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Abstract

Distributed storage systems (DSSs) using maximally recoverable locally repairable codes

(MR-LRCs) are considered. A new global repair scheme for MR-LRCs based on linearized

Reed-Solomon codes that uses so-called local polynomials to distribute the repair process

is suggested. Two different schemes that use local polynomials are introduced, namely

direct global repair and forwarded global repair. The secrecy capacity of a system, i.e., the

number of information symbols that can securely be stored, using direct and forwarded

global repair given an eavesdropper is determined.
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1 Introduction

The increasing demand of cloud-based applications such as cloud computing, video stream-

ing and cloud storage increases the required storage capacity and stresses the importance

of efficient storage solutions. In addition, DSS should be protected against the possibility

of data loss due to disk failure. Since disk failures are very likely in large servers, erasure-

correcting codes are used to prevent data loss. The most simple erasure-correcting code

is the replication of data. However, this has the drawback of a large storage overhead.

Therefore, more complex coding schemes with higher code rates are used to protect the

data against loss. [RBS+22] gives a good overview of codes for distributed storage.

One popular choice of codes that have already been implemented by Facebook [SAP+13]

and Microsoft [HSX+12] are locally repairable codes (LRCs). In case of a node failure,

only a small number of nodes, r, in the same local server rack are contacted for the repair;

r is called the code locality. An interesting class of locally repairable codes (LRCs) are

maximally recoverable locally repairable codes (MR-LRCs) [GHJY14], also called par-

tial MDS (or PMDS) codes. They can correct any erasure pattern that is information-

theoretically correctable given the parameters of the code. The maximally recoverable

property can be achieved by a two step encoding procedure with an outer code of size

n and dimension k and a local encoding as for LRCs. After the outer encoding, the

codeword is split into g parts, which are distributed among g groups. The g parts are

then further encoded with a local code such that the global codeword, i.e., the concat-

enation of all local parts, has size N . If too many erasures occur in one local group such

that the local code cannot correct them, they can be corrected using the outer code.

Such a repair is called global repair. An MR-LRC with sub-exponential field size was

introduced by Mart́ınez-Peñas and Kschischang in [MPK19], which is the main MR-LRC

construction considered in this work. Linearized Reed-Solomon codes, which are based

on polynomials with a non-commutative product, so-called skew polynomials, are used

for this construction.

Another aspect of DSSs is secrecy. There are two different types of attacks that can

threat the security and secrecy of a system: active and passive attacks. Active attacks

include maliciously reconfiguring the system, modifying packets or injecting data, while

passive attacks only involve eavesdropping on the stored or transmitted data. This work
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1 Introduction

only considers the latter and investigates the consequences of the maximal recoverabil-

ity property on the ability to store data in the presence of an eavesdropper, similar to

[RKSV14].

The main problem of MR-LRCs in the presence of an eavesdropper is that the outer

code, which is used for global repairs, is a maximum distance separable (MDS) code,

hence the name partial MDS. If a global repair is performed in a node that simply

downloads as many symbols as needed for the repair, in this case any k out of n symbols,

an eavesdropper that can observe the downloads of this node would gain knowledge about

all stored symbols. This would mean that no information can be stored securely, given

the described repair process. To solve this issue, we introduce a distributed global repair

process that allows MR-LRCs to have a nonzero secrecy capacity, i.e., the number of

symbols that can be stored securely is in general greater than zero, in the presence of

an eavesdropper. The distributed global repair uses so-called local polynomials generated

by each group, whose sum recovers the global encoding polynomial. To perform a global

repair, each group calculates the evaluation of its local polynomial at the code locator

of the failed node and sends it to the failed node. Sending the evaluation of the local

polynomials to the failed node can be realized in a direct or forwarded way. In the case of

direct global repair, each group sends its local polynomial evaluation directly to the group

with the failed node, whereas in the case of forwarded global repair, the evaluations are

forwarded along a forwarding list, at the end of which is the group with the failed node. At

each group, the received evaluation is added to the contribution of the group. Therefore,

the failed node only receives one symbol, the sum of all local polynomial evaluations,

instead of each evaluation separately. The two schemes, direct and forwarded global

repair, are compared and their secrecy capacities are derived. The forwarded global

repair achieves in general larger secrecy capacities since each group receives at most one

symbol.

The structure of the thesis is as follows. The first part, Chapter 2, explains the

considered distributed storage system (DSS) and gives an overview of the assumptions

that are made about the system. Moreover, it defines the secrecy threat that is considered

throughout the work. Chapter 3, Preliminaries, reviews all concepts to which the other

parts refer. It reviews secret sharing, locally repairable codes (LRCs) and sum-rank

metric codes. Furthermore, linearized Reed-Solomon codes (LRSCs) are summarized

and two well known concepts are applied and adapted to skew polynomials, namely secret

sharing and Lagrange polynomials. At the end of the Preliminaries chapter, an important

information-theoretic concept is stated. The third part, Chapter 4, summarizes important

constructions of a secure locally repairable coding scheme and MR-LRC coding schemes.

In the fourth part, Chapter 5, a distributed global repair for MR-LRCs is suggested. The
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repair uses local polynomials to distribute the recovery to each group of a system. Two

different schemes implementing distributed global repair are considered and discussed. A

secrecy capacity for the schemes is derived and a construction which achieves capacity

is given. In the last part, Chapter 7, all the results are summarized and an outlook for

possible further investigations is given. Appendix A summarizes essential properties of

skew polynomials.
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Notation

Throughout this work, the following notation is used. The set of m × n matrices with

entries in the field K is denoted as Km×n. Matrices are written as uppercase bold letters,

e.g., A ∈ Km×n, with its transpose AT ∈ Kn×m. The rank of a matrix M is written as

rank(M). Vectors are written as lowercase bold letters, e.g., a = (a1, a2, . . . , an) ∈ Kn.

The set K∗ denotes the field without zero, i.e., K∗ = K\{0}.

Only in the motivation of Section 3.3 can the field K be any field; otherwise the

considered field K is a finite extension field Fqm of degree m with base field Fq, where q

is a prime power. When the size is not relevant, we simply write F. In some sections, the

field F22 = F4 is used to provide examples. The primitive element generating the field

F22 is denoted as ω, i.e.,

F4 = {0, 1, ω, ω̄} with ω2 = ω̄ = 1 + ω. (1.1)

Sets are written in calligraphic font or as uppercase Greek letters, e.g., M or Ω with

cardinality denoted as |M| and |Ω|. The set of natural numbers excluding zero is denoted

as N and N0 := N ∪ {0}. Let [n] := {m ∈ N | m ≤ n} = {1, 2, . . . , n} and let It ⊆ [n]

denote a set with cardinality t. For example, I2 = {1, 3} ⊆ [4] is an example of a set with

t = 2. For a vector s denote sIt := (si | i ∈ It).

A code C is a nonempty subset of Fn
qm , i.e., C ⊆ Fn

qm , where each codeword c ∈ C is a

vector of length n with components from Fqm .

For a nonempty set R ⊆ [n] and a vector x ∈ Fn
qm , define a projection map πR :

Fn
qm −→ F|R|

qm taking (x1, x2, . . . , xn) = (xi | i ∈ [n]) to the vector (xj | j ∈ R). Then,

C|R = {πR(c) | c ∈ C} is the punctured code with respect to R.

Discrete random variables are written in sans serif font; for example A or R. The

probability of an event is denoted by Pr[•]; e.g., Pr[A = a] denotes the probability that the

random variable A takes the value a. For ease of notation, PA(a) is used interchangeably

for Pr[A = a]. The support of a probability distribution, supp(PX), is the set of x such

that PX(x) > 0. The conditional probability of the event A = a given B = b is written as

Pr[A = a | B = b] = PA|B(a | b). The entropy of a discrete random variable X with range

7



Notation

X is defined as

H(X) =
∑

a∈supp(PX)

−PX(a) log|X | PX(a).

The entropy H(X) is bounded by 0 ≤ H(X) ≤ 1. The mutual information between two

discrete random variables X and Y is written as I(X;Y). A summary of used rules and

(in-)equalities of mutual information and entropy is given in Section B.1.
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2 System Model

In this chapter, the underlying structure for which the codes should be designed is summa-

rized. DSSs are explained in Section 2.1. They consist of g racks, which are also referred

to as groups. Each rack has a fixed number of nodes that can store data. The main goal

of this thesis is to analyze the secrecy of the considered DSS. Therefore, another question

naturally arises: what kind of secrecy threat is considered? This question is answered

in Section 2.2, which describes the considered eavesdropper model. The eavesdropper is

assumed to be a passive eavesdropper that can only read the stored symbols of l1 nodes

and in addition read the symbols of l2 groups and the symbols downloaded for the repair

of these l2 groups.

2.1 Distributed Storage System Model

As the name suggests, a DSS is a connected group of storage units. The largest unit of such

a system is a server rack. It has multiple rack slots in each of which there is a storage node.

The nodes are connected to a Top-of-Rack switch [TCS19] with a rack processing unit

(RPU). The RPU is responsible for local computations and manages the whole rack. All

the racks in a system are connected to aggregation-layer modules which are responsible

for switching and provide backend functions such as Layer 2 domain definitions, load

balancing and firewall features [Cis07]. Each storage node in a rack consists of multiple

disks that are managed by a processing unit. The processing unit of each node sends a

heartbeat request to its disks and checks whether they are still available. In case of a

working disk, the disk controller returns an acknowledgement to the processing unit of the

node which marks the disk as available. If no acknowledgement from the disk controller

follows, the corresponding disk is marked as dead or off [Bor08, Cep]. Disks that are

marked as off for a longer time, i.e., disks that have not sent a heartbeat acknowledgement

several times, can easily be identified and fixed or replaced by the administrator of the

system.

In this work, the data storage topology is considered in a simplified form with only

two hierarchical layers as shown in Figure 2.1. There are g racks with ni storage nodes

in each rack i ∈ [g]. The storage nodes can be seen as black boxes which are able to store
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2 System Model

data. It is assumed that all the nodes are connected to a rack processing unit which is

the connecting device to other racks and responsible for local computations. The global

switch has a global processing unit, which is coordinating the whole system. Each rack

can be seen as an independent storage system but the global processing unit provides

useful features such as a map of the stored data or metadata of the system. This allows,

for example, a direct switching to the local unit after receiving a request to access specific

data without a broadcast request to every rack. In practical examples, all the racks have

the same number of nodes, i.e., ni = n for all i ∈ [g].

x
(1)
1

RPUx
(1)
2

RPU· · · RPUx
(1)
n1

RPU

x
(2)
1

RPUx
(2)
2

RPU· · · RPUx
(2)
n2

RPU

...

x
(g)
1

RPUx
(g)
2

RPU· · · RPUx
(g)
ng

RPU

GPU

· · ·

Figure 2.1: Distributed storage system model with g racks. The j-th node in the i-th rack

is denoted by x
(i)
j . Each rack has a processing unit, RPU, which is responsible

for the communication between nodes and local computations. The processing
unit is connected to a switch which allows communication with other racks.
The model is adapted from [TCS19].

A unified notation for DSS is used throughout this work. The nodes of each rack are

depicted by a square box. Connected square boxes represent a rack. In each square box,

one symbol x
(i)
j ∈ Fqm is representative for all symbols stored on the j-th node in the i-th

group.

Example 2.1. Consider a DSS with three racks and four nodes in each of the racks,

i.e., g = 3 and ni = n = 4 for i ∈ [g]. The system is illustrated in Figure 2.2.

In [ACRV14] the authors report a bandwidth between nodes of different racks that

was by a factor of 5 smaller than between nodes of the same rack. If the transmission

time is now seen as an indicator for the communication costs, the communication costs

between racks are higher than within a rack. The estimation of Ahmad et al. in [ACRV14]

is that the factor 5 is on the lower end of the discrepancy between intra-rack and inter-

rack bandwidth ranging from 5 to 20. Besides the measured link capacity in practical

systems, the higher communication costs can also be motivated by the fact that the switch

connecting the processing units with each other is more likely to be the bottleneck of the

system [IPC+09]. This motivates to take the different communication costs into account
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2.2 Eavesdropper Model

x
(1)
1

x
(2)
1

x
(3)
1

x
(1)
2

x
(2)
2

x
(3)
2

x
(1)
3

x
(2)
3

x
(3)
3

x
(1)
4

x
(2)
4

x
(3)
4

Figure 2.2: Illustration of a DSS with 3 racks and 4 nodes in each rack. Each rack

consists of connected square boxes depicting the nodes. The symbol x
(i)
j is

representative for all symbols stored on the j-th node in the i-th group.

for the design of codes for DSSs. An example are LRCs which recover failed nodes locally,

i.e., only nodes that are in the same rack are used for the repair. LRCs are discussed in

Section 3.2.

Remark : It is useful to have in mind that the same system structure could also be

used to model a single rack where each node again has multiple disks. In this case, x
(i)
j

is a single disk, the global processing unit (GPU) from Figure 2.1 is the rack processing

unit (RPU), and the rack processing unit is now a node processing unit (NPU). The same

system model would hold but for a different layer depth.

2.2 Eavesdropper Model

The secrecy threat for DSSs considered in this work is a passive eavesdropper. A pas-

sive eavesdropper is an adversary that can only read the stored data or downloaded

data, needed for a repair, but cannot actively or maliciously change data or protocols of

the system [PERR11]. However, it is assumed that the eavesdropper knows the system

parameters.

The eavesdropper can read the data stored on l1 nodes, in addition observe downloaded

symbols and read all the nodes of l2 groups and is therefore called (l1, l2)-eavesdropper.

The corresponding sets that denote the nodes that can be observed are E1 with car-

dinality |E1| = l1 and E2 with cardinality |E2| = l2r, where r denotes the number of

independent symbols in each group. Furthermore, it is assumed that the eavesdropper

does not observe nodes twice, i.e., E2 ∩ E1 = ∅. The eavesdropper model is an adjusted

version of the model presented in [RKSV14] which is similar to the model from [SRK11]

with l = l1 + l2 and l′ = l2. The difference is that in [RKSV14] single nodes and their

downloaded symbols are observed in an l2-manner rather than whole groups. This im-

plies that the repair computations are done in the corresponding node. In this work, a

hierarchical model is assumed which is motivated by global repair discussed in Section 3.2.

11



2 System Model

The illustration of a DSS that was introduced in Section 2.1 and shown in Example 2.1

is now extended to cover the eavesdropper model as well as coding schemes with parities.

In the following, local parity symbols are denoted by light grey boxes. The l1 nodes that

can be read by an eavesdropper are marked with a blue dot in the top left corner. The

groups that are observed in an l2-manner by the eavesdropper are marked with a red

triangle at the top left corner of the group.

Example 2.2. Consider the DSS from Example 2.1 with three racks and four nodes per

rack.

Let each group be encoded with a [4,3,2] single-parity check code. The parity symbol

in each group is x
(i)
4 = x

(i)
1 + x

(i)
2 + x

(i)
3 . Let l1 = 2 with E1 = {x(1)1 , x

(3)
4 } be denoted by

blue dots and let the group observed in an l2-manner be indicated by a red triangle with

the corresponding set E2 = {x(2)1 , x
(2)
2 , x

(2)
3 }. The set E2 consists only of three nodes since

the fourth node would be redundant. The example is illustrated in Figure 2.3.

x
(1)
1

x
(2)
1

x
(3)
1

x
(1)
2

x
(2)
2

x
(3)
2

x
(1)
3

x
(2)
3

x
(3)
3

x
(1)
4

x
(2)
4

x
(3)
4

Figure 2.3: Illustration of a DSS with 3 racks and 4 nodes in each rack where each group is
encoded with a single-parity check code. The blue dots indicate single nodes
that can be read by the eavesdropper, i.e., l1 = 2. The red triangle indicates
that the second group is observed in an l2-manner and is therefore fully known
by the eavesdropper.
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3 Preliminaries

The Preliminaries chapter summarizes the basics that are needed to understand the

related work and the suggestions in the following sections.

It starts with a brief summary of secure communication and introduces secret sharing

in Section 3.1. Secret sharing schemes are secrecy systems where a secret message is

encoded, split into n parts, the shares, and distributed to n groups. Given z < k ≤ n

shares, no information about the message is revealed. If k ≤ n shares are known, the

secret message can be retrieved.

In Section 3.2, locally repairable codes (LRCs) are explained. The idea is to split a

file into g parts and distribute it among g server racks. In each of these g groups, a local

code is used to protect the data against erasures. In case of a node failure, only a small

number of nodes, r, in the same local server rack are contacted for the repair. Maximally

recoverable locally repairable codes (MR-LRCs), which is a class of LRCs, are also studied

in this section. They can correct any erasure pattern that is information-theoretically

correctable given the parameters of the code [GHJY14].

Important properties of sum-rank metric codes are summarized in Section 3.3. The

sum-rank metric is a generalization of the rank metric and the Hamming metric.

Recently, constructions of MR-LRCs with sum-rank metric codes were introduced

[MPK19, CMST22]. The constructions use linearized Reed-Solomon codes (LRSCs)

which are summarized in Section 3.5. LRSCs are based on skew polynomials, which

is a family of polynomials whose product is non-commutative. If the reader is not yet fa-

miliar with skew polynomials, they are extensively summarized in Appendix A following

[MPSK22].

Moreover, two applications of skew polynomials are presented. In Section 3.6, the

concept of secret sharing is applied to skew polynomials, which is useful to prove the

secrecy of code constructions in the following parts. The concepts of skew polynomials

fulfilling Lagrange constraints, i.e., vanishing on a P-independent set of points except for

one, is explored in Section 3.7.

Finally, an information theory based lemma is stated in Section 3.8. It is later used

to derive the secrecy capacity of different global repair schemes. The idea is to bound

the entropy of the information collected by a data collector with the rank of a matrix.

13



3 Preliminaries

3.1 Secret Sharing

3.1.1 Secure Communication

In secrecy systems, one party wants to transmit a message to another party in such a way

that potential eavesdroppers are not able to recover the message. In the following, only

messages chosen from a finite field F are considered. The keys to encrypt the message

are chosen from the same field F. On an abstract level, secrecy systems can be seen, as

described by Shannon in [Sha49], as a transformation from the set of possible messages

m ∈ F to a set of possible cryptograms or ciphertexts c ∈ F. In this case, each particular

transformation is characterized by a key k ∈ F. The transformation should be reversible

so that, given the key, a deciphering is possible. The random variables corresponding to

the message m and the ciphertext c are denoted by M and C, respectively.

Definition 3.1 (Perfect Secrecy). A secrecy system is perfectly secret if for every a

priori probability distributions over the message space F, every message m ∈ F and every

ciphertext c ∈ F, it holds that [Sha49]:

Pr[M = m | C = c] = Pr[M = m].

That is, the mutual information I(M;C) between the random variables M and C must be

zero: I(M;C) = 0.

Remark : In this work, information theoretical secrecy is the goal, which is realizable

for DSS under the eavesdropper assumptions presented in the following section. However,

perfectly secure systems are not feasible in many cases. Take for example an interceptable

wireless channel where two parties want to transmit information in a perfectly secret way

using the One-Time Pad. A secure channel would be needed to transmit the keys, for

instance, by an in-person messenger carrying a hard disk drive with randomly generated

key symbols that are only used once. Such efforts are rarely undertaken. Therefore, the

goal in many applications is to design systems that have a computational security [GM84].

This means that any attack on the secrecy system should be so computationally complex

that it cannot be done in a certain time correlating to the security level, assuming that

certain computational tasks are “hard”.

3.1.2 Secret Sharing Systems

Secret sharing systems are a special kind of secrecy system. In secret sharing systems, a

message is not transmitted via a channel to a second party, but rather it is encoded, split

14



3.1 Secret Sharing

into pieces and shared with multiple parties. The encrypting or encoding involves ran-

domly generated symbols. The message can be recovered by contacting multiple parties.

The following definition is based on the secret sharing scheme requirement introduced by

Shamir in [Sha79].

Definition 3.2 (Secret sharing). The secret message m is encoded into n pieces

s1, . . . , sn, the so-called shares, such that

1. knowledge of any k ≤ n or more shares si allows to compute the message m (de-

codability).

2. knowledge of any z < k shares si reveals no information about the secret message

m (privacy).

Such a system is called an (n, k, z) secret sharing scheme.

In other words, a secret sharing system is perfectly secure if for every a priori prob-

ability distribution over the message space F, every message m ∈ F and every vector of

z < k shares sIz = (s1, . . . , sz) with its corresponding random variable SIz , it holds that

Pr[M = m | SIz = (s1, . . . , sz)] = Pr[M = m].

Equivalently, the mutual information between the random variables M and SIz represent-

ing the message and the set of known shares must be zero, i.e.,

I(M;SIz) = 0 or H(M | SIz) = H(M).

In addition, for every vector of k shares sIk = (s1, . . . , sk) it should hold that

H(M | SIk) = 0,

which means that the message can be recovered from the set of shares SIk .

To show that the mutual information of the eavesdropped shares and the message is

zero, i.e., I(M;SIz) = 0, the following lemma can be used. It follows the steps described

in [SRK11].

Lemma 3.1 (Secrecy lemma). Consider a secrecy system with message symbols m

and random symbols r that are used in the encrypting/encoding process to generate the

ciphertext and their random variables M and R. An eavesdropper is observing the symbols

e at positions Ie ⊆ [n], a subset of the stored shares of the ciphertext c = (c1, . . . , cn).

The eavesdropper’s observation is represented by the random variable E.
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If H(E) ≤ H(R) and H(R | M,E) = 0, then the information leaked to the eavesdropper is

zero: I(M;E) = 0.

Proof. Consider the mutual information

I(M;E) = H(E)−H(E | M)

(a)

≤ H(E)− I(E;R | M)

(b)

≤ H(R)− I(E;R | M)

= H(R)− [H(R | M)−H(R | M,E)]

(c)
= H(R | M,E)

(d)
= 0

where (a) follows from the inequality I(X;Y | Z) ≤ min(H(X | Z),H(Y | Z)) (B.3),

(b) is the assumption H(E) ≤ H(R), (c) is due to independence of R and M yielding

H(R) = H(R | M) and (d) is the condition given above that H(R | M,E) = 0.

Example 3.1. The most simple secret sharing system is a (2,2,1) secret sharing scheme.

Given the message m ∈ Fq, the two shares are generated as follows:

1. generate a random number r ∈ Fq (uniformly distributed) and take it as the first

share: s1 = r

2. the second share is the sum of the message symbol and the random symbol:

s2 = m+ r

It can be proven that the suggested scheme is a (2,2,1) secret sharing scheme fulfilling

the requirements from Definition 3.2 as follows.

Proof. Given k = 2 shares, the message can be recovered: m = s2− s1. To show that the

privacy constraint is fulfilled, PM|S(m | si) = PM(m) for i ∈ {1, 2} has to hold. Consider

PM|S(m | si) and apply Bayes’ theorem

PM|S(m | si) =
PS|M(si | m) PM(m)

PS(si)
=

PS|M(si | m) PM(m)∑
m̃∈F PS|M(si | m) PM(m̃)

(a)
=

PR(r) PM(m)

PR(r)
∑

m̃∈F PM(m̃)
= PM(m)

where (a) follows from PS|M(s1 | m) = PS|M(m + r | m) = PR(r) and PS|M(s2 | m) =

PS|M(r | m) = PR(r) (r and m independent). This shows that the described system is a

secret sharing scheme by Definition 3.2.
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3.1 Secret Sharing

To illustrate secret sharing, an example of a (3, 3, 2) secret sharing scheme is given.

Note that the key, i.e., the set of random symbols, is not needed to recover the message

but access to k shares.

Example 3.2. Consider a secret sharing system with n = 3, k = 3 and z = 2. All three

shares are required to retrieve the message. If an eavesdropper can access 2 or fewer

shares, no information is revealed. The system is illustrated in Figure 3.1.

s2

s3

s1

shares

Encoding

r1 r2

m

message symbol

random symbols

Eavesdropper

Decoding

Figure 3.1: Illustration of a (3,3,2) secret sharing scheme. One message symbol m ∈ F
is encoded with two random symbols r1, r2 ∈ F. The result are 3 shares. If
two or fewer shares are known, no information about the message is revealed.
Given 3 shares, the message m can be decoded.

3.1.3 Shamir’s Secret Sharing

A secret sharing scheme for an arbitrary number of parties was introduced by Shamir in

[Sha79] and is based on polynomial interpolation.

Construction 3.1 (Shamir’s secret sharing). Fix the following integers n, k, z = k−1

and a prime power q > n. Given a message symbol m ∈ Fq, generate z random numbers

r1, . . . , rz independently and uniformly distributed over Fq. The shares s1, . . . , sn can be

calculated as evaluations of the polynomial

p(x) = m+ r1x+ r2x
2 + · · ·+ rzx

z = m+
z∑

j=1

rjx
j

with si = p(ai), where all ai ∈ F∗
q are pairwise distinct elements for all i ∈ [n].

Theorem 3.1 (Shamir’s Secret Sharing). Shamir’s secret sharing scheme presented

above is an (n, k, z = k − 1) secret sharing scheme.
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Proof. Decodability: Given any k shares, Lagrange interpolation can be used to recover

the polynomial p̃(x) = p(x) of degree k − 1. The message can then be retrieved with

p̃(0) = m.

Privacy: Lemma 3.1 is used. The eavesdropped information is the set of shares SIz given

by a vector sIz with Iz ⊆ [n], |Iz| = z and its random variable SIz . It is obvious that

H(SIz) ≤ H(R) since R represents z independently and uniformly at random generated

numbers r1, . . . , rz. It remains to show that H(R | M,SIz) = 0. Rewriting the polynomial

p(x) yields

p(x) = m+ x
z∑

j=1

rjx
j−1

︸ ︷︷ ︸
p̂(x)

. (3.1)

Given m and si = p(ai) for i ∈ Iz, the evaluations of the polynomial p̂(x) of degree

(k − 2), i.e., ŝi = p̂(ai), can be calculated with

ŝi =
p(ai)−m

ai
=

si −m

ai
.

With the z shares ŝi, p̂(x) can be retrieved using Lagrange interpolation, and the random

numbers r1, . . . , rz are the coefficients of p̂(x). Thus, H(R | M, SIz) = 0.

Example 3.3. Consider the field Fqm = F22 with q = 2 and m = 2 with the elements

a ∈ {0, 1, ω, ω̄} as defined in (1.1). As parameters of the secret sharing scheme, take

n = 3, which fulfills the constraint q > n, k = 3 and z = k−1 = 2. This means that there

are three parties and only access to all the shares allows retrieval of the message symbol.

Let the message symbol be m = ω and the two randomly generated symbols r1 = ω̄ and

r2 = 1. The shares are then evaluations of the polynomial

p(x) = ω + ω̄x+ x2.

Thus, s1 = p(1) = 0, s2 = p(ω) = 0 and s3 = p(ω̄) = ω with a1 = 1, a2 = ω and a3 = ω̄.

Two cases are considered. The first case is a reconstruction of the polynomial given the

evaluations. The polynomial received by Lagrange interpolation (see B.2) is

p̃(x) =

k∑
j=1

sjℓj(x)

= 0 + 0 + ω
(x− 1) · (x− ω)

(ω̄ − 1) · (ω̄ − ω)

= ω + ω̄x+ x2
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3.1 Secret Sharing

which is, as required, the same as p(x).

The second case is that the message m and a set of z shares are known. The goal

is to recover the random symbols r1, r2. Let s1 and s3 be known. First, calculate the

shares ŝ1 and ŝ3 as evaluations of the polynomial p̂(x) by removing the contribution of

the message symbol m to s1 and s3 (Equation (3.1)).

ŝ1 =
s1 −m

a1
=

0− ω

1
= ω

ŝ3 =
s3 −m

a3
=

ω − ω

ω̄
= 0

With ŝ1 and ŝ3, p̂(x) can be calculated using Lagrange interpolation:

p̂(x) =
∑

j∈{1,3}

ŝjℓj(x)

= ω
x− ω̄

1− ω̄
+ 0 = ω̄ + x

and r1, r2 can be retrieved directly as the coefficients of p̂(x).

3.1.4 McEliece-Sarwate Secret Sharing

A more general secret sharing scheme, which is linked to Reed-Solomon codes, was intro-

duced by McEliece and Sarwate in [MS81].

Construction 3.2 (McEliece-Sarwate secret sharing). Fix the following integers n,

k, z < k and a prime power q > n. Given k − z message symbols m1, . . . ,mk−z ∈ Fq,

generate z random numbers r1, . . . , rz independently and uniformly distributed over Fq.

The shares s1, . . . , sn can be calculated as evaluations of the polynomial

p(x) = r1 + r2x+ · · ·+ rzx
z−1 +m1x

z + · · ·+mk−zx
k−1 =

z∑
j=1

rjx
j−1 +

k−z∑
i=1

mix
i+z−1

with si = p(ai), where all ai ∈ F∗
q are pairwise distinct elements for all i ∈ [n].

Remark : It is also possible to use a polynomial for the construction where the message

symbols are the first k − z coefficients and the random numbers follow as coefficients.

Theorem 3.2 (McEliece-Sarwate secret sharing). The McEliece-Sarwate secret

sharing scheme presented above is an (n, k, z) secret sharing scheme.

Proof. Decodability: Given any k shares, Lagrange interpolation can be used to recover

the polynomial p̃(x) = p(x) of degree k−1. The message can then be retrieved by taking
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the coefficients p̃i of p̃(x) for i ∈ {k − z, k − z + 1, . . . , k − 1}.
Privacy: Lemma 3.1 is used and the notation is the same as for the proof of Theorem 3.1.

As R represents z independently and uniformly at random generated numbers r1, . . . , rz,

H(SIz) ≤ H(R) holds. It remains to show that H(R | M, SIz) = 0. Consider the polynomial

p(x)

p(x) =
z∑

j=1

rjx
j−1

︸ ︷︷ ︸
pr(x)

+
k−z∑
i=1

mix
i+z−1

︸ ︷︷ ︸
pm(x)

.

Given m1,m2, . . .mk−z and si = p(ai) for i ∈ Iz, pr(x) of degree (z− 1) can be retrieved

using Lagrange interpolation with the shares ŝi = pr(ai) that can be calculated as follows

ŝi = p(ai)− pm(ai).

The random numbers r1, . . . , rz are the coefficients of the polynomial pr(x).

Thus, H(R | M,SIz) = 0.

Remark : The encoding of the McEliece-Sarwate secret sharing scheme can also be

written as a vector matrix multiplication:

(s1, . . . , sn)
T =


1 1 · · · 1

1 2 · · · 2k−1

...
...

. . .
...

1 n · · · nk−1

 (r1, . . . , rz,m1, . . . ,mk−z)
T

The matrix is a Vandermonde matrix (corresponding to the generator matrix of a Reed-

Solomon code) with full rank. The decodability can therefore also be easily shown for

this representation since a k × k block of the Vandermonde matrix has rank k and thus

one can recover the message symbols and the random symbols with k shares.

3.2 Locally Repairable Codes

As described in Section 2.1, the communication cost between nodes of the same rack

is much less than between nodes of different racks. Therefore, it is beneficial to repair

failed nodes with data stored on nodes of the same rack. A popular proposed solution are

locally repairable codes (LRCs) [GHSY12],[HCL07],[OD11]. They allow to repair a failed

node by contacting only a small number, r, of other nodes, where r is called the locality.

For this purpose the code has several local groups in which such a local repair can be
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3.2 Locally Repairable Codes

performed. In practice, they have already been implemented by Facebook [SAP+13] and

by Microsoft [HSX+12].

The following formal definition of LRCs follows the notation in [MPK19, Def. 4].

Definition 3.3 (Locally repairable code). Let Γ1,Γ2, . . . ,Γg be a partition of [n],

i.e., Γi ∩ Γj = ∅ for i ̸= j, [n] =
⋃g

i=1 Γi. For a fixed number of groups g ≥ 1 and fixed

integers ri, δi for all i ∈ [g], a code C ⊆ Fn
qm is said to be an (n, k) locally repairable code

(LRC) with (ri, δi)
g
i=1-localities and k = logqm |C| if it holds that

|Γi| ≤ ri + δi − 1 and dH(C|Γi) ≥ δi,

for all i ∈ [g]. The set Γi is called i-th local group and δi is called the i-th local distance.

Thus, each local group can tolerate up to δi − 1 erasures that can be recovered by

contacting the ri remaining nodes. In most cases, the groups are chosen to be of equal

size, i.e., r1 = r2 = · · · = rg and δ1 = δ2 = · · · = δg. In the following, an example is given

to illustrate LRCs.

Example 3.4. Consider an LRC with two local groups (g = 2). The two local groups

have (3, 3)-locality and can therefore tolerate δ − 1 = 2 erasures that can be recovered

with the r = 3 remaining nodes in each group. In Figure 3.2, the described code is

illustrated. The light grey nodes indicate local parity symbols. In Figure 3.3, the erasure

pattern cannot be entirely corrected. The first group can be repaired but there are too

many erasures in the second group since 3 > δ − 1 = 2.
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Figure 3.2: Illustration of an LRC with two local groups (g = 2) and (ri, δi) = (3, 3)-
localities for i ∈ [2]. Each row forms a local group Γi that can correct up to
δ − 1 = 2 erasures. The light grey nodes store the parity symbols.
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Figure 3.3: Illustration of an LRC with two local groups (g = 2) and (ri, δi) = (3, 3)-
localities for i ∈ [2]. Each row forms a local group Γi that can correct up to
δ−1 = 2 erasures. Four node failures have occurred, each denoted by a black
diamond. The first local group can be repaired. The second group has too
many erasures and can therefore not be repaired locally.

Note that the code discussed in Example 3.4 has 4 parity symbols, yet it cannot

correct the in Figure 3.3 illustrated erasure pattern with 4 erasures. This illustrates that

the definition of LRCs does not make any statement about the global distance of the code.

LRCs that attain Singleton-type bounds on their global distance are called optimal LRCs.

One bound is briefly discussed in Chapter 4 in the context of MR-LRCs on which this work

focuses. MR-LRCs are a strictly stronger class of LRCs than “optimal” LRCs. Given

the localities, MR-LRCs can correct any information theoretically correctable erasure

pattern.

Definition 3.4 (Maximal recoverability [MPK19, Def. 5]). Let C ⊆ Fn
qm be a code

with (ri, δi)
g
i=1-localities. It is said to be maximally recoverable (MR), if for any Ri ⊆ Γi

with |Γi \ Ri| = δi − 1 for i = 1, 2, . . . , g, the code C|R ⊆ F|R|
qm with R =

⋃g
i=1Ri is MDS.

To achieve maximal recoverability, global parities that can correct erasures of the

global code are needed. The number of global parities is denoted by h =
∑g

i=1 ri − k.

Any MR-LRC can therefore correct δi − 1 in each local group and in addition h erasures

anywhere.

Example 3.5. Consider an MR-LRC with five local groups (g = 5). The five local groups

have (3, 3)-locality and thus can tolerate δ−1 = 2 erasures that can be recovered with the

r = 3 remaining nodes. One of these local groups consists of 3 global parities, i.e., k = 12

and h = 3. If one local group has more than two erasures, they can be corrected with

the global parities. In Figure 3.4 the described code is illustrated. The light grey nodes

indicate local parity symbols, the dark grey nodes global parities.

In Figure 3.5, the black diamonds and black stars denote erasures. In two steps, all

the erasures can be corrected.

1. Correct the three erasures denoted by black stars with the global erasure capability.

Definition 3.4 tells us that after puncturing two symbols in each group, e.g., the
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3.2 Locally Repairable Codes

two erasures that have occurred denoted by black diamonds, the remaining nodes

form an MDS code. With the given code parameter k = 12 and 15 symbols left

after the puncturing, which means that nmds = 15, the code can tolerate another

d− 1 = n− k = 3 erasures, for example, the ones denoted by black stars.

2. Correct the other erasures, denoted by black diamonds (not more than two per

group), locally in each group.
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Figure 3.4: Illustration of an MR-LRC with (ri, δi) = (3, 3)-localities for i ∈ [5] and five
local groups (g = 5). Each row forms a local group Γi. This code can correct
up to δ − 1 = 2 erasures locally in each group and in addition 3 erasures
located anywhere with the global parities (dark grey).
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Figure 3.5: Illustration of an MR-LRC with (ri, δi) = (3, 3)-localities for i ∈ [5] and
five local groups (g = 5). Each row forms a local group Γi. This code can
correct up to δ− 1 = 2 erasures locally in each group and in addition 3 global
erasures with the global parities (dark grey). The given erasure pattern can
be corrected with the two steps described in Example 3.5.

Constructions of MR-LRCs are presented in Section 4.2.

At this point, it is important to link the DSS model described in Section 2.1 with

LRCs. Usually, the system perspective is not given or not presented in detail and DSSs

are considered from a theoretical perspective only. The local repair in a DSS is often

abstracted such that each node can communicate with all the other nodes directly. Given

a node failure, the node sends requests to the nodes needed for a repair, e.g., it requests

the symbols of r nodes given an LRC with (r, δ)-locality. The download of symbols needed

for a repair is illustrated in Figure 3.6.
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Figure 3.6: Repair download of a failed node in an LRC group with (3, 3)-locality under
the assumption that the local repair takes place in the failed node. The node
downloads 3 symbols for repair.

In contrast to that, the model assumed in this work has a hierarchical structure.

Given a failed node, the node sends a request to the rack processing unit (RPU). The

RPU knows which of the nodes in the group are still running and sends a request to

a sufficient number of nodes such that the erased symbols of the failed node can be
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recovered. The RPU can now reconstruct the symbols and send them back to the node

that has failed. The described model is illustrated in Figure 3.7.
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Figure 3.7: Repair download of a failed node in an LRC group with (3, 3)-locality managed
by a rack processing unit (RPU). The RPU downloads the 3 symbols needed
to repair the failed node, calculates the symbol and sends it to the failed node
for repair.

In this thesis, the second model was chosen since the focus is on secure coding. If only

local repair is considered, the two models behave equivalently. In case of the first model,

an eavesdropper observing the group in an l2-manner gains knowledge of the whole group

since it can read the downloaded symbols for repair such as in [RKSV14]. In the second

model, an eavesdropper observing the group in an l2-manner has access to the whole

group including the RPU and has therefore direct access to all the nodes. For local repair

only, the two system models illustrated in Figure 3.6 and Figure 3.7 behave equivalently.

For global repair, the models behave differently. Assume that in an MR-LRC there is

a group with more erasures than the local group can correct. A global correction would

be performed. In case of the first model, the failed node would contact as many nodes in

the same and in other groups such that a global correction would be possible. Thus, it

gains global knowledge. Given an eavesdropper which observes the group in an l2-manner,

global knowledge would be revealed which contradicts the possibility of storing symbols

securely. On the other hand, the second model allows global repair schemes which do

not reveal global knowledge to the group where a global repair is performed given an

eavesdropper which observes the group in an l2-manner. Therefore, the second model is

chosen in this work and discussed in detail in Chapter 5. It also has the advantage that

local group pre-computations can reduce the load of the global switch which would have

higher communication costs as discussed in Section 2.1.
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3.3 Sum-Rank Metric Codes

The sum-rank metric and sum-rank metric codes are motivated by communication sce-

narios over channels that involve the action of a block diagonal matrix [MPSK22]. Con-

sider the multiplicative-additive matrix channel

Y = AX+ Z = diag(A1,A2, . . . ,Ag)X+ Z

with Y ∈ Kr×m as the received symbols, the additive noise denoted by Z ∈ Kr×m, the

sent symbols X ∈ Kk×m and the multiplicative behavior of the channel represented by

A ∈ Kr×k. In this example, K can be any field. The block diagonal matrix with matrices

Ai ∈ Kri×ki for i ∈ [g] on the main diagonal is denoted by

A = diag(A1,A2, . . . ,Ag) =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ag

 .

Sum-rank metric codes, which are a natural coding solution for this channel model, are

useful in multiple coding disciplines such as network coding [NUF10], space-time coding

[SK22] and coding for DSSs [MPK19]. For the latter, each subchannel represents a rack

of a server. The thesis focuses on DSSs only and therefore K = Fqm is a finite field with

extension degree m.

Since Fqm is an m-dimensional vector space over Fq, a vector x ∈ Fn
qm can also be

written as a matrix Xi ∈ Fm×n
q , as follows.

Definition 3.5. For an ordered basis β = (β1, β2, . . . , βm) of Fqm over Fq with βi ∈ Fqm ,

any vector x = (x1, . . . , xn) ∈ Fn
qm of length n can be represented by a matrix Mn

β (x).

The matrix map Mn
β (x): Fn

qm −→ Fm×n
q takes x to

Mn
β (x) =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

...
. . .

...

xm,1 xm,2 · · · xm,n

 ∈ Fm×n
q

with xi,j ∈ Fq for i ∈ [m], j ∈ [n]. The vector x can be retrieved by the operation

βMn
β (x) = x. The matrix representation of a vector x ∈ Fn

qm is written as X = Mn
β (x).
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Example 3.6. Consider F4 with q = 2 and m = 2 as defined in (1.1). An ordered basis

of F22 over F2 is β = (1, ω). Take now the following vector as an example

x = (ω̄, 1, ω) ∈ F3
4.

The corresponding matrix representation with respect to the basis β is

X = Mn
β (x) =

(
1 1 0

1 0 1

)
∈ F2×3

2 .

Now, let the vector x ∈ Fn
qm be partitioned into g groups and let the i-th part x(i) of

the vector x be of length ri such that
∑g

i=1 ri = n. Thus, the vector x can be written as

the concatenation of all parts x(i) ∈ Fri
qm for i ∈ [g], i.e., x =

(
x(1) | . . . | x(g)

)
∈ Fn

qm .

With its corresponding matrix representationXi, the rank weight of x(i) can be defined

as

wtrk : Fri
qm −→ N0

with

wtrk(x
(i)) = rank(Xi).

Definition 3.6 (Sum-rank metric). Let x =
(
x(1) | . . . | x(g)

)
∈ Fn

qm be partitioned

into g groups of length ri where n =
∑g

i=1 ri and x(i) ∈ Fri
qm . The sum-rank weight of x

is defined as

wtSR : Fr1
qm × Fr2

qm × · · · × Frg
qm −→ N0

with

wtSR(x) =

g∑
i=1

wtrk(x
(i)) =

g∑
i=1

rank(Xi).

With the sum-rank weight function, a sum-rank distance between two vectors x,y

with the same sum-length partition, i.e., the same number of groups g and lengths of the

groups ri, can be defined as

dSR : Fn
qm × Fn

qm −→ N0

with

dSR(x,y) = wtSR(x− y).

The reader may verify that the sum-rank distance is indeed a metric. By choosing

r1 = r2 = . . . = rg = 1, the sum-rank metric is equal to the Hamming metric with

Hamming weight wtH and Hamming distance dH [Ham50]. For g = 1, it is equal to the

rank metric [Gab85], [Rot91].
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3 Preliminaries

Definition 3.7 (Sum-rank metric code). Given a code C ⊆ Fn
qm with a fixed sum

length partition r1, . . . , rg, its minimum sum-rank distance is

dSR(C) = min
c ̸=d∈C

{dSR(c,d)}
(a)
= min

c∈C\{0}
{wtSR(c)}

where (a) holds if C is linear.

An interesting case is sum-rank metric codes multiplied with a block diagonal matrix.

Let C ⊆ Fn
qm be a code, then CA ≜ {cA | c ∈ C} for A ∈ Fn×n

q which is needed for the

following theorem.

Theorem 3.3 ([MPK19, Th. 1]). For a code C ⊆ Fn
qm, it holds that

dSR (C) = min{dH (CA) | A = diag (A1,A2, . . . ,Ag) ,

Ai ∈ Fri×ri
q invertible, ∀i ∈ [g]}.

Proof. The matrices Ai ∈ Fri×ri
q have full rank following from their invertibility. There-

fore, dSR (C) = dSR (CA). The sum-rank distance is upper bounded by the Hamming

distance as follows. Consider the Hamming weights of the codeword x ∈ CA. Every

nonzero column of Xi (x
(i) in matrix representation) contributes to the Hamming weight

but is not necessarily linearly independent from the other columns of Xi. This yields

dSR (C) = dSR (CA) ≤ dH (CA) which shows that dSR (C) is upper bounded by dH (CA).

Choose x,y ∈ C, such that dSR(x,y) = dSR(C). Let x =
(
x(1) | . . . | x(g)

)
∈ Fn

qm with ma-

trix representation X = (X1 | . . . | Xg) ∈ Fm×n
q , similarly y and Y, where x(i),y(i) ∈ Fri

qm

and Xi,Yi ∈ Fm×ri
q for all i ∈ [g]. There exists an invertible matrix Ai ∈ Fri×ri

q trans-

forming (Xi −Yi) by basic linear algebra operations such that

(Xi −Yi)Ai = (Bi | 0ri−si) ∈ Fm×ri
q , (3.2)

where Bi ∈ Fm×si
q is a full-rank matrix, with rank si, spanning the column space of

(Xi −Yi). Therefore, it holds that si = rank (Bi) = rank (Xi −Yi) for all i ∈ [g]. Let

A = diag (A1,A2, . . . ,Ag) ∈ Fn×n
q . With Equation (3.2) applied to all the g blocks of X

and Y it follows that wtSR ((x− y)A) =
∑g

i=1 rank (Bi) =
∑g

i=1 si = wtH ((x− y)A).

Therefore,

dSR (C) = dSR (CA) = dSR (xA,yA) = wtSR ((x− y)A)

= wtH ((x− y)A) = dH (xA,yA)

≥ dH (CA)
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which proves that there exists a matrix A such that dSR (C) is lower bounded by dH (CA).

From this theorem, an erasure correction corollary can be derived.

Corollary 3.1 (Erasure correction [MPK19, Cor. 1]). Let 0 ≤ t < n and C ⊆ Fn
qm be

the considered code. Also let Ai ∈ Fri×ni
q for all ni ≥ 1 and i ∈ [g]. It is equivalent that

t < dSR (C) ,

and that for

n−
g∑

i=1

rank (Ai) ≤ t,

any codeword x ∈ C can be uniquely recovered from x′ = xdiag (A1,A2, . . . ,Ag).

For sum-rank metric codes, there is a similar terminology to MDS codes in the Ham-

ming metric.

Definition 3.8 (Maximum sum-rank distance codes). A linear code C is said to be

a maximum sum-rank distance (MSRD) code if one of the following equivalent conditions

hold:

1.

dSR(C) = n− dim(C) + 1

2. CA ⊆ Fn
qm is MDS, for all A = diag(A1,A2, . . . ,Ag) ∈ Fn×n

q with Ai ∈ Fri×ri
q is

invertible for all i ∈ [g].

Maximum sum-rank distance (MSRD) is the equivalent in the sum-rank metric to

MDS in the Hamming metric for codes that achieve the Singleton bound. The Singleton

bound for sum-rank metric codes reads smilar to the the Singleton bound for codes in

the Hamming metric:

Definition 3.9 (Singleton bound for sum-rank metric codes). Let C ⊆ Fn
qm be a

code. Then,

|C| ≤ qm(n−dSR(C)+1).

Linearized Reed-Solomon codes were the first suggested codes that are MSRD codes

and therefore achieve the bound with equality. They are a generalization of Reed-Solomon

codes and Gabidulin codes and use skew polynomials which are characterized in Ap-

pendix 7.2.
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3.4 Skew Reed-Solomon Codes

Similar to Reed-Solomon codes which are linked to Vandermonde matrices, skew Reed-

Solomon codes are linked to skew Vandermonde matrices. They go back to [LL88],[Lam85]

and are introduced in the following.

Definition 3.10 (Skew Vandermonde matrix). Given a vector b = (b1, b2, . . . , bn) ∈
Fn
qm , the skew Vandermonde matrix of order d ∈ N on b, with respect to σ, is defined as

Vσ
d (b) =


N0(b1) N0(b2) · · · N0(bn)

N1(b1) N1(b2) · · · N1(bn)
...

...
. . .

...

Nd−1(b1) Nd−1(b2) · · · Nd−1(bn)

 ∈ Fd×n
qm

with Ni(b) = σi−1(b)σi−2(b) · · ·σ(b)b for b ∈ Fqm and i ∈ N. The field automorphism σ is

chosen as

σ(a) = aq, ∀ a ∈ Fqm ,

and the i-th composition of σ is

σi(a) = σ(σ(· · ·σ(a)))︸ ︷︷ ︸
i times

= aq
i
,

xia = σi(a)x = aq
i
x.

The usual Vandermonde matrix is a representation of the conventional polynomial

evaluation map. Similarly, this is the case for skew polynomials and skew Vandermonde

matrices. Observe that if F = F0 + F1x+ · · ·Fd−1x
d−1 ∈ Fqm [x;σ] is a skew polynomial

of degree d− 1 with coefficients F0, F1, . . . , Fd−1 ∈ Fqm , then

(F0, F1, . . . , Fd−1) ·Vσ
d (b) = (F (b1), F (b2), . . . , F (bn)).

Therefore, many results that are stated in terms of the evaluation of skew polynomials can

also be expressed by their skew Vandermonde matrix equivalent. The following theorem

can be derived directly from the Lagrange theorem for skew polynomials (Theorem A.7).

Theorem 3.4 ([Lam85, Th. 8]). Let Ω = {b1, b2, . . . , bn} ⊆ Fqm be a set with cardinality

|Ω| = n and b = (b1, b2, . . . , bn) the corresponding vector. The following statements are

equivalent:

1. The set Ω is P-independent in Fqm [x;σ].

2. For some d ≥ n the matrix Vσ
d (b) ∈ Fd×n

qm has rank n.
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3.4 Skew Reed-Solomon Codes

3. The n× n matrix Vσ
n(b) ∈ Fn×n

qm is invertible.

Proof. The items 2. and 3. in this theorem are equivalent to the items 2. and 3. in

Theorem A.7 but in a different notation. Thus, they hold as well.

Based on the skew Vandermonde matrix and correspondingly the skew polynomial

evaluation, a skew Reed-Solomon code can be defined.

Definition 3.11 (Skew Reed-Solomon codes [BU13, Def. 7], [MPSK22, Def. 2.10]).

Let Ω = {b1, b2, . . . , bn} ⊆ Fqm be a P-independent set with cardinality |Ω| = n and

b = (b1, b2, . . . , bn) ∈ Fqm the corresponding vector. The k-dimensional skew Reed-

Solomon code on b with respect to σ for k ∈ [n] is

Cσ,k
SRS(b) =

{
xVσ

k (b) | x ∈ Fk
qm

}
where the generator matrix is given by the skew Vandermonde matrix Vσ

k (b) ∈ Fk×n
qm .

For a skew polynomial F ∈ Fqm [x;σ], denote

F (b) = (F (b1), F (b2), . . . , F (bn)) ∈ Fn
qm

as the vector of evaluations of F at b. The skew Reed-Solomon code can then be also

defined as

Cσ,k
SRS(b) = {F (b) | F ∈ Fqm [x;σ], deg(F ) < k} .

From Theorem 3.4, it follows that skew Reed-Solomon codes, like their conventional

counterpart, attain the Singleton bound in the Hamming metric. The following result

was introduced in [BU13].

Theorem 3.5 ([BU13, Prop. 2]). Let Ω = {b1, b2, . . . , bn} ⊆ Fqm be a P-independent set

with cardinality |Ω| = n and b = (b1, b2, . . . , bn) ∈ Fn
qm the corresponding vector. The

skew Reed-Solomon code Cσ,k
SRS(b) has dimension k and is MDS, i.e.,

dH

(
Cσ,k
SRS(b)

)
= n− k + 1.

Proof. The MDS property of Cσ,k
SRS(b) and that it has dimension k can be proven by

showing that every k × k submatrix of the generator matrix is invertible. The k × k

submatrix of Vσ
k (b) is V

σ
k (b̃) ∈ Fk×k

qm with b̃ = (bi1 , bi2 , . . . , bik) ∈ Fk
qm and 1 ≤ i1 < i2 <

. . . < ik ≤ n. From Theorem A.7, it follows that every subset of a P-independent set

is also P-independent (Corollary A.2). Thus, the set Ω̃ = {bi1 , bi2 , . . . , bik} ⊆ Ω is also

P-independent and with Theorem 3.4, the matrix Vσ
k (b̃) is invertible.
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Skew Reed-Solomon codes recover Reed-Solomon codes for σ = Id. In that case,

the skew Vandermonde matrix becomes a conventional Vandermonde matrix. How-

ever, they do not recover generalized Reed-Solomon [RS60] codes or Gabidulin codes

[Gab85],[Rot91]. The skew Reed-Solomon codes can be adapted such that they recover

the former by using a conventional Vandermonde matrix and column multipliers as follows

Vσ=Id
k (b) · diag(α1, α2, . . . , αn) ∈ Fk×n

qm

with αi ∈ F∗
qm arbitrary for i ∈ [n]. Gabidulin codes can as well be recoverd for a specific

choice of the column multipliers αi. This specific choice yields linearized Reed-Solomon

codes which are discussed in the next section.

3.5 Linearized Reed-Solomon Codes

The goal is to construct codes that can be multiplied by a block diagonal matrix A and

remain MDS (see Definition 3.8). To achieve this, skew polynomials are modified so that

they become Fq-linear with respect to the evaluation.

Definition 3.12 ([Ler95, Ex. 2.6]). Let σ : Fqm −→ Fqm , for all a ∈ Fqm , be given by

σ(a) = aq. To each a ∈ Fqm , a map is associated:

Da : Fqm −→ Fqm

β 7−→ σ(β)a.

The operators Da are Fq-linear, since for a, β1, β2 ∈ Fqm and λ1, λ2 ∈ Fq it holds that

Da(λ1β1 + λ2β2) = σ(λ1β1 + λ2β2)a

= σ(λ1β1)a+ σ(λ2β2)a = λ1σ(β1)a+ λ2σ(β2)a

= λ1Da(β1) + λ2Da(β2).

The i-th composition of Da with itself is given by

Di
a(β) = σi(β)Ni(a)

= σi(β)σi−1(a) · · ·σ(a)a

for all β ∈ Fqm and i ∈ N, where Ni(a) is defined as in Definition 3.10. The zeroth power

of Da is D0
a = Id with Id denoting the identity map.

With this family of operators, a set of Fq-linear polynomials can be defined.
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Definition 3.13 (Linear operator polynomials [Ler95, Ex. 2.6]). The ring of poly-

nomials in Da is defined as

Fqm [Da] =

{
d∑

i=0

FdD
i
a

∣∣∣∣∣ d ∈ N0, Fi ∈ Fqm ∀i ∈ [d] ∪ {0}

}

The identity element is the identity map Id = D0
a. For two linear operator polynomials

F = F0D
0
a + F1D

1
a + · · ·+ FdD

d
a ∈ Fqm [Da]

G = G0D
0
a +G1D

1
a + · · ·+GdD

d
a ∈ Fqm [Da]

with d ∈ N, Fi, Gi ∈ Fqm for i ∈ {0}∪ [d] and a scalar a ∈ Fqm , F +G and aF are defined

as follows

F +G = (F0 +G0)D
0
a + (F1 +G1)D

1
a + · · ·+ (Fd +Gd)D

d
a ∈ Fqm [Da],

aF = (aF0)D
0
a + (aF1)D

1
a + · · ·+ (aFd)D

d
a ∈ Fqm [Da].

For every skew polynomial F ∈ Fqm [x;σ] of degree d the associated linear operator

polynomial is

FDa = F0 Id+F1Da + · · ·+ FdD
d
a ∈ Fqm [Da].

An alternative notion of the evaluation of the skew polynomial F at an element β by

linearly combining the powers of the operator Da to β is

FDa(β) = F0D
0
a(β) + F1D

1
a(β) + · · ·+ FdD

d
a(β)

for all a, β ∈ Fqm . Since a ∈ Fqm is also variable, there is a variety of possible evaluations

of F characterized by the pair (a, β) ∈ F2
qm . Note that the evaluation map that sends β

to FDa(β) is Fq-linear since Da is Fq-linear.

The normal skew polynomial evaluations are linked to the operator evaluations as

follows.

Theorem 3.6. Given a ∈ Fqm, β ∈ F∗
qm and F ∈ Fqm [x;σ],

FDa(β) = F (σ(β)aβ−1)β = F (βa)β,

where βa denotes the β-conjugate of a with respect to σ (see Definition A.3).

Proof. By the product rule (Theorem A.5), it follows that F (σ(β)aβ−1)β = (Fβ)(a).

Therefore, by the linearity rule (Theorem A.4) it is only necessary to show that for

F = xi, xiβ = σi(β)xi since Di
a(β) = σi(β)Ni(a). This follows directly from (A.5).
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For β = 1, the usual evaluation is recovered, i.e., for all a ∈ Fqm and all F ∈ Fqm [x;σ],

F (a) = FDa(1).

Example 3.7. Consider the field F4 with q = 2 and m = 2 and the skew polynomial

F = ω̄ + x+ ωx2. For a = ω, the corresponding linear operator polynomial is

FDω = ω̄ Id+Dω + ωD2
ω.

The evaluation of this linear operator polynomial at β is

FDω(β) = ω̄ Id(β) +Dω(β) + ωD2
ω(β)

= ω̄β + β2 + ωβ4.

Thus, the evaluations of FDω at β ∈ F∗
4 are

FDω(1) = ω̄ · 1 + 12 + ω · 14 = 0,

FDω(ω) = ω̄ω + ω2 + ωω4 = 1,

FDω(ω̄) = ω̄ω̄ + ω̄2 + ωω̄4 = 1.

Observe that ω + 1 = ω̄ is an F2-linear combination and therefore

FDω(1 + ω) = FDω(1) + FDω(ω) = 0 + 1 = 1,

which is the same as the direct evaluation above.

It is important to point out that linear operator polynomials recover linearized poly-

nomials, which are used for Gabidulin codes, for the choice a = 1. The ring Fqm [D1]

coincides with the ring of linearized polynomials, i.e., for

F = F0 + F1x+ · · ·+ Fdx
d ∈ Fqm [x;σ]

with Fi ∈ Fqm for i ∈ [d]∪{0}, FD1 is the linearized polynomial FD1 : Fqm −→ Fqm with

FD1(x) = F0x+ F1x
q + · · ·+ Fdx

qd .

With the linear operator Da, a linearized version of skew Vandermonde matrices

(Definition 3.10) can be defined. The matrices were introduced in [MP17].

Definition 3.14 (Linearized Vandermonde matrix [MP17]). Let β = (β1, β2, . . . , βn) ∈
Fn
qm and a ∈ Fqm . Define the linearized Vandermonde matrix on (a,β) of order d with
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respect to σ as

VD
d (a,β) =


D0

a(β1) D0
a(β2) · · · D0

a(βn)

D1
a(β1) D1

a(β2) · · · D1
a(βn)

...
...

. . .
...

Dd−1
a (β1) Dd−1

a (β2) · · · Dd−1
a (βn)

 ∈ Fd×n
qm .

Now let r = (r1, r2, . . . , rg) with
∑g

i=1 ri = n be a length n sum-rank partition of order g.

In addition, let β = (β(1),β(2), . . . ,β(g)) ∈ Fn
qm with β(i) ∈ Fri

qm for i ∈ [g] and a ∈ Fg
qm .

The linearized Vandermonde matrix on (a,β) of order d with respect to σ is defined as

VD
d (a,β) =

(
VD

d

(
a1,β

(1)
)
,VD

d

(
a2,β

(2)
)
, . . . ,VD

d

(
ag,β

(g)
))

∈ Fk×n
qm

with g matrices VD
d

(
ai,β

(i)
)
∈ Fk×ri

qm for i ∈ [g] that are appended so that VD
d (a,β) is

a k × n matrix.

The linearized Vandermonde matrix VD
d (a,β) is again a representation of a polyno-

mial evaluation map. Observe that if F = F0 + F1x+ · · ·Fd−1x
d−1 is a skew polynomial

of degree d− 1 with coefficients F0, F1, . . . , Fd−1 ∈ Fqm , then

(F0, F1, . . . , Fd−1) ·VD
d (β) = (FDa(β1), F

Da(β2), . . . , F
Da(βn)).

Since FDa is Fq-linear for every a ∈ Fqm , it is equivalent to perform Fq-linear transfor-

mations on the evaluations or on (β1, β2, . . . , βn) prior to the evaluation. This important

property is expressed in the following proposition.

Proposition 3.1 ([MPSK22, Prop. 2.9]). Let VD
d (a,β) ∈ Fd×n

qm be a linearized Vander-

monde matrix for a ∈ Fqm, β ∈ Fn
qm and d ∈ N. Moreover, let A ∈ Fn×s

q be any n × s

matrix with entries in Fq for s ∈ N. Then

VD
d (a,β) ·A = VD

d (a,β ·A)

holds.

Proof. Since the map Di
a : Fqm → Fqm is Fq-linear for all i ∈ N0 and a ∈ Fqm , this follows

directly.

Let ai,j ∈ Fq be the entry of A in the i-th row and j-th column and β̃ = β · A =

(β̃1, β̃1, . . . , β̃s) with

β̃j =
n∑

l=1

βlal,j
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for j ∈ [s].

Therefore, the entry of VD
d (a,β ·A) in the i-th row and the j-th column is

Di−1
a (β̃j) = Di−1

a

(
n∑

l=1

βlal,j

)
=

n∑
l=1

Di−1
a (βl)al,j .

The right hand side is equivalent to the entry of VD
d (a,β) · A in the i-th row and the

j-th column which proves the proposition.

The codes that are generated by such linearized Vandermonde matrices are called

linearized Reed-Solomon codes. They were introduced by Mart́ınez-Peñas in [MP17].

Definition 3.15 (Linearized Reed-Solomon codes [MP17, Def. 31], [MPSK22, Def. 2.14]).

Let r = (r1, . . . , rg) be a length n sum-rank partition of order g with
∑g

i=1 ri = n, let

a = (a1, a2, . . . , ag) ∈ Fg
qm and let β =

(
β(1),β(2), . . . ,β(g)

)
∈ Fn

qm with β(i) ∈ Fri
qm for

i ∈ [g]. Furthermore, assume that

1. the elements a1, a2, . . . , ag are nonzero and pairwise non-conjugate in Fqm with

respect to σ, which imposes the constraint

1 ≤ g ≤ q − 1.

Take for instance a primitive element γ ∈ Fqm and choose ai = γi−1 for i ∈ [g]

(Theorem A.11).

2. the vectors β(i) =
(
β
(i)
1 , β

(i)
2 , . . . , β

(i)
ri

)
∈ Fri

qm where β
(i)
1 , β

(i)
2 , . . . , β

(i)
ri are Fq-linearly

independent for i ∈ [g] and therefore

max{r1, r2, . . . , rg} ≤ m.

Take for example a primitive element γ ∈ Fqm and choose β
(i)
j = γj−1 for j ∈ [ri].

For k ∈ [n], the k-dimensional linearized Reed-Solomon code on (a,β) with respect

to σ is given by

Cσ,k
LRS(a,β) =

{
xVD

k (a,β) | x ∈ Fk
qm

}
⊆ Fn

qm

with the generator matrix VD
k (a,β) ∈ Fk×n

qm from Definition 3.14.

In polynomial form the k-dimensional linearized Reed-Solomon code on (a, β) is

Cσ,k
LRS(a,β) =

{
FDa(β) | F ∈ Fqm [x;σ],deg(F ) < k

}

36



3.5 Linearized Reed-Solomon Codes

where

FDai

(
β(i)

)
=
(
FDai

(
β
(i)
1

)
, FDai

(
β
(i)
2

)
, . . . , FDai

(
β(i)
ri

))
∈ Fri

qm

for i ∈ [g] and

FDa(β) =
(
FDa1

(
β(1)

)
, FDa2

(
β(2)

)
, . . . , FDag

(
β(g)

))
∈ Fn

qm .

For specific parameter choices, linearized Reed-Solomon codes recover known codes.

Theorem 3.7 ([MPSK22, Th. 2.17]). Let the notation and assumption be the same as

in Definition 3.15.

1. For σ = Id and r = (1, 1, . . . , 1) (therefore g = n), the linearized Reed-Solomon

code Cσ,k
LRS(a,β) is a generalized Reed-Solomon code with distinct nonzero evaluation

points a ∈ (F∗
q)

n and with column multipliers β ∈ (F∗
q)

n.

2. For g = 1, the linearized Reed-Solomon code Cσ,k
LRS(a,β) is a Gabidulin code with

Fq-linearly independent evaluation points β ∈ (F∗
q)

n.

Thus, linearized Reed-Solomon codes coincide with generalized Reed-Solomon codes

and with Gabidulin codes whenever the sum-rank metric recovers the Hamming metric

and the rank metric, respectively.

Next, skew and linearized Reed-Solomon codes are related.

Theorem 3.8 ([MP17, Prop. 33]). Let r = (r1, r2, . . . , rg) be a length n sum rank par-

tition of order g, let a ∈ Fg
qm and β =

(
β(1),β(2), . . . ,β(g)

)
∈ Fn

qm with β(i) ∈ Fri
qm for

i ∈ [g]. Define diag(β) as

diag(β) =


β
(1)
1 0 · · · 0

0 β
(1)
2 · · · 0

...
...

. . .
...

0 0 · · · β
(g)
rg

 ∈ Fn×n
qm

and define

b
(i)
j = σ

(
β
(i)
j

)
· ai ·

(
β
(i)
j

)−1
= β

(i)
j ai

for all j ∈ [rg] and for all i ∈ [g], and where β
(i)
j ai denotes the β

(i)
j -conjugate of ai with

respect to σ (see Definition A.3). Moreover, set b =
(
b(1),b(2), . . . ,b(g)

)
∈ Fn

qm with

b(i) ∈ Fri
qm for i ∈ [g]. Then, it holds that

VD(a,β) = Vσ(b) · diag(β)
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for any d ∈ N. This directly implies that

Cσ,k
LRS(a,β) = Cσ,k

SRS(b) · diag(β).

This above theorem that if skew Reed-Solomon codes are modified by column mul-

tipliers, which are chosen Fq-linearly independent in each group, they recover linearized

Reed-Solomon codes.

The next theorem is one of the main results of the Preliminaries. It combines The-

orem 3.5 and Theorem 3.8 and shows that linearized Reed-Solomon codes are MSRD

codes. It was given in [MP17, Th. 4]. First, a lemma is stated to simplify the proof.

Lemma 3.2 ([MPSK22, Lem. 2.19]). Let the notation be the same as in Definition 3.15.

In addition, let A = diag(A1,A2, . . . ,Ag) ∈ Fn×n
q be a block diagonal matrix where

Ai ∈ Fri×ri
q is an invertible matrix for i ∈ [g]. Then,

VD
(
ai,β

(i)
)
·Ai = VD

(
ai,β

(i) ·Ai

)
(3.3)

holds for all k ∈ [n] and for i ∈ [g]. Note that the components β(i)·Ai are again Fq-linearly

independent since Ai is an invertible matrix. As a result,

VD(a,β) ·A = VD(a,β ·A)

and

Cσ,k
LRS(a,β) ·A = Cσ,k

LRS(a,β ·A).

Proof. From Proposition 3.1, Equation (3.3) follows and the rest can be easily deduced

from that.

Theorem 3.9 ([MP17, Th. 4]). The linearized Reed-Solomon code Cσ,k
LRS(a,β) with di-

mension k, as defined in Definition 3.15, is an MSRD code. In other words, the minimum

sum-rank distance of the linearized Reed-Solomon code Cσ,k
LRS(a,β) satisfies

dSR

(
Cσ,k
LRS(a,β)

)
= n− k + 1.

Proof. From Theorem 3.8 and Theorem 3.5, it can be deduced that the linearized Reed-

Solomon code Cσ,k
LRS(a,β) is an MDS code. By Definition 3.8, it remains to show that

Cσ,k
LRS(a,β)·A is again an MDS code for all block diagonal matricesA = diag(A1,A2, . . . ,Ag) ∈

Fn×n
q with Ai ∈ Fri×ri

q invertible for i ∈ [g]. By Lemma 3.2,

Cσ,k
LRS(a,β) ·A = Cσ,k

LRS(a,β ·A)
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where the components β(i) · Ai are Fq-linearly independent for i ∈ [g] since Ai is an

invertible matrix. Thus, the code Cσ,k
LRS(a,β) · A is an MDS code since it is again a

linearized Reed-Solomon code. Therefore, Cσ,k
LRS(a,β) is an MSRD code since A is an

arbitrary invertible block diagonal matrix over Fq.

3.6 Secret Sharing with Skew Polynomials

Two secret sharing schemes with conventional polynomials were discussed in Section 3.1.

This section briefly shows that secret sharing can also be realized with skew polynomials.

In [Zha10], skew polynomials were already used to construct a secret sharing scheme, but

with only one message symbol. The following construction introduces a McEliece-Sarwate

type secret sharing scheme for multiple message symbols.

Construction 3.3 (Secret sharing with skew polynomials). Fix the following in-

tegers n, k, z < k and let Fqm be an extension field of the prime power q of degree

m with (q − 1)m ≥ n. Let Ω = {a1, a2, . . . , an} ⊆ Fqm be a P-independent set with

|Ω| = n. Given k − z message symbols m1, . . . ,mk−z ∈ Fqm , generate z random numbers

r1, . . . , rz independently and uniformly distributed over Fqm . The shares s1, . . . , sn can

be calculated as evaluations of the skew polynomial

F = r1 + r2x+ · · ·+ rzx
z−1 +m1x

z + · · ·+mk−zx
k−1 =

z∑
j=1

rjx
j−1 +

k−z∑
i=1

mix
i+z−1

with si = F (ai) for ai ∈ Ω with i ∈ [n].

Proposition 3.2 (Skew polynomial secret sharing). The secret sharing scheme with

skew polynomials presented above is an (n, k, z) secret sharing scheme.

Proof. Decodability: Given any k shares, Lagrange interpolation can be used to recover

the polynomial F̃ = F of degree k−1 (Theorem A.7). The message can then be retrieved

by taking the coefficients F̃i of F̃ for i ∈ {k − z, k − z + 1, . . . , k − 1}.
Privacy: Lemma 3.1 is used and the notation is the same as in Theorem 3.1. As R

represents z independently and uniformly at random generated numbers r1, . . . , rz ∈ Fqm ,

H(SIz) ≤ H(R) holds. It remains to show that H(R | M, SIz) = 0. Consider the polynomial

F

F =

z∑
j=1

rjx
j−1

︸ ︷︷ ︸
Fr

+

k−z∑
i=1

mix
i+z−1

︸ ︷︷ ︸
Fm

.
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Given m1,m2, . . .mk−z and si = F (ai) for i ∈ Iz, Fr of degree z − 1 can be retrieved

using Lagrange interpolation with the shares ŝi = Fr(ai) that can be calculated as follow

Fr(ai) = F (ai)− Fm(ai)

which holds by the linearity rule (Theorem A.4). The random numbers r1, . . . , rz are the

coefficients of the polynomial Fr. Thus, H(R | M,SIz) = 0.

Note that this secret sharing scheme recovers the McEliece-Sarwate secret sharing

scheme which uses conventional polynomials for σ = Id (Construction 3.2). In this case

the P-independent set consists of n distinct elements. As for the McEliece-Sarwate secret

sharing scheme, which is related to Reed-Solomon codes, the skew polynomial secret

sharing scheme is related to skew Reed-Solomon codes encoded with a skew Vandermonde

matrix.

This secret sharing scheme can be slightly adjusted so that it uses linear operator

polynomials which also recover linearized polynomials.

Construction 3.4 (Secret sharing with linear operator polynomials). Let r =

(n1, . . . , ng) be a length n sum-rank partition of order g such that
∑g

i=1 ni = n. Fix the

following integers k ≤ n, z < k and let Fqm be an extension field of the prime power

q of degree m with (q − 1)m ≥ n. Let Ω = {a1, a2, . . . , ag} ⊆ Fqm be a set of nonzero

and pairwise non-conjugate elements in Fqm with |Ω| = g. Let β =
(
β(1), . . . ,β(g)

)
∈

Fn
qm with β(i) ∈ Fni

qm where β(i) ∈ Fni
qm consists of Fq-linearly independent elements.

Given k− z message symbols m1, . . . ,mk−z ∈ Fqm , generate z random numbers r1, . . . , rz

independently and uniformly distributed over Fqm . The shares s1, . . . , sn can be calculated

as evaluations of the linear operator polynomial

FDa = r1 Id+r2Da+· · ·+rzD
z−1
a +m1D

z
a+· · ·+mk−zD

k−1
a =

z∑
j=1

rjD
j−1
a +

k−z∑
i=1

miD
i+z−1
a

with si,j = FDai (β
(i)
j ) for ai ∈ Ω with i ∈ [g] and j ∈ [ni].
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Proposition 3.3 (Linear operator polynomial secret sharing). The secret sharing

scheme with linear operator polynomials presented above is an (n, k, z) secret sharing

scheme.

Proof. By Theorem 3.8, the secret sharing scheme coincides with Construction 3.3 for

the P-independent set Ω with elements b
(i)
j = β

(i)
j ai for all j ∈ [ni] and i ∈ [g], where

each share si,j = F (b
(i)
j )β

(i)
j is an evaluation of the skew polynomial F =

∑z
j=1 rjx

j−1 +∑k−z
i=1 mix

i+z−1.

The linear operator polynomial secret sharing scheme recovers conventional polyno-

mial secret sharing for r1 = · · · = rg = 1, σ = Id and g = n where the elements in Ω are

distinct elements. It also recovers secret sharing with linearized polynomials for g = 1,

r1 = n and m ≥ n with n Fq-linearly independent elements β
(1)
j for j ∈ [n]. The two

cases follow directly from Theorem 3.7 and the fact that the secret sharing scheme is an

encoding of a linearized Reed-Solomon code or in other words the multiplication of the

vector u = (r1, . . . , rz,m1, . . . ,mk−z) ∈ Fk
qm with a linearized Vandermonde matrix.

3.7 Skew Lagrange Polynomials

In Appendix A, a Newton interpolation algorithm was discussed (see Definition A.8).

Given a P-independent set of n evaluation points a1 . . . , an with corresponding values

b1, . . . , bn, it returns the unique skew polynomial G with deg(G) < n which fulfills the

conditions G(ai) = bi for all i ∈ [n]. The following section covers a construction of La-

grange type polynomials ℓi(x) with ℓi(ai) = 1 and ℓi(aj) = 0 for i ̸= j. Skew polynomials

fulfilling the Lagrange conditions were discussed in [Zha10].

For conventional polynomials, Lagrange polynomials can be constructed with a simple

formula (Definition A.5). Given n evaluation constraints F (ai) = bi, the polynomial F

of degree less than n fulfilling these constraints can be constructed as

F (x) =
n∑

i=1

biℓi(x)

with ℓi defined as

ℓi(x) =
∏

0≤m<n
m̸=i

x− am
ai − am

.

For skew polynomials, the construction of Lagrange type polynomials is more com-

plicated and an easy term such as the one for conventional polynomials does not yet

exist to the best of our knowledge. However, the construction can be done by Newton
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interpolation for which an algorithm for skew polynomials is already known. This idea

was introduced in [Zha10].

Definition 3.16 (Skew Lagrange polynomials). Let Ω = {a1, a2, . . . , ak} ⊆ Fqm be

a P-independent set with cardinality |Ω| = k. The skew Lagrange polynomial ℓi fulfilling

the constraints ℓi(ai) = 1 and ℓi(aj) = 0 can be constructed using the Newton interpo-

lation algorithm for skew polynomials (Definition A.8). The i-th Lagrange polynomial is

also written as ℓΩi to indicate the set it is constrained on.

As for conventional polynomials, every skew polynomial can be written in a Lagrange

basis instead of the usual monomial basis. The following definition shows the transfor-

mation between monomial and Lagrange basis similarly as in [Gan05].

Definition 3.17 (Skew polynomials - monomial and Lagrange basis). Let F =

F0 +F1x+ . . .+Fk−1x
k−1 ∈ Fqm [x;σ] be a skew polynomial of degree k− 1 in monomial

basis with coefficient vector f = (F0, F1, . . . , Fk−1) ∈ Fk
qm . Let Ω = {a0, a1, . . . , ak−1} ⊆

Fqm be a P-independent set with cardinality |Ω| = k and Φ = {p0, p1, . . . , pk−1} ⊆ Fqm

the set of evaluations of F such that F (ai) = pi for i = 0, 1, . . . , k − 1 and its vector

representation p = (p0, p1, . . . , pk−1) ∈ Fk
qm . Furthermore, let L = {ℓ0, ℓ1, . . . , ℓk−1} be a

Lagrange basis on Ω as defined in Definition 3.16, so that the skew polynomial F can be

written as

F = p0ℓ0 + p1ℓ1 + . . .+ pk−1ℓk−1.

Thus, we have two representations

F = f ·m(x) = p · ℓ(x)

where m(x) = (1, x, . . . , xk−1)T and ℓ(x) = (ℓ0, ℓ1, . . . , ℓk−1)
T. By Definition 3.10,

fVσ
k (a) = p (3.4)

holds withVσ
k (a) being the k×k skew Vandermonde matrix on the vector a = (a0, a1, . . . , ak−1).

Therefore, the transformation between monomial and Lagrange basis is

m(x) = Vσ
k (a)ℓ(x)

with an invertible transformation matrix.

With these two basis of skew polynomials in mind, a lemma is given, which deals

with the rank of a matrix with a special structure. It is an essential tool deriving secrecy

capacities in Chapter 6.
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3.7 Skew Lagrange Polynomials

Lemma 3.3. Let F = F0 + F1x + . . . + Fk−1x
k−1 ∈ Fqm [x;σ] be a skew polynomial of

degree k − 1 in monomial basis with coefficient vector f = (F0, F1, . . . , Fk−1) ∈ Fk
qm. Let

Ω = {a0, a1, . . . , an−1} ⊆ Fqm be a P-independent set with cardinality |Ω| = n. Let the sets

Ω be split into two subsets Ωk = {ai | i ∈ 0 ∪ [k − 1]} and Ωd = {ai | i ∈ [n− 1] \ [k − 1]}
with d = n − k. Let L = {ℓ0, ℓ1, . . . , ℓk−1} be a Lagrange basis on Ωk as defined in

Definition 3.16. The matrix

M =


ℓΩk
0 (ak) ℓΩk

1 (ak) · · · ℓΩk
k−1(ak)

ℓΩk
0 (ak+1) ℓΩk

1 (ak+1) · · · ℓΩk
k−1(ak+1)

...
...

. . .
...

ℓΩk
0 (an−1) ℓΩk

1 (an−1) · · · ℓΩk
k−1(an−1)


has full rank, i.e., rank(M) = min(k, d).

Proof. It is shown that the matrixM has full rank by decomposing it into several matrices

that are proven to have full rank. By Definition 3.10, it holds that

M = (Vσ
k (ad))

T


ℓΩk
0,0 ℓΩk

1,0 · · · ℓΩk
k−1,0

ℓΩk
0,1 ℓΩk

1,1 · · · ℓΩk
k−1,1

...
...

. . .
...

ℓΩk
0,k−1 ℓΩk

1,k−1 · · · ℓΩk
k−1,k−1


︸ ︷︷ ︸

=:L

with ad = (ak, . . . , an−1) and where L is the monomial representation of the Lagrange

skew polynomials with ℓi,j being the j-th coefficient of the i-th polynomial. The trans-

formation from Lagrange to monomial basis can be achieved by multiplying with the

inverse of the Vandermonde matrix (Vσ
k )

T (see Equation (3.4)). Thus, it holds that

L = ((Vσ
k (ak))

T)−1 with ak = (a0, . . . , ak−1). Overall, we have

M = (Vσ
k (ad))

T((Vσ
k (ak))

T)−1.

By Theorem 3.4, both matrices are full rank matrices and it holds that rank(M) =

min(k, d).

Remark : The above lemma also implies that submatrices of M have full rank since

they are also a product of two Vandermonde matrices.
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3.8 Information Theory

We turn now to information-theoretic concepts needed for this work. Further relevant

equalities are summarized in Section B.1. Here, only one important consideration is made

that is later used to bound the entropy of a random vector from above.

Lemma 3.4. Let Kk = (K1,K2, . . . ,Kk) ∈ Kk be a random vector and

f : Kk −→ Knf a function. It holds that

H(f(Kk)) ≤ H(Kk).

Proof. Applying the chain rule (B.1) to the joint entropy H(Kk, f(Kk)) yields

H(Kk, f(Kk)) = H(Kk) + H(f(Kk) | Kk)

= H(f(Kk)) + H(Kk | f(Kk)).

Since Kk essentially determines f(Kk), it holds that H(f(Kk) | Kk) = 0.

With H(Kk | f(Kk)) ≥ 0, we have

H(f(Kk)) ≤ H(Kk)

with equality if, and only if, f is bijective.

Consider the random vectors Kk ∈ Kk, Xnx ∈ Knx and Yny ∈ Kny such that

Xnx = A(Kk)T

Yny = B(Kk)T,
(3.5)

where A ∈ Knx×k and B ∈ Kny×k.

Lemma 3.5. For two random vectors Xnx and Yny , that have the above described prop-

erties, it holds that

H(Xnx) ≤ k,

H(Yny) ≤ k.

Proof. The proofs for Xnx and Yny follow the same arguments. Therefore, it is only shown

that H(Xnx) ≤ k and H(Yny) ≤ k follows analogously.

We know that

H(Kk,Xnx) = H(Xnx) + H(Kk | Xnx)

and thus it holds that

H(Xnx) ≤ H(Kk,Xnx)
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with equality if, and only if, Xnx essentially determines Kk, i.e., H(Kk | Xnx) = 0.

Furthermore, it holds that Xnx = f(Kk) = A(Kk)T which yields

H(Kk,Xnx) = H(Kk, f(Kk)) = H(Kk,A(Kk)T) = H(Kk) ≤ k.

As a result,

H(Xnx) = H(A(Kk)T) ≤ H(Kk) ≤ k

holds and we are done.

Now let us assume that the random variable Kk consists of independent and uniformly

distributed symbols over K, such that H(Kk) = k holds. The entropy of the random

variables Xnx and Yny and the joint entropy can then be expressed in terms of the rank

of the matrices A and B.

Lemma 3.6. Let Kk ∈ Kk, Xnx ∈ Knx and Yny ∈ Kny be three random vectors as defined

in (3.5). Furthermore, let the random vector Kk consist of independent and uniformly

distributed symbols over K. The entropies of the random vectors Xnx and Yny are

H(Xnx) = rank(A)

and

H(Yny) = rank(B).

Proof. The proof is only shown for Xnx and the proof for Yny follows analogously.

We know that H(Kk) = k. The entropy of Xnx is

H(Xnx) = H(A(Kk)T) ≤ k.

The rank of the matrix A determines how many symbols of Xnx are independent and this

can be expressed by H(Xnx) = rank(A).

For the conditional entropy of Xnx given Yny a similar expression can be derived.

Lemma 3.7. Let Kk ∈ Kk, Xnx ∈ Knx and Yny ∈ Kny be three random vectors as defined

in (3.5). Furthermore, let the random vector Kk consist of independent and uniformly

distributed symbols over K. The conditional entropy of Xnx given Yny is

H(Xnx |Yny) = H(Xnx ,Yny)−H(Yny) = rank(C)− rank(B), (3.6)

where C =

(
A

B

)
∈ K(nx+ny)×k is the stacked matrix of A and B.
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Proof. The first equality H(Xnx |Yny) = H(Xnx ,Yny)−H(Yny) follows from the chain rule

of entropy (B.1). From Lemma 3.6, we know that H(Yny) = rank(B). It remains to show

that H(Xnx ,Yny) = rank(C) holds. Plugging in the definition of Xnx and Yny yields

H(Xnx ,Yny) = H(A(Kk)T,B(Kk)T).

The two random vectors can then be stacked since they are both expressed in terms of

Kk, which yields

H(A(Kk)T,B(Kk)T) = H(C(Kk)T),

where C =

(
A

B

)
∈ Knx+ny is the stacked matrix of A and B. We can then apply

Lemma 3.6 to receive H(C(Kk)T) = rank(C) and we are done.

The idea on how the above derived bounds are applied is illustrated with an example.

x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
5

Figure 3.8: Illustration of one group of a DSS which uses an LRC with (3, 3)-locality.
The two blue dots indicate an eavesdropper that is observing two nodes of
the group, i.e., l1 = 2 and l2 = 0.

Example 3.8. Consider one group of a DSS with r = 3 and δ = 3 and let an eavesdropper

observe two nodes of the group such that l1 = 2 and l2 = 0 as shown in Figure 3.8. Since

any 3 of the 5 nodes need to be downloaded to recover the data, K = {x(1)1 , x
(1)
2 , x

(1)
3 } is

a possible set for a data collector denoted by K. It is assumed that the stored data are

uniformly distributed and independent. The symbols observed by the eavesdropper are a

realization of the random vector E. If we want to calculate H(K | E), Equation (3.6) can

be used. First, write E and K in their matrix form in terms of K:

K = K · KT =

1 0 0

0 1 0

0 0 1

KT

and

E = E · KT =

(
1 0 0

ℓK1,1(α
(1)
4 ) ℓK1,2(α

(1)
4 ) ℓK1,3(α

(1)
4 )

)
KT

where α
(i)
j denotes the code locator of the j-th node in the i-th group and ℓKi,j the Lagrange

polynomial on K which is 1 at α
(i)
j .
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By Lemma 3.7, it holds that

H(K | E) = H(K,E)−H(E) = rank

(
K

E

)
− rank(E) = 3− 2 = 1.

This means that the eavesdropper needs to observe one more symbol to be able to recover

all the data stored in the group.

The data collector K̄ = {x(1)1 , x
(1)
2 , x

(1)
4 } is another possible choice. It makes the

representation of E easier with

Ē =

(
1 0 0

0 0 1

)
.

When calculating the conditional entropy with (3.6), it is therefore beneficial to think

about the choice of the data collector first making the calculations of the rank of the

corresponding matrices as easy as possible.
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In this chapter, two MR-LRC constructions from [MPK19] and [RKSV14] are given and

it is shown that they are achieving a Singleton-type bound.

A secrecy capacity for LRCs that was introduced in [RKSV14] is summarized in

Section 4.3. This secrecy capacity only considers an (l1, l2)-eavesdropper threat without

the possibility of observing global repairs. It is the starting point for Chapter 6, which

derives the decrease of the capacity due to global repairs.

4.1 Bounds on Maximally Recoverable Locally Repairable

Codes

In the literature, “optimal” LRCs are defined as codes whose Hamming distance is as large

as possible and attains a Singleton-type bound, given the locality parameters. Such a

general Singleton-like bound was given in [GHSY12] for δ = 2, in [PKLK12] for arbitrary

δ, and in [RKSV14] for vector codes with arbitrary δ. Vector codes are codes where each

symbol is in Fκ
qm instead of in Fqm . For scalar LRCs, it reads as follows.

Proposition 4.1. Let C ⊆ FN be an (r, δ)-locality LRC, as in Definition 3.3. The

dimension of the code is k = log|F| |C|, which is assumed to be an integer. The Hamming

distance of the code C is bounded by

dH(C) ≤ N − k + 1−
(⌈

k

r

⌉
− 1

)
(δ − 1)

= h+

(⌊
h

r

⌋
+ 1

)
(δ − 1) + 1,

(4.1)

where h = gr − k = N − g(δ − 1)− k.

The proof is omitted for brevity and can be found in [RKSV14] in a more general

form for vector codes.

The bound is attained by any MR-LRC which was shown in [MPSK22, Th. 3.3].
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Theorem 4.1 ([MPSK22, Th. 3.3]). Let C ⊆ FN be a linear MR-LRC with (r, δ)-

localities as in Definition 3.4. Then C has optimal Hamming distance with respect to

the bound given by (4.1), i.e.,

dH(C) = h+

(⌊
h

r

⌋
+ 1

)
(δ − 1) + 1, (4.2)

where k = dim(C) and h = gr − k = N − g(δ − 1)− k.

Proof. Let d = dH(C). Moreover, let E ⊆ [N ] be an erasure pattern such that |E| = d. E is

therefore a non-correctable erasure pattern with smallest possible cardinality. This means

that if an erasure is removed from E , then the pattern is correctable by C. It either holds
that |E ∩ Γi| = 0 or that |E ∩ Γi| ≥ δ for i ∈ [g], since assuming that |E ∩ Γi| < δ, would

imply that the erasures can be repaired locally. However, the remaining erasures may not

be correctable, so an erasure pattern with smaller |E| which is still not correctable could

be found. This would be a contradiction to the assumed minimality of the erasure pattern.

Denote the number of affected groups, i.e., the number of groups where |E ∩Γi| ≥ δ, as κ.

From Definition 3.4, it can be deduced that E contains δ − 1 elements per affected local

group and in addition at least h+ 1 elements anywhere in the κ affected groups. Thus,

|E| ≥ κ(δ − 1) + h+ 1

and moreover, |E| is upper bounded as follows

κ(δ − 1) + h+ 1 ≤ |E| ≤ κ(r + δ − 1)

since each affected local group has size r + δ − 1. As a result,

κ ≥
⌈
h+ 1

r

⌉
=

⌊
h

r

⌋
+ 1

holds. With (4.2), it can be concluded

d = |E| ≥ κ(δ − 1) + h+ 1 ≥
(⌊

h

r

⌋
+ 1

)
(δ − 1) + h+ 1

and the proof is complete.

Therefore, MR-LRCs are optimal LRCs with respect to (4.1). Explicit MR-LRC

constructions are given in the next section.
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4.2 Maximally Recoverable Locally Repairable Code

Constructions

In this section, constructions of maximally recoverable locally repairable codes (MR-

LRCs) for DSSs are presented. MR-LRCs are able to tolerate the information theoretical

maximum of erasures given the parameters of the system (Definition 3.4).

In [RKSV14], an MR-LRC construction is introduced using Gabidulin codes. The

construction is given in a simplified version for a scalar LRC instead of a vector LRC.

Construction 4.1 ([RKSV14, Constr. I]). Let N , r and δ be positive integers such that

r + δ − 1 < N and q ≥ (r + δ − 1). Consider an information vector u ∈ Fk
qm with k ≥ r.

Let g =
⌈

N
r+δ−1

⌉
be the number of groups. There are two cases depending on whether or

not r + δ − 1 divides N .

Case 1 ((r + δ − 1)|N): Let n = gr, m ≥ n and Cout be an [n, k,D = n − k + 1]qm

Gabidulin code. The encoding follows two steps:

1. Encode u with the Gabidulin code yielding cout ∈ Cout and partition cout into g = n
r

disjoint groups.

2. Apply an [(r+ δ− 1), r, δ]q MDS code on each local group with r nodes to generate

δ − 1 parities, respectively.

Case 2 ((r + δ − 1) ∤ N): Let t ∈ [r − 1] be an integer such that N = (g − 1)(r + δ −
1) + (t + δ − 1). Let n = (g − 1)r + t, m ≥ N and Cout be an [n, k,D = n − k + 1]qm

Gabidulin code. The encoding follows two steps:

1. Encode u with the Gabidulin code yielding cout ∈ Cout and partition cout into g− 1

disjoint groups of size r and one additional group of size t.

2. Apply an [(r + δ − 1), r, δ]q MDS code on the first g − 1 local groups with r nodes

and an [(t+ δ− 1), t, δ]q MDS code on the last local group with t nodes to generate

δ − 1 parities.

The encoding steps are illustrated in Figure 4.1. A proof that the construction above

yields an MR-LRC is given in Theorem 4.2 for a more generalized construction which is

equivalent for specific parameters.

Example 4.1 (MR-LRC with Gabidulin code). Consider a DSS with g = 3 groups

where an information vector of length 7 is stored in a maximally recoverable manner.

The system has h = 2 global parities and each local group is able to tolerate one erasure

locally, i.e., δ = 2, r = 3. The required field size is therefore q ≥ r + δ − 1 = 4 and

m ≥ n = 9. The encoding is illustrated in Figure 4.2.
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u ∈ Fk
qm

cout = (c(1) | c(2) | . . . | c(g)) ∈ Fn
qm

Cout ⊆ Fn
qm

Cloc ⊆ Fr+δ−1
q . . . Cloc ⊆ Fr+δ−1

q

cglob = ( c(1)A1︸ ︷︷ ︸
Local group 1

| c(2)A2︸ ︷︷ ︸
Local group 2

| . . . | c(g)Ag︸ ︷︷ ︸
Local group g

) ∈ FN
qm

Figure 4.1: Illustration of the two-step encoding procedure generating the global code-
word cglob (Case 1 of Construction 4.1). The information vector is u ∈ Fk

qm .
The first step is the encoding with the outer code Cout resulting in cout ∈ Fn

qm ,

which is then partitioned into g parts c(i) ∈ Fr
qm . In the final step, c(i) is en-

coded using the MDS code generator matrix A ∈ Fr×(r+δ−1)
q . The resulting

codeword part c(i)A ∈ Fr+δ−1
qm is then stored in the nodes of the i-th local

group.

u ∈ F7
49

[9, 7, 3]49 Gabidulin code
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Figure 4.2: Illustration of an MR-LRC with three local groups (g = 3). Each local group
has (3, 2)-localities. This code can correct up to δ − 1 = 1 erasures in each
group and additionally h = 2 erasures globally. (Remark : To simplify the
illustration it is assumed that the MDS codes are systematic).
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A more general construction using linearized Reed-Solomon codes was suggested by

Mart́ınez-Peñas and Kschischang in [MPK19]. The construction allows an arbitrary dis-

tribution of global parity symbols over the groups. Additionally, arbitrary group sizes can

be chosen. The construction is an advancement of Construction 4.1 that was introduced

in [RKSV14].

Construction 4.2 ([MPK19, Constr. 1]). Let g be the number of local groups with their

corresponding (ri, δi) -localities for i ∈ [g]. Let Fqm be the extension field with base size

q and extension degree m. The construction of the code has 2 steps:

1. Outer code: Choose any (n, k) code Cout ⊆ Fn
qm that has maximum sum-rank

distance for the length n sum-rank partition r1, r2, . . . , rg of order g, e.g., a linearized

Reed–Solomon code which restricts Fqm to fulfill the constraints q > g and m ≥
maxi∈[g] ri.

2. Local codes: Choose any (ri + δi − 1, ri) MDS code Cloc,i ⊆ Fri+δi−1
q which is linear

over the local field Fq for i ∈ [g]. The MDS codes require q ≥ max{ri + δi − 1 | i ∈
[g], δi > 2}.

The global code Cglob ⊆ FN
qm with N = n +

∑g
i=1(δi − 1) =

∑g
i=1(ri + δi − 1) is then

defined by

Cglob = Cout diag (A1,A2, . . . ,Ag) ,

with Ai ∈ Fri×(ri+δi−1)
q being the generator matrix of Cloc,i for i ∈ [g].

The encoding procedure of the global code is illustrated in Figure 4.3. The field

size constraints for LRSCs from the first step results from the constraint to have a P-

independent set of evaluation points. The number of conjugacy classes for a given Fqm

is q − 1. For each group a separate conjugacy class element is needed which gives the

first constraint. The second constraint comes from the maximum number of Fq-linearly

independent elements that are used to construct a P-independent set as described in

Theorem A.10.
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u ∈ Fk
qm

cout = (c(1) | c(2) | . . . | c(g)) ∈ Fn
qm

Cout ⊆ Fn
qm

Cloc,1 ⊆ Fr1+δ1−1
q . . . Cloc,g ⊆ Frg+δg−1

q

cglob = ( c(1)A1︸ ︷︷ ︸
Local group 1

| c(2)A2︸ ︷︷ ︸
Local group 2

| . . . | c(g)Ag︸ ︷︷ ︸
Local group g

) ∈ FN
qm

Figure 4.3: Illustration of the two-step encoding procedure generating the global code-
word cglob (Construction 4.2). The vector of symbols that should be stored
with redundancy isu ∈ Fk

qm . The first step is the encoding with the outer
code Cout resulting in cout ∈ Fn

qm , which is then partitioned into g parts

c(i) ∈ Fri
qm . In the final step, c(i) is encoded using the MDS code generator

matrix Ai ∈ Fri×(ri+δi−1)
q of the i-th local group. c(i)Ai ∈ Fri+δi−1

qm is then
stored in the nodes of the i-th local group. The figure illustrates the same as
[MPK19, Fig. 4].

Theorem 4.2 ([MPK19, Th. 2]). Let Cglob ⊆ FN
qm be the global code from Construc-

tion 4.2 with local groups Γi ⊆ [N ] for i ∈ [g]. Then the code Cglob ⊆ FN
qm is an MR-LRC

with (ri, δi)-localities for i ∈ [g] as in Definition 3.3 and 3.4.

Proof. Since the local codes C(i)
loc have Hamming distance δi and the restricted global code

Cglob|Γi is contained in the row space of Ai, the bound dH (Cglob|Γi) ≥ δi holds. Therefore,

the locally repairable property is fulfilled and it remains to show that the code C obtained

after puncturing the global code Cglob ⊆ FN
qm at any δi−1 positions in the i-th local group

for each i ∈ [g] is an MDS code. Let ∆i be an arbitrary subset of Γi for i ∈ [g] satisfying

|∆i| = ri. Every ri × ri submatrix of the local generator matrices Ai ∈ Fri×(ri+δi−1)
q is

invertible since Ai is the generator matrix of an MDS code. Thus, Ai|∆i is invertible as

well, where Ai|∆i denotes the submatrix of Ai after restricting it to the columns indexed

by ∆i. Since the outer code is an MSRD code, the code

C = Cout diag
(
A1|∆1 , . . . ,Ag|∆g

)
⊆ FN

qm

is an MDS code by Definition 3.8.

This also proves that Construction 4.1 is an MR-LRC since Construction 4.2 recovers

it for δ1 = · · · = δg = δ, r1 = · · · = rg−1 = r and rg = g in case 1 or rg = t in case 2. The

linearized Reed-Solomon recovers the Gabidulin as described in Theorem 3.7.
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Example 4.2 (MR-LRC with linearized Reed-Solomon code). Consider a DSS with

g = 3 groups where an information vector of length k = 7 is stored in a maximally

recoverable manner. The system has h = 2 global parities and each local group is able

to tolerate one erasure locally, i.e., δ = 2, r = 3. The required field size is therefore

q ≥ max{r + δ − 1, g + 1} = 4 and m ≥ max{r1, r2, r3} = 3. The encoding is illustrated

in Figure 4.4.

The example shows that Construction 4.2 has a significantly smaller required field

size compared to the construction that uses Gabidulin codes.

u ∈ F7
43

[9, 7, 3]43 linearized Reed-Solomon code
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Figure 4.4: Illustration of an MR-LRC with three local groups (g = 3). Each row forms
a local group Γi with localities and local distances (ri, δi) = (3, 2) for i ∈ [3].
This code can correct up to δ− 1 = 1 erasures in each group and additionally
h = 2 erasures globally. (Remark : To simplify the illustration it is assumed
that the MDS codes are systematic).

55



4 Related Work

4.3 Secrecy Bound on Locally Repairable Codes

In [RKSV14], the secrecy of LRCs was analyzed when colluding eavesdroppers have access

to a part of the system. An upper bound on the amount of symbols that can be stored

securely on an LRC system under the influence of an (l1, l2)-eavesdropper was given.

First, a general upper bound is derived. In the second step, the bound is specialized

following the steps in [RKSV14].

Let C ⊆ FN be an LRC that has (r, δ)-locality and is dmin-optimal, i.e., it fulfills (4.1)

and has equal group parameters δi = δ, ri = r for all i ∈ [g]. Associate the set of indices

K to a data collector that can contact N − dmin+1 nodes to reconstruct the stored data.

Let Ki denote the indices of nodes that are contacted by the data collector in the i-th local

group such that K =
⋃g

i=1Ki with |K| = N − dmin+1. The indices of the eavesdropper

are denoted by E1 and E2 for nodes eavesdropped in an l1 and l2-manner, respectively as

introduced in Section 2.2. In the i-th local group the eavesdropper indices are denoted

by E i
1 and E i

2 with E1 =
⋃g

i=1 E i
1, E2 =

⋃g
i=1 E i

2, l
i
1 = |E i

1|, li2 = |E i
2|/r, l1 =

∑g
i=1 l

i
1 and

l2 =
∑g

i=1 l
i
2. The set of tuples {(E i

1, E i
2,Ki)}gi=1, that satisfy the system requirements, is

denoted by X . Lemma 32 in [RKSV14] that gives an upper bound on the secrecy capacity

reads as follows.

Lemma 4.1 (Secrecy capacity of LRCs[RKSV14, Lem. 32]). For an (r, δ)-LRC that

is secure against an (l1, l2)-eavesdropper, the following holds

k(s) ≤
g∑

i=1

H(Ki | Ei
1,E

i
2),

where Ki denotes the random variable corresponding to the nodes contacted by a data

collector Ki. The random variables corresponding to the sets of nodes in E1 and E2 are

denoted by E1 and E2, respectively. k(s) is the number of information symbols that can be

stored securely given the eavesdropper parameters.

Proof. Assume k symbols can be encoded by the LRC without an eavesdropper. Since

eavesdropping on r nodes in a group gives the eavesdropper all the information of the

group, without loss of generality the focus is on indices {E i
1}

g
i=1 and {E i

2}
g
i=1 such that

|E i
1 ∪ E i

2| ≤ r. It is assumed that K is chosen such that either E i
1 ∪ E i

2 ⊆ Ki or Ki = ∅.
To have a non-empty secure file size, |E1| + |E2| = l1 + l2r < k. The data of size k(s) is
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4.3 Secrecy Bound on Locally Repairable Codes

denoted by u(s) with the corresponding random variable U(s).

H(U(s))
(a)
= H(U(s) | E1,E2)

(b)
= H(U(s) | E1,E2)−H(U(s) | E1,E2,K)

= I(U(s);K | E1,E2)

≤ H(K | E1,E2)

= H(K1, . . . ,Kg | E1
1 . . . ,E

g
1,E

1
2, . . . ,E

g
2)

(c)

≤
g∑

i=1

H(Ki | Ei
1,E

i
2)

(4.3)

where (a) follows from the secrecy constraint, which can be written as I(U(s);E1,E2) =

H(U(s)) − H(U(s) | E1,E2) = 0 and (b) follows from the ability of the data collector to

recover the file u(s). (c) is a result of the chain rule (B.1) where equality holds if, and

only if, Ki and Kj are i.i.d. for i ̸= j.

For each choice from X such an upper bound holds and therefore

k(s) = H(U(s)) ≤
g∑

i=1

H(Ki | Ei
1,E

i
2).

This general bound is not very useful to compute the number of securely storable

symbols. Therefore, this question is explored from a system perspective in the following.

Consider a dmin-optimal LRC with g groups and equal group sizes. Let l1 = (l11, l
2
1, . . . , l

g
1)

and l2 = (l12, l
2
2, . . . , l

g
2) be the vectors representing the pattern of the eavesdropper.

First, consider the minimum number of groups from which a data collector needs to

collect all independent symbols to recover the stored file. The minimum number of groups

is denoted by µ and is given as

µ =

⌊
N − dmin+1

r + δ − 1

⌋
(a)
=

⌊
k +

(⌈
k
r

⌉
− 1
)
(δ − 1)

r + δ − 1

⌋
,

where (4.1) is plugged in at (a). The number of nodes that need to be downloaded in

addition to the nodes of µ groups to recover the stored file is

ν = N − dmin+1− (r + δ − 1)µ
(a)
= k +

(⌈
k

r

⌉
− 1

)
(δ − 1)− (r + δ − 1)µ,

where again (4.1) is plugged in at (a). If a data collector has the symbols of all independent
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nodes of µ groups and additionally the symbols of ν nodes, it can recover the stored file.

The two parameters µ and ν can be best illustrated with an example.

Example 4.3. Consider the same LRC as in Example 4.2 with k = 7, n = 9, N = 12,

r = 3, δ = 2 which is illustrated in Figure 4.5. If the file should be retrieved, the symbols

of k nodes that store k linearly independent symbols (over Fqm) has to be downloaded.

If three symbols from one group are downloaded, the knowledge of the whole group is

revealed. Calculate the two parameters µ and ν, yielding µ = 2 and ν = 1. This means

that downloading r symbols from 2 groups and additionally downloading the symbol from

one node in the third group is required to recover the stored file.
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Figure 4.5: Illustration of an MR-LRC with three local groups (g = 3) and (ri, δi) = (3, 2)-
localities for i ∈ [3]. Each row forms a local group Γi. To recover the file, the
symbols of µ = 2 groups and ν = 1 additional node in the remaining group
need to be downloaded.

Note that the notion of data collection is the same for an authorized recovery and

an eavesdropper. This automatically gives an upper bound on the eavesdropper pattern.

An eavesdropper pattern can only have access to fewer than µr + ν nodes. Otherwise,

it would have global knowledge. The parameters µ and ν therefore give a naive bound

on the file size that can be stored on the system without an eavesdropper. Namely,

k = µr + ν. With increasing l1 and l2, this size reduces and a precoding step such as a

similar step to secret sharing is required since otherwise the eavesdropper would directly

gain partial information of the stored file. A bound for the file size under the influence of

an (l1, l2)-eavesdropper is deduced in the following. It follows the steps from [RKSV14,

Sec. VI].

First, note that H(Ki) = r and therefore a data collector would contact at most r

nodes in a local group. Also note that if li2 > 0 for some i ∈ [g], then the information of

the whole group is revealed to the eavesdropper, i.e., H(Ki|Ei
2) = 0 for a fixed i ∈ [g] and

li2 > 0. With these remarks in mind the following theorem (Theorem 33 [RKSV14]) can

be proven.
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Theorem 4.3 (Secrecy capacity). The secrecy capacity of an (r, δ)-LRC against an

(l1, l2)-eavesdropper is

k(s) = [µr + ν − (l2r + l1)]
+ (4.4)

where [ξ]+ denotes max{ξ, 0}.

Proof. The first step is to show that the right hand side of (4.4) is an upper bound of the

secrecy capacity with the help of Lemma 4.1. Consider a data collector with K1 = Γ1,

K1 = Γ1, . . ., Kµ = Γµ, Kµ+1 = . . . = Kg = ∅ and Kµ+1 ⊂ Γµ+1 such that |Kµ+1| = ν.

The eavesdropper pattern is a worst case estimation, i.e., l2 = (1, 1, . . . , 1, 0, . . . , 0) with

ones at the first l2 positions and l1 = (0, . . . , 0, ll2+
1

1 , . . . , lg2) with zeros at first l2 positions.

Case 1: l2r+ l1 ≥ µr+ ν For this case the eavesdropper is able to reconstruct the file

and therefore H(U(s) | E1,E2) = 0 and (4.4) holds.

Case 2: l2r + l1 < µr + ν Without loss of generality, the given eavesdropper pattern

is concentrated on the first µ + 1 groups with l2 < µ + 1,
∑µ+1

i=l2
li1 < (µ − l2)r + ν,

li1 ≤ r for all i ∈ {l2 + 1, l2 + 2, . . . , g}, ll2+1
1 ≥ ll2+2

1 ≥ . . . ≥ lµ+1
1 and therefore li1 = 0

for all i ∈ {µ + 2, µ + 3, . . . , g}. For the (µ + 1)-th group, the eavesdropper pattern

is, if applicable, a subset of the data collector indices, i.e., Eµ+1
1 ⊂ Kµ+1. With these

restrictions and (4.4), it follows that

k(s) ≤
g∑

i=1

H(Ki | Ei
1,E

i
2)

(a)
=

l2∑
i=1

H(Ki | Ei
2) +

g∑
i=l2+1

H(Ki | Ei
1)

(b)
=

l2∑
i=1

H(Ki,E
i
2)−

(
l2∑
i=1

H(Ei
2)

)
+

µ∑
i=l2+1

H(Ki,E
i
1)−

 µ∑
i=l2+1

H(Ei
1)


+H(Kµ+1,E

µ+1
1 )−H(Eµ+1

1 )

(c)
=

l2∑
i=1

max
{
H(Ki),H(E

i
2)
}
−

(
l2∑
i=1

H(Ei
2)

)
+

µ∑
i=l2+1

max
{
H(Ki),H(E

i
1)
}

−

 µ∑
i=l2+1

H(Ei
1)

+max
{
H(Kµ+1),H(E

µ+1
1 )

}
−H(Eµ+1

1 )

(d)
= l2r − l2r + (µ− l2)r −

µ∑
i=l2+1

li1 + ν − lµ+1
1 = µr + ν − (l2r + l1)

where (a) and (d) follow from the eavesdropper pattern, (b) follows from H(A | B) =

H(A,B)−H(B), (c) holds since H(A,B) = max {H(A),H(B)} if, and only if, B = f(A) or

A = f(B) which is the case here.

Remark : Note that for a data collector that only observes cleverly chosen µr+ν nodes
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and the assumption that the eavesdropper choses the same nodes so that K and E overlap

as much as possible, the result will be the same. This assumption is also implicitly made

later in Theorem 6.1.

As a next step, a construction of a secure coding scheme that shows tightness of the

upper bound on the secrecy capacity was presented in [RKSV14].

Construction 4.3. Consider an (l1, l2)-eavesdropper and integers µ, r, ν such that µr+

ν − (l2r + l1) > 0.

1. Given the secure file size k(s) = µr+ν−(l2r+ l1), generate l2r+ l1 independent ran-

dom symbols uniformly distributed over Fqm , r = (r1, r2, . . . , r(l2r+l1)), and append

with u(s) = (u1, u2, . . . , uk(s)) to obtain u = (r,u(s)).

2. Encode the k = µr + ν symbols of u with an [k, k, 1]qm Gabidulin code.

3. Encode the k symbols of the Gabidulin codeword cgab with a dmin-optimal LRC

that has (r, δ)-locality, e.g., the second step of an MR-LRC construction as given

in Construction 4.1 or 4.2.

Lemma 4.2. Construction 4.3 is information-theoretically secure against the (l1, l2)-

eavesdropper and achieves the secrecy capacity stated in Theorem 4.3, if no global repairs

are taken into account.

Proof. To prove secrecy of the coding scheme, the secrecy lemma (Lemma 3.1) is used.

An (l1, l2)-eavesdropper can observe at most l2r+ l1 symbols. There are l2r+ l1 randomly

generated symbols that are uniformly distributed. Thus, the first condition is fulfilled,

i.e., H(E) ≤ H(R) where E and R are the random variables of the eavesdropper’s ob-

servation and the randomly generated symbols, respectively. It remains to prove that

H(R | U(s),E) = 0. The eavesdropped information E is assumed to be chosen in the

best possible way, i.e., the eavesdropper will not observe a node in an already known l2

eavesdropped group in an l1-manner or a redundant node in a group. Thus, E consists of

l2r + l1 evaluations at linearly independent (over Fq) points of a linearized polynomial.

The evaluations are at Fq-linearly independent points since the local codes are MDS codes

over Fq and the linearized polynomial FD1 is Fq-linear. In other words, the evaluations of

a linear operator polynomial FD1 , which is a linearized polynomial, are given at l2r + l1

P-independent points since in this case P-independence for g = 1 coincides with Fq-linear

independence. In addition the symbols of u(s) are known. This recovers the problem of

an (n, µr + ν, l2r + l1) secret sharing scheme for linear operator polynomials that was

proven to be information-theoretically secret in Section 3.6.
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The secrecy lemma ensures that I(U(s);E) = 0. This implies that the coding scheme

ensures that there is no plaintext symbol in the codeword. In the following, an example

is given to illustrate this.

Example 4.4. Let k(s) denote the number of message symbols with u(s) = (m1, . . . ,m
(s)
k ) ∈

Fk(s) and z the number of random symbols that are uniformly distributed over F with

r = (r1, . . . , rz) ∈ F such that k(s) + z = k. Let C ⊆ Fn be a code that is defined by the

coding scheme Enc: Fk −→ Fn. Let E be the random variable corresponding to E , i.e.,
the symbols observed of the codeword c ∈ C that are observed by the eavesdropper with

|E| = z such that H(E) ≤ H(R). Now assume that the coding scheme yields a plaintext

message symbol mp for some p ∈ [k(s)] in the codeword c ∈ C. This obviously means that

I(U(s);E) ̸= 0. It can now be shown that H(R | U(s),E) ̸= 0:

H(R | U(s),E)
(a)
= H(R | U(s))−H(E | U(s)) + H(E | R,U(s))

(b)
= H(R)−H(E | U(s)) + H(f(R,U(s)) | R,U(s))

(c)
= H(R1)z −H(E | U(s))

(d)

≥ H(R1)z −H(R1)(z − 1)

= H(R1)

> 0

where (a) follows from I(R;E | U(s)) being written in two ways following I(X;Y) = H(X)−
H(X | Y) = H(Y)−H(Y | X) (see (B.2)), (b) is a result from R and U(s) being independent

and that E is a subset of the codeword which is a function of the random symbols and

the message symbols. (c) follows since R and U(s) essentially determine f(R,U(s)) and it

follows from R being a sequence of z uniformly distributed random variables. (d) follows

from the fact that one eavesdropped symbols is a message symbol and that H(E | U(s)) ≤
H(E) ≤ H(R).

In other words, H(R | U(s),E) = 0 and H(E) ≤ H(R) ensure that an encoding “scram-

bles” the random symbols with the information symbols such that secrecy is ensured.
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5 Global Repair of MR-LRCs

In this chapter, the distributed global repair is motivated and we introduce a concept that

allows us to realize a global repair in a distributed way. A global repair can be realized

by evaluating the outer code polynomial. The idea is now to split this polynomial into a

sum of, what we call, local polynomials. Each local polynomial corresponds to a group

and allows to calculate the contribution of this group to the global repair process.

Two schemes realizing such a distributed global repair are presented in Section 5.3

and Section 5.4. In direct global repair, the contribution to the global repair of each

group is directly send to the group where the repair is performed. In forwarded global

repair, the contribution is forwarded such that each group only receives one symbol. The

group where the global repair is performed is then at the end of the forwarding list and

only receives one symbol which is a sum of all contributions.

5.1 Global Repair Introduction and Definitions

The big advantage of MR-LRCs is that they can correct the information theoretical

maximum of erasures given the code parameters as seen in Section 3.2. If a local group

has more failed nodes than it can handle locally, a global repair with the help of other

groups is possible. For Construction 4.2, the global repair involves an erasure correction

by the outer code, i.e., the linearized Reed-Solomon code. For a global repair of the j-th

node in the i-th group, the linear operator polynomial PDai is evaluated at the position

β
(i)
j . One way to get the evaluation is to generate the corresponding skew polynomial P

of degree k − 1 by Newton interpolation. For the Newton interpolation, k evaluations of

the polynomial at P-independent points are needed to generate the unique polynomial

(Theorem A.7). This means that k symbols of the n outer code symbols are needed. The

global repair is illustrated with the following example.

Example 5.1. Consider a DSS with three local groups g = 3, (3, 2)-locality and code

parameters k = 7, n = 9 and N = 12. If two nodes in the second group fail for example

c
(2)
2 and c

(2)
4 , a global repair, followed by a local repair, is needed to recover the nodes.

The failed node could for instance download the symbols c
(1)
1 , c

(1)
2 , c

(1)
3 , c

(2)
1 , c

(2)
3 , c

(3)
1 and

c
(3)
2 which is shown in Figure 5.1. The second node of the second group can now generate
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5 Global Repair of MR-LRCs

the skew polynomial P using Definition A.8. It can then recover the symbol evaluating

PDa2 at β
(2)
2 , i.e., PDa2 (β

(2)
2 ) = c

(2)
2 .

c
(1)
1 c

(2)
1 c

(3)
1c

(1)
2 c

(2)
2 c

(3)
2c

(1)
3 c

(2)
3 c

(3)
3c

(1)
4 c

(2)
4 c

(3)
4

♦ ♦

Figure 5.1: Illustration of a DSS with three groups, (3, 2)-locality and k = 7. It shows the
repair download for a global repair of the second node in the second group
in a non-hierarchical DSS. The failed node downloads as many symbols as
needed for its repair.

The above example raises the question of which sets of nodes can be used for a global

repair. For simplicity, only equal group sizes are considered in the following.

Proposition 5.1. Let Cglob ⊆ FN
qm be the global code from Construction 4.2 with local

groups Γi ⊆ [N ] and equal localities, i.e., ri = r and δi = δ for i ∈ [g]. A global repair

can be performed by downloading the symbols of the nodes in any subset ∆ with ∆i ⊆ Γi,

|∆i| ≤ r and
∑g

i=1 |∆i| ≥ k of intact nodes.

Proof. If an arbitrary subset ∆i of each local group Γi with |∆i| = ki ≤ r is chosen, every

submatrix Ai|∆i ∈ Fr×ki
qm of the local generator matrix Ai ∈ Fr×r+δ−1

qm has rank ki since

Cloc,i is MDS. Given that linearized Reed-Solomon codes are MSRD (Definition 3.8) and

Corollary 3.1, the erasure can be corrected only if

n−
g∑

i=1

Ai|∆i < n− k + 1

is fulfilled, which means that
g∑

i=1

Ai|∆i ≥ k

has to hold. This is the case by definition.

Given the outer code Cσ,k
LRS(a,β), the P-independent set of evaluation points b̂

(i)
j =

β̂
(i)
j ai, which is used for the global repair, is given by

β̂ = β ·A|∆ = (β̂
(1)

, β̂
(2)

, . . . , β̂
(g)

)
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5.1 Global Repair Introduction and Definitions

with β̂
(i)

= (β̂
(i)
j | j ∈ ∆i) ∈ Fki

qm for i ∈ [g] and the group elements ai for i ∈ [g]

which are the same as for the encoding with Construction 4.2. The points β̂
(i)
j ai yield

a P-independent set of evaluations by Theorem A.10 since the matrices Ai|∆i have full

rank and the elements of β(i) are Fq-linearly independent.

To illustrate possible choices of nodes for the global repair, Example 5.1 is continued.

Example 5.2. Consider the same parameters as in Example 5.1. The failed node could

for instance download the symbols c
(1)
1 , c

(1)
2 , c

(1)
3 , c

(2)
1 , c

(2)
3 , c

(3)
1 and c

(3)
2 which is shown in

Figure 5.1. It could also download the symbols c
(1)
2 , c

(1)
3 , c

(1)
4 , c

(2)
1 , c

(3)
1 , c

(3)
2 and c

(3)
3 or

c
(1)
2 , c

(1)
4 , c

(2)
1 , c

(2)
3 , c

(3)
2 , c

(3)
3 and c

(3)
4 . It is just important that no more than r nodes from

each group are used since the local parities are only a linear combination of the informa-

tion nodes in a group. Therefore, the parity symbol would not bring any innovation if

the nodes which it is a linear combination of are already taken into account.

It is beneficial to choose ki for i ∈ [g] such that
∑g

i=1 ki = k so that only the minimum

number of symbols needed for repair is used.

Definition 5.1 (Minimal global repair set). Let Cglob ⊆ FN
qm be the global code from

Construction 4.2 with local groups Γi ⊆ [N ] of equal group size r + δ − 1 = ri + δi − 1

for i ∈ [g]. Let ∆ =
⋃g

i=1∆i be a global repair set which can perform a global repair by

Proposition 5.1. The global repair set ∆ is said to be minimal if
∑g

i=1 |∆i| = k.

Another representation of the set ∆ ⊆ [N ] is in the following denoted by ∆glob and

is a set of tuples (i, j) ∈ N × N. There exists a bijective mapping Φ : N → N × N which

maps m ∈ ∆ to its tuple representation (i, j) ∈ ∆glob where i denotes the group number

and j the number of the node in the i-th group.

Given a non-hierarchical DSS model, as illustrated in Figure 3.6 and Figure 5.1, a

failed node would contact k nodes with linearly independent symbols to recover itself.

However, such an approach would yield a secrecy capacity of zero since global knowledge

is revealed to one node which could be observed by an eavesdropper in an l2-manner.

Therefore, the important question is whether a node can be repaired globally while the

eavesdropper gets only partial knowledge about the symbols stored in other groups. Such

a scheme only works if the system is hierarchical such that in each group computations

can be performed for the global repair in another group and only a limited number of

symbols is sent to the group where the global repair is performed.

Assume, without loss of generality, that a global repair is performed in the first group.

The first group uses its nodes that are still intact for the global repair process. In addition,

the other groups send their contribution to the global repair to the first group. In the first
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5 Global Repair of MR-LRCs

scheme, each group sends its information directly to the group where a global repair is

performed. In the second scheme, each group forwards its contribution to the next group

where the contributions are combined. The two schemes are illustrated in Figure 5.2.

The two schemes are explained in detail in Sections 5.3 and 5.4.

2 3 · · · g

1

(a) Direct global repair

2 3 · · · g

1

(b) Forwarded global repair

Figure 5.2: Illustration of two different global repair schemes where an erasure in the first
group is repaired.

5.2 Local Polynomials

Before the global repair schemes are discussed in detail, we introduce a principle which

allows the two types of global repair to be performed. The goal is to implement a global

repair process such that only one symbol is sent from each group as a contribution to the

global repair of one symbol. It is assumed that the DSS uses a linearized Reed-Solomon

code as a global code as seen in Construction 4.2.

Definition 5.2 (Local polynomial). Let Cglob ⊆ FN
qm be the global code from Con-

struction 4.2 and Cσ,k
LRS(a,β) be the outer code. Fix a minimal global repair set ∆glob of

nodes with |∆glob| = k as proposed in Proposition 5.1. The local polynomial of the i-th

group Li has the following properties:

• L
Dai
i (β

(i)
j ) = c

(i)
j for all (i, j) ∈ ∆glob

• L
Das
i (β

(s)
m ) = 0 for all s ̸= i and (s,m) ∈ ∆glob

Thus, |∆glob| = k constraints are imposed on Li which has degree k−1. By Theorem 3.6,

the constraints can also be written as:

• Li(
β
(i)
j ai) = c

(i)
j /β

(i)
j for all (i, j) ∈ ∆glob

• Li(
β
(s)
m as) = 0 for all s ̸= i and (s,m) ∈ ∆glob

The local polynomials can be generated by Newton interpolation.
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5.2 Local Polynomials

Theorem 5.1. Let Cglob ⊆ FN
qm be the global code from Construction 4.2 and Cσ,k

LRS(a,β)

be the outer code Cout. Fix a minimal global repair set ∆glob of nodes with |∆glob| = k

as proposed in Proposition 5.1. Let P be the encoding polynomial of the linearized Reed-

Solomon code Cout. It then holds that

P =

g∑
i=1

Li. (5.1)

Proof. By Theorem A.7 the sum of local polynomials is equivalent to the encoding poly-

nomial if their evaluations at k points are the same. It holds that

PDai (β
(i)
j ) = c

(i)
j for all (i, j) ∈ ∆glob.

For the sum of local polynomials and (i, j) ∈ ∆glob, we have

g∑
m=1

L
Dai
m (β

(i)
j ) =

∑
1≤m≤g
m̸=i

L
Dai
m (β

(i)
j ) + L

Dai
i (β

(i)
j ).

By Definition 5.2, it holds that∑
1≤m≤g
m ̸=i

L
Dai
m (β

(i)
j ) + L

Dai
i (β

(i)
j ) =

∑
1≤m≤g
m ̸=i

0 + c
(i)
j = c

(i)
j .

Therefore, (5.1) holds.

The theorem is the essential result of this section. It means that a global repair which

can be seen as the evaluation of the global encoding polynomial can be distributed. Each

group can calculate its contribution to the global repair as the evaluation of its local

polynomial.

Definition 5.3. Let Cglob ⊆ FN
qm be the global code from Construction 4.2 and Cσ,k

LRS(a,β)

be the outer code Cout. Let (s,m) be the node to repair. Fix a minimal global repair

set ∆glob of nodes with |∆glob| = k and (s,m) /∈ ∆glob as proposed in Proposition 5.1.

The global repair, which is an evaluation of the encoding polynomial P of the linearized

Reed-Solomon code Cout, can be realized by

PDas (β(s)
m ) =

g∑
i=1

L
Das
i (β(s)

m ). (5.2)

It is important to point out that such a distributed global repair is only feasible if
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5 Global Repair of MR-LRCs

all the groups have knowledge about the parameters of the code, which should be given

anyway, and more important the used global repair set. The repair can be realized in two

ways which is discussed in the following sections.

5.3 Direct Global Repair

For the direct global repair each group calculates the evaluations of its local polynomial.

The evaluation is then sent directly to the global repair group. All the summands of (5.2)

are known to the group where the global repair is performed. The scheme is illustrated

with the following example.

Example 5.3. Consider a DSS with three local groups g = 3 and the code parameters

k = 7, n = 9, N = 12, r = 3 and δ = 2. If two nodes in the second group fail for

example c
(2)
2 and c

(2)
4 , a global repair followed by a local repair is needed to recover

the nodes. The global repair is performed with the minimal global repair set ∆glob =

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. The local polynomials L1, L2 and L3 have

the evaluation constraints as summarized in the table of Figure 5.3. Note that for each

group, a different group element ai is used, i.e., the first constraint of L1 means that

L
Da1
1 (β

(1)
1 ) = c

(1)
1 whereas the fourth constraint means that L

Da2
1 (β

(2)
1 ) = 0.

Direct global repair has one disadvantage. Given an eavesdropper observing a group

with global repairs in an l2-manner, the eavesdropper can read all the symbols that

are sent to the group. This problem and its resulting secrecy capacity is discussed in

Section 6.2.

68



5.4 Forwarded Global Repair

c
(1)
1 c

(2)
1 c

(3)
1c

(1)
2 c

(2)
2 c

(3)
2c

(1)
3 c

(2)
3 c

(3)
3c

(1)
4 c

(2)
4 c

(3)
4

♦ ♦

RPU RPU RPU
L
Da2
1 (β

(2)
2 ) L

Da2
3 (β

(2)
2 )

Code
Locator β

(1)
1 β

(1)
2 β

(1)
3 β

(2)
1 β

(2)
2 β

(2)
3 β

(3)
1 β

(3)
2 β

(3)
3

L1 c
(1)
1 c

(1)
2 c

(1)
3 − 0 □ 0 − 0 0 − −

L2 0 0 0 − c
(2)
1 □ c

(2)
3 − 0 0 − −

L3 0 0 0 − 0 □ 0 − c
(3)
1 c

(3)
2 − −

Figure 5.3: Global repair process of a failed node in the second group of an MR-LRC
with (3, 2)-localities managed by rack processing units (RPUs). Each of the
RPUs computes the local polynomial of its group with the constraints that
are summarized in the table. The symbol “□” means that the code locator
cannot be constrained since it corresponds to the code symbol that should be
recovered.

5.4 Forwarded Global Repair

The forwarded global repair, as illustrated in Figure 5.2, is not organized as a tree struc-

ture where each group sends its evaluation to the root but as a line. Every group, except

for one group and the receiving global repair group, receives one symbol and adds the

evaluation of its local polynomial to the received symbol, which is then forwarded to the

next group. The sum in (5.2) is therefore calculated iteratively, where each group adds its

summand to the already calculated partial sum. Without loss of generality, the following

convention is applied throughout this work.

Definition 5.4. Let G = [g] be the set of groups in ascending order that are involved in

a global repair process where a node in a fixed group at index m ∈ G is repaired. The

forwarded repair starts at the group with index i1 ∈ G \m which denotes the first entry

of G \m. The symbols are then forwarded in ascending order in G \m. The forwarding

tree is summarized in a forwarding tuple f with

f = (i1, i2, . . . , ig−1,m)
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5 Global Repair of MR-LRCs

where ij ∈ G \m for j ∈ [g−1]. For a given group which is at position s in the forwarding

list f , the list can be split into two parts, the upstream part fup = (f1, f2, . . . , fs−1)

corresponding to the set Gup ⊆ G and the downstream part fdown = (fs+1, fs+2, . . . , fg)

corresponding to the set Gdown ⊆ G.

The scheme is illustrated with the following example.

Example 5.4. Consider a DSS with three local groups g = 3 and the code parameters

k = 7, n = 9, N = 12, r = 3 and δ = 2. If two nodes in the second group fail, for

example c
(2)
2 and c

(2)
4 , a global repair followed by a local repair is needed to recover

the nodes. The global repair is performed with the minimal global repair set ∆glob =

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. The local polynomials L1, L2 and L3 have

the same evaluation constraints as summarized in the table of Figure 5.3. The forwarding

tuple is (1, 3, 2). For s = 2 the forwarding tuple is split into fup = (1) and fdown = (2)

with the corresponding sets Gup = {1} and Gdown = {2}.

c
(1)
1 c

(2)
1 c

(3)
1c

(1)
2 c

(2)
2 c

(3)
2c

(1)
3 c

(2)
3 c

(3)
3c

(1)
4 c

(2)
4 c

(3)
4

♦ ♦

RPU RPU RPU
L
Da2
3 (β

(2)
2 ) + ξ

L
Da2
1 (β

(2)
2 ) =: ξ

Code
Locator β

(1)
1 β

(1)
2 β

(1)
3 β

(2)
1 β

(2)
2 β

(2)
3 β

(3)
1 β

(3)
2 β

(3)
3

L1 c
(1)
1 c

(1)
2 c

(1)
3 − 0 □ 0 − 0 0 − −

L2 0 0 0 − c
(2)
1 □ c

(2)
3 − 0 0 − −

L3 0 0 0 − 0 □ 0 − c
(3)
1 c

(3)
2 − −

Figure 5.4: Global repair process of a failed node in the second group of an MR-LRC with
(3, 2)-localities managed by rack processing units (RPUs). The repair scheme
is forwarded global repair. Each of the RPUs computes the local polynomial of
its group with the constraints that are summarized in the table. The symbol
“□” means that the code locator cannot be constrained since it corresponds
to the code symbol that should be recovered.
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The main goal of this chapter is to derive a secrecy capacity for the two global repair

schemes, i.e., direct global repair and forwarded global repair, that were introduced in

Chapter 5.

First, the construction of an MR-LRC that is achieving the secrecy capacities for the

two global repair schemes is introduced. It also achieves the secrecy capacity that was

stated in Theorem 4.3 when no global repairs are considered. Second, a general upper

bound on the secrecy capacity given global repair is derived.

Third, the secrecy capacities of direct and forwarded global repair are derived following

the same steps. Preliminary considerations are made on fundamental limits of the repair

schemes. For direct global repair such a limit is that one of the received symbols for a

global repair is not independent of the others, given the assumption that the eavesdropper

is able to read the failed node before the erasure occurs. For forwarded repair, the most

important preliminary considerations is that if the eavesdropper observes the first or last

group of a forwarding list in an l2-manner, no new knowledge is gained in the context

of global repair. After the preliminary considerations, the upper bounds on the secrecy

capacity for the repair schemes are derived using the general upper bound. The main tool

that is used deriving the secrecy capacity is Lemma 3.7. We write all the eavesdropper

knowledge in a matrix whose rank indicates how much independent equations about the

stored data the eavesdropper has. This number is then subtracted by the number of

equations that the eavesdropper has by directly reading nodes. In the end of the chapter,

the two repair schemes and their capacities are compared. Forwarded global repair has in

general a larger secrecy capacity compared to direct global repair. However, a drawback

of forwarded global repair is that the latency might be quite high since each node is

waiting for the previous contribution to arrive before it can send its contribution.
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6.1 MR-LRC Secrecy Construction and Secrecy Bound

In Section 4.3, a construction for an LRC that attains the secrecy capacity of Theorem 4.3

was given. This coding scheme can be slightly modified using linear operator polynomi-

als instead of linearized polynomials. The following construction is a combination of

Construction 4.2 and Construction 4.3.

Construction 6.1. Let k(e) be the number of independent constraints that an (l1, l2)-

eavesdropper has on the stored file of size k. Assume that k − k(e) > 0 and let r|n. The
construction has the following steps:

1. Given the secure file size k(s) = k − k(e), generate k(e) independent random sym-

bols uniformly distributed over Fqm , r = (r1, r2, . . . , rk(e)), and append with us =

(u1, u2, . . . , uk(s)) to obtain u = (r,us).

2. Encode the k symbols of u with an [n, k, n−k+1]qm linearized Reed-Solomon code.

3. Divide the n symbols of the linearized Reed-Solomon codeword cout into g groups

such that n = gr and encode each group with an Fq-linear MDS code as in Con-

struction 4.2.

Proposition 6.1. Construction 6.1 is information-theoretically secure against an (l1, l2)-

eavesdropper and achieves the secrecy capacity k(s) = k − k(e) with k(e) = l2r + l1 from

Theorem 4.3, if global repair is not considered.

Proof. To prove secrecy of the coding scheme, the secrecy lemma (Lemma 3.1) is used.

An (l1, l2)-eavesdropper can observe at most k(e) = l2r + l1 symbols. There are k(e) =

l2r + l1 randomly generated symbols. Thus, the first condition is fulfilled, i.e., H(E) ≤
H(R) where E and R are the random variables of the eavesdropper’s observation and the

randomly generated symbols, respectively. It remains to prove that H(R | U(s),E) = 0.

The eavesdropper’s k(e) = l2r + l1 observations are chosen in the best possible way,

i.e., the eavesdropper will not observe a node in an l1-manner if the whole group is already

known from the l2 observations. The crucial point is that the evaluation points of the

eavesdropper’s observations are P-independent. By Theorem A.10, this is equivalent to

showing that all the evaluation points in a group are Fq-linearly independent since each

group uses evaluation points from a different conjugacy class. The local groups are MDS

codes that are Fq-linear which yields the desired property. In addition, the symbols of

u(s) are known. This recovers the problem of a (n, k, k(e)) secret sharing scheme for linear

operator polynomials that was explored in Section 3.6 and the proof is done.
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If global repair is considered, the capacity from Theorem 4.3 is decreased by a term

λMR ≥ 0, i.e.,

k(s)MR−LRC = [k − (l2r + l1)− λMR]
+ , (6.1)

where k(e) = (l2r + l1) + λMR.

Before deriving an upper bound on λMR, we first explain the notations that are used.

The set of nodes contacted by a data collector are denoted K =
⋃g

i=1Ki = ∆glob with

|K| = k. The observation of the eavesdropper from the groups that are observed in an

l2-manner, E2, is split into two different subsets. The nodes that are directly read by the

eavesdropper in an l2-manner are represented by the set Esto
2 . The set of evaluations of

the local polynomial Li that are sent to a group with a global repair is denoted by Erep
2 .

Proposition 6.2 (Global repair - secrecy capacity upper bound). Consider a

DSS with g groups, parameters h < r and fixed eavesdropper parameters l2 ≥ 1, l1.

Furthermore, let the eavesdropper observe the DSS in such a way that E1 ∩ Esto
2 = ∅ and

that the eavesdropper is not observing more nodes than needed to recover all the stored

data. The secrecy capacity of a DSS with global repair is bounded by

H(U(s)) ≤ H(K | E1,E
sto
2 ,Erep

2 ) = H(K)−H(E1)−H(Esto
2 )−H(Erep

2 | E1,E
sto
2 ). (6.2)

Proof. From (4.3), we have

H(U(s)) ≤ H(K | E1,E
sto
2 ,Erep

2 ).

We can express the term H(K | E1,E
sto
2 ,Erep

2 ) applying the chain rule of entropy (B.1) on

H(K,E1,E
sto
2 ,Erep

2 ):

H(K,E1,E
sto
2 ,Erep

2 ) = H(E1)+H(Esto
2 | E1)+H(Erep

2 | E1,E
sto
2 )+H(K | E1,E

sto
2 ,Erep

2 ) (6.3)

Since E1 = f(K),Esto
2 = f(K) and Erep

2 = f(K), it holds that

H(K,E1,E
sto
2 ,Erep

2 ) = H(K). (6.4)

Combining (6.4) and (6.3) yields

H(K | E1,E
sto
2 ,Erep

2 ) = H(K)−H(E1)−H(Esto
2 | E1)−H(Erep

2 | E1,E
sto
2 ).

Consider the term H(Esto
2 | E1). The two assumption mean that E1 ∩ Esto

2 = ∅ and that
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6 Secrecy Capacity of MR-LRCs

E1 and Esto
2 are independent sets. Thus, it holds that H(Esto

2 | E1) = H(Esto
2 ) and we have

H(K | E1,E
sto
2 ,Erep

2 ) = H(K)−H(E1)−H(Esto
2 )−H(Erep

2 | E1,E
sto
2 ).

With Equation (6.2), the term λMR from (6.1) can be derived.

Proposition 6.3 (Global repair - Secrecy capacity decrease upper bound). Con-

sider a DSS with g groups, parameters h < r and fixed eavesdropper parameters l2 ≥ 1, l1.

Furthermore, let the eavesdropper observe the DSS in such a way that E1 ∩ Esto
2 = ∅ and

that the eavesdropper is not observing more nodes than needed to recover all the stored

data. For the term λMR from Equation (6.1) it holds that

λMR,dir ≤ H(Erep
2 | E1,E

sto
2 ) = H(E1,E

sto
2 ,Erep

2 )−H(E1)−H(Esto
2 ). (6.5)

Proof. We know that H(K) = k, H(E1) = l1 and H(Esto
2 ) = l2r, since this corresponds to

the number of symbols directly read by a data collector and the eavesdropper, respectively.

Combining this with (6.1) and (6.2) yields

λMR,dir ≤ H(Erep
2 | E1,E

sto
2 ).

By the chain rule of entropy (B.1), it holds that

H(Erep
2 | E1,E

sto
2 ) = H(E1,E

sto
2 ,Erep

2 )−H(Esto
2 | E1)−H(E1).

Following the same arguments as in the proof of Proposition 6.2 with the assumptions

that E1 ∩ Esto
2 = ∅ and E1 and Esto

2 are independent sets, we have

H(Erep
2 | E1,E

sto
2 ) = H(E1,E

sto
2 ,Erep

2 )−H(Esto
2 )−H(E1).

With the help of Equation (6.5), λMR is investigated for direct and forwarded global

repair in the following sections. For simplicity, the local encoding of the MR-LRCs

is not considered. Only a set of n symbols of the outer codeword cout ∈ Cout from

Construction 4.2 is considered. A subset with cardinality k will then be the minimal

global repair set given at most h = n − k erasures, which need to be repaired globally,

in the set of n nodes. For any erasure pattern that is correctable by the MR-LRC, it

can be guaranteed that after the global repair, the rest of the erasures can be repaired
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6.2 Secrecy Capacity for Direct Global Repair

by the local MDS code. Since the local parities are a Fq-linear combination of the code

symbols in the group, a relabeling can be performed locally so that any r nodes of a local

group which correspond to a P-independent set of evaluations by Theorem A.8 can be

considered for the global repair. More than r nodes of a group would only be a redundant

set of symbols.

The number of erasures, which need to be repaired globally, is in the following called

global erasures.

6.2 Secrecy Capacity for Direct Global Repair

Before the decrease of the secrecy capacity given a direct global repair in the presence of

an (l1, l2)-eavesdropper is quantified, some preliminary considerations should be made.

First, note that the secrecy capacity is only decreased if an eavesdropper is observing

the group where the global repair is performed in an l2-manner. The direct global repair

does not reveal any information to the other groups which are only sending information.

Second, the number of globally repairable erasures is bounded from above by the number

of global parities h. If more than h global erasures occur, part of the data cannot be

recovered. Third, if the number of global parities h is greater or equal than the number

of nodes in a group r, the secrecy capacity will be zero, which is shown in the following

proposition.

Proposition 6.4. Consider a DSS with g groups, r nodes per group and h ≥ r global

parities. If the system uses direct global repair and l2 ≥ 1, its secrecy capacity is zero,

i.e.,

k(s)MR−LRC = 0.

Proof. Without loss of generality, consider r node failures in a group that is observed

by the eavesdropper in an l2-manner, i.e., all the nodes in the group fail. Every other

group sends r symbols to repair the global erasures. The local polynomials Li have by

definition at most r degrees of freedom since the nonzero constraints are only in the

respective group with size r. Given r evaluations of the local polynomials Li, the local

polynomial can be generated by Newton interpolation. Evaluating the local polynomials

at the respective code locators of their group, the eavesdropper can recover all groups,

which yields k(s)MR−LRC = 0.

The preliminary considerations including Proposition 6.4 motivate the following con-

vention.

Direct global repair systems are considered with the constraint h < r since the capacity

is zero otherwise. Without loss of generality, the first group is always observed by the
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6 Secrecy Capacity of MR-LRCs

eavesdropper in an l2-manner where at most h erasures, which have to be repaired globally,

occur, i.e., l2 ≥ 1. This assumption can be made since it does not matter in which l2-

observed groups the global repairs are performed. The eavesdropper is only able to gain

innovation from groups that are not yet fully observed. For l2 = 0 the secrecy capacity

k(s) coincides with Theorem 4.3.

The following example illustrates further properties and limitations of direct global

repair.

Example 6.1 (Direct global repair with two groups). Consider a DSS with g = 2, r = 2

and h = 1 as shown in Figure 6.1. An eavesdropper observes the first group, where a

global erasure occurs, in an l2-manner. It is assumed that the eavesdropper has read the

symbol c
(1)
1 prior to its erasure. To recover the symbol, the encoding skew polynomial P

is evaluated as a linear operator polynomial such that c
(1)
1 = PDa1 (β

(1)
1 ). For the direct

global repair, the evaluation is split into two evaluations of local polynomials L1 and L2.

The first local polynomial L1 is generated in the first group with c
(1)
2 as a constraint,

the second local polynomial L2 is generated in the second group with c
(2)
1 and c

(2)
2 as a

constraint. Both are evaluated as linear operator polynomials such that

c
(1)
1 = L

Da1
1 (β

(1)
1 ) + L

Da1
2 (β

(1)
1 )

where red indicates that the symbols are known to the eavesdropper. Note that the

eavesdropper can calculate L
Da1
2 (β

(1)
1 ) given c

(1)
1 and L

Da1
1 (β

(1)
1 ). Therefore, the global

repair process does not reveal any new knowledge to the eavesdropper.

♦ c
(1)
2 c

(2)
1 c

(2)
2

RPU RPU
L
Da1
2 (β

(1)
1 )

Figure 6.1: Illustration of a DSS with two groups and one global erasure. The global
erasure is in the first group which is observed by an eavesdropper in an l2-
manner. The second group sends the evaluation of its local polynomial at the
code locator of the failed node to the first group for global repair.

The above example shows that not every symbol which is sent to the eavesdropper

reveals new information. Another insight is the following:
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6.2 Secrecy Capacity for Direct Global Repair

Groups that are already fully observed by the eavesdropper cannot reveal any new infor-

mation.

If the group is fully known to the eavesdropper, the local polynomial can be generated

with the information of the group. Thus, the evaluations of the local polynomial will not

reveal any new information.

Therefore, the secrecy capacity is crucially linked to the number of groups that are

not already fully observed by the eavesdropper and the number of symbols that are not

yet known to the eavesdropper these groups.

Proposition 6.5. Let G = [g] denote the set of groups of a DSS. A group j ∈ G can

reveal at most

min (h, r − ej)

symbols containing new information to the eavesdropper, given h global repairs in a group

m ∈ G, where ej denotes the number of nodes in the j-th group that are observed by the

eavesdropper.

Proof. The j-th group has r symbols and sends h evaluations of its local polynomial Lj

to group m. Since there are r independent symbols in each group, r − ej symbols of

the group are unknown to the eavesdropper. Thus, it can reveal at most min (h, r − ej)

symbols to the eavesdropper within the global repair.

Another effect that was shown in Example 6.1 is that not every symbol from a group,

that is not fully observed by the eavesdropper, reveals new information. If an erased sym-

bol at (s,m) ∈ ∆glob, which is about to be globally repaired, was read by the eavesdropper

before the erasure occurs, then one summand of

c(s)m =

g∑
i=1

L
Das
i (β(s)

m )

will not bring any innovation. Without loss of generality under the assumption that the

eavesdropper observes the first group where the global repair is performed, the above

equation can be written as

c(1)m − L
Da1
1 (β(1)

m ) =

g∑
i=2

L
Da1
i (β(1)

m )

where the left hand side is known to the eavesdropper. Therefore, after at most g − 2

symbols, which are revealed to the eavesdropper within one global repair, the last symbol
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6 Secrecy Capacity of MR-LRCs

is a result of the other observed symbols with

c(1)m −
g−1∑
i=1

L
Da1
i (β(1)

m ) = L
Da1
g (β(1)

m ).

The observation can be generalized to the following proposition.

Proposition 6.6. Consider a DSS with g groups. Let h < r and fix the eavesdropper

parameters l1 and l2 with l2 ≥ 1 such that k(s) > 0. Without loss of generality, it is

assumed that the first group is observed by the eavesdropper in an l2-manner and that h

global erasures occur in the first group. For the m-th global repair,

c(1)m =

[
g∑

i=1

Li(
β
(1)
m a1)

]
β(1)
m ,

where the sum on the right hand side consists of g linearly independent summands.

Proof. Consider the evaluations in the Lagrange basis over ∆glob, i.e., over A∆glob
=

{c(1)h+1, . . . , c
(1)
r , . . . , c

(g)
1 , . . . , c

(g)
r } with |A∆glob

| = k. Rewriting c
(1)
m /β

(1)
m yields

c(1)m /β(1)
m =

g∑
i=1

Li(
β
(1)
m a1) =

∑
(i,j)∈∆glob

c
(i)
j ℓ

∆glob

i,j (β
(1)
m a1).

The g evaluations of local polynomials Li can therefore be written as a product of

(c
(1)
h+1, . . . , c

(1)
r , . . . , c

(g)
1 , . . . , c

(g)
r ) and the matrix ML defined below:


ℓ
∆glob

1,h+1(
β
(1)
m a1) · · · ℓ

∆glob

1,r (β
(1)
m a1) 0 · · · 0 · · · 0 · · · 0

0 · · · 0 ℓ
∆glob

2,1 (β
(1)
m a1) · · · ℓ

∆glob

2,r (β
(1)
m a1) · · · 0 · · · 0

...
. . .

...
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0 · · · ℓ
∆glob

g,1 (β
(1)
m a1) · · · ℓ

∆glob
g,r (β

(1)
m a1)


︸ ︷︷ ︸

=: ML

.

Inspecting the rows of the matrix, we see that the vector representation in terms

of A∆glob
of the evaluations of the local polynomials are pairwise orthogonal since their

dot product is zero. Therefore, the evaluations are linearly independent with respect to

A∆glob
. It follows that

rank(ML) = g

which means that all the summands are linearly independent.

Remark : For h < r, it always holds that g ≤ k since k = n− h > rg − r = g − 1.
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6.2 Secrecy Capacity for Direct Global Repair

Proposition 6.7. Let the assumptions be the same as in Proposition 6.6. If an eaves-

dropper reads the symbols before the global erasure occurs, the maximum knowledge gain

for one global repair will be g − 1 symbols.

Proof. It holds that

c(1)m /β(1)
m =

g∑
i=1

Li(
β
(1)
m al) =

∑
(i,j)∈∆glob

c
(i)
j ℓ

∆glob

i,j (β
(1)
m al)

which means that c
(1)
m can be represented by a linear combination of the g independent

evaluations of local polynomials. Stacking ML ∈ Fg×k
qm for the m-th global repair from

the lemma above and

c(1)m =
(
ℓ
∆glob

1,h+1(
β
(1)
m a1) ℓ

∆glob

1,h+2(
β
(1)
m a1) · · · ℓ

∆glob
g,r (β

(1)
m a1)

)
yields ML,c ∈ Fg+1×k

qm . For the rank of the matrix ML,c, we have rank(ML,c) = g because

the codeword c
(1)
m is the sum of all rows of the matrix ML. Thus, it does not change the

rank. Since the codeword symbols c
(i)
j are uniformly distributed and independent within

the global repair set ∆glob, (3.6) can be used, which yields

H(ML,c | Xc
(1)
m
) = H(ML,c,Xc

(1)
m
)−H(X

c
(1)
m
)

= rank(ML,c)− rank(c(1)m ) = g − 1,

where ML,c and X
c
(1)
m

denote the random variables corresponding to the repair symbols

of the m-th global repair and the repair symbol represented by the matrix ML,c and the

m-th symbol, respectively.

This effect can be later on seen in the term for the secrecy capacity.

We now want to find an expression for the upper bound based on the parameters of

the system. As a starting point (6.5) from Proposition 6.3, establishing an upper bound

on the knowledge that can be gained by an eavesdropper due to global repair, can be

used. The idea is to express the entropies with matrices using Lemma 3.7.

Let ME1 represent the symbols accessed by an eavesdropper in an l1-manner, let MEsto
2

represent the symbols accessed by an eavesdropper in an l2-manner, let ML represent the

symbols sent to the groups observed by the eavesdropper in an l2-manner and denote by

Mjoint the stacked matrix with all the symbols of MEsto
2

,ME1 and ML.

Remark : The matrices are written with respect to a Lagrange basis in the set ∆glob.

The Lagrange basis consists of Lagrange skew polynomials. Therefore to transform the

matrices to matrices representing the linearized Reed-Solomon codes, they have to be
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6 Secrecy Capacity of MR-LRCs

multiplied by a diagonal matrix. However, the diagonal matrices are neglected in the

following to ease readability. This is possible since the ranks of the matrices are of

interest and the diagonal matrices have full rank. In Example 6.2, the diagonal matrices

are written out explicitly.

Definition 6.1. Consider a DSS which is observed by an (l1, l2)-eavesdropper. All

matrices are expressed in terms of ∆glob with cardinality |∆glob| = k. The matrices

ME1 ∈ Fl1×k
qm and MEsto

2
∈ Fl2r×k

qm represent the sets E1 and Esto
2 , respectively. The set of

symbols that are sent to groups observed in an l2-manner, i.e., Erep
2 , is represented by

the matrix ML ∈ Fgh×k
qm . If only the first m ∈ [h] global repairs are considered, we write

Mm
L ∈ Fgm×k

qm . The matrices can be stacked to form a matrix, representing all symbols

that the eavesdropper observes, yieldingMEsto
2

ME1

ML

 =: Mjoint ∈ F(l2r+l1+gh)×k
qm .

If only a part of ML is stacked, i.e., Mm
L , the corresponding stacked matrix is Mm

joint.

The stacked matrix Mjoint, representing the joint entropy of all observations of the

eavesdropper, can have at most rank k. If the rank of the matrix Mm
joint is k for m <

h, it means that the eavesdropper has global knowledge after m global repairs. This

observation motivates the following definition.

Definition 6.2. Consider a DSS with g groups, parameters h < r and fixed eavesdropper

parameters l2 ≥ 1, l1. Without loss of generality, it is assumed that the first group is

observed by the eavesdropper in an l2-manner and that h global erasures occur in the

first group. Let hmin be the minimal number of repairs that need to be performed until

either hmin = h or rank(Mhmin
joint) = k with hmin < h.

The structure of the matrices stated in Definition 6.1 is now analyzed. The matrix

MEsto
2

has the structure

MEsto
2

=


Mhmin

Ir−hmin
· · · 0 · · · 0

...
. . .

...
. . .

...

0 · · · Ir · · · 0

 ∈ Fl2r×k
qm

with full rank identity matrices of size r at the indices of groups observed in an l2-manner.

The first group is split in an identity matrix of size r − hmin representing the notes that
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6.2 Secrecy Capacity for Direct Global Repair

are in the global repair set ∆glob and the hmin nodes that are being repaired. The matrix

Mhmin
is the representation of the failed nodes in terms of the repair set ∆glob with

Mhmin
=


ℓ
∆glob

1,hmin+1(
β
(1)
1 a1) ℓ

∆glob

1,hmin+2(
β
(1)
1 a1) · · · ℓ

∆glob
g,r (β

(1)
1 a1)

...
...

. . .
...

ℓ
∆glob

1,hmin+1(
β
(1)
hmina1) ℓ

∆glob

1,hmin+2(
β
(1)
hmina1) · · · ℓ

∆glob
g,r (

β
(1)
hmina1)

 ∈ Fhmin×k
qm .

The matrix ME1 with l1 rows has l1 nonzero entries at the positions of the observed

nodes in the global repair set ∆glob. The matrix ML has a row for each symbol that is

sent to the group where the global repair is performed. The elements of each row are a

subset of the corresponding rows in Mhmin
.

The structure of the matrices can be best illustrated with an example.

c
(1)
1 c

(2)
1 c

(3)
1c

(1)
2 c

(2)
2 c

(3)
2c

(1)
3 c

(2)
3 c

(3)
3

♦ ♦

Figure 6.2: Illustration of a DSS with g = 3 groups, eavesdropper parameters l1 = 2,
l2 = 1 and two global erasures in the first group.

Example 6.2. Consider a DSS using the coding scheme from Construction 4.2 and

parameters r = 3, g = 3 and h = 2. An eavesdropper is observing the first group with

two global erasures in an l2-manner. The number of nodes that are in addition observed

by the eavesdropper is l1 = 2 and they are both in the second group. The system is

depicted in Figure 6.2. The vector corresponding to the global repair set ∆glob is(
c
(1)
3 c

(2)
1 c

(2)
2 c

(2)
3 c

(3)
1 c

(3)
2 c

(3)
3

)
.

The following matrices are with respect to this vector. The matrix corresponding to the

nodes observed in an l2-manner is

MEsto
2

=

β
(1)
1 0 0

0 β
(1)
2 0

0 0 1

 ·

ℓ
∆glob

1,3 (b
(1)
1 ) ℓ

∆glob

2,1 (b
(1)
1 ) ℓ

∆glob

2,2 (b
(1)
1 ) ℓ

∆glob

2,3 (b
(1)
1 ) ℓ

∆glob

3,1 (b
(1)
1 ) ℓ

∆glob

3,2 (b
(1)
1 ) ℓ

∆glob

3,3 (b
(1)
1 )

ℓ
∆glob

1,3 (b
(1)
2 ) ℓ

∆glob

2,1 (b
(1)
2 ) ℓ

∆glob

2,2 (b
(1)
2 ) ℓ

∆glob

2,3 (b
(1)
2 ) ℓ

∆glob

3,1 (b
(1)
2 ) ℓ

∆glob

3,2 (b
(1)
2 ) ℓ

∆glob

3,3 (b
(1)
2 )

1 0 0 0 0 0 0


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where b
(i)
j = β

(i)
j ai. The matrix corresponding to the l1-observations is

ME1 =

(
0 1 0 0 0 0 0

0 0 1 0 0 0 0

)
,

and

ML = DL



ℓ
∆glob

1,3 (b
(1)
1 ) 0 0 0 0 0 0

0 ℓ
∆glob

2,1 (b
(1)
1 ) ℓ

∆glob

2,2 (b
(1)
1 ) ℓ

∆glob

2,3 (b
(1)
1 ) 0 0 0

0 0 0 0 ℓ
∆glob

3,1 (b
(1)
1 ) ℓ

∆glob

3,2 (b
(1)
1 ) ℓ

∆glob

3,3 (b
(1)
1 )

ℓ
∆glob

1,3 (b
(1)
2 ) 0 0 0 0 0 0

0 ℓ
∆glob

2,1 (b
(1)
2 ) ℓ

∆glob

2,2 (b
(1)
2 ) ℓ

∆glob

2,3 (b
(1)
2 ) 0 0 0

0 0 0 0 ℓ
∆glob

3,1 (b
(1)
2 ) ℓ

∆glob

3,2 (b
(1)
2 ) ℓ

∆glob

3,3 (b
(1)
2 )


with DL = diag(β

(1)
1 , β

(1)
1 , β

(1)
1 , β

(1)
2 , β

(1)
2 , β

(1)
2 ) is the matrix corresponding to the symbols

sent to the first group for the global repairs. Thus, the matrix Mjoint has the form

Mjoint = D



ℓ
∆glob

1,3 (b
(1)
1 ) ℓ

∆glob

2,1 (b
(1)
1 ) ℓ

∆glob

2,2 (b
(1)
1 ) ℓ

∆glob

2,3 (b
(1)
1 ) ℓ

∆glob

3,1 (b
(1)
1 ) ℓ

∆glob

3,2 (b
(1)
1 ) ℓ

∆glob

3,3 (b
(1)
1 )

ℓ
∆glob

1,3 (b
(1)
2 ) ℓ

∆glob

2,1 (b
(1)
2 ) ℓ

∆glob

2,2 (b
(1)
2 ) ℓ

∆glob

2,3 (b
(1)
2 ) ℓ

∆glob

3,1 (b
(1)
2 ) ℓ

∆glob

3,2 (b
(1)
2 ) ℓ

∆glob

3,3 (b
(1)
2 )

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

ℓ
∆glob

1,3 (b
(1)
1 ) 0 0 0 0 0 0

0 ℓ
∆glob

2,1 (b
(1)
1 ) ℓ

∆glob

2,2 (b
(1)
1 ) ℓ

∆glob

2,3 (b
(1)
1 ) 0 0 0

0 0 0 0 ℓ
∆glob

3,1 (b
(1)
1 ) ℓ

∆glob

3,2 (b
(1)
1 ) ℓ

∆glob

3,3 (b
(1)
1 )

ℓ
∆glob

1,3 (b
(1)
2 ) 0 0 0 0 0 0

0 ℓ
∆glob

2,1 (b
(1)
2 ) ℓ

∆glob

2,2 (b
(1)
2 ) ℓ

∆glob

2,3 (b
(1)
2 ) 0 0 0

0 0 0 0 ℓ
∆glob

3,1 (b
(1)
2 ) ℓ

∆glob

3,2 (b
(1)
2 ) ℓ

∆glob

3,3 (b
(1)
2 )


with

D = diag(β
(1)
1 , β

(1)
2 , 1, 1, 1, β

(1)
1 , β

(1)
1 , β

(1)
1 , β

(1)
2 , β

(1)
2 , β

(1)
2 ).

By Equation (6.5) and Lemma 3.7, λMR,dir can be bounded from above by

λMR,dir ≤ H(E1,E
sto
2 ,Erep

2 )−H(E1)−H(Esto
2 ) = rank(Mjoint)− rank(ME1)− rank(MEsto

2
),

since the matrices Mjoint,MEsto
2

and ME1 represent E = (E1,E
sto
2 ,Erep

2 ), Esto
2 and E1,

respectively.

Clearly, the first two rows of Mjoint are a linear combination of the repair symbols
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6.2 Secrecy Capacity for Direct Global Repair

and thus they do not contribute to the rank. In addition, the rows of the eavesdropper

observation with only one nonzero entry are independent of the other rows and contribute

3 to the rank. This can be seen by using Gaussian elimination yielding

M′
joint = D



0 0 0 ℓ
∆glob

2,3 (b
(1)
1 ) ℓ

∆glob

3,1 (b
(1)
1 ) ℓ

∆glob

3,2 (b
(1)
1 ) ℓ

∆glob

3,3 (b
(1)
1 )

0 0 0 ℓ
∆glob

2,3 (b
(1)
2 ) ℓ

∆glob

3,1 (b
(1)
2 ) ℓ

∆glob

3,2 (b
(1)
2 ) ℓ

∆glob

3,3 (b
(1)
2 )

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 ℓ
∆glob

2,3 (b
(1)
1 ) 0 0 0

0 0 0 0 ℓ
∆glob

3,1 (b
(1)
1 ) ℓ

∆glob

3,2 (b
(1)
1 ) ℓ

∆glob

3,3 (b
(1)
1 )

0 0 0 0 0 0 0

0 0 0 ℓ
∆glob

2,3 (b
(1)
2 ) 0 0 0

0 0 0 0 ℓ
∆glob

3,1 (b
(1)
2 ) ℓ

∆glob

3,2 (b
(1)
2 ) ℓ

∆glob

3,3 (b
(1)
2 ).



.

The rank of M′
joint can then be derived by calculating the rank of the two submatrices

from column 1 to 3 and column 4 to 7. Obviously, for

M′
joint|∆glob∩(Esto

2 ∪E1) =

1 0 0

0 1 0

0 0 1


it holds that rank(M′

joint|∆glob∩(Esto
2 ∪E1)) = 3. For

M′
joint|∆glob\(E1,Esto

2 ) = Dx


ℓ
∆glob

2,3 (b
(1)
1 ) 0 0 0

0 ℓ
∆glob

3,1 (b
(1)
1 ) ℓ

∆glob

3,2 (b
(1)
1 ) ℓ

∆glob

3,3 (b
(1)
1 )

ℓ
∆glob

2,3 (b
(1)
2 ) 0 0 0

0 ℓ
∆glob

3,1 (b
(1)
2 ) ℓ

∆glob

3,2 (b
(1)
2 ) ℓ

∆glob

3,3 (b
(1)
2 )

 (6.6)

with

Dx = diag(β
(1)
1 , β

(1)
1 , β

(1)
2 , β

(1)
2 ),

we also have rank(M′
joint|∆glob\(E1,Esto

2 )) = 3. For the second matrix, the first and third row

are linearly dependent. Therefore, the two rows contribute only 1 to the rank while the

second and fourth row contribute 2 to the rank since they are independent by Lemma 3.3.

The rows correspond to evaluations of the same polynomial but at two P-independent

points and can therefore be decomposed into two Vandermonde matrices with full rank.

Following the same arguments, we have rank(MEsto
2

) = 3, where the first two rows con-
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6 Secrecy Capacity of MR-LRCs

tribute 2 to the rank of MEsto
2

by Lemma 3.3.

Overall, it holds that

λMR,dir ≤ rank(M′
joint|∆glob∩(Esto

2 ∪E1)) + rank(M′
joint|∆glob\(E1,Esto

2 ))− rank(ME1)− rank(MEsto
2

)

= 3 + 3− 2− 3 = 1.

This means that the secrecy capacity of the DSS using direct global repair is decreased

by 1.

With this example in mind, a general expression for the secrecy capacity decrease

λMR,dir can be derived.

Lemma 6.1 (Direct global repair - secrecy capacity upper bound). Consider

a DSS with g groups, parameters h < r and an eavesdropper with l2 ≥ 1, l1. Without

loss of generality, it is assumed that the first group is observed by the eavesdropper in an

l2-manner and that h global erasures occur in the first group. Let hmin be the minimal

number of global repairs as defined in Definition 6.2. The secrecy capacity decrease for

direct global repair λMR,dir is upper bounded by

λMR,dir ≤ rank(Mhmin
joint)− l2r − l1 =: λ̄MR,dir.

Moreover, it holds that

λ̄MR,dir =

(
g∑

i=1

min(hmin, r − ei)

)
− hmin (6.7)

where ei denotes the number of symbols that the eavesdropper is observing in the i-group.

Proof. The upper bound λ̄MR,dir can be deduced from Equation (6.5). The proof focuses

on showing that (6.7) holds.

The first hmin rows of Mhmin
joint are a linear combination of the rows of matrix Mhmin

L and

can therefore be neglected calculating the rank. The contribution to the rank of Mhmin
joint

of nodes read directly by the eavesdropper, i.e., the number of rows with a single nonzero

entry in the matrix Mhmin
joint , is (l2 − 1)r + r − hmin + l1. This can be inferred by using

Gaussian elimination. Thus, it holds that

rank(Mhmin
joint) = (l2 − 1)r + r − hmin + l1 + rank(Mhmin

joint |∆glob\(E1,Esto
2 )),

where

Mhmin
joint |∆glob\(E1,Esto

2 ) = Mhmin
L |∆glob\(E1,Esto

2 )
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6.2 Secrecy Capacity for Direct Global Repair

holds. The matrix Mhmin
joint |∆glob\(E1,Esto

2 ) that is left after puncturing the nonzero entries

has a similar structure to the matrix in (6.6). Consider the matrix groupwise for the

i-th group. If the i-th group is fully punctured, we have ei = r and there is no column

in Mhmin
joint |∆glob\(E1,Esto

2 ) corresponding to the i-th group. Otherwise, there are still r − ei

columns corresponding to the i-th group. The rows corresponding to the i-th row are of

the structure investigated in Lemma 3.3. They can be represented by the product of two

Vandermonde matrices since they correspond to evaluations of the same polynomial at P-

independent points. We can therefore bound the contribution of the i-th group, which has

full rank, by the number of rows or columns, i.e., min(hmin, r− ei) (see Proposition 6.5).

Thus, it holds that

rank(Mhmin
joint |∆glob\(E1,Esto

2 )) =

g∑
i=1

min(hmin, r − ei)

and we have

rank(Mhmin
joint) = (l2 − 1)r + r − hmin + l1 +

g∑
i=1

min(hmin, r − ei)

= l2r + l1 − hmin +

g∑
i=1

min(hmin, r − ei).

This yields

λ̄MR,dir = rank(Mhmin
joint)− l2r − l1 = l2r + l1 − hmin +

g∑
i=1

min(hmin, r − ej)− l2r − l1

=

(
g∑

i=1

min(hmin, r − ej)

)
− hmin.

Example 6.2 can now also be verified with Equation (6.7). For the considered DSS

and eavesdropper parameters, we have

λ̄MR,dir =

(
3∑

i=1

min(2, 3− ei)

)
− 2

= min(2, 0) + min(2, 1) + min(2, 3)− 2 = 1 + 2− 2 = 1,

which is in accordance with the derivations.

The upper bounds, that have been derived, can be achieved with equality as the
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following theorem shows.

Theorem 6.1 (Direct global repair - secrecy capacity). Consider a DSS with g

groups, parameters h < r and an (l1, l2)-eavesdropper with l2 ≥ 1 and fixed l1 such that

l2r + l1 ≤ k. Without loss of generality, it is assumed that the first group is observed by

the eavesdropper in an l2-manner and that h global erasures occur in the first group. Let

hmin be the minimal number of global repairs as defined in Definition 6.2. The secrecy

capacity for direct global repair is

k(s)dir = k − (l2r + l1)−

([
g∑

i=1

min(hmin, r − ei)

]
− hmin

)
, (6.8)

where ei denotes the number of symbols that the eavesdropper is observing in the i-th

group.

Proof. It follows from Lemma 6.1 that the right hand side of (6.8) is an upper bound.

The proof is done by showing that Construction 6.1 achieves equality (6.8).

Theorem 6.2. Construction 6.1 is information-theoretically secure against an (l1, l2)-

eavesdropper and achieves the secrecy capacity k(s)dir = k − k(e) with k(e) = (l2r + l1 +

λ̄MR,dir) from Theorem 6.1 if direct global repair is used.

Proof. To prove secrecy of the coding scheme, the secrecy lemma (Lemma 3.1) is used.

An (l1, l2)-eavesdropper can at most observe l2r + l1 + λ̄MR,dir symbols. There are

l2r + l1 + λ̄MR,dir randomly generated symbols. Thus, the first condition is fulfilled,

i.e., H(E) ≤ H(R) where E and R are the random variables corresponding to the eaves-

dropper’s observation and the randomly generated symbols, respectively. It remains to

prove that H(R | U(s),E) = 0. Without loss of generality, it can be assumed that the

global repairs are performed in the first group which is observed in an l2-manner by the

eavesdropper. The global repair set ∆glob is chosen in such a way that it overlaps as

much as possible with the static eavesdropper observations E1 and Esto
2 . Since the local

encoding is MDS, the punctured local encoding matrix A|∆glob
= diag(A1, . . . ,Ag)|∆glob

has rank k. The eavesdropped information can be summarized in the matrix Mhmin
joint .

Thus, we have

A|∆glob
DhminMhmin

joint︸ ︷︷ ︸
=:Ejoint

c∆glob
= eE ,

where c∆glob
represents the set of code symbols after the first encoding step with a skew

Reed-Solomon code which yields a linearized Reed-Solomon code with the column mul-

tiplier matrix Dhmin . The eavesdropped symbols are denoted by eE . Since A|∆glob
and
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6.3 Secrecy Capacity for Forwarded Global Repair

Dhmin have full rank k, the matrix Ejoint has the same rank as Mhmin
joint which is bounded

by rank(Ejoint) = rank(Mhmin
joint) = l2r+ l1+ λ̄MR,dir ≤ k by Lemma 6.1. The matrix Ejoint

can be transformed in the domain of the coefficients of the encoding skew polynomial by

Definition 3.17 yielding

Ejoint(V
σ
k (b))

−1f = eE(V
σ
k (b))

−1,

where f denotes the coefficients of the encoding skew polynomial F . The matrixEjoint(V
σ
k (b))

−1

gives l2r + l1 + λ̄MR,dir independent constraints on the polynomial coefficient. Together

with the k(s)dir coefficients of the information symbols we have k constraints on k coef-

ficients. It remains to show that the k constraints are linearly independent. The k(s)dir

coefficients are known and can therefore be written as a row with one nonzero entry

expanding the matrix Ejoint(V
σ
k (b))

−1. If the Vandermonde matrix (Vσ
k (b))

−1 is punc-

tured at k(s)dir columns, it still has rank k − k(s)dir due to its structure. Multiplied with

Ejoint the overall rank of Ejoint(V
σ
k (b))

−1 is therefore still k− k(s)dir = l2r+ l1 + λ̄MR,dir.

Thus, the system of equations has enough linearly independent equations to determine

the randomly generated symbols k− k(s)dir and H(R | U(s),E) = 0 holds. This shows that

the bound from 6.1 can be achieved with equality.

6.3 Secrecy Capacity for Forwarded Global Repair

Before quantifying of the secrecy capacity given a forwarded global repair in the pres-

ence of an (l1, l2)-eavesdropper, some preliminary considerations should be made. In the

following, the forwarded global repair is only considered for l2 = 1.

First, note that the secrecy capacity is only decreased if an eavesdropper is observing

a group in an l2-manner, where the global repair is not performed, which is formulated

in the following proposition.

Proposition 6.8. Consider a DSS with g groups. Let l2 = 1 be in the m-group where

global erasure occurs. The eavesdropper is able to read the node before the erasure occurs.

Then, the eavesdropper will not gain any new knowledge within the repair.

Proof. In the corresponding forwarding tuple, the m-th group is by Definition 5.4 at the

very end. Thus it receives one symbol which is the contribution of the other groups in

∆glob to the repair process. The repair of the j-th node is characterized by

c
(m)
j = Lm(β

(m)
j am)β

(m)
j +

∑
i∈G\{m}

Li(
β
(m)
j am)β

(m)
j︸ ︷︷ ︸

xrx

.
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6 Secrecy Capacity of MR-LRCs

The eavesdropper receives xrx but the uncertainty of xrx given the symbol that is about

to be repaired c
(m)
j and the contribution of the m-th group to the repair processes is zero,

i.e.,

xrx = c
(m)
j − Lm(β

(m)
j am)β

(m)
j .

Another insight is that the eavesdropper may only gain new knowledge if it is not in

the first group of the forwarding list. By Definition 5.4, the first group of the forwarding

list does not receive any symbol. This means that if the system has only two groups and

one or multiple global repairs are needed, the gain of knowledge given the global repairs

is zero. Forwarded global repair therefore behaves equivalently to direct global repair for

g = 2; see Example 6.1.

For g ≥ 2, only a particular case is considered in this work, so that the result is

comparable to the result of the direct global repair. Let h < r and let the global repairs

only be in one group, so that the forwarding list does not change between different global

repairs. Let l2 = 1 not be located in the first group of the forwarding list.

We now want to be able to find an expression for the upper bound based on the

parameters of the system similarly as for direct global repair in the previous section. As

a starting point (6.5) from Proposition 6.3, establishing an upper bound on the knowledge

that can be gained by an eavesdropper due to global repair, can be used. The idea is to

express the entropies with matrices using Lemma 3.7.

The notation is the same as for direct global repair. Let ME1 represent the symbols

accessed by an eavesdropper in an l1-manner, let MEsto
2

represent the symbols accessed

by an eavesdropper in an l2-manner, let ML represent the symbols sent to the groups

observed by the eavesdropper in an l2-manner and denote by Mjoint the stacked matrix

with all the symbols of MEsto
2

,ME1 and ML. The only difference to the matrices in

Definition 6.1 is that ML is now a matrix of size h× k instead of gh× k.

The stacked matrix Mjoint, representing the joint entropy of all observations of the

eavesdropper, can have at most rank k. If the rank of the matrix Mm
joint is k for m <

h, it means that the eavesdropper has global knowledge after m global repairs. This

observation motivates the following definition.

Definition 6.3. Consider a DSS with g groups, parameters h < r and fixed eavesdropper

parameters l2 ≥ 1, l1. Without loss of generality, it is assumed that h global erasures

occur in the same group and that this group is not observed in an l2-manner. Let hmin

be the minimal number of repairs that need to be performed until either hmin = h or

rank(Mhmin
joint) = k with hmin < h.
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The structure of the matrices stated in Definition 6.1 is now analyzed. The global

repair set ∆glob is chosen to be from the set of nodes, which were not erased. Therefore,

the matrices MEsto
2

and ME1 only have rows with single nonzero entries. The matrix ML

is also slightly different and has the structure

ML =


ℓ
∆glob

1,1 (β
(g)
1 ag) ℓ

∆glob

1,2 (β
(g)
1 ag) · · · ℓ

∆glob

s−1,r(
β
(g)
1 ag) 0 · · · 0

...
...

. . .
...

...
. . .

...

ℓ
∆glob

1,1 (
β
(g)
hminag) ℓ

∆glob

1,2 (
β
(g)
hminag) · · · ℓ

∆glob

s−1,r(
β
(g)
hminag) 0 · · · 0

 ∈ Fhmin×k
qm ,

given that the erasures occur in group g and group s is observed in an l2-manner.

The structure of the matrices can be best illustrated with an example.

c
(1)
1 c

(2)
1 c

(3)
1c

(1)
2 c

(2)
2 c

(3)
2c

(1)
3 c

(2)
3 c

(3)
3
♦♦

Figure 6.3: Illustration of a DSS with g = 3 groups, eavesdropper parameters l1 = 2,
l2 = 1 and two global erasures in the third group.

Example 6.3. Consider a DSS with r = 3, g = 3 and h = hmin = 2. An eavesdropper

is observing the second group in an l2-manner while two global erasures occur in the

third group. The number of l1 eavesdropped nodes is two and both nodes are in the first

group. The forwarding list for the global repair is f = (1, 2, 3). The system is displayed

in Figure 6.3. The vector corresponding to the global repair set ∆glob is(
c
(1)
1 c

(1)
2 c

(1)
3 c

(2)
1 c

(2)
2 c

(2)
3 c

(3)
1

)
.

The following matrices are with respect to this vector. The matrix that corresponds to

the nodes observed in an l2-manner is

MEsto
2

=

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

 .

The matrix corresponding to the l1 nodes that are observed in addition is

ME1 =

(
1 0 0 0 0 0 0

0 1 0 0 0 0 0

)
,
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and

M1
L =

(
β
(3)
2 0

0 β
(3)
3

)(
ℓ
∆glob

1,1 (b
(3)
2 ) ℓ

∆glob

1,2 (b
(3)
2 ) ℓ

∆glob

1,3 (b
(3)
2 ) 0 0 0 0

ℓ
∆glob

1,1 (b
(3)
3 ) ℓ

∆glob

1,2 (b
(3)
3 ) ℓ

∆glob

1,3 (b
(3)
3 ) 0 0 0 0

)

is the matrix corresponding to the symbols that are received by the second group for

global repairs in the third group. Thus, the matrix Mjoint has the form

Mjoint = D



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

ℓ
∆glob

1,1 (b
(3)
2 ) ℓ

∆glob

1,2 (b
(3)
2 ) ℓ

∆glob

1,3 (b
(3)
2 ) 0 0 0 0

ℓ
∆glob

1,1 (b
(3)
3 ) ℓ

∆glob

1,2 (b
(3)
3 ) ℓ

∆glob

1,3 (b
(3)
3 ) 0 0 0 0


with

D = diag(1, 1, 1, 1, 1, β
(3)
2 , β

(3)
3 ).

By Equation (6.5) and Lemma 3.7, λMR,for can be bounded from above by

λMR,for ≤ H(E1,E
sto
2 ,Erep

2 )−H(E1)−H(Esto
2 ) = rank(Mjoint)− rank(ME1)− rank(MEsto

2
),

since the matrices Mjoint,MEsto
2

and ME1 represent E = (E1,E
sto
2 ,Erep

2 ), Esto
2 and E1,

respectively.

The rank of the matrix Mjoint is

rank(Mjoint) = 6.

this can be derived by applying Gaussian elimination yielding

M′
joint = D



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 ℓ
∆glob

1,3 (b
(3)
2 ) 0 0 0 0

0 0 ℓ
∆glob

1,3 (b
(3)
3 ) 0 0 0 0


.

Each row with only a single one contributes with 1 to the rank whereas the two last rows
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are linearly dependent which yields rank(M′
joint) = 6. For the matrices MEsto

2 and ME1 ,

it holds that rank(MEsto
2 ) = 3 and rank(ME1) = 2. Overall, we have

λMR,for ≤ rank(Mjoint)− rank(ME1)− rank(MEsto
2

) = 6− 2− 3 = 1.

This means that the secrecy capacity of the DSS using forwarded global repair is

decreased by 1.

With this example in mind, a general expression for the secrecy capacity decrease

λMR,for can be derived.

Lemma 6.2 (Forwarded global repair - secrecy capacity upper bound). Consider

a DSS with g groups, parameters h < r and an eavesdropper with l2 = 1, l1. Without loss

of generality, it is assumed that the global erasures occur in one group, which is not the

group observed by the eavesdropper in an l2-manner. Let hmin be the minimal number of

global repairs as defined in Definition 6.3. The secrecy capacity decrease in the presence

of forwarded global repairs λMR,for is upper bounded by

λMR,for ≤ rank(Mhmin
joint)− l2r − l1 =: λ̄MR,for.

For forwarded global repair, it holds that

λ̄MR,for = min(hmin,
∑
j∈Gup

(r − ej)). (6.9)

Proof. The upper bound λ̄MR,for can be deduced from Equation (6.5). The proof focuses

on showing that (6.9) holds.

Consider the matrix Mhmin
joint ∈ F(r+l1+hmin)×k

qm . We now make the assumption that the

nodes in E1 are, without loss of generality, nodes from ∆glob, i.e., |E1 ∩ ∆glob| = l1.

For the derivations, it does not make a difference where the l1 observed nodes are and

we could simply reorder them such that the condition is fulfilled and the parameters

are still the same. By Gaussian elimination, the matrix has l2r + l1 rows that only

have a single one as an entry. These rows contribute l2r + l1 to the rank similarly to

Example 6.3. The rows with the global repair symbols, that are left after the elimination,

consist of evaluations of polynomials at a P-independent set of points where the structure

is the same as in Lemma 3.3. By this lemma, the submatrix has full rank with size

hmin × (
∑

j∈Gup
r − ej), i.e., the rows are linearly independent. Thus, the overall rank of
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Mhmin
joint is rank(Mhmin

joint) = l2r + l1 +min(hmin,
∑

j∈Gup
(r − ej)) and we have

λ̄MR,for = rank(Mhmin
joint)− l2r − l1 = min(hmin,

∑
j∈Gup

(r − ej)).

Example 6.3 can now also be verified with Equation (6.9). For the considered DSS

and eavesdropper parameters, we have

λ̄MR,for = min(2, (3− 2)) = min(2, 1) = 1

which is in accordance with the derivations.

At the end of this section, the secrecy capacity for DSSs is stated and it is shown that

Construction 6.1 achieves the capacity with equality as seen before for the direct global

repair (Theorem 6.1).

Theorem 6.3 (Forwarded global repair - secrecy capacity). Consider a DSS with

g groups, parameters h < r and an eavesdropper with l2 = 1, fixed l1 such that l2r+l1 ≤ k.

Without loss of generality, it is assumed that the global erasures occur in the same group,

which, furthermore, is not observed by the eavesdropper in an l2-manner. Let the l1-

observations of the eavesdropper be distributed in such a way that |E1 ∩∆glob| = l1. Let

hmin be the minimal number of global repairs as defined in Definition 6.3. The secrecy

capacity for forwarded global repair is

k(s)for = k − (l2r + l1)−min

hmin,
∑
j∈Gup

r − ej

 . (6.10)

Proof. It follows from Lemma 6.2 that the right hand side of (6.10) is an upper bound.

The proof is done by giving a construction that achieves equality in (6.10).

Theorem 6.4. Construction 6.1 is information-theoretically secure against an (l1, l2)-

eavesdropper and achieves the secrecy capacity k(s)for = k − k(e) with k(e) = (l2r + l1 +

λ̄MR,for) from Theorem 6.3 if forwarded global repair is used.

Proof. To prove secrecy of the coding scheme, the secrecy lemma (Lemma 3.1) is used.

An (l1, l2)-eavesdropper can observe at most l2r + l1 + λ̄MR,for symbols. There are l2r +

l1+ λ̄MR,for randomly generated symbols. Thus, the first condition is fulfilled, i.e., H(E) ≤
H(R) where E and R are the random variables of the eavesdropper’s observation and the

randomly generated symbols, respectively. It remains to prove that H(R | U(s),E) =
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0. Since the local encoding is MDS, the punctured local encoding matrix A|∆glob
=

diag(A1, . . . ,Ag)|∆glob
has rank k. The eavesdropped information can be summarized in

the matrix Mhmin
joint . Thus, we have

A|∆glob
DhminMhmin

joint︸ ︷︷ ︸
=:Ejoint

c∆glob
= eE

where c∆glob
represents the set of code symbols after the first encoding step with a skew

Reed-Solomon code which yields a linearized Reed-Solomon code with the column mul-

tiplier matrix Dhmin . The eavesdropped symbols are denoted by eE . Since A|∆glob
and

Dhmin have rank k and are therefore full rank, the matrix Ejoint has the same rank as

Mhmin
joint which is bounded by rank(Ejoint) = rank(Mhmin

joint) = l2r + l1 + λ̄MR,for ≤ k by

Lemma 6.2. The matrix Ejoint can be transformed in the domain of the coefficients of

the encoding skew polynomial by Definition 3.17 yielding

Ejoint(V
σ
k (b))

−1f = eE(V
σ
k (b))

−1,

where f denotes the coefficients of the encoding skew polynomial F . The matrixEjoint(V
σ
k (b))

−1

gives l2r + l1 + λ̄MR,for independent constraints on the polynomial coefficient. Together

with the k(s)for coefficients of the information symbols we have k constraints on k coef-

ficients. It remains to show that the k constraints are linearly independent. The k(s)for

coefficients are known and can therefore be written as a row with one nonzero entry

expanding the matrix Ejoint(V
σ
k (b))

−1. If the Vandermonde matrix (Vσ
k (b))

−1 is punc-

tured at k(s)for columns, it still has rank k − k(s)for due to its structure. Multiplied with

Ejoint the overall rank of Ejoint(V
σ
k (b))

−1 is therefore still k− k(s)for = l2r+ l1 + λ̄MR,for.

Thus, the system of equations has enough linearly independent equations to determine

the randomly generated symbols k− k(s)for and H(R | U(s),E) = 0 holds. This shows that

the bound from 6.2 can be achieved with equality.

6.4 Comparison of Direct and Forwarded Global Repair

In this short section, the secrecy capacities of DSSs with direct and forwarded global

repair from Theorem 6.1 and Theorem 6.3 are briefly compared.

To have comparable parameters, it is assumed that l2 = 1 and h < r since then in both

cases only one group is observed in an l2-manner. The two capacities for the parameters

are then
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k(s)dir = k − (r + l1)− λMR,dir,

k(s)for = k − (r + l1)− λMR,for,

and the difference between them is

λMR,dir−λMR,for =

([
g∑

i=1

min(hmin,dir, r − ei)

]
− hmin,dir

)
−min

hmin,for,
∑
j∈Gup

r − ej

 .

It is important to point out that hmin,for and hmin,dir are not necessarily the same, since the

matrices Mjoint for forwarded and direct global repair are not the same and therefore not

necessarily have rank k for the same number of global repair given the same parameters.

For a comparison, let us assume that the parameters of the DSS and the eavesdropper

are chosen such that hmin,for = hmin,dir = h. The following example shows the differences

for a set of parameters.

Example 6.4. Consider a DSS with g = 4, r = 3 and h = 2. An eavesdropper is

observing only the second group in an l2-manner, i.e., l2 = 1 and l1 = 0. The system,

which is equivalent for forwarded and direct global repair, is illustrated in Figure 6.4.

The secrecy capacity decrease in such a system would be

λMR,for = min

h,
∑
j∈Gup

r − ej

 = min(2, 3) = 2

for forwarded global repair, and

λMR,dir =

([
g∑

i=1

min(h, r − ei)

]
− h

)
= min(2, 3)+min(2, 0)+min(2, 3)+min(2, 3)−2 = 4

for direct global repair. Thus, an eavesdropper would get twice as many independent

symbols for the considered system when it is using direct global repair instead of forwarded

global repair.

c
(1)
1 c

(2)
1 c

(3)
1 c

(4)
1c

(1)
2 c

(2)
2 c

(3)
2 c

(4)
2c

(1)
3 c

(2)
3 c

(3)
3 c

(4)
3

Figure 6.4: Illustration of a DSS with g = 4 groups and eavesdropper parameters l1 = 0,
l2 = 1. The system has a different secrecy capacity for direct global repair
and forwarded global repair.

Intuitively, we see that for l2 = 1, l1 = 0 and g ≥ 3, it holds that λMR,for < λMR,dir.
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While the eavesdropper gets at most h linearly independent symbols during the global

repairs in a forwarded repair scheme, no matter how many groups there are, this looks

different for the direct repair, where the number of symbols that the eavesdropper gets,

during the global repairs, increases with the number of groups.

It can be concluded that the forwarded global repair has a higher secrecy capacity

than the direct global repair for the considered constraints. However, there are also other

factors to be compared when it comes to implementing global repair on a system. The

forwarded global repair might have a larger latency than the direct global repair since

the groups, except for the first group, have to wait to send their contribution to the next

group until receiving the contribution from the previous group to the global repair. With

a large number of groups and the inter-rack communication being the bottleneck, this

might be a serious issue.
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7.1 Summary

The secrecy capacity of distributed storage systems (DSSs) with locally repairable codes

(LRCs) having maximal recoverability was investigated. We considered the threat of an

(l1, l2)-eavesdropper, which belongs to the class of passive attacks. The eavesdropper can

read some l1 nodes, and read all the nodes of additional l2 groups while also being able

to read the downloaded symbols for repair of these groups. Given an (l1, l2)-eavesdropper

and optimal LRCs, a secrecy capacity, i.e., the file size which can be stored secretly on the

system without revealing any information to the eavesdropper, was derived in [RKSV14].

The thesis links to this work with the goal to derive a secret file size for MR-LRCs, which

are constructed as suggested in [MPK19].

Crucial for the construction of MR-LRCs are skew polynomials. Besides the recapitu-

lation of important properties of skew polynomials in the Appendix A and codes that can

be constructed using skew polynomials, two known concepts from conventional polynomi-

als are adapted for skew polynomials. The first concept is secret sharing as described in

Section 3.1. The secret sharing scheme with skew polynomials, described in Section 3.6,

has no advantages compared to secret sharing with conventional polynomials. In fact,

for a special parameter choice it recovers the conventional secret sharing. However, it

is useful to prove the secrecy of LRC constructions that involve secret sharing such as

Construction 4.2. This construction is a modification of Construction 4.1 presented in

[RKSV14] but requiring smaller field sizes. However, it still does not take global repairs

into account.

When taking them into account, the first insight was that a nonzero capacity is only

possible if the system has a hierarchical structure. Maximal recoverability means that

besides the local erasure correction capability, that is determined by the local code, the

system has global parities to repair additional erasures that cannot be handled by the local

code. A hierarchical structure allows to distribute such a global repair over the groups of

the system. If this were not possible, the single node, which is repaired globally, would

acquire global knowledge to repair itself. In the presence of an eavesdropper with l2 ≥ 1,

the secrecy capacity would therefore be zero. To resolve this problem, local polynomials
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were introduced. Their sum returns the global encoding polynomial, i.e., for the encoding

polynomial P , it holds that

P =

g∑
i=1

Li

for a DSS with g groups and local polynomials Li. The idea of the local polynomial Li

is that it vanishes on the nodes that contribute to the global repair, i.e., the nodes that

are in the global repair set ∆glob, but that are not in the i-th group. Knowing the global

repair set ∆glob, the local polynomials can be generated by Newton interpolation.

The easiest way to perform a global repair is the direct global repair. Each group

sends its contribution, i.e., the evaluation of the local polynomial at the code locator

that needs repair, directly to the group with the erasure. If an eavesdropper observes

the group where the global repair is performed in an l2-manner, the secrecy capacity is

further decreased. The information revealed to the eavesdropper, besides the static (l1, l2)

eavesdropped nodes, can be upper-bounded by representing all the eavesdropped symbols

in a matrix with respect to a basis representing the information vector (see Lemma 3.7

and Example 3.8). It turns out that choosing the global repair set ∆glob as a basis is

beneficial for the derivations of the secrecy capacity. As a result, the secrecy capacity for

an MR-LRC is

k(s)dir = k − (l2r + l1)−

[(
g∑

i=1

min(hmin, r − ei)

)
− hmin

]
,

given the assumption that h < r. Otherwise for h ≥ r, the secrecy capacity is zero.

A construction which shows the tightness of the upper bound is given. It essen-

tially relies on the same secret-sharing-based approach given in [RKSV14], and seems

to be a universal approach to the given problem. Here again, representing the eaves-

dropped information in a matrix is very useful to prove secrecy using the secrecy lemma

(Lemma 3.1).

Another way to perform the global repair, forwarded global repair, is also analyzed

but only for a special choice of parameters. For h < r and l2 = 1, the secrecy capacity,

which can be derived with the same ideas as for the direct global repair, is

k(s)for = k − (l2r + l1)−min

hmin,
∑
j∈Gup

r − ej

 .

Therefore, it seems to have a better secrecy compared to direct global repair. This

coincides with the intuition since the eavesdropper can only observe one symbol for each

global repair instead of g − 1 symbols.
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7.2 Outlook

It would be very interesting to investigate the secrecy capacity of an MR-LRC with

forwarded global repair further. However, the analysis of the secrecy capacity for more

general parameters seems to be tricky. For h ≥ r, the forwarding list changes for global

repairs from different groups. For l2 ≥ 2, the knowledge gain is also a function of their

position in the forwarding list. Nevertheless, the method of representing the symbols

known to the eavesdropper in a matrix might still work for more general parameters.

The idea of using linearized Reed-Solomon codes or more generally skew polynomials

for designing MR-LRCs is rather new. Therefore, a lot of interesting questions arise.

One aspect that has not yet been investigated, to the best of our knowledge, is the

performance of MR-LRCs using skew polynomials compared to already implemented

LRCs. To compare the performance, the skew arithmetic would have to be efficiently

implemented in software, such as ceph [WBM+06], that is used to manage DSSs. However,

the downside of applying MR-LRCs is that the overhead of updating the global parities

with each adjustment of the stored data might be too large compared to the gain of the

possibility to perform a global repair in the unlikely event of too many failures.
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Appendix A

A.1 Skew Polynomials

The ring of skew polynomials is a generalization of the ring of conventional polynomi-

als. The addition of two skew polynomials and conventional polynomials, for example,

is the same. The main difference is that the product of two skew polynomials is not

commutative.

Skew polynomials were first studied by Ore in [Ore33]. In the following, they are

examined and their properties are summarized. The introduction and notation in this

section follows [MPSK22].

Let

P =

{
d∑

i=0

Fix
i

∣∣∣∣∣ d ∈ N0, Fi ∈ Fqm , for all i ∈ {0, 1, . . . , d}

}
be the set of polynomials in the variable x with coefficients in Fqm .

In P addition of two polynomials and the multiplication of a scalar on the left with a

polynomial is defined as follows. For two polynomials

F = F0x
0 + F1x

1 + · · ·+ Fdx
d ∈ P

G = G0x
0 +G1x

1 + · · ·+Gdx
d ∈ P

with d ∈ N, Fi, Gi ∈ Fqm for i ∈ {0}∪ [d] and a scalar a ∈ Fqm , F +G and aF are defined

as follows

F +G = (F0 +G0)x
0 + (F1 +G1)x

1 + · · ·+ (Fd +Gd)x
d ∈ P,

aF = (aF0)x
0 + (aF1)x

1 + · · ·+ (aFd)x
d ∈ P.

(A.1)

Thus, skew polynomials and conventional polynomials behave identically with respect to

addition and multiplication with a scalar on the left.

Define the degree of a polynomial F =
∑d

i=0 Fix
i ∈ P with Fd ̸= 0 as deg(P ) = d

and deg(F ) = −∞ for F = 0. Since the addition of two polynomials behaves as with
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conventional polynomials it holds that

deg(F +G) ≤ max{deg(F ),deg(G)} (A.2)

for F,G ∈ P. If deg(F ) ̸= deg(G), then deg(F +G) = max{deg(F ), deg(G)}. In [Ore33],

it is shown that a product in P turns P into a ring with

deg(FG) = deg(F ) + deg(G) (A.3)

for all P,Q ∈ P and multiplicative identity 1 = x0 where xi+j = xixj , ∀i, j ∈ N0, if and

only if,

xa = σ(a)x+ δ(a) (A.4)

for all a ∈ Fqm with the automorphism σ: Fqm −→ Fqm (see Definition B.2) and the

σ-derivation δ: Fqm −→ Fqm (see Definition B.3). Without loss of generality [MP17], the

σ-derivation δ can be set to zero: δ(a) = 0 for all a ∈ Fqm . The field automorphism σ is

in the following chosen as

σ(a) = aq, ∀ a ∈ Fqm .

As a result, the i-th composition of σ is

σi(a) = σ(σ(· · ·σ(a)))︸ ︷︷ ︸
i times

= aq
i
,

xia = σi(a)x = aq
i
x.

(A.5)

Definition A.1 (Skew polynomials [MPSK22, Def. 2.1]). The set P with multiplica-

tion as in (A.4) (here δ(a) = 0) and with addition as in (A.1) is called the ring of skew

polynomials denoted by Fqm [x;σ]. Its elements are called skew polynomials.

For σ being the identity automorphism, i.e., σ(a) = a, skew polynomials coincide with

regular, conventional polynomials over finite fields namely Fqm [x]. This is for instance

the case if the extension degree of the field is m = 1.

Example A.1. Consider the field Fqm = F4 with q = 2 and m = 2. Therefore, F4[x;σ]

has the automorphism σ(a) = a2 for all a ∈ {0, 1, ω, ω̄} as defined in (1.1) with

σ(0) = 0,

σ(1) = 12 = 1,

σ(ω) = ω2 = ω̄,

σ(ω̄) = ω̄2 = ω.
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To illustrate the polynomial multiplication, consider F = ω + ω̄x + x2 ∈ F4[x;σ] and

G = ω̄ + ωx ∈ F4[x;σ] then

FG = (ω + ω̄x+ x2)(ω̄ + ωx)

= (ω + ω̄x+ x2)ω̄ + (ω + ω̄x+ x2)ωx

= ωω̄ + ω̄xω̄ + x2ω̄ + ωωx+ ω̄xωx+ x2ωx

= 1 + x+ ω̄x2 + ω̄x+ ωx2 + ωx3

= 1 + (1 + ω̄)x+ (ω̄ + ω)x2 + ωx3

= 1 + ωx+ x2 + ωx3,

whereas
GF = (ω̄ + ωx)(ω + ω̄x+ x2)

= ω̄(ω + ω̄x+ x2) + ωx(ω + ω̄x+ x2)

= ω̄ω + ω̄ω̄x+ ω̄x2 + ωxω + ωxω̄x+ ωxx2

= 1 + ωx+ ω̄x2 + x+ ω̄x2 + ωx3

= 1 + (ω + 1)x+ (ω̄ + ω̄)x2 + ωx3

= 1 + ω̄x+ ωx3.

This shows that multiplication in F4[x;σ] is in general not commutative.

For the division of skew polynomials, the non-commutativity implies that there is a

difference between division on the left and on the right. In this work, only division on

the right is considered. For the division, the following result was given in [Ore33].

Theorem A.1 (Euclidean division [Ore33, Sec. 2]). Given F,G ∈ Fqm [x;σ] with G ̸=
0, there exists a unique decomposition such that

F = QG+R

with Q,R ∈ Fqm [x;σ] and deg(R) < deg(G). Q is called the quotient and R is called the

remainder.

Proof. The first part is to prove the existence of the polynomials Q and R.

Case 1: F = 0, then the proposition is true for Q = R = 0.

Case 2: Suppose deg(F ) < deg(G), then the proposition is true for Q = 0 and R = F .

Case 3: If deg(F ) ≥ deg(G), the existence of the decomposition can be shown by induction

on the degree of F .

I. If deg(F ) = 0, then also deg(G) = 0. Hence F = a ∈ Fqm and G = b ∈ Fqm . The

theorem is true for Q = ab−1 and R = 0.
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II. Now it is assumed that the proposition is true for deg(F ) < n and it must be shown

that the proposition then also holds for deg(F ) = n. Let F = Fnx
n + · · · + F1x + F0 ∈

Fqm [x;σ] and G = Gmxm + · · · + G1x + G0 ∈ Fqm [x;σ] be the considered polynomials

with Fn ̸= 0, Gm ̸= 0 and m ≤ n. Multiply the divisor G by Fnσ
n−m(Gm)−1xn−m to

obtain

Fnσ
n−m(Gm)−1xn−mG = Fnσ

n−m(Gm)−1xn−m(Gmxm + · · ·+G1x+G0)

= Fnx
n + Fnσ

n−m(Gm)−1xn−mGm−1x
m−1 + · · ·+ Fnσ

n−m(Gm)−1xn−mG0

= Fnx
n + Fnσ

n−m(Gm)−1σn−m(Gm−1)x
n−1 + · · ·+ Fnσ

n−m(Gm)−1σn−m(G0)x
n−m.

The leading term of this polynomial is identical to the one of F . Therefore,

F − Fnσ
n−m(Gm)−1xn−mG

is a polynomial of degree less than n.

Now either Case 1 applies for F − Fnσ
n−m(Gm)−1xn−mG = 0 or given the hypothesis,

there exist polynomials Q′ and R such that

F − Fnσ
n−m(Gm)−1xn−mG = Q′G+R

with deg(R) < deg(G). F can then be written as

F = (Fnσ
n−m(Gm)−1xn−m +Q′)G+R

with deg(R) < deg(G). Thus, the proposition holds with Q = Fnσ
n−m(Gm)−1xn−m +Q′

when deg(F ) = n, which completes the induction and shows that Q and R exist for any

divided F and any divisor G.

The second part is to prove that Q and R are unique. Suppose that there are two

decompositions with

F = QG+R

and

F = Q̃G+ R̃

with deg(R) < deg(G) and deg(R̃) < deg(G). Then it would hold that

QG+R = Q̃G+ R̃

or

(Q− Q̃)G = R̃−R. (A.6)
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If Q− Q̃ ̸= 0, then deg((Q− Q̃)G) ≥ deg(G). But given the assumption that the degrees

of R and R̃ are strictly less than the degree of G, (A.6) can only hold for Q − Q̃ = 0,

which is a contradiction. Therefore, Q − Q̃ = 0 and as a result also R̃ − R = 0 holds

which means that Q = Q̃ and R = R̃. Thus, the polynomials are unique.

The induction step in the proof uses the Euclidean algorithm for long division which

is illustrated in the following example.

Example A.2. Consider the skew polynomials from Example A.1, F = x2 + ω̄x + ω ∈
F4[x;σ] and G = ωx + ω̄ ∈ F4[x;σ]. A long division is performed to calculate quotient

and remainder:

The first step is to calculate F2σ(G1)
−1x = 1 ·σ(ω)−1x = ωx which is the first and, in

this case also, only summand of Q. The calculations are shown in the following division

table.

(x2+ω̄x +ω)÷(ωx+ ω̄) = ωx+
ω

ωx+ ω̄
−(x2+ω̄x)

0 +ω

− 0

ω

Thus, we can write

F = QG+R = (ωx)(ωx+ ω̄) + ω

which can be verified by the reader.

Another operation that is different compared to conventional polynomials is the poly-

nomial evaluation. It is not defined by simply “plugging” a value in, i.e., F (a) =
∑n

i=0 Fia
i

with a ∈ Fqm , but defined by forcing a remainder theorem as suggested by Lam and Leroy

in [LL88].

Theorem A.2 (Remainder theorem). Given a skew polynomial F ∈ Fqm [x;σ] and an

element a ∈ Fqm, it holds that F (a) is the only element in Fqm such that there exists a

skew polynomial Q ∈ Fqm [x;σ] fulfilling

F = Q · (x− a) + F (a). (A.7)

For F (a) = 0, F is said to be a left-multiple of x− a.

From the Euclidean division (Theorem A.1) it follows directly that there exists a

unique F (a) which is an element in Fqm since it has degree 0 (deg(R) < deg(G)). This

fact gives the motivation to define the evaluation of a skew polynomial as follows.
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Definition A.2 (Evaluation [MPSK22, Def. 2.2]). Given a skew polynomial F ∈ Fqm [x;σ]

and an element a ∈ Fqm , the evaluation of F at a is defined as the remainder of the Eu-

clidean division of F on the right by the skew polynomial x−a ∈ Fqm [x;σ]. The evaluation

is denoted by F (a) ∈ Fqm .

There is another way to calculate the evaluation with an explicit formula which was

given in [LL88, Lem. 2.4].

Theorem A.3. Given an element a ∈ Fqm, define N0(a) = 1 and

Ni(a) = σi−1(a)σi−2(a) · · ·σ(a)a (A.8)

or recursively

Ni+1 = σi(a) ·Ni(a) (A.9)

for all i ∈ N. The evaluation of a skew polynomial F ∈ Fqm [x;σ] of degree d can be

calculated with

F (a) = F0N0(a) + F1N1(a) + · · ·+ FdNd(a). (A.10)

Proof. The theorem will be proven by strong induction on d ≥ 0 and follows the proof

in [MPSK22, Prop. 2.1]. For d = 0, F = F0 it holds trivially. Assume that (A.10) holds

for deg(F ) < d and take F ∈ Fqm [x;σ] with deg(F ) = d. The skew polynomial F can be

written as
F =F0 + F1x+ · · ·+ Fdx

d

=F0 + (F1 + F2x+ · · ·+ Fdx
d−1)(x− a)+

(F1a+ F2xa+ · · ·+ Fdx
d−1a)

=(F1 + F2x+ · · ·+ Fdx
d−1)(x− a)+

(F0 + F1a+ F2σ(a)x+ · · ·+ Fdσ
d−1(a)xd−1)︸ ︷︷ ︸

F̃

.

In the last equality (A.5) is used. The skew polynomial F̃ is of degree less than d. By

the strong induction hypothesis,

F̃ (a) = (F0 + F1a)N0(a) + F2σ(a)N1(a) + · · ·+ Fdσ
d−1(a)Nd−1(a)

= F0N0(a) + F1N1(a) + F2N2(a) + · · ·+ FdNd(a).

With (A.7), F̃ can be written as

F̃ = Q̃(x− a) + F̃ (a)

= Q̃ · (x− a) + F0N0(a) + F1N1(a) + F2N2(a) + · · ·+ FdNd(a)
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with Q̃ ∈ Fqm [x;σ]. Defining

Q = Q̃+ F1 + F2x+ · · ·+ Fdx
d−1 ∈ Fqm [x;σ],

we can write F as

F = Q · (x− a) + F0N0(a) + F1N1(a) + · · ·+ FdNd(a).

By Theorem A.2, the induction step holds which proves (A.10).

An example is given to illustrate the two ways in which the evaluation of a skew

polynomial can be calculated.

Example A.3. Consider again F4 with q = 2 and m = 2 as defined in (1.1) and the

skew polynomial F = ωx2+x+ ω̄ ∈ F4[x;σ]. For the evaluation of F at a = ω, F can be

written as

F = ωx(x− ω) + ω̄

and therefore

F (ω) = ω̄.

The evaluation can also be calculated as follows

F (ω) = ωN2(ω) + 1 ·N1(ω) + ω̄N0(ω) = ωω̄ω + ω + ω̄

= ω + ω + ω̄

= ω̄,

which is the same result.

It is important to note that the evaluation of skew polynomials is not Fq-linear, i.e., for

F ∈ Fqm [x;σ], λ1, λ2 ∈ Fq and a, b ∈ Fqm ,

F (λ1a+ λ2b) ̸= F (λ1a) + F (λ2b)

in general.

Example A.4. Consider the same skew polynomial F = ωx2 + x + ω̄ ∈ F4[x;σ] as in

Example A.3. For this polynomial it holds that

F (ω) = ω̄,

F (ω̄) = ω,

F (1) = 0.
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Obviously, F (ω̄) = F (1 + ω) ̸= F (1) + F (ω) which shows that the evaluation of skew

polynomials is not Fq-linear.

A useful property of skew polynomials is the linearity of the evaluation of two poly-

nomials.

Theorem A.4 (Linearity rule [MPSK22, Prop.2.3]). Given two skew polynomials F,G ∈
Fqm [x;σ], for all scalars a, λ, µ ∈ Fqm it holds that

(λF + µG)(a) = λF (a) + µG(a).

Proof. Follows from the distributive properties of skew polynomials and is left to the

reader.

This means that the evaluation of a sum of polynomials is the sum of their evalu-

ations. For the evaluation of a product (FG)(a), a similar concept is not applicable,

i.e., (FG)(a) ̸= F (a) · G(a). However, there is a rule for the evaluation of the product

of two skew polynomials. It is helpful to first introduce the notion of conjugacy which

is later also needed to explain concepts about the roots of skew polynomials. Conjugacy

for skew polynomials was first introduced in [LL88], [Lam85]. The notation follows the

notation in [GG22] and [MPSK22].

Definition A.3 (Conjugacy). Let a ∈ Fqm and c ∈ F∗
qm . The c-conjugate of a with

respect to the field automorphism σ is defined as

ca = σ(c)ac−1.

The element b is said to be a conjugate of a, with respect to the field automorphism σ,

written b ∼σ a, if there exists some c ∈ F∗
qm such that

b = ca.

For the automorphism σ(a) = aq, it follows that

ca = σ(c)ac−1 = cq−1a.

It also follows that for c ∈ F∗
q ,

ca = a.

Also note that cac = σ(c)a.

Lemma A.1. It holds that y(xa) = yxa.
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Proof. Consider y(xa) with

y(xa)
(a)
= σ(y) · xa · y−1

(b)
= σ(y)

(
σ(x)ax−1

)
y−1

(c)
= σ(yx)a(yx)−1

= yxa,

where (a) and (b) follow from Definition A.3 and (c) holds by 3. of Definition B.2.

Proposition A.1. For a, b ∈ Fqm, ∼σ is an equivalence relation in Fqm.

Proof. For a, b, c ∈ Fqm three properties need to be shown:

1. Reflexivity: a ∼σ a.

2. Symmetry: If a ∼σ b, then b ∼σ a.

3. Transitivity: If a ∼σ b and a ∼σ c, then a ∼σ c.

Reflexivity: For x = 1 ∈ F∗
qm , a ∼σ a since

1a = σ(1)a1−1 = a.

Symmetry: Suppose a ∼σ b with x ∈ F∗
qm such that a = xb. Then it holds that

x−1
a = x−1

(xb) = x−1xb = b,

where Lemma A.1 is applied. Thus, a ∼σ b since b = ya for y = x−1 ∈ F∗
qm .

Transitivity: Suppose a ∼σ b with x ∈ F∗
qm such that a = xb and b ∼σ c with y ∈ F∗

qm

such that b = yc, then

a = xb = x(yc) = xyc,

where Lemma A.1 is applied. So a ∼σ c since a = zc for z = xy ∈ F∗
qm .

Therefore, Fqm is partitioned into distinct classes of the equivalence relation∼σ. These

classes are called conjugacy classes.

Definition A.4 (Conjugacy classes [MPSK22, Def. 2.8]). For a ∈ Fqm , the conjugacy

class with respect to σ is defined as

Cσ(a) = {b ∈ Fqm | b ∼σ a} = {βa ∈ Fqm | β ∈ F∗
qm}.
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With this notion of conjugacy in mind, a product rule for skew polynomials can be

given. It was introduced by Lam and Leroy in [LL88].

Theorem A.5 (Product rule [LL88, Th. 2.7]). Consider F,G ∈ Fqm [x;σ] and an ele-

ment a ∈ Fqm. Denote β = G(a). If β = 0, then

(FG)(a) = 0.

If β ̸= 0, then

(FG)(a) = F
(
σ(β)aβ−1

)
· β = F

(
βa
)
β = F

(
G(a)a

)
G(a). (A.11)

Proof. By Theorem A.2, the skew polynomial G can be written as

G = Q · (x− a) +G(a) (A.12)

with Q ∈ Fqm [x;σ]. If G(a) = 0, then G = Q · (x− a) yielding

FG = F · (Q · (x− a)) = (FQ) · (x− a),

and (FG)(a) = 0, which follows directly from Theorem A.2. Let b = βa = σ(β)aβ−1 such

that

(x− b)β = σ(β)(x− a)

holds. The skew polynomial F can by Theorem A.2 be written as

F = P · (x− b) + F (b) (A.13)

with P ∈ Fqm [x;σ]. Thus, with (A.12) and (A.13), FG can be written as follows

FG = F · (Q · (x− a) +G(a))

= (FQ) · (x− a) + F ·G(a)

= (FQ) · (x− a) + (P · (x− b) + F (b))G(a)

= (FQ) · (x− a) + P · (x− b)β + F (b)G(a)

= (FQ) · (x− a) + P · σ(β)(x− a) + F (b)G(a)

= (FQ+ P · σ(β))(x− a) + F (b)G(a),

and (A.11) follows by Theorem A.2.

This means that the evaluation of a product of skew polynomials is the product of
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the evaluation of the left skew polynomial F at G(a)a multiplied with the evaluation of

the skew polynomial on the right G at a.

A crucial property that is linked to evaluation is Lagrange interpolation. Interpolation

is used to decode Reed-Solomon codes. Since the goal is to define codes that have similar

properties to Reed-Solomon codes but defined over Fqm [x;σ], it is important to under-

stand the differences between conventional polynomials and skew polynomials regarding

interpolation.

Definition A.5 (Lagrange interpolation [MPSK22, Def. 2.3]). It is possible to per-

form Lagrange interpolation in Fqm [x;σ] on the evaluation points a1, . . . , an ∈ Fqm if it

holds that:

For all evaluation values b1, . . . , bn ∈ Fqm, there exists a skew polynomial F ∈ Fqm [x;σ]

with F (ai) = bi, for i ∈ [n].

For regular Reed-Solomon codes it is sufficient to have a set of distinct evaluation

points a1, . . . , an with their corresponding evaluation values b1, . . . , bn to recover the cor-

responding polynomial of degree n − 1. However, for skew polynomials this is more

complex, since the notion of distinctness is not enough as the following example, that

was given in [MPSK22, Ex. 2.8], shows.

Example A.5. Consider F4 with q = 2 and m = 2 as defined in (1.1). Take a1 = 1,

a2 = ω and a3 = ω̄, which are distinct elements of F4. With (A.8) and (A.9), it can be

shown that

Ni(ω̄)ω̄ = Ni(ω)ω +Ni(1)

for all i ∈ N. Therefore, for any skew polynomial F ∈ Fqm [x;σ],

F (ω̄)ω̄ = F (ω)ω + F (1)

which can be deduced from (A.10). If we consider F (a1) = F (1) = b1 and F (a2) =

F (ω) = b2, then F (a3) = F (ω̄) follows directly from F (ω̄)ω̄ = b2ω + b1,

F (a3) = F (ω̄) = b2ω̄ + b1ω

which means that F (a3) is determined by b1 and b2 and can therefore not be chosen

arbitrarily. This means that Lagrange interpolation cannot be performed on the points

a1, a2 and a3 even though they are distinct elements in F4.

For a well defined Lagrange interpolation for skew polynomials, it is crucial to under-

stand how the number of zeros or roots is bounded by the degree of a skew polynomial.

For this reason, the following part deals with zeros of skew polynomials.
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Definition A.6 ([MPSK22, Def. 2.4]). For a skew polynomial F ∈ Fqm [x;σ], the set of

roots or zeros is defined as

Z(F ) = {a ∈ Fqm | F (a) = 0} ⊆ Fqm .

Given a set Ω ⊆ Fqm , the set of skew polynomials vanishing on Ω is defined as

I(Ω) = {F ∈ Fqm [x;σ] | F (a) = 0 ∀a ∈ Ω} ⊆ Fqm [x;σ].

Note that I(Ω) is a left ideal of the ring Fqm [x;σ], which means that

1. I(Ω) is a subgroup of Fqm [x;σ],

2. I(Ω) is closed under inside-outside multiplication from the left,

which mean that
F +G ∈ I(Ω) ∀F,G ∈ I(Ω)

FG ∈ I(Ω) ∀F ∈ Fqm [x;σ] and G ∈ I(Ω).
(A.14)

Theorem A.6 (Minimal skew polynomial [MPSK22, Th. 2.5]). Given a skew poly-

nomial F ∈ Fqm [x;σ], define the the set

[F ] = {HF | H ∈ Fqm [x;σ]}.

Consider a nonempty set Ω ⊆ Fqm. Then, there exists a unique monic skew polynomial

FΩ ∈ Fqm [x;σ] such that

I(Ω) = [FΩ].

This means that a skew polynomial G ∈ Fqm [x;σ] vanishes on Ω if, and only if, G is a

left-multiple of FΩ. The skew polynomial FΩ is called minimal skew polynomial of Ω in

Fqm [x;σ].

Proof. First, the existence of FΩ for a nonempty set Ω is proven by induction on |Ω| ≥ 1

by showing that I(Ω) ̸= ∅. For |Ω| = 1, I(Ω) contains the skew polynomial F = x − a

for Ω = {a}. It is now assumed that I(Ω) ̸= ∅ for |Ω| = n − 1 ≥ 1. Consider Ω =

{a1, a2, . . . , an} ⊆ Fqm with |Ω| = n. It follows from the induction hypothesis that

there exists a skew polynomial G with G ∈ I({a1, a2, . . . , an−1}). There are now two

possibilities for the n-th element an: If G(an) = 0, then G ∈ I(Ω) and I(Ω) is a nonempty

set. Else, set β = G(an) ̸= 0. Then for the skew polynomial

F =
(
x− σ(β)anβ

−1
)
G ∈ Fqm [x;σ],
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it holds that F ∈ I(Ω) by Theorem A.5 and therefore I(Ω) ̸= ∅. Thus, the set I(Ω) is

not empty and it contains a nonzero skew polynomial G ∈ I(Ω) that is monic and of

minimum possible degree among all nonzero skew polynomials in I(Ω). Let F be a skew

polynomial in I(Ω). For F , there exists a decomposition with Q,R ∈ Fqm [x;σ] such that

F = QG+R

with deg(R) < deg(G) by the Euclidean division theorem A.1. It follows that R =

F − QG ∈ I(Ω) (by (A.14)), but with deg(R) < deg(G) and G being the nonzero skew

polynomial of minimum possible degree in I(Ω) this would be a contradiction for R ̸= 0.

Thus R = 0 and F = QG ∈ [G]. If F is also nonzero, monic and of minimum degree

among nonzero skew polynomials in I(Ω), by (A.2) Q = 1 with deg(Q) = 0 and F = G.

It can be concluded that

I(Ω) = [G]

since I(Ω) ⊆ [G] and [G] ⊆ I(Ω), due to I(Ω) being a left ideal. Furthermore, G is unique

and FΩ = G.

Proposition A.2 ([MPSK22, Prop. 2.4]). Given any set Ω ⊆ Fqm, it holds that

deg(FΩ) ≤ |Ω|

with FΩ ∈ Fqm [x;σ] being the minimal skew polynomial in Fqm [x;σ] of the set Ω.

Proof. In the proof of Theorem A.6, it was shown in the first part that there exists

F ∈ I(Ω) with deg(F ) ≤ |Ω|. It can be deduced that deg(FΩ) ≤ deg(F ) ≤ |Ω| since F is

a left multiple of FΩ.

This might be a bit confusing since for conventional polynomials Fqm [x] the degree is

greater or equal than the number of distinct zeros. For skew polynomials there is another

notion of distinctness, P-independence. P-independent means polynomially independent

and was introduced in [Lam85].

Definition A.7 (P-independence). A set Ω is said to be P-independent in Fqm [x;σ] if

deg(FΩ) = |Ω|.

Having this notion in mind, a bound for distinct zeros at a set of P-independent points

exists for skew polynomials. It is similar to the number of distinct zeros of conventional

polynomials that is bounded by its degree.
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Corollary A.1 ([MPSK22, Cor. 2.6]). Let Ω ⊆ Fqm be a set with cardinality |Ω| and
F ∈ Fqm [x;σ] a nonzero skew polynomial vanishing on Ω. The set Ω is P-independent if,

and only if, it holds that

deg(F ) ≥ |Ω|. (A.15)

Proof. Both implications are proven.

=⇒: Suppose Ω is P-independent which means that deg(FΩ) = |Ω| holds. By Theo-

rem A.6, F ∈ [FΩ]. Thus, it can be concluded that

|Ω| = deg(FΩ) ≤ deg(F ).

⇐=: The minimal skew polynomial FΩ vanishes on Ω by definition where F ∈ [FΩ].

From (A.15), it is given that deg(FΩ) ≥ |Ω|. By Proposition A.2, it also holds that

deg(FΩ) ≤ |Ω|. Therefore, deg(FΩ) = |Ω| which means that Ω is P-independent.

For conventional polynomials (σ = Id) P-independence is equivalent to distinctness

which follows directly from the corollary above. P-independence, zeros of a skew polyno-

mial, and minimal skew polynomials are illustrated in the following example.

Example A.6 ([MPSK22, Ex. 2.9]). Consider F4 with q = 2 and m = 2 as defined in

(1.1). Take a1 = 1, a2 = ω and a3 = ω̄ as in Example A.5 and consider the set

Ω = {a1, a2, a3} = {1, ω, ω̄}.

For the set Ω, FΩ = x2 + 1 is the minimal skew polynomial. There is no polynomial of

degree 1 which vanishes on 1 and on ω. Since FΩ can be written as

x2 + 1 = (x+ 1)(x+ 1) = (x+ ω)(x+ ω̄) = (x+ ω̄)(x+ ω),

FΩ ∈ I(Ω). But 1, ω and ω̄ are not P-independent since deg(FΩ) < |Ω|. The same was

shown in Example A.5. The evaluations of a skew polynomial at the points in Ω are

not independent. However, consider Ω̃ = {1, ω}. The minimal skew polynomial is again

FΩ̃ = x2 + 1. Here it holds that deg(FΩ̃) = |Ω̃| which means that Ω̃ is P-independent in

F .

Equipped with the terminology of P-independence, the Lagrange interpolation theo-

rem for skew polynomials can be provided.

Theorem A.7 (Lagrange interpolation [MPSK22, Th. 2.7]).

Let Ω = {a1, a2, . . . , an} ⊆ Fqm be a set with |Ω| = n. The following statements are

equivalent:
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1. The set Ω is P-independent in Fqm [x;σ].

2. Lagrange interpolation, as defined in Definition A.5, can be performed on a1, a2, . . . , an,

i.e., there exists F ∈ Fqm [x;σ] for all b1, b2, . . . , bn ∈ Fqm such that F (ai) = bi for

all i ∈ [n].

3. There exists a unique skew polynomial F ∈ Fqm [x;σ] for all b1, b2, . . . , bn ∈ Fqm

such that deg(F ) < n and F (ai) = bi for all i ∈ [n].

Proof. 1. ⇐⇒ 3. : Let F<n
qm [x;σ] be the set of skew polynomials in Fqm [x;σ] with degree

less than n. Since F<n
qm [x;σ] is a vector space over Fqm of dimension n (follows from (A.1),

(A.2) and (A.3)), a map

ϕ : F<n
qm [x;σ] −→ Fn

qm

can be defined with

ϕ(F ) = (F (a1), F (a2), . . . , F (an))

for all F ∈ F<n
qm [x;σ]. The evaluation map ϕ is linear over Fqm by Theorem A.4. Statement

3. is equivalent to ϕ being bijective. Since ϕ is linear and the dimensions of the domain

and the codomain are equal, i.e., dim
(
F<n
qm [x;σ]

)
= dim

(
Fn
qm
)
= n, ϕ is bijective if, and

only if, ϕ is injective. Now ϕ is injective by definition if, and only if, any nonzero skew

polynomial F ∈ Fqm [x;σ] vanishing in Ω satisfies deg(F ) ≥ n = |Ω|. This is equivalent

to Ω being P-independent by Corollary A.1 and the first part is done.

2. ⇐⇒ 3. : Here only 2. =⇒ is shown since clearly 3. implies 2. Let F ∈ Fqm [x;σ]

such that F (ai) = bi holds for all i ∈ [n]. The Euclidean division theorem (Theorem A.1)

implies that there exist Q,R ∈ Fqm [x;σ] such that

F = Q · FΩ +R

with deg(R) < deg(FΩ). It can be deduced that R(ai) = F (ai) = bi for all i ∈ [n] by the

product rule (Theorem A.5) and the fact that FΩ vanishes on Ω. From Proposition A.2,

it follows that deg(R) < deg(FΩ) ≤ |Ω| = n which shows that 3. holds.

From the above theorem, a corollary follows.

Corollary A.2 ([MPSK22, Cor. 2.8]). Given a P-independent set, any subset of it is

P-independent.

P-independent sets are discussed after introducing Newton interpolation.

The following algorithm is an extension of the classical Newton interpolation algo-

rithm. It provides the minimal skew polynomial as well as the only polynomial that
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fulfills the evaluation constraints given a P-independent set of evaluation points with

corresponding values. The minimal polynomial is constructed in the same way as the

polynomial FΩ in the first part of the proof of Theorem A.6.

Definition A.8 (Newton interpolation [MPSK22, Prop. 2.6]). Choose any n evalu-

ation values b1, . . . , bn ∈ Fqm and let Ω = {a1, a2, . . . , an} ⊆ Fqm be a P-independent set

with |Ω| = n. First, initialize

F1 := x− a1,

G1 := b1,

and then, for i = 2, 3, . . . , n, perform the iteration steps

Fi :=
(
x− σ (Fi−1(ai)) aiFi−1(ai)

−1
)
· Fi−1 =

(
x− Fi−1(ai)ai

)
· Fi−1

Gi := Gi−1 + (bi −Gi−1(ai)) · Fi−1(ai)
−1 · Fi−1

Newton’s algorithm returns the polynomials Fn and Gn which have the following prop-

erties:
Fn(ai) = 0, ∀ i ∈ {1, . . . , n}

Gn(ai) = bi, ∀ i ∈ {1, . . . , n}

where Fn is the minimal skew polynomial of the set Ω and Gn is the only skew polynomial

with degree less than n fulfilling the mentioned evaluation constraints.

In the following example, the Newton interpolation algorithm is illustrated.

Example A.7. Consider F4 with q = 2 and m = 2 as defined in (1.1). Take a1 = 1 and

a2 = ω̄, set Ω = {a1, a2} and let b1 = ω̄ and b2 = ω. Initialize F1 and G1 to

F1 := x+ 1,

G1 := ω̄

as the first step in Newton’s algorithm. The second and only additional step returns

F2 : =
(
x− σ (F1(a2)) a2F1(a2)

−1
)
· F1

=
(
x− σ(ω)ω̄ω−1

)
(x+ 1)

= (x+ 1) · (x+ 1) = x2 + 1

G2 : = G1 + (b2 −G1(a2)) · F1(a2)
−1 · F1

= ω̄ + (ω − ω̄) · ω−1 · (x+ 1)

= ω̄ + ω̄ · (x+ 1) = ω̄x

It can be verified that G2(1) = ω̄ and G2(ω̄) = ω. F2 is the minimal skew polynomial

116



A.1 Skew Polynomials

FΩ = x2 + 1 that was discussed in Example A.5.

It is now of interest for the codes that are making use of skew polynomials to link

conjugacy, zeros and P-independence.

Theorem A.8 ([MPSK22, Th. 2.9]).

Let a, β1, β2, . . . , βn ∈ F∗
qm. The set Ω = {a1, a2, . . . , an} ⊆ Fqm is P-independent with

ai =
βia for i ∈ [n] if, and only if, the elements βi for i ∈ [n] are Fq-linearly independent.

Proof. Please refer to the proof of Theorem 2.9 in [MPSK22].

Theorem A.9 ([MPSK22, Th. 2.10]). Let Ω1,Ω2 ⊆ Fqm be nonempty subsets where no

element in Ω1 is conjugate in Fqm with respect to σ to an element in Ω2 and both sets are

P-independent. Then the union of the sets Ω1 ∪ Ω2 is P-independent.

Proof. Let Ω1 = {a1, a2, . . . , an} and Ω2 = {b1, b2, . . . , bm} with cardinality |Ω1| = n and

|Ω1| = m and define l = n+m. The proof of the theorem is done by induction on l ≥ 2

since n ≥ 1 and m ≥ 1. For l = 2, i.e., Ω1∪Ω2 = {a, b}, a and b are always P-independent

if they are distinct elements in Fqm . Consider F{a} = x − a. Since F{a}(b) = b − 1 ̸= 0,

the skew polynomial that vanishes on a and b must have degree greater or equal than 2,

i.e., deg(F{a,b}) ≥ 2. Thus, by Corollary A.1 the set Ω1 ∪ Ω2 is P-independent. It is now

assumed that the result holds whenever n +m < l, with l > 2 and it is in the following

shown that the result follows for n+m = l. Since l > 2 either n or m is greater than 1.

Without loss of generality it is assumed that m > 1 and therefore

Ω̃2 = {b1, b2, . . . , bm−1}

is not empty. Since Ω2 is P-independent, Ω̃2 is as well P-independent by Corollary A.2.

The set Ω̃ = Ω1 ∪ Ω̃2 is P-independent by the induction hypothesis. From the Newton

interpolation (Definition A.8), it is known that there exist β1, β2, . . . , βn ∈ F∗
qm such that

FΩ̃ =
(
x− βnan

)
· · ·
(
x− β1a1

)
FΩ̃2

.

Now assume that Ω = Ω1 ∪ Ω2 is not P-independent. Therefore, deg(FΩ) ≤ l − 1 which

follows from Corollary A.1. By Theorem A.6, FΩ̃ is a left multiple of FΩ and deg(FΩ̃). It

follows that FΩ = FΩ̃. For FΩ̃2
, it holds that FΩ̃2

(bm) ̸= 0 because if FΩ̃2
(bm) = 0, FΩ̃2

would be left multiple of FΩ2 but deg(FΩ2) = m while deg(FΩ̃2
) = m − 1. In addition,

FΩ(bm) = 0 since bm ∈ Ω. Thus, it can be deduced that there exist ξ ∈ F∗
qm and j ∈ [n]

such that
ξbm − βjaj = 0

117



Appendix A

by Theorem A.5. This means that bm is conjugate to aj in Fqm with respect to σ which

contradicts the hypothesis. Therefore, Ω = Ω1 ∪ Ω2 is P-independent.

Theorem A.8 and Theorem A.9 together give the following structure theorem for

P-independent sets which is directly applied later for linearized Reed-Solomon codes.

Theorem A.10 ([MPSK22, Th. 2.11]). Let Ω be a nonempty set that is a disjoint union

of subsets of conjugacy classes, i.e., for pairwise non-conjugate elements a1, a2, . . . , ag,

let

Ω = Ω1 ∪ Ω2 ∪ . . .Ωg

with i ∈ [g] and

Ωi = Ω ∩ Cσ(ai) ̸= ∅.

Denote the cardinality of Ωi as ni = |Ωi| = ni, for i ∈ [g]. Let the elements in Ωi be of

the form

b
(i)
j = β

(i)
j ai

for some β
(i)
j ∈ F∗

qm for j ∈ [ni]. The set Ω is P-independent in Fqm [x;σ] if, and only if,

the elements β
(i)
1 , β

(i)
2 , . . . , β

(i)
ni ⊆ Fqm are Fq-linearly independent for each i ∈ [g].

As Fq-linearly independent elements, a basis of Fqm over Fq can be taken. For the

application of the theorem above, it is interesting to study the structure of conjugacy

classes. A simple way to find distinct conjugacy classes is by taking consecutive powers

of a primitive element of Fqm [LMK17].

Theorem A.11 (Conjugacy classes with primitive elements [MPSK22, Th. 2.12]).

Let γ ∈ F∗
qm be a primitive element of Fqm, so that

F∗
qm = {γ0, γ1, γ2, . . . , γqm−2}.

For all a ∈ F∗
qm, the corresponding conjugacy class is

Cσ(a) = {γi(q−1) | 0 ≤ i <
qm − 1

q − 1
} (A.16)

with the cardinality

|Cσ(a)| =
qm − 1

q − 1
. (A.17)

In addition, Cσ(0) = {0} is a special conjugacy class with cardinality 1. Furthermore, the

first q − 1 powers of the primitive element

1, γ, γ2, . . . , γq−2 ∈ Fqm
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are pairwise non-conjugate, i.e., γi ≁σ γj for i ̸= j ∈ [q − 2] ∪ {0}. Moreover, it holds

that

Fqm = Cσ(0) ∪ Cσ(γ
0) ∪ Cσ(γ

1) ∪ . . . ∪ Cσ(γ
q−2), (A.18)

where the union is disjoint. Therefore, Fqm can be divided into q − 1 nonzero conjugacy

classes with respect to σ.

Proof. First, the proof of (A.16) and (A.17) is given where Cσ(0) = {0} with |Cσ(0)| = 1

is trivial. Fix a ∈ F∗
qm . For β ∈ F∗

qm , the elements in Cσ(a) are

βa = βq−1a.

The element β can also be represented by a power of the primitive element, i.e., there

exists an integer i ∈ {0, 1, . . . , qm − 2} such that β = γi. Thus Cσ(a) can be written as

Cσ(a) = {γi(q−1) | 0 ≤ i < qm − 2}.

It holds that γi(q−1)a = a if, and only if, i is multiple of (qm − 1)/(q − 1). Therefore,

i can be restricted to 0 ≤ i < (qm − 1)/(q − 1). Second, the non-conjugacy of the first

q − 1 powers of a primitive element is proven. Assume, to the contrary, that there exist

i, j ∈ [q − 2] ∪ {0} with i ̸= j such that γi ∼σ γj . Thus, γj ∈ Cσ(γ
i) and by (A.16) there

exists a l ∈ [(qm − 1)/(q − 1)− 1] ∪ {0} such that

γj = γi+t(q−1).

This means that γi+t(q−1) can only be a primitive element for t(q−1) = 0 since i, j ≤ q−2,

which is a contradiction. Finally, observe that the disjoint union

Cσ(0) ∪ Cσ(γ
0) ∪ Cσ(γ

1) ∪ . . . ∪ Cσ(γ
q−2) ⊆ Fqm

has the following cardinality

|Cσ(0) ∪ Cσ(γ
0) ∪ Cσ(γ

1) ∪ . . . ∪ Cσ(γ
q−2)| = 1 + (q − 1)

qm − 1

q − 1
= qm,

which shows (A.18).

Example A.8. Consider the field Fqm = F4 with q = 2 and m = 2 as defined in equation

(1.1), where ω is a primitive element of the field. The one conjugacy class besides Cσ(0)

is

Cσ(1) = {1, ω, ω̄}
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with cardinality

|Cσ(1)| =
qm − 1

q − 1
= 3,

which is in accordance to Theorem A.11. The corresponding β
(1)
i for the conjugacy class

Cσ(1) are β
(1)
1 = ω and β

(1)
2 = ω̄ since

ω = β
(1)
1 1 = ω̄1 and ω̄ = β

(1)
2 1 = ω1.

The elements {1, ω} are P-independent as seen in Example A.6.
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B.1 Information Theory

This section summarizes important rules and (in-)equalities that are used throughout the

work. All the following definitions and theorems are taken from [Kra20].

Given a joint entropy of multiple variables H(X1,X2, . . . ,Xn), it holds that

H(X1,X2, . . . ,Xn) = H(X1) + H(X2 | X1) + . . .+H(Xn | X1,X2, . . . ,Xn−1). (B.1)

The joint entropy of two random variables H(X,Y) can be bounded by

max (H(X),H(Y)) ≤ H(X,Y)

with equality if X essentially determines Y or if Y essentially determines X, i.e., X = f(Y)

or Y = f(X) for some function f .

The mutual information I(X;Y) can be written as

I(X;Y) = H(X)−H(X | Y)

= H(Y)−H(Y | X) = I(Y;X)

= H(X) + H(Y)−H(X,Y)

= H(X,Y)−H(X | Y)−H(Y | X).

(B.2)

The conditional mutual information I(X;Y | Z) is upper bounded by

I(X;Y | Z) ≤ min (H(X | Z),H(Y | Z)) (B.3)

following from

I(X;Y | Z) = H(X | Z)−H(X | Y,Z)

= H(Y | Z)−H(Y | X,Z)

and the non-negativity of entropy.
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B.2 Lagrange Interpolation

Lagrange interpolation is a useful tool to recover polynomials given evaluation points and

their corresponding values.

Definition B.1. Given a set of k evaluation points {a0, a1, ..., ak−1} ⊆ K, which are dis-

tinct, i.e., ai ̸= aj for all i ̸= j, and given k corresponding evaluation values {b0, b1, ..., bk−1} ⊆
K, the minimal polynomial fulfilling the constraints p(ai) = bi for all i ∈ [k− 1]∪{0} can

be recovered by

p(x) =

k−1∑
i=0

biℓi(x)

with ℓi(x) defined as

ℓi(x) =
∏

0≤m<k
m̸=i

x− am
ai − am

.

B.3 Automorphism and Derivation

Let K be a field.

Definition B.2. (Automorphism) A map σ : K −→ K is called an automorphism if:

1. σ is bijective,

2. σ is a linear map, i.e., for all a, b ∈ K it holds that σ(a+ b) = σ(a) + σ(b) and

3. σ(ab) = σ(a)σ(b) for all a, b ∈ K.

If σ only fulfills 2. and 3., it is called an endomorphism.

Example B.1. Consider the field Fqm with the Frobenius automorphism σ(x) = xq.

This automorphism fixes a ∈ Fq, i.e., σ(a) = a for all a ∈ Fq. For the field F4 with q = 2

and m = 2, σ fixes F2 = {0, 1}, which can be seen in Example A.1.

Definition B.3. (Derivation) A map δ : K −→ K is called a σ-derivation if:

1. δ is a linear map, i.e., for all a, b ∈ K it holds that δ(a+ b) = δ(a) + δ(b) and

2. δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ K.
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List of Abbreviations

DSS distributed storage system.

GPU global processing unit.

LRC locally repairable code.

LRSC linearized Reed-Solomon code.

MDS maximum distance separable.

MR maximally recoverable.

MR-LRC maximally recoverable locally repairable code.

MSRD maximum sum-rank distance.

NPU node processing unit.

RPU rack processing unit.
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