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Abstract
As a long-standing task, image restoration aims
to recover the latent sharp image from its de-
graded counterpart. In recent years, owing to the
strong ability of self-attention in capturing long-
range dependencies, Transformer based methods
have achieved promising performance on multifar-
ious image restoration tasks. However, the canon-
ical self-attention leads to quadratic complexity
with respect to input size, hindering its further ap-
plications in image restoration. In this paper, we
propose a Strip Attention Network (SANet) for im-
age restoration to integrate information in a more
efficient and effective manner. Specifically, a strip
attention unit is proposed to harvest the contex-
tual information for each pixel from its adjacent
pixels in the same row or column. By employ-
ing this operation in different directions, each lo-
cation can perceive information from an expanded
region. Furthermore, we apply various receptive
fields in different feature groups to enhance repre-
sentation learning. Incorporating these designs into
a U-shaped backbone, our SANet performs favor-
ably against state-of-the-art algorithms on several
image restoration tasks. The code is available at
https://github.com/c-yn/SANet.

1 Introduction
Image restoration aims to reconstruct a high-quality image
from the observation suffering from various degradations
(e.g., blur, snowflake, haze), playing an essential role in many
fields, such as surveillance, medical imaging, and remote
sensing. It is an inverse problem and has an ill-posed na-
ture. To resolve this challenging problem, a multitude of
conventional algorithms have been developed based on hand-
crafted features, which are impractical in more complicated
real-world scenarios [Zhang et al., 2022].

In recent years, convolutional neural networks (CNNs)
have witnessed a significant development of image restora-
tion and achieved remarkable performance compared to tra-
ditional approaches by virtue of the powerful mapping capa-
bility. A great number of CNN-based methods have been pro-
posed for varied image restoration tasks by designing or bor-
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Figure 1: Accuracy and complexity comparisons between previous
leading dehazing methods and ours SANet on the SOTS-Indoor [Li
et al., 2018] dataset. Our model receives a better performance while
being computationally efficient.

rowing advanced units, including U-shaped backbone [Lee et
al., 2021], residual connection [Cho et al., 2021], dilated con-
volution [Son et al., 2021], and attention modules [Qin et al.,
2020; Cui et al., 2023b]. Nevertheless, CNN has two defects
that are not beneficial for image restoration: (a) The convo-
lution operator has static filters that are not applicable to the
dynamic and non-uniform blur. (b) The convolution filter has
a limited receptive field that is not capable of modeling long-
range pixels interactions for large-size blur. Despite many
efforts to enlarge the receptive field by stacking deep layers
or using dilated convolution [Son et al., 2021], these remedies
entail heavy computation burden and still struggle to obtain
the global receptive field.

More recently, Transformer model borrowed from natural
language processing has shown state-of-the-art performance
on high-level vision tasks. The core element, self-attention
mechanism, is capable of modeling long-range dependen-
cies effectively. However, its quadratic complexity with re-
spect to the spatial resolution makes it infeasible for im-
age restoration, which always involves high-resolution im-
ages, e.g., 1680×1120 image size for defocus deblurring in
DPDD [Abuolaim and Brown, 2020]. To alleviate this issue,
many measures have been taken to improve efficiency in the
realm of image restoration. For instance, a few methods re-
strict the operation region of self-attention to reduce complex-
ity [Liang et al., 2021; Wang et al., 2022]. Restormer [Zamir
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et al., 2022] applies self-attention among the channel dimen-
sion rather than the spatial dimension. Stripformer [Tsai et
al., 2022] develops strip-type self-attention for image deblur-
ring. Though these methods realize the goal of reducing com-
plexity to some extent, they do not break the nature of self-
attention, i.e., they still have quadratic complexity to the size
of windows, channels, or strips.

In this paper, we exploit a strip attention mechanism for im-
age restoration to harvest contextual information and mean-
while maintain high efficiency. Concretely, for each pixel,
we perform information aggregation from its adjacent pix-
els in the same horizontal or vertical direction. This process
is guided by the weights generated by convolutional layers.
With joint horizontal and vertical aggregation, each location
can implicitly receive information from a large region cen-
tered at itself. Furthermore, to enhance feature representation
learning, we empirically adopt distinct receptive fields in fea-
ture groups to deal with degradation blurs of different sizes.

Our strip attention module has several key advantages.
Firstly, by disintegrating attention into two directions, it sig-
nificantly improves efficiency and can achieve large-scale re-
ceptive fields with negligible introduced computational com-
plexity. Secondly, compared to the static filters of convolution
operators, it is content-aware to adapt to the different input
and blur. Thirdly, it is capable of capturing multi-scale con-
textual information. Our design is distinguished from other
strip-type attention approaches. Specifically, CCNet [Huang
et al., 2019] utilizes recurrent criss-cross attention to capture
full-image dependencies for semantic segmentation. CSWin
transformer [Dong et al., 2022] and Stripformer [Tsai et al.,
2022] execute self-attention within the strip-shaped regions in
different directions. The attention weights of these methods
are produced by matrix multiplication or affinity operation,
which entails quadratic complexity. Differently, we generate
weights from a simple bypass network and conduct integra-
tion in a cheap manner. Moreover, we exploit multi-scale
receptive fields to boost performance.

Equipped with the proposed strip attention module, our
SANet performs favorably against state-of-the-art algorithms
on several image restoration tasks. For dehazing, as shown in
Figure 1, SANet outperforms PMNet [Ye et al., 2022] by 2.99
dB on the SOTS-Indoor [Li et al., 2018] benchmark with 54%
fewer MACs. For the defocus blur removal, SANet obtains
26.29 dB PSNR on DPDD [Abuolaim and Brown, 2020], an
improvement of 0.31 dB over the strong Transformer model
Restormer [Zamir et al., 2022]. Our model also displays the
potential on the desnowing task, surpassing NAFNet [Chen
et al., 2022] by 1.26 dB on CSD [Chen et al., 2021].

The main contributions of the paper are as follows:

• We propose a strip attention module for image restora-
tion that integrates multi-scale contextual information
efficiently by performing horizontal and vertical local at-
tention successively.

• Based on the proposed strip attention module, we estab-
lish SANet that performs favorably against state-of-the-
art algorithms on several image restoration tasks.

2 Related Work
2.1 Image Restoration
Since image restoration plays an important role in photog-
raphy, self-driving techniques, and medical imaging, it has
drawn substantial attention from the industrial community
and academia. This inverse problem has an ill-posed nature.
To constrain the solution space, a flurry of conventional meth-
ods have been developed based on various assumptions and
hand-crafted features [Zhang et al., 2022]. Lately, the data-
driven CNN-based frameworks have significantly advanced
the performance of image restoration [Ren et al., 2016;
Ren et al., 2018; Cui et al., 2023a]. Among these net-
works, the U-shaped architecture [Ronneberger et al., 2015]
is a popular solution for hierarchical feature representation
learning. Besides, numerous advanced modules have been
created or borrowed from high-level tasks, including dilated
convolution [Son et al., 2021], skip connection [Liu et al.,
2019b], and multifarious attention mechanisms [Qin et al.,
2020]. More recently, Transformer models have been intro-
duced into low-level tasks to help model long-range depen-
dencies [Liang et al., 2021].

2.2 Attention Mechanism
Attention mechanisms have been widely used in the com-
puter vision community. In the context of image restoration,
a great number of attention modules have been developed to
capture inter-dependencies along channels [Liu et al., 2019a;
Zamir et al., 2022], spatial coordinates [Zamir et al., 2021],
or both [Chen et al., 2023]. For instance, FFA-Net [Qin et
al., 2020] leverages channel attention and pixel attention to
deal with different types of information flexibly. GridDe-
hazeNet [Liu et al., 2019a] utilizes channel-wise attention to
adjust the contributions of different streams for feature fu-
sion. MPRNet [Zamir et al., 2021] leverages the supervised
attention module for feature filtering. These attention mod-
ules have boosted the performance of image restoration tasks.

Another line of this topic is to devise efficient self-attention
for image restoration. Specifically, resembling Swin Trans-
former [Liu et al., 2021], Uformer [Wang et al., 2022] and
SwinIR [Liang et al., 2021] apply self-attention within local
regions. Restormer [Zamir et al., 2022] switches its focus
from spatial dimensionality to channel self-attention. Strip-
former [Tsai et al., 2022] develops interlaced intra-strip and
inter-strip attention layers for motion blur removal. However,
these remedies still have quadratic complexity to the size of
the region, channel, or strip.

In this paper, we present an ingenious strip attention mod-
ule that performs efficient information integration in horizon-
tal and vertical directions successively. Compared to the con-
volution operator, our paradigm not only inherits its high ef-
ficiency but also produces dynamic aggregation weights and
an enlarged receptive field.

3 Methodology
In this section, we first describe the strip attention operation
and then present the strip attention module. Next, we delin-
eate the architecture of SANet for image restoration. Finally,
we introduce the loss functions used for training.
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Figure 2: The architecture of SANet. Top: The overall pipeline. Bottom: The proposed strip attention module. We omit the channel
dimension for clarity. The strip attention module only exists in the last residual block of each stage.

3.1 Strip Attention
Our main goal is to exploit a unit that can perform informa-
tion integration efficiently and effectively. Before describing
the formulation of the proposed strip attention, we first pro-
vide complexity analyses of self-attention.

Self-Attention
Self-attention has achieved successful stories in high-level
vision tasks. However, due to its quadratic complexity, it
is infeasible for image restoration tasks that always involve
high-resolution images. Formally, give an input tensor X ∈
RH×W×C , where H ×W denotes spatial coordinates and C
is the number of channels, self-attention can be expressed as,

Attention(Q,K,V) = Softmax(QK⊤)V,

where Q = XWQ,K = XWK ,V = XWV
(1)

where Q,K,V ∈ RHW×C , which are generated by using cor-
responding projection matrices (WQ,WK , and WV ) and re-
shaping. We omit the normalization term for simplicity.

From Eq. 1, we can observe that the complexity of self-
attention comes from three aspects: (a) the production of
query (Q), key (K), and value (V) with the complexity of
3HWC2; (b) generation of the attention map based on
key-query dot-product with the complexity of (HW )2C;
(c) the weighted summation process with the complexity of
(HW )2C. We can see that in the last two terms, the com-
plexity is quadratic to the spatial size.

Strip Attention
We aim to devise an efficient operator for information ag-
gregation from the perspective of reducing the complexities
of the above-mentioned three steps. Here, we take the hor-
izontal strip attention as an example. Concretely, given any

input feature X∈ RH×W×C , we remove the procedure of pro-
ducing Q, K, and V, and instead directly yield the attention
weights via an extremely lightweight branch that consists of
global average pooling (GAP) followed by 1× 1 convolution
layer and Sigmoid function. This process can be formally
expressed as,

A = σ(W1×1(GAP(X))) (2)

where W1×1 is a 1 × 1 convolution layer and σ denotes the
Sigmoid function. A∈ RK , where K specifies the length
of the strip for integration. Note that we share the resulting
attention weights across both spatial and channel dimensions
for further efficiency.

Regarding the weighted sum operation, instead of operat-
ing on the whole image like self-attention or on the strip of
size n×W (n < H) like Stripformer [Tsai et al., 2022] and
CSWin Transformer [Dong et al., 2022], we execute our in-
formation integration within the strip of size 1×K (K < W )
based on the obtained attention weights, which can be for-
mally expressed as,

X̂h,w,c =

K−1∑
k=0

AkXh,w−⌊K
2 ⌋+k,c (3)

Rather than generating the attention weights with a similar
shape to that of self-attention and then performing integra-
tion via matrix multiplication, inspired by [Zhou et al., 2021],
we adopt a more reasonable convolution-type integration as
shown in Figure 3 (c), where each pixel receives information
from the region centered at itself.

To summarize, our strip attention operator can be formally
expressed as:

X̂ = SK(X) (4)
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3.2 Strip Attention Module
It has been illustrated in prior works [Zamir et al., 2022;
Wang et al., 2022] that enlarging the receptive field of the
network is beneficial to image restoration. Motivated by this
fact, we present an efficient manner to expand the receptive
field of each pixel by exploiting the above-mentioned strip
attention operator. Specifically, we develop a strip attention
module that carries out strip attention operations in both ver-
tical and horizontal directions to harvest long-range contexts,
as shown in the bottom part of Figure 2. Furthermore, we
combine different K within each attention operation to pur-
sue multi-scale receptive fields. More concretely, with the
input tensor X∈ RH×W×C , we first divide it into two parts
by splitting the channel dimension evenly and then impose
the horizontal strip attention on each part separately with dif-
ferent strip lengths K. Next, we perform the multi-scale strip
attention in the vertical direction. The final output is produced
by adding the original input X. The entire process of the pro-
posed strip attention module can be formally expressed as:

Y = [SV e
k1

(SHo
k1

(X1)),SV e
k2

(SHo
k2

(X2))] + X (5)

where SHo and SV e denote the horizontal attention and ver-
tical attention, respectively; [·,·] is concatenation; X1 and X2

are obtained by splitting the feature on channel dimension
evenly. Our strip attention module implicitly enlarges the re-
ceptive field of the network. As shown in Figure 3, the hor-
izontal and vertical strip attention perform information inte-
gration in two directions, respectively. For convenience, we
only pick a few representative pixels for illustration. The hor-
izontal one gives B = wABA + wBBB + wCBC, where w
denotes the attention weight. By using two-directional strip
attention successively, the value of pixel D in Figure 3 (b) is
computed by:

D = wBDB+ wDDD

= wBD(wABA+ wBBB+ wCBC) + wDDD.
(6)

As a consequence, the pixel in the center receives contexts
from the whole region determined by K.

3.3 Overall Architecture
The overall pipeline of the proposed SANet is illustrated in
Figure 2 (Top). SANet adopts the popular encoder-decoder
architecture to learn hierarchical representations efficiently
and consists of six scales in total. Specifically, given a de-
graded image with the shape of R3×H×W , a single convo-
lution layer is utilized to generate the shallow feature map
of size RC×H×W . Then, the resulting feature is fed into
the encoder layers (Scale 1-3). In this process, the number
of channels is expanded, while the spatial resolution is re-
duced gradually from RC×H×W to R4C×H

4 ×W
4 . Each stage

contains a stack of residual blocks, and the last one involves
the proposed strip attention module. The downsampling op-
eration is accomplished by the strided convolution. Next,
the feature with the lowest resolution passes through the de-
coder layers (Scale 4-6) to recover the high-resolution repre-
sentations progressively. For feature upsampling, we adopt
the transposed convolution. To alleviate the issue of infor-
mation loss caused by downsampling, we apply the feature-
level skip connections as previous works [Zamir et al., 2022;

(a) (b) (c) (d)
A B C B

D

Figure 3: Signal integration paradigm of our strip attention and self-
attention. (a) Horizontal strip attention operator. (b) Vertical strip
attention operator. (c) Strip attention module. (d) Self-attention.

Wang et al., 2022]. Concretely, the encoder features are
concatenated with the corresponding decoder features, fol-
lowed by a convolution layer to adjust the channel dimen-
sion. The final sharp image is produced by adding the
original input image, which forces the network to focus
only on the residual information learning. Besides, to ease
the training difficulty, multi-input and multi-output strate-
gies are adopted following recent methods [Cho et al., 2021;
Mao et al., 2021].

3.4 Loss Functions
To facilitate feature refinement in spatial and frequency do-
mains simultaneously, we use the dual-domain L1 loss [Cho
et al., 2021] to train our network. For each output, the loss
function is given by:

Ls =
1

S
∥Î − I∥,

Lf =
1

S
∥F(Î)−F(I)∥,

L = Ls + λLf

(7)

where Î, I are the predicted image and ground-truth, respec-
tively; S depicts the total elements for normalization; and F
is the fast Fourier transform (FFT). λ is set to 0.1.

4 Experiments
To verify the effectiveness of our SANet, we conduct exten-
sive experiments on several image restoration tasks, includ-
ing single-image defocus deblurring (DPDD [Abuolaim and
Brown, 2020]), image dehazing (RESIDE [Li et al., 2018]),
and image desnowing (CSD [Chen et al., 2021]). In the fol-
lowing, we first introduce the training settings, and then we
report our results on the above datasets. Finally, we carry out
a series of ablation experiments.

4.1 Implementation Details
We train the proposed network via Adam optimizer with
β1 = 0.9, β2 = 0.999. The initial learning rate is set to
1e−4 and reduced to 1e−6 gradually with the cosine anneal-
ing. The batch size is set as 8 for the RESIDE-Outdoor [Li
et al., 2018] dataset and 4 for others. Models are trained on
the patch size of 256×256. We adopt only horizontal flips for
data augmentation. We choose k1 = 7 and k2 = 11 in Eq.
5. According to the task complexity, we deploy varying num-
bers of residual blocks N in each scale for different tasks, i.e.,
N = 4 for image dehazing and desnowing, and N = 16 for
image defocus deblurring.
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SOTS-Indoor SOTS-Outdoor Overhead

Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ Params (M) MACs (G)

DCP [He et al., 2010] 16.62 0.818 19.13 0.815 - -
GCANet [Chen et al., 2019] 30.23 0.980 - 0.702 18.41
GridDehazeNet [Liu et al., 2019a] 32.16 0.984 30.86 0.982 0.956 21.49
MSBDN [Dong et al., 2020] 33.67 0.985 33.48 0.982 31.35 41.54
PFDN [Dong and Pan, 2020] 32.68 0.976 - 11.27 50.46
FFA-Net [Qin et al., 2020] 36.39 0.989 33.57 0.984 4.456 287.8
AECR-Net [Wu et al., 2021] 37.17 0.990 - 2.611 52.20
MAXIM [Tu et al., 2022] 38.11 0.991 34.19 0.985 14.1 108
DeHamer [Guo et al., 2022] 36.63 0.988 35.18 0.986 132.45 48.93
PMNet [Ye et al., 2022] 38.41 0.990 34.74 0.985 18.90 81.13
DehazeFormer-L [Song et al., 2022] 40.05 0.996 - 25.44 279.7

SANet (Ours) 40.40 0.996 38.01 0.995 3.81 37.26

Table 1: Image dehazing results on SOTS [Li et al., 2018]. SANet receives higher scores with fewer MACs than most competitors.

PSNR
Reference

6.58 dB
Input

23.56 dB
GridDehazeNet

30.43 dB
FFA-Net

18.87 dB
MAXIM

25.48 dB
DeHamer

33.09 dB
SANet

Hazy Image

Figure 4: Image dehazing comparisons on the SOTS-Indoor [Li et al., 2018] dataset among GridDehazeNet [Liu et al., 2019a], FFA-Net [Qin
et al., 2020], MAXIM [Tu et al., 2022], DeHamer [Guo et al., 2022], and our SANet. Our model is more effective in haze removal.

PSNR
Reference

18.91 dB
Input

27.07 dB
FFA-Net

24.64 dB
MAXIM

27.03 dB
DeHamer

31.24 dB
SANet

Figure 5: Image dehazing comparisons on the SOTS-Outdoor [Li et al., 2018] dataset among FFA-Net [Qin et al., 2020], MAXIM [Tu et al.,
2022], DeHamer [Guo et al., 2022], and our SANet.

4.2 Main Results

Image dehazing. We train the network on the RESIDE [Li
et al., 2018] dataset and test on the SOTS [Li et al., 2018]
dataset. The results are reported in Table 1. Our SANet
achieves better performance with lower complexity than
most approaches. Particularly on the SOTS-Outdoor dataset,
SANet yields a 2.83 dB performance gain over the expen-
sive Transformer model DeHamer [Guo et al., 2022] with
only 76% MACs and 3% parameters. Compared to the recent
algorithm DehazeFormer-L [Song et al., 2022], our model
surpasses it by 0.35 dB in terms of PSNR on SOTS-Indoor,
while having 6.68× fewer parameters and 7.5× fewer MACs.
The qualitative comparisons on the SOTS-Indoor and SOTS-
Outdoor datasets are exhibited in Figure 4 and Figure 5, re-

spectively. We can see that SANet is more effective in re-
moving haze blur, and the images produced by our model are
visually closer to the target ones than other algorithms.

Single-image defocus deblurring. We compare image fi-
delity scores of our method with both learning-based single-
image defocus deblurring methods and conventional ones,
e.g., JNB [Shi et al., 2015] and EBDB [Karaali and Jung,
2018], on the DPDD [Abuolaim and Brown, 2020] dataset.
The comparison results in Table 2 show that our model out-
performs the strong Transformer model Restormer [Zamir et
al., 2022] in most cases. Particularly in the indoor scene cat-
egory, SANet produces a substantial gain of 0.43 dB over
Restormer. Furthermore, our method outperforms DRB-
Net [Ruan et al., 2022] by 0.56 dB PSNR on the combined
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Indoor Scenes Outdoor Scenes Combined

Method PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓
EBDB [Karaali and Jung, 2018] 25.77 0.772 0.040 0.297 21.25 0.599 0.058 0.373 23.45 0.683 0.049 0.336
DMENet [Lee et al., 2019] 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349
JNB[Shi et al., 2015] 26.73 0.828 0.031 0.273 21.10 0.608 0.064 0.355 23.84 0.715 0.048 0.315
KPAC [Son et al., 2021] 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227
IFAN [Lee et al., 2021] 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217
DeepRFT [Mao et al., 2021] - - 25.71 0.801 0.039 0.218
DRBNet [Ruan et al., 2022] - - 25.73 0.791 - 0.183
Restormer [Zamir et al., 2022] 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178

SANet (Ours) 29.30 0.878 0.024 0.163 23.43 0.748 0.049 0.227 26.29 0.811 0.037 0.196

Table 2: Single-image defocus deblurring results on the DPDD [Abuolaim and Brown, 2020] dataset.

Blurry Image

PSNR
Reference

22.75 dB
Input

23.95 dB
KPAC

23.50 dB
DeepRFT

23.80 dB
IFAN

24.35 dB
DRBNet

25.95 dB
Restormer

26.11 dB
SANet

Figure 6: Single-image defocus deblurring comparisons on the DPDD [Abuolaim and Brown, 2020] dataset among KPAC [Son et al., 2021],
IFAN [Lee et al., 2021], DeepRFT [Mao et al., 2021], DRBNet [Ruan et al., 2022], Restormer [Zamir et al., 2022], and our SANet. Our
model recovers more faithful details than other methods.

category. The visual results in Figure 6 illustrate that the pro-
posed network recovers more faithful details than other com-
petitive frameworks.

Image desnowing. The desnowing comparisons on the
CSD [Chen et al., 2021] dataset are provided in Table 3. We
can see that our method obtains higher scores than other ap-
proaches. Compared to the recent algorithm NAFNet [Chen
et al., 2022], SANet provides a performance boost of 1.26 dB
PSNR. Furthermore, our model shows a 2.64 dB improve-
ment over the Transformer model MSP-Former [Chen et al.,
2023]. Visual results presented in Figure 7 show that our
SANet generates a cleaner image than other algorithms.

4.3 Ablation Studies
For ablation experiments, we study diverse design choices for
the strip attention module, including the combination pattern
of strip attention, different strip lengths, and activation func-
tions. Furthermore, we compare our module with other at-
tention units and depth-wise convolution to demonstrate the
effectiveness of our method. To this end, we train SANet on
the dehazing task with the RESIDE-Indoor [Li et al., 2018]
dataset. Unless specified otherwise, the hyperbolic tangent
function serves as the activation function in Eq. 2, and we
only adopt the single receptive field for the strip attention
module with K = 5. The training configurations are con-
sistent with the main experiment except that N is set to 1.

Method PSNR SSIM

DesnowNet [Liu et al., 2018] 20.13 0.81
CycleGAN [Engin et al., 2018] 20.98 0.80
All in One [Li et al., 2020] 26.31 0.87
JSTASR [Chen et al., 2020] 27.96 0.88
HDCW-Net [Chen et al., 2021] 29.06 0.91
TransWeather [Valanarasu et al., 2022] 31.76 0.93
MSP-Former [Chen et al., 2023] 33.75 0.96
NAFNet [Chen et al., 2022] 35.13 0.97

SANet (Ours) 36.39 0.98

Table 3: Image desnowing results on CSD [Chen et al., 2021].
SANet outperforms other methods significantly.

MACs are computed on the size of 256 × 256. The baseline
model is obtained by removing the proposed attention module
from our model.

Improvements of strip attention module. Table 4 shows
that two-directional strip attention units both produce favor-
able gains over the baseline model with negligible introduced
parameters and complexity. Using two strip attention op-
erators in different directions leads to further accuracy im-
provement. Especially for the horizontal-vertical version, our
model achieves a gain of 3.39 dB over the baseline, while
only consuming additional 0.04 M parameters and 0.07 G
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PSNR
Reference

13.30 dB
Input

21.01 dB
JSTASR

14.30 dB
DesnowNet

27.59 dB
HDCW-Net

32.28 dB
SANet

Figure 7: Image desnowing comparisons on the CSD [Chen et al., 2021] dataset among DesnowNet [Liu et al., 2018], JSTASR [Chen et al.,
2020], HDCW-Net [Chen et al., 2021], and our SANet.

Method PSNR Params (M) MACs (G)

Baseline 31.33 1.48 15.44
Horizontal strip 34.19 1.50 15.48
Vertical strip 33.93 1.50 15.48

Parallel 34.53 1.52 15.51
Vertical-Horizontal 34.36 1.52 15.51
Horizontal-Vertical 34.72 1.52 15.51

Table 4: Ablation studies for strip attention module. Parallel variant
combines the outcomes of two-directional strip attention operators
via addition.

Method Softmax Tanh Sigmoid

PSNR 34.35 34.36 34.68

Table 5: Different activation functions.

Method Self-attention Window attention Ours

PSNR/MACs (G) 34.48/20 34.44/16.71 35.85/15.58

Table 6: Comparisons with other attention modules.

MACs, illustrating the effectiveness of our design.
Different receptive fields. We further exploit the impact of
the receptive field by changing the strip size in the strip at-
tention module. The results are shown in Figure 8. As the
increase of the strip length, we can observe a consistent im-
provement in terms of PSNR. Our model receives a remark-
able gain of 1.36 dB when the receptive field is enlarged from
3 to 11, while only introducing 0.12 G MACs. Furthermore,
to deal with blurs of various sizes, we adopt the multi-scale
receptive fields, i.e., 7 and 11, as we elaborate in Sec. 3.2.
This strategy leads to 35.45 dB PSNR, 0.05 dB and 0.14 dB
higher than a single kernel 11 and 7, receptively.
Design choices for activation function. Instead of inher-
iting the Softmax function from the canonical self-attention,
we explore more choices in Table 5 based on the vertical-
horizontal variant in Table 4. The Sigmoid version obtains
higher accuracy than Softmax by breaking the sum-to-one
property and is 0.32 dB higher than that of the Tanh version.
Comparisons with alternatives. As our strip attention
module implicitly receives the same receptive field as the
depth-wise convolution when K is equal to the kernel size
of the latter, we compare our module with depth-wise convo-

3 5 7 11
Kernel…Size

33.5

34.0

34.5

35.0

35.5

PS
N

R

+0.04…G

+0.07…G

+0.10…G +0.16…G

+0.07…G +0.19…G

+0.36…G

+0.89…G

Strip…attention…module
Depth-wise…convolution

Figure 8: Ablations on receptive fields. For the strip attention mod-
ule and depth-wise convolution, we can observe a consistent PSNR
improvement when increasing the receptive field size. Our method is
more efficient than the depth-wise convolution. The annotated num-
ber and dot size indicate the introduced MACs over the baseline.

lution in Figure 8. With the same receptive field, our model
consistently outperforms the depth-wise convolution version
with fewer extra complexities. To further verify the superi-
ority of our method, we provide comparisons between other
self-attention units and our module. We can see from Ta-
ble 6 that, with the best choices of receptive field, activation,
and combination order of strip attention units, our final design
is superior to the global self-attention and the window-based
variant in terms of accuracy and computation overhead. Due
to the large complexities of global self-attention, we only in-
sert it into scale 3-4, which have the lowest resolution.

5 Conclusion
In this paper, we develop a novel image restoration model
that is computationally efficient in integrating contexts for
feature representation enhancement. Specifically, our strip
attention unit realizes efficient information aggregation by
modifying the three steps of self-attention, while maintain-
ing the content-aware property based on the learned atten-
tion weights. Furthermore, the proposed strip attention mod-
ule enlarges the receptive field by combining two-directional
strip attention units and adopts multi-scale kernels to well
handle blurs with various sizes. Comprehensive experiments
on several image restoration tasks demonstrate that SANet
performs favorably against state-of-the-art algorithms.
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