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Abstract

The outbreak of the COVID-19 pandemic has brought huge impacts and changes to human
mobility, which directly impacted the urban transportation system. This study explored the
recovery patterns of urban taxi system in the post-pandemic era on the basis of data for
taxi trips, which includes taxi origin and destination information. We used the clustering
method to merge OD data with similar trends and build a resilience models for each cluster
separately based on the time nodes of public policy release. The resilience model quantifies
recovery patterns across community areas with similar loss rates and recovery rates within
the same cluster. By determining the cluster class to which the unknown test data belongs,
the corresponding resilience model can be used to predict its recovery pattern. Combining
natural and man-made destructive events, the study explores the impact of both on urban
transportation systems and tries to reveal some important pointers for policymakers that
could potentially aid in developing urban transportation policies during the future pandemic.
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1. Introduction

1.1. Motivation and Background

In recent years, there has been a growing interest in the resilience of systems during and
after disruptive events such as hurricanes, earthquakes and pandemics. Whether these events
are predictable or unpredictable, natural or man-made, they all have far-reaching effects on
the performance and availability of transportation systems. The American legal theorist and
economist Richard Allen Posner divides negative disruptive events into four categories [1]:

1 Natural catastrophes (epidemics, volcano eruptions, meteorite impact, etc.)

2 Scientific accidents or laboratory accidents (e.g. release of bacteria)

3 Unintended man-made catastrophes (climate change, nuclear accidents, social upheavals,
economic crises, corruption, political structures, food shortages, “alien species”, etc.)
and

4 Intentional, man-made catastrophes (cyber wars, terrorist attacks, etc.)

The most common disruptive events to transport systems are natural disasters, and pandemics
are no exception. However, unlike disasters such as hurricanes and earthquakes, the effects of
pandemics are relatively long-lasting, often lasting months or even years, as in the case of
COVID-19 pandemic. It had a major impact on taxi travel. Many people were reluctant to use
taxis or other forms of public transportation because of the health risks associated with the
virus. This directly led to a sharp drop in demand for taxi services. Additionally, the public
measures taken to contain or mitigate the spread of the virus, such as stay-at-home orders
and the closure of non-essential businesses, restricted people’s mobility, further exacerbated
the decline in demand for taxi services and impacted transportation systems.

Typical research on the resilience of transportation systems is based on disasters such as
hurricanes and earthquakes, which are characterised by high intensity and destructive but
short duration, typically 1-2 weeks. And public policy responses to such short term disasters
often have no negative impact on urban transportation systems. However, public health
policies in response to the pandemic restrict people’s mobility, reduce travel demand, and the
release time is unknown. So it’s often more complex than a single disruptive event. This study
explores the impact of longer lasting pandemics and public health policies on the resilience
of taxi systems by combining natural and man-made disruptive events.
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1. Introduction

1.2. Concept and Framework of Resilience

The concept of resilience originated in engineering and construction and is defined as the
degree to which a system may react adversely during a disruptive event. It is the ability of
systems to absorb and recover from the effects of disruptive events without fundamental
changes in function or structure [2]. Bruneau et al. have developed a conceptual framework
to identify and quantify the extent of resilience [3]. This framework can be illustrated by the
following triangle.

Time t

Per f ormance P(t) %

0 1 2 3 4 5 6 7

100

0

Pmin

Unreliability
profile

Recovery
profile

Resilience
loss

t0 t1t2

Disruption
phase Recovery phase

Impact

Figure 1.1.: Resilience triangle

In order to quantify resilience, it is necessary to examine the variation of performance along
the time of disturbances. This approach is based on the notion that a measure of performance
P(t) varies with time. Specifically, performance can range from 0% to 100%, where 100%
means no degradation in of service and 0% means no service is available. Normally, system
performance will not drop to 0% after disruptive events, but will reach a minimum point
Pmin, and then steadily increase until it reaches a new steady state. The area of the shaded
triangle is the resilience loss. Mathematically, this loss is represented as follows [3]:

R =
∫ t1

t0

[100 − P(t)]dt (1.1)

In the field of taxi transport, the number of taxi trips is a good performance indicator, more
precisely the origin-destination (OD) demand, which is discussed in more detail in section 3.2.
It can reflect well the travel demand of people and the activity of taxis. For a stable urban taxi
system, the OD demand from area A to area B should fluctuate within a reasonable range.
When a disaster occurs, the number of trips will quickly drop to an extremely low value and
then recover.

1.3. Resilience Quantification

Unreliability and recovery are two areas that resilience studies focus on. Typically, unreliability
and recovery processes all follow similar patterns. That is, the rates of evacuation or recovery
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1. Introduction

follow an S-shape [4]. Such process can be modelled using a logistic function, which will be
discussed in more detail in Section 2.5. This is done to build a more accurate resilience model,
as shown in the figure 1.2.

Figure 1.2.: Illustration of resilience metrics

As the diagram above shows, a complete resilient cycle should include the following four
states:

1 Normality (I): Baseline, or the original state P0 in which the system was operating
normally prior to the occurrence of the disturbing event.

2 Performance degradation (II): Unreliable state, when the system degrades to Pmin at
time tmin after a disturbing event.

3 Recovery (III): Recovery state, when the system improves its performance functions as a
result of restorative efforts.

4 Recovered steady state (IV): System performance reaches a new steady state after
successfully completing the recovery state.

Suppose tstart is the time when the pandemic starts and t f inal the time when OD demand has
recovered to a new state of equilibrium. This new steady state may also be above or below
pre-pandemic baseline demand. tmin is a time between tstart and t f inal when the system starts
to recover.

A resilient system includes high resistance, recovery percentage and event duration. Their
concepts and formulae are shown in the table 1.1.

3
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1. Introduction

Table 1.1.: Resilience Metrices Description

Metrics Description Formula

Resistance(Re): is the level of deviation of the
performance from the normal state. It indicates
the degree of susceptibility to disturbance.

Re = Pmin−P0
P0

Event Duration(T): is the time it takes from the
occurrence time of the disruptive event to the
time that the system reaches a new steady state

T = t f inal − tstrat

Recovery Percentage(RP): is the percentage of
improvement or reduction of performance after
a disruptive event. Recovery percentage indi-
cates the impact level of an event on the system
performance.

RP =
Pf inal−Pstrat

Pstart

4



2. Methodology

2.1. Experiment Flowchart

Based on the OD pair concept of above, the following research process is designed. Firstly, the
number of trips will be aggregated based on their OD positions and a comprehensive visual
statistical analysis of the data collected during different Covid periods will be carried out.
The purpose of this study is to investigate whether there is a commonality in travel between
community nodes, i.e. to use travel data between any community to build a resilience model,
and use this model to predict the change in taix trips in other OD pairs after the impact
of COVID-19. In order to obtain a more accurate resilience model, it is necessary that the
OD pairs contain sufficient data samples. Therefore, the OD pairs with too few trips were
discarded in this study.

The OD pairs obtained after screening are divided into a training data set and a test data
set. For the training data, further clustering is required and those datasets with similar
trends are classified into the same cluster. The resilience model is then modelled separately
for each cluster using logistic regression. Finally, the test data set is classified into known
clusters and the resilience model of the corresponding cluster is used to make predictions.
The methods used in clustering and logistic regression are explained in more detail in the
following chapters.

The entire analysis process is based on the following flowchart 2.1:
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2. Methodology

Aggregate the number of trips
based on their OD

Analyze the original data
for different COVID periods

OD pairs Data Partitioning

Testing Dataset (20%) Clustering and Regression

Cluster 3Cluster 2Cluster 1 Cluster 4 Cluster i

Model 1 Model 2 Model 3 Model 4 Model i

Prediction

Training Dataset (80%)

Figure 2.1.: Experiment flow chart.

2.2. Degree Centrality

To reflect the importance of community nodes, the concept of degree centrality is introduced,
which is measured by the total number of direct links with the other nodes [5]. By considering
the number of taxi trips between two nodes in a network, a more meaningful network metric
is obtained. We define the weighted degree centrality (CD(i)) of a node i as follows:

CD(i) =
N

∑
j=1

Aijwij, (2.1)

where wij is the weight of a link, estimated as the number of taxi trips between two nodes i
and j, and Aij is the adjacency matrix (Figure: 2.2) of the network, whose elements take the
value of 1 if two nodes i and j are connected, and 0 otherwise.

6



2. Methodology

A B C D
A 0 1 1 0
B 1 1 1 0
C 1 1 0 1
D 0 0 1 0

A B

C D

Figure 2.2.: Adjacency Matrix.

Typically, the community area with a high degree of centrality corresponds to areas with
city centers, train stations, airports, and other commercial areas. This allows we to identify
the community nodes with high degree centrality in Chicago. The changes in the degree
centrality of these community nodes before and after Covid-19 will help to understand the
changes in the urban traffic structure more intuitively.

2.3. Dynamic Time Warping, DTW

In order to complete the clustering of long time series based on the spatial similarity, this
study adopts the method, the Dynamic Time Warping algorithm (DTW). It is a well-known
algorithm for measuring the similarity between two time series, especially for time series of
different lengths and rhythms. This algorithm was proposed around the 1970s and was first
used to solve with the problem of automatic speech recognition and classification [6], to cope
with different speaking speeds. Later it has been widely used in many fields: isolated word
recognition [7], handwriting and online signature matching [8], sign language and gestures
recognition [9].

Consider two time series Q and C where,

Q : q1, q2, q3 · · · qn,

C : c1, c2, c3, · · · cm

The simplest way to compare their similarity is to calculate the Euclidean distance from point
to point and add them up. The smaller the sum of the distances, the more similar the two
sequences are. The figure 2.3a illustrates this concept.

7
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2. Methodology

(a) Euclidean distance.

(b) DTW distance.

Figure 2.3.: Two time series similarity measurement.

Although the Euclidean distance is a very simple and intuitive method, if the sequences are
out of phase, the result obtained by calculating the Euclidean distance will be much greater
than the actual minimum distance. For example, both sequences have very similar shapes
overall, but the shapes are not aligned on the x-axis. So before comparing their similarities,
one of the sequences needs to be shifted down the time axis to achieve better alignment. This
method of "corresponding a point at one time in one sequence to points at several successive
times in another sequence" is called time warping. DTW is an effective way to achieve this
warping distortion. It computes the similarity between two time series by lengthening and
shortening the time series. The figure 2.3 shows this different adjustment.

To calculate the distance between the two, first draw a two-dimensional array [n × m], where
each point w(i, j) in the array represents the distance between Qi and Cj:

w(i, j) =
√
(qi − cj)2 = |qi − cj| (2.2)

Theoretically, it is possible to exhaustively enumerate all possible warping forms of the two

8



2. Methodology

sequences, and calculate the distance between them one by one, and the one with the smallest
distance is the required warping. However, the amount of computation is too large, so
dynamic programming is used to perform the computation efficiently.

Steps of dynamic programming algorithm:

1 Compute the distance matrix between individual points in two sequences.

2 Find a path from the bottom left corner to the top right corner of the matrix such that
the sum of the elements on the path is the smallest.

Assuming the warp matrix is M, the length of the shortest path from the lower left corner of
the matrix M(1, 1) to any point M(i, j) is Lmin(i, j).

L(i − 1, j − 1)

L(i − 1, j)

L(i, j − 1)

Lmin(i, j) M(i, j)

Figure 2.4.: Path matrix.

Using the recursive algorithm to find the shortest path length:
Starting conditions:

Lmin(1, 1) = M(1, 1)

Recurrence relation:

Lmin(i, j) = min{Lmin(i, j − 1), Lmin(i − 1, j), Lmin(i − 1, j − 1)}+ M(i, j) (2.3)

This algorithm is based on finding a path through several grid points in this grid, and the
grid points passed by the path are the aligned points for calculating the two sequences. The
smaller the distance of the final regularised path, the greater the similarity between the two
original time series.

The example in the figure below simply shows how dynamic programming can be used to
find the best path.

9



2. Methodology

Figure 2.5.: Warping matrix construct and the optimal warping path search.

The red line represents the optimal path between the time series Q and C, e.g.

(1, 1), (2, 2), (3, 3), (4, 3) · · · (12, 11), (13, 12), (13, 13)

and its length is 11. Although DTW is a good method for measuring time series similarity
with high accuracy and robustness, the space and time complexity of its computation is
related to the length of the two sequences, which is O(mn). Obviously, it requires more time
and memory than the Euclidean distance, especially when comparing long time series.

2.4. LB_Keogh Distance

To speed up the DTW calculation process, an approximate method is used to compute the
Lower Bounding (LB). It can exclude most of the sequences that cannot be the optimal match,
and the remaining sequences are compared one by one using DTW. There are several different
functions for lower bounds on different time series distance measures, LB Keogh lower bound
is used in this study. It was introduced in 2002 as the first non-trivial lower bound for

10



2. Methodology

DTW [10] and it is still the fastest known technique for indexing DTW.

The distance between time series Q and C is defined as [10]:

LBKeogh(Q, C) =

√√√√√√√ n

∑
i=1


(ci − Ui)

2 i f ci > Ui

(ci − Li)
2 i f ci < Li

0 otherwise

(2.4)

where U i and Li are upper and lower bounds, i.e. an envelope for time series Q, which are
defined as:

U i = max(xi−r, · · · , xi+r),

Li = min(xi−r, · · · , xi+r)

for all i ∈ {1, · · · , n} and r is the radius of the envelope.

The following illustration is a visual intuition of LB_Keogh, a protective envelope is built
around the red time series Q. The squared sum of the distances from each part of the
blue candidate sequence C that does not fall within the bounding envelope, to the nearest
orthogonal edge of the bounding envelope is returned as the lower bound of the DTW.

Figure 2.6.: Visualization of the LB Keogh lower bounding function (Q,C).
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2. Methodology

2.5. Logistic Function based Regression Model

The resilience model can be seen as a combination of two S-shaped curves [11], slightly
reminiscent of the sigmoid function, and more generally, the logistic function, which was
introduced by Belgian mathematician Pierre François Verhulst in 1838 for the purpose of
analyzing population growth in Belgium [12]. Its most general equation is:

f (x) =
L

1 + e−k(x−x0)
(2.5)

where L is the supremun of the values of function and k is the logistic growth rate of the
curve.

(a) Logistic function. (b) Fitting a random resilience model using a logistic func-
tion.

Figure 2.7.: Regression based on logistic function.

The figure above shows the most common logistic function graph. The initial phase of growth
is approximately exponential. Then the growth rate levels off. Finally, when saturation is
reached, the rate slows down and stops growing. Typically, the range of the logistic function
should be between 0 and 1, representing the range from the worst service status to full
recovery of the service. In practice, the trough of the recovery curve may be greater than zero
(partial disruption of the system) and the peak at the end of the analysis period may be less
than 1 (system not fully recovered during the COVID-19 epidemic period). To obtain a wider
range of function values to fit more models, the function can be more generalised as:

f (x) =
d

1 + ea+bx + c (2.6)

The range of the function is (c, c + d), theoretically, it is possible to fit any range of S-shaped
curves. This function is then used to model and predict taxi recovery activities.

12



3. Application with Data

3.1. Data and OD Networks

The city of Chicago is divided into 77 community areas [13]. City Hall adopted these as
the official community boundaries and uses them for much of the official city government
statistics, including taxi trip data. The data includes information such as pick-up location,
drop-off location and travel time. The mobility of Chicago taxis between pick-ups and
drop-offs in community areas can be represented as a dense network of origin-destination
(OD) networks. A large dataset of Chicago taxi trips between 1 January 2019 and 31 October
2022 is employed in this study [14]. The taxi-trip management system in Chicago collects
the geospatial information of the community areas and the date and time of the trips. The
geospatial information on origin-destination (OD) pairs provides a platform for studying
human mobility patterns. Any change in human mobility patterns is reflected in the OD
locations of taxis. Therefore, we construct a weighted and undirected network with different
community areas in the city of Chicago as the nodes of the network and the total number of
trips between OD locations as the edge of the network. The pairs of nodes representing OD
locations are connected if there is at least one taxi trip between two nodes. Edge weights can
be aggregated over any time period such as daily or weekly taxi trips. Theoretically, there are
77 ∗ 77 different OD pairs that can be used as research objects.

3.2. The Original Data for Different COVID Periods

In the state of Illinois, one of the first cases was reported in Chicago when a person travelled to
the city from Wuhan, China on 24 January 2020 [15]. In the early stages of the pandemic, there
was not much impact on travel. Before 6 March, the number of journeys fluctuated around
45000, as the situation had not yet become pandemic. With the increase in reports of new
cases and the introduction of a number of public health measures to deal with the pandemic,
people began to commute less frequently. This change was reflected in the taxi travel data as
a rapid decline in the daily number of trips between communities. The following two graphs
(Figure 3.1 and 3.2) illustrate the number of trips per day between 01 February 2020 and 31
November 2021.

13



3. Application with Data

Figure 3.1.: Impact on the number of taxi trips in the initial phase of the COVID-19.

Over the next two weeks, starting on 9 March 2020, the daily number of taxi trips steadily
declined as the number of COVID-19 infected cases began to rise. The steady decline in the
average number of trips coincides with the closure of schools (13 March), the first Illinois
coronavirus death (17 March), the state order to stay home (19 March), and the closure of the
city’s lakefront, adjacent parks, 606, and Riverwalk to the public (26 March) [16]. From 26
March 2020, the number of trips is close to the minimum of 878 and continues to fluctuate
around a value of 1000. See the appendix A.2 for the City of Chicago Public Health Policy.

Figure 3.2.: Events during the recovery process.

From May 2020, the number of daily taxi trips began to slowly recover. When the Mayor
announced that Chicago would open in June and that restaurants and bars would open with
restrictions, the rate of recovery increased significantly. Although the second wave of the
pandemic arrived again in October 2020, this time it did not have as big an impact as the first

14



3. Application with Data

wave, and the trip curve continued to grow after a slight dip. However, until 21 December,
when the City of Chicago announced vaccination requirements for indoor public places, the
number of taxi trips was again affected, as the mobility of those who were not vaccinated was
restricted due to the constraints of the executive order. To date, the taxi industry in Chicago
has not returned to pre-pandemic levels.

As can be seen from the two graphs above, the data shows a clear periodicity. It is easy to
understand that people’s travel needs are quite different on weekdays and weekends. In
order to eliminate this volatility, the following discussion aggregates the data on a calendar
week basis.

3.3. Aggregate Travel Data on a Weekly Basis

Figure 3.3.: Number of taxi trips per week.

In the first 50 weeks, the number of trips fluctuates around the average of 272947 times/week,
as the situation with the spread of the virus has not yet become a pandemic. Although there
is a sharp drop in the number of trips at certain times, e.g. 15, 27 and 48 weeks, this can be
quickly recovered in a short period of time. This may be due to a public holiday or extreme
weather conditions. In stark contrast to this was the impact between weeks 59 and 65. In less
than two months, the total number of weekly taxi trips fell rapidly from 250,000/week to
10,000/week. This number reached a low of 10245/week in week 68. Detailed travel data are
given in Table 3.1.

15



3. Application with Data

Table 3.1.: The number of trips affected by the pandemic

week demand week demand

58 259050 64 13074
59 253793 65 12650
60 248624 66 11242
61 235127 67 10343
62 187022 68 10245
63 39759

The resistance value can be easily calculated based on the usual average weekly travel times
as follows:

Re =
Pmin − P0

P0
=

10245 − 272947
272947

= −96.25%

This means that taxi trips across the city were less than 4% of normal levels. This number
intuitively show the impact of the pandemic on the taxi system.

3.4. The Weighted Degree Centrality of Nodes

Figure 3.4 shows the strength of nodes (community areas) for the selected weeks, which pro-
vides a reasonable representation of the level of interaction between origins and destinations
in Chicago. The colour spectrum of the strength of community areas could be interpreted as
the range of activities in different locations in Chicago. To make the colour difference in the
figure less significant, the logarithm is taken for all values. We provide the visualisation for
six weeks, from week 60 to week 65.

16



3. Application with Data

Figure 3.4.: The degree centrality of Chicago’s neighbourhoods according to COVID-19 per
week.

In week 60, there are higher values of node strength in the Near North Side (community node
8), Loop (community node 32), Near West Side (community node 28), O’Hare (community
node 76), Near South Side(community node 33) and Lake View(community node 6). (The
map of Community Areas in Chicago can be seen in the Appendix A.1). Since the Loop
and the Near North Side are the commercial centre of Chicago, containing several retail
establishments, restaurants and commercial workplaces, higher values of node strength in
and around the Loop are justified. And the Near West Side has so many high schools, major
hospitals and a university that it also has a high degree of centrality. A similar argument
can be made for Chicago O’Hare, which is mainly occupied by O’Hare International Airport.
The table and graph below show the data for 6 community areas with the highest degree
centrality after the outbreak of the COVID-19 pandemic.

Table 3.2.: The strength of six communities with the highest degree of centrality.
Index Name 60 61 62 63 64 65
8 Near North Side 11.73 11.67 11.63 11.4 9.58 8.17
32 Loop 11.65 11.64 11.59 11.34 9.53 7.79

Continued on next page
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3. Application with Data

Table 3.2 – continued from previous page
Index Name 60 61 62 63 64 65
28 Near West Side 10.95 10.97 10.92 10.67 8.90 7.67
76 O’Hare 10.22 10.15 10.03 9.51 8.05 6.51
33 Near South Side 9.71 9.44 9.16 8.63 7.28 6.28
6 Lake View 9.61 9.62 9.61 9.50 8.06 7.13

60 61 62 63 64 65
5

6

7

8

9

10

11

12

week

St
re

ng
th

in
lo

g(
10

)

Near North Side(8)
Loop(32)

Near West Side(28)
O’Hare(76)

Near West Side(33)
Lake View(6)

Figure 3.5.: The six communities with the highest degree of centrality.

The figure 3.5 shows that the strength of node 33 starts to decline from week 60. This includes
some of Chicago’s most famous structures: The stadium, Chicago’s main convention centre,
the museum campus, etc. These areas for leisure and entertainment are the first places
where people consider reducing travel when faced with infectious disease. At the same
time, the node strength of Chicago O’Hare starts to decrease, indicating less movement of
domestic and international travellers. It’s easy to understand, since the first cases usually
come from international flights. Travelling in a relatively closed cabin for a long time greatly
increases the likelihood of infection, so people will try to minimise air travel. The colour of
the zones adjacent to the node Loop shifts towards the light blue spectrum from week 63, the
corresponding date being 9 March to 15 March. The time-lagged colour transition of node
Loop shows its traffic importance. In contrast, activity in the southern and southwestern
communities of Chicago remains relatively stable around the light blue spectrum throughout
the pandemic. This can be explained by the sparse travel patterns within these community
areas. We can conclude that regions with high economic activity in the pre-COVID-19
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3. Application with Data

period (such as airports, city centres and business districts) experienced a sharp decline in
travel-related demand at the onset of the pandemic. On the other hand, regions with low
travel-related demand were not significantly affected by the spread of the disease. The above
observation suggests that COVID-19 has drastically affected the propensity of individuals to
travel for work and leisure.

3.5. Clustering

As explained in Section 2.1, we filter out the OD pairs whose total number of trips between 01
January 2019 and 31 October 2022 is less than 10000, and finally obtain 182 pairs, of which 145
pairs are used as the training set and 37 pairs as the test set. The test data set was clustered
by combining DTW and LB_Keogh methods. In the end, a total of 5 clusters were obtained
and their centroids are shown in the figure below. All data are shown with normalisation.

Figure 3.6.: Clustering results in representation of centroids.
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(a) cluster 0 (b) cluster 1

(c) cluster 2 (d) cluster 3

(e) cluster 4

Figure 3.7.: Prediction results for 5 clusters.

Obviously, the larger the data volume of the centroid, the fewer samples it contains. Classify-
ing the data in the test set on the basis of these centroids gives the following results:
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Table 3.3.: Testing dataset classification

cluster Index of testing dataset

0 9
1 22
2 2,11,18,26,29,31,33
3 0,1,4,5,6,7,8,13,15,16,19,20,23,24,25,27,30,32,34,35
4 3,10,12,14,17,21,28,36

3.6. Regression

The impact of traditional natural disasters such as earthquakes or extreme weather on the
transport system is often severe and short-lived. Typically, the system goes through a resilience
cycle to return to a new steady state. However, under the dual influence of the pandemic
and public policy, the subject of this research has become complex and changing. During the
recovery process, the system is often impacted again by changes in the external environment,
such as increased viral infectivity or new executive orders. A single resilience cycle model is
not sufficient to fit the overall trend of the curve, so the entire curve must be broken down
into multiple resilience cycle processes, as shown in the figure 3.8 below.

Figure 3.8.: Division of time intervals.

Section 3.1 looks in more detail at key events during the pandemic. Combining the trend of
the curve and these events, the curve can be roughly divided into three resilience periods,
with the blue dotted line as the dividing line. The dashed red line marks the trough of the
cycle. The landmark events at the beginning of these three cycles are:

1 The new positive case in Chicago,

2 The second wave of the pandemic,

3 Vaccine requirements for indoor public places.
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Each resilience cycle includes two processes of decline and recovery, so the curve during the
pandemic is divided into 6 time periods, i.e. [59,69], [70,92], [93,103], [105,150], [151,156],
[157,180]. For each small time interval, the logistic function is used to fit the parameters
and they are finally connected to obtain a finished model. The centroid curve of cluster 0 is
divided into 6 segments according to the above time intervals. The fitting results based on
the logistic function are shown in the following figure 3.9.

Figure 3.9.: Logistic regression for Cluster 0.

Similar results can be obtained by segmentally fitting the central curves of the remaining four
clusters, which can be found in the Appendix A.3. These parameters can be used to build 5
benchmark models. These are then used to make predictions on the test data set in Table 3.3.
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4. Results and discussion

4.1. Prediction Results According to Different Clusters

The blue scatter points are the real test data and the red curve is the predicted curve based
on the baseline model for the cluster to which the test data belongs. The full results can be
found in the Appendix A.4, and only some of the results are shown in the figure below 4.1
and 4.2. As can be seen from the resulting figure, the prediction curve of cluster 0, 1, 2 can
be a very accurate representation of the real data. However, there is a significant deviation
between the prediction curve of cluster 3 and the real data.

(a) cluster0 (b) cluster1

(c) cluster2.1 (d) cluster2.2

Figure 4.1.: Partial prediction results (1)
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(a) cluster3.1 (b) cluster3.2

(c) cluster4.1 (d) cluster4.2

Figure 4.2.: Partial prediction results (2)

4.2. Evaluation of Prediction Results

In order to quantify the difference between each curve and the true value and to evaluate
the quality of the prediction results, regression evaluation indicators are introduced: Mean
Squared Error (MSE) and Coefficient of Determination (R2). The MSE is the average of the
sum of the squares of the corresponding point errors of the predicted data and the original
data. Smaller values indicate smaller differences between the prediction curve and the actual
data. R2 is a measure of the goodness of fit of a model, usually ranging from 0 to 1. The closer
R2 is to 1, the better the model fits. If the fit is poor, the value will be closer to 0. However,
in regression without intercept, the usual expressions of R2 may give unexpected results, i.e.
the R2 obtained is negative or greater than 1 [17]. A negative R2 indicates that the model’s
prediction is worse than the mean value. The logistic function fitting used in the study is a
nonlinear function without an intercept, so it is possible for R2 to have negative values.

In addition, two indicators are used to describe the characteristics of different datasets: data
volume and recovery rate. The normal data volume is the average of the OD to the pre-
pandemic data volume, and all data are normalised. This shows the volume of taxi journeys
for this pair of ODs before the pandemic. The recovery rate is the improvement or reduction
in the normal data volume after a disruptive event.
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4. Results and discussion

Table 4.1.: Evaluation of prediction Results.
Index Normal data volume Recovery rate[%] MSE[1e−5] R2

Cluster0 0.241
9 0.755 29.8 2.491 0.980

Cluster1 0.330
22 0.218 22.9 93.016 0.924

Cluster2 0.479
2 0.041 60.9 4.566 0.586
11 0.062 66.2 4.876 0.789
18 0.093 73.8 9.815 0.822
26 0.063 75.1 7.464 0.750
29 0.048 22.9 4.612 0.340
31 0.059 36.4 3.088 0.544
33 0.064 35.7 1.218 0.892

Cluster3 0.607
0 0.002 44.7 0.009 0.415
1 0.006 88.3 0.050 0.814
4 0.003 28.2 0.040 -0.892
5 0.003 80.8 0.014 0.768
6 0.003 76.3 0.004 0.851
7 0.001 264.9 0.086 -1.213
8 0.002 38.4 0.019 0.145
13 0.004 40.5 0.031 0.077
15 0.005 39.0 0.069 0.237
16 0.007 77.0 0.071 0.831
19 0.003 31.9 0.022 -0.036
20 0.002 41.4 0.015 -0.451
23 0.002 41.4 0.007 0.579
24 0.006 83.0 0.079 0.674
25 0.003 47.8 0.019 0.614
27 0.005 72.6 0.048 0.634
30 0.002 52.8 0.006 0.698
32 0.002 51.8 0.014 -0.402
34 0.007 51.8 0.040 0.770
35 0.006 75.2 0.035 0.825

Cluster4 0.532
3 0.016 53.0 0.299 0.741
10 0.019 49.3 0.421 0.721
12 0.014 71.6 0.247 0.741

Continued on next page
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Table 4.1 – continued from previous page
Index Normal data volume Recovery rate[%] MSE[1e−5] R2

14 0.014 45.6 0.094 0.792
17 0.026 62.4 0.682 0.838
21 0.016 45.9 0.244 0.715
28 0.008 60.7 0.147 0.252
36 0.013 26.5 0.572 -0.024

Considering that there is a correlation between MSE and data volume, and that the data
volume of different OD pairs is quite different, the results of MSE can only be used as a
reference, and the main focus is on R2. From the results of R2 in the table, it can be seen that
not all prediction curves agree well with the real data, and there are even cases where R2 is
negative, e.g. 4, 7, 19, 20, 32, 36. For these test sets the prediction curve shows large errors or
even distortions.

(a) cluster0 (b) cluster1

(c) cluster2.1 (d) cluster2.2

Figure 4.3.: Prediction errors

The causes of the above prediction errors can be broadly grouped into the following categories:

1. The time interval is divided on the basis of specific events, which can be understood as
shape-based parameter fitting. If the real data does not show an obvious decline when faced
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with new external shocks at the corresponding time, i.e. the shape of the real data curve is
very different from the benchmark model, this will directly lead to the invalidation of the
prediction results.

2. The size of the data sample is also an important factor in determining whether the
prediction is accurate. It is intuitive that most of the inaccurate predictions are concentrated
in cluster3. This is because samples with a small amount of data have relatively large
fluctuations, such as datasets 19, 20, 32, which can be understood as a resilience model with
relatively large noise, while the model we obtained through data fitting is relatively smooth.
The result is that the real data is scattered above and below the predicted curve. In addition,
the small amount of data makes the recovery rate anomalous, and the recovery rate tends to
spike, as in data 7 4.3c.

Figure 4.4.: Comparison of test data 19, 20, 32 with centroid of Cluster 3.

3. Since the benchmark model is based on the cluster centroid curve, if the recovery rate of
the real data is very different from the cluster centroid curve, this error will increase over
time. For example, the recovery rate of dataset 7 is as high as 264.9%, and the recovery
rates of datasets 4 and 36 are only over 20%, which is far from the average recovery rate of
their clusters, resulting in the overall prediction curve being higher or lower than the real data.

In order to reduce the above errors and to improve the prediction accuracy, the following
improvements are proposed:

1 10,000 trips in three and a half years may be too few, and this threshold can be increased
to remove more OD pairs with a small sample size.

2 After primary clustering, secondary clustering is performed on the cluster with the
smallest amount of data, i.e. cluster 3, screening out data sets with similar recovery
rates and obvious resilience characteristics.

3 Use the idea of stepwise regression forecasting, i.e. introduce fixed period data at each
step, e.g. every four weeks, calculate the error between the forecast curve and the real
data, and use it to compensate the forecast curve to reduce the recovery rate caused by
the continuous change in time error.
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5.1. Conclusion

This study attempts to build an OD network to observe changes in taxi travel patterns in the
city of Chicago, and to use travel data between some community nodes to predict taxi trips in
other OD pairs using a resilience model. This exploratory analysis shows how the COVID-19
pandemic has profoundly affected taxi travel patterns in Chicago.

Here is a brief summary of the COVID-19 developments in Chicago City. Mobility decreases
rapidly in the early days of the pandemic in March 2020. By the end of April 2020, the
total number of taxi trips reaches its lowest point and remains at roughly the same level.
From June 2020, we also see a recovery in transport activity in Chicago. While mobility
has increased, it does not reach pre-pandemic levels. This suggests that people may have
reduced non-essential leisure and entertainment travel and adapted to working from home.
Only those whose work structures do not allow for the establishment of home offices could
contribute to the current level of mobility. In October 2020, when the second wave of the
pandemic hit, the number of weekly trips fell again. However, the duration of this decline
was very short, the negative impact on mobility was limited and transport activity soon began
to recover. Compared to the pandemic, the vaccination requirements for indoor public places
in December 2021 had a greater impact on taxi trips and people’s mobility, with the number
of taxi trips falling by 46% in a short period of time.

Combining the overall trend in travel numbers and the policy news provided by the CDPH
COVID-19 Press Room, the curve since the pandemic can be roughly divided into three
segments, and each segment is approximated as a resilience model. Using these three time
nodes above and the training set data, three continuous resilience models were built for each
cluster. Based on these benchmark models and combined with the average volume of data
before the epidemic, the change in the number of taxi trips after the pandemic was predicted.
From the results in Chapter 4, most of the prediction curves are more in line with the trend of
the real data, especially for OD pairs with a large amount of data, the prediction results will
be more accurate. Therefore, we believe that for the same city, changes in the number of taxi
trips between different regions will be similar. Changes in other OD pairs can be predicted
using data from an OD pair belonging to the same cluster. However, the drawback is that this
method will fail for OD pairs with a small sample size. The reason for this is that those OD
pairs with a small number of trips have large data fluctuations, which weakens the resilience
properties and increases the randomness of the recovery rate. The recovery rate can be in
the range of 20% - 250%, which makes prediction difficult. Therefore, the prediction method
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discussed in this study is more suitable for predicting OD pair with a large number of data
samples. On the other hand, in addition to the epidemic itself, public health policies have
had a major impact on the taxi system. Policy makers should take this into account and
compensate the public transport system accordingly.

A limitation of this study is that the dataset only contains taxi data for two years after the
outbreak. Clearly, as of October 2022, the transportation situation has not yet fully recovered
to pre-outbreak levels. Notably, President Joe Biden announced to the US Congress on 11
May that he would end the country’s public health emergency under COVID-19 [18]. This
landmark event could have a positive impact, increasing people’s willingness to travel and en-
couraging further recovery of public transport. There is reason to believe that the introduction
of more data will help to build a more complete model of resilience and improve the accuracy
of forecasts. In addition, another limitation of this method is the poor prediction results for
these weakly resilient OD pairs. Simply using the size of the data set is not sufficient to
identify those OD pairs with weak resilience properties and it may be necessary to introduce
quadratic clustering of the data set with small sample sizes to identify them.

In summary, the results and conclusions of this paper have practical implications for the
network management of taxi systems during major public health events. The characteristics
of transport resilience can help policy makers to clearly understand the process of resilience
between different community nodes. The proposed framework and prediction results would
help transport management to understand the trends of taxi systems before and during
disasters, and build efficient emergency response procedures.

5.2. Future Research Works

In future research, we can try to generalise this prediction method from different regions
of a city to different cities in a country. A network could be created with the city’s airport
or central railway station as the hub, and other inter-regional transport systems such as
planes and trains could be predicted and analysed. However, given that public policy will
have a major impact on the transport structure and people’s willingness to travel, it is worth
investigating whether it can be accurately predicted when the policy of the whole system is
inconsistent. Obviously, central, state and local governments will make decisions in response
to disasters. Sometimes these decisions are consistent, and sometimes they are inconsistent or
even contradictory. This can make forecasting very difficult. On the other hand, due to the
different political systems in different countries, the decision-making between central and
local governments will also be different. For example, in countries with a federal system,
the state government retains some autonomous power to manage internal affairs and its
decision-making has a certain degree of independence. If the resilience model can predict
well the recovery of the future transport system after a shock, it will help policymakers to
anticipate losses after a disaster and formulate more rational public policies that help the
system recover faster.
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A. Appendix

A.1. Community Areas in Chicago

Figure A.1.: 77 Community Areas in the City of Chicago [13].

Table A.1.: Name of the Community Areas of Chicago.
Num Community Area
1 Rogers Park
2 West Ridge
3 Uptown
4 Lincoln Square
5 North Center
6 Lake View
7 Lincoln Park
8 Near North Side

Continued on next page
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Table A.1 – continued from previous page
Num Community Area
9 Edison Park
10 Norwood Park
11 Jefferson Park
12 Forest Glen
13 North Park
14 Albany Park
15 Portage Park
16 Irving Park
17 Dunning
18 Montclare
19 Belmont Cragin
20 Hermosa
21 Avondale
22 Logan Square
23 Humboldt Park
24 West Town
25 Austin
26 West Garfield Park
27 East Garfield Park
28 Near West Side
29 North Lawndale
30 South Lawndale
31 Lower West Side
32 Loop
33 Near South Side
34 Armour Square
35 Douglas
36 Oakland
37 Fuller Park
38 Grand Boulevard
39 Kenwood
40 Washington Park
41 Hyde Park
42 Woodlawn
43 South Shore
44 Chatham
45 Avalon Park
46 South Chicago
47 Burnside

Continued on next page
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Table A.1 – continued from previous page
Num Community Area
48 Calumet Heights
49 Roseland
50 Pullman
51 South Deering
52 East Side
53 West Pullman
54 Riverdale
55 Hegewisch
56 Garfield Ridge
57 Archer Heights
58 Brighton Park
59 McKinley Park
60 Bridgeport
61 New City
62 West Elsdon
63 Gage Park
64 Clearing
65 West Lawn
66 Chicago Lawn
67 West Englewood
68 Englewood
69 Greater Grand Crossing
70 Ashburn
71 Auburn Gresham
72 Beverly
73 Washington Heights
74 Mount Greenwood
75 Morgan Park
76 O’Hare
77 Edgewater

A.2. Public Health Policy

Public Policies and news during the COVID-19 pandemic in Chicago:

- January 24, 2020: City of Chicago Announces First Local Patient with Travel-Related
Case of 2019 Novel Coronavirus

- March 6, 2020: Public Health and Chicago Public Schools Officials Announce New
Presumptive Positive Case of Coronavirus Disease 2019
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- March 13, 2020: City of Chicago Prepares for Closure of all K-12 Schools, as Mandated
by the State of Illinois

- March 17, 2020: Public Health Officials Announce First Illinois Coronavirus Disease
Death

- March 19, 2020: City of Chicago Orders Sick Residents to Remain Home to Prevent
Further Spread of COVID-19

- March 20, 2020: Mayor Lightfoot Joins Governor Pritzker To Announce State Order to
Stay at Home to Prevent Further Spread of COVID-19

- March 26, 2020: Mayor Lightfoot Orders the Immediate Closure of The City’s Lakefront,
Adjacent Parks, 606 and Riverwalk to the Public

- March 28, 2020: Public Health Officials Announce the First Death of an Infant with
Coronavirus Disease

- May 28, 2020: Mayor Lightfoot and CDPH Announce Chicago Ready to Begin Reopening
Cautiously on Wednesday, June 3, 2020

- June 26, 2020: Restaurants, bars and breweries serve patrons indoors with limited
capacity and safety restrictions

- October 19, 2020: Mayor Lightfoot and CDPH Commissioner Dr. Arwady Sound the
Alarm on Second Wave of COVID-19

- February 10, 2021: Mayor Lightfoot Announces Roadmap for Further Easing of COVID-
19 Regulations

- April 29, 2021: Mayor Lightfoot Announces the Launch of “Open Chicago”

- December 7, 2021: Illinois and Chicago Departments of Public Health Confirm State’s
First Case of the Omicron COVID-19 Variant

- December 21, 2021: City of Chicago Announces Vaccine Requirements for Restaurants,
Bars, Gyms, and Other Indoor Public Places
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A.3. Parameter Results for Linear Regression

Figure A.2.: Parameter results for cluster 1
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Figure A.3.: Parameter results for cluster 2
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Figure A.4.: Parameter results for cluster 3
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Figure A.5.: Parameter results for cluster 4
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A.4. Complete Prediction Results for Cluster 2

Figure A.6.: Prediction results for cluster 2 (1-6)

Figure A.7.: Prediction results for cluster 2 (7)

38



A. Appendix

A.5. Complete Prediction Results for Cluster 3

(a) cluster3 01 (b) cluster3 02

Figure A.8.: Prediction results for cluster 3.1.
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(a) cluster3 03 (b) cluster3 04

Figure A.9.: Prediction results for cluster 3.2.
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A.6. Complete Prediction Results for Cluster 4

(a) cluster4 01 (b) cluster4 02

Figure A.10.: Prediction results for cluster 4.
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