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Abstract— Criticality measures are essential for autonomous
vehicles to capture the complexity of the surrounding environ-
ment, trigger emergency maneuvers, and verify safety. However,
there is currently no publicly available toolbox that allows
researchers to use or evaluate a large number of criticality
measures on arbitrary traffic scenarios. To address this issue,
we present CommonRoad-CriMe, an open-source toolbox for
measuring the criticality of autonomous vehicles in a unified
framework. Our toolbox covers a wide range of state-of-the-
art criticality measures and provides visualized information to
facilitate debugging and showcasing. Numerical experiments
demonstrate how our toolbox facilitates the comparison of
different criticality measures and the analysis of traffic conflicts.
Our toolbox is available at commonroad.in.tum.de.

I. INTRODUCTION
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Automotive manufacturers must ensure that autonomous
vehicles can recognize and effectively handle unexpected
situations. To achieve this, criticality measures (aka surrogate
indicators or threat assessments) are often used to identify
safety-critical scenarios and validate autonomous driving
systems [1]. A literature review on criticality measures for
autonomous driving can be found in [2]–[6]. For the scope of
this paper, criticality refers to the level of risk for the involved
vehicles with respect to the continuation of a certain traffic
situation [1, Def. 1]. An example of a critical scenario is
shown in Fig. 1. Despite decades of research, the authors are
unaware of any open-source toolbox available for applying
and comparing different criticality measures to a wide range
of scenarios, as addressed by our work.

A. Related Work

Subsequently, we present related works on criticality mea-
sures for advanced driver assistant systems and autonomous
driving as well as existing open-source toolboxes computing
criticality measures.

a) Criticality Measures for Advanced Driver Assistant
Systems and Autonomous Driving: Criticality measures are
primarily developed to objectively determine the behavioral
safety and threat level of autonomous driving systems. For
example, criticality measures are used to validate the safety
of autonomous vehicles through various methods, including
generating safety-critical scenarios [7]–[11], falsifying the
system under test [12], and formally verifying system prop-
erties [1]. For motion planning applications, criticality mea-
sures help to find traffic conflicts, repair unsafe trajectories,
and provide fail-safe solutions [13]–[15].
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Fig. 1: An exemplary critical scenario in which the other traffic participant
(red) cuts into the lane of the ego vehicle (blue) and brakes hard. The
snapshots1show the inside view of the ego vehicle at three time steps.

Model-based and data-driven methods are frequently used
to estimate the criticality of a traffic situation [2], [3].
The criticality is influenced, e.g., by the likelihood and
consequence of a collision or other dangerous situations.
However, due to the large number and variety of existing
criticality measures in the literature, selecting the appropriate
measure for a particular traffic scenario is challenging.

b) Existing Toolboxes with Criticality Measures: There
are several publicly available toolkits that include safety and
criticality measures. For example, the Apollo open platform2

defines a limited number of safety and comfort metrics for
grading simulated scenarios. Meanwhile, the open-source
simulation platform CARLA [16] embeds the responsible-
sensitive safety model [17], which identifies safety-critical
situations. Although these tools emulate real-world driving
environments, they only cover a few criticality measures,
and the overhead required to set up the entire simulation
environment in C++ makes it difficult to include new mea-
sures. Therefore, tools written in easy-to-use programming
languages that cover a wide range of criticality measures are
desired.

B. Contributions

To effortlessly measure and compare the criticality of an
autonomous vehicle, referred to as ego vehicle in the follow-
ing sections, we present the novel CommonRoad Criticality
Measures (CommonRoad-CriMe) toolbox, which:

1) provides a framework in Python with unified notations,
vehicle models, and coordinate systems for criticality
measures;

2) adopts and supplements the categorization of criticality
measures defined in [6];

1The snapshots are created with esmini, see https://github.
com/esmini/esmini.

2https://github.com/ApolloAuto/apollo
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3) is open-source and allows users to easily modify, add,
and compare criticality measures; and

4) offers efficient and reliable computation by bridging to
powerful scenario evaluation tools, such as a drivability
checker [18], a scenario designer [19], a set-based
predictor [20], and a reachability analyzer [21].

The remainder of this work is structured as follows: Sec. II
introduces required preliminaries and definitions. Sec. III
provides an overview and a list of representative measures
in the toolbox. In Sec. IV, we showcase the benefits of
CommonRoad-CriMe with numerical examples. Finally,
Sec. V concludes the paper.

II. PRELIMINARIES

A. System Description

We model the motion of vehicles as discrete-time systems:

xk+1 = fd(xk,uk), (1)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the
input vector, and the index k ∈ N0 maps to a discrete
time step according to tk = k∆t with ∆t being a fixed
time increment. At each time step, the system is bounded by
sets of admissible states Xk ⊂ Rnx and admissible control
inputs Uk ⊂ Rnu . We use the notation χ(k′,xk,u[k,k′]) to
represent the solution of (1) at time step k′ ≥ k, given an
initial state xk and an input trajectory u[k,k′] for the time
interval [k, k′]. Due to limited space, we use the shorthand
χk′ := χ(k′,xk,u[k,k′]).

The state vector of a vehicle xG := (sx, sy, v, θ)
T in

a global Cartesian coordinate frame G typically consists
at least of the position (sx, sy)T , the velocity v, and the
heading θ as the basic elements. Other models have either
state variables that can be converted to the previous ones
and/or further state variables that are irrelevant to this work.
Considering the criticality measures based on structured
road scenarios, we can localize the vehicle in curvilinear
coordinate systems L [22] formulated locally with respect
to a reference path Γ, e.g., the centerline of the road. As
shown in Fig. 2, the vehicle is described by the longitudinal
position sξ, the orthogonal deviation of the reference path
sη , and the relative heading eθ := θ− θΓ(sξ) measured with
respect to Γ with orientation θΓ(sξ). When localizing a point-
mass vehicle model in the curvlinear coordinate system, the
state vector is denoted as xL := (sξ, sη, vξ, vη)T and the
system receives inputs uL := (aξ, aη)T . For brevity, we omit
the superscript when it is clear which coordinate system is
being used based on the context.
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Fig. 2: Vehicle localization in the global Cartesian frame G and the
curvilinear coordinate system L aligned with a reference path Γ.

Let � be a variable, we denote its value associated with
the ego vehicle by �ego and with the obstacle b ∈ B by
�b, where B is the set of all criticality-relevant obstacles.
The functions front(xk) : Rnx → R, rear(xk) : Rnx → R,
occ(xk) : Rnx → P(R2)3, and lanes(xk) : Rnx → P(N0)
return the position of the front bumper, rear bumper, the
spatial occupancy, and the indices of occupied lanes of a
vehicle at time step k, respectively. Given the occupancy
of an obstacle b at time step k, we denote the set of
forbidden state for the ego vehicle as F(xb,k) := {xego,k ∈
Xk | occ(xego,k) ∩ occ(xb,k) 6= ∅}.

B. Definitions
The following definitions are necessary for introducing the

presented criticality measures:
Definition 1 (Maneuver m):
A maneuver m is an element of the set that consists of braking,
constant velocity, kickdown, steering, turning, overtaking,
and lane change.

The control input of a vehicle with maneuver m is denoted
as um. In other works, e.g., [23]–[25], the terms action and
behavior are used interchangeably for the same purposes as
maneuver.
Definition 2 (Scene and Scenario [26, Sec. II and VI]):
A scene is a snapshot of the environment, which includes
the lane network as well as states and inputs of vehicles. A
scenario is a temporal sequence of maneuvers and scenes.
Definition 3 (Criticality Measure c [1, Def. 12]):
A criticality measure c : X |B|+1

k × (×k+h

τ=k
Uτ )|B|+1 →R is

a function that maps the vehicle states and/or inputs to the
criticality of a traffic scene at time step k, where h ∈ N0 is
the prediction horizon of the input trajectory u[k,k+h].

Monotonicity is a desired relationship between the criticality
measure and criticality [27, Def. 1]. For instance, criticality
increases as the time-to-collision (TTC) decreases [28]. If
the measure input only contains information about the ego
vehicle, criticality is computed as the minimum or maximum
value4 of all pairs of the ego and other vehicles, depending
on its monotonic relationship to the measure:

c(xego,k,uego,[k,k+h])

= min
b∈B

/max
b∈B

c(xego,k,xb,k,uego,[k,k+h],ub,[k,k+h]).
(2)

Definition 4 (Reachable Set R [29, (1)]):
The reachable set at time step k′ is the set of states that
can be reached from the initial set of states Xk including
measurement uncertainties while avoiding any forbidden
states from time step k to k′:

Rk′(Xk,xb,k,ub,[k,k′]) :=

{
χk′

∣∣∣∣∃xk ∈ Xk,∀τ ∈ [k, k′],

∃uτ ∈ Uτ : χ(τ,xk,u[k,τ ]) /∈F
(
χb(τ,xb,k,ub,[k,τ ])

)}
.

3P(�) is the power set of �.
4Maximum is for positive monotonic relationships, whereas minimum

is for negative ones. For measures that operate on sets, the infimum or
supremum is used.



TABLE I: List of state-of-the-art criticality measures5. We express the positive and negative monotonic relationship between the measure and the criticality
as ⊕ and 	, respectively.

Domain Measure Acronym Output Range Mono. Unit Implemented
Coord. Sys. Source

Time

Time headway THW R+ ∪ {∞} 	 s L [30]
Encroachment time ET R+ ∪ {∞} 	 s L [31]
Post-encroachment time PET R+ ∪ {∞} 	 s L [31]
Accepted gap size AGS R+ 	 s L [32]
Time-to-collision TTC R+ ∪ {∞} 	 s L [28]
Time-to-collision with given prediction TTC∗ R+ ∪ {∞} 	 s G [33]
Potential time-to-collision PTTC R+ ∪ {∞} 	 s L [34]
Worst-time-to-collision WTTC R+ ∪ {∞} 	 s G [35]
Time-exposed time-to-collision TET R+ ⊕ s L [23]
Time-integrated time-to-collision TIT R+ ⊕ s2 L [23]
Time-to-closest-encounter TTCE R+ ∪ {∞} 	 s L [36]
Time-to-zebra TTZ R+ ∪ {∞} 	 s L [37]
Time-to-brake TTB R+ ∪ {∞,−∞} 	 s L , G [38], [39]
Time-to-kickdown TTK R+ ∪ {∞,−∞} 	 s L , G [38], [39]
Time-to-steer TTS R+ ∪ {∞,−∞} 	 s L , G [38], [39]
Time-to-maneuver TTM R+ ∪ {∞,−∞} 	 s L , G [38], [39]
Time-to-react TTR R+ ∪ {∞,−∞} 	 s L , G [38], [39]
Worst-time-to-react WTTR R+ ∪ {∞,−∞} 	 s L , G [33]
Time-to-violation TV R+ ∪ {∞} 	 s L , G [14]
Time-to-comply TC R+ ∪ {∞,−∞} 	 s L , G [14]

Distance

Headway HW R+ ∪ {∞} 	 m L [30]
Distance-of-closest-encounter DCE R+ ∪ {∞} 	 m L [36]
Acceptable minimum stopping distance MSD R+ ⊕ m L [31]
Proportion of stopping distance PSD R+ 	 − L [31]

Velocity Delta-v Delta-v R ⊕ m/s L , G [40], [41]
Conflict severity CS R ⊕ m/s L , G [41]

Acceleration

Deceleration-to-safety-time DST R ⊕ m/s2 L [42]
Required longitudinal acceleration
(aka deceleration rate to avoid crash)

aξ,req

(DRAC) R− 	 m/s2 L [30], [43]

Required lateral acceleration aη,req R+ ⊕ m/s2 L [30]
Required acceleration areq R+ ⊕ m/s2 L [30]

Jerk6 Longitudinal jerk LongJ R+ ⊕ m/s3 L [41]
Lateral jerk LatJ R+ ⊕ m/s3 L [44], [45]

Index

Conflict index CI [0, 1] ⊕ kg·m2/s2 L [46]
Crash potential index CPI [0, 1] ⊕ − L [43]
Aggregated crash index ACI R+ ⊕ − L [47]
Trajectory criticality index TCI R+ ⊕ − G [48]
Pedestrian risk index PRI R+ ⊕ m2/s3 L [49]
Space occupancy index SOI R+ ⊕ 1/m2 L , G [50]
Brake threat number BTN R+ ⊕ − L [30], [51]
Steer threat number STN R+ ⊕ − L [30], [51]
Responsibility sensitive safety-
dangerous situation RSS {0, 1} ⊕ − L [17]

Reachable-Set Drivable area DA R+ 	 m2 L , G [7]–[9]

Probability

Collision probability via Monte Carlo
simulation P-MC [0, 1] ⊕ − L , G [24], [52]

Collision probability via scoring
multiple hypotheses P-SMH [0, 1] ⊕ − L , G [53]

Collision probability via stochastic
reachable sets P-SRS [0, 1] ⊕ − L , G [54]

Potential
Potential functions as superposition
of scoring functions PF R ⊕ − L , G [55]

Safety potential SP R+ ⊕ − L , G [56]

5The categorization is based on [6], of which the up-to-date descriptions
can be found at https://criticality-metrics.readthedocs.
io.

6We take the absolute jerk since the sign is insignificant for the
criticality and affects the monotonic relationship.

III. COMMONROAD-CRIME

A. Overview
The architecture of CommonRoad-CriMe is depicted in

Fig. 3 as a unified modeling language (UML) class diagram.

https://criticality-metrics.readthedocs.io
https://criticality-metrics.readthedocs.io


We provide the user interface for setting configurations,
selecting criticality measures, and loading traffic scenarios
in the class CriMeInterface. The class Scenario [57]
contains the information of a series of continuous traffic
scenes (class Scene). The criticality measures are defined
in the core module Measure, of which the categorization
is based on their output domains adapted from [6] (cf.
Tab. I). It should be noted that there are numerous criticality
measures in the literature and new ones are continually being
developed, making it impossible to cover them all. However,
in the following sections, we provide a representative list
of them and aim to use the most prominent definitions for
a comprehensive analysis. Please note that our calculation
does not take into account discretization errors or vehicle
reaction time. We reset time for each evaluation without loss
of generality.

CriMeInterface
Composition
Generalization

1
1..N

1
1

Measure Scenario

Scene

1
1..N

Time

Acceleration

Index

Potential

ReachableSet

1

Distance

Velocity

Jerk

Probability

Fig. 3: UML class diagram of CommonRoad-CriMe.

B. Headway and Time Headway

The headway (HW) is the distance from the ego vehicle
to the leading vehicle. Since the distance along the lane cen-
terline is more representative than the straight-line distance
[58], the HW is defined in the curvilinear coordinate system
[30, Sec. 5.3.1]:

HW (xego,k,xb,k)

=


rear(xL

b,k)−front(xL
ego,k) if lanes(xego,k)∩lanes(xb,k) 6=∅

and rear(xL
b,k) ≥ front(xL

ego,k),

∞ otherwise.

Similarly, the time headway (THW) is the time until the ego
vehicle reaches the position of the leading vehicle [30, Sec.
5.3.1]. Assuming the ego vehicle drives at a constant velocity,
the THW is [30, (5.23)]:

THW (xego,k,xb,k) =
HW (xego,k,xb,k)

vξ,ego,k
.

C. Time-To-X

The most used criticality measure is time-to-x (TTX),
where x denotes a relevant event on the path toward a
potential collision.

1) Time-To-Collision: TTC is a measure of the time
remaining until a collision occurs [2]. When calculating the
TTC, we often assumed that the relative acceleration between
vehicles is zero [23] or constant [30, Sec. 5.3.2]. Without
loss of generality, we consider the latter case and compute
the TTC based on the HW, the relative velocity ∆vξ :=
vξ,b−vξ,ego, and the relative acceleration ∆aξ := aξ,b−aξ,ego
in ξ-direction [30, (5.26)]:
TTC(xego,k,xb,k)

=



−HW (... )
∆vξ,k

if ∆vξ,k<0 and ∆aξ=0,

∞ if ∆v2
ξ,k−2HW (. . .)∆aξ,k<0,

−∆vξ,k
∆aξ,k

−
√

∆v2
ξ,k
−2HW (...)∆aξ,k

∆aξ,k
if ∆vξ,k<0 and ∆aξ,k 6=0,

−∆vξ,k
∆aξ,k

−
√

∆v2
ξ,k
−2HW (...)∆aξ,k

∆aξ,k
if ∆vξ,k≥0 and ∆aξ,k<0,

∞ otherwise.

A more accurate alternative is to compute the TTC with
an intended trajectory of the ego vehicle and the given
prediction of other vehicles [13], [33], which we call TTC∗.
Given a most-likely or set-based prediction [59] of a vehicle
b, we define that the intended trajectory of the ego vehicle
can be executed without collisions through the predicate
noCollision(xego,k,xb,k,uego,[k,k+h],ub,[k,k+h])⇐⇒

∀k′ ∈ [k, k + h] : χego,k′ /∈ F(χb,k′).

TTC∗ is then computed by [33, Def. 1]:
TTC∗(xego,k,xb,k,uego,[k,k+h],ub,[k,k+h])

=

∞ if noCollision(. . . ) holds,

min

{
tk′−k

∣∣∣∣k′ ∈ [k, k + h], χego,k′ ∈ F(χb,k′)

}
otherwise.

2) Time-To-Collision Variants: Based on the TTC, the
time-exposed time-to-collision (TET) and time-integrated
time-to-collision assess the criticality considering future
vehicle trajectories over space and time [23]. Since the
effectiveness of TTC decreases significantly in the lateral
direction of the ego vehicle, the encroachment time (ET)
and post-encroachment time (PET) are proposed to measure
traffic conflicts in intersections [31]. A similar approach
is employed for the time-to-closest-encounter (TTCE) and
distance-to-closest-encounter (DCE), which generalizes the
TTC to non-collision cases [36]. To obtain a worst-case
approximation, the TTC is extended to the worst-time-to-
collision (WTTC) in [35], which takes lateral traffic into
account and tends to overestimate the criticality of traffic
scenarios.

3) Time-To-Maneuver and Time-To-React: The TTC and
its variants do not provide enough information for collision
avoidance, as they do not include possible evasive maneuvers
[33]. To address this limitation, the time-to-maneuver (TTM)
is proposed as the latest possible time before the TTC∗, at
which an evasive maneuver still exists [39, (8)]:
TTM(xego,k,xb,k,uego,[k,k+h],ub,[k,k+h])

=


∞ if noCollision(. . . ) holds,

max

({
−∞
}
∪
{
tk′−k

∣∣∣∣k′∈ [k, k+TTC∗(. . .)], ∃um
ego,[k′,k+h]⊂U:

noCollision(. . . ,[uego,[k,k′),u
m
ego,[k′,k+h]], . . .)

})
otherwise.



For emergency braking, evasive steering, and kickdown, the
corresponding TTM is denoted as the time-to-brake (TTB),
time-to-steer (TTS), and time-to-kickdown (TTK), respec-
tively. In [38], the authors propose the time-to-react (TTR)
as the maximum TTM of all possible maneuvers. Since
computing the exact TTR is computationally intractable [33],
the TTR is underapproximated using a set of selected evasive
maneuvers [39, (10)]:

TTR(xego,k,xb,k,uego,[k,k+h],ub,[k,k+h])=

max
(
TTB(. . . ), TTS(. . . ), TTK(. . . )

)
.

In contrast, the TTR is tightly overapproximated by itera-
tively checking the existence of collision-free reachable sets
of the ego vehicle, which is denoted as the worst-time-to-
react (WTTR) [33, Prop. 1]:

WTTR(xego,k,xb,k,uego,[k,k+h],ub,[k,k+h])

=


∞ if noCollision(. . . ) holds,

max

({
−∞

}
∪
{
tk′−k

∣∣∣∣k′∈ [k, k + TTC∗(. . . )],

Rk+h(χego,k′ , χb,k′ ,ub,[k′,k+h]) 6=∅
})

otherwise.

D. Delta-v

Delta-v measures the change in velocity a vehicle ex-
periences as a result of a collision, which is widely used
for measuring crash severity [40]. Assuming an inelastic
collision between vehicles, we compute Delta-v taking their
masses M into account [41, (2)]:

Delta-v(xego,k,xb,k) =
Mb(vego,k+vb,k cos(θego,k − θb,k))

Mego +Mb
.

E. Brake and Steer Threat Number

To measure the difficulty of avoiding a collision with
evasive maneuvers, the brake threat number (BTN) and
the steer threat number (STN) are proposed in [30, Sec.
8.4.1]. These numbers represent the ratio of the required
longitudinal and lateral acceleration aξ,req,k and aη,req,k for
collision avoidance at time step k to the maximum available
accelerations aξ,max and aη,max, respectively [30, (5.36),
(5.48), and (8.3)]:

BTN(xego,k,xb,k) = −aξ,req,k

aξ,max
=

min(aξ,b,k−
∆v2ξ,k

2HW (... )
, 0)

−aξ,max
,

STN(xego,k,xb,k) =
aη,req,k

aη,max
=

1

aη,max

min

(∣∣∣∣aη,b,k−2
(
−HW (. . . )± wego+wb

2
−∆vη,kTTC(. . . )

)
TTC2(. . . )

∣∣∣∣),
where w is the width of the vehicle and ∆vη is the relative
velocity along the η-axis.

F. Drivable Area

The drivable area is the configuration space in which
the ego vehicle can operate safely without colliding [8].
By projecting the reachable set (cf. Def. 4) to the position
domain in the Euclidean space, the drivable area at time step
k′ is obtained by [60, Def. 4]:

Dk′(xego,k,xb,k,ub,[k,k+h]) =

proj(sx,sy)

(
Rk′(xego,k,xb,k,ub,[k,k′])

)
,

ego vehicle traffic participant most likely trajectoryintended trajectory

(a) Configuration of scenario I.
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Fig. 4: Configuration and exemplary evaluation results of scenario I7.

where the operator proj�(·) maps a set of states to its
elements �. The authors in [8] define the area profile of the
drivable area over time as a measure of criticality.

G. Collision Probability via Monte Carlo Simulation
The criticality of traffic scenarios can be measured as the

probability of a collision [24, (8)]:

P (C) =

∫
U∈(×k+h

k′=k Uk′ )
P (C|U)P (U)dU,

where C is the event of a collision and the control inputs
U := (uk, . . . ,uk+h) are modeled as random variables.
To estimate P (C), Monte Carlo simulation is often used
to explore possible realizations of predefined maneuvers by
randomly sampling the input space [24], [52], [61]. The
collision probability with Monte Carlo simulation is referred
to as P-MC. We adopt the importance sampling method
defined in [24] and consider the following maneuvers: brak-
ing/kickdown, lane change, overtaking, and turning (see
Fig. 4b).

H. Potential Functions as Superposition of ScoringFunctions
The artificial potential field method uses potential func-

tions (PF) to model the interactions between vehicles and
their environment. The PF defined in [55] includes various
scoring functions, such as the measure for lane keeping
and centering, road geometry, collision avoidance, and target
velocity, which are frequently used for non-crash-based crit-
icality assessment. In our toolbox, we extended the approach
presented in [55] to handle both straight and curved roads
using the curvilinear coordinate system, as shown in Fig. 4c.

7CommonRoad ID: DEU Gar-1 1 T-1



IV. NUMERICAL EXAMPLES

We evaluate the criticality of scenes and scenar-
ios from the CommonRoad benchmark suite [57] using
CommonRoad-CriMe with exemplary measures and show
the benefits of using our toolbox. Scenario I, with h = 20
and ∆t = 0.1s, depicts a rural environment in which the
intended trajectory of the ego vehicle and the most likely
trajectories of the other traffic participants are given (cf.
Fig. 4a). In the urban scenario II8, we present a set-based
prediction of the other vehicles for h = 30 time steps using
∆t = 0.25s as shown in Fig. 5a. We refer to scenes I and II
as the initial scenes of scenarios I and II, respectively. We
employ the CommonRoad vehicle models [57] and use the
point-mass model to demonstrate the results. The parameters
for computing the measures are obtained from the original
papers (cf. Tab. I).

A. Evaluation on Scenes

The evaluation results of scenes I and II with selected
criticality measures are listed in Tab. II. The TTC is com-
puted as 3.70s for scene I (see Fig. 4a) indicating a low
criticality. It does, however, rule out the possibility that the
leading vehicle fully brakes, implying a high risk for the ego
vehicle. This false-negative indication is the same for scene
II (see Fig. 5a) when the other participant drifts to the lane
of the ego vehicle. Therefore, the TTC is less effective in
assessing collision risks in the lateral driving direction. In
contrast to TTC, the TTC∗ allows one to consider a more

state at TTC∗state at TTR

intended trajectory evasive trajectory

ego vehicle occupancy predictiontraffic participant

simulated trajectory

(a) TTC∗ and TTR. The simulated trajectories are the evasive trajectories
for computing the underapproximated TTR.

rc,ego

rc,ego + ra,ego
rc,b

rc,b + ra,b

state at WTTC
(b) WTTC. The values rc and ra denote the radius of the circles approxi-
mating the vehicle’s shape and of the drivable area for a point-mass vehicle
model neglecting the forbidden states, respectively.

state at WTTR/∆t− 1 drivable area

(c) WTTR. The drivable areas are computed starting from time step
WTTR/∆t− 1 and ending at time step h.

Fig. 5: Evaluation results of scene II.
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TABLE II: Criticality measures of scenes I and II.

Measure Scene I Scene II Measure Scene I Scene II

HW 22.16 ∞ THW 1.40 ∞
ET ∞ ∞ PET ∞ ∞

TTC 3.70 ∞ WTTC 0.80 1.10

TTC∗ ∞ 2.25 TTCE 1.90 2.25

DCE 1.17 0.00 TTS ∞ −∞
TTK ∞ −∞ TTB ∞ 1.25

TTR ∞ 1.25 WTTR ∞ 2.00

aξ,req −0.81 0.00 aη,req 0.09 0.00

LongJ 0.00 0.00 LatJ 0.00 0.00

BTN 0.0704 0.0000 STN 0.0113 0.0000

DA 78.40 647.54 P-MC 0.0098 0.0100

Delta-v 14.00 13.92 PF −9.73 −36.70

sophisticated prediction of vehicles, especially the set-based
prediction. In Fig. 5a, we can observe a possible collision
at TTC∗ if all the possible behaviors of the other traffic
participant are considered. WTTC also attempts to address
the inefficiency of using TTC, as shown in Fig. 5b. However,
its threshold value for triggering warnings is difficult to
define since worst-case scenarios are infrequent in real traffic.

In contrast to the TTC and its variants, TTM and TTR
provide evasive trajectories. Fig. 5a shows that the ego
vehicle needs to fully brake from the state at TTR, i.e., TTB,
to ensure safety. As shown in Fig. 5c, there exist only small
drivable areas if the ego vehicle executes evasive maneuvers
from the state at time step WTTR/∆t− 1.

B. Evaluation on Scenarios

Fig. 6 depicts the evaluation results for the entire scenario
I. From the profiles of the TTC and aξ,req, we can see
that the ego vehicle is getting closer to the leading vehicle,
but the level of criticality with respect to the other traffic
participants is unknown. The curves of the BTN, STN, and
P-MC indicate that a collision is unlikely to occur in this
scenario, as their values are significantly lower than the
collision threshold of 1.0 [52], [62]. The DA curve confirms
this observation by showing that there are ample collision-
free, reachable positions for the ego vehicle in the near
future. Instead, the PF reaches its maximum potential starting
from time step 10, indicating that the ego vehicle does not
maintain a safe distance when the preceding vehicle fully
brakes, i.e., safety is not ensured. In conclusion, we can infer
that relying on a single criticality measure may not provide
enough information, and that multiple measures are required
to accurately assess the criticality of a scenario.

We further measure the TTC of 1,000 randomly selected
scenarios from the CommonRoad benchmark suite to demon-
strate the usefulness of our toolbox. The CommonRoad col-
lection includes a mix of recorded and handcrafted scenarios,
such as those on highways, rural roads, and in urban settings.
All calculations were carried out on a laptop equipped
with an Intel Core i7-1165G7 2.8 GHz processor. There
exist 21,713 scenes in total in the selected scenarios, and
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Fig. 6: Criticality profiles of scenario I with exemplary measures. For better
insight, the graph’s vertical axis indicates an increase in criticality based on
the monotonic relationship outlined in Tab. I.

the average computation time of each scene was 17.90ms
(1.80ms of each vehicle pair). Fig. 7 shows the histogram
of the TTC for all scenes in the collection. By analyzing
the distribution, we can identify safety-critical situations in
the longitudinal driving direction, e.g., using a threshold
of TTC = 1.0s [28]. Therefore, CommonRoad-CriMe
simplifies the process of selecting scenarios of interest from
a large database.
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Fig. 7: Histogram of the TTC over 21,713 scenes from the CommonRoad
collection. The bins are colored red if the scenes are critical with respect
to the TTC and blue otherwise.

V. CONCLUSIONS

This paper presents the first toolbox for measuring
the criticality of autonomous vehicles that is open-source,
easy-to-use, and contains state-of-the-art measures. In
CommonRoad-CriMe, we provide a unified evaluation
framework and support a wide range of criticality measures.

We hope that CommonRoad-CriMe will make it easier
for intelligent transportation researchers to evaluate their au-
tonomous driving functions with various criticality measures
and traffic scenarios. Contributions to further improve and
expand the capabilities of CommonRoad-CriMe are wel-
comed. Future work includes a more thorough comparison
of measures and user studies in order to create a reference
for human criticality estimation.
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