
confidence regions, constructed from the empirical quantiles. The gray shaded region is
the CIV1⊥V2

0.90 region. The panels additionally contain horizontal lines whose y-intercepts
correspond to the 0.025 and 0.975 univariate empirical quantiles for the minimum
temperature. Moreover, it contains vertical lines with x-intercepts corresponding to the
0.025, 0.975 empirical quantiles for the maximal temperature.
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5. Bivariate unconditional and conditional level curves and quantile curves

Note that in Figure 5.9, all the left panels are given on the u-scale. However, using
the transformations of the level curves between the u-scale and the x-scale, explained in
Section 5.2.1, we also provide all the unconditional level curves, unconditional quantile
curves and the corresponding confidence regions on the transformed x-scale in the
corresponding right panel of Figure 5.9.

Conditional case

Next we compare the bivariate conditional quantile curves obtained from the Y-vine
regression and its corresponding confidence regions to differently obtained quantiles
and regions.

For comparison purposes, we treat the response variables as conditionally inde-
pendent given a set of predictors. Basically, the tasks of predicting maximal and
minimal temperatures are treated as completely independent problems and univariate
conditional quantiles are estimated for both response variables. For this purpose, two
univariate D-vine regression models with the same predictor order as the Y-vine regres-
sion are used. This way we can construct a bivariate quantile region from the univariate
quantiles using the Bonferroni correction for multiple testing (Bonferroni, 1936), similar
as before for the unconditional case. We denote these univariate D-vine based quantiles
as, qV

α,Dvine(u) for α ∈ (0, 1). We are interested in the bivariate quantile region with
coverage probability of 50%, α = 0.50 meaning that the two univariate quantiles, need
to be evaluated at α

4 = 0.125 and 1 − α
4 = 0.875, and we denote the corresponding

confidence region using the univariate conditional quantiles as CIV1⊥V2|U
0.50 , i.e.

CIV1⊥V2|U
0.50 :=

[
qV1

0.50
4 ,Dvine

(u), qV1
1− 0.50

4 ,Dvine
(u)
]
×
[
qV2

0.50
4 ,Dvine

(u), qV2
1− 0.50

4 ,Dvine
(u)
]

.

Also, we are interested in the bivariate quantile region with coverage probability of
90%, at α = 0.10 meaning that the two univariate quantiles, need to be evaluated at
α
4 = 0.025 and 1 − α

4 = 0.975, and we denote the corresponding confidence region of

the univariate conditional quantiles as CIV1⊥V2|U
0.90 , i.e.

CIV1⊥V2|U
0.90 :=

[
qV1

0.10
4 ,Dvine

(u), qV1
1− 0.10

4 ,Dvine
(u)
]
×
[
qV2

0.10
4 ,Dvine

(u), qV2
1− 0.10

4 ,Dvine
(u)
]

.

The first row of Figure 5.10, shows the bivariate conditional level curves (solid lines)
and quantile curves (dashed lines) for 2 chosen dates from the testing set, 02.07.2017
and 21.08.2017. The adjusted level curves, the bivariate quantiles are estimated using
the proposed method introduced in Section 5.4.2. The simulated 10 000 data points
from which the quantiles are estimated are shown as well. The blue triangle dot is
the observed value on that day. Tables 5.2 and 5.3 show for all α levels, the estimated

90
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02.07.2017 21.08.2017

Figure 5.10.: First row: conditional level curves (solid lines) and corresponding quantile
curves (dashed lines) at α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95 . Second row:
CIV1,V2|U

0.50 (green region) and CIV1⊥V2|U
0.50 (gray region). Third row: CIV1,V2|U

0.90

(red region) and CIV1⊥V2|U
0.90 (gray region). (All panels on u-scale.)
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02.07.2017 21.08.2017

Figure 5.11.: First row: conditional level curves (lines) and corresponding quantile
curves (dashed lines) at α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95. Second row:
CIY1,Y2|X

0.50 (green region) and CIY1⊥Y2|X
0.50 (gray region). Third row: CIY1,Y2|X

0.90

(red region) and CIY1⊥Y2|X
0.90 (gray region). (All panels on x-scale.)
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coverage probabilities Ĝ(α) and the estimated adjustment β̂(α) for the corresponding
conditional quantile levels for 02.07.2017 and 21.08.2021, respectively.

α 0.05 0.10 0.25 0.50 0.75 0.90 0.95
Ĝ(α) 0.12 0.24 0.52 0.76 0.91 0.97 0.99
β̂(α) 0.03 0.05 0.11 0.23 0.48 0.73 0.85

Table 5.2.: For all α levels, estimated coverage probabilities Ĝ(α) and estimated adjust-
ment β̂(α) for the corresponding conditional quantile levels for 02.07.2017.

α 0.05 0.10 0.25 0.50 0.75 0.90 0.95
Ĝ(α) 0.10 0.17 0.37 0.64 0.83 0.95 0.98
β̂(α) 0.025 0.05 0.16 0.36 0.66 0.84 0.91

Table 5.3.: For all α levels, estimated coverage probabilities Ĝ(α) and estimated adjust-
ment β̂(α) for the corresponding conditional quantile levels for 21.08.2017.

In the second row, we show the bivariate conditional level curves at levels α =

0.25, 0.75 (solid lines). The estimated values for the adjustment to quantile curves
(dashed lines) are β̂(0.25) = 0.11 and β̂(0.75) = 0.48 for the date 02.07.2017 and
β(0.25) = 0.16 and β(0.75) = 0.66 for the date 21.08.2017, respectively. Using these
values, we construct the confidence region CIV1,V2|U

0.50 , shown in the green shaded region
between the bivariate quantile curves. The coverage probability for the confidence
region is 0.50, while the coverage probability below the level curve at α = 0.25 is 0.52,
below the level curve at α = 0.75 is 0.91 for date 02.07.2017. For 21.08.2017 the coverage
probability below the level curve at α = 0.25 is 0.37, below the level curve at α = 0.75 is
0.83. Also, we show the difference between the confidence interval constructed from
the Y-vine regression model, which jointly models the responses and the Bonferroni
corrected confidence regions, constructed from the D-vine univariate regression models,
which models the two responses conditionally independent of each other. The gray
shaded region is the CIV1⊥V2|U

0.50 region. The panels additionally contain horizontal lines
whose y-intercepts correspond to the 0.125 and 0.875 univariate quantiles obtained
from the univariate D-vine regression model with the minimal temperature as the
response variable. Moreover, it contains vertical lines with x-intercepts corresponding to
0.125, 0.875 quantiles of the univariate D-vine regression with the maximal temperature
as the response variable.

In the third row, we show the level curves at levels α = 0.05, 0.95 (solid lines). The
estimated values for the adjustment to quantile curves (dashed lines) are β̂(0.05) = 0.03
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and β̂(0.95) = 0.85 for the date 02.07.2017 and β̂(0.05) = 0.025 and β̂(0.95) = 0.91 for
the date 21.08.2017, respectively. Using these values, we also construct the confidence
region CIV1,V2|U

0.90 , shown in the red shaded region between the bivariate quantile curves.
The coverage probability for the confidence region is 0.90, while the coverage probability
below the level curve at α = 0.05 is 0.12, below the level curve at α = 0.95 is 0.99 for date
02.07.2017. For 21.08.2017 the coverage probability below the level curve at α = 0.05 is
0.10, below the level curve at α = 0.95 is 0.98. Similarly, the gray shaded region is the
CIV1⊥V2|U

0.90 region. The panels additionally contain horizontal lines whose y-intercepts
correspond to the 0.025 and 0.975 univariate quantiles obtained from the univariate D-
vine regression model with the minimal temperature as the response variable. Moreover,
it contains vertical lines with x-intercepts corresponding to 0.025, 0.975 quantiles of the
univariate D-vine regression with the maximal temperature as the response variable.
Note that in Figure 5.10, all the plots are given on the u-scale. However, using the
transformations of the level curves between the u-scale and the x-scale, explained in
Section 5.2, we also provide all the conditional level curves, conditional quantile curves
and the corresponding confidence regions on the transformed x-scale in Figure 5.11.

First, note the obvious difference in the obtained shapes of confidence regions
arising from bivariate quantiles (dependent responses) and the univariate quantiles
based regions (conditionally independent responses). While the bivariate confidence
regions are free to vary in shape, the regions obtained by the univariate confidence
intervals are bound to be rectangles. Also, for 21.08.2017 the univariate quantiles
based confidence regions are subsets of the bivariate confidence regions obtained from
the Y-vine regression. So, there is a whole range of points that are excluded from
the confidence region constructed from the univariate quantiles. For 02.07.2017, the
CIV1⊥V2|U

0.50 is not even a subset of the bivariate confidence regions obtained from the
Y-vine regression CIV1,V2|U

0.50 , while for the CIV1⊥V2|U
0.90 it is a partial subset of the bivariate

CIV1,V2|U
0.90 . Also, the univariate conditional quantiles based confidence regions are quite

low in volume and don’t capture any dependence between the responses. They also
tend to underestimate the risk of extreme high values, which is a major drawback.
Thus, using univariate quantiles and the corresponding confidence regions fails to
capture, not only the dependence, but also the multidimensional nature of the problem.

5.6. Conclusion and outlook

The topic of bivariate response conditional quantiles is been tackled with the usage
of a flexible vine copula model, the Y-vine copula regression model. This way we
extend the Y-vine regression to bivariate quantile regression, by extending the notion
of level curves, which are curves where the bivariate (conditional) distribution reaches
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a specified level to adjusted level curves so that the coverage probability below and
above the level curve is exact. This way we construct bivariate (conditional) quantile
curves that divide the range of a bivariate (conditional) distribution into regions with
given probabilities.

One of the contributions of this chapter is the numerical method that can be used to
estimate the level curves of bivariate (conditional) distribution functions defined on
the unit square. Also, we provide a method to transform the estimated level curves
from the u-scale back onto the x-scale. Using this numerical method, we explore the
unconditional level curves of bivariate pair copula distributions and the conditional
level curves of a known 3-dimensional vine copula distribution and compare estimated
and theoretical level curves. We also suggest a simulation based method for finding
the adjusted bivariate level curves that are used to define the bivariate quantile curves.
Using these bivariate quantile curves we construct confidence regions with exact
coverage probabilities. We apply the proposed methodology on the minimum and
maximum temperature data introduced in Section 4.7 and explore (conditional) level
curves, (conditional) quantile curves and the corresponding confidence regions for
different conditioning values of the predictors.

A possible future outlook is trying the other methodologies discussed in Section 5.4.2
on how the find the adjusted level curves that corresponds to bivariate quantile curves.
Based on our knowledge, the other methods are very hard to be computed numerically,
but in the future with more numerical methods and more research on this topic, it
might become easier to estimate them.

Further, multivariate quantile curves and confidence regions are of increasing interest
in hydrology, so as a possible future aspect we suggest, is the usage of our suggested
methodology in a hydrological application (Coblenz et al., 2018). Especially interesting
might be to analyse the behaviour of the quantile curves and confidence regions for
some extreme values of the conditioning predictors, since the more standard methods
might not be able to capture this behaviour on the tails of a distribution.
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6. Univariate and bivariate risk analysis of
late-frost and drought conditions in
Bavaria

Chapter 6 is based on Tepegjozova et al. (2023).

6.1. Introduction

Since the end of the Industrial Revolution, carbon emissions caused by human activity
have increased the concentration of carbon dioxide in the atmosphere by nearly 150%
(Friedlingstein et al., 2022). The direct result of this are the shifts in long-term weather
patterns more commonly referred to as anthropogenic climate change. In the simplest
terms, only two strategies exist to combat climate change: eliminating the excessive
discharge of carbon dioxide into the atmosphere and sequestering previously emitted
carbon. Abetting humanity in the struggle to contain the concentration of carbon
dioxide are the metaphoric lungs of our planet – forests. In an ironic twist of fate, the
role of these forests in the context of climate change is a double-edged sword. While
they are one of humanities greatest assets, they are also particularly threatened by the
shifting climate.

In Central Europe, natural forests are dominated by European beech (*Fagus sylvatica*
L.) (Leuschner and Ellenberg, 2017). Naturally, this tree species would cover more
than 60% of the land surface area of Germany (Bohn and Welß, 2003), and it is also
widespread across Europe with its distribution ranging from Sicily in the South up
to Bergen in Southern Norway, covering approx. 140, 000km2 of forested area in total
(Durrant et al., 2016). European beech has been promoted as a tree species well adapted
to the future climate and as the most efficient broad-leaved tree species for climate
change mitigation (Yousefpour et al., 2018).

However, recent evidence points to increased susceptibility of beech forests to in-
creasingly dry and hot summers which have been the main effect of climate change
in Central Europe in the past 20 years (Spinoni et al., 2017). In the absence of ample
water supply, beech forests are susceptible to growth declines, large-scale damage and
mortality (Scharnweber et al., 2011; Meyer et al., 2020). Most recently, this has been
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observed in the wake of two successive drought events in 2018 and 2019 (Buras et al.,
2019; Schuldt et al., 2020). Although these conditions are extreme outliers in the current
climate, as climate change progresses they will likely become the new norm.

In addition to the adverse effects of increasing frequency and intensity of drought,
beech ecosystems are also affected by another climate extreme: late-spring frost. Below
freezing temperatures in spring, after trees have begun unfurling their leaves, can result
in late-frost damage, defoliating large parts of the canopy (Dittmar et al., 2006; Menzel
et al., 2015). Consequently, affected trees must expend carbohydrate reserves to grow
a second canopy before the physiological processes necessary for photosynthesis can
resume (D’Andrea et al., 2019). Somewhat counter intuitively, increasing temperatures
may exacerbate spring late-frost risk: as (mean) temperature rises, the timing of leaf-out
shifts – instead of leaves unfurling near the beginning of May, they can develop as early
as the beginning of April when the probability of sub-zero minimum temperatures is
higher (Zohner et al., 2020).

Both types of disturbance through climate extremes inhibit the regular functioning of
beech and force the trees to expend stored resources to recuperate at the cost of forest
vitality and productivity. Consequently, the joint occurrence of spring late-frost and
drought poses a significant threat to forest health, multiplying the detrimental effects
in comparison to the isolated effect of one of these climate extremes alone. However,
we currently lack basic understanding of the statistical coupling between drought and
spring late-frost as the necessary underpinning for risk assessment and associated
forest management recommendations. Thus, our main objective is to quantify the joint
probability of drought and spring late-frost in the historic domain and identify regions
that exhibit the highest risk of extreme late-frost and drought conditions.

We propose to approach this topic using dependence modelling with copulas, which
have become more popular in ecological analysis in recent years due to their ability to
deal with non-Gaussian data. Climate data and indices derived from climate data often
fall into this category, as they frequently belong to bounded or skewed distributions
(Schölzel and Friederichs, 2008). Our proposed work is a step change from previous
applications of copulas in ecology, which so far have focused only on jointly modelling
multiple components of the same climate extreme, for example drought severity and
drought duration (Sarhadi et al., 2016; Kwon and Lall, 2016) or frost severity and
duration (Chatrabgoun et al., 2020). In our case however, we are interested in joint
modeling of two extremes given a set of possible predictors. We use the Standardized
Precipitation Evapotranspiration Index (SPEI) to quantify drought conditions. This
index is based on temperature and precipitation and is standardized on a log-logistic
distribution (Beguería and Vicente-Serrano, 2017). To identify frost occurrence we use a
phenological model to project the timing of leaf-out and intersect this with a threshold
minimum temperature (Kramer et al., 2017).
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When quantifying the joint probability of drought and late spring-frost occurrences,
and especially when relying on predictions from this quantification over longer periods,
one has to account for extreme case weather events. To properly quantify these tail
events we propose to use joint regression modeling of drought and late spring-frost
based on a specific R-vine copula, able to jointly model two responses with a symmetric
treatment, the Y-vine copula based regression, introduced in Chapter 4. In addition, we
model drought and late spring-frost separately with a different R-vine model, which
can handle a single response regression, the D-vine regression model (Kraus and
Czado, 2017). This way we are able to compare the marginal and joint effects of change
in drought and late spring-frost. Further, the ability to separately model marginal
distributions and the dependence structure, where the later is modeled using graphical
trees and non-Gaussian bivariate building blocks (copulas), allows R-vines to capture
asymmetric and heavy tailed dependencies.

In addition, we propose novel risk measures from the vine copula based regression
models, which we use to identify spatial and temporal ”at-risk” regions for forest
ecosystems. We also suggest corresponding survival probabilities, that can identify
”at-risk” spatial regions over longer periods of time and a corresponding return periods
of extreme events, that can identify temporal ”at-risk” regions. To our knowledge, vine
copulas have not yet been investigated in such a climatological application.

6.2. Data description

To quantify changing drought and frost risk we use a late-frost index and a drought
index rather than raw climate variables. We calculate these indices using the BayObs
product, a multivariate, gridded climate data set covering Bavaria at a spatial resolution
of 5km by 5km, provided by the Bavarian Environment Agency (LfU). The dataset con-
tains daily minimum air temperature, daily maximum air temperature, daily mean air
temperature, and daily precipitation sum from 1952 until 2020 (Bayerisches Landesamt
für Umwelt [Hrsg.], 2020).

Late-frost index

To quantify frost risk we use a modified version of the Frost Index in April (FI4)
proposed by Sangüesa-Barreda et al. (2021). The original FI4 takes into account mean
and minimum temperatures between mid-April and mid-May, a time period which
generally marks the beginning of leaf-unfolding in European beech. In contrast, our
modified index, Frost Index at Leaf-Out (FILO) uses a phenological model to more ac-
curately pinpoint the begin of leaf-unfolding. We use the phenological model outlined
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in Kramer et al. (2017). A frost index having a value of 0 indicates average conditions
(i.e. average frost risk), positive values indicate a lower frost risk, and negative values
indicate a higher frost risk.

Drought index

To determine drought risk we use the Standardized Precipitation Evapotranspiration
Index (SPEI). This index describes the relative water availability at a given site and
time as a function of precipitation and potential evapotranspiration, i.e. the difference
between water supply and water demand (Vicente-Serrano et al., 2010; Beguería et al.,
2014). Negative SPEI values indicate drier-than-average conditions while positive
values indicate wetter-than-average conditions. The SPEI is standardized across the
entire period of historical climate data available in the BayObs data set (1952-2020).
Here, we focus on the SPEI-6 in August, that is, the SPEI integrated over August and
the preceding 5 months. This allows us to take into account medium-term droughts
spanning from early spring to the height of summer which are critical in capturing the
drought signal of European beech (Bhuyan et al., 2017).

Climatic and topographic predictors

Previous studies have identified the possible effect of factors such as elevation, aspect,
annual precipitation, and mean annual temperature on the spatial incidence of late-frost
events (Olano et al., 2021). Similarly, topography (elevation, aspect) and a combination
of short- and long-term temperature and precipitation conditions have been shown to
cause a deficit of water i.e. drought (Bhuyan et al., 2017; Van Loon, 2015). To identify
factors which influence both late-frost and drought we utilized a set of bioclimatic
indices as well as a set of topographic indices. The bioclimatic indices are based on the
bioclimatic variables derived from the WordClim database (Fick and Hijmans, 2017;
Hijmans et al., 2005). Since we are interested in intra-annual fluctuations of precipitation
and temperature patterns, we derive these indices on a yearly basis. We first aggregated
our daily climate data (precipitation, min. temperature, max. temperature, mean
temperature) to monthly values. Subsequently, we calculated the annual bioclimatic
variables using the R package dismo (Hijmans et al., 2021).

For the topographic predictors (elevation, slope, aspect), we extracted relevant terrain
information from the digital surface model (DSM) EU-DEM v1.0 provided by the Euro-
pean Environment Agency (EEA) under the Copernicus program (publicly available
at http://land.copernicus.eu/pan-european/satellite-derived-products/eu-dem/eu-
dem-v1-0-and-derived-products/eu-dem-v1.0/view. We reprojected the EU-DEM from
its native resolution of 25 m and ETRS89 reference system to a resolution of 5 km and
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a WGS84 reference system to match our climate data. We then extracted slope and
aspect information from the DSM using the R package terra (Hijmans, 2022). Also, we
include the gridcell specific location by including latitude and longitude in the model.

Data summary

Overall, we have produced a data set containing annual data for 69 years (1952-2020)
for each of the 2867 gridcells considered in the region of Bavaria, Germany. For each
year and location (or gridcell) there are 26 available variables in total (2 responses, 19
bioclimatic predictors and 5 topographic predictors). Thus, in total the data set has
a size of 197823(= 2867 · 69) data points. In Table 6.1 we give a short description of
the variables used in our data analysis. Further, in Figure C.1 given in Appendix C.1,
panels for each variable (apart from the topographic variables) in which the data is
summarized are shown. In each left panel for each variable, shown are the annual mean
observation over all gridcells per each year in the period 1952-2020. The smoothed
line is the fitted moving averages model and the shaded area is the corresponding 95%
confidence interval (CI) for each variable. Using these plots we can observe how the
mean values change over the historical period and what is the trend for each variable.
For example, we can observe the increasing trend for the temp_mean or temp_warm over
the years or the clearly decreasing trend of preci over the last 20 years (2000-2020).
Also, since our main goal is understanding the drought and frost indices, we can easily
see the decreasing trend for both of these variables in the last 20 years (2000-2020),
which implies worse frost and drought conditions. Also, we can identify outliers in
these variables, years which had low average values of frost and drought indices. For
example, the lowest value of the annual average frost index is achieved in the year 2011,
while the lowest value of the drought index is in the year 2003.

The right panels of Figure C.1 for each variable, shows the annual mean averages
over all gridcells, the corresponding 95% and 50 % confidence interval per year over all
gridcells. This plot gives more information about the variability of each variable over
all the possible gridcells for each year. For example, for temp_wet and temp_dry we can
see very big variability in the observations for some years, while for others the majority
of the observations are very close to each other. This implies that there are years in
which these two variables vary over the locations we have considered, while for others,
almost all the locations exhibit similar conditions.

In addition, Appendix C.2 shows marginally normalized contour plots, where the
marginal distributions are fitted in a nonparametric manner, using kernel density
smoothing, for two randomly chosen years, at the beginning of our analysis, year 1953
(first 3 plots) and at the end of the analysis, year 2011 (last 3 plots). Each plot is based
on all 2867 locations for the two responses and a subset of the predictors. On the lower
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diagonal, any deviance from elliptical shapes indicates a non-Gaussian dependence
structure in the data (see Section 3.8 of Czado (2019) for a precise definition) and we
see that almost all panels imply non-Gaussian dependence structures. In addition,
on the upper diagonal, we see a scatter plot of the estimated u-data together with
the corresponding estimated empirical pairwise Kendall’s τ̂. In all 6 figures, we can
see many high values of the pairwise Kendall’s τ̂. Similar results follow for the
other years, i.e. majority of non-Gaussian dependence between pairs of variables and
high estimated empirical pairwise Kendall’s τ̂ are detectable for all years considered.
However, using vine copulas we can efficiently model and capture these high non-
Gaussian dependencies between pairs of variables.

6.3. Data modeling

In order to examine what is the effect of the possible predictors on the late-frost and
drought indices and how it changes over time, we fit a D-vine regression model for each
of the two responses (introduced in Chapter 3, with one-step ahead forward selection
of predictors) and a Y-vine regression model for their joint behavior (introduced in
Chapter 4). The models are fitted for each year separately, using parametric bivariate
copula families with a single parameter (Section 2.1.2), an AIC-penalized log likelihood
selection criteria on the choice of the copula family and the marginal distributions
are fitted in a nonparametric manner, using kernel density smoothing. The use of the
parametric copula families is due to the need for quantifying and analyzing the tail
dependence in the models. Each model is set to find the 5 most influential predictors
for each year. This is done because of computational limitations, due to the large size
of the data set and the number of models to be fitted (in total 69 · 3 = 207 vine copula
regression models are fitted). Thus, we have:

• Data periods: 69 years, t ∈ [1952 − 2020].

• Locations: Per year there are 2867 gridcells where the climatological variables are
evaluated, l ∈ [1, . . . , 2867]. We model the spatial effect in the data by including
as possible predictors the gridcell spatial coordinates, i.e. the latitude and
longitude.

• Univariate D-vine models: For each year, two D-vine regression models are fitted
on all 2867 grid points. The ones where the response is the frost index we denote
as D̂ f rost1952

, . . . , D̂ f rost2020
. The drought index is a response variable in the models

D̂drought1952
, . . . , D̂drought2020

.
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• Bivariate Y-vine models: For each year, we fit a joint response Y-vine model over
all grid points. The fitted Y-vine models we denote as Ŷ1952, . . . , Ŷ2020.

Variable name Description

Responses

frost late-frost index at leaf out
drought drought index

Bioclimatic variables

temp_mean Annual mean temperature
temp_diu Mean diurnal range (mean of monthly max temp - min temp)
isotherm Isothermality

temp_season Temperature seasonality
temp_max Temperature of warmest month
temp_min Temperature of coldest month

temp_season Temperature annual range
temp_wet Mean temperature of wettest quarter
temp_dry Mean temperature of driest quarter

temp_warm Mean temperature of warmest quarter
temp_cold Mean temperature of coldest quarter

preci Total (annual) precipitation
preci_wet_m Precipitation of wettest month
preci_dry_m Precipitation of driest month
preci_season Precipitation seasonality (coefficient of variation)
preci_wet_q Precipitation of wettest quarter
preci_dry_q Precipitation of driest quarter
preci_warm Precipitation of warmest quarter

preci_cold Precipitation of coldest quarter

Topographic variables

elevation Average elevation above sea level (in meters)
aspect Aspect of each gridcell in degrees (0° = north)
slope Average slope of each gridcell in degrees

latitude latitude of gridcell
longitude longitude of gridcell

Table 6.1.: Variable description.
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6.3.1. Dependence analysis

Unconditional dependence analysis between drought and late-frost indices

In the top panel of Figure 6.1 we analyze the unconditional dependence between
the late-frost index (f) and the drought index (d) using the Kendall’s τ measure of
dependence (introduced in Section 2.1.1), denoted as τf ,d. Shown are the estimated τf ,d
values over all gridcells per each year in the period 1952-2020. The smoothed line is the
fitted moving average model and the shaded area is the corresponding 95% confidence
interval. We observe how this dependence evolves over the years. At the beginning, in
the period approximately 1952-1969 there is an increasing trend in the dependence of
the late-frost and drought index, until it reaches the maximal value of the dependence,
Kendall’s τ̂f ,d = 0.62 in year 1969. This values is the maximal Kendall’s τ̂f ,d value in
absolute value as well. Then there is decreasing trend for a short period, and then,
in the next period around 1980-2000, this trend stabilizes, as there are similar smaller
dependencies, but in opposite directions, some being positive, while others negative.

In the next period, the dependence has a decreasing trend and reaches the minimal
value of dependence, Kendall’s τ̂f ,d = −0.33 in year 2007. The minimal Kendall’s τ̂

in absolute value is reached in year 1970 and it is approximately zero |τ̂f ,d| = 0.0004.
Finally, in the last 5 years there is an increasing trend. Note that the blue vertical
ribbons represents years identified as extreme only by the frost D-vine model, the
apricot colored vertical ribbon represents years identified only by the drought D-vine
model, purple ribbons represents years identified by the joint Y-vine model and light
gray (only year 1953) ribbon is where both the univariate models identifies risks, but
not the joint Y-vine model. More details on how we identify these extreme risk years is
explained later in Section 6.4.

Next, we fit a bivariate copula model on the late-frost index and the drought index
over all average annual observations in the period 1952-2020 to analyze the overall
dependence between the two responses. The fitting is done using a parametric pair
copula family with a single parameter with an AIC-penalized log likelihood selection
criteria. The selected pair copula is a Gaussian copula with parameter value of 0.34
and estimated Kendall’s τ̂f ,d = 0.22. This implies that there is relatively small overall
dependence between the late-frost and drought index, and there is no tail dependence
modeled between these two variables (without considering predictor variables).
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Figure 6.1.: x-axis: 1952-2020 year. y-axis: Top row: unconditional Kendall’s τ̂f ,d value,
bottom row: conditional τ̂f ,d;u. (The black points denote the estimated
values at each year, the red horizontal line denotes when Kendall’s τ̂ = 0,
which indicates independence. The blue line is the smoothed regression
line and it’s 95% confidence interval. The vertical ribbons denote extreme
years identified for frost risk (blue), drought risk (apricot), joint frost and
drought risk (purple), and marginal drought and frost risk, but not joint
risk identified(light gray).)
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Conditional dependence analysis between drought and late-frost indices

We take a look at the conditional dependence between the frost and drought indices
in the bottom panel of Figure 6.1. After fitting the Y-vine models of Chapter 4 to the
data, for each year there is a pair copula fitted between the frost and drought indices,
conditioned on the chosen 5 predictors. This corresponds to the last pair copula fitted
in the Y-vine model. For each of these fitted pair copulas, we extract the estimated value
of the Kendall’s τ, denoted as τf ,d;u and we plot it for each year. Here we see a different
trend in the conditional dependence, than in the unconditional dependence between the
frost and drought indices. In the period 1952-1985 there is an overall increasing trend
in the conditional dependence, reaching a maximal value in year 1985 of τ̂f ,d;u = 0.22.
Afterwards, there is a decreasing trend in their dependence until around the 2000s,
after which an increasing trend follows again. The maximal absolute value is reached
in year 1955 of |τ̂f ,d;u| = 0.26, which is the minimal overall value as well. The minimal
absolute value is reached in year 1964 and it is |τ̂f ,d;u| = 0.008.

Pair copula families

To amplify the benefits of the usage of vine copula models on the data, whose main
advantage is modeling non-Gaussian relationships with tail and asymmetric depen-
dencies, we analyse how many of the selected pair copula families are Gaussian pair
copulas and how many are non-Gaussian. In the fitted Y-vine models Ŷt there are in
total 21 fitted pair copulas, and in the fitted D-vine models, D̂ f rostt and D̂droughtt there
are 15 fitted pair copulas for t ∈ [1952 − 2020]. In Figure 6.2 we show how many times,
in each model for each year, Gaussian copula (rotations included) is been fitted and
how many time a non-Gaussian copula is fitted (the choices are: Clayton, Gumbel,
Frank, Joe, and their rotations as well). The non-Gaussian fitted pair copulas are shown
with red color, while the Gaussian pair copulas are shown with blue color. We observe
that the red color is much more pronounced in all 3 models.

On average for the frost D-vine models D̂ f rostt
for all t ∈ [1952 − 2020] , there are

11% of Gaussian pair copulas, and 89% of non-Gaussian pair copulas fitted. For the
drought D-vine models D̂droughtt

for all t ∈ [1952 − 2020] , there are 15% of Gaussian
pair copulas, and 85% of non-Gaussian pair copulas fitted. For the joint model of frost
and drought, the Y-vine model Ŷt for t ∈ [1952 − 2020] , there are 12% of Gaussian
pair copulas, and 88% of non-Gaussian pair copulas fitted. Thus, due to the fact that
the majority of the fitted pair copulas are non-Gaussian, it follows that the overall
dependence structure in the data is non-Gaussian and vine copulas succeed to capture
this dependence.
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Figure 6.2.: Count of the fitted Gaussian pair copulas, shown in blue and non-Gaussian
pair copulas (including rotations), shown in red.
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6.3.2. Order analysis of selected predictors

Each of the fitted models selects the 5 most influential predictors for the frost and
drought indices, and the 5 most influential predictors for the joint modeling of them.
To analyse how the influence of the predictors vary over the years and which of the
possible predictors are chosen the most over the historical period from 1952 to 2020, we
show in Figure 6.3 for each year which 5 predictors are chosen by each model. Their
influence depends on the position in the order. The first predictor in the order is the
most influential one on the response/s, the second in the second most influential one
and so on.

The 5 predictors that are chosen the most by each of the 69 models, not taking into
account the position they are chosen in, are the following:

• D̂frostt for all t ∈ [1952 − 2020] : longitude (43 times), latitude (35 times),
temp_min (23 times), isotherm (each 22 times) and temp_mean (21 times);

• D̂droughtt
for all t ∈ [1952 − 2020] : latitude (44 times), longitude and

preci_warm (36 times each), elevation (30 times), preci_wet_q (23 times),
preci_season (22 times);

• Ŷt for all t ∈ [1952 − 2020] : latitude (41 times), longitude (39 times),
preci_warm (30 times), temp_min (23 times), preci_wet_q and isotherm (each 19
times).

The optimal order for each model is defined as the order in which the first element of
the order corresponds to the predictor that appeared the most in the first position over
the 69 models, then the second element is defined as the element that appeared the
most in the second position among the elements not chosen as first and so on (defined
and used in Section 3.5.1). The optimal orders for each model are given in Table 6.2,
together with how many times the chosen predictor is selected to be in a given position
for all 5 possible positions in the order. Note that for some positions in the order 2
predictors appear the same number of times in a particular position, for example in
the optimal order for D̂ f rostt

both temp_range and temp_season appear in the fourth
position in the order 7 times each out of the 69 possible orders.
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Figure 6.3.: Orders of the fitted annual models.
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Model 1 2 3 4 5

D̂ f rostt

temp_warm(11) lon(17) lat(10) temp_range, preci_season(7)
temp_season (7)

D̂droughtt
lat(14) lon (11) preci_warm(10) preci_wet_q(7) elevation(13)

Ŷt
lat (17) lon (14) preci_warm, isotherm(6) temp_season (8)

preci_wet_q(6)

Table 6.2.: The optimal orders for each model over all years, together with the count of
appearances of the predictor in a certain position in the order.

Out of the chosen predictors for all 3 models, we can conclude that the spatial effects
have very influential role, as latitude and longitude are chosen by all 3 models in the
optimal orders. Further, for the D̂ f rostt

influential predictors are also the temperature
based predictors, as temp_min, temp_warm, temp_range. For the D̂droughtt

influential
predictors are the precipitation based predictors, as preci_warm, preci_wet_q, and also
the elevation spatial predictor. For the joint Y-vine regression models Ŷt influential
predictors are both temperature based predictors, such as temp_min, isotherm, but also
precipitation based predictors, as preci_wet_q, preci_warm.

6.4. Univariate and bivariate conditional probability risk
measures of extreme events

For the fitted vine models, we propose a probability risk measure, which is defined
as the conditional probability of the random variable/s to be less that a specified
threshold given the predictors. Denote the frost index random variable as Yf ,t,l and the
drought index random variable as Yd,t,l for year t ∈ [1952, . . . , 2020] at gridcell (location)
l ∈ [1, . . . , 2867]. The corresponding marginal distribution functions are denoted as
FYf ,t,l and FYd,t,l respectively. Denote the 5 ordered predictors chosen by each model as

the vector Xt,l = (X1,t,l , . . . , X5,t,l)
T with corresponding marginal distribution functions

F1,t,l (X1,t,l) , . . . , F5,t,l (X5,t,l) for t ∈ [1952, . . . , 2020] and l ∈ [1, . . . , 2867].

6.4.1. General framework

Given a threshold vector p =
(
y f , yd

)T, we define the conditional probability of the
occurrence of an average observation of Yf ,t,l ≤ y f given a set of predictors Xt,l , i.e.
P
(
Yf ,t,l ≤ y f |Xt,l

)
, within a time period t for all l, as a risk measure for the occurrence

of frost. This conditional probability is estimated as

P̂
(
Yf ,t,l ≤ y f |Xt,l

)
:= CD̂ f rostt

(
Vf ,t,l ≤ FYf ,t,l

(
y f
)
|Ut,l = ut,l

)
, (6.1)
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where Vf ,t,l = FYf ,t,l

(
Yf ,t,l

)
, and Ut,l = (F1,t,l (X1,t,l) , . . . , F5,t,l (X5,t,l))

T coming from the
estimated D̂ f rostt

model in the chosen order. We denote the right hand side of Equation
(6.1) as P̂D̂ f rostt

(
y f |xt,l

)
. Following the same analogy, a risk measure for the occurrence

of drought, P̂D̂droughtt
(yd|xt,l) is defined, where xt,l contains the observations of the 5

chosen predictors in the order of the D̂droughtt
model for each time t and location l.

The joint risk measure for the joint occurrence of frost and drought, given a threshold
vector p =

(
y f , yd

)T, is the conditional probability of the joint occurrence of an average
observation of Yf ,t,l ≤ y f and Yd,t,l ≤ yd given a set of predictors, within a time period
t. We estimate it as

P̂
(
Yf ,t,l ≤ y f , Yd,t,l ≤ yd|Xt,l

)
:= CŶt

(
Vf ,t,l ≤ FYf ,t,l

(
y f
)

, Vd,t,l ≤ FYd,t,l (yd) |Ut,l = ut,l

)
,

(6.2)
where Vd,t,l = FYd,t,l (Yd,t,l) and ut,l contains the observations of the 5 chosen predictors
in the order of the Ŷ model for each time t at location l. We denote the right hand side
of Equation (6.2) as P̂Ŷt

(p|xt,l).
In order to evaluate the proposed conditional probabilities, we chose the threshold

to be p =
(
y f , yd

)
= (−2,−1.5). Thus, we determine the estimates of P̂D̂ f rostt

(−2|xt,l),

P̂D̂droughtt
(−1.5|xt,l) and P̂Ŷt

(−2,−1.5|xt,l), where for each model the conditioning val-
ues ut,l differ. For the drought index, we set the threshold at -1.5 which represents
a commonly accepted threshold beyond which drought conditions are classified as
severely to extremely dry (Slette et al., 2019). Since such a commonly accepted threshold
is not available for the frost index, we set the threshold at -2, signifying two standard
deviations below the mean of the frost index. The greater these conditional probabilities
are, the greater the chances are of ’extreme’ drought, frost or joint frost and drought risk.

Thus, to summarize we have the following risk measures estimated for all gridcells
and all years :

• P̂D̂ f rostt
(−2|xt,l) : estimated conditional risk probability of extreme frost;

• P̂D̂droughtt
(−1.5|xt,l) : estimated conditional risk probability of extreme drought;

• P̂Ŷt
(−2,−1.5|xt,l) : estimated conditional risk probability of joint extreme frost

and drought.
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6.4.2. Results

The estimated conditional probabilities from the 3 fitted vine regression models are
given in Figures 6.4, 6.5 and 6.6. Per year the conditional probabilities are estimated
for each location, and subsequently their 90% and 50% confidence intervals and means
are shown in the left panel of each figure. Additionally, the 98% and 90% confidence
intervals and means (top-right panels) are shown for three selected time periods, i.e.
years 1952-1974, 1975-1997 and 1998-2020. Further, a year is considered to have an
"annual extreme event occurrence" if the 0.95 empirical quantile of the estimated
conditional risk probability for that year over all gridcells is greater than 0.2, in
which case at least 5% of the locations have a 20% or higher chance of an extreme event
occurring. The number of years which exhibit such extreme occurrences, within each
of the considered time periods, are shown in the bottom-right panels of each figure.

Extreme frost events

Figure 6.4 shows a summary of the conditional probabilities associated with an extreme
frost event. It indicates that in approximately 23 years out of 69 there is a non zero
probability of extreme events happening in at least 5% of the locations in Bavaria. As
the means of extreme events are fairly constant between the three 23 year periods, there
seems not to be a significantly increased risk of extreme frost between the first and
third period. Also, there is a total of 4 annual extreme events in the first period, 2 such
in the second and 4 in the third period, resulting in a total of 10 annual extreme events
for the frost risk. These identified risky years for the frost are: 1952, 1953, 1959, 1969,
1976, 1981, 2001, 2003, 2005, 2011.

Extreme drought events

Next, Figure 6.5 shows a summary of the conditional probabilities associated with
an extreme drought event. Again, quite often there is a non-zero probability of
extreme drought occurs in at least 5% of the locations in Bavaria, in approximately
26 years out of 69. However, in contrast to frost, there is a clear increase in the mean
conditional probability of an extreme drought event occurring, as well as the frequency
of occurrence. In the period between 1998 and 2020 there is almost every year a high
probability of an extreme drought event occurring over all locations. Further, the
frequency of the annual extreme events increases as well, with 3 extreme events in the
period 1952-1974 and a single extreme event in the period 1975-1997, to a total of 7
extreme events in 1998-2020. These identified risky years for the drought index are:
1953, 1959, 1963, 1976, 2003, 2011, 2012, 2014, 2015, 2018, 2019.
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Figure 6.4.: Conditional probabilities of annual extreme frost occurring, P̂D̂ f rostt
(−2|xt,l).

Figure 6.5.: Conditional probabilities of annual extreme drought occurring, P̂D̂droughtt
(−1.5|xt,l).
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Figure 6.6.: Conditional probabilities of annual jointly extreme frost and drought occurring, P̂Ŷt
(−2,−1.5|xt,l).
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Extreme frost and drought events

Figure 6.6 gives a summary of the joint conditional probabilities of both, extreme frost
and extreme drought events, occurring. There is a clear increase in the mean of the joint
conditional probabilities, approximately by a factor of three, as well as a significant
increase in occurrence frequencies between the last period (1998-2020) and the first two
(1952-1974 and 1975-1997). A significantly high risk of annual jointly extreme events
is present in the years 1959, 1976, 2003, 2011 and 2020. Furthermore, in the years that
there is an increased joint risk, there are also increased marginal risks of frost and
drought. Basically, the joint Y-vine model identified 5 very extreme joint events, which
were also identified by the univariate D-vine models for both the frost and drought
risks, except for the year 2020, where both the conditional frost and drought risks are
just below the threshold for an extreme event, but it is a quite high non-zero value.

The years that are identified by each model are also highlighted with a vertical
ribbon in the background of Figures 6.1 and all figures in Appendix C.1. The blue
ribbon represents years identified only by the frost D-vine model, the apricot colored
ribbon represents years identified only by the drought D-vine model, purple ribbons
represents years identified by the joint Y-vine model and light gray (only year 1953)
ribbon is where both the univariate models identifies risks, but not the joint Y-vine
model.

Figure 6.7 shows the estimated conditional probabilities of frost P̂D̂ f rostt
(−2|xt,l),

drought P̂D̂droughtt
(−1.5|xt,l) and joint events P̂Ŷt

(−2,−1.5|xt,l), for the years 1959, 1976,
2003, 2011 and 2020, for each of the considered locations or gridcells in Bavaria. It
is interesting to note that, at a given location, if there are high univariate conditional
probabilities of frost and drought, there is not necessarily a high bivariate conditional
probability of a joint event. An example is the north of Bavaria in the year 2003. Despite
having high chances of frost and drought individually, there is almost no chance of a
joint event occurring at those locations. This indicates that separate assessment of risks,
interpreted together will likely overestimate the joint risk and fail to detect true regions
of interest.
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Figure 6.7.: P̂D̂ f rostt
(−2|xt,l), P̂D̂droughtt

(−1.5|xt,l) and P̂Ŷt
(−2,−1.5|xt,l), for the years

identified as extreme by the joint Y-vine model for all gridcells.
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6.5. Survival probabilities

The survival function is the complement of the cumulative distribution function, and it
gives the probability that an event will not occur. We determine the survival function
of the event starting from time s until the time period T by subtracting from 1 the sum
of the estimated conditional probabilities occurring in each year between time s and
T ≤ 2020 (more in Klein et al., 1997, Chapter 2). Then, the survival probability for the
frost index is estimated as

ŜD̂ f rost
(s, T) := 1 −

T

∑
t=s

P̂D̂ f rost
(−2|xt,l) . (6.3)

In the same manner, the survival probability for the drought index ŜD̂drought
(s, T) is

defined. For the joint bivariate case, the survival probability is estimated as

ŜŶ (s, T) := 1 −
T

∑
t=s

P̂Ŷt
(−2,−1.5|xt,l) . (6.4)

Figure 6.8 shows the estimated survival probabilities for all considered locations for
s = 1952 and T = 1975, 1998, 2020, going from top to bottom. The survival probabilities
can be interpreted as the probability of a location not experiencing an extreme event in
the time periods 1952-1975 (top row), 1952-1998 (middle row) and 1952-2020 (bottom
row). Yellow regions have survival probabilities close to 0, and those regions have a
high risk of an extreme event happening beyond the year T and purple regions have sur-
vival probabilities close to 1, meaning that those regions have a low risk of an extreme
event happening beyond a given year T. For example, purple coloured locations (i.e
survival probability ≥ 0.75) in the middle plot indicate that the estimated probability
of an extreme drought event not occurring in the time period 1952-1998 is above 75%.
With the increase in size of the time interval considered, the survival probability is
expected to decrease, i.e. the longer the period of observation the higher the chances of
a death event. Therefore, the bottom three plots are expected to exhibit lower estimated
survival probabilities. However, it is interesting that despite the estimated survival
probabilities of almost all locations are close to 0 for both frost and drought indices in
the last row, the joint estimated survival probability is above 0.75 for more then half of
the locations in Bavaria, with only the Northern and Eastern regions exhibiting a close
to 0 joint survival probability. This implies that considering only the marginal models
for frost and drought risks, we would not have been able to properly locate "at-risk"
regions for the joint occurrence of these two extremes.
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For a better comparison, we also consider 3 equal length time periods (1952-1974,
1975-1997, 1998-2020). In Equations (6.3) and (6.4) the corresponding pair (s, T) is
evaluated at the pairs (1952, 1974), (1975, 1997), and (1998, 2020). Figure 6.9 shows the
estimated survival probabilities between those specific periods. In contrast to Figure
6.8, the considered periods are of equal length and give rise to survival probabilities
that are comparable between each other. Also, from these plots we can see the influence
each period has on the associated overall survival risk.

The period 1952-1974 has low estimated survival probabilities, i.e. high risks of
extreme even occurrences, in approximately half of the considered locations, while the
other half has quite high estimated survival probabilities for both frost and drought.
There are almost no chances of a joint occurrence in the majority of locations and the
extreme joint events seem to be located in the norther borders of Bavaria. In the next
period, between 1975-1997, there is a small risk for a frost event, appart from the east
regions of Bavaria. The estimated survival probabilities for the drought are quite low in
the majority of the locations considered, indicating that this period had higher drought
risks associated than the previous period considered. The joint estimated survival
probabilities are quite high for almost all locations, indication low risk of a joint event.
Also, in this period there is only one joint extreme event in 1976, in the same region
as identified in the second row, third column of Figure 6.7, indicating that the period
afterwards was quite a stable one in terms of extreme events.

On the other hand, the last time period considered, 1998-2020, has almost exclusively
0 estimated survival probabilities for both frost and drought throughout all locations
considered in Bavaria. Joint extreme events are also very likely in for example, the
north and east regions. The estimated survival probabilities derived in all three cases,
both univariate and the joint, indicate a significant increase in risk for frost, drought
and their joint occurrence in the last 20 years compared to the other two considered
periods.
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Figure 6.8.: Estimated survival probabilites ŜD̂ f rost
(s, T), ŜD̂drought

(s, T), and ŜŶ (s, T) for
periods (s, T) = {(1952, 1974), (1952, 1998), (1952, 2020)} (from top to bot-
tom row).

118



6. Univariate and bivariate risk analysis of late-frost and drought conditions in Bavaria
19

52
-1

97
4

Frost Drought Frost+Drought

19
75

-1
99

7
19

98
-2

02
0

Figure 6.9.: Estimated survival probabilities ŜD̂ f rost
(s, T), ŜD̂drought

(s, T), and ŜŶ (s, T) for
periods (s, T) = {(1952, 1974), (1975, 1997), (1998, 2020)} (from top to bot-
tom row).
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6.6. Return periods

Return period of an event is the expected time until the event reoccurs. Depending
on the usage goal and data at hand, it can be defined as the expected time interval at
which an event of a given magnitude is exceeded for the first time or the average of
the time intervals between two exceedances of a given threshold (Volpi et al., 2015).
Motivated by the goal of our study, we use the first definition based on the waiting
time until an event happens. We define the event happened if the estimated survival
probability hits a threshold of 0.5, which indicates the first time there will be a greater
chance of the event to happen than not to, i.e. the return period is the number of years
at which the probability of surviving is equal to or greater than 0.5, or 50%. The return
period for the frost index is then defined as

RD̂ f rost
:= inf

t∈[1952,2020]

{
t|ŜD̂ f rost

(1952, t) ≤ 0.5
}

.

Similarly, the return periods for the univariate D-vine model for the drought index are
defined RD̂drought

. In the bivariate case, we define the return period as

RŶ := inf
t∈[1952,2020]

{
t|ŜŶ (1952, t) ≤ 0.5

}
.

We iterate over increasing values of t, evaluating ŜŶ (1952, t) and the first time
ŜŶ (1952, t) ≤ 0.5 happens, we obtain the waiting time until the event occurs. Since this
approach assumes that the survival function is continuous and strictly decreasing, we
interpolated between the discrete values of our estimated survival function ŜŶ (1952, t).
In Figure 6.10 we plot the estimated survival functions for each of the 3 estimated
conditional probabilites for a randomly chosen location. The dotted line represent the
threshold 0.5, and its intersection with the survival functions indicates the value of
the return period. For example, the return period for the drought event is 8 years, the
return period for the frost risk cannot be precisely determined, as the threshold has not
been reached for this location and the return period for the joint extreme event is 60
years.

Figure 6.11 shows the return periods for all considered locations for the 3 different
models considered, RD̂ f rost

, RD̂drought
, RŶ . Regions are coloured based on the value of the

estimated return period. We distinguish between regions with a return periods of 0-20
years (orange), 21-40 years (light green), 41-60 years (dark green) and more than 60
years (blue). Gray regions show regions for which the threshold of 0.50 has not been
reached in the 69 considered years. Based on this plots we can distinguish between
temporal "at-risk regions" based on the estimated return periods. The highest risk
regions have the lowest return times and the lowest risk regions have the highest return
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times or return times that are greater than 69 years. For the return periods associated
with the univariate regression models, the highest risk is shown approximately in the
northern, central-east border regions and southern regions of Bavaria. For the return
period of the joint vine regression model we see lower risks and the estimated highest
risks are in the northern and central-east border regions.

Figure 6.10.: Plotted are ŜD̂ f rost
(1952, 2020), ŜD̂drought

(1952, 2020) and ŜŶ (1952, 2020) for
randomly chosen location with latitude coordinate 49.4874 and longitude
coordinate 10.809.

6.7. Conclusion and outlook

We fitted the models developed for vine based regression to a large real data set, in one
of the most important topics in today’s society, changing climate. The utilized data set
shows majorly non-Gaussian dependencies, especially between the possible predictor
variables, thus making vine copulas suitable for modeling the data at hand. We utilize
the D-vine copula model for modeling the drought and frost indices separately, and
the Y-vine copula for their joint modeling. Based on annual fitted models we propose
conditional risk measures, which quantify the univariate and bivariate risks of extreme
annual events. This way, we identify years which are extreme for both the univariate
and bivariate risks. We also suggest a survival probability analysis and return times
analysis, based on the models fitted, so that we can identify "at-risk" spatial and
temporal regions. Further, up to our knowledge this is one of the biggest scale data
modeling application based on vine copula models.
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Frost Drought Frost+Drought

Figure 6.11.: Return periods for RD̂ f rost
, RD̂drought

, RŶ . Regions are coloured based on the
estimated return period. Distinguished are return periods of 0-20 years
(orange), 21-40 (light green), 41-60 (dark green) and > 60 (blue). Gray
regions denote regions where the threshold has not been reached.

After establishing the statistical tools required to properly model the frost and
drought risks, conditioned on a set of predictors, we are currently extending the data
set by including projected data for the next 80 years, from 2020-2100 under different
climate scenarios. Our main goal is to answer the questions: how will the joint
probability of drought and frost events and the frequency of co-occurring frost and
drought, shift under various climate change scenarios. This is extremely important for
future forest management recommendations on the region of Bavaria.

Further, a possible outlook is widening the spatial scope from Bavaria to Europe
and integrating different tree species. Currently, such analysis is limited by the (non-
) availability of Europe wide high-resolution climate projections, which adequately
capture the extremes in the primary climate variables associated with drought and
especially spring late-frost. By building on recent advances in climate downscaling,
which use deep convolutional neural networks with batch normalization and residual
networks, it will soon become possible to produce high-resolution climate data sets for
the European domain which will accurately represent such extremes. Further, this can
allow development of associated forest management recommendations on the European
scale.
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The main topic of this thesis was to deepen the understanding and to extend the
applicability of vine copula based models in regression settings. We extend the uni-
variate response vine copula based regression to a fully nonparametric setup, with a
less greedy forward selection approach than the standard approach suggest in Kraus
and Czado (2017). Then, we develop a novel bivariate response vine copula based
regression, utilizing a newly developed Y-vine tree sequence. We suggest many novel
methods and extensions around the Y-vine copula, concerning simulation, prediction,
numerical estimation of bivariate conditional level curves and simulation based bivari-
ate conditional quantile curves. Based on the Y-vine, we also suggest and estimate
bivariate conditional risk measures. Also, all the methods developed are coded in the R

statistical software, and can be further used for other applications or utilized for other
extension methods.

One possible promising future research area is the connection of the developed
methods proposed in the thesis with Bayesian networks (BNs) (more details on BNs
in Lauritzen (1996) and Cowell et al. (2007)). The first connection between copulas
and Bayesian networks was made in Elidan (2010) and Elidan (2012). It turns out
that if the density of a multivariate distribution decomposes into conditional densities,
then the underlying copula density decomposes into corresponding conditional copula
densities. Copula Bayesian networks (CBNs) exploit the graph, to encode conditional
independences in a parsimonious way and copulas, to model marginal distributions
and conditional copula densities separately. However, only a limited number of families
of multivariate copulas with one parameter are considered (Liebscher, 2006). An
improvement is seen when using CBNs over Gaussian BNs in Elidan (2010), while
further results on copula based Bayesian networks can be found in Liu et al. (2009),
Kirshner (2008), and Darsow et al. (1992).

First connections between vine copulas and BNs were made in Kurowicka and Cooke
(2002), (and later in Kurowicka and Cooke (2005) and Kurowicka and Cooke (2006))
where it is shown that every continuous multivariate distribution associated with a
directed acyclic graph (DAG) can be decomposed into a family of bivariate (conditional)
distributions, which correspond to the edges of the underlying graph. Further, Bauer
and Czado (2016) introduce Pair copula Bayesian Networks (PCBNs) together with al-

123



7. Overall conclusion and future outlook

gorithms for evaluations of the joint density arising from a PCBN, maximum likelihood
estimation, simulation from PCBNs and a model selection algorithm inspired by the
widely used PC algorithm by Spirtes and Glymour (1991). The flexibility of PCBNs
allows for capturing of a wide range of distributional features to be modelled, such as
heavy tails, tail dependencies, and non-linear, asymmetric dependencies. However, the
methodology given in Bauer and Czado (2016) in limited in terms of the number of
variables, the computational cost and the estimation procedure needed. Thus, it would
be beneficial to expand the idea of Bauer and Czado (2016) to a full computationally
inexpensive procedure, without losing flexibility.

There are two separate problems in BN estimation procedure: structure learning and
conditional density estimation. For the structure learning procedure of a DAG one can
either use expert knowledge or data driven approaches, usually either constraint-based
or score-and-search-based approaches (Koller and Friedman, 2009). The constraint-
based approach is based on a series of conditional independence tests, while the
score-and-search-based approaches optimize a given scoring function.

Bauer and Czado (2016) suggest a test for conditional independence between two
variables by fitting a regular vine copula model on the data, with a constraint that the
variables in the conditioned set are always leaf nodes in the vine copula. This way the
marginal conditional distributions required for testing conditional independence are
convenient to estimate, with no integration required. However, Bauer and Czado (2016)
fit the best vine model with the given leaf node constraint, but they don’t consider nor
optimize the joint conditional distribution of the two variables given the rest, needed for
the conditional independence test. They fit the best vine model on the set of variables,
with no restrictions towards optimizing the joint conditional distribution. Also, there
is an asymmetric treatment of the two variables being tested. To overcome all of this,
we propose to do the conditional independence test utilizing the Y-vine copula model.
It is designed in a way that it optimizes the joint conditional log-likelihood of two
variables given the rest. Also, it provide symmetric treatment of the two variables, have
an automatic forwards selection of variables in the conditioning set and are numerically
tractable even in higher dimensions. Thus, due to the convenience by design, the Y-vine
copula models are interesting to be explored for structure learning and conditional
independence testing in non-Gaussian DAGs. Following Bauer and Czado (2016), we
suggest the widely used constraint-based PC algorithm (Spirtes and Glymour, 1991)
for the case of learning non-Gaussian directed acyclic graphs (DAGs), with a novel
conditional independence test based on Y-vine copulas (introduced in Chapter 4).

To model the conditional densities specified in a BN, Bauer and Czado (2016) used a
broader class of vine copula models for which computationally expensive integration
might be required for some node. However, we propose to model the conditional
densities using less expensive models, that involves automatic forward selection of
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parent nodes and no integration is needed, as already suggested and used in Czado and
Scharl (2021). We propose to model the conditional densities using a D-vine regression
model (Kraus and Czado, 2017) or a C-vine regression model (Chapter 3), where the
node whose conditional density we model, will be the response variable and the parents
are the predictor variables in these regression settings. This way we will model the
conditional density for each node using a flexible class of D- and C-vine copulas, with
an included automatic forward selection of parents and non-expensive estimation. Even
more, these approaches will be able to identify edges that are not supported by the
data, thus allowing for potential reduction of edges in the resulting Bayesian network.
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A. Appendix to Chapter 4

A.1. Proofs

A.1.1. Proof of Proposition 1

Proof 1

FY1,Y2|X (y1, y2|x) =
∫ y1

−∞

∫ y2

−∞
fY1,Y2|X

(
y′1, y′2|x

)
dy′2 dy′1

=
∫ y1

−∞

∫ y2

−∞

fY1,Y2,X
(
y′1, y′2, x

)
fX (x)

dy′2 dy′1

=
1

fX (x)

∫ y1

−∞

∫ y2

−∞

∂p+2

∂y1 ∂y2 ∂x1 . . . ∂xp
FY1,Y2,X (y1, y2, x)

∣∣∣
y1=y′1,y2=y′2

dy′2 dy′1

=
1

fX (x)
· ∂p

∂x1 . . . ∂xp
FY1,Y2,X (y1, y2, x)

(by Sklar′s theorem) =
1

fX (x)
· ∂p

∂x1 . . . ∂xp
CV1,V2,U

(
FY1 (y1), FY2 (y2), FX1 (x1), . . . , FXp (xp)

)
=

1
fX (x)

· ∂p

∂u1 . . . ∂up
CV1,V2,U

(
v1, v2, u1, . . . , up

) ∣∣∣
vj=FYj (yj),ui=FXi (xi)

∂u1 . . . ∂up

∂x1 . . . ∂xp(
∂u1 . . . ∂up

∂x1 . . . ∂xp
=

p

∏
i=1

fXi (xi)

)
=

∂p

∂u1 . . . ∂up
CV1,V2,U

(
v1, v2, u1, . . . , up

) ∣∣∣
vj=FYj (yj),ui=FXi (xi)

· ∏
p
i=1 fXi (xi)

fX (x)(
∂u1 . . . ∂up

∂x1 . . . ∂xp
=

p

∏
i=1

fXi (xi)

)
=

∂p

∂u1 . . . ∂up
CV1,V2,U

(
v1, v2, u1, . . . , up

) ∣∣∣
vj=FYj (yj),ui=FXi (xi)

· 1
cU (u)

= CV1,V2|U
(

FY1 (y1), FY2 (y2)|FX1 (x1), . . . , FXp (xp)
)

,

where CV1,V2|U
(

FY1(y1), FY2(y2)|FX1(x1), . . . , FXp(xp)
)

or shortly CV1,V2|U (v1, v2|u) is the
conditional distribution of V1, V2 given U = u and the joint copula distribution of Y1, Y2, X is
denoted by CV1,V2,U.

A.1.2. Proof of Proposition 2

Proof 2 We prove that a Y-vine tree sequence,
{

T1, . . . , Tp+1
}

, satisfies conditions (i)-(iii)
from Section 2. The first condition (i) is trivial and follows by definition of T1. The next condition
requires that Nk = Ek−1 ∀ k ≥ 2. For k = 2, N2 =

{
V1U1, V2U1, U1U2, . . . , Up−1Up

}
= E1
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follows directly from Definition 4.1. To prove the statement for k > 2, we start with the edge set
of tree Tk−1, Ek−1 given as

Ek−1 =
⋃

j=1,2

{(
VjUk−2; U1:k−3, U1Uk−1; U2:k−2

)}
p−k+1⋃

i=1
{(UiUi+k−2; Ui+1:i+k−3, Ui+1Ui+k−1; Ui+2:i+k−2)} .

Edge
(
VjUk−2; U1:k−3, U1Uk−1; U2:k−2

)
is associated with node VjUk−1; U1:k−2 in Tk for

j = 1, 2 and edge (UiUi+k−2; Ui+1:i+k−3, Ui+1Ui+k−1; Ui+2:i+k−2) is associated with node
UiUi+k−1; Ui+1:i+k−2 for i = 1, , . . . , p − k + 1 in Tk. Therefore, by Definition 4.1, Nk = Ek−1
holds for all k in the Y-vine tree sequence. The last condition, the proximity condition, states
that for k ≥ 2 two nodes can be connected in Tk only if the corresponding edges in the previous
tree Tk−1 share a common node. Consider the part of the tree sequence that only contains the
predictors (X1, . . . , Xp). By definition of the Y-vine tree sequence, the predictors are arranged
in a D-vine tree sequence, which is a known regular vine tree sequence subset, implying that for
the nodes containing only the predictors the proximity condition is satisfied. So, we consider the
remaining nodes that contain the response variables in the conditioned set and the node that
connects them to the D-vine of the predictors. For T2, nodes V1U1, V2U1 are both connected
to U1U2. For VjU1, j = 1, 2 the corresponding edge in T1 is (VjU1) which shares the node
U1 with the corresponding edge of node U1U2, edge (U1U2). For k > 2 in Tk the nodes
V1Uk−1; U1:k−2 and V2Uk−1; U1:k−2 are connected to U1Uk; U2:k−1. In Tk−1 the corresponding
edge of node VjUk−1; U1:k−2 for j = 1, 2 is the edge (VjUk−2; U1:k−3, U1Uk−2; U1:k−3) and for
node U1Uk; U2:k−1 the corresponding edge is (U1Uk−2; U2:k−3, U2Uk; U3:k−1). They share a
common node U1Uk−2; U2:k−3 in Tk−1, thus the proximity condition is satisfied.

A.1.3. Proof of Theorem 1

Proof 3 By definition of a conditional density it follows that fY1,Y2|X =
fY1,Y2,X

fX
. The numerator

fY1,Y2,X is expressed in Equation (4.1), and we need to derive the denominator fX in terms of
copulas. Consider the part of the Y-vine tree sequence after removing the PITs of the responses
V1 and V2, i.e., the tree sequence consisting of only the PITs of the predictors (U1, . . . , Up)T.
By definition of the Y-vine tree structure, the predictors are arranged in a D-vine tree sequence
with a specific order. Thus, the density of a D-vine with this given order (see more in Czado,
2010) can be expressed as

fX (x) =
p

∏
k=1

fXk (xk) ·
p−1

∏
k=1

p−k

∏
i=1

cUi ,Ui+k ;Ui+1:i+k−1

(
FXi |Xi+1:i+k−1

(xi|xi+1:i+k−1),

FXi+k |Xi+1:i+k−1
(xi+k|xi+1:i+k−1)

)
.

(A.1)
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Canceling out all common terms in the expansions of the numerator and the denominator, given
in Equation (4.1) and (A.1) respectively, we are left with the expression in Equation (4.2).
All the required copulas in Equation (4.2) are already derived in the Y-vine tree sequence,
cVj,Ui ;U1:i−1 ∈ B (V) for j = 1, 2, i = 1, . . . , p and cV1,V2;U ∈ B (V) (these copulas can be seen
as the copulas on the furthest left side of each tree in Figure 4.1).

A.1.4. Proof of Corollary 1

Proof 4 Let’s prove part a.) for j = 1. Due to symmetry the same proof follows for j = 2. By
definition of a conditional density it follows that fY1|X =

fY1,X

fX
. The denominator is expressed

in Equation (A.1), while the numerator needs to be expanded. Consider the random vector
(V1, U)T in the tree sequence of the Y-vine, i.e. remove the node of the PIT of the response V2

from the first tree T1 and all the nodes in the further trees that will disappear by removing the
variable V2. By definition of the Y-vine, the variables (V1, U1, . . . , Up) are arranged in a D-vine
tree sequence with a specific order. Thus, the density of a D-vine with this given order (see more
in Czado, 2010) is given as

fY1,X (y1, y2, x) =
p

∏
k=1

fXk (xk) · fY1(y1) ·
p−1

∏
k=1

[
p−k

∏
i=1

cUi ,Ui+k ;Ui+1:i+k−1

(
FXi |Xi+1:i+k−1

(xi|xi+1:i+k−1),

FXi+k |Xi+1:i+k−1
(xi+k|xi+1:i+k−1)

) ]
p

∏
i=1

[
cV1,Ui ;U1:i−1

(
FY1|X1:i−1

(y1|x1:i−1) , FXi |X1:i−1
(xi|x1:i−1)

)]
.

(A.2)

Cancelling common terms of the numerator, Equation (A.2), and the denominator, Equa-
tion (A.1), we are left with Equation (4.3) for j = 1.

Now let’s prove part b.) for (j, k) = (1, 2). Due to symmetry the same proof follows for
(j, k) = (2, 1). Use that fY2|X,Y1

=
fY1,Y2,X

fY1,X
holds. The numerator is expressed in Equation (4.1),

and the denominator is expressed as in the part a.) Equation (A.2). Considering the associated
ratio and cancelling all common terms, we are left with Equation (4.4) for (j, k) = (1, 2). Again,
all the required copulas are already derived in the Y-vine tree sequence, cVj,Ui ;U1:i−1 ∈ B (V)
for j = 1, 2 i = 1, . . . , p and cV1,V2;U ∈ B (V), which means we don’t require any additional
calculations.
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A.2. Pseudo-code for the bivariate vine based regression
algorithm

Algorithm 4: Bivariate vine based regression algorithm

Input: Data set yn = (yn
1 , yn

2)
T , xn =

(
xn

1 , . . . , xn
p

)T
, for n = 1, . . . , N

Initialization:
acll0 = 0
NotChosenIndex = {1, . . . , p}
ChosenIndex = ∅

1. Estimate marginals FYj , FXi , j = 1, 2, i = 1, . . . , p, by a univariate kernel density
estimator, implemented in kde1d.

2. Obtain pseudo copula data un
i := F̂Xi

(
xn

i
)

for i = 1, . . . , p, vn
1 := F̂Y1 (y

n
1) and

vn
2 := F̂Y2 (y

n
2).

for j = 1, . . . , p do
Calculate acll j

1 as

acll j
1 = cll0 + ℓ(cV1Ui) + ℓ(cV2Ui) + ℓ(cV1V2;Ui)

end

r1 := arg maxj=1,...,p acll j
1

NotChosenIndex = NotChosenIndex \ {r1}
ChosenIndex = ChosenIndex

⋃ {r1}
acll1 := acllr1

1
for k = 2, . . . , p do

for t ∈ NotChosenIndex do
Calculate acllt

k as

acllt
k = acllk−1 + ℓ(cV1Ut;Ur1 ,...,Urk−1

) + ℓ(cV2Ut;Ur1 ,...,Urk−1
)

end
rk := arg maxt∈NotChosenIndex acllt

k
NotChosenIndex = NotChosenIndex \ {rk}
ChosenIndex = ChosenIndex

⋃ {rk}
acllk := acllrk

k
end
return ChosenIndex =

{
r1, . . . , rp

}
, i.e. order of the predictors which uniquely

determines the fitted bivariate regression model.
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A.3. Data application from Section 4.7

A.3.1. Notation

The variables given below are enumerated as follows, the response Tmax is enumer-
ated with 1, Tmax = 1, the response Tmin is enumerated with 2, Tmin = 2, then
LDAPS_Tmin_lapse = 7 , LDAPS_Tmax_lapse = 6, LDAPS_CC1 = 10, LDAPS_WS = 8,
Present_Tmin = 4, LDAPS_RHmax = 5, LDAPS_CC3 = 11, LDAPS_LH = 9 and
Present_Tmax = 3. Using that enumeration, in Tables A.1 and A.2 we show the para-
metric pair copulas that were fitted by our Y-vine regression model. In each tree we give
the pair copulas conditioned and conditioning sets, the estimated family, the rotation
in degrees, the parameters, the degree of freedom (number of parameters) and the
Kendall’s τ̂ values.

A.3.2. Fitted pair copulas
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Table A.1.: For the fitted T1 to T5 given are the conditioned and conditioning sets of the
pair copulas, the estimated family, the rotation in degrees, the parameters,
the degree of freedom and the Kendall’s τ̂ values.

tree edge conditioned conditioning family rotation parameters df Kendall’s τ̂

1 1 1, 7 gaussian 0 0.66 1 0.46
1 2 2, 7 gaussian 0 0.91 1 0.73
1 3 7, 6 gaussian 0 0.64 1 0.44
1 4 6, 10 gaussian 0 -0.45 1 -0.30
1 5 10, 8 clayton 180 0.27 1 0.12
1 6 8, 4 indep 0 0 0.00
1 7 4, 5 indep 0 0 0.00
1 8 5, 11 clayton 180 0.48 1 0.19
1 9 11, 9 bb8 0 1.67 , 0.97 2 0.24
1 10 9, 3 student t 0 0.04, 7.06 2 0.03
2 1 1, 6 7 bb1 180 0.78 , 1.68 2 0.57
2 2 2, 6 7 indep 0 0 0.00
2 3 7, 10 6 clayton 0 0.64 1 0.24
2 4 6, 8 10 joe 90 1.22 1 -0.11
2 5 10, 4 8 clayton 0 0.17 1 0.08
2 6 8, 5 4 bb8 0 1.87, 0.70 2 0.13
2 7 4, 11 5 student t 0 0.01, 5.21 2 0.01
2 8 5, 9 11 gaussian 0 0.34 1 0.22
2 9 11, 3 9 gumbel 270 1.12 1 -0.10
3 1 1, 10 6, 7 joe 90 1.34 1 -0.16
3 2 2, 10 6, 7 indep 0 0 0.00
3 3 7, 8 10, 6 indep 0 0 0.00
3 4 6, 4 8, 10 gaussian 0 0.53 1 0.35
3 5 10, 5 4, 8 bb8 0 3.28, 0.85 2 0.42
3 6 8, 11 5, 4 joe 0 1.17 1 0.09
3 7 4, 9 11, 5 student t 0 0.15, 6.59 2 0.10
3 8 5, 3 9, 11 gumbel 270 1.37 1 -0.27
4 1 1, 8 10, 6, 7 frank 0 -1.77 1 -0.19
4 2 2, 8 10, 6, 7 student t 0 0.10, 7.34 2 0.06
4 3 7, 4 8, 10, 6 gaussian 0 0.65 1 0.45
4 4 6, 5 4, 8, 10 frank 0 -1.37 1 -0.15
4 5 10, 11 5, 4, 8 frank 0 2.21 1 0.23
4 6 8, 9 11, 5, 4 gumbel 0 1.17 1 0.14
4 7 4, 3 9, 11, 5 gaussian 0 0.68 1 0.47
5 1 1, 4 8, 10, 6, 7 student t 0 0.07, 11.79 2 0.05
5 2 2, 4 8, 10, 6, 7 bb8 0 1.44, 0.94 2 0.15
5 3 7, 5 4, 8, 10, 6 indep 0 0 0.00
5 4 6, 11 5, 4, 8, 10 bb8 90 3.00, 0.82 2 -0.36
5 5 10, 9 11, 5, 4, 8 frank 0 1.28 1 0.14
5 6 8, 3 9, 11, 5, 4 indep 0 0 0.00
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Table A.2.: For the fitted T6 to T10 given are the conditioned and conditioning sets of the
pair copulas, the estimated family, the rotation in degrees, the parameters,
the degree of freedom and the Kendall’s τ̂ values.

tree edge conditioned conditioning family rotation parameters df Kendall’s τ̂

6 1 1, 5 4, 8, 10, 6, 7 frank 0 -0.91 1 -0.10
6 2 2, 5 4, 8, 10, 6, 7 frank 0 0.82 1 0.09
6 3 7, 11 5, 4, 8, 10, 6 clayton 0 0.38 1 0.16
6 4 6, 9 11, 5, 4, 8, 10 joe 0 1.09 1 0.05
6 5 10, 3 9, 11, 5, 4, 8 gumbel 90 1.19 1 -0.16
7 1 1, 11 5, 4, 8, 10, 6, 7 clayton 270 0.18 1 -0.08
7 2 2, 11 5, 4, 8, 10, 6, 7 indep 0 0 0.00
7 3 7, 9 11, 5, 4, 8, 10, 6 clayton 90 0.17 1 -0.08
7 4 6, 3 9, 11, 5, 4, 8, 10 bb7 180 1.18, 0.20 2 0.17
8 1 1, 9 11, 5, 4, 8, 10, 6, 7 indep 0 0 0.00
8 2 2, 9 11, 5, 4, 8, 10, 6, 7 gaussian 0 -0.15 1 -0.10
8 3 7, 3 9, 11, 5, 4, 8, 10, 6 bb1 0 0.24, 1.13 2 0.21
9 1 1, 3 9, 11, 5, 4, 8, 10, 6, 7 joe 0 1.08 1 0.04
9 2 2, 3 9, 11, 5, 4, 8, 10, 6, 7 gaussian 0 0.16 1 0.10

10 1 1, 2 3, 9, 11, 5, 4, 8, 10, 6, 7 joe 180 1.18 1 0.09
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B.1. Theoretical and estimated unconditional level curves

B.1.1. Clayton copula

The distribution function of a bivariate Clayton copula with parameter θ is given in
Equation (2.5). By solving

(
vθ

1 + vθ
2 − 1

)−1/θ
= α for v2, we obtain the α bivariate level

curve as

QV
α :=

{(
v1,
(

α−θ − v−θ
1 + 1

)−1/θ
) ∣∣∣∣∣ ∀ v1 ∈ [0, 1]

}
.

B.1.2. Gumbel copula

The distribution function of a bivariate Gumbel copula with parameter θ is given in

Equation (2.6). By solving exp
{
−
[
(− ln v1)

θ + (− ln v2)
θ
]1/θ

}
= α for v2, we obtain

the α bivariate level curve as

QV
α :=

{(
v1, exp

{
−
[
(− ln α)θ − (− ln v1)

θ
]1/θ

}) ∣∣∣∣∣ ∀ v1 ∈ [0, 1]

}
.

B.1.3. Gaussian copula

In contrast to the Archimedean copulas as Clayton and Gumbel, for which there is
a closed form solution of the distribution function for one variable, for the elliptical
copulas, such as Gaussian and Student-t copula, there is no closed form solution. Thus,
we use a numerical procedure to derive the theoretical level curves.
The distribution function of the Gaussian pair copula (introduced in Equation (2.3))
with a correlation parameter θ is

CV1,V2 (v1, v2; θ) = Φ2

(
Φ−1

1 (v1) , Φ−1
1 (v2)

)
=
∫ Φ−1

1 (v1)

−∞

∫ Φ−1
1 (v2)

−∞

1
2π

√
1 − θ2

exp
(
− a2 − 2θab + b2

2 (1 − θ2)

)
da db,
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where Φ1 and Φ2 are the univariate and bivariate standard normal distribution func-
tions, respectively. As already stated, the equation

∫ Φ−1
1 (v1)

−∞

∫ Φ−1
1 (v2)

−∞

1
2π

√
1 − θ2

exp
(
− a2 − 2θab + b2

2 (1 − θ2)

)
da db = α

does not have a closed form solution for one of the variables. Thus, we evaluate CV1,V2

using the integral of its h-function given as

hV1|V2
((v1, v2; θ)) = Φ1

(
Φ−1

1 (v1)− θΦ−1
1 (v2)√

1 − θ2

)
.

The distribution function is then evaluated at the point (ṽ1, ṽ2) as

CV1,V2 (ṽ1, ṽ2; θ) =
∫ ṽ2

0
hV1|V2

((ṽ1, v2; θ)) dv2. (B.1)

Finally, the theoretical bivariate level curve is derived using the numerical evaluation
defined in Section 5.3 and Equation (B.1).

B.1.4. Student-t copula

Similarly as with the Gaussian copula, the Equation CV1,V2 (v1, v2; θ = (θ, d f )) = α

does not have a closed form solution for the bivariate Student-t copula (introduced in
Equation (2.4)), where d f is the degree of freedom, and θ is the correlation parameter
associated with the Student-t copula. Again, we evaluate CV1,V2 using the integral of its
h-function given as

hV1|V2
((v1, v2; θ = (θ, d f ))) = t1,d f+1

 t−1
1,d f (v1)− θt−1

1,d f (v2)√ (
d f+t−1

1,d f (v2)
2
)
(1−θ2)

d f+1

 ,

where t1,d f is the univariate distribution function of the Student-t distribution with d f
degrees of freedom. The distribution function is then evaluated at the point (ṽ1, ṽ2) as

CV1,V2 (ṽ1, ṽ2; θ) =
∫ ṽ2

0
hV1|V2

((ṽ1, v2; θ)) dv2. (B.2)

The theoretical bivariate level curve is derived using the numerical evaluation defined
in Section 5.3 and Equation (B.2).
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B.1.5. Estimated quantile curves

Let
{(

vi
1, vi

2
)}n

i=1 be a set of n points randomly drawn from a bivariate copula distribu-
tion. Given an estimated parameter θ̂ (together with family) obtained from this set of
points we propose to evaluate ĈV1,V2 at a point (ṽ1, ṽ2) as

ĈV1,V2 (ṽ1, ṽ2) =
∫ ṽ1

0
ĈV2|V1

(
ṽ2|v′1

)
dv′1. (B.3)

The difference between the estimated and the theoretical level curves for copulas for
which the numerical inverse procedure is used is that in the theoretical case we use the
theoretical h-function of a copula, while in the estimated case we use the estimated one.
Basically, from the simulated data, we estimate a pair-copula, which has an h-function,
and that estimated h-function is being used. The estimated bivariate level curves are
obtained using the numerical evaluation defined in Section 5.3 and Equation (B.3).
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C.1. Exploratory data analysis
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Figure C.1.: Left column: the points denote the mean observations per year over all gridcells (1952-2020), the
smoothed line is a fitted moving average model, the shaded area is the 95% CI for each variable. Right
column: the horizontal line represents the 95% CI per year, the box represents the 50% CI, and the
horizontal line is the annual mean value over all gridcells. The vertical ribbons denote extreme years
identified for frost risk (blue), drought risk (apricot), joint frost and drought risk (purple), and marginal
drought and frost risk, but not joint risk identified (light gray).
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C.2. Pairs plots

Figure C.2.: Lower diagonal: marginally normalized contour plots, upper diagonal:
pairwise scatter plots with the associated empirical Kendall’s τ̂ values and
on the diagonal: histograms of the u-data, for the 2 responses and a subset
of the possible predictor variables for all 2867 locations in year 1953.
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Figure C.3.: Lower diagonal: marginally normalized contour plots, upper diagonal:
pairwise scatter plots with the associated empirical Kendall’s τ̂ values
and on the diagonal: histograms of the u-data, for the 2 responses and a
different subset of the possible predictor variables for all 2867 locations in
year 1953.
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Figure C.4.: Lower diagonal: marginally normalized contour plots, upper diagonal:
pairwise scatter plots with the associated empirical Kendall’s τ̂ values
and on the diagonal: histograms of the u-data, for the 2 responses and a
different subset of the possible predictor variables for all 2867 locations in
year 1953.
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Figure C.5.: Lower diagonal: marginally normalized contour plots, upper diagonal:
pairwise scatter plots with the associated empirical Kendall’s τ̂ values and
on the diagonal: histograms of the u-data, for the 2 responses and a subset
of the possible predictor variables for all 2867 locations in year 2011.
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Figure C.6.: Lower diagonal: marginally normalized contour plots, upper diagonal:
pairwise scatter plots with the associated empirical Kendall’s τ̂ values
and on the diagonal: histograms of the u-data, for the 2 responses and a
different subset of the possible predictor variables for all 2867 locations in
year 2011.
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Figure C.7.: Lower diagonal: marginally normalized contour plots, upper diagonal:
pairwise scatter plots with the associated empirical Kendall’s τ̂ values
and on the diagonal: histograms of the u-data, for the 2 responses and a
different subset of the possible predictor variables for all 2867 locations in
year 2011.
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(−2,−1.5|xt,l). . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.7. P̂D̂ f rostt

(−2|xt,l), P̂D̂droughtt
(−1.5|xt,l) and P̂Ŷt
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(1952, 2020), ŜD̂drought
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adjustment β̂(α) for the corresponding unconditional quantile levels. . 89

159



List of Tables

5.2. For all α levels, estimated coverage probabilities Ĝ(α) and estimated
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