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Abstract

The exponential growth in the capabilities of integrated circuits (ICs) has massively increased
the complexity and cost of their development. To manage this complexity, a high degree of
specialization, tool support, and reuse of intellectual property (so-called IP-reuse) between
different integrated circuits are critical. Code generators can automatically provide artifacts
for software and hardware development such as synthesis models on Register Transfer Level
(RTL) or software code for device firmware. In areas where code generation can be applied, the
replacement of manual coding with automated generation has shown significant productivity
increases.

The applicability of code generation is limited by the complexity inherent in developing gener-
ators. This thesis provides a novel methodology for developing generators for digital hardware
that significantly reduces the complexity of generator development and the cost of genera-
tor development along with it. The reduced complexity further facilitates the development of
generator-based automation for digital design tasks which previously required manual work.

The new methodology is based on the vision of Model Driven Architecture (MDA) which has
been developed in the field of software engineering and is successfully applied there. Model
Driven Architecture aims to automate the generation of target views through a series of models
with different levels of abstraction and Model-to-Model transformations that automatically pro-
vide more refined models from more abstract specification models and eventually automatically
generate the final view.

This thesis adapts, transfers, and extends the vision of Model Driven Architecture for use in
the field of digital hardware design. It identifies key Metamodels and Model-to-Model trans-
formations and implements an end-to-end generation flow for digital designs. The framework
developed in the context of this thesis puts particular focus on Metamodel-based automation
to reduce the manual effort required to develop generators.

The new framework enables a shift from the development of static instances of digital hardware
in hardware description languages such as SystemVerilog and VHDL to the development of
highly configurable generators in a general-purpose software programming language. This thesis
demonstrates how the capabilities of this general-purpose programming language and the MDA-
inspired modeling environment can be applied for generator reuse and to solve complex System-
on-Chip (SoC) infrastructure problems.

The results of this thesis are the foundation of MetaX, a full chip generation framework that
is already used in a productive industrial context to automate chip design, verification, and
embedded software development where it is able to reduce the overall development effort sig-
nificantly.
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1. Introduction

1.1. Growing Complexity of Integrated Circuits

The computer age started with the use of vacuum tubes as switches in calculating machines.
The world’s first programmable, fully automated computer based on vacuum tubes is the Z3
with its 2,600 tubes. It was developed in 1939. The end of the relatively short history of the
development of vacuum tube based computers is marked by the initial delivery of the AN/FSQ-
7, the largest and most powerful vacuum tube based computer in 1957. This computer was
built from 49,000 vacuum tubes, required more than 2,000 m2 of floor space, and weighed 275
tons at a power usage of up to three megawatts. These dimensions still make it one of the
largest computers ever built – measuring up to today’s supercomputers [91, 9, 19].

It was clear that the fundamental boundaries were limiting the evolution of vacuum tube based
computers. At the time, it was easy for engineers to design systems with a complexity much
higher than what could possibly be built: if those systems had been realized on vacuum-tube
technology, they would not have been economically feasible because of manufacturing and
operation costs and a lack of reliability of the countless discrete components required to build
them [19].

The key invention that eliminated this bottleneck to evolution and imagination is the transistor-
based integrated circuit (IC), colloquially referred to as “computer chip". The inventor of the
integrated circuit, Jack St. Clair Kilby, noted at his Nobel Lecture how remarkable the evolution
that followed this keystone invention was: “The reality of what people have done with integrated
circuits has gone far beyond what anyone – including myself – imagined possible at the time"
[19]. This reality of what people have done with integrated circuits is nicely described by
Moore’s law. Gordon Moore, the co-founder of Intel, forecast that from 1965 onward, the
number of transistors on a leading-edge integrated circuit would at least double every two
years. While Moore’s law cannot continue indefinitely – it has been an accurate pacemaker
of the industries’ development of the last 50 years – much longer than what Moore expected
[13].

The increase in the number of transistors has enabled an increase in performance, capabilities,
and a significant reduction in cost – at the cost of significant complexity. In the context of
System-on-Chip (SoC) development, complexity refers to the number of components, the num-
ber of interactions between those components, and the difficulty of understanding and working
with the models or code describing the artifacts underlying the components. Today’s SoC de-
signs consist of billions of transistors and hundreds of heterogeneous components – embedded
into a single chip. These elements are all required to enable the development of smaller, faster,

15



1. Introduction

smarter, and more energy-efficient electronic devices as demanded by the market.

Seeing the growth in complexity and the progress that came with it, it is easy to intuitively
infer progress from complexity. Increasing complexity and progress are however not the same
thing. Complexity is a necessary evil for making progress, and the complexity that arises from
this progress hinders future progress. The drawback of increasing complexity in the design
task can be clearly seen in today’s semiconductor landscape where the high level of complexity
in integrated circuits slows innovation and progress. An analysis by Collet et al. in the 2013
McKinsey study on semiconductors analyzes the previous decade with respect to changes in
design complexity and design productivity. The analysis finds that in this period, the number
of transistors that can be manufactured increased by a factor of 100x, yet the productivity
of design increased only by a factor of 20x. It thus shows a further widening of the design
productivity gap by a factor of about 5x in one decade [61, 46, 4].

1.2. Management of Complexity in IC Design

To tackle the growing complexity of IC design and the cost and time-to-market challenges
associated with it, the semiconductor industry has developed a wide range of approaches which
can be summarized in the following categories:

Specialization An increased level of specialization is applied to maintain high productivity and
to provide the short cycle times demanded by increasingly challenging time-to-market
requirements. The distribution of the overall design tasks onto specialized teams which
can execute the individual steps more productively and the parallel execution of design
tasks by different teams has resulted in the reduction of time-to-market and the ability
to handle more complex designs, without however addressing the increasing design cost
and the need for synchronization of common concerns.

Tools The introduction of new languages and tools to increase efficiency and productivity
throughout the development workflow. The last disruptive productivity increase in this
field has been achieved by RTL synthesis tools. RTL synthesis managed to raise the level of
abstraction and completely automate the construction of the lower-level implementation.
Other technologies which promised to deliver disruptive improvements for the entirety of
the digital design domain, for example, the introduction of Transaction-Level Modeling
(TLM) or High-Level Synthesis (HLS) have not been able to deliver on their promises. It
is theorized that disruptive levels of improvement were not seen with TLM as it does not
manage to define one agreed-upon level of abstraction – an obvious contrast to what RTL
Design (synchronous design, time discretization) and Gate-Level Design (digital design,
value discretization) deliver [4]. While HLS came with an increase in productivity in a
limited sub-domain of digital design, it failed to raise the abstraction of the entire domain
[52]. Further noteworthy examples which bring similar benefits to limited areas of the IC
development task are formal methods for verification and more powerful tools for design
space exploration. These specialized tools and approaches however also increase the
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complexity needed to synchronize common concerns across heterogeneous development
environments.

IP-reuse The reuse of existing components and artifacts across different designs. Since the
early days of the semiconductor industry, the basic building blocks of digital designs were
implemented once and then reused multiple times in the same or in different designs.
Although IP-reuse brought a big initial leap in productivity, its continuous benefit is
often overestimated [61]. While reuse can significantly reduce the cost of designs, it limits
the ability to change and innovate on existing components and often requires the design
of library components that exceed what is needed for any individual device – resulting in
higher design and manufacturing costs.

All three pillars are essential and their application has kept the growing productivity gap in
check. Their application however comes with its own challenges. As mentioned above, a high
degree of specialization and increasingly large, heterogeneous tool landscapes cause significant
effort for the synchronization of single source data. IP-reuse in turn has limited the ability to
adapt individual components to their concrete needs. The following section describes how code
generation can both address these challenges and provide an important additional component
for managing complexity.

1.3. Management of Complexity Through Generation

Code Generation is an important orthogonal component to the pillars described in Section 1.2
and addresses many of the shortcomings and problems caused by their application.

Specialization and Tools Code generation plays an important role in IC development flows
which rely on a high degree of specialization and make use of heterogeneous tools for
different specific domain tasks. In modern, highly distributed development flows, gen-
eration can provide artifacts for different specialized tasks across different design steps
and environments used by different teams and across different domains such as hardware,
software, and verification. This is especially true in an environment where different tools,
provided by different vendors require the same artifacts in often non-standardized or non-
standard-compliant formats. Automated generation guarantees consistency and flawless
synchronization and ensures that all tool-based workflows can be performed on correct
and consistent data without the need for manual adaptation.

IP-reuse Generation can overcome a key limitation of IP-reuse: it addresses the limited ability
to change and innovate based on existing library components by making them more
configurable and adaptable.

Ecker et al. [63] reported a productivity increase by a factor of 20 in special design tasks and up
to three times higher productivity in design implementation from specification freeze to tape-out
through the use of Metamodeling and code generation. The replacement of ad-hoc script-based
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approaches with a more structured approach and the link to formalized specification data have
been mentioned as key to this improvement.

This thesis strives to establish the vision of generation as part of a new approach to designing
chips as postulated by Nicolic [67] and Shacham et al. [56]. Following this vision, generators
should not only be used to make simpler and more efficient designs but also to generate different
alternatives, thus enabling exhaustive architecture analysis. The use of generators [4] instead
of models has also been claimed by Bachrach et al. [58].

Besides controlling and configuring generation, the development of generators is the most time-
consuming effort to enable automation. To achieve the vision of generation as part of a com-
pletely new approach to designing ICs, this thesis makes heavy use of the research and achieve-
ments in the field of software engineering regarding Modeling, Metamodeling and Model Driven
Architecture (MDA) and provides a transfer of these achievements into the domain of IC design.
With MDA, the Object Management Group (OMG) offers a vision for target code generation
from specification via a set of models and a set of transformations, each deriving a model from
the adjacent model [69, 42, 4].

1.4. Outline

Chapter 2 describes how advances in development languages have increased productivity and
abstracted complexity in both software and hardware development. It details the shortcom-
ings and limitations of language-based approaches and shows how model-centric development
approaches can be seen as the next step to managing complexity and raising the level of abstrac-
tion of the design process. In this context, the chapter also introduces the theory underlying
the Metamodeling-based code generation that has replaced the ad-hoc script-based approaches
– eventually leading to the 20x improvement in some areas of the design space [63, 4].

Based on this theoretical foundation, the thesis introduces the vision of Model Driven Archi-
tecture (MDA) as postulated by the Object Management Group (OMG). It shows how the
realization of this vision in the field of Software Engineering has delivered on its promise of
productivity improvement. This leads to a key observation of this thesis: the vision of Model
Driven Architecture has not yet been fully realized in the domain of IC design. This realization
is the basis for the envisioned approach described in Section 2.5 of this thesis: this work ap-
plies the vision of Model Driven Architecture to digital hardware design and provides a wider
framework for the application of Model Driven Architecture to different environments in the
domain of IC design. Based on the background of this chapter, Section 8 gives an overview of
the key contributions made by this thesis.

Chapter 3 presents related work. The high-level goal of this transfer is to provide more
powerful automated code generation to increase productivity and handle the growing complexity
in the domain of IC development with an application to digital hardware design. The chapter
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thus describes related work applying and improving code generation in the field of digital
hardware design. It also identifies the shortcomings that even the most advanced of these
approaches cannot overcome.

Chapters 4 and 5 describe in detail the key contributions made by this thesis.

Chapter 4 shows the transfer of the formal structure of the Model Driven Architecture Vision
onto the field of IC design. This includes an adaptation of the vision and its terminology for
the world of IC design and the development of models and Metamodels for the Model Driven
Architecture flow for digital hardware design. It is important to note that Chapter 4 provides
this entirely in the context of models and Metamodels. The transfer provided here is agnostic
of any concrete hardware or software development language or the concrete implementation of
any framework.

Chapter 5 then describes the Python-based implementation of the proposed MDA framework.
Here, it is described how automation and code generation can be used to make the development
of an MDA framework and the application of this framework for the development of new
generators as easy as possible. This chapter also describes what can be seen as the heart and
soul of any model-driven development approach [45, 26]: the Model-to-Model transformations
as central components of generators built on MDA.

Chapter 6 shows how the work in this thesis has been applied and extended.

Section 6.1 shows how the methodology developed in this thesis has been applied to develop
generators for digital designs. It describes the commercial development projects that have been
started based on the methodology developed in this thesis and shows how it is integrated into
Infineon’s design flow and development at Infineon Technologies AG. Section 6.2 describes how
the configurable generators can be used for design space exploration. Section 6.3 shows how
the methodology has been further extended outside of the scope of digital hardware design for
hardware verification and the development of embedded software.

Chapter 7 demonstrates how the application of the proposed MDA flow allows users to benefit
from established software development methodology and use it to solve problems in the domain
of digital design.

Chapter 8 summarizes this thesis, points out its key contributions, and lists the key publica-
tions made as part of the work on this thesis.
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2. Languages, Models, Metamodeling and Model Driven
Architecture (MDA)

This chapter introduces the concepts of models, Metamodels, and Model Driven Architecture
and describes their role in the modern software engineering landscape. It explains how these
methods have demonstrated to handle complexity, and increase productivity and why they are
considered a vital component of any present and future development ecosystem by many in
the software engineering community. To do this, this section first summarizes the history of
software engineering and describes how modeling needs arose in this domain. Next, this chapter
shows how these methods are applied in software engineering where they show benefits.

Based on this understanding of the existing software engineering methods, this section identifies
approaches used in the field of IC design which resemble those of software engineering – either
inspired by them or developed independently with the same objectives.

This juxtaposition of model-based software engineering and IC design methods eventually leads
to the main goals of this section: It identifies the Model Driven Architecture concepts that do
not yet have a parallel in the domain of IC design and describes the approach envisioned in
this thesis: applying the full vision of Model Driven Architecture – a concept targeted at the
development of complex enterprise software landscapes – in the domain of IC design.

2.1. Evolution of Languages and their Productivity Impact

This section presents a common taxonomy of software programming languages that emphasizes
the historical evolution of these languages towards higher productivity: the grouping of lan-
guages into Programming Language Generations. It then shows that the steps in the evolution
of digital hardware design permit a grouping into categories that are similar in their definition
to the Programming Language Generations defined for software programming languages.

Based on this grouping, it identifies a shortcoming shared by both hardware and software
development landscapes.

2.1.1. Software Programming Languages Generations

The history of programming computers – which is now the vast field of software development
– shows a clear trajectory towards increasing efficiency and handling complexity through an
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increase in abstraction.

The evolution of programming languages is a good example of this. Programming languages
are the main tool for creating software and have undergone a significant evolution since the
development of the first computers. A commonly used grouping is the assignment of languages
to programming language generations.

First-generation languages (1GL), also referred to as machine languages and represent the
most primitive form of language with the lowest level of abstraction. Programs written
in first-generation languages are directly recognized by a processor. They are therefore
highly machine-dependent and hard to write and understand as the numerical notations
of these languages are equivalent to the instruction set supported by the processor running
the program. This instruction set is optimized for the fast and easy execution of a program
and not to simplify the development of programs.

Second-generation languages (2GL), also referred to as assembly languages are the first level
of abstraction in the domain of programming languages. The structure of assembly lan-
guages still closely matches the instruction set of the underlying computer. Assembly
language instructions typically map one-to-one to the instructions in the instruction set.
The benefit of assembly languages is their support for symbolic names (mnemonics) for
operations, addresses, registers and sections of instructions.

Third-generation languages (3GL), also referred to as higher-order languages are the last
commonly established level of abstraction. This category is significantly wider than that
of first- and second-generation languages. It contains all languages that provide a degree
of abstraction of the instruction set that allows developers to write programs with little
knowledge of the instruction set of the underlying computer. In addition to the use of
symbolic names, they can be translated to different instruction sets and therefore run on
different machine types. This field ranges from very low-level languages such as Algol and
C to high-level languages such as Java, C# or dynamic languages such as Python. Nowa-
days, third-generation languages have displaced first- and second-generation languages in
all but a few highly specialized corner cases. A lot of development is still happening on
improving and making third-generation languages more powerful. Still, the above taxon-
omy defining what is first- and second-generation language and what is third-generation
language or higher is widely accepted and established.

Fourth- and fifth-generation languages (4GL and 5GL) describe abstractions above of what
currently exists in the category of third-generation languages. The definition of the groups
of fourth- and fifth-generation languages is more ambiguous to date. Some sources place
languages such as Python into the 4GL bin and differentiate from the 3GL category on
attributes such as their ease of use and similarity to human language [82]. Others define
fourth-generation languages as domain-specific languages [28] or define the category based
on the ability of languages to make programming accessible to non-programmers (using
features such as a graphical query generator, spreadsheet capabilities, and graphical screen
definition) [54].
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The same applies to the 5GL category which is sometimes described as the category
of declarative programming (i.e. that of constraint-based programming) [82], while in
other cases being equated with the field of visual development and no-code and low-code
approaches [54].

In the context of this thesis, the groups of 1GL, 2GL, and 3GL are treated as closed and defined
groups where 3GL includes all high-level multi-paradigm programming languages. [54, 82]

2.1.2. Mapping of Programming Language Generations to Digital Design

The terminology of Generations of Programming Languages is one that has been established
exclusively for the field of software engineering. The characteristics of this taxonomy can
however also be used to evaluate the developments in the history of digital design.

First-generation Digital Design can be matched to transistor-level, the lowest level of ab-
straction in digital design. On this level, individual transistors and specialized transistor
structures are used to build higher-level functions such as e.g. multiplexers or logic gates.
Development on transistor-level provides the lowest level of abstraction, yet allows for
the highest level of optimization. Using specialized transistor circuit structures such as
transmission gates, it is for example possible to develop a one-bit multiplexer with only
six transistors [11]. The formalized, Fortran-based input format used to program initial
versions of the SPICE simulator is an example of the languages used in the context of
first-generation digital design [7].

Second-generation Digital Design can be matched to gate level, the next higher level of ab-
straction in digital design. On this level, functionality is not compiled from individual
transistors but from pre-assembled building blocks. The level of optimization possible
on this level is already reduced - compiling a multiplexer from library logic gates would
require at least 14 transistors. Similar to the second-generation software languages, assem-
bling a design using gate-level design requires the engineer to himself pick the individual
library blocks and connect them together – this requires an awareness of the exact com-
binational logic that is instantiated in the design [11]. The Electronic Design Interchange
Format (EDIF) or a subset of the Verilog language that corresponds to the capabilities of
EDIF are languages that are used to describe artifacts of second-generation digital design
[8].

Third-generation Digital Design can be matched register-transfer level (RTL). RTL design is
today’s standard approach to the design of digital circuits. The standard languages that
are nowadays used for digital design are on the level of abstraction of RTL. In RTL design,
the level of abstraction is raised to registers and the definition of the logic function between
registers. RTL synthesis tools handle the translation from logic and register definition
onto the gate-level representation of a design. The established languages in this area are
VHDL, Verilog, and SystemVerilog, with SystemVerilog developing into the defacto indus-
try standard and VHDL and Verilog-only designs being slowly phased out. For simplicity,
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this thesis treats Verilog as a subset and predecessor of SystemVerilog. Similar to the de-
velopment of software languages belonging to the category of third-generation language,
the languages in this field are still undergoing continuous evolutionary development –
admittedly at a much slower pace than the developments in the field of third-generation
software languages [11].

Fourth-generation Digital Design can be matched to all design approaches above traditional
RTL design. The most well-known candidate for such an approach is high-level syn-
thesis (HLS). The languages used to describe high-level synthesizable hardware models
are typically a subset of C or C++ and SystemC. The supported libraries and language
subsets are highly vendor-dependent and there is no commonly agreed definition of a
high-level synthesizable language subset. When comparing high-level or behavioral syn-
thesis approaches to levels of abstraction in software development, a resemblance between
imperative and declarative programming on the software side and RTL design and high-
level synthesis on the hardware side becomes apparent. In both domains, feasible and
helpful approaches exist – yet their commercial applicability is currently limited to very
narrow fields. For high-level synthesis, a clear benefit of the technology is visible only
for datapath-driven designs with an ability to benefit pipeline-based approaches to data
processing. The first generation of HLS tools was applied for IC design in the 1980s.
Despite this 40-year-long history and significant development steps in the technology, it
is not foreseeable that HLS becomes the next common level of abstraction that might
replace the register transfer level. It is therefore also not clear whether HLS is what will
fill the role of fourth-generation digital design [52]. The Bluespec languages (Bluespec
System Verilog and Bluespec Haskell) can further be considered as fourth-generation dig-
ital design languages in the context of this thesis. The definition of state as registers
and memories is clearly still a part of the Bluespec concept, it therefore still meets an
important characteristic of RTL design and differentiates itself from HLS. Moreover, the
Bluespec approach relies on describing the change to those stateful elements on RTL
level. What Bluespec however does not need is the definition of actual RTL connectivity
or scheduling. It is the compiler of the Bluespec language that takes care of all synchro-
nization, the generation of state machines, and synchronization. This is a significant level
of abstraction over the RTL level, leading to the categorization performed here [55, 30,
79].

2.1.3. Common Observations about Software and Hardware Languages

Grouping approaches to Digital Design into the same categories that are used for software
development languages allows us to come up with important common observations about both
fields:

1. For both hardware and software development, there is noteworthy ongoing development
in the category of third-generation languages. These new third-generation languages
have drastically reduced the complexity of development tasks and allowed developers to
tackle problems of a complexity that was undreamed of in the days of first-generation
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programming languages and initial hardware description languages [21].

2. All these new developments of efficient third-generation languages are however an evo-
lutionary approach that has a known upper boundary: In both hardware and software
domains, the law of diminishing returns manifests: ever more complex and powerful lan-
guages (which are therefore harder to learn) provide ever smaller returns in developer
productivity. Examples in the domain of software engineering are the increased com-
plexity of the C++ language and the sheer amount of different languages with relatively
small developer communities. In the domain of IC design, the complexity of SystemVer-
ilog is an example of the limits of productivity which can be obtained by improvements
in third-generation languages.

3. The abstraction the third-generation languages provide is sufficient for simple software
and smaller IC design projects. For the complexity of large, state-of-the-art products in
both IC design and software development, it is clear that both the current third-generation
languages and the discernible upper threshold of productivity a potential future third-
generation language can provide are insufficient [23]. One of their key issues is their
inability to provide human and machine-readable views of complex systems, their complex
structure, and their complex interdependencies. In neither of the domains, a clear path
to a fourth-generation approach can be identified and the replacement of third-generation
languages is not anticipated.

We can derive a growing productivity gap from these observations: improvements in third-
generation languages increase productivity at a decelerating rate while the complexity of designs
is increasing at an accelerating rate. The following sections show how model-based, language-
independent approaches can contribute to reducing this gap.

2.2. Model-based and Language-independent Approaches

The ambiguity regarding language categories above third-generation languages highlights the
need for and the importance of model-based approaches. Model-based approaches are able
to address the shortcomings of third-generation languages described in the previous section
and can be seen as language-independent continuation of the raising levels of abstraction the
language generations provide.

This section details modern model-based development approaches and demonstrates how they
already provide the first answers to the question of what comes above the third-generation
languages. To do this, it first broadly categorizes the levels of modeling which are applied to
industry development tasks into a spectrum of modeling. It then introduces Metamodeling
as the state-of-the-art for efficient modeling and code generation. Based on this theoretical
underpinning, it shows how the technology is used as part of software and hardware development
and details its benefits and weaknesses.
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2.2.1. The Modeling Spectrum

The application of modern model-based approaches differs depending on the domain and com-
plexity of the problem at hand. This section presents a view of the modeling spectrum as
defined by Kleppe et. al. [23]. Figure 2.1 describes the different categories of modeling used.
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Figure 2.1.: The Modeling Spectrum [23]

Code Only development does not utilize any modeling and relies only on code as the primary
artifact to define a software or hardware product. Any abstractions of the code only exist in
the developer’s mental model of the implementation.

Code Visualization approaches use models to reduce one of the main weaknesses of Code
Only approaches: it extracts modeling artifacts from the code that can be used by humans to
get a better view of the structure and interdependencies inside these systems. In this scenario,
the code acts as a model and it is only possible to visualize model artifacts that are captured
in the code itself. Higher-level modeling artifacts like ownership of objects, which may not
have a counterpart in the language used to implement the code cannot be captured in code
and therefore not be visualized. The extraction of models from the code is commonly done
automatically which ensures consistency and reduces effort.

Roundtrip Engineering describes an approach where a formal, code-independent model is
maintained by the engineering team. This model is manually kept in sync with the code that
it describes. Any changes to the model that impact the code require corresponding changes in
the code and vice-versa.

The main benefit of this approach is that the model can contain additional modeling artifacts
that need not be supported by the language of the code. Because of these additional artifacts,
it is however no longer possible to automate the generation of the model from the code.
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Moreover, while many approaches support initial code generation from the model, the generated
code artifacts are intentionally loosely coupled to the model. It is intended that they are
extended and modified by the developers. As a result of this intentionally loose coupling, an
automated change to the code after a change in the model is not possible in the practical
incarnations of this approach.

Roundtrip engineering helps with the understanding of the complexity in the underlying code
and provides a better abstraction than Code Visualization – it however does not remove the
complexity from the development task. This can be compared to how assembly language be-
haves towards machine code: assembly language abstracts addresses and bit codes and therefore
simplifies writing and understanding code – it however does not remove the burden to under-
stand the intricacies of the instruction set of the underlying machine.

Model-centric Generation is the first automated, fully model-based generation approach.
When this approach is applied, a certain aspect of a software or hardware system is fully
described by a model. From this model, a fully automated generator will provide the code.

Similar to Roundtrip Engineering, this approach allows models to contain additional artifacts
that may not be supported by a particular generated code view. This enables the scenario
depicted in Figure 2.2: a model can contain the superset of all artifacts required to generate
target views of different domains (e.g. code of different languages, for hardware development
and software development, for software or hardware verification activities, hardware validation
or documentation).

Code
Domain B

Model

“The model is the hardware, software, documentation …”

Model-centric
Generation

Documentation
Code

Domain A

Figure 2.2.: Model-centric generation of multiple outputs

The most noteworthy difference to Roundtrip Engineering is the fact that – when the philos-
ophy of Model-centric Generation is followed – any generated artifact must not be manually
modified. As a consequence, for any change in the model, a new target view can automatically
be generated.

Model-centric generation can take the next step to both ease the understanding and analysis of
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complex systems and remove complexity from the development task. The development teams
can rely on the generator and no longer need to carry the burden of understanding the intricacies
of the generated code. This leaves the development teams with a view that is significantly more
abstract and less complex than what can be achieved with code developed in a third-generation
programming language.

It is important to note that modern software and hardware development projects do not just
rely on one of the approaches described above. For any reasonably large, heterogeneous de-
velopment project, a combination of all approaches from the Modeling Spectrum is applied.
Productivity benefits can be obtained by moving more and more development tasks toward
Model-centric generation. This can be achieved by either identifying coding tasks that can be
solved with existing Model-centric Generation methodologies or by developing new generation
methodologies.

The state-of-the-art of existing Model-centric generation methodologies is described and their
existing applications are described in Section 2.3. Model Driven Architecture as a more ad-
vanced and significantly more powerful methodology with a wider field of application is de-
scribed in Section 2.4.

2.3. Metamodeling and Metamodeling-based Code Generation

Based on the overview of model-centric development provided in the previous section, this
section will detail the state-of-the-art of Metamodeling, a structured and clean approach to
model-centric automation.

2.3.1. Simple Code Generation without Metamodeling

Developing generators that generate views from input models can be achieved with simple
scripting approaches – a practice that is common in both the software and hardware industry
[16]. In the following, these scripts are referred to as point-solution generators.
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Figure 2.3.: Illustration of a simple, unstructured script-based generator

The only prerequisite for a point solution script is structured input data that follows an explicitly
or implicitly defined grammar. Figure 2.3 shows how such a script typically generates its
outputs: it reads a known input file and parses its content, applies some optional, simple
processing on the data, and then uses either file I/O or standard output to write the view
information.
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This simple approach lacks many important requirements for a structured, re-usable and ex-
tendable model-centric automation framework:

1. A language and data format independent definition of a model’s structure.
2. An automated and reusable approach to checking correct model structure.
3. An automated and reusable approach to serializing and deserializing models for storage.
4. A method to facilitate the visualization and entry of models and model structure.
5. A re-usable and structured approach to define mappings from models to views.

These requirements are met by state-of-the-art Metamodeling as detailed in the rest of this
chapter [21].

2.3.2. Metamodeling Concept

Metamodeling is an important theoretical foundation for a structured approach to code gener-
ation. The prefix “meta” can be loosely translated to “after” or “beyond”. In the term Meta-
modeling, it is used to highlight that a Metamodel is a model of a model. A Metamodel is an
abstraction of a set of models, defining the model’s properties and specifying the relationships
between its elements [60, 53].
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Figure 2.4.: Metamodeling, Hierarchies of Models as defined by OMG [21]

The relationship between a model and its Metamodel does not only exist on a single level: A
Metamodel can in turn be conceptualized as a model, which then will have its own Metamodel.
The Object Management Group (OMG) is a standardization consortium that has developed
a standard formalization of these model of a model hierarchies. Figure 2.4 illustrates these
hierarchies using the OMG standardized terminologies. For each of the layers in the figure,
the model in the lower layer is in an instance of the model in the layer directly above it. The
following will describe the characteristics of the individual layers from bottom to top.
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M0 contains the Real-World System subject to the Metamodeling based automation. Elements
on this layer are for example the source code of a software tool or library or design artifacts
such as hardware description language or schematic data in the IC design process.

M1 holds the Model of the real-world system subject to automation. This layer is what is
typically read or generated by a framework that generates views for use in the design
process. The input data handled by the typical users of automation tools resides on this
layer.

M2 holds the Metamodel of the M1 model. This layer defines the M1 model’s properties and
specifies the relationships between its elements. It is the layer that has to be handled by
the developers of automation tools.

M3 holds the Meta-Metamodel, referred to as Meta Object Facility in OMG terminology. Any
M2 Metamodel can be described as an instance of the Meta-Metamodel, however, also the
Meta-Metamodel can be described as an instance of itself. This self-describing property
of Meta-Metamodels is called metacircular. The Meta-Metamodel layer is not used by
developers of automation tools but by developers of the framework for automation tools
to develop tooling that can be utilized for all M2 Metamodels. These approaches are
further described in Section 2.3.3.

This theoretical foundation provides a solid, language-independent view of models and the data
they contain. When this theoretical foundation is used for the implementation of a Metamod-
eling framework, it is guaranteed that all available models are easily accessible and compatible.
The theoretical foundation also permits further analysis and mathematical formalization which
has been developed as part of this thesis work and is published in [3].

The next section details the practical benefits that the theoretical Metamodeling framework
has for the structured development of generators.

2.3.3. Capabilities and Advantages of Metamodeling Frameworks for Code Generation

This section describes the structure and features a generic, language-independent Metamod-
eling framework has. The described structure and features match those of the Metamodeling
framework implemented at Infineon Technologies AG and used for the work of this thesis, the
descriptions are however deliberately kept generic and will apply to any metamodeling frame-
work, regardless of the concrete implementation.

Figure 2.5 shows an overview of the components such a Metamodeling framework provides for
a given Metamodel. The arrangement of the blocks visualizes the data flow through the frame-
work from left to right. The white boxes describe the input or output of the metamodeling
framework. Possible inputs are either an M1-layer model used to generate the views (boxes
“Specification” or “Persistent Storage”) or an M2-layer Metamodel (“Metamodel Description”)
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used to generate and configure the framework itself. Possible outputs are in turn M1-layer mod-
els “Persistent Storage” or generated target views such as software code, hardware description
code, or documents (“View” or M0-layer)). The elements depicted in solid black (“Deserializa-
tion”, “API and Validation” and “Serialization”) are components that are typically provided by
the framework out of the box, and the elements depicted in light gray (“Reader” and “Genera-
tor”) are elements that need to be manually developed as extensions to the framework. They
provide the ability to read data from data formats custom to a certain M2-layer Metamodel or
to write data to such a format.

Model

Generator
(e.g.Template

Engine)

Metamodel Description

View
(Target code/

document)

API and Validation
ReaderSpecification

De-
serialization

SerializationPersistent 

Storage

Persistent 

Storage

Figure 2.5.: Sample diagram of a Code Generation Framework based on Metamodeling

The Sample Framework depicted in Figure 2.5 already highlights many of the advantages of an
approach based on a formalized Meta-Metamodel and a common framework.

These advantages address all the requirements identified from the shortcomings of scripting-
based generators in Section 2.3.1:

1. A definition of a model’s structure that is independent of language and data format: The
Metamodel Description itself is just a model. It is therefore possible to store this model
persistently along with other models, to process it as part of the modeling framework,
and to use it as input for generators.

2. An automated and re-usable approach to checking correct model structure: Based on
the Metamodel, the Metamodeling Framework can generate data structures, Application
Programming Interfaces (APIs) to wrap them and Data Validation primitives to ensure
that any generated models adhere to the Metamodel.

3. An automated and re-usable approach to serializing and deserializing models for storage:
Based on the Metamodel, the Metamodeling Framework can generate code and tooling
to serialize and deserialize models into different formats. This can include text-based
formats such as JSON and XML, binary formats such as Protobuf or Flatbuffers, as well
as Interfaces to Databases.

4. A method to facilitate the visualization and entry of models and model structure: Based
on the Metamodel, the Metamodeling Framework can generate or customize graphical
user interfaces for model data entry.
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5. A re-usable and structured approach to define mappings from models to views: As illus-
trated by Figure 2.5, all generation tasks can be split into reading or deserializing the
data from a certain input format into the generated API and the serialization or writing
of either the model or a generated view.

This structure permits reuse from two sides: reuse on the reader side is possible as multiple
generators can use the same readers and APIs for different views. Reuse on the Generator
side is possible as different inputs (e.g. different Specification formats) can be mapped
onto the same API and utilize existing generators for this API.

Point-solution generators as described in Section 2.3.1 which are not built on a Metamod-
eling framework do not typically provide a clean separation between these components
and cannot enable the same degree of reuse.

In addition to addressing all requirements, Metamodeling frameworks have several further ben-
efits

• Meta-Metamodels are defined in a language-independent manner. It is therefore possible
to provide Metamodeling frameworks that bridge language boundaries and allow different
generators or readers to be implemented in different languages. This provides a high
degree of interoperability between heterogeneous systems.

• Based on the Meta-Metamodels, it is possible to generate further infrastructure for all
Metamodels. Any such extension of the Metamodeling framework can benefit all use cases
of the framework, regardless of the Metamodel on which they rely.

• The structure of generators and their development is simple and straightforward. This
even permits the implementation of generators by domain experts and reduces the over-
head of communicating specialized domain knowledge between tool developers and domain
experts.

2.3.4. Application in Software Engineering

In the software domain, generator-based approaches are particularly successful when it comes to
interfaces between systems. This makes the methodology important for heterogeneous systems
spanning different languages and frameworks.

Machine-readable interface definition languages (IDL) such as OpenAPI are an important pil-
lar of modern software development, both for distributed microservice architectures and for
traditional monolithic client-server applications. Common software development tooling uses
interface definitions to automatically generate documentation, interactive API browsers, and
clients utilized mainly for debugging purposes as well as the actual server or client implementa-
tions of the defined interfaces. These interfaces include the data structures that are defined as
part of the IDL, as well as the serialization and deserialization needed for the formats such as
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GraphQL, gRPC, or REST calls with JSON and XML payload. These approaches contribute an
important piece to the puzzle of modern application development: they manage to completely
hide the complexity of communicating between front- and backends implemented in different
languages and allow seamless exchange of data between microservices [84, 51, 87, 73].

A strong piece of evidence that model-based generation is an integral part of software devel-
opment environments is presented by recent developments in the Roslyn compiler framework.
This compiler framework includes code generation in the compiler. As part of the compilation
process, the Roslyn compiler framework can invoke custom code generators which can be added
by developers through the dependency management of their project. These code generators can
then use input models and emit source code into the ongoing compilation. This is not limited
to existing input models with known Metamodels which can be manually provided to the com-
piler: it is possible to analyze the Abstract Syntax Tree (AST) of existing source code, build
custom models from it, and inject code into the compilation that extends it. This process is
basically the equivalent of introspection at compile-time [94, 96].

2.3.5. Application in IC Design

Considering the fact that model-centric code generation in software engineering is particularly
helpful when heterogeneous systems need to be connected, it does not come as a surprise to
see that model-centric code generation is even more successful in the domain of IC design: the
heterogeneity of this domain is one of its key characteristics.

Metamodeling-based Code Generation has demonstrated its ability to bridge this heterogeneity.
So-called Single Source Flows based on or derived from the industry standard IP-XACT is
indispensable to modern IC design [47]. IP-XACT is an XML data format with a well-defined
underlying Metamodel used to describe cross-functional aspects of all IP1 components (reused
or custom designed for a certain IC) [36].

As part of a single source flow, the memory and register addresses described by the IP-XACT
representation of the individual components are combined with information on component in-
stantiation and system-level address maps. This combined information can be used to generate
diverse output artifacts (e.g. customer documentation, C files for software development or test
engineering, and even hardware description language view defining the registers and their ad-
dress map inside the IPs). These tools eliminate the tedious and error-prone manual work to
keep these artifacts consistent between different areas. They also eliminate the risk of costly
mistakes introduced during the manual transfer of data between the domains. Eventually,
they simplify re-work and reduce the time and cost penalty of changes as artifacts that are
automatically generated from single sources can easily be regenerated.

This makes it easy to understand the productivity increases by a factor of 20 in special design
tasks and up to a factor of three in design implementation from specification freeze to tape-out

1The term IP (intellectual property) describes re-usable electronic circuit design components
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through the use of Metamodeling and code generation [63]. While single-source generation
approaches have become increasingly widespread and successful, they are not a panacea for
productivity increase. Their field of application is so far limited to relatively simple configura-
bility and parameterization. The reuse of existing components is therefore still limited by the
static nature of the re-usable building blocks (IPs). These limitations are further analyzed in
the following section.

2.3.6. Limitations of Model-based Generation Approaches

Generators are more useful the more manual work they automate and the more complex the
automated work is. Figure 2.6 illustrates the challenge that raises towards generator design:
the input data or specifications fed into the generator should be at the highest possible level of
abstraction while the generated artifacts need to be at the low level of abstraction needed by
the output tools and workflows consuming them.

Low
Abstraction

Highest Possible
Abstraction

Reader

Model

View Generator
(e.g. Template Engine)

View
(Target code/

document)
Specification

API

Generator Gap

Figure 2.6.: The Generator Gap in Simple Metamodeling Approaches

The push to make generators more ubiquitous and powerful leads to ever higher levels of
abstraction on the input side – with an ideal target of full-chip generation from high-level
specifications. Moreover, the level of abstraction of the target views is reduced by the need
to generate views that consider more and more low-level physical properties of the targeted
hardware, such as timing budgets or low-power mechanisms. In consequence, the complexity
that generators need to bridge is significantly increasing, making the development of generators
difficult and costly.

In this work, this increasing gap between specifications and low-level target views is referred to
as Generator Gap. Powerful code generation approaches should bridge a Generator Gap that is
as large as possible, i.e. provide the ability to generate target views of a low level of abstraction
from specification inputs at the highest possible level of abstraction. The complexity of the
generator development is the main hurdle to increasing the level of abstraction of specification
inputs for any target view. Bridging this gap, for example by identifying novel ways to make the
development of code generators easier, is important both to increase the level of abstraction for
inputs of existing generators as well as to find new fields where model-centric automation can
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be applied. The following paragraphs elaborate on the sources of the complexity that makes
the generator gap difficult to bridge:

1. A main driver of generator complexity is the mix of business logic used to analyze, under-
stand, and automatically refine the input model (i.e. specification) to the level of target
view with the logic that emits the language or format of the target view. For example,
conditional statements of the generator logic and conditional statements emitted into the
target view are inevitably intertwined in the generator code. Separating these aspects
becomes particularly difficult when the language of the generated target view is similar
or identical to that of the generator.

2. Another driver of generator complexity is the amount of configurability that is needed
for the generated views. When generators are used across different projects in different
domains and departments, the need for different generator flavors inevitably arises. This
configurability increases the complexity of the generator code as it has to be considered
in addition to the business logic responsible for automatically refining the specification.
In many scenarios, the number of configuration flags required for an individual generator
massively impacts the code size and complexity of the generator.

3. Generators are closely intertwined with the target platform they were designed for. This
causes two issues:

a) Generators use the same specification and Metamodel to generate different target
views. The different target views typically have many common aspects. The higher
the level of abstraction of the generator input, the more common business logic is
needed to automatically refine the input specification to the level of abstraction
of the target views. In an industrial context, it can be observed countless times
that development teams fail to centralize these break-down efforts and therefore
implement duplicate business logic in multiple generators to achieve the breakdown.
This increases the overall complexity of the generator development task and causes
subtle, difficult-to-spot inconsistencies between different generators targeting similar
outputs. A structured approach to centralize these efforts is needed and the model-
centric generation approaches described so far have failed to reliably deliver them.

b) It is difficult to add new generators or modify existing ones for a new target platform.
This can be achieved by adding further outputs to existing generators. Doing so
is challenging as it requires an understanding of the existing generators and their
current outputs. Problems with this approach are very similar to the issues sketched
in point 2. Alternatively, a new generator can be developed. It has been observed
that development teams fail to extract commonalities with existing generators into
library elements without breaking existing generators. This alternative approach
thus results in duplicate business logic in multiple generators.

The complexity and issues described above are significant hurdles to further progress and pro-
hibit extending the use of model-centric code generation across the software and hardware
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development landscape. A systematic, structured, and reusable approach is required to re-
solve these issues. The following section introduces Model Driven Architecture and describe its
promises to address these sources of complexity and to open up the path to further automa-
tion.

2.4. Model Driven Architecture (MDA)

Model Driven Architecture (MDA) is an approach toward model-centric development that was
postulated by the Object Management Group (OMG), an industry consortium with a focus
on providing standards for interoperability in software development. The group’s initiative
to standardize MDA was launched in 2001 and has significantly influenced the principles and
practice of model-centric software development.

Model Driven Architecture relies on the fundamental cornerstones of model-centric develop-
ment, Metamodeling, and Metamodeling based Code Generation as introduced in the previous
sections. On these cornerstones, Model Driven Architecture postulates the vision of code gen-
eration via a chain of models and a series of transformations between models – together with
an architectural framework of layers in which these transformations are grouped.

The following sections introduce the MDA idea in detail and describe its application and benefits
for software engineering [23, 42, 69, 25].

2.4.1. The Model Driven Architecture Vision

In a development flow based on Model Driven Architecture, models are the primary artifacts
throughout the entire development life-cycle [34]. Metamodeling is an integral part of MDA.
It is relied on to describe models in a formalized way and thus permits automated generation
from models as well as transformations between models. In Model Driven Architecture, Meta-
models are used for all models, starting from a very abstract specification level down to the
concrete implementation levels. The formalization Metamodeling provides allows to automat-
ically transform and refine models into more fine-grained models which are eventually used to
implement or automatically generate the intended targets.

2.4.1.1. CIM, PIM, and PSM Models and Metamodels

Figure 2.7 illustrates the role models and Metamodels play in Model Driven Architecture. The
first version of MDA introduces three kinds of models, namely a Computation Independent
Model (CIM), Platform Independent Model (PIM) and Platform Specific Model (PSM). The
models on each of these layers are formalized by a Metamodel (see the “instance of” relationship
depicted in the figure).
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Figure 2.7.: Model Driven Architecture with its Model Transformations and Transformation
Hierarchies as defined by OMG [23]

CIM The Computation Independent Model is the most abstract one and closest to specification.
It considers neither detailed algorithm implementation nor architecture. Computation
Independent Model is a legacy term from the first and most abstract specification of
Model Driven Architecture which is still commonly used and also utilized in this thesis.
It was initially defined as a model describing “business concepts whereas a PIM may define
a high-level systems architecture to meet business needs” [25]. In the context of this thesis,
the term CIM is used to refer to a model that is (relative to a certain platform) more
abstract than the PIM. The CIM is always closer to the specification and less dependent
on actual implementation details than the PIM.

PIM The Platform Independent Model (PIM) defines the architecture, functionality, and be-
havior without specific details of the target platform. In the context of MDA, something
is considered a platform if it provides an environment to execute or process models or
if there is an automated transformation to lower-level platforms. In the software world,
a platform is therefore a computing infrastructure on which generated target code can
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run. A platform for example defines libraries, APIs, and the OS the generated view code
compiles and executes on.2[3, 25, 68].

PSM The Platform Specific Model is platform dependent and closest to the target code. From
this model, the view is generated. It contains information on how exactly a computation is
performed on a given target platform (it refers to concrete libraries that provide required
functionalities) [25].

2.4.1.2. Model-to-Model Transformations and Transformation Specifications

In a generation flow based on Model Driven Architecture, the most abstract model (CIM) is
filled by reading some form of data source (referred to as Specification in Figure 2.7). The
lower layers of models (PIM and PSM in the OMG terminology) are filled using the data in the
model above the respective step. Formally, the refinement step that utilizes the information
from the upper-level model to fill the lower-level model is a Model-to-Model transformation.
The challenges that are addressed in the Generator Gap depicted in Figure 2.6 are distributed
between these Model-to-Model Transformations and the View Generation.

The Model-to-Model Transformations are supported by Transformation Specifications. They
describe how to transform models complying with the more abstract Metamodel into models of
the less abstract Metamodel. The capabilities of these specifications can range from configuring
to automatically generating the entire transformation. They allow us to customize and control
the Model-to-Model Transformations [41, 34].

In many publications, the importance of configurable and generic Model-to-Model Transforma-
tions is highlighted by using a Y-Chart form (see e.g. [103]) to visualize the Transformation
from PIM to PSM. Figure 2.8 contains a Y-chart visualization of MDA models and transforma-
tions. Here, a PIM (more abstract model) at the left top of the Y is transformed into a PSM
(less abstract model) at the bottom of the Y using a Transformation Specification at the top
right of the Y: a Platform Model (PM), which contains the details of the target platform.

The visualization in Figure 2.8 highlights an issue related to the position of the Platform Model
in the Y-Chart. The Platform Model is a description of the platform a PIM is mapped onto
and its level of abstraction is comparable to that of the PSM. It is therefore depicted too far
up in the Y-Chart representation as it is closer to the PSM’s level of abstraction.

In the context of this thesis, the Platform Model is referred to as Transformation Specification
and displayed on a level between CIM and PIM (the visualization used in Figure 2.7). This is
also more in line with the second version of MDA released in mid-2014 [69]. Here, every Model-
to-Model transformation is considered a transformation that translates a PIM to a PSM. A
sequence of any number of transformations is chained together to finally generate the view. At

2Please note that the term “platform” is used in different ways in the hardware design area: Keutzer et al. defined a
hardware platform as a family of microarchitectures that allow sustainable reuse of SW in [39]. In other contexts, the
term platform is used for a product family which addresses one field of application in various configurations.
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Figure 2.8.: Y-Chart Visualization of Model Driven Architecture

each connection point, the PSM becomes the PIM of the next transformation. A platform is
therefore no longer simply related to a computation platform. Instead, for each platform, an
automated construction path – potentially via several intermediate steps – to the target code is
provided. It is important to note that the terms platform independent and platform dependent
are only valid relative to a certain platform. A platform itself can in turn build on one or
more other platforms [20]. The OMG illustrates this with the following example: “XML may
be considered a platform but XML is independent of the language used, so it may be mapped
to a language like Java or C. C is independent of the processor used so C may be mapped to a
Pentium or ARM CPU.” [25]

2.4.2. Application in Software Engineering

The Model Driven Architecture approach gained a high level of popularity after the initial vision
was formalized by the OMG. This became visible through an increasing degree of publications
and the amount of tool support for Model Driven Architecture. At the end of 2003, "MDA
compliance" and the terminology of CIM, PIM and PSM were widely used for tools in the
model-based software development ecosystem. More than 40 vendors used the terminology
to describe their products. In the code generation ecosystem, tools like IBM Rational XDE,
Codagen Architect and ioSoftware ArcStyler stood out [27, 66].
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An interesting example of the success of the MDA methodology is provided by ioSoftware and
its business partners. In a project in the automotive industry, the companies describe that
Model Driven Architecture optimizes multi-site software development processes, provided a
15% increase in developer productivity in the first development year, and a total productivity
increase of up to 30% in the second year (compared to a development process that is not based
on Model Driven Architecture). The environment where these benefits were achieved stands
out through its complex business logic and processes and an existing, Java-based ecosystem
that integrated with external systems via HTTP and XML-based communication and Message
Queues [33].

The popularity of the MDA terminology and approach has since then rapidly faded. This
can be compared to OMG’s CORBA standard, which rose to popularity in the early 1990s
and has since then fallen in popularity and developed into an obscure niche technology that is
no longer applied in modern software development [37]. On the surface, it may appear as if
Model Driven Architecture has fallen victim to the same fate. It is correct that many of the
tools are no longer used and maintained (the three formerly most popular commercial MDA
generation tools IBM Rational XDE, Codagen Architect, and ioSoftware ArcStyler have been
discontinued) and companies such as ioSoftware that contributed to implementing the MDA
vision have since disappeared.

It is very important to note however that Model Driven Architecture is a vision coming to-
gether with a set of terminology, formalism, and standards. While the terminology, formalism,
and standards of Model Driven Architecture have disappeared or faded into relative obscurity,
the underlying vision of Model Driven Architecture is alive and well and arguably more com-
mercially successful than ever. The following describes how the intellectual heritage of Model
Driven Architecture is visible in the sprawling field of Low Code Application Development
(LCAD) tools.

Low Code Application Development Platforms are software frameworks that allow developers
and business experts to build and deploy applications easily with minimal coding on a level of
abstraction that can be considered computation-independent and platform-independent. These
platforms typically provide a visual interface on which their users can specify Computation
Independent Models and Platform Independent Models of the problem domain, describing the
Domain Model underlying the problem and modeling the intended control and data flow of the
application graphically. Low Code Application Development Platforms significantly simplify
the development process, opening the domain of application development up to non-technical
users without the need for detailed knowledge of the underlying platform [83].

Low-code platforms can be utilized to develop and generate applications for different platforms
including web and mobile where they are mainly suited to build data entry- and process-
driven applications (for example for business process automation). They have demonstrated
the ability to meet domain-specific business needs at a significantly lower cost than the tra-
ditional platform-specific development process (i.e. less time and resources needed to develop
and deploy the applications). The iterative and agile development process these platforms sup-
port has proven to improve collaboration between developers and business experts - ultimately
supporting the fast adoption of changing business needs. All these are aspects where the state-
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of-the-art Low Code Application Development Platforms deliver on promises made by Model
Driven Architecture for the well-defined niche of applications they are suitable for [86].

There is one aspect that is even more important: individual companies in the field have demon-
strated that they can deliver a truly Platform Independent approach. Outsystems, one of the
commercial leaders in the field, has for example migrated from a Java-based environment to a
C# based one. This migration demonstrated that it is feasible to generate different Platform
Specific Models from the Platform Independent Models generated by users of their tool.

Low-code application development platforms are increasingly popular in recent years and can
now be considered a key component of the software development landscape. The Gartner
Magic Quadrant predicts that “by 2024, three-quarters of large enterprises will be using at least
four low-code development tools for both IT application development and citizen development
initiatives” [78] and that “low-code application development will be responsible for more than
65% of application development activity by then” [78].

While it is possible to conclude from their capabilities that Low Code Application Develop-
ment Platforms implement the vision of Model Driven Architecture, none of the commercially
successful approaches provide the same clear set of terminology, formalism, and open standards
that the OMG set out to establish for Model Driven Architecture. Instead, their closed and
non-standard approaches do not allow for the same future proofing and platform independence
that MDA postulates. This work still considers these Low-Code Application Platforms as in-
carnations of the Model Driven Architecture vision. Their commercial success has delivered on
or even exceeded the promise of Model Driven Architecture. It is therefore strong evidence for
the ability of the Model Driven Architecture vision to deliver on its promise [78].

2.4.3. Application in IC Design

Outside of the Metamodeling research group at Infineon Technologies AG, we were able to
identify a few very limited attempts to apply Model Driven Architecture to IC design. There
are approaches where point problems in the IC Design process are solved with approaches
compatible with the vision of Model Driven Architecture. Coyle et. al. for example introduce
an approach where UML state diagrams as Platform Independent Model are translated into
HDL-specific views. This translation happens however directly from the Platform Independent
Model, without going through a Platform Specific abstraction of the generated code [32].

As of our knowledge, there is no hardware equivalent that provides an end-to-end, top-to-bottom
chip generation framework following the vision of Model Driven Architecture. We are not aware
of any commercial solutions or holistic academic approaches. In particular, there is no proof of
viability or commercial success similar to what is detailed for software in Section 2.4.2.
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2.5. Thesis Goal and Envisioned Approach

The previous sections have demonstrated that Metamodeling and Metamodeling-based Code
Generation are successful methods to deliver automation that handles complexity and increases
productivity both in the domains of software development and even more so in the heteroge-
neous landscape of IC development. It has also identified the main challenge prohibiting the
development of more powerful code generators: the Generator Gap described in Section 2.3.6.

The high-level goal of this thesis is to provide more powerful automated code generation to
increase productivity and handle the growing complexity in the domain of IC development
with a focus on the automated generation of digital RTL designs. In other words, this thesis
strives to identify methods to overcome and manage the increasing Generator Gap that is
making the development of digital design generators challenging. For this purpose, this thesis
shall identify and apply the methodology to reduce or better handle the complexity inherent to
building generators.

The methodology provided in this thesis shall meet the following requirements:

• The methodology shall reduce the complexity and cost of developing code generators
for digital hardware designs. It shall do this by automating a significant part of the
development tasks required for generator development and by enabling better reuse of
generators.

• The methodology shall make design generators more powerful by providing the ability to
raise the level of abstraction of the models used as input to the generators.

• The methodology shall extend the use of code generation into areas of digital design that
are currently difficult or impossible to cover by it. It shall therefore provide the capability
to generate a significant amount of the digital design artifacts that are currently manually
developed.

• The methodology shall be applicable and scalable in a commercial hardware development
environment. The development of generators has to be possible for hardware designers
who are not trained software engineers. To enable adoption in a commercial environment,
the methodology shall be easy to learn for users which are familiar with traditional code
generators. Moreover, it must be scalable to the commercial needs of real-world IC
products with support for complex real-world designs.

This chapter has outlined how the vision of Model Driven Architecture promises to deliver such
generator-based automation. It also shows that the application of Model Driven Architecture
in the software domain has delivered on its promises: there are many commercially viable
products and significant productivity benefits. In particular, the developments in the rapidly
growing field of low-code application development provide evidence of the disruptive power of
this kind of model-based generation [78]. Similar developments cannot be observed in the field
of fourth-generation programming languages: the scope of these languages is still not clearly
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defined and the field has not managed to provide disruptive productivity improvements on a
commercial scale.

A similar pattern exists in the domain of IC design. This work categorized digital design
into RTL design (third-generation digital design) and everything beyond the abstraction level
of traditional RTL design (fourth-generation digital design). While many of the methods and
languages which were categorized as fourth-generation digital design are applied in a certain sub-
domain of digital design and deliver a productivity increase over established methods of digital
design on Register Transfer Level (RTL), they have failed to deliver the disruptive improvements
and did not supersede RTL design. In the field of IC design, the methods suggested by the
vision of Model Driven Architecture have not yet been extensively and systematically applied.

Our central hypothesis is that it is possible to transfer the achievements of Model Driven Archi-
tecture in the software domain to the domain of IC design and that a model-based generation
approach inspired by the vision of Model Driven Architecture can deliver a disruptive improve-
ment to the field: the approach envisioned in this thesis is to apply the vision of Model Driven
Architecture to digital hardware design on Register Transfer Level (RTL).

For this purpose, the multi-layer approach suggested by the Object Management Group (OMG)
for the software domain is used as a foundation for a corresponding approach in the field of
digital hardware design. This thesis defines key Metamodels required for digital design and
for the generation of synthesizable hardware description language views. These models shall
capture the nature and semantics of the underlying domain (the semantics of digital hardware
and the implementation thinking applied by hardware design engineers). The Metamodels used
for the individual layers shall be designed in a way that eases Model-to-Model transformations
between the layers. Based on Metamodel-based formalizations, this thesis shall define a solid
and easy-to-use MDA framework and realize it on top of Infineon’s proprietary Python-based
Metamodeling Framework including all necessary additions to that framework to enable its use
in a Model Driven Architecture context.

It is not a goal for the defined methodology to find language-based approaches that can move
overall digital design methodology to a level of abstraction above that of RTL design – this is
the goal that is at the center of fourth-generation digital design and thus not in the scope of this
thesis. Instead, this thesis shall provide a methodology to develop powerful generator-based
automation that provides automatically generated RTL views in third-generation languages
from specification models that are far more abstract than the level achieved or targeted by
fourth-generation languages.

The next chapter describes related work that promises to provide more powerful generators on
the level of abstraction of third-generation languages. The subsequent chapters of this thesis
then lay out how the concept of Model Driven Architecture has been successfully transferred and
applied to the domain of IC design. This is the basis to compare and contrast the achievements
of this thesis to those of the related work.
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Section 2.5 describes the high-level goal of this thesis: to provide more powerful automated
code generation to increase productivity and to better handle the growing complexity in the
domain of IC development with a focus on the automated generation of digital RTL designs.
The section also shows how this thesis delivers an approach based on Model Driven Architecture
to realize these generators.

Model Driven Architecture relies on models, their Metamodels, and Model-to-Model transfor-
mations. An important consequence of this is that all approaches inspired by Model Driven
Architecture are generally independent of languages and do not need to define languages and
their semantics to achieve their generation goal.

This language-independent and Metamodel-based approach to the automated generation of
digital designs is however not the only path to developing more powerful code generators: This
chapter presents work related to the primary goal of this thesis, i.e. the development of methods
for the automated generation of digital designs on the abstraction level of RTL design. These
approaches, while aiming for the same goal, share the common property that they rely on
custom languages defined for the development of generators.

This chapter first introduces the generation and configurability features available in Hardware
Description Languages (HDLs) that are currently used by the industry and the established
standard for digital design. It then introduces the concept of Embedded Domain-Specific Lan-
guages (EDSL), which is an approach to the development of custom languages that is heavily
applied to develop custom, language-based code generation methods. Eventually, this chapter
will present two important stages of evolution in the development of generator languages as
EDSLs:

First, it shows how the EDSL concept has been applied to significantly extend the configurability
of existing industry standard HDLs with their underlying simulation semantics.

Second, it introduces the family of so-called Hardware Construction Languages (HCL), also
referred to as Hardware Generation Languages (HGL). Those are a group of Embedded DSLs
that are developed from the ground up with a focus on hardware generation and the need for
productivity during generator development.
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3.1. VHDL, Verilog, and SystemVerilog for Configurable Designs

This section summarizes the capabilities of the standard HDLs VHDL, Verilog and SystemVer-
ilog to provide generic, configurable designs. It introduces the methods available with examples
and describes what is currently utilized in the industry. Based on this description, it provides
a simple example highlighting the limitations of the features available to today’s HDLs.

3.1.1. Preprocessors

Verilog and SystemVerilog support preprocessing. It is standardized using the terminology of
compiler directive as part of the IEEE 1364-1995 Verilog standard and then further extended
with the subsequent Verilog standards and the combined IEEE 1800 for Verilog and SystemVer-
ilog [10, 74]. In terms of feature set, capabilities supported by recent versions of Verilog and
SystemVerilog are a more limited version of the preprocessors implemented by compilers for C
and C++ and specified by their language standards [57].

Directives for simple preprocessing needs are commonly used in the industry. Typically, they are
utilized to enable different representations for the design and synthesis of Verilog or SystemVer-
ilog models. A common industry example of this is the handling of analog types, which are often
mapped to the language’s logic type for synthesis while being represented as a real-valued type
for simulation. Typically, this is achieved with simple `ifdef or `ifndef blocks and additional
defines which are introduced into the design via the tool or compiler interface (e.g. through the
TCL scripting interface provided by the tools). Listing 3.1 contains a Verilog example of such
a pragma, introduced to resolve delta-cycle issues in mixed-language simulations.

1 assign
2 `ifdef SIMULATION
3 #1ps
4 `endif
5 b = a;

Listing 3.1: Example of an `ifdef pragma to alter simulation behavior

Another common application is the use of include guards as shown in Listing 3.2. Here, an
entire file’s content is wrapped by an `ifndef statement that can only be true once for every
compilation. This pattern, common also in C and C++ development, ensures the content
wrapped in the `ifndef will be included at most once, regardless of how often the `include
preprocessor directive is encountered.

The more advanced macro shown in 3.3 is, for example, used to provide a shorter syntax for
consistent logging of messages with the filename and line number of where they originate [57].

These common use cases are nowhere near the idea of hardware generation. Creative combina-
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1 `ifndef _UNIQUE_FILENAME_V
2 `define _UNIQUE_FILENAME_V 1
3 ...
4 `endif

Listing 3.2: Example of an `ifndef pragma combined with a `define as include guard

1 `ifndef MSG
2 `define MSG(msg) \
3 $write("[%0t] %s:%d: ", $time, `__FILE__, `__LINE__); \
4 $display(msg);
5 `endif

Listing 3.3: Consistent logging of error messages with date and source location [57].

tions of `define, `undef, `include and others can be utilized to achieve preprocessor support
for constructs such as repetition, lookup tables, or multiple definitions of similar modules with
a different set of ports. Building generators like this is however very limited, hard to read
and debug, and will inherently come with incompatibilities in many EDA tools. The fact that
there is not even an `if in the SystemVerilog specified directives also clearly illustrates that the
compiler directives defined in the SystemVerilog standard are not intended for use in hardware
generation [57].

The VHDL language is no different here: while the preprocessor specified in the latest VHDL
standard IEEE 1076-2019 supports so-called conditional compilation directives, there is to date
virtually no support from EDA vendor side for this extension. While VHDL’s conditional com-
pilation directives are more powerful than those defined for SystemVerilog, the same limitations
apply: today’s HDLs are not a tool that was designed for building highly flexible, re-usable
hardware generators [76].

3.1.2. Parametrization and Language Generation Constructs

Both VHDL and SystemVerilog support parametrization. In the SystemVerilog standard and
language, parametrization can be achieved by means of Parameters. In VHDL, the equivalent
language construct is called Generic. The following assessment refers to both concepts as
parameters.

It is common to use parameters for configurable properties of design modules. Common exam-
ples of parameters are:

• Boolean flags that enable or disable some features of a module in some of the instantia-
tions.
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• String parameters that contain a module identifier used for example for logging purposes
during simulation.

• Integer parameters that define for example the width of a datapath, the size of internal
memories or register banks, or the number of instantiated submodules.

• Address parameters that define the absolute offset of the memory addresses served by a
module’s bus interface.

The nature of these common parameters already shows module parametrization is a feature
that is better suited for the generation of generic hardware. The parameters can be used in
various places of the design, for example, to replace constant literals in logical operations or as
part of type declarations to modify the width of a wire or module port. Moreover, they can be
passed to submodules as their parameters.

In combination with parameters, the generate construct supported by both SystemVerilog and
VHDL can be used to make the internals of designs configurable. Generate blocks support
loops where the number of iterations is configured by a parameter, they provide support for
case statements with which alternative hardware options can be generated depending on the
value of a certain parameter and for simple if elseif else blocks. These constructs can in
turn be nested inside a generate block.

Figure 3.4 shows a SystemVerilog example of a module that uses a generate block to support a
configurable amount of channels. Depending on the number of supported channels, the number
of single_channel submodules that will be instantiated differs. Individual channels can be
mapped to individual bits or subarrays of the inputs using the loop variable i.

3.1.3. Limitations

Generate and its feature set is however still very much limited in both VHDL and SystemVerilog.
One of the fundamental limitations is that it is not possible to introspect and analyze part of
the design that the generate statement is embedded in. This means that in the context of the
generate statement, the only information that can be utilized are the parameters themselves
and the relationships between them.

Moreover, the generate blocks have to be part of the module body (architecture body in
VHDL). It is therefore not possible to conditionally add or remove ports or generate a flexible
number of module ports.

The most noteworthy limitation in this context is the inability to take more complex input
parameters. For both Verilog and VHDL, the parameters supported are restricted to simple
types by design tools. Complex models, with well-defined schemata or Metamodels are not
supported to parameterize designs at all.
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1 module multichannel_ip
2 #(parameter CHANNELS=8;
3 parameter DATA_WIDTH=32; )
4 (clk, data, irq);
5

6 input clk;
7 output [CHANNELS-1:0][DATA_WIDTH-1:0] data;
8 output irq;
9

10 ...
11

12 // vector dependent on the number of channels
13 wire [CHANNELS-1:0] irq_sources;
14 assign irq = |irq_sources;
15

16 // Genvar to use in the for loop
17 genvar i;
18 generate
19 for (i=0; i<CHANNELS; i=i+1) begin
20 single_channel channel_i (
21 .clk (clk),
22 .irq (irq_sources[i]),
23 .data (data[i]),
24 ...
25 );
26 end
27 endgenerate
28

29 endmodule

Listing 3.4: Example of a generate statement in SystemVerilog

3.1.4. Conclusion

We have seen that language features of VHDL and SystemVerilog make the construction of
configurable HDL modules possible to some extent. The preprocessors included in these lan-
guages are very limited, and while theoretically possible, the use of the preprocessor for building
generators will lead to extremely clumsy syntax and difficult readability. Moreover, there is
very limited tool support for more complex constructs and all configuration needs to be passed
in via individual, primitive parameters that need to be combined into files that contain a set
of define statements or passed in individually through the interfaces of the EDA tools in-
terpreting the code. These approaches are fundamentally less capable than even the simple
script-based generation approaches described in Section 2.3.1.
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The parameterization of modules in combination with generation constructs built into the HDLs
is a more structured and well-supported approach to building generic and configurable HDL
designs. They come with some limitations and are fundamentally unable to support any kind of
introspection into the design in which they are utilized. The clear strength of a parametrization-
based approach is its integration into the HDL language standards and tool support throughout
the EDA ecosystem.

Even with parametrization and built-in generation constructs, there is a clear and well-defined
limit to the capabilities of the generators - many things can simply not be achieved. What
becomes clear is that both VHDL and SystemVerilog as languages were designed to describe
one instance of a design and provide some configurability as a second thought. The degree
of flexibility and configurability that will be detailed in the rest of this chapter and that is
eventually achieved by the Model Driven Architecture approach pursued in this thesis is simply
not possible with traditional HDLs.

3.2. Enhanced Preprocessing and Script-based Generation

To address the limited capabilities of the HDLs commonly used in industry, many methods
that are based on preprocessing or describing the HDL code in different languages have been
developed. The most primitive way of achieving this is described already in Section 2.3.1. Here,
scripting languages such as Perl and Python are utilized to do the preprocessing [16, 63]. This
brings a significant advantage over the preprocessors defined for the HDLs themselves: the
capabilities and readability of the scripting languages are well-supported and understood by a
wide range of developers.

More advanced methods to do this introduce template engines that allow developers to primarily
develop in the HDL of their choice and to only interleave their code with preprocessor directives
where needed – a significant readability improvement over scripts with many print statements
producing static elements of the target view. A good example of this is Genesis2 [93]: the code
generation framework utilizes Perl and a Perl template engine to interleave Perl preprocessing
logic with Verilog files.

Special *.vp files can contain Verilog code that is interleaved with Perl code. Listing 3.5 contains
an example for such a file provided in the original work creating Genesis2. The Verilog module
is interleaved with Perl commands and control statements. The framework then transforms
and executes the Perl code and generates *.v Verilog files from it. For example, Lines 15-18
span a Perl for loop that will print the content of Lines 16 and 17 multiple times, depending
on the value stored in $N. For each of the printed lines, Perl expressions enclosed in ' will be
evaluated and replaced by their evaluation result [93].

The template engine described here is very similar to what is part of the Metamodeling-based
generation flow that Section 2.3.3 describes. There is however one significant difference: the
generation flow sketched here does not utilize the sophisticated Metamodels and the Metamodel-
based generation common for modern Metamodeling-based generation flows.
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1 //; use POSIX ();
2 module 'mname()'
3 (input logic ['$N-1':0] pp['$N-1':0],
4 output logic ['2*$N-1':0] sum,
5 output logic ['2*$N-1':0] carry
6 );
7 //; my $height = $N;
8 //; my $width = 2*$N;
9 //; my $step = 0;

10 // Shift weights and make pps rectangular (insert 0s!)
11 logic ['2*$N-1':0] pp0_step'$step';
12 assign pp0_step'$step' = {{('$N'){1'b0}}, pp[0]};
13

14 //; for (my $i=1; $i<$N; $i++) {
15 logic ['2*$N-1':0] pp'$i'_step'$step';
16 assign pp'$i'_step'$step' = {{('$N-$i'){1'b0}}, pp['$i'], {'$i'{1'b0}}};
17 //; }
18 ...
19 assign sum = pp0_step'$step'['2*$N-1':0];
20 assign carry = pp1_step'$step'['2*$N-1':0];
21 endmodule : 'mname()'

Listing 3.5: Example of Script-based Preprocessor from the Original Research Developing Gen-
esis2 [93]

One limitation this method shares with the Metamodeling-based generation flow and with the
development of configurable designs only relying on the features of VHDL and SystemVerilog is
the inability to introspect into the generated design as part of the generation flow. It is common
for both approaches that the design is generated in the target HDL and not used during the
generation flow but only afterward. Moreover, these approaches suffer from exactly the issues
that were described as Generator Gap and they even show up in a more emphasized manner
due to the lack of the structure that Metamodeling adds to the generation flow.

3.3. Embedded Domain-Specific Languages for Hardware Design and
Generation

A Domain-Specific Language (DSL) in general is a programming language that is tailored to
one specific domain or task. Popular examples of DSLs are Structured Query Language (SQL)
(used to efficiently describe operations on relational databases), Regular Expressions (used to
develop powerful string matching operations), the YAML markup language (used as a language
that was specifically designed for entering and reading hierarchical, structured data), or JSON
(an object notation format used for serialization and deserialization of object trees that is based
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on a subset of the JavaScript language) [35].

YAML (a full-custom DSL) and JSON (an Embedded DSL) are good examples to show the
differences between a full-custom DSL and an Embedded DSL:

• A full-custom DSL on is a language that was specifically designed for a certain task
and comes with its own syntax and semantics, parser, libraries, and potentially runtime
environment. YAML has a syntax that is perfectly tailored for readability, simplicity, and
ease of use.

• An Embedded DSL is embedded on top of an existing language and utilizes the syntax,
semantics, parser, and runtime environment of this language – it only needs to extend
the semantics and provide a library. The example of JSON has a syntax that is fully
compatible with the syntax supported by the JavaScript language. Any JSON code can
be easily parsed and evaluated with a library running as part of the JavaScript interpreter
without a need to develop custom parsers and runtime environments.

There are several advantages of Embedded DSLs in comparison to full-custom DSLs:

• Lower Implementation Complexity: The development of languages, parsers, and runtimes
is one of the most challenging disciplines in software engineering. It consumes a lot of
development resources and high levels of skill are needed to develop proper, maintainable
languages that do not suffer from faulty language design. When developing Embedded
DSLs, the resources can be focused on the extensions the DSL provides and on library
features.

• Flat learning curve: Learning Embedded DSLs is easier, especially if the host language is
well-known and has a large user base to support. Existing resources can be helpful and
allow the user to focus on the domain covered instead of on the language.

• More powerful ecosystem: the strength of a language significantly depends on the ecosys-
tem surrounding it. For Embedded DSLs, users can make use of the development envi-
ronment and tooling (debuggers, profilers, IDEs, ...) available for the host language.

• Availability of all Host Language Features: Embedded DSLs just add something on top
of the host language. In addition to using these features, semantics, and libraries, it is
possible to access the full feature set of the host language. This is not limited to the
language itself with the supported language patterns such as functional, object-oriented,
or procedural programming. It also extends to existing libraries already available for the
host language ecosystem.

These advantages are very significant. In the context of hardware generation, the availability of
all host language features is arguably the biggest advantage as it provides virtually unlimited
features including the application of software design patterns and libraries, the use of scientific
and mathematical libraries, or the extraction of design properties for analysis. The relevance of
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Embedded DSLs for hardware generation also shows in the related work identified as relevant
to this thesis. All relevant research in the field, ranging from the late 1990s to today, relies on
Embedded DSLs.

3.4. Traditional HDLs as Embedded DSLs

As a natural successor to the script-based approaches presented previously, the first approaches
that ported traditional HDLs onto other host languages appeared at the end of the 1990s.
The most notable candidates in this field are JHDL (1998) [14], Verischemelog (1999) [16],
and MHML (2000) [17]. A key characteristic of these languages is that they all constitute a
translation or porting of existing HDLs onto a host language while keeping the event-driven
simulation semantics of the languages that inspire them.

In the context of this chapter, the Verischemelog approach is described in more detail. It is
porting the Verilog language as an Embedded DSL onto the Scheme language (a LISP dialect).
While LISP-based languages nowadays are rarely used and therefore do not provide many of the
above-mentioned benefits of Embedded DSLs, one thing makes the example particularly well-
suited: almost all language constructs in Verischemelog are identical to Verilog. Verischemelog
thus provides a language that is structurally and semantically almost identical. At the same
time, it turns it into an Embedded DSL and can be used to show the capabilities of Embedded
DSLs and to highlight the advantages over preprocessing and scripting-based approaches.

1 // Half adder with prop. delay 10
2 module half_adder(b1, b2, s, c);
3 input b1;
4 input b2;
5 output s;
6 output c;
7 and #10 anonl(c, b1, b2);
8 xor #10 anon2(s, b1, b2);
9 endmodule

1 ;; Half adder with prop. delay 10
2 (defmodule half_adder
3 (interface (input b1 b2)
4 (output s c))
5

6

7 (and (10) (c b1 b2))
8 (xor (10) (s b1 b2))
9 )

Listing 3.6: Verilog (left) and Verischemelog (right) Example of a Half-Adder [16]

Listing 3.6 shows two models of a half adder provided in both Verilog and Verischemelog.
This example is representative of the very similar structure between the two languages that
also expands to other constructs such as processes, sensitivity lists, logging, wire definitions,
and other language constructs. On the surface, this may just seem like a re-implementation of
Verilog that was more simple to implement as it relies on an existing language parser. It however
comes with a key difference: on the right-hand side, the model lives inside the programming
language environment of Scheme and can therefore use all language features.

Figure 3.7 revisits the example from Listing 3.4 and implements it in Verischemelog. For this
purpose, no kind of generate statements or Verilog generics are used. Instead, the functional
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patterns of Scheme and general-purpose programming are utilized.

1 (define generic_multichannel_ip
2 (lambda (CHANNELS DATA_WIDTH)
3 (defmodule multichannel_ip
4 (interface (input clk)
5 (input (($ DATA_WIDTH)) data)
6 (output irq))
7

8 ... ;; further toplevel logic
9

10 ;; vector dependent on the number of channels
11 (wire (($ CHANNELS)) irq_sources)
12 (ror irq irq_sources)
13

14 ;; the $$ sign puts the list of elements returned
15 ;; by iterate into the parent module definition
16 ($$
17 (iterate CHANNELS
18 ;; Genvar to use in the for loop
19 (lambda (i)
20 (single_channel
21 'clk
22 (: 'irq_sources i)
23 'data
24 ... ;; further ports of single_channel
25 )
26 ) ; end lambda
27 ) ; end iterate
28 ) ; end $$
29 ) ; end defmodule
30 )
31 )

Listing 3.7: Implementation of the Code from Listing 3.4 in Verischemelog

The main aspect here is that this listing does not consist only of one defmodule call. Instead,
it defines a lambda function on toplevel that will, when called with the generic parameters
of the module, return the defmodule. This means it is possible to get a certain instance of
the module multichannel_ip by calling the generator generic_multichannel_ip with the
arguments CHANNELS and DATA_WIDTH. This call is what replaces the call arguments in the code
with their value. Lines 16-28 are the equivalent of the SystemVerilog generate in Listing 3.4.
Here, the functional equivalent of a for loop, an iterate with a lambda representing the
“generate loop body” is providing the number of modules defined by the generic.

54



3.5. Synthesis-centric Languages as Embedded DSLs

This section has demonstrated that it is possible to implement Hardware Description Languages
as Embedded DSLs. These Embedded DSLs can be used to describe generators for configurable
hardware, not just to describe a single, somewhat generic, and configurable instance of a circuit.
With this approach, the development lo longer happens in an environment with two different
languages. Instead, there is one language and one language syntax only and the benefits of
Embedded DSLs fully apply.

An additional important benefit is that all hardware described as part of the Embedded DSLs
lives as an object inside the language of the generator environment. With template engine-based
code generation, it is just text of a different programming language. Embedded DSLs remove
the separation between generation and analysis of the generated hardware. It is now possible
to perform introspection to analyze and alter elements of the hardware as it is generated.

3.5. Synthesis-centric Languages as Embedded DSLs

This section discusses the field of Hardware Generation Languages (HGLs). In related work,
this family of languages is often also referred to as Hardware Construction Languages (HCLs).
Moreover, some publications and languages refer to these approaches as Hardware Description
Languages (HDLs). The use of the term HDL emphasizes that this family of languages can
be used as a replacement for the common HDLs VHDL and SystemVerilog for the task of
developing synthesizable hardware descriptions – it does however not correctly capture the key
aspect of these languages: their focus on describing generators for different configurations of
hardware instead of describing single instances. To emphasize the focus these languages put on
providing highly flexible generators for synthesizable designs, this thesis consistently uses the
terminology Hardware Generation Language (HGL) to refer to these languages.

The research done in the field of Hardware Generation Languages is strongly based on the idea
of developing generic design generators instead of providing single instances of a design. The
languages are the natural successors to the languages described in the previous section – the
differentiation between Hardware Description Languages implemented as Embedded DSLs and
Hardware Generation Languages implemented as Embedded DSLs is however not clear.

In this research, the following as key characteristics for EDSL-based HDLs are assumed: An
HDL based on EDSLs is a language that was developed with the main objective to provide
or extend the capabilities for configurability, parameterization, and generation of an existing
Hardware Description Language. The Hardware Description Languages VHDL, Verilog, and
SystemVerilog which are commonly supported by the EDA industry were initially developed and
used exclusively for simulation purposes. The semantics they use to describe hardware is the
semantics of event-driven simulation. These languages have later been adapted for synthesis
purposes. While design engineers think in the semantics of hardware, often referred to as
implementation thinking, they need to map this mental model onto the event-driven simulation
semantics of HDLs. Synthesis tools then have to infer the design intent from these descriptions.
EDSL-based HDLs use the same underlying simulation semantics and event-driven paradigm
of their parent HDLs and suffer from the same problem.
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For Embedded DSL-based HGLs, this key characteristic does not hold true. In this research,
HGLs are defined as languages that are not inspired by the simulation semantics of VHDL and
Verilog. The following two characteristics are therefore at the center of those languages:

1. They use the semantics of hardware and the thinking in terms of hardware design as the
basis and semantic model.

2. They are built for generation and meta-hardware descriptions. HGL code is not a model
of the hardware but an executable program that generates a description of the hardware
when executed.

3.5.1. Chisel and SpinalHDL

The Hardware Generation Languages Chisel and SpinalHDL are today the most important
representatives in the field of Hardware Generation Languages. Chisel was originally developed
as part of a research project at UC Berkeley. It was built to allow hardware designers to write
high-level, synthesizable hardware descriptions [58].

Chisel is an Embedded DSL based on the Scala programming language, a multi-paradigm
language with strong support for functional and object-oriented programming that is compiled
to run on the Java Virtual Machine (JVM). The use of Scala as the host language allows Chisel
to profit from the strong interoperability with libraries and compatibility with tools in the Java
ecosystem. A second benefit of Scala is its good support for functional and object-oriented
programming, making it an ideal basis to build an Embedded DSL. In fact, the Scala language
has even been designed with the Embedded DSL use-case in mind [58].

The initial version of the Chisel language was released in 2012. The accompanying research
demonstrated that Chisel is suited to build complex and flexible hardware generators, providing
a high degree of efficiency and a level of abstraction superior to SystemVerilog. It also demon-
strated that Chisel was able to emit RTL designs that were competitive in terms of their area
and power usage [58].

The potential productivity benefits of the Chisel application also made the language interesting
for industrial applications. The initial version of Chisel was however lacking the necessary
features for state-of-the-art industry designs.

Essential shortcomings of the initial version of Chisel were the lack of support for multiple clock
domains within one module, a lack of support for falling edge clocks and active low resets, a lack
of clock enable support, and missing support for blackbox modules to support the embedding of
legacy circuits described in standard HDLs. Moreover, several shortcomings in convenient reset
handling and syntactical inconveniences limited the benefits of the language. Another important
deficit of the initial version of Chisel was its failure to strictly enforce hardware semantics: when
blocks Chisel uses to describe multiplexer structures did initially not ensure that all values were
always described. It was therefore possible to generate RTL that contained asynchronous signals
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which were not assigned in every way. This behavior was basically introducing event-driven
simulation semantics into the language. Eventually, the failure of the Chisel project to address
these issues in a timely manner resulted in the creation of SpinalHDL [71].

After the fork of SpinalHDL from Chisel, both languages have been developed in parallel and
are used in academia and to some extent in industry. It is important to note that all of the
shortcomings identified by the SpinalHDL project in 2016 are resolved and no longer apply to
the latest version of Chisel3. The differences between the syntax, feature set, and library of
SpinalHDL and Chisel have been growing over time. In the scope of this thesis, only Chisel
will be introduced as it is the far more popular language, equally practical for use in both
academic and industrial contexts and the subject of more ongoing research and development.
The following describes the internal semantics of Chisel and the backend infrastructure and
architecture.

3.5.1.1. The Semantics of Chisel

Semantically, Chisel is a design-centric Hardware Generation Language. It is by construction
free from any event-driven simulation semantics. This means that every line of code written
in Chisel either describes the design or contains generator logic responsible for configuring and
customizing the generated design.

When Chisel code is executed, a hardware design description is built. This construction of the
design has several important characteristics:

• Due to the absence of any simulation semantics, all stateful elements such as Registers
and Memories always need to be explicitly instantiated and connected and are never
inferred. Generator Code that would lead to the incomplete definition of multiplexers
due to missing assignments of combinatorial logic values will not run in Chisel, i.e. no
hardware description for simulation or synthesis is generated.

• Connectivity is described using wires and connections. There are no signals or signal
semantics, just wires in the constructed hardware model. Consequently, there cannot be
any assignment of values. The := operator, which is sometimes referred to as the assign
operator in the Chisel documentation and publications is actually a pure connection and
connection modification operator.

• Combinational logic is defined using wires and expressions. In this context, every wire
and port (their generalization in the Chisel core is referred to as a node) must have a
driver connected to it. Undefined states thus do not exist.

The description of combinational logic in Chisel is quite intuitive and will not be further detailed
here. An essential aspect of it, the creation of multiplexers is however intertwined with the
connectivity creation of the Chisel language. Both aspects will be described in the following.
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As mentioned before, Chisel supports ports, literals, and wires and generalizes these elements
as nodes. Connections between these nodes are created using the := connection operator. The
example in Listing 3.8 contains three nodes: io.input, io.output and myNode. Two out of
those nodes need to have a driver inside the module (io.output and myNode). The example
contains two noteworthy aspects:

1 class SampleModule extends Module {
2 val io = IO(new Bundle {
3 val input = Input(UInt(8.W))
4 val output = Output(UInt(8.W))
5 })
6

7 val myNode = Wire(UInt(8.W))
8 io.output := myNode
9

10 myNode := 255.U // connect a constant literal to the node myNode
11 myNode := io.input // disconnect driver 255.U connected to the node myNode
12 // and connect io.input to the node MyNode
13 }

Listing 3.8: Sample of a Chisel Module with conflicting connection statements

First, the two connections created in Lines 10 and 11 seem contradictory as they would connect
two drivers to the same node. This is resolved by the definition of the := operator in Chisel. This
operator is defined to do two things: First, it will also disconnect any other driver connected to
the left-hand side node if there are any connections already. Second, it will connect its right-
hand side driver to its left-hand side node instead. In the given hardware model, io.output
will therefore be connected to myNode which in turn will be only connected to io.input, not
to the literal.

255.U

myNode io.output

io.input

(a) model after execution of Line 10

255.U

myNode io.output

io.input

(b) model after execution of Line 11

Figure 3.1.: Hardware Models Generated by Chisel Listing 3.8

This behavior is illustrated by Figure 3.1, which shows the internal connectivity model the
Chisel library builds from the executed code. Sub-Figure (a) shows the status of the internal
model after the first connection in Line 10 has been executed. Sub-Figure (b) then shows how
the connectivity model changes when Line 11. What happens is that the connection from Line
10 is removed again, resulting in a model that is functionally equivalent to a model where the
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line of code is commented out.

To fully understand the semantics of Chisel, it is also important to understand the impact of
the conditionals when, elsewhen, and otherwise. The Chisel if constructs behave similarly
to the if constructs in SystemVerilogs generate blocks: they are evaluated at runtime of the
generator and will statically decide whether a certain part of the generator will be run or not,
i.e. whether a certain piece of hardware will be generated or not. The when constructs on
the other hand are conditionals that will be included in the design. In other words, these
constructs are responsible for generating multiplexers with conditions as their select signals.
On the Chisel language level, the when, elsewhen, and otherwise blocks impact the design
by modifying the behavior of all the connectivity operators := used inside these blocks. If the
connectivity operator is embedded in one or multiple of these conditional statements, it will no
longer simply disconnect any driver from the left-hand side element and connect the right-hand
side element as a replacement. Instead, a connectivity operator embedded inside one or more
when statements instantiates a multiplexer. In other words, the when, elsewhen, and otherwise
blocks are a convenient and flexible way to introduce multiplexers into the connection path.

1 class SampleModule extends Module {
2 val io = IO(new Bundle {
3 val input = Input(UInt(8.W))
4 val output = Output(UInt(8.W))
5 })
6

7 val myNode = Wire(UInt(8.W))
8 io.output := myNode
9

10 myNode := 255.U
11

12 when(io.input < 128.U) {
13 myNode := io.input
14 }
15 }

Listing 3.9: Sample of a Chisel Module with Multiplexer Connection

Listing 3.9 is a modified version of Listing 3.8 where the connectivity operator for the connection
from io.input to myNode is embedded in a conditional when block. Inside this when block, the
connectivity operator will exhibit the following behavior: It will disconnect the current driver
(255.U in the example) from myNode. It will then create a new multiplexer in the design and
connect the output of this multiplexer to myNode. It will connect the right-hand side of the
connection operator to the true path of the multiplexer and the old driver it had disconnected
to the false path of the multiplexer. Eventually, it will generate hardware to evaluate the
boolean truth value for the and-combined condition of all when clauses the connection operator
is embedded into (in this example just one clause and one condition). This condition is then
connected to the select input of the multiplexer. Figure 3.2 shows the hardware generated
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by this example: both io.input and the literal 255.U are connected to a multiplexer. The
select of the multiplexer is connected to a less-than comparator (lt) which compares the input
io.input to the constant 128 provided in the Chisel code.

io.input

•

•
mux •

•

128
lt • myNode

255.U

io.output

Figure 3.2.: Hardware Models Generated by Chisel Listing 3.9

If the code is modified from Listing 3.9 and the statement in Line 10 is commented out, this will
remove the connection between the literal 255.U and the input of the multiplexer created by the
when block in combination with the assignment in Line 13. The input node of the multiplexer
would therefore not be connected to any driver, violating the Chisel rule that every node needs
to have a driver and the underlying hardware semantic. Running this Chisel generator will fail
with an exception highlighting the issue and not generating HDL output.

The last important point regarding the semantics of Chisel is its stateful elements. For every
register that is created in Chisel, the data output node and the data input node are connected.
Following the semantics of the connectivity operator :=, an assignment to the register that is
not wrapped inside a when statement will disconnect the data output from the register and
attach the right-hand side of the assignment instead. The implications of this definition and
the Chisel semantics described above are illustrated in Listing 3.10, which is a modified version
of the last example in Listing 3.9.

For this example, the wire in Line 7 has been replaced and the connection created in Line 10
has been commented out. Because of the replacement of the Wire with a Reg and because the
implicit connection between register output and register input is automatically created for every
register, this example generates HDL despite the missing default assignment. The assignment
in Line 13 removes the data output of the register from its data input and attach it to the
newly created multiplexer instead.

3.5.1.2. Advantages and Limitations

One of the key advantages of Chisel lies in its relative simplicity compared to the traditional,
industry-standard HDLs. A big part of this comes from Chisel’s semantic clarity: It is funda-
mentally a design language based on the underlying hardware semantics and free from event-
driven or simulation-based concepts. It does not infer stateful elements and every Chisel state-
ment ultimately creates hardware and connections between this hardware. Moreover, it has a
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1 class SampleModule extends Module {
2 val io = IO(new Bundle {
3 val input = Input(UInt(8.W))
4 val output = Output(UInt(8.W))
5 })
6

7 val myReg = Reg(UInt(8.W), init: 0) // replace the wire with a register
8 io.output := myReg
9

10 // myReg := 255.U // comment out this line
11

12 when(io.input < 128.U) {
13 myReg := io.input
14 }
15 }

Listing 3.10: Sample of a Chisel Register and Port (Nodes) without Driver

very concise syntax, making it easy to write and read generator code.

Chisel has gained high popularity over the last years, with plenty of research work, open source
IP components, learning materials, and a vivid community developing based on it. Recurring
conferences and some limited industry adoption also have helped the Chisel development.

We identify two main, high-level drawbacks of the Chisel approach:

Complex Host Language In terms of the initial learning curve, a significant drawback of the
Chisel approach becomes visible. Chisel suffers from the relative obscurity of the underlying
host language Scala: none of the common rankings published for programming languages places
Scala in the top 20 languages [100, 102]. Scala is a complex multi-paradigm language that has a
significantly higher entry barrier than other general-purpose languages. Scala is not a language
that is already part of science and engineering university curricula or commonly used for script-
ing and general-purpose programming and automation. When it comes to available libraries,
Scala code can easily access the Java ecosystem [31]. A set of libraries that is particularly useful
for automation in the field of IC design are however libraries for numerics, data science, and
artificial intelligence. These libraries are easy to access from native compiled languages and
Python, which typically acts as the front-end language for the AI and ML ecosystem. Bindings
to the Java ecosystem are only available in a limited manner. In Section 3.3, we identified a flat
learning curve and availability of libraries benefits of Embedded DSLs. Given the properties of
the Scala language, this benefit does not fully apply to Chisel [58].
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Lack of visible and clearly defined underlying Metamodel During the execution of Chisel
code, the data structure is built from the Chisel language’s instructions. This data structure
is then processed and written out as Verilog for synthesis. The easiest path to understanding
and conceptualizing Chisel is to understand the language definition. Following this learning
path (getting the syntax and semantics of the language instead of learning the structure and
semantics of the underlying model) makes the initial learning of Chisel easier, however, comes
with a caveat: This learning path does not require an understanding of the model underlying
the Chisel-generated data structures.

The Complex Host Language of Chisel and its properties, operators, and constructs – which
may be unknown to the developer of Chisel code – are closely interwoven with the operators and
constructs that the DSL puts on top of it, making it difficult for the user to understand what
actually happens when the code is executed. The lack of a visible and clearly defined underlying
Metamodel or more precisely the lack of awareness of this Metamodel makes it difficult to
understand what the individual Chisel statements do to modify this Metamodel. Clear visibility
on the existence of the Metamodel and the actions done by the executed generator code to this
Metamodel helps the developer to understand that he is writing a generator instead of writing
HDL code.

We consider two points as key features of EDSL-based Hardware Generation Languages:

1. The ability to perform introspection on the existing data structures describing the design
during the execution of the generator.

2. The ability to apply transformations on the generated data structures.

These two features cannot easily be achieved due to the lack of a visible, clearly defined un-
derlying Metamodel: Chisel was fundamentally designed as a language and not as a tool to
define a model. The language specification hides the model underlying these data structures,
making the development of introspection or transformation-based approaches more difficult. It
is possible to perform introspection on generated structures during the execution of the gen-
erator and to apply any transformation to them. This however requires an understanding of
the internals of the Chisel library and compiler. Such an understanding is not at the center of
a language-based approach and is therefore difficult to obtain. Moreover, the data structures
this will work on are however outside of the specification of Chisel and the developed code may
fail in later versions of the language.

We also see the model and the understanding of the Metamodel as a central point to under-
standing the semantics of a language. The absence of this Metamodel in the Chisel learning
path makes it difficult to separate the (very nice and clean) semantics of the Chisel language
from the semantics of the target view (event-driven simulation language such as SystemVerilog)
without a focus on the underlying generated model.

A further disadvantage of Chisel is the relatively low level of the underlying internal model that
Chisel data is mapped onto. The section on the semantics of the language already described that
Chisel code is basically broken down into a graph of nodes, with registers, combinational logic,
and submodule instantiations as its key elements. Chisel notably does not contain common
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higher-level constructs such as finite state machines that are part of the design thinking of
hardware developers. This can be a significant limiting factor for transformations and analysis
on the model built by Chisel code.

Assessment of Limitations by the Chisel Team Some of these drawbacks are also identified
and acknowledged by the authors of Chisel [70]. They correctly note several limitations that
all originate from a non-model-based, language-centric approach:

1. “Writing custom circuit transformers requires intimate knowledge about the internals
of the Chisel compiler” [70]. We attribute this limitation mainly to the Complex Host
Language.

2. “Chisel semantics are underspecified and thus impossible to target from other languages”
[70]. We attribute this limitation to the Lack of underlying Metamodel.

3. “Error checking is unprincipled due to underspecified semantics resulting in incompre-
hensible error messages” [70]. We attribute this limitation to the Lack of underlying
Metamodel with a formal, Metamodel-based description of legal model states.

4. “Learning a functional programming language (Scala) is difficult for RTL designers with
limited programming language experience” [70]. From our point of view, this originates
from the Complex Host Language.

5. “[C]onceptually separating the embedded Chisel HDL from the host language is difficult
for new users” [70]. From our point of view, this originates from both the Complex Host
Language and the Lack of underlying Metamodel.

3.5.1.3. FIRRTL

The developers of Chisel have addressed the shortcomings they identified with the introduction
of FIRRTL (Flexible Intermediate Representation for RTL). FIRRTL is described by the au-
thors as a Hardware Description Language that represents the elaborated Chisel circuit, having
many syntactical and semantic similarities with the Chisel language, however not contain any of
the metaprogramming capabilities provided by the Scala host language [70]. The FIRRTL code
is what is generated from the Chisel internal data structures describing the hardware. From the
point of view of this thesis, FIRRTL is an intermediate model with a well-defined Metamodel
that describes an elaborated Chisel design. In other words, it is the hardware-centric model
built by the execution of a Chisel generator.

FIRRTL does address the shortcomings originating from the Lack of underlying Metamodel we
described in the previous section:

• It provides a clean platform for applying transformations.

63



3. Related Work

• It helps developers to conceptually separate the Chisel language from the host language
as they can see what the evaluated circuit looks like without the host language generator
constructs, yet still in a syntax similar to that of Chisel.

• It can be directly generated without using the Chisel generator if a different path, absent
of Chisel HGL has to be used to generate circuits.

While it can be clearly seen that FIRRTL is removing these shortcomings and making the Chisel
flow more similar to the flow presented in this work, there are a few remaining limitations and
problems with the approach:

• The FIRRTL model is not the internal model of the Chisel language. FIRRTL thus does
not support the process of introspection on the Chisel model at runtime of the Chisel
generator. The FIRRTL model is similar, yet not identical to the internal model of the
Chisel language. It does therefore not significantly ease the process of introspection on
the Chisel model right when the Chisel generator is executed.

• Development of generators in Chisel is still the development of generators in a language
defined for Hardware Generation, it is not the development of a transformation or the
explicit generation of a target data structure. This target data structure is then trans-
formed into FIRRTL. The developer is however not necessarily aware of this first layer of
data structure that is constructed when Chisel executes.

• Instead of relying on an Embedded DSL, FIRRTL again introduces a full-custom DSL for
an intermediate artifact. FIRRTL therefore in turn negates some of the benefits of working
with Embedded DSLs: it is once again required to develop parsers and code generators
for a new language, resulting in an increase in complexity and maintenance overhead.
This thesis demonstrates that the benefits that FIRRTL provides can be achieved with
a model and a defined Metamodel in the environment of an existing general-purpose
programming language. It is easy to conclude that the introduction of a Metamodel
instead of the introduction of a custom language would have been beneficial.

The Metamodeling-based Model Driven Architecture approach presented in this thesis does not
exhibit these limitations and has further benefits regarding its learning curve and the areas it
can be applied in. In the remainder of this thesis, the approach will be presented.
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This chapter introduces the adaptation of Model Driven Architecture for Digital Hardware
Generation provided by this thesis. In line with OMG’s vision of Model Driven Architecture,
the adaptation presented here defines multiple layers of models, ranging from a very high level
of abstraction of the specification of a design down to a very low level of abstraction akin to an
Abstract Syntax Tree (AST) of the generated target views.

This chapter introduces the layers of models used in the MDA approach for digital hardware
design and describes their content and level of abstraction. It describes the Metamodels used
for the modeling layers and puts the defined layers into context with the corresponding layers
defined in the OMG vision for Model Driven Architecture. It also establishes the terminology
used throughout this thesis and in further research based on this thesis.

It is important that this chapter provides descriptions of its Metamodels based on the M3
Meta-Metamodel of Infineon’s proprietary in-house Metamodeling framework. None of the
aspects described in this chapter depend on anything other than the M3 Meta-Metamodel.
This marks an important difference to the approaches presented in Section 3: The definition of
the Model Driven Architecture inspired approach is independent of a certain target language
and the concrete implementation of a defined software library or framework. The notation
used in this thesis to visualize the Metamodels is that of UML class diagrams. Models are also
visualized using UML instance diagrams. Further, as the M3 notation relies primarily on the
definition of meta-objects, their attributes, and relationships, the results provided here can be
easily mapped onto other M3 formalisms such as the Ecore Meta-Metamodel at the heart of
the Eclipse Modeling Framework [49].

Any details on how the models are read, transformed, and analyzed are deliberately omitted in
this chapter as these are characteristics of the MDA flow that are specific to a certain imple-
mentation in a Metamodeling framework. Chapter 5 introduces this framework and describes
these aspects.

4.1. Overview

Figure 4.1 shows the proposed adaptation of MDA for digital hardware generation. This ap-
proach conceptually follows the vision of Model Driven Architecture as introduced in Sec-
tion 2.4.1. Similar to the three-layer approach of the initial OMG proposal for Model Driven
Architecture, the concept introduces three layers of models, each with the Metamodels con-
straining them and defining their characteristics.
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Figure 4.1.: Abstraction Layers in MDA for Hardware Generation – Models and Metamodels

For each of those three layers of abstraction, terms are introduced that are closely related to
their purpose and level of abstraction of the corresponding model:

MoT The Model-of-Things corresponds to the Computation Independent Model (CIM). Its
intention is to formally capture data from requirements and specifications. The MoT
thus defines things, their attributes, and their relations to the intended functionality. In
this context, functionality describes what the product has to provide, without including
how the product is implemented, e.g. which algorithms and architecture are used. This
makes the models computation independent in the terminology of OMG. In the context
of Digital Hardware design, this can also accurately be referred to as implementation
independent. Section 4.2 details the Model-of-Things and provides example Metamodels
for this layer of abstraction.

MoD The Model-of-Design corresponds to the Platform Independent Model (PIM). Its goal is
to define the architecture from the point of view of a hardware designer. The MoD and its
Metamodel are the core components of the proposed methodology. Broadly speaking, a
Model-of-Design describes the design on Register Transfer Level. It differs from modeling
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languages based on event-driven semantics as it does not cover any simulation or syn-
thesis artifacts of the views. It is no longer independent of the targeted implementation
(i.e. microarchitecture) but independent of the language and platform targeted by the
generation. The MoD and its Metamodel are detailed in Section 4.3.

MoV The Model-of-View corresponds to the Platform Specific Model (PSM). It is the least
abstract model with a straightforward mapping to the target view. The level of abstrac-
tion of this layer can be compared to the abstraction of an Abstract Syntax Tree (AST)
of the target view. The Model-of-View layer is detailed in Section 4.4.

In order to achieve the goal of this thesis (see Section 2.5), the framework needs to close the
Generator Gap by making it easier to develop ever more powerful generators. A key element to
this is the definition of suitable Metamodels for each of the respective modeling layers. There
are several Metamodels on the MoT layer and MoV layer. For the MoD layer, this thesis
introduces exactly one Metamodel.

MMoTs Every specification formalized in a Model-of-Things instance is transformed onto a set
of components part of a Model-of-Design. On the Model-of-Things layer, several different
Metamodels-of-Things are necessary depending on the design task. When generating
several CPU cores with different RISC ISAs, the formalized description of these ISAs will
use models of the same Metamodel. When a full CPU subsystem is generated, various
peripherals such as timer, interrupt controller, or signal processing peripherals will require
different Metamodels.

MMoD For the MoD layer, there is exactly one Metamodel that is related to the RTL and
synchronous design abstraction. The name of this Metamodel-of-Design is MetaRTL. The
MoD-layer and its Metamodel are the most important central cornerstone of the proposed
adaptation of MDA for digital hardware design. For this reason, the MDA flow for digital
hardware design is sometimes simply referred to as MetaRTL.

MMoVs The number of Metamodels on the MoV layer depends on the number of views tar-
geted. As described above, the MoV is dependent on the language of the view that is
generated. Therefore, the Metamodels-of-View is heavily influenced by the grammar of
the view’s language. In general, a separate Metamodel is used for every view. Section 5.4
of this thesis shows the View Language Description (VLD) approach and how even those
MMoVs can be automatically generated.

The following sections will provide more detail on the individual layers of abstraction from top
to bottom.
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4.2. The Model-of-Things Layer

The Model-of-Things Layer formally captures data from requirements and specifications. The
term Model-of-Things is used to clarify that the MoT defines things, their attributes, and their
relations to the intended functionality. In this context, functionality describes what the product
has to provide, without including how the product is implemented, e.g. which algorithms and
architecture are used.

The equivalent layer in the terminology of OMG is the Computation Independent Model (CIM)
which captures information such as business processes. In the context of Digital Hardware
design, this can also accurately be referred to as implementation independent. It does not
describe the inner workings of a potential implementation. Instead, it is a declarative approach
to describing what the generated hardware shall implement.

Any available Model Driven Architecture flow will support a known set of Metamodels as its
input on the MoT layer. When the MDA flow is applied to generate code, it will use one or
multiple models of these Metamodels as input to the generation. These Metamodels therefore
not only describe the MoT – they also describe and constrain the supported inputs for a given
MDA flow.

The Metamodel used for the Model-of-Things layer is highly dependent on the type of hardware
that shall be generated by the MDA flow. For example, there have to be different Metamodels-
of-Things for different communication peripherals, bus fabrics, CPU cores, Accelerator IPs,
and all other types of hardware. In the following, a very simple MMoT example is provided to
illustrate the purpose and possible level of abstraction of the MoT layer.

4.2.1. Example MoT Layer for Digital Filters

This section provides an example of an MoT layer based on a hypothetical MDA-based gener-
ation flow for digital filters. This flow shall support the generation of hardware implementing
digital filters which adhere to a recurrence relation specified in Equation 4.1. Input to the gen-
eration flow are the parameters bi of this equation and the expected outcome is synthesizable
RTL code implementing the filter.

y[n] =

N∑
i=0

bi · x[n− i] (4.1)

Figure 4.2 shows the Metamodel-of-Things that formalizes the valid input formats for the
MDA flow using Metamodeling methods. According to the pictured Metamodel, the FIR
Model-of-Things describes a FIRFilter with a name Name. For every bi ̸= 0, an Addend
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composition object is created, with an attribute Instant containing the index i. The at-
tributes ImpulseResponseReal and ImpulseResponseImag contain the real and imaginary part
of the complex number bi. According to the Metamodel, every Addend has a mandatory inte-
ger ImpulseResponseReal and an optional ImpulseResponseImag (ImpulseResponseImag has
multiplicity optional, i.e. 0..1).

FIRFilter

Name : string [1]

Addend

Instant : int [1]

ImpulseResponseReal : int [1]

ImpulseResponseImag : int [0..1]

1..*

Figure 4.2.: Metamodel-of-Things for an MDA-based generator for FIR Filters

Any filter that adheres to the recurrence relation in Equation 4.1 can be expressed as a Model-
of-Things instance of this Metamodel-of-Things. Equation 4.2 is an example of a 2nd order
filter that adheres to the generic recurrence relation.

y[n] = 4 · x[n] + 2 · x[n− 1] + 1 · x[n− 2] (4.2)

This specification has to be provided as an MoT instance of the MMoT in Figure 4.2 so that it
can be used for the MDA-based generation flow. Figure 4.3 shows the MoT of the filter from
Equation 4.2. The attribute ImpulseResponseImg does not show up in the model since it is
not needed for this instance of the filter (no imaginary component to the impulse responses).
This complies with the Metamodel since ImpulseResponseImg has multiplicity optional, i.e.
0..1.

Despite the simple structure of this example, a key characteristic of the proposed approach is
visible here: The Model-of-Things contains only the specification. It is easy to imagine a set
of microarchitectures to implement such a filter. For example, a simple one sample per cycle
pipeline might be used (see Figure 4.10). In this case, the multipliers might be replaced by wires
treating the coefficients as constants for the cost of reduced flexibility. Generally, the added
chain can be replaced by an adder tree. Another microarchitecture would consist of an FSM
and a multiply-accumulate unit. While these microarchitectures have different characteristics,
they are both equally valid microarchitectures considering a specification that only describes
parameters of the transfer function of the digital filter and does not contain any performance
constraints such as throughput. The transformation from Model-of-Things to Model-of-Design
can have many implementations resulting in significantly different architectures. The sample
microarchitectures mentioned here also illustrate that there is not necessarily a one-on-one
correspondence between elements in the Model-of-Things and elements in the Model-of-Design.
In fact, the transformation from Model-of-Things to Model-of-Design bridges a large gap in the
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:FIRFilter

Name = realvalued_filter

:Addend

ImpulseResponseReal = 4

Instant = 0

:Addend

ImpulseResponseReal = 2

Instant = 1

:Addend

ImpulseResponseReal = 1

Instant = 2

Figure 4.3.: Example Model-of-Things instance of FIR Filter MMoT

level of abstraction and the structure of the Model-of-Design does not typically resemble that
of the Model-of-Things.

Moreover, the Metamodel-of-Things defined as input for the MDA-based filter generator is not
the only feasible MMoT. The MMoT could for example also specify the expected intended
frequency-domain characteristics and maximum deviation from these characteristics. In this
case, the Model-to-Model transformation from Model-of-Things to Model-of-Design would first
need to derive the coefficients bi for a digital filter that meets the required characteristics.
Chapter 5 will contain a detailed description of how an MoD realization of an MoT can be
achieved as part of a Model-to-Model transformation.

4.3. The Model-of-Design Layer and the MetaRTL Metamodel

The Model-of-Design layer is the central element at the heart of the Model Driven Architecture
for Digital Hardware Generation. For any execution of an MDA-based generator, there is
exactly one instance of the MoD. This instance acts as a central representation of the design. All
MoT inputs are processed and mapped onto the MoD using Model-to-Model transformations.
After the transformations are completed, the MoD is the only source of information used to
build one or more MoV instances used for the generation of the targeted HDL code.

4.3.1. Semantics of MetaRTL

The Metamodel of the Model-of-Design layer that was developed as part of this thesis is called
MetaRTL. MetaRTL is a structural representation of the design on Register Transfer Level
(RTL). It is important to note that MetaRTL semantically differs from the Hardware Descrip-
tion Languages (HDLs) SystemVerilog, Verilog, and VHDL which are commonly used for digital

70



4.3. The Model-of-Design Layer and the MetaRTL Metamodel

hardware design and simulation on RTL.

The first key difference is that the model that is contained in an instance of the MetaRTL
Metamodel describes one design in an elaborated manner. The elaboration is performed as
part of the Model-to-Model transformation from MoT to MoD. Elaborated design means that
re-usable modules are part of the Metamodel-of-Design, there is no concept of re-usable modules
and instantiation in a MetaRTL model. Instead, the concepts of instantiation and re-usable
modules are entirely located on the level of the MetaRTL Meta-model and the transformation
from MoT to MoD.

The second key difference is the absence of simulation semantics in MetaRTL. Modern HDLs
support the description of behavior, structure, and test and verification artifacts. It is possible
to use these languages to describe a design on a structural level by instantiating and connecting
existing building blocks. The implementation of these building blocks in HDLs is however
always based on the languages’ underlying event-driven simulation semantics. This is at odds
with the mental model hardware designers have of the structures in their design: Registers,
their clocking and reset behavior and the combinational logic between these registers have to
be transferred to a description in event-driven semantics. The event-driven semantics modern
HDLs come with a high degree of freedom to build event-driven models that have undesireable
mismatches between their behavior in an event-driven simulation and the logical behavior of
the circuits synthesized from the models, referred to as simulation/synthesis mismatch [15].

MetaRTL is a fully design-centric and structural model of hardware, based fully on the semantics
of hardware and free from any simulation semantics. It contains structures describing the typical
design patterns and elements part of hardware semantics such as registers with their clocking
and reset properties, dataflow elements to describe the combinational logic as well as higher-
level design patterns such as state machines, decoders, or lookup tables. Instead of relying on
event-driven semantics, MetaRTL relies on simpler assumptions. First, MetaRTL is based on
the timing assumption that all signals in a MetaRTL model stabilize before a relevant clock
edge. Second, it assumes structural integrity of the design, i.e. the absence of combinational
feedback loops.

The representation of MetaRTL models thus matches a hardware designer’s thinking process
and the mental model underlying digital design in the minds of digital design engineers. For
engineers, the use of a model that matches their mental model and the underlying physical
reality simplifies the design process: it frees designers from the mental load of having to map
their design thinking onto the simulation semantics of HDLs – a mapping that also blurs the
view onto the actual design patterns used for the creation of a digital design.

Moreover, it also eliminates the need to transfer back from simulation semantics to higher-level
patterns in order to perform transformations and optimizations on a design. From a point of
view of building generators and transformations, this is beneficial as it removes the need for
difficult-to-implement heuristics that extract the higher-level design patterns. Chapter 5 will
describe in detail how this simplifies the development of Model-to-Model transformations from
MoT to MoD or between different versions of the MoD.
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4.3.2. The MetaRTL Metamodel

Conn

Name : string [0..1]

PosInParent : int [0..1]

Description : string [0..1]

HWPLUS

MetaRTL

Name : string [0..1]

HWMUL FSM

FSMOpt :  [1..*]

Register

Mux

BasePort

Literal

Value : int [1]

ObjProps :  [1]

PortSel

IndexHigh : int [0..1]

IndexLow : int [0..1]

SubPort :  [0..1]

Component

Name : string [1]

Param : Param [*]

StructurePrimitive ClockedComponent

ClockSensitivity : ClockSensitivity = RisingEdge

1

* SubConn

*

1..*

*

*

*

Port

Name : string [1]

Direction : PortDirection [1]

ObjProps :  [1]

Param : Param [*]

Figure 4.4.: MetaRTL: Metamodel-of-Design (simplified)

Figure 4.4 shows a simplified version of MetaRTL, the Metamodel of the Model-of-Design
(MoD). According to the MetaRTL Metamodel, any design consists of a MetaRTL instance that
contains exactly one instance of a Component: this instance is the root of the design generated
by the MDA flow.

This component can be of different types as shown by the generalization relationship between
Component and Primitive, Mux, the Primitive and its specializations HWMUL and HWPLUS as
well as the ClockedComponent and its specializations Register and FSM. The simplified version
shown in Figure 4.4 does not contain all component types supported by MetaRTL but just a
selected set of a few components that can be used to construct an initial example. For now, it
is important to note that all component types inherit directly or indirectly from the Component
class in the Metamodel of MetaRTL and share its common properties and a set of boundary
ports described by the composition of Port in Component.

The most important component of the MetaRTL is the Structure. The structure is the non-
terminal MetaRTL element that allows for building hierarchical designs. The composition from
Structure to the abstract base class Component in the Metamodel shows that the Structure in
turn can instantiate several Components, i.e. further specializations of it such as further nested
Structure instances, Muxes or further components. The Structure is what turns a MetaRTL
design into a hierarchical design with connectivity. This connectivity is represented in the
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Metamodel through the Conn class composed in the Structure. Connections themselves are
complex objects that attach to either a Literal or a Port or a part of those. This attachment
is modeled through the PortSel class in MetaRTL. These connection elements represent actual
RTL connectivity between the Structure’s boundary ports and the boundary ports of the
instances inside the Structure. In addition to describing instance-to-instance connectivity, any
MetaRTL Structure can also contain Literal objects as containers for constant values that
are used to drive the boundary ports of Components in a design.

This simple MetaRTL Metamodel is sufficient to describe the first designs on RTL level. As
mentioned above, Figure 4.4 does not yet contain the full set of components required for digital
design. The full set of components will be introduced and described later in this section.
The diagram also does not yet contain a very important part of the MetaRTL Metamodel:
The object properties used to describe type characteristics such as bit width and hierarchical
structure and the interpretation of values on ports.

The following subsections use examples to explain several specializations of the MetaRTL
Component to give a more detailed understanding of the Metamodel and its key characteristics
and components.

4.3.2.1. Compatibility with all Naming Conventions

It is an important design goal of MetaRTL to be compatible with all kinds of different naming
conventions. To guarantee compatibility with all naming conventions, the semantics of any
model artifact must be independent of the Name attribute of the model artifact. This also
allows users of MetaRTL to omit the names of Model-of-Design elements. These names will
then only be introduced when a Model-of-View representation of the Model-of-Design requires
it.

Component

Name : string [1]

Param : Param [*]

Port

Name : string [1]

Direction : PortDirection [1]

ObjProps :  [1]

Param : Param [*]

Mux
0..1 OutDefaultIn

*

In1..*Sel

Figure 4.5.: Mux Component with associations to describe Port roles independent of their names

Figure 4.5 uses the Mux component which implements a hardware multiplexer as an example of
the MetaRTL Metamodel implementation. Like all components, the Mux has a set of ports that
describe its interface. For further Model-to-Model transformations, it is however important
to know which roles these ports have. MetaRTL identifies 4 types of special ports for the
Multiplexer:
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• Sel for the select input of the multiplexer. This input determines which port is forwarded
to the output of the multiplexer. In a correct model, the Sel association is required
(Multiplicity of the Association is 1).

• In for the inputs the Sel port selects from. This is one of the options that can be
forwarded to the output. In a correct model, the multiplexer needs to have at least 1 In
association, can however have arbitrarily many (Multiplicity of the Association is 1..*).

• DefaultIn references the In port that is selected if the Sel value is not mapped to any
input port. This is an optional attribute that may or may not exist in a real model. For
some models (e.g. when the number of inputs is 2n and the bit width of the Sel port
equals n, the DefaultIn attribute does not affect the model.

• Out to define the data output of the multiplexer. This port will be driven with the input
value that is selected by the Sel port. In a correct model, the Sel association is required
(Multiplicity of the Association is 1).

This approach allows to create the Mux component and any other primitive or complex compo-
nents entirely without any names - the associations Sel, In, DefaultIn and Out defined above
and the name of the associations are part of the Metamodel, they are not names in the model.
They are what defines the roles of the ports and not their names. While this example is of
course not meaningful, it would be possible to create a new Multiplexer and name the ports
that are referenced by In as e.g. MyOutputPort01, MyOutputPort02 and MyOutputPort03 and
the ports that are referenced by Out as MyInputPort. While this is of course not meaningful
for understanding and debugging any design, it would create a perfectly fine circuit when used
in the MDA flow. The more practical application of this feature is the omission of port names.
In this case, the port names will be introduced by convention during transformations of the
model.

By convention, the multiplexer’s In ports will be mapped sequentially to the key space defined
by the bits of the Sel port. The model can therefore be queried to identify which select
value will choose which input port. It is furthermore possible to override this using the Param
composition of the Port class. This composition allows to define one or more Sel values for
which a given In port will be selected.

4.3.2.2. Registers

MetaRTL is semantically fully located on Register Transfer Level. As the model deliberately
does not use any simulation semantics, the Register component of MetaRTL is the way to
introduce registers into the design. Figure 4.6 shows the MetaRTL Register. Like all other
ClockedComponents, the Register required a Clk input port. In addition to that, an En
port can be optionally provided to enable and disable the register. Resets of the MetaRTL
Register component can be synchronous or asynchronous, defined by whether the SyncRst or
AsyncRst ports are set. Moreover, the component has the In and Out association, describing the
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Component

Name : string [1]

Param : Param [*]

Port

Name : string [1]

Direction : PortDirection [1]

ObjProps :  [1]

Param : Param [*]

ClockedComponent

ClockSensitivity : ClockSensitivity = RisingEdge

Register

Out0..10..1 AsyncRst 0..1EnClk InSyncRst

*

Figure 4.6.: The MetaRTL Register Component

ports which are typically referred to as D and Q of a FlipFlop. For the MetaRTL Metamodel,
the decision was made to name the associations In and Out for consistency with all other
components.

4.3.2.3. Memories

The purpose of the Memory component shown in Figure 4.7 is to instantiate memories of all kinds
in MetaRTL designs. For this purpose, the Memory component comes with several attributes
that can be set to define a certain memory. ReadLatency and WriteLatency define after how
many cycles of the clock Clk the data is avaiable. The ReadUnderWrite enumeration defines
how the Memory behaves when the same address is written and read simultaneously.

<<enum>>

ReadUnderWrite

OldValue : ReadUnderWrite

NewValue : ReadUnderWrite

Memory

ReadLatency : int [1]

WriteLatency : int [1]

ReadUnderWrite : ReadUnderWrite [1]

NumOfElements : int [0..1]

DefaultValue : int [*]

ObjProps :  [1]

Component

Name : string [1]

Param : Param [*]

ClockedComponent

ClockSensitivity : ClockSensitivity = RisingEdge

Port

Name : string [1]

Direction : PortDirection [1]

ObjProps :  [1]

Param : Param [*]

En

1..*

0..1

ReadIF

1..*

Clk

WriteIF

Data Addr

*

MemoryIF

Figure 4.7.: The MetaRTL Memory Component
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The Memory component also differs from other components introduced so far in how it uses
associations to describe the roles of its Port instances. As read or write interfaces of memories
always require multiple ports, the MemoryIF class is defined. Every memory must have at least
one ReadIF and one WriteIF. Each of those interfaces must have an association to two ports,
defining it as the Data or Addr port of the respective memory interface. An optional En can
be used to disable the writing or reading in a certain cycle. It is optional, and if omitted, the
memory will read and write from all its interfaces in every cycle.

4.3.2.4. Primitives

The MetaRTL Metamodel comes with a set of Primitive components. Figure 4.8 shows two
example Primitives created in the MetaRTL Metamodel. The unary NOT operator represents
a bitwise not. It is defined for all kinds of numeric interpretations, has exactly one input
port (multiplicity of In is 1) and exactly one output port (multiplicity of Out is 1). This is
consistent with the definition of the orthogonal operator as a unary operator. The HWPLUS
operator represents addition with hardware semantics. It is defined on an arbitrary number of
arguments, therefore has at least one input port (multiplicity of In is 1..*) and exactly one
output port (multiplicity of Out is 1).

HWPLUS

NOT

Component

Name : string [1]

Param : Param [*]

Port

Name : string [1]

Direction : PortDirection [1]

ObjProps :  [1]

Param : Param [*]

Primitive OutOut1 1

*

1..*1In In

Figure 4.8.: Two sample Expression Operands with their Mapping to Primitives

All Primitive components part of MetaRTL are not clocked. The total set of all primitive
components can be used to describe arbitrary combinational logic behavior in a structural
manner. A detailed overview on MetaRTL Primitives and their auto-creation in the MetaRTL
model is provided in a later section.

Together with the Registers and Memories previously introduced and the connectivity defined
inside Structure components, the components are sufficient to describe any digital design
module using MetaRTL.
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4.3.2.5. Higher-level design patterns as MetaRTL Components

Although the low-level components introduced so far can already be used on their own to
describe any design as a Model of MetaRTL, the Metamodel also contains higher-level artifacts.
Examples of these higher-level artifacts are Decoders, Lookup Tables, or Finite State Machines.
All three of these examples can certainly be also mapped on a MetaRTL Metamodel using only
registers, structures, and primitives. This is however not fully meeting the MetaRTL objective:
MetaRTL aims to provide a design-centric model, with hardware semantics and the typical
design patterns used for digital design. Decoders, Lookup Tables, and Finite State Machines
are important design patterns and an essential part of “designer’s thinking”. The key problem
with this is described as part of the semantics of MetaRTL: mapping these design patterns
to lower-level primitives will blur the view and understanding of these patterns and make
transformations significantly more difficult.

The remainder of this section describes the LookupTable component as an example of a higher-
level component embedded into MetaRTL. Figure 4.9 shows the LookupTable, a transcoding
structure that has a single input In and a single output Out. It uses a set of nested lookups
on certain KeyBit positions of the In data to determine an output Value. Eventually, every In
value is mapped to an Out value provided by the ControlVector attribute of the TerminalValue
class. It is however also possible to create nested lookups: for a certain lookup Value, instead of
providing a terminal ControlVector, the NonTerminalValue class can be used as an additional
nested Lookup. This lookup then in turn can contain further nested lookups. Eventually, all
nested lookups need to end with TerminalValue attributes defining what the value at the Out
of the LookupTable component is.

TerminalValue

Value : string [1]

ControlVector : string [1]

Component

Name : string [1]

Param : Param [*]

Value

Port

Name : string [1]

Direction : PortDirection [1]

ObjProps :  [1]

Param : Param [*]

LookupTable

Lookup

KeyBit : int [1..*]

NonTerminalValue

Value : string [1]

OutIn

*

Figure 4.9.: The MetaRTL Lookup Table
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4.3.2.6. Compatibility and Hardmacro Components

MetaRTL also contains further specializations of the MetaRTL Component needed for the real-
world application of the MDA flow. An important example of this is the Pad component which
can be used to add I/O pad hard macros to MetaRTL models and the LegacyComponent to
embed any static hardware models provided either by traditional code generators or manually
implemented in VHDL or SystemVerilog. These in turn can also cover analog and mixed-signal
functionalities such as clock generation and power management. They are not described here
in detail as they are not relevant to the conceptual understanding of the MDA method or the
Model-of-Design layer.

4.3.3. Sample MoD Layer for Digital Filters

The goal of this section is to further elaborate MetaRTL as Model-of-Design based on the
example that was used for the MoT of digital filters in Section 4.2. This section derives an
MoD instance for the digital filter that is defined there as y[n] = 4 ·x[n]+2 ·x[n−1]+1 ·x[n−2].
While the UML instance diagram of the MoT describing this filter in Figure 4.3 is still quite
compact and easy to understand, the nature of the MDA flow developed here will inherently
lead to more complex models the more layers down the MDA stack.

w

x [n ] x [n-1] x [n-2]

multiply

by 4

multiply

by 2

w

w w w

data_i

y [n ] result_o

clk

rst

Figure 4.10.: Block diagram of MoD generated from the MoT in Figure 4.3 without Clock and
Reset Connectivity

Figure 4.10 shows a block diagram view to illustrate the targeted structural Model-of-Design.
The implementation of this filter on a two’s complement representation of binary input data of
a width w can be fairly simple: the mathematical operations of multiplication with 1, 2, and
4 are simple shift operations which in turn can be mapped to simple wires and therefore do
not require any dedicated hardware. The addition required to sum up the individual addend
can be performed synchronously. It is therefore possible to derive a design that transforms the
input into the output in four cycles. For any given cycle n the sum is calculated of the input
data two cycles ago (x[n− 2]) multiplied by 1 (which is simply wiring without any behavior in
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hardware), of the input data one cycle ago (x[n− 1]) multiplied by 2, and of the input data in
the current cycle x[n] multiplied by 4.

For different MoT parameters, the complexity and microarchitecture of the filter component can
of course differ significantly. This example was chosen specifically to make the Model-of-Design
and its visualization as simple as possible. Figure 4.11 shows a UML instance diagram of the
Model-of-Design (as an instance of the MetaRTL Metamodel) for the filter from Figure 4.10.
The model contains all required components and ports. To ease understanding, it does not
represent the real model but a slightly simplified version of it, with similar simplifications as
the block diagram in Figure 4.10: the UML instance diagram contains the clock and reset ports
but does not contain the clock and reset connectivity. It does further not contain the object
properties, i.e. the types of the individual ports, connections, and literals part of the design.
Furthermore, it does not contain the Composition relations that link the HWMUL, Register and
HWADD to their parent Structure. A complete visualization of the Model-of-Design with all
these attributes would prevent a useful, single-page visualization. Even in its simplified form, it
is already clear that the MoD layer differs significantly from the MoT layer. On the MoD layer,
is no longer practical to enter models manually, e.g. using a GUI or a defined text format.

To ease the understanding of the UML instance notation of the filter, the blocks in Figure 4.10
and the instances in Figure 4.11 are arranged in the same way. For example, the register y[n]
that is displayed in the bottom right corner of Figure 4.10 is also in the bottom right corner of
Figure 4.11. The figure can therefore be used together with the block diagram to understand
how a certain design block diagram translates into an MoD instance.

4.4. The Model-of-View Layer

The Model-of-View layer is used to map the microarchitecture described in a Model-of-Design
onto a target platform. In the context of Model Driven Architecture for HW Design Generation,
typical targets are HDL code for synthesis or simulation purposes. The Metamodel of the
Model-of-View is tailored to the language of the target view.

This means that multiple flavors or styles of the same HDL can be configured using different
Model-to-Model transformations between MoD and MoV and mapped to an instance of the
same Metamodel-of-View. A Verilog model for ASIC synthesis and a Verilog model targeting
an FPGA can be constructed from the same Model-of-Design with two different Model-to-Model
transformations. These different transformations of course share significant amounts of code. It
is therefore possible to either construct the transformation as one configurable Model-to-Model
transformation between MoD and MoV or as two separate Model-to-Model transformations that
rely on shared library elements. A third approach supported by the Model Driven Architecture
vision is the generation of a Model-of-View and the subsequent application of transformations
to this Model-of-View in order to change the coding style to match the target platform.

On the Model-of-View layer, one Metamodel is required per target language. For different
target languages (i.e. different HDLs), different Metamodels-of-View are needed. For example,
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Figure 4.11.: MetaRTL MoD for Figure 4.10 without Clock and Reset Connectivity (simplified)
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in order to generate two different coding styles of Verilog, the same Metamodel can be utilized
while a SystemC view will require a different Metamodel. The Metamodel of the Model-of-View
layer specifies a targeted view similar to how Extended Backus-Naur Form (EBNF) notations
describe the formal grammar of a language. Compared to an EBNF used for parsing, the MoV
is more compact, i.e. has fewer classes than the EBNF has rules. Also, the MoV does not have
to consider aspects such as left/right recursion, lookup depth and context sensitivity as its only
purpose is the definition of a layer for generation, not for parsing. The Metamodel constrains
the possible Model-of-View instances so that all legal instances will translate to grammatically
correct views.

Generic

Name : string [1]

Type : string [1]

InitValue : string [0..1]

Entity

Name : string [1]

Port

Name : string [1]

Mode : string [1]

Type : string [1]

Generics

Ports

1..*

0..1

0..1

1..*

Figure 4.12.: Small Subset of Model-of-View for VHDL

Figure 4.12 contains a small extract from the VHDL Metamodel-of-View which was imple-
mented in the scope of this thesis: this model describes the VHDL Entity. In VHDL, entities
are the specification of the external interface of a design hierarchy. These are defined by a Name
attribute (the name of the entity) and the potential Ports and Generics of the entity. The
Metamodel-of-View also contains multiplicities for the defined attributes that make sure that
models resulting in invalid RTL would be detected: for example, any defined generic must have
a name and a type whereas the initialization value InitValue is not mandatory. The com-
plete Model-of-View developed in this thesis contains more classes, attributes, and relations to
account for all language aspects required for the generation of RTL code needed for synthesis.

Although there is a straightforward correspondence between the Model-of-View and the gen-
erated target views, the MoV-layer of the MDA-inspired approach provides an important ab-
straction: it allows the developer of the generator to think about the content of the view he
wants to generate, without worrying about the need for formatting or indentation (which are
not part of any Model-of-View). Formatting and indentation are specified independently of the
MoV and utilized to generate the necessary tools to generate the views from the Model-of-View.
Consequently, it is also possible to alter these properties without touching the transformation
process between any Model-of-Design and the Model-of-View or any transformations performed
on an instance of the Model-of-View.
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4.5. Orthogonal Metamodels as Abstraction Independent Modeling Artifacts

A key design objective for the definition of the MDA layers for HW design and of all the
Metamodels is to provide an MDA flow that makes both the development of new transformations
and the application of generators as easy as possible. To simplify the usage of already existing
generators for a certain design, it is important to have a clear, understandable, and consistent
way of providing Model-of-Things input data. To make generator development as easy as
possible, it is important to maximize reuse. A consistent representation of semantically similar
artifacts across different Metamodels is essential to achieve this design goal. This applies both
for different Metamodels on the same MDA layer and for Metamodels in different layers.

This consistent representation is provided by Orthogonal Metamodel artifacts. The term or-
thogonal describes that these parts of Metamodels are used in Metamodels across different
levels of abstraction (both in Model-of-Things and Model-of-Design) as well as across different
Metamodels of the same level of abstraction (in different Metamodels-of-Things).

It is for example necessary to describe object sizes such as the sizes of registers, and the sizes of
supported input data for a hardware module on both the Model-of-Things layer and the Model-
of-Design layer. The utilization of the same orthogonal descriptions across different Metamodels
and layers of abstraction has three key advantages. First, it reduces the development effort for
new Metamodels and improves overall code quality and usability. Second, it simplifies the
extraction of information necessary for the transformation between different modeling layers.
In many cases, objects and expressions can be simply compared and copied between different
MoD and MoT instances. Third, the mapping of types and operators to the target view must
be implemented only once and can be reused for other targets, e.g. properties [85] which are
beyond the scope of this thesis.

The importance of this also shows in today’s development landscape: subtle differences in
the type systems of different languages, in operator precedence, or the behavior of common
mathematical or logical operations are a big hurdle to interoperability. This is apparent in
complex IT systems as well as in typical hardware design flows. In the last decade, significant
progress has been made in terms of interoperability between software languages [95]. For the
task of this thesis, these achievements are however not applicable as they only solve the problem
in the domain of software languages. The interoperability the approaches provide does not apply
to the domain of digital design with its bit types and values. Moreover, the existing approaches
only cover the platform-independent description of types, not the description of Expressions.

For this thesis, a simple, language agnostic, and Metamodel-based type system (referred to as
Object Properties) and operator system has been developed. The operators and types defined
here are intended for use in Metamodels on all MDA layers wherever Metamodels contain
elements describing objects and behavior.

Comparing this to a code generation framework that is based on Domain-Specific Languages
(DSLs), Embedded DSLs, or Libraries implemented in different languages shows how important
this benefit is. The simple transfer of a simple boolean logic expression evaluating from Python
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into C will require the handling of countless corner cases: Python uses, depending on the
language version, fixed-precision floating point arithmetic or arbitrary precision arithmetic.
The latter is especially difficult to map to lower-level languages and environments. Mismatches
such as this alone can become a limiting factor to automation and reuse – the MDA-based
approach presented here avoids these issues entirely with its Orthogonal Metamodel.

4.5.1. Orthogonal Object Properties

The Object Properties Metamodel follows the idea of describing data and interpretation using
the underlying semantics of hardware wires. Therefore, it supports the specification of any
kind of bundles of wires together with some optional hardware properties such as signed in-
terpretation and Endianness. Object Properties can be named to ease the readability of the
generated targets and to simplify referencing types in specifications. Type compatibility is
however not dependent on type names or other hardware properties. Instead, type consistency
is only dependent on the size (i.e. the number of bits or hardware wires) of any two types.

Figure 4.13 shows a UML representation of the Object Properties Metamodel.

BundleObj

<<enum>>

Endianness

Big : Endianness

Little : Endianness

ArrayObj

NumOfElements : int [1]

SimpleObj

Size : int [1]

Interpretation : Interpretation [1] = None

Endianness : Endianness [1] = Big

<<enum>>

Interpretation

Signed : Interpretation

Unsigned : Interpretation

Clock : Interpretation

None : Interpretation

ObjProps

Name : string [0..1]

PosInParent : int [0..1]

Flipped : bool [1] = False

1SubElement1..* ElementProps

Figure 4.13.: Orthogonal ObjectProperties Metamodel

The ObjProps Metamodel permits the following types:

• A non-complex, single SimpleObj. This describes a standard wire or wire vector without
any hierarchy. It is defined by a Size attribute describing the number of bits of the ob-
ject. Moreover, an Interpretation determines whether it contains a Signed or Unsigned
value or none of these properties. An Endianness describes how multi-byte artifacts are
serialized.

• ArrayObj, which represents a combination of multiple objects with the same properties.
This describes a list of a defined length of other objects. The ElementProps composition
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contains all properties of the individual elements contained in the array, the ArrayObj
itself just describes how many elements of ElementProps there are.

• BundleObj, which represents a combination of multiple objects with different proper-
ties. A bundle describes a set of different ObjProps combined into one bundle. Which
ObjProps are combined is described by the SubElement composition. This combination
is comparable to the SystemVerilog record or structs in the C programming language
families.

A key element all ObjProps have in common is the Flipped attribute. It describes the relative
direction of the object compared to a potential overlying direction defined for example by a
Port of a module. If an ObjProps instance is used to describe the properties of a MetaRTL
port and the Flipped attribute is set to false, the direction of the wires equals the direction of
the port. If any Flipped attribute is set to true, the direction of the wires described by this
attribute will be the opposite of the direction described for the port. The flipped attribute is
used to describe subsets of SystemVerilog interfaces based on the Metamodel.

4.5.1.1. Application Example

It is easy to picture a scenario where consistent use of the ObjProps defined here is beneficial. It
is for example possible to demonstrate the benefits using the FIRFilter Metamodel-of-Things
defined in Figure 4.2.

FIRFilter

Name : string [1]

Addend

Instant : int [1]

ImpulseResponseReal : int [1]

ImpulseResponseImag : int [0..1]

ObjProps

Name : string [0..1]

PosInParent : int [0..1]

1

1..*

SupportedInputData

Figure 4.14.: Metamodel-of-Things for FIR Filters using the Orthogonal Object Properties

Figure 4.14 shows how an additional composition named SupportedInputData uses ObjProps
to describe the type and size of data the generated design has to be able to process. The sample
MoT from Figure 4.3 can now in turn be extended, resulting in Figure 4.15. The instance of
SimpleObj defines that the FIRFilter has to be able to handle unsigned inputs of up to 64
bits in width. This instance of SimpleObj can be transferred without any modification to the
downstream Model-of-Design. As a result, the Model-to-Model transformation between MoT
and MoD is significantly simplified. This is not illustrated in detail- as the Model-of-Design is
even without the object properties close to a size where a meaningful visualization is no longer
possible.
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:SimpleObj

Interpretation = Unsigned

Name = FilterSupportedInputs

Size = 64

:FIRFilter

Name = realvalued_filter

:Addend

ImpulseResponseReal = 4

Instant = 0

:Addend

ImpulseResponseReal = 1

Instant = 2

:Addend

ImpulseResponseReal = 2

Instant = 1

Figure 4.15.: Model-of-Things for FIR Filters using the Orthogonal Object Properties

4.5.2. Orthogonal Operators for Expressions, Dataflow and Structural RTL

The operators developed in this thesis are platform-independent and cover both hardware and
software semantics. The main design goal for the set of defined operators is to make adoption
as easy as possible: it should be very simple to understand and any potential confusion about
operator semantics should be avoided. Two key design decisions are important to achieve this:

1. Symbols for operators are avoided entirely. Instead, operators are named by text-based
mnemonics. This solves two issues:

a) The amount of symbols available for operators is limited and the support for both
hardware and software semantics requires a larger set of operators.

b) Many symbol-based operators are already used by existing languages with pre-
defined semantics that differ from language to language. Depending on the back-
ground of the user of the MDA framework, different semantics of operators leads to
potential confusion and errors.

2. The presented approach does not rely on Infix Notation where the operator is placed in
between the operands (the example “a+b” uses Infix Notation). Instead, a Prefix or Polish
Notation is used where the operator precedes the arguments (the example “+(a, b)” uses
Polish Notation). The suggested approach further relies on an expression syntax where
the mnemonic operator precedes the arguments which are in turn comma-separated and
enclosed in brackets. This comes with two main benefits:

a) In almost all programming languages, the operators can be mapped to function
or method calls. It is therefore easily possible to implement the operators and
expression syntax as an embedded DSL in any language without dealing with the
complexities of parsing.

b) The question of operator precedence does not arise. There is no need for a defined
operator priority or a counterpart to brackets for modifying the default operator
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priority. This is particularly important as operator precedence is often different for
the same operators in different languages, another source of potential confusion and
errors.

For each operator, the size of the output depends on the size of the inputs. The relationship
of input object properties to output object properties is generically defined and independent of
the context and semantics of where the operators are used. Moreover, there is no size limit as
such.

The operators defined and implemented are listed in Table 4.1. The different semantics be-
tween hardware and software is accounted for by providing different operators for example for
multiplication (HWMUL, CMULT) and for additional (HWPLUS, CPLUS). Examples of the
availability of dedicated hardware operators are the bitwise operations (e.g. BOR, BAND, ...)
and reduction operations (e.g. ROR, RAND). The differences between these operators can be
easily illustrated with an example: the result of a CPLUS operator has the maximum size of
its inputs (an addition of two 32 bit values will result in a 32 bit wide result value). The result
of a HWPLUS operator on the same inputs will be two bits wider to represent the carry and
overflow bits as well.

This definition of operators and its characteristics comes as a model of its own Metamodel.
This model can in turn be used to define multiple further Metamodels. In the scope of this
thesis, Expression, Dataflow, and Structural representations are generated using the Expression
Metamodel.

4.5.2.1. Usage in Expression Metamodel

The Expression Metamodel shown in Figure 4.16 defines a tree of operators, with both classical
operators from programming and specific hardware operators. Figure 4.16 shows the Expression
Metamodel with a subset of the Operators defined in Table 4.1. The diagram shows that the
expressions form an expression tree defining the expression hierarchy. Leaf nodes of this tree can
be binary or numeric literals in any combination as well as references to objects with properties
defined by the type model or variables which act as input to expressions.

4.5.2.2. Usage in Dataflow Metamodel

Figure 4.17 shows the Dataflow Metamodel with a subset of the Operators defined in Table 4.1.
The Expression Model described in the previous section is a special case of a Dataflow Model.
This means every expression model can be transformed automatically into a dataflow model,
while the opposite is not possible. It is different from the Expression Model as any operator
output can act as input to multiple dataflow operators. The Dataflow Metamodel does therefore
not necessarily define a tree structure but a directed acyclic graph.
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Operator Description Operands

NOT bitwise not, defined for all numeric interpretations 1
CABS computational arithmetic absolute value 1
CUMINUS computational arithmetic unary minus 1
SLICE select slice of <op1> from upper index <op2>

to lower index <op3>
3

HEAD, TAIL select <op2> bits from upper/lower bound of <op1> 2
INDEX select individual bit number <op2> from <op1> 2
REVERSE reverse bits left-to-right turned into right-to-left 1
ROR, RAND,
RNAND, RNOR,
RXOR, RXNOR

reducing boolean operators 1..*

BOR, BAND,
BNAND, BNOR,
BXOR, BXNOR

bitwise operators 2..*

LOR, LAND,
LNAND, LNOR,
LXOR, LXNOR

logical operators 2..*

CPLUS, CMINUS,
CMULT

computational addition, subtraction, multiplication 2..*

CDIV, CMOD,
CREM

computational division, modulus, remainder 2

SIGNEDCAST,
UNSIGNEDCAST

signed and unsigned cast
(does not modify the value, change bit width, etc.)

1

UNSIGNEDCONV unsigned conversion (does not modify value but cuts
the highest bit if the input was signed)

1

SIGNEDCONV signed conversion
(does not modify value but changes bit width)

1

HWMUL multiplication with hardware semantics 2..*
HWPLUS addition with hardware semantics 2..*
RSL right shift logical (fill with zeros on the left) 2
RSA right shift arithmetic (fill with sign bit on the left) 2
LS left shift (fill with zeros on the right) 2
CONCAT concatenation 2..*
MUX if <cond> then <trueexpr> else <falseexpr> 3
ISNEG, ISPOS return 1 if negative/positive value provided,

return 0 if positive/negative value provided
1

LT, LTEQ, GT,
GTEQ, EQ, NEQ

logical comparison operators 2

Table 4.1.: MDA Operators
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NOT

CPLUS

Literal

ObjProps : ObjProps [1]

Value : string [1]

Variable

Name : string

Expression

Operator

HWPLUS

CMULT

HWMUL

CMINUS

1

Operand

Operand

1..*

Figure 4.16.: Orthogonal Expression Metamodel with a subset of the available Operators

Literal

ObjProps : ObjProps [1]

Value : string [1]

Variable

Name : string

Operator

CPLUS

NOT

Operation

HWPLUS

Dataflow

CMINUS

CMULT

HWMUL

Operand

1..*
Operand

1

Figure 4.17.: Orthogonal Dataflow Metamodel with a subset of the available Operators

The main difference between Dataflow and Expression models is that a Dataflow model possesses
no tree hierarchy. Instead, a Dataflow model is directly composed of a list of all Operations.
These operations may be of the same type as the Expressions of the Expression Metamodel:
they can be Literals, Variables, or Operators. For all operators, the Operands are no longer
compositions of the Operation. Instead, the operation references its operands by means of
associations.

4.5.2.3. Usage as MetaRTL Primitive Components

As described in Section 4.3.2.4, MetaRTL comes with a set of Primitive components. These
components are automatically generated from the defined operators and are therefore consistent
with the orthogonal Expression Metamodel and Dataflow Metamodel described above. For use
as MetaRTL components, the definitions of the operators with their operands are mapped onto
the semantics of the Component with its Ports.
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For every operand in the expression language, a simple, non-clocked component is created in
the MetaRTL Metamodel. According to the definition of the orthogonal expression operators,
all operators have one result or return value and one to many inputs or operands.

The Primitive components part of the MetaRTL Metamodel are automatically added to the
Metamodel from the same single source as the Expressions in MoT instances. The transfor-
mation into a Component and the MoD specific Port properties together with the ability to
name individual components and to connect them in hardware semantics is added during the
automated Metamodel creation process. This guarantees that the expression semantics of the
MetaRTL Model-of-Design is always compatible as long as both Metamodels use the same
orthogonal Metamodels.
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Views
(Target Code)

Specification

Template-of-Design

SysC

Template-of-
View

MoT A

Reader

MoT C

Reader

MoT B

Reader

Model-of-Design

VHDL

Template-of-
View

Unparse View 
Generation

Unparse View 
Generation

Figure 5.1.: Readers, Model-to-
Model Transforma-
tions and View Gen-
eration

Chapter 4 describes an important aspect of a successful ap-
plication of Model Driven Architecture to the hardware do-
main: it defines the right levels of abstraction and the right
Metamodels for a productive MDA-based generation frame-
work. While it is an important contribution of this thesis
and an important prerequisite for a successful application of
Model Driven Architecture, it is only one of the key compo-
nents to achieving the goal of this thesis (see Section 2.5).

Figure 5.1 shows important components that have been
omitted from previous visualizations of the approach (e.g.
Figure 4.1) and that have so far not been discussed in this
work: the Readers needed to access Specification infor-
mation, the Model-to-Model transformations Template-of-
Design and Template-of-View as well as the Unparse View
Generation mechanism. All these components are trans-
formations of some kind: Readers can be seen as transfor-
mations from serialized data into models part of a Meta-
modeling framework, and view generation is a Model-to-
View transformation. The Model-to-Model transformations
Template-of-Design and Template-of-View are in turn what
is seen by many as the “heart and soul of any model-driven
development approach” [45, 26].

The properties of these components are inherently tied to
the utilized framework and development ecosystem. A the-
oretical, language-agnostic assessment only based on the
fundamentals of Metamodeling is therefore not meaningful.
The development of the Model Driven Architecture Frame-
work is where the language-agnostic world for Metamodeling
meets a specific implementation and its tools and languages.
This chapter details the implementation and the design de-
cisions made as part of the development of the Model Driven
Architecture framework provided by this thesis.

This chapter first introduces Infineon’s Proprietary Meta-
modeling framework and alternatives to it and explains why
the existing proprietary framework is ideally suited as the
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foundation for the Model Driven Architecture flow. To understand these design decisions, the
properties of the Infineon Metamodeling framework are put in context to the high-level goals
of this thesis and in context to the engineering environment in which the MDA approach is
introduced.

The adaptation of the Infineon Metamodeling Framework for Model Driven Architecture is
shown next. In this context, it is also described how Metamodel-based automated generation
of tools is related to an efficient MDA flow.

The next paragraph describes the approach taken to Model-to-Model transformations and how
the Metamodeling Framework has been extended to enable efficient development of the core
component of the MDA framework, the Template-of-Design transformation from MoT to MoD
layer.

Eventually, this chapter presents a key contribution that further helps to automate the gen-
eration of as many framework components as possible: the fully automated Unparse View
Generation enabled by the View Language Description (VLD) approach pioneered by this the-
sis.

5.1. The Infineon Metamodeling Framework

This section describes why Infineon’s Proprietary Metamodeling Framework Metagen is used
as the foundation for the MDA framework developed in this thesis. It also compares Infi-
neon’s approach to the Eclipse Modeling Framework to justify the decision to rely on Infineon’s
proprietary framework for this thesis.

Infineon relies on a proprietary Metamodeling Framework as a foundation for its Metamodeling-
based code generation. It provides an implementation of the Metamodeling concept as described
in Section 2.3.2 and its usage at Infineon for Metamodeling based code generation as described
in Section 2.3.3.

The Metagen framework is well-established at Infineon and has demonstrated the capability
to deliver significant increases in productivity for overall development tasks. Ecker et al. [63]
show a factor 20 in special design tasks and up to a factor of three in design implementation
from specification freeze to tape-out through the use of this framework.

5.1.1. Programming Language

A key strength of this framework is the fact that it is implemented in the Python programming
language. Python is ideally suited for a Model Driven Architecture framework for Hardware
Design for the following reasons:
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• Python’s syntax is simple and bears similarities to natural languages, leading to a partic-
ularly low entry barrier for beginners and users outside of the field of software engineering.

• Python is an interpreted language. Users can therefore run their code without worrying
about compilation and development environments - this is even possible in interactive
shells.

• Python is the de facto standard scripting language. It is the primary language taught
in engineering courses outside the domain of software engineering. It has the largest
user base of all programming languages, therefore providing an infinite amount of online
support, tutorial, and training resources.

• Python comes with a large set of libraries that are useful to the field of IC design. These
libraries include data analysis, machine learning, and scientific computing frameworks.
Moreover, it is a popular language for developing simple web applications – thus providing
its users with a set of useful template engine libraries.

• Python is a high-level language that abstracts the details of the underlying platform –
users of the language do not need to worry about low-level programming details such as
memory management

• Python offers strong support for object-oriented programming, functional programming,
and introspection. These are important patterns required to support Metamodeling con-
cepts.

An important drawback of Python is its dynamic typing. It is generally accepted that dynam-
ically typed languages are not suited to build complex enterprise software systems with many
actors. When comparing dynamically typed languages to their statically typed siblings of the
same level of abstraction, the developer productivity in the language itself is consistently lower.
This is caused by several main factors.

• State-of-the-art Integrated Development Environments (IDEs) for dynamically typed lan-
guages cannot provide the same level of assistance and design analysis as for their statically
typed siblings. Many mistakes that are introduced during the development (e.g. typos in
member names, incorrect function names, or signatures) can only be detected at run-time
because of the missing and ambiguous type information and the languages’ capabilities
to modify types and objects at run-time [29, 59, 62].

• The dynamic nature allows for violations of software engineering best practices that are
impossible, hard to achieve, or easy to spot in statically typed languages. Anti-patterns
such as monkey-typing, variables that can at run-time contain members of different types
are common in Python code-bases. The technical debt that comes with this is difficult
to prevent (it is challenging to spot these anti-patterns when they occur) and hard to
fix (refactoring dynamically typed code is not generally possible as no automated way to
analyze dependencies exists) [29, 59, 62].
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• The missing type information in code makes it difficult to read code written by other
developers. In mature software projects, reading, understanding, and modifying exist-
ing code bases thus becomes more time-consuming. Dynamically typed languages are
therefore especially poorly suited for environments with high employee turnover [29, 59,
62].

• Python is the modern programming language with the lowest overall execution perfor-
mance. This is partially caused by its dynamic nature. A main part of it however has
to be attributed to a lack of investment in the performance of the language. The main
reason for this missing investment is the fact that Python as a scripting language is not
well suited and therefore not widely used to deliver complex software projects. In con-
sequence, there are few actors who would benefit from the performance improvements in
the language. It is important to note that recently, larger actors in the domain of software
engineering are contributing to the improved performance of Python and potential future
contributions will also benefit existing code.

Despite these drawbacks, Infineon’s Python-based Proprietary Metamodeling Framework is best
suited to establish a Model Driven Architecture approach for Digital Hardware Generation. The
key arguments for this decision are:

• A low barrier to adoption is crucial for the approach. The success of Metamodel-based
code generation at Infineon has only been made possible because the Infineon Metamod-
eling Framework allowed domain experts to contribute efficiently to generators. The same
contribution will also be required for the Model Driven Architecture framework developed
in this thesis. This thesis clearly demonstrates the benefits of an MDA approach with
Python, the language is therefore good enough to achieve the objective of MDA.

• Many of the performance limitations can be overcome and recent developments in the
Python ecosystem provide proof that the performance problem is one that will be allevi-
ated over time – without further investment into the development of the MDA framework.

• Metamodeling as such is a language-independent concept. When it comes to the Infineon
Metamodeling Framework, implementations of the core components with support for all
Metamodels of the frameworks’ Meta-Metamodel also exists for languages other than
Python. In particular, the Infineon Metamodeling Framework supports an API generator
for C++ for use cases that require extreme performance. Moreover, an API generator
for C# is available for use cases that require enterprise-grade scalability and high devel-
oper productivity. It is therefore already possible to develop individual elements of the
framework in different languages – a capability that can be utilized to resolve potential
critical performance bottlenecks that might show up in larger-scale applications of the
MDA-based generation approach.
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5.1.2. Alternative Metamodeling Frameworks

The Eclipse Modeling Framework (EMF) is the one noteworthy alternative in the landscape
of Metamodeling. It is suited for use in an MDA approach as it supports all key requirements
and is available as open source. An assessment of the framework (see [49]) shows that it is even
more powerful than Infineon’s internal proprietary framework. This however comes at the cost
of significant complexity.

The Java-based framework depends on infrastructure components from the Eclipse ecosystem
and was designed with the best practices of Java software development in mind. While this
makes it well-suited as a foundation for a Model Driven Architecture approach to software
engineering, it also makes it very hard to learn and adopt for hardware engineers. The Infineon
Metamodeling Framework in contrast is targeted at users which are not professional software
engineers. The Infineon Metamodeling Framework thus has a significantly lower barrier to
adoption – both for the Python-based implementation and the C# implementation of the core
components.

An important requirement at the center of the Model Driven Architecture approach is the ability
to apply and scale the methodology in a commercial hardware development environment. It
thus has to be possible to develop generators for hardware designers who have knowledge of
scripting and code generation but are not trained as software engineers. This is a fundamentally
different goal than the one underlying EMF and it is therefore clear that EMF cannot serve as
a viable alternative to Infineon’s in-house framework for the use case at hand.

5.1.3. Metamodeling Framework Architecture

The Metagen Metamodeling framework uses a subset of UML class diagrams, extended with
some features from XML Schema to specify Metamodels. In essence, Metamodels specify the
definition of objects, their attributes, and various kinds of relations between them.

The Metamodel can be captured in a textural and graphical way. For this purpose, the Infi-
neon Metamodeling Framework utilizes a UML modeling tool called BoUML. The UML model
defined in this tool can then be read into the Infineon Metamodeling Framework. This reading
of the Metamodel is based on the same flow as the reading of models, as the Metamodel is
described as an instance of the Meta-Metamodel of the framework. This Meta-Metamodel can
also be written in a textual format or be defined exclusively with the textual format, without
using the graphical UML tool.

The architecture of the Infineon Metamodeling Framework is heavily centered around code
generation. Figure 5.2 shows a high-level view of the architecture. For any given Metamodel,
the Infineon Metamodeling Framework generates a set of tools and framework components
that then make up the modeling environment for this Metamodel. These autogenerated tools
are shown in the dashed box “Modeling Framework Autogenerated from Metamodel” in the
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figure.

The high-level structure of the generated component is made up of three main parts. First, a set
of Readers that load models from sources external to the Metamodeling framework. The second
part is the core component of the generated, Metamodel-specific framework: the API wrapping
the data structure that contains the model. After the reading step is completed, it stores
the model inside the framework. This part provides getter and setter features and validation
features that ensure that the model adheres to the constraints defined by the Metamodel. The
third part is a set of Writers which consumes a model stored in the API and stores the models
to destinations external to the Metamodeling framework.

In addition to the elements described above, the Metamodeling framework provides several
important infrastructure components:

• A Python-based template engine using the Mako template library is part of the framework.
It is therefore a standard approach to use Mako-format templates for view generation.
These templates are so far the standard approach to turn the model information into views
for consumption by tooling. Several standard templates, for example for visualization of
the model, are autogenerated by the Metamodeling framework. The standard use case is
however to manually develop Metamodel-specific templates.

• For every Metamodel, a set of command line tools is generated to invoke the framework.
Different flavors of these command line tools can be used to perform Model-to-Model
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transformations, reading and writing to and from various different formats, and call the
template engine to generate target views. The generated command line tools also support
joint handling of multiple models of the same or different Metamodels.

• A plugin mechanism to analyze, modify and transform models after they are read and
before the writers are called.

• A Graphical User Interface (GUI) for the Metamodel is generated that allows convenient
input and utilization of the validation features provided by the API. This GUI is tailored
to the Metamodel and provides input interfaces specifically for the objects, attributes,
and relations defined in the Metamodel. This provides a no-cost and no-overhead way to
interface any Metamodel-based generator.

• Various other Metamodel-generated toolings. Most notably, a Model Comparison Tool
is available to identify and visualize differences between the model elements. Due to the
utilization of Metaprogramming in the generation of these additional Metamodel-specific
tooling, the environment for any existing Metamodel will also benefit from further features
added to the Metamodeling framework at a later point in time.

The benefit and productivity increase provided by the generation of a custom-tailored frame-
work from the Metamodel can be easily explained with a simple phrase: the Infineon Meta-
modeling framework is to a significant extent generating the generator.

It is important to note that the Infineon Metamodeling Framework itself is built on the same
internal structure as the modeling framework that it generates: a set of different readers can
read the Metamodel descriptions into an API built for the Meta-Metamodel. Different readers
and writers are available to support various different input formats (e.g. the text-based format
described above). It is also possible to modify, preprocess, merge, or completely autogenerate
Metamodels using this framework. Section 5.4 discusses an example of such an autogenerated
Metamodel based on the View Language Description approach developed as part of this thesis.

The uniform structure of the modeling flow also makes it easy to understand and use the
Metamodels. This ease of use and simplicity is especially helpful when applying the framework
to build a Model Driven Architecture inspired multi-step generation flow: the different levels
of detail resulting from different levels of abstraction from MoT to MoV can be easily handled
with the same framework schema. Descriptions can be made in a uniform way, transformations
are less painful and there are fewer inconsistencies.

5.1.4. Development Environment: Package, Dependency and Environment
Management

Infineon Metamodeling framework does not just come as a library or generator that can be
utilized for development. Instead, it is embedded into a state-of-the-art software development
framework and flow. Such a flow provides three main components: Package Management,
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Dependency Management, and Environment Management. The following paragraphs explain
the role these components play and why they are required for a hardware generation flow [88].

Package Management describes the process of packaging and distributing code as software
components or libraries. Package Management Systems provide the ability to package software
components, distribute and provide them to a centralized repository location, as well as to
install, uninstall and update them in a certain setup. Package Management is however not only
required for software development. Hardware Design comes with the same requirements, as
complex ICs need to make use of packable, reusable sub-components, so-called IP components.
The similarity of these IP components (i.e. modules that are instantiated in the integrated
circuit) to software libraries (i.e. modules that are utilized by a larger software product) is
apparent.

Dependency Management describes the process of defining dependencies between different
packages. Dependency management systems in the context of software provide the ability to
define which version or range of versions of a certain dependent package is required to compile
or run a piece of software. Dependency Management Systems are required to ensure that the
required software components for a project are compatible and to ensure that a reproducible
combination of packages is used to build and deploy a given piece of software. The same also
applies to Hardware Design: Complex ICs need to be assembled from the right, well-known,
and reproducible IP components based on a predefined bill of material.

Environment Management describes the process of providing one or more separate, indepen-
dent environments for defined project tasks. Environment Management will ensure a certain
environment contains only the packages described by the Dependency Management System and
format. It will further ensure the compatibility of all dependencies and provide a reproducible
report containing all utilized packages. Environment Management is important to prevent the
accidental use of incorrect, outdated, or experimental artifacts in both software and hardware
development. Moreover, a development flow needs to support different environments where dif-
ferent states or different projects with different dependencies can be developed independently
of one another.

Package, Dependency, and Environment Management are well-established components of soft-
ware development flows, often even tightly integrated into the build system and development
environment of a certain programming language. The field of IC design has come up with its
own solutions for Package, Dependency, and Environment Management. These solutions are
typically either proprietary commercial systems or solutions that originate as in-house devel-
opments of semiconductor companies.

The Python language itself lacks a built-in Package, Dependency, and Environment Manage-
ment System. The Development Flow however adds these components to the Metamodeling
Framework and the Python ecosystem: the flow relies on Conda [88], an open-source, cross-
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platform package management solution. For the application of Model Driven Architecture to
Hardware Design, this can be fully utilized. The reason for this is simple: the MDA layers,
Metamodels, and Model-to-Model transformations that are used to generate the hardware are
inherently just Python software libraries. They therefore can be entirely managed by the soft-
ware development flow integrated into Infineon’s Metamodeling environment. The need for a
separate, custom Package, Dependency, and Environment Management tailored for hardware
is eliminated.

This emphasizes a key benefit of the software and Metamodeling-based approach to developing
generators instead of developing instances of the design: the powerful ecosystems software
engineering has developed can be utilized for the hardware domain.

5.2. Model Driven Architecture based on the Infineon Metamodeling
Framework

Section 5.1 describes the Infineon Metamodeling Framework with its language, architecture, and
development environment. It puts particular emphasis on how the concept of generating the
generator leads to high productivity and quality during the development of Metamodel-based
code generators.

This concept is very valuable in order to achieve the high-level goal of this thesis: to provide
even more powerful and efficient Metamodeling-based automated code generation. The fol-
lowing shows how the Infineon Metamodeling Framework is utilized as the foundation for the
development of the Model Driven Architecture framework and how the concept of generating
the generator can be applied to the majority of MDA framework components. For this purpose,
this thesis provides a refinement of Figure 5.1 from the beginning of this chapter: Figure 5.3
reuses the high-level view on the dataflow and transformations of the MDA framework and
adds all software components of the MDA framework this thesis derives. The color coding
indicates which artifacts are automatically generated (solid blue) or pre-developed as part of
this thesis (dotted blue) and which artifacts are to be provided by developers of MDA-based
code generators or users of the generators (yellow).

Without further diving into the details of this high-level representation, a key aspect becomes
apparent: The approach implemented in this thesis bridges a high level of abstraction. Despite
this high level of abstraction that is bridged, the amount of work that developers and users of
generators need to invest is limited to a small area because Metamodeling-based automation,
code generation, and library elements provided by the research work are able to abstract away
significant parts of the complexity of the generation task.

The following paragraph discusses the figure in top-to-bottom order. At the top, the figure
shows the specification provided by users of the generation flow. This specification can be
automatically read from XML files with the readers the Metamodeling framework generates for
a defined Metamodel. Alternatively, the users can utilize the autogenerated GUI provided by
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the framework as well as a set of other data analysis tools to provide the model data. All that
is required for this automation is the definition of the Metamodel-of-Things which has to be
provided by the developer of the MDA-based code generator (MMoT 1* and MMoT 2* in the
figure). It is important to note in this context that the construction of these Metamodels is not
a coding task but a modeling task.

To further simplify this modeling task, Metamodel-of-Things Metamodels do not necessarily
need to be fully defined by the developer. As described in Section 4.5, Orthogonal Metamod-
els (abbreviated as Aux MM in the figure) reduce the effort. These Orthogonal Metamodels
act as placeholders for modeling aspects common to multiple layers of the framework. A
Metamodel-merge mechanism can generate Metamodels containing these orthogonal elements
(MMoT 1 and MMoT 2) from developer-defined Metamodels which only reference them (MMoT
1* and MMoT 2*). The same is also true for the Metamodel-of-Design MetaRTL. A version of
MetaRTL* that does not contain the Type and Expression Orthogonal Metamodels is modified
by a merge process which then creates MetaRTL. This process ensures consistency between
different Metamodel-of-Things instances and between the Metamodels-of-Things (MMoTs) and
the Metamodel-of-Design (here: MetaRTL).

The Metamodels-of-Things and the Metamodel-of-Design are then used to autogenerate the
APIs of the MoD and MoT layers. These APIs define the interfaces used by the first and most
important Model-to-Model transformation: the Template-of-Design (ToD). The Template-of-
Design is the key component to which a developer of generators using the Model Driven Archi-
tecture framework is exposed. Section 5.3 describes the mechanism of Model-to-Model trans-
formations that is introduced by this thesis and also details how library elements (Template-of-
Design Library) and an Enhanced API developed as part of this thesis contribute to the overall
goal of making the development of generators highly productive.

After the Model-of-Design is constructed by the Template-of-Design Model-to-Model transfor-
mation, the third layer of the Metamodeling approach is reached. The Template-of-View is a
Model-to-Model transformation utilizing a Python-based approach similar to the Template-of-
Design approach utilized for the MoD construction. The development of a Template-of-View
for a different language or the adaptation of a Template-of-View for a different generation flavor
is typically a one-off task. As part of this thesis work, a Template-of-View for HDL generation
in the VHDL language was developed. Further internships and PhD theses have utilized the
MDA approach described here and applied it to different target languages (e.g. (System-) Ver-
ilog HDL and C-based firmware and embedded software as well as SVA, and ITL to generate
properties for formal verification purposes). The Template-of-Views are visualized in dotted
blue as any Template-of-View that is generated once can be reused for all existing and future
generators (i.e. for all Templates-of-Design transformations and MMoVs).

Section 4.4 describes the MoV, its level of abstraction, and how it benefits the MDA approach.
In the implementation of this approach, it has been identified that it is cumbersome to manually
define an AST-based Metamodel for the MoV layer. Moreover, the generation of views and dif-
ferent flavors of views from this AST-based Metamodel is tedious to implement. This challenge
led to the complete automation of the generation of the Metamodels-of-View and of the view
generation (Unparse View Generation) from the MoV. This approach is provided by a View
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Language Description format similar to EBNF that was developed in the scope of this work.
Section 5.4 describes this approach in detail. For this section, it is sufficient to note that the
entire MoV including the MMoV and MoV-to-View transformation is automatically generated
from a configurable library component called VLD from a more abstract description.

5.3. Model-to-Model Transformations

The use of very abstract models and their gradual refinement through Model-to-Model trans-
formations is one of the key concepts at the heart of the Model Driven Architecture Vision.
The development of these Model-to-Model transformations is therefore an essential aspect of
applying Model Driven Architecture to HW design. Figure 5.3 highlights the importance of
easy-to-develop transformations: the Template-of-Design and Template-of-View are the MDA
artifacts that need to be manually developed (a Template-of-Design needs to be developed for
every design generator and a Template-of-View needs to be developed for every targeted view
language).
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Figure 5.4.: Metamodel-based Model-to-Model Transformations [18]

Figure 5.4 shows the high-level structure of a Model-to-Model transformation. In general, every
Model-to-Model transformation is defined as a set of transformation rules. These transforma-
tion rules describe how to map from any model of a defined source Metamodel to a model
of a defined target Metamodel. Figure 5.4 pictures a simplified transformation where only
one source Metamodel and one target Metamodel are used. Model-to-Model transformations
generally can also describe mappings from multiple sources to multiple target Metamodels.
The transformation rules are defined in an executable language. A runtime environment for
that language can use these rules and models of the correct source Metamodels to apply the
transformation and generate target models [22, 97].

Model-to-Model transformations can be categorized as either horizontal or vertical transfor-

102



5.3. Model-to-Model Transformations

mations. The Model-to-Model transformations Template-of-Design and Template-of-View are
both categorized as vertical Model-to-Model transformations: they use a set of source models
that has a higher level of abstraction as the target models [40].

It is further possible to categorize Model-to-Model transformations as endogenous or exoge-
nous. An endogenous transformation is a transformation where the source Metamodel matches
the target Metamodel. An exogenous transformation is a transformation where the source
Metamodel differs from the target Metamodel. Endogenous transformations are typically used
to modify smaller subsets of an overall model [40]. The transformations Template-of-Design
and Template-of-View are vertical and exogenous transformations. These transformations are
however utilizing some endogenous aspects where the orthogonal object properties (see Sec-
tion 4.5.1) and operators (see Section 4.5.2) are used. Moreover, some transformations are
applied after the execution of the Template-of-Design which refine and complete the informa-
tion provided by the user.

5.3.1. Model-to-Model Transformations based on Domain-Specific Languages

This section describes different approaches to Model-to-Model transformations used in software
engineering. The goal of this section is to understand the drawbacks and advantages of these
methods. This assessment ultimately helps understand why the approaches are not well suited
for the design goals of the MDA flow introduced in this thesis and helps demonstrate how
the Template-of-Design approach to Model-to-Model transformations does not suffer from the
shortcomings.

There are many approaches to Model-to-Model transformations which are based on Domain-
Specific Languages developed in particular for this purpose. The most important represen-
tatives of this are Kermeta [43] (which is based on the Xtend programming language), the
ATLAS Transformation Language (ATL) [38], the XML-based eXtensible Stylesheet Language
Transformations (XSLT) [50], and the Epsilon Transformation Language (ETL) [80, 45]. XSLT
is noteworthy as it follows a slightly different approach to the other transformation languages:
instead of defining its own custom Domain-Specific Language, XSLT relies on XML, its syntax,
and XML schema. On top of these foundations, XSLT uses a template-based syntax and other
XML technologies such as XPath to provide a powerful transformation toolset. Aside from
this difference, the assessment conducted on these languages as part of this thesis shows that
all DSL-based Model-to-Model transformation languages are very similar in their nature. As
part of this work, the next section introduces the most popular Model-to-Model transformation
language ETL as an example.

5.3.1.1. Epsilon and the Epsilon Transformation Language (ETL)

The Epsilon Transformation Language (ETL) is a Model-to-Model transformation language
that was developed as part of the Eclipse Modeling Framework (EMF) ecosystem. It comes as
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one of a set of languages in the Epsilon family that were designed for automating model-based
software engineering tasks. The language is based on a common expression and statement
language, the Epsilon Object Language (EOL), making the different languages such as Eclipse
Generation Languages (EGL), Eclipse Validation Language (EVL), and the Eclipse Transfor-
mation Language (ETL) very similar. Being such an integrated component of the Eclipse
ecosystem, it also comes with some IDE support. This is at least helpful for development
teams that have not yet moved away from Eclipse-based IDEs.

1 (@abstract)?
2 (@lazy)?
3 (@primary)?
4 rule <name>
5 transform <sourceParameterName>:<sourceParameterType>
6 to <targetParameterName>:<targetParameterType>
7 (,<targetParameterName>:<targetParameterType>)*
8 (extends <ruleName> (, <ruleName>*)? {
9

10 (guard (:expression)|({statementBlock}))?
11

12 statement+
13 }

Listing 5.1: Syntax of an Eclipse Transformation Language (ETL) Transformation Rule [80, 45]

The Eclipse transformation language allows a developer to define ETL modules that contain a
set of named transformation rules. Listing 5.1 shows a snippet from the grammar of the ETL
language that shows how a rule is defined:

An ETL rule can be labeled as abstract, primary, or lazy. After this labeling rule, the rule
body is defined: A rule is named and describes a source and one or multiple target model
elements, defined by the keywords transform and to. To refer to one or more (potentially
abstract) rules as a foundation for a newly defined rule, they can be listed after the extends
keyword. Inside the curly braces, the rule’s main body is defined. Here, an optional guard can
be used to limit whether a rule is applicable to a certain model element or not. The set of one
or more statements in EOL language is then defining the actual transformation.

When an ETL module is executed, all rules which are not marked as lazy or abstract are
executed. A rule is applicable to a certain model element if the sourceParameterType matches
the type of the model element and if the guard does not prevent the rule execution. During
the application, elements of targetParameterType are instantiated and then populated via
the statements defined in the rule body. During this process, further rules can be recursively
invoked. For this purpose, ETL provides the equivalent or equivalents operation. This
operation identifies rules that can be used to construct a target model element from a source
model element provided as an argument. When a transformation is requested via the equivalents
operation, the execution engine also utilizes rules that are labeled as lazy [80, 45].
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Example ETL usage An example of how ETL can be applied to real-world models is provided
by the ETL documentation [80, 101] and used in the following to illustrate the concept.

Figure 5.5 shows a sample Metamodel for project planning. In this Metamodel, a Project
contains a set of Tasks and Persons. Each Task of a Project has a start and duration. The
effort of these tasks is then assigned to the Persons member of the project. For this purpose,
the Effort class is defined which allows assigning a certain percentage of a Task to one project
member.

Task

title : string

start : int

duration : int

Person

name : string

Project

title : string

description : string

Effort

percentage : int

people

* tasks

person

*

*

Figure 5.5.: Example Source Metamodel for ETL transformation [101]

Figure 5.6 contains a model describing one of the projects as defined in the Metamodel in
Figure 5.5. In this project, the three tasks Analysis, Implementation and Design need to be
performed. As per the model description, 60% of the Implementation task and all of the
Analysis task is done by Alice. Bob does 40% of the Implementation task and 70% of the
Design task. Charlie performs 30% of the design task.

:Task

duration = 3

start = 1

title = Analysis

:Project

title = ACME

:Task

duration = 3

start = 7

title = Implementation

:Effort

percentage = 30

:Person

name = Charlie

:Person

name = Alice

:Effort

percentage = 70

:Effort

percentage = 40

:Task

duration = 6

start = 4

title = Design

:Person

name = Bob

:Effort

percentage = 60
:Effort

Figure 5.6.: Example Source Model for ETL transformation [101]

The Target Metamodel in Figure 5.7 is a different kind of description of the Project. Here, a
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Project contains a set of Deliverables, where each deliverable has a Name, a due date, and a
lead. The lead in turn is a Person object. This Metamodel only describes persons who hold
the lead role for a Project. In this scope, a Lead is defined as the Person doing the majority of
the work for a Deliverable.

Person

name : string

Project

title : string

Deliverable

title : string

due : int

tasks*

lead

Figure 5.7.: Example Target Metamodel for ETL transformation [101]

Listing 5.2 contains the ETL transformation that will use a source model of the Metamodel
in Figure 5.5 and transform it into a target model of the target Metamodel. Based on the
taxonomy rules described in the introduction of this section, this transformation can be defined
as an exogenous vertical transformation.

In total, the transformation in the listing contains three rules:

• The first rule ProjectToProject describes how a Project instance of the source Meta-
model s can be transformed into a Project instance of the target Metamodel. The =
operator defines that the title of the target project t will be set to the title of the source
project s. Furthermore, the ::= operator describes that the deliverables of the target
project t have to be set to the transformed tasks of the source project s.

• The TaskToDeliverable rule describes how each Task of the source Metamodel is to be
transformed to a Deliverable of the Target Metamodel. Here, some transformations are
applied to the Task attributes title and start and duration. This is needed because the
target Metamodel models a different aspect of the Project: it cares about the deliverables
instead of the Tasks to get them. Deliverables are described by a due date, not start
date and a duration. In this example, the main deliverable is always a report of the
task being performed, hence the change in names. Eventually, this example applies a
more complex transformation to identify the lead responsible for a deliverable. For this
purpose, the transformation rule in line 16 uses an EOL expression to find the assignee
who performs the highest percentage of the work for a task in the source model. The
syntax of this expression is similar to the C# LINQ style [48] or the stream API enabled
in Java 8 [65] or C++14 [64] and will not be described here in detail. The identified
source task which has the highest effort however also identifies the person responsible for
most of the deliverables. This Person of the source Metamodel is then transformed to a
Person of the target Metamodel as triggered by the ::= assignment.
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1 rule ProjectToProject
2 transform s : Source!Project
3 to t : Target!Project
4 {
5 t.title = s.title;
6 t.deliverables ::= s.tasks;
7 }
8

9 rule TaskToDeliverable
10 transform t : Source!Task
11 to d : Target!Deliverable
12 {
13 d.title = t.title + " Report";
14 d.due = t.start + t.duration;
15

16 d.lead ::= t.effort.sortBy(e|-e.percentage).first()?.person;
17 }
18

19 @lazy
20 rule PersonToPerson
21 transform s : Source!Person
22 to t : Target!Person
23 {
24 t.name = s.name;
25 }

Listing 5.2: Example Transformation in ETL [80]

• How this is done is described by the last transformation rule PersonToPerson. This
Transformation rule is labeled as lazy to ensure only Person objects are created in the
target model when they are explicitly requested by a ::= assignment in a different rule.
In the given example, Charlie will not appear in the target model as he is not the lead
of any Deliverable.

After applying these rules to the input model in Figure 5.6, the model pictured in Figure 5.8
is constructed. It can be seen that the attribute has been transferred for the Project, the
Deliverable instances have been created for each Task and simple calculations have been
performed for the Deliverable attributes title and due. Moreover, the two required Person
instances have been created and assigned to the Deliverables.

This simple transformation described here can be performed in all other common transformation
languages with a similar look and feel. For the sake of brevity, examples of these transformations
are omitted from this thesis.
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:Deliverable

due = 4

title = Analysis Report

:Project

title = ACME

:Person

name = Bob

:Person

name = Alice

:Deliverable

due = 10

title = Design Report

:Deliverable

due = 10

title = Implementation Report

Figure 5.8.: Example Target Model for ETL transformation [101]

5.3.1.2. Evaluation Results

Model-to-Model transformation Languages available as Domain-Specific Languages exhibit the
following key advantages:

1. Modularity: The specification of which elements a transformation should be applied to
and what effect it should have is central to Model-to-Model transformation Languages.
This inherently leads to a high degree of modularity where larger, more complex trans-
formations must be broken down into smaller, reusable pieces with a structure similar
to that of the source and destination Metamodels. This can make the transformation
process easier to understand and generally simplifies re-usability: It basically enforces
clean software architecture of the transformations.

2. Low Verbosity: The languages are tailored specifically to the domain of Model-to-Model
transformations and it is therefore possible to express simple transformations with very
little code.

3. Declarative Nature: Many of these languages support and encourage a declarative para-
digm. This means it is possible to specify which kind of transformation result to be
achieved, rather than specifying how the transformation is to be achieved. The runtime
engine which executes the transformation language will then handle the task of trans-
forming the what into a how: It will either try to identify a user or library-defined rule to
perform the transformation or use its built-in heuristics. At the same time, the declarative
description provides a view of the transformation that is at a higher level of abstraction,
which can make the transformation description more readable.

The increased readability and the low verbosity of the languages show especially for verti-
cal transformations and for transformations where the level of abstraction that is bridged is
minimal.
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Our evaluation however also shows some grave disadvantages:

1. Lack of Tool Support: Similar to most DSLs, Model-to-Model transformation languages
are applicable only to narrow subdomains of software engineering. The user base of these
languages is therefore very limited and there is little to no commercial or open-source tool
support. This becomes especially problematic for more complex transformations: debug-
ging, profiling, and linting tools are required as elements of a general-purpose software
development environment. An environment for the development of generators is no dif-
ferent in that context and a high level of productivity cannot be reached with DSL-based
environments that do not provide these tools.

2. Steep Learning Curve: All new languages come with a certain learning curve and Model-
to-Model transformation languages have an especially steep learning curve. Their limited
user base leads to very few available resources and their often declarative nature makes
it difficult for new developers to get started.

3. Limited Expressiveness: The languages are designed with a specific set of features rel-
evant to the domain of Model-to-Model transformations. They are mainly targeted at
translating between different models of highly similar structure. To apply Model Driven
Architecture to digital hardware design and other IC design domains, complex transfor-
mation rules are required. The capabilities of Domain-Specific Languages fall far short of
those of general-purpose programming languages – especially when it comes to utilizing
libraries.

These limitations are critical because they prohibit achieving several of the overall goals of this
thesis: First, these languages are not suited for complex transformation rules that need to bridge
a high level of abstraction – which is clearly required to bring code generation to new fields of IC
design. Second, the framework developed as part of this thesis needs to be used by engineers
who do not have a strong background in software development – a steep learning curve is
irreconcilable with this goal. Third, an efficient development of generators using MDA means
efficient development of transformations – a high level of community support and available
resources are considered as a prerequisite to develop and debug transformations efficiently. It is
therefore clear that the approach toward Model-to-Model transformations taken in this thesis
must not rely on any Domain Specific Languages.

5.3.2. Suggested Approach

Instead of relying on custom Domain-Specific Languages for Model-to-Model transformations,
this thesis embeds the concept of Model-to-Model transformation into the Python programming
language. Python acts for Model-to-Model transformation as an Embedded Domain-Specific
Language (EDSL) as introduced in Section 3.3.

Many of the advantages identified for DSL-based Model-to-Model transformations are not lim-
ited to true Domain-Specific Languages as the same behavior can be achieved with Model-
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to-Model transformation libraries using Python as an Embedded DSL. Libraries such as the
popular AutoMapper [99] library demonstrate how Model-to-Model transformations defined in
an Embedded DSL can provide high readability and low verbosity. It provides transforma-
tions with very little code and high readability especially if the source and target models are
similar. In an Embedded DSL context, libraries like AutoMapper can be selectively applied
only where the models which shall be mapped match these criteria and make the approach
suitable. Moreover, the use of object-oriented programming and state-of-the-art software archi-
tectural patterns can provide a high degree of modularity of the Python-based Model-to-Model
transformations.

The disadvantages of Domain Specific Model-to-Model transformation Languages listed above
do not exist when using Python as a language for Model-to-Model Transformations: developers
work in a language ecosystem with excellent tool support, benefit from a particularly flat
learning curve, and can benefit from the full expressiveness of the Python language and the
vast ecosystem around it. In short, the approach benefits from all the advantages the Python
language already brings for the entire Infineon Metamodeling Framework also in the area of
Model-to-Model transformations (see Section 5.1.1).

These Model-to-Model transformations are referred to as Templates because they act as blue-
prints or generators for instances of the underlying Metamodels. The Template-of-Design (ToD)
for example is the blueprint that generates the Model-of-Design (MoD) and the Template-of-
View (ToV) is the blueprint that generates the Model-of-View (MoV). In this context, it is
important to emphasize that the template itself is not a single file that describes the trans-
formation. It can be an arbitrarily complex software module, with its own submodules which
can be combined, configured, and modified in a flexible manner. Essentially, the ToD is pure
Python code that can use all the languages’ features and the APIs automatically generated
for the Metamodel. It is especially not to confused with the templates processed by template
engines such as Python’s Jinja or Mako for target code generation.

Figure 5.9 shows how the Model-to-Model transformation process works. The transformation
itself is a Python script that runs on the same Python interpreter that also holds the APIs
generated by the Metamodeling framework for the source and target Metamodel. The transfor-
mation script then accesses the APIs of one or multiple source models (which may be of one or
multiple different Metamodels) and pulls the model information from it. It then processes and
transforms this information and eventually pushes the information to the target model through
the API generated for the target Metamodel.

5.3.3. Efficient Template-of-Design Libraries and APIs

The APIs that Infineon’s Metamodeling Framework generates for the provided Metamodels
were initially designed to be used mainly in Mako and Jinja templates or in custom readers
and writers. In particular, these APIs restrict access to the constructor of the classes defined
in the Metamodels. Consequently, all model artifacts always need to be constructed as a tree
in a “top-down” manner from its root node. This makes the APIs ideally suited to develop
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Figure 5.9.: Python Model-to-Model transformation based on Metamodels and Metamodel
APIs

readers and writers and for utilization in template engines in simple Metamodeling-based code
generation as described in Section 2.3.2.

Using these APIs for the implementation of a Template-of-Design, however, comes with some
limitations. Section 4.3.3 has already demonstrated based on the FIR filter example that even
for simple MoT instances, the MoD representation of a model can become quite complex. To
demonstrate the implications of this, an excerpt from the Model-of-Design described in this
section, which is shown in Figure 5.10 is used. It contains the elements from the top left of the
MetaRTL MoD of the FIR filter instance described in Section 4.3.3: the input port data_in of
the FirFilterInstance module, first Register the input data is stored in and the connection
between the input port and is registered. It is important to note that this part of the MoD
is static, i.e. not dependent on the configuration provided by the MoT instance as any input
data needs to be registered first to avoid timing issues when the module is integrated into the
system context.

Listing 5.3 shows the ToD code that creates this static instance using the default APIs generated
by the Infineon Metamodeling Framework. The advantage of this approach is that it is clearly
visible to the developer that he is working on the underlying model. It is however quite clear
that this style is not practical, especially for a static part of the design that does not depend
on parameterization. Moreover, both examples do not contain object properties that need to
be added to each of the ports for real-world use. Adding these elements further expands the
model and code size and thus reduces the practicality of this approach.

Based on this example, it is possible to motivate and describe several changes and extensions
made to the APIs generated by the Infineon Metamodeling Framework. Moreover, library
elements have been developed to make the creation of models more efficient. The main goal
of these extensions is to make the Template-of-Design as efficient or almost as efficient as that
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Figure 5.10.: Excerpt from MoD used in Section 4.3.3

of state-of-the-art Hardware Generation Languages introduced in Chapter 3, however without
hiding the fact that the applied approach is clean and model-based. It is important that at any
time, the developer of the Template-of-Design should be aware of the fact that he is actually
only populating a model.

5.3.3.1. Access to Object Constructors

The first limitation that has been removed as part of this work was the restricted access to
object creation via class constructors. In the Infineon Metamodeling Framework, any object
has to be created via parentObj.createX() or parentObj.addX() method calls.

This is problematic as it prevents the usage of several best practice techniques in software
engineering. The first important technique is the application of the Liskov substitution principle
(the L in SOLID), also referred to as strong behavioral subtyping. This principle states that
object-oriented software has to be designed in a way that instead of passing an object of a
type BaseType, it always has to be possible to pass an object of a type DerivedType as long as
DerivedType inherits from BaseType. This principle is closely tied to the Open-closed principle
(the O in SOLID), which states that “[s]oftware entities [...] should be open for extension, but
closed for modification” [12]: any derived type must still adhere to the contract defined for the
base type. Derived types may add or extend the base type, but must never modify the behavior
of the base type.

In the context of the Metamodel-generated data structure, the code has been modified so that
objects of classes defined by Metamodels can be instantiated on their own, outside of the auto-
generated createX() or addX() methods. These objects are then automatically added to the
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1 def createFirFilter(parentStructure, firFilterMoT):
2 firFilter = parentStructure.addComponent("Structure")
3 firFilter.setName(firFilterMoT.getName())
4

5 data_i = firFilter.addPort()
6 data_i.setDirection("IN")
7 data_i.setName("data_i")
8

9 data_i_reg = firFilter.addComponent("Register")
10 data_i_reg.setName("data_i_reg")
11 clkPort = data_i_reg.addPort()
12 clkPort.setDirection("IN")
13 clkPort.setName("clk")
14 rstPort = data_i_reg.addPort()
15 rstPort.setDirection("IN")
16 rstPort.setName("rst")
17 inPort = data_i_reg.addPort()
18 inPort.setDirection("IN")
19 inPort.setName("In")
20 outPort = data_i_reg.addPort()
21 outPort.setDirection("OUT")
22 outPort.setName("Out")
23 data_i_reg.setSyncRstRef(rstPort)
24 data_i_reg.setClkRef(clkPort)
25 data_i_reg.setInRef(inPort)
26 data_i_reg.setOutRef(outPort)
27

28 conn = firFilter.addConn()
29 conn.addPortSel().addPortRef(data_i)
30 conn.addPortSel().addPortRef(data_i_reg.getInRef())

Listing 5.3: Creation of static MoD excerpt shown in Figure 5.10 using default API

respective parent object by their constructor or can be manually inserted using a set of newly
added parentObj.insX(createdObj) methods.

With this new feature, the Liskov substitution principle can be applied in the Template-
of-Design based on the Infineon Metamodeling Framework: instead of creating a method
createFirFilter, a new class FirFilter can be created. This new class is derived from
the MetaRTL Structure and contains equivalent code in its constructor.

Moreover, this change significantly improves testability. In general, mixing behavior such as
object creation, object deletion, data validation, and other checking with data structures is
considered bad practice. Wherever this is necessary, it is important to separate software units
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(for example classes) from one another as much as possible. The Weak Coupling Principle states
that when software units communicate, they should exchange as little information as possible.
As shared state is just a form of communication, this also implies that separate objects should
have as little shared state as possible. Applying this principle makes it possible to create and
test objects on their own, independent of e.g. the parent object that they are linked to and
independent of the context in which they exist. This change is therefore also a fundamental
modification to enable clean unit testing [77].

5.3.3.2. Addition of Default Constructor Behavior

The previous section describes how inheritance can be used to create derived classes of the
MetaRTL Structure which are then populating the internal of the structure with registers
and combinational logic, implementing generators for certain defined modules such as the
FirFilter. This concept is not only used for custom Structure subclasses. Instead, it is
used to add default child objects to many common MetaRTL objects on their creation. Lines
11-26 of Listing 5.3 contain the default ports that are required for every Register. The MDA
framework implements default constructors for all components defined by MetaRTL. These
constructors create the object attributes that are required for a component and set the correct
associations. When the constructors exposed to the user of the Template-of-Design are used,
it is therefore not possible to forget manually adding the ports or to forget calling a library
function that does it – the required minimum is automatically created.

5.3.3.3. Flexible Support for Constructor Parameters

Describing generators in the Template-of-Design format is an extremely powerful and flexible
way to describe configurable designs. The configurability and flexibility of this approach is
however usually only needed in a subsection of the design. This is well illustrated by 5.3, which
describes a subset of the FIR filter which is always the same, regardless of the MoT instance
that is passed. When describing static elements, a concise notation is particularly important.
The extensions added to the default constructors in the MetaRTL API provide this notation
in different ways.

1 notationA = Structure(Name='FIRFilter',
2 Ports=[Port(Name='data_i', Direction='IN'),
3 Port(Name='result', Direction='OUT')])
4 notationB = Structure(Name='FIRFilter',
5 Ports=[{'Name': 'data_i', 'Direction': 'IN'},
6 {'Name': 'result', 'Direction': 'OUT'}])

Listing 5.4: Supported Notations for Object Creation

Listing 5.4 shows these notations. First of all, it is possible to pass attribute values directly into
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the constructor using named arguments as used in both notations (Name='data_i'). Moreover,
the new notation also allows us to directly pass in composition objects (see notationA) or to
create them and set their attributes using their default constructors (see notationB).

5.3.3.4. Library Routines for Efficient Connectivity

On a high level, the Template-of-Design defines Structures and their interfaces, instantiates
sub-structures, inserts combinational logic, and crates connectivity. A significant part of the
ToD code is responsible for creating connections. It is important for the MetaRTL Metamodel
to support connections as actual first-class artifacts with connections being their own classes
as this facilitates metaprogramming on connections (it for example makes it possible to pass
connections to methods). Despite this, the common use-case of connecting one port to another
needs a simple solution without having to deal with the Conn objects that need to be created
as defined by the Metamodel.

For this purpose, a connectivity library was implemented that adds source.connect(target)
to every source object of type Port, Conn and Literal and supports target objects of the same
types. When this method is used, the corresponding Metamodel structures are transparently
generated.

5.3.3.5. Automated Clock and Reset Connectivity

The ToD can be kept simple since the framework has a powerful resolution mechanism to
create the final connectivity and infer attributes needed to generate views from the MoD. One
important aspect of this resolution mechanism is its ability to connect the clock and reset ports
for stateful elements.

Using a Model-to-Model transformation on the Model-of-Design, these ports are automatically
connected to the clock and reset ports with are closest in the hierarchy and have attributes
that label them as compatible clock and reset ports. This is particularly helpful for design
hierarchies that have only one clock and reset domain. A key property of this Model-to-Model
transformation is that it will not override any existing connection. It is therefore easily possible
to manually provide the clock and reset for a few modules which differ in their clock and reset
domain and let the Model-to-Model transformation handle the majority of the connectivity.
Of course, all connections and ports can be made explicit as the transformation can be either
skipped or, even if applied, does not modify any existing connectivity.

5.3.3.6. Object Property Propagation

Another resolution mechanism is provided to identify object properties for ports and connections
for which they are not defined in the Template-of-Design. For this purpose, a Model-to-Model
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transformation is provided that modifies the Model-of-Design. This transformation derives
object properties for all ports and connections based on information already partially available
in the Model-of-Design.

The mechanism is a relatively simple forward-first propagation mechanism. To support this
mechanism, all blackbox components (components other than the MetaRTL structure) provide
their own library methods that are used to calculate object properties for one of their ports
depending on the other ports. The algorithm will first use the available object properties on
output ports and propagate them along the available connections, considering slicing and other
connectivity features. For every newly identified port property, the resolution algorithm either
forwards it along the connectivity inside the structure or calls the library methods of blackboxes
to check whether this available input property has an impact on output object properties. This
is repeated as long as new information either about the component’s ports or connections can
be found. As soon as the forward propagation (along the signal direction) is completed and no
more information is found, a backward propagation is triggered, where every object property
identified using the backward propagation invokes the forward propagation again.

Like this, an approach is available that meets some criteria that are important for intuitive
understanding: all manually set object properties are never overwritten – if a developer decides
to set incorrect properties by hand, it will be caught in the Model-of-Design data validation. All
forward propagation has a higher priority than backward propagation. If any incompatibility is
identified by backward propagation, the information obtained from it is not used and an error
appears during data validation, forcing the developer to manually correct the mistakes in his
ToD. In the end, either all components are fully configured – including the availability of all
ports – and all wire sizes are known and compatible, or an error message is shown summarizing
the items which were either conflicting or missing during the data validation on the model.

As part of this thesis, the use of a formal SMT solver [44] was investigated to resolve some more
items and provide object properties that would meet potentially conflicting requirements. This
analysis however showed that it is not worth the effort, since the number of additional resolutions
is small, complexity issues pop up and the reports from solvers are hard to understand. In
general, the approach where incompatibilities are highlighted during the checking of the model
is easy to understand and work with. Even without the use of these advanced methods, the
identification of object properties rarely requires manual support on the ToD side, the rationale
for the properties that need to be provided is typically clear for the developer as the errors
highlight information that is actually missing from the model.

5.3.3.7. Results

The changes and extensions described above, as well as a few additional modifications such as
the replacement of getters and setters such as obj.getValue() and obj.setValue(42)) with
properties obj.Value and obj.Value = 42) that transparently access the corresponding setter
and getter underlying the call has led to further improvements in readability.
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Listing 5.5 shows how the equivalent of the original snippet in Listing 5.3 looks when making use
of the improvements described above and moving it into the constructor of a dedicated child
class of Structure. Aside from the improved readability the object-oriented approach also
opens up the possibility for a clean and extendable architecture of all ToD code, guaranteeing
a high degree of reuse.

1 class FIRFilter(Structure):
2 def __init__(self, firFilterMoT):
3 super().__init__(Name=firFilterMoT.Name,
4 Ports=[{'Name': 'data_i', 'Direction': 'IN'}])
5

6 data_i_reg = Register('data_i_reg')
7 self.Ports['data_i'].connect(data_i_reg.InRef)

Listing 5.5: Creation of static MoD excerpt shown in Figure 5.10 using extended API

In terms of visual impression, the ToD code using object constructors and property-style at-
tribute access instead of getters and setters has a lot of similarity to the style common for
structural descriptions of designs in state-of-the-art HDLs such as SystemVerilog and VHDL.
This similarity has made the adaptation of the MDA methodology easy, particularly in an
environment of hardware designers familiar with Python scripting.

It is also important to note that the API modifications were performed using the metaprogram-
ming capabilities of the Infineon Metamodeling Framework. These improvements are therefore
not just available for MoT, MoD, and MoV as part of the MDA flow presented here but can
easily be ported over to other Metamodels.

5.3.4. Transformation of Model-of-Things Input Models

To illustrate the transformation methodology that was developed without the complexity of
real-world applications, this section shows a Template-of-Design which derives a digital filter
from the Model-of-Things sketched in Section 4.2. The Template-of-Design is built for the
Metamodel in Figure 4.2 and will construct MoD instances for all models of this Metamodel.
Figure 4.10 contains a block diagram of the circuit it creates for the sample model in 4.3.

In addition to describing circuits in the static HDL netlist style, the complete feature set of
Python can be utilized. This provides more flexibility to define the architecture. Section 4.2
already named the utilization of Python-based scientific computing libraries to derive param-
eters for certain microarchitectures. In extreme cases, the Template-of-Design can even run
instances of the complete MDA toolchain to find or evaluate solutions. Here, code is generated
and analyzed in order to find out the right – or also the best – way to generate design items.

The Template-of-Design source code is pictured in Listing 5.6. When executed, line 34 adds
a FIRFilter instance to the Model-of-Design. The construction of this FIRFilter takes place
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1 class FIRFilter(Structure):
2 def __init__(self, firMoT, parent):
3 super(). \
4 __init__(Ports=[{'Name': 'data_i', 'Direction': 'IN'},
5 {'Name': 'result', 'Direction': 'OUT'}],
6 parent=parent)
7 current_delay, sum_conn = 0, None
8

9 current_conn = Connection(self['data_i'])
10 for addend in sorted(firMoT.Addends,
11 key=lambda x: x.Instant):
12 while current_delay < addend.Instant:
13 reg = Register()
14 current_conn.connect(reg.In)
15

16 current_conn = Connection(reg.Out)
17 current_delay += 1
18

19 mul = HWMUL(Constant=addend.ImpulseResponseReal)
20 mul.addIn().connect(current_conn)
21

22 instant_out = Connection(mul.Out)
23 if sum_conn is None:
24 sum_conn = instant_out
25 else:
26 adder = HWPLUS()
27 adder.addIn().connect(instant_out)
28 adder.addIn().connect(sum_conn)
29 sum_conn = Connection(adder.Out)
30

31 sum_conn.connect(self['result'])
32

33 global fir_MoT_1 # instance of a FIRFilter MoT is provided by Framework
34 myFilter = FIRFilter(fir_MoT_1, toplevel)

Listing 5.6: Template-of-Design example for the generation of n-th order FIR filter from Model-
of-Things

in the constructor in Lines 2-31. First, the Ports of the filter are defined. The example here
only defines the ports data_in and result and omits the clock and reset lines necessary for the
microarchitecture. These are later inserted by a transformation on the Model-of-Design or by
applying automatic connectivity resolution. In Line 9, every execution of the ToD instantiates
a connection in the Model-of-Design. This connection is attached to the data_in port of the
filter. Lines 10-29 contain the part of the filter that depends on the Model-of-Things. Here,
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the ToD iterates over all Addend instances of the Model-of-Things, sorted by their Instant
attribute in ascending order. Lines 12-17 contain a while loop including the loop body which
is executed to insert delay registers. The sample MoT uses values of consecutive instant n,
n − 1, n − 2 for every output sample y[n], the loop is thus executed once per iteration of the
enclosing for-loop. A multiplier is then inserted in line 19 and the connection referenced by
current_conn is attached to the multiplier in line 20. In the first iteration of the for loop (line
10-29), sum_conn is then set to reference the connection object which is attached to the output
of this multiplier. In every further iteration, an adder is inserted which sums up the connection
previously referenced by sum_conn and the output of the multiplier. After this, sum_conn is
redirected to point to a connection attached to the output of the adder. After all loop iterations
are completed, line 31 attaches the result port of the FIRFilter component to the connection
referenced by sum_conn.

It is important that the Template-of-Design is only one possible micro-architectural template.
For the same Model-of-Things, it would be feasible to develop a ToD that generates an adder-
tree-based microarchitecture or a multicycle filter using a multiply-accumulate unit. The flexi-
bility of the Template-of-Design approach based on Python becomes clear when performing a
closer assessment of this example: the tradeoff between different micro-architectural templates
depends on the concrete Model-of-Things and its parameter properties. While the MoT exam-
ple with the multiplicative factors of 2 and 4 are ideally suited for single-cycle multiplication,
other MoTs might require a different microarchitecture to provide meaningful synthesizable
hardware. This analysis can be done automatically in the ToD itself. A library for the analysis
of the MoD can determine which of the available micro-architectures best fits the provided
parameter set as well as potential timing, power and area constraints that can be provided by a
separate Model-of-Things and then automatically instantiate the correct microarchitecture.

5.3.5. The Language and Modeling Nature of the Template-of-Design

It is subject to debate whether the Template-of-Design is itself a language based on MetaRTL
or whether it is simply a Model-to-Model transformation with significant convenience added on
top.

The Template-of-Design approach and the MDA methodology presented here is in the meantime
used for many designs at Infineon Technologies AG. These designs are in detail described in
Chapter 6.3 and have a significant size, making up entire subsystems of complex ICs. An analy-
sis shows that the readability and efficiency of input in the Template-of-Design are comparable
to the state-of-the-art hardware generation language approaches.

Manually developed library components that are provided in addition to the MetaRTL API
and which are described in detail in Section 5.3.3 cannot all be classified as Model-to-Model
transformation on the MetaRTL models. For example, the connect functions clearly meet the
criteria for a library and not for a Model-to-Model transformation.

Nevertheless, the modifications that were done on the default APIs that are provided by the
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Infineon Metamodeling Framework are relatively minor and do not hide a significant part of
the underlying Metamodel. This especially applies to design engineers who are familiar with
the Metamodeling concept, who are aware of the Python-based code generation it is used for,
and who have used the Infineon Metamodeling Framework to generate single source views.
These engineers are immediately able to identify the commonalities between the Template-of-
Design and the APIs provided for view generation. With this background, they still perceive
their development of the Template-of-Design as the development of a model transformation.
Moreover, the easiest learning path to understanding the MDA flow presented in this thesis and
the development of Templates-of-Design is still based on the understanding of the Metamodels
involved.

In summary, the presented method is mainly a Model-to-Model transformation approach that
is enhanced by library elements that abstract the underlying Metamodel in the style of an
Embedded DSL only where necessary.

5.4. View Language Description and Automated View Generation

After all Templates-of-Design and transformations on the Model-of-Design are executed, the
design-centric Model-of-Design is available. This Model-of-Design can be further used for anal-
ysis and transformations. Eventually, it will be used to generate target views. In a traditional
Metamodel-based flow as described in Section 2.3.3, this path usually relies on code genera-
tors based on template engines. The development of these templates is challenging and gets
increasingly difficult the more abstract the input specification becomes. This phenomenon has
been described as the Generator Gap (see Section 2.3.6. A significant part of the Genera-
tor Gap is also caused by the challenges of generating syntactically correct, human-readable,
and configurable target views. The MDA-based approach addresses these challenges on the
Model-of-View layer.

The following describes the tasks that need to be taken care of here and the problems these
tasks cause when they are solved with template engine-based code generation:

Syntactical correctness of the target view needs to be ensured. This can be difficult for the
developer as he cannot rely on the syntax highlighting of editors as the generated views
are partially made up of control statements of the template engine and partially of the
grammar of the target view. Moreover, when handling lists of elements, the first or last
element of the list often needs to be treated differently from all other elements. Good
examples of this are the port lists of VHDL entities and SystemVerilog modules: while all
ports need to be separated by a comma, the last port may not be followed by a comma.
The same applies to arguments for functions and methods in many software programming
languages. Another example is that empty generic and port lists are not permitted in
VHDL and the corresponding generic or port keyword must be omitted in this corner
case.
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Formatting Human readable target views are important as the teams using the tools processing
these target views need to be able to understand the content and debug the views if their
usage does not yield the expected results. The templates, therefore, need to take care
of proper indentation, sometimes even with indentation rules differing depending on the
consumer of a view.

Configurability Different customers and different projects require different coding styles, for-
matting rules, and naming conventions. In the example of VHDL and SystemVerilog,
the naming conventions for signalswires, instances, ports, and other artifacts can differ.
Embedding these alternatives into the templates generating the views leads to complex,
hard-to-read, and difficult-to-modify code.

This thesis pioneers generators based on the View Language Description (VLD) as a novel
approach to view generation that resolves or significantly reduces these issues. Section 5.2
already showed how this approach is utilized as a part of the MDA flow based on the Infineon
Metamodeling Framework. Figure 5.3 shows how the MoV layer’s Metamodel and the actual
view generation are completely automatically generated from the View Language Description
format. This reduces the effort of view generation from developing a complete template to
providing the Template-of-View Model-to-Model transformation.

Figure 5.11 shows Template-based and VLD-based View Generation in comparison. The VLD-
based View Generation on the right shows how the view generation from Model-of-Design over
Model-of-View is implemented in the MDA flow presented in this thesis. It is important to note
that this approach does not depend on the MDA flow developed here. It can be utilized for all
kinds of Metamodeling-based view generation and can act as a plug-and-play replacement for
the Template-based view generation shown on the left part of the figure.

The benefit of VLD-based view generation is emphasized by the color coding of the figure. Here,
all elements that a developer of a generator typically needs to address are colored in yellow.
For both template-based generation and VLD-based generation, this involves the definition of
the Metamodel and the provisioning of model data.

When it comes to the actual generation of view, the template-based view generation requires
the developer to write a template that is then processed by a template engine. When doing
this, all the tasks mentioned above need to be taken care of at the same time, turning the
development into a complex endeavor. In VLD-based view generation, this complex task is
broken down into multiple, partially reusable pieces. Moreover, a sizeable portion of these
pieces is automated.

The first piece is the development of a View Language Description, an EBNF-like format de-
scribing the grammar of the target view, the intended formatting, and coding conventions.
This description is used, among other things, for the automated generation of the Metamodel-
of-View, a Metamodel with an AST-like structure describing the target view. Along with this
autogenerated Metamodel-of-View, the APIs and infrastructure of the Metamodeling Frame-
work can also be autogenerated.
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Figure 5.11.: Template-based and VLD-based View Generation Compared

Based on this Metamodel and the Metamodeling Framework tailored for it, the second piece of
the VLD-based view generation is developed: the Model-to-Model transformation which takes
the input model and uses it to fill the Metamodel-of-View.

The third piece of the VLD-based view generation is the generation of the actual view, referred
to as Unparse View Generation mechanism. Similar to the generation of the Metamodel-of-
View, this step is also completely automated and exclusively relies on the description of the
target language and the intended formatting provided by the VLD format.

The following section introduces the View Language Description format and explains how it is
used to both generate the Metamodel-of-View and also the Unparse View Generation code. The
next section then illustrates how the Template-of-View transformation is applied and visualizes
the significant effort reduction the VLD-based view generation provides.

5.4.1. The View Language Description Format

Listing 5.7 contains a simplified example of a View Language Description (VLD). The similarity
between this description and an Extended Backus-Naur Form (EBNF) description is apparent.
For comparison, Listing 5.8 contains a snippet from the VHDL rule for entity_declaration
in EBNF format.
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1 Entity ::= 'ENTITY ' <Name> ' IS\n'
2 [Ports]
3 'END ' <Name> ';\n';
4 Ports ::= $indent('\t')$('PORT(\n'
5 $indent('\t')$(+Port%[0:-2]: ';\n';
6 [-1] : '\n' %+) ');\n');
7 Port ::= $ta(1)$<Name> ' : ' $ta(1)$<Mode> ' ' $ta(1)$<Type>;

Listing 5.7: Simplified Snippet from View Language Description of the VHDL MoV [5]

1 entity_declaration ::=
2 ENTITY identifier IS
3 entity_header
4 entity_declarative_part
5 [ BEGIN
6 entity_statement_part ]
7 END [ ENTITY ] [ entity_simple_name ] ;

Listing 5.8: VHDL entity declaration from VHDL’93 [92]

Similar to EBNF, the description consists of a list of production rules where each of these
rules in turn consists of a set of terminal or non-terminal symbols. The main goal of EBNF
is to describe grammars of formal languages and thus to provide the rules for distinguishing
the grammatically correct code of a certain formal language from incorrect code. As outlined
in the previous section, VLD has slightly extended goals: it is the starting point to generate
the Metamodel of the Model-of-View and the unparse method. This introduces three new
requirements for the format. The following enumeration describes these requirements and
shows how they are implemented in the VLD format.

1. While EBNF is mainly intended to describe the formal rules of a certain language, the
VLD was designed to allow the automated generation of a concise Metamodel and thus
an intuitive API. Here, it is not sufficient that all legal instances of this Metamodel form
legal view instances. Instead, the Metamodel should be shaped so that it is easy to
use for the developer. Artifacts that are only grammatically relevant but semantically
irrelevant should not be part of the Metamodel. An example of such an artifact is the fact
that in comma-separated lists, the last element is usually not followed by a comma. The
Metamodel shall provide a list in this case and the generator shall treat the last element
independently from the others.

2. While EBNF is structured to describe the grammar of languages and to easily and effi-
ciently build parsers, the structure of VLD has to primarily provide a Metamodel which
is used by the Model-to-Model transformation and the Unparse View Generation. The
structure of VLD thus differs from the EBNF of the same language. To end up with
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an intuitive Metamodel, the VLD entity directly contains Ports (see Listing 5.7 in Line
2) and Generics as well as the LibraryClause and UseClause (these are not part of
the simplified VLD example provided in the Listing). The VHDL EBNF grammar that
describes the entity declaration shown in Listing 5.8 is structured quite differently. Here,
library_clause and use_clause are defined in the context_clause, which is nested
a few levels inside the entity_declarative_part in Line 4 of Listing 5.7. The EBNF
structure makes it easy to reuse code in any parser autogenerated from the EBNF or
developed according to it and helps the understanding of the target language. Using the
same structure for the VLD would lead to many additional classes in the Metamodel
(one class is generated per rule). For the developer, this means that in the transforma-
tion building of the Model-of-View, many additional objects have to be generated, which
reduces the convenience of the approach.

3. It has to describe the intended formatting of the target view. The VLD thus describes
exactly one correct target view belonging to each Model-of-View instance. In contrast,
EBNF grammars do not specify things like whitespaces and indentation. From the parser’s
point of view, any number of identical views with different formatting will map onto the
same Abstract Syntax Tree. From the code generator’s point of view, one formatting
option has to be defined when generating the code.

To meet these requirements, several formalisms are introduced into the VLD. When the Meta-
model for a VLD format is generated, a Metamodel class is added for every production rule of
the VLD descriptions. For every non-terminal symbol, a rule consists of, associations are added
to the sub-class. An EBNF rule for a list of at least one name would be similar to names ::=
firstName, { ', ', otherNames}. This clearly describes that there may be either one name
or a list of comma-separated names. What it does not convey is that these items, firstName
and otherNames belong together semantically. When generating a Metamodel for that names
rule, a names class would be inserted which would then contain two separate attributes one
with the multiplicity 1 and the other one with a multiplicity of 0..*. A developer working
on the transformation from MoD to MoV would then have to take into account whether the
firstName attribute is already set whenever he tries to add further names to the nameList. To
avoid the accompanying overhead, a +...+ symbol is introduced into VLD. The use of this sym-
bol creates one attribute of multiplicity 1..*. As typical views still frequently require different
generated view code for corner cases such as the first or last element in a list, a further artifact
is introduced into VLD. This artifact is used in the Ports rule of the VLD in Listing 5.7. Here,
the %...% notation inside of the +...+ block indicates that the last port (identified by [-1])
has to be treated differently from the others (identified by [0:-2])) during view generation.

A further extension in the VLD format is the distinction between non-terminal symbols that
create attributes in the Metamodel (encapsulated by <...>) and symbols that create compo-
sitions (not encapsulated <...>). Moreover, the : operator is used to describe both attribute
name and attribute type. When a rule contains e.g. <Size:int>, an attribute named Size of
type integer will be added to the class generated for the rule. If omitted, the default type is
string.
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Type : string [1]
1..*0..1

Figure 5.12.: Metamodel Generated from the VLD in Listing 5.7

Figure 5.12 shows the Metamodel that is generated from the VLD Example in Listing 5.7.
It shows that for every rule, a separate class is created. For every unique attribute added
to the VLD (<...>), a corresponding attribute is created in the Metamodel. In this case,
only the Entity and Port classes have attributes. The tooling implemented further adds the
compositions from Entity to Port (Multiplicity 0..1) and from Port to Ports (Multiplicity
1..*). Upon closer inspection, the Ports class of the Metamodel seems redundant. It was
just included in this example for didactic reasons. In a productive use-case, it makes sense
to embed the individual ports directly into the Entity rule and to conditionally generate the
'PORT(\n'... ');\n' using the %% notation to trigger different behavior for the first and last
port.

5.4.2. Target Code Indentation and Tabular Alignment

A naïve approach to formatting target code in a nice way is inserting terminal strings containing
whitespaces into the VLD. The problem with this approach is that it cannot handle indentation
correctly as many production rules can occur at different levels of indentation: a concurrent
signal assignment can e.g. take place at the architecture level, inside a process, or inside any
number of nested conditionals, each requiring a different level of indentation. The solution to
this problem is the introduction of formatting directives. These directives are directly introduced
into the view language description. They are implemented as Python code which is included in
auto-generated post-processing code by the tooling. A set of predefined directives for correct
indentation of code, line breaks at certain line widths, and correct alignment of neighboring
lines is provided.

The first important directive is the indent directive. $indent('\t')$ in Listing 5.7, line
4 ensures an additional indent of keyword PORT and the following parts by one tabulator.
Similarly, $indent('\t')$ in line 5 ensures, that each port item is indented one tabulator
further. This indentation applies to the element itself and all sub-elements of nested VLD
rules. It is the default directive that is used to provide the indentation for blocks, conditions,
classes, namespaces, processes, and similar constructs in programming languages. The effect of
the indent directive in the Ports rule can be seen in the example in Listing 5.9 in Lines 2-5,
where the first tabulator is caused by it and in Lines 3-4 where the second tabulator is caused
by it.

The second important directive is the tabular alignment directive ta. It is used in the example
in Listing 5.7 for the port list defined by the Port rule in Line 7. The effect of this can be
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1 ENTITY sample IS
2 −⟩|PORT(
3 −⟩| −⟩|short_port_name_i␣␣␣␣ : in ␣std_logic_vector(31 downto 0);
4 −⟩| −⟩|very_long_port_name_o : out std_logic
5 −⟩|);
6 END sample;

Listing 5.9: Sample Entity showing the effect of indent and ta functionality

seen in the sample output in Listing 5.9 when comparing Lines 3 and 4: tabular alignment
ensures that all the lines are properly aligned relative to one another and the port names,
the port directions, and the port types are aligned as if the output was part of a table. The
tabular alignment feature of the VLD tooling provides supports multiple tables per view. The
insertion of the $ta(1)$ statement tells the VLD that the following VLD elements form a new
column. The rows of this table do not necessarily have to be adjacent to one another. It is also
possible to insert other lines without any tabular alignment, for example containing comments
in between the aligned table rows. Moreover, it is possible to define multiple tables which may
even be interleaved. The argument to the tabular alignment directive defines which table the
column and therefore also the currently written row is part of.

5.4.3. Template-of-View Transformations

With an existing VLD definition for a given target language, the task of view generation is
reduced to the development of a Model-to-Model transformation that creates the Model-of-
View (the Template-of-View in the MDA approach).

Listing 5.10 contains an example for such a transformation using the Metamodel generated
from the VLD example of the previous section (see Listing 5.7 and Figure 5.12). It clearly
shows how easy it is and how little information needs to be provided to create a Model-of-View
(Line 10) using some input information (Lines 3-7). Once the input information is available, a
single line of code creates the Model-of-View and any other steps are fully automated.

Listing 5.11 shows the equivalent view generation using a traditional, template-based approach,
without a Template-of-View and without the VLD-based generation of a Model-of-View and
automated view generation. The Mako-based approach starts with the same pre-defined in-
put information (Lines 3-7). Instead of a single line generating the MoV as shown in List-
ing 5.7, the Mako approach requires lines 9 to 25 to generate the same target view. These
lines take care of all the required steps, such as tabular alignment and indentation manually.
It is for example first necessary to iterate over the Name and Mode attributes of all ports to
find their maximum width. This information is later used in Python formatting directives
(e.g. "{s: <{w}}".format(s=port["Name"], w=max_name_width)) to properly pad the vari-
able contents with whitespaces.
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1 # data derived by the Model-to-Model transformation, e.g. by iterating
2 # over MetaRTL and mapping to the semantics of the target HDL.
3 entity_name = 'sample'
4 vhdl_ports = [{'Name': 'short_port_name_i', 'Mode': 'in',
5 'Type': 'std_logic_vector(31 downto 0)'},
6 {'Name': 'very_long_port_name_o', 'Mode': 'out',
7 'Type': 'std_logic'}]
8

9 # generation of the Model-of-View
10 model_of_view = Entity(Name=entity_name, Ports=Ports(Ports=vhdl_ports))

Listing 5.10: Template-of-View Excerpt to Visualize the Benefit of VLD-based View Generation

1 <% # data derived by the Model-to-Model transformation, e.g. by iterating
2 # over MetaRTL and mapping to the semantics of the target HDL.
3 entity_name = 'sample'
4 vhdl_ports = [{'Name': 'short_port_name_i', 'Mode': 'in',
5 'Type': 'std_logic_vector(31 downto 0)'},
6 {'Name': 'very_long_port_name_o', 'Mode': 'out',
7 'Type': 'std_logic'}]
8

9 max_name_width = 0
10 max_mode_width = 0
11 for port in vhdl_ports:
12 max_name_width = max(max_name_width, port["Name"])
13 max_mode_width = max(max_mode_width, port["Mode"])
14 %>
15 ENTITY ${ entity_name} IS
16 % if len(vhdl_ports) != 0:
17 −⟩|PORT(
18 % for port in vhdl_ports:
19 −⟩| −⟩|${ "{s: <{w} }".format(s=port["Name"], w=max_name_width)}\
20 : ${ "{s: <{w} }".format(s=port["Mode"], w=max_mode_width)} ${ port["Type"]} \
21 ${ '' if loop.last else ';'}
22 % endfor
23 −⟩|);
24 % endif
25 END ${ entity_name} ;

Listing 5.11: View Generation based on the Mako template engine [98] using input equivalent
to Listing 5.10
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The issues that were identified with Template-based code generation are now all addressed with
the VLD-based view generation:

Syntactical correctness is guaranteed by a correct View Language Description. The VLD
generates the Metamodel. The data validation performed on the model as part of the
generated API ensures that all necessary constraints are enforced.

Formatting Human readable target views with correct formatting, indentation, and alignment
are automatically generated as described in the VLD.

Configurability Different formatting and coding styles can be supported with this approach in
multiple ways:

• Any changes to VLD files that do not affect the attributes, rules, and associations
(i.e. all changes to the VLD which are limited to terminal symbols and formatting
rules) can be performed to generate differently formatted views without changing
the Metamodel-of-View and therefore without affecting the transformations.

• Model-to-Model transformations on the Model-of-View can be used to change the
target view after it has been generated.

An additional significant benefit of the approach is that the Model-to-Model transformation
which replaces the template-based view generation is entirely in the environment of the Meta-
modeling framework’s programming language. This guarantees excellent tool support and syn-
tax highlighting which further eases the development process. In the Model Driven Architecture
framework established in this thesis, the VLD-based generation is used to generate VHDL views
from the Model-of-Design representation. This generation of views is reduced to mapping the
structural MetaRTL MoD, which is exclusively based on hardware semantics onto the VHDL
hardware description language with its simulation semantics.

This simplification is an important step to enabling more powerful generators that are also
applicable outside the Model Driven Architecture framework presented here. Depending on the
Metamodel used for a view generation task, the challenge of generating the view is complex
enough and does not need to be further complicated by the challenges listed here. This challenge
is even larger in absence of a multi-layer Model Driven Architecture flow as the input gap in
abstraction that needs to be bridged between the input models and the target view is larger.
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This thesis has so far introduced the adaptation of Model Driven Architecture for Digital Design
and has demonstrated how it is implemented on top of Infineon’s Metamodeling Framework.
The feasibility and benefits of the approach was demonstrated by designing different versions of
a CPU core that implements the RISC-V instruction set architecture with a microarchitecture
using a five-stage in-order pipeline.

6.1. Application of Generators in Commercial Designs

In the time span between the start of this thesis work and its completion, the MDA framework
has laid the foundation for the MetaX initiative at Infineon Technologies AG. The goal of this
initiative is to use the Model Driven Architecture vision and its adaptation to digital design in
commercial projects. In the context of this initiative, many designs have been realized based
on the MDA framework presented in this thesis.

A key asset of the MetaX initiative is an SoC generator that makes use of a large collection
of MetaX generator IPs. A RISC-V CPU core with a five-stage pipeline which was developed
in the context of this thesis is one of the generator IPs part of this collection. This core
was subsequently extended with additional features such as debugging support and selective
hardening. Other CPU architectures such as an FSM-based single-stage architecture, as well
as a two- and three-stage pipeline version of the CPU generator, are available as well. All
these variants rely on the same Model-of-Things called MetaRISC. This Metamodel provides
configurability of each of the CPU cores, allowing to enable or disable instruction set classes and
instructions as well as countless other generation properties. These different implementations
can therefore be used interchangeably with the same Model-of-Things configurations, providing
implementation alternatives for architecture exploration.

Figure 6.1 shows a sample SoC that can be generated and configured by the MetaX generator
framework developed in this thesis. In addition to the CPU cores with their architectural
alternatives, MetaX provides generators for various peripherals. These peripheral generators
include general-purpose timer IPs, communication IPs (e.g. UART, SPI, GPIO IPs), debugging
interfaces for JTAG, and accelerator IPs (e.g. for CRC calculation). Moreover, it covers
infrastructure generators for different bus protocols (a proprietary internal bus protocol, AHB
and APB) and a generator for interrupt controllers. In addition to the individual generator
IPs, an SoC generator is available to perform the toplevel connectivity and instantiation of
infrastructure resources.
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Figure 6.1.: Sample SoC generated with MetaX generator framework

All available generators follow the same high-level structure defined by this thesis: an abstract
Model-of-Things Metamodel is developed that is specific to the function of the peripheral. For
a communication peripheral, this Model-of-Things would define generation options such as the
number of channels supported by the peripheral, the bandwidths and protocols supported by
these channels, and use-case and integration-specific options such as the sizes of buffers inside
of the communication peripheral.

the MDA approach has demonstrated its capability to design efficient hardware generators in its
use for the development of these MetaX framework IPs and in their application in an industrial
context at Infineon Technologies AG. Using the MetaX generator framework as a replacement
for traditional manual coding has shown a reduction of effort of up to 50% compared to manual
implementation and adaptation without code generators. The effort needed with the generation
approach also includes the development of generators.

The MetaX framework is set to be integrated into the Infineon design flow. In this environment,
it can be commercially applied by chip design teams to different extents: the integration for
example supports the development of individual IPs as part of an overall system designed
with traditional hardware description languages. This is particularly well suited for highly
dynamic and configurable IP components such as bus fabrics or I/O subsystems that provide
a configurable mapping from physical IC pins to internal IP functions. For this use case, the
MDA framework has been extended to also generate collaterals needed for SoC integration
from the Model-of-Design. Using MetaRTL in this context does therefore provide benefits: a
significantly higher level of configurability and reduced effort for SoC integration.

MetaRTL can also be used in a wider scope in Infineon’s design flow. So far, it has been
utilized to generate entire digital designs for test chips and for entire design subsystems for
ASIC development at Infineon Technologies AG.
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6.2. Architecture Exploration using MetaX

A significant recent development that is used for research at Infineon Technologies AG is the
emergence of the OpenROAD and OpenLane open-source EDA flows. In recent years, these
flows have become a viable and useful addition to commercial, proprietary EDA tools and flows.
To date, commercial EDA tools still have a significant qualitative edge over their open-source
competitors and cannot be replaced for scenarios where production quality results are required.
The available open-source tools and flows are however for areas where a large number of tool
runs are needed and the tool outcome is not used for production but to make architectural
decisions. At Infineon Technologies AG, the OpenROAD and OpenLane frameworks are used
together with techniques of the Machine Learning (ML) domain and for example for parameter
exploration and tuning for physical synthesis. [75, 81, 90]

In a common use case, OpenROAD’s AutoTuner is utilized to automatically find optimal param-
eters for the physical implementation flow. These parameters can then be used with commercial
tools for later work on productive tapeouts. The Model Driven Architecture framework and
the full chip generators developed as part of the MetaX are a valuable addition to this use case.
Without MetaX, the typical scope of the hyperparameter exploration is the entire RTL-to-GDS
flow, starting with synthesizable, elaborated, and parameterized RTL views. With the help of
MetaX, the scope can be extended significantly: for each of the generators available as a part
of MetaX, the generation parameters provided by its Model-of-Things can be added to the
exploration. This allows for example to automatically generate a different number of pipeline
stages for the CPU core and evaluate the power, area, and performance impact of this change
together with changes in other parameters of the RTL-to-GDS flow. [90]

6.3. Subsequent Work

The MDA framework presented in this thesis has however also been extended beyond its initial
capabilities and scope within digital design. Figure 6.2 shows the extensions made to the MDA
framework. The most noteworthy are the extensions beyond the scope of digital design for
formal verification and firmware development. The extensions into these areas are the outcomes
of two separate PhD theses [85, 97]. These theses reuse and adapt the concepts, framework,
and tooling provided by this thesis and transfer them to the respective domain.

• All approaches use the same three-layer structure defined in this thesis. Along with this,
they share an important aspect of the generation framework as they are able to utilize
the same Model-of-Things inputs. In other words, they can all access the same common
specification inputs and utilize them to generate target views of the digital design, of
verification properties for the design, and of firmware code that can be executed on the
design. This generation from a shared common formalized specification layer ensures
consistency between the separate target views.

• All approaches use the method for Model-to-Model transformations defined and developed
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Figure 6.2.: Extensions of the MDA framework beyond Digital Design

for the Template-of-Design and Template-of-View in this thesis: they are using Python
and extended Metamodeling APIs to access the specification Metamodels and generate
different target Metamodels from them. Similar to this thesis, they extend the generated
APIs with domain-specific APIs to provide significant reductions in development effort
and verbosity for their transformations [85, 97].

• All approaches use the same VLD method and unparse tooling developed as part of this
thesis: they each add additional target view languages to the framework: the System
Verilog Assertion (SVA) language and Onespin’s ITL language for formal verification and
the C language for firmware generation. In addition to that, the MDA flow for digital
design was extended with support for System Verilog views as part of an internship
project. [85, 97]

The generation flow for digital design introduced in this thesis defines MetaRTL, the Meta-
model of the Model-of-Design layer which captures a structural representation of the design
with synthesis semantics. Both the additions for formal verification and firmware development
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define separate Metamodels that act as the Model-of-Design level counterpart to MetaRTL.
The MDA framework developed in this thesis only covers digital design and is centered around
the central Metamodel MetaRTL, the overall framework that was developed subsequently also
includes separate Metamodels as counterparts to MetaRTL for formal verification and firmware
development. This extension in scope also explains the name derived for this overall framework
MetaX, representing the MDA flows for digital design (centered around MetaRTL), for formal
verification (centered around MetaPROP), and for firmware development (centered around
MetaFIRM ).

For formal verification, MetaPROP is developed to capture the temporal semantics of design
properties. An additional Metamodel called Model-of-Binding which is not displayed in the
figure adds essential information to the properties defined by MetaPROP instances. The Model-
of-Binding references the aspects of the MetaRTL Model-of-Design that a design property
applies to. This linking is used as part of the Template-of-View transformation to generate
assertions in the target languages which are linked against the design elements in a MetaRTL
model that the assertion applies to. [85]

For firmware development, the MetaFIRM Metamodel is the counterpart of MetaRTL for soft-
ware development. It captures the semantics of sequential software execution. As such, it
contains a description of the state internal to the software (variable declaration) and a defi-
nition of individual software blocks (function declarations) as well as software interfaces: the
Application Programming Interfaces (APIs) that individual software components exhibit to
their higher- or lower-level components. In addition to that, MetaFIRM models the control-
and dataflow of the individual functions using a semantic similar to UML activity diagrams
with control nodes (for loops and conditionals) or data nodes (for actual computations changing
the software’s internal state). [97]

The extension of the proposed MDA flow to areas beyond the scope of Digital Design highlights
a key advantage a Model Driven Architecture based approach has compared to approaches re-
lying on Embedded DSLs without the backing of formally defined Metamodels (e.g. Chisel).
The MDA approach presented here relies on Metamodeling and an underlying Metamodeling
Framework. This Metamodeling-based approach introduces many commonalities in the dif-
ferent MDA flows for digital design, formal verification, and firmware development. From the
perspective of a developer applying MetaX for generator development, this homogeneity reduces
the learning needed to get familiar with all three generation flows. All transformations that
are needed (Template-of-Design, Template-of-Property, and Template-of-Embedded-Software)
are developed using the same structure and the same automatically generated API (defined
by visual Metamodels of the source and target models). The knowledge on how to develop
working code for one defined Metamodel (e.g. the Template-of-Design) can therefore easily
be transferred to other Metamodels (e.g. the Template-of-Property). Purely language-based
approaches that do not make use of an underlying Metamodeling framework require the user
to learn the semantics of the language itself, a task that is significantly more difficult than
understanding the source and target Metamodels.

Moreover, the ability to cover both firmware and hardware development as well as hardware
verification in one single holistic environment guarantees consistency between the domains. All
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changes to the Model-of-Things input can automatically propagate into all domains. For any
change in input data, the flow itself can regenerate the affected target views. This for example
guarantees that potential additional assertions are generated and software is automatically
adjusted to reflect hardware changes. [85, 97]
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The application of MetaX in internal research and for productive designs has already demon-
strated its ability to significantly reduce NRE efforts. It has also helped to identify two key
limitations for the development and application of reusable generators.

1. Generators need to be developed with the individual SoC integration aspects in mind.
This means they have to be developed using one or more assumed SoC ecosystems into
which they will later be integrated. Supporting different system-level requirements such
as different bus protocols, different memory architectures, or interrupt protocols often
requires modification of individual generators and prevents clean reuse.

In the MetaX generator library, this problem becomes particularly apparent when indi-
vidual generators are used to generate IPs that are later used outside of the context of
the MetaX SoC generator as individual generated instances inside a project that does not
use the MDA approach for its toplevel. Here, the architecture and infrastructure of the
SoC may differ from what was assumed during the IP generator’s development and may
require changes to the IP generator to achieve compatibility.

It is of course easily possible to modify the IP generator to support a different integration
context (e.g. by providing an additionally supported bus slave interface as an additional
generation mode). Such a modification of the generator must undergo rigid testing to
guarantee it is backward-compatible and that it does not break any existing support
for other SoC contexts. It is however still a modification of an existing IP generator,
prohibiting its full reuse. Moreover, this modification adds additional complexity and
SoC integration details to the IP generator of the modified IP.

2. IP integration aspects need to be taken care of by every component’s parent component,
or the SoC generator. Providing the right kind of SoC infrastructure (e.g. right bus archi-
tecture, right interrupt routing, or right memory test architecture requires configuration
of the SoC generators that is compatible with the microarchitecture generated by the IP
generator).

In the MDA approach, all configuration of generator components happens based on Model-
of-Things instances and is constrained by the Metamodel-of-Things of the individual
generators. It is therefore necessary to adapt the Model-of-Things instances of the in-
frastructure and SoC components to provide compatibility with the resource needs of the
utilized generator IPs. In other words, all Model-of-Things instances for all generators
need to be compatible.
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Part of this work cannot be automated and is fundamental manual work in the MDA flow:
providing the Model-of-Things as a formalized specification input to the generator is what
replaces the task of manual coding. A significant part of this work should however be
automated: the generation of Model-of-Things information for infrastructure components.
The key reason for this is that information on the infrastructure needs of any individual
generated IP is known and understood by the Template-of-Design (i.e. the program code)
of the IP generator. At the point where the IP generator’s program code is executed, the
generator determines a microarchitecture to implement the Model-of-Things. At this
point, the generator is aware of the infrastructure needs of the generated hardware.

Automating these aspects is particularly important in a generator context. Here, differ-
ent microarchitectures generated for the same Model-of-Things descriptions may require
different infrastructure needs and a manual adaptation of Model-of-Things instances may
not be possible when the architecture is automatically generated.

This chapter introduces a solution to these problems that is based on a generator architecture
using best-practice software architectural patterns that allow generators to communicate and
collaborate to align on a common, optimal architecture. The solution is centered around a
generator architecture based on best-practice software architectural patterns. The proposed
architecture has two key advantages:

1. IP generators can be developed entirely independently from SoC integration aspects.
The provisioning of SoC integration inside the generated IPs (e.g. optimal bus interface
sub-components) is transparently delegated to specialized generators. Changing these
centralized generators and along with that generated hardware as well as utilized protocols
can happen without modifying the IP generators intended for reuse.

2. Infrastructure generators automatically collect information on the infrastructure needs
of the system that is generated by the individual IP generators. Using this information,
the infrastructure generators can automatically and transparently generate suitable SoC
infrastructure (e.g. bus fabric with topology adjusted to the individual generators) and
provide the toplevel connectivity for their infrastructure.

In the following, this chapter describes the two limitations listed above in more detail and
with examples. It then analyzes the structure of the generators part of the MetaX initiative
to identify the root cause of the limitations. Based on this analysis, the so-called Multi-Pass
Generation is proposed and described as a new pattern for ToD development. This pattern
removes the limitations identified.

7.1. Detailed Problem Statement

The application of MetaRTL in internal research and for productive designs has already demon-
strated its ability to significantly reduce NRE efforts. It has also helped to identify two key
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limiting factors for the development and application of reusable generators. These limitations
are shared by the Model-based generation approach and popular Hardware Generation Lan-
guages such as SpinalHDL and Chisel.

7.1.1. Limitation 1: Decentralized Handling of Infrastructure Needs

IPs Generators need to be developed with the individual SoC integration aspects in mind.
In comparison to the traditional development of static digital designs in Hardware Description
Languages such as SystemVerilog and VHDL, IP generators provide significantly more flexibility.
While traditional IPs often need to be wrapped or modified to provide compatibility with a
certain SoC, an IP generator can be developed to support multiple different SoC ecosystems.
The main limitation here is that these SoC ecosystems have to be known and considered when
the generator is developed. Integrating a generated IP into a system that for example uses
a bus protocol, a memory architecture, or interrupt protocols that are not supported by the
generator still requires modification of the generator code and thus prevents clean reuse.

This limitation is particularly evident when utilizing the generator library to generate IPs that
are integrated into productive SoC designs that use a traditional, HDL-based design flow. Here,
the architecture and infrastructure of the SoC often differ from what was assumed during the IP
generator’s development and changes to the IP generator are required to achieve compatibility.
It is of course possible to modify the IP generator to support an additional integration context.
Such a modification of the generator must however undergo rigid testing to guarantee backward-
compatibility and does not break any existing support for other SoC contexts. Moreover, this
modification adds additional complexity and SoC integration details to the IP generator of the
modified IP.

It is straightforward to find examples of changes required by different SoC contexts:

• A component that acts as a bus slave or master must be generated with the correct design
interface (ports) to connect to the bus fabric. It must moreover instantiate the necessary
slave or master interface, supporting the exact bus protocol. More complex requirements
such as heterogeneous bus architectures may also force individual components to come
with multiple bus interfaces in one SoC while for another SoC, a single, general-purpose
interface may be sufficient.

• A component that requires volatile memories (such as cache memories in CPUs or buffer
memories in communication peripherals) needs to support the structure used by the SoC
for local memories.

Some SoCs for example instantiate all memories on top-level (memory on top), outside
of the modules that use them. When an IP generator is integrated into such an SoC, the
module has to be generated with additional ports to access the read and write ports of
these memories.
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In other SoCs, the memories may be instantiated inside the individual modules that
make use of them (distributed memory). In this case, the generator has to instantiate
the memory sub-component internally. In addition to using the read and write interfaces
of these instantiated memories, additional connectivity may need to be provided to the
memory module instantiated as a sub-component. For example, automotive applications
come with high safety and reliability standards and memories used in these applications
have stringent memory test requirements. This can mean that the memories need to
be wrapped with test logic or connected to centralized memory test units which control
features such as power-on self-tests of memories.

Throughout this chapter, the example of memories and memory test is used because of its
simplicity. The main benefits of the work published here is however in applying the methodology
to all kinds of infrastructure resources instead of limiting it to memories. Figure 7.1 contains
an excerpt from a few sample SoCs with different memory architectures. It clearly shows how
these impact the IPs. In examples a) and b), the individual IPs X and Y need the connectivity
for memory test interfaces (yellow) and need to instantiate the memory modules. In example
c), the individual IPs X and Y will only need to connect the read and write ports (green) to
their respective boundaries. Similar differences become apparent on subsystem and toplevel. In
example a), the subsystem needs to contain interfaces and connectivity for the memory test, in
example b) it needs to contain connectivity and to instantiate a distributed memory test unit,
whereas in example c), it needs to contain read and write ports and connectivity for them.

We already mentioned that modifications to IP generators are not considered as clean reuse and
come with stringent verification requirements. With the given example, it also becomes clear
that IP generators need to be often modified although they are not functionally affected: In a
distributed memory architecture, it may be required to add an additional test wrapper around
the memory. As long as the read and write interface of the memory is not modified by the
memory wrapper, this additional layer is transparent and does not require changes to the core
functionality of the IP instantiating the memory. Nevertheless, a modification will require the
modification of the parent module: it needs to add additional ports to the generated module
to connect the centralized memory test controller to the memory wrapper.

From a point of view of the software architecture, this is not desirable. The software architecture
of the generator violates two of the five popular and widely accepted design principles of object-
oriented design summarized with the mnemonic SOLID.

• The first violated design principle is the Single Responsiblity Principle (the S in SOLID).
This principle states that “[...] each software module has one, and only one, reason to
change” [72]. A logical consequence of this observation is that a class should only have
one job [24]. The parent module should be responsible only for providing its function and
not for providing the potential infrastructure functionality of its sub-modules.

• The second violated design principle is the Interface Segregation Principle (the I in
SOLID). “This principle advises software designers to avoid depending on [software in-
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Figure 7.1.: Example for different Memory Architecures

terfaces1] that they don’t use” [72]. In this scenario, the generator of the parent module
is using the generator for the child module (it is using the memory generator to get the
required memory module). In the context of this usage, the required infrastructure for the
module provided by the sub-generator is explicitly not an interface that it depends on (it
depends only on the read and write functionality provided by the module). For situations
such as this, the Interface Segregation Principle states that the parent generator should
not depend on or use an interface it does not need.

1So far, the term interface is used to refer to design interface, i.e. the ports of a design component part of an
RTL design. Here, the term interface refers to the concept of software interface. Software interfaces are used
in object-oriented programming. They define a set of methods with their arguments and return types that
a class must implement if it adheres to the defined interface. The interface acts as a contract that describes
what can be done with an object of a type that implements the interface. The most important difference
between base classes and interfaces is that interfaces must not contain implementations.
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7.1.2. Limitation 2: Provisioning and Configuration of Infrastructure Resources

We have demonstrated that in many cases, generators of modules need to add additional ports
and internal connectivity to the generated module to account for the infrastructure needs of sub-
modules. This causes additional problems when further stepping up the hierarchies. Eventually,
it is not sufficient to just connect the ports required by the sub-modules to the parent module
hierarchy. Depending on the overall architecture, the infrastructure requirements have to be
met on some hierarchy, either on subsystem level or on SoC toplevel.

In an environment with multiple different generators which have their own microarchitecture
options and configurability, highly variable needs on centralized resources can arise. It is equally
straightforward to come up with examples here: The amount of SRAMs that are connected
per memory test controller depends on the amount of read and write bits that each individual
SRAM has as the number of overall connections to the test unit is limited by routing constraints.
Different SRAM types and performance characteristics may require different memory test con-
trollers. Depending on the safety and reliability requirements for the attached SRAMs, the
algorithms a memory test controller has to be able to execute may differ: while power-on self-
test is sufficient for most applications of on-chip SRAM, some special applications may require
non-destructive test at runtime (for example to provide long uptimes in industrial applications
where equipment reboots are not feasible).

Similar to all the generators, the generators for infrastructure components come with their
own Metamodel-of-Things, describing the configuration that is possible for the generator. This
Model-of-Things needs to be adjusted to ensure the generated infrastructure meets the exact
requirements of the instantiated IP components of a given SoC. This is problematic as the
Model-of-Things in the flow is the layer of formalized specification that is typically manually
entered by users. The need to provide matching Model-of-Things specifications for the in-
dividual components makes the application and execution of generators more complex, often
requiring detailed knowledge about the properties of the generated microarchitectures.

In an industrial context with traditional HDL-based development of digital designs, this issue
also exists. Solving it requires complex coordination between different teams responsible for
different sub-components. Typically, centralized teams collect information about the infras-
tructure needs of a design and ensure that central modules which are compatible with the SoC
needs of all components are provided.

The generation-based automation can already fully automate the generation of centralized in-
frastructure components when these infrastructure needs are formalized as Model-of-Things
instances. What the current approach can however not do is automate the collection of the
required information. The use of flexible generator-based approaches to IC design only exac-
erbates this issue. What kind of SoC resources a sub-component needs depends highly on the
Model-of-Things that was used to generate it and on the microarchitectural decisions made
as part of the Model-to-Model transformation. It is straightforward to come up with exam-
ples: A communication peripheral may or may not use an SRAM to buffer the I/O data. The
frequency and capacity of the SRAM may depend on the throughput required and defined
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in the Model-of-Things. The number of SRAMs may depend on the number of channels the
communication peripheral is using. The number of SRAMs that are needed may depend on
the microarchitectural properties of the I/O pipeline of the peripheral (how many channels are
served per I/O pipeline). The safety and reliability needs of the data stored in the SRAM may
influence the requirements on memory test circuitry that needs to be provided to the SRAM.
For some applications of on-chip SRAM, the integrity of the data stored will always be pro-
tected by other mechanisms (for example a higher-level protocol’s CRC). In other applications,
the SRAM is used to store data which has no further protection mechanism and the SRAM,
therefore, requires extensive hardware protection mechanisms.

This limitation is particularly critical for one area of the research goal: Automatically assess
the capabilities of different microarchitectural alternatives provided by the generators. For this
purpose, hyperparameter exploration algorithms can be applied to automatically modify the
configuration of the RTL generators, resulting in different generated architectures on Register
Transfer Level. In addition to changing characteristics such as the power, area, and performance
of the generated hardware, these parameter modifications often impact the required SoC in-
frastructure and it is challenging to align the different Models-of-Things used for one SoC when
parameters are automatically altered. The generation of suitable common infrastructure thus
needs to be automated. [90]

7.2. Root Cause Analysis

The limitations identified in the previous section are primarily caused by the current best
practice used for generator development. Section 7.2.1 describes this current best practice,
referred to as Single-Pass Generation in this work. This pattern is strictly enforced by VHDL
and SystemVerilog. In contrast, it is not enforced by Hardware Generation Languages such
as Chisel and SpinalHDL or by the Model-based Template-of-Design approach. Section 7.2.2
explains the rationale for why this pattern is still followed in HGLs and in the Templates-
of-Design libraries. Section 7.2.3 suggests an alternative pattern that solves the limitations
identified.

7.2.1. The Single-Pass Generator Pattern

As part of the Template-of-Design, every IP generator is typically implemented as its own
Python class which inherits from the Structure class part of the MetaRTL Metamodel-of-
Design. The FIR filter generator described in Listing 5.6 is an example of such a reusable
Template-of-Design class. This class takes Model-of-Things instances as its constructor argu-
ment. When the class is instantiated, the constructor is called, inserts the structure into the
Model-of-Design, and fills it with functionality. During the execution of the constructor, the
Model-of-Things is analyzed and the structure is built. The moment the constructor returns,
the Model-of-Design contains all elements describing the static IP instance as MetaRTL struc-
ture: all required connectivity, logic, sub-components, and – most importantly – all required
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inputs and output ports of the generated structure. This concept is what is referred to as
single-pass ToD execution. The key observation about single-pass ToD execution is: the mo-
ment any constructor finishes its work and returns an instance of a Model-of-Design Structure,
it is completely statically built and all its properties are well defined.

When generators are implemented using this single-pass approach, the sub-components and
logic that the constructor generates inside the Model-of-Design may either be blackboxes pro-
vided by MetaRTL (e.g. Register or Primitive components) or – following the concept of
hierarchical design – their own complex structures built by child generators, which are in turn
specializations of (i.e. classes derived from) the MetaRTL Structure. Here, the constructor of
the parent structure will in turn instantiate sub-structures provided by other generators (each
specialization of the MetaRTL Structure) by calling their sub-constructors.

create
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Figure 7.2.: UML Sequence Diagram of Template-of-Design in Listing 7.1 with single-pass cre-
ation of nested structures

Listing 7.1 contains a simplified skeleton of a Template-of-Design with multiple nested gen-
erators that highlights the order in which the nested structures a built. The main function
in line 33 is the entry point for the Template-of-Design. Starting from here, every __init__
is called once and returns a complete structure, including all its substructures, connectivity,
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1 class PeriphX(Structure):
2 def __init__(self, parent=None):
3 super().__init__(Ports=[ ... ],
4 parent=parent)
5 ...
6 memX1 = Mem(self)
7 memX2 = Mem(self)
8 ...
9 # end of constructor,

10 # Structure fully finalized
11

12 class PeriphY(Structure):
13 def __init__(self, parent=None):
14 super().__init__(Ports=[ ... ],
15 parent=parent)
16 ...
17 memY1 = Mem(self)
18 ...
19 # end of constructor,
20 # Structure fully finalized
21

22 class Toplevel(Structure):
23 def __init__(self, parent=None):
24 super().__init__(Ports=[ ... ],
25 parent=parent)
26 ...
27 pX = PeriphX(self)
28 pY = PeriphY(self)
29 ...
30 # end of constructor,
31 # Structure fully finalized
32

33 def main(Api, MoD):
34 t = Toplevel(parent=MoD)

Listing 7.1: Sample Template-of-Design with single-pass creation of nested structures

and interfaces. The sequence of calls and the control flow through the application can be best
visualized with the UML sequence diagram in Figure 7.2. Here, the dashed arrows show when
a structure is finalized:

1. memX1, after the __init__ called by the instantiation in line 6 returns
2. memX2, after the __init__ called by the instantiation in line 7 returns
3. pX, after the __init__ called by the instantiation in line 27 returns
4. memY1, after the __init__ called by the instantiation in line 17 returns
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5. pY, after the __init__ called by the instantiation in line 28 returns
6. t, after the __init__ called by the instantiation in line 34 returns

It is important to note that this pattern is not specific to the model-based approach: As men-
tioned in the introduction to this section, the same applies to traditional HDLs: the language
construct that instantiates a module in SystemVerilog or a component in VHDL defines the
exact parameterization of the design. Upon elaboration of a SystemVerilog or VHDL module,
this line is what provides a fixed definition of the parameter set used for the instance. Moreover,
the pattern is also applied in Chisel and SpinalHDL and equivalent examples can be derived in
these hardware generation languages.

7.2.2. Benefits of Single-Pass Generation

While it is helpful to allow generators to build structures with changing interfaces, it is impor-
tant that the moment the constructor returns, the defined design interfaces (module ports) are
static. Dynamic modifications of both the interfaces and functionality after the generation of
a module have shown to be particularly hard to handle: how should a parent generator make
use of the functionality of the child generator if it does not know how to interface it? The same
generally applies to the internals of any generated module. When changing the functionality
after the parent generator has finished, who is responsible for modifying the structure generated
by the parent generator? How is it possible to find out what needs to be done in a sub-structure
without completely reimplementing the sub-generator’s logic?

When the established pattern of Single-Pass Generation is followed, any parent structure knows
how to connect its hardware to the child structure as it can make use of the complete and static
design interface of the child structure once its constructor returns. The assessments in this
area show that the simplicity of this approach and its high reliability is what make it the gold
standard for hardware generation to date.

A static and well-defined design interface is also important for generator reuse. In the current
best-practice approach, a generator invokes a certain sub-generator with a defined configuration
as provided by a Model-of-Things instance handed to the constructor of the sub-generator. The
parent generator has to rely on a contract that defines a design interface and functionality for the
generated submodule for any given Model-of-Things instance. Any internal change of the sub-
generator, for example, an extension of its functionality is not critical for the parent generator
as long as this contract is not violated.

7.2.3. Multi-Pass Generation

To come up with a solution for the identified limitations, a closer assessment of the contract
defined for any IP generator library was conducted. In general, this contract consists of several
properties. These properties include the versions of the model-based generation framework the
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generator is compatible with, the dependencies the generator has on other sub-generators (and
which versions of those sub-generators it is compatible with), and the Metamodel-of-Things
that have to be used to configure the generator.

In addition, the following properties are considered essential elements of this contract:

1. IP Functionality

a) the functionality a component provides to the outside world
b) the design interface (ports) a component exposes to use the functionality

2. Infrastructure Dependencies

a) the infrastructure resources required by the component to provide its functionality
b) the design interface (ports) and connectivity that the component requires to access

the infrastructure functionality

In traditional Hardware Description Languages, these properties are mostly fixed (aside from
minimal size configurability based on parameters, both the functionality, infrastructure require-
ments and interface of a SystemVerilog module or VHDL component are mostly static). In a
generator-based ecosystem, these properties are not generally fixed. The MDA framework is
suited for the development of IP generators that significantly modify the functionality ((1a) and
(2a)) and even the design interface (ports) to the outside world ((1b) and (2b)) of a Structure
that is being generated in the Model-of-Design. Nevertheless, the contract mandates that these
properties are fixed for a given set of Model-of-Things input parameters (A different Model-of-
Things can result in different functionality, infrastructure needs, or HW design interfaces).

The internal logic and interfaces built for each of the structures are those to access the functions
provided by the structure ((1a) and (1b)) and those that are needed by the sub-structure
to access required infrastructure components ((2a) and (2b)). It is important to note that
(2a) and (2b) do not only include the infrastructure needed by the sub-structure themselves
but also infrastructure that is needed by potential sub-sub-structures. For example, once the
construction of pX in line 27 of Listing 7.1 returns, not only the infrastructure interfaces for
infrastructure required by the peripheral itself need to be created. The constructed structure
also needs to have all infrastructure interfaces and correct internal connectivity and logic for
the infrastructure needs of its sub-structures memX1 and memX2.

It has not been possible to identify a method that allows us to resolve the limitations identified
while maintaining the established single-pass generation pattern. Upon closer inspection of the
problem and the side effects the modifications to the Template-of-Design structure has on the
overall design, the following was found: for any use of a generator, the provided functionality
(1a) and provided interfaces (1b) need to be fully constructed and available when the constructor
of the sub-generator returns. Only if this holds true, the generator of the parent structure can
make use of the functionality of the sub-component that is instantiated by connecting it to its
internal logic. A deviation from classical single-pass ToD construction for (1a) and (1b) is not
meaningfully possible.

This limitation does however not hold apply to (2a) and (2b). From the point of view of any
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parent generator, the functionality the sub-components require (2a) and the interfaces needed
to provide them (2b) does not need to be completed to construct all the functionality of the
parent structure.

What this means can be explained with a few examples using an arbitrary communication
peripheral:

• It is sufficient to instantiate all SRAMs with only their read and write interfaces as needed
by the peripheral. The interfaces for memory test are not required or used to construct
the peripheral itself and can be provided later.

• It is sufficient to instantiate all HW/SW interface registers with a wrapper exhibiting their
write, enable, and read ports without actually connecting them to a bus slave interface
and bus interface logic. The peripheral can use this wrapper to receive information from
the HW/SW interface or to provide information to it. Any logic to actually make them
HW/SW accessible is not required or used to construct the peripheral itself and can be
provided later. From the point of view of the peripheral, the sub-component that provides
the bus connectivity is actually just providing HW/SW interface functionality: which and
how many buses need to be connected to the peripheral is not a concern of the peripheral
but an integration concern.

In all these examples the core task of the IP generator, the construction of the actual IP
functionality and interface can be completed without the required infrastructure. This thesis,
therefore, suggests a deviation from the established best practice pattern of single-pass gener-
ation. While a generation of (1a) and (1b) in an unchanged, constructor-based manner is still
required, this requirement can be relaxed for (2a) and (2b). This means that infrastructure
generation shall be omitted in the first pass of all generators. Multiple later passes can then
extend the existing MoD structures, resulting in an overall flow that is referred to as Multi-Pass
Generation.

7.3. Implementation of Multi-Pass Generation

This section describes the design pattern derived for multi-pass generator development. To
ensure the Template-of-Design execution ends with correct and working generators, it needs
to be guaranteed that all infrastructure resources will eventually be inserted into the existing
structures and that this happens without unintended modifications and side effects. To provide
these guarantees, a reliable library needs to be developed which follows intuitive design pat-
terns for developing the multi-pass generators. A key goal is to come up with an architecture
that addresses the limitation identified and does not violate fundamental software architectural
principles. Here, the guidelines provided by the five popular and widely accepted design prin-
ciples of object-oriented design summarized with the mnemonic SOLID can be applied. In the
following, this section lists the complete set of SOLID principles and shows which objectives
were derived from them for the implementation of the multi-pass pattern.
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• The Single Responsiblity Principle. This principle states that “[...] each software module
has one, and only one, reason to change” [72]. A logical consequence of this observation is
that a module (i.e. class) should only have one job [24]. From this principle, the need for
a clear and clean separation of concerns in the development of the generators is derived:
every generator should generate what it is responsible for, request its dependencies, and
delegate all tasks it is not responsible for. In the concrete example, IP generators should
not have to take care of infrastructure requirements they have themself or their sub-
components have.

• The Open-Closed Principle. This principle states that in order to build a software system
that is easy to change and extend, they need to be split into modules that “[...] must
be designed to allow the behavior of those systems to be changed by adding new code,
rather than changing existing code.” [72]. This principle shows that it must be possible
to change and extend the infrastructure capabilities of the generators without changing
existing generator code that just uses this infrastructure or just uses components that
make use of this infrastructure.

• The Liskov Substitution Principle. This principle states that “[...] to build software
systems from interchangeable parts, those parts must adhere to a contract that allows
those parts to be substituted one for another” [72]. This principle emphasizes that a
clean contract needs to be defined between generators. This contract should allow every
generator to make use of sub-components and to make use of infrastructure components
without contributing to providing or connecting the functionality of these infrastructure
components.

• The Interface Segregation Principle. “This principle advises software designers to avoid
depending on things that they don’t use” [72]. This principle shows that the generators
should only depend on the functionality provided by the sub-generators, not on the in-
frastructure requirement of these sub-generators. When this principle is followed, the
generators will not contribute to depend on any interfaces related to infrastructure func-
tionality required by their sub-generators and therefore be indifferent to any changes in
the infrastructure functionality.

• The Dependency Inversion Principle. “The code that implements high-level policy should
not depend on the code that implements low-level details” [72]. This principle refers to
what is commonly implemented by Inversion of Control in software engineering. A key
part of this principle is that higher-level software components do not implicitly make use of
lower-level software components. Instead, the higher-level components depend on software
interfaces only and can be configured with respect to which lower-level components they
use. This principle highlights that it needs to be possible to control which infrastructure
providers are used when a parent module with a certain sub-generator is instantiated.
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7.3.1. Definition of Interfaces for Communication between Generators

A key part of the suggested approach to generator development is the definition of reusable
software interfaces that are used to communicate between generators. These interfaces are
a core element of realizing the Interface Segregation Principle and the Liskov Substitution
Principle. It defines a contract between two generators. Any other generator that also adheres
to this contract can be used interchangeably as part of the component. Using this principle,
infrastructure generators in the generator libraries can simply be replaced without touching the
generators depending on the infrastructure generators.

1 from abc import ABC, abstractmethod
2

3 class IMemoryGenerator(ABC):
4 @abstractmethod
5 def getMem(self, parent, memoryMoT) -> None:
6 """
7 Generate a Memory and insert it into MoD
8 :param parent: the MoD Structure into which the memory is inserted
9 :param memoryMoT: the MoT model describing the memory properties

10 """
11 pass

Listing 7.2: Definition of Memory Generator Interface

Listing 7.2 shows a simplified example of such a generic interface called IMemoryGenerator
that all memory generators have to implement. The Python language itself does not support
software interfaces as a separate construct. To define an interface in Python, an abstract base
class (abstract meaning it cannot be instantiated) that defines methods but does not include any
method behavior is utilized. Any Python class that implements this interface simply inherits
from the abstract base class and overrides the abstract methods.

7.3.2. Application of the Dependency Inversion Principle

Based on the definition of interfaces for infrastructure generators suggested in Section 7.3.1, the
dependency inversion principle with a mechanism called constructor-based dependency injection
is applied.

Listing 7.3 contains a modified version of the PeriphX structure that was initially introduced
in the Single-pass ToD from Listing 7.1. Construct-based dependency injection is used for the
provisioning of memory infrastructure: one concrete implementation of the software interface
IMemoryGenerator is passed to the __init__ in Line 3.

The first benefit of this pattern is that the user of the generator PeriphX can decide which
memory generator to provide to __init__ (as long as it implements the same functionality
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1 class PeriphX(Structure):
2 def __init__(self, parent: Structure,
3 testableMemGen: IMemoryGenerator):
4 super().__init__(Ports=[ ... ], parent=parent)
5 ...
6 memX1 = testableMemGen.getMem(self)
7 memX2 = testableMemGen.getMem(self)
8 ...

Listing 7.3: Application of Dependency Injection for Infrastructure Generators

and software interface IMemoryGenerator). Depending on the concrete implementation, the
calls to getMem in lines 6 and 7 can behave significantly differently: they can instantiate an
actual sub-structure or only return a dummy object to access the read and write ports of the
memory which are connected to a corresponding port of PeriphX. A consequence of this is that
the peripheral generator PeriphX is compatible with any memory architecture, as long as a
compatible generator is provided.

The second benefit is the dependencies on sub-generators become immediately visible. When a
parent generator is used, the constructor arguments define what sub-generators shall be used.
This makes multiple, potentially opaque hierarchies of dependencies clearly visible. This is
particularly useful in combination with multi-pass generation: the dependency on the multi-pass
generator for one of the sub-modules becomes immediately visible to the user of the generator.
The user sees that the sub-structure has additional infrastructure needs and is aware that the
created structures are not finalized and will be modified in the second and further generation
passes.

7.3.3. Management of Multiple Passes

It is not possible to first generate all components which require infrastructure resources and
then generate the correct infrastructure resources by inspecting the generated components. The
reason for this becomes apparent when looking at the SRAM example again: Assuming there is
a generator for memory test controllers that supports two algorithms for memory test X and Y.
Both algorithms have very different memory test interfaces (the interface from SRAM wrapper
to memory test controller for algorithm X is a lot smaller than the interface for algorithm Y
and therefore easier to route in a physical implementation). On the other hand, algorithm X is
limited in its coverage and may not meet all application needs, whereas Y can provide extended
protection for safety or high-reliability applications. When the overall SoC is generated, the
different IP generators have to run in a certain sequence and fully complete the generation of
the structures they are responsible for. It is therefore desirable to use memory test algorithm X
if no individual IP component requires memory test algorithm Y. For any individual generator
X, there is no way of knowing whether one of the other IP generators will require the extended
memory test and whether it should construct the SRAM wrapper for algorithms X and Y.
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For this purpose, the software interfaces that every multi-pass generator needs to implement
are first defined.

1 class IMultipassGenerator(ABC):
2 @abstractmethod
3 def modifyMoD(self) -> bool:
4 """
5 Called to run the next generator pass
6 :returns: True if changes to the MoD have
7 been made, False otherwise
8 """
9 pass

Listing 7.4: Abstract Base Class of a ToD Multi-pass Generator

Listing 7.4 shows that the software interface IMultipassGenerator defines only one single
method modifyMoD. This method is called by the multi-pass generation library to execute the
next pass of MoD construction. The generator that implements this method uses this call to
modify the Model-of-Design, adding the infrastructure components it is responsible for. The
most important aspect of this method is its return value. This method must return True if
it has made any changes to the MoD and False otherwise. This return value is important
as it is used by the multi-pass generation library to handle cyclical dependencies between the
generators: it is used to determine when it can stop invoking the generators because the MoD
is fully constructed.

7.3.4. Resolution of Circular Dependencies

As mentioned in the previous section, there can be circular dependencies between different
infrastructure resources: The memory test controllers have bus interfaces and need to know
the characteristics of the bus infrastructure to be constructed, the bus infrastructure in turn
needs to be able to raise interrupts and the interrupt controllers may need the memory to
allow configurable interrupt priority and buffering of incoming interrupts. The dependencies
between the individual generators are circular. There is no linear order in which structures
can be generated so that every structure has all its required information available. Based on
the defined software interface, multi-pass generators for different infrastructure concerns can
be implemented. There can be for example a multi-pass generator for memory test, interrupt
handling, bus infrastructure, or handling of aspects of functional safety and security such as
management of alarms in a design.

Listing 7.4 shows the API that needs to be used to ensure these generators are executed and
the circular dependencies are resolved: the library provides a MultipassToDRunner class that
is responsible for invoking the multi-pass generators. This class has two key methods: the
registerMultipassGen method used to register all existing generators (a prerequisite so that
the class can later invoke them) and the runAllPasses method which eventually runs the
generators.
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1 class MultipassToDRunner:
2 ...
3

4 def registerMultipassGen(self,
5 g: IMultipassGenerator) -> None:
6 """
7 Has to be called to register every
8 IMultipassGenerator in the ToD
9 """

10 ...
11

12 def runAllPasses(self):
13 """
14 This method has to be called after the first
15 pass of ToD execution is complete to run all
16 subsequent passes on the MoD
17 """
18 ...

Listing 7.5: Excerpt from Multi-pass ToD Runner Library

The runner will then call the registered multi-pass generators in round-robin style using the
modifyMoD implemented as part of the IMultipassGenerator interface served by each gener-
ator. The implementation of modifyMoD can then modify the MoD. The return value of this
method is used to understand whether the generator pass has modified the MoD. Every modi-
fication made by a generator may trigger the need to rerun another generator. The runner will
therefore loop over all the multi-pass generators until no further change happens to the MoD
by none of the generators.

7.3.5. Example of a Multi-Pass ToD

Listing 7.6 contains a Template-of-Design with support for multi-pass generation of the Model-
of-Design. For this example, a TestableMemoryGenerator class has been developed which
inherits from the abstract base class IMultipassGenerator from Listing 7.5. The first major
difference can be found in the main function, where the TestableMemoryGenerator is instan-
tiated. After this, the ToD is executed in a similar manner in the single-pass example. The
Major difference here is that the invocation in line 36 will only create the functional aspects
and connectivity (1a) and (1b) without the infrastructure components (2a) and (2b). This
intermediate state is what is called the first pass of the generator. When this constructor call
returns, the MoD is therefore incomplete. Instead of providing a complete MoD, the template
is signaling to the multi-pass generator TestableMemoryGenerator that there are still open
infrastructure needs: the calls to getMem in lines 6, 7 and 17 will hand control over to the
multi-pass generator responsible for memories. This can also be seen in the UML sequence
diagram for the multi-pass generator as provided in Figure 7.3. The multi-pass generator for
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memories will create and return an incomplete Mem instance and, most importantly, register
the need for memory test with the memory generator to be later added. In a realistic example,
significantly more details on the properties and requirements for the memory test would be
provided so that the memory test generator can later determine the ideal test architecture.

The sequence diagram then sketches the creation of the multi-pass ToD runner which is invoking
all generators after the first pass.

In the example, the UML sequence diagram sketches the actions the modifyMoD call of the
TestableMemoryGenerator performs. As all memories have been created when the multipass
runner has been created, the generator can then analyze how many memories are created, what
their data widths are, and where they are located. Moreover, the ToD will have provided
detailed information on the test requirements of the individual memories. Based on this in-
formation, it can make the architectural decisions needed to instantiate the memory test: how
many test units are needed, on which hierarchies should they be placed, and which test pro-
tocols and test design interfaces are needed between the memories and the memory test units.
Based on this analysis, the design can be completed, meaning test units can be instantiated,
the memory wrappers can be extended with logic and connectivity and the toplevel connections
can be created.

7.4. Application and Results

The suggested design pattern was trialed with different infrastructure generators for three
categories of infrastructure:

• Different flavors of a memory generator were implemented. A simplified version of these
generators has been used to provide the examples in this thesis. The implementation of
this generator shows that it is possible to conditionally provide either centralized memory
test on design toplevel or distributed memory tests within the IPs and within the subsys-
tems in which the IPs are used. This example further demonstrates that it is possible to
switch between memory on top and distributed memory architectures without modifying
the peripheral generators.

• The pattern has been applied in a Master’s thesis for the generation of SoC Bus Fabric
[89]. This work shows that developers of IP generators can eliminate any need to address
bus-specific topics such as the instantiation of bus interface modules or the creation of any
bus interfaces. A key finding of this work is that it is important to define clear interfaces
between the peripherals requiring the infrastructure (HW/SW interfaces for example for
configuration registers or data streams) and the bus generators.

• A simple interrupt controller has been implemented to show how this distributed generator
approach can both provide wires to IP generators which can be used to signal interrupts
and also perform toplevel connectivity and interrupt handling for these wires.
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1 class PeriphX(Structure):
2 def __init__(self, testableMemGen, parent):
3 super().__init__(Ports=[ ... ], parent=parent)
4 # create ports for (1b) only
5 ...
6 memX1 = testableMemGen.getMem(self)
7 memX2 = testableMemGen.getMem(self)
8 ...
9 # end of constructor, created substructures,

10 # logic, and connectivity for (1a) only
11

12 class PeriphY(Structure):
13 def __init__(self, testableMemGen, parent):
14 super().__init__(Ports=[ ... ], parent=parent)
15 # create ports for (1b) only
16 ...
17 memY1 = testableMemGen.getMem(self)
18 ...
19 # end of constructor, created substructures,
20 # logic, and connectivity for (1a) only
21

22 class Toplevel(Structure):
23 def __init__(self, testableMemGen, parent):
24 super().__init__(Ports=[ ... ], parent=parent)
25 # create ports for (1b) only
26 ...
27 pX = PeriphX(testableMemGen, self)
28 pY = PeriphY(testableMemGen, self)
29 ...
30 # end of constructor, created substructures,
31 # logic, and connectivity for (1a) only
32

33 def main(Api, MoD):
34 testableMemGen = TestableMemoryGenerator(MoD)
35

36 Toplevel(testableMemGen, parent=MoD)
37

38 todRunner = MultipassToDRunner()
39 todRunner.registerMultipassGen(testableMemGen)
40 todRunner.runAllPasses() # ports for (2a) and (2b),
41 # potentially centralized memory test units

Listing 7.6: Sample Template-of-Design with Multi-pass Generation
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Figure 7.3.: UML Sequence Diagram of Template-of-Design in Listing 7.6 with Multi-pass Gen-
eration
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It is possible to confirm the benefits of the suggested multi-pass flow with the examples of bus
fabric, memory test, and interrupt routing. The combination of different infrastructure genera-
tors also showed that the suggested patterns can handle circular dependencies: the centralized
memory test units were connected to the bus infrastructure and the information about the
required connection was only available after the second pass of the memory generator.

7.4.1. Key Achievements

Based on the pattern presented in this chapter, it is possible to develop IP generators entirely
independent of SoC integration aspects. The provisioning of SoC integration inside the gener-
ated IPs (e.g. optimal bus interface sub-components) is transparently delegated to specialized
generators. Changes to the centralized generators can be performed that result in changes to
the generated hardware can and the protocols utilized in it can happen without modifications to
the IP generators intended for reuse. The centralized handling of the multiple passes of these
generators has been demonstrated to be a reliable method to ensure that all infrastructure
elements are provided in the design.

It was found that it is straightforward for infrastructure generators to automatically collect
information on the needs of the individual IP generators generated. Using this information,
the infrastructure generators can automatically and transparently generate suitable SoC infras-
tructure (e.g. bus fabric with topology adjusted to the individual generators) and provide the
toplevel connectivity for their infrastructure. This simplification becomes particularly signifi-
cant in larger SoCs. Here, many infrastructure needs typically propagate to the toplevel and
require complex centralized connectivity and provisioning of modules that provide the infras-
tructure. The approach presented in this chapter allows to apply a clean divide-and-conquer
approach where the different centralized needs are handled by reusable and modular genera-
tors.

7.4.2. Challenges

Based on the application of the patterns presented in this chapter and based on the experience
with the application of model-based hardware generation in an industrial context, two challenges
can be seen that need to be addressed to successfully roll-out such a methodology.

7.4.2.1. Adaptation to Software Thinking and Software Methodology

Throughout the research on model-based generation methods for digital design, it was found
that the transition from traditional hardware description languages to hardware generation
approaches comes with a learning curve that is particularly difficult for hardware designers to
overcome. It is a major focus of the MDA framework to be simple and intuitive to use. This
is reflected in the transparent and easy-to-learn metamodeling framework that is applied to
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implement it. The choice of the programming language Python is equally important for this:
it is a language with a particularly flat learning curve that is commonly utilized outside of the
scope of professional software engineering and taught as part of university curricula in the field
of science, technology, and engineering. This has helped the adaptation of the methodology,
particularly in an environment of hardware designers who are already familiar with Python
scripting.

While the introduction of the patterns suggested in this chapter shows real benefits and sig-
nificant potential above the productivity benefits already identified with the current generator
development, it also makes the introduction of the methodology to new engineers more chal-
lenging. For successful adoption of the methodology, it is considered essential to provide good
training and ensure all utilized design patterns are the simplest-in-class rather than best-in-class
approaches. The methodology therefore explicitly avoids making use of sophisticated software
libraries such as dependency injection frameworks.

7.4.2.2. Definition of Reusable and Stable Interfaces for Infrastructure Requests

The definition of clear, clean, and consistent software interfaces that allow a modular overall
architecture and their application to generator development is extremely powerful. They are
the foundation required for fully reusable IP generators which do not require any changes in the
generator source code when used in different integration contexts. It is however important to
state that when this pattern is consistently applied, the IP generators depend on the software
interface instead of depending on the component implementing it.

Any changes to these software interfaces which are not backward-compatible will require chang-
ing the generators that make use of them. The definition of these software interfaces, therefore,
has to be done with great caution and in consideration of all potential use cases. Poor quality
of these interface definitions will inevitably lead to technical debt that is hard to resolve.
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This thesis adapts, transfers, and extends the vision of Model Driven Architecture for use in
the field of digital hardware design. It identifies key Metamodels and Model-to-Model trans-
formations and implements an end-to-end generation flow for digital designs. The framework
developed in the context of this thesis puts particular focus on Metamodel-based automation
to reduce the manual effort required to develop generators.

The new framework enables a shift from the development of static instances of digital hardware
in hardware description languages such as SystemVerilog and VHDL to the development of
highly configurable generators in a general-purpose software programming language. This thesis
demonstrates how the capabilities of this general-purpose programming language and the MDA-
inspired modeling environment can be applied for generator reuse and to solve complex System-
on-Chip (SoC) infrastructure problems.

In the timespan between the start of this thesis work and its completion, the research and
implementation provided by it have laid the foundation for what is now the MetaX initiative at
Infineon Technologies AG. As part of this initiative, the work of this thesis is applied outside of
academia and in an industrial context. MetaX is a key element of the strategic path Infineon
takes towards automation and code generation and developing into an integral component in
Infineon’s design flow. The following paragraphs contain the key contributions of this thesis to
the MetaX initiative.

8.1. Key Contributions

Formalization of MDA in the HW domain This thesis provides a firm formal framework for
the application of Model Driven Architecture to the hardware domain. It uses the vision of
Model Driven Architecture that was developed by the Object Management Group (OMG) for
the software domain and defines a corresponding approach for hardware development. As part
of this approach, a schema of layers with clear terminologies is developed that precisely captures
the intention of the MDA layers of the hardware domain. It defines the level of abstraction of
these layers and their semantics.

This foundational work is applied to the automated generation of digital designs in this thesis.
The formal framework that has been developed has also been the basis for a body of research
conducted by the Infineon Metamodeling group. In this context, the approach has been suc-
cessfully applied outside of digital design: it has been applied to formal verification automation
and the development of firmware and embedded software implementation automation.
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Definition of Key Metamodels This thesis defines key Metamodels for Digital Design on RTL
level. The Metamodel introduced for the so-called “Model-of-Design” layer is called MetaRTL.
The structural approach to representing a design on register transfer level differs significantly
from related work introduced in Chapter 3 and demonstrates measurable benefits over it. In
addition, this thesis defines the level of abstraction and Metamodel on the so-called “Model-of-
View” layer. Moreover, this thesis provides Orthogonal Metamodels that are powerful enablers
for use on different levels of abstraction. They are applied and their success is demonstrated
in the context of this thesis. Moreover, they are applied to related work that is based on the
foundation provided by this thesis – acting as a common enabler for Model Driven Architecture
Methodology in the hardware domain.

Identification of a Novel Approach to View Generation This thesis further introduces a
significant innovation in the field of view generation. It defines and implements the so-called
View Language Description (VLD) format as a way to automatically generate the definition
of the “Model-of-View” layer from an EBNF-like description of the target view’s grammar.
With the VLD format as input, the process of view generation from “Model-of-View” layer has
been 100% automated. The approach taken here is novel and significantly differs from existing
approaches to code generation. The publication that introduces VLD has been awarded the
“best poster award” of the conference.

This approach is applied in this thesis as it eases the transfer of structural design information
onto the event-driven simulation semantics of the target language. Aside from the practical
benefits, this thesis also illustrates how the VLD-based approach automatically leads to clean,
consistently formatted, and grammatically correct target views, simplifying the utilization of
the generated views in design flows and eliminating an entire class of tool bugs: the accidental
generation of target views with incorrect grammar. The beneficial nature of the novel approach
is also underlined by the fact that research based on this thesis has successfully applied this
approach to other domains [85, 97].

Implementation of a Model Driven Architecture Framework The formalization and ap-
proaches presented so far are entirely independent of a certain target language and only depend
on the generic properties of common Metamodeling frameworks. This thesis provides an imple-
mentation of the MDA framework based on Infineon’s proprietary Metamodeling Framework.
It develops key components to extend the existing framework to enable its use in a Model
Driven Architecture context.

Infrastructure for Powerful Model-to-Model Transformations This thesis identifies the ef-
ficiency of Model-to-Model transformations as a key area of optimization for Model Driven
Architecture approaches. It develops and promotes an imperative approach to Model-to-Model
transformation. This approach significantly differs from other approaches such as the com-
monly applied declarative Extensible Stylesheet Language Transformation (XSLT) or Epsilon
Transformation Language (ETL) approaches. The benefits of this approach become particu-
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larly apparent when comparing the efficiency of the Model-to-Model transformations to related
work. This thesis demonstrates that the capabilities exceed the state of what can be provided
by today’s hardware description languages and are on par with what the field or research of
Hardware Generation Languages (HGLs) can provide. The approach is superior to existing
HGL approaches in three aspects.

First, it is a Model-to-Model transformation approach. The HGL approach can be at best
interpreted as a Model-Generation approach. Having input models as an elementary part of
the approach is what eventually enables the full end-to-end automation essential to the Model
Driven Architecture approach. Such automation is not a primary aspect of today’s HGL re-
search.

Second, the Python-based approach provides access to the near-infinite toolbox of Python-based
libraries and tools right during the Model-to-Model transformation. This enables nothing less
than the conflation of hardware design and design space exploration.

Third, the approach is a lot easier to learn and understand than the existing approaches in the
field of HGLs. It relies on a framework centered around Python, enabling a fast learning curve
for engineers outside the field of software development. The Metamodels that are defined for all
layers of the Model Driven Architecture framework also have a significant contribution to the
ease of use of the framework: The visual representation of the Metamodel and its formalisms
allow engineers to get started with constructing Model-to-Model transformations right away –
learning any Domain-Specific Languages is not required.

Application of Software Engineering Methodology to Digital Design The Model Driven
Architecture framework developed in this thesis opens the world of digital hardware design to
the patterns and principles that are established in Software Engineering. All development of
hardware and hardware generators based on the framework is conducted as the development
of Model-to-Model transformations. This development happens on a language and platform
designed for software development. Most noteworthy, the SOLID principles developed for
understandable, flexible, and extendable software architecture are applied to the world of IC
design. This transfer provides capabilities to the domain of IC design that has so far not been
available, opening up the path for an entirely new approach to design reuse.

The outcome of this thesis has been translated into practical applications in industrial designs
at Infineon Technologies AG, spanning from FPGAs to full-custom ICs. These real-world
applications show that the work of this thesis has surpassed the confines of academia and
yielded an industrial-strength solution.
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8.2. Publications

Large parts of this thesis, including its key findings and the novel solutions proposed and devel-
oped in the context of this thesis, have already been published in several scientific conferences
and journals [1, 2, 3, 4, 5, 6]. Any reuse of the author’s own work from these previous publi-
cations in this thesis is not marked with citations that attribute it to the author’s own work.
Instead, the original source is cited wherever applicable.

[1] Johannes Schreiner, Rainer Findenig, and Wolfgang Ecker. “Design centric modeling of
digital hardware”. In: 2016 IEEE International High Level Design Validation and Test
Workshop (HLDVT). 2016, pp. 46–52. doi: 10.1109/HLDVT.2016.7748254.

[2] Keerthikumara Devarajegowda, Johannes Schreiner, and Wolfgang Ecker. “Python Based
Framework for HDSLs with an Underlying Formal Semantics”. In: Proceedings of the
36th International Conference on Computer-Aided Design. ICCAD ’17. Irvine, Califor-
nia: IEEE Press, Nov. 2017, pp. 1019–1025. doi: 10.1109/ICCAD.2017.8203893.

[3] Wolfgang Ecker and Johannes Schreiner. “Metamodeling and Code Generation in the
Hardware/Software Interface Domain”. In: Handbook of Hardware/Software Codesign.
Ed. by Soonhoi Ha and Jürgen Teich. Dordrecht: Springer Netherlands, 2017, pp. 1051–
1091. isbn: 978-94-017-7267-9. doi: 10.1007/978-94-017-7267-9_32. url: https://d
oi.org/10.1007/978-94-017-7267-9_32.

[4] Johannes Schreiner and Wolfgang Ecker. “Digital Hardware Design Based on Metamod-
els and Model Transformations”. In: VLSI-SoC: System-on-Chip in the Nanoscale Era
– Design, Verification and Reliability. Ed. by Thomas Hollstein et al. Cham: Springer
International Publishing, Sept. 2017, pp. 83–107. isbn: 978-3-319-67104-8.

[5] Johannes Schreiner, Felix Willgerodt, and Wolfgang Ecker. “A New Approach for Gen-
erating View Generators”. In: Proceedings of DVCON US 2017. DVCON US 2017. IEEE
Press, Feb. 2017.

[6] Johannes Schreiner et al. “Generator IP-reuse and Automated Infrastructure Generation
for Model-based Full Chip Generation”. In: MBMV 2023; 26th Workshop. accepted and
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