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Abstract

(Communication) Service Providers (SPs) face increasing demand in data rate and
high diversity in service requirements. To meet increasing demand and diverse
services, SPs look towards a cloud-native approach to networking. Cloud-Native
Communication Networks promise to meet increasing demand and satisfy di-
verse service requirements cost-efficiently by implementing Network Functions
(NFs) as containerized microservices, enabling cloud-style automation and or-
chestration patterns for communication networks. The resulting Cloud-Native
Communication Networks increase the network infrastructure’s utilization and
thus lower the cost of operation. Further, a cloud-native approach to networking
shortens innovation cycles and speeds up service development, enabling distin-
guishing service quality and exploration of new business models.

To realize the benefits of Cloud-Native Communication Networks, specialized
resource management, and packet processing algorithms are required. Special-
ized resource management and packet processing algorithms allow Cloud-Native
Communication Networks to operate efficiently and achieve distinguishing ser-
vice quality. Thus, the development of resource management and packet pro-
cessing algorithms must keep pace with the shorter innovation cycles and faster
service development. However, developing customized algorithms is challenging
due to the large number of Containerized Network Functions (CNFs) resulting
from the microservice-based implementation of NFs, and the need to incorporate
use-case-specific properties into the algorithm design to make the algorithms ef-
ficient. Developing such algorithms takes time, effort, and expertise, potentially
reducing the efficiency of Cloud-Native Communication Networks.

To match the development of algorithms to the complexity and agility of Cloud-
Native Communication Networks, academia and industry look towards Machine
Learning (ML) and Artificial Intelligence (AI). ML and AI can accelerate the algo-
rithm design through the automatic extraction of patterns in data, allowing SPs
to automate the specialization of resource management and packet processing
algorithms to their specific use cases in an automated manner. Successfully de-
signing, implementing, deploying, and maintaining ML-enabled communication
networks is thus an important aspect for the operation of Cloud-Native Commu-
nication Networks.

This thesis presents approaches to automate the algorithm design for three
prototypical networking use cases. As a first use-case, this thesis presents a
microservice-based, ML-enabled traffic classification system deployable at the
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network edge that identifies the website a user accesses. As a second use case, this
thesis shows an ML-enabled TE system that automates the design of a distributed
TE mechanism for a given TE policy. As a third use case, this thesis presents
an ML-enabled CNF platform that optimizes the co-location of CNFs on CPU
cores, resulting in improved resource utilization. This thesis shows the feasibility
of each application scenario through prototypical implementations and testbed
evaluations. Finally, this thesis summarizes the gained experience from over 30
ML projects in networking into a process model providing guidelines to develop
ML-enabled systems in the context of communication networks successfully.
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Kurzfassung

Kommunikationsdienstleister (SPs) stehen einer steigende Nachfrage nach Band-
breite, sowie Diversifizierung von Anforderungen, die Dienstleistungen stellen,
gegenüber. Um diese zu befriedigen setzen SPs zunehmend auf einen cloud-
basierten Betrieb von Kommunikationsnetzen. Sogenannte cloudbasierte Kom-
munikationsnetze implementieren Netzfunktionen (NFs) mit Hilfe von Contain-
ertechnologie als Mikroservices, wodurch eine Automatisierung und Orchestrie-
rung wie beim Betrieb bestehender Cloud Infrastruktur möglich wird. Diese Art
des Betriebs verspricht durch eine erhöhte Ressourcenauslastung die steigende
Nachfrage nach Bandbreite, sowie Anforderungen verschiedenster Dienste kosten-
effizient nachzukommen. Zudem sollen cloudbasierte Kommunikationsnetze In-
novationszyklen verkürzen, die Qualität von Dienstleistungen verbessern, und
die Entwicklung neuer Dienstleistungen und Geschäftsmodelle beschleunigen.

Um eine hohe Effizienz herausragende Dienstleistungsqualität zu erreichen,
benötigen cloudbasierte Kommunikationsnetze jedoch speziell angepasste Algo-
rithmen für das Ressourcenmanagement und die Paketverarbeitung. Die En-
twicklung solcher Algorithmen muss daher mit den kürzeren Innovationszyklen
und dem erhöhten Tempo bei der Entwicklung und Verbesserung von Dien-
stleistungen Schritt halten. Die Entwicklung solcher Algorithmen wird jedoch
durch die hohe Anzahl an containerbasierten Netzfunktionen (CNFs), die aus
der Implementierung von Netzfunktionen als Mikroservices resultieren, und der
Notwendigkeit, anwendungsfallspezifische Charakteristiken mit einzubeziehen,
erschwert. Die Entwicklung solcher Algorithmen benötigt daher mitunter Zeit,
Ressourcen und Fachwissen und reduziert daher möglicherweise die Effizienz
mit der cloudbasierte Kommunikationsnetze betrieben werden können.

Um die Geschwindigkeit der Entwicklung von Ressourcenmanagement und
Paketverarbeitungsalgorithmen auf die Geschwindigkeit und Vielfalt von cloud-
basierten Kommunikationsnetzen anzupassen, rückt Maschinelles Lernen (ML)
und Künstliche Intelligenz (KI) in den Fokus von Forschung und Industrie. ML
und KI haben das Potential, die Entwicklung von Algorithmen durch die automa-
tische Extraktion von Mustern aus Daten zu beschleunigen. Die erlaubt es SPs,
Algorithmen automatisch an die jeweilige Gegebenheiten anzupassen. Das En-
twickeln, Implementieren, Ausrollen und Betreiben von ML basierten Systemen
für Kommunikationsnetze ist daher ein wichtiger Aspekt für den erfolgreichen
Betrieb cloudbasierter Kommunikationsnetze.
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Diesbezüglich präsentiert diese Dissertation Blaupausen für die Automatisie-
rung der Entwicklung von Algorithmen für drei exemplarische Anwendungs-
fälle im Bereich der Kommunikationsnetze. Im ersten Anwendungsfall wird ein
für den Betrieb am Rande eines Netzes auf ML und Mikroservice basierendes
System für die Erkennung von Webseiten, die eine Nutzer besucht, vorgestellt.
Als zweiter Anwendungsfall wird ein ML basiertes System zur Flusssteuerung
vorgestellt, dass automatisch eine Flusssteuerung zu einer Gegebenen Flusss-
teuerung generiert. In einem dritten Anwendungsfall wird eine ML basierte CNF
Plattform vorgestellt, die mit Hilfe von ML die Zusammenlegung von CNFs auf
CPU Kerne optimiert und so die Systemauslastung erhöht. Abschließend wird,
basierend auf den Erfahrungen von über 30 ML basierten Projekten im Bereich der
Kommunikationsnetze, ein Prozessmodell für die Entwicklung von ML basierten
Systemen für Kommunikationsnetze vorgestellt.
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Chapter 1

Introduction

(Communication) Service Providers (SPs) must improve the utilization of their in-
frastructure to meet the increasing demand in data rate and fulfill heterogeneous
service requirements in a cost-efficient manner [1–4]. Improving the utilization
requires the development of sophisticated resource management and packet pro-
cessing algorithms. The increasing adoption of 5G and the rise of new services
and applications such as eXtended Reality (XR), gaming, and video-based apps is
expected to double the average data usage per smartphone from 22.4 GB in 2023
to 51.7 GB in 2028 [5]. In addition, applications and technologies like XR, Cyber-
physical System (CPS), and Machine-to-Machine (M2M) communication require
(ultra) low latency [4, 6]. Low latencies and high data rates are enabled through
a Multi-access Edge Computing (MEC) infrastructure, i.e., geo-distributed com-
pute locations allowing the deployment of services close to the user [2, 7, 8]. SPs
look towards a cloud-native approach to networking to operate services on top of
this infrastructure. Cloud-Native Communication Networks implement Network
Function (NF) and services as containerized microservices, enabling cloud-style
automation and orchestration patterns, e.g., through Kubernetes (K8S) [2, 3, 9].
SPs also hope to increase the development speed of new services and shorten
innovation cycles to provide distinguishing quality and explore new business
models [2, 9], thus helping them succeed in the increasingly competitive mar-
ket [2].

At the same time, shorter innovation cycles and faster service development im-
ply faster development of resource management algorithms. For example, new
applications and services often require new Traffic Engineering (TE) mechanisms
for optimal performance [10]. Similarly, a proliferation of Virtual Network (VN)
and Service Function Chain (SFC) embedding algorithms exist for various use-
cases [11, 12]. Aside from the need to tailor resource management to specific
scenarios, Cloud-Native Communication Networks further complicate resource
management through a large number of small Containerized Network Functions
(CNFs), as monolithic Virtual Network Functions (VNFs) get split into container-
ized microservices [9]. However, resource management algorithms were already



Chapter 1 Introduction

2

hard-pressed to scale to the level of complexity of networks before transitioning
towards Cloud-Native Communication Networks [13]. Resource management of-
ten requires solving computationally hard Combinatorial Optimization Problems
(COPs) such as bin-packing, load balancing, or flow problems [14, 15]. How-
ever, COPs are notoriously hard to solve exactly [16], and the time necessary
to solve COPs often scales badly with the problem size [14, 15, 17]. Therefore,
hand-engineered heuristics are usually developed and adapted for operations.
Developing heuristics takes time and effort. The quality of the resulting resource
management algorithms often depends on the ability to accurately model inter-
actions between components in the network [18–20].

Moreover, new resource management algorithms might require developing
and continuously adapting packet processing algorithms. For example, TE mech-
anisms make increasingly complex decisions based on network state, service, and
communicating end-points [10, 21]. The service might not be directly available,
e.g., in the presence of encryption [22–24]. To make the service available to re-
source management algorithms, packet processing algorithms classifying traffic
online in the network might be necessary. Their development must keep pace
with the deployment of new services. Besides, visibility about the service land-
scape might also be important for security reasons [22, 23] and business decision
making [25].

Thus, matching the development speed of resource management and packet
processing algorithms to the development speed of services to operate them effi-
ciently will play an important role in an SP’s success. To obtain packet processing
and resource management algorithms that can operate live in the network, the
industry and academia look towards data-driven methods, i.e., Machine Learn-
ing (ML) and Artificial Intelligence (AI) [2, 4, 13, 26]. ML and AI automatically
identify patterns in data and encode them in algorithms [27, 28], promising a
framework to automate and accelerate the development of resource management
and packet processing algorithms. For example, ML can learn algorithms that
map network state information into control decisions [15, 29]. Similarly, ML can
automatically extract classification algorithms for TE mechanisms and applica-
tion identification from observed traffic characteristics [24, 30, 31]. Specifically,
ML allows the tuning of algorithms to a specific scenario [15, 17, 29, 30], e.g.,
tuning a resource management algorithm to the workload in a specific edge cloud
or extracting the behavior of a new service. The resulting learned algorithms use
a common set of instructions that allows acceleration in a standardized way, e.g.,
through instruction sets like the Advanced Vector Instruction (AVX) set, or hard-
ware like Graphical Processing Units (GPUs), Tensor Processing Units (TPUs),
and Field Programmable Gate Arrays (FPGAs).

However, ML projects come with their own set of challenges. For example,
Gartner found that more than 50 % of ML models do not make it into produc-
tion [32]. Venturebeat even reports 87 % [33]. Successfully designing, implement-
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ing, deploying, and maintaining ML-enabled communication networks is thus an
important aspect for the successful operation of Cloud-Native Communication
Networks.

This thesis presents data-driven resource management and packet processing
algorithms for three use cases. The first use case is the development of an ML-
enabled traffic classification system that identifies the website a user visits by
observing the resulting encrypted traffic. The second use case is the development
of an ML-enabled TE mechanism that learns the forwarding behavior of a TE
policy in a Datacenter Network (DCN). The third use-case is the development of
a ML-enabled platform for the efficient execution of CNFs with interference on
shared resources. For each use case, this thesis presents the underlying challenge
wrt. network operation derives a corresponding ML problem and develops the
necessary ML models and data processing pipelines to automate the adaptation
of ML models to different scenarios. To show the feasibility of the ML-enabled
systems for each use case, the ML models are integrated into a networked system,
and the resulting prototypes of ML-enabled systems are implemented and evalu-
ated in a testbed. Finally, this thesis presents a process model that summarizes the
gained experience and provides guidelines to successfully develop ML-enabled
systems in the context of communication networks. Designing, evaluating, and
implementing ML-enabled system results in many research challenges. The next
section discusses some of these challenges.

1.1 Research Challenges

The data-driven design of resource management and packet processing algo-
rithms has various research challenges:

• Determining the learned algorithm’s input,

• preparing learning data,

• designing practical ML models,

• efficient implementation of ML models,

• Measurement-based evaluation of the learned algorithms.

This section discusses each of the research challenges. The next section will then
present the thesis’ main contributions.

Determining the learned algorithm’s input. At a high level, an algorithm is a
series of instructions that convert some input into some output. In the context
of data-driven algorithm design, ML extracts these instructions from exemplary
data. The user’s task becomes providing input and output examples and ensuring
that the output is computable from the input. Especially the specification of the
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input can become challenging. The input must contain all information that is
relevant to explain the output. Depending on the type of algorithm that should
be learned, specifying the input can require a deep understanding of the under-
lying optimization problem, network-specific concepts, and potentially internal
workings of physical components.

If the learned algorithm should provide solutions to an underlying COP, under-
standing the underlying optimization problem is important because the problem
defines how variables interact. This knowledge is required to decide on the
features in the ML input. Thus, the underlying optimization problem must be
defined formally or informally before the input and output can be specified.

Understanding the properties of network-specific concepts, e.g., protocols, ap-
plication behavior, packet forwarding, monitoring interfaces, etc., is important
because understanding them allows the formulation of a causal model, i.e., deter-
mining how the output might depend on potential inputs and which inputs are
observable. This information is crucial to determine the input space.

If hardware-specific properties should be incorporated into the learned algo-
rithm, then understanding the internal workings of physical components might
be necessary. It is then necessary to know how specific system components impact
the output variable and should thus be contained in the input.

In summary, just determining the inputs for ML can require expertise in opti-
mization theory, networking domain knowledge, and a thorough understanding
of the underlying hardware. Further, it might require the design, execution, and
evaluation of experiments to establish the necessary understanding of the system.

Preparing learning data. Obtaining a good training set requires a thorough un-
derstanding of the later application scenario of the learned algorithm, i.e., poten-
tial modes of operations must be known. Collecting a sufficient data set can go
beyond simply monitoring data during operation or generating random problem
instances. To obtain a good training set, training samples for all potential modes of
operation must be provided. This requires a careful design of the data generation
process. If measurements are used for training, then the conduction of carefully
designed experiments that result in the required conditions might be necessary.
As a result, the nature of the data set used for training might look starkly different
from what might be expected during operation.

Designing practical ML models. Modeling the data, i.e., learning algorithms
from the examples, is difficult because it requires a deep understanding of the
properties of different ML models and a careful design of models for a specific
application scenario.

Deciding on ML models requires understanding the capabilities of different
model classes. The choice of model depends thereby on the relationship between
the inputs and outputs. Further, the choice of model is tightly coupled to the
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later application scenario, where the ML models might have to meet stringent
performance requirements, e.g., wrt. inference speed and computational capacity.
It is, therefore, not enough to choose any model and get the loss down but to always
keep in mind how the ML model will later be embedded into the overall system.

Efficient implementation of ML models. After the ML models have been trained
successfully, they have to be integrated into the systems they should extend.
The implementation can be challenging if requirements for inference speed and
computational demand are high. Implementing ML models efficiently requires
a thorough understanding of the available computing hardware. For example,
certain ML models can be accelerated through specific instruction sets, e.g., AVX,
whose usage must be known to the developer. Reaping performance improve-
ments from hardware accelerators might require, e.g., the batching of samples.
Further, the ML model might allow an optimized implementation through its
design or structure that the developer has to be aware of. Aside from model-
specific optimizations, general efficient coding principles, such as using efficient
data structures, optimizing memory access, etc., is necessary.

Assessing algorithm performance in measurements. The performance that the
learned algorithms achieve in practice has to be determined through measure-
ments. Simply measuring the execution time of the algorithms is thereby not
enough. Instead, the algorithms must be integrated into the systems and evalu-
ated there. This requires the setup of a corresponding test bed and the design and
execution of measurements that evaluate the necessary performance indicators.

1.2 Contributions

This section summarizes the contributions of this thesis toward the data-driven
design of algorithms for resource management and packet processing. Fig. 1.1
shows the structure of the thesis, the used methodologies and concepts, and
the author’s associated publications where these contributions were originally
published. Source code and datasets are publicly available for transparency and
as a contribution to the research community.

The first contribution is a process model for performing ML projects in the
networking domain. The proposed process model extends established process
models with the experience gained in over 30 ML-based projects in the networking
domain. The thesis includes networking-specific aspects in the process model
that are missing in existing ones. The resulting model might be relevant to other
engineering fields beyond communication networks.

The second contribution of this thesis is an ML-enabled system for scalable
traffic classification. Specifically, the system infers the websites a user visits
from encrypted traffic. Traffic classification is an active area of research and
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Research Area:
Machine Learning-based algorithm design for communication networks

Investigated Fields and Contributions

Process model for
ML in networking

Chapter 2

Learning algorithms for
traffic classification

Chapter 3

Learning Algorithms for
traffic engineering

Chapter 4

Learning algorithms to
co-locate CNFs

Chapter 5

Minor Contributions
[14, 34–50]

Major Contributions
[29–31, 51, 52]

Methodologies

Traffic Measurement

Probabilistic Sequence
Modeling

Anomaly detection-
based classification

Microservice-based
service development

Neural Networks

Traffic Engineering

Network Emulation

Simulations

Supervised Learning

Representation Learning

Reinforcement Learning

Game Theory

Conclusion and future work

Figure 1.1 Graphical representation of the thesis’ structure. The thesis first summarizes
gained experiences into a process model. Then, the thesis designs, implements, evaluates,
and deploys ML-enabled communication networks for three prototypical use-cases.
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becomes increasingly challenging as the Internet adopts an encrypt-everything-
regime. As a consequence, network operators might be oblivious to the network
applications or, if possible, have to intrude into the network users’ privacy, e.g.,
by acting as a proxy terminating the Transport Layer Security (TLS) connection.
This thesis provides a compromise with an encryption-preserving classification
system. The ML-enabled system has a cloud-native architecture, i.e., the system
is implemented with microservices and could, e.g., be deployed at an edge cloud.
The ML-enable system learns the required traffic classification algorithms from
provided samples, using computationally efficient ML models for fast inference.
Since frequent updates to the system are expected during the operational phase,
the chosen ML models are fast to train, and the microservice-based architecture
enables upgrades at runtime. The prototype implementation of the system can
classify 424 website accesses per second at 10 Gbit/s and provides classification
results with a median delay of a few 100 µs after the last required packet has
been observed. This thesis presents the first prototype of a ML-enabled traffic
classification system that can infer website accesses online and at line rate.

The third contribution of this thesis is an ML-enabled and end-host-based TE
mechanism for Fat Tree DCN topologies corresponding, e.g., to an edge cloud.
Tailoring TE to the specific applications deployed in a DCN can improve service
quality and provide competitive advantages. The TE mechanism presented in this
thesis automatically learns a TE policy’s forwarding decision that can depend
on the global network state from examples using a Neural Network (NN). To
this end, this thesis proposes a Neural Architecture (NA) that can learn how to
encode local state into update messages, which update messages are required to
make decisions for a specific source-destination pair, and how update messages
are mapped to forwarding decisions. Further, this thesis develops an efficient
training algorithm exploiting special properties in forwarding decisions of TE
policies. Together, data-driven TE mechanisms can be learned efficiently for a
given TE policy in Fat Tree topologies. A prototype implementation shows that
the resulting TE mechanism can react within 1.3 ms to changes in the network.
Further, the prototype can be deployed in legacy networks and adapt the update
message exchange to the traffic pattern in the DCN. This thesis presents the first
working prototype of a NN-based TE mechanism.

The fourth contribution of this thesis is an ML-enabled CNF platform that im-
proves resource utilization by learning load balancing and bin-packing heuristics
for assigning CNFs to Central Processing Unit (CPU) cores. Improving a CNF
platform’s resource utilization is important to serve the increasing demand in
data rates economically. To achieve this, the ML-enabled CNF platform uses ML
to learn how CNFs interfere on cores. The ML-enabled CNF platform then uses
the learned models to learn load-balancing and bin-packing heuristics with Re-
inforcement Learning (RL). To learn algorithms efficiently, this thesis proposes
a novel training approach by linking Game Theory, RL, and combinatorial opti-
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mization in a novel way. The resulting learning approach allows the automatic
tailoring of algorithms assigning CNFs to CPU cores to the CNFs and SFCs run-
ning in, e.g., an edge cloud. The prototype implementation of the system shows
that the learned algorithms improve the packet processing efficiency by 58 %.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the
process model for ML projects in networking. Chapter 3 presents the ML-enabled
system for scalable data-driven traffic classification. Chapter 4 presents the ML-
enabled TE mechanism. Chapter 5 presents the ML-enabled CNF platform. Fi-
nally, Chapter 6 summarizes this thesis and presents suggestions for future work.
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Chapter 2

Applying Machine Learning in Networking

This chapter synthesizes the experience gained during more than 30 ML projects
in the networking domain into the Machine Learning Applications in Networking
(MaLANe) process model. MaLANe reflects in the chapters 3, 4, and 5. MaLANe
provides a comprehensive blueprint for carrying out ML projects in networking,
i.e., projects that consider the full life-cycle of designing, implementing, deploy-
ing, and operating ML-based applications in networking.

Successfully carrying out ML projects is challenging. A 2019 report of Venture
Beat shows that only 13 % of Data Mining projects succeed [33], similarly, Gartner
reports 2020 that 53 % of ML projects make it from prototype to production [53]
- a number that increased only slightly to 54 % in 2022 [32]. The reason lies
in the complexity that ML adds to software development. Traditional software
projects are already complex, failure-prone, and require a broad range of expertise.
ML adds additional collaboration points, requires new expertise, and different
working styles [54]. The successful completion of ML projects in networking can
be expected to be even more challenging. After all, ML projects in networking
require additional expertise, mindsets, and collaboration points compared to
purely software-based ML projects.

Experience shows that projects in the networking domain are highly interdis-
ciplinary, requiring expertise in business, network engineering, data science, ML
engineering, software engineering, and hardware engineering. In practice, the
expertise is most likely provided through an interdisciplinary team, which results
in a high risk for miscommunication and cultural clashes [54]. Integrating the
knowledge from members with different backgrounds is a key challenge [55].
Further, the availability of high-quality data often is a problem in networking.
Comprehensive data sets for ML projects are usually unavailable and must be
created as part of the project, requiring a deep technical understanding of the
networked system. Moreover, ML applications in networking have to cope with
constrained computational resources frequently, putting an increased emphasis
on the ML model choice and their implementation for operation [56–59].
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MaLANe provides a blueprint for carrying out ML projects in networking, sup-
porting novices and experienced analysts alike. MaLANe supports the integration
of knowledge from persons with different technical backgrounds, supports the
acquisition of high-quality data, gives advice on formulating quality and per-
formance metrics towards ML models, and points out important aspects that
should be documented and communicated explicitly. Further, MaLANe includes
a perspective on scientific projects that usually have different requirements than
projects with an initial business objective. MaLANe focuses on the networking
domain and includes a perspective on RL. RL requires different activities than
Supervised Learning (SL) and Unsupervised Learning (UL) on which previous
process models focus.

MaLANe is especially helpful in academic projects. In academia, teams usually
consist of students and young PhDs. Both are early in their careers and had little
opportunity to gain a broad experience in data science projects. Further, in engi-
neering fields, students and PhDs often have high-level data science skills since it
is not the main focus of their studies. In such a setting, MaLANe can help avoid
common pitfalls such as: Neglecting the acquisition of data, collecting the wrong
data for the learning problem, neglecting to check the data quality, relying on
data that is unavailable during operation, solving trivial or practically irrelevant
problems, choosing models that cannot be integrated into networked systems,
learning models that do not generalize in real systems or defining the wrong
learning problem. MaLANe can guide these teams in planning and performing
projects with impact.

This chapter is organized as follows. Sec. 2.1 introduces background informa-
tion for process modeling, presents the basic process model for Data Mining, and
presents related work. Sec. 2.2 presents the MaLANe process model and explains
its activities. Sec. 2.3 closes this chapter and discusses the implication of this
process on the application of ML in the networking domain.

2.1 Background and related work

This section introduces background information on process models and presents
related work. Sec. 2.1.1 introduces background information and terminology
concerning process modeling used throughout the thesis. Sec. 2.1.2 introduces
the CRoss Industry Standard for Data Mining (CRISP-DM), forming the basis of
MaLANe and being the most widely used process model to manage Data Mining
and ML projects in 2014 [60]. Finally, Sec. 2.1.3 gives an overview of the State-of-
the-Art (SoA) process models for Data Mining and ML projects.

2.1.1 Process Models

Modeling a process includes describing the activities of processes, required tools,
documents, information, and necessary expertise. As a result, process models
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facilitate the division of labor that modern enterprises are based on [61]. As a
result of the division of labor, people involved in a process perform specialized
activities and might not be directly confronted with the full complexity of the
process. A process model improves the understanding of the process among
the involved people and organizations and helps to improve communication and
identify and prevent problems [54, 61, 62].

A process is a chain of events, activities, and decision points. Each of which
includes actors and objects. The activities lead to an outcome in which at least one
customer has an interest. Events in a process have no duration and are things that
happen automatically. Activities correspond to actions that must be performed
and have a (finite) duration. Simple activities that consist of one well-defined unit
of work are called tasks. Actors correspond to humans and non-human entities
that perform tasks of an activity. Objects are passive elements that can serve
as input and output to activities or are used during an activity. A customer is
an entity that is interested in the process’s output. Customers can be internal or
external, i.e., correspond to entities within an organization or external entities [61].

In organizations, processes are key to competitiveness and economic success,
especially in organizations primarily delivering services to their customers. An
organization offering the same service as another has a competitive advantage
if it implements superior processes, resulting in better service quality or cost
savings [61]. This also holds for internal processes, for example, in ML projects.
ML projects are complex, and their success depends on the right mix of tools
and people with different backgrounds [62]. Process models for ML projects
allow customers to have reasonable expectations towards the project, improve the
project’s execution, give structure to the documentation, support communication,
and thus improve the overall quality [62, 63]. Given that many ML projects fail,
a good process model that helps improve the success ratio of such projects can
greatly improve an organization’s competitiveness.

2.1.2 The CRISP-DM process model and its limitations

The CRISP-DM process model is the reference process model that MaLANe ex-
tends. Although CRISP-DM was proposed in the 1990s, CRISP-DM remains the
most used process model [60]. The CRISP-DM model consists of six activities [62,
63]. Figure 2.1 shows the six steps in the CRISP-DM process.

1. Business Understanding defines well-defined goals and requirements and a
clear task definition.

2. Data Understanding checks for available data and evaluates the data’s quality
and usability for the current project.

3. Prepare Data selects features from the data and potentially engineers new
features to enrich the input for the Modeling phase.
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4. Train Model uses statistical methods (including, but not limited to ML meth-
ods) to extract the previously defined knowledge from the gathered data.

5. Evaluation evaluates the tested models and selects the most suitable model.

6. Deployment prepares the results, presents them to stakeholders, and poten-
tially deploys the model into production, i.e., automates the evaluation.

Each activity in the CRISP-DM process are sub-processes, i.e., consist of smaller
units of work.

The CRISP-DM process model diverges from the textbook definition of a busi-
ness process. In practice, an instance of the CRISP-DM process model is a highly
iterative and creative process with many parallel activities. CRISP-DM instances
can look markedly different from each other [54, 62]. Further, activities have
well-defined start and end criteria in the usual business process definition. A
subsequent activity only starts once the preceding activity finishes. However,
experience shows that activities are not that clear cut in Data Mining processes.
Here, the activities can overlap, and the order corresponds more to a precedence
property, i.e., subsequent tasks can only start after the preceding ones have already
started [62].

The CRISP-DM process was designed to be industry and application-independent.
Unsurprisingly, CRISP-DM lacks essential aspects for successfully carrying out
ML projects in networking. Experience shows four major aspects that are lacking:

1. CRISP-DM assumes data is gathered and available in databases.

2. The modeling step focuses on statistical modeling and is tuned toward SL.

3. CRISP-DM assumes the final model to be a pure software artifact.

4. CRISP-DM neglects the operational phase of the final application.

CRISP-DM includes data preparation as a step. However, it focuses on scenarios
where data is available in databases. In networking, like engineering [64], the
necessary data often does not exist in the first place. Before any data analysis and
modeling tasks can start, necessary data must be gathered. This usually results in
testbed measurements or measurements in the network during operation. Both
are challenging tasks on their own.

CRISP-DM focuses more on detecting and modeling relationships between vari-
ables. Concerning ML, CRISP-DM is biased towards SL. However, in networking,
RL is as important as SL, especially in the context of resource management. RL
plays a crucial role in learning control algorithms for networked systems. RL has
markedly different requirements for the preparation of data and the training of
models than SL. CRISP-DM does not reflect these tasks.

The evaluation activity in the CRISP-DM process evaluates the performance
of different models on test data [62, 63]. However, in networking, the models
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Figure 2.1 The CRISP-DM process steps.

must operate inside a networked system. Important is thus not only ML-related
performance measures such as loss or accuracy but rather the overall performance
of the ML-enabled networked system. Further, trained ML models usually cannot
be deployed into the network directly. The models have to be implemented and
integrated into the networked system first. CRISP-DM does not consider this step.

The output of a CRISP-DM process instance can range from a simple report
to the implementation of a repeatable Data Mining process [62, 63]. However,
in networking, the project’s outcome is usually an ML-enabled application that
operates inside the networked system. The operation of ML-enabled networked
systems comes with additional maintenance tasks that are not reflected in the
CRISP-DM process.

Thus, Sec. 2.2 proposes a re-design of CRISP-DM that addresses these and other
shortcomings of CRISP-DM and its variants.

2.1.3 Related Work

Next to CRISP-DM, two other process models have widespread adoption: Knowl-
edge Discovery in Databases (KDD) [65] and Sample, Explore, Modify, Model,
Access (SEMMA) [66].

The KDD process model is the basis for CRISP-DM and SEMMA. KDD is
a general process model for extracting knowledge from data with the help of
analysis algorithms. KDD defines five activities [65]:

1. Selection of data for analysis.

2. Data-preprocessing and cleaning to obtain a consistent data set.

3. Data transformations for dimensionality reduction.
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4. Data Mining for pattern discovery in the data.

5. Evaluation and interpretation of the identified patterns.

The activities in the KDD process are refined in various derived process mod-
els [67, 68].

SEMMA has been developed by the SAS Institute to guide users through a Data
Mining software of SAS. As a consequence, SEMMA focuses narrowly on technical
steps, corresponding roughly to the Data Understanding, Prepare Data, Train Model,
and Evaluation activities of the CRISP-DM process model. That is, SEMMA does
not include business understanding and the final deployment. Still, SEMMA is
considered a general process model and used by 8.5 % of the participants in a
KDnuggets poll [69].

KDD, SEMMA, and CRISP-DM form the basis for domain adaptations and
extensions. Plotnikova et al. [67], and Martínez-Plumed et al. [68] provide com-
prehensive overviews of the various derivatives. From those, the Data Mining
Methodology for Engineering Applications (DMME) [64] process model is closely
related to MaLANe. In addition, the CRoss Industry Standard Process model
for the development of Machine Learning with Quality assurance methodology
(CRISP-ML(Q)) [70] and the Data Science Trajectories (DST) [68] process models
share aspects with MaLANe as well.

DMME adapts CRISP-DM to the specific context of engineering applications.
The most notable extensions are data generation and collection steps since data
is not readily available in databases for many engineering applications. Further,
DMME introduces an implementation stage concerned with rolling out the fin-
ished Data Mining method in a production environment. This explicitly includes
training the workforce on the corresponding machines. MaLANe differs from
DMME in that MaLANe includes a specific ML perspective that is lacking in
DMME. Further, the tasks for data generation and especially deployment in net-
working differ from those covered in DMME. The DMME process model focuses
on physical variables, for example, pressure, stress, deformation, etc. However,
many problems arise in networking from COPs. Further, measurements in the
networking domain often concern system variables and system behaviors. Those
are often unknown before ML projects are started and require an agile approach.
During deployment, DMME assumes that the resulting model runs separately
from the machine under consideration. In networking, the resulting model must
often be incorporated into the system, resulting in additional challenges.

CRISP-ML(Q) adapts CRISP-DM to ML specific projects, that have different re-
quirements than pure Data Mining projects. Specifically, CRISP-ML(Q) identifies
the deployment and continuous monitoring of the finished application as crucial
but missing aspects. Further, CRISP-ML(Q) includes methods for quality assur-
ance borrowed from other industrial process models such as Six Sigma [71] and
Failure Modes and Effects Analysis (FMEA). MaLANe differs from CRISP-ML(Q)
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in that MaLANe explicitly covers the generation of data through measurements
and the implementation of the ML model in networked systems. CRISP-ML(Q)
assumes the data is mostly given, and the trained model is readily implementable
as a software artifact, i.e., the model must be incorporated into an existing process
rather than interfacing with other hardware components and systems.

DST distinguishes between Data Mining and data science. Martínez-Plumed
et al. argue that previous process models apply to Data Mining and do not fully
embrace the diversity of data science projects. The authors argue that previous
process models are goal-oriented and sequential. In their DST model, the authors
intend to capture the versatility of data science projects by defining exploratory
activities, goal-oriented activities (taken from CRISP-DM), and data management
activities. DST does not give transitions between the activities. Instead, the
authors propose to choose the sequence according to the project at hand. The
authors give examples of possible trajectories through this space that correspond
to different types of data science projects. MaLANe differs from DST in that
MaLANe provides clear guidance through the activities, giving stronger support,
especially to novices. MaLANe balances rigidity and flexibility by emphasizing
agile and iterative execution. Further, MaLANe includes a strong perspective on
ML, which DST does not include.

Another line of research that is loosely related is the investigation of problems in
Data Mining, data science, and ML projects [54, 55, 72]. The authors methodically
evaluate interviews with practitioners and evaluate problems that hinder projects.
The authors do not propose process models. However, their work gives important
insights into problems that can arise in such projects. Process models should
therefore incorporate these insights to overcome these problems and enable the
smooth execution of data science projects.

2.2 The MALANE process model

Fig. 2.2 shows the major steps of the MaLANe process model. The process
consists of ten steps:

1. Translate Objective,

2. Formalize Problem,

3. Analyze Network and System,

4. Generate Data,

5. Investigate Data,

6. Prepare Training,

7. Train Model,
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Figure 2.2 The Machine Learning Applications in Networking (MaLANe) process model.
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8. Integrate Model,

9. Deploy ML-enabled System,

10. Operate ML-enabled System.

The remainder of this section describes the individual steps and their respective
expected outcomes.

2.2.1 The Translate Objective Activity

The Translate Objective activity is closely related to the Business Understanding
activity in the CRISP-DM process model [62, 63], the Define step in Six Sigma [71],
and the initial development activity in the IEEE Standard 1074-1995 for developing
software life cycle processes [73]. The goal of the Translate Objective activity is
uncovering the underlying network-specific objectives to a high-level business
objective. In particular, the primary goal of the Translate Objective activity is to
avoid producing the right answer to the wrong question. Experience and related
work show that two variants exist for this activity: A clear goal-oriented variant
and an exploration-oriented variant often observed in academia.

Goal-oriented. The Translate Objective activity has a business objective as input,
and the possibility to meet this objective with the help of ML might have already
been established. The goal of the Translate Objective activity is to translate the
business objective into a network operation objective. The business and the op-
erational objective should be measurable [71, 73]. Only measurable objectives
allow a clear evaluation of the project’s success. Further, the assumptions behind
translating the business objective to the network operation objective should be
documented. Making the assumptions transparent allows their verification in an
early stage of the project.

A fictional example of a business objective could be the reduction of Opera-
tional Expenditures (OPEX) by 20 %. On the network operation level, the OPEX
reduction could correspond to a reduction in power consumption by improving
the resource utilization by 30 %. Information from monitoring systems indicates
underutilized resources, i.e., the potential to improve resource utilization by at
least 30 % exists. A rich body of literature shows that ML can solve resource
allocation problems.

Exploration-oriented. Here, the business objective is exploratory, i.e., the ob-
jective might not express specific, measurable quantities. Instead, the business
objective resembles an open question that should be answered during the project.
For example, the business objective could be the identification of new ML-based
business cases, the investigation if ML is applicable in a certain use-case, or the de-
velopment of new data-driven business cases using the own operational data [54,
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68]. While not as straightforward as in the goal-oriented variant, the exploration-
oriented variant still needs a translation into network operation objectives, i.e.,
how the new business case or application scenario manifests itself in the network.

Projects in academia regularly fall into this category. The business objective
often is feasibility studies, e.g., if it is feasible to design such a system and gain
an advantage over existing systems while achieving better or competitive perfor-
mance. The network operation objective is not given quantitatively but rather
qualitatively. For instance: Achieve better performance than SoA, or: achieve at
least competitive performance while providing a benefit in the ease of use.

Chapter 3 shows such an example. Here, the business case is to investigate
if ML can realize distributed TE mechanisms that can operate in a network and
achieve competitive performance.

2.2.2 Formalize Problem

The Project Formalization is unique to networking and represents a sub-process
with two activities: the Formalize COP and the Define ML Problem sub-process.
The Formalize Problem activity translates the network operational objectives from
the Translate Objective activity into an ML problem characterization. ML engineers
and network engineers collaborate in this activity to ensure that the resulting ML
application will meet the business objectives.

Formalize COP. The Formalize COP activity relates to the COP that underlies
many problems in networking and network operation in particular [14, 15]. The
COP Formalization activity specifies, characterizes, and ideally mathematically
formulates the COP.
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Experience shows that COPs occur in many ML projects in networking in one
of two forms: 1) The operational objective directly translates into a COP, and 2)
the design decisions for the ML application, and later implementation depend
on the solution of a COP. In the first case, ML learns algorithms that solve the
COP. Here, the COP provides important information on variables in the systems,
how variables interact with each other, and how variables interact with the op-
timization objective. This information is relevant for the design of the output
space, the input space and thus statistics that must be observed, the qualification
of the nature of interactions (linear vs. non-linear), and other ML model-related
aspects. Further, the COP formulation can make missing information visible and
assumptions explicit. For example, the nature and effect of interacting variables
might be unknown. While a simplifying assumption on the interaction based
on domain knowledge can be made, being aware of and documenting this as-
sumption can become important if the resulting ML model does not meet quality
requirements. Then, the assumption can be revisited, and an additional MaLANe
process focusing on this interaction can be triggered to understand the interaction
better. Potentially, even learning a data-driven model of the interaction, resulting
in a better performing ML model. Chapter 5 will show such an example.

In the second case, ML does not learn an algorithm to the COP. Instead, during
deployment, the ML-based algorithm might be deployed in the network based on
the solution to a COP. An example is facility location problems that can arise for
monitoring and traffic classification solutions. Here the sites at which monitoring
systems are deployed must be decided, such that all or a certain fraction of the
traffic is monitored [74]. The solution to this problem is important to judge the
later requirements of the ML-enabled system and the ML model. For example,
relevant information on the expected processing requirements can be deduced
from the placement and expressed as clear performance objectives towards the
used ML models. This kind of information is especially important for exploration-
oriented projects. Chapter 3 will show such an example.

Explicitly including the COP formulation as a dedicated step in the MaLANe
process model is based on experience. In most projects, one of the two cases
was present. Formally modeling the problem thereby simplified the ML design
and allowed the early identification of potential bottlenecks. Projects that did
not include explicit modeling took longer to complete because relations were
overlooked. The result was a poorly performing ML model or an ML-enabled
system that could not operate in the network. Investigating the cause of the poor
performance often proved difficult and time-consuming. Further, knowing the
problem’s nature enables the focused search in the related work for potential
heuristics and previous approaches that can serve as a baseline to assess the ML
model’s quality and to model and solve the problem.
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Figure 2.4 The Analyze Networked System sub-process investigates the available interfaces,
known operational modes, and unexpected phenomena and designs experiments for the
acquisition of necessary training data.

Define ML Problem. The Define ML Problem sub-process characterizes the ML
problem using the mathematical formulation of the COP as input, and translates
the network operational objective into ML objectives. The Define ML Problem sub-
process consists of two activities: The Characterize ML activity and the Formulate
ML Objective activity.

The Characterize ML activities decide from the COP formulation and the network
operational objective whether the corresponding learning problem belongs to one
of three classes: SL, RL, or UL. Further, the ML Characterization activity decides
whether the learning problem is a classification or regression problem in the case
of SL and a discrete or continuous control problem in the case of a RL problem.

Further, this step defines side conditions for the resulting ML model. For
example, if the ML model should work under arbitrary inputs or inputs that
are explicitly observed during network operation. For example, the ML model
should serve later as a planning tool and predict performance indicators for
arbitrary contingencies. Another example would be modeling the networked
system’s behavior during operation to detect anomalous behavior. Setting this
scope is important since it directly influences the data necessary for learning and
must thus be available.

With this information, the Formulate ML Objective can express performance re-
quirements that the ML application should meet. For example, a specific accuracy,
precision, or recall for SL problems or a specific objective value in the case of RL
problems. Further, the Formulate ML Objective activity can define additional re-
quirements towards the ML model, such as robustness, scalability, explainability,
etc. Chapter 3 presents an example where continuous operation is important for
choosing the ML model.

2.2.3 Analyze Networked System

The Analyze Networked System sub-process investigates the networked system for
which the learning task is conducted. The Analyze Networked System sub-process
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produces experiment designs for collecting the necessary data for subsequent
steps. The Analyze Networked System sub-process consists of three activities: In-
vestigate Operational Modes, Investigate Interfaces, and Design Experiments.

Investigate Operational Modes. This activity gathers knowledge about the net-
worked system’s known phenomena and operational modes that might impact
the previously defined ML objective. Phenomena are unexpected and potentially
erroneous behaviors of the networked systems, whereas operational modes refer
to changes in the networked system’s behavior due to external influences.

Phenomena are hardware behavior, effects arising from the software implemen-
tation of algorithms and services, workload-specific behaviors, etc. For example,
switches behave differently than specified [75], packet processing latency can de-
pend on program structures [76], and links with low utilization can still drop
packets [77]. The findings can be documented, e.g., with cause-effect diagrams.
Phenomena that are known but unclear should also be documented. Those might
be candidates for further investigation.

Operational modes of the networked system result in different behaviors of
the target variables. For example, two trivial operation modes are over- and
under-utilization of the networked system. In both operational modes, the spec-
ified target variable will behave differently. Depending on the system, multiple
operational modes might exist.

Knowing operational phenomena and modes is important to identify additional
parameters that must be observed and included in the ML model. Including those
parameters is important since they affect the target variables that ML should pre-
dict. Those parameters are often not intuitive and hard to discern directly from
the COP formulation. If the parameters are not included in the input space of the
ML model, then the ML model cannot learn their effect on the target variables,
resulting in poor performance. Knowing the causes of phenomena and the con-
tingencies of operational modes is also necessary for designing experiments to
generate data.

Investigate Interfaces. This activity analyzes the available interfaces and inves-
tigates the parameters that can be observed through these interfaces. Important to
include is the cost and temporal granularity at which parameters can be observed
through those interfaces. For example, Simple Network Management Protocol
(SNMP) polls provide information at the granularity of seconds, whereas CPU
utilization on the Operating System (OS)-level can be measured at millisecond
granularity. Investigating the availability of interfaces is also important concern-
ing the operational phase. After all, the data ML models rely on must be available
during operation.
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Design Experiments. This activity designs experiments, i.e., specifies measure-
ments to obtain training data and how to store the data. This activity compares
the required and the available parameters to each other. If required parameters
are not directly available at the required granularity, this activity investigates if the
unobserved parameters can be estimated from observable ones. If that is infeasi-
ble, the activity investigates the effort to extend the existing interfaces to include
measurements of the unobserved parameters. This should also include an esti-
mate of the measurement’s effect on the networked system, i.e., if the additional
overhead might interfere with the operation and thus bias the measurements.

Further, this activity specifies input to the networked system that triggers the
previously identified phenomena and operational modes. Examples are traffic
patterns, events in the networked system such as link and node failures, packet
sequences, and mixes of traffic types.

At this point, the scope of what the ML system should learn becomes important.
For example, to model the behavior of the networked system during operation, it is
enough to identify and include the operational modes and phenomena that occur
during operation. If the ML model should later work for arbitrary inputs, then
operational modes and phenomena that might not occur during normal operation
must be included in the experimental designs. This is especially important for the
increasingly popular data-driven digital twins that use ML to model the behavior
of networked systems. The twins are often used for planning and configuration
tasks. To avoid bad configurations, the internal ML models must cover a large
variety of behaviors, even if some of those behaviors are highly unlikely to occur
in practice.

At the end of the Analyze Networked System sub-process, it might become ap-
parent that the original project goal cannot be achieved. For example, necessary
parameters cannot be observed, too many unknowns could result in project failure
and should be clarified first, or the original objectives might have to be adjusted.
Thus, the MaLANe process has a transition from the Analyze Networked System to
the Translate Objective activity to allow the adjustment and re-evaluation of the
original business objective in light of the new findings.

2.2.4 Generate Data

The Generate Data sub-process shown in Fig. 2.5 prepares and conducts the previ-
ously defined experiments. The sub-process produces measurements for further
analysis. An important aspect of this sub-process is the level of automation,
especially in conducting experiments. Ideally, experiments can be conducted
automatically based on a description of the experiment in a suitable form. The
sub-process consists of two activities: 1) The Setup Experiment activity and the
Conduct Experiment activity.
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Figure 2.5 The Generate Data sub-process consists of the setup of a testbed in which to
conduct measurements and the conduction of the previously defined experiments in the
testbed.

Setup Experiments. This activity implements the necessary infrastructure to
conduct the experiments. This could range from setting up measurements through
established interfaces in a networked system to building a testbed. For example,
listening passively to events and logs generated during normal operation might
be enough. In other cases, the necessary data can only be obtained through in-
vasive and customized hardware and software in a dedicated testbed. Further,
this activity implements new interfaces to access previously identified parameters
that cannot be obtained through existing interfaces. For example, fine-grained
data plane statistics might require the implementation of In Network Telemetry
(INT), which requires specialized hardware.

An important aspect of the experiment setup is the automation of as many
steps as possible. For example, implementing the testbed such that starting
experiments only requires a configuration file, i.e., no manual adjustments of
system or hardware parameters are necessary. Automation is important for two
reasons: 1) To gather data with minimal overhead and to make measurements
reproducible. Often, multiple experiment configurations must be measured, and
measurements must be repeated. Automating the measurements allows batching
experiments, i.e., scheduling them once and using the time until they are finished,
e.g., to investigate the already generated data. 2) the configurations can be stored
along with the data, documenting the settings that produced the data. This can
prove invaluable if experiments must be repeated.

If some settings cannot be automated, e.g., wiring of hosts and switches, the
configuration must be recorded for the measurements obtained with the resulting
configuration. Recording the configuration enables reproducibility and the search
for causes if the system shows unexpected behavior.

For example, to learn the behavior of the CNF platform in Chapter 5, the ex-
isting monitoring interfaces were extended to gather CPU utilization information
and network statistics at the necessary granularity. Similarly, to investigate the
performance of the ML-enabled TE mechanism in Chapter 4, interfaces allowing
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the collection of network statistics at high frequencies had to be identified and
made accessible to the prototype.

Conduct Experiments. This activity conducts the previously defined experi-
ments in the prepared environment and stores the results as defined previously.
Note that the conduction of experiments might be necessary even if only the be-
havior of the networked system during operation should be modeled. Certain
operational modes or phenomena might rarely occur during normal operation. To
obtain sufficient data for training, those phenomena and operational modes might
have to be triggered explicitly. For example, the behavior of the networked system
during peak events can be important but rarely occurs during normal operation.
Therefore, gathering sufficient data for peak events might take a long time and
potentially produce large amounts of redundant data for non-peak times.

2.2.5 Investigate Data

The Investigate Data activity is related to the Data Understanding activity in the
CRISP-DM process. The Investigate Data activity evaluates if the networked system
shows expected behaviors. For example, if the known phenomena occurred
and the operational modes were triggered. Further, the Investigate Data activity
performs an exploratory data analysis to find previously unknown phenomena
and their causes. In the case of new findings or unexpected behavior, the MaLANe
process adds a transition to the Analyze Networked System activity. The cause for
the phenomena should be clarified. At least, the experiment designs should be
extended to include the additional phenomena. Experience shows that projects
usually require multiple iterations until a thorough understanding of the system
and its behavior is obtained. The findings might even indicate that changes
to the operation of the networked system are necessary to allow the successful
application of ML [78]. At the end of this activity, a comprehensive dataset
containing the necessary data to train ML models exists.

2.2.6 Prepare Training

The Prepare Training activity resembles the CRISP-DM’s Data Preparation activity.
The Prepare Training activity uses the comprehensive dataset from the Investigate
Data activity to prepare the ML model training. The nature of the preparation
depends on the type of ML the project uses, i.e., is different for SL, RL, and UL.
This reflects in the name, which is kept more general compared to CRISP-DM’s
Data Preparation.

Supervised and Unsupervised Learning. For both ML types, data transforma-
tions such as standardization, normalization, and feature engineering, i.e., deriv-
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ing new features from existing ones, might be performed. For SL and UL, the
Prepare Training activity closely resembles CRISP-DM’s Data Preparation activity.

In the case of SL, additional tasks such as addressing skewed classes through
resampling, balancing, or sample weighting might be necessary [27, 79]. Further,
for SL, the activity divides the data into a training, validation, and test set. A gen-
eral rule of thumb is to use 80 % of the data for training, and 20 % for testing [27].
For hyperparameter tuning, a separate validation set might be necessary. Again,
20 % of the training set (i.e., 16 % of the full dataset) are a common choice [27].
However, depending on the problem, the learning algorithm, and the amount of
data, cross-validation might be considered instead of a separate hold-out dataset
for validation [27, 79].

Reinforcement Learning. Preparing training for RL is fundamentally different.
Since RL uses data gathered in an environment, the Prepare Training activity for
RL includes the design and implementation of the environment, reward function,
action space, and observation space.

The environment’s design and implementation rely on the data and information
from the Formalize Problem, Analyze Networked System, Generate Data, and Investigate
Data activity. Environment transitions, i.e., how the environment responds to an
agent’s actions, can be based on this information. For example, the gathered
data could be used for data-driven causal models of the system [80]. Further,
environment parameters, e.g., in a network simulator, can be configured based on
settings and measurements in the physical system. For example, the bandwidth
of links or protocol versions and setting link delays or resource consumption of
applications to measured values. Finally, measured data can serve as input to
drive the simulation, e.g., through empirical request patterns.

The observation and action space design also depends on the Analyze Net-
worked System and Generate Data activity. The observation space might contain
transformed and engineered features like for SL and UL. Similarly, the action
space might not directly translate into a control action in the networked system.
For example, a discrete action could map to a complex system configuration.

The reward function’s design further depends on the Formalize Problem output.
The reward function must reflect the network operational objective. Often the
reward function is based on the objective function of a COP. Generated data
informs about potential thresholds on which the reward function value depends
or directly translates into reward values. For example, the reward function for
load balancing in Chapter 5 directly translates to the COP objective of minimizing
the maximum load. However, once a condition is fulfilled, i.e., a CPU core
overloaded, the reward function returns a strong penalty.
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2.2.7 Train Model

The Train Model activity is similar to the Training activity in the CRISP-DM process
model. This activity selects ML models based on the characterization of the prob-
lem and trains and evaluates the models. This step does also perform hyperpa-
rameter tuning, if necessary. In contrast to the CRISP-DM process, the MaLANe
process includes the model selection into this stage, i.e., the best-performing
model based on the ML objective is already selected in this activity.

For the selection of ML models, additional requirements expressed during the
Formalize Problem can influence the models considered in the first place. For
example, performance requirements might restrict the size of the models. Known
restrictions in inference hardware might exclude model classes such as NNs from
the list of potential candidate models.

The MaLANe includes a transition from the Train Model activity back to the
Prepare Data activity. This allows adjustments based on the training results. For
example, the transformation of features can be changed based on the training
results, or other features be selected. Experience shows that especially projects
relying on RL require multiple iterations between the Prepare Training and the
Train Model activity until a model is trained successfully. Especially the reward
function is a common source of problems and usually requires multiple trials
until RL learns successfully [81]. Common problems are sparse rewards and
credit assignment problems [81]. For example, the RL problem in Chapter 5
could also be cast as a single-agent problem. However, the single agent would
have to perform many successive actions, receiving reward only once all CNFs
are assigned to cores or overloading a core in-between. However, the problematic
assignment might not necessarily be the assignment that finally overloaded the
core. Instead, an earlier assignment might be unlucky and should have been
done differently. Figuring out which action should be changed to improve the
reward is difficult for the agent in this setting. The reward signal does not provide
feedback for it. In the multi-agent approach, Chapter 5 proposes, each agent gets
immediate feedback on its decision, which improves the learning dynamics.

2.2.8 Integrate Model

The Integrate Model sub-process shown in Fig. 2.6 takes a trained model and returns
a system architecture for the resulting ML-enabled networked system. The sub-
process consists of two activities: The Implement Model activity and the Evaluate
ML-enabled System activity.

Implement Model. The Implement Model activity realizes a test-bed or Proof-of-
Concept (PoC) implementation of the ML-enabled system. Doing so can entail
a significant implementation effort if the trained ML model cannot operate in
the networked system directly. This can be the case if, e.g., necessary libraries
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Figure 2.6 The Integrate Model sub-process implements the trained model in the networked
system. It evaluates if the resulting ML-enabled system meets the specified network
operational objectives.

are not available, the ML model must be ported to networking hardware or
optimized for performance. For example, NNs are usually trained with deep
learning libraries like TensorFlow or Torch. Those libraries might not be available
in the networked system or add too much overhead to the resulting program,
potentially necessitating the manual implementation of forward passes. Similarly,
decision trees can be executed in the data plane but must be translated into match-
action rules in switching chips first [56]. Other algorithms might have to be
implemented in another programming language to be able to execute them in the
networked system. To improve performance, optimization tricks, e.g., optimizing
the memory layout to improve cache utilization, or exploiting other model-specific
properties that result in performance improvements, might be necessary.

For example, Chapter 4 demonstrates that using a deep learning library can
result in significant overhead, severely hurting the overall system’s performance.
A manual implementation was necessary to remove the overhead, and exploiting
the model structure was necessary to make the system practically applicable.

Evaluate ML-enabled System. The Evaluate ML-enabled System evaluates the per-
formance of the ML-enabled system the Implement Model results in to assure its
quality or evaluate its potential. Goal-oriented projects often focus on quality as-
surance, i.e., verifying if the system design meets performance requirements spec-
ified during the Translate Objective and Formalize Problem activities. Exploration-
oriented projects are usually more interested in the system’s potential, i.e., to
establish what performance could be achieved with such a system in the first
place and identify limiting factors that could be turned into a business case.

Evaluating the system requires the design and execution of experiments to
obtain the required measurements. In the case of exploration-oriented projects, it
is recommended to follow standardized setups, e.g., defined in the RFC2544 [82].
Goal-oriented projects can require less standardized experiments, e.g., to evaluate
Key Performance Indicators (KPIs) in specific contingencies. For example, to
evaluate the ML-enabled TE mechanism, special experiments were designed to
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Figure 2.7 The Deploy ML-enabled System sub-process consists of two parallel activities:
Deploying the ML-enabled system into production and automating ML related activities
to allow the adaptation, e.g., to data drift.

measure how fast the system reacts to changes in the network. Similarly, different
workloads were used in Chapter 3 to investigate how the workloads impact the
system’s performance.

Depending on the evaluation results, the Integrate Model sub-process speci-
fies the return to the Implement Model activity. This allows the implementation
improvement, for example, if the evaluation reveals bottlenecks that should be
resolved, as in Chapter 4.

Further, MaLANe specifies a transition to the Translate Objective activity and
a transition to the Train Model activity. Transitioning to the Translate Objective
activity might be necessary if the Integrate Model sub-process shows that the
resulting system cannot meet the desired objectives. Thus, the objectives might
have to be adjusted accordingly. Similarly, insights gained during this process
might allow the development of new business cases. Moving back to the Train
Model activity might be necessary if the trained ML model must be adapted to
meet performance requirements. For example, the model inference is not fast
enough, and the model size should be reduced, or previously set ML KPIs must
be adapted to achieve the desired results in the ML-enabled system, i.e., using a
smaller model that might have a lower accuracy but faster inference times.

2.2.9 Deploy ML-enabled system

The Deploy ML-enabled System sub-process shown in Fig. 2.7 deploys the ML-
enabled system into production and implements an automated Continuous Inte-
gration Continuous Delivery (CICD) pipeline. Accordingly, the Deploy ML-enabled
System sub-process consists of two parallel activities: The Deploy in Production ac-
tivity and the Automate Pipeline activity.

Deploy in Production. The Deploy and Operate ML-enabled System activity deploys
the solution into the production environment. Best practices such as incremental



Chapter 2 Applying Machine Learning in Networking

29

deployment, Canary testing, and A/B testing apply. The deployment of the
system can further include the training of personnel.

Automate Pipeline. In practice, the data distribution is non-stationary [70]. That
is, the data distribution slowly changes over time. This can hurt the model
performance and thus the ML-enabled system. Successfully operating a ML-
enabled system thus might entail setting up and automating a CICD pipeline to
keep performance high. This includes setting up monitoring to detect changes
in the data distribution and model performance degradation and methods to
automate the process of generating data, training the model, and deploying the
updated model to the system. For this activity, the term Machine Learning
Operations (MLOps) has been coined over the recent years, and various tools
exist to assist this activity [83].

2.2.10 Operate ML-enabled system

The Operate ML-enabled system activity ensures the correct operation of the ML-
enabled system. The activity uses the monitoring system to detect if the deployed
model has gone stale. Further, hardware degradation and system updates might
also affect the performance of the ML-enabled system. The ML component should
thus be included in maintenance processes, i.e., verifying the impact of mainte-
nance and the assumptions on which the ML model is based. Before initiating a
model update, the cost of training a new model to the cost resulting from erro-
neous predictions should be compared. The arrow from the Operate ML-enabled
System to the Analyze Networked System sub-process in Fig. 2.2 indicates this.

2.3 Conclusion and discussion

This chapter presents the MaLANe process model for conducting data science
projects in networking. MaLANe adapts the popular CRISP-DM process model to
the specific needs of data science projects in networking. In contrast to extensions
such as CRISP-ML(Q), and DMME, MaLANe includes a perspective on combina-
torial optimization, RL, and the integration of ML models into the systems.

A data science project in networking might not require the execution of all
MaLANe activities. For example, the formulation of a COP might not be necessary
if the goal is to model one specific aspect or component in the network, i.e., there
is no underlying optimization problem to solve. For instance, to predict the CPU
utilization of an application or to perform predictive maintenance on hardware
components. In those cases, proposals like the CRISP-DM, CRISP-ML(Q), and the
DMME process model are equally applicable.

The MaLANe process also emphasizes that ML projects can become extensive
and that expertise in different disciplines is usually needed for a successful project.
The MaLANe process shows that thorough technical understanding is required
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to successfully do ML projects in the networking domain. Experience shows
that a successful ML project might even require a deeper understanding of the
networked system than for normal operation. A finding that is supported by
others [78].

Also, the MaLANe process gives a negative answer to whether ML can be used
as a black-box method to learn the behavior in networked systems. The MaLANe
process shows that the resulting ML models will have little credibility, i.e., the
reliability of the predictions is unclear. Assuming that the networked system is
treated as a black box, i.e., ML gets input and output data of the system, and
the internal workings of the system are largely unknown. Further, assuming
that the ML model meets ML and network level performance requirements, e.g.,
has high accuracy. In this case, the credibility of the ML system depends solely
on the quality of the training data and the scenarios in which the system is
evaluated. However, to judge the quality of the training data and the suitability
of the evaluation scenarios, a deep technical understanding of the system and its
workings is necessary, which contradicts the black-box assumption.

Further, the MaLANe process model shows that significant effort is also neces-
sary during the operational phase. Neglecting the effort in the operational phase
can quickly lead to situations where the model is no longer usable.
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Data-driven website classification
Algorithm Design

Encrypt every transfer [84] is a major step towards securing the privacy of Internet
users: DNS1 over TLS2 (DoT.) [85], and DNS over HTTPS3 (DoH) [86] secure the
user’s DNS queries; HTTPS with the Encrypted Server Name Indication (ESNI)
extension [87], and the proposed Encrypted Client Hello (ECH) extension [88],
secure the communication between clients and remote servers. Hence, adver-
saries, legitimate or not, can no longer analyze DNS traffic, packet payload, the
Server Name Indication (SNI), or the information in the TLS Application-Layer
Protocol Negotiation (ALPN) extension [89]. In 2019, at least 10 % of the Alexa
top 1 Million websites supported ESNI and would have been hidden [90].

For SPs, the secured communication of Internet users has a downside: They
become oblivious to the applications and services running over their network.
However, knowledge about applications and services is important for SPs, espe-
cially as competition strengthens. For example, SPs can use the knowledge about
the service and application distribution to plan network infrastructure to improve
the Quality of Service (QoS) and Quality of Experience (QoE) of users [25] and to
develop new business and pricing models [2, 3, 9, 25].

Consequently, legitimate and illegitimate adversaries must rely on other meth-
ods to analyze users’ communication. Website Fingerprinting (WFP) [91] might
thus become relevant beyond anonymity networks such as the The onion router
(Tor) network. WFP allows adversaries to infer visited websites from encrypted
traffic using patterns in the data exchange between client and server.

However, using WFP at scale in the network is challenging. WFP should be
deployed at a location that allows the monitoring of multiple users, i.e., WFP must
operate live in the network at higher link rates (say 10 Gbit/s) on a traffic aggre-
gate. Previous WFP attacks [91–117] are not applicable in this scenario. Previous
attacks are evaluated offline, target individual users, and use ML models that

1Domain Name Service (DNS).
2Transport Layer Security (TLS).
3Hypter Text Transfer Protocol Secure (HTTPS).
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Figure 3.1 Classifications per second that ProFi and SoA approaches achieve in an offline
setting on one CPU core.

take milliseconds to evaluate and thus do not scale to high-volume links. Further,
most previous attacks use features calculated from entire page loads, i.e., require
extracting individual page loads from the traffic aggregate. Extracting page loads
is difficult considering that simply detecting the onset of one concurrent page
load in a single user scenario is already challenging [101, 104, 111, 118]. Thus, it
remains unclear if WFP can be used in the context of SPs.

To show that WFP applies in a general setting, this chapter designs, implements,
realizes, and evaluates an ML-enabled traffic classification system called ProFi
(PRObabilistic website FIngerprinting). In contrast to previous work, ProFi’s
design includes three operational requirements beyond mere ML metrics like
detection rate: Data availability during operation, inference speed, and continu-
ous operation. ProFi uses Probabilistic Graphical Models (PGMs)4 [80] to model
the initial TLS connection established during webpage retrieval based on the di-
rection, size, and TLS records among the connection’s first 30 packets, which
are, as this chapter shows in a prototypical implementation, readily available in
practice. That is, ProFi operates on individual flows instead of individual page
loads, as most previous attacks do. Thus, ProFi handles traffic aggregates with-
out further processing because of the flow-based classification. For ML-related
metrics, ProFi shows competitive performance to three SoA WFP attacks. ProFi
achieves precision and recall scores of 86.51 % and 85.35 % in a closed-world, and
68.90 % and 78.71 % in an open-world scenario. At the same time, the PGMs have
few parameters, enabling inference within microseconds. Thus, ProFi processes
thousands of webpage calls per second in an offline scenario. Two orders of mag-
nitude more than SoA approaches, as Fig. 3.1 shows. The PGMs further simplify
the continuous operation of the attack since the PGMs readily indicate data drift
through their log-likelihood. Other ML models require more involved monitor-
ing, e.g., by observing and evaluating samples during production [70]. Further,
the PGMs enable a modular microservice-based implementation amenable to
deployment in modern cloud-based networks such as on a Multi-access Edge
Computing (MEC) [7] infrastructure. This chapter evaluates the performance of

4The term PGM in this chapter refers explicitly to Markov Chains (MCs) and Profile Hidden
Markov Models (PHMMs).
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the microservice-based system in testbed measurements, showing that ProFi’s
microservice-based implementation can handle more than 400 webpage accesses
per second on a 10 G link at full rate. Overall, the contributions of the work in
this chapter are:

• Collection of an extensive traffic dataset from 4 800 webpages of 96 websites
collected over 70 days.

• Implementation of a TLS dissector for feature extraction.

• Design, implementation, and evaluation of ProFi, a PGM-based WFP attack
designed for the operation live in the network.

• A microservice-based testbed implementation and evaluation of ProFi.

• Showing that ProFi can handle 100s of website accesses per second. This
is the first implementation and evaluation of a WFP attack’s potential to
operate live in the network and has relevance beyond WFP, i.e., extends to
ML-based traffic classification in general.

• The design of a readily-implementable defense against ProFi reducing pre-
cision and recall to less than 10 % and 20 % while causing a bandwidth
overhead of 150 %.

• The release of data [119] and code 5 to foster reproducibility and support
the community in the research of traffic classification.

Content and outline of this chapter. To improve the understanding and read-
ability of the chapter, the chapter’s sections do not directly correspond to steps in
the MaLANe process model. Instead, the chapter is organized as follows. Sec. 3.1
introduces the attack scenario, and Sec. 3.2 introduces background information
and related work. Sec. 3.3 presents the design of the ProFi attack and the defense
method. Sec. 3.5 introduces the dataset and analyzes the training process. Sec. 3.6
evaluates the classification performance of the ProFi attack and compares ProFi
to three baselines. Sec. 3.7 presents the microservice-based implementation of
ProFi and evaluates its throughput, scalability, and labeling speed. Sec. 3.8 dis-
cusses ethical considerations, and Sec. 3.9 concludes this chapter. This chapter is
largely based on a previously published article [31]. This chapter adds additional
contents in Sec. 3.2.1, Sec. 3.2.3, and extends the description of attacks and defense
in Sec. 3.3. Specifically, this chapter adds Sec. 3.3 visualizations of trained PGMs
to emphasize the model’s simplicity and derives the adapted training algorithm.
Finally, this chapter describes the individual services comprising the prototype in
more detail in Sec. 3.7.1.

5Available on GitHub https://github.com/tum-lkn/ProFi-Efficient-probabilistic-t
raffic-fingerprinting

https://github.com/tum-lkn/ProFi-Efficient-probabilistic-traffic-fingerprinting
https://github.com/tum-lkn/ProFi-Efficient-probabilistic-traffic-fingerprinting
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Figure 3.2 ProFi attack scenario. Multiple users access websites on a Content Delivery
Network (CDN) and access the Internet via a Network Address Translation (NAT) router.
ProFi sits between the NAT router and the CDN, observing only the traffic aggregate.

3.1 Attack Scenario

This section introduces the underlying use-case for MaLANe’s Translate Objective
activity and deduces network-level objectives. Further, this section characterizes
additional requirements towards the ML models as described for the Characterize
ML activity. Fig. 3.2 illustrates the attack scenario of ProFi: Multiple users share
a common Internet access point- a typical Internet access scenario (e.g., home
network or public WiFi).

The user view. The users are situated behind a NAT-capable router, as in a
typical home or campus network, which renders a realistic attack scenario. The
users share the same public Internet Protocol (IP) address; hence, they cannot be
differentiated by their IP addresses. Since most of today’s web traffic is carried
by large Content Delivery Networks (CDNs) [120–122], this chapter focuses on
a scenario where users retrieve webpages from CDNs. This chapter focuses on
CDNs since CDNs serve many popular websites [112], and websites can use CDNs
to hide from censors [123]. Since a CDN server can deliver any website hosted
by the CDN, WFP becomes more challenging since the server’s IP address does
not identify one website. This chapter does not investigate the effect of Virtual
Private Network (VPN) on WFP. Over two-thirds of Internet users do not use a
VPN [124].

The attacker view. The goal of the attacker is to discern the website a user
is accessing, where a website consists of multiple webpages. The attacker is
situated on the path between the NAT router and the CDN. Contrary to previous
WFP attacks, the attacker has no access to the private network of the users.
However, the attacker still has access to traffic in both directions. It is assumed
that the traffic is encrypted with TLS, and the SNI and ALPN extensions in the
TLS handshake are also encrypted. This prevents usage of either feature for
fingerprinting [125]. Further, the attacker knows only the public IP of the NAT
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router for every user. Furthermore, as websites are hosted on CDNs , attackers
cannot fingerprint websites based on the IP addresses of destination (cache or
edge) servers. Thus, this chapter investigates a scenario where the attacker is left
with statistical information about the frequency, volume, and direction of data
transfers within a flow.

Per-Flow Classification. ProFi classifies based on the first TLS connection the
user’s client establishes to retrieve a webpage. ProFi uses observable features of
the traffic, such as the frame size, TLS record size, and the direction of packets.
The underlying assumption that this chapter confirms in the evaluation is that the
server and client exchange unique information in the initial flow, which reflects in a
specific pattern of exchanged packets in the network. Thus, the attack can classify
each flow individually, sidestepping the extraction of individual webpage calls
from the traffic aggregates, as previous attacks require, which is very challenging
to perform in practice. Previous work shows that even solely identifying the start
of overlap for two overlapping webpage calls of a single user is difficult [101, 104,
111, 118].

Practical feasibility. Since this chapter investigates whether WFP applies in a
general setting, the attack must be able to process larger traffic volumes, requir-
ing fast and efficient WFP mechanisms. Further, the attack must be deployable
and continuously operational, i.e., this chapter considers not only training and
evaluation but also the full life cycle of an ML application [70]. Therefore, this
chapter does not use more complex models like Random Forests, Support Vector
Machines (SVMs), and Deep Neural Networks (DNNs)6. Specifically, there is a
trend of using DNNs for WFP [105, 106, 109, 111, 116]. However, DNNs are
large, with many layers and parameters. For example, Var-CNN [109] uses two
Convolutional Neural Network (CNN) with 18 layers and an input layer with
5 000 neurons each. Despite their size, simpler ML models can outperform DNNs
on traffic classification tasks [126]. Further, executing DNNs requires specialized
hardware and a specifically designed system architecture to operate online in the
network [23]. Further, DNNs are susceptible to shortcut learning, and results are
difficult to verify [127]. Thus, this chapter focuses on simple ML models that run
on commodity hardware and are easy to interpret. This makes the development
and deployment of WFP attacks faster since models require less computation, and
also helps in interpreting and analyzing the learned models, e.g., to mitigate the
WFP attack.

6Random Forests and SVMs can also yield large models that take milliseconds to evaluate a sample
and are thus unsuitable for WFP attacks at scale. For example, CUMUL in Fig. 3.1 is based on
an SVM.
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Code Record Type Code Handshake Type

20 Change Cipher Spec
21 Alert
22 Handshake 0 hello_request

1 client_hello
2 server_hello
3 hello_verify_request
4 new_session_ticket
5 end_of_early_data
6 hello_retry_request
8 encrypted_extensions

11 certificate
12 server_key_exchange
13 certificate_request
14 server_hello_done
15 certificate_verify
16 client_key_exchange
20 finished
21 certificate_url
22 certificate_status
23 supplemental_data
24 key_update

254 message_hash
23 Application Data

Table 3.1 TLS record- and handshake message types.

3.2 Background and related work

This section introduces background information and related work and reflects
MaLANe’s Analyze Networked System activity. Sec 3.2.1 introduces background
information for the TLS protocol. Sec. 3.2.2 introduces WFP in detail, and Sec. 3.2.3
introduces background information to Hidden Markov Models (HMMs). Finally,
Sec. 3.2.4 discusses related work.

3.2.1 Transport Layer Security

TLS provides a secure channel between two communication partners [128]. Cur-
rently, TLS uses mostly the Transmission Control Protocol (TCP) for transmission.
However, Quick UDP Internet Connections (QUIC) is gaining traction. This chap-
ter only considers TLS over TCP.

TLS consists of two major components: A handshake and a record protocol.
The handshake protocol authenticates the peers, establishes keying material and
negotiates cryptographic techniques and their parameters [128]. The record pro-
tocol fragments data into records and encrypts the content of the records using
the settings established during the handshake [128]. In addition, TLS has an
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Figure 3.3 TLS connection establishment. Red indicates encrypted messages.
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Figure 3.4 Structure of a TLS record. Blue color indicates clear text, red color indicates
encrypted content. Italic font indicates content only present in specific messages.
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Figure 3.5 Data is first fragmented into TLS Records. The TLS Records are then fragmented
into IP packets.
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Alert protocol that is used to communicate errors and initiate the closure of the
connection [128].

Fig. 3.3 shows how a TLS session is initiated. For brevity, the TCP handshake
and control messages are omitted. A client initiates a TLS session by sending a
client_hello to a server. The message is part of the handshake protocol and
contains client random data, a list of supported cipher suites, a list of public keys,
and protocol versions supported by the client. In addition, the client_hello can
contain several optional messages [128]. The client_hello is sent as plain text,
i.e., nothing is encrypted. Upon receiving aclient_hello, the server replies with
a server_hello. The server_hello contains server random data, a selected
cipher suite, a public key for key exchange, and the negotiated protocol version.
The server_hello is the last unencrypted message in the connection [128]. All
subsequent handshake and application data messages are encrypted. The client
finishes the connection establishment by sending a finished message to the
server. The client and server can then send application data in both directions.
Depending on the configuration of client and server and network conditions,
additional messages can be exchanged during the TLS handshake process [128].
Tbl. 3.1 lists all TLS record types and TLS handshake message types. ProFi uses
the message types as features.

The content of messages exchanged during a TLS session is framed. Frames can
have a size of up to 214 bytes, and each frame has a header. Fig. 3.4 illustrates the
header. The header has a length of five bytes and specifies the record type, the TLS
version, and the length of the record. Headers of messages from the handshake
protocol have a sixth byte after the length that contains the handshake type. The
first five to six bytes are never encrypted. After the header, the actual payload of
the TLS record begins. At the end of the record are a Message Authentication
Code (MAuC) with four bytes and arbitrary padding. TLS uses the MAuC to
verify message integrity and authenticity. The padding can be used to mask the
size of the payload. Payload, MAuC, and padding are encrypted. ProFi uses the
visible data, i.e., the record, handshake type, and the record length, as features.

Since frames can have a length of up to 214 Bytes, TLS records can be fragmented
into multiple IP packets. Fig. 3.5 illustrates this process. Fig. 3.5 shows six chunks
of data that should be transmitted. Each chunk of data is framed by TLS. This
results in seven TLS records. The TLS records are then passed to the transport
protocol. In this example, the Maximum Transmission Unit (MTU) in the network
is smaller than the maximum record size. The first three TLS records that have
maximum size are therefore fragmented into five IP packets. The fourth TLS
record is packed into a single packet. The last three TLS records are packed into
one packet. How records are created and sent into the network depends on the
application [128]. ProFi uses the number and types of records inside packets as a
feature.
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3.2.2 Website Fingerprinting

The goal of a WFP attack is to predict which websites a user is accessing solely
from passive observation of network traffic [94]. In this context, it is important to
differentiate between web-sites and web-pages [95].

Website vs. webpage. Attacks can infer websites and webpages [95]. A webpage
is identified by a specific Unified Resource Locator (URL). A website consists of
multiple webpages below a Second Level Domain (SLD). For example, https:
//www.nih.gov/grants-funding and https://www.nih.gov/research
-training are two webpages from one website. Related work often performs
WFP on the level of webpages, e.g., the landing page—here, the attacker has
to learn a model that recognizes only this single page. This task is easier than
learning a model for arbitrary webpages of one website. A website’s webpages
show different content, resulting in different packet sequences. Thus, website
fingerprinting has to cope with a larger variance in the data compared to webpage
fingerprinting [95], making the data more difficult to model [27, 129]. ProFi
performs the more challenging website fingerprinting attack, i.e., ProFi extracts
patterns that generalize from examples of webpages of websites to the traffic of
unseen webpages of that site.

Open vs. closed world. Two evaluation scenarios exist for WFP attacks: the
closed-world and the open-world scenario [94]. In the closed-world scenario, the
attacker knows the websites a victim visits. Thus, the attacker can train the attack
model for each of those websites - no other websites are visited. This is the easiest
variant of the attack. In the more realistic open-world scenario, the attacker does
not know which websites the victim accesses. The victim also visits websites
not included in the attacker’s training data. Generally, the open-world scenario
is considered the more challenging scenario. This chapter shows the results for
both scenarios.

3.2.3 Hidden Markov Models

This section introduces the HMM and its parameter estimation. ProFi uses a
special HMM type to model sequences. The section is based on the tutorial of
Rabiner [130], Murhpy [27], and Koller [80].

Introduction

A HMM is a stochastic model for data with discrete time and states [27] and
emissions. Specifically, HMMs can model sequences with discrete sequence ele-
ments, e.g., text, genomes, and speech [27, 80, 130]. In contrast to a MC, HMMs
are latent-variable models capable of capturing long-range dependencies between

https://www.nih.gov/grants-funding
https://www.nih.gov/grants-funding
https://www.nih.gov/research-training
https://www.nih.gov/research-training
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𝑧1 𝑧2 ... 𝑧𝑇

𝑤1 𝑤2
...

𝑤𝑇

Figure 3.6 Directed graphical model of a HMM. The filled nodes at the bottom correspond
to observed variables. The white nodes at the top correspond to unobserved hidden
variables.

observations [27]. HMMs assume the existence of an unobserved underlying pro-
cess that can be modeled by a first-order MC, and sequences are the noisy output
of this process [27]. Fig. 3.6 illustrates this principle. Fig. 3.6 shows a directed
graphical model of a HMM, where the unfilled nodes at the top correspond to
the unobserved first-order MC, and the gray nodes at the bottom to the observed
variables.

Thus, a HMM has a set of unobserved states𝒵, and observable values𝒲. The
parameters of a HMM are a transition model and an emission model [27, 80, 130].
The transition model parameterizes the unobserved first-order MC, i.e., specifies
the probability of starting in any of the states of the unobserved MC:

𝜋 : 𝒵 → [0, 1], (3.1)

and the probability of transitioning from a state 𝑧 ∈ 𝒵 to another state 𝑧′ ∈ 𝒵:

𝜏 : 𝒵 ×𝒵 → [0, 1], (3.2)

referred to as 𝜏 (𝑧𝑡+1 = 𝑧′ | 𝑧𝑡 = 𝑧). The emission model defines the probabilities
of observing a specific symbol 𝑤 ∈ 𝒲 given a hidden state 𝑧 ∈ 𝒵:

𝑜 :𝒲×𝒵 → [0, 1], (3.3)

referred to as 𝑜 (𝑤𝑡 = 𝑤 | 𝑧𝑡 = 𝑧). Estimating a HMM’s parameters from observed
sequences can be done with the Baum-Welch algorithm, a specific form of the
Expectation Maximization algorithm [80, 130].

The Baum-Welch algorithm consists of the forward-backward algorithm and a
parameter re-estimation.

Forward-Backward Algorithm

The forward algorithm uses dynamic programming to calculate the probability of
an observed sequence 𝑂 ∈ 𝒲𝑇 of length 𝑇 given a HMM, i.e., 𝑝(𝑂 | 𝜋, 𝜏, 𝑜) [130].
The forward-backward algorithm uses two recursively estimated quantities: the
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forward variables 𝛼𝑡 and the backward variables 𝛽𝑡 . The forward variables are
defined as:

𝛼𝑡 : ×𝑡𝒲×𝒵 → [0, 1];

𝑂1 , . . . , 𝑂𝑡 , 𝑧 ↦→

𝜋 (𝑧) 𝑜 (𝑂1 | 𝑧) if 𝑡 = 1[∑

𝑧′∈𝒵 𝛼𝑡−1 (𝑧′) 𝜏 (𝑧 | 𝑧′)
]
𝑜 (𝑂𝑡 | 𝑧) if 1 < 𝑡 ≤ 𝑇

(3.4)

i.e., the forward variables give the probability of observing the sequence 𝑂 up
to time 𝑡 and being in a specific hidden state 𝑧 ∈ 𝒵 at time 𝑡 [130]. The explicit
reference to 𝑂1:𝑡 is dropped from the arguments of 𝛼𝑡 to keep the notation un-
cluttered. For each hidden state 𝑧 ∈ 𝒵, the forward variables are initialized with
the product of starting in 𝑧 and observing the first symbol 𝑂1 in 𝑧. For the re-
maining symbols, the corresponding forward variables are computed recursively.
The interpretation of the calculation of the remaining forward variables uses the
definition that each 𝛼𝑡−1 (𝑧′) represents that the partial sequence 𝑂1:𝑡−1 has been
observed and state 𝑧′ is reached. Then, to observe symbol 𝑂𝑡 in state 𝑧, Eq. (3.4)
multiplies each 𝛼𝑡−1 of each hidden state 𝑧′ with the probability of transitioning
from 𝑧′ to 𝑧. Summing these products up results in the probability of being at
state 𝑧 in time 𝑡 and having observed the sequence𝑂1:𝑡−1. By multiplying the sum
with the probability of observing 𝑂𝑡 in state 𝑧, Eq. (3.4) computes the probability
of observing the partial sequence 𝑂1:𝑡 and being in state 𝑧 [130].

Further, the forward variables allow the computation of observing the sequence
𝑂 given the HMM as [130]:

𝑝(𝑂 | 𝜋, 𝜏, 𝑜) �
∑
𝑎∈𝒵

𝛼𝑇 (𝑎) . (3.5)

The backward variables are similarly defined [130]:

𝛽𝑡 : ×𝑇−𝑡𝒲×𝒵 → [0, 1];

𝑂𝑡 , . . . , 𝑂𝑇 , 𝑧 ↦→


1 if 𝑡 = 𝑇,∑
𝑧′∈𝒵 𝜏 (𝑧′ | 𝑧) 𝑜 (𝑂𝑡+1 | 𝑧′) 𝛽𝑡+1 (𝑧′) else,

(3.6)

i.e., the backward variables give the probability of the remaining observation
sequence 𝑂𝑡+1:𝑇 , given a specific state 𝑧 ∈ 𝒵 for time 𝑡. As before, the explicit
reference to 𝑂𝑡:𝑇 is omitted from the arguments of 𝛽𝑡 to keep the notation un-
cluttered. Eq. (3.6) initializes the backward variable for each hidden state to one.
In the recursive step, Eq. (3.6) accounts for all possible states for time 𝑡 + 1, the
probability of observing symbol 𝑂𝑡+1, and accounting for the remaining partial
observation sequence until the end of the sequence, corresponding to the 𝛽𝑡+1

variables [130].
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Parameter Update

Updating a HMM’s parameters, i.e., 𝜏 and 𝑜, from a set of sequences 𝒳 uses
the forward and backward variables computed by the Forward-Backward algo-
rithm [130]. Intuitively, the Baum-Welch algorithm can be interpreted as counting
events, e.g., the expected number of times the HMM transitions from a state 𝑧 to
a state 𝑧′ divided by the expected number of times the HMM is in state 𝑧. Since
this thesis focuses on PHMMs and the probability 𝜋 is constant for those [130],
its re-estimation is omitted.

The transition probabilities 𝜏𝑖+1 are re-estimated as follows [130]:

𝜏𝑖+1(𝑧′ | 𝑧) �
∑
𝑂∈𝒳

1
𝑝(𝑂 |𝜏𝑖 ,𝑜 𝑖)

∑|𝑂 |−1
𝑡=1 𝛼𝑂𝑡 (𝑧′)𝜏𝑖(𝑧′ | 𝑧)𝑜 𝑖(𝑂𝑡+1 | 𝑧′)𝛽𝑂𝑡+1(𝑧′)∑

𝑂∈𝒳
1

𝑝(𝑂 |𝜏𝑖 ,𝑜 𝑖)
∑|𝑂 |−1
𝑡=1 𝛼𝑂𝑡 (𝑧)𝛽𝑂𝑡 (𝑧)

. (3.7)

The superscript to 𝜏 and 𝑜 indicates the iteration and the superscript on 𝛼𝑡 and 𝛽𝑡
the sequence from the training set, i.e., each sequence is associated with its own
forward and backward variables.

The observation probabilities 𝑜 𝑖+1 are re-estimated as follows [130]:

𝑜 𝑖+1(𝑜 | 𝑧) �
∑
𝑂∈𝒳

1
𝑝(𝑂 |𝜏𝑖 ,𝑜 𝑖)

∑|𝑂 |−1
𝑡=1:𝑂𝑡=𝑜

𝛼𝑂𝑡 (𝑧)𝛽𝑂𝑡 (𝑧)∑
𝑂∈𝒳

1
𝑝(𝑂 |𝜏𝑖 ,𝑜 𝑖)

∑|𝑂 |−1
𝑡=1 𝛼𝑂𝑡 (𝑧)𝛽𝑂𝑡 (𝑧)

. (3.8)

To obtain the final values, the Baum-Welch algorithm thus iterates between com-
puting the forward and backward variables, updating the parameters with those,
and then re-calculating the forward and backward variables with the updated
distributions.

3.2.4 Related Work

This section introduces work related to the work in this chapter. Since ProFi is
an interdisciplinary project touching different areas, the related work is separated
into four aspects. First, this section introduces prior attacks and differentiates
ProFi from them. Second, this section reviews existing defenses; third, it intro-
duces prior art in general traffic classification. Finally, this section reviews related
work in the area of real-time in-network classification systems.

WFP attacks. Many recent attacks perform webpage fingerprinting, e.g., try to
detect the landing pages of websites [91, 93, 94, 97, 98, 100, 101, 103–107, 109–116,
118, 131–133]. Fewer works perform the more challenging website fingerprint-
ing [95, 102, 108, 117]. Except for [100, 101, 104, 108, 117, 118], previous work
makes the single-page-load assumption [101], i.e., users load only one webpage
and there is no background traffic. All previous work evaluates their attacks un-
der a single-user assumption, i.e., only one active user or process generates traffic.
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Closest to our approach is the work of Shen et al. [110], Zhuo et al. [108], Hoang
et al. [112], and Trevisan et al. [117]. Shen et al. classify normal TLS traffic from
one website and use only traffic from TLS sessions with the SNI of the top-level
domain, the first 100 packets of a webpage load and the kNN classifier. Zhuo
et al. use a PHMM and consider subsequent webpage accesses of a single user.
Hoang et al. build fingerprints from the IP addresses of webpage calls and is
thus computationally efficient. Trevisan et al. [117] use per-flow features and a
Random Forest classifier to label flows with domain names. In contrast, ProFi
uses a novel WFP classification method based on PGMs and anomaly detection
that makes ProFi easy to train and execute. The main contribution of this work is
the evaluation of the attack in a testbed, i.e., the investigation if and at what scale
WFP can be executed online in the network and interfere with user traffic. ProFi
is different from previous WFP attacks on the Tor network in the following ways.
ProFi makes predictions for flows and does not need access to all packets of each
webpage call. Further, ProFi does not assume the monitoring of an individual
user.

WFP defenses. A number of mechanisms to mitigate WFP attacks exists [96, 99,
113, 134–150]. The goal of the defenses is to mitigate WFP in the Tor network.
To mitigate WFP, the defenses mutate various aspects of the communication to
render previously identified features useless. However, mitigating WFP attacks
results in bandwidth and latency overheads. This chapter presents a simple
defense based on the padding of TLS records. The defense is similar in spirit to
existing defense methods such as CS-BuFLO [99]. Instead of the Tor network, the
defense focuses on the TLS protocol and uses only mechanisms available in the
current TLS standard.

General traffic classification. Beyond WFP, statistical approaches have been
used for general network traffic classification [151, 152]. These works focus on
broadly identifying application classes, e.g., Peer-to-Peer (P2P), e-mail, or web, us-
ing behavioral analysis [22] or detecting Secure Shell (SSH) and Skype flows [153]
or Android Apps [154], both using flow-level features. Similarly, TLS features
were used to identify services (e.g., web vs. video) and applications (e.g., Face-
book chat vs. Google Drive) [155] or web services [156]. Unlike application or
service detection, ProFi focuses on performing WFP attacks in both an open and
a closed-world scenario. However, the principle behind ProFi could be applied
to more general traffic classification, which is left as future work.

Real Time Traffic Classification. FENXI [23] introduces a system that uses spe-
cialized hardware accelerators for deep learning to accelerate and enable the
application of deep learning to packet processing. ILSY [56] implements four
ML models in programmable data planes with the P4 language and shows the
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Symbol Definition Explanation

𝒲 Set of all possible symbols.
𝒰 Set of possible IP packets from TLS

sessions.
𝒪 𝒪 ⊆ 𝒲 Set of all observations of one web-

site.
𝑧 Hidden State of a HMM.
𝒵 Set of all hidden states of a HMM.
𝜎 𝒰 → 2𝒲 Function that maps a packet to a or-

dered set of symbols.
Classifier 𝒲→𝒴 Classifier that maps a sequence of

symbols to a website.
𝒴 Set of websites that should be de-

tected.
pos 𝒰 ∪ ℛ → ℕ Returns the position of a packet or

TLSRecord in the flow. Can be con-
sidered as an increasing counter.

ℛ Set of all possible TLS Records.
recs 𝒰 → 2ℛ Function that returns the TLS

Records of an IP packet.
𝒳 {𝑥1 , 𝑥2 , . . . , 𝑥𝑛 | 𝑥𝑖 ∈ 2𝒲} Training set consisting of sequences

for websites.
𝒳𝑦 All sequences in the training set for

website 𝑦.
𝒳𝑦 𝑗 The 𝑗th sequence of website 𝑦.
𝒯 {packet, record} Sequence element types, either IP

packets or TLS records.
Table 3.2 Definition of symbols and functions sued in this section.

limitations of these approaches. Similarly, Xavier et al. [157] investigate how
ML algorithms can be executed in the data plane. N2Net [59] and BaNaNa
Split [57] discuss the implementation of binarized neural networks in the data
plane. Pacheco et al. [158] review ML-based solutions to network traffic classifica-
tion. In contrast to previous work, this chapter does not rely on special hardware
nor highly optimized frameworks targeting specific application scenarios only.
Instead, this chapter shows how existing frameworks and commodity hardware
can be used to realize WFP attacks.

3.3 Attack Model and Defense

This section introduces ProFi’s classifier using probabilistic models of packet se-
quences and the associated feature engineering. That is, this chapter includes
most aspects of MaLANe’s Prepare Training and Define ML Problem activities. The
classifier is designed for computational efficiency, i.e., it relies on models with
few parameters. Further, the classifier is designed for implementation as mi-
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Figure 3.7 Data-flow diagram of the classification procedure of ProFi. Italic script iden-
tifies meta-data.

croservices in a cloud-native deployment scenario. The design aligns with future
networking concepts that feature networking on top of a MEC infrastructure. The
design assumes that ProFi is situated between the user and the CDN, routing
is symmetric, and no VPN is used. Further, this section introduces three SoA
approaches to WFP as baselines for later evaluations.

3.3.1 Overview

To operate on the flow level, ProFi learns the characteristics of the first TLS con-
nection established between a user’s client when retrieving a webpage, referred
to as MainFlow from now on. Thus, classifiers in ProFi answer the question:
Is this flow a MainFlow to a webpage of one of the websites that should be detected?
Therefore, ProFi doesn’t have to extract flows constituting a webpage retrieval
from the traffic aggregate, i.e., the data ProFi requires is readily available during
operation. Further, detecting webpage calls based on the initial connection can
enable active interference, e.g., by dropping all traffic for a specific IP for a short
time after the call is detected.

Fig. 3.7 illustrates the high-level operation of ProFi. The attack translates a
flow’s packets into a sequence of nominal symbols and labels the sequence with a
classifier. More formally, the attack consists of three functions: The Symbolizer 𝜎,
the Coordinator, and the Classifier 𝜅. In addition, there are three data sources
and sinks, the Network, a Cache to store intermediate results, and persistent
storage for the classification results. First, ProFi receives a packet 𝑢 ∈ 𝒰 from
the network. The set 𝒰 corresponds to all IP packets occurring during a TLS
session. A Symbolizer 𝜎 converts the packet into an ordered set of abstract
symbolsℳ ⊂ 𝒲, where𝒲 is the set of all possible symbols. ℳ together with
a flow identifier is passed to the Coordinator. The Coordinator accumulates
ℳ𝑡 = 𝜎(𝑢𝑡) derived from 𝑇 packets 𝑢1 , . . . , 𝑢𝑇 of the same flow. Once the 𝑇th

packet of a flow arrives, the Coordinator passes the accumulated sequence of
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Figure 3.8 Frame-/TLS record sizes: negative (positive) values indicate traffic send by the
client (server), resp.

symbols to a Classifier 𝜅. The Classifier predicts the website 𝑦 ∈ 𝒴 and returns
the result to the Coordinator, where it is stored.

3.3.2 Extracted Features

To classify flows, ProFi uses packet-level data from, at most, the first 30 packets,
corresponding to the 10th percentile of MainFlow lengths from the collected data.
The exact number of packets used by ProFi is subject to parameter optimization
of the attack.

ProFi extracts features on the level of the packet and the level of the TLS records.
For each packet, ProFi extracts the size in bytes, the TLS record types, and the
direction, i.e., whether the packet travels from the client to the server or the other
way around. For each TLS record in the packets, ProFi extracts the TLS record
length, the TLS record type, and the direction. Since existing tools such as ssldump
do not provide all of these features, the features are extracted from the packet
capture files with a custom dissector. ProFi does not use timing information
between packets or TLS records. Latency, especially on the Internet, expresses
high variance not caused by the visited website [159]. Instead, geographic location
and difficult-to-observe conditions such as the network load explain the latency’s
variance [159]. Including latency would thus increase the requirements for data
collection to avoid the risk of overfitting.

www.google.es
www.google.es
www.primevideo.com
www.primevideo.com
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Fig. 3.8 illustrates the extracted features for two websites: www.google.es and
www.primevideo.com. Negative numbers in Fig. 3.8 correspond to traffic sent
from the client to the server. Positive numbers indicate the opposite direction.
Fig. 3.8 shows clear differences in the constructed sequences for the websites. For
example, Fig. 3.8a shows that www.google.es has a high variance during the
TLS handshake, and the client sends larger packets to the server. In contrast,
www.primevideo.com in Fig. 3.8c has a different handshake behavior, and the
client sends less data to the server. Also, the order is important: for example,
www.google.es in Fig. 3.8a has characteristic dips between records seven and
ten. The sequence of www.primevideo.com in Fig. 3.8c has small records
after the handshake until frame 15, after which the record sizes become highly
variable. Moreover, websites can have a multi-modal behavior. For example,
www.google.es in Fig. 3.8a has three TLS handshakes that vary in size and
number of TLS records. The varying handshake lengths then shift the entire
sequence. The remaining steps in ProFi, i.e., the Symbolizer and the Classifier,
have to preserve and extract these patterns.

Lastly, the sequences constructed from TLS records and frames can differ. For
example, the sequence of frame sizes for www.primevideo.com in Fig. 3.8d differs
markedly from the TLS record sizes in Fig. 3.8c. TLS can package multiple records
into one TCP segment. Similarly, a TLS record can span multiple TCP segments.
Thus, the sequences of TLS record sizes and the frame sizes that carry the records
can differ strongly. The way TLS records are packaged into TCP segments is a
discriminating feature on its own [156]. In the collected data, the number of TLS
records and packets is approximately equal on average but varies from website to
website, confirming the potential value of this feature.

3.3.3 Symbolizer

The Symbolizer converts the features extracted for each packet and record into a
sequence with nominal elements that the Classifier can process. Each sequence
element is constructed from three features: direction, size of record or packet,
and TLS record type(s). The size of the packet or record is numerical, and the
direction and TLS record types are nominal. The Symbolizer maps the direction,
size, and record types to an abstract symbol. To reduce the observation space and
account for small deviations in the lengths of packets and records, the Symbolizer
discretizes the packet and record lengths.

Formally, the Symbolizer is defined as a function 𝜎 : 𝒰 × 𝒯 → 2𝒲 . The set 𝒯
corresponds to the element for which a symbol should be created, i.e., packet or
record. The output is an ordered set of symbols. The order is established with
the help of a function pos : 𝒲 ∪ ℛ → ℕ, returning the position of the passed
element inside the flow. The symbol is formed by combining the direction, record
type(s), and size.

www.google.es
www.primevideo.com
www.google.es
www.primevideo.com
www.google.es
www.primevideo.com
www.primevideo.com
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For example, packet 𝑢 travels from the server to the client and carries three
application data records. The packet has a size of 1310 Bytes. The records have
lengths of 510, 399 and 401 Bytes. For a 𝒯 of packet, packet 𝑢 would be mapped
to one symbol {(23|23|23;1310;C)}, i.e., 𝜎 returns a singleton-set. In the case
of 𝒯 of record, packet 𝑢 is mapped to three symbols. One symbol per record:
{(23;620;C), (23;340;C), (23;350;C)}.

The input to the Classifier is the union of the return values of 𝜎 for the first 𝑛
packets of a flow ℱ := {𝑢1 . . . , 𝑢𝑛}: 𝑂 :=

⋃
𝑢∈ℱ 𝜎(𝑢). This forms a sequence with

nominal elements that are sorted based on the order in which the corresponding
packets occur in the flow.

3.3.4 Anomaly detection-based classifier

The Symbolizer returns sequences with nominal elements, and ProFi uses ML
techniques operating on those. This chapter investigates two ML techniques:
first-order MCs [156], and PHMM [160, 161].

MC and PHMM belong to the class of PGMs. ProFi uses PGMs to describe
the nominal sequences obtained from the Symbolizer for webpages belonging to
one website in the language of probability theory [80]. That is, one PGM rep-
resents one website 𝑦 ∈ 𝒴. PGMs are chosen over other ML models because
PGMs have few parameters, are interpretable, extensible, and signal data drift. A
small number of parameters is important to make ProFi memory and computa-
tionally efficient, allowing ProFi to scale to many concurrent webpage accesses.
At the same time, a small number of parameters aids the interpretability of the
model, which is further improved through the specific structure of, e.g., the PH-
MMs [160]. PGMs are readily extensible, e.g., it is straightforward to include
additional variables that can improve the classification [80], e.g., the information
of the CDN that is contacted. Lastly, PGMs model the data directly and thus pro-
vide a measure of how well the model fits the data. This is an important aspect
for the operation of ProFi since it allows the detection of data drift, i.e., the data
distribution in operation changes over time compared to the distribution of the
training data. An effect that has been previously reported [132] and exists in the
data as well.

PGMs do not return a specific label. Instead, PGMs compute the likelihood,
i.e., the probability 𝑝𝑦(𝑂) of a sequence 𝑂 given the model for website 𝑦 [80]. A
Maximum Likelihood Classifier (MLC) can use the likelihood for classification:
An MLC returns the label corresponding to the model with the largest likelihood,
i.e., the model under which the observation has the highest probability [161].
However, MLCs are unsuitable for an open-world scenario. An MLC will always
return a label, even if every model has a zero probability.

To overcome this issue, ProFi treats classification as anomaly detection. The
classifier’s PGMs represent the normal behavior of websites. If an observation
shows anomalous behavior, i.e., has a low probability under the PGM describing
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the website’s behavior, the classifier rejects the observation. Anomalous behavior
is defined based on the anomaly score 𝜂𝑦(𝑂) of a website as:

𝜂𝑦(𝑂) :=
log 𝑝𝑦(𝑂)

𝛾 max𝑂′∈𝒳𝑦 log 𝑝𝑦(𝑂′)
. (3.9)

Here, 𝑝𝑦(𝑂) corresponds to the model of website 𝑦 ∈ 𝒴, 𝒳 corresponds to the
training set, 𝒳𝑦 corresponds to website 𝑦’s training set, and 𝛾 ∈ ℝ is a scaling
factor. The score 𝜂𝑦(𝑂) corresponds to the ratio of the log-likelihood of the
model for website 𝑦 to the largest log-likelihood from the training set. The free
parameter 𝛾 can be used to tune the ratio. The ratio’s interpretation is as follows:
If 𝜂𝑦(𝑂) ≤ 1, then the given sequence fits equally well to the model as the training
data. If 𝜂𝑦(𝑂) > 1, then the sequence is less likely than all training sequences.

In the closed-world scenario, the classifier returns the website corresponding
to the model with the smallest score. This results in a multi-class classifier that
returns a label 𝑦 ∈ 𝒴 for every observation. In the open-world scenario, the
classifier uses the score to turn each PGM into a binary classifier. If 𝜂𝑦(𝑂) > 1,
then the model rejects the observation 𝑂, i.e., observation 𝑂 does not correspond
to a MainFlow of website 𝑦. If 𝜂𝑦(𝑂) ≤ 1, then observation 𝑂 is labeled as an
instance of website 𝑦. This results in three cases: 1) All models reject sequence 𝑂,
2) one model accepts 𝑂, and 3) multiple models accept sequence 𝑂. In case one,
the sample is classified as background traffic. In case two, the sample is classified
as the website the model corresponds to. In case three, the classifier returns the
website whose model has the smallest score.

Adjusting 𝛾 allows trading false positives for false negatives. A value less than
one reduces the risk of false positives and increases the risk of false negatives, i.e.,
the classifier is stricter. A value larger one increases the risk of false positives and
reduces the risk of false negatives, i.e., the classifier is more lenient in its opinion
of what is normal.

This approach has five advantages: 1) PGMs for websites can be trained inde-
pendently from each other. Thus, models for new websites can easily be added,
and existing ones can be updated without changing other models, and ProFi
does not need samples for the background class, as, e.g., CUMUL does. 2) ProFi
can vary the pre-processing steps for each website independently. Varying the
pre-processing steps changes the observation spaces for PGMs. Thus, the log-
likelihood of PGMs cannot be directly compared since the log-likelihood is not
calibrated [80]. The anomaly score solves this problem by quantifying how normal
an observation behaves compared to others of the same class. 3) The likelihood of
the PGMs can be used to detect changes in the data distribution and thus indicate
a reduction in reliability [80]. 4) The PGMs ProFi uses are computationally effi-
cient and can consume data in a streaming manner. That is, the symbols extracted
from packets by the Symbolizer can be fed one by one into the models without
storing the full sequence.
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3.3.5 Defense

A perfect defense would fulfill the following two conditions for a large set of
observations 𝒳:

𝜂𝑦(𝑂) ≤ 1 ∀𝑦 ∈ 𝒴 ∧ ∀𝑂 ∈ 𝒳 , (3.10)
| 𝒳𝑦 |
| 𝒴 | − 𝜖 ≤

∑
𝑂∈𝒳𝑦

𝕀

(
min
𝑦′∈𝒴

𝜂𝑦′(𝑂) = 𝑦

)
≤
| 𝒳𝑦 |
| 𝒴 | + 𝜖 ∀𝑦 ∈ 𝒴. (3.11)

Specifically, Eq. (3.10) expresses that the defense would result in a value smaller
one for the anomaly scores of all websites and sequences. This indicates that
the defense removes patterns from the traffic, and sequences of websites look
the same for the PGMs. But, although the anomaly scores for all websites are
smaller than one, the classifier could still produce the correct label if the website’s
PGM has the smallest anomaly score. Thus, Eq. (3.11) expresses that the number
of times the anomaly score 𝜂𝑦 for a website 𝑦 is the smallest anomaly score for
sequences of that website lies within an 𝜖-ball of the expected value of a uniform
distribution. The classifier’s performance is thus similar to randomly sampling a
class label.

To achieve this, a defense based on the padding in the TLS record protocol
is implemented and evaluated, referred to as Random TLS Record Size Defense
(RTlsRS). RTlsRS randomly draws TLS record sizes from a uniform distribution
𝑈(𝑙𝑚𝑖𝑛 , 𝑙𝑚𝑎𝑥), and pads records to the desired length if necessary. After each
record, RTlsRS randomly chooses between adding the next record to the data or
handing the current data to the transport protocol. Thus, the sizes and sequence
of packets and TLS records change - the features that ProFi uses to detect patterns.
The TLS 1.3 [128] standard allows the padding of TLS records to arbitrary sizes
up to 214 Bytes. Thus, the defense can readily be implemented in Secure Socket
Layer (SSL) libraries.

Characteristics that are not protected with this defense are the TLS handshake
and characteristic exchanges between client and server. The handshake protocol
does not support padding [128]. Thus RTlsRS leaves the messages as they are.
Characteristic exchanges, i.e., a specific sequence of contacts between client and
server, could, in principle, be obfuscated with deterministic sending of decoy
packets, albeit at the expense of more bandwidth overhead. The evaluations
show that the simple defense suffices to thwart ProFi.

The goal of RTlsRS is to be an easy-to-implement and effective defense against
ProFi. RTlsRS is not intended to outperform previous WFP defenses. In principle,
existing WFP defenses should also effectively mitigate ProFi. However, existing
defenses, e.g., HTTPOS [145] or CS-BuFLO [99], are often complex to implement
and require continuous effort to maintain, which might hinder their adoption.
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3.4 PGMs and baseline attacks

This section explains the used PGMs and how ProFi estimates model parameters
from data. In addition, this section introduces three baselines: the k-Nearest
Neighbor (kNN) classifier [79] with the Levenshtein distance [162], the SVM-
based CUMUL [102] attack, and the set-based IPFP [112] attack. All techniques
are trained on a dataset 𝒳 consisting of calls to multiple webpages of websites.
𝒳𝑦 𝑗 denotes the jth webpage of website 𝑦.

3.4.1 Markov Chain

ProFi uses a first order homogeneous MC as probabilistic model. A first-order
homogeneous MC models a sequence 𝑂 of length 𝑇 as:

𝑝(𝑂) = 𝑝(𝑂1)
𝑇−1∏
𝑡=1

𝑝(𝑂𝑡+1 | 𝑂𝑡). (3.12)

The probability of sequence 𝑂 corresponds to the probability of the sequence
starting with the symbol 𝑂1, multiplied by the probability of the next symbol
𝑂𝑡+1, given the current symbol 𝑂𝑡 . The transition probabilities between symbols
are time-invariant [80].

The MC is parametrized with the probabilities of starting with each symbol,
and the transition probabilities between each pair of symbols. The parameters
are estimated from the training data using maximum likelihood estimation. That
is, the estimator counts the occurrences of transitions and normalizes them.

Formally, the probability of a MC for website 𝑦 to start with a symbol 𝑤 ∈ 𝒲
is estimated as [27]:

𝑝(𝑂1 = 𝑤) � 1
| 𝒳𝑦 |

∑
𝑂𝑦∈𝒳𝑦

𝕀(𝑂𝑦

1 = 𝑤) (3.13)

Similarly, the transition probabilities from a symbol 𝑤 to 𝑣 are estimated as [27]:

𝑝(𝑂𝑡+1 = 𝑤 | 𝑂𝑡 = 𝑣) �

∑
𝑂𝑦∈𝒳𝑦

∑|𝑂𝑦 |−1
𝑖=1 𝕀

(
𝑂
𝑦

𝑖+1 = 𝑤, 𝑂
𝑦

𝑖
= 𝑣

)∑
𝑂𝑦∈𝒳𝑦 (| 𝑂𝑦 | −1) (3.14)

To handle unobserved start symbols and transitions, the estimator uses pseudo
counts to ensure that each symbol and transition has a small probability of occur-
ring [80].

Fig. 3.9 visualizes a MC modeling MainFlows for the website www.grammaly.c
om. Each node in Fig. 3.9 corresponds to a symbol following the format Sec. 3.3.3
introduces. Arrows between nodes visualize the transition probabilities, while
the arrow’s thickness visualizes the associated probability. The thicker the line,
the more probable the transition. Fig. 3.9 uses a special start node to illustrate

www.grammaly.com
www.grammaly.com
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Figure 3.9 MC for www.grammarly.com. The edge weights indicate probability. High
edge weight corresponds to a high probability. Labels above the arcs give probability.
Node labels encode the TLS records and frame sizes.

the start probability in each state. The model uses the MainFlow’s first five
packets to estimate the parameters and bins the packet’s size to 10 bins. The
MC in Fig. 3.9 mostly consists of the TLS handshake. The MC starts with a
client_hello followed by a server_hello. Then, the server starts to send a
certificate which takes four packets. The first part of the certificate is sent together
with the server_hello in the second packet. The next two packets contain only
the certificate. Note the self-loop on the node23:11;9;S. The fifth packet contains
the last part of the certificate record, together with server_key_exchanged and
a server_hello_done record.

The equations Eq. (3.13) and Eq. (3.14) show that the MC is parameterized
with | 𝒲 |2 + | 𝒲 | parameters. Specifically, each symbol 𝑤 ∈ 𝒲 and each
potential transition between any pair of symbols is associated with a probability.
However, in practice, a small fraction of all possible transitions occur, as Fig. 3.9
shows. Storing only the transitions that were actually observed can thus reduce
the memory requirements. In the case of ProFi, the largest model has 11 882
parameters compared to millions of parameters the full parameterization would
have.

The computational complexity in inference is linear in the sequence length.
The required computation amounts to the retrieval of the transition probabilities.
Thus, it is possible to implement the MC as a streaming algorithm that processes
packet by packet. In this case, the cache of the Coordinator in Fig. 3.7 can be
integrated into the classifier, which must then store the intermediate values for
each flow and the previous symbol.

3.4.2 Profile Hidden Markov Model

A PHMM [160] is a left-right HMM with a specific structure in the hidden states
𝒵. Fig. 3.10 shows this structure. A PHMM has three types of hidden states:

www.grammarly.com


Chapter 3 Data-driven website classification Algorithm Design

53

Start End

𝑚1 𝑚2 𝑚3 𝑚4

𝑑1 𝑑2 𝑑3 𝑑4

𝑖0 𝑖1 𝑖2 𝑖3 𝑖4

Figure 3.10 Transition between the hidden states of a PHMM. delete (D) states do not
emit symbols.

delete (𝑑), insert (𝑖), and match (𝑚) states. The insert and match states emit
symbols. The delete states are silent, i.e., do not emit a symbol. The PHMM
originates in the life sciences and is designed to model genome sequences [160].

The assumption behind the PHMM is that the modeled sequences consist of
static and variable parts. The static parts are modeled with the match states. The
variable parts are modeled with the insert and delete states. The insert states
allow the model to insert an arbitrary number of symbols at a specific position.
The delete states allow the deletion of symbols. In combination, the delete and
insert states allow the replacement of a symbol in the match chain. Thus, the
PHMM implements a form of probabilistic Levenshtein distance [160].

The PHMM is parameterized by a transition model 𝜏 and an emission model
𝑜. The transition model gives the probability of moving from one hidden state
to another. The initial probabilities are trivial for the PHMM, since all sequences
start in the 𝑆𝑡𝑎𝑟𝑡 state, i.e., for the PHMM, 𝜋 is trivially defined as:

𝜋 : 𝒵 → {0, 1}, 𝑧 ↦→


1 if 𝑧 = 𝑆𝑡𝑎𝑟𝑡,

0 else.
(3.15)

Fig. 3.10 shows that the transition model is sparse for the PHMM since most
transitions are not allowed by the structure in the hidden states. For example,
Fig. 3.10 shows that it is impossible to move from the match state 𝑚1 directly
to the insert state 𝑖5. The emission model gives for each insert and match
state a probability distribution over possible observations. In ProFi, those are the
symbols generated by the Symbolizer.

The model’s parameters can be estimated with the Baum-Welch algorithm, an
instance of the Expectation-Maximization algorithm [130, 160]. However, the
silent delete states require special treatment for calculating the forward and
backward variables in the Baum-Welch algorithm [160]. The parameter update
itself remains unchanged. Since a library implementing the adapted Baum-Welch
algorithm was unavailable, this chapter develops an adapted version of the cal-
culation of the forward and backward variables.
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The adapted algorithm introduces the forward variables 𝛼0 (𝑑𝑙) for all delete
states recursively as:

𝛼0 : 𝒟 → [0, 1]; 𝑑𝑙 ↦→

𝜏 (𝑑1 | 𝑆𝑡𝑎𝑟𝑡) if 𝑑𝑙 = 𝑑1

𝜏 (𝑑𝑙 | 𝑑𝑙−1) 𝛼0 (𝑑𝑙−1) else.
(3.16)

The forward variables 𝛼0 correspond to the contingency, that the observed se-
quence is generated through a path through the PHMM that skips an arbitrary
number of insert and match states before the first symbol is generated. The
initial forward variables for 𝑚1 and 𝑖0 are defined according to Eq. (3.4) as:

𝛼1 (𝑚1) � 𝜏 (𝑚1 | 𝑆𝑡𝑎𝑟𝑡) 𝑜 (𝑂1 | 𝑚1) (3.17)

𝛼1 (𝑖0) � 𝜏 (𝑖0 | 𝑆𝑡𝑎𝑟𝑡) 𝑜 (𝑂1 | 𝑖0) (3.18)

Specifically, the only viable path through a PHMM resulting in either𝑚1 or 𝑖0 and
generating the symbol𝑂1 is by transitioning from the state 𝑆𝑡𝑎𝑟𝑡 directly to either
of the two hidden states. In contrast to a normal left-right HMM, all other states
corresponding to later time-steps are reachable by traversing the delete states.
The forward variables for the match states are defined as:

𝛼1 (𝑚𝑙) � 𝛼0 (𝑑𝑙−1) 𝜏 (𝑚𝑙 | 𝑑𝑙−1) 𝑜 (𝑂1 | 𝑚𝑙) ∀1 < 𝑙 ≤ 𝐿, (3.19)

where 𝐿 ∈ ℕ is the length of the PHMM, i.e., the number of match states. The
forward variables for the insert states are defined as:

𝛼1 (𝑖𝑙) � 𝛼0 (𝑑𝑙) 𝜏 (𝑖𝑙 | 𝑑𝑙) 𝑜 (𝑂1 | 𝑖𝑙) ∀1 ≤ 𝑙 ≤ 𝐿 (3.20)

The forward variables for the delete states given that the first symbol has been
observed are defined as:

𝛼1 (𝑑𝑙) �

𝛼1 (𝑖1) 𝜏 (𝑑1 | 𝑖1) if 𝑙 = 1∑
𝑧∈{𝑖𝑙 ,𝑚𝑙−1} 𝛼1 (𝑧) 𝜏 (𝑑𝑙 | 𝑧) else.

(3.21)

For the match and insert state, the forward variables encode the probability of
reaching a preceding delete state corresponding to the newly introduced 𝛼0 (𝑑𝑙)
variables, the probability to transition from the delete state to the match or
insert state, and the probability of generating the first symbol of the sequence
there. Similarly, since delete states do not generate a symbol, the only paths
that generate 𝑂1 and end in a delete state start in a match or insert state where
𝑂1 has been emitted, i.e., correspond to the respective 𝛼1 variables of match and
insert states.
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The forward variables for the remaining sequence elements 𝑂2:𝑇 are similarly
defined. The forward variables for the match states are defined as:

𝛼𝑡 (𝑚𝑖) �

𝛼𝑡−1 (𝑖0) 𝜏 (𝑚1 | 𝑖0) 𝑜 (𝑂𝑡 | 𝑚1) if 𝑖 = 1∑
𝑧∈{𝑖𝑖−1 ,𝑚𝑖−1 ,𝑑𝑖−1} 𝛼𝑡−1 (𝑧) 𝜏 (𝑚𝑖 | 𝑧) 𝑜 (𝑂𝑡 | 𝑚𝑖) else.

(3.22)

The forward variables for the insert states are defined as:

𝛼𝑡 (𝑖𝑖) �

𝛼𝑡−1 (𝑖0) 𝜏 (𝑖0 | 𝑖0) 𝑜 (𝑂𝑡 | 𝑖0) if 𝑖 = 0∑
𝑧∈{𝑖𝑖 ,𝑚𝑖 ,𝑑𝑖} 𝛼𝑡−1 (𝑧) 𝜏 (𝑖𝑖 | 𝑧) 𝑜 (𝑂𝑡 | 𝑖𝑖) else.

(3.23)

And the forward variables for the delete states are defined as:

𝛼𝑡 (𝑑𝑖) �

𝛼𝑡 (𝑖1) 𝜏 (𝑑1 | 𝑖1) if 𝑖 = 1∑
𝑧∈{𝑖𝑖 ,𝑚𝑖−1} 𝛼𝑡 (𝑧) 𝜏 (𝑑𝑖 | 𝑧) if 1 < 𝑖 ≤ 𝑇.

(3.24)

The definition of the backward variables also changes slightly to accommo-
date the silent delete states and the PHMM’s left-right nature. The backwards
variable for the 𝐸𝑛𝑑 state is set statically to one [130]:

𝛽𝑇 (𝐸𝑛𝑑) � 1 (3.25)

For the remaining hidden states 𝑧𝑙 ∈ 𝒵/{𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑}, the initial backward vari-
ables are defined as:

𝛽𝑇 (𝑧𝑙) �

𝜏 (𝐸𝑛𝑑 | 𝑧𝑙) 𝛽𝑇 (𝐸𝑛𝑑) if 𝑙 = 𝐿

𝜏 (𝑑𝑙+1 | 𝑧𝑙) 𝛽𝑇 (𝑑𝑙+1) else.
(3.26)

The formulas can be interpreted as follows: The 𝐸𝑛𝑑 state generates a special
symbol indicating the end of the sequence. Only the 𝐸𝑛𝑑 state can generate this
symbol. Thus, after the last element 𝑂𝑇 in a sequence has been observed, the end
symbol remains. The only way to create the end symbol after all other elements
in the sequence have been generated is for 𝑖𝐿 and 𝑚𝐿 to transition directly to the
𝐸𝑛𝑑 state, and for all other states to traverse to the 𝐸𝑛𝑑 state via the delete states.

For the generation of the sequence’s symbols 𝑂1:𝑇 , the backwards variables for
the hidden states 𝑧𝑙 ∈ 𝒵/{𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑} are defined as:

𝛽𝑡 (𝑧𝑙) �

𝜏 (𝑖𝐿 | 𝑑𝐿) 𝑜 (𝑂𝑡 | 𝑖𝐿) 𝛽𝑡+1 (𝑖𝐿) if 𝑙 = 𝐿∑
𝑧′∈{𝑑𝑙+1 ,𝑖𝑙 ,𝑚𝑙+1} 𝜏 (𝑧′ | 𝑧𝑙) 𝑜 (𝑂𝑙 | 𝑧′) 𝛽𝑡+1 (𝑧′) else.

(3.27)

Here, the states 𝑖𝐿, 𝑚𝐿, and 𝑑𝐿 need special treatment. As long as there are
still symbols left, the PHMM cannot transition to the end state. Thus, the only
predecessor states of 𝑖𝐿, 𝑚𝐿, and 𝑑𝐿 is 𝑖𝐿.
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Figure 3.11 Trained PHMM for www.grammarly.com. The figure indicates self-loops on
the insert through a separate node prefixed with 𝑠. The figure shows the five emissions
for match and insert states with the highest probability. The figure indicates the proba-
bility through a bar. The figure indicates the transition probability between hidden states
through the edge weight, where a higher weight indicates a higher probability.

Once the parameters are estimated, the log-likelihood of the PHMMs can be
computed with the Forward-Algorithm [130], which is also used in the Baum-
Welch Algorithm [130]. The computational complexity of the forward algorithm
for the PHMMs grows cubically with the length of the PHMMs. The memory
complexity is smaller compared to the MC. In total, a PHMMs of length 𝐿 has
(2𝐿 + 1) | 𝒲 | +9𝐿 + 3 parameters.

Fig. 3.11 illustrates the estimated parameters of a PHMM for the website
www.grammarly.com. The PHMM is fitted on sequences generated by the
symbolized from the first 10 packets of MainFlows from www.grammarly.com.
The PHMM in Fig. 3.11 has a length of 𝐿 = 5. Fig. 3.11 illustrates the transi-
tion probabilities through the line thickness. The thicker the line, the higher
the corresponding transition probability. Fig. 3.11 illustrates the emission model
by listing for each insert and match state five symbols with the highest emis-
sion probabilities. The symbol names follow the format Sec. 3.3.3 introduces.
The Symbolizer bins each packet’s length to 30 bins using Logarithmic binning.
Like Fig. 3.9, the first five packets correspond to the TLS handshake. The arcs
in Fig. 3.11 show a straight path through the hidden states, alternating between
match and insert states. Alternating between match and insert states allows
the PHMM to produce more symbols compared to, e.g., traversing along thematch
states. After the PHMM emitted the server_hello_donemessage in state 𝑖2, the
PHMM produces a packet with client_key_exchange, change_cipher_spec,
and hello_request records send by the client in state𝑚3. The PHMM then tran-
sitions to 𝑖3, generating a packet containing application data sent by the client.
From 𝑖3, the PHMM transitions to 𝑚4. The emission model of 𝑚4 is broader. The
symbol with the highest probability corresponds to a packet sent by the server
containing application data. The other four symbols correspond to application
data with varying sizes sent by the client. Thus, the sixth packet in the Main-

www.grammarly.com
www.grammarly.com
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Flows of www.grammarly.com have roughly equal chances to come from the
server or the client. Then, the PHMM transitions to state 𝑖4, also having a broader
emission model. Again, the emissions correspond to application data sent by the
client or the server. In contrast to previous insert states, 𝑖4 assigns a probabil-
ity of 0.61 to its self-loop. The PHMM in Fig. 3.11 uses 𝑖4 to generate multiple
symbols. With a probability of 0.38, the PHMM in Fig. 3.11 transitions from 𝑖5 to
𝑚5, where the PHMM emits a symbol corresponding either to a packet carrying
application data from the server to the client, or the client to the server. Then, the
PHMM transitions to 𝑖5 where the PHMM remains with a probability of 0.87 and
transitions with a probability of 0.13 to state 𝐸𝑛𝑑. The state 𝑖6 generates packets
with a length falling into bin 29 containing one or two records with application
data traveling from the server to the client.

3.4.3 k-Nearest Neighbor

kNN is an instance-based learning method and is used in several previous WFP
attacks [97, 98, 101]. This chapter thus uses the kNN classifier as a baseline for
ProFi.

In instance-based learning, the training data is stored verbatim [79]. During
inference, i.e., for predicting a class label, kNN uses a distance function to retrieve
the 𝑘 nearest neighbors of a test sample. kNN returns the label that occurs most
often among the 𝑘 neighbors[79].

As in [98], kNN uses the Levenshtein Distance [162] as distance measure. The
Levenshtein Distance is a string metric that measures the difference between
sequences: 𝑑𝐿 : 2𝒲 × 2𝒲 → ℕ. Here, the strings correspond to sequences of
symbols extracted by the Symbolizer from the first 𝑛 packets of a flow. A symbol,
i.e., representation of a packet or record, corresponds to a single character in a
string. To classify a new flow, kNN computes the Levenshtein Distance between
the extracted packets and all sequences in the training set.

In the open-world scenario, this approach is not applicable since kNN always
returns a label. However, in the open-world scenario, kNN must reject samples.
To achieve this, kNN labels a flow as background if the number of neighbors
with the most frequent label is below a certain threshold, similar to previous
work [98]. For example, let 𝑘 = 9 and the neighbors for a test instance belong to
seven websites. Further, let the number of neighbors that must agree be 5. Now,
two neighbors belong to one website, and the other six neighbors belong to six
other websites. In this scenario, the majority label has two out of nine votes, less
than the required five agreeing neighbors. kNN thus rejects the majority label
and instead classifies the sample as background traffic. This approach has the
advantage that no additional data is required to represent the background class.

For inference, kNN induces memory and computational costs that increase lin-
early with the training set size. Here, the computational complexity of classifying
one sample is | 𝒳 | ·(𝑙 · 𝑚 + 1), where | 𝒳 | is the number of training samples, 𝑙 is

www.grammarly.com
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the length of the first sequence, and 𝑚 is the length of the second sequence. The
computational complexity of the Levenshtein Distance is 𝑙 ·𝑚. The distance must
be calculated for every training sample. After that, the 𝑘 nearest neighbors must
be retrieved, which requires a scan through all calculated distances. Due to the
nature of the underlying data, methods such as kD-trees [79], or ball trees [79] are
not applicable.

3.4.4 CUMUL

The CUMUL attack [102] uses SVMs as classifiers and features that CUMUL
derives from all packets that belong to a webpage call. CUMUL forms a sequence
of packet sizes 𝑇 = (𝑝1 , . . . , 𝑝𝑁 ), where 𝑝𝑖 > 0 indicates inbound packets and
𝑝𝑖 < 0 outbound packets. Then, CUMUL forms two cumulative representations,
𝐴(𝑇) = (0, 𝑎1 , . . . , 𝑎𝑁 ) and 𝐶(𝑇) = (0, 𝑐1 , . . . , 𝑐𝑁 ) from T, where 𝑎1 =| 𝑝1 |, and
𝑐1 = 𝑝1. Then, 𝑎𝑖 = 𝑎𝑖−1+ | 𝑝𝑖 |, and 𝑐𝑖 = 𝑐𝑖−1+ 𝑝𝑖 . CUMUL derives the input to the
SVM from 𝐴(𝑇) and 𝐶(𝑇) by concatenating the piece-wise linear interpolations
of 𝑛 equidistant points, resulting in a fixed length representation of a webpage
call [102].

In contrast to PHMMs, MC, and kNN, CUMUL is a pure multi-class classifier.
To operate in an open-world scenario, the training set must contain samples for
the background traffic, i.e., CUMUL explicitly needs data from websites not in
the set of websites that should be surveyed. The computational complexity of the
SVM in inference time is linear in the number of support vectors identified during
training [79].

3.4.5 IPFP

IPFP [112] uses the IP addresses that occur while loading a website’s webpages
to construct a fingerprint. Thus, an adversary first browses a targeted website
and notes all domain names contacted during that time. The attacker resolves the
domain names to IP addresses. During the attack, the adversary compares the
IP addresses that occur during a victim’s page load and compares those to the
previously recorded IP addresses. The attacker then labels the page load as the
website with the highest certainty given the observed IP addresses.

To perform the attack, the authors differentiate between primary domains and
IP addresses and secondary domains and IP addresses. Primary domains cor-
respond to the domain in the URL showing in the browser’s address bar while
browsing the website. Primary IPs correspond to all IPs a primary domain re-
solves to. Secondary domains correspond to all other domains that occur while
browsing the website, and the secondary IPs to the IP addresses the secondary
domains resolve to. In this way, the attacker obtains for each website 𝑦 ∈ 𝒴 a
set of primary domains ℱ 𝑦

𝐷
, IPs ℱ 𝑦

𝐼𝑃
and a set of secondary domains 𝒮𝑦

𝐷
, and IPs

𝒮𝑦
𝐼𝑃

[112].
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In an intermediate step, the attacker then computes for each observed domain
𝑑 ∈ ⋃𝑦∈𝒴 𝒮

𝑦

𝐷
the entropy

entro𝐷(𝑑) � − log2 (𝑝(𝑑)) (3.28)

of the probability 𝑝(𝑑) that this domain will be contacted when visiting an arbi-
trary website. Specifically, the probability of observing domain 𝑑 for an arbitrary
website is defined as [112]:

𝑝(𝑑) �

∑
𝑦∈𝒴 𝕀

(
𝑑 ∈ 𝒮𝑦

𝐷

)
| 𝒴 | . (3.29)

Then, the attacker brings the domain’s entropy to the IP level by taking the average
of the entropy of domains the IP resolves to. This accounts for the fact that a single
IP can host multiple domains. Assuming the helper function:

domain :
⋃
𝑦∈𝒴
𝒮𝑦
𝐼𝑃
→ 2

⋃
𝑦∈𝒴 𝒮

𝑦

𝐷 (3.30)

mapping from an IP 𝑎 ∈ ⋃
𝑦∈𝒴 𝒮

𝑦

𝐼𝑃
to the domains that resolve to 𝑎. Then, the

entropy of an IP 𝑎 is defined as [112]:

entro𝐼𝑃(𝑎) �
∑
𝑑∈domain(𝑎) entro(𝑑)
| domain(𝑎) | (3.31)

To classify website accesses, the attacker requires the sequence of IP addresses
𝑂 = [𝑖𝑝1 , 𝑖𝑝2 , . . . , 𝑖𝑝𝑁 ] the client contacts when retrieving a webpage. The attacker
then constructs a set of candidate websites 𝒴′ by matching 𝑖𝑝1 to each website’s
set of primary IP addresses [112]:

𝒴′ �
⋃

𝑦∈𝒴:𝑖𝑝1∈ℱ
𝑦

𝐼𝑃

{𝑦}. (3.32)

If 𝒴′ is empty, the website is not in the monitored set. If 𝒴′ is nonempty, the
attacker retrieves the label 𝑦̂ resulting in the largest sum of entropy values for the
IPs in the sequence 𝑂2:𝑁 [112]:

𝑦̂ = arg max
𝑦∈𝒴′

𝑁∑
𝑖=2

𝕀

(
𝑖𝑝𝑖 ∈ 𝒮𝑦𝐼𝑃

)
entro𝐼𝑃(𝑖𝑝𝑖). (3.33)

Intuitively, the website resulting in the largest sum of average entropies for the
monitored IP address can be interpreted as being the website with the highest
certainty of having generated the observed IP addresses.

IPFP is very sensitive to the extraction of the full page load. For example, if
the first IP address is not retrieved, the classification procedure most likely fails.
Further, the classification approach assumes a form of closed-world scenario.



Chapter 3 Data-driven website classification Algorithm Design

60

IPFP cannot reject a page load as not belonging to any of the monitored websites
if the initial IP is a primary IP of one of the monitored websites. Similarly to a
MLC, IPFP will produce a label in this situation.

3.5 Data Acquisition and Model Training

This section describes the method used to obtain training data and how models
are trained. Thus, this section reflects MaLANe’s Analyze Networked System, Gen-
erate Data, Prepare Training, Investigate Data, and Train Model activities. Sec. 3.5.1
describes the data acquisition. Sec. 3.5.2 describes how the data is prepared for
training and how the models are trained. Sec. 3.5.3 explains each classifier’s
hyperparameters and how the space of hyperparameters is searched. Sec. 3.5.4
presents the selected hyperparamters, and Sec. 3.5.5 summarizes this section.

3.5.1 Data Acquisition

To evaluate the attacks, traces for 96 websites located in three popular CDNs are
gathered. For each CDN, the top 30 websites based on the Alexa Top 1000 [163]7

ranking are selected. For each website, 50 random sub-pages were selected using
a javascript-enabled web-crawler. This process results in a data set consisting of
4 800 webpages. To obtain traffic samples, each webpage is accessed on 70 days
from the 9th April 2021 until the 24th June 2021. Every website is accessed with
the Chromium and the Firefox browser in headless mode. Two browsers were
used since websites are known to behave differently for different browsers [164].
This resulted in 100 samples for each website and day, i.e., 9 600 traces per day.
More than 3 TB of traces were collected.

To collect the traces, docker containers [165] were executed on three physical
machines running Ubuntu 20.04. The docker containers further isolated traffic of
webpage accesses and maintained equal conditions for all pages. A browser is
started from inside the docker container in headless mode. Each webpage is traced
for 7 s, after which the docker container is terminated. Traffic was collected inside
the docker container with the tcpdump utility. During tracing, NIC-offloading
features such as TCP segmentation offloading were disabled.

The gathered data is limited because it does not contain mobile traffic and
webpages requiring a previous login. This type of traffic is not included since its
acquisition requires tools such as Selenium or virtualized environments that could
impact the feature distribution. Websites are known to detect such technologies,
potentially blocking or responding in different ways than normal [166]. Further,
to log in, users normally have to access a publicly accessible landing page first.
Similarly, no traces obtained through passive listening to real traffic were used
since no access to such a monitoring location was available.

7As of May 1st, the Alexa service is no longer available.
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Parameter Values

Binning Method EqualWidth, Logarithmic, None, SingleBin
Num Bins {0, 1} ∪ {10 · 𝑖 | 𝑖 = 1, . . . , 10}
Num Packets {5 · 𝑖 | 𝑖 = 1, . . . , 6}
Sequence Element packet, record
kNN num Neighbors {3, 6, 9}
PHMM length {5 · 𝑖 | 𝑖 = 1, . . . 6}
CUMUL 𝑐 {211 , . . . , 218}
CUMUL 𝛾 {2−3 , . . . , 24}
Table 3.3 Hyperparameters for the preprocessing of data and each classifier.

3.5.2 Data Split and Training Procedure

MC, PHMM, kNN, CUMUL, and IPFP are evaluated in a closed-world and an
open-world scenario. The websites are divided into two sets: Foreground Sites
and Background Sites. The Foreground Sites are the sites that the classifiers should
detect. The Background Sites are the sites that should be ignored. In the closed-
world scenario, the classifiers must differentiate the pages in the Foreground Sites.
In the open-world scenario, the classifiers must detect whether traffic belongs to
a page from the Foreground Sites, and if so, from which one. The sets were created
by randomly assigning websites to one of the two sets, such that each website
type is represented in each set. For example, both sets contain sites with adult
content, news pages, etc.

The classifiers are trained on samples from all 70 days from the Foreground Sites.
For training, webpages of a website are split into three disjoint sets: training,
validation, and test set. The training set contains 60 % of the webpages, the
validation and test sets contain 20 % each. For hyper-parameter optimization, the
models are fit to all traces in the training set, and the performance is evaluated
on all 70 days in the validation set. For CUMUL, a background class is included
in the open-world scenario as suggested in [102]. The background class consists
of traces of one webpage from every website in the Background Sites. For the
final evaluations, parameters were selected, resulting in the best precision on the
validation set. That is, models with fewer false positives are preferred. For the
final results, the classifiers are trained on all traces from the training and validation
set with the selected hyperparameters and evaluated on all 70 days in the test set.

3.5.3 Hyperparameter optimization

Each classifier’s hyperparameters are optimized with a grid search. Tbl. 3.3 lists
the parameter space. The Binning Method, number of bins, number of packets,
and sequence element is optimized for PHMM, MC and kNN. The binning meth-
ods map a packet’s or TLS record’s size to a discrete bin. EqualWidth binning
uses equally spaced bins. The bin sizes of Logarithmic binning increase expo-
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Figure 3.12 Cumulative Distribution Function (CDF) of the discrete sequence lengths and
sequence types of PHMM and MC. Numbers in the figure give the total count of models
that use the corresponding sequence type.

nentially, i.e., the logarithm of the bin sizes corresponds to equally spaced bins.
SingleBin maps all sizes to a single bin, effectively removing the size information
from the symbol. None binning does not apply any binning and takes the size
verbatim.

For kNN, the number of neighbors is varied, and for the PHMM, its length is
varied. For CUMUL, the hyperparameter space of the SVM suggested in [102] is
explored. IPFP has no hyperparameters.

In the case of kNN, the same symbolizer 𝜎 is applied to MainFlow packets
from all websites. That is, the same sequence element from the same number
of packets from all MainFlows of all websites are mapped to a symbol with the
same binning method and number of bins.

MC and PHMM take advantage of the fact that models for websites are inde-
pendent, thus varying the symbolizer 𝜎 for every website, i.e., each model has its
own function 𝜎. A flow 𝑈 is converted to a unique sequence for every model.
With this approach, it is possible to tune the conversion to symbols in such a way
that the PGMs can model them well, and at the same time, differentiate them from
sequences of other websites. The parameters of the model are estimated only on
the samples of the corresponding website.

3.5.4 Selected hyperparameters

The best configuration for kNN uses 9 neighbors and the size and direction of the
TLS records in the first 30 packets of the MainFlow. The classifier has 40 bins
with record sizes of EqualWidth binning. The best configuration for CUMUL is
𝛾 = 211 and 𝑐 = 23.

MCs and PHMMs have diverse configurations, indicating that it is beneficial to
tune the pre-processing for each website independently. Of special interest are the
selected sequence lengths and sequence elements impacting the computational
cost of the attack. Longer sequences require more packets and more processing.
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Relying on TLS record information requires the additional parsing of TLS headers.
Fig. 3.12 shows the CDFs for the best PHMM and MC models. The CDFs show the
distribution over the sequence lengths and sequence elements. The numbers in
Fig. 3.12 indicate how many models used the respective sequence type. Fig. 3.12
shows that 25 PHMMs use records and 25 PHMMs use frames. The PHMMs
using records require up to 10 packets only, i.e., the records contained in the first
10 packets of each MainFlow. PHMMs using frames require 5, 10, 15 and 30
packets. For the MC models, 23 use frames, and 27 records as sequence elements.
The length of sequences varies. For both, MC and PHMM, more than 50 % of
the models require only five packets. Note that the models with TLS records as
sequence elements can get sequences longer than the number of packets, since
one packet can carry more than one TLS record, especially during the handshake.

The fact that many MC and PHMM models rely on the first 5 packets is sur-
prising. The first 5 packets contain mostly the TLS handshake. Depending on
the TLS configuration, the handshake packet and record sizes vary. For exam-
ple, servers and clients can have different extensions and exchange certificates of
varying sizes [128]. Fig. 3.8 illustrates this, showing that even for a single website,
the TLS handshake varies. The differences between the websites are enough for
the PGMs to distinguish websites from each other.

3.5.5 Summary

PGMs can represent the MainFlows of websites. The results show that many
websites can be distinguished with as little as the first 5 to 10 packets. This is
in contrast to previous work on WFP, which relies on all packets sent during the
page load. Future work on PGM-based attacks could improve the emission model
and address potential multi-modal behavior in the data. Currently, the models
rely heavily on the None binning method, particularly models for websites with
dynamic content. The None binning method requires many training samples
to get sufficient data since the packet and record sizes are not compressed, i.e.,
every size that occurs normally must be captured. Here, continuous emission
models might better compress the emissions and reduce the risk of overfitting
and the number of required samples. The mix of discrete and continuous features
makes improving the emission model challenging. Similarly, the data shows
that webpages can express multi-modal behavior. This poses a challenge to
the used PGMs since their ability to capture multi-modal sequences is limited.
Investigating the performance of mixture models, e.g., a mixture of MCs and
PHMMs to model one website, could be an interesting aspect for future work.

The attack can likely be thwarted by randomizing or standardizing packet and
record sizes due to the reliance of the models on packet and record sizes since
SingleBin reduces the average precision to only 20 % on the validation set. Per-
formance decreases because SingleBin removes the packet and record size infor-
mation, leaving only direction and TLS record type as information. Randomizing
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packet and record sizes has a similar effect since randomizing essentially removes
size information from the data. Furthermore, the large number of models that
work well with only five packets indicate that the TLS handshake is important for
classification. Standardizing the TLS handshake, i.e., handshakes use the same
sequence and size of packets independent of the concrete TLS settings, could help
mitigate WFP as well.

3.6 Evaluation

The evaluation focuses on the metrics precision � 𝑇𝑃
𝑇𝑃+𝐹𝑃 and recall � 𝑇𝑃

𝑇𝑃+𝐹𝑁 ,
where 𝑇𝑃 are the true positives, 𝐹𝑃 the false positives, and 𝐹𝑁 the false nega-
tives [79]. High precision means reliability, i.e., retrieved instances usually belong
to the predicted class. High recall means that the classifier retrieves most of a
class’s samples. Usually, there is an interdependence between precision and re-
call, i.e., improving a classifier’s recall comes at the cost of reduced precision, and
vice versa. ProFi’s classifier can trade precision for recall by adjusting the param-
eter 𝛾 appropriately. This section does not discuss the accuracy of the classifiers
since the accuracy has little expressiveness. With almost 100 classes, a classifier
can achieve 99 % accuracy by predicting one class for all samples [79], analogous
to classification problems with imbalanced classes. Here, precision and recall
better reflect a classifier’s performance.

This section shows results for ProFi’s classifier in an open- and closed-world
scenario, with and without defense, and under asymmetric routing. Further, this
section compares ProFi’s classifier against three baselines. This section evaluates
RTlsRS by sampling record sizes from a uniform distribution with a lower limit
of 100 and an upper limit in the set {100𝑖 + 100 Bytes | 𝑖 = 0, . . . , 16}.

With asymmetric routing, packets traveling from server to client can take a
different route than packets from client to server [167]. Thus, ProFi might not
observe both directions. Since asymmetric routing frequently occurs in Wide
Area Networks (WANs) [167], evaluating ProFi under its influence is important.

This section compares ProFi’s performance to that of three previous attack
models: kNN, CUMUL [102], and IPFP [112]. kNN has been used in previous
attacks [98, 101, 103] and operates on the same feature space as ProFi, i.e., on the
sequence of packets and TLS frames. kNN stores the training data verbatim and is
a strong baseline [79]. CUMUL [102] is one of the most cited WFP attacks and uses
an SVM and traffic features from the full page load. IPFP [112] is a recent attack
leveraging the IP addresses that occur during the page-loads to form fingerprints.

kNN, CUMUL, and IPFP are not directly applicable in the attack scenario in
Sec. 3.3. kNN has a large memory overhead and is costly to evaluate even with
appropriate data structures. CUMUL and IPFP require access to all flows of a
page load, making them hard to use with traffic aggregates. Especially IPFP relies
heavily on correctly extracting page loads from traffic aggregates, a mostly open
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Figure 3.13 Precision and recall for the closed-, and open-world scenario, with defense
(-def) scenarios, filtered traffic from server to client (-fs2c), and from client to server (-fc2s).

problem. In contrast to kNN, CUMUL’s SVM is not suited to model variable-
length sequences with nominal elements.

3.6.1 Closed World vs. Open World.

Fig. 3.13 shows violinplots for precision and recall for the open- and closed-world
scenarios with and without defense. Asymmetric routing is indicated with the
endings fc2s and fs2c. For fc2s, the traffic from the client to the server is
unobserved. For fs2c, the traffic from the server to the client is unobserved.
Markers indicate the average, horizontal bars the median, and small dots are
actual samples. Each sample corresponds to the average for one website in the
Foreground Sites across all days. For example, a sample with 95 % recall means
that the model missed 5 % of a webiste’s webpages across all days.

MC and PHMM achieve better precision and recall in the closed-world scenario,
which is expected. In the closed-world scenario, MC achieves an average precision
of 86.5 % and an average recall of 85.4 %, and the PHMM of 75.7 %, and 73.4 %,
respectively. In the open-world scenario, the precision and recall reduce to 68.9 %
and 78.7 % for MC, and 58.6 % and 70.8 % for PHMM. However, the distribution of
precision and recall is skewed, as Fig. 3.13 shows. Both models achieve a median
precision and recall of > 99 % in the closed-world scenario. The median precision
for MC in the closed-world scenario is 99.9 %, and 94.2 % for the PHMM. In the
open-world scenario, the median precision drops for both models close to the
average. This indicates that the PGMs confuse Background Sites with Foreground
Sites. Still, both models have a precision of > 90 % for one-third of the Foreground
Sites in the open-world scenario.

3.6.2 RTlsRS defense.

Fig. 3.14 shows the precision and the overhead as a function of the uniform
distribution’s upper size. Fig. 3.14a shows that the precision is low for all upper
limits, ranging between 8 % and 12 %, with a minimum of 8.71 % for an upper size
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Figure 3.14 Line plot showing precision and overhead as a function of RTlsRS’ upper
sizes.

of 6 100 Bytes. In contrast, Fig. 3.14b shows that the overhead increases linearly
with the upper size. An upper size of 100 Bytes has the smallest overhead with
150 %. The upper size of 6 100 Bytes has an overhead of 425 %. This section
thus shows RTlsRS’ effect on the classification performance for an upper size of
100 Bytes. This reduces the average precision to 9.35 % while keeping overhead
low.

Fig. 3.13 shows that the RTlsRS defense from Sec. 3.3.5 effectively mitigates
ProFi. The RTlsRS defense reduces the precision and recall of both models to
∼20 % in the closed-world scenario. In the open-world scenario, RTlsRS reduces
the precision of both models to less than 10 %. The recall is less affected and
reduces to ∼19 %.

The RTlsRS defense thus has two effects: The models miss many webpages
(low recall), and the credibility of the retrieved webpages is small (low precision).
On average, more than 90 % of the webpages the models classify as belonging
to a specific website belong to another. Still, even in the presence of RTlsRS, a
few websites exist for which ProFi achieves high precision and recall, as Fig. 3.13
shows.

3.6.3 Asymmetric routing.

Fig. 3.13 shows that the effect of asymmetric routing on ProFi’s performance
depends heavily on the direction of unobserved traffic. If traffic from the server
to the client remains unobserved, the average precision and recall of MC and
PHMM deteriorate to less than 6 %.

If traffic from the client to the server remains unobserved, then the average
precision of MC and PHMM reduces by ∼3 %. Similarly, the distribution of the
recall for the PHMM shifts towards lower values, as Fig. 3.13 shows. The median
recall reduces by >13 %, while the average reduces by 0.7 %. For the MC, the
average recall improves from 78.7 % to 81.6 %, while the median stays high at
98.9 %.
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Figure 3.15 Development of precision over multiple days.
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Figure 3.16 Development of the Negative Log Likelihood (NLL) for the MC trained on
one day. The shaded area is the bootstrapped 99 % CI of the mean.

This outcome is reasonable. Few packets travel from client to server, amounting
to TLS messages and Hypter Text Transfer Protocol (HTTP) commands with small
variance, making websites hard to differentiate. Most packets travel from server
to client and have a high variance, as Fig. 3.8 shows. Missing traffic from the
server to the client deprives the PGMs of much of the information they use for
classification.

3.6.4 Training Data Evaluation

Fig. 3.15a shows the average precision over days when training on all training
data. Fig. 3.15a shows that the precision of all models remains approximately
constant over time. The recall scores show similar behavior.

Fig. 3.15b shows the average precision per day when training on traces of the
first day. Fig. 3.15b shows that the precision decreases over time. The average
precision of MC and PHMM drops to 66.2 % and 42.5 %. This behavior is not
unexpected and has previously been observed [132]. This indicates that attackers
must continuously gather new data to update the deployed models for websites
with dynamic content.
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PHMM MC kNN CUMUL IPFP

C
lo

se
d Precision 75.74 86.51 91.80 63.43 83.68

Recall 73.40 85.35 91.44 62.18 85.17

O
pe

n Precision 58.58 68.90 61.89 30.74 80.60
Recall 70.76 78.71 88.71 60.97 85.19

Table 3.4 Precision, recall and accuracy for PHMM, MC, and the baselines in the open-
and closed scenario.

Fig. 3.16 illustrates this and shows the average NLL8 and its 99 % Confidence
Interval (CI) for the MCs fitted to data from www.medium.com (Fig. 3.16a), and
www.ebay.co.uk (Fig. 3.16b). Fig. 3.16 shows two examples of distributional
drift that can occur in an operative system: A slow and steady drift and a sudden
change.

Fig. 3.16a shows that the average NLL has an increasing trend indicating that
the input diverges from the data the model was fitted with. To continuously
operate the system, the adversary thus has to continuously update its training
data and model to track the drift in the input’s data distribution.

In contrast, Fig. 3.16b shows a sudden jump after 42 days. This indicates a
persistent change in the input data’s distribution, making the model unreliable.
The change is caused by a different length of the server’s TLS finished record. If
such a change occurs, the adversary must collect new samples to adjust the model
to the new input distribution.

The advantage of PGMs is that they readily detect drift in the input’s distri-
bution. Further, PGMs allow investigating what changed [80, 156]. Here, the
PGMs allow the identification of the transitions with low probability, directly
pinpointing the change in the exchanged messages.

3.6.5 Comparison to baselines.

Tbl. 3.4 shows the average precision and recall for MC and PHMM, and the
three baselines kNN, CUMUL, and IPFP in the closed-, and open-world scenario.
Tbl. 3.4 shows that ProFi is competitive to state-of-the-art models. In the closed-
world scenario, kNN is the best model with an average precision of 91.8 % and an
average recall of 91.44 %. kNN achieves this at the expense of increased memory
and computational requirements, whereas ProFi relies on computationally cheap
ML models with few parameters. Fig. 3.1 illustrates this fact and shows the
number of pages per second classifiers classify in an offline setting. Fig. 3.1 shows

8The NLL is uncalibrated and cannot be compared between models.
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that kNN achieves short of 10 classifications per second, whereas MC and PHMM
achieve between 30 000 and 100 000 classifications per second9.

In the open-world scenario, IPFP is the best model with a precision of 80.6 % and
a recall of 85.2 %. In contrast to ProFi, IPFP requires additional pre-processing
steps to extract a user’s page load from the traffic aggregate. The authors do not
provide a solution to this problem. Detecting for one user whether the user loads
more than one page and detecting the onset of the second page load is already
a challenging task [101, 104, 111, 118]. Extracting one page load from traffic
aggregates with high precision is much more complex and will have limited
accuracy in practice.

3.6.6 Summary

The results show that PGMs classify traffic based on the first 5 to 30 packets of the
first initiated TLS session when retrieving a webpage and are competitive to state-
of-the-art attacks. This simplifies WFP attacks since page loads do not have to be
retrieved from a mix of traffic. Furthermore, the evaluation shows that the attack
works with only the traffic from the server to the client, i.e., ProFi can handle
asymmetric routing. In addition, the computational and memory complexity of
the PGMs is low and could allow adversaries to perform WFP in real-time and
at scale. The results show that the PGMs have a higher recall than precision.
In scenarios where the precision is of interest, the attacker can trade recall for
precision by setting the classifier’s parameter 𝛾 to a value smaller one. A value
smaller one requires a log-likelihood at inference time that is smaller than the
largest log-likelihood at training time, i.e., for which the learned model fits better
than the worst model during training. Fortunately, the RTlsRS defense that SSL
libraries can readily implement thwarts the attack at the cost of a 150 % increase
in bandwidth.

Concerning performance improvements, an adversary could easily improve
ProFi by conditioning the probability of a website on additional variables such as
the visited CDN, the time of the day, or other correlated variables. For example,
calculating the probability for a website 𝑦 could then be 𝑝(𝑦 | 𝑂)𝑝(𝑦 | 𝑐)𝑝(𝑦 | 𝑡),
where 𝑐 identifies the CDN the website is located on and 𝑡 the time of the day. For
example, conditioning on the CDN would essentially reduce the hypothesis space
to just the websites in the CDN. Extending the classifier with this information
could be an interesting avenue for future work.

9Data structures to improve the inference time, e.g., KDTrees, are not applicable since they require
real-valued inputs [168]. The input consists of sequences with nominal elements. Further,
experiments using the packet size of the first 30 packets as input features showed that the
KDTree reduced the inference time not as strongly as expected, i.e., only by a factor of three
compared to a linear scan. This is not unexpected [168].
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3.7 Prototype Design & Results

This section presents a microservice-based prototype that implements the ProFi
attack. This section corresponds to MaLANe’s Integrate Model and Deploy Model
activities. The prototype is based on readily available open-source software and
Commodity of the Shelf (COTS) hardware to showcase that ProFi is applicable in
practice and give an impression of the scale WFP attacks might operate at, e.g.,
by operating on a MEC infrastructure. After establishing the ML-related perfor-
mance in the previous section, this section’s evaluation focuses on networking-
related performance indicators.

3.7.1 Design & Architecture

This section first justifies the design decisions and then explains the architecture
in detail.

Design

Network Function Virtualization (NFV) and COTS hardware. The principle of
NFV is a good fit for ProFi. NFV can realize each PGM as one VNF. NFV enables
the scaling of ProFi across multiple servers, horizontal scaling of expensive PGMs,
and the deployment of new, or updating of existing PGMs at runtime. This makes
ProFi amenable to the deployment on top of MEC infrastructure in combination
with containerization and orchestration tools such as K8S. The low computational
cost of the PGMs alleviates the need for special hardware accelerators and lowers
the burden of deploying ProFi in practice.

Middlebox character. Despite being microservice-based, ProFi has a middlebox
character. This enables the attacker to interfere with a victim’s traffic. The pro-
totype could drop the remaining packets of a flagged flow. The alternative, i.e.,
mirroring traffic to an analysis server, does not easily allow this type of inter-
ference since switches start to sample traffic at high rates, which will result in
incorrect classifications.

Architecture

The prototype is implemented on top of theOpenNetVMplatform [169]. OpenNetVM
is a high-performance, zero-copy NF platform supporting containerization that
simplifies the development of VNFs . The prototype implements the classification
procedure from Fig. 3.7 using a microservice-based architecture. Fig. 3.17 shows
the structure of the prototype. The prototype maps the procedure in Fig. 3.7 into
five services: The TLSFilter, TLSRecDet, Symbolizer, PGM, and Coordinator.

VNFs communicate with each other using UDP packets. This makes the deploy-
ment of ProFi to a cluster simple. The microservice-based architecture enables
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Figure 3.17 Testbed setup and prototype structure. Circles correspond to processes, i.e.,
VNFs. Rectangles to data sources and sinks. The prototype is implemented on top
of OpenNetVM. VNFs in OpenNetVM exchange information via User Datagram Protocol
(UDP) packets.

the scaling, addition, and updating of models with new parameters. For example,
additional PGMs or symbolizers can easily be added by starting a new service.
Already running services can be scaled as needed by deploying new instances.

TLSFilter Service. The TLSFilter separates TLS traffic from non-TLS traffic.
For this purpose, the TLSFilter maintains an internal flow table that stores all
currently active TLS connections. To filter traffic, the TLSFilter checks if, for
every packet the TLSFilter receives from NIC1, the packet belongs to a TCP
flow and has a payload. If not, the TLSFilter forwards the packet directly to
NIC2, i.e., back into the network. If yes, the TLSFilter checks if the packet
belongs to a TLS flow in its table. For this, the TLSFilter forms a symmetric
key from the five tuple by sorting source IP, source port, protocol, destination IP,
and destination port. This makes the key invariant to the packet’s direction. If no
entry exists, the TLSFilter checks if the payload contains a client_hello. If the
payload contains a client_hello, the TLSFilter adds a rule to the table, copies
the IP header and TCP payload into a UDP packet, forwards the UDP packet to
the TLSRecDet, and forwards the original packet to NIC2. If the payload does
not contain a client_hello, the TLSRecDet stops processing the packet and
forwards it to NIC2.

If an entry exists, the TLSFilter copies the IP header and TCP payload into a
UDP packet and forwards it to theTLSRecDet. If the maximum number of packets



Chapter 3 Data-driven website classification Algorithm Design

72

necessary to classify a flow on any PGM is reached, the TLSFilter removes the
flow from its table. Subsequent packets are no longer duplicated, reducing the
load on the TLSRecDet.

The TLSFilter detects TLS traffic based on the client_hello, which is one
of the few messages in the TLS protocol in which the TLS header is guaranteed
to start at the beginning of the TCP payload [128]. In the TLS record protocol, the
TLS header can be at arbitrary positions due to fragmentation [128]. If a record
spans multiple TCP segments, there might be no TLS header at all. In addition,
fragmentation might place the TLS header into different packets. The first part
of the header is located at the end of the payload of the first packet, and the
remainder is located at the beginning of the second packet.

TLSRecDet Service. The TLSRecDet extracts TLS records from the payload in
the UDP packets received from the TLSFilter. Since the prototype is evaluated
with real traffic, the TLSRecDet must be able to handle events such as duplicate
packets, re-transmissions, and varying TCP and IP header lengths. For this, the
TLSRecDetmaintains a flow table keyed with the symmetric five-tuple. For each
flow, the TLSRecDet stores the five-tuple, the last time the flow table entry was
matched, the number of times the flow table entry was matched, the next expected
sequence number in each direction, and the outstanding bytes of the current TLS
record for each direction. The TLSRecDet uses the sequence numbers to detect
duplicate or missing packets. The TLSRecDet uses the outstanding bytes to
retrieve the next TLS record header in the TCP payload in case the record spans
multiple segments. After extracting the TLS records, the TLSRecDet overwrites
the UDP packet’s payload with the length of the TCP payload and information of
the extracted TLS records. The TLSRecDet then forwards the UDP packet to the
Symbolizer service.

The TLSRecDet iterates over the flow table and checks if a flow expired, i.e., no
new packet has been received for a configurable amount of time. The TLSRecDet
sends a UDP packet with a special ending symbol to the Symbolizer services for
each expired flow. Then, the TLSRecDet removes the flow from the flow table.
This ensures that every flow gets classified, even if less than the required number
of packets arrived.

Symbolizer Service. The Symbolizer services map the extracted information
into a symbol for a PGM. One Symbolizer service exists for every PGM. The
Symbolizer overwrites the TLSRecDet packet’s payload and forwards it to a
PGM service. The symbol the Symbolizer service creates depends on the data
preparation required for a PGM.

PGM Service The PGM service calculates an anomaly score for every TLS flow
and forwards the score to the Coordinator. For each flow, the PGM service
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Trace Websites/s TCP Flows/s Packets/s [Mpps]

high-pps 147.71 46 551.04 2.24
high-fps 153.15 47 975.59 1.95
regular 424.17 16 446.72 1.65

Table 3.5 Trace statistics.

maintains the current state of the algorithm that calculates the log-likelihood. For
the MC, the PGM service stores the previous symbol and a running sum of the log-
likelihoods. For a PHMM, the PGM stores the variables for the forward algorithm.
If the PGM received the configured number of symbols or the TLSRecDet’s flow-
ending message, the PGM overwrites the payload of the UDP packet with the
calculated anomaly score, removes the flow-table entry, and forwards the packet
to the Coordinator. If the PGM expects more packets, the service drops the
received UDP packet.

Coordinator Service. The Coordinator accumulates the anomaly scores of all
PGM services for each flow and drops the received UDP packets. The Coordinator
labels the flow with the PGM with the lowest anomaly score and writes the result
to file.

3.7.2 Prototype Results

This section presents the network performance-related metrics. Specifically, this
section investigates the processing cost of each service, the time the system needs
to conclude on a label for a flow, and the number of PGM services that can be
co-located on one CPU core.

Material and Methods

The prototype operates on a server with an Intel(R) Xeon(R) CPU E5-265 with 24
cores, 126 GB RAM, and an Intel(R) X540-AT2 network card with two 10 Gbit/s
ports (Fig. 3.17). The server is connected back-to-back to a second server with
identical hardware running MoonGen [170]. MoonGen replays Packet CApture
Files (PCAPs) constructed from the traces collected according to Sec. 3.5.1, i.e., not
with passively collected traces. MoonGen replays the PCAPs as fast as possible,
i.e., at the full 10 Gbit/s. The prototype can use 17 out of the 24 cores for PGM and
Symbolizer services. OpenNetVM blocks four cores and three cores are allocated
to the TLSFilter, TLSRecDet, and Coordinator.

Two challenging workloads and one regular workload are created to benchmark
the prototype. Tbl. 3.5 lists the workload characteristics. The regular workload
consists of a random sample of webpage calls. The adversarial workloads high-
pps and high-fps challenge the prototype with a higher packet and flow rate than
the regular workload. This challenges the TLSFilter, TLSRecDet, and PGM
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services, respectively. Each trace has a volume of around 13 GB, resulting in a 10 s
measurement on 10 G.

Number of classifiable websites

Fig. 3.18 shows the number of PGM services that can be co-located on one CPU
core. A small and large MC and PHMM model is evaluated. The big PHMM
model has 639 parameters. The small PHMM has 114 parameters. The MC models
have 11 078 and 5 parameters respectively. The big model require 30 packets,
the small models 5 packets for classification. For each PGM and workload, the
number of PGMs is varied in {1, . . . 10}. The highest number of co-located PGMs
that could handle the traffic is reported.

Fig. 3.18 shows that between 1 and 8 PHMMs can be co-located on one CPU
core. The values are similar across workloads. Fig. 3.18 shows that between 6
and 8 MCs can be co-located on one CPU core. A CPU core can fit more MCs
than PHMMs, which is expected since the PHMM requires more computational
resources to compute the log-likelihood of a sequence. Depending on the models’
sizes, the prototype could run between 20 and 100 PGM services.

Impact on user traffic

Dataplane traffic traverses only the TLSFilter service. Fig. 3.19 illustrates the
average processing times of the TLSFilter as violinplot. Each violin is computed
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Figure 3.20 Time-to-label for small/large PGMs on the average workload.

from 20 runs. Fig. 3.19 shows that the TLSFilter is cheap and takes on average
between 0.2 µs and 0.33 µs for each packet. Fig. 3.19 shows that the number of
packets needed for classification affects the processing time of the TLSFilter
function. This is expected since more packets result in a larger state of the
TLSFilter function, which increases the processing time.

Time-to-label (T2L)

The Time to Label (T2L) is the duration between the last required packet entering
the prototype and when the label is available [23]. For example, if 30 packets are
required to classify a flow, then the T2L is the difference between the arrival time
of the 30th packet and the time the Coordinator labels the flow. The arrival time
of the first packet is not used because this would introduce noise. The T2L would
depend not only on the prototype’s latency but also on the inter-arrival time of
packets in the trace.

The T2L for the small and big PGM variants is evaluated. The T2L with one
PGM each is measured. Fig. 3.20 shows violin plots of the T2L. Fig. 3.20 shows
a large variance in the T2L, ranging from 0.001 ms up to 1 000 ms. The median
T2L for small models are at ∼0.01 ms for PHMM and MC. The median values for
the big PGMs vary. The big MC has a median T2L of ∼100 ms, and the PHMM
of ∼0.06 ms. However, the distribution of T2Ls for the PHMM is heavy-tailed,
resulting in an average of ∼200 ms.

3.7.3 Summary

This section presents a prototype architecture that classifies traffic with PGMs
and presents measurements obtained with real traffic traces. The prototype can
hold 10 Gbits, corresponding to up to 424 website calls per second. Statistical
traffic classification with PGMs is thus feasible in the network at line rate. The
evaluations show that the prototype can monitor up to 100 websites. The results
of this section have an impact beyond the WFP use-case since the ProFi could also
label traffic for legitimate reasons.
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At the same time, ProFi opens up new research opportunities in traffic clas-
sification. This chapter presents the first design of a microservice-based system
able to perform WFP at the network edge. The investigation of how such sys-
tems, e.g., for statistical traffic classification, might be operated on top of a MEC
infrastructure with computing facilities at different distances to the user could
be an interesting avenue of future work. Further, the evaluation shows that the
prototype’s T2L has a high variance, potentially caused by the effect described in
Chapter 5. Future work could focus on reducing the variance.

3.8 Ethical Considerations

Careful steps were taken to ensure that all captured data is in compliance with
ethical standards. First, no personal data was collected during crawls of public
and popular websites. Second, the crawling rate is limited to ensure that the
websites are not impacted. The number of crawls is limited to 100 per day for
websites within the Alexa Top 1 000 Ranking to minimize the impact of the study.

WFP demonstrates the ability of an adversary to launch WFP attacks at scale.
This raises an ethical question, as censors can use published attacks to violate user
privacy. To mitigate this effect, this chapter presents a defense that can readily
be implemented alongside the attack. In addition, the preemptive exposure of
potential vulnerabilities is necessary to develop effective and efficient counter-
measures. The results in this chapter show the practicability and severity of WFP,
sending an impulse to discuss the implementation of defense mechanisms not
only in the Tor network, but also in common SSL libraries, and the TLS standard.

3.9 Conclusion

The encrypt-everything movement resulted in a substantial deployment of TLS,
hiding accessed services and websites from legitimate and illegitimate observers.
This chapter presents ProFi, a WFP attack on the flow level that de-anonymizes
encrypted network traffic of websites that Internet users visit. To scale to large
traffic aggregates, ProFi uses computationally cheap ML models and requires
only the direction, packet size, and TLS record types of, at most, the first 30
packets of a flow. ProFi achieves a precision and recall of 86.51 % and 85.53 %
in a closed-world, and 68.90 % and 78.71 % in an open-world scenario with 96
websites and 4 800 webpages. To show that ProFi could be deployed by SPs
or other entities at scale, this chapter’s results show that ProFi can operate as
a middlebox in an online scenario and evaluate a prototype implementation in
a testbed with real traffic traces. This chapter’s results show that ProFi has the
potential to process up to 424 websites/s at 10 G—a scale that is required to run
the attack on the Internet, e.g., at an edge cloud, yet a scale to which current
WFP attacks are not applicable. Further, the prototype shows that ProFi can
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label traffic within microseconds after receiving the last required packet, which
could allow active interference with users’ traffic. Yet, this chapter’s results show
that the attack can be mitigated by standard features available in TLS 1.3. To
improve Internet privacy, such defense mechanisms should find their way into
TLS libraries to protect user privacy on the Internet. Further, the analysis shows
that standardizing the TLS handshake could help to improve privacy since ProFi
frequently relied on characteristics of the handshake for classification.

At the same time, ProFi offers an opportunity to SPs to gain insights into the
application and service distribution in their networks. This would empower SPs
to make decisions about their network infrastructure to ensure the best possible
service for their clients.

Future work on PGM-based WFP attacks could investigate the inclusion of
auxiliary data into calculating the probability of a website to improve the classi-
fication performance. Further, the operation of the proposed microservice-based
implementation on top of MEC infrastructure could be an interesting avenue for
future work in statistical traffic classification.
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Chapter 4

Data-driven Traffic Engineering Algorithm
Design

Data center workloads are diverse and range from client-server, ML, and web traf-
fic to high-performance computing applications [77, 171, 172]. Each workload has
different requirements for Traffic Engineering (TE). For example, optimizing the
completion time of individual flows is desirable for client-server applications [173]
but decreases performance in ML workloads [174]. Each workload needs a TE pol-
icy tailored to its specific requirements to achieve the best performance. Indeed,
new applications and network architectures regularly trigger the development of
new TE policies [174–176]. To handle the generally bursty and unpredictable data
center traffic [77, 171, 177, 178], recent proposals converged on distributed TE
mechanisms that make forwarding decisions for individual flowlets [179] locally
on network nodes based on the global network state [175, 180–182]. Optimizing
TE to a datacenter’s workload can thereby help to improve resource utilization
and service quality, resulting in a competitive advantage [173]. For example, tun-
ing the TE mechanisms in datacenters constituting a MEC infrastructure to the
services and applications running there could improve the service quality and/or
resource utilization, resulting in a competitive advantage for SPs. However, the
distribution of applications in cloud locations might vary and change over time,
making frequent readjustments of TE policies and TE mechanisms necessary.

Deriving a deployable distributed TE mechanism for a TE policy is challenging.
A distributed TE mechanism includes the specification of update messages that
disseminate the global network state in the network and the algorithms that
compute forwarding decisions from the exchanged state [175]. Designing each
component is challenging since the TE mechanism must react within milliseconds
and cope with limited computational resources [175, 180]. The implementation
must be efficient and holistic, making exploiting patterns in the network and the
traffic necessary [175, 180, 182]. For instance, HULA [175] integrates a substantial
part of the calculation for the forwarding decision into the probing of paths,
essentially fusing the exchange of network state with the calculation of forwarding
decisions.
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To automate and simplify the translation of a TE policy to a distributed TE
mechanism, this chapter presents Mistill. Mistill distills the forwarding be-
havior of a TE policy from exemplary forwarding decisions into a NN using
ML. Mistill learns (i) the content of update messages, i.e., a representation of
switch local state suitable for transmission, (ii) which switches’ update messages
a switch needs to make a forwarding decision for a flowlet, and (iii) the computa-
tion of forwarding decisions from update messages. Mistill removes the need to
manually design update messages, information exchange, and the calculation of
forwarding decisions. ML allows Mistill to detect helpful patterns in traffic and
network automatically and enables Mistill to learn a distributed TE mechanism.
Further, Mistill’s NA makes the learned patterns accessible to humans and can
thus aid manual design processes. In contrast to previous work, Mistill is not yet
another TE mechanism aiming to outperform existing ones in scenarios they are
optimized for. Instead, Mistill is a method to automate the design of distributed
TE mechanisms by learning them from data.

The main contributions in this chapter are:

1. A procedure to translate solutions of optimization problems for TE into
learning problems.

2. An efficient way to train NNs representing a TE policy’s behavior, exploiting
the Markov Property present in many popular TE mechanisms.

3. The design of an ML model that learns forwarding behavior and makes
learned patterns accessible to humans.

4. This chapter shows in simulations that Mistill can learn distributed TE
mechanisms for three TE policies that generalize to previously unseen traffic
patterns.

5. This chapter analyzes the learned messages and their exchange.

6. A Proof-of-Concept (PoC) implementation based on the extended Berkeley
Packet Filter (eBPF) - to the best of knowledge, the first implementation of a
distributed NN-based TE mechanism on hardware.

The code to generate data and train and evaluate models is made publicly avail-
able1. This chapter shows that Mistill can learn distributed TE mechanisms that
closely implement the desired policies and generalize to previously unseen traf-
fic patterns. This chapter analyzes the learned messages’ content. This chapter
shows that the NN learns an information exchange resembling an edge cover,
which can be used to optimize the information exchange of other TE mechanisms.
Finally, this chapter demonstrates with the PoC that Mistill reacts at a millisecond
scale to changes in the network and that Mistill can operate in legacy networks.

1Code available at: https://github.com/tum-lkn/mistill

https://github.com/tum-lkn/mistill
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Content and outline of this chapter. The chapter is organized as follows. Sec. 4.1
introduces background information and related work. Sec. 4.2 describes the ap-
plication scenarios and the requirements of TE towards ML models. Sec. 4.3
formalizes the notion of a TE policies and introduces four common policies for
which Mistill learns TE mechanisms. Further, Sec. 4.3 designs a learning system
that translates solutions of TE policies to learning objectives, exploiting special
properties in solutions of TE policies. Then, Sec. 4.3 describes the NA, its design
choices, and specifies inputs and outputs. Sec. 4.4 presents and evaluates ML-
friendly node addressing schemes. Sec. 4.5 evaluates the learned TE mechanisms
in simulations focusing on ML-related performance indicators and visualizes the
learned information exchange. Sec. 4.6 presents and evaluates the PoC implemen-
tation focusing on systems engineering-related performance indicators. Sec. 4.7
discusses the limitations of Mistill in its present form, and Sec. 4.8 concludes
the chapter. The sections Sec. 4.1.4, Sec. 4.2, Sec. 4.3.4-4.3.7, and Sec. 4.4-4.6.7 are
based on previously published articles [30, 52].

4.1 Background and related work

This section introduces background information on TE in Sec. 4.1.1, and DCN
topologies in Sec. 4.1.2. Then, Sec. 4.1.3 introduces background on a special NN
architecture called Attention, and 4.1.4 introduces related work. This section
reflects in part MaLANe’s Analyze Networked System activity.

4.1.1 Traffic Engineering

SoA in TE for DCNs assign flowlets [179] to one of many paths from the flowlet’s
source to its destination [175, 180–182]. A flowlet is defined as a sequence of pack-
ets where each packet has an inter-arrival time smaller than a defined threshold. A
normal flow identified by the five tuple can thus consist of multiple flowlets. Mak-
ing forwarding decisions at the granularity of flowlets allows the re-assignment
of a flow to another path while maintaining the packet sequence at the receiver,
which is important for transport protocols such as TCP. For example, routing
based on flowlets allows the re-assignment of a long-lived flow that sends bursts
of data occasionally, e.g., in case of a persistent database connection, to a less
utilized path for each new burst, improving the flow’s performance indicators.
Similarly, in case of congestion, packet loss might occur, triggering the creation
of a new flowlet and the re-assignment of the flow from the congested path to
another path [179].

A flowlet’s path is chosen based on the current state of the complete network
from a TE policy that optimizes a certain objective. Specifically, the TE policy
specifies the neighbor to which a network node should forward a flowlet. Ob-
jectives of TE policies relate to use-case-dependent performance indicators. For
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Figure 4.1 Fat Tree topology - A scalable three-tier Clos network. The topology is a multi-
rooted tree with high path redundancy between any pair of hosts.

example, performance indicators used in the past are path length [182], path
utilization [180], and latency [173].

A TE policy is realized in the network through a TE mechanism. The TE
mechanism implements the necessary exchange of information and the processing
of this information on the nodes such that the nodes can forward traffic according
to the TE policy.

Since the design of a TE mechanism is challenging, new TE policies are often
developed, assuming a centralized system as a first step. For example, using a
packet or flow level simulation with an Integer Linear Program (ILP) or heuristic
algorithm to compute forwarding decisions directly from the current state of the
network. After the TE policy demonstrated its utility, a TE mechanism must be
designed. Here, Mistill hooks in.

4.1.2 Clos-Topologies

DCNs are a good fit for learning network protocols. Many data center topologies
have regular and repetitive structures, and their addressing schemes can encode
the location of network nodes (see Sec. 4.4). Clos networks are one such common
data center topology. One special instance of Clos networks is the Fat Tree [183];
a topology with a three-tier structure that can interconnect large numbers of
servers. Fig. 4.1 shows a 𝑘 = 4 Fat Tree topology. A Fat Tree topology has
three layers of switches: Top-of-the-Rack (ToR), aggregation, and core switches.
Hosts are connected to ToR switches, which in turn are connected to aggregation
switches. ToR and aggregation switches are organized in pods. The number 𝑘
thereby specifies the number of pods and the number of ToR and aggregation
switches in each pod corresponding to 𝑘

2 [183]. The Fat Tree in Fig. 4.1 has four
pods interconnected by four core switches. A Fat Tree can support 𝑘3

4 server
nodes with 5𝑘2

4 𝑘-port switches. For instance, a Fat Tree constructed from 8-
port switches can support 128 hosts with 80 switches. Clos networks provide a
rich, high-capacity connectivity matrix, i.e., 𝑘2

4 paths exist between any pair of
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Figure 4.2 Illustration of the attention mechanism. The inputs queries, keys, and
values are linearly transformed with corresponding weight matrices 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 .
The inputs keys and values have the same number of rows. The transformed queries
and keys are then multiplied to obtain the attention scores 𝛼 representing a convex
combination of the rows in the transformed values, which corresponds to the output
layer of the attention mechanism. The transformed queries and the attention weights
are transposed.

servers in different pods, and 𝑘
2 paths between servers in the same pod that are

connected to different ToRs. The Fat Tree in Fig. 4.1 provides 4 paths between
servers in different pods, and 2 paths between servers in the same pod connected
to different ToRs.

Clos networks have two advantages: Simplified inventory management and
resilience to failures [183, 184]. Inventory management is simplified because the
network can be built from fixed-form switches. This makes it easy to stock spare
devices and replace failed ones since each switch is the same. The resilience of
the topology is increased through high path diversity. If a link or device fails,
enough alternative routes exist.

4.1.3 Multi-Head Attention

Mistill’s NA uses Multi-Head Attention (MHA) [185] to learn which switches in the
network contribute information to make a forwarding decision for a destination
on a specific switch. MHA is heavily used in the context of Natural Language
Processing (NLP) and behind many of the recent successes in the field [185].
MHA consists of multiple attention mechanisms, called attention heads, that are
evaluated in parallel. Each attention head gets the same three inputs: Keys
𝐾 ∈ ℝ𝑎×𝑏 , Queries 𝑄 ∈ ℝ𝑐×𝑑, and Values 𝑉 ∈ ℝ𝑎×𝑒 , where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ ℕ, i.e.,
each input corresponds to a matrix and 𝐾 and 𝑉 have the same number of rows.
Each attention head computes for each query vector, i.e., row in 𝑄, a convex
combination of the rows in 𝑉 conditioned on the query vector and the keys 𝐾.
Fig. 4.2 illustrates this process.

To compute the convex combination, the three inputs are first linearly trans-
formed using three weight matrices𝑊𝑄 ∈ ℝ𝑑×ℎ𝑄𝐾 ,𝑊𝐾 ∈ ℝ𝑏×ℎ𝑄𝐾 , and𝑊𝑉 ∈ ℝ𝑒×ℎ𝑉 .
The transformed keys and queries have the same number of columns ℎ𝑄𝐾 . The
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values can have a different number of columns ℎ𝑉 . Each attention head has its
weight matrices. The attention scores 𝐴 ∈ [0, 1]𝑎×𝑐 are then calculated as:

𝐴 = f
(

1√
𝑎
𝐾𝑊𝐾 · (𝑄𝑊𝑄)𝑇

)
. (4.1)

The function f is applied along the columns normalizing the values such that:

𝐴𝑖 𝑗 ∈ [0, 1] ∀1 ≤ 𝑖 ≤ 𝑎 ∧ ∀1 ≤ 𝑗 ≤ 𝑐 (4.2)
𝑎∑
𝑖=1

𝐴𝑖 𝑗 = 1 ∀1 ≤ 𝑗 ≤ 𝑐. (4.3)

Each entry in 𝐴 lies between zero and one, and the sum along each column results
in one. Choices for f are the softmax, sparsemax and gumbelsoftmax functions.
The final output of the attention head is then computed by:

𝐴𝑇(𝑉𝑊𝑉 ). (4.4)

The attention heads allow the NN to aggregate the rows in 𝑉 differently. Specifi-
cally, the individual heads allow the NN to focus on different parts of the values.
In the context of Mistill, one attention head could focus on aggregating network
state from ToR switches in the destination pod, while another aggregates state of
aggregation switches in the source pod, etc.

4.1.4 Related Work

Mistill is an interdisciplinary project and intersects with various research areas.
This section reviews five aspects: Traditional routing and TE, systems engineering
focusing on executing ML models inside networks, ML for routing and TE, and
using ML-based performance models for flow scheduling. For each aspect, this
section briefly introduces related work, then discusses the most related articles in
detail, highlighting the differences to the present work.

Routing and Traffic Engineering

TE mechanisms for DCNs addressing different goals and challenges exist [186].
Solutions range from using Open Shortest Path First (OSPF) [187, 188] over new
centralized designs [176, 189, 190] to distributed TE mechanisms that operate di-
rectly in the data plane [175, 180–182, 191]. In contrast to previous work, Mistill
is not yet another TE mechanism and does not aim to outperform existing TE
mechanisms in scenarios they are optimized for. Instead, Mistill is a method to
automate the design of distributed protocols by distilling distributed TE mecha-
nisms from data. In this line of research, CONTRA [182] is closest related to Mistill.
Similar to Mistill, CONTRA allows the synthesis of TE mechanisms for different TE
policies. However, CONTRA does not use ML but instead specifies a high-level lan-
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guage in which network operators can express their TE policy. CONTRA compiles
the expressed policy language into P4 programs that implement the correspond-
ing TE mechanism. The main novelty of Mistill is the use of ML to learn a TE
mechanism for a TE policy from exemplary data. The research focuses on eval-
uating the learned TE mechanism’s quality concerning the optimal policy, and
the evaluation of the impact on network-level KPIs such as bandwidth overhead,
reaction speed, and latency overhead.

In-Network ML

This area of related work has two aspects, explicit systems engineering for in-
network inference of ML models [56–58, 192, 193] and learning of ML models that
can replace or augment the Forward Information Base (FIB) of switches [194–196].

Concerning systems engineering, BaNaNa Split [57] is closest related to Mistill.
BaNaNa Split investigates if programmable switches and SmartNICs can execute
binarized CNNs to accelerate latency-sensitive ML workloads. Work in this chap-
ter differs from BaNaNa Split in that the chapter investigates the learning of a TE
mechanism for a TE policy with ML and the design of a potential implementation
of such an ML-based TE mechanism. In contrast, BaNaNa Split does not train a
specific NN but investigates if network equipment can run inference of a given
binarized CNN. Thus, BaNaNa Split could complement the presented implemen-
tation in that the PoC’s NN inference could move from the user space into kernel
space and be offloaded onto a SmartNIC, assuming that the NN can be binarized
without sacrificing too much accuracy. This approach could result in significant
performance improvements.

Concerning FIB replacement, NuevoMatch [195] is closest related to Mistill.
NuevoMatch learns an NN-based index structure for packet classification that
can replace a switch’s FIB. Like Mistill, NuevoMatch investigates how NNs can
help cope with an extensive rule space. Specifically, NuevoMatch could compress
rules that implement a sophisticated TE policy and accelerate the necessary packet
classification. In contrast to Mistill, NuevoMatch takes the rule base as given.
Further, NuevoMatch is implemented as a stand-alone VNF that runs on x86
hardware. In contrast, Mistill learns a distributed TE mechanism and proposes
an implementation that can operate with legacy hardware.

ML and routing

Combinations of ML and networking have been explored from different angles
in the past [197]. For routing, most related work considers (Deep) Reinforcement
Learning ((D)RL) [198–211], while only a few works explicitly consider supervised
learning [212–214]. Closest to Mistill is [212, 213], learning a distributed per-node
forwarding policy. Geyer and Carle [212] and Xiao et al. [213] use Graph Neural
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Network (GNN) to learn a distributed routing protocol akin to a distance vector
algorithm.

Mistill differs from previous work for routing in its design towards practical
deployability in the network and the realization in a PoC. Previous work does
not consider the overhead of the NN beyond simple measurements of the NN
inference times. Executing an NN in the data plane for each packet and flow is
beyond current networking hardware. As the evaluations in this chapter show,
the realization on hardware is a crucial aspect; just assembling the input to a NN
can take longer than the actual execution. This chapter reports these effects for
the first time, presents a deployable system runnable in legacy networks, and
evaluates its performance on real hardware.

ML and performance prediction.

A recent line of work uses GNNs to predict various KPIs in networks [215–
222]. Performance prediction is related to the task of Mistill since learning
the forwarding behavior can be interpreted as learning the respective TE metric
across neighbors. For example, the MinMax policy can be interpreted as learning
the link utilization a flowlet would experience for each neighbor. Consequently,
Rusek et al. [216] use their learned performance model to select suitable paths.
However, in contrast to Rusek et al. [216], Mistill directly translates the network
state into a forwarding decision. Performance models are not directly applicable
to making forwarding decisions. Performance models evaluate different path
candidates and are thus better suited to be used with a central controller that
makes infrequent network configuration decisions. In contrast, Mistill targets a
scenario where decisions must be made quickly and frequently in a distributed
manner.

4.2 Application Scenario

This section introduces the operation and states the objective of Mistill high-level
in Sec. 4.2.1, formulates the requirements towards the operation of a learned TE
mechanism in DCNs in Sec. 4.2.2, and justifies the choice of using a NN to learn the
mechanism in Sec. 4.2.3. This section corresponds mostly to MaLANe’s Translate
Objective activity.

4.2.1 The objective of Mistill

Mistill automates the design of a TE mechanism for a TE policy by learning
a TE mechanism from exemplary forwarding decisions of a TE policy. Fig. 4.3
illustrates the process and expected outcome. Fig. 4.3 shows that Mistill uses the
exemplary forwarding decisions from the centralized system to train a NN that
represents a TE mechanism.
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Figure 4.3 Mistill trains a NN with a centralized TE policy’s forwarding decisions and
distributes the NN to hosts and switches for decentralized computation of updates and
routes.

Mistill uses the forwarding decisions to train an ML model, i.e., a NN. Mistill
trains the model offline, i.e., not on the network devices. The NN learns three
aspects: 1) how to encode the local state in update messages, 2) how to exchange
the update messages, and 3) how to map the exchanged state into forwarding
decisions.

After training, Mistill deploys the NN’s parameters to the hosts and the
switches. The switches use the NN to compute update messages from their local
state (green in Fig. 4.3). The hosts use the NN to compute forwarding decisions
from the switches’ update messages and construct a path through the network (or-
ange in Fig. 4.3). All hosts, resp. switches have the same NN parameters and use
the NN in inference mode, i.e., do forward passes only.

The goal of this chapter is to design a NA that can learn a distributed TE
mechanism for a TE policy, evaluate how well the NA learns the policy’s be-
havior, investigate the impact of design choices, and show that the resulting TE
mechanism can meet stringent performance requirements of DCNs.

Non-goals: Mistill does not aim to improve upon existing TE mechanisms in
their specific application scenarios. Instead, this work investigates the automated
generation of TE mechanisms for novel TE policies with ML.

4.2.2 Data center network requirements

Mistill’s goal is learning distributed TE mechanisms for DCNs from exemplary
data. This chapter focuses on Clos topologies due to their popularity and simple
structure [223].

Mistill learns distributed TE mechanisms since traffic in DCNs is bursty and
unpredictable, requiring decision-making within milliseconds [77, 180]. Central-
ized controllers cannot handle events at such time scales. Their control loops run
at the granularity of seconds [176, 189] and need tens of milliseconds to imple-
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ment new routes [176]. Consequently, TE in DCNs moved to schemes that make
local forwarding decisions based on the global network state [175, 180–182].

To make local decisions on the global network state, distributed TE mechanisms
must exchange update messages at millisecond scale [175, 180, 182]. Thus, the
updates must be small to keep the overhead low. To effectively utilize the high
update frequency, forwarding decisions must be made regularly, e.g., for each
new flowlet [179, 180]. This limits the computational demand of the decision
logic, which, therefore, must be computationally efficient.

4.2.3 Why Neural Networks?

Mistill uses a NN to learn a distributed TE mechanism. A NN is a good ML
model choice for three reasons.

1) NNs are general function approximators [224]. This is important because
forwarding decisions can depend non-linearly on the network state. For example,
minimizing the maximum link utilization results in forwarding decisions with
non-linear dependencies. A small change in the utilization can lead to a sudden
change in the forwarding decision. In contrast to other ML models such as
Decision Trees, Gaussian Processes, or SVMs, NNs can be trained end-to-end2.
This allows a holistic design and the learning of task-dependent intermediate
representations, e.g., the content of update messages. 2) Inference with NNs uses
simple arithmetic operations and is fast to perform, as Sec. 4.6 shows. 3) The
execution of NNs is easy to parallelize, and accelerators for NN inference already
exists for network equipment [58, 225] and are part of many CPUs and Field
Programmable Gate Arrays (FPGAs) [226]. In addition, research efforts show that
NNs can be executed in the data plane at line rate already on today’s Application-
specific Integrated Circuit (ASIC) [192], and end-hosts with SmartNICs [57]. An
integration of Mistill with this type of hardware is thus likely to improve the
results in Sec. 4.6.

4.3 Formal model and Neural Architecture Specification

Before presenting the NA to learn distributed TE mechanisms, this section first
introduces a formal model of TE policies in Sec. 4.3.1, forming the basis of Mist-
ill’s learning task and showing Mistill’s connection to classical optimization
problems. Sec. 4.3.2 then describes how a TE policies solution translates to a
learning objective and derives a learning objective optimizing NN parameters
efficiently. Then, this section introduces the NA in Sec. 4.3.3, describes the NN
inputs in Sec. 4.3.4, the computation of Hidden Node State Advertisement (HNSA)s

2End-to-end in this context refers to the ability of the NN to learn the content of update messages,
which update messages are required to make forwarding decisions, and how to make the
forwarding decisions in one architecture. An alternative approach could be to learn or design
each aspect separately. End-to-end learning has the advantage that it can learn task-specific
intermediate representations, e.g., tailor the update message’s content to the specific TE policy.
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in Sec. 4.3.5, the computation from which switches state is required in Sec. 4.3.6,
and finally the computation of a forwarding decision in Sec. 4.3.7. This section
largely corresponds to MaLANe’s Formalize Problem activity.

4.3.1 Formal TE policy model

This section first introduces a graph representation for DCN topologies. Then,
this section links TE policies to constraint optimization and formulates four TE
policies as Constraint Satisfaction Problem (CSP) and Constraint OPTimization
Problem (COPTP). The solution to the optimization problems then forms the basis
for formulating Mistill’s learning task in the next section.

Graph Representation

Formally, a Fat Tree is modeled as a directed and attributed graph 𝐺 = (𝒱 , ℰ ⊂
𝒱 × 𝒱). Links in the topology are modeled as directed edges in 𝐺. Thus,
edges for both directions exist, i.e., (𝑢, 𝑣) ∈ ℰ ↔ (𝑣, 𝑢) ∈ ℰ. The function
hosts : 2𝒱 → 2𝒱 returns all hosts, the function tors : 2𝒱 → 2𝒱 returns all ToR
switches, aggs : 2𝒱 → 2𝒱 all aggregation, and cores : 2𝒱 → 2𝒱 all core switches.
In addition, the functions ngh− and ngh+ return the successors and predecessors
of a node 𝑢 ∈ 𝒱. Specifically the function

ngh− :𝒱 → 2𝒱 ; 𝑢 ↦→
{
𝑣 ∈ 𝒱

�� (𝑢, 𝑣) ∈ ℰ} (4.5)

returns all nodes that are reachable from 𝑢. Similarly, the function

ngh+ :𝒱 → 2𝒱 ; 𝑢 ↦→
{
𝑣 ∈ 𝒱

�� (𝑣, 𝑢) ∈ ℰ} (4.6)

returns all nodes from which 𝑢 is reachable. Each edge 𝑒 ∈ ℰ is associated
with (time-dependent) attributes such as the utilization, delay, etc., abstractly
represented by a cost function:

c : ℰ ×ℝ≥0 → ℝ. (4.7)

Further, let the function:
up : ℰ ×ℝ≥0 → {0, 1} (4.8)

return the availability of an edge 𝑒 ∈ ℰ at time 𝑡, and let 𝐺𝑡 represents the values
of all attributes in 𝐺 at time 𝑡, i.e., the graph’s state at time 𝑡. Further, let the
function:

dmin :𝒱 ×𝒱 → ℕ (4.9)

return the shortest path length between two nodes where each edge is associated
with a cost of 1.
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TE policies and Constraint Optimization

Routing a flowlet 𝑓 = (𝜑+ , 𝜑− , 𝑡) arriving at time 𝑡 with source 𝜑+ ∈ hosts(𝒱)
and destination 𝜑− ∈ hosts(𝒱) through 𝐺 can be formulated as a CSP [227]. The
CSP has for every edge 𝑒 ∈ ℰ a binary variable 𝑥𝑒 ∈ {0, 1}, where𝒳 = {𝑥𝑒 | 𝑒 ∈ ℰ}
represents the set of flow variables, and𝒳𝑒 is equivalent to 𝑥𝑒 ∈ 𝒳. A value 𝑥𝑒 = 1
indicates that edge 𝑒 is part of 𝑓 ’s path from 𝜑+ to 𝜑−. In addition, the CSP has
the following constraints [227]:∑

𝑣∈ngh−(𝜑+)
𝑥(𝜑+ ,𝑣) = 1 (4.10)∑

𝑣∈ngh−(𝑢)
𝑥(𝑢,𝑣) =

∑
𝑣∈ngh+(𝑢)

𝑥(𝑣,𝑢) ∀𝑢 ∈ 𝒱/{𝜑+ , 𝜑−} (4.11)∑
𝑣∈ngh+(𝜑−)

𝑥(𝑣,𝜑−) = 1 (4.12)

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ ℰ . (4.13)

Constraint (4.10) specifies that the flowlet 𝑓 has to leave the source node. Con-
straint (4.12) states that the flowlet 𝑓 has to enter the sink node. Constraint (4.11)
ensures that the flowlet 𝑓 enters and leaves intermediate nodes, i.e., is not black-
holed. Constraint (4.13) states that the flow variables are binary, i.e., can either be
one or zero. Constraint (4.13) reflects that flowlets are unsplittable, i.e., packets
belonging to a flowlet must use the same path through 𝐺.

The CSP in its present form is basic and returns any path from 𝜑+ to 𝜑−

satisfying constraints (4.10)-(4.13) without considering the path’s length, utiliza-
tion, latency, and the availability of edges. A CSP can include edge attributes
through additional constraints or by introducing an optimization objective, turn-
ing the CSP into a COPTP. Both, a CSP and a COPTP, can have multiple solutions
𝓧 = {𝒳1 , . . . ,𝒳𝑠}, where each element in 𝓧 corresponds to a set of flow variables.
When referring to specific solutions, a superscript is used, i.e., 𝑥 𝑖𝑒 ∈ 𝒳 𝑖 refers to
an edge’s flow variable in the 𝑖th solution. Further, every solution𝒳 can be repre-
sented through a path Ω ∈ 2𝒱 , and the set 𝛀 = {Ω1 , . . . ,Ω𝑠} corresponds to the
paths constructed from solutions 𝒳1 , . . . ,𝒳𝑠 ∈ 𝓧. The nodes 𝑢 ∈ Ω are ordered
by their distance dmin(𝑢, 𝜑−) to the destination node.

This section introduces four TE policies: Equal Cost Multi-Pathing (ECMP),
Weighted Cost Multi-Pathing (WCMP), Least Cost Path (LCP), and MinMax.

Equal Cost Multi-Pathing

ECMP assigns flows to one of multiple shortest paths using path length as met-
ric [228]. In practice, ECMP hashes flows based on their five-tuple to one of the
available paths [180, 229]. In this chapter, the ECMP policy obtains the set of paths
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for a flowlet 𝑓 = (𝜑+ , 𝜑− , 𝑡) by enumerating all solutions of a CSP with constraints
(4.10)-(4.13), and the additional constraints:

𝑥𝑒 ≤ up(𝑒 , 𝑡) ∀𝑒 ∈ ℰ (4.14)∑
𝑒∈ℰ

𝑥𝑒 ≤ dmin(𝜑+ , 𝜑−). (4.15)

Constraint (4.14) ensures that available edges are used, and Constraint (4.15)
constraints the number of used edges.

Weighted Cost Multi-Pathing

WCMP uses the same CSP as ECMP. In contrast to ECMP, WCMP weights the available
paths, e.g., by replicating specific ports as targets for the hash function [229].
Thus, flows are no longer equally hashed to available paths. Assuming an edge
(𝑢, 𝑣) lying on any path from 𝜑+ to 𝜑−, i.e., ∃𝒳 ∈ 𝓧 : 𝒳(𝑢,𝑣) = 1. Then, Mistill uses
a splitting ratio for link (𝑢, 𝑣) proportional to the maximum over the sum of the
free down-stream capacity calculated for all paths that pass through 𝑣, defined
as:

cfc :𝒱 ×𝒱 ×𝒱 → ℝ+; (𝑢, 𝑣, 𝜑−) ↦→ max
𝒳∈𝓧
[𝒳(𝑢,𝑣)(∑

(𝑢′,𝑣′)∈ℰ
𝒳(𝑢′,𝑣′)𝕀(dmin(𝑣′, 𝜑−) < dmin(𝑢, 𝜑−))(1 − c((𝑢′, 𝑣′), 𝑡)))]. (4.16)

In Eq. (4.16), c represents the links utilization. Thus, Eq. (4.16) sums the available
capacity along a path given by a solution’s flow variables. The indicator function
in Eq. (4.16) removes the edges upstream of 𝑢. The flow variable 𝒳𝑢,𝑣 in front of
the sum results in zero if the edge (𝑢, 𝑣) is not part of the solution. Intuitively,
Eq. (4.16) distributes flowlets over paths such that the risk of meeting bottleneck
links is reduced3.

Least Cost Path

The LCP policy selects for a flowlet 𝑓 = (𝜑+ , 𝜑− , 𝑡) paths, such that the cost of the
edges in the path is minimized:

min
∑
𝑒∈ℰ

𝑥𝑒 c(𝑒 , 𝑡), (4.17)

subject to Constraints (4.10)-(4.15). Mistill enumerates all solutions to the prob-
lem and selects one at random. Multiple solutions can arise if, e.g., LCP uses

3Note that Eq. (4.16) does not represent a solution to the max-flow-min-cut problem [229]. In a
Fat Tree, the max-flow-min-cut corresponds to the value of the MinMax objective for all but the
ToR switches, since only for ToR switches the minimum cut will contain more than one edge
given Constraint (4.15). Thus, Mistill sums over the available capacity in Eq. (4.16) to increase
the diversity in objectives for the learning task.
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𝜑+ 𝑢 𝑤 𝑣

𝑣′

𝜑−1

dmin(𝑢, 𝜑−) <
dmin(𝑤, 𝜑−) = 0

2

dmin(𝑤, 𝜑−) <
dmin(𝑤, 𝜑−) = 0

5

dmin(𝑣, 𝜑−) <
dmin(𝑤, 𝜑−) = 1

0

dmin(𝜑− , 𝜑−) <
dmin(𝑤, 𝜑−) = 1

2

dmin(𝜑− , 𝜑−) <
dmin(𝑤, 𝜑−) = 1

2

dmin(𝜑− , 𝜑−) <
dmin(𝑤, 𝜑−) = 1

Figure 4.4 The figure shows two potential paths from 𝜑+ to 𝜑− that pass through the
node 𝑤. Values on the edges represent the edge’s cost. The equation next to the edges
corresponds to the evaluation of the indicator function in the MinMax objective for node
𝑤. The optimal path is indicated with orange arcs.

queue lengths and the network is underutilized. Then, queues are unlikely to
build up, and more than one path minimizes the cost. Constraint (4.15) limits the
solutions to the set of shortest paths concerning path length, as usually done in
Clos Topologies [175, 176, 180, 181, 189].
LCP is similar to ECMP and uses a time-dependent edge attribute to determine

the shortest path from 𝜑+ to 𝜑− instead of a fixed weight.

MinMax

The MinMax policy selects for a flowlet 𝑓 = (𝜑+ , 𝜑− , 𝑡) paths, such that for each
node 𝑢 in the path from 𝜑+ to 𝜑− the maximum cost of the edges after 𝑢 is
minimized [175, 180]:

min max
(𝑢,𝑣)∈ℰ

(𝑥𝑢,𝑣𝕀 (dmin(𝑣, 𝜑−) < dmin(𝑤, 𝜑−)) c((𝑢, 𝑣), 𝑡)) ∀𝑤 ∈ 𝒱 , (4.18)

subject to Constraints (4.10)-(4.15), where Constraint (4.15) limits the solutions
to the set of shortest paths wrt. path length. Eq. (4.18) represents multiple
objectives, one for every node 𝑤 ∈ 𝒱. Intuitively, Constraints (4.10)-(4.15) result
in a set of paths from 𝜑+ to 𝜑−. The individual objectives reduce these paths to
those for which every subpath from any intermediate node to 𝜑− also minimizes
the maximum link utilization. Fig. 4.4 illustrates the objective’s effect for a node𝑤.
Fig. 4.4 shows two paths from 𝜑+ to 𝜑− that pass through𝑤. Numbers on the arcs
indicate the edge cost. The expression next to the arcs shows the evaluation of the
indicator function in Eq. (4.18) for node 𝑤. Fig. 4.4 indicates the path optimizing
Eq. (4.18) with orange color. Fig. 4.4 shows that the indicator function returns
zero for all edges before 𝑤, i.e., their cost has no effect in the maximization in
Eq. (4.18). Further, Fig. 4.4 shows that the indicator function returns one for the
subpaths starting at 𝑤, i.e., Eq. (4.18) maximizes over their costs. The maximum
link weight on subpath 𝑠1 = (𝑤, 𝑣, 𝜑−) is five, and two on subpath 𝑠2 = (𝑤, 𝑣′, 𝜑−).
Thus, the minimization in Eq. (4.18) sets the flow variables 𝑥𝑤,𝑣 and 𝑥𝑣,𝜑− to zero,
and 𝑥𝑤,𝑣′ and 𝑥𝑣′,𝜑− to one, i.e., selects subpath 𝑠2.



Chapter 4 Data-driven Traffic Engineering Algorithm Design

92

𝜑+ ℎ2

𝑟11 𝑟12

𝑎11 𝑎12

𝑐1 𝑐3

𝑦𝜑+ ,𝑟11 = 1

𝑦𝑟11 ,𝑎11 = 1

𝑦𝑎11 ,𝑐1 = 1 𝑦𝑎11 ,𝑐2 = 1

Ω1

Ω2

Figure 4.5 Shows the source pod of a flowlet 𝑓 and illustrates a COPTP with two solutions
using colored lines. Next to the edges of a solution, the figure shows the values of the
target variables with a value of one for learning. Target variables that are not shown are
set to zero.

The COPTP for MinMax can result in multiple solutions, which Mistill enu-
merates and selects from at random. Multiple solutions can arise if the link 𝑒

that minimizes the maximum cost is close to 𝜑−. Then all paths that fulfill Con-
straint (4.15) and have smaller edge costs on edges before 𝑒 are optimal solutions.
Consequently, MinMax, as LCP, is a variant of ECMP that selects the paths based on
time-varying costs on the edges.

Summary

A DCN topology is represented as an attributed graph 𝐺. The formulation of TE
policies results in a set of flow variables 𝑥𝑒 representing a path Ω through 𝐺 from
a source to a destination. The next section will use the flow variables to formulate
a learning objective for Mistill.

4.3.2 Turning CSPs and COPTPs into learning problems

This section constructs a supervised learning task from the solution of CSPs and
COPTPs. This section first describes a procedure that translates flow variables
from solutions to a CSP or COPTP into learning targets and how the procedure
handles infeasible problems. Then this section describes the underlying data
model and derives optimization objectives that can be optimized with Stochas-
tic Gradient Descent (SGD). This section then concludes with two algorithms
describing how Mistill trains the NN’s parameters and samples paths given a
trained model.
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𝜑+ 𝑢 𝑣 𝜑−

∅

up(𝜑+ , 𝑢) = 1

up(𝑢, 𝜑+) = 1

up(𝑢, 𝑣) = 0

up(𝑣, 𝑢) = 0 up(𝜑− , 𝑣) = 1

𝑦𝑣,𝜑− = 1
up(𝑣, 𝜑−) = 1

𝑦𝜑+ ,∅ = 1

𝑦𝑢,∅ = 1 𝑦𝑣,∅ = 0

Figure 4.6 Illustrates the handling of infeasible problems. Special target variables are
introduced, signaling that no path exists for a flowlet. Infeasibility is represented through
the special node ∅ with respective target variables for each node in 𝐺.

Constructing targets

Mistill learns how a given node 𝑢 forwards a flowlet 𝑓 = (𝜑+ , 𝜑− , 𝑡) to its neigh-
bors given the cost and availability of edges at time 𝑡. Mistill constructs the train-
ing objective from target variables

{
𝑦𝑢,𝑣 ∈ [0, 1]

�� 𝑣 ∈ ngh−(𝑢)
}
, where 𝑦𝑢,𝑣 > 0 if

any flow variable 𝑥 𝑖𝑢,𝑣 = 1 is set in a solution for a CSP or COPTP. For WCMP, 𝑦𝑢,𝑣
is set to the normalized weight, i.e.:

𝑦𝑢,𝑣 =
cfc(𝑢, 𝑣, 𝜑−)∑

𝑣′∈ngh−(𝑢) cfc(𝑢, 𝑣′, 𝜑−) . (4.19)

Fig. 4.5 illustrates how the target variables are obtained for ECMP, LCP, and
MinMax. Fig. 4.5 shows a subgraph of a 𝑘 = 4 Fat Tree. The subgraph consists
of the pod in which 𝑓 originates and two core switches. Fig. 4.5 illustrates two
solutionsΩ1, andΩ2 using colored edges. Fig. 4.5 shows that the solutions overlap
initially and then get forwarded to different core switches. Further, Fig. 4.5 shows
the target variables set to one. Fig. 4.5 shows that the target variables 𝑦𝜑+ ,𝑟11 and
𝑦𝑟11 ,𝑎11 are one, since the respective flow variables for edges (𝜑+ , 𝑟11) and (𝑟11 , 𝑎11)
are set to one in both solutions. Similarly, the target variables 𝑦𝑎11 ,𝑐1 and 𝑦𝑎11 ,𝑐3 are
both one since the corresponding flow variables 𝑥1

𝑎11 ,𝑐1 and 𝑥2
𝑎11 ,𝑐3 are one in either

Ω1 or Ω2. Thus, the targets for Mistill for, e.g., node 𝑟11 and 𝑎11 are 𝑦𝑟11 ,𝜑− = 0,
𝑦𝑟11 ,ℎ1 = 0, 𝑦𝑟11 ,𝑎11 = 1, and 𝑦𝑟11 ,𝑎12 = 0, and 𝑦𝑎11 ,𝑟11 = 0, 𝑦𝑎11 ,𝑟12 = 0, 𝑦𝑎11 ,𝑐1 = 1, and
𝑦𝑎11 ,𝑐3 = 1.

Handling infeasible problems

To handle infeasible problems, Mistill uses the target variables

𝑦𝑢,∅ = 𝕀
©­«

∑
𝑣∈ngh−(𝑢)

𝑦𝑢,𝑣 = 0ª®¬ , (4.20)
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defined for every node 𝑢 ∈ 𝒱. Fig. 4.6 illustrates how 𝑦𝑢,∅ depends on the values
of the other target variables. Fig. 4.6 shows a line graph in which the edges
(𝑢, 𝑣) and (𝑣, 𝑢) are not available. Thus, no route exists to 𝜑− from 𝜑+ and 𝑢.
Consequently, Fig. 4.6 shows that the target variables 𝑦𝜑+ ,∅ and 𝑦𝑢,∅ are set to one.
In contrast, Fig. 4.6 shows that a solution 𝑣 to 𝜑− exists. Thus 𝑦𝑣,∅ is set to zero
and 𝑦𝑣,𝜑− to one4.

Deriving learning objectives

To model the forwarding behavior for LCP, ECMP, and MinMax, Mistill uses inde-
pendent Bernoulli distributions for each neighbor, i.e.:

𝑦𝑢,𝑣 ∼ Bernoulli(nn𝜙𝑏,𝑣 (𝑢, 𝜑− , 𝐺𝑡)), (4.21)

where nn𝜙𝑏,𝑣 is a function parameterized with parameters 𝜙𝑏,𝑣 modeling the
probability of success, i.e., represents the Bernoulli distribution’s probability of
success. Thus, Mistill can predict the value for each target variable individually.

In the case where the forwarding policy can be represented as a distribution
over neighbors as for WCMP, the forwarding behavior is modeled as Categorical
distribution:

𝑦𝑢,𝑣1 , . . . , 𝑦𝑢,𝑑𝑢 , 𝑦𝑢,∅ ∼ Categorical(nn𝜙𝑐 (𝑢, 𝜑− , 𝐺𝑡)), (4.22)

where 𝑑𝑢 =| ngh−(𝑢) |, and nn𝜙𝑐 is a function parameterized with parameters
𝜙𝑐 modeling the Categorical distribution’s event probabilities. In contrast to
the Bernoulli distribution, a draw from the Categorical distribution results in an
assignment for all target variables of a node 𝑢.

To efficiently learn the parameters 𝜙𝑏,𝑣 and 𝜙𝑐 , Mistill exploits the fact that
paths returned by a TE policy in Fat Tree DCNs can be interpreted as to fulfill
the Markov Condition [80]. Taking on a probabilistic perspective, the probability
of choosing a neighbor of switch 𝑢 for a flowlet 𝑓 = (𝜑+ , 𝜑− , 𝑡) on any node 𝑣
in graph 𝐺 depends only on 𝜑− and the availability and cost of edges at time
𝑡, i.e., 𝐺𝑡 . The independence arises from the property of shortest paths that
any subpath of a shortest path is also a shortest path, which forms the basis of
Dĳkstra’s Algorithm [227]. For MinMax, as formulated in Eq. (4.18), the property
also holds since the next hops depend only on the down-stream link costs5.

Thus, for ECMP, LCP, and MinMax, the joint probability of observing the target
variables 𝑦𝑢,𝑣1 , 𝑦𝑢,𝑣2 , . . . 𝑦𝑢,𝑣𝑑𝑢 , 𝑦𝑢,∅ for nodes 𝑢 ∈ Ω 𝑓 in a path for flowlet 𝑓 , where

4Note that this procedure requires a separate check for every node 𝑢 if no route to 𝜑− exists.
5Minimizing the maximum link cost with the objective min max𝑒∈ℰ 𝑥𝑒 𝑐(𝑒 , 𝑡) would make the

forwarding decision on a node 𝑢 additionally dependent on the maximum link weight on
the path from 𝜑+ to 𝑢. This is because if the maximum link weight is upstream of 𝑢, then
all neighbors on a path fulfilling the length constraint are possible next hops since they, by
definition, have a smaller link weight and are thus part of the solution.
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𝑑𝑢 =| ngh−(𝑢) |, can be modeled as 𝑑𝑢 independent draws from a Bernoulli
distribution, one draw for each neighbor [27]:∏
𝑢∈Ω 𝑓

nn𝜙𝑏 (𝑦𝑢,𝑣1 , . . . , 𝑦𝑢,∅ | 𝜑− , 𝑢, 𝐺𝑡) =
∏
𝑢∈Ω 𝑓

∏
𝑣∈ngh−(𝑢)∪{∅}

(
nn𝜙𝑏,𝑣 (𝑦𝑢,𝑣 | 𝜑− , 𝑢, 𝐺𝑡)𝑦𝑢,𝑣 ·

(1 − nn𝜙𝑏,𝑣 (𝑦𝑢,𝑣 | 𝜑− , 𝑢, 𝐺𝑡))1−𝑦𝑢,𝑣
)
.

(4.23)

For WCMP, the target variables are modeled as one draw from a Categorical distri-
bution [27]:∏
𝑢∈Ω 𝑓

nn𝜙𝑐 (𝑦𝑢,𝑣1 , . . . , 𝑦𝑢,∅ | 𝜑− , 𝑢, 𝐺𝑡) =
∏
𝑢∈Ω 𝑓

∏
𝑣∈ngh−(𝑢)∪{∅}

nn𝜙𝑐 (𝑦𝑢,𝑣 | 𝜑− , 𝑢, 𝐺𝑡)𝑦𝑢,𝑣 .

(4.24)
Mistill optimizes the function’s parameters 𝜙 by maximizing the probability of
the target variables constructed from the solution of flowlet 𝑓 for the nodes in one
of the solution’s paths Ω. Mistill maximizes the probability in the usual way by
taking the gradient wrt. 𝜙 of the negative log-likelihood [27]. The log-likelihood
for the Bernoulli distribution is given by [27]:

ℒ𝐵𝑒𝑟 � −
∑
𝑢∈Ω

∑
𝑣∈ngh−(𝑢)∪{∅}

(
𝑦𝑢,𝑣 log nn𝜙𝑏,𝑣 (𝑦𝑢,𝑣 | 𝜑− , 𝑢, 𝐺𝑡)

+ (1 − 𝑦𝑢,𝑣)(1 − log nn𝜙𝑏,𝑣 (𝑦𝑢,𝑣 | 𝜑− , 𝑢, 𝐺𝑡))
)
,

(4.25)

the log-likelihood for the Categorical distribution is given by [27]:

ℒ𝐶𝑎𝑡 � −
∑
𝑢∈Ω

∑
𝑣∈ngh−(𝑢)∪{∅}

𝑦𝑢,𝑣 log nn𝜙𝑐 (𝑦𝑢,𝑣 | 𝜑− , 𝑢, 𝐺𝑡). (4.26)

To learn a TE policy, a set of exemplary paths is generated with one of the policies.
The loss functionsℒ𝐵𝑒𝑟 andℒ𝐶𝑎𝑡 are used with SGD to optimize the NN’s param-
eters computing the parameters for the Bernoulli and Categorical distributions.

Calculating the target variables per node has two advantages: 1) the NN’s
output layer corresponds to the maximum number of successors, i.e., maximum
out-degree, of nodes in a DCN’s topology, and 2) predicting the next hop improves
data efficiency. Instead of using a node’s neighbors as targets, the values of all
flow variables or the available paths could be used instead. However, the number
of edges and paths are large compared to the maximum degree. In a Fat Tree, each
switch has 𝑘 neighbors, compared to 𝑘5

16 shortest paths, and 3𝑘3

2 directed edges.
Thus, in a 𝑘 = 8 Fat Tree, each switch has 8 neighbors compared to 2 048 paths
and 768 directed edges.

Predicting the next hop further increases the data efficiency of Mistill since
many flowlets could have the destination𝜑− and traverse node 𝑢. Since TE policies
usually fulfill the Markov Property, the next hop would be chosen identically for
all flowlets that arrive at 𝑢 and have the destination 𝜑−. A single solution is



Chapter 4 Data-driven Traffic Engineering Algorithm Design

96

thus representative of all other flowlets as well. With flow variables or paths
as targets, Mistill could not benefit as strongly from this effect since the output
would necessarily differ.

Learning parameters and sampling paths

This section introduces high-level algorithms for the parameter training and sam-
pling of paths. Algorithm 1 describes Mistill’s training procedure, and Algo-
rithm 2 describes how Mistill samples paths from optimized parameters.

Algorithm 1: Mistill’s training procedure.
Input: Graph 𝐺

1 repeat
2 𝜑+ , 𝜑− , 𝑡 ← sampleFlowlet();
3 𝓧 ← solveProblem((𝜑+ , 𝜑− , 𝑡), 𝐺);
4 Ω← getPath(𝓧);
5 𝒴 ← makeTargets(𝓧 , 𝐺);
6 Take gradient step on ∇𝜙𝑏ℒ𝐵𝑒𝑟 or ∇𝜙𝑐ℒ𝐶𝑎𝑡 ;
7 until converged;

Training. To train the parameters 𝜙𝑏 and 𝜙𝑐 , Algorithm 1 samples a flowlet. The
function sampleFlowlet in Line 2 could, e.g., correspond to a packet or flow-level
simulation, or, as in this chapter, sample source and destination pairs and edge
attributes randomly.

Line 3 computes the solutions for a specific TE policy for 𝑓 . Then, Line 4 chooses
one path from the set of solutions, and Line 5 obtains the target variables. Finally,
Line 6 computes the gradient for the appropriate loss function using𝒴 and Ω.

Algorithm 1 repeats these steps until convergence.

Algorithm 2: Mistill’s path computation procedure.
Input: Flowlet 𝑓 = (𝜑+ , 𝜑− , 𝑡), Graph 𝐺, optimized parameters 𝜙.

1 𝑢 ← 𝜑+;
2 Ω← ∅;
3 repeat
4 𝑢 ← sampleNeighbor(𝑢, 𝜑− , 𝐺𝑡 , 𝜙);
5 if 𝑢 = ∅ then
6 Ω← ∅;
7 else
8 Ω ∪ {𝑢};
9 until 𝑢 = 𝜑− ∨ 𝑢 = ∅;

10 return Ω

Sampling. To obtain a path after optimizing parameters 𝜙𝑏 or 𝜙𝑐 , Algorithm 2
iteratively samples a next hop from the learned distribution. Algorithm 2 ini-
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Figure 4.7 The NN architecture consists of four modules: The LocMod, the HNSAMod,
the NSMod and the FwdMod.

tializes the next hop to the flowlet’s source 𝜑+, and the path Ω to the empty set.
Then, Algorithm 2 repeatedly samples the next neighbor. Each time Algorithm 2
samples a new neighbor, the algorithm checks if the neighbor corresponds to ∅,
i.e., there is no solution to the corresponding problem. If 𝑢 = ∅, then the algo-
rithm sets Ω to the empty set and terminates. Else, Algorithm 2 appends 𝑢 to Ω.
Algorithm 2 repeats these steps until the sampled neighbor corresponds to 𝜑−.
The function sampleNeighbor in Line 4 thereby uses the learned parameters to
sample from the resulting Bernoulli or Categorical distribution.

In practice, Algorithm 2 can be optimized, especially for Fat Tree topologies.
For example, 𝑢 can be initialized to the ToR switch 𝜑+ connects to. Further,
Algorithm 2 can stop once 𝑢 corresponds to a Core switch since only one path
exists from each Core to destination 𝜑− in a Fat Tree.

Summary

Mistill combines the flow variables𝒳 𝑖𝑒 ∈ 𝓧 from multiple solutions of an edge into
a target variable 𝑦𝑒 . Depending on the TE policy, the target variables are binary or
continuous and modeled as independent draws from a Bernoulli and Categorical
distribution, respectively. Parameterized functions represent the distribution’s
parameters, and the task of Mistill is to adjust the function’s parameters such
that the probability of the given target variables is maximized. Mistill maximizes
the probability with SGD using the log-likelihood of the target variables. The next
section introduces the parameterization, i.e., the NA computing the distribution’s
parameters.
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4.3.3 Neural Architecture

Mistill uses a NN to compute the parameters for the Bernoulli and Categorical
distributions modeling the target variables. The NN takes as input the flowlet’s
destination 𝜑−, a representation of node 𝑢, and the state of the graph 𝐺𝑡 𝑓 . In
addition to learning the distribution’s parameterization, Mistill’s NA must also
learn update messages that later inform hosts about the switches’ local state.

The proposed NA consists of four modules: the Localization Module (LocMod),
the HNSA6 Module (HNSAMod), the Network State Module (NSMod), and the
Forwarding Module (FwdMod). Fig. 4.7 shows how the modules interact and
represent inputs and outputs with hashes. Mistill uses the same NN for all nodes,
i.e., shares parameters. This section introduces the NA’s inputs and outputs high-
level. Subsequent sections will define them precisely.

Outputs. The NA has three outputs: Ports 𝑦 ∈ [0, 1]𝑑̂+1, HNSA content 𝑧𝐻𝑁𝑆𝐴 ∈
{0, 1}𝑑1 , and State Interest (SI) 𝑧𝑆𝐼 ∈ {0, 1}𝑑2 , where 𝑑1 , 𝑑2 ∈ ℕ. Ports represents
the target variables 𝑦𝑢,𝑣 for the neighbors 𝑣 ∈ ngh−(𝑢) ∪ {∅}, i.e., which outgoing
edges are part of a solution to a CSP or COPTP, and thus through which port
switch 𝑢 should forward flowlet 𝑓 . The HNSAs correspond to the update messages
that inform hosts about the local state of the sending device. The SI signals which
devices need to exchange information and corresponds to max-pooled attention
scores.

Inputs. The NA has four inputs: LinkState 𝑥𝐿𝑆 ∈ ℝ6, AllNodes 𝑥𝑛𝑜𝑑𝑒𝑠 ∈
{0, 1} |𝒱/hosts(𝐺)|×24, Destination 𝑥𝑑𝑠𝑡 ∈ {0, 1}24 and Location 𝑥𝑙𝑜𝑐 ∈ {0, 1}24.
LinkState is the switch local state, e.g., the availability and utilization of inci-
dent links. The NA receives the link state of all switches as input and transforms
each switch’s LinkState into a HNSA. Location is the identifier of a switch,
Destination the identifier of a flowlet’s destination 𝜑−, and AllNodes the iden-
tifiers of all switches. The NA uses Location, Destination, and AllNodes to
learn how to condition forwarding decisions on a specific switch and destination
and which switches’ HNSAs are needed to make a forwarding decision.

Training. A NN is trained end-to-end. Training end-to-end tailors HNSAs and SI
to a forwarding policy. The loss function depends on the TE policy. Policies, for
which nodes can have multiple candidates to which they forward traffic to, are
trained with the loss ℒ𝐵𝑒𝑟 . TE policies that have only one neighbor, or, as WCMP,
result in splitting weights are trained with ℒ𝐶𝑎𝑡 instead.

Changes in the network that lead to changes in the forwarding policy require
a re-training of the model. For example, new networking hardware or changes

6In analogy to Link State Advertisement (LSA) in link-state routing protocols. Hidden refers to
the fact that the content of the messages is the activations of a hidden layer of the NN. Further,
HNSAs differ from LSAs because they are not per link but per node.
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to the physical network topology. As this chapter will show, re-training is short
compared to the deployment process of new hardware and can be integrated into
the roll-out process.

Inference. The trained NN is deployed to switches and hosts. The switches
use the NN to compute HNSAs from their local state. The hosts use the NN to
select necessary HNSAs and calculate forwarding decisions. Hosts can calculate
forwarding decisions by sampling from the resulting Bernoulli and Categorical
distributions or by taking the maximum over returned parameters, i.e., taking
the neighbor for which the NN indicates the highest confidence that it is part of
the solution. The hosts and switches do not exchange the weights of the NN.
The hosts and switches also never execute the full NN. To compute HNSAs, the
switches execute the HNSAMod. To compute a switches’ forwarding decision,
the hosts execute the LocMod, NSMod, and FwdMod, but not the HNSAMod.
The hosts use the HNSAs they received from the switches instead.

4.3.4 Data Format

Location 𝑥𝑙𝑜𝑐 ∈ {0, 1}24, Destination 𝑥𝑑𝑠𝑡 ∈ {0, 1}24, and AllNodes 𝑥𝑛𝑜𝑑𝑒𝑠 ∈
{0, 1} |𝒱/hosts(𝒱)|×24 are binary vectors and correspond to the last three octets of
IP addresses following the addressing scheme for Fat Trees [183]. This chapter
explores different node representations besides IP addresses and presents the
results in Section 4.4.

Each LinkState 𝑥𝐿𝑆 ∈ ℝ6 of an edge (𝑢, 𝑣) ∈ ℰ at time 𝑡 is a real-valued vector
obtained with the function:

ls :𝒱 ×𝒱 ×ℝ+ → ℝ6; (𝑢, 𝑣, 𝑡) ↦→



up((𝑢, 𝑣), 𝑡)
1 − up((𝑢, 𝑣), 𝑡)

up((𝑣, 𝑢), 𝑡)
1 − up((𝑣, 𝑢), 𝑡)

c((𝑢, 𝑣), 𝑡)
c((𝑣, 𝑢), 𝑡)



𝑇

. (4.27)

The first four attributes of a LinkState are a one-hot encoding of the link avail-
ability in each direction. For example, 10 10 means that both directions are up,
and 10 01 means that one direction is up and one is down. The fifth and sixth
attributes are the weight of the link in each direction, representing, e.g., link
utilization.

In this chapter, the definition of ls uses the edge availability, and a numeric
attribute since TE policies are usually constraint or optimized for only one such
attribute [175, 180–182, 230]. To accommodate TE policies with multiple objec-
tives, the corresponding attributes can be included in the definition of ls.
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4.3.5 Learning the HNSA content

The HNSAMod transforms the LinkState of a switch into a binary vector
𝑧𝐻𝑁𝑆𝐴 ∈ {0, 1}𝑑1 , where 𝑑1 ∈ ℕ. The binary vector 𝑧𝐻𝑁𝑆𝐴 is the content of a
HNSA. The vector corresponds to a hidden layer with binary activations. Since
switches send the HNSA over the network, binary activations are better than real-
valued activations. A binary representation allows the NN to have more neurons
for the same number of bits. For example, a binary vector of 128 Bits corresponds
to four single precision floating point numbers. Since NNs store information in
a distributed representation, having more neurons with low precision is better
than having fewer neurons with high precision [224].

The HNSAMod samples the binary activations from 𝑚 independent, one-hot
encoded categorical distributions of arity 𝑛:

𝑧𝐻𝑁𝑆𝐴 ∼ Categorical(𝑛, 𝜃1) | | . . . | | Categorical(𝑛, 𝜃𝑚). (4.28)

The NN calculates the parameters 𝜃𝑖 by concatenating the link states of a switch
𝑢 ∈ 𝒱 to a node state 𝑥𝑁𝑆 ∈ ℝ6·𝑑̂, i.e., the node state is defined as the return value
of a function:

ns :𝒱 ×ℝ+ → ℝ6·𝑑̂; (𝑢, 𝑡) ↦→ ||𝑣∈ngh−(𝑢) ls(𝑢, 𝑣, 𝑡), (4.29)

where 𝑑̂ is the maximum degree of switches in the network. Vectors of switches
with a smaller degree are zero-padded to this length. Then, the HNSAMod
passes the node state through a feed-forward NN with one hidden layer and
ReLU activation. Since TE policies operate on the current network state, i.e., not
on past network states, a feed-forward NN is sufficient to encode the local state.

To keep the NN differentiable, a reparameterization trick is used to sample
from the categorical distributions [231, 232]. During training, the NN learns how
to parameterize the categorical distributions from a switch’s link states to encode
information in the binary hidden layer. The arity 𝑛 and number of distributions
𝑚 are hyperparameters of the NN architecture and optimized during training.

4.3.6 Learning to Communicate

The NSMod learns: 1) how to process HNSAs , and 2) the SI output 𝑧𝑆𝐼 ∈
[0, 1]𝑑2×|𝒱/hosts(𝒱)| with 𝑑2 ∈ ℕ, i.e., which HNSAs are needed to compute for-
warding decisions for a specific switch and destination.

To learn the SI and process HNSAs , the NA uses an attention mechanism
inspired by the scaled dot-product attention [185]7, which can be interpreted as
a learned lookup table that retrieves HNSAs based on a switch 𝑢 ∈ 𝒱/hosts(𝒱)
and a destination 𝜑− ∈ hosts(𝒱)8.

7See Sec. 4.1 for background information on MHA.
8See Sec. 4.1.3 for background information on the attention mechanism.
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For Mistill, the Queries 𝑄 corresponds to the concatenation of Destination
and Location 𝑄 = 𝑥𝑑𝑠𝑡 | | 𝑥𝑙𝑜𝑐 , 𝐾 to AllNodes 𝑥𝑛𝑜𝑑𝑒𝑠 and 𝑉 to the row-stacked
HNSAs 𝑧𝐺

𝑁𝐻𝑆𝐴
:= (𝑧𝑢1

𝐻𝑁𝑆𝐴
; . . . ; 𝑧 |𝒱/hosts(𝒱)|

𝐻𝑁𝑆𝐴
), where 𝑧𝑢𝑖

𝐻𝑁𝑆𝐴
identifies the HNSA of the

ith switch. The NA use MHA, i.e., 𝑑2 parallel attention mechanisms, and concate-
nates their output. The concatenated output is passed through a hidden layer
with ReLU activation and then into the FwdMod.

The SI corresponds to the attention scores of the individual attention heads.
Non-zero entries signal that the corresponding HNSA contributes information for
the forwarding decision. The scores 𝐴 make learned patterns explicit and inter-
pretable. To enforce sparse patterns, the NA calculates attention scores with the
gumbelSoftmax trick [231, 232]. Thus, each attention head selects one HNSA.

4.3.7 Learning to Forward

The interpretation of the NA’s output 𝑦 ∈ [0, 1]𝑑̂+1 depends on the loss function.
In the case of ℒ𝐵𝑒𝑟 , each output corresponds to the probability of success param-
eterizing a Bernoulli distribution. In the case of ℒ𝐶𝑎𝑡 , each output corresponds to
the probability of forwarding a flowlet 𝑓 to any of the neighbors.

The output of the NN depends on the network state encoded in HNSAs , i.e., the
output of the NSMod, the destination, and the switch that makes the forwarding
decision. The NN learns to combine this information to react to changes in the
state of the network and to learn how forwarding decisions differ for switches
and destinations.

Calculating Ports requires the execution of the NSMod, the LocMod, and the
FwdMod. The LocMod and the FwdMod each consist of one feed-forward NN
with ReLU activation.

4.4 Node addressing schemes

To keep the management overhead of Mistill low, it would be beneficial to use
the IP addresses of the nodes in the network as identifiers for hosts and switches
instead of separate identifiers that introduce additional management overhead.
Generally, IP addresses in communication networks can be expected to follow
some form of pattern to keep routing tables small [233]. If IP addresses did not
contain a useful pattern, e.g., are assigned randomly to every network device,
routing tables would have to store forwarding decisions for every IP address. IP
addresses and their patterns today are geared toward the available technology,
e.g., towards longest prefix matching. It is unclear if the way nodes are addressed
today is a good fit for learning distributed TE mechanisms.

Thus, this section investigates whether distributed TE mechanisms can be
learned with IP addresses, whether latent space models, as used in natural lan-
guage processing or graph learning, yield an addressing scheme that results in
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better performance, and whether the addressing scheme plays any role in the
ability to learn forwarding behavior.

4.4.1 Learning binary embeddings of nodes in graphs

Representation learning for nodes in graphs is an area of active research [234].
This section investigates Bernoulli Embeddings [235] as node addresses. Bernoulli
Embeddings map nodes into a binary space that encodes the neighborhood re-
lationship. This section does not consider continuous latent space models such
as node2vec [236] or additional node meta-data. The size of the binary repre-
sentation of continuous embeddings is too large for addresses. Meta-data on
the networking level, e.g., Medium Access Control (MAC) addresses, hardware
information, etc., is either random or not correlated with the network structure.

A binary embedding 𝐸𝑖 of node 𝑖 is a 𝑑-dimensional binary vector 𝐸𝑖 ∈ {0, 1}𝑑.
The binary vector is sampled from 𝑑 independent Bernoulli distributions, parame-
terized by a matrix Θ ∈ ℝ|𝒱|×𝑑. The kth element in the embedding of node 𝑖 is thus
sampled according to: 𝐸𝑘

𝑖
∼ Bernoulli(Θi,k). The embedding can be optimized by

changing the parameterization of the independent Bernoulli distributions such
that an appropriate loss function is minimized.

The method in [235] encodes the neighborhood relation into the embeddings
by casting the problem as a link prediction problem: The probability of an edge
𝑒𝑖 𝑗 from node 𝑖 to node 𝑗 is proportional to the hamming distance 𝑑𝐻 between the
embeddings 𝐸𝑖 and 𝐸 𝑗 of those nodes:

𝑝(𝑒𝑖 𝑗 | 𝐸𝑖 , 𝐸𝑗) =
exp

(
−𝛼𝑑𝐻(𝐸𝑖 , 𝐸𝑗)

)∑
𝑘∈𝒱 exp (−𝛼𝑑𝐻(𝐸𝑖 , 𝐸𝑘))

(4.30)

The parameter 𝛼 is a scaling factor. The hamming distance 𝑑𝐻 between two vectors
is defined as: 𝑑𝐻 : {0, 1}𝑑 × {0, 1}𝑑 → 𝑁 ; 𝑥, 𝑦 → 𝑥𝑇(1 − 𝑦) + (1 − 𝑥)𝑇𝑦 [235].

The embeddings can then be trained by optimizing the log probability, i.e.:

ℒ(𝐺,Θ) = −
∑
(𝑖 , 𝑗)∈ℰ

𝔼
[
log 𝑝(𝑒𝑖 𝑗 | 𝐸𝑖 , 𝐸𝑗)

]
Θ
, (4.31)

given the embeddings of incident nodes, assuming that edges are indepen-
dent [235].

Misra et al. [235] use a continuous approximation to Eq. (4.31) to circumvent
the expectation over a discrete-valued variable. In contrast, the Gumbel-Softmax
trick [231, 232], a reparameterization trick for discrete random variables, is used
in this chapter to optimize the objective in Eq. (4.31). In addition, Misra et al. [235]
use Noise Contrastive Estimation (NCE) to avoid the summation over all nodes in
the graph in the denominator of Eq. (4.30). This section does not use NCE since
optimization is feasible for the size of communication networks. In addition,
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Figure 4.8 Graphs used to form the hierarchical embedding. The core and pods are
represented as a star. Each star corresponds to one pod. Binary embeddings are learned
separately for the star and one pod.

using NCE resulted in aliasing effects between nodes, making learning unique
embeddings more difficult.

Addresses in communication networks must be unique, which translates to the
embeddings of the nodes. The optimization objective in Eq. (4.31) is not designed
for this constraint and might assign the same embedding to different nodes. In
fact, for a fully connected graph, a single embedding for all nodes would be the
best solution. Also, in other networks, nodes exist that are structurally equivalent
and thus get the same embedding. For example, all hosts connected to one ToR
switch in a Fat Tree topology would get the same embedding. Similarly, all core
switches in a Fat Tree connected to the same aggregation switches are structurally
equivalent and would get the same embedding. Eq. (4.32) thus adapts the objective
to avoid duplicate embeddings. Specifically, the following energy function is used
for the model of edge probabilities:

ℒ(𝐺,Θ) = −𝛼
√(
𝑑𝐻(𝐸𝑖 , 𝐸𝑗) − 𝛽

)2
, (4.32)

where 𝛽 is a scalar parameter, the intuition behind Eq. (4.32) is that a probability
of one for an edge is obtained only if the embeddings differ. The parameter 𝛽

controls the scaling of the difference. For example, 𝛽 = 1 pushes the embeddings
of adjacent nodes towards having a hamming distance of one.

4.4.2 Hierarchical Embedding

Fig. 4.1 shows that a Fat Tree architecture has a repetitive structure, i.e., iden-
tical pod structure. To exploit this pattern, this section designs a hierarchical
embedding. Fig. 4.8 illustrates the principle for a 𝑘 = 4 Fat Tree. The Fat Tree is
abstracted into a star graph and a pod graph. The hub of the star represents the
core switches. The star’s satellites represent one pod each. Binary embeddings
are then learned separately for the star and one pod structure. Core switches all
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get the embedding of the star graph’s hub as a network address. Unique addresses
can then be obtained by adding a separate host address.

For hosts, ToRs, and aggregation switches, the final embedding is obtained
by concatenating the embedding for the pod node in the star graph with the
embedding of the respective node’s embedding from the pod graph. The em-
bedding for node T00 in Fig. 4.1 consists of the concatenation of 𝐸𝑃𝑜𝑑1 and 𝐸𝑇1.
The embeddings of pod nodes in the star graph act as a prefix to the nodes in the
corresponding pods.

4.4.3 Hyperparameter Optimization

To obtain learning objectives, the CSP for ECMP is used to generate training data.
The edge’s attributes are static for the data generation, i.e., every edge is always
available. Thus, only the LocMod is used to learn the forwarding behavior,
and different NN architectures were evaluated: MHAs using the destination’s em-
bedding as a query and the neighbors’ embeddings as keys and values, and
feed-forward NNs. The results showed that a simple feed-forward NN with one
hidden layer and concatenation of the destination’s embedding and the current
location’s embedding is enough to learn the forwarding behavior in Fat Tree
topologies reliably. Using Occham’s Razor [27], i.e., preferring simpler models
over complex ones, a feed-forward NN for the LocMod is used going forward.

The search space for the feed-forward NN is:

• batch size: {64, . . . , 256}.

• hidden layer sizes: {8, . . . , 100}3, i.e., up to three layers.

• learning rate: [0.001, 0.0001].

• samples for ASHA: 100.

The evaluation used the ADAM [237] optimizer and ReLU activation. The eval-
uation used the Asynchronous Successive Halving Algorithm (ASHA) [238] im-
plemented in the Ray Tune [239] library for hyperparameter optimization and to
select the best configuration for the evaluation in Sec. 4.4.4.

4.4.4 Results

The suitability of addressing schemes is evaluated by learning static shortest
paths. An addressing scheme is suitable if the forwarding rules can be learned
reliably, i.e., if the trained NN obtains a low loss value. Tbl. 4.1 lists the results
obtained for this learning task, using addresses of up to 24 bits. For the hierarchical
embedding, 12 bits are used for the embeddings of the star and pod graphs,
respectively. IP addresses follow the scheme in [183]. The first octet is removed
since it is constant and thus does not contribute any information.
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Opt Rnd L12 L16 L20 L24 HR IP

0.3707 0.6210 0.5397 0.4835 0.5002 0.6541 0.4185 0.3921
Table 4.1 Training results for learning shortest paths to evaluate embeddings. Optimal
is the average loss of the ground truth. Opt. corresponds to the average loss over the
ground truth, i.e., perfect predictions. Rnd. corresponds to random binary embeddings.
L12-L24 corresponds to learned binary embeddings, HR to the hierarchical embedding
scheme, and IP to IP-address-based embeddings.

The random embedding (Rnd in Tbl. 4.1) results in the highest, i.e., worst, loss
value. The addresses do not contain any form of a pattern, after all. The learned
embeddings (L12-L24 in Tbl. 4.1) result in lower loss values. The dimensionality
of the embedding does not affect performance. No consistent increasing or de-
creasing trend is observable. The hierarchical embedding (HR in Tbl. 4.1) achieves
the second-best loss, surpassed only by the IP address-based embedding results.
Good performance for the IP address-based embeddings is explainable since the
forwarding behavior can be perfectly computed from the IP address alone in the
case of the Fat Tree. The results for LocMod architectures other than feed-forward
NNs show similar behaviors.

In summary, IP addresses are well suited to learning forwarding decisions on
well-structured topologies such as Fat Trees. This has the advantage that learned
distributed TE mechanisms are backward compatible, can be incrementally de-
ployed or run side-by-side with traditional protocols. Therefore, Mistill uses the
last 24 bits of the IP addresses to represent nodes.

The results also show that obtaining ML-friendly IP addresses in general graphs
could be an interesting avenue of future work. This section’s results show that
learning embeddings, at least with the presented scheme, did not produce good
predictive performance. Only introducing a bias in the structure through the hi-
erarchical embedding resulted in a competitive performance to the IP addresses.
However, general graphs might not have such a hierarchical and repetitive struc-
ture. Deriving other schemes to learn addresses that enable the learning of
forwarding decisions might thus be necessary.

4.5 Evaluating learned policies

This section evaluates Mistill’s performance for the TE policies WCMP, LCP, and
MinMax. The policies can be interpreted to protect the DCN from traffic whose
destination is unreachable. If no route to a host exists, i.e., if the corresponding
CSP or COPTP is infeasible, then traffic is dropped. The challenge lies in ac-
counting for link failures in the up-link from hosts to switches, which existing TE
schemes cannot handle. Dropping traffic can be important for applications that
send larger amounts of data with UDP. Existing TE schemes would forward this
traffic to the last hop of the network and thus waste bandwidth [182, 184]. Fur-
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HNSAMod LocMod NSMod FwdMod
FCL #Distr. Arity FCL #Heads𝑊𝑞𝑊𝑘𝑊𝑣 FCL FCLs

MinMax 108 64 2 90 14 48 41 17 109 104, 84
LCP 63 64 2 90 14 48 48 50 125 102, 105
WCMP 48 64 2 90 14 62 62 27 110 76, 71

Table 4.2 Hyper parameters for the best models.

ther, the learned TE mechanisms should work in the presence of arbitrary node
and link failures. This section evaluates Mistill’s performances to ECMP’s and
the actual forwarding decision. This section largely corresponds to MaLANe’s
Train Model activity and touches on the Generate Data, Investigate Data, and Prepare
Training activity.

4.5.1 Data Generation and NN training
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Figure 4.9 Bar plots for TE policies and traffic patterns.

Data for a 𝑘 = 8 Fat Tree having 128 hosts, 80 switches, and 768 directed links
is generated. To make the protocols robust to node and link failures, between
zero and ten edges and zero and five nodes are removed uniformly at random
from the topology. For the remaining edges, weights are sampled according to
five patterns: random, combine, render, fb-hadoop, and fb-web. In random,
the cost of each edge is sampled from a uniform distribution. The other patterns
are created from traffic matrices of data center applications. fb-hadoop is based
on a Hadoop cluster, fb-web is based on production traffic from a Facebook data
center [172]. combine results from a web-search, and render renders the search



Chapter 4 Data-driven Traffic Engineering Algorithm Design

107

results for users [240]. Note that combine, render, fb-hadoop and fb-web
result in utilization patterns that strongly differ from random.

For training, only edge costs sampled according to random are used. To obtain
forwarding decisions, source and destination pairs are sampled, and solutions for
each policy are obtained on the generated graph for the sampled pairs. Target
variables are then constructed from the resulting solutions. The training and
validation sets consist of 200 000 and 50 000 source and destination pairs.

The final results are obtained from a packet-level simulation. For each packet,
the metric of the optimal path according to the respective TE policy is compared
with the metric of the path from the NN and ECMP using the stretch of the path.
The stretch is defined as |𝑐−𝑐𝑂𝑃𝑇 |𝑐𝑂𝑃𝑇

, where 𝑐 is the metric of the evaluated NN, and
𝑐𝑂𝑃𝑇 the optimal metric. The stretch is the difference between the chosen and the
optimal path relative to the optimal path.

4.5.2 Hyperparamter Optimization

Extensive parameter sweeps are performed with ASHA to learn the forwarding
behavior with the network state. For the LocMod, the best-performing architec-
ture for the shortest-path task in Sec. 4.4 is used, i.e., a feed-forward NN with
one hidden layer having 90 neurons. For the other modules, ASHA explores the
following parameter space:

• batch size: {64, . . . , 128},

• final Fully Connected Layers (FCLs) in the FwdMod: {50, . . . , 128}{2,3},

• FCL for encoding links: {32, . . . , 150},

• number of blocks: {1, . . . , 65},

• arity: {2, . . . , 16},

• tempererature of gumbelSoftmax: 0.6,

• number of heads for MHA in NSMod: {9, . . . , 14},

• dimension of FCL for MHAmodule in NSMod: {70, . . . , 129},

• hidden dimension of MHA heads: {20, . . . , 64},

• output dimension of MHA heads: {16, . . . , 4},

• learning rate: [10−4.3 , 10−3.5].

To obtain the final models, the arity of the categorical distributions in the HN-
SAMod is set to 2 and the number of blocks to 64. ASHA then trains 100 models,
resulting in the parameters in Tbl. 4.2. To evaluate the impact of the number
of blocks, the parameters in Tbl. 4.2 are kept fixed, and the number of blocks
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is varied. For all policies, the HNSAMod consists of one fully connected layer
with ReLU activation and a linear transformation that generates the logits for the
gumbelSoftmax function. The LocMod consists of one fully connected layer with
ReLU activation. The NSMod consists of one MHA module and the FwdMod of
two fully connected layers. Training a single model takes ∼5 hours on an NVIDIA
Tesla V100 GPU. Training 100 models in parallel with ASHA on three NVIDIA Tesla
V100 GPUs takes 60 hours.

4.5.3 Routing Performance

After training on edge costs generated with random, the stretch of the trained
NNs for LCP, MinMax, and WCMP is evaluated for each of the five traffic patterns in
100 simulations.

LCP. Fig. 4.9a shows bar plots for the LCP policy and compares Mistill to ECMP.
The Y-Axis shows the average stretch of the objective. Error bars correspond to the
99 % confidence interval of the mean. Fig. 4.9a shows that Mistill is better for all
traffic patterns, with paths whose weight is close to the optimal weight. Further,
Fig. 4.9a shows that the error of Mistill is similar across all traffic patterns. The
NN thus generalizes to distributions of the inputs that it has never seen during
training.

MinMax. Fig. 4.9b shows a similar plot as in Fig. 4.9a for the MinMax policy.
Fig. 4.9b shows that Mistill is always better than ECMP, except for fb-hadoop.
For fb-hadoop, Mistill’s and ECMP’s stretch is almost zero. This is due to the
specific pattern in fb-hadoop, in which the uplinks of hosts are the most loaded
links, and the TE policy has thus almost no impact on the objective. As for LCP,
the NN generalizes to unseen input distributions.

WCMP. The Kullback-Leibler Divergence (KLD) is used to evaluateWCMP. Fig. 4.9c
shows the average KLD for Mistill and ECMP for the traffic patterns. Error bars
correspond to the 99 % confidence interval of the mean. Fig. 4.9c shows that Mist-
ill is better than ECMP for the random traffic pattern. ECMP has slightly smaller
average KLDs for the other patterns. This is because available bandwidth is almost
equally distributed over paths. WCMP essentially becomes ECMP up to a small error.
Note how the average KLDs of Mistill decrease for the other traffic patterns. This
indicates that the NN also generalizes to unseen input distributions.

Summary The experiments show that Mistill can learn the forwarding behavior
of three popular TE policies from exemplary samples. Further, the results show
that the NN generalizes to previously unseen input distributions when trained
with random uniform edge weights.
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Figure 4.10 Training loss for a varying number of blocks in the HNSAMod for the calcu-
lation of HNSAs.
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Figure 4.11 Bit pattern in HNSAmessages for edge availability and edge weights.

4.5.4 HNSA Size

Fig. 4.10a illustrates the impact of the number of categorical distributions on the
MinMax policy by varying them in {8, 16, 32, 64}. Fig. 4.10a shows that more
distributions result in a smaller loss and that the decrease in loss is strong during
the initial stages of training and converges towards the end.

Fig. 4.10b compares the ratio between ECMP and the true solution to the ratio
of Mistill. The solid line corresponds to the mean, and the shaded area to the
mean’s 99 % confidence interval. Fig. 4.10b shows that 8 distributions result in
a NN that performs better than ECMP. The NN with 8 distributions, i.e., 8 bits,
mostly account for link failures and little for edge weights. The performance of
Mistill improves with more distributions and approaches the ground truth, and
the confidence interval shrinks. The improvement between 8 and 16 distributions
is larger than between 16 and 64. With 64 distributions, Mistill selects paths
with similar metrics to the ground truth. The resulting update messages in the
network have thus a payload of 8 Byte, which corresponds to a reduction by a
factor of 24 compared to the original input.
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Figure 4.12 Attention weights. Each row contains the weights for one switch over all
other switches.
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4.5.5 Visualizations

This section visualizes the learned HNSA messages and the attention weights.
Fig. 4.5.5 compares the attention weights of the gumbelSoftmax activation with
the weights of a model trained with the sparsemax activation function [241] for
MinMax.

HNSA content Fig. 4.11 shows HNSAs of Mistill for the MinMax policy. Fig. 4.11a
illustrates how link failures reflect in the HNSAs. Fig. 4.11b illustrates how edge
weights reflect in the HNSAs. The left part of Fig. 4.11a and Fig. 4.11b show the
HNSAs. The right part shows the availability of edges in Fig. 4.11a and the edge
weights in Fig. 4.11b. White corresponds to a value of zero and green to a value
of one.

Fig. 4.11a shows that many of the bits encode the link availability, i.e., 56 out of
64 bits can be associated with link availability. Some bits even directly correspond
to the availability of edges. Bit59 and Bit26 correspond to Edge8, and Bit4 to
Edge7.

Consequently, Fig. 4.11b shows that most bits are constant for different edge
weights. The NN uses eight out of the 64 bits to encode edge weights. The relation
between bits and edge weights is more complex than link availability, and no clear
correspondence is observable.

Attention Scores Fig. 4.12 illustrates the attention scores of all switches in the
network for H16, i.e., the first host in the second pod. To evaluate the effect of the
gumbelSoftmax activation, an additional NN with the sparsemax activation func-
tion [241] is trained. Further, Fig 4.12c shows the attention scores corresponding
to an edge cover of all edges belonging to the shortest paths between a switch
and the destination. Fig. 4.12a shows the attention scores of the gumbelSoftmax
activation and Fig. 4.12b of the sparsemax activation. The attention scores of
individual attention heads are summed up and clipped to a maximum value of
one.

Fig. 4.12a shows that the attention scores of the gumbelSoftmax resemble the
edge cover in Fig. 4.12c. In contrast, the attention scores of the sparsemax cover
all nodes. Fig. 4.12a shows that the NN relies on the state of the ToR switch- and
the aggregation switches in the destination pod. Further, all switches rely on their
state. Some activations in Fig. 4.12a are not intuitive. For example, it is unclear
why core switch C10 relies on the state of a ToR switch in a different pod than
the destination. This could be a training artifact, i.e., a spurious activation, and
potentially avoided through regularization of the attention scores.

Fig. 4.12a and 4.12b show that the sparsemax activation results in a dense
pattern that results in a large signaling overhead of the learned TE mechanism.
The resulting mechanism would exchange one message for each non-zero entry.
The gumbelSoftmax activation has a clear advantage and requires the exchange
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Figure 4.13 The PoC consists of two servers connected back-to-back with 10 Gbit/s. The
right server emulates a Fat Tree topology with Mininet. The left server acts as a host
connected to the first ToR switch in the first pod.

of at most 10 messages, which is in the order of the edge cover, which requires at
most 9 messages.

In summary, most bits in the HNSAs encode the edge availability. The attention
scores resemble an edge cover of edges from the shortest paths to a destination.
The detected pattern is sparse, which the PoC exploits to improve performance.
The behavior for WCMP and LCP is analogous.

4.6 Proof-of-Concept Implementation

This section describes and evaluates an end host-based PoC of Mistill in Mininet,
focusing on systems engineering-related performance indicators. The PoC is
not intended for accurate network-wide performance evaluations, e.g., measuring
flow completion times, packet drop rates, congestion, etc. Measuring these values
in the PoC would have little utility since the results are not transferable to an
actual network and depend on use-case-dependent parameters such as the traffic
pattern. Instead, the primary purpose of the PoC is to quantify the data plane
overhead, the NN inference speed, the impact of the NN implementation on the
inference speed, and the time Mistill needs to react to changes in a switch’s local
state. This section reflects the MaLANe’s Integrate Model and Deploy ML-enabled
System activities.

4.6.1 Overview

The PoC builds on Mininet and uses the extended Berkeley Packet Filter (eBPF),
Multiprotocol Label Switching (MPLS)-based Segment Routing (SR), and IP Mul-
ticasting (IPMC) to implement Mistill. Fig. 4.13 illustrates the PoC architecture.
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The PoC consists of two servers connected back-to-back. The NetworkServer
emulates a Fat Tree topology with Mininet, the ExternalHost is connected as
end host to the first ToR in the first pod of the emulated Fat Tree. The PoC uses
MPLS to implement SR, using path segments with a length of at most two hops9.
ExternalHost serves as an SR-ingress node and uses the eBPF to encapsulate
outgoing packets into an SR tunnel. It uses the NN to determine the tunnels from
the switches’ HNSAs. The PoC connects one Mininet host to each switch (black
squares in Fig. 4.13). Each such host emulates a switch-local control plane that
monitors its switch’s ports, calculates HNSAs, and sends them out as an IPMC
packet. The PoC installs the necessary rules for path segments and IPMC using
OpenFlow statically on the switches.

4.6.2 Design Decisions

This section justifies the major design decisions in the PoC.

Why Segment routing? SR has two advantages. 1) SR minimizes the require-
ments Mistill has towards the network. 2) The route computation, involving
most parts of Mistill’s NN, moves into the end hosts.

The requirements towards the DCN reduce since static rules suffice to forward
traffic. Further, support of SR is ubiquitous and possible with today’s network
devices. Administrators can implement SR with e.g., MPLS, and IPv6 [242]. This
makes Mistill amenable for deployment in legacy networks.

The CPUs in end hosts have accelerators for ML inference. For example, the AVX
set has been available since 2011 [226]. Further, ML acceleration is incorporated
into Network Interface Cards (NICs) [243, 244]. In contrast, switches are not
designed for ML inference [56–58]. Even recently proposed architectures designed
for in-network ML execute only small [58] or binarized NNs [57]. The PoC thus
aims to minimize the ML inference on switches as much as possible.

Lastly, predicting each switch’s forwarding decision on the hosts allows the
learning of TE policies for which the Markov Condition as described in Sec. 4.3.2
does not hold. Hosts can easily track and provide the decision or state history, e.g.,
the encountered maximum link capacity. If switches make forwarding decisions,
this information would have to be transmitted along with the packet.

Why eBPF? The eBPF is a native part of the Linux Kernel [245], making Mistill
easy to maintain, i.e., Mistill does not depend on hard-to-maintain changes to
the Operating System10. Further, eBPF supports NIC offloading [244], enabling
the execution of Mistill directly on the NIC.

9The OpenVSwitch (OVS) supports an MPLS label stack size of at most three. Paths between hosts
in separate pods have a length of five. Thus, the PoC has to encode two hops into one label.

10eBPF is even becoming available under Windows [246].
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Figure 4.14 Probing scheme for all node types.

Why Multicast? The PoC uses IPMC of HNSAs for three reasons: IPMC reduces
overhead compared to broadcasting, IPMC allows the dynamic subscription of
end hosts to a switch’s HNSAs, and IPMC is easy to deploy in Fat Tree topologies.

IPMC uses a tree where the sender is the root, and the receivers are the leaves.
Intermediate nodes in the tree duplicate messages in the downstream direction
only. In the case of the PoC, switches correspond to sources and end hosts to
receivers. Thus, switches duplicate packets at most over half their neighbors, thus
reducing the absolute number of update messages compared to broadcasting.

IPMC allows receivers to join IPMC groups dynamically. Thus, end hosts can
subscribe to those switches’ updates that they need according to the SI output,
allowing the automatic adaption of update message exchange to traffic patterns.

The Fat Tree topology is well suited for IPMC. A Fat Tree topology is a multi-
rooted tree [183]. Together with the Fat Tree IP addressing [183], a static IPMC
scheme requires only a few rules in an OpenFlow switch.

4.6.3 HNSA computation

Switches in the network compute HNSAs with the HNSAMod from their local
state. Each switch monitors its ports and collects the statistics at a rate 𝜆𝐿𝑆. In the
PoC, switches monitor the ports’ utilization and availability.

The PoC emulates the local control plane through a separate host connected to
each switch in the network. Each emulated control plane runs a C++ program
that encodes the local state, computes HNSAs with a copy of the HNSAMod, and
sends the HNSAs into the network.

4.6.4 HNSA dissemination

Fig. 4.14 illustrates exemplary forwarding of IPMC messages in the network.
Fig. 4.14 divides the forwarding into five steps. Solid arrows indicate the sending
of a packet. Dashed arrows indicate alternative paths, and T41 sends an update
message.
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In step one, T41 duplicates the message downstream, i.e., sends a copy of the
message to each host, and one copy to a random upstream node, A40 in Fig. 4.14.
In step two, A40 duplicates the message to all connected ToR switches, except the
ToR switch the message came from. Further, A40 randomly sends the message
to one core switch, C02 in Fig. 4.14. In step three, C02 duplicates the message to
all connected aggregation switches, except the aggregation switch it received the
message from. In addition, the ToR switches that received the message in step
two duplicate the message downstream to their hosts. Thus, after the third step,
all hosts in the pod the message originated in have received the message. In step
four, all aggregation switches that received the message in step three duplicate the
message to the connected ToR switches. In step five, the ToR switches duplicate
the message to the connected hosts.

Messages from core, aggregation, and other ToRs are treated analogous, with
the only exception that aggregation and core switches duplicate their message to
all downstream nodes. The described dissemination scheme is resilient to link
failures and has little overhead.

The update distribution can mitigate link failures because multiple upstream
paths are available. Randomly sampling upstream nodes ensures that update
messages arrive, i.e., only a fraction of the updates is affected.

The overhead wrt. link capacity is:

8𝑠 5
4 𝑘

2𝜆−1
𝐿𝑆

𝑙
, (4.33)

where 𝑙 is the link speed in Bit/s, and 𝑠 the packet size in Bytes. In the PoC with
𝑘 = 8, 𝑙 = 1 GBit/s = 1𝑒9 Bit/s, 𝑠 = 62 Byte11, 𝜆𝐿𝑆 = 1000 Hz, and all-to-all traffic,
the overhead is 3.97 %. The overhead is larger than that of HULA, which has an
overhead of 0.16 % in this setting [175]. HULA benefits from the custom P4 imple-
mentation that converges information exchange with route update calculations,
resulting in reduced information exchange. The design decision for Mistill to
keep the potential space of learnable TE policies unrestricted comes at the price
of higher overhead.

4.6.5 Host Implementation

The host implementation has two programs: one runs in the kernel-, and the
other in the user space. Fig. 4.15 illustrates the programs. The kernel- and user
space communicate via three eBPF maps. The NetworkState map contains the
received HNSAs. The Routes map contains updated routes to destinations. The
ActiveDstsmap contains the currently active destinations, i.e., destinations the
host sends traffic to.

11HNSAs are UDP packets with 8 Bytes payload: 8 Bytes preamble, 14 Bytes ethernet header, 20 Bytes
IP header, 8 Bytes UDP header, 8 Bytes HNSA, and 4 Bytes frame check sequence. Note that UDP
is not mandatory.
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Figure 4.15 Diagram of the host implementation. Yellow corresponds to ingress, red to
egress, and blue to route updates.

The user space program is written in C++ and updates the routes for the active
destinations, i.e., the hosts this host communicates with. For this, the user space
program reads the HNSAs from the NetworkState map, the active destinations
from the ActiveDstsmap, and constructs the inputs for the NN. Then, the user
space program executes the NN and constructs routes from the NN’s outputs,
and writes the new routes to the Routesmap.

The kernel space implementation consists of two eBPF programs written in C.
One program handles traffic in the egress (TX) and the other in the ingress (RX).
Both programs operate in the traffic control (tc) layer. In the ingress, the program
receives a packet from the NIC and checks if the packet is an IPMC packet carrying
a HNSA. If yes, the program extracts the HNSA from the packet’s payload, updates
the NetworkState map, and drops the packet. If no, the program returns the
packet to the kernel.

In the egress, the program receives a packet from the kernel. The program
checks if the packet belongs to an active flowlet, i.e., to a five-tuple the program
has already seen within a configurable amount of time. If the packet belongs to
an active flowlet, the program retrieves the route from the SeenFlowlets map
and updates the time stamp of the last match. If the packet does not belong to
an active flowlet, i.e., the entry in the SeenFlowlets timed out, or the map does
not contain the five-tuple, then the program retrieves a route from the Routes
map and updates the SeenFlowlets map accordingly. As a result, the program
will forward packets of a flowlet over the same route, preserving packet order at
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the receiver. After retrieving a route, the program adds the corresponding MPLS
labels to the packet. Finally, the program returns the packet to the kernel.

The kernel- and the user space programs operate independently from each
other. The programs communicate state and updates through the shared eBPF
maps. This approach keeps the overhead in the data plane low, as Sec. 4.6.7 shows.

4.6.6 NN Implementation

The NN implementation for inference is crucial for the overall performance of
NN-based routing protocols. Existing TE protocols can react within milliseconds
to changes in the network state [175, 180, 182]. The NN inference time thus
determines if NN-based routing protocols can be competitive. To obtain high
performance and assess the impact of the NN implementation on the overall per-
formance, the forward pass of the NN is implemented in C++. Further, following
the guidelines of deploying NNs for performance-critical applications, Torch-
Script and the libtorch library is used to access the saved PyTorch models [247].

The custom C++ implementation enables the memory layout optimization for
better cache utilization and the reduction of computations by exploiting NN-
specific structures, e.g., the sparsity in attention scores in the NSMod. The custom
implementation uses the Advanced Vector Instructions 512 (AVX512) instruction
set on the ExternalHost and no acceleration on the NetworkServer. The NN
is single-threaded on both machines. In contrast, libtorch integrates with opti-
mized libraries for linear algebra that can exploit multi-core systems and hardware
accelerators such as GPUs. Further, PyTorch can optimize the NN through layer
fusion and optimizations in the computational graph [247]. All implementations
take the maximum over the output layer to determine the neighbor to which a
switch should forward a flowlet.

4.6.7 Evaluation

The NN inference time is measured on the external host, as well as the execution
time of the user space program, the impact of the NN implementation on inference
speed, the data plane overhead in ingress and egress, and how fast the PoC reacts
to changes in the network state.

Mininet emulates a 𝑘 = 8 Fat Tree with 80 switches, 128 hosts, and 768 directed
links with 1 Gbps on the NetworkServer. Each switch executes the NSMod on
CPUs12. The ExternalHost runs the eBPF program and is connected to T00. The
NetworkServer has two Intel(R) Xeon(R) E5-2650 v4 CPUs. The ExternalHost
has one Intel(R) Core(TM) i7-7820X CPUs and two NVIDIA Titan XP GPUs, of
which one GPU is used. The NN trained for the MinMax policy is evaluated. The
timings are measured in wall-clock time with the bpf_ktime_get_ns() in the
12The inference speed on the GPU is not evaluated since the NSMod is small and cannot benefit

from batching. Thus, the communication overhead between the main- and GPU memory can
even lead to longer inference times, as the results in this chapter suggest.
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eBPF programs, and the clock_gettime() function with the CLOCK_MONOTONIC
clock in the user space program. Wall-clock time is measured since it simplifies the
comparison of NN inference speed on heterogeneous hardware, and wall-clock
time is what counts in practice.

Data plane overhead. The eBPF programs’ overhead in the data plane on RX
and TX for the custom NN implementation (Cpp-CPU) for the individual execu-
tion branches explained in Sec. 4.6.5 is measured. Fig. 4.16 shows the average
processing time as a bar plot. The behavior and values for the libtorch based
implementations on CPUs (LT-CPU) and GPU (LT-GPU) are comparable. Fig. 4.16
shows that the overheads vary between 0.5 µs and 1.5 µs. The overheads are neg-
ligible compared to overall latencies in the Linux networking stack [248, 249]. In
RX, processing data packets takes 0.45 µs, and processing of HNSA packets 0.85 µs
on average. In TX, the processing of new flowlets takes the longest with 1.37 µs,
followed by the processing of inactive flowlets with 1.26 µs, and of active flowlets
with 1.13 µs on average. This behavior is expected and reflects the different com-
putational efforts for each case.

NN inference time. Fig. 4.17 shows the average inference times for Cpp-CPU,
LT-CPU, and LT-GPU for 1 to 128 destinations. Fig. 4.17 shows that the inference
time increases linearly for Cpp-CPU from 0.21 ms to 2.93 ms and for LT-CPU from
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0.99 ms to 2.10 ms. The inference time for LT-GPU remains constant at ∼1.21 ms.
The results show that the Cpp-CPU implementation is faster for up to 48 desti-
nations. After that, the libtorch-based implementations benefit from utilizing
multiple cores.

Route update and HNSA calculation latency. Fig. 4.18 shows a line plot for the
route update latency 𝑡𝑟𝑢 , i.e., the average execution time for the user space pro-
gram. Fig. 4.18 shows that Cpp-CPU is fastest with 0.65 ms for one destination and
6.13 ms for 128 destinations. LT-CPU takes from 19.38 ms to 37.57 ms, and LT-GPU
from 20.50 ms to 47.96 ms.

The high 𝑡𝑟𝑢 for LT-CPU and LT-GPU are unexpected. The long duration results
from interacting with libtorch’s tensor classes. Updating the input tensors
alone takes ∼15 ms. The reason presumably lies in the sequential setting and
retrieving of individual tensor elements. The input data is not readily available as
a larger memory block that libtorch could wrap inside a Tensor. Similarly, the
PoC must process outputs individually to convert them into forwarding decisions.
The higher 𝑡𝑟𝑢 values for LT-GPU compared to LT-CPU are unsurprising. Inference
on the GPU entails a communication overhead for copying data between main
memory and GPU, which explains the higher 𝑡𝑟𝑢 values compared to LT-CPU.

Similarly, the HNSA calculation latency 𝑡𝐻𝑁𝑆𝐴, i.e., the time it takes to cal-
culate and transmit one HNSA, for Cpp-CPU is lower than for LT-CPU on the
NetworkServer. On average, the computation of a HNSA’s content takes 5.10 ms
for LT-CPU and 0.03 ms for CPP-CPU.

This evaluation shows that small NN inference times are necessary but insuf-
ficient to achieve high-performance NN-based TE mechanisms. Auxiliary data
processing can easily become a bottleneck and must be accounted for.

Reaction time. The reaction time is evaluated by measuring how fast Mistill
reacts to a link failure between ToR-00 and Agg-00, denoted by 𝑡𝑟𝑡 . Analytically,
the expected reaction time 𝔼[𝑡𝑟𝑠] is modeled as:

𝔼[𝑡𝑟𝑠] �
1

2𝜆𝐿𝑆
+𝔼[𝑡𝐻𝑁𝑆𝐴] +𝔼[𝑡𝑁𝑒𝑡] + 1.5𝔼[𝑡𝑟𝑢] +

1
2𝜆𝑝𝑝𝑠

, (4.34)

where 𝑡𝑁𝑒𝑡 corresponds to the transmission and propagation delays and the time
to update the NetworkStatemap.

To measure 𝑡𝑟𝑡 , the PoC sends packets at a frequency of 𝜆𝑝𝑝𝑠 from the server
ExternalHost to the emulated host H16. The timeout gap for flowlets is set to
zero, i.e., the TX program retrieves the route for each packet from the Routes
map. The utilization of link (T00, A00) is artificially set to 0.01, of (T00, A01) to
0.3, and of (T00, A02) and (T00, A03) to 0.9. As a result, the NN will send traffic
via A00 if the link (T00, A00) is available. If the link fails, the NN will send traffic
via A01. T00 samples its local state at a frequency of 𝜆𝐿𝑆. The PoC measures



Chapter 4 Data-driven Traffic Engineering Algorithm Design

120

the time between changing the state of the link (T00, A00) and the first packet
taking the correspondingly updated route. For LT-CPU and LT-GPU the PoC uses
𝜆𝑝𝑝𝑠 = 1 000 Hz and 𝜆𝐿𝑆 = 100 Hz. For CPP-CPU the PoC uses 𝜆𝑝𝑝𝑠 = 8 000 Hz
and 𝜆𝐿𝑆 = 4 000 Hz. The frequencies for the libtoch-based NNs are smaller to
account for the longer NN execution times.

Fig. 4.19 shows violin plots for LT-CPU, LT-GPU, and Cpp-CPU. The average
reaction times are 42.27,ms, 43.75 ms, and 1.34 ms, respectively. The empirical
values are close to the expected values according to Eq. (4.34). 𝑡𝑟𝑡 is dominated
by the route update latency and the HNSA calculation for LT-CPU and LT-GPU.
In contrast, 𝔼[𝑡𝑁𝑒𝑡] accounts for 24.99 % of Cpp-CPU’s 𝑡𝑟𝑡 . The dominance of
𝔼[𝑡𝑁𝑒𝑡] is not unexpected, considering that the network on the NetworkServer
is emulated, and the switches are implemented in software. The results for
Cpp-CPU are competitive with state-of-the-art in-network TE mechanisms. HULA
and CONTRA report reaction times of 0.8 ms with hardware switches.

4.7 Discussion

This chapter provides the first quantification of NN-based TE mechanisms for
DCNs. Thus, this chapter focuses on a full-stack implementation of NN-based
TE mechanisms from NN design to the actual realization on hardware. NNs can
learn distributed TE mechanisms for Clos Topologies from exemplary forward-
ing decisions. The resulting NN-based TE mechanisms can be implemented with
negligible data plane overhead based on SR in legacy networks and react to net-
work state changes within milliseconds. The work in this chapter thus establishes
a strong foundation for future work on NN-based TE mechanisms. Specifically,
this chapter shows for the first time that such mechanisms can meet stringent per-
formance requirements. This chapter leaves important aspects for future work:
The implementation of the control plane on physical switches, the scaling of the
NN to larger topologies, the evaluation of NN optimization techniques, and the
investigation of NN offloading.

Port statistics are readily available in the PoC, and monitoring at a high fre-
quency is possible. Port statistics might be available at lower sampling intervals
on real switches, especially on legacy equipment, which would reduce 𝑡𝑟𝑡 . Other
NNs for the HNSAMod, e.g., Recurrent Neural Networks [250], could help to
overcome this limitation by predicting values between samples.

Based on the learned attention weights in Fig. 4.12, it is expected that the NA
can handle larger topologies. The number of attention heads in the NSMod is
expected to grow linearly with the number 𝑘, i.e., the number of pods. Thus, there
is reason to believe that the proposed NA has the potential to operate networks
with thousands of hosts.

The PoC uses single-precision floating point numbers. However, NNs are
often converted to lower precision or integer quantized for production. Lower
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precision and quantization decrease the memory consumption and NN execution
times [251, 252]. Further, Deep Learning Compilers can optimize a given NN
for different hardware platforms [253]. Thus, the results of this chapter on the
inference speed can likely be further improved.

Network Equipment like Data Processing Unit (DPU) could allow the offloading
of NN inference to NICs, allowing an integration of the PoC’s user-space program
into kernel space. This could further improve the performance, specifically given
the accelerators available on DPUs.

4.8 Conclusion

This chapter presents Mistill that learns distributed TE mechanisms from a TE
policy’s exemplary forwarding decisions with ML. Mistill learns a NN that rep-
resents the processing and exchange of local information with other network
elements and the computation of forwarding decisions from the exchanged in-
formation. Further, this chapter implements Mistill as a PoC and shows for
the first time that ML-based TE mechanisms can meet the stringent performance
requirements in DCNs.

To show the applicability of Mistill, the forwarding behavior of three TE poli-
cies is learned and evaluated in simulations on traffic patterns from four realistic
data center applications. The results show that it is possible to learn distributed
TE mechanisms from data that closely match the original forwarding decisions
and generalize to previously unseen traffic patterns. Further, this chapter ana-
lyzes the learned representations and shows that they are reasonable. The PoC
shows that Mistill can react at a millisecond scale to changes in the network and
that Mistill can be deployed in legacy networks. This chapter thus shows that
NN-based TE mechanisms are indeed feasible in practice, opening new avenues
of future work in this area.
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Chapter 5

Data-driven VNF Assignment Algorithm
Design

The virtualization of communication networks and the management of the re-
sulting VNFs, specifically in the context of Cloud-Native Communication Net-
works [1–3, 9, 254], is a third application area for data-driven algorithm design.
The high dynamicity of cloud-native applications makes automation a first prin-
ciple [255]. Unlocking the full potential of a Cloud-Native Communication Net-
work architecture requires customized resource management algorithms tuned
towards particular workload characteristics [2, 256].

Cloud-Native Communication Networks rely on MEC and NFV [2, 254]. MEC
provides cloud-computing capabilities at varying distances to the end-users, al-
lowing for low latency and high throughput [7, 257–259]. NFV facilitates packet
processing on top of this infrastructure. VNFs running on commodity hardware
form the foundation of NFV [11]. Using VNFs leads to easier deployment, main-
tenance, and improved scalability [11]. Typical VNFs include firewalls, intrusion
detection systems, video optimizers, and user plane and control plane functions
in mobile networks [1, 26, 260]. VNFs can be composed to arbitrary SFCs [261].

Cloud-Native Communication Networks implement VNFs with micro-services,
i.e., decompose a monolithic VNF into smaller CNFs that implement one dedi-
cated task and realize more complex functionality through service-meshes [1, 2,
190, 261, 262]. This architecture enables rapid development, better scalability,
maintainability, and deployability compared to monolithic VNFs [255, 263].

Implementing a VNF with CNFs and service-meshes increases the number of
deployed CNFs compared to deployments with monolithic VNFs since multiple
computationally cheap CNFs implement the monolith’s functionality [2, 9, 261].
However, platforms for executing VNFs are ill-suited for CNFs [262]. NF plat-
forms rely on core pinning, i.e., assigning each VNF to a dedicated CPU core [190].
In the context of CNFs, core-pinning can waste resources: A CNF might not fully
utilize a core, specifically when processing only a fraction of traffic in multi-tenant
environments. Therefore, core-sharing, i.e., assigning multiple CNFs to the same
CPU core is desirable [262].
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Similar to other placement problems, determining an allocation of CNFs to
CPU cores on micro-service-enabled NF platforms requires solving hard combi-
natorial optimization problems [11, 18]. For example, NF platforms can minimize
the maximum load on cores or reduce the number of used cores. The former cor-
responds to a Load Balancing (LB), the latter to a Bin Packing (BP) problem. Both
are NP-complete [16, 264]. In both problems, a solver has to assign 𝑁 weighted
objects on 𝑀 capacitated bins such that the assignment optimizes the respective
objective function. Here, objects correspond to CNFs, bins to CPU cores, an ob-
ject’s weight to the computational demand of a CNF, and a bin’s capacity to the
computational capability of a CPU core.

Interferences between SFCs, CNFs, and system effects make the computation
of a solution even more challenging. For instance, last-level cache interference
or the memory layout impacts the computational cost of VNFs [18–20, 190, 265].
Bottlenecking CNFs change the packet rate in SFCs [262]. Varying costs and rates
alter the CNFs’ demands, which, as this chapter will show, affects how the OS
scheduler grants CNFs access to cores in a difficult-to-anticipate way. Testbed
measurements will show that including these effects in the assignment is vital
to avoid performance degradation, even in lightly loaded scenarios. However,
formally modeling these impacts is difficult, time-consuming, and may have to be
repeated for different hardware and software stacks [265].

This chapter presents D2A (Data-Driven Assignment) that uses Neural Com-
binatorial Optimization (NCO) paired with Game Theory to learn assignment
strategies that incorporate interferences automatically. D2A has three advantages:
(1) D2A learns interference between CNFs; (2) D2A tailors solutions to a concrete
deployment scenario, e.g., specific SFCs, traffic patterns, or hardware platforms;
and (3) D2A generalizes to variations in the deployment scenario. To tailor algo-
rithms to CNF interference or hardware effects, D2A uses ML to learn a Digital
Twin (DT) of the NF platform from generated data and uses the DT to improve
learned assignment strategies.

This chapter makes the following contributions:

1. This chapter designs, implements, and evaluates D2A to learn data-driven
control algorithms for the efficient operation of Cloud-Native Communica-
tion Networks.

2. This chapter designs a training method for resource management algorithms
by integrating Game Theory and NCO. The training method is applicable
beyond D2A ’s application scenario.

3. This chapter shows the versatility of D2A by learning a LB and BP algorithm.
D2A takes a fully data-driven approach by first learning a DT from data, and
then uses DT to learn assignment algorithms. To learn a DT that includes
non-linear effects and relational dependencies, D2A uses a novel NA using



Chapter 5 Data-driven VNF Assignment Algorithm Design

124

a Graph Attention Neural Network (GATNN) [266]. The DT can predict
throughput and whether cores can handle the load of assigned CNFs.

4. This chapter shows how ML related quality requirements guide the selection
of ML models for specific tasks.

5. Through testbed evaluations, this chapter shows that integrating the DT’s
predictions into the learning process increases throughput compared to an
analytical model by 11.38 % and reduces latency by 89.58 %.

6. This chapter provides a comprehensive introduction to the Linux scheduler
and unexpected behaviors in the context of co-located CNFs.

7. The release of data [267] to foster reproducibility and support the commu-
nity in the research of interference of co-located CNFs.

In summary, this chapter provides valuable information for the operation of
Cloud-Native Communication Network.

Organization. This chapter is organized as follows: Sec. 5.1 introduces back-
ground information and related work. Sec. 5.2 is partially based on [29, 268]
and describes the business objective, and operational requirements towards the
control algorithm, formally models the underlying optimization problem, and ex-
plains peculiarities of co-locating CNFs on one core and how those peculiarities
affect throughput and latency. Sec. 5.3 describes the operational requirements,
design of D2A , and the generation of a challenging workload. Sec. 5.4 is partially
based on [29] and describes how D2A integrates Game Theory, NCO, and DTs into
a framework that simplifies the learning of control algorithms into the design of
a game. Sec. 5.5 is based on [29] and describes the DTs that guides the learning.
Sec. 5.6 is based on [29] and compares measurement results of D2A and baseline
algorithms and the predictive performance of DTs. Finally, Sec. 5.7 summarizes
and concludes this chapter.

5.1 Background and related work

This section introduces background information on the OpenNetVM NFV plat-
form in Sec. 5.1.1, process scheduling in Linux in Sec. 5.1.2, background on CNF
scheduling in Sec 5.1.3, Game Theory in Sec. 5.1.4, NCO and RL in Sec. 5.1.5,
and gives on overview over related work and the SoA in Sec. 5.1.6. Specifically,
Sec. 5.1.2 and Sec 5.1.3 correspond to MaLANe’s Analyze Networked System activity.
Sec. 5.1.4 and Sec. 5.1.5 reflect MaLANe’s Formalize Problem activity.

5.1.1 The OpenNetVM platform

Fig. 5.1 shows the architecture of OpenNetVM [269], which forms the basis of
D2A. OpenNetVM is based on the Data Plane Development Kit (DPDK) [270] and
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Figure 5.1 OpenNetVM system architecture. The NF Manager creates a shared memory
region to store packets and metadata such as the flow table and SFC lists. Packets are
moved between NFs by RX and TX-threads that copy packet descriptors into an NF’s
receive (R) and transmit (T) ring buffers. NFs run in isolated containers that encapsulate
all dependencies.

designed for service function chaining. OpenNetVM provides zero-copying of
packets between VNFs, setting OpenNetVM apart from other systems in the line of
ZygOS [271], which focus on a single application.

The most important entities of OpenNetVM are the RX- and TX-Threads, the
NFManager, and containerized NFs. Upon startup, the NFManager creates a
shared memory region for all NFs. The NFManager spawns TX- and RX-threads.
The RX-thread fetches packets from the NIC, places the packets in the shared
memory region, and inserts pointers into the input buffers of the first NFs in
the configured SFCs. The TX-threads copy pointers between the output and
input buffers of chained NFs. The TX-threads also transfer outbound packets to
the corresponding NICs. OpenNetVM uses core-pinning, i.e., assigns each VNF
to a dedicated core. Core-pinning can result in significant resource overhead if
individual VNFs do not utilize their CPU cores fully. Underutilization can occur if
micro-service architectures are adopted for VNFs [262], or in multi-tenant systems
where individual SFCs serve only a small fraction of the overall traffic [190].

5.1.2 Scheduling in Linux

OpenNetVM, similar to other NF platforms, runs on top of Linux [190, 262, 269, 272,
273]. Since the chapter’s objective is the development of a data-driven assignment
algorithm for CNFs that are co-located on CPU cores, understanding how Linux
grants processor time to co-located threads is important. This knowledge will
form the basis of the learning task and is necessary to understand the peculiar
behavior of the system.

Linux offers two primary scheduling policies: real-time scheduling and the
Completly Fair Scheduler (CFS) [274–276]. This section focuses on the CFS, since



Chapter 5 Data-driven VNF Assignment Algorithm Design

126

DPDK, forming the basis of OpenNetVM, forbids using real-time policies in com-
bination with the rte_ring structure, since the real-time policy in combination
with rte_ring can lead to deadlocks [277]. Testbed experiments with the real-
time policies and OpenNetVM always resulted in a system freeze. OpenNetVM
would have to be rewritten and use the lock-free stack mempool handler to use
real-time policies [277].

The Completely Fair Scheduler

Every operating system has a (process) scheduler that organizes the access of
threads in the runnable state1, denoted by ℰ to a CPU core. The scheduler
decides how the finite processing time of the CPU is divided among runnable
threads. On an ideal processor, each thread would receive a fraction of 1

|ℰ | of the
processor’s time. The time is inversely proportional to the number of runnable
threads. To achieve this, the ideal processor would schedule each process for an
infinitely small duration. With the CFS, Linux imitates this behavior.

Time slicing in the CFS

The CFS does not assign a fixed time slice for each runnable thread. Similar to
the ideal scheduler, the CFS calculates a thread’s time on the CPU as a function
of the total number of runnable threads. To calculate this time slice, the CFS uses
a time interval called target latency Δ𝑡𝑙

2. Each runnable thread gets a time slice of:

ts : ℰ → ℝ>0 , 𝑒 ↦→
Δ𝑡𝑙

| ℰ | . (5.1)

The target latency approximates the infinitely small switching time of the ideal
processor [275, Chapter 4].

Eq. (5.1) shows that each thread’s time slice approaches zero as the number of
runnable threads approaches infinity. Since switching between threads incurs an
overhead, the CFS defines a minimum value for the duration of the time slice, the
minimum granularity Δ𝑡𝑔

3 [275, Chapter 4]. Eq. (5.1) thus becomes:

ts : ℰ → ℝ>0 , 𝑒 ↦→ min
(
Δ𝑡𝑙

| ℰ | ,Δ𝑡𝑔
)
. (5.2)

Consequently, each thread will run for at least Δ𝑡𝑔 ms no matter how many
runnable threads want access to the CPU.

Calculating each thread’s time slice with Eq. (5.2) grants each thread the same
time on the CPU. However, a user might be more interested in the results of one
program than another. For example, when playing a game, a user might prefer

1The term runnable refers to a well-defined state in the life cycle of a process and identifies threads
that are ready for execution on the CPU [276, Chapter 9.4].

2The default target latency on, e.g., Ubuntu 22.04 is Δ𝑡𝑙 = 24 ms.
3The default minimum granularity on, e.g., Ubuntu 22.04 is Δ𝑡𝑔 = 3 ms.



Chapter 5 Data-driven VNF Assignment Algorithm Design

127

a fluid rendering over a backup job running in the background. If necessary, the
user would assign the thread(s) of the game a higher priority than the backup
job, i.e., the user would want the thread(s) of the game to receive more time on
the CPU. The CFS allows this through so-called Nice values taking a value in
{−20,−19, . . . , 19}. Formally, this chapter defines the Nice value of a thread as a
function:

n : ℰ → {−20,−19, . . . , 19}, (5.3)

A Nice value of −20 corresponds to the highest priority, a nice value of 19 to the
lowest priority, and the default value is zero [275, Chapter 4].

The CFS incorporates the Nice values into the calculation of the target latencies
by weighting the sum in Eq. (5.2), thus Eq. (5.2) becomes:

ts : ℰ → ℝ>0 , 𝑒 ↦→ min
(

w (n (𝑒))Δ𝑡𝑙∑
𝑏∈ℰ w (n (𝑏)) ,Δ𝑡𝑔

)
, (5.4)

where the function w : {−20, 19, . . . , 19} → ℕ maps the Nice value to the actual
weights [278, Version 6.0.10, kernel/sched/core.c, Line 11202ff]. Once the
time slice ts (𝑒) of a thread 𝑒 ∈ ℰ expires, the CFS preempts the thread and picks
a new thread for running on the CPU.

Enforcing time slices in practice

Being able to calculate a thread’s time slice leads to a new problem: The enforce-
ment of this time slice, i.e., ensuring that the CFS correctly preempts the task. To
understand how the Linux kernel does this, understanding the concept of time in
the kernel is crucial. The kernel measures time through a system timer based, e.g.,
on the processor’s frequency. The system timer issues an interrupt at a specific
tick rate. The kernel stores the tick rate in the Hz variable4. A special interrupt
handler in the kernel handles this interrupt. One task in this interrupt handler
is updating the runtime of the currently running thread [275, Chapter 11]. As a
result, the accounting of runtime is imprecise. For example, if the time slice of a
thread is just about to expire and the interrupt is invoked, the thread remains on
the CPU until the next interrupt, thus gaining up to almost 4 ms of extra time on
the CPU. On the long run, this imprecision averages out since it applies equally
to all threads. Still, this imprecision is undesired and should be minimized. In-
tuitively, the next time the thread runs, the CFS should shorten the thread’s time
slice accordingly. To do that, the CFS needs to track the execution time of each
thread on the CPU. The CFS keeps track of the wall-clock time a thread spends on
the CPU and maintains a separate virtual runtime, vruntime for short. The CFS
uses the vruntime for scheduling decisions.

4The default value of the Hz variable is 250 Hz on Ubuntu 22.04. Thus, the interrupt is invoked
every 4 ms.
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During the interrupt handler, the kernel calculates the currently running thread’s
vruntime increment according to Eq. (5.5):

vinc : ℰ ×ℕ→ ℕ, (𝑒 , 𝑑) ↦→ 𝑑
w (0)

w (n (𝑒)) , (5.5)

where 𝑑 corresponds to the time thread 𝑒 spend running on the CPU [278, Ver-
sion 6.0.10, kernel/sched/fair.c, Line 297ff]. Eq. (5.5) shows that the CFS
weights the execution time relative to the Nice value zero. Thus, the vruntime of
threads with a Nice value of zero corresponds to the actual wall-clock time. For a
thread, 𝑒 with n (𝑒) > 0, i.e., a thread with a lower priority and thus lower weight,
the vruntime increases faster than wall-clock time. For a thread 𝑒 with n (𝑒) < 0,
i.e., a process with a higher priority and thus larger weight, the vruntime in-
creases slower than the wall-clock time.

After updating the vruntime of the currently running thread 𝑒, the CFS checks
if there exists any runnable thread 𝑔whosevruntime is smaller than 𝑒’svruntime
plus the minimum granularity Δ𝑡𝑔 . If such a thread exists, then the CFS changes
𝑒 to the runnable state, and 𝑔 to the running state, i.e., 𝑔 executes on the CPU. For
efficiency, the kernel organizes the threads in a red-black tree with the vruntime
as key [275, Chapter 4].

As a consequence of this procedure, the CFS never has to calculate a thread’s
time slice explicitly. Instead, the CFS uses the vruntime to elegantly realize the
time slices according to Eq. (5.4) while at the same time accounting for timing
imprecision.

Fine-grained scheduling with control groups

Sometimes, the control that the CFS provides is insufficient. One such example is
systems that serve multiple users. Intuitively, the system should grant both users
the same amount of CPU time. With the CFS, both user sessions would require
running the same number of threads. If this is not the case, e.g., if one user has
twice the number of threads than the other, then this user would get twice as
much CPU time. Adjusting the thread’s Nice values to correct this imbalance is
possible but would require readjusting the Nice values every time the number
of threads changes. Instead, the Linux kernel provides so-called control groups
(cgroups).

Introducing cgroups. cgroups are a powerful tool for fine-grained control of
resources such as CPU, memory, disk, network, etc. A cgroup is a collection
of threads bound to a set of limits. Further, cgroups allow the hierarchical
organization of resources [279]. CPU cgroups allow the control to the CPU via
a weight parameter, often referred to as shares5. The weight parameter takes a

5In the first version of the cgroups control system, this parameter was named shares.
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value in the set {1, 2, . . . , 10 000}, and defaults to 100 [280]. The absolute value
of the parameter has no meaning. The weight parameter allows a fine-grained
distribution of CPU time tocgroups according to the same principle as in Eq. (5.4).
Let 𝒞 bet the set of cgroups for the CPU resource, and s : 𝒞 → {1, . . . , 10 000} a
function that maps a cgroup to its weight. Then, a cgroup 𝑐 ∈ 𝒞 gets a fraction:

s (𝑐)∑
𝑖∈𝒞 s (𝑖) (5.6)

of the CPU time. The threads in each cgroup then divide the cgroup’s CPU time
among themselves according to Eq. (5.4) [280, 281]. Note that each thread’s Nice
value impacts its importance relative to the threads in its cgroup, but not to threads
in other cgroups [279].

With cgroups, ensuring an equal share of CPU time for each of the two users
in the earlier example thus amounts to grouping each user’s threads into one
cgroup, and assigning each cgroup the same weight. cgroups also form the
basis of container technologies, i.e., threads related to containers are isolated
from each other through cgroups [262]. Container resource utilization can then
be controlled through the cgroup interface. cgroups are thus a crucial building
block of Cloud-Native Communication Network.

cgroups and the CFS. The Kernel elegantly includes the cgroups into the CFS
through a composite design pattern [278, Version 6.0.10, include/linux/sched.h,
Line 547ff][281]. The cgroups are the composite objects, and the individual
threads are the Leaf objects. Each component tracks the vruntime and the wall-
clock execution time. Composite objects store their children in a red-black tree
keyed by the vruntime variable. Children update the vruntime and the execu-
tion time of their parents if their values change. For this, Eq. (5.5) is updated
to:

vinc : ℰ ∪ 𝒞 ×ℕ→ ℕ, (𝑒 , 𝑑) ↦→

𝑑

𝑤(0)
𝑤(𝑛(𝑒)) if 𝑒 ∈ ℰ
𝑑

𝑠(𝑒)∑
𝑖∈𝒞 𝑠(𝑖)

else.
(5.7)

Thus, the CFS can start at the root object and then recursively traverse the hier-
archy, always picking the leftmost element in the red-black tree, until the CFS
encounters a leaf object, i.e., the thread that it then runs on the CPU [281].

5.1.3 Towards fair µVNF scheduling

In the networking context, the CFS’s concept of fairness can result in packet loss
and rate warping. For example, two CNFs, NF1 and NF2 share one CPU core. For
NF1, 1 % of CPU time is enough to process the arriving packets. In contrast, NF2 is
more expensive and requires 70 % of CPU time. In total, the two CNFs need 71 %
of CPU time. Still, NF2 will drop packets, since the CFS would grant NF2 only
50 % of CPU time. What’s worse, NF2 has to wait until NF1’s vruntime exceeds
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its own. Since NF1 requires only a small processing time, a substantial amount of
time might be necessary until the CFS lets NF2 run again. This, in turn, can lead
to a substantially higher decrease in throughput than the expected 20 %.

To operate well in the context of networking, the CFS needs another concept of
fairness: rate-cost proportional fairness (RC), i.e., dividing CPU time proportional
to the product of rate and compute demand of co-located CNFs [262]. Let 𝒥 be
the set of CNFs co-located on one CPU core. Further, assume that each CNF is
grouped into its own cgroup, and the function cg : 𝒥 → 𝒞 returns the cgroup
of a CNF. Let 𝜆a : 𝒥 → ℕ be the packet arrival rate, and c : 𝒥 → ℝ>0 be the
average number of CPU cycles to process one packet of a CNF. Then the weight
parameter of the CPU cgroup cg (𝑗) of CNF 𝑗 should be set to:

s
(
cg (𝑗)

)
= min

(⌈
10 000

𝜆a (𝑗) c (𝑗)∑
𝑖∈𝒥 𝜆a (𝑖) c (𝑖)

⌉
, 10 000

)
. (5.8)

This ensures that each CNF gets CPU time proportional to its rate-cost product,
eliminating throughput degradation as in the earlier example. In addition, RC
ensures that rates reduce equally in the case of overload, i.e., the scarce resources
are distributed so that the throughput of affected flows behaves as it would on a
bottlenecked link [262].

5.1.4 Game Theory

This section introduces basic concepts from game theory that will become relevant
later in the chapter. This section first introduces games in their normal form
and defines the Nash Equilibrium (NE). Then, this chapter introduces sequential
games, which form the basis of Sec. 5.4.1. In the scope of sequential games, this
section then introduces backward induction and generalizes the concept of NE
to the Subgame-perfect Nash Equilibrium (SNE). Large parts of this section are
based on Gibbson [282], and Nisan et al. [283].

Normal-form games

A game in normal form is a tuple 𝐺 = (𝒥 ,𝒮 , un). The set 𝒥 corresponds to the
players in the game. The strategyspace 𝒮 := ×𝑗∈𝒥𝒮𝑗 corresponds to all possible
combinations of individual player strategies 𝒮𝑗 . An element 𝑆 ∈ 𝒮 is called a
strategy profile. The utility function un : 𝒥 × 𝒮 → ℝ returns the utility of a
player’s action given the actions of all other players [283]. In a normal-form game,
the players move simultaneously, i.e., each player chooses her action without
knowing the other player’s actions [282, 283].
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Figure 5.2 Example of a game in extensive form. The players are 𝒥 = { 𝑗 , 𝑘}. The moves
for each player are 𝒜 𝑗 = {𝐿, 𝑅}, and 𝒜𝑘 = {𝑇, 𝐷}. The game has two stages. First,
player 𝑗 makes her move. Player 𝑘 observes player 𝑗’s move and makes her move, and the
game ends. The figure shows the player’s utility value for each possible outcome below
the leaf nodes. The figure indicates the SNE with bold arrows. Figure adapted from
Gibbson [282].

Nash Equilibrium

A NE 𝑆∗ ∈ 𝒮 corresponds to a strategy profile in which no player 𝑗 has the
incentive to deviate from her chosen strategy 𝑠∗

𝑗
. Formally [282, 283]:

∀𝑗 ∈ 𝒥 : ∀𝑆 ∈ 𝒮 \ 𝑆∗ : un (𝑗 , 𝑆∗) ≥ un (𝑗 , 𝑆) . (5.9)

Consequently, the strategy 𝑠∗
𝑗

of player 𝑗 is a best response to all other player
strategies. The strategy 𝑠∗

𝑗
is a best response iff [282, 283]:

𝑠∗𝑗 = max
𝑠 𝑗∈𝒮𝑗

un

(
𝑗 ,
(
𝑠∗1 , . . . , 𝑠 𝑗 , . . . 𝑠

∗
|𝒥 |

))
. (5.10)

The concept of a NE assumes that all players are rational, i.e., choose the strategy
that maximizes their utility.

Normal-form games can have two types of NE: pure and mixed strategy NEs.
All players choose one specific strategy in a pure-action NE. In a mixed strategy
NE, players choose their strategy according to a probability distribution that
depends on the utility structure of the game. Every normal-form game has at
least one mixed strategy NE. Normal-form games are not guaranteed to have a
pure strategy NE [282].

Extensive-form games

For games in which players move in sequence, i.e., in which the assumption of
simultaneously choosing a strategy does not hold, the representation in extensive
form is more convenient. An extensive-form game specifies five elements [282]:

1. The players in the game, i.e., 𝒥 ,

2. when each player has to move,
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T-T T-D D-T D-D

L 3,1 3,1 1,2 1,2

R 2,1 0,0 2,1 0,0

Player k

Player j

Figure 5.3 Example of a game in normal form. The game corresponds to the extensive-
form game in Fig. 5.2. The strategies of each player are 𝒮𝑗 = {𝐿, 𝑅}, and 𝒮𝑗 = {𝑇 − 𝑇, 𝑇 −
𝐷, 𝐷−𝑇, 𝐷−𝐷}. The strategies of player 𝑘 indicate the move for each of player 𝑗’s moves.
For example, 𝑇 − 𝐷 indicates that player 𝑘 makes move 𝑇 if player 𝑗 makes move 𝐿, and
player 𝑘 makes move 𝐷 if player 𝑗 makes move 𝑅. Each player’s utility for a strategy
profile is given in the cells. The first number corresponds to the utility of player 𝑗, and the
second number to player 𝑘’s utility. NEs are indicated in a bold font face. Figure adapted
from Gibbson [282].

3. player 𝑗’s available actions𝒜 𝑗 each time the player moves,

4. the player’s knowledge, i.e., what information the player has available each
time the player moves,

5. the utility ue received by each player for each combination of moves.

Extensive-form games can be represented as normal-form games and vice-versa.
The distinction between a move in the extensive-form game and a strategy in the
normal-form game is subtle and will be explained shortly.

Extensive-form games are often represented as a game tree. Fig. 5.2 shows a
game tree adapted from [282]. Nodes in the tree correspond to decision points at
which a player has to make her move. The node is labeled with the corresponding
player’s identifier. Arcs between nodes correspond to a move a player has made.
The arcs are labeled with an identifier for this move.

The difference between a move and a strategy in the normal-form game is that
the strategy describes a full plan of action, i.e., specifies all moves in every possible
contingency a player might have to act [282]. In the above example, a strategy of
player 𝑘 has to specify the movements of 𝑘 for every move that 𝑗 makes. Thus, 𝑘
has four strategies in the game in Fig. 5.2. Fig. 5.3 shows the corresponding game
in normal form.

Backwards Induction

Backward Induction is a technique to specify the player’s moves in extensive form
games with complete and perfect information. A game has complete informa-
tion if each player’s utility function is common knowledge. A game has perfect
information if every time a player has to move, all previous player’s moves are
common knowledge. Then, each player’s utility can be computed for all leaves in
the game tree, i.e., for all possible combinations of moves. At every intermediate
node, the player to move at this node can thus compute the move that maximizes
its utility [282].
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For example, player 𝑘 in Fig. 5.2 can compute the best move to every given move
𝑎1 of player 𝑗:

𝑅(𝑘, 𝑎 𝑗) = max
𝑎𝑘∈𝒜𝑘

ue
(
𝑘,
(
𝑎 𝑗 , 𝑎𝑘

) )
. (5.11)

Similarly, player 𝑗 can compute its move as:

max
𝑎 𝑗∈𝒜 𝑗

ue
(
𝑗 ,
(
𝑎 𝑗 , 𝑅(𝑘, 𝑎 𝑗)

) )
. (5.12)

As the next section shows, the Backward Induction outcome is closely related to
the concept of NE in the normal form game.

Subgame-Perfect Nash Equilibrium

Before generalizing the NE to extensive-form games of complete and perfect
information, a subgame must be introduced. A subgame is part of an extensive-
form game. The subgame starts at an arbitrary node and contains all subsequent
nodes and leaves of the game tree. A subgame does not contain the full extensive-
form game, i.e., cannot start at the root node [282]. A SNE is a strategy profile
that corresponds to an NE in every subgame [282].

For example, the SNE for the game in Fig. 5.2 is (𝑅, 𝑇𝐷). The strategy of player 𝑗
is 𝑅. The strategy of player 𝑘 is 𝑇𝐷, i.e., if player 𝑗 chooses 𝐿, then player 𝑘 would
choose 𝑇, and if player 𝑗 plays 𝑅, player 𝑘 plays 𝐷. In contrast, the backward
induction outcome corresponds to 𝑎 𝑗 = 𝑅, and 𝑎𝑘 = 𝑇.

Comapred to the extensive-form game in Fig. 5.2, the normal-form represen-
tation in Fig. 5.3 has two NE: (𝐿, 𝐷𝐷) and (𝐿, 𝑇𝐷). However, (𝐿, 𝐷𝐷) is no SNE
since it is not a NE in the subgame starting at the decision node of player 𝑘 after
player 𝑗 made a move 𝑅. Here, the strategy 𝐷𝐷 would result in a zero payoff
for player 𝑘. Instead, a rational player would make a move 𝑇 at this decision
point. Thus, the strategy profile (𝐿, 𝐷𝐷) is not a NE in this subgame, violating
the definition.

5.1.5 Reinforcement Learning and Neural Combinatorial Optimization

This section introduces NCO. Since NCO relies on RL, this section starts by in-
troducing RL with a focus on discrete action spaces and finite episodes, i.e., the
RL problem ends after a certain number of steps. Large parts of this section are
based on Sutton and Barto [81].

Single-Agent RL.

Fig. 5.4 shows the basic setting for single-agent RL. A single decision-maker,
an agent, is situated in an environment with unknown dynamics. The agent’s
goal is to optimize numerical feedback, called reward, that the agent receives
while interacting with the environment. Interactions between the agent and
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Agent

Environment

Action 𝑎𝑡

State 𝑠𝑡+1

Reward 𝑟𝑡+1

Figure 5.4 The agent-environment interface. The agent chooses an action 𝑎𝑡 and executes
it in the environment. The environment reacts to the action and emits a new state, i.e.,
observation 𝑠𝑡+1, together with a reward signal 𝑟𝑡+1. The agent observes both.

environment occur in discrete time steps through actions. At each time step, the
agent executes an action 𝑎𝑡 . The action results in a change of the environment,
which transitions from its current state 𝑠𝑡 to a new state 𝑠𝑡+1. As a result of this
transition, the agent observes the numerical reward 𝑟𝑡+1. The agent’s goal is the
optimization of the reward. Further, the agent observes the new environment
state 𝑠𝑡+1. Formally, this process is modeled through a Markov Decision Process
(MDP) [81, 284].

The Markov Decision Process (MDP) A MDP is a tuple (𝒜 ,𝒮 , 𝑝, r). The finite
action space 𝒜 contains the actions available to the agent at each time step. The
state space 𝒮 contains all environment states. The function p : 𝒮×𝒜×𝒮 → [0, 1]
represents the environment dynamics, i.e., the probability of transitioning into
state 𝑠𝑡+1, given that the agent applies action 𝑎𝑡 while the environment is in state
𝑠𝑡 . The reward function r : 𝒮 × 𝒮 ×𝒜 → ℝ returns the numerical reward for the
transition from state 𝑠𝑡 to 𝑠𝑡+1 given that the agent chose action 𝑎𝑡 . To optimize the
reward, the agent has to learn how to act, i.e., the agent must learn a behavioral
policy [81, 284].

The policy function Formally, a policy is defined as:

𝜋 : 𝒜 ×𝒮 → [0, 1], (5.13)

i.e., the probability of choosing an action 𝑎 ∈ 𝒜, given that the environment is
in the state 𝑠 ∈ 𝒮 [81]. Further, RL usually involves the estimation of a value or
action-value function. Those functions estimate the agent’s utility of being in a
certain state or choosing a specific action in a specific state.

The value and action-value function Formally, the value function can be defined
as:

v𝜋 : 𝒮 → ℝ, 𝑠 ↦→ 𝔼𝑠𝑡+1∼p,𝑎𝑡∼𝜋

[ ∞∑
𝑡=0

𝛾𝑡 r (𝑠𝑡 , 𝑠𝑡+1 , 𝑎𝑡) | 𝑠0 = 𝑠

]
, (5.14)
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where 𝛾 ∈ [0, 1) is a discount factor. The value v𝜋(𝑠) of a state 𝑠 ∈ 𝒮 is the expected
discounted reward when starting in the state 𝑠. Following the policy, 𝜋 thereafter,
i.e., subsequent states are sampled according to the environment dynamics, and
actions according to 𝜋 [81, 284].

Similarly, the action-value function can be defined as:

q𝜋 : 𝒮 ×𝒜 → ℝ, (𝑠, 𝑎) ↦→ 𝐸𝑠𝑡+1∼p,𝑎𝑡>0∼𝜋

[ ∞∑
𝑡=0

𝛾𝑡 r (𝑠𝑡 , 𝑠𝑡+1 , 𝑎𝑡) | 𝑠0 = 𝑠, 𝑎0 = 𝑎

]
,

(5.15)
where 𝛾 ∈ [0, 1) is a discount factor. The action-value q𝜋(𝑠, 𝑎) of taking action
𝑎 ∈ 𝒜 in state 𝑠 ∈ 𝒮 is the expected discounted reward of taking action 𝑎 in state
𝑠 and following the policy 𝜋 thereafter6.

Neural Combinatorial Optimization

NCO is a recent trend to solve COP with the help of ML. The seminal paper by
Bello et al. [285] proposes NCO as solving COPs with RL and NNs.

NCO maps a COP into a MDP and then applies RL to learn a policy that
produces solutions to the COP. Optimizing the policy with RL then corresponds
to learning an algorithm that finds better and better solutions to the COP [285].

To cope with the combinatorial search spaces of COPs, NCO relies on NNs. The
NN thereby represents, depending on the chosen RL technique, the policy, value,
or action-value function [284].

Intuitively, NCO offers the possibility to automate the design of heuristic algo-
rithms in the form of NNs that produce solution instances to a particular set of
COP problems. NCO does not replace conventional solvers that guarantee opti-
mal solutions. The learned algorithms can be expected to work well on problem
instances similar to the ones seen during training but might be arbitrarily bad
when applied to samples that differ strongly [28, 81, 284].

5.1.6 Related Work

This section introduces related work categorized into six classes: VNF placement,
performance modeling, thread scheduling, NCO, NF platforms, and dataplane
operating systems.

VNF placement

Most prior work focuses on placing VNFs on servers [11]. Instead, the work in this
chapter focuses on assigning CNFs to CPU cores. Most related is the work of Wang
et al. [135] and Zheng et al. [18]. Both minimize data transfer between VNFs in

6Eq. (5.14) and Eq. (5.15) use an infinite number of steps to better align with related work and sim-
plify the notation. Episodic RL problems can be converted easily to the infinite formulation [81].
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the same SFC on different Non-Uniform Memory Access (NUMA) nodes; both
perform core pinning.

In contrast, the work in this chapter targets systems that allow core sharing.
Also, the proposed framework can be applied to arbitrary NF platforms, whereas
results in [135] and [18] are limited to specific hardware settings. The framework
proposed in this chapter is data-driven and thus not bound to a specific hardware
setting. Instead, the framework is designed to adapt to changing configurations
automatically.

Performance modeling

The memory subsystem, data transfer between NUMA nodes, and interference on
the NIC can impact the throughput, latency and, CPU usage of NF systems [19, 20,
265, 286, 287]. Interference and computational cost can be modeled with ML [265,
288].

This chapter adds to potential sources of interference by explaining the impact
of the CFS on the packet processing of co-located CNFs. A new aspect that has
not been reported previously.

Further, this chapter complements previous modeling approaches with a NA
for arbitrary hardware and problems. The focus of the NA is the prediction of VNF
throughput and core tipping, but it can, in principle, be used to learn arbitrary
aspects of VNF platforms. The problem representation proposed in Sec. 5.5.2
easily extends to arbitrary metrics on the VNF, SFC, CPU, NIC, and node level.

Thread scheduling

The work in this chapter is closely related to thread scheduling [289–292]. Similar
to OS schedulers, those algorithms are not designed with the specific workload of
network processing in mind. The above solutions rely on the frequent migration
of threads between cores to improve performance metrics. However, frequent
migration of VNFs is harmful for the specific networking workload [18]. Work
in this chapter, therefore, focuses on finding assignments of CNFs to cores that
allow the reliable processing of packets over longer periods.

Neural Combinatorial Optimization.

NCO, i.e., solving combinatorial optimization problems with RL has become an
active area of research in the algorithmic [17, 293], ML [28], and networking
community [15]. Particularly related is related work that learns the admission of
jobs [294] and the assignment of jobs to computing resources [295–298].

This chapter complements previous work in the area by taking a fully data-
driven approach. The proposed framework uses NCO to learn a data-driven
heuristic to a combinatorial optimization problem and further uses ML to learn
environmental effects and include those into the learned heuristic. Further, this
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work integrates Game Theory into NCO to empower the resulting data-driven
heuristic with higher flexibility.

NFV platforms.

A range of NF platforms and systems exist [190, 262, 269, 272, 273, 299–302]. Work
in this chapter extends OpenNetVM [269] and allows sharing of CPU cores between
CNFs as in [262]. The work in this chapter is orthogonal to previous work in that
this chapter focuses on how to assign VNFs to CPU cores to improve overall
system performance. In contrast, previous work on the co-location of CNFs takes
the assignment as given. While the proposed framework is implemented on top
of OpenNetVM, the proposed framework can be combined with any NF platform
to improve the underlying assignment of CNFs to CPU cores.

Dataplane operating systems.

The objective of Dataplane operating systems [271, 303–306] is to provide mi-
crosecond tail latencies for data center applications. They are not designed for the
SFC use-case, e.g., they do not support zero-copying of packets between VNFs
as OpenNetVM does. Techniques used in those systems could be combined with
existing NF platforms, though. Further, the goal of D2A is the co-location of CNFs
such that overall system performance is improved, which dataplane operating
systems do not consider.

5.2 System analysis and problem formulation

This section introduces and analyzes Linux scheduling policies in Sec. 5.2.1, for-
mulates the operational objectives towards a cloud-native ready NF platform in
Sec. 5.2.2, and translates and formulates the resulting assignment problem for-
mally in Sec. 5.2.3. Thus, this section contains aspects of MaLANe’s Translate
Objective, Formalize Problem, and Analyze Networked System activities.

5.2.1 Process scheduling in OpenNetVM

The NF platform’s underlying OS manages the access of co-located NFs to the
respective CPU core, which is the task of the OS ’s CPU scheduler. The scheduler
ensures that each process assigned to a core gets processing time and can forcibly
interrupt a process if the process runs for too long.

Default Linux scheduling

NF platforms usually run on top of Linux [190, 262, 269, 272, 273]. The Linux
kernel offers two scheduling policies: Real Time (RT) and non-RT policies [274,
275]. This chapter does not consider RT policies because DPDK forbids their
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Figure 5.5 Activity of a heavy and two light CNFs with the normal CFS scheduler (see (a))
and the RC scheduler (see (b) and (c)). Figures (a) and (b) show how weighting affects the
execution of the CNFs. Figure (c) shows how a slight packet arrival rate increase results
in a new mode of operation.
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Figure 5.6 The CDFs show the CNFs’ inactive times from Fig. 5.5c for the whole experi-
ment duration.
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usage in combination with the rte_ring structure 7. The non-RT policy ex-
tends the CFS with two configurations: SCHED_NORMAL and SCHED_BATCH [274].
SCHED_NORMAL is the default configuration and handles interactive and back-
ground tasks. SCHED_BATCH tunes the behavior of the CFS towards compute-
intensive tasks and applies a small scheduling penalty concerning the wakeup
behavior [274]. Thus, SCHED_BATCH has little impact in the considered scenarios,
and measurements are obtained with SCHED_NORMAL.

Fig. 5.5a illustrates the behavior of the CFS with three CNFs assigned to one
core. Each CNF has an arrival rate of 1.5 Mpps. The CNFs L1 and L2 have a
computational cost of 210 Cycles per packet (Cpp). The CNF H1 has a cost of
1 600 Cpp. The CNFs yield if their buffer is empty. Fig. 5.5a shows that H1 is
active for 2.5 ms, and L1 and L2 take turns for 6 ms. Thus, H1 is inactive for
6 ms, and L1 and L2 are inactive for 2.5 ms. The CFS’s vruntime accounting and
job preemption cause this. The Kernel checks every 4 ms if it should preempt a
CNF8. Until then, the CNF runs on the core. In Fig. 5.5a, H1 uses the available
time and does not voluntarily yield, increasing its vruntime accordingly. L1 and
L2 are faster and yield, and thus take turns: L2 processes a few packets, yields,
and the Kernel increments the vruntime. L1 has the lowest vruntime now, and
the Kernel schedules it to the core. L1 processes packets and yields, and the
Kernel increases the vruntime. This process repeats until the vruntime of L1
and L2 exceeds the vruntime of H1. The frequent switching adds overhead due
to context switches, resulting in the 6 ms duration. The behavior of the CNFs
results in jitter and latencies in the order of milliseconds. Further, the CPU time
allocation is unfair concerning the rate-cost product9. All three CNFs get the same
CPU time, although the rate-cost product of H1 is eight times larger than that of
L1 and L2.

Rate-cost proportional fairness

Fig. 5.5b shows the behavior of RC. The Nice values are set to achieve rate-cost
proportional fairness. As a result, the vruntime of L1 and L2 increases faster
than the vruntime of H1. Thus, L1’s and L2’s vruntime quickly exceeds H1’s
vruntime. Therefore, the Kernel schedules H1 more often, reducing its buffer
and the time H1 needs until it can yield.

7RT policies in combination with rte_ring can lead to deadlocks [277]. Testbed experiments with
the real-time policies and OpenNetVM always resulted in a system freeze. OpenNetVM would
have to be rewritten and use the lock-free stack mempool handler to use real-time policies.

8The value of 4 ms is the frequency of the system timer, stored in the Kernel’s Hz variable.
The system is configured with 250 Hz. Values between 100 Hz to 1 000 Hz are recommended.
Changing the Hz variable requires a re-compilation of the Kernel [275].

9The rate-cost product for an NF is the product of the NF’s processing cost per packet and packet
arrival rate.
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Core-tipping: RC is not enough

Even with RC, the CFS’ behavior can be unexpected. Fig. 5.5c increases the
packet arrival rate from 1.5 Mpps to 2 Mpps; the NFs’ Cpp values are unchanged,
resulting in the same weights for RC. Fig. 5.5c shows a different behavior than Fig.
5.5b. H1 blocks the core in the order of milliseconds. Further, the NFs’ inactive
times are not deterministic. To better understand, Fig. 5.6 shows a CDF of the
NFs’ inactive times for the whole experiment period. L1 and L2 are inactive for
up to 12 ms, resulting in high latencies and substantial jitter.

Incorporating this behavior into the assignment decision is thus of high impor-
tance. However, the tipping point at which the system breaks requires solving a
complex dynamical problem that depends on starting conditions such as the CFS
and Kernel parameterization, the cost and rates of CNF, and their variance. Fluc-
tuating processing costs, bursty packet arrivals, and inter-dependencies between
CNFs in the same SFC assigned to different cores further complicate the problem.
Since this behavior can occur even on seemingly underutilized cores, we refer
to this behavior as a core-tip. This thesis shows that data-driven algorithms can
learn when a core-tips and thus improve performance.

5.2.2 Operational objectives

For a NF platform, three KPIs are identified:

1. Throughput: The number of packets the platform can process per second.

2. Latency: The per-packet processing latency.

3. Total Packet Cost (TPC): The ratio of required CPU cycles to the number of
processed packets.

Throughput and latency are customer-facing KPIs. Throughput and latency are
essential KPIs in many applications that run on top of communication networks.
For example, 5G use-cases such as the tactile Internet frequently require low end-
to-end latencies [6]. End-users usually have a covenanted minimum throughput
that the service provider has to ensure by law [307, Vfg Nr. 99/2021].

TPC is tied to the network operator and measures the infrastructure efficiency.
One goal of Cloud-Native Communication Networks is increasing the efficiency
of the infrastructure by scaling CNFs to the demand. That is, a Cloud-Native
Communication Network does not provision CNFs for peak demand but can
scale them horizontally or vertically to consume more resources during peak
hours and fewer resources during off-hours [2, 9, 256]. For example, two CNFs
might need one CPU core each during peak hours. During off-hours, the two
CNFs might comfortably fit on one core. The TPC can thus be more than halved
by placing the two CNFs on one core during off-hours.
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The TPC KPIs thereby is at odds with the latency and throughput KPIs. Opti-
mizing the TPC can increase the risk of core-tipping in the presence of unexpected
traffic increases.
D2A is successful from an operational perspective if the resulting assignment

strategies have higher throughput, lower latency, and lower TPC compared to
baseline algorithms.

5.2.3 Formal problem description

Fig. 5.5 shows that an assignment of CNFs to cores respecting the CFS’ operation
can improve the KPIs throughput and latency. Specifically, if the platform co-
locates CNFs on cores such that the assignment does not result in core-tipping,
then all CNFs can process the packets arriving during one scheduling period.
This maximizes throughput and minimizes latency. Previous work advocating the
assignment of multiple CNFs to one core does not optimize towards avoiding core-
tipping [190, 262]. D2A fills this gap using a data-driven approach to avoid core-
tips and learns algorithms for two popular NP-complete optimization objectives:
BP and LB [16, 264].

BP thereby aims to minimize the TPC, i.e., the goal is to use as few cores as
possible while ensuring that no core tips. In contrast, LB aims at spreading the
computational demand of CNFs across the available cores. An operator might
choose a LB policy over a BP policy to reduce the risk of core-tipping as much as
possible.

Formally, the BP objective of minimizing the number of used cores can be
expressed as [264]:

min
∑
𝑚∈ℳ

𝑦𝑚 , (5.16)

being subject to Constraints (5.17)-(5.20). Constraint (5.17) states that the load of
CNFs 𝑗 must not exceed the capacity of core 𝑚:∑

𝑗∈𝒥
l (𝑗 , 𝑚) 𝑥𝑚,𝑗 ≤ c (𝑚) , ∀𝑚 ∈ ℳ , (5.17)

where 𝒥 is the set of all CNFs, ℳ the set of cores, 𝑥𝑚,𝑗 indicates if CNF 𝑗 is
assigned to core 𝑚, and the functions l : 𝒥 × ℳ → ℝ+, and c : ℳ → ℝ+
return the load CNF 𝑗 induces on core 𝑚, and the capacity of core 𝑚 in cycles.
Constraint (5.17) is a simple approximation for the complex nonlinear interactions
of CNFs resulting in core-tips.

Constraint (5.18) ensures that each CNF 𝑗 is assigned to one and only one core
𝑚: ∑

𝑚∈ℳ
𝑥𝑚,𝑗 = 1, ∀𝑗 ∈ 𝒥 . (5.18)
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Constraint (5.19) states that variable 𝑦𝑚 is one if at least one CNF is assigned to
core 𝑚:

𝑦𝑚 =


1 if

∑
𝑗∈𝒥 𝑥𝑚,𝑗 > 1

0 else
∀𝑚 ∈ ℳ . (5.19)

Constraint (5.20) states that the variables 𝑥𝑚,𝑗 are binary:

𝑥𝑚,𝑗 ∈ {0, 1}, ∀𝑚, 𝑗 ∈ ℳ × 𝒥 , (5.20)

The LB objective can be formulated as minimizing the maximum load on
cores [16]:

min
(
max
𝑚∈ℳ

l (𝑚)
)
, (5.21)

subject to the Constraints (5.17), (5.18), and (5.20).
The BP and LB problems are a good fit for a learned heuristic that can exploit

the problem-specific structure and include system effects [28, 285, 308]. As Sec. 5.6
shows, the simplification of core-tipping in Constraint (5.17) limits the model and
results in decreased performance in practice. Note that simplification is common
in the formulation of capacitated problems [11, 18, 135]. D2A overcomes the
simplification with NCO and a data-driven DT. The DT predicts if a core tips, i.e.,
replaces the linear model in Constraint (5.17) with a learned one. NCO learns
algorithms using the predictions of the DT, allowing the algorithms to avoid
core-tips

5.3 Requirements engineering and high-level design

This section describes the design goals of D2A in Sec. 5.3.1, explains the compo-
nents of D2A in Sec. 5.3.2, and the workload generation in Sec. 5.3.3. This section
contains aspects of MaLANe’s Translate Objective and Generate Data activities.

5.3.1 Operational Requirements

D2A is a SFC platform that allows CPU sharing between CNFs. D2A uses an NCO-
based algorithm to assign CNFs to cores. In principle, D2A can continuously
adapt during operation. For example, new SFCs and CNFs, or a change in the
processing cost or arrival rate, can trigger a re-assignment. In a cluster, a separate
orchestration tool is responsible for placing CNFs on individual D2A instances.
This orchestration tool can rely on D2A components to make admission control
decisions, e.g., use the learned heuristics and the DT to check whether a D2A
instance could handle the assigned CNFs.
D2A uses built-in tools for process management in Linux. Hence, it does not

require changes to the underlying operating system. To achieve an efficient CPU
assignment, D2A has four key properties:
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Local operation. D2A uses the data of the node it is running on to make assign-
ment decisions. Thus, D2A does not require a complex distributed control plane
during operation.

Generalization. LB and BP are combinatorial optimization problems with an
exponentially growing solution space [16, 264]. D2A should learn strategies that
generalize to perturbations of the problem instances. For example, the traffic
might follow diurnal patterns [171], and the number and types of CNFs, as well
as the SFCs deployed to a host, can vary. D2A should work for the resulting
changed COP instances without re-training. For example, D2A should generalize
to a varying number of different CNFs that could be deployed together in a specific
scenario.

Non-preemptive operation. During operation, new SFCs or CNFs are expected
to arrive over time. An SFC platform should find good assignments for newly
arrived instances without necessarily changing the assignment of previously de-
ployed CNFs.

Incremental deployment and fallback. Incremental deployment of D2A in pro-
duction systems must be possible to ensure correct operation. In the case of
performance degradation, D2A should allow for switching back to a previous
working version or a basic algorithm like Round Robin.

The requirements put constraints on the system architecture, the training pro-
cess, specifically the training data generation, and the ML models.

5.3.2 D2A system design

Fig. 5.7 shows the components of D2A : NF platform, Orchestrator, Monitor,
Assigner, NFManager and School for Assigner. The Orchestrator coordinates
the start of D2A . The Orchestrator receives a list of NFs chained to SFCs with
estimated packet processing costs of the CNFs and packet arrival rates for each
SFC. If this information is unavailable before deployment, then D2A can start
with a default placement, estimate those numbers, and re-assign the CNFs. The
Orchestrator passes this information to the Assigner. The Assigner responds
with an assignment of CNFs to CPU cores. The Orchestrator then starts the
NFManager of OpenNetVM and the CNFs. The NFManager also adjusts the
weight parameter for the cgroups of CNFs based on Eq. (5.8) to implement
RC [262].

The Monitor is integrated into the NFManager of OpenNetVM and observes
the deployed CNFs, the cost of and traffic to CNFs, and how CNFs are chained.
The School uses DTs and information from the Monitor to generate synthetic
workloads and mimic the real system’s behavior to teach Assigners. Once an
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Figure 5.7 Overview of the pipeline.

Property Values

#SFCs {1, 2, . . . , 8}
#CNFs per SFC {1, 2, . . . , 8}
Total #CNFs {4, . . . , 32}
#CPUs 16
#Dummy Loops {0, 1, . . . , 130}
Arrival rate of SFCs [0.02 Mpps, 2.5 Mpps]
Concentration parameter 𝛼 5

Table 5.1 Properties of generated problem instances.

Assigner graduates, it can be deployed to NF platforms and replace the previous
Assigner, e.g., a default algorithm such as Round Robin or a previously learned
Assigner. The NF platforms can benefit from improved assignments and revert
to a basic algorithm should the current Assigner be incompetent.

The assignment of CNFs happens once at startup or during operation. Fur-
ther, events such as horizontal and vertical scaling decisions can trigger a re-
assignment. Similarly, the Orchestrator can decide to re-assign if measurements
from the Monitor deviate from the ones the Orchestrator assumes.

As the evaluation in Sec. 5.6 shows, teaching Assigners with a simple underly-
ing system model is enough to learn assignments superior to existing strategies
for a specific scenario. Sec. 5.6 further shows that DTs learned from monitored
data improve the system performance further. Moreover, Sec. 5.6 shows that the
learned algorithms generalize to previously unseen problem instances.
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Algorithm 3: Problem Generation Algorithm
Input: maxNumSfcs ∈ ℕ, numCpus ∈ ℕ, maxMembers ∈ ℕ, 𝛼 ∈ ℝ, cpp

∈ ℕ𝑀 , 𝜆𝑟
Output: sfcs, sfcRates

1 cpuAvailable← 1;
2 sfcAvailable← 1;
3 sampledVnfs← 0;
4 numSfcs ∼ U({1, . . . ,maxNumSfcs});
5 sfcs[numSfcs];
6 cpus[numCpus];
7 sfcRates[numSfcs] ∼ 𝜆𝑟 ·Mul (Dir (𝛼 ones (numSfcs)));
8 for 𝑖 ∈ {1, . . . , numSfcs} do
9 sfcs[i]← {};

10 for 𝑖 ∈ {1, . . . , numCpus} do
11 cpus[i]← {};
12 while cpuAvailable and sfcAvailable and sampledVnfs < maxNumVnfs do
13 𝑗 ← idxOfRandomAvailableSfc(sfcs);
14 compute← U

(
{0, . . . , | cpp |}

)
;

15 cpu← ∅;
16 while cpu= ∅ and compute > 0 do
17 cpu← findNextFreeCpu(cpus, compute, sfcRates[𝑗]);
18 if cpu = ∅ then
19 compute← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 − 1;

20 if cpu = ∅ then
21 cpuAvailable← 0;
22 else
23 sfcs[𝑗] ∪{cpp[compute]};
24 cpu ∪{cpp[compute] · sfcRates[𝑗]};
25 sampledVnfs← sampledVnfs + 1;
26 if ∀𝑖 ∈ {1, . . . numSfcs} :| sfcs[𝑖] |> maxSfcs then
27 sfcAvailable← 0;
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5.3.3 Problem Workload Generation

NCO can learn algorithms through RL that operate NF platforms at unmatched
efficiency by exploiting patterns in the problem instances [259]. The intuition of
using NCO is that the underlying RL algorithms produce heuristics with superior
performance in specific scenarios, i.e., the typical workload of one operator. This
idea aligns with the current trend of data-driven algorithm design, where algo-
rithms are learned for a specific distribution over problem instances. The learned
algorithms generalize to problem instances from that distribution and outperform
existing heuristics [28, 285, 308].

To make the problem challenging, the remainder of this section designs an
algorithm that produces a distribution over problem instances by varying the
number of CNFs, SFCs, available CPU cores, processing costs, and arrival rates.
The generated problems do not contain problem-specific patterns that RL could
exploit and is, thus, a challenging benchmark. Tbl. 5.1 shows the dimensions of
the generated data, and Fig. 5.11 shows one exemplary instance.

Problem generation algorithm Algorithm 3 shows the pseudo-code for the prob-
lem generation. The algorithm takes as input a maximum number of SFCs
maxNumSfcs, several CPU cores numCpus, a maximum number of CNFs per SFC
maxMembers, a scalar value 𝛼, and an array cpp that stores computational costs
for CNFs.

The algorithm generates a problem instance as follows. First, Line 4 randomly
samples the number of SFCs between one and a maximum number maxNumSfcs.
Line 7 generates the arrival rate for individual SFCs by sampling a Multinomial
distribution from a Dirichlet distribution with concentration parameter 𝛼, and
multiplies the Multinomial with the system arrival rate 𝜆𝑟 . The concentration
parameter controls the probability mass of the resulting Multinomial distribution.

Then, the algorithm iteratively constructs SFCs as follows. First, the algorithm
randomly samples an SFC that has less than the maximum number maxMembers
CNFs in Line 13. In Line 14, the algorithm then samples a random index into the
cpp array.

Next, the algorithm attempts to find a core that can support the CNF in Line 17.
The function findNextFreeCpu uses a first-fit approach, i.e., it iterates over the
cores and returns the first core with enough remaining capacity to serve the
demand, i.e., the product of packet arrival rate and computational cost. If no such
CNF exists, the algorithm decrements the index into the cpp array in Line 19. The
algorithm repeats these steps until it finds a core or the compute variable is less
than zero.

If the algorithm finds a free core, the algorithm adds the CNF to the SFC by
noting the computational cost in Line 23. Similarly, the algorithm accounts for the
expected demand of the CNF on the CPU in Line 24. Then, the algorithm checks
if there are still SFCs with space for additional CNFs in Line 26.
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If the algorithm does not find a free core, the algorithm concludes that no more
free cores are available and sets the variable cpuAvailable to zero in Line 21.

Overall, the algorithm iterates these steps until the problem either has a max-
imum number of CNFs, all SFCs have a maximum length or all cores are fully
utilized. Then the algorithm terminates and returns the constructed SFCs, to-
gether with their rates. The generated problem instances should be feasible but
still challenging. This allows a fair comparison between assignment algorithms,
i.e., heuristics should find a solution to the problem.

Obtaining computational cost and rates Since an extensive library of micro-
service-based VNFs does not yet exist and implementing those is not the purpose
of this work, the evaluation follows the same approach of using dummy CNFs
as done in previous work [262, 305]. The CNFs for evaluating D2A are based
on the SimpleForward example from OpenNetVM. The SimpleForward looks
up the next hop of the current packet and updates corresponding metadata in
OpenNetVM. The packet processing cost of the SimpleForward is varied by exe-
cuting a for-loop with a configurable number of iterations. This results in fine-
grained control over the computational cost of CNFs, allowing the generation of
a wide range of workloads.

To obtain the processing costs in the cpp input, i.e., CPU cycles per packet, of
CNFs, the modified SimpleForward is executed. The average processing cost for
a varying number of loops in {10𝑖 | 𝑖 = 0, 1, . . . , 130} is measured. The costs range
from 80 to 8 027 cycles. Consequently, the CNFs can process between 25.5 Mpps
and 0.275 Mpps.

The system arrival rate 𝜆𝑟 is upper-bounded to 2.5 Mpps, since measurements
showed that OpenNetVM could reliably serve this rate. A packet arrival rate of
2.5 Mpps is enough in many scenarios, e.g., backbone links could be accommo-
dated with this volume [309].

5.4 Learning Platform Design

This section introduces the heart of D2A : the learning platform. Sec. 5.4.1 and
Sec. 5.4.2 explain the role of Game Theory and RL in D2A . Sec. 5.4.3 introduces
the NA and Sec. 5.4.4 the used RL training algorithm. Thus, this section reflects
MaLANe’s Formalize Problem and Prepare Training activities.

5.4.1 Game Formulation

The assignment problem can be interpreted as a job scheduling game [283] and
cast to a sequential game of perfect information. The game consists of a finite set
of selfish players𝒥 , which correspond to CNFs. Each player’s action, i.e., strategy
space, corresponds to the available CPU coresℳ.
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The players choose their actions one after the other, i.e., in sequence. All chosen
actions, and the players themselves (how many, properties such as packet arrival
rate or computational cost), are common knowledge. After every player has
chosen her action, each player 𝑗 receives a payoff 𝜋(𝑗) ∈ [−10, 0). The player’s
payoff later serves as a reward for RL. The payoff for the LB objective is:

𝜋𝐿𝐵(𝑗) :=

−10 if Constraint (5.17) is violated,

−max𝑚∈ℳ
(∑

𝑘∈𝒥 l(𝑘,𝑚)
c(𝑚)

)
else.

(5.22)

The payoff for the BP objective is:

𝜋𝐵𝑃(𝑗) :=

−10 if Constraint (5.17) is violated,

−∑𝑚∈ℳ
l(𝑗 ,𝑚)∑

𝑘∈𝒥 𝑥𝑘,𝑚 l(𝑘,𝑚) else.
(5.23)

𝜋𝐿𝐵 and 𝜋𝐵𝑃 are −10 if player 𝑗 violates a constraint. Else, the player gets the
maximum load across all cores (𝜋𝐿𝐵), or the load ratio, i.e., the fraction of the
job’s load on the core’s total load (𝜋𝐵𝑃). 𝜋𝐿𝐵 is shared, i.e., all players that do not
violate a constraint get the same payoff. A payoff of −10 arises during the game,
i.e., only players whose action violates a constraint get a payoff of −10. The payoff
of the other players is calculated at the end of the game.

Both games are finite and sequential and have at least one SNE in pure strate-
gies [282]. Further, the Price of Stability (PS) is one [283], i.e., the ratio of highest
social welfare10 across all SPNEs of the game, and the maximum social welfare is
one. Thus, the assignment of CNFs to cores with which maximum throughput,
i.e., the optimal solution to the underlying optimization problem, is achieved is
an SNE of the game. If the optimal assignment would not be an SNE of the game,
then one player could change her strategy and receive a higher payoff. This is
possible only if the throughput of the player is currently restricted, i.e., the core
the player is on is overloaded. Thus, the target core the player changes to must
have a smaller load than the current core the player is located on. This, in turn,
would contradict the assumption that the system is in the optimum state.

Formulating the assignment problem as a sequential game has two advan-
tages: It makes D2A flexible and interpretable. Flexible because players can have
varying objective functions. Players violating a constraint can be sued without
wrongly blaming others. The sequential nature of the game allows D2A to predict
placements for arbitrary subsets of CNFs. For example, an operator can include
co-location constraints of CNFs by incorporating these constraints into the utility
functions. Thus, D2A would learn to co-locate corresponding CNFs, and other
CNFs could adapt their strategies to this constraint. Interpretable because the

10Social welfare is the sum of individual player’s payoff. In this case, the sum of the throughput of
all CNFs [282].
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Figure 5.8 This figure shows an exemplary game in extensive form. The game has three
players 𝒥 = { 𝑗1 , 𝑗2 , 𝑗3} and two cores ℳ = {𝑚1 , 𝑚2}. The utilities of the players for
𝜋𝐵𝑃 and 𝜋𝐿𝐵 are given at the bottom. Bold numbers indicate the Backwards Induction
outcome.

game itself can be analyzed, allowing operators to conjecture on the potential
behavior of the system.

For example, consider the extensive form game in Fig. 5.8. The game has three
players 𝒥 = { 𝑗1 , 𝑗2 , 𝑗3} with two strategies eachℳ = {𝑚1 , 𝑚2}. Without loss of
generality, let the capacity of the cores c (𝑚1) = c (𝑚2) = 1, and a load of player
𝑗1 be l (𝑗1 , 𝑚) = 0.8 ∀𝑚 ∈ ℳ, and for players, 𝑗2 and 𝑗3 be l (𝑗2 , 𝑚) = l (𝑗3 , 𝑚) =
0.1 ∀𝑚 ∈ ℳ on both cores. Fig. 5.8 shows the resulting utilities for each player
for both utility functions 𝜋𝐵𝑃 and 𝜋𝐿𝐵 below the decision nodes of player 𝑗3.
Fig. 5.8 indicates the Backward Induction outcomes with bold numbers.

Fig. 5.8 shows that in the case of 𝜋𝐵𝑃 , the players maximize the load on the
cores. In particular, player 𝑗2 always co-locates with 𝑗1, forcing player 𝑗3 to choose
the other core.

Similarly, in the case of 𝜋𝐿𝐵, Fig. 5.8 shows how the players minimize the
maximum load. In particular, players 𝑗2 and 𝑗3 always choose a different strategy
from player 𝑗1. Beyond avoiding the company of 𝑗1, players 𝑗2 and 𝑗3 have no other
objective. This becomes relevant if a third core 𝑚3 is added to the game. The best
utility value of −0.8 would remain unaffected, i.e., 𝑗2 and 𝑗3 have no incentive to
choose separate cores. The evaluations in Sec. 5.6 will show this artifact.
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Figure 5.9 The architecture of the NN for payoff prediction.

5.4.2 The Role of RL

RL performs two tasks: (1) to predict each action’s payoff for a player in a certain
contingency, i.e., predicting the expected payoff for player 𝑗 of choosing action 𝑎
given the previously played actions, the player making its move, and the players
that have yet to make their decision; (2) to incorporate the predictions of the
DT, e.g., if a core will tip, into the learned algorithms, thus improving D2A ’s
performance.

Predicting the expected payoff can be interpreted as predicting the outcome
of Backwards Induction [310]. Backward Induction requires the evaluation of
every possible strategy profile, i.e., every possible assignment of CNFs to CPU
cores [282]. Since this number grows exponentially, Backward Induction is not
feasible in practice. Thus, D2A uses RL to learn a function parameterized through
a NN that predicts the expected payoff. That is, D2A uses RL to learn the best
responses, resulting in an SNE of the game [310]. RL thus learns the local optima
of the underlying optimization problem guided by the game dynamics.

RL can include difficult-to-model system effects into the decision problem,
because RL treats the game as a black-box. RL does not require the player’s payoff
functions to be linear, differentiable, or continuous [28, 296–298], which allows
the learning from a DT of the system that itself uses ML to model system aspects,
e.g., when a core is likely to tip. In principle, RL could even learn directly from
the experience of the hardware platform [296–298].

In addition, RL automates the process of adjusting D2A to an operator’s specific
workload. The operator only has to adapt the distribution over problem instances
for the algorithm training and can incorporate additional requirements such as
co-location constraints. The operator can achieve both through a few lines of
program code.

5.4.3 Neural Network Architecture

Fig. 5.9 shows the NN architecture used to predict the expected payoff for all
actions of one CNF. The inputs are: CurVNF, AllVNFs, AttnMask and CoreFts,
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Figure 5.10 Processing in the Multi-Head Attention Module.

which are also the observation space for RL. The size of the output layer corre-
sponds to the number of cores, which corresponds to the action space of RL.

CoreFts Features of CPU cores reflect the played actions. Each CPU core is
represented by its relative load, the number of players that chose the core, the
summed arrival rate, computational cost, and the minimum and maximum load
ratio of players that chose this core. The relative load of a core 𝑚 is:

1
c (𝑚)

∑
𝑗∈𝒥

𝑥 𝑗 ,𝑚 l (𝑗 , 𝑚) , (5.24)

i.e., the sum of loads of CNFs that chose 𝑚 divided by the cycles of 𝑚. The
CoreFts is thus a vector in ℝ|ℳ|×6. Each core’s feature vector is transformed into
a latent space through a sequence of FCLs. Each FCL transforms its input linearly
and applies the Rectified Linear Unit (ReLU) activation function [311]:

ReLU : ℝ→ ℝ>0 , 𝑥 ↦→ max(0, 𝑥). (5.25)

At first glance, this representation has nothing to do with representing taken
actions. The intuition underlying this representation is the question: Does the
action sequence contain information that is strictly necessary to determine a best
response? The answer is no. The sequence itself does not contain valuable
information. The important information for the current player is to know which
player is located on which core. Whether the corresponding player chose this core
initially or right before the current player does not matter. Since the objective is to
avoid core-tipping, the only information of interest is how the preceding agents
affect the load level of the cores they have chosen.

Encoding the previously taken actions as a simple vector also simplifies the
NN architecture drastically. Handling sequential data requires Recurrent Neural
Network (RNN) or specially designed attention-based mechanisms. RNNs are
difficult to train [284]. Attention cannot directly model sequences and thus re-
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quires additional experimentation with a positional encoding [185]. Both cases
make training more challenging while not contributing toward better decision-
making in this scenario.

CNF related input. Each CNF is represented with three numbers: The packet
processing cost, the packet arrival rate in Mpps, and the demand, i.e., the product
of arrival rate and cost. The processing cost is normalized to a value between zero
and one. The load is divided by the clock speed, resulting in a value between
zero and one. The resulting vectors are combined in the AllVNFs input, resulting
in a ℝ|𝒥 |×3 matrix. The AttnMask is a tensor in {0, 1} |𝒥 |×1 and zeroes out players
in AllVNFs. The CurVNF vector is one row from AllVNFs and corresponds to
the CNF that currently makes its move. After the CNF made its move, the corre-
sponding entry in AttnMask is set to zero, removing the CNF for the following
players.

Relation between CNFs. The NN has a MHA module. This module helps the
current CNF to set itself into relation to other CNFs [185, 312, 313]. Thus, the
NN can learn which of the other players constitute important information for its
action. The module consists of multiple attention mechanisms (called attention
heads) using scaled-dot-product attention and a learnable non-linearity [185].
The output vectors from each attention head are concatenated to a single vector.
MHA allows the NN to focus on different aspects of the input [185].

Fig. 5.10 shows the sequence of processing steps inside the MHA module. The
attention mechanism takes as input three tensors: Queries𝑄, Keys𝐾 and Values
𝑉 . The Keys and Values correspond to the AllVNFs tensor, i.e., are identical,
and the Queries to the CurVNF vector. The inputs are linearly transformed
through learnable weight matrices. The transformed Queries and Keys are used
to calculate attention scores 𝛼 as follows:

𝛼 = softmax
(
𝑄𝑊𝑄(𝐾𝑊𝐾)𝑇√

𝑑𝐾

)
𝑉𝑊𝑉 , (5.26)

where𝑊𝑄 ,𝑊𝐾 and𝑊𝑉 are the linear transformations, i.e., learnable weight ma-
trices, and 𝑑𝐾 is the number of columns, of 𝐾𝑊𝐾 [185]. The attention mechanism
then computes a convex combination of the Values𝑉 with the attention scores 𝛼.
The AttnMask sets entries in 𝛼 to zero, thus canceling rows in 𝑉 . In essence, the
MHAmodule learns to identify important entries in𝑉 given𝑄 and 𝐾 and combines
them in its output. Each head in the MHA module can focus on different aspects,
i.e., select different rows in 𝑉 . Note that the attention mechanism is independent
of the number of CNFs, i.e., rows in the AllVNFs tensor. Further, the attention
mechanism is invariant to permutations of rows in the AllVNFs tensor [185]. The
NN architecture can thus be used for a variable number of CNFs.
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Action calculation. The CoreFts embedding and the MHA output are concate-
nated and passed through a sequence of FCLs, which finally produce the output,
i.e., the expected payoff for the current CNF for any of the available CPU cores.

Thereby, the input data is exactly the data that is required for the game to have
perfect information, i.e., the players know which contingency they are in and can
act correspondingly [282]. D2A uses parameter sharing to reduce training time and
sample complexity, i.e., uses the same weights for all CNFs. Individual CNFs are
discriminated through the CurVNF input. Parameter sharing is common practice
in Deep RL [312]. Further, the game formulation and NA allow the resulting NN
to assign a single CNF, a subset of CNFs, or all CNFs to cores given the placement
of the remaining CNFs. In an online scenario, new CNFs or SFCs can be integrated
without touching the assignment of already running CNFs. Similarly, if changes
in load or cost are detected, affected CNFs or SFCs can be re-assigned individually.

Algorithm 4: The algorithm takes as input sets of cores and CNFs, and
returns a mapping from CNFs to cores.
Input: ℳ, 𝒥 , NN
Output: asgmt : 𝒥 →ℳ

1 for 𝑚 ∈ ℳ do
2 asgmt−1(𝑚) ← ∅;
3 for 𝑗 ∈ 𝒥 do
4 asgmt(𝑗) ← ∅;
5 sortDescending(𝒥);
6 for 𝑗 ∈ 𝒥 do
7 𝑚 ← getCore(NN,ℳ ,𝒥 , asgmt, asgmt−1 , 𝑗);
8 asgmt(𝑗) ← 𝑚;
9 asgmt−1(𝑚) ← asgmt−1(𝑚) ∪ { 𝑗};

RL-based assignment algorithm. Algorithm 4 illustrates the NN-based assign-
ment algorithm executed from the Assigner entity. The algorithm takes as input
a set of CPU cores ℳ, a set of CNFs 𝒥 , and a NN, and returns a mapping
asgmt : 𝒥 →ℳ from CNFs to cores. Algorithm 4 first initializes asgmt in Line 4.
Further, Algorithm 4 initializes an inverse assignment asgmt−1 : ℳ → 2𝒥 that
returns the CNFs that are assigned to a core, if any. Then, Algorithm 4 sorts the
CNFs based on their demand in descending order11. Then, the algorithm iterates
over the CNFs. For each CNF 𝑗 ∈ 𝒥 , Algorithm 4 invokes the NN in Line 7. The
getCore function constructs the NNs inputs from ℳ, 𝒥 , asgmt, asgmt−1, and
the current CNF 𝑗, executes the NN that is passed to Algorithm 4, and returns a
core 𝑚 ∈ ℳ. The Algorithm 4 updates the two assignments in Line 8 and Line 9
and continues. After Algorithm 4 iterated over all CNFs, the algorithm ends and
returns the assignment asgmt.
11This strategy is taken from the First Fit Decreasing (FFD) baseline algorithm. Sorting the CNFs

improved the convergence of RL in experiments.
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Note that Algorithm 4 does not check the capacity of cores. The algorithm takes
the return value of the getCore function without further processing it.

5.4.4 RL training algorithm

The NN is trained with double Q-learning [314] with prioritized experience re-
play [315] and a dueling architecture [316] implemented in RLLIB [317].

Q-learning is a temporal difference method based on dynamic programming.
In Q-learning, an agent learns action values of states: The expected cumulative
reward the agent can obtain by taking action 𝑎 in state 𝑠. Here, the action values,
i.e., rewards, correspond to the payoff of the game, i.e., 𝜋𝐿𝐵 and 𝜋𝐵𝑃 . Here, the
action-value function is approximated through a NN.

Double Q-learning uses a primary and a target network. The primary network
is used for action evaluation, i.e., predicting the action values, and the target
network is used for action-selection [314]. The primary network is trained on the
regression loss between observed and predicted action values. The target network
is updated using Polyak averaging. Double Q-learning helps to overcome variance
in the reward function, e.g., if the best policy is associated with low reward during
the first steps of an episode.

The replay memory improves sample efficiency and breaks temporal correla-
tions between samples of one episode. Replay memories store transitions the
learner generates during training. When updating the NNs, mini-batches of
transition tuples are sampled from the replay memory. Samples with a high pre-
diction loss are sampled with higher probability. By shuffling the samples in the
memory, the temporal dependency is removed [315].

The dueling architecture is another technique to improve learning with RL.
The neural network does not directly predict the action values in the dueling
architecture. Instead, the dueling architecture predicts the state value and action
advantages [316]. Intuitively, the dueling architecture can learn which states are
valuable and which states are not without having to learn the effect of each action
in each state. That is, the value function represents the expected value that the
learner can hope to achieve once the learner is in that state. If the state value is
small, then the action values are not that important. The learner should anyways
try to avoid this state. The converse is true for states with high values. And then
there are those states for which the actions have a major impact, i.e., an action can
lead to states with low or high rewards. The dueling architecture decouples the
identification of those situations.

Hyperparameters are tuned with the ASHA [238] and Population-Based Training
(PBT) [318] implemented in Tune [239].
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Symbol Definition Description

𝒥 Set of CNFs that are assigned.
ℳ Set of available CPU cores.
𝑙(·, ·) 𝒥 ×ℳ → ℝ Load a CNF puts on a CPU core.
𝑐(·) 𝒥 ∪ℳ → ℝ Cost in cycles to process one packet for a CNF,

or the cycles of a CPU core.
𝑟(·) 𝒥 → ℝ Packet arrival rate for a CNF.
𝑥𝑖 ,𝑚 One if CNF 𝑖 is assigned to core 𝑚, else zero.
𝑡(·, ·) 𝒥 ×ℳ → ℝ Time slice of a CNF on a CPU core.
𝑠 𝑗 ℝ Estimated rate.
𝑑̂ Maximum degree across problem graphs in the

data set.

𝒢 Problem graph.
ℰ Edges of a problem graph.
𝒱 Nodes of a problem graph.
𝒯 Set of CNF types.
𝜏 𝒱 → 𝒯 Maps a node to a CNF type.
ft 𝒱 → ℝ𝑛 Maps a node to a real valued feature vector. The

dimension of the feature vector depends on the
type of node.

Table 5.2 Symbols used in Sec. 5.5.

5.5 Digital Twins

Obtaining training samples on the real system is expensive. Evaluating one as-
signment takes tens of seconds. A DT that mimics the system is thus an important
contribution. The DT serves as an environment that RL uses to train algorithms.
Sec. 5.5.1 introduces an analytical model of the system, and Sec. 5.5.2 introduces a
method to predict the average CNF throughput and core-tipping from the system
configuration.

5.5.1 Ideal System Model

The Ideal System Model (ISM) uses the packet arrival rate and computational cost
of each CNF. The estimation is based on the CFS extended with NFVNice’s RC
mechanism.

The model estimates the load that CNF 𝑗 puts on core 𝑚:

𝑙(𝑗 , 𝑚) = c (𝑗) · 𝑟(𝑗), (5.27)

where c (𝑗) returns the cost to process one packet in cycles, and 𝑟(𝑗) is the rate of
CNF 𝑗 in packets per second.

With the load, the model can estimate the time slice 𝑡(𝑗 , 𝑚) granted to CNF 𝑗

on core 𝑚:
𝑡(𝑗 , 𝑚) = Δ𝑡𝑙 ·

l (𝑗 , 𝑚)∑
𝑖∈𝒥 𝑥𝑖 ,𝑚 l (𝑖 , 𝑚) , (5.28)
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where 𝒥 is the set of all CNFs that are scheduled, Δ𝑡𝑙 is the scheduling latency,
and 𝑥 𝑗 ,𝑚 is a binary variable that is one if CNF 𝑗 is assigned to core 𝑚 and else
zero. The number of packets processed by 𝑗 during this time is:

𝑠 𝑗 = min
(
𝛾
𝑡(𝑗 , 𝑚) c (𝑚)

c (𝑗) ; 𝑟(𝑗)
)
, (5.29)

c (𝑚) returns the clock speed of core 𝑚 in cycles per second, and 𝛾 ∈ (0, 1) is
a scalar factor to account for lost time due to context switches. The model can
return an estimate of the throughput for the vanilla CFS by setting the cost and
rate to some constant value: 𝑐(𝑗) = 𝑟(𝑗) = const. ∀𝑗 ∈ 𝒥 .

The ISM compares the expected load on a core 𝑚 against its capacity to predict
core-tipping: ∑

𝑗∈𝒥
𝑙(𝑗 , 𝑚) < c (𝑚) . (5.30)

The model is simple and fast to evaluate. The model’s correctness depends on
the actual processing cost per packet. The processing cost can be affected through
the interference of CNFs on, e.g., the last-level cache [18, 20]. The model can inject
known interferences through the definition of 𝑙(·, ·), The model does not capture
the complex behavior of the CFS, i.e., does not account for how the vruntime
increases.

5.5.2 Learning-based Digital Twin

This section presents a concept that estimates KPIs such as per CNF throughput
and core-tipping, i.e., violation of Constraint (5.17) from the system configuration.
In a real deployment, the operator can learn a DT for his scenario with data
gathered during operation or benchmarks.

Requirements

OpenNetVM and NF platforms are complex systems with many configuration
options. For example, in an edge cloud scenario, the platform might be deployed
in a small data center in which SFCs are deployed to multiple servers. The number
of available CPU cores can be different on each server. In addition, the CNFs can
interfere with each other in various ways [18–20, 287]. The DT must incorporate
these properties to make correct predictions. Important aspects are:

• The number of TX threads.

• The number of available CPU cores.

• Chaining of CNFs to SFCs.

• Varying number of CNFs and SFCs

• Assignment of CNFs to CPUs.
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Figure 5.11 Exemplary problem graph. Numbers above CPU Core nodes are frequency
in GHz, above CNF nodes are Cpp, and below edges between CNF nodes is the arrival
rate in Mpps.

• Assignment of CNFs to TX threads.

• Co-location of CPUs in NUMA nodes.

• The output port.

OpenNetVM can configure the number of TX threads that copy packets between
CNFs [269]. Depending on the length of the SFCs, the number of required TX
threads can vary. Changes in the number of TX threads change the number
of available cores since each TX thread blocks one core. Furthermore, servers
can have a different number of CPU cores. The chaining of CNFs is important.
Packet drops early in a SFC reduce the arrival rate of later CNFs. Furthermore,
a dependency exists between TX threads, CPU cores, and CNF assignment. TX
threads move data between the output and input buffers of CNFs [269]. Copying
data to other CPU cores, CPU cores on other NUMA nodes, or even sockets
increases the copying cost [20]. Further, the assignment of CNFs to cores and TX
threads can vary. Lastly, the configuration of the system impacts the performance.
Configuration options are: the NUMA node layout, the number of CPU sockets,
and the forwarding of packets to the outgoing NIC [18, 287].

To condition the KPI prediction on those aspects, the data representation must
include them. However, the complex dependencies make the representation of
the data difficult.

Problem Representation

Each problem instance is represented as an un-directed, attributed graph 𝒢 =

(𝒱 , ℰ , 𝜏, ft). Each node 𝑢 ∈ 𝒱 has one type 𝜏(𝑢) ∈ 𝒯 out of six types: vnf, tx,
core, numa, socket and nic. The edges ℰ describe the system’s dependencies. The
function ft:𝒱 → ℝn maps a node to a vector of node attributes:
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Figure 5.12 Neural Network of the learned twin.

• vnf: positional encoding, arrival rate, cost, demand, and load ratio.

• core: the sum of arrival rates, costs, and demands, and the ratio of minimum
load ratio and maximum load ratio of adjacent vnf nodes.

• tx: the sum of incident vnf nodes’ arrival rates.

• socket, numa, nic: have no additional attributes.

The positional encoding of vnf nodes represents their position in their SFC. The
encoding is a vector in ℝ10 and based on the encoding in the Transformer archi-
tecture [185].

Fig. 5.11 illustrates the representation. Fig. 5.11 shows seven CNFs that are
chained to an SFC with two branches, two CPU sockets with six cores, three
NUMA nodes, two TX threads and one outgoing NIC. Edges between core and
vnf nodes represent the CNF to CPU assignment. Edges between tx and vnf
nodes represent the CNF to TX thread assignment. Edges between vnf and nic
nodes describe the chaining of CNFs to SFCs and the packet flow. Edges between
core and numa nodes represent the organization of cores in NUMA nodes. Edges
between socket and numa nodes indicate the socket a NUMA node is located on.
Edges between core and tx nodes indicate the cores TX threads are running on.

The graph representation has four advantages: 1) The representation supports
a variable number of CNFs, SFCs, TX threads, CPU cores, sockets, NUMA nodes
and NICs; 2) The graph models complex interactions as edges; 3) nodes can be
attributed with additional meta-data, or more node types can be included; 4)
Learning approaches for graphs exist [319].

As the results in Sec. 5.6 show, the representation as graph indeed allows
the prediction of different KPIs from the same input without further feature
engineering.

Neural Architecture

A GATNN [266] model predicts KPIs from the graph representation. GATNNs use
attention instead of RNNs or linear layers to aggregate node features. attention
is the current state of the art in many areas of ML [185, 313]. GATNNs are a good
choice for three reasons: 1) NNs and in extension GATNNs are general function
approximators; 2) GATNNs can learn high-level features from low-level data; 3)
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GATNNs can work on graphs with a varying number of nodes and edges, i.e.,
apply to problem graphs of varying size [266].

Using general function approximators is important since KPIs might not depend
linearly on the input. For example, the CNFs’ throughput does not depend linearly
on the input, as Eq. (5.29) indicates, and the evaluation in Sec. 5.6 confirms. In
addition, the complex dependencies between entities in the graph make feature
engineering challenging. It is unclear how to aggregate the information in the
problem graph into fixed-width feature vectors. Moreover, interactions and effects
might change for different application scenarios. Engineered features working
well in one scenario might not apply in another. NNs can help by learning
aggregations and automatically engineering high-level features from low-level
features, tuning them towards the prediction task [266].

Inputs and outputs Fig. 5.12 shows the neural architecture. The output is a
KPI that the NN should predict. The output is calculated from four inputs that
are derived from a problem graph 𝒢: NodeFts, AdjList, AttnMask, and Node.
NodeFts is a real valued tensor ℝ|𝒱̂ |×27. Each node 𝑢 in the problem graph 𝒢
corresponds to one row in NodeFts. Each node 𝑢 is represented with a one-hot
encoding of its type 𝜏(𝑢) and its feature vector ft(u). ft(u) is inserted at a position
based on the node’s type. The remaining entries are zero.

The AdjList contains the neighbors for each node in the graph 𝒢. AdjList is
a tensor with natural numbers in ℕ|ℰ |×2. Similarly, the input AttnMask is a tensor
in {0, 1} |𝒱|×𝑑̂×1, where 𝑑̂ is the maximum node degree across all graphs in the
data set. AttnMask[i, j, 0] indicates if there is an edge between node 𝑖 and
its neighbor corresponding to 𝑗 in AdjList. The NN uses AttnMask to handle
nodes with a degree smaller 𝑑̂. The values 𝑑̂ and | 𝒱̂ | are needed to facilitate
the training with mini-batches. The neural architecture can handle any number
of nodes and node degrees.

The Node is a natural number, indexes into NodeFts, and identifies a node in 𝒢
for which the NN should predict a KPI.

How the GATNN works. First, the NN in Fig. 5.12 embeds NodeFts into a latent
space. Then, a sequence of Graph Attention Modules (GAMs) calculates new
embeddings for each node based on its neighborhood. The outputs of the GAMs
are concatenated, which improves the NN training [320, 321]. Then, the NN
selects the CNF’s embedding for which the NN should predict a KPI, and passes
the embedding through a sequence of FCLs that produce the final output.

The GAMs. The GAM consists of a Multi-Head Graph Attention (MHGA) layer, and
a FCL. The MHGA uses the AdjList and AttnMask to aggregate the embeddings of
a node’s neighbors. The layer uses a MHAmechanism with the node’s embedding
as Queries, and the embeddings of the node’s neighbors and its own as Keys
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and Values. The FCL transforms the output of the MHGA layer into a latent space
with the same dimension as NodeFts and allows the NN to learn non-linear
dependencies.

For example, consider the initial CNF in Fig. 5.11. The MHGA module takes
the feature vectors of the CNF itself, the neighboring CNFs, the TX Thread, and
the CPU core and aggregates them into a new feature vector for the CNF. The
new feature vectors thus contain information about the one-hop neighborhood of
the node. In the second GAM, the process is repeated with the newly computed
feature vectors. The CNF can thus learn about the neighbors of its neighbors.
With each subsequent GAM, the feature vectors of the nodes are enriched with new
information from other parts of the graph. This process happens in parallel for
all nodes.

For training, a custom Graph Attention (GAT) layer is used. The original im-
plementation of the GAT layer has a complexity of 𝒪(| 𝒱 |2) since it computes the
attention scores between all pairs of nodes and uses the adjacency matrix to mask
out all non-neighbors [266]. Sparse matrix representations reduce complexity but
do not allow the batching of multiple graphs [266], which is crucial to achieving
high sample throughput in this use case. The custom implementation reduces
the complexity to 𝒪(𝑑̂ | 𝒱 |) by using the graphs’ adjacency lists to gather the
feature vectors of a node’s neighbors and compute the attention scores directly
over the neighborhood. That is, instead of the adjacency matrix, the custom GAT
layer uses the adjacency list as input.

Limitations. The DT is limited by the data representation, ML models, and the
training data. If the representation does not include necessary variables, or the ML
models cannot represent the underlying system dynamics, then the predictions
of the DT will be inaccurate. Further, the DT can only model interference present
in the training data, which requires a deep understanding of the system and the
collection of a comprehensive training set.

5.6 Evaluation

This section presents the evaluation results. Sec. 5.6.1 introduces baseline mod-
els for the DT. Sec. 5.6.2 introduces baseline algorithms to compare the learned
assignment algorithms against. Sec. 5.6.3 discusses hyper-parameters for RL and
the NN. Sec. 5.6.4 discusses settings for the SFC platform itself. Sec. 5.6.5 evalu-
ates the quality of DTs, 5.6.6 compares learned algorithms against baselines, and
Sec. 5.6.7 concludes this section. Thus, this section reflects MaLANe’s Train Model,
Integrate Model, Investigate Data, and Deploy ML-enabled system activities.
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Parameter Value

train batch size 379
buffer size 760 000
Attention heads 3
Attention dimension 26
Attention Dense 20
CPU Embedding {102, 75, 94, 8}
Fully Connected {52}
Exploration EpsilonGreedy
initial epsilon 1.0
final epsilon 0.05
epsilon timesteps 531 901
learning rate Annealed with population-based training.

Table 5.3 Hyper Parameter for model and training.

Parameter Value

CFS Scheduling Latency 1 ms
CFS Scheduling Granularity 0.1 ms
Kernel tick rate Hz 250 Hz
Number of TX threads 4
Number of RX threads 1
D2A assignable CPUs Cores {8, . . . , 11} on Socket 1, Cores

{12, . . . , 23} on Socket 2
Packet Size 64 Byte
Arrival Rate 2.5 Mpps

Table 5.4 Parameter Settings of the D2A server.

Parameter Value

#GraphAttention-Modules 6
#Attention heads 3
Initial Transform 20
Dim transform of Keys, Queries 10
Dim transform of Values 10
Attention Dense 20
Fully Connected {92, 51}
learning rate Annealed with PBT.
batch size Annealed with PBT.

Table 5.5 Hyper Parameter for the learned digital twin.
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5.6.1 DT Baseline

To show that the GATNN architecture proposed in Sec. 5.5.2 is competitive in the
learning task, this section introduces two ML models that rely on domain knowl-
edge and hand-crafted features for the prediction. The first model uses Logistic
Regression to predict core-tipping. The second model uses Linear Regression to
predict throughput. The remainder of this section introduces the models and
explains the engineered features.

Logistic Regression

Logistic Regression is a basic ML model for binary classification [27]. Here,
Logistic Regression should predict if a CPU core will tip given the assigned
CNFs. Formally, Logistic Regression models the target variable as a probability:

plogreg :{0, 1} ×ℝ8 ×ℝ8 → (0, 1),

(𝑦, 𝑥, 𝜃) ↦→ 𝑦
1

1 − exp(−𝜃𝑇𝑥)
+ (1 − 𝑦)

(
1 − 1

1 − exp(−𝜃𝑇𝑥)

)
.

(5.31)

The binary variable 𝑦 is the target variable and is 1 to represent a core-tip and
0 else. The variable 𝑥 ∈ ℝ8 is a feature vector characterizing a CPU core. The
individual features are explained shortly. The variable 𝜃 ∈ ℝ8 are trainable
parameters estimated from data using the graph representation of a problem
instance defined in Sec. 5.5.2.

Let the node 𝑢 ∈ 𝒱 be a CPU core with type 𝜏(𝑢) = core, and 𝒱𝑢 � {𝑣 |
𝑣 ∈ 𝒱 ∧ (𝑢, 𝑣) ∈ ℰ ∧ 𝜏(𝑣) = vnf} the set of CNFs assigned to core 𝑢. Then, the
probability of a core-tip plogreg(1 | 𝑥, 𝜃) for one CPU core, is calculated from the
following features:

1. Number of CNFs assigned to the CPU core:

| 𝒱𝑣 | . (5.32)

2. The sum of the arrival rates of all CNFs assigned to the node:∑
𝑣∈𝒱𝑣

𝑟(𝑣). (5.33)

3. The sum of the packet processing cost all CNFs assigned to the node:∑
𝑣∈𝒱𝑣

𝑐(𝑣). (5.34)
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4. The total demand, i.e., the sum of the demand of all CNFs assigned to the
node: ∑

𝑣∈𝒱𝑣
𝑟(𝑣)𝑐(𝑣). (5.35)

5. The minimum demand ratio, i.e., the minimum CNFs demand relative to
the total demand:

lmin(𝑢) �
min𝑣∈𝒱𝑣 (𝑟(𝑣)𝑐(𝑣))∑

𝑣∈𝒱𝑣 𝑟(𝑣)𝑐(𝑣)
. (5.36)

6. The maximum demand ratio, i.e., the maximum CNFs demand relative to
the total demand:

lmax(𝑢) �
max𝑣∈𝒱𝑣 (𝑟(𝑣)𝑐(𝑣))∑

𝑣∈𝒱𝑣 𝑟(𝑣)𝑐(𝑣)
. (5.37)

7. The ratio of minimum and maximum demand ratio:

1 − lmin
lmax

. (5.38)

The last element in the feature vector is statically set to 1, and the corresponding
entry in the parameters 𝜃 corresponds to an intercept.

The features defined in Eq. (5.32) to Eq. (5.38) can be interpreted as custom
aggregation functions over the CNF nodes adjacent to a CPU node. The features
reflect the CFS’ behavior from Sec. 5.2.1. The system analysis showed that the total
demand on the CPU core and a load of CNFs relative to each other is relevant.

Linear Regression

The evaluation uses linear regression to model the throughput a CNF achieves in
the assignment. The estimation function is defined as follows:

linreg : ℝ11 ×ℝ11 → ℝ, (𝑥, 𝜃) ↦→ 𝜃𝑇𝑥. (5.39)

Again, the argument 𝑥 ∈ ℝ11 corresponds to a feature vector for a CNF node
derived from a problem’s graph representation in Sec. 5.5.2. The parameter
𝜃 ∈ ℝ11 are trainable parameters. The feature representation of a CNF node
𝑢 ∈ 𝒱 with 𝜏(𝑢) = vnf includes the feature representation of the CPU node 𝑢 is
assigned to, i.e., corresponds to the features defined in Eq. (5.32)-(5.38). Features
eight to ten correspond to:

8. The CNF’s arrival rate 𝑟(𝑢).

9. The CNF’s computational cost 𝑐(𝑢).

10. The CNF’s demand 𝑟(𝑢)𝑐(𝑢).

As before, the last element in the feature vector 𝑥 is statically set to 1 for the
intercept.
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The intuition behind the linear regression is that the maximum throughput the
CNF can achieve corresponds to its arrival rate. The arrival rate is part of the
feature vector. The remaining features can then be mapped into an offset from the
threshold that captures the expected deviation from the requested packet arrival
rate.

5.6.2 Assignment baselines

The evaluation uses three baseline algorithms to evaluate the performance of the
learned assignment algorithms: Round Robin (RR), Least Loaded First (LLF), and
FFD. The remainder of this section explains the algorithms in detail.

Round Robin

Algorithm 5: Round Robin takes as input ordered sets of cores and CNFs,
and returns a mapping from CNFs to cores.
Input: ℳ, 𝒥
Output: asgmt : 𝒥 →ℳ

1 for 𝑖 ∈ {1, . . . , | 𝒥 |} do
2 asgmt(𝒥𝑖) ← ℳ𝑖mod|ℳ|;

Algorithm 5 illustrates RR. Algorithm 5 returns a mapping from CNFs 𝒥 to
CPU coresℳ by iterating over the CNFs 𝒥 . Then, RR assigns each CNF to the
𝑗th core, where 𝑗 is the modulo of the current CNF’s loop index and the number
of CPU cores.

Algorithm 5 shows that RR is static and does not consider previous assignment
decisions. RR will use as many cores as possible, irrespective of the individual
core’s load.

Least Loaded First

Algorithm 6: Least Loaded First takes as input a set of cores and CNFs,
and returns a mapping from CNFs to cores. LLF always chooses the core
with the smallest load.
Input: ℳ, 𝒥
Output: asgmt : 𝒥 →ℳ

1 for 𝑚 ∈ ℳ do
2 asgmt−1(𝑚) ← ∅;
3 for 𝑗 ∈ 𝒥 do
4 𝑘 ← min𝑚∈ℳ

∑
𝑗∈asgmt−1(𝑚) 𝑐(𝑗)𝑙(𝑗);

5 asgmt(𝑗) ← 𝑘;
6 asgmt−1(𝑘) ← asgmt−1(𝑘) ∪ { 𝑗};
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LLF is more advanced than RR and aims to keep cores evenly loaded. LLF is
2 − 1

|ℳ| competitive [16].
Algorithm 6 illustrates the LLF algorithm. LLF takes as input the CNFs 𝒥 and

CPU coresℳ and returns an assignment asgmt : 𝒥 → ℳ from CNFs to cores.
Algorithm 6 further tracks the CNFs that are assigned to a core with the mapping
asgmt−1 :ℳ → 2𝒥 . The mapping is initialized in Line 2.

Then, Algorithm 6 iterates over the CNFs in 𝒥 . Algorithm 6 retrieves the
currently least-loaded core in Line 4. Then, Algorithm 6 updates asgmt and
asgmt−1 in Line 5 and Line 6.

Similar to RR, LLF uses as many cores as possible. In contrast to RR, LLF takes
previously made assignments into account.

First Fit Decreasing

Algorithm 7: Least Loaded First takes as input ordered sets of cores and
CNFs, and returns a mapping from CNFs to cores.
Input: ℳ, 𝒥
Output: asgmt : 𝒥 →ℳ

1 for 𝑚 ∈ ℳ do
2 asgmt−1(𝑚) ← ∅;
3 for 𝑗 ∈ 𝒥 do
4 asgmt(𝑗) ← ∅;
5 sortDescending(𝒥);
6 for 𝑗 ∈ 𝒥 do
7 for 𝑚 ∈ ℳ do
8 if 𝑐(𝑗)𝑟(𝑗) +∑𝑤∈asgmt−1(𝑚) 𝑐(𝑤)𝑟(𝑤) < 𝑐(𝑚) then
9 asgmt(𝑗) ← 𝑚;

10 asgmt−1(𝑚) ← asgmt−1(𝑚) ∪ { 𝑗};
11 break;

12 if asgmt(𝑗) = ∅ then
13 𝑚 ← LeastLoadedFirst(ℳ , { 𝑗})(𝑗);
14 asgmt(𝑗) ← 𝑚;
15 asgmt−1(𝑚) ← asgmt−1(𝑚) ∪ { 𝑗};

FFD is a bin-packing algorithm. In contrast to RR and LLF, FFD’s goal is to use
as few CPU cores as possible. FFD has a competitive ratio of 1.7 [264].

Algorithm 7 illustrates the implementation of FFD used in the evaluation. Simi-
lar to Algorithm 6, Algorithm 7 uses an inverse mapping from cores to CNFs and
initializes the mapping in Line 2. Further, Algorithm 7 initializes the assignment
asgmt in Line 4. Then, Algorithm 7 sorts the CNFs in Line 5 based on their
demand in descending order. Algorithm 7 calculates the demand for a CNF 𝑗 as:

𝑐(𝑗)𝑟(𝑗) (5.40)
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Then, Algorithm 7 iterates for each CNF 𝑗 over the cores ℳ. In Line 8, Algo-
rithm 7 checks if the current core 𝑚 has enough computational capacity left to
accommodate the current CNF 𝑗. If 𝑚 has enough capacity, Algorithm 7 updates
the assignment and stops iterating over ℳ. If 𝑚 has not enough capacity, the
algorithm continues with the next core.

Once the loop over cores finishes, Algorithm 7 checks in Line 12 if a core has been
found for CNF 𝑗. If asgmt returns the empty set, Algorithm 7 uses Algorithm 6 to
find the currently least loaded core, and updates asgmt and asgmt−1 accordingly.

Algorithm 7 differs from the FFD algorithm in the literature by using LLF to find
the least loaded core. If Algorithm 7 uses LLF, then no core has enough capacity
left to accommodate the current CNF. Normally, FFD would open a new bin, i.e.,
CPU core in this case. However, the problem instance has only a finite set of cores,
which Algorithm 7 has already exhausted. Since the CNF has to be assigned to
some CPU core, Algorithm 7 uses LLF to minimize the amount by which a core is
overloaded.

5.6.3 RL Hyperparameters

Tbl. 5.3 lists the hyperparameters used during learning. A batch size of 379, a
replay buffer size of 760 000 samples, and the epsilon greedy exploration strategy
is used. Initially, 𝜖 = 1, i.e., the agents take fully random actions. The value of 𝜖 is
annealed to 𝜖 = 0.05 over 531 901 time steps. Once 𝜖 is annealed, five percent of
the actions are random. The learning rate for updating the NN’s parameters is not
set to a fixed value. Instead, the learning rate is annealed with PBT throughout
training with a population of five trials. During the evaluation, 𝜖 is set to zero,
i.e., the agents greedily select the action with the highest predicted action value.
All other hyperparameters are obtained with ASHA. OpenAI’s Tune and Rllib
library are used to scale training [239, 317]. The NN resulting in the best average
payoff for the players is then evaluated in the testbed on a separate set of problem
instances.

The MHA module of the NN has three attention heads. Input tensors are trans-
formed into a 26 dimensional latent space. The FCL following the MHA module
has 20 neurons. The NN transforms the CPU features into an eight-dimensional
latent space with a sequence of three FCLs with sizes {102, 75, 94}. The CPU
feature embedding and the output of the MHA is concatenated and passed through
one hidden layer with 52 neurons. The resulting network has 27 635 parameters
and a size of 108 KBytes. The most expensive step is the calculation of the last
hidden layer’s activation, which requires 2(148 · 52) + 52 operations. The model is
small, fits into a CPU cache, and assigns CNFs within milliseconds.
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Figure 5.13 Testbed setup.
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Figure 5.14 Core allocation.

5.6.4 Testbed configuration

Fig. 5.13 shows the testbed setup. The testbed has a traffic generation server and
a server running D2A . The servers are connected back-to-back with two Intel 10G
X550T NICs. Both servers have an Intel(R) Xeon(R) CPU E5-2650 with 24 cores
each. The traffic generation server generates traffic with MoonGen [170], sends
the traffic on one port to the D2A server, and receives traffic from the D2A server
on the other port. MoonGen generates traffic for each SFC in a separate process
and collects throughput and latency statistics. On the D2A server, D2A steers
received traffic through the configured SFCs, sends the outgoing traffic back to
the traffic generation server, and collects CNF statistics. To assign CNFs to cores,
D2A uses the learned heuristics, and the three baseline algorithms RR, LLF, and
FFD to evaluate 100 problem instances.

Tbl. 5.4 lists the hardware settings. The D2A server uses the CFS with a schedul-
ing latency of 1 ms, a scheduling granularity of 0.1 ms, and a Hz value of 250 Hz.
Fig. 5.14 shows the core allocation of D2A . The NFManager, a divider NF (DV),
and TX and RX threads are allocated to cores C0 to C6. DV divides the incoming
traffic for each SFC and forwards the traffic to the SFC’s ingress NF. Core C7 is
empty to leave room for OS processes running in the background. Cores C8-C23
are available to D2A for CNF assignment.

5.6.5 Digital Twin Performance

The ISM, and NN-based DT (DTNN) are compared against Logistic Regression
(DTLogR) for detecting core-tipping and Linear Regression (DTLinR) to predict
throughput. DTNN, DTLogR, and DTLinR are trained on the measurements of 2 699
problems generated based on the procedure in Sec. 5.3.3. The problem’s assign-
ments are obtained with RR, LLF, FFD, LBHS, and BPHS. The resulting graphs have
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Figure 5.15 Accuracy (AC), recall (RC), and precision (PR) as a function of the class weight
for DTLogR.
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Figure 5.16 Deviation of ISM, NN, and DTLinR to the actually measured throughput.

between 38 and 68 nodes, 49 and 160 edges, and node degrees between 1 and 16.
The data is split into a training, validation, and test set. The training set is used for
parameter tuning, the validation set for hyperparameter tuning, and the test set to
obtain the final results. The DTNN is trained with ASHA for initial hyper-parameter
tuning and PBT to obtain a final model. The models for DTLinR and DTLogR were
trained with the Scikit-Learn library [322]

DTs can detect core-tipping. The twins are evaluated based on accuracy, preci-
sion, and recall [323]. Here, a higher recall is better, i.e., if a core tips, the models
will detect it. The DTNN achieves an accuracy of 93.40 %, recall of 77.18 %, and
precision of 96.77 %. The DTLogR of 91.81 %, 79.38 %, and 78.27 %. The ISM of
80.63 %, 66.47 %, and 48.55 %. The DTNN has a high precision, i.e., few false posi-
tives. Precision and recall are similar for DTLogR, which has the best recall score
among the models. Still, a recall of 79.35 % means that 20 % of the core-tips will
not be detected. Too much to reliably avoid core-tipping in learned assignments.

To improve the recall, the samples of tipped cores in the training set are given
a higher weight in the objective function, i.e., the models are biased towards
predicting this class. Fig. 5.15 shows how the metrics of DTLogR change. Fig. 5.15
shows that the recall increases, and the precision and accuracy decrease. A weight
of 8 results in the highest recall of 98.58 %. Precision and accuracy decrease to
63.22 %, and 88.72 %. For the DTNN, weighting the objective function had no strong
impact on any metric.
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Avg. Throughput [%] Avg. Total Cost per Packet [Cpp] Avg. Latency [ms]
2.5 Mpps 1 Mpps 2.5 Mpps 1 Mpps 2.5 Mpps 1 Mpps
CFS RC CFS RC CFS RC CFS RC CFS RC CFS RC

RR 93.95 96.51 99.71 99.71 2 084.23 2 035.19 4 981.98 4 982.12 1.64 1.80 0.04 0.06
LLF 96.14 96.98 99.71 99.71 2 041.64 2 005.59 4 982.20 4 982.14 1.19 2.45 0.07 0.06
LBHS 96.94 98.64 99.72 99.71 1 745.45 1 713.73 3 296.24 3 296.24 1.19 1.06 0.06 0.07
LBCol 98.03 98.83 99.68 99.71 1 861.44 1 837.51 4 670.68 4 668.99 0.50 0.82 0.05 0.06
FFD 67.19 77.53 77.07 83.57 1 291.54 1 112.98 1 305.87 1 203.84 7.07 8.36 5.71 7.43
BPHS 88.08 88.21 98.60 98.18 1 343.98 1 330.69 1 635.19 1 636.04 4.80 4.57 0.84 0.82
BPCol 98.10 98.97 99.71 99.71 1 587.16 1 572.24 1 791.62 1 791.64 0.81 0.81 0.15 0.21

Table 5.6 Latency, total cost per packet, and throughput for 2.5 Mpps and 1 Mpps.

DTNN predicts throughput accurately. Fig. 5.16 shows the target and prediction’s
differences as CDFs. Positive values indicate over-estimation and negative values
under-estimation. Fig. 5.16 shows that the DTNN and the ISM have an error close to
zero for more than 50 % of the samples. The ISM over-estimates the throughput
most of the time, while the DTNN under-estimates and over-estimates. The DTNN
and ISM have an average error of 2.53 % and 15.05 %. The DTLinR cannot predict
the throughput and has an average error of 149.29 %.

In summary, the DTNN and DTLogR can detect core-tipping better than the ISM.
By weighing the objective function, the DTLogR achieves a recall of > 98 %. The
DTNN has a high precision of > 96 %. Thus, the remainder of the evaluation uses
the DTLogR to train new generations of assignment algorithms. Further, the NN
can predict the throughput of CNFs with an average error of 2.53 % of the actual
throughput.

5.6.6 System Performance

The evaluation investigates the impact of RC over the vanilla CFS. MoonGen
sends packets with 1 Mpps and 2.5 Mpps. The baseline algorithms RR, LLF, and
FFD are compared against four learned assigners: BPHS, BPCol, LBHS, and LBCol.
BPHS and BPCol use the 𝜋𝐵𝑃 utility function, and LBHS, and LBCol the 𝜋𝐿𝐵 utility
function. LBHS and BPHS graduated from High School (HS) and learned with the
ISM. LBCol and BPCol graduated from College (Col) and learned with the DTLogR.
The assignment algorithms are compared based on throughput, TPC, and the
end-to-end latency. The throughput and latency is measured with MoonGen.
The TPC is measured on the D2A server, and is defined as:

𝑇

∑
𝑚∈ℳ 𝑦𝑚𝑐(𝑚)∑
𝑗∈𝒥 packets(𝑗) , (5.41)

where 𝑇 is the experiment period, and packets(𝑗) gives the total number of pro-
cessed packets for CNF 𝑗. That is, TPC measures the cycles that the system
spends on each packet. Each configuration of assignment algorithm, arrival rate,
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and scheduling policy is evaluated with 100 problems generated with the pro-
cedure in Sec. 5.3.3, resulting in a total of 8 400 experiments. Tbl. 5.6 gives an
overview of all combinations. The remainder of this section details the result for
an input rate of 2.5 Mpps, and RC. The results for other combinations are similar.
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Figure 5.17 Violinplots of the throughput where markers indicate the average, vertical
bars the median, and small dots actual samples.

D2A achieves higher throughput. Fig. 5.17 shows a violinplot of the throughput.
Markers represent the average (avg), black vertical bars the median throughput,
and small dots are actual samples. Fig. 5.17 shows that BPCol (avg. 98.97 %) is
comparable to LBCol (avg. 98.83 %), and outperforms LLF (avg 96.98 %) and RR
(avg 96.51 %). FFD (avg. 77.53 %) and BPHS (avg. 88.21 %) perform worse, which
is expected. RR and LLF can use all 16 cores and co-locate at most two CNFs,
which reduces the risk of core-tipping. FFD often tips cores, which degrades
performance. BPHS learns to avoid core-tipping through the ISM that detects 60 %
of the cases. BPCol further reduces core-tipping by learning with the DTLogRmodel
that detects 98.58 % of the cases.
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Figure 5.18 Violinplots of the TPC where marker indicate the average, vertical bars the
median and small dots actual samples

D2A uses fewer cycles per packet. Fig. 5.18 compares the TPC. RR and LLF have
the highest TPC with more than 2 000 Cpp on average. The different shapes of the
violines are caused by the dependence on the number of packets and used cores.
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LLF and RR use equally many cores, but LLF has a higher throughput, resulting
in more processed packets, which reduces the TPC.
LBHS and LBCol have a lower TPC with 1 713 Cpps, and 1 838 Cpps. LBHS and
LBCol co-locate CNFs more thanRR andLLF, which reduces the TPC. This behavior
is a training artifact and not intended. The shared utility𝜋𝐿𝐵 returns the maximum
load. Thus, players can co-locate if the corresponding core does not become the
new most loaded core.

The BP algorithms have the smallest TPC with 1 113 Cpps, 1 331 Cpps, and
1 572 Cpps for FFD, BPHS, and BPCol. This is expected, BPHS and BPCol use more
cores to avoid core-tipping. BPCol reduces the TPC compared to LBCol by a factor
of 1.17. For the 1 Mpps scenario, BPCol reduces the TPC by a factor of 2.60.
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Figure 5.19 Violinplots of the latency where marker indicates the average, vertical bars
the median and small dots actual samples.

D2A reduces latency. Fig. 5.19 shows a violinplot of the latency. Fig. 5.19 shows
that FFD has the highest latency with 8.36 ms on average, followed by BPHS with
4.57 ms on average. RR, LLF and LBHS is markedly smaller with average latencies
between 1.0 ms and 2.5 ms. LBCol and BPCol achieve the lowest latencies with an
average of 0.82 ms and 0.81 ms.

The heavy-tailed distributions of latencies in Fig. 5.19 reflect the behavior of
the CFS described in Sec. 5.2. Specifically, the distribution of FFD shows that RC is
insufficient to achieve low latencies and high throughput. Also, Fig. 5.19 shows
that good assignments reduce latencies and jitter. For example, the distribution
of BPCol concentrates closer to the left, i.e., has smaller values than even the load
balancing heuristics that use all cores in the system.

5.6.7 Discussion

This chapter shows that NCO can learn effective assignment strategies in varying
scenarios and that the learned strategies generalize to previously unseen scenar-
ios. Given the existing literature on SFC scheduling, the number of SFC and CNFs
is representative. In fact, the scale of the problems in this chapter exceeds that of
most related work. Still, the results are limited in that a uniform packet size and
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constant packet arrival rate for each SFC is assumed, and interference between
CNFs mostly relates to the compute resources.

However, the arrival rates and individual SFCs arrival rates are random in the
evaluation. Thus, the presented framework can be expected to handle changing
arrival rates during continuous operation, although D2A has not been evaluated
in such a setting. For example, the effect of the transient phase in which CNFs get
re-assigned to different cores on throughput is unclear.

Further, there is reason to believe that CNFs will be more predictable in their
behavior than monolithic VNFs. Since CNFs can be expected to do only a few
specific tasks, the variance in processing cost will not be as strong as, e.g., reported
for the Snort IDS [288].

In summary, there is reason to believe that in a real-world deployment, more and
stronger patterns exist compared to the evaluation scenario. This strengthens the
case for data-driven algorithm design in such scenarios. The evaluation scenarios
had few patterns in the data that RL could exploit. Still, RL managed to improve
upon baseline algorithms. Future work could thus include the implementation
of an exemplary micro-service-based SFC to verify this hypothesis.

5.7 Summary

This chapter investigates NF platforms that allow CPU core sharing between
CNFs. The chapter explains how the OS’s scheduling policies cause interference
between co-located CNFs and how the interference impacts throughput and la-
tency. The chapter then presents D2A that learns a Load Balancing (LB) and a
Bin-Packing (BP) heuristic with Neural Combinatorial Optimization (NCO) and
Game Theory. The novel NCO and Game Theory combination make D2A incre-
mentally deployable and easy to integrate into existing infrastructures. Extensive
measurements in a testbed show that D2A increases throughput up to 46 %, and
reduces latency by up to 93 %, with only a 23 % increase in computational re-
sources compared to First Fit Decreasing. LB heuristics that achieve comparable
throughput and latencies require 58 % more resources. Further, the chapter shows
the potential of an entirely data-driven approach by integrating a Machine Learn-
ing (ML)-based Digital Twin (DT) of the NF platform into the training process of
NCO. The DT models the complex interference of CNFs on the CPU and increases
the learned algorithm’s throughput by up to 11 %, and decreases latency by up to
90 % compared to using an analytical model.

This chapter opens interesting avenues for future work. In particular, more
realistic CNFs and SFCs might increase the challenge of achieving efficient work-
load processing, which is a perfect application for D2A . This chapter proposes
that these problems can benefit from the DT’s ML model. Further, this chapter
provides a rigorous analysis of the Linux scheduler’s behavior in NF platforms
that allow NF co-location, which can help improve those platforms. Lastly, the
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framework this chapter presents could be applied hierarchically. This chapter
takes the set of CNFs as given. In a Cloud-Native Communication Network, the
assignment of CNF to nodes must be made from another entity. This entity could
use the same principle as D2A to learn assignment strategies on the node level
and utilize the proposed DT structure to predict potential failures.
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Chapter 6

Conclusion and Outlook

Technological trends such as the Internet of Things (IoT), CPSs, and the shift
towards digital consumption drive network operators to adopt a cloud-native ap-
proach for networking using a MEC compute infrastructure. The resulting Cloud-
Native Communication Network helps network operators to face increasing data
traffic costs while meeting the vastly different requirements of applications such as
XR, gaming, CPSs, and M2M while providing a distinguished service to succeed
in the competition.

Network automation is one of the key benefits driving the adoption of Cloud-
Native Communication Networks. However, application and infrastructure di-
versity make automation challenging. For example, algorithms automating one
network function or service are not necessarily transferable to another. Even the
design of control algorithms for one function or service can be challenging, as
assumptions about its behavior might be too simple. Similarly, the hardware at
different MEC locations might differ, reflecting control decisions for the function
or service. Obtaining a sophisticated behavioral model of the function or service
across different hardware stacks is a time-consuming and challenging task that
cannot be realized at the scale of Cloud-Native Communication Networks. Fur-
ther, automation requires control decisions that often correspond to solutions to
algorithmic hard optimization problems.

The concept of data-driven algorithm design offers a solution to this chal-
lenge. Data-driven algorithms use ML and AI to automatically learn algorithms
tailored to specific use cases from data. Further, data-driven algorithm design
offers the opportunity to include complex behaviors and system effects into con-
trol algorithms that would otherwise be hard to realize. Data-driven algorithm
design can be interpreted as an additional layer in the operation of networks
that automates the design of algorithms automating network operation. Natu-
rally, data-driven algorithm design introduces challenges and needs a structured
approach to succeed. This thesis studies data-driven algorithm design in three ap-
plication scenarios: Micro-service-based traffic classification, Traffic Engineering,
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and micro-service co-location on shared CPU cores, and summarizes the gained
experience in a process model for data science projects in networking.

Section 6.1 summarizes this thesis’s key contributions and outcomes. Sec. 6.2
gives an overview of interesting and challenging research directions in the area
of data-driven algorithm design for network operation automation.

6.1 Summary

The main outcome of this thesis consists of a process model for performing data
science projects in the networking domain, which summarizes the experience of
over 30 data science projects of varying scopes. Further, this thesis presents frame-
works to obtain data-driven algorithms for three application scenarios and shows
the effectiveness of the resulting ML-enabled systems through implementations
and measurements in testbeds.

A process model for data science projects in networking. The MaLANe process
model abstracts and summarizes the experience of over 30 data science projects
in the networking domain. MaLANe emphasizes the strong interdisciplinarily
of data science in the networking domain and bridges gaps between disciplinary
fields to improve collaboration. MaLANe makes the layers of data science projects
in the networking domain explicit, i.e., links the business view, systems engi-
neering, data science, and networking experts. MaLANe thereby complements
existing process models for data science projects with a unique view on the pro-
totypical realization of the resulting ML-enabled systems and a perspective on
RL-based projects.

ProFi- Data-driven Websitefingerprinting. ProFi focuses on traffic classification,
specifically, on WFP in an online deployment scenario and at scale. ProFi relies
on a micro-service-based system design that makes it amenable to operate in the
context of Cloud-Native Communication Networks. For example, ProFi could
operate at edge clouds and provide visibility into accessed services in an encrypt-
everything regime. To this end, ProFi relies on computationally cheap PGMs to
capture a website’s behavior on the flow level, enabling ProFi to operate live in
the network. The PGMs further detects changes in the website’s characteristics
that require the refitting of the model. ProFi’s modular architecture simplifies
updating existing models and integrating new models. A comparison to SoA
shows that ProFi achieves competitive performance wrt. classification metrics
while outperforming SoA in inference speed and not assuming the availability
of all traffic for one load of a website’s webpage. Testbed evaluations show that
ProFi can process more than 400 website accesses per second at 10 Gbit/s, and
provides classification results within milliseconds.
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Mistill- Data-driven Traffic Engineering Mechanisms. Mistill provides a method
to learn TE mechanisms for TE policies in small and medium-sized Fat Tree topolo-
gies. Thus, Mistill can improve TE at cloud locations by automatically providing
TE mechanisms to TE policies that improve the performance for the specific appli-
cations accessed in each location. Specifically, Mistill learns how to encode local
information in switches into update messages, which information is required to
predict the forwarding behavior for a given destination, and how to process the
exchanged update messages to construct a path to the destination that follows the
initial TE policy. Mistill learns TE mechanisms for TE policies through an efficient
training procedure that exploits the markovian structure of forwarding decisions.
To operate in practice, Mistill relies on the eBPF, pushes the route computation
into the end-hosts, and uses source routing to enforce the forwarding decisions.
Mistill uses IP multicast to distribute the necessary update messages. Multicast
enables the network to exchange only those updated messages necessary for the
often sparse communication patterns. Source routing and multicast allow the
deployment of Mistill in legacy networks with COTS hardware. Packet-level
simulations show that Mistill learns TE mechanisms that closely implement a TE
policy’s forwarding decisions and generalize to unseen traffic patterns. Testbed
evaluations show that Mistill reacts within 1.3 ms to changes in the network.

D2A - Data-driven core sharing for CNFs. D2A facilitates the co-location of CNFs
on one CPU core. D2A thus directly contributes to the efficiency of Cloud-Native
Communication Networks. D2A uses ML to learn the interference of co-located
CNFs and predicts if a core can no longer sustain the assigned load. Then, D2A
uses the learned model together with RL to learn control algorithms implementing
load balancing and bin packing heuristics. D2A introduces a novel framework
that reformulates the classical optimization problem as congestion games and then
uses RL to learn the best responses of the game. Testbed measurements comparing
D2A to three popular load balancing and bin-packing heuristics show that D2A
learns heuristics that avoid the overutilization of cores while also improving
latency, processing cost and throughput of the ML-enabled system.

6.2 Future Work

The results of this thesis open many avenues for future work, of which the follow-
ing ones are of particular interest.

Holistic and probabilistic approach to traffic classification. Traffic classification
often relies solely on data directly captured from the observed traffic. However, of-
ten additional information is available. For example, the usage of applications and
services is time-dependent and could depend on users’ geo-location or correlate
with previously used services and applications. ProFi’s probabilistic framework
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allows the integration of this information by extending the underlying graphical
models accordingly. Investigating how available information causally related to
the observed traffic changes traffic classification performance is an interesting and
challenging research question.

Mixture models with continuous emissions for traffic classification. The data
analysis in this thesis shows that website behavior can be multi-modal and dis-
tributional concerning packet sizes. To capture these properties better, the PGMs
could be adapted to a continuous emission model, i.e., directly modeling the
packet size distribution at specific positions in the flow. Further, a mixture model
could represent the different website behaviors. How to formulate, efficiently
learn, and realize such a system is an interesting and challenging research ques-
tion.

Learning TE mechanisms for arbitrary topologies. Fat Tree topologies are a pop-
ular DCN topology. However, other DCN topologies that are not based on a Clos
topology and have a more irregular structure exist. Similarly, WAN topologies
also have diverse and irregular topologies that are not based on a Clos topology.
Extending the learning of TE mechanisms for TE policies to arbitrary topologies
is an interesting and challenging research question.

Reinforcement Learning-based TE Mechanisms. Depending on the TE policy,
generating the training data necessary to learn a TE mechanism in a supervised
fashion might be computationally expensive specifically, if the TE policy should
consider the temporal correlation between flowlets. Learning TE mechanisms
with RL in such a setting would alleviate the training data generation. Similar to
D2A , interferences in the network that are hard to model and include in traditional
TE policies could be incorporated in the TE mechanisms. Formulating such TE
policies and deriving a RL representation of the problem that allows the efficient
learning of TE mechanisms is, therefore, an interesting and challenging research
question.

NN offloading to NICs. Hosts in DCNs today are equipped with NICs that have
strong computational capacities. The advanced computational capabilities of
NICs could be used to improve the reaction time of Mistill. Specifically, the route
computation could be moved directly onto the NIC, avoiding the communication
overhead between user- and kernel space. Implementing a NN for the execution
on NICs, further offloading the route computation, and measuring the effect on
route computation is an interesting and challenging research question.

DT-based VNF to node scheduling. Cloud-Native Communication Networks of-
ten rely strongly on K8S to orchestrate the execution of containers on the infras-



Chapter 6 Conclusion and Outlook

178

tructure. K8S uses a scheduler to assign containers to available nodes. Using D2A
’s approach for learning assignment strategies could improve the overall perfor-
mance further. For example, given D2A ’s learned assignment strategies and DTs,
a second level could use these as building blocks to learn the assignment of con-
tainers to nodes such that nodes are not overloaded and latency, throughput, and
computational effort are optimized. Integrating such a learned scheduler with
container orchestration tools and measuring the resulting performance benefits
is an interesting and challenging research question.
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Acronyms

D2A Data-Driven Assignment 123, 124, 137, 141–143, 147, 148, 150, 153, 161, 167,
169–173, 177, 178, 184

AI Artificial Intelligence 2, 174

ALPN Application-Layer Protocol Negotiation 31, 34, Glossary: Application-Layer
Protocol Negotiation (ALPN)

AR Augmented Reality Glossary: Augmented Reality

ASHA Asynchronous Successive Halving Algorithm 104, 107, 108, 154, 166, 168

ASIC Application-specific Integrated Circuit 87

ASUM-DM Analytics Solutions Unified Method for Data Mining/Predictive Ana-
lytics Glossary: Analytics Solutions Unified Method for Data Mining/Predictive
Analytics

AVX Advanced Vector Instruction 2, 5, 113

BP Bin Packing 123, 141–143, 172

CDF Cumulative Distribution Function 62, 63, 140, 169

CDN Content Delivery Network 34, 35, 45, 60, 69

CFS Completly Fair Scheduler 125–130, 136, 138–141, 156, 163, 167, 169

cgroup control groups 128–130, 143, Glossary: Control Groups (cgroups)

CI Confidence Interval 68

CICD Continuous Integration Continuous Delivery 28, 29

CNF Containerized Network Function 1, 3, 7, 8, 23, 26, 122–125, 129, 130, 135–144,
146–148, 150–153, 155–160, 162–167, 169–173, 176, 183, Glossary: Container-
ized Network Function (CNF)

CNN Convolutional Neural Network 35, 84

COP Combinatorial Optimization Problem 2, 4, 14, 18–21, 25, 29, 135, 143, Glos-
sary: Combinatorial Optimization Problem
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COPTP Constraint Optimization Problem 88, 89, 92, 93, 98, 105, 182

COTS Commodity of the Shelf 70, 176

Cpp Cycles per packet 139, 140, Glossary: Cycles per Packet (Cpp)

CPS Cyber-physical System 1, 174

CPU Central Processing Unit 7, 8, 21, 23, 25, 29, 73, 74, 87, 113, 117, 118, 122,
123, 125–130, 136, 137, 139, 140, 142–144, 146, 147, 150, 151, 153, 155–158,
160–167, 172, 175, 176, 182

CRISP-DM CRoss Industry Standard for Data Mining 10–15, 17, 24–26, 29, 182,
Glossary: CRoss Industry Standard for Data Mining

CRISP-ML(Q) CRoss Industry Standard Process model for the development of
Machine Learning with Quality assurance methodology 14, 15, 29, Glossary:
CRoss Industry Standard Process model for the development of Machine
Learning with Quality assurance methodology

CSP Constraint Satisfaction Problem 88–90, 92, 93, 98, 104, 105

DCN Datacenter Network 3, 7, 80, 81, 83, 85–88, 92, 94, 95, 105, 113, 121, 177

DMME Data Mining Methodology for Engineering Applications 14, 29, Glossary:
Data Mining Methodology for Engineering Applications

DNN Deep Neural Network 35

DNS Domain Name Service 31

DoH DNS over HTTPS 31

DoT DNS over TLS 31

DPDK Data Plane Development Kit 124, 126, 137, Glossary: Data Plane Develop-
ment Kit (DPDK)

DPU Data Processing Unit 121

DST Data Science Trajectories 14, 15

DT Digital Twin 123, 124, 142, 143, 150, 155, 156, 160, 167, 168, 172, 173, 178,
Glossary: Digital Twin (DT)

eBPF extended Berkeley Packet Filter 79, 112, 113, 115–118, 176, Glossary:

ECH Encrypted Client Hello 31

ECMP Equal Cost Multi-Pathing 89–94, 104, 106–109
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ESNI Encrypted Server Name Indication 31, Glossary: Encrypted Server Name
Indication (ESNI)

FCL Fully Connected Layer 107, 151, 153, 159, 160, 166

FFD First Fit Decreasing 153, 164–167, 169–171

FIB Forward Information Base 84

FMEA Failure Modes and Effects Analysis 14, Glossary: Failure Modes and Effects
Analysis

FPGA Field Programmable Gate Array 2, 87

GAM Graph Attention Module 159, 160

GAT Graph Attention 160

GATNN Graph Attention Neural Network 124, 158, 159, 162

GNN Graph Neural Network 84, 85

GPU Graphical Processing Unit 2, 117–119

HMM Hidden Markov Model 36, 39–42, 52, 54, 182

HNSA Hidden Node State Advertisement 87, 98–101, 109, 111–116, 118–120, 183

HTTP Hypter Text Transfer Protocol 67

HTTPS Hypter Text Transfer Protocol Secure 31

ILP Integer Linear Program 81

INT In Network Telemetry 23, Glossary: Inband Network Telemetry (INT)

IoT Internet of Things 174, Glossary: Internet of Things

IP Internet Protocol 34, 44, 45, 58, 59, 64, 72, 99, 101, 104, 105, 113–115, 176

IPMC IP Multicasting 112–114, 116

ISM Ideal System Model 155, 156, 167–170

K8S Kubernetes 1, 70, 177, 178

KDD Knowledge Discovery in Databases 13, 14, Glossary: Knowledge Discovery
in Databases (KDD)

KLD Kullback-Leibler Divergence 108

kNN k-Nearest Neighbor 51, 57, 58, 61, 62, 64, 65, 68, 69
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KPI Key Performance Indicator 27, 28, 84, 85, 140, 141, 156–159

LB Load Balancing 123, 141–143, 172

LCP Least Cost Path 89–94, 105, 108, 112

LLF Least Loaded First 164–167, 169–171

LSA Link State Advertisement 98

M2M Machine-to-Machine 1, 174, Glossary:

MAC Medium Access Control 102

MaLANe Machine Learning Applications in Networking 9–11, 14–16, 19, 22, 24,
26, 28–30, 33, 34, 36, 44, 60, 70, 80, 85, 88, 106, 112, 124, 137, 142, 147, 160, 175

MAuC Message Authentication Code 38

MC Markov Chain 32, 39, 40, 48, 51, 52, 56, 58, 61–63, 65–69, 74, 182

MDP Markov Decision Process 134, 135

MEC Multi-access Edge Computing 1, 32, 45, 70, 76–78, 122, 174, Glossary: Multi-
access Edge Computing (MEC)

MHA Multi-Head Attention 82, 100, 101, 104, 107, 108, 152

MHGA Multi-Head Graph Attention 159, 160

ML Machine Learning 2–5, 7–15, 17–24, 26–35, 48, 68, 70, 76, 78–80, 83–87, 105,
113, 121, 123, 124, 135, 136, 143, 150, 158, 160, 162, 172, 174–176, Glossary:
Machine Learning

MLC Maximum Likelihood Classifier 48, 60

MLOps Machine Learning Operations 29, Glossary: Machine Learning Operations
(MLOps)

MPLS Multiprotocol Label Switching 112, 113, 117

MTU Maximum Transmission Unit 38

NA Neural Architecture 7, 79, 80, 82, 86, 87, 97, 98, 100, 101, 120, 123, 136, 147, 153

NAT Network Address Translation 34

NCE Noise Contrastive Estimation 102, 103

NCO Neural Combinatorial Optimization 123, 124, 133, 135–137, 142, 146, 171,
172
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NE Nash Equilibrium 130–133

NF Network Function 1, 122, 123, 125, 135–137, 146, 156, 172, 183, Glossary: Net-
work Function

NFV Network Function Virtualization 70, 122, 124, Glossary: Network Function
Virtualization (NFV)

NIC Network Interface Card 113, 116, 121, 125, 136, 157, 158, 167, 177

NLL Negative Log Likelihood 67, 68, 182

NLP Natural Language Processing 82

NN Neural Network 7, 26, 27, 79, 80, 83–87, 92, 95, 97–101, 104, 105, 107–109,
111–113, 116–121, 135, 150–154, 158–160, 166–169, 177, 183

NUMA Non-Uniform Memory Access 136, 157, 158

NV Network Virtualization Glossary: Network Virtualization

OPEX OPerational EXpenditures 17, Glossary: Operational Expenditures (OPEX)

OS Operating System 21, 123, 136, 137, 167, 172

OSPF Open Shortest Path First 83

OVS OpenVSwitch 113

P2P Peer-to-Peer 43

PBT Population-Based Training 154, 161, 166, 168

PCAP Packet Caputure File 73

PGM Probabilistic Graphical Model 32, 33, 48–51, 62, 63, 65, 67–72, 74, 75, 77, 175,
177, 182

PHMM Profile Hidden Markov Model (PHMM) 32, 42, 43, 48, 52–58, 61–63, 65–69,
73–75, 182

PoC Proof-of-Concept 26, 79, 80, 112–115, 117, 119–121

ProFi PRObabilistic website FIngerprinting 32–35, 38, 39, 42–53, 57, 64, 66, 68–71,
75–77, 175, 176, 182

QoE Quality of Experience 31

QoS Quality of Service 31

QUIC Quick UDP Internet Connections 36
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RC rate-cost proportional fairness 130, 169, 170

ReLU Rectified Linear Unit 151

RL Reinforcement Learning 7, 10, 12, 20, 24–26, 29, 124, 133–136, 146–148, 150,
151, 153–155, 160, 172, 175–177, Glossary: Reinforcement Learning (RL)

RNN Recurrent Neural Network 151, 158

RR Round Robin 164, 165, 167, 169–171

RT Real Time 137, 139

RTlsRS Random TLS Record Size Defense 50, 64, 66, 69, 182

SEMMA Sample, Explore, Modify, Model, Access 13, 14, Glossary: Sample, Ex-
plore, Modify, Model, Access (SEMMA)

SFC Service Function Chain 1, 8, 122, 123, 125, 136, 137, 142–144, 146, 147, 153,
156–158, 160, 167, 171, 172, Glossary: Service Function Chain (SFC)

SGD Stochastic Gradient Descent 92, 95, 97

SI State Interest 98, 100, 101

SL Supervised Learning 10, 12, 20, 24, 25, Glossary: Supervised Learning (SL)

SLD Second Level Domain 39

SNE Subgame-perfect Nash Equilibrium 130, 131, 133, 148, 150

SNI Server Name Indication 31, 34, Glossary: Server Name Indication (SNI)

SNMP Simple Network Management Protocol 21

SoA State-of-the-Art 10, 18, 32, 45, 80, 124, 175

SP (Communication) Service Provider 1, 2, 31, 32, 76–78, Glossary: (Communica-
tion) Service Provider (CSP)

SR Segment Routing 112, 113, 120

SSH Secure Shell 43

SSL Secure Socket Layer 50, 69, 76

SVM Support Vector Machine 35, 51, 64, 65, 87

T2L Time to Label 75, 76

TCP Transmission Control Protocol 36, 38, 47, 60, 71–73, 80
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TE Traffic Engineering 1–3, 7, 8, 18, 23, 27, 78–81, 83–89, 92, 94–101, 105–108, 113,
115, 117, 119–121, 176, 177, 183, Glossary: Traffic Engineering

TLS Transport Layer Security 7, 31–38, 43–47, 50, 52, 56, 61–64, 67–69, 71, 72, 76,
77, 184

ToR Top-of-the-Rack 81–83, 88, 90, 97, 103, 104, 112, 113, 115

Tor The onion router 31, 76

TPC Total Packet Cost 140, 141, 169–171

TPU Tensor Processing Unit 2

UDP User Datagram Protocol 70–73, 105, 115

UL Unsupervised Learning 10, 20, 24, 25, Glossary: Unsupervised Learning (UL)

URL Unified Resource Locator 39, 58

VM Virtual Machine Glossary: Virtual Machine

VN Virtual Network 1, Glossary: Virtual Network

VNF Virtual Network Function 1, 70, 71, 84, 122, 123, 125, 135–137, 172, Glossary:
Virtual Network Function

VPN Virtual Private Network 34, 45

WAN Wide Area Network 64, 177

WCMP Weighted Cost Multi-Pathing 89, 90, 93–95, 98, 105, 108, 112

WFP Website Fingerprinting 31–36, 39, 43–45, 50, 57, 63, 64, 69, 70, 75–77, 175

XR eXtended Reality 1, 174, Glossary: eXtended Reality (XR)
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Glossary

OpenNetVM A Network Function platform that uses DPDK to realize a zero-copy
chaining of NFs on commodity hardware. 147

5G The fifth mobile network generation. 140

Application-Layer Protocol Negotiation (ALPN) An extension of the TLS protocol
allowing the application to negotiate the protocol used during the connec-
tion. With the ALPN extension, the client can advertise, e.g., different HTTP
variants that it supports, without adding additional round trip times. 31

cloud-native Implementation of applications based on micro-services, service
meshes, immutable infrastructure, and containers. 122

Cloud-Native Communication Network Networks are implemented as container-
ized, micro-service-based applications ontop of a (distributed) cloud infras-
tructure. 1–3, 122–124, 129, 140, 173–177

Control Groups (cgroups) A Linux kernel tool allowing the management, quo-
tation, and accouting of various ressources such as CPU, memory, disk I/O,
network, etc. 128

CRoss Industry Standard for Data Mining A comprehensive process model for
managing data mining projects. 10

CRoss Industry Standard Process model for the development of Machine Learning with Quality assurance methodology
A process model that builds on top of the CRISP-DM process model and in-
cludes Machine Learning specific aspects, and continuous quality assurance
during the development process. 14

Cycles per Packet (Cpp) The (average) cost of a µVNF to process one packet.
Expressed in CPU cycles. 139

Data Mining A process that extracts information from data. Data Mining starts
from a relatively clear business goal. Necessary data is already collected and
available for further processing. The existence of the wanted information in
the data is established, i.e., it is known that the data contains the sought-for
information. The result of Data Mining is a way to extract, i.e., mine the
information from the data. 9, 10, 12–15
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Data Mining Methodology for Engineering Applications Process model that ex-
tends the CRISP-DM process model with additional steps that are specific
to data mining tasks in the industrial and engineering context. 14

Data Plane Development Kit (DPDK) An open-source software project managed
by the Linux Foundation containing libraries enabling the packet processing
in the user space. Specifically, DPDK moves the processing of packets from
the kernel to the user space. Thereby, DPDK operates in poll-mode, i.e.,
consistenly fetches packets from the NIC. 124

Digital Twin (DT) A digital representation of a physical or immaterial object. Dig-
ital twins enable data exchange, and causal inference, i.e., predict how the
twinned object would react to certain inputs. 123

Encrypted Server Name Indication (ESNI) TLS extension that encrypts the SNI to
hide the actual service a user is accessing on a CDN. 31

eXtended Reality (XR) Umbrella term referring to computer-generated environ-
ments merging the physical and virtual worlds or creating fully virtual
worlds. In contrast to AR, XR is not restricted to vision and can extend to
smell, touch, hearing, and taste. 1

Failure Modes and Effects Analysis The FMEA is a method for risk management
and assessments. The goal of the FMEA is the reduction of failures in
production. 14

Inband Network Telemetry (INT) Allows the monitoring, collection, and report-
ing of fine-grained network statistics directly in the data plane. INT can be
realized with special packets or using normal data packets. INT devices in
the network add their information directly to the packets. No special control
plane is required. 23

Internet of Things Interconnects physical and virtual objects and enables infor-
mation exchange between them. 174

Knowledge Discovery in Databases (KDD) Process model for the analysis of struc-
tured and unstructured data. 13

Machine Learning A methodology that uses computational methods to automat-
ically detect and describe patterns in data 2

Machine Learning Operations (MLOps) Application of established DevOps con-
cepts to ML-enabled systems. MLOps improves the efficiency of developing,
deploying, managing, and monitoring ML models. 29
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Machine-to-Machine The automated communication exchange between non-human
entities such as sensors, robots, vehicles, etc. 1

Multi-access Edge Computing (MEC) Provides (distributed) cloud-computing ca-
pabilities and an IT service environment at the network edge to application
developers and content providers. MEC provides ultra-low latency, high
bandwidth and real-time acecss to radio network information to applica-
tions. 1, 32

Network Function Specific task or functionality in a network that is traditionally
implemented as a middlebox. Examples are firewalls or load balancers. 1

Network Function Virtualization (NFV) Uses virtualization technologies to virtu-
alize network functions into software appliances running on commodity
hardware. Common examples of NFs include load balances, firewalls, in-
trusion detection devices, and mobile network functions. 70

Operational Expenditures (OPEX) The cost necessary to operate a system, infras-
tructure, or business. 17

Reinforcement Learning (RL) An area of ML where an agent is situated in an
environment with unknown dynamics. The agent’s task is the optimization
of a numerical reward signal through trial and error. During this process, the
agent learns the environment dynamics, i.e., how to contol the environment
such that the numerical reward signal is optimized. 7

Sample, Explore, Modify, Model, Access (SEMMA) A process model consisting
of five stages developed by the SAS Institute. The SEMMA process model
guides the implementation of data mining applications. The process model
ist tailored towards a product of the SAS Institute. 13

Server Name Indication (SNI) SNI is a TLS extension that allows the access of mul-
tiple encrypted websites through a single server, even if this server is acces-
sible via one IP address only. The SNI is included in the TLS ClientHello
message in cleartext. 31

Service Function Chain (SFC) A SFC consists of an ordered set of VNFs and
allows the creation of a composite service. An SFC applies to all, or a part
of the network traffic. 1

Six Sigma Six Sigma is a scientific method for process improvement. Six Sigma
relies heavily on statistics and defines a process with five steps to manage
projects for process improvement. 14, 17

SmartNIC A SmartNIC is a special type of Network Interface Card (NIC) that
allows the offloading of potentially compute intensive tasks from a server’s
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CPU. For example, encryption and packet segmentation can be offloaded
to SmartNICs, freeing ressources on the server. Further, SmartNICs can be
programmable, i.e., allow the execution of custom tasks directly on the NIC.
84, 87

Supervised Learning (SL) SL is an area of ML relying on labeled data, i.e., consist-
ing of datapoints that have features and an associated label. The label can be
categorical or numerical. For categorical data, the resulting ML application
is called classification. For numerical data, the resulting ML application is
called regression. 10

The extended Berkeley Packet Filter (eBPF) The eBPF can run sandboxed pro-
grams in a privileged context, e.g., in the kernel of an operating system.
With eBPF, the kernel’s capabilities can be extended at runtime without
having to the kernel source code, or load kernel modules. In networking,
the eBPF can be used to realize custom packet processing algorithms. 79

thread Object of activity within an executing program aka process. Traditionally,
one executing program had one thread. Modern applications use multiple
threads. Each thread has a unique program counter, process stack, and set
of processor registers. Threads are the entities that are scheduled by the
Linux scheduler. 126

Traffic Engineering Refers to the analysis, design, and optimization of data flow
and routes data takes in communication networks. 1, 78

Unsupervised Learning (UL) A type of algorithm that extracts patterns from un-
labeled data. Most commonly, UL is associated with clustering. Other
common applications correspond to representation learning, e.g., learning
embeddings for words in a text corpus or nodes in a graph. 10

Virtual Network A virtual network is a software-based administrative entity that
contains hardware and software resources, as well as network functions. A
virtual network runs on top of a physical network. 1
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