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Abstract

In partitioned multi-physics simulations individual single-physics solvers are coupled
together to cooperatively solve a multi-physics problem. In order to help with code
coupling and data exchange between individual solvers there is a broad range of
coupling tools. Since different solvers may have different data representations, it is an
additional task of the coupling tool to mediate between them. However, the coupling
tool can not be expected to know the internal works of every solver. In the case of
the coupling tool preCICE, this issue is solved by the use of adapters which connect
preCICE with a solver and allow it to steer the coupled simulation while treating the
solver as a black-box. One of these adapters is the FEniCSx-preCICE adapter which
links preCICE and the FEM library FEniCSx together. Prior to this work it existed as
a sketch that was ultimately unusable. In this thesis I finish the implementation of
the FEniCSx-preCICE adapter. Additionally, I modify an existing preCICE test case
consisting of a partitioned setup of the heat equation to be compatible with the adapter
and use it to evaluate the adapter’s performance.
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1 Introduction

When performing simulations of physical phenomena[1], there are two general ap-
proaches [2]. The first is the monolithic approach, where the behavior of the system to
be simulated is expressed in one all-encompassing system of equations which is then
solved by one software, called solver. One example for this is the solver turtleFSI which
can be used to simulate Fluid-Structure Interactions (FSI) in a monolithic way[3]. The
other is the partitioned approach, where the system is split up into smaller subsystems,
each expressed by their own systems of equations. These subsystems are then solved
by independent solvers and subsequently coupled together to perform the simulation
of the entire system. While monolithic approaches are applicable for well defined
systems that are not expected to be changed, they show clear deficiencies when parts
of the system are modified or removed or new parts are added. In these cases, the
entire system of equations would need to be redefined [2]. For those scenarios, using a
partitioned approach proves to be efficient, since the solvers of the subsystems that are
left untouched stay unchanged as well.

As an example, a solver in a partitioned setup could employ the open-source com-
puting platform FEniCSx1, which allows solving systems by using the Finite Element
Method (FEM) [4].

To coordinate the individual solvers in partitioned simulations one can use the
multi-physics coupling library preCICE [5], which defines a common communication
standard with which solvers send their data to and receive data of other solvers from.
In order to do this however, both preCICE and the solvers need to receive the data in a
format they understand.

In this thesis, I focus on the FEniCSx-preCICE adapter. In the scope of preCICE, an
adapter is a piece of software that integrates preCICE with a solver in a minimally-
invasive way[6]. The FEniCSx-preCICE adapter allows solvers using FEniCSx to read
data from and write data to preCICE by translating between their differing data
representations. Prior to this work, the adapter existed as a draft but was not usable
in practice. The main goal of this thesis is to turn the adapter into a working piece of
software. An additional goal is to test its accuracy and efficiency. For this, I take one of
many tutorial cases offered by preCICE, a partitioned setup of the heat equation2, and

1https://fenicsproject.org/
2https://github.com/precice/tutorials/tree/develop/partitioned-heat-conduction
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1 Introduction

modify it to be usable with the FEniCSx-preCICE adapter.
Chapter 2 explains differential equations, in particular the heat equation, as well

as boundary conditions and the Finite Element Method and introduces a partitioned
setup of the heat equation. Chapter 3 deals with preCICE and FEniCSx and presents
their core features. Chapter 4 addresses the implementation of the adapter and the
solver for the partitioned heat equation and shows the major changes compared to the
FEniCS-preCICE adapter. In chapter 5 the implementation is discussed in terms of
accuracy and computing time. Finally, chapter 6 offers a summary of the findings of
this thesis and provides an outlook on future work.

2



2 Mathematical background

In this chapter I go over the mathematical background that is needed to understand
the following chapters. In section 2.1 I shortly explain partial differential equations.
In section 2.2 I cover boundary conditions which further define the behaviour of
differential equations. I use the concepts shown in these sections to present the Finite
Element Method which solves partial differential equations by discretizing their domain
in section 2.3. Lastly, I show the heat equation as an example that can be solved with
the Finite Element Method as well as a partitioned approach for it in section 2.4.

2.1 Differential equations

Differential equations are equations that contain an unknown function as well as at
least one derivative of that function. Partial differential equations (PDEs) are a subset
of differential equations where the function depends on multiple variables and the
equation contains derivatives with respect to only certain quantities which affect that
function.

2.2 Boundary conditions

A differential equation describes how a system changes, and to study this change one
needs to define an initial state and some constrains which can then be changed as per
the equation. One type of such conditions are boundary conditions that prescribe the
behaviour of the equation on the boundary of its domain. While there are many types
of boundary conditions, we focus on two in particular, the Dirichlet and the Neumann
boundary condition.1

2.2.1 Dirichlet boundary conditions

A Dirichlet boundary condition specifies the value of the unknown function u on the
boundary domain. It has the form

u(x) = f (x), x ∈ ∂Ω (2.1)
1https://en.wikipedia.org/wiki/Boundary_value_problem
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2 Mathematical background

with function domain Ω, domain boundary ∂Ω and function f (x) defining the values
of x on the domain boundary.

2.2.2 Neumann boundary conditions

A Neumann boundary condition specifies the value of the derivative of the unknown
function u on the boundary domain. It has the form

δu(x)
δn

= f (x), x ∈ ∂Ω (2.2)

with n being the unit normal to ∂Ω.

2.3 Finite Element Method

One approach to solve PDEs is the Finite Element Method (FEM). Its main principle is
to divide the continuous domain of the PDE into discrete parts, which are the finite
elements. Their form depends on the dimensions of the domain, in a two-dimensional
domain for example elements are usually triangles or quadrilaterals. This way we
obtain a discrete number of points, which is called a mesh, with a single point being
called node or vertex. This discretization is necessary to be able to solve the PDE. The
next step is to create smaller equations for every element that specify their behaviour
using interpolation functions. Generally, choosing interpolation functions with higher
degrees leads to a more precise approximation but also a higher computational cost.
We then collect all element equations in one system of equations that specifies the
behaviour of the entire domain. Lastly, we impose the boundary conditions which
makes us able to solve the system of equations 2.

2.4 Heat Equation

This section follows this tutorial3 by J. S. Dokken which itself is an adaptation of [4].
The heat equation is a PDE which describes the stationary distribution of heat in a
body to a time-dependent problem. It is defined as:

δu
δt

= ∇2u + f in Ω × (0, T] (2.3)

u = uD in ∂Ω × (0, T] (2.4)

u = u0 at t = 0 (2.5)

2http://hplgit.github.io/fem-book/doc/pub/book/pdf/fem-book-4screen.pdf
3https://jsdokken.com/dolfinx-tutorial/index.html

4



2 Mathematical background

Here, Ω is the spacial domain, ∂Ω the border of Ω and ∇ the gradient. u = u(x, y, t)
is an unknown function, also referred to as trial function, and f = f (x, y, t) a pre-
scribed function, both of which vary with space and time. Furthermore, uD and u0

are Dirichlet boundary condition and initial condition, respectively. We only consider
two-dimensional spacial domains since our simulation is two-dimensional as well.

In preparation of using the Finite Element Method, we first discretize the time deriva-
tive by a finite difference approximation. We introduce superscript n which lets us
specify a value at a certain time step. For example, un means u at time step tn with n
being an integer counting time steps beginning at 0. We now sample the PDE at some
time step, for instance tn+1:

δu
δt

n+1
= ∇2un+1 + f n+1 (2.6)

The left hand side can be approximated by a difference quotient, resulting in:

un+1 − un

∆t
= ∇2un+1 + f n+1 (2.7)

with time discretization parameter ∆t. This procedure is called implicit Euler or
backwards Euler discretization and gives us the time-discrete version of (2.3)

We can now reorder the equation such that the left-hand side only consists of terms
containing the unknown un+1 and the right-hand side consists of only computed terms.
This results in a sequence of stationary problems for un+1 given that un is known from
the previous time step:

u0 = u0 (2.8)

un+1 − ∆t∇2un+1 = un + ∆t f n+1, n = 0, 1, 2, ... (2.9)

We are now able to transform the equation into its weak form. For this, we multiply
the equation with a test function v, integrate the result over Ω and perform integration
by parts of terms with second order derivatives.
This yields:

a(un+1, v) = Ln+1(v), (2.10)

5



2 Mathematical background

where

a(un+1, v) =
∫

Ω
(un+1v + ∆t∇un+1 · ∇v)dx (2.11)

Ln+1(v) =
∫

Ω
(un + ∆t f n+1) · v dx (2.12)

For the initial condition we get

a0(u, v) = L0(v), (2.13)

with

a0(u, v) =
∫

Ω
uv dx (2.14)

L0(v) =
∫

Ω
u0v dx (2.15)

Obtaining the weak form of the equation helps us solving it.

2.4.1 Analytical solution

Solving PDEs using the Finite Element Method does not give the exact solution but
rather an approximation of it. We therefore have to compare the result with the
analytical solution at every time step and ensure they are sufficiently close. For this, we
follow [4] and choose

u = 1 + x2 + αy2 + βt (2.16)

with arbitrary parameters α and β. This function ensures its computed values at the
nodes to be exact, regardless of the size of the elements and δt, as long as the mesh is
uniformly partitioned [4]. Inserting 2.16 into 2.3 gives us a solution for f :

f = β − 2 − 2α (2.17)

For the Dirichlet boundary value uD and the initial value u0 we get:

uD(x, y, t) = 1 + x2 + αy2 + βt (2.18)

u0(x, y) = 1 + x2 + αy2 (2.19)

2.4.2 Heat flux

As postprocessing we can use the temperature u in order to compute the heat flux
q = ∇u, which we obtain by solving the problem

a(w, v) = L(v), (2.20)

6



2 Mathematical background

where

a(w, v) =
∫

Ω
w · v dx (2.21)

L(v) =
∫

Ω
∇u · v dx (2.22)

with functions v and w living in a vector version of the function space of u 4.

2.4.3 A partitioned approach

Until now we have considered the heat equation on a singular spacial domain Ω. We
now want to make this a coupled setup, so we split the domain into two parts, resulting
in two subdomains ΩD on the left and ΩN on the right which share the vertical coupling
interface Γ = ΩD ∩ ΩN . For this example we choose Ω = [0, 2]× [0, 1], which leads
to ΩD = [0, 1]× [0, 1] and ΩN = [1, 2]× [0, 1]. We now have a coupled setup where

D (u)

ΓD

N (q)

ΓN

(x, y) = (2, 0)(x, y) = (0, 0)

(x, y) = (0, 1)

(x, y) = (1, 0)

Figure 2.1: Illustration of the partitioned domain. Taken from [7]

each side solves the heat equation on its own and only communicates with the other by
exchanging data at the coupling interface. In particular, the solver on domain ΩD, the
Dirichlet solver, takes a Dirichlet boundary condition from the solver on domain ΩN ,
the Neumann solver, while the Neumann solver takes a Neumann boundary condition
from the Dirichlet solver. This is known as the partitioned heat equation [7]. We keep
the Dirichlet boundary condition from the unpartitioned heat equation and use the
heat flux to form the Neumann boundary condition. Since the coupling interface is a

4http://hplgit.github.io/INF5620/doc/pub/fenics_tutorial1.1/tu2.html#tut-poisson-gradu
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2 Mathematical background

vertical line, we can discard the y-component of the heat flux vector by projecting the
vector onto its x-component by multiplying it with its normal vector n, resulting in the
Neumann boundary condition:

cn = n · ∇u (2.23)

Furthermore, we need u and q to be continuous on Γ to assure a correct transition
between the two sides at every time step. For this, we start with initial guesses u0

D for
the solution of the Dirichlet side and u0

N for the solution of the Neumann side. We then
use the value of u0

N at the left boundary of ΩN as a Dirichlet boundary condition for
the computation of u1

D on ΩD. Afterwards we use the slope of u1
D at the right boundary

of ΩD as a Neumann boundary condition to compute u1
N on ΩN which finishes one

iteration. We continue until iteration k where the solutions uk
D and uk

N agree at the
interface. This procedure is called Dirichlet-Neumann coupling [8].

ΩD ΩN

u0
v0

Initialization

ΩD ΩN

u1 v0

D step

ΩD ΩN

u1 v1
N step

k iterations

ΩD ΩN

uk vk
Converged

List of Figures

List of Tables

1

Figure 2.2: Illustration of the Dirichlet-Neumann coupling. u and v refer to uD and uN ,
respectively. Picture created by Benjamin Rodenberg.
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3 Software components

In this chapter I present the software components used for this thesis. In section 3.1
I cover the coupling library preCICE and give an overview over its core features. In
section 3.2 I go over the Finite Element Method library FEniCSx and give an example
of how to use it. Lastly, in section 3.3, I show the FEniCS-preCICE adapter for FEniCS,
the predecessor of FEniCSx, which serves as a template for the implementation covered
in chapter 4.

3.1 preCICE

preCICE is a multi-physics coupling library that allows single physics solvers to be
coupled to perform multi-physics simulations. The individual solvers, also called
participants, are viewed as "black-boxes", which means that preCICE does not need
to know their internal structure. preCICE receives their output, modifies it in a
mathematically sensible way and sends it to another solver. This approach makes it
easy to exchange solvers for testing purposes. It also simplifies adding new coupling
components by only requiring few changes to them. The repository can be found at1.
In the following we will look at some of the functionalities offered by preCICE; this
and more information can be found in [5].

3.1.1 Uni-directional or bi-directional coupling

preCICE differentiates between two general coupling types, namely uni-directional
coupling and bi-directional coupling. Uni-directional coupling happens when one
participant depends on data received from the other but not the other way around. This
happens for example when coupling an acoustic far field with a flow simulation where
the former receives acoustic perturbations at the coupling interface but no acoustic
waves travel to the latter. In bi-directional coupling both participants are dependant on
data from the other, for example the two domains of the partitioned heat equation.

1https://github.com/precice
2http://precice.org/docs.html
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3 Software components

Figure 3.1: General structure of a coupled multi-physics simulation using preCICE.
Taken from 2.

3.1.2 Coupling schemes

preCICE offers several options of how to perform the coupling. Which schemes are
more suitable than others is dependant on the type of simulation to be performed.

Explicit or implicit coupling

When using explicit coupling each participant is executed once per time step, while
implicit coupling lets every participant execute several iterations per time step until all
computed values fulfill the coupling conditions.

Serial or parallel coupling

Serial coupling refers to the execution of each participant one after another while
parallel coupling allows multiple participants to be executed at the same time.

3.1.3 Data mapping

preCICE manages the data exchange between the two participants by receiving data
from the nodes that lie on the coupling interface of one participant and sending it to

10



3 Software components

the nodes on the coupling interface of the other. When both participants have matching
meshes, their nodes on the coupling interface also match and the data can easily be
transferred between matching nodes. However, this is often not the case, at which point
preCICE uses one of the many available mapping methods in order to ensure every
node on the coupling domain still has a partner node it can send data to or receive
from.

3.1.4 Python bindings

Our implementation is done in Python. Because preCICE is written in C++, we
additionally need to install the Python bindings provided by preCICE in order to
translate between the two languages3.

3.2 FEniCSx

FEniCSx is an open-source computing platform for solving partial differential equations
(PDEs) by using the Finite Element Method (FEM)[9][10]. The main force behind
FEniCSx is its computational environment DOLFINx, which offers high level interfaces
in Python and C++. Another important component is the Unified Form Language (UFL)
library which offers an easy to use interface for expressing finite elements and weak
forms of PDEs[11]. Its documentation can be found here4. Additionally to the weak
form, a user needs to specify a mesh, the function space for trial and test functions as
well as the boundary conditions in order to run a simulation. In case of time dependent
PDEs, FEniCSx also requires a timestepping scheme. In this section we will look at
how to express examples of these components using FEniCSx. It roughly follows the
FEniCSx tutorial5 with some adjustments.

3.2.1 Creating a mesh

Initializing a simple mesh can be done in a single line of code. For example, a mesh
over the unit square [0,1] × [0,1] consisting of 9 × 9 rectangles can be created with

mesh = create_unit_square(MPI.COMM_WORLD, 9, 9, CellType.quadrilateral)

MPI.COMM_WORLD refers to the communicator of the Message Passing Interface (MPI)6

standard used for mediating between parallel processes. The communicator has to be

3https://github.com/precice/python-bindings
4https://fenics.readthedocs.io/projects/ufl/en/latest/index.html
5https://jsdokken.com/dolfinx-tutorial/index.html
6https://en.wikipedia.org/wiki/Message_Passing_Interface
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3 Software components

provided even if the code is not being run in parallel. More information about the
different cell types can be found in the UFL documentation.

3.2.2 Creating a function space and functions

Once the mesh is created, it can be used to create a function space, for example with

V = FunctionSpace(mesh, ("CG", 1))
u = TrialFunction(V)
v = TestFunction(V)

Here we create an object of the class FunctionSpace which is initialized with the mesh
and a tuple consisting of the type of the finite element and its degree. In this particular
example, "CG" refers to the standard Lagrange family of finite elements. Afterwards,
we create u and v as objects of classes TrialFunction and TestFunction, respectively
with both functions living in the function space V.

3.2.3 Defining boundary conditions

In order to define a boundary condition we need to define a Python class that represents
the exact solution. We now take equation (2.16) as an example and define the class as

class exact_solution():
def __init__(self, alpha, beta, t):

self.alpha = alpha
self.beta = beta
self.t = t

def __call__(self, x):
return 1 + x[0]**2 + self.alpha * x[1]**2 + self.beta * self.t

u_exact = exact_solution(alpha, beta, t)
u_D = Function(V)
u_D.interpolate(u_exact)

Here, x is the vector of coordinates with x[0] being the x-coordinate and x[1] being
the y-coordinate while u_D is a Function object that interpolates u_exact
We then define a function that takes a point of the domain and returns whether or not
the point lies on the domain boundary. If, for example, the domain is the unit square
we could define this function as

def boundary(x):
is_left_wall = numpy.isclose(x[0], 0)
is_right_wall = numpy.isclose(x[0], 1)

12



3 Software components

is_bottom_wall = numpy.isclose(x[1], 0)
is_top_wall = numpy.isclose(x[1], 1)
is_any_wall = is_left_wall | is_right_wall | is_bottom_wall | is_top_wall
return is_any_wall

3.2.4 Creating boundary conditions

After defining it, we can create the Dirichlet boundary condition with

dofs = locate_dofs_geometrical(V, boundary)
bc = dirichletbc(u_D, dofs)

The function locate_dofs_geometrical takes a function space and the function boundary
as arguments and returns an array of degrees of freedoms that lie on the domain bound-
ary. Finally, the function dirichletbc takes the function containing the exact solution
and the array of degrees of freedom as arguments and returns the Dirichlet boundary
condition.

3.2.5 Defining a variational problem

As an example we consider the terms a, L and f of the heat equation as seen in
equations (2.11), (2.12) and (2.17), respectively. We can define these with

f = Constant(mesh, beta - 2 - 2 * alpha)
F = u*v*dx + dt*dot(grad(u), grad(v))*dx - (u_n + dt*f)*v*dx
a, L = lhs(F), rhs(F)

Here we again make use of some of the functionalities provided by the UFL library,
grad(argument) computes the gradient of the argument and multiplying a term with
dx represents the integration over the domain. We initialize f as an object of type
Constant that takes the mesh and the value of the constant as arguments and then
define a and L as the left hand side and right hand side of F, respectively.

3.2.6 Performing the timestepping

A simple timestepping scheme in FEniCSx could be implemented as

u = Function(V)
t = 0
for n in range(num_steps):

# Update current time
t += dt

13
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u_D.t = t
# Solve variational problem
linear_problem = LinearProblem(a, L, bc)
u = linear_problem.solve()
# Update previous solution
u_n.interpolate(u)

The class LinearProblem receives the terms a, L as well as the boundary condition
and instantiates a linear problem that gets solved in the next line and interpolated by
Function object u_n.

3.3 FEniCS-preCICE adapter

Generally, preCICE does not have the same data representation as the solvers it couples,
making it impossible to connect them directly. To circumvent this, preCICE offers
so-called adapters which integrate preCICE with a specific solver[6][12]. The adapters
are minimally-invasive which means that no preCICE code needs to be altered to make
preCICE compatible with the adapters. One of these adapters is the FEniCS-preCICE
adapter[13] for FEniCS[4], which is the predecessor of FEniCSx. This adapter allows
preCICE to couple solvers that employ FEniCS. Since not all classes and methods
from the FEniCS library are included in FEniCSx, we can not use the FEniCS-preCICE
adapter to couple preCICE with solvers using FEniCSx. However, we can use it as a
template for an adapter for FEniCSx solvers since it has a fitting API and many contents
of FEniCS are still present in FEniCSx.

Additionally, we can make use of the tutorial cases offered by preCICE7. These are
generally small setups which require no prior knowledge about the underlying solvers
from the user and teach them how to perform partitioned simulations with preCICE.
They also exemplify the black-box philosophy of preCICE since many tutorials allow the
users to choose a combination of available solvers at will, for example FEniCS. Similar
with the FEniCS-preCICE adapter, we can use the tutorials working with FEniCS as a
template when making them compatible with FEniCSx. This would allow us to test the
adapter for FEniCSx and preCICE as well.

7https://github.com/precice/tutorials
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In this chapter, I cover the FEniCSx-preCICE adapter and its implementation. In section
4.1 I explain the purpose of the adapter. Afterwards I describe the state of the adapter
before this thesis in section 4.2. I then justify the changes made between the FEniCSx-
preCICE and the FEniCS-preCICE adapter in section 4.3. In section 4.4, I implement a
solver for the partitioned heat equation which uses the FEniCSx-precice adapter 4.4. I
finish the chapter by explaining the solver’s error computation in section 4.5.

4.1 FEniCSx-preCICE-adapter

On their own, preCICE and FEniCSx can not communicate with each other because
of their different internal data representation. In order to solve this issue we need
an adapter to link them together, called the FEniCSx-preCICE-adapter. The adapter
obtains data from preCICE at the nodes of the coupling interface and translates it into
FEniCSx code and vice versa.

dolfinxsolver.py

FEniCSx-preCICE adapter

import dolfinx

import dolfinx
import precice

import fenicsxprecice

libprecice

coupling to
OpenFOAM, SU2, ...

xml
precice.SolverInterface(...)

json
fenicsxprecice.Adapter(...)

Figure 4.1: Overview of the software architecture. From left to right: preCICE, FEn-
iCSx–preCICE adapter, application code solver.py, and DOLFINx. Adapted
from [13].
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4.2 Previous state of the adapter

Initially, the FEniCSx-preCICE adapter1 was created as a fork of the FEniCS-preCICE
adapter2. While some modifications have already been made by then, such as replacing
some calls to the FEniCS API with calls to the FEniCSx API, the FEniCSx-preCICE
adapter in its entirety was not in a usable state3.

4.3 Changes to the adapter

Generally, the FEniCSx-preCICE adapter follows the same structure as the FEniCS-
preCICE adapter. That is, methods that fulfill the same purpose also have the same
name, with all occurrences of "fenics" being replaced by "fenicsx". Readers are encour-
aged to first have a look at the FEniCS-preCICE adapter paper [13] in order to get an
overview of its core methods. In the following we will focus on those methods whose
implementation had to be adjusted in order to work with FEniCSx, disregarding very
minor changes like slightly different syntax, and on methods which have been removed
altogether.

4.3.1 Changing FEniCSx-to-preCICE communication

For the FEniCSx-precice adapter, adjustments had to be done in the procedure how the
solver using FEniCSx can send its data to preCICE. The method write_data takes the
Function object write_function and calls the method convert_fenics_to_precice in
turn, which takes write_function as well as an array of local indices of vertices on
the coupling interface called local_ids as arguments. convert_fenics_to_precice
then samples the values of write_function on all vertices of the mesh and returns
only the values of the vertices on the coupling interface. Afterwards, write_data
writes the result to preCICE. The sketched code of convert_fenics_to_precice in the
FEniCS-preCICE adapter is given by:

precice_data = []
sampled_data = write_function.compute_vertex_values()
if len(local_ids):

for lid in local_ids:
precice_data.append(sampled_data[lid])

return numpy.array(precice_data)

1https://github.com/precice/fenicsx-adapter
2https://github.com/precice/fenics-adapter
3https://github.com/precice/fenicsx-adapter/pull/15

16



4 Implementation

The method compute_vertex_values from the FEniCS library computes and returns
the values of the caller function at all mesh vertices. This method, however, has been
removed in FEniCSx, making a workaround necessary:

x_mesh = write_function.function_space.mesh.geometry.x
x_dofs = write_function.function_space.tabulate_dof_coordinates()
if(self._mask == None):

self._mask = [] # where dof coordinate == mesh coordinate
for i in range(x_dofs.shape[0]):

for j in range(x_mesh.shape[0]):
if numpy.allclose(x_dofs[i, :], x_mesh[j, :], 1e-15):

self._mask.append(i)
break

Depending on the type of finite elements, there may be more degrees of freedom than
vertices meaning some degrees of freedom do not lie on vertices. We therefore have to
filter only those degrees of freedom which align with a vertex since we only evaluate
data on the vertices. We accomplish this with a nested for loop over the array of
degree-of-freedom coordinates we obtain from the method tabulate.dof_coordinates
and the array of vertex coordinates we get from the member mesh.geometry.x. The
mask consists of the indices of the degrees of freedom that lie on a vertex. It then
gets passed to convert_fenicsx_to_precice as an additional argument. The sketched
version of the method in FEniCSx looks like this:

precice_data = []
sampled_data = write_function.x.array[mask]
if len(local_ids):

for lid in local_ids:
precice_data.append(sampled_data[lid])

return numpy.array(precice_data)

The member x.array returns a vector containing the value of all degrees of freedom.
We then apply the mask to filter only the sampled values from the vertices. Afterwards,
the procedure is the same as in the FEniCS-preCICE adapter.

4.3.2 Adjusting the adapter’s scope

Since the adapter was not usable before I started working on it, we decided that getting
it to work at all is our main priority. Therefore, we opted for a minimal working version
which involved removing features present in the FEniCS-preCICE adapter that are not
necessary for the adapter to function in general. It would have been out of scope for
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this thesis to get every additional functionality to work. Our goal is to re-implement
them in the future, however.

Removal of support of vector-valued functions

As a result of the changes made to the way we sample the data to be written to pre-
CICE in the convert_fenicsx_to_precice method, only scalar values can be sampled.
Therefore, the possibility to use functions that return vector values has been taken out.
This is acceptable because the solver for the partitioned heat equation does not use
them. As mentioned in section 2.4.3, while the heat flux is a two-dimensional vector,
we can discard its y-component because of the vertical coupling boundary, resulting in
a scalar value. For different setups where the coupling boundary is not vertical, this
would not be possible and vector-valued functions would have to be supported again,
however.

Removal of support of point sources

The FEniCS library implements a class called PointSource4 which represents a heat
source with no spatial extension. The FEniCS-preCICE adapter uses this for example
in the method get_point_sources which can be used to create a list of point sources
using the coupling data as input. In FEniCSx however, point sources have not been
implemented yet5. Therefore, all methods related to them had to be removed.

Removal of support of parallelism

The FEniCS-preCICE adapter uses imports from the mpi4py package6 which allow
the handling of inter-process communication by letting each of multiple processes
of a solver solve a different part of the mesh. It uses these, for example, in its
communicate_shared_vertices method which lets solver processes send vertex data to
other solver processes with sharing vertices. For the FEniCSx-preCICE adapter, this
and other methods regarding parallelism have been removed, meaning a solver only
has one process.

4https://fenicsproject.org/olddocs/dolfin/1.5.0/python/programmers-reference/cpp/fem/PointSource.html
5https://fenicsproject.discourse.group/t/pointsource-in-dolfinx/8337
6https://pypi.org/project/mpi4py/
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4.4 Solver for the partitioned heat equation

For testing, but also as a starting point for new users I developed a solver for the
partitioned heat equation that communicates with preCICE using the FEniCSx-preCICE
adapter7. This solver is based on the FEniCS solver of the partitioned heat equation
tutorial case from preCICE 8.

In order to run a simulation with preCICE, an xml configuration file which specifies
the solver participants and the coupling schemes, among other settings, has to be
provided. An overview of how this file is arranged can be found on the preCICE
website9. The simulation of the partitioned heat equation consists of two separate solver
instances, solving the Dirichlet and Neumann side, respectively, that exchange data on
the coupling interface via bidirectional serial-implicit coupling. Since both solvers run
the same code, the parts that are specific to one participant are not executed by the
other.

The meshes are setup the same way as described in section 2.4.3. Subsequently, the
parameters α = 3 and β = 1.3 as well as the function spaces are initialized.

Afterwards, the Dirichlet and Neumann boundary conditions are defined and the
adapter is initialized with the coupling boundary, the function space it reads data from
as well as the function object it writes data to. In the case of the Dirichlet solver, the
read function space is the function space of the temperature and the write object is the
function object of the Neumann boundary condition, while for the Neumann solver the
read function space is the function space of the heat flux and the write function object
is the function object of the Dirichlet boundary condition.

Now, the adapter handles the implicit coupling by setting a checkpoint by storing
the current solution and time step for both solvers at the beginning of each time step.
First, the Dirichlet solver solves the problem on its side and sends the heat flux at the
coupling interface to the Neumann solver. In turn, the Neumann solver solves the
problem on its side and sends the temperature at the coupling interface to the Dirichlet
solver

if problem is ProblemType.DIRICHLET:
# reads temperature and writes flux on boundary to Neumann problem
flux = determine_gradient(V_g, u_np1)
flux_x = Function(W)
flux_x.interpolate(flux.sub(0))
precice.write_data(flux_x)

7https://github.com/precice/tutorials/pull/317
8https://github.com/precice/tutorials/tree/master/partitioned-heat-conduction/fenics
9https://precice.org/configuration-overview.html
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elif problem is ProblemType.NEUMANN:
# reads flux and writes temperature on boundary to Dirichlet problem
precice.write_data(u_np1)

determine_gradient is a method that computes the heat flux according to section
2.4.2, V_g a vector function space and W a one-dimensional subspace of V_g. The function
spaces have to be setup this way because the flux itself is a vector that gets reduced to
its x-component by using the method flux.sub(0).

If the data at the coupling interface did not converge yet, the adapter rolls back to
the checkpoint. Once convergence is reached, the solutions are updated and the solvers
advance to the next time step. The implicit coupling process repeats until the last time
step is finished.

4.5 Changes to the error computation

The error computation, that allows us to check if the numerical solution is sufficiently
close to the analytical one, is implemented in the FEniCS solver as follows:

# compute pointwise L2 error
error_normalized = (u_ref - u_approx) / u_ref
# project onto function space
error_pointwise = project(abs(error_normalized), V)
# determine L2 norm to estimate total error
error_total = sqrt(assemble(inner(error_pointwise, error_pointwise) * dx))
assert (error_total < 10 ** -4)
return error_total

Here, u_approx is the numerical solution function, u_ref the analytical solution
function and V the function space they live in. The relative error between the functions
is computed and then projected onto V using the FEniCS method project resulting
in the error function error_pointwise. Lastly, the L2 norm of the error function is
computed which yields the total error. The method project is not part of FEniCSx,
however, resulting in the following changes for the FEniCSx solver10:

mesh = u_ref.function_space.mesh
# compute total L2 error between reference and calculated solution
error_pointwise = form(((u_approx - u_ref) / u_ref) ** 2 * dx)
error_total = sqrt(mesh.comm.allreduce(assemble_scalar(error_pointwise), MPI.SUM))
assert (error_total < 10 ** -4)
return error_total

10https://github.com/precice/fenicsx-adapter/pull/14
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Here, error_pointwise is a function that takes the relative difference of the reference
and approximate solutions in the L2 norm. The error_total is computed by assembling
the system which resolves error_pointwise using the method assemble_scalar and
taking the square root over the sum of all values. This sum is computed with the method
allreduce which takes the summation operator MPI.SUM as the second argument and
executes it on its first argument.
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In this chapter I test the preCICE-FEniCSx adapter and evaluate its results. In section
5.1 I execute the preCICE tutorial case using the adapter with several different con-
figurations and address their computation time. Afterwards, I compare the adapter’s
performance with the FEniCS-preCICE adapter in section 5.2. Furthermore, I assess
the accuracy of the results in section 5.3. Lastly, I discuss the findings of the chapter in
section 5.4.

5.1 Performance

To test our implementation we run the tutorial case for the partitioned heat equation
where we consider the same domain dimensions as described in subsection 2.4.3 with
varying cell counts in the meshes. In all test cases we compute 10 time steps. In the
following we refer to the number of cells of a mesh in x-direction and y-direction as nx
and ny, respectively.

5.1.1 Increasing ny

For this test case, we set nx = 9 for both domains and simultaneously increase ny for
both domains. In figure 5.1 we observe a big spike between the times for ny = 36 and ny
= 72 where the total time spent by the Dirichlet and Neumann participant rises by over
500% for both. The simulation loop time after the initialization rises by over 1600% and
over 3700% for Dirichlet and Neumann participant respectively. It makes up between
20% and 52% of the total time of the Dirichlet participant and between 7% and 42% for
the Neumann participant.
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Figure 5.1: Runtime of the tutorial with nx = 9 and simultaneously increasing ny for
both domains: The Dirichlet participant is on the left side, the Neumann
participant on the right.

5.1.2 Increasing nx

Now, we reverse the setup of subsection 5.1.1 and set ny = 9 for both domains and
simultaneously increase nx for both domains. In figure 5.2 we observe that both the
total time taken by the simulation as well as the time spent by the simulation loop is
lower than seen in subsection 5.1.1. Also, we do not observe any sudden spikes in the
computational time. The simulation loop now makes up between 13% and 50% for the
Dirichlet participant. For the Neumann participant it makes up a marginal amount for
high nx with only 0.3% for nx = 288.
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Figure 5.2: Runtime of the tutorial with ny = 9 and simultaneously increasing nx for
both domains: The Dirichlet participant is on the left side, the Neumann
participant on the right.

5.1.3 Coupling non-matching meshes

In this test case we choose different ny for ΩD and ΩN which leads to a differing amount
of nodes on the coupling domain at which point preCICE employs data mapping. As
we can see in figure 5.3 the total computation time stays below the times seen in
subsections 5.1.1 and 5.1.2 due to the lower total amount of nodes. Again, there is a
big spike between the times for ny = 36 and ny = 72. Also, for ny >= 72 the simulation
loop now takes up most of the time of the simulation with over 97% for the Dirichlet
participant and over 72% for the Neumann participant.
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Figure 5.3: Runtime of the tutorial with nx = 9 for both domains, ny = 9 for ΩN and
increasing ny for ΩD: The Dirichlet participant is on the left side, the
Neumann participant on the right.

5.2 Comparison with the FEniCS-preCICE adapter

In order to see the effects of the changes made between the FEniCS-preCICE adapter
and the FEniCSx-preCICE adapter, we run the FEniCS tutorial case of the partitioned
heat equation with the same configurations as in subsection 5.1.1. The FEniCS tutorial
case was performed using the preCICE virtual machine1 which, among others, has the
tutorial case for the partitioned heat equation installed. Figure 5.4 shows, that for ny
up until 72, the FEniCS case takes less than 10 seconds total. For ny = 288, the FEniCS
case finishes in slightly above 40 seconds, which is roughly 2.3% of the time needed for
the FEniCSx case.

1http://precice.org/installation-vm.html
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Figure 5.4: The setup is identical to the one presented in subsection (5.1.1). Again, the
Dirichlet participant is on the left, the Neumann participant on the right.

5.3 Accuracy

All tested configurations shown in sections 5.1 and 5.2 produce the same output whose
initial and final configuration can be seen in figures 5.5 and 5.6, respectively. The
output also coincides with the output produced by the analytical solution, showing
that the FEniCSx-preCICE adapter works correctly. This also means that we do not
lose accuracy compared to the FEniCS-preCICE adapter. Furthermore, we can observe
that the data is continuous even at the coupling interface, showing the successful usage
of the Dirichlet-Neumann coupling presented in section 2.4.3. This is also the case
for the configuration with non-matching meshes as seen in subsection 5.1.3 which
demonstrates the correctness of the data mapping employed by preCICE.
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Figure 5.5: The initial heat distribution across the domain; the black line indicates the
coupling interface

Figure 5.6: The heat distribution across the domain after the coupling has finished; the
black line indicates the coupling interface
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5.4 Discussion

The simulations using the FEniCSx-preCICE adapter produce accurate results, meaning
we fulfilled our goal of not losing accuracy compared to the FEniCS-preCICE adapter.
However, their computational time is significantly increased compared to simulations
using the FEniCS-preCICE adapter for bigger meshes. I suspect there are two main
reasons for this. One seems to be the mask computation that had to be introduced as
described in subsection 4.3.1 and its nested for loop over the degrees of freedom and
the mesh vertices during the initialization phase. This would result in a considerable
overhead that is not present in the FEniCS-preCICE adapter. I assume the other reason
to be the simulation time loop itself which generally also has a significantly higher
computational cost compared to the time loop in the FEniCS-preCICE simulations. One
reason for this could be the circumstance that not every functionality offered by FEniCS
is implemented in FEniCSx yet, making workarounds necessary that negatively impact
performance. In order to make more accurate assumptions further investigations of
this topic are necessary, however. One exception to this is that the Neumann solver
still scales well for meshes with few cells in y-direction and a high number of cells
in x-direction as seen in subsection 5.1.2. This could be explained by the fact that, in
contrast to the Dirichlet solver, the Neumann solver does not have to compute the heat
flux. This is, in fact, the reason why the computation loop of the Neumann solver
always takes less time than the one of the Dirchlet solver. Also, since in this scenario
there are few vertices at the coupling interface and therefore few data values that
are exchanged via preCICE each time step, this suggests that the data exchange with
preCICE has a rather high computational cost.
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6 Conclusion

To conclude this thesis, I summarize its content and give an outlook on future work.
In section 6.1 I recapitulate the main points of the thesis, in particular the FEniCSx-
preCICE adapter and its evaluation. In section 6.2 I discuss parts of the adapter that
have room for improvement and look at other preCICE tutorial cases that could be
made compatible with FEniCSx.

6.1 Summary

In multi-physics simulations, partitioned approaches, which simulate the considered
system by dividing it into several subsystems that are subsequently solved individually
by independent solvers, are useful because changes to the system only result in changes
to the affected subsystems, leaving the others untouched. For this, the independent
solvers need to be coupled together, which can be achieved by tools such as preCICE, a
coupling library which treats individual solvers, such as the Finite Element Method
(FEM) library FEniCSx, as black boxes.

In this thesis, I turn the FEniCSx-preCICE adapter, which is used to integrate preCICE
with FEniCSx in a minimally-invasive way, from a draft into a functioning software.
In chapter 2, I explain the mathematical background needed for understanding the
Finite Element Method such as boundary conditions, address the heat equation in
particular and present a partitioned setup for it. In chapter 3, I give an overview
over the features of preCICE in section 3.1 and show how to solve partial differential
equations by employing the Finite Element Method with FEniCSx in section 3.2. In
section 3.3, I consider the FEniCS-preCICE adapter for FEniCS, the predecessor of
FEniCSx, as the basis for the FEniCSx-preCICE adapter. In chapter 4, I focus on the
implementation details of the FEniCSx-preCICE adapter. I describe major changes
compared to the FEniCS-preCICE adapter in sections 4.3 and 4.4. Furthermore I take
an existing preCICE tutorial case consisting of a partitioned setup for the heat equation
and make it compatible with FEniCSx in section 4.5. The chapter shows the minimally-
invasive nature of the adapter since no preCICE code had to be altered. Afterwards,
I use it in chapter 5 to test the adapter’s performance. Section 5.3 shows that the
results produced by the adapter are as accurate as the analytical solution as well as the
FEniCS-preCICE adapter. I was therefore successful at developing a working version of

29



6 Conclusion

the adapter as well as making it usable with a FEniCSx solver. The results of sections
5.1 and 5.2 show that there is still room for improvement regarding their performance
for big meshes, however. I suspect that the workarounds explained in section 4.3,
which had to be employed due to functionalities from FEniCS that have been cut from
FEniCSx, are at least partly at fault for this.

6.2 Future work

The first step of improving the adapter is to further investigate the significantly higher
computational cost compared to the FEniCS-preCICE adapter as seen in section 5.2.
Also, since the main goal of developing the FEniCSx-preCICE adapter was to create a
minimal functioning version that is usable for the partitioned-heat-equation tutorial
case, there are many features that are yet to be implemented as explained in subsection
4.3.2. Right now, the adapter only works in serial and does not support parallelization.
Similarly, it is currently not possible to use vector-valued functions. The tutorial does
not use them and we could therefore afford to omit them. Additionally, point sources
can not be used with the adapter because there is currently no implementation for
them in FEniCSx. They are necessary for the simulation of fluid-structure interaction
and are therefore of great importance. All listed functionalities are supported by the
FEniCS-preCICE adapter, so they should be rather straightforward to bring to the
FEniCSx-preCICE adapter once all necessary functionalities of FEniCS are brought to
FEniCSx. Furthermore, there are other preCICE tutorial cases such as fluid-structure
interaction1 and conjugate heat transfer2 that are compatible with the FEniCS and
are therefore suitable candidates to be implemented in the future once all features
supported by FEniCS return to FEniCSx. Since the FEniCSx library is still being
expanded, future added functionalities could improve the adapter as well.

1http://precice.org/tutorials-perpendicular-flap.html
2http://precice.org/tutorials-flow-over-heated-plate.html
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