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Abstract

In general, molecular dynamics simulations are computationally expensive tasks so that
efficient algorithms are applied to accelerate the simulation as much as possible. Furthermore,
high-performant programming languages are necessary to develop high-performant code.
Typically, these languages are rather complex which leads to a decrease in productivity.
Julia is a high-performant programming language and is also used to write high-level code.
In this thesis, we use Julia to implement a simulator and use functions of the C++ library
AutoPas as a backend. Additionally, we apply shared memory parallelization strategies to
speed up the Julia simulator. After running performance tests and comparing the results to
a C++ reference implementation, we discover that for small simulations and quick tests, the
Julia simulator is a convenient choice to use because of its low initial compile time. Moreover,
the Julia simulator is able to beat the C++ implementation in the force calculation in our
chosen scenario.
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Introduction and Background
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1. Introduction

In order to explain (bio-) chemical processes, we can choose the classical approach to execute
experiments in a laboratory. However, some phenomena cannot be analyzed by experiments,
which is why we can apply molecular dynamics (MD) simulations on a computer. In the
research paper [21], the author uses molecular dynamics simulations to understand the
origin of neurodegenerative diseases, because biophysical structural analysis of the molecules
causing the diseases is unrealizable. Another practical case is the use of simulations in drug
design. Discovering, how molecules can pass a membrane passively is important so that the
molecule can get into a cell and act as expected. [13] As both examples show, the use of MD
simulations have great importance for medical research in order to provide the best possible
treatment for patients, however, the simulations are not limited to the medical field.

Not every researcher has deep programming knowledge or is a computer scientist so one
goal is to provide an easy-to-use simulation framework. On the one hand, Python is a
high-level programming language and it is easy to read and write code, which is suitable
for non-expert programmers. On the other hand, we need to ensure that the code is perfor-
mant, because MD simulations are associated with high computational effort. Historically,
languages like C or C++ were used to write high-performance code and may be used for
applications like MD simulations. The downside is, that languages like C++ are ’more
complex’ i.e., it is not easy to understand or write C++ code. [2]

With this thesis, we address this issue, by using the Julia programming language to
implement a molecular dynamics simulator. Julia promises to provide the possibility to
write high-performance code, as well as high-level code and may be the perfect choice to
solve the mentioned problem. [2] Additionally, we use the C++ library AutoPas which
provides much functionality necessary for efficient molecular dynamics simulations as well
as node-level auto-tuning. [6]. Due to the fact, that the AutoPas library is written in C++,
we need to create a wrapper, to make it possible to call its functionalities.

In the beginning, we introduce the theoretical background and terminology used in this
thesis. Furthermore, we discuss the choice of the wrapper and present related research in
this field. Chapter 3 discusses the implementation of the AutoPas wrapper, the simulator,
and parallelization strategies. Moreover, we examine the usability of the chosen approach
as well as present the results of the implementation in terms of performance in chapter 4.
Finally, we look ahead to which additional aspects can be analyzed in future research works
and point out the most relevant learning of this thesis.
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2. Theoretical Background

This chapter contains the theoretical framework necessary to understand the subsequent
implementation and results. Starting with a general introduction to molecular dynamics
simulations, we continue with the explanation of parallelization strategies, the C++ library
AutoPas, the Julia programming language, and the CxxWrapper. Finally, we present similar
research results in the related work section.

2.1. Fundamentals of Molecular Dynamics Simulation

Molecular dynamic (MD) simulations calculate the movement of molecules for a defined
period. It is necessary to discretize the time and divide the total simulation time into smaller
time steps called simulation steps. If the position and the velocity of a particle1 is known, it
is possible to calculate the new position of the particle. However, the velocity also changes
due to interactions with other particles. With Newtons second law 2.1

F = m · a (2.1)

the relation between the acceleration and the force is given and as the acceleration describes
the change of the velocity over time, it is necessary to calculate the force between the particles.
This leads to three necessary operations of every simulation: calculation of position, force,
and velocity in every simulation step. [3]

In this thesis, we use the Lennard-Jones potential, as shown in formula 2.2, to calculate
the interaction between particles and the negative gradient of the potential equals to the
force.

ULJ(rij) = 4ϵ

((
σ

rij

)12

−
(

σ

rij

)6
)

(2.2)

The variable rij in formula 2.2 describes the distance between the two particles i and j,
hence only describing pairwise interactions. To calculate the total force acting on a particle,
it is necessary to sum all pairwise forces between all particles. If the number of particles
is N , O(N) interactions need to be considered to calculate the total force for one particle.
For all N particles, O(N2) calculations are necessary so that the algorithm has quadratic
complexity. [3]

Figure 2.1 shows the Lennard-Jones potential between two particles and as the distance
increases, the force tends to zero. Therefore, it is possible to calculate the force only between
particles within a so-called cutoff radius. If the distance between two particles exceeds this

1Depending on the scenario, we use particle as a placeholder which can be an atom or a small molecule.
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2. Theoretical Background

cutoff radius, the force is so small that we can neglect it and assume it to be zero. Using the
cutoff, results in a decrease in pairwise force calculations and ideally linear runtime. How to
determine if a particle is inside the cutoff radius depends on the implementation, e.g. the
Linked Cells algorithm assigns every particle to a cube in the global space and only the
force between particles in adjacent cells is calculated. [3]

Figure 2.1.: Lennard-Jones Potential. With increasing distance r between two particles the
force between two particles tends to zero.
Source: [3]

Up to this point, the necessary operations of a simulator were discussed. Usually, we
restrict the particles to a pre-defined space, which is called simulation domain. Particles
moving outside of this domain need to be processed differently than all the other particles,
which is called applying a boundary condition. In this thesis, the outflow and periodic
boundary condition are used.

The outflow boundary condition describes that all particles moving outside of the
simulation domain are removed from the simulation. Periodic boundary condition means
that a particle is reinserted into the simulation domain on the opposite side of its exit position.
In figure 2.2 the black marked square is the simulated domain and all the squares around
are also domains, but not simulated. Therefore, the periodic boundary condition mocks
the behaviour that the simulated domain is part of a much bigger domain and represents
only a smaller part with all parts having the same particle configuration. In this case, it is
necessary to adjust the force calculation for the particles at the borders of the simulation
domain. As indicated in figure 2.2, particle A is at the left border of the simulation domain
and particle B is at the right border. Particle B from the left neighbor domain (which is not
simulated), is theoretically within the cutoff of particle A, so it is necessary to adapt the
calculation to get correct results.q [3]
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2.2. Speeding up MD Simulations through Parallelization Strategy

Figure 2.2.: Periodic Boundary Condition. Particles moving out of the simulation domain
are reinserted on the opposite side.
Source: [3]

2.2. Speeding up MD Simulations through Parallelization Strategy

The goal of MD simulations is to simulate a big number of particles for many simulation
steps (magnitude of 105) to receive good insights into the physical processes. Due to this
computationally intensive task, it is necessary to apply parallelization strategies to reduce
the computation time which are discussed in the following section. [3]

In the following, the term processor does not mean a CPU as a hardware component. We
understand a processor as a placeholder for a computation unit, which can range from a
thread of a CPU core to a node of a cluster.

2.2.1. Shared Memory Parallelization

Shared memory parallelization is a possibility to speed up the simulation and can be
realized using OpenMP in C++. In this case, the calculation is distributed on several
processors and all of them can access the same memory. This memory contains the necessary
data for the calculation. The advantage of this approach is generally the easy adaption of
the source code to be executed in parallel. However, one disadvantage is the occurrence of
race conditions. This means that multiple processors simultaneously read from and write to
the same memory address. Furthermore, the memory bandwidth may not be sufficient to
supply all processors sufficiently. [7]

2.2.2. Distributed Memory Parallelization

Distributed memory parallelization describes the use of several processors with each
processor having its own memory. To address the mentioned disadvantage of shared memory
parallelization, every processor only gets the data needed for the current calculation. As
every processor has only a share of the whole data, communication, and data transfer between
processors may be necessary e.g., via a bus. This increases the complexity to adapt the
source code for parallel execution. To use this parallelization for a MD simulation, the simula-
tion domain is divided into smaller subdomains, which is called domain decomposition. [7]
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2. Theoretical Background

Figure 2.3 shows one of the easiest domain decompositions where the whole simulation
domain is divided along the x-axis and each subdomain Si is assigned to a processor Pj .
The respective processor Pj only knows the data of all the particles of its subdomain and
calculates the position, force, and velocity of those particles.

Figure 2.3.: Example of a domain decomposition. The simulation domain is divided into n
subdomains in the x dimension.
Source: adapted from [3]

Up to this point, we only calculated the interactions between particles within one sub-
domain. However, particles may interact across subdomains and these interactions have
to be considered in the force calculation as well. Figure 2.4 demonstrates the interactions
between particles from different subdomains using the Linked Cells algorithm. Processor P1

does the calculations for all particles inside its subdomain S1 and processor P2 performs the
calculations for subdomain S2. The green particle in the blue-marked cell of S1 interacts
with particles in the blue-marked cell of S2 as the particles are in adjacent cells (from a
global perspective). For this reason, P2 needs to send the data for the mentioned particles
to P1, so that the force calculation for the green particle at the boundary of S1 is correct.
Additionally, particles can move from S2 to S1, as indicated by the black particles. It is
necessary that P2 sends the data for this particle to P1 and deletes the data from its memory.
Of course, P1 has to perform the same steps as P2. Handling boundary conditions may lead
to additional changes in the implementation.

The communication between processors can be realized by sending and receiving messages.
The message passing interface MPI defines methods, such as MPI send(), to send a message
from one processor to another one. There are multiple implementations for this interface
like MPICH. [7]
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Figure 2.4.: Example of a simulation domain, which is divided into two subdomains. Particles
from both subdomains interact with each other or move from one subdomain
into the other one.
Source: own illustration, adapted from [3]

As described above, there are two ways of parallelization. It is also possible to combine
both strategies to make the program even more performant e.g., by dividing the simulation
domain into subdomains, and one subdomain is assigned to a node of a cluster and every
node assigns tasks to the threads of a CPU. After the computation is executed, necessary
data is exchanged.

2.3. Introduction to AutoPas

As we have already shown in the previous sections, an efficient simulation is important
to picture the reality. In this thesis, we use the C++ library AutoPas which provides
functionality for efficient MD simulations. We motivate the usage of AutoPas below.

Particles of a simulation need to be stored in a data structure. AutoPas provides an
abstraction for this data structure called container and a function to iterate over all the
particles stored in the container. The chosen data structure depends on the selected algo-
rithm for the force calculation. For example, in the case of the Linked Cells algorithm, the
container is a vector of cells and each cell stores the particles inside of its own vector. The
order of iterating over the particles depends on the selected traversal strategy. With this
traversal, we try to achieve an efficient iteration over all particles and avoid race conditions
if parallelization strategies are applied.2 [6]

The interface of AutoPas is designed as a façade-pattern, so users do not need to understand
the implementation details and are still able to use AutoPas efficiently. Moreover, we like
to point out the special feature of AutoPas. Every simulation scenario needs a different

2Further configuration options and advantages can be found in [6]
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set of parameters, like the data structure or the traversal, to be simulated most efficiently.
Autopas can select the best configuration automatically, in the beginning, and during
runtime, so users do not need to have deep algorithmic knowledge and do not need to select
the best configuration themselves. This tuning happens on the node level. As the optimal
configuration may change over the time of the simulation, AutoPas can adapt the parameters
to be optimal again. Some parts of the simulation domain may be empty, but using the
Linked Cell algorithm, these parts are still checked if particles are inside the cells. [6]

2.4. The Julia Programming Language

Algorithms, data structures, and parallelization strategies have an influence on the perfor-
mance of a molecular dynamics simulation. However, the used programming language is
important as well and can increase the speed of the simulation. As already mentioned in
the introduction, we work with the Julia programming language to implement the molecular
dynamics simulator and motivate the utilization of Julia in the following.

In [1], Bezanson et al. state that Julia provides the advantage of statically typed languages
like C, which are known for high performance, as well as of dynamically typed languages
like Python, which are known to be used to write high-level code. Because of this promising
statement, we like to point out the advantages of the Julia programming language in detail.

The reason, for the high performance of Julia, is based on three major reasons. The first
one is that Julia uses just in time (JIT) compilation, which means that parts of the
source code are compiled during runtime. [18] The second reason is the usage of multiple
dynamic dispatch. If a function is defined multiple times with the same name but different
argument types, multiple dynamic dispatch chooses the correct function definition based
on all arguments during run-time. Even if the compiler does not know the type of single
variables before run-time, information about the types is automatically provided during
run-time e.g., if a function is called with a set of real values. These values are of a specific
type, hence providing type information. The last reason is that the compiler uses the
deduced types to create specialized code. For the code specialization, as well as for the
correct function selection, Julia has a specific rule book and strategy, which is discussed in
detail in [1].

• type annotation is optional and not necessary for performance [2]

• user-defined types are as performant as built-in types [2]

• no need for a build system [1]

• built-in and easy-to-use parallelization techniques, on instruction level with simd as
well as shared and distributed memory parallelization [2]

• the Julia REPL (read, eval, print loop) provides great interactivity, as expressions can
be evaluated one after another. This can also make MD simulations more interactive,
as the simulation state can be inspected after some time and further action can be
decided spontaneously. [8]

8



2.5. Wrapping C++ Code

2.5. Wrapping C++ Code

We already learned about AutoPas and that it is written in C++. Furthermore, we explained
the advantage of Julia as a fast programming language. In order to call functions or types
from AutoPas, we need to wrap the C++ code with a wrapper. This wrapping is done with
the CxxWrap.jl package.

2.5.1. Overview and Discussion of Available Wrappers

Multiple packages and strategies exist, to use Julia and C++ together. In this subsection
we present different wrapper options, explain our decision to use CxxWrap, and why we do
not use other wrapper options.

The Julia C Interface3 is the foundation to call C or C++ functions from Julia. As a
programmer, we can use ccall to call a C/C++ function, if we know the symbol name or
have a pointer to the function. The ccall method from Julia is the basis for all following
wrappers. In theory, it is possible to directly write the wrapper with the help of ccall, but
the solution may not be the most elegant one.

The first Julia wrapper option is jluna [5]. According to the documentation, the package
is used in cases where C++ is the mainly used language and not Julia. For the thesis, we
use Julia as the main language and call only some functionality from C++.

Another option is the Cxx.jl package, which may be used to wrap C++ code and Julia
is assumed to be the host language. Cxx.jl is interactive, as it provides the possibility to
execute C++ code like Julia code in a REPL-style way [14], which may be a very comfortable
feature. However, the project seems to be unmaintained and can only be used with Julia
versions up to 1.3.4 So using this strategy in the long term might not be the best choice.
Additionally, the author of the bachelor thesis [16] states that a small test using the wrappers
Cxx.jl and CxxWrap.jl resulted in a ∼ 5 times longer runtime of the code wrapped with Cxx.jl.

CxxInterface.jl5 is another way to wrap C++ functions. The wrapping code is written
in Julia and with automatic string manipulation, C++ code is created, which needs to
be compiled. However, at first sight, we need to provide plenty of information about the
function e.g., argument types of the functions, and if many functions are wrapped, this may
produce plenty of code.

The only left option is CxxWrap.jl6. An interesting feature of CxxWrap is that we
generally only need one line of C++ code to expose e.g., a function, to Julia. Furthermore,
it is still maintained, the GitHub repository provides many examples and in some cases, it
is even possible to generate the wrapper code automatically with WrapIt.jl7. If this package

3https://docs.julialang.org/en/v1/base/c/#C-Interface
4https://github.com/JuliaInterop/Cxx.jl
5https://github.com/eschnett/CxxInterface.jl
6https://github.com/JuliaInterop/CxxWrap.jl
7https://github.com/grasph/wrapit
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2. Theoretical Background

is used, the wrapper code is written in C++ as well as compiled and linked against a shared
library. All in all, this seemed to be the most elegant and straightforward solution at the
beginning of the thesis. [9]

2.5.2. General Usage of CxxWrap.jl

The goal of CxxWrap.jl, also called CxxWrap, is to wrap an already compiled library, write
the wrapper code in C++ and link this code against the library. In the following, we explain
how the type A from listing 2.1 can be wrapped using CxxWrap.

1 // type A
2 struct A {
3 int x ;
4 double y ;
5
6 // cons t ruc to r
7 Foo ( int x , double y ) ;
8
9 // member func t i on
10 int add ( int x , double y ) {
11 x += x ;
12 y += y ;
13 }
14 } ;
15 o

Listing 2.1: Example type to illustrate wrapping with CxxWrap.jl.

First of all, we need to write the wrapping code into the function define julia mod-

ule, which takes a jlcxx::Module as an argument (see listing 2.2). The Module type
represents a Julia module in C++ and is used to add types and functions for the usage
in Julia. In the code snippet, we assume that the type A is in the default namespace, in
other cases the fully qualified name needs to be specified, whenever A is used. With the
command add type we can add a new type to the module and this returns an object we
called aType. To this aType object we can add constructors with aType.constructor<arg1,

arg2, ...>() or functions with aType.method(). The names in quotation marks are the
names exposed to Julia and can be chosen freely e.g., the C++ function add can be called
with addCpp in Julia. As we can see, the syntax for the constructor is special, as all used
argument types need to be explicitly written in < > brackets, whereas we only need to
specify the C++ function name, but not the argument types if a function is added (assum-
ing the function is not overloaded. More on how to wrap overloaded functions in section
3.1). All files containing wrapper code need to be compiled and linked against the library. [10]

1 JLCXXMODULE de f i n e j u l i a modu l e ( j l c x x : : Module& mod) {
2 // add type A to the C++ module
3 auto aType = mod . add type<A>(”ACpp” ) ;
4
5 // add the con s t ruc to r with the arguments o f type i n t and double to aType
6 aType . cons t ructor<int , double>() ;
7

10



2.5. Wrapping C++ Code

8 // add the member func t i on add , which i s c a l l e d addCpp in Ju l i a
9 aType . method ( ”addCpp” , &Foo : : add ) ;
10 }

Listing 2.2: C++ code for wrapping of type A and its functions. adapted from: [10]

The last necessary step is to create the module in Julia, as listing 2.3 shows. The macro
@wrapmodule takes the path to the shared library as an argument and constructs a static
table of all wrapped functions (for pre-compilation) and the macro @initcxx fills this table
at run-time. [10]

1 module FooWrapper
2 using CxxWrap
3 @wrapmodule ( jo inpath ( ”path/ to / l i b ” , ” shared l ib name . so ” ) )
4
5 f unc t i on i n i t ( )
6 @initcxx
7 end
8 end

Listing 2.3: Exposing the wrapped functions to Julia. adapted from: [10]

2.5.3. Short Introduction into CxxWraps Internals

This section provides a short introduction how CxxWrap is implemented. The following
code is written on the C++ side.

With ccall it is possible to call a C function from Julia. It is necessary to provide the
name of the function in C and the library, where the function is defined. Furthermore, the
types of the function arguments, the type of the return value, and the real values of the
arguments need to be specified. CxxWrap needs two steps to call a C++ function from
Julia. At first, we need to define a function on the C++ side, that returns a pointer to
the function that is invoked from Julia. This is necessary as the names of symbols in C++
libraries differ depending on the used operating system (name mangling of C++ compiler),
and hence symbol names cannot be hard-coded. The second step is to use ccall to invoke
the desired function as discussed, with the exception that we use the pointer to the function
instead of the symbol name. [10]

The basic idea of CxxWrap is explained in the paragraph above, however, we also need to
handle type conversions as the Julia type of a variable may not be mapped to the correct
C++ type on all operating systems. For example, the C++ type long long is mapped to
the Julia type CxxLongLong on Linux (64-bit). On MacOS, the type is mapped to the Julia
type Int64, as different operating systems use different sizes for some integer values. This
means that after calling a wrapped function from Julia with ccall, we have to convert the
’Julia types’ to the corresponding ’C++ types’ on the C++ side and of course, this applies
the other way around for the return type of a function. [10]

Additionally, we need to handle the call of member functions of a C++ class. CxxWrap
uses the std::function class from C++, as shown in listing 2.4 for this scenario. The
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2. Theoretical Background

std::function takes as arguments the original function arguments plus a reference to
the object of the class of the member function, in this example of type A. Inside the func-
tion, we use the referenced object to call the proper function with the correct arguments. [10]

1 std : : funct ion<void (A&, int , double )> addWrapper ( [ ] (A& a , int x , double y )
2 {
3 return a . add ( x , y ) ;
4 }) ;

Listing 2.4: CxxWrap internal: wrapping of a member function with std::function adapted
from: [10].

Other special cases like error handling or using lambdas are important to mention but
not discussed here. [10]

2.6. Related Work

For the last part of this chapter, we like to present related research results. We structure
the text in two parts, the first one is about Julia’s interoperability and the second one is
about using Julia for high-performance code.

2.6.1. Julia Interoperability in Current Research

The CxxWrap.jl package was used to wrap two C++ libraries FastJet and LCIO to use this
functionality from Julia for high-energy physics analyses. This paper discusses the usability
of the wrapper, as well as the runtime of the Julia implementation using wrapped functions
against the pure C++ implementation and a Python implementation. The researchers
state that the wrapping of C++ libraries can be easily accomplished with CxxWrap. The
overhead of the wrapping is available, especially if the problem size is small, however, for
bigger and longer running simulations the overhead is very low. This leads to the result that
the Julia code even outperforms the C++ code or is equally fast for big input sizes. [20]

In two bachelor theses, CxxWrap.jl is also used to wrap C++ libraries. In one thesis, the
preCICE library, which is used for multi-physics simulations [12] is wrapped with CxxWrap,
as well as the normal C interface is used. The author does prefer the C interface over the
CxxWrap package because one of the multiple reasons is that the interaction with the C
interface is more similar to the Julia not object-oriented design. The second thesis wraps
the Omnet++ library, which is used to simulate networks and distributed systems [16].
Furthermore, the overhead of the wrapper and of the Julia implementation is evaluated. In
conclusion, the overhead is quite high, but again can be neglected for longer simulations. The
author states that the Julia implementation cannot compete with the C++ implementation
in terms of performance.

2.6.2. The Julia Programming Language in Scientific Computing

In [19] Julia is used to running quantum computational simulations for chemistry. Fur-
ther, they apply parallelization strategies in the Julia code and show a decent scaling of
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92% for one of their algorithms using more than three hundred thousand processes. Low
communication between processors makes the scaling of the algorithm very efficient. With
the developed code, it is possible to simulate protein-ligand interactions. Especially, the
program was applied to study how ligands bound to the protease of the SARS-CoV-2 virus.

Another topic related to using Julia for science, again theoretical chemistry, is discussed
in [17]. The researchers implemented a quantum chemistry package called JuliaChem.jl and
compared the program (in terms of efficiency) to the existing package GAMESS. The results
show that the Julia implementation is as performant as the GAMESS implementation and
depending on the simulated scenario and the used GAMESS class, the Julia implementation
was 20.8% slower in the worst case and 42.1% faster in the best case. Additionally, the
overhead of the JIT compilation is discussed.

One result which is closer to AutoPas is Molly.jl, which is a molecular dynamics package8

completely implemented in Julia. Similarly to AutoPas, we can use the Lennard-Jones
potential or periodic boundary conditions for the simulation domain. Additionally, some
neighbor list implementations are used to accelerate the simulations. Further Julia packages
related to MD simulations can be found in the reference below.9

The CellListMap.jl package, presented in [15], is used to implement cell lists algorithms,
which are used for particle simulations. With this Julia package, it is possible to create
custom and efficient cell list-based algorithms with ease. The researcher concludes that the
implementation of CellListMap.jl is efficient and can be compared to existing performant
packages for computing neighboring particles. This package is also included in the Molly.jl
package.

8https://juliamolsim.github.io/Molly.jl/stable/
9https://juliamolsim.github.io/
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3. Implementation

This chapter discusses the implementation of the molecular dynamics simulator. Firstly, we
explain how the wrapper for the AutoPas library is implemented. Secondly, the fundamental
components of the simulator are explained. The last two sections are about changes to apply
shared and distributed memory parallelization.

3.1. Implementaiton of the Wrapper

One target of this thesis is to be able to call functions of the AutoPas library, written in
C++, from the Julia programming language. We already discussed the package CxxWrap.jl
and in this section, we like to explain in detail, how the AutoPas wrapper is implemented,
and which workarounds and components are necessary to use AutoPas fully functional.

3.1.1. Exposing the AutoPas Class to Julia

In this subsection, we use the term module or C++ module as a synonym for the C++
class jlcxx::Module, representing a Julia module in C++. Listing 3.1 shows an extract
of the AutoPas class and we notice that it is a parametrized class, expecting a particle
as a parameter type. We already know how a type is added to the C++ module from
section 2.5, but template types are different, as we can see in listing 3.2. First of all,
we need to specify all combinations of template types we may use in Julia, which in this
case are AutoPas<MoleculeJ<double>> and AutoPas<MoleculeJ<float>>.1 Additionally,
we create a struct called WrapAutoPas, which implements the operator() function and
is basically a functor. Furthermore, we add all functions to the module inside this new
struct, similar to adding a function to a ’normal’ module. Lastly, the functor adds the
functions for all template types to Julia automatically. The init function can be added
to the module without any further effort and with the already-known syntax. Adding an
overloaded function to the module is possible as well, however, the function pointer needs to
be casted to the correct argument types, as shown with the function deleteParticle. In
this case, the function takes a reference to a particle as an argument and returns nothing.
Similarly, the function begin is overloaded and we cast the pointer to the correct types. We
see, that the function has an Option class as an argument and as return type iterator t,
both types are unknown for now and are discussed later.

1 template <class Par t i c l e>
2 class AutoPas {
3 public :
4
5 void i n i t ( ) ;

1The type MoleculeJ is discussed in the subsequent subsection.
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6
7 void d e l e t eP a r t i c l e ( Pa r t i c l e& p a r t i c l e ) ;
8
9 i t e r a t o r t begin ( I t e r a to rBehav i o r behavior ) ;
10
11 void setBoxMin ( const std : : array<double ,3> &boxMin ) ;
12
13 template <class Functor>
14 bool i t e r a t ePa i rw i s e ( Functor ∗ f ) ;
15
16 } ;

Listing 3.1: Extract of the AutoPas class. adapted from [6]

1
2 struct WrapAutoPas {
3 template<typename T>
4 void operator ( ) (T&& autoPas ) {
5
6 using AutoPasType = typename T : : type ;
7 using i t e r a t o r t = typename autopas : : I t e r a t o rT r a i t s<typename

AutoPasType : : P a r t i c l e t > : : i t e r a t o r t ;
8
9 // adding the i n i t method to the module
10 autoPas . method ( ” i n i t ” , &AutoPasType : : i n i t ) ;
11
12 // adding the over loaded d e l e t eP a r t i c l e method to the module
13 autoPas . method ( ” d e l e t eP a r t i c l e ” , static cast<void (AutoPasType : : ∗ ) (

typename AutoPasType : : P a r t i c l e t &)> (&AutoPasType : : d e l e t eP a r t i c l e )
) ;

14 . . .
15 } ;
16
17 void setBoxMin ( autopas : : AutoPas<MoleculeJ<double>>& autoPasContainer , j l c x x : :

ArrayRef<double ,1> boxMin ) {
18 autoPasContainer . setBoxMin ({boxMin [ 0 ] , boxMin [ 1 ] , boxMin [ 1 ] } ) ;
19 }
20
21 bool i t e r a t ePa i rw i s e ( autopas : : AutoPas<MoleculeJ<double>>& autoPasContainer ,

Pa r t i c l eP rope r t i e sL ib r a ry<> pa r t i c l eP r op e r t i e sL i b r a r y ) {
22 autopas : : LJFunctor<MoleculeJ<double>, true , true> f unc to r {
23 autoPasContainer . ge tCuto f f ( ) , p a r t i c l eP r op e r t i e s L i b r a r y
24 } ;
25 return autoPasContainer . i t e r a t ePa i rw i s e (& func to r ) ;
26 }
27
28 JLCXXMODULE def ine module autopas ( j l c x x : : Module& mod)
29 {
30 using j l c x x : : Parametric ;
31 using j l c x x : : TypeVar ;
32
33 /∗∗
34 ∗ add AutoPas type to Ju l i a with the template parameter
35 ∗ MoleculeJ<double> and MoleculeJ<f l o a t>
36 ∗/
37 mod . add type<Parametric<TypeVar<1>>>(”AutoPas” )
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38 . apply<autopas : : AutoPas<MoleculeJ<double>>, autopas : : AutoPas<
MoleculeJ<f loat>>>(WrapAutoPas ( ) ) ;

39
40 // add the setBoxMin func t i on to the module
41 mod . method ( ”setBoxMin” , &setBoxMin ) ;
42
43 // add the i t e r a t ePa i rw i s e func t i on to the module
44 mod . method ( ” i t e r a t ePa i rw i s e ” , &i t e r a t ePa i rw i s e ) ;
45 }

Listing 3.2: Wrapping of the templated class AutoPas.

Some of the member functions have a std::array as a function argument or return type,
like setBoxMin. However, CxxWrap only maps a few C++ standard library (STL) types to
corresponding Julia types, but not std::array. Therefore, we define a new helper function in
C++, which takes a reference to an AutoPas container and an instance of jlcxx::ArrayRef.
The jlcxx::ArrayRef is a data type, defined by CxxWrap, which maps a Julia vector to
a C++ type. Inside the helper function, we call the original function from the AutoPas
container object and transfer the values of the ArrayRef object into a std::array object.

One of the most important functions of AutoPas is the iteratePairwise function, which
iterates over all particles in an AutoPas container to calculate the force between particle pairs
efficiently. As shown in listing 3.1 the function itself is parameterized and with CxxWrap it
is even possible to wrap a parametrized function, but the author of the thesis was not able
to wrap a parametrized function within a parametrized class. Hence, we choose the same
methodology as above and call the iteratePairwise function out of a helper function. For
now, the functor is hardcoded, but this can easily be changed.

3.1.2. Inplementation of the MoleculeJ Class and its Wrapper

In the previous subsection, we mentioned that the AutoPas class expects a template pa-
rameter and in this thesis, we use the type MoleculeJ2. In [6] it is explained that a custom
particle class may be implemented to use AutoPas and it is easy if the class inherits from
the class ParticleBase, which is already provided by AutoPas.

Listing 3.3 indicates that our newly defined class MoleculeJ inherits from ParticleBase.
Moreover, a big part of this class is similar to the already provided class in the AutoPas
repository called MoleculeLJ. A few adjustments are necessary, to use the particle type for
the Julia simulator. As already mentioned, we need to exchange the type std::array for
the type jlcxx::ArrayRef, which is the case for the getters and setters of the attributes
r (position), v (velocity), f (force) and oldForce, as well as for the constructor. Imple-
menting the getters is easy, as we only need the pointer to the array, as well as its size.
For the setters, we need to construct a new std::array object and this object is used to
set the variable.

2Although this section is dedicated to the wrapper code, we also include how the class MoleculeJ is
implemented, as it does not fit better in any other context
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The typeId and moleculeId attributes are important to mention as well. The first
attribute can be used to distinguish between two different molecule types or molecular
structures (but in this thesis, we only use one molecule type) and the second one is used
to assign every particle an individual index, which is used in section 3.3 for parallelization
strategies.

Additionally, we added a further getter implementation, which only returns one single
floating point value, and this getter takes an integer as an argument, which represents the in-
dex of the desired value of the array e.g., getP(1) returns the second element of the position
array. To get all the positions, we need to call this getter three times. It may be interesting to
analyze if the two getter implementations perform differently, which is discussed in section 4.3.

Due to the fact that MoleculeJ is a parametrized type, we follow the same procedure to
wrap the code as explained in the previous section.

1
2 template<typename f loatType>
3 class MoleculeJ : public autopas : : P a r t i c l e {
4 public :
5
6 MoleculeJ ( j l c x x : : ArrayRef<f loatType ,1> pos , j l c x x : : ArrayRef<f loatType ,1> v

,
7 unsigned long moleculeId , unsigned long typeId = 0) : type Id ( typeId )

{
8 std : : array<f loatType , 3> pos {pos [ 0 ] , pos [ 1 ] , pos [ 2 ] } ;
9 std : : array<f loatType , 3> v {v [ 0 ] , v [ 1 ] , v [ 2 ] } ;
10 s e tPo s i t i o n ( pos ) ;
11 s e tVe l o c i t y (v ) ;
12 setID ( molecu le Id ) ;
13 }
14
15 void s e tPo s i t i o n ( j l c x x : : ArrayRef<f loatType ,1> pos ) {
16 Par t i c l eBase : : setR ({ pos [ 0 ] , pos [ 1 ] , pos [ 2 ] } ) ;
17 }
18
19 // g e t t e r implementation r e tu rn ing ArrayRef ob j e c t
20 j l c x x : : ArrayRef<double ,1> ge tPo s i t i on ( ) {
21 return { r . data ( ) , r . s i z e ( ) } ;
22 }
23
24 // g e t t e r implementation r e tu rn ing s i n g l e va lue s
25 double getP ( int i ) {
26 return r [ i ] ;
27 }
28 } ;

Listing 3.3: Abstract of the MoleculeJ class and the different getter implementations. adapted
from [6]
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3.1.3. Wrapping of Enums with CxxWrap

As mentioned in section 3.1.1, AutoPas uses options e.g., the class IteratorBehavior, which
we discuss as an example in the following. This class is used to tell the iterator which particles
need to be considered for the iteration, for example, it is possible to iterate only over particles
outside of the simulation domain. Listing 3.4 shows the class IteratorBehavior and it has
an enum defined inside, called Value. It is necessary to wrap the type IteratorBehavior
as well as the enum Value if we want to specify the behaviour of the iterator from Julia.
The type can be added to the C++ module as usual. CxxWrap represents an enum as an
isBits type and the syntax to add an enum is different than for a normal type, as shown in
the same listing.

1
2 namespace autopas {
3 inl ine namespace opt ions {
4
5 class I t e r a to rBehav i o r : public Option<I t e ra to rBehav io r> {
6 public :
7
8 using Value t = unsigned int ;
9
10 /∗∗
11 ∗ Di f f e r e n t p o s s i b i l i t i e s f o r i t e r a t o r behav ior s .
12 ∗/
13 enum Value : Value t {
14
15 owned = 0b0001 ,
16 halo = 0b0010 ,
17 . . .
18 }
19 . . .
20 } ;
21
22
23 JLCXXMODULE de f ine modu l e opt i on s ( j l c x x : : Module& mod) {
24 /∗∗
25 ∗ add the enum of I t e r a to rBehav i o r to the module
26 ∗/
27 mod . add bi t s<autopas : : opt ions : : I t e r a to rBehav i o r : : Value>(”

I t e ra torBehav io rVa lue ” , j l c x x : : j u l i a t y p e ( ”CppEnum” ) ) ;
28 mod . s e t c on s t ( ”owned” , autopas : : opt ions : : I t e r a to rBehav i o r : : Value : : owned ) ;
29 mod . s e t c on s t ( ” halo ” , autopas : : opt i ons : : I t e r a to rBehav i o r : : Value : : ha lo ) ;
30
31 /∗∗
32 ∗ add I t e r a to rBehav i o r type and cons t ruc to r to Ju l i a
33 ∗/
34 mod . add type<autopas : : opt ions : : I t e ra to rBehav io r >(” I t e r a to rBehav i o r ” )
35 . cons t ructor<autopas : : opt ions : : I t e r a to rBehav i o r : : Value>() ;
36 }

Listing 3.4: The IteratorBehavior class and how to wrap an enum with CxxWrap. adapted from
[6]

Furthermore, we can see that IteratorBehavior inherits from the Option class and
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this class has the template parameter IteratorBehavior. This is also called curiously
recurring template pattern (CRTP). CxxWrap supports inheritance and specifying
the supertype may be the standard way to wrap this type. However, in CxxWrap, we
always need to add a type or a function to a C++ module before we use it e.g., as an
argument type of a function or as a type for a template parameter. Adding the Option

class to the module before the class IteratorBehavior does not work, as we need to
specify all combinations of the templated types when the type is added to the module. The
template type IteratorBehavior is not known at this time, as it is defined later. If the
class IteratorBehavior is added before the Option class, we need to specify the supertype,
which is Option and Option is not known as well. This only explains why we have not used
the method to specify the inheritance structure.

3.1.4. Overview of the Wrapped Modules

Up to this point, three different types were wrapped. In addition, we need the class Par-
ticlesPropertiesLibrary, which contains the data about the particles, like coefficients
for the Lennard-Jones potential or the mass of the particle. The classes ParticleItera-
torInterface and ParticleIteratorWrapper are needed as well, because they implement
the operators ++ and * so that we can actually use the iterator returned by begin. How-
ever, no new special approach is needed to wrap these types and we do not go into more detail.

The five discussed components: AutoPasInterface, Particles, AutoPasOptions, Parti-
clePropertiesLibrary, and Iterators, are all added to their own C++ module. There is
another difference to the approach explained in section 2.5.2 as the method define julia -

module is named differently e.g., define module iterators for the module containing the
logic regarding the iterator. This creates a better structure of the code and it is easier to
add new functions or types to the wrapper.

3.1.5. Module Creation on the Julia Side

In the last step, we need to write Julia code to make the functions from AutoPas available
in Julia. We define the module Simulator, which contains all the subsequent modules. In
section 2.5.2 we already showed how to specify the path to the shared library and this needs
to be done for all five created modules as well. Because the define julia module function
is replaced by e.g., define module particles for the module containing the particle func-
tionality, we need to specify this in the @wrapmodule macro, shown in listing 3.5. Of course,
the name is adapted, depending on the module name.

1
2 module Simulator
3
4 module P a r t i c l e s
5 using CxxWrap
6 @wrapmodule ( jo inpath ( ”path/ to / l i b ” , ” libname . so ” ) , : d e f i n e modu l e p a r t i c l e s )
7
8 f unc t i on i n i t ( )
9 @initcxx
10 end
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11 end # module P a r t i c l e s
12
13 module I t e r a t o r s
14
15 . . .
16
17 end # module I t e r a t o r s
18
19 . . .
20
21 end # module Simulator

Listing 3.5: Creating Julia modules of the wrapped C++ functionality of AutoPas.

3.2. Simulator

The following section describes how we implemented the simulator and use the created
wrapper from section 3.1 to call the AutoPas functions and types from Julia. If not stated
otherwise, we can assume that we always use the Linked Cells algorithm in this and the
following sections.

3.2.1. Initialization of Simulation Parameters

Before starting the simulation, we need to initialize the AutoPas container and set all
relevant parameters for the simulation.

Most important for a MD simulation is the creation of particles. We use so-called genera-
tors to create particles in a specific arrangement and we support a cube grid3 and a cube
uniform4 generator. For each arrangement, we created a struct e.g., the CubeGridInput

struct form listing 3.6, which inherits from the abstract type ParticleObjectInput and
has all the relevant data to create the particles at the correct position and with the correct
velocity. The values for this struct need to be written into the code directly, as we do not
support parsing of command line arguments or an input file parser. We added a constructor
without any arguments with the new() keyword so that we can create an uninitialized object
and specify every argument one after another. The advantage is to initialize an arrangement
in the Julia REPL interactively and easily.

1 # d e f i n i t i o n o f the cube g r id arrangement
2 mutable struct CubeGridInput <: Pa r t i c l eOb j ec t Input
3 par t i c l e sPerDimens ion : : Vector{ Int64 }
4 pa r t i c l e Spa c i n g : : Float64
5 bottomLeftCorner : : Vector{Float64 }
6 v e l o c i t y : : Vector{Float64 }
7 par t i c l eType : : Int64
8 pa r t i c l eEp s i l o n : : Float64

3To create a cube grid, we define how many particles we like to have in each of the three spatial dimensions,
as well as a constant distance between each particle

4To create a cube uniform, we define the length of a cuboid and insert particles with randomly uniformly
distributed positions into the cuboid.
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9 par t i c l eS i gma : : Float64
10 par t i c l eMas s : : Float64
11 factorBrownianMotion : : Float64
12 CubeGridInput ( ) = new( )
13 end
14
15 # i n i t i a l i z a t i o n o f the cube g r id struct in the code
16
17 cubeGrid = CubeGridInput ( )
18
19 cubeGrid . par t i c l e sPerDimens ion = [10 , 10 , 10 ]
20 cubeGrid . p a r t i c l e Spa c i n g = 1.12
21 . . .

Listing 3.6: Definition of the cube grid struct and how it can be initialized.

Other input parameters like the AutoPas container, are set in the struct called input-

Parameter and again the struct is initialized in the code directly, as already described in
the previous paragraph. Furthermore, we implemented a function called parseInput, which
creates an AutoPas container object, adds the generated particles to the container, and
returns the container, as well as an instance of the ParticlesPropertiesLibrary.

3.2.2. Calculation of Position and Velocity

The force calculation is already implemented in AutoPas so we still need to implement the
update of the position r, formula 3.1 and velocity v, formula 3.2. Both formulas are adapted
from the Velocity-Störmer-Verlet method from [3].

r(t+ δt) = r(t) + δtv(t) +
δt2

2m
F (t) (3.1)

v(t+ δt) = v(t) +
δt

2m
(F (t) + F (t+ δt) (3.2)

With listing 3.7 we explain how the position calculation is realized in Julia, the velocity
calculation is implemented similarly. The iterator needs to be initialized as the very first
step and with isValid, we can verify if the iterator still points to a particle. With Sim-

ulator.Iterators.:* we can dereference the iterator and get the particle of the current
iteration. For the calculation, we need the velocity and the force as seen in formula 3.1. We
set the value of the oldForce to the value of the current force because formula 3.2 needs the
value for the velocity calculation. To calculate e.g., v · δt, we can simply use the.* operator
from Julia base and this computes the element-wise multiplication of a vector with a scalar,
similarly we can add two vectors with .+. We use getTypeId to get the ID of the type of
the molecule and with this ID we can get the correct mass. With addPosition, a member
function of MoleculeJ, we can add the adjustment of the position to the current position to
get the updated position. The ++ operator is called so that the iterator points to the next
particle. As the iterator operators are not part of Julia base, we need to specify the path to
the module which defines the operators, which is Simulator.Iterators due to the module
structure discussed in section 3.1.5.
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1 # in this code sn ippet pPL stands for pa r t i c l e sP r o p e r t i e s L i b r a r y
2 f unc t i on updatePos i t i ons ( autoPasContainer , deltaT , pPL)
3 i t e rOpt ion = I t e ra to rBehav i o r ( Options . owned )
4 i t e r = AutoPasInter face . begin ( autoPasContainer , i t e rOpt ion )
5 while i sVa l i d ( i t e r )
6 p a r t i c l e = Simulator . I t e r a t o r s . : ∗ ( i t e r )
7 v e l o c i t y = ge tVe l o c i t y ( p a r t i c l e ) # v e l o c i t y i s o f type Vector{Float64 }
8 f o r c e = getForce ( p a r t i c l e ) # f o r c e i s o f type Vector{Float64 }
9 setOldF ( pa r t i c l e , f o r c e )
10 v e l o c i t y .∗= deltaT
11 typeId = getTypeId ( p a r t i c l e s )
12 f o r c e .∗= ( deltaT ∗ deltaT ) / (2∗ getMass (pPL , typeId ) )
13 f o r c e .+= ve l o c i t y
14 addPos i t ion ( p a r t i c l e , f o r c e )
15 Simulator . I t e r a t o r s .:++( i t e r )
16 end
17 end

Listing 3.7: Calculation of the new position in the Julia programming language.

3.2.3. Implementation of Boundary Conditions

Depending on the simulated scenario, we need to handle the particles at the boundary
of the simulation domain, or the ones crossing the boundary. Below, we discuss how we
implemented the outflow and periodic boundary condition.

AutoPas already provides a function called updateContainer which collects all particles
outside the domain. Furthermore, it deletes the particles from the AutoPas container and
returns a vector of these particles. As the outflow boundary condition means deleting all
particles outside of the simulation domain, we can easily use this function to implement this
boundary condition.

For the following boundary condition, we define the term halo particle. This particle
is a copy of a particle that is near the boundary inside the simulation domain. The halo
particle is used as a dummy particle to calculate the force correctly. Halo particles are
always outside of the simulation domain.

Another convention we use related to boundary conditions are the terms ’upper’ and
’lower’, e.g., the upper boundary area in the x direction describes the boundary area on the
right side, and the lower one describes the left side. For the y dimension, in a two-dimensional
case, the ’upper’ boundary area is indeed the upper area. In three dimensions the ’upper’
area describes the area in the back of a cuboid.

The periodic boundary condition is explained with the help of figures 3.1 and 3.2. The
orange-shaded area is called the boundary area and the purple one is called the outer area.
The blue line indicates the boundary of the simulation domain so that the boundary area
is still inside the simulation domain, but the outer area is outside of it. Both areas have a
width of one cutoff unit and we assume that a single particle can only move as much as one
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cutoff unit in one iteration.

Figure 3.1.: Inserting halo particles for all particles in the boundary area of the simulation
domain.

Particle M moves into the lower boundary area and this means that M would theoretically
interact with particles in the upper boundary area of a neighboring simulation domain.
However, as mentioned in section 2.1 and illustrated in figure 2.2, we only simulate one
simulation domain. For correct results of the force calculation, we create a copy of particle
M called halo particle L in black and add the length of the y dimension of the simulation
domain to its y-coordinate, as illustrated in figure 3.1. Analogously, we need to subtract
the same value from the same coordinate for particles in the upper boundary area or we
need to change another coordinate e.g., for particles in the left or right boundary areas. As
the halo particle is outside of the simulation domain, we need to set the ownership state
of the particle to halo and use the addHaloParticle function of AutoPas to add it to the
container. For the force calculation for particle O in the upper boundary area, the halo
particle L is used and of course, our implementation inserts a halo particle for particle O
(represented by particle U) in the lower outer area which is used for the force calculation
for particle M . After every iteration step, the halo particles are deleted, because they are
’fixed’ e.g., we do not calculate the force or a new position for them. The deletion is done
with the function updateContainer, as per definition the halo particles are always outside
of the simulation domain. If particle M happens to be in the boundary area in the next
simulation step, we insert a new halo particle with the same procedure.

The next scenario is illustrated by using particle P coloured in blue in figure 3.2, which
moved out of the simulation domain and is in the outer area. Per definition, we insert it on
the opposite side, which is equivalent to adding the x length of the simulation domain to its
x-coordinate. The new position is indicated by the red P on the right side. After moving
the particle to the new position, we need to insert a halo particle at the opposite boundary,
as indicated with particle P in black, because the blue particle P is now in the boundary
area. Again, depending if we are in the upper or lower area, we need to subtract or add the
length of the corresponding side from or to the coordinate of the particle. The coordinate
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3.2. Simulator

depends on the fact if it is e.g., a boundary in the x direction or in the y direction.

A case we have not considered in the two-dimensional space is if a particle is in the corner
of the boundary area, like the blue particle X. For this particle, we need to insert three
halo particles, at the positions of the black particles 1, 2, and 3, as seen in figure 3.1. The
reason is again the interaction with neighboring simulation domains, and there are exactly
three of them. For a more detailed description of why this is the case, [7] gives a good and
detailed overview.

A similar concept applies to particles that are in the corner of an outer area. In the case of
two dimensions, we need to modify both coordinates to move the particle to the correct new
position. This is illustrated with particle S in figure 3.2 and the end position is indicated by
particle 2 in the same figure.

In the case of three dimensions, we need to consider one more dimension e.g., a particle in
the corner of the boundary area in a cuboid ’creates’ halo particles, at every other remaining
corner of the cuboid. A particle in the corner of the outer area of a cuboid is moved in all
three dimensions.

Figure 3.2.: Particle moves out of the simulation domain and is reinserted at the opposite
side of the domain.

After the general logic is explained, we talk about the detail of the implementation now.
We created a function called applyPeriodicBoundary, which is composed of two steps:
moving outer particles and inserting halo particles. For both functions, AutoPas provides
an overly helpful function, the regionIterator. If we pass a minimum and maximum
coordinate of an area to the iterator, the iterator only returns particles inside the defined
area and this iterator is more performant than the normal iterator.
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For the first function, called moveOuterParticles, we iterate over a loop, once for each
spacial dimension, and in this loop, we first calculate the minimum and maximum coordinate
of the ’upper’ and ’lower’ outer area. In the next step, we pass these points to the regionIt-
erator and iterate over the returned particles. All three positions of the position attribute
are checked if they are out of the simulation domain and the position is corrected immediately.

The second function is called insertHaloParticles. Again, we calculate the ’lower’
and ’upper’ areas of all the halo areas and iterate over the particles returned by the
regionIterator. If we handle the halo area in the x dimension, we additionally check, if the
particle is in a halo area of a y and/or z dimension and insert the halo particles accordingly.
If we iterate over particles of a halo area of the y dimension, we further check if the particle
is also in a halo area of the z dimension. Now we covered all cases and insert the halo
particles properly in all dimensions.

3.2.4. Description of the Simulation Loop

We know all the necessary parts of a simulator, but we need to use them together in the
right order to create a working simulator, as presented in listing 3.8. As already mentioned,
we need to initialize the autoPasContainer and create the particlePropertiesLibrary,
which is executed in the parseInput function. The first operation in the simulation step
is the position calculation. The handling of the boundary condition follows and we like to
use the outflow boundary condition for this simulator. Hence, we use updateContainer, to
delete particles outside of the simulation domain. The last two steps include the force and
velocity calculation.

1 f unc t i on s imulate ( inputParameters )
2 # pPL stands for pa r t i c l eP r op e r t i e sL i b r a r y
3 autoPasContainer , pPL = parseInput ( inputParameters )
4
5 deltaT = inputParameters . deltaT
6
7 for i t e r a t i o n in 1 : inputParameters . i t e r a t i o n s
8
9 updatePos i t i ons ( autoPasContainer , deltaT , pPL)
10 updateContainer ( autoPasContainer )
11 updateForces ( autoPasContainer , pPL)
12 upda t eVe l o c i t i e s ( autoPasContainer , deltaT , pPL)
13 end
14 end

Listing 3.8: Simple Julia Simulator with outflow boundary condition.

3.2.5. Custom Molecule Implemented in Julia

Chapter 4 discusses the performance of the implemented Julia simulator. In order to measure
the overhead of the wrapper, we implemented a Julia struct representing a particle, as shown
in listing 3.9. Furthermore, we implemented the updatePositions function for this particle
type, similar as already discussed in 3.2.2. Instead of using a ’normal’ Julia Vector or Array
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for attributes like position or velocity, we use SVector, which is a type from the module
StaticArrays. StaticArrays promises better performance compared to standard Julia
data structures.5

1 mutable struct Molecule
2 po s i t i o n : : SVector {3 , Float64 }
3 v e l o c i t y : : SVector {3 , Float64 }
4 f o r c e : : SVector {3 , Float64 }
5 oldForce : : SVector {3 , Float64 }
6 molecu le Id : : Int64
7 typeId : : Int64
8 end

Listing 3.9: Julia struct representing a molecule.

3.3. Usage of Multithreading to Speed up the Simulation

To speed up the simulator discussed in the previous section, we use Julia’s built-in multi-
threading functionality to parallelize the code, hence, we utilize the term thread instead of
the more abstract term processor in this section.

As the force calculation is already executed by Autopas, we can only parallelize the code
we implemented ourselves, which is the position and velocity update. In listing 3.10 we use
the function updatePositionsParallel to illustrate the parallelization strategy, but this
also applies analogously to the velocity update.

As shown in listing 3.7, we use a while loop to iterate over all particles in the AutoPas
container and this loop is the operation we like to parallelize, such that particles are processed
by different threads simultaneously. In Julia, it is only possible to parallelize a for loop so
we need to transform the while loop into a for loop. But the problem is, that a for loop
in Julia is not like the classic C++ for loop for (int i = 0; i < x; i++), but rather a
range-based one. The solution to this problem is to use a for loop ranging from 1 to the
number of used threads and inside this loop we call the function updatePositionSequen-

tial, which does the computation for a subset of particles. With the Julia macro @threads,
we can annotate the for loop which means that the loop is parallelized and the tasks are
distributed to multiple threads.

For the iteration over the particles we use the iterator defined by AutoPas and we need
to pass an iterator instance to each function call of updatePositionSequential. As every
iteration of the for loop is managed by a different thread, we need to make sure that the
threads do not process the same particles. There are two options to solve this.

1. Starting at index i, Thread Ti calculates only the position of every (n · t)-th element
of the container, with n ∈ N and t the number of threads, as shown in figure 3.3.

5https://github.com/JuliaArrays/StaticArrays.jl
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2. Thread Ti calculates the positions of the particles in the range of the iNt -th to
(i + 1)Nt − 1-th particle of the container, with t the number of threads and N the
number of particles as shown in figure 3.4. If N is not a multiple of t, one thread needs
to calculate the position of the remaining particles.

Both options are implemented and the results are compared in section 4.3.

Listing 3.10 presents the first of the two options. At first, we increase the iterator instance
in a loop, so that it points to the correct particle e.g., in the first iteration we do not increase
the iterator so that it points to the first particle. In the second iteration, we increase it once
so that the iterator points to the second particle in the container. This iterator instance is
passed to the function updatePositionsSequential and we proceed with the calculation
as discussed in 3.7 up to the point, the iterator needs to be incremented. In a loop, we
increment the iterator as many times as threads are available.

Figure 3.3.: Parallelization Strategy 1 for t = 3: the particles are distributed to three threads
and each thread processes every third particle.

Option two is slightly different, as we need to know the number of particles in advance.
In updatePositionsParallel we calculate the first and the last index of the chunk and
increase the iterator until the correct position (equals to the calculated first index) is reached.
This iterator instance is passed to updatePositionsSequential. In this function, we can
change the loop to iterate from the calculated first index to the last index without checking
if the iterator is still valid in every iteration. Furthermore, the iterator object is incremented
by one every single iteration.

Figure 3.4.: Parallelization Strategy 2: the particles are divided into chunks of the same size
(if possible) and each thread processes one chunk.
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1
2 f unc t i on updat ePos i t i on sSequent i a l ( autoPasContainer , deltaT , pPL , nthreads ,

i t e r )
3
4 while i sVa l i d ( i t e r )
5 # o r i g i n a l f o r c e c a l c u l a t i o n
6 . . .
7 for i in 1 : nthreads
8 Simulator . I t e r a t o r s .:++( i t e r )
9 end
10 end
11 end
12
13 f unc t i on upda t ePo s i t i on sPa r a l l e l ( autoPasContainer , deltaT , pPL)
14 nthreads = Threads . nthreads ( )
15 i t e rBehav i o r = I t e ra to rBehav i o r ( owned )
16 Threads . @threads for i in 1 : nthreads
17 i t e r = AutoPasInter face . begin ( autoPasContainer , i t e rBehav i o r ) )
18 for j in 1 : ( i −1)
19 Simulator . I t e r a t o r s .:++( i t e r )
20 end
21 updatePos i t i on sSequent i a l ( autoPasContainer , deltaT , pPL , nthreads ,

i t e r )
22 end
23 end

Listing 3.10: Parallelization strategy 1 of the updatePositions function.

In the following simulator run, we used parallelization strategy 1 if not stated otherwise.

Additionally, we parallelized the position calculation for the Julia particle. As the particles
are stored in a vector, we can easily iterate over it with a for loop, and after annotating
the for loop with @threads the loop is easily parallelized.

3.4. Distribution of the Simulation to Multiple Processors

With distributed memory parallelization, we like to further optimize and speed up the
simulator. This section discusses the implementation of the domain decomposition, the
communication between processors, as well as the necessary adjustments for correct boundary
conditions.

3.4.1. Explanation of Using MPI.jl for Distributed Memory Parallelization

For the distributed memory parallelization strategy, we use the Julia package MPI.jl6 which is
a wrapper for the Message Passing Interface (MPI) of C. The following reasons motivate the
utilization of MPI.jl. Firstly, according to [4], MPI.jl is a better choice than the Distributed.jl
package7 from Julia if more complex and bigger parallelization is desired. Secondly, MPI.jl
promises no overhead in comparison to C implementations (if no structs are transferred).

6https://github.com/JuliaParallel/MPI.jl
7https://docs.julialang.org/en/v1/manual/distributed-computing/
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Thirdly, for C/C++ users, MPI.jl provides similar syntax and similar or the same function
names, to make a smooth transition from C/C++ to Julia.

3.4.2. Implementation of the Domain Decomposition

As already discussed in section 2.2.2, the simulation domain needs to be decomposed into
smaller parts with each part being simulated on a different processor. In this thesis, we use
one of the easiest domain decomposition strategies and only divide the global simulation
domain along the x-axis, as shown in figure 2.3. The number of subdomains corresponds
to the number of available processors. To execute the code on different processors, we use
MPI.jl and call the function MPI.Init() in the very beginning of the simulation (even before
the initialization of the AutoPas container), because this function distributes the code to
all used processors, and the code after the function call is executed on each processor in
parallel.

3.4.3. Implementation of the Communication between Processors

We know, how the domain is decomposed into subdomains and the next step, the communi-
cation between the processors, is discussed in this section.

In our scenario, we only need to communicate with the left and right neighboring subdo-
mains.

Figure 3.5 shows the two-dimensional simulation domain and subdomain i, which is
managed by processor Pi. The black dotted lines represent the boundaries of the subdomains
in x direction. Furthermore, we can see a green-shaded area, which is called migration area,
and a blue-shaded area, the halo area. The scenario is explained between subdomain i and
i− 1, but the same applies to subdomain i and i+ 1.

Particles, like the green particle M , move outside of the subdomain i into the green-shaded
area, indicated by particle M in black. This means it enters the subdomain i − 1 and
processor Pi needs to send the data of this particle to Pi−1. As this particle does not need
to be processed by Pi anymore, it can be deleted from its container.

The particles K and U are managed by Pi−1. The force calculation for particle K is
only correct if we consider the interaction between K and U as well as between K and H.
However, H is not inside the memory of Pi−1 so Pi needs to send the data of particle H
to its neighbour. As H is outside of subdomain Si−1, from the perspective of Si−1, it is
inserted as a halo particle. It is only used to calculate the force of particle K and the halo
particle is deleted after every simulation step. Pi cannot delete H, as it is still inside Si.

The functions exchangeMigratingParticles and exchangeHaloParticles are used to
represent these two scenarios in the source code. In the following, we discuss how the
exchangeMigratingParticles function is implemented, and listing A.1 shows a simplified
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Figure 3.5.: Visualizing cross-border interactions between subdomains and the migration of
a particle from subdomain i to subdomain i− 1.

version of the code. exchangeHaloparticles is implemented similarly.

At first, we like to remember that the width of the migrating area is as big as the defined
cutoff. After calculating the edge points of this area, we pass these values to the regionIt-
erator to only get the particles in this area. The second step is to send these particles to
another processor. We need to change the data so that MPI can send it, which is called
serialization. As we can send arrays with MPI, we write the values of the attributes in
the memory subsequently, e.g. at first the three position coordinates, after this the three
velocity values, etc. This is repeated for every particle that is sent to a neighboring processor.

The serialized particles are passed to the sendAndReceiveParticles function which
actually does the communication via MPI. The communication is realized with the functions
MPI.Irecv! to receive a message and with MPI.Isend to send a message. Depending on
the scenario, the number of exchanged particles differs, so we exchange the number of
particles as the first message so that the receiving processor can allocate a big enough array.
The send and receive calls need to be done two times, for the left and right neighbour
exactly once. With MPI.Waitall, we wait until the communication is completed. After
this, we use the same functions to exchange the particles and again, it is necessary to call
the send and receive functions two times and to wait until all the communication is completed.

The received messages represent serialized particles, hence, we need to deserialize them
back into particle objects and add the particles to the AutoPas container. In the case
of the exchangeMigratingParticles function, we need to delete the sent particles from
the container, as they are out of the current subdomain. This step is not relevant in the
exchangeHaloParticles function.

1
2 f unc t i on exchangeMigra t ingPar t i c l e s ( autoPasContainer , domain , comm)
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3
4 l e f tMin , le ftMax = ca l cu l a t eLe f tAr ea ( domain )
5 rightMin , rightMax = ca l cu la teRightArea ( domain )
6
7 ePL = [ ] # exchangePar t i c l e sLe f t
8 i t e r = r e g i o n I t e r a t o r ( autoPasContainer , l e f tMin , leftMax , I t e r a to rBehav i o r

( owned ) )
9 while i sVa l i d ( i t e r )
10 push ! ( ePL , Simulator . I t e r a t o r s . : ∗ ( i t e r ) )
11 end
12
13 # loop over the r i g h t s i d e as we l l
14
15 r e c e i v eP a r t i c l e s = sendAndRece ivePart ic l e s (ePL , ePR, domain , comm)
16
17 for p in ePL
18 d e l e t eP a r t i c l e ( autoPasContainer , p )
19 end
20
21 # same for the r i g h t p a r t i c l e s
22
23 for p in r e c e i v eP a r t i c l e s
24 addPar t i c l e ( autoPasContainer , p )
25 end
26
27 end

Listing 3.11: Exchanging particles between processes with MPI.jl.

3.4.4. Adjustments for Periodic Boundary Conditions

As mentioned in section 3.2.3, we implemented the outflow and periodic boundary condition.
To deliver correct results using distributed memory parallelization and the boundary condi-
tions, we may need to make some changes.

The outflow boundary condition is still implemented with the updateContainer function
because we set the boundaries of the AutoPas container to the values of its local boundaries.
Hence, particles outside of the container are deleted and no adjustments are necessary.

However, we need to modify the code for the periodic boundary condition, because up to
this point, the implementation would produce wrong results. To understand the problem,
we like to bring some terms to mind. In section 3.4.3 we introduced the terms halo and
migration area which are used if we talk about subdomains. In section 3.2.3 we defined
boundary and outer area which are used in the context of the global simulation domain.

In the case of particles being in the boundary or outer area of the y or z dimension, the
procedure of the boundary condition stays the same. If a particle is in the halo area of the
x dimension, we do not apply the periodic boundary condition if the x boundary is not a
boundary of the global simulation domain.
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Figure 3.6.: Search space for periodic boundary conditions for outermost subdomains.

The need for a change occurs if a particle is in the halo area and adjacent to a global x
boundary. In this case, we need to apply the boundary condition for all three dimensions.
The outer halo areas of the outermost subdomains and the boundary areas of the global
simulation domain include the same space, as shown in figure 3.6. For demonstration, we
use the blue particle P in subdomain 0. The basic principle of the boundary condition still
applies i.e., particle P ’produces’ a halo particle on the opposite side indicated with the
black particle H. But the created halo particle is still managed by the processor of the
subdomain 0, but according to the defined domain decomposition in section 3.4.2, H would
be managed by the processor of subdomain N . This means that this particle needs to be
sent to another subdomain.

In case that a particle is inside the green-shaded migration area/outer area, we need to
apply the periodic movement to the particle i.e., inserting the particle into the simulation box
on the opposite side. Again, the particle would move across the boundary of the subdomain
and we need to send the data of the particle to the correct processor.

In the implementation, we need to change the code at three positions. The first one
is the function insertHaloParticles and we check if the current x boundary is a global
boundary. If not, we do not insert halo particles, in the other case we proceed as described
in 3.2.3. The second function we change is exchangeMigratingParticles and we verify if
the particles in the migration area are outside of the simulation domain. If this is the case,
we change their position already in this function and send the already-moved particles to the
next processor. Lastly, we change the exchangeHaloParticles function, specifically the
part that calculates the area, we need to look for halo particles. If the x boundary happens
to be a global boundary, we change the coordinates of the search area to be on the opposite
side, indicated by the gray-shaded area in figure 3.6.
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3.5. Annotation to the Implementation of the Periodic Boundary
Condition and the Usage of MPI

The implementation of the periodic boundary condition does not produce correct results. If
we use the regionIterator, we do not iterate over all particles in the specified area, even if
we added the particles to the container and the normal iterator returns them. That is why
we only use the outflow boundary condition in the subsequent chapter for the performance
tests.

Furthermore, using the simulator with more than one rank, resulted in a loss of particles
during the simulation, which is not the case if it is used with just one rank. Due to the fact
that more than 40% of the particles disappeared, we dispense performance tests for this
implementation, as the reference implementation does not lose any particles and the results
would not be based on equal scenarios.
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This chapter includes a discussion of the utilization of Julia and the CxxWrap.jl package.
We further present the results of test runs of the Julia simulator and a C++ reference
implementation. First, we describe the used tools and the strategy for the test. Second, we
have a detailed look at the updatePositions function of the Julia simulator. In the last
two sections, we discuss the performance of the Julia simulator with an increasing number
of particles as well as using multiple threads.

4.1. Reviewing the Usage of Julia in this Thesis

This first section discusses if the used approach, calling library functions from Julia with
the help of CxxWrap, is beneficial in terms of the efficient development of MD simulations.

4.1.1. Using Julia for MD simulations

One part of this thesis is to find out if the Julia programming language is suitable for MD
simulations. This section discusses our opinion as programmers with no prior Julia experience.

First of all, we start with a more general view of Julia. It is fairly easy to get started with
programming in Julia, as first of all, we can easily run a program and e.g., in comparison to
C++, we do not need any kind of build system.

Additionally, we noticed that the time for the compilation of the simulator code is rather
low. After changing some code, the compilation does not take as long as for a reference
implementation written in C++. Especially if templates need to be instantiated in C++,
compilation may take some more time. This feature of Julia makes it possible to test small
code changes very fast.

Furthermore, plenty of wrappers like the MPI.jl package already exist, and with the ccall
function, we can easily use C functions (and with some more work C++ functions) from
Julia. This allows us to adopt already existing code and write highly performant code.

The built-in parallelization options, like the multi-threading option in Julia, allow someone
to speed up the code, with just a few commands. As we discussed in section 3.3 this is not
necessarily applicable in every case, as the rather range-based style for loop in Julia cannot
be used with the iterator from AutoPas and causes more implementation effort.

In the end, we like to point out, that Julia offers the possibility to create structs, equivalent
to languages like C++. However, member functions cannot be created in a C++ sense.
Additionally, we cannot find a way to use inheritance as done in AutoPas or C++ in general.
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This may not be a disadvantage at all, it is just another style of programming which needs
to be adapted if bigger and more complex programs are created in Julia.

4.1.2. Evaluation of the Julia Interoperability with CxxWrap

One of the first challenges encountered, while working on this thesis, is the wrapping of the
C++ library AutoPas to be able to call its functions from Julia. The usability of CxxWrap
is discussed in this section.

As already mentioned, it is possible to expose e.g., a function, with just one line of C++
code, with the package CxxWrap.jl. This is very convenient, particularly if many functions
have to be wrapped. For ’no special cases’, unlike the examples discussed in section 3.1, it
is even possible to use the WrapIt.jl package to generate some parts of the wrapper code
automatically.

We also used the option of CxxWrap to create multiple modules in Julia e.g., the module
for all the enums, and are able to structure the code on the Julia side, as well as the wrapper
code in C++ in a clean way. This provides a functional differentiation of the code, an easier
extendable wrapper, and the option to only use some functionality e.g., only functions and
types related to particles.

While writing the code, we may produce some wrong code and like to use a debug-
ger. There are multiple ways to use a debugger in Julia1. With one package it is even
possible to change code during debugging to see if the change eliminates the bug with-
out restarting the debugging session.2 Debugging code is not specifically a problem of
CxxWrap. However, as we use Julia code as well as C++ code together in one program,
it may be more complicated to find bugs, as we need to search for the error on multiple ’sides’.

Furthermore, the CxxWrap GitHub page and source code provide many examples of
how to use CxxWrap, but proper documentation is not available. On the one hand, the
documentation may be helpful if someone is searching for specific functions or syntax. Hence,
we may need some more time to understand the wrapper or look for special cases. On
the other hand, there are two videos of a talk about the CxxWrap.jl package3 and these
definitely help to understand how the wrapper works and how to use it.

1https://julialang.org/blog/2019/03/debuggers/#codetracking
2https://timholy.github.io/Rebugger.jl/dev/
3https://www.youtube.com/watch?v=u7IaXwKSUU0 and https://www.youtube.com/watch?v=

VoXmXtqLhdo

36

https://julialang.org/blog/2019/03/debuggers/#codetracking
https://timholy.github.io/Rebugger.jl/dev/
https://www.youtube.com/watch?v=u7IaXwKSUU0
https://www.youtube.com/watch?v=VoXmXtqLhdo
https://www.youtube.com/watch?v=VoXmXtqLhdo


4.2. Introductory Notes for Test Execution

4.2. Introductory Notes for Test Execution

In this section, we like to outline how we measured the time, which hardware was used, and
mention the necessary software versions.

First of all, the Julia simulator is compared to a C++ implementation called md-flexible.
This is a MD simulator included in the AutoPas repository and implements functionality like
domain decomposition and position calculation. The input file for the md-flexible simulator
can be found in the appendix section A. The same input parameters are used for the Julia
simulator, to simulate the exact same scenario and to have a ’fair’ comparison between both
implementations.

Additionally, we ran the performance tests multiple times to get a statistically meaningful
result.4 First, we used only three runs per scenario and a hundred thousand particles, which
would be sufficient for md-flexible as the results do not deviate strongly. However, the Julia
results do differ strongly, hence, we decided to increase the particle size and number of
repetitions. This resolved the issue, at least for scenarios under 16 threads for the Julia
implementation.

To reproduce the results of the Julia simulator, we always ran the simulation loop, as
explained in section 3.2.4, with one single iteration so that some parts of the code are already
pre-compiled and the execution of the performance test is as quick as possible.

All performance tests were executed on the CoolMUC-2 cluster of the LRZ. For hardware
details, please refer to the documentation.5

The used software versions are:

1. Julia: 1.8.5

2. CMake: 3.21.4

3. GCC: 11.2.0

4. CxxWrap.jl: 0.13.3 (code cloned on 05.03.2023)

To get timings from the md-flexible simulator, we used the implemented Timer class of
AutoPas. At the end of a simulation run, all important timings are printed to the console.
To measure the time in Julia, we used the package TimerOutputs.jl6 which is similar to the
Timer class of AutoPas and accumulates the time spend in the specified functions.

4.3. Inspecting the updatePositions Function of the Julia
Simulator

In this section, we compare the runtime of different updatePositions implementations and
try to find out if some optimizations can be used for better performance.

4There is one exception, to which reference is made at the respective location.
5https://doku.lrz.de/display/PUBLIC/CoolMUC-2
6https://github.com/KristofferC/TimerOutputs.jl
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4. Discussion and Results

4.3.1. Comparing two Parallelization Strategies for the Position Calculation

The runtime of the two parallelization strategies of the updatePositions function, which are
described in section 3.3, as well as profiling results are presented in this section. Furthermore,
we use the term first strategy, to reference the algorithm illustrated by figure 3.3, and the
term second strategy for the strategy illustrated by figure 3.4.

In figure 4.1, we can see the profiling results of the updatePositionsSequential parts
of both strategies, ran with one thread. Two noticeable operations are the get operations of
the velocity and the force of the particle, where we spend approx. 60% of the running time.
In contrast, the time for an operation related to the actual calculation e.g., δtv(t), from
formula 3.1, takes only approx. 1% of the total time, hence very low. These results show,
that the implementation is mainly limited by memory access. Furthermore, a big amount of
time is used for iterator operations, like dereferencing and incrementing.
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Figure 4.1.: Profiling results of the position calculation function of both parallel executable
strategies. Both functions spend an enormous time in the getter functions

We tested both implementations with one million particles, one thousand iterations, as
well as with one, two, and four threads. The results are presented in figure 4.2. Additionally,
we included a plot of the ’ideal’ runtime behaviour, which means, that if the number of
threads increases by a factor of x e.g., two, the runtime decreases by a factor of x e.g., two.
We can see, that both strategies do not show a big increase in performance, compared to
the ideal behaviour. The runtime of the first strategy only decreases by approx. 21% and
of the second by 27% if the number of threads is increased to two. The reduction of the
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Figure 4.2.: Comparison of the two parallel strategies. With an increasing number of threads,
the runtime decreases but the scaling is not optimal.

runtime is even less if we increase the used threads to four.

One reason for the suboptimal performance may be related to the iterator. In the following,
we use N as the number of particles and t as the number of threads. In strategy one, we
increase the iterator in total (on all threads) N · t times if we use t threads. This means,
that even if we do not need to call the getter functions in every iteration, we need to
increment the iterator every time, which is one of the more time-consuming operations.
In contrast, in strategy two we only increase the iterator N ·(t−1)

2 times in total which is
roughly half of the necessary increments of strategy one. The reason is, that we increment
the iterator i · N

t times for thread Ti, and for all t threads, this can be expressed by:∑t−1
i=0

N
t · i = N

t ·
∑t−1

i=0 i =
N ·(t−1)

2 . However, threads processing particles that are ’further
back’ in the container, need more time than threads processing particles that are stored ’at
the beginning’ of the container. Another reason why the implementation may be slow is
that with an increasing number of threads, the number of cache misses also increases. All
the hypotheses still have to be verified in the future.

4.3.2. Comparison of the Runtime of the Position Calculation using Different
Getter Methods

As described in section 3.1.2, we can get the position of a particle in Julia with two different
getters functions. In the previous subsection, we found out that the memory access e.g.,
with getters, takes the most amount of time in the function, thus we are interested in
optimizations. The runtime and the profiling results are discussed in the following.

For instance, if we like to get the position of a particle, we can call a getter function,
which either returns a jlcxx::ArrayRef object or a single floating point value. For the last
option, we have to call the getter three times, once for each coordinate. We run a simulation
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with one million particles and one thousand iterations for both getter variants. The result is
that the implementation, using jlcxx::ArrayRef as return type, takes on average approx.
969.5 seconds7. In contrast, the other variant only takes approx. 377 seconds on average.
This means that we can simply reduce the time of the most time-consuming operation by
61.1% by changing the implementation of the getter function. Figure 4.3 shows the profiling
results of both implementations and again we can see, that the getters consume the most
time. Especially the implementation using jlcxx::ArrayRef spends more than 80% only
accessing data. Interestingly, we can also see that setting the value of the oldForce variable
only takes about 1− 2% of the total runtime and we use the jlcxx::ArrayRef type as well.
It may be interesting to find out the reason why the execution time of getters and setters is
so different.
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Figure 4.3.: Profiling results of the position calculation function of both getter versions. The
array getter spends more time in the getter function than the single value getter.

A closer look into the implementation of the MoleculeJ class (listing 3.3) may provide an
answer to the higher computing time of the ’array getter’ implementation. As we cannot re-
turn a std::array from the getter, firstly, we create an object of type jlcxx::ArrayRef, and
secondly, we need to copy this object, as we do not return a reference to jlcxx::ArrayRef.
Both steps take some additional time and may be the reason for a slower ’array getter’
performance.

7For this average value, we only consider two timings
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4.3.3. Comparing the Runtime of the Position Calculation with a Pure Julia
Implementation

In section 3.2.5, we described the implementation of a Julia struct representing a particle
in Julia. We like to see how long the updatePositions function takes if we use pure Julia
operations, without the use of wrapper code and further, we inspect the behavior if we use
multiple threads.

1 2 4

5

10

15

20

Number of Threads

ru
n
ti
m
e
[s
]

pure Julia implementation
ideal curve

Figure 4.4.: Runtime results of the position calculation in pure Julia.

We used the same simulation scenario as in the previous subsection and we can see inter-
esting results in figure 4.4. In comparison to the hybrid approach of the updatePositions
function, we only need about 5% of the time, and the scaling with increasing threads is also
decent up to four threads. The step from one to two threads only decreases the runtime by
25.5%, but from two to four threads, the runtime decreases by 44.5%. Even if the results look
promising, we need to be careful with their interpretation. Firstly, the particles are simply
stored inside a vector and not inside a complex data structure like the AutoPas container.
This means, many operations, like accessing the correct particle, are not necessary for the
Julia implementation, hence we have good performance. Secondly, we use the type SVector
for our array types, which seems to be fast, but according to [11], SVector is allocated on
the stack and this may limit its scalability if a very big number of particles is used. Thirdly,
this implementation is intended to show that multi-threading is possible in Julia and is a
reasonable as well as good choice, as this implementation compares very well with the ’ideal’
curve.
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4.4. Analysis of the Runtime with an Increasing Number of
Particles

We already discussed the runtime of the updatePositions function in the previous section,
in the following we have a look at how the Julia simulator compares to the C++ implemen-
tation md-flexible.

Prior to looking into the results, we like to state one hypothesis, which is based on our
intuition. If we use functionality from the AutoPas library and compare the runtime from
the Julia call of this functionality to the runtime of the md-flexible call, the runtime of the
Julia simulator may not be lower than the one of the md-flexible simulator. As the code
is exactly the same for both simulators, we expect that the Julia call may need slightly
more time, as we need to consider the additional function calls and operations from the
CxxWrapper e.g., getting the pointer to the C++ function or the conversion between Julia
and C++ types, as already stated in section 2.5.3.

In figure 4.5, we can see the total execution time as well as the time needed for the force
calculation of both simulators for an increasing number of particles. Not surprisingly, the
execution time increases with the number of particles, however, it is surprising, that the Julia
simulator and force calculation are quicker than the C++ implementation. Furthermore,
our mentioned hypothesis does not apply to these timings. Due to the fact, that the force
calculation comprises the largest part of the simulation in both simulators, we need to have
a deeper look at the Julia force calculation.

One reason, why the force calculation is lower than expected, is that the force calculation
is not executed properly e.g., we only calculate the forces between a subset of particles. To
verify this, we simulated ten particles for one hundred iterations with both simulators and
inspected the end configuration of the particles. After a comparison of the values, we can
only determine that the values are all equal for both simulators. Additionally, we simulated
one hundred thousand particles with both simulators and randomly selected particles with
the same molecule ID and verified their attribute values. Again, we can see that the values
are the same. Obviously, we need to apply further research and tests on the equality of both
results to make a more robust statement.

Another reason may be that the memory access is advantageous for the force calculation,
compared to the md-flexible implementation. However, this is only speculation and is not
further investigated in this thesis.

The promising results of a fast Julia simulator are not reflected by the results for the
position and velocity calculation in figure 4.6. We can see that the Julia implementation
takes approx. 550% longer than the md-flexible implementation. In addition to time mea-
surements, the used Julia package TimerOutputs, discussed in section 4.2, also provides
information about memory allocations. We can see, that the allocated memory increases
for an increasing number of particles. For example, in the positions calculation function,
207 KiB of data is allocated over one hundred iterations for one thousand particles and
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Figure 4.5.: Comparison of the total runtime and the force calculation of the Julia and
md-flexible simulator for an increasing number of particles (logarithmic scale).

15.3 MiB for one hundred thousand particles. Increasing allocations can make sense for
an increasing number of particles, however, the allocations also increase with increasing
iterations. This may be a reason for the higher runtime of the Julia calculations. Already
discussed in section 4.3, we spend the most amount of time to get the values of the velocity
and the force if we calculate the position and the md-flexible simulator may need less time
for the memory access, hence can perform better.
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Figure 4.6.: Timings of the position calculations of both simulators, with an increasing
number of particles (logarithmic scale).

The last part of this section discusses the function addParticles, which adds particles to
the AutoPas container. In contrast to the discussed examples, we call addParticle without

43



4. Discussion and Results

any other AutoPas or Julia functions (besides looping over all particles in Julia) and it
is rather related to memory access than the calculation. Adding one hundred thousand
particles to the AutoPas container takes 0.029s and adding one million particles 0.29s if
we use the C++ simulator. In the case of using the Julia simulator, adding one hundred
thousand particles takes 0.072s and one million particles 0.74s. We can see, that the Julia
implementation takes about 2.5 times longer for this operation. This may be a good rule of
thumb for the overhead of calling simple and non-computationally expensive C++ functions
from Julia.
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4.5. Scaling with Increasing Thread Count

In this section, we analyze how the Julia simulator compares to the md-flexible implemen-
tation if we use multiple threads. Again, we used one million particles and one hundred
iterations for the test runs.

Figure 4.7 shows the total time of the simulation and the time spent in the force calculation
for both simulators. As already discussed in the previous section, the Julia implementation is
faster than the md-flexible implementation if we use one thread. With an increasing number
of threads, the total simulation times get closer, until the md-flexible simulator is faster after
using more than eight threads. However, we can see that the force calculation of the Julia
simulator performs better than the Julia simulator as a whole, as the time still decreases
with more than eight threads. We do not know the exact reason, why the force calculation is
faster if called from Julia, but we can see that this advantageous optimization is less efficient
if more threads are used. Hence, the runtime of both force calculations tends towards the
same limit. As we see in the following, the limiting factors for the Julia simulator are indeed
the calculation for the velocity and the position if multiple threads are used, at least for this
specific scenario.
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Figure 4.7.: Simulation of one million particles for one hundred iterations of the md-flexible
and Julia simulator. The total time and the time of the force calculation are
displayed.

Figure 4.8 shows the runtime with an increasing number of threads of the position and
velocity calculation of the Julia simulator as well as of the md-flexible simulator, side by
side. We can see, that the runtime of the Julia implementation decreases pretty well until
16 threads. If more threads are used, the runtime increases massively. In contrast, both
calculations in the md-flexible simulator show a decrease in runtime even if we use more
threads. Further, we can see, that the md-flexible implementation creates a nearly ideal
scaling up to 56 threads. This seems to be the reason, why the Julia simulator gets slower
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than the md-flexible simulator for high numbers of threads, as the position and velocity
calculations in Julia are actually longer than the force calculation.
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Figure 4.8.: Runtime results of the position and velocity calculation of both simulators.
Comparing the position calculations against the ideal curve.

We further notice that the position calculation of the Julia simulator takes approx. six
times as long as the same calculation in md-flexible, which is best illustrated in figure 4.9.
In section 4.3, we already discussed some reasons for the suboptimal scaling, but with this
figure, we like to point out the massive difference compared to md-flexible.

1 2 4 8 16 32 56

0

10

20

30

Number of Threads

R
u
n
ti
m
e
[s
]

pos. calc. Julia
pos. calc. md-flexible

Figure 4.9.: Comparing the runtime for the position calculation of the Julia and md-flexible
simulator in one graph. The C++ implementation is very quick compared to
the Julia implementation.
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This thesis gives an introduction to the utilization of the AutoPas library from a Julia
simulator. Some parts of the code may need to be refined and extended in the future, as
well as verified with more sophisticated approaches.

As discussed in 3.5, the distributed memory parallelization is not working properly, and
if the hybrid approach of using Julia and AutoPas together is further investigated, paral-
lelization with MPI is necessary to implement. Additionally, it is interesting to test if the
MPI.jl has indeed no overhead compared to the C implementation as stated in [4]. To run a
program with MPI.jl we need to look for a way to distribute the code to different compute
nodes. If the Distributed.jl package is used the ClusterManagers.jl1 package may be used to
distribute the program to several nodes, but a usage with MPI.jl still needs to be checked.

Additionally, the periodic boundary conditions need to be implemented properly. As
explained in 3.5, the regionIterator function is not working as expected and this behaviour
needs to be explainable. Solving this problem may help to implement MPI parallelization as
well.

Up to this point, we only wrapped a few functions and types of the AutoPas class and
repository. For more complex simulations we may need more functions that have to be
wrapped too. Another aspect is to think of different ways to handle types not mapped by
CxxWrap e.g., the std::array type.

If we like to use the simulator for real applications, we should find a way to reduce the
runtimes of the position and velocity calculation, as they are extremely high compared to
the md-flexible implementation. Furthermore, the scaling of the calculation with multiple
threads needs to be improved to provide a more suitable simulator. A different implementa-
tion for the MoleculeJ class may be helpful as we have seen that the single value getters
are more performant than the ArrayRef getter. We may consider returning a reference to
the object or using only single values instead of arrays.

The potentially most interesting point to focus on is to find out why the force calculation
is faster in Julia. As md-flexible and the Julia simulator use the exact same function, this
result is unexpected. The first step can be to ensure the correctness of the force calculation
i.e., are all particles processed and are the results for the simulated particles equal to the
results of a simulation with md-flexible. As the second step, it is interesting to see if the
result can be reproduced with other container data structures like Verlet Lists2. If the
previous steps reinforce the result of a faster Julia force calculation, the last step is to find

1https://github.com/JuliaParallel/ClusterManagers.jl
2Further information to Verlet Lists can be found in [6]
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out the real reason for this phenomenon.

Lastly, we may like to test the simulator with different inputs e.g., more particles or
tuning strategies. In this thesis, we analyze a rather easy simulated scenario. More difficult
as well as diverse scenarios may give more meaningful results in terms of performance and
application to real-world examples.
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6. Summary

In the last chapter, we like to summarize the approach to using Julia for a molecular
dynamics simulator and AutoPas as a backend.

Using just one line of C++ code to wrap a function or a type with the CxxWrap.jl package
turned out not to work in all cases. For types of the C++ standard library that are not
supported by CxxWrap or are templated functions inside a templated class, we needed to
think of a workaround. Even if quite a lot of types and functions need to be wrapped to
fully work with the AutoPas library, we managed to wrap all of them.

Benefitting from Julia’s advantages, we are able to use the REPL and can interactively
initialize input parameters and run the desired simulation.

The first parallelization method we applied in the thesis is multi-threading. Even if we
can easily parallelize a for loop in Julia, we needed to adapt our implementation, because we
originally used a while loop instead of a for loop, due to the usage of the AutoPas iterator.
Hence, we implemented two versions for the parallelization of the position and velocity
calculation and tested their performance in chapter 4.

The plan was to apply distributed memory parallelization with the package MPI.jl. For
this strategy, we implemented a simple domain decomposition, which can be easily extended
for all three dimensions. Additionally, we can (de-) serialize particles as well as send and
receive them from other processors. The code was adapted to the boundary conditions
for distributed execution. However, we observed that some particles disappeared if MPI
and the periodic boundary conditions is applied and consequently, we produced wrong results.

We discussed the usability of Julia and of the CxxWrap.jl package. In summary, it turned
out that it is indeed a suitable alternative to use Julia together with C++ in terms of
productivity, especially if we try to find bugs or want to test small simulations.

The runtime results are unexpected and surprising. The force calculation of the Julia imple-
mentation is faster than the one of the C++ implementation, even if both simulators use the
exact same C++ code. On the contrary, the results of the position and velocity calculations
in Julia are slower than the one of md-flexible. After profiling the Julia code, we realized that
the memory access of the getter functions needs the most time of all operations. However,
using a pure Julia implementation of the position calculation showed that pure Julia code
can definitely compete with the C++ implementation, at least in this very simplified test case.

The runtime behaviour of the Julia simulator with an increasing number of threads shows
that the decrease in runtime is mostly dependent on good scaling of the force calculation.
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The position and velocity calculations do scale medium well using multi-threading, but only
up to 16 threads.

Finally, we pointed out what has to be improved so that the Julia simulator can be used
in scientific research.
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A. Input File for the Simulation

1 conta ine r : [ L inkedCe l l s ]
2 s e l e c t o r −s t r a t e gy : Fastest−Absolute−Value
3 data−l ayout : [AoS ]
4 t r a v e r s a l : [ l c c 0 8 ]
5 tuning−s t r a t e gy : f u l l −Search
6 f unc to r : Lennard−Jones
7 newton3 : [ d i s ab l ed ]
8 c u t o f f : 3
9 box−min : [ 0 , 0 , 0 ]
10 box−max : [ 1 1 3 . 5 , 113 .5 , 1 2 . 7 ]
11 c e l l −s i z e : [ 1 ]
12 deltaT : 0 .0001
13 i t e r a t i o n s : 100
14 boundary−type : [ none , none , none ]
15 g loba lForce : [ 0 , 0 , −0 .001 ]
16 Objects :
17 CubeGrid :
18 0 :
19 pa r t i c l e s −per−dimension : [ 100 , 100 , 10 ]
20 pa r t i c l e −spac ing : 1 .12
21 bottomLeftCorner : [ 1 . 0 , 1 . 0 , 1 . 0 ]
22 v e l o c i t y : [ 0 . 1 , 0 . 1 , 0 . 1 ]
23 pa r t i c l e −type : 0
24 pa r t i c l e −ep s i l o n : 1
25 pa r t i c l e −sigma : 1
26 pa r t i c l e −mass : 1
27 no−f l o p s : fa l se
28 no−end−c on f i g : true
29 log−l e v e l : i n f o
30 subdiv ide−dimension : [ true , false , fa l se ]

Listing A.1: Input file used for the performance test of md-flexible.
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Stabilitätsuntersuchungen und Weiterentwicklung einer Kontinuumsmethode. PhD thesis,
LMU, 2007.

57


	Acknowledgements
	Abstract
	Introduction and Background
	Introduction
	Theoretical Background
	Fundamentals of Molecular Dynamics Simulation
	Speeding up MD Simulations through Parallelization Strategy
	Shared Memory Parallelization
	Distributed Memory Parallelization

	Introduction to AutoPas
	The Julia Programming Language
	Wrapping C++ Code
	Overview and Discussion of Available Wrappers
	General Usage of CxxWrap.jl
	Short Introduction into CxxWraps Internals

	Related Work
	Julia Interoperability in Current Research
	The Julia Programming Language in Scientific Computing



	Implementation, Discussion, and Results
	Implementation
	Implementaiton of the Wrapper
	Exposing the AutoPas Class to Julia
	Inplementation of the MoleculeJ Class and its Wrapper
	Wrapping of Enums with CxxWrap
	Overview of the Wrapped Modules
	Module Creation on the Julia Side

	Simulator
	Initialization of Simulation Parameters
	Calculation of Position and Velocity
	Implementation of Boundary Conditions
	Description of the Simulation Loop
	Custom Molecule Implemented in Julia

	Usage of Multithreading to Speed up the Simulation
	Distribution of the Simulation to Multiple Processors
	Explanation of Using MPI.jl for Distributed Memory Parallelization
	Implementation of the Domain Decomposition
	Implementation of the Communication between Processors
	Adjustments for Periodic Boundary Conditions

	Annotation to the Implementation of the Periodic Boundary Condition and the Usage of MPI

	Discussion and Results
	Reviewing the Usage of Julia in this Thesis
	Using Julia for MD simulations
	Evaluation of the Julia Interoperability with CxxWrap

	Introductory Notes for Test Execution
	Inspecting the updatePositions Function of the Julia Simulator
	Comparing two Parallelization Strategies for the Position Calculation
	Comparison of the Runtime of the Position Calculation using Different Getter Methods
	Comparing the Runtime of the Position Calculation with a Pure Julia Implementation

	Analysis of the Runtime with an Increasing Number of Particles
	Scaling with Increasing Thread Count

	Future Work
	Summary

	Appendix
	Input File for the Simulation
	Bibliography


