
Lehrstuhl für Computergestützte Modellierung und Simulation
TUM School of Engineering and Design
Technical University of Munich

Deep Learning-Based Surrogate Models
for Linear Elasticity

Scientific work to obtain the degree

Master of Science (M.Sc.)

at the TUM School of Engineering and Design
of the Technical University of Munich.

Supervised by PD Dr.-Ing. habil. Stefan Kollmannsberger
Leon Herrmann, M.Sc.

Lehrstuhl für Computergestützte Modellierung und Simulation

Dr.-Ing. Davide D’Angella
Hyperganic Group

Submitted by Torsten Kai Schmid

Submitted on 31. March 2023

II

Abstract

Design optimization poses significant challenges due to the substantial expensive and
time-consuming characteristic of simulations. To counteract this issue, deep learning-
based surrogate models have recently emerged as an effective solution. However, current
research has primarily focused on applying these models to Computational Fluid Dynamics,
with limited studies in the area of Linear Elasticity.
Unlike previous work, the investigated structures are 3D with notable variations in the
simulation domains, resulting in significant changes to the learning domain of the network.
The proposed Convolutional Neural Network is based on the U-Net architecture and is
trained in a supervised manner to learn the displacement and stress results. The problem
is treated as an image-to-image learning task, with the simulation domain encoded through
a binary mask. The input images are associated with the spatial distribution of material
parameters, the applied boundary conditions, and the force density distribution.
The accuracy of the model has been evaluated on datasets encompassing up to 800

hip implant simulations. The finding showed that the trained models exhibit inadequate
generalization capabilities, indicating that more data is necessary for the investigated
problem formulation. To improve the performance for the given task, alternative encoding
strategies or learning approaches may be necessary.

III

IV

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Outline . 2

2 Basics of Neural Networks 3
2.1 Neural Networks in the Context of Artificial Intelligence 3
2.2 Properties of Neural Networks . 4
2.3 Optimization/Learning . 5

2.3.1 Cost Function . 5
2.3.2 Optimization Problem . 6
2.3.3 Optimizer . 8

3 Convolutional Neural Networks 11
3.1 Convolution . 11
3.2 Normalization . 13
3.3 Activation Function . 14
3.4 The U-Net Family . 15

4 Data Generation 19
4.1 Geometry Creation . 19
4.2 Simulation Setup . 22
4.3 Convergence . 23
4.4 Sampling . 24

5 Learning Methodology 27
5.1 Data Encoding . 28
5.2 Data Scaling . 29
5.3 Base Model . 30
5.4 Image Network and Scaling Network . 31

6 Results 33
6.1 Model and Training Setup . 33
6.2 Metrics . 35
6.3 Comparison of Loss Functions . 35
6.4 Generalization Capabilities of the Base Model 38

6.4.1 Increasing the Dataset Size . 38
6.4.2 Weight Decay . 41
6.4.3 Removing Outliers . 41

6.5 Image-Net: Displacements . 43
6.6 Image-Net and Scaling-Net . 44

V

6.7 Image-Net: Extension to Stresses . 45

7 Conclusion and Outlook 47

Bibliography 49

VI

Acronyms

AI Artificial Intelligence

BC Boundary Condition

BN Batch Normalization

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

DBC Dirichlet Boundary Condition

DoF Degree of Freedom

FCM Finite Cell Method

GPU Graphics Processing Unit

ML Machine Learning

NBC Neumann Boundary Condition

NN Neural Network

PCA Principal Component Analysis

PDE Partial Differential Equation

PINN Physics-informed Neural Network

STL Stereolithography

VII

VIII

List of Symbols

α Indicator function in the FCM

β1 Exponential decay parameter of m

β2 Exponential decay parameter of v

βBN Learned shift of BN layer

ϵ Strain tensor

γBN Learned scaling factor of BN layer

µX Channel-wise mean vector of Xmasked
ijk

µY Channel-wise mean vector of Y masked
ijk

µµỸ
Channel-wise mean vector of µỸ

µσỸ
Channel-wise mean vector of σỸ

µBN,b Channel-wise mean vector of batch for BN

µBN,mov Moving average of channel-wise mean vector of BN

µỸ Simulation and channel-wise mean matrix of Ỹ masked
ijk

σ Stress tensor

σX Channel-wise standard deviaton vector of Xmasked
ijk

σY Channel-wise standard deviaton vector of Y masked
ijk

σµỸ
Channel-wise standard deviation vector of µỸ

σσỸ
Channel-wise standard deviation vector of σỸ

σBN,b Channel-wise standard deviation vector of batch for BN

σBN,mov Moving average of channel-wise standard deviation vector of BN

σỸ Channel-wise standard deviaton matrix of Ỹ masked
ijk

θ Model parameters

Bconv Bias of convolution operation

f Force density

m Exponential moving average of the gradient

r Spatial position vector

u Displacement

v Exponential moving average of the squared gradient

w Simulation and channel dependent weights for L2,w

W conv Weights or filters of convolution operation

Continued on next page

IX

X Input dataset

x NN input

xBN,b Input batch to BN

xBN Input to BN in evaluation mode

xconv Input to convolution operation

X train Input of training dataset

Xval Input of validation dataset

xi Input data sample

y NN target

Y Target dataset

yBN,b Output batch after BN

yBN Output of BN in evaluation mode

yconv Output of convolution operation

Y train Target of training dataset

Y val Target of validation dataset

yi Target data sample

ϵ Term to improve numerical stability of Adam

ϵBN Term to improve numerical stability of BN

γ Learning rate of the optimizer

ΓD Dirichlet boundary

ΓN Neumann boundary

σ̂ Predicted stress tensor

û Predicted displacement

ŷ NN prediction of the target y

ŷi Prediction for the target data sample yi

ˆ̃µỸ Prediction of µ̃Ỹ

ˆ̃σỸ Prediction of σ̃Ỹ

ˆ̃yi Model prediction for ỹi

ˆ̃̃
Yijklm Prediction of ˜̃Yijklm

ˆ̃Y masked
ijk Prediction of Ỹ masked

ijk

λ Weight decay parameter

µz Mean of generic distribution z

ν Poisson’s ratio

Continued on next page

X

Ωe Extended simulation domain

Ωphy Physical simulation domain

F Prescribed total force constraint

tΓN
Prescribed traction on Neumann boundary

u Prescribed volumetric displacement constraint

uΓD
Prescribed displacement on Dirichlet boundary

σz Standard deviation of generic distribution z

τ Shift of the kernel function

DE Displacement error as defined in Equation (6.1)

SEMAXVM Error of the maximum von mises stress as defined in Equation (6.7)

µ̃Ỹ Standardized version of µỸ

σ̃Ỹ Standardized version of σỸ

x̃i Scaled input data sample

ỹi Scaled target data sample
˜̃Yijklm Simulation and channel-wise standardized form of Ỹijklm
˜̃Y masked
ijk Simulation and channel-wise standardized form of Ỹ masked

ijk

X̃ijklm Channel-wise standardized form of Xijklm

X̃masked
ijk Channel-wise standardized form of Xmasked

ijk

Ỹijklm Channel-wise standardized form of Yijklm

Ỹ masked
ijk Channel-wise standardized form of Y masked

ijk

z̃ Standardized generic distribution

m̂ Bias-corrected version of m

v̂ Bias-corrected version of v

a Activation function

b Batch size

C Cost function

Cbase Number of channels after first convolution

Cb Cost associated to batch

Cin Number of input channels

CBN
in Number of input channels to BN layer

Cconv
in Number of input channels to convolution operation

Cmul Channel multiplier

Cout Number of output channels

Continued on next page

XI

Cconv
out Number of output channels of convolution operation

Ctrain Cost of training dataset

D Image depth

d Current model depth

Dconv
in Input image depth of the convolution operation

Dm Model depth

Dconv
out Output image depth of the convolution operation

E Young’s modulus

H Image height

h Input to convolution

Hconv
in Input image height of the convolution operation

Hconv
out Output image height of the convolution operation

K Kernel size

k Convolution kernel

L Loss function

L1 Absolute loss function

L2 Square loss function

L2,w Weighted square loss function

mBN Momentum of BN layer

n Number of batches

N Dataset size

Nset Size of a subset of the dataset

nfeat Number of features within one model prediction

ninvox Number of voxels inside the physical domain Ωphy

Nconv
in Number of input data samples to convolution operation

nLayers Number of layers of the layered stochastic lattice

P Padding

s Output of convolution

S Stride

t Parameter of the functions involved in the convolution

W Image width

W conv
in Input image width of the convolution operation

W conv
out Output image width of the convolution operation

Continued on next page

XII

Xijklm Input dataset tensor

xA
ijklm Input to activation function

Xmasked
ijk Masked form of Xijklm

Yijklm Target dataset tensor

yA
ijklm Output of activation function

Y masked
ijk Masked form of Yijklm

z Generic distribution

zscore Z-score or value after standardization

ADE Average displacement error as defined in Equation (6.2)

DEMAXU Error of the maximum displacement as defined in Equation (6.3)

XIII

XIV

Chapter 1

Introduction

1.1 Motivation

Surrogate models are a mathematical tool used to replace expensive and time-consuming
simulations or experiments that assess desired outcomes, such as an object’s displace-
ment field. Surrogate modelling is particularly useful for design optimization and sensitivity
analysis, where a multitude of objective evaluations for various parameter combinations
are required, which may be impractical for real-world cases. Surrogate models are a
promising technique to alleviate the computational burden by using a data-driven approach
to construct a replacement model that closely mimics the behavior of the simulation model
while being computationally cheaper to evaluate.

Deep learning-based surrogate models have recently emerged as a result of the increas-
ing influence of Artificial Intelligence (AI) and the development of more powerful deep
learning methods and their broad accessibility through modern deep learning frameworks.
Recent studies have reported promising results in using surrogate models based on Con-
volutional Neural Networks (CNNs) for predicting incompressible (THUEREY et al., 2020)
and compressible flows (L. CHEN and THUEREY (2022); DURU et al. (2022)). Moreover,
encouraging results have been obtained for the prediction of temperature fields for layout
design of heat source components in systems engineering (X. CHEN et al., 2021) and
heat conduction (PENG et al., 2020).

Modern deep learning frameworks provide an opportunity to leverage gradient-based
optimization methods using the fully differentiable constructed surrogate models. Recent
studies have shown the effectiveness of such methods for shape optimization of airfoils
(L.-W. CHEN et al. (2020); MALLIK et al. (2022)). Furthermore, the fast evaluation of surro-
gate models also enables the use of population-based optimization algorithms (MESSNER,
2020). Overall, surrogate modeling, especially deep learning-based surrogate models,
are powerful tools that can significantly reduce the computational burden of complex
simulations and enable more efficient designs by accelerating optimization.

1.2 Objectives

The primary objective of this thesis is to investigate the implementation of advanced deep
learning architectures for the development of surrogate models in the context of 3D Linear
Elasticity. The majority of existing literature on deep learning-based surrogate models
focuses on Computational Fluid Dynamics (CFD) or thermal problems, with a limited

1

number of studies addressing the application of deep learning for Linear Elasticity. Linear
elastic simulations are indispensable for the design of physical objects; however, they
can be computationally expensive during the initial stages of design optimization when
exploring an extensive range of designs. The proposed surrogate model has the potential
to efficiently optimize geometries within a constrained design subspace, characterized
by a geometric recipe based on select parameters. The presented geometries originate
from a geometric recipe specifically tailored for hip implants, illustrating the potential
use case for rapid design optimization of patient-specific hip implants. Furthermore, the
surrogate model can function as an initial approximation for the solution of iterative solvers,
such as the conjugate gradient, as examined in UM et al. (2020), resulting in accelerated
convergence of the solver.

Unlike previous studies, this thesis focuses on the application of CNNs to 3D Linear
Elasticity with a significant part of the bounding box-based images extending beyond the
simulation domain. The geometric variations result in substantial changes of the simulation
domain and hence to the network’s learning domain. Additionally, the integration of variable
Dirichlet Boundary Conditions (DBCs) as images increases the challenge, as they exert
considerable influence on the simulation outcomes despite their limited spatial extent.

1.3 Outline

The content of the upcoming chapters can be summarized as follows:

- Chapter 2: Embeds deep learning into the broader field of AI and covers the
properties and training of Neural Networks (NNs).

- Chapter 3: Describes the different components of CNNs and presents the basic
structure of a state-of-the-art architecture for image-to-image tasks.

- Chapter 4: Outlines the strategy for generating data for the learning task, based
on a parametrized geometry and subsequent simulation of the structure.

- Chapter 5: Showcases the preparation of data for the learning task and intro-
duces different learning methodologies.

- Chapter 6: Demonstrates the obtained results, with a specific emphasis on error
metrics.

- Chapter 7: Summarizes the main results and outlines possible future research
directions.

2

Chapter 2

Basics of Neural Networks

This chapter gives a concise overview of the fundamental principles of NNs.

2.1 Neural Networks in the Context of Artificial Intelligence

AI

Example:
Knowledge

bases

ML

Example:
Linear

regressionNN

Figure 2.1: AI vs ML vs NN

This overview closely follows the work of GOODFELLOW et al. (2016) and is depicted
in Figure 2.1. AI refers to the ability of machines, particularly computers, to display
intelligence. Knowledge bases are one example of AI, which employ a set of rules to
make informed decisions based on a certain input. While following a predefined set of
rules to make decisions may be challenging for humans, it is a straightforward task for
computers. However, tasks such as speech and image recognition are difficult to define
using a set of rules. Therefore, Machine Learning (ML) methods that can automatically
learn and identify underlying patterns in data without being explicitly programmed are
essential. Linear regression is a basic example of ML, where the goal is to find a linear
relationship between the model parameters and the output variables (KOLLMANNSBERGER

3

et al., 2021). On the other hand, NNs are a quite sophisticated family of algorithms being
capable of extracting complicated features by composing them out of many simpler parts.

Learning algorithms are used to solve specific problems, such as Classification and
Regression. In Classification, the algorithm is trained to produce a function f : Rn →
{1, . . . , k} (GOODFELLOW et al., 2016). This function assigns a category to an input
described by a vector x, e.g., it assigns a number to a handwritten digit. Semantic
Segmentation takes this further by assigning a class label to each pixel within an image.
In Regression problems, the outputs are numerical values, instead of a label.

To learn the underlying patterns in data, different types of learning techniques, such
as Supervised Learning, Unsupervised Learning, and Reinforcement Learning exist. In
Supervised Learning, the dataset is labeled, meaning that for some input data points xi

the true outputs yi are known. In Unsupervised Learning, the dataset is not labeled, so
the true output for a given input is unknown. Reinforcement Learning involves training
an algorithm to make decisions based on interactions with its environment in order to
maximize the average reward provided by its environment.

The problems studied in this thesis belong to the category of Regression and will be
trained in a supervised manner using labeled datasets.

2.2 Properties of Neural Networks

The goal of NNs is to approximate a function y = f(x), where x represents the input and
y the output (GOODFELLOW et al., 2016). The NN is a learned mapping that approximates
this function as:

ŷ = fNN(x;θ) (2.1)

where θ denotes the parameters of the NN and ŷ its prediction. According to the universal
approximation theorem for functions, NNs are universal approximators, meaning that they
can theoretically approximate any continuous function to an arbitrary degree of accuracy
given enough parameters (HORNIK et al., 1989).

Typically, NNs are nested functions since they compose complex features out of a se-
quence of simpler functions. In the case of three functions, the NN can be represented as
fNN(x) = f (3)(f (2)(f (1)(x))). Various model architectures can be used, and one special
family of models will be discussed in Chapter 3.

Usually, the function y = f(x) is not entirely known, but only some specific inputs xi

and their corresponding outputs yi are available. These known inputs and outputs are
collected in an input dataset X and a target dataset Y , respectively, both of the size
N . The objective is to construct the function fNN that predicts the output ŷ as a good
approximation of an unknown y for a new input x.

4

The parameters θ are optimized or learned based on a specific objective function with
the procedure outlined in Chapter 2.3. Although NNs can theoretically approximate any
continuous function, the learning procedure may not find the optimal parameters and
introduce an error.

2.3 Optimization/Learning

The goal of learning is to minimize the expected error of novel data arising from an
underlying data-generating process. Given only a dataset consisting of N samples, the
expected error can only be indirectly minimized. To accomplish this, the dataset, consisting
of X and Y , is partitioned into two sets: the training set with X train and Y train, and the
validation set with Xval and Y val. In this thesis 80% of the dataset are used for training and
20% for validation, which is a common choice. The training set is employed to optimize
the model parameters, while the validation set is used to estimate the expected error of
new data and is thus the crucial quantity to quantify the model’s generalization ability.
(GOODFELLOW et al., 2016)

2.3.1 Cost Function

To optimize the model parameters, the cost function C, is used as the objective function.
Typically, the cost function is represented as the mean value over a given dataset:

C =
1

Nset

Nset∑
i=1

L(yi, ŷi) (2.2)

where Nset denotes the size of the dataset and L denotes the loss function measuring the
error of a single data sample, by comparing the target values yi with the model’s prediction
ŷi. During the learning process, the cost of the training set is utilized to adjust the model
parameters, while the cost of the validation set is employed to estimate the expected error
on novel data.

Choosing the appropriate loss function is critical as it should possess favorable characteris-
tics for optimization and result in good generalization performance on novel data. However,
in certain cases, the optimization process may necessitate a different loss function than
the one used for measuring performance on new data, resulting in an even more indirect
optimization. (GOODFELLOW et al., 2016).

In regression problems, two popular loss functions are the square loss and the absolute
loss, as illustrated in Figure 2.2 The square loss L2 computes the squared difference
between the true value yi and the predicted value ŷi. The model’s individual prediction
consists of nfeat values, which are compared element-wise with their respective target

5

values.

L2(yi, ŷi) =
1

nfeat

nfeat∑
j=1

(yij − ŷij)
2 (2.3)

The square loss exhibits a linearly dependent gradient magnitude on the error, which
results in a larger gradient magnitude for larger losses, and a gradient of zero for L = 0.
This variable gradient length can be advantageous for optimization. However, the square
loss is sensitive to outliers since it amplifies significant errors, leading to an increased
emphasis on outliers.

In contrast, the absolute loss L1 computes the absolute difference between the true value
yi and the predicted value ŷi.

L1(yi, ŷi) =
1

nfeat

nfeat∑
j=1

∣∣yij − ŷij

∣∣ (2.4)

Unlike the square loss, the absolute loss is more robust to outliers because it does not
amplify large errors. Nonetheless, the gradient of the absolute error is constant and not
smooth when the error approaches zero, which can negatively impact optimization.

−4 −2 0 2 4

y − ŷ

0

5

10

15

20

25

Lo
ss

(a) Square loss

−4 −2 0 2 4

y − ŷ

0

1

2

3

4

5

Lo
ss

(b) Absolute loss

Figure 2.2: Common loss functions for regression problems: square loss L2 and absolute
loss L1

Other commonly used loss functions for regression tasks include the Huber loss, the
Log-cosh loss and the Quantile loss. Further details about loss functions in ML can be
found in WANG et al. (2020).

2.3.2 Optimization Problem

The described indirect minimization of the expected error can be formulated as the
minimization of the training cost Ctrain with respect to the model parameters θ.

min
θ

Ctrain (2.5)

6

This is an unconstrained optimization problem. Since the loss function associates the
individual predictions ŷi consisting of nfeat real values with a real number L : Rnfeat → R
and the cost of the training set is just the mean of the individual losses, the optimization
problem is a single-objective optimization problem. However, this problem is usually not
solvable analytically, and gradient-based methods are used instead.

To compute the gradient of the cost function, the full cost function is typically too expensive
to calculate the gradient. Instead, minibatch methods are used, which involve using
subsets of the training dataset to approximate the gradient. Since the total cost of a
dataset is the mean of the individual losses, the mean can be estimated on smaller
subsets called batches. This is further motivated by the large dataset size, which features
redundant information regarding the gradient. The batches are shuffled during the training
process to mitigate the effect of correlation within the training set. By approximating the
gradient using batches, the algorithm can update the parameters more frequently, leading
to faster convergence of the optimizer. The choice of the batch size b is often influenced
by hardware considerations, as larger batch sizes can offer better gradient approximation
without additional computational cost if they can fit into GPU memory. Typically, the batch
size that maximizes throughput, measured as examples processed per second, leads to
the fastest training (GODBOLE et al., 2023).

Algorithm 2.1: Mini-batch gradient descent
Require :Training data inputs X train and targets Y train, validation data inputs Xval and

targets Y val, network architecture (see Chapter 3), optimizer (see
Chapter 2.3.3), initialize model parameters θ

forall epochs do
shuffle training dataset
divide training dataset into n batches of size b
forall batches do

for i < b do
ŷi= fNN(xi; θ) // Get model prediction
Li =L(yi,ŷi) // Compute loss of sample with chosen loss function

end for
Cb = 1

b

∑b
i=1 Li

optimizer.updateModelParameters() // see Chapter 2.3.3
end forall
check validation cost and stopping criteria // No update of model parameters
if shouldStop then

stop training early
end if

end forall

The mini-batch gradient descent algorithm, outlined in Algorithm 2.1, starts by setting up
the network architecture including the initialization of its parameters, the datasets, and
the optimizer. The initialization of the model parameters specifies the starting point for
the optimization and can strongly influence the convergence of the optimizer and the
generalization abilities of the model. Usually the parameters are initialized in some random
fashion. For further details the reader is referred to GOODFELLOW et al. (2016).

7

The entire dataset is processed by the optimizer a number of epochs. Before each
epoch, the training dataset is shuffled and divided into n batches of the size b. The cost
associated to this batch Cb is calculated and utilized by the optimizer to update the model
parameters θ. Afterwards, the cost of the validation set is checked, and the stopping
criteria is evaluated, which may result in the training being stopped early. Although, the
training cost usually continues to decrease during training, the validation cost, which
measures the performance on unseen data, may plateau or even increase, necessitating
early termination. The training time is determined by the available number of epochs due
to hardware constraints or the early stopping procedure.

The specifics of how the optimizer updates the model parameters have not been described
and will be introduced in Chapter 2.3.3.

2.3.3 Optimizer

Several optimizers have been suggested for the training of NNs throughout the years.
These optimizers vary in the type of information they employ to update the model parame-
ters. While some optimizers utilize gradients, others also utilize second-order information.
Moreover, some heuristic methods are often utilized to enhance the convergence behavior.
(GOODFELLOW et al., 2016)

The Adam optimizer, which was introduced in KINGMA and BA (2014), is one of the most
popular optimizers for NNs. As Adam only necessitates the computation of gradients,
it is computationally less expensive per update step compared to optimizers also using
second-order information.

Given that NNs are composed of nested functions and that the cost is a scalar, the
gradient is determined via backpropagation using automatic differentiation. This approach
differs from classical methods of differentiation, such as symbolic differentiation and
numerical differentiation. Symbolic differentiation requires the explicit specification of
derivatives with respect to certain parameters, while numerical differentiation introduces
approximation errors. In contrast, automatic differentiation utilizes the chain rule, and
backward mode is typically employed due to the scalar nature of the cost function, which
increases computational efficiency. Further informations about automatic differentiation
can be found in GRIEWANK and WALTHER (2008).

During the prediction step of a NN, a computational graph is generated by recording the
applied operations and their corresponding derivatives. This approach leverages the fact
that any complex computer program can be decomposed into simple steps with known
derivatives. The gradient is then calculated through the repeated application of the chain
rule starting from the cost. When considering a parameter being part of f (2) in the case of
three functions as given in Chapter 2.2 this can be written as:

∂Ctrain

∂θ
=

∂Ctrain

∂ŷ

∂ŷ

∂θ
=

(
∂Ctrain

∂ŷ

∂ŷ

∂f (3)

)
∂f (3)

∂θ
(2.6)

8

For further details regarding backprogagtion the reader is referred to NIELSEN (2015).

Adam, in addition to using the gradient information, incorporates momentum and adaptive
learning rates to accelerate convergence. It calculates exponential moving averages of
the gradient, represented by the first moment m, and the squared gradient, represented
by the second moment v. The decay of these averages is controlled by the parameters β1

and β2. Since the estimates of m and v are biased due to their initialization as 0’s, they are
corrected, resulting in the bias-corrected versions, m̂ and v̂. The momentum parameter
effectively increases the update step of the parameters with consistent gradient directions,
while reducing the parameter update steps for parameters with inconsistent gradients.
This helps to stabilize the learning process and smoothens out stochastic variations in the
gradient updates. The learning rate adapts based on the square of the magnitudes of the
recent gradients controlled by v. Specifically, it normalizes the gradient by dividing it by
the square root of the second moment. This normalization helps to prevent the learning
rate from becoming too large and unstable, especially for parameters with large variances.
Additionally, ϵ is added to the parameter update step to improve numerical stability. More
information on the Adam optimizer can be found in GOODFELLOW et al. (2016) and KINGMA

and BA (2014). The update step for Adam is summarized in Algorithm 2.2.

Algorithm 2.2: Adam optimizer: update model parameters
Require :Adam parameters γ, β1, β2, ϵ, weight decay λ
On training start :m= 0 (first moment), v= 0 (second moment)

g = ∇θCb // Application of backpropagation
if λ ̸= 0 then

g = g + λθ // Add weight decay for regularization
end if
m = β1m+ (1− β1)g // Update first moment for momentum
v = β2v + (1− β2)g

2 // Update second moment for adaptive learning rate
m̂ = m

1−β1
// Bias-correction

v̂ = v
1−β2

// Bias-correction

θ = θ − γ m̂√
v̂+ϵ

// Update model parameters

The required parameters of the optimizer γ, β1, β2 and ϵ, the weight decay parameter
λ and the parameters specifying the model architecture defined in Chapter 3, are all
hyperparameters. These are configuration parameters defined before training, and they
remain unchanged during training. They determine the model and training specifications
and must be tuned separately from the model parameters θ. For a detailed explanation of
the tuning process for these parameters, please refer to GODBOLE et al. (2023).

Weight decay, represented by λ, is a regularization method commonly used in NNs.
It penalizes large model parameters, thereby encouraging the model to learn simpler
patterns. The Universal approximation theorem, as discussed in Chapter 2.2, states
that NNs can approximate any continuous function to a desired level of precision if given
enough parameters. If a model fails to learn the patterns in the training dataset, this
typically implies a lack of model parameters, also known as Underfitting.

9

However, in deep learning, a common issue is that the training and validation costs exhibit
a large discrepancy when enough parameters are provided, which may indicate that the
model is overemphasizing the training data and poorly learning the underlying patterns,
known as Overfitting. Weight decay, also known as L2 regularization, addresses this issue
by penalizing large model parameters associated with this behavior. Further regularization
methods of NNs can be found in GOODFELLOW et al. (2016) and SRIVASTAVA et al. (2014).

10

Chapter 3

Convolutional Neural Networks

CNNs are a specialized type of NNs that are particularly well-suited for processing grid-like
structures like images and time-series data. The name "convolutional" implies that CNNs
use the mathematical operation convolution, which is a special linear operation. The
convolution operation processes the input h depending on a parameter t with a convolution
kernel k, which is shifted by τ , to produce the output or feature map s.

s(t) = h(t) ∗ k(t) :=
∫ ∞

−∞
h(τ)k(t− τ)dτ (3.1)

In ML applications, both the input and the kernel are usually multidimensional arrays or
tensors, such as images used in this thesis. In these cases, the integral in Equation (3.1)
can be converted to a finite sum.

Unlike traditional NNs, which connect every input to every output in each layer, CNNs take
advantage of the spatial or temporal structure of the data. This means that datapoints
that are far apart are treated differently from those that are close together. By using small
kernels to detect simple features like edges, more complex features can be assembled
from these simpler ones. CNNs leverage sparse interactions, meaning that not every input
has an impact on every output, by using a smaller kernel than the input and weight sharing
by employing the same kernel across all parts of the image. This results in reduced
memory requirements and faster computations. Further details on the ideas of CNNs can
be found in GOODFELLOW et al. (2016) and NIELSEN (2015).

3.1 Convolution

Initially, this chapter presents a visual explanation of the 2D convolution process, focusing
on one input and one output image. Afterwards, the convolution procedure is extended to
involve multiple 2D input images and subsequently to multiple input and output 3D voxel
images.

The convolution operation uses a small matrix of weights also known as a kernel that slides
over the input image. During this process, the kernel performs elementwise multiplication
with a specific input area, referred to as the receptive field, and then sums up the results
to get the output pixel value. The output image’s height and width, represented by Hconv

out

and W conv
out , respectively, are calculated as follows:

Hconv
out =

Hconv
in + 2P −K

S
+ 1 (3.2)

11

W conv
out =

W conv
in + 2P −K

S
+ 1 (3.3)

Hconv
in and W conv

in are the input image height and width, respectively. The equations are
the same since the padding size P , the kernel size K, and the stride S are assumed to
be isotropic. However, in more general cases, these values may differ in each direction.
Padding adds fake pixels to the edges of the image, usually these pixels have the value of
zero, which is known as zero padding.

Figure 3.1 demonstrates the sliding of the kernel over the image, displaying the first and
second elementwise multiplication and summation.

∗ =

W conv
in = 5

H
conv
in

=
5

W conv
out = 5

H
conv
out

=
5

P = 1

K = 3

1 2

1 2

1 2

30 1

3

2

2

1

1

1

1 1

00

0 0

1

1

22

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 00

1 1

1 1

0

0

1 3 3 15

5 3 9 64

1 7 6 57

1 4 4 44

7 3 9 67

(a) Convolution step 1

∗ =

P = 1

K = 3

S = 1

W conv
in = 5

H
conv
in

=
5

W conv
out = 5

H
conv
out

=
5

1 2

1 2

1 2

30 1

3

2

2

1

1

1

1 1

00

0 0

1

1

22

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 00

1 1

1 1

0

0

1 3 3 15

5 3 9 64

1 7 6 57

1 4 4 44

7 3 9 67

(b) Convolution step 2: indicating the stride S= 1

Figure 3.1: Convolution of one 2D image

The process of extending the convolution to multiple input images and one output image is
depicted in Figure 3.2. In this scenario, each input image undergoes convolution with its
own kernel like depicted in Figure 3.1, and the resulting contributions are added up on a
per-pixel basis. Moreover, a constant bias can be incorporated to generate the final output.
To generate multiple output images, the aforementioned procedure is repeated for each
output image.

12

+

+

Ouput image of 1st kernel Ouput image of 2nd kernel Ouput image of 3rd kernel

Bias

Figure 3.2: Convolution of multiple 2D input images to one output image

The general case of multiple input and output 3D voxel images is given as:

yconv
ij = Bconv

j +

Cconv
in∑
k=1

W conv
jk ∗ xconv

ik (3.4)

The 3D convolution operation takes the input xconv with dimensions (Nconv
in , Cconv

in , Dconv
in ,

Hconv
in , W conv

in), and produces the output yconv with dimensions (Nconv
in , Cconv

out , Dconv
out , Hconv

out ,
W conv

out). The bias vector Bconv∈ RCconv
out contains the constants added to the output channels.

The weight tensor W conv∈ RCconv
out ×Cconv

in ×K×K×K contains different kernels of size K ×K ×
K. The additional image dimension D adds a depth dimension to Figure 3.1, resulting in
a 3D kernel that also operates on the input voxel image in the D direction.

3.2 Normalization

Normalization layers are a crucial component of most modern deep learning architectures
as they address the problem of internal covariate shift that arises during training, which will
be discussed subsequently. Various normalization layers have been introduced in recent
years, including Batch Normalization (BN) (IOFFE & SZEGEDY, 2015), Layer Normalization
(BA et al., 2016), and Instance Normalization (ULYANOV et al., 2016). In this work, BN is
used as the normalization layer.

During the training process the gradient tells how to update each parameter, under
the assumption that only these parameters are changed. In practice, all parameters
are updated simultaneously, and higher order interactions between layers may have a

13

significant impact. The internal covariate shift problem occurs when layers need to adjust
to varying input distributions arising from the parameter updates of the previous layers,
which can be mitigated by normalization layers. Normalization layers reparameterize
the output of the previous operation to promote uniform input distributions to the layers,
allowing for higher learning rates, reducing the sensitivity of model parameter initialization,
and serving as a form of regularization to prevent overfitting and improve the model’s
generalization ability. (IOFFE and SZEGEDY (2015); GOODFELLOW et al. (2016))

The operation of BN varies depending on whether it is used in training mode, as in
the training loop in Algorithm 2.1, or evaluation mode, as in validation cost checking or
prediction for new data.

During training, the statistical quantities µBN,b and σBN,b of size CBN
in are calculated

channel-wise for a batch of input data xBN,b using the other four dimensions and applied to
the same batch. To ensure numerical stability, a constant ϵBN is added to the denominator.
This normalization step is followed by the application of learned scaling γBN and shifting
parameters βBN, which enhance the network’s expressive power and produce the output
yBN,b.

yBN,b
ij =

xBN,b
ij − µBN,b

j√(
σBN,b
j

)2
+ ϵBN

γBN
j + βBN

j (3.5)

In addition to calculating statistical quantities for each batch during training, the BN layer
also keeps track of moving averages µBN,mov and σBN,mov with a momentum of mBN, which
serve as an estimate of the statistical quantities for the whole dataset.

µBN,mov,new
j =

(
1−mBN

)
µBN,mov,old
j +mBNµBN,b

j (3.6)

σBN,mov,new
j =

(
1−mBN

)
σBN,mov,old
j +mBNσBN,b

j (3.7)

These moving averages are then used in the evaluation mode to apply the normalization
to a new input xBN, resulting in the output yBN. In evaluation mode the following linear
transformation is applied:

yBN
ij =

xBN
ij − µBN,mov

j√(
σBN,mov
j

)2
+ ϵBN

γBN
j + βBN

j (3.8)

3.3 Activation Function

Convolution and BN are linear transformations. Therefore, using only these components
in a CNN would result in a linear model in total. To introduce non-linearity, a fixed

14

nonlinear function known as an activation function is commonly employed without learnable
parameters (GOODFELLOW et al., 2016).

The purpose of activation functions is to add non-linearity to the model while keeping
computational complexity at a manageable level. Another crucial aspect is to avoid the
vanishing gradient problem that can arise if the input values to the activation function
remain in regions with gradients close to zero, leading to the learning of previous layers to
stop. (DUBEY et al., 2021)

There have been several proposals for activation functions in recent years, and DUBEY

et al. (2021) provides an extensive overview of these functions and their properties.

The activation function a is typically applied element-wise to the input xA
ijklm to generate

the output yA
ijklm:

yA
ijklm = a

(
xA
ijklm

)
(3.9)

In this thesis, the LeakyReLU activation function is employed, with a negative slope of
0.01. It is defined as follows:

LeakyReLU(xijklm) =

xijklm, if x ≥ 0

0.01xijklm, otherwise
(3.10)

To improve visibility, the function is visualized in Figure 3.3 with a negative slope of 0.1.

−5 −4 −3 −2 −1 0 1 2 3 4 5

Input

0

1

2

3

4

5

O
ut

pu
t

Figure 3.3: LeakyReLU activation function with negative slope of 0.1

3.4 The U-Net Family

The U-Net is a commonly utilized architecture for image-to-image problems, as described
in the publication by RONNEBERGER et al. (2015). The architecture is named after

15

its symmetrical U-shape, consisting of an encoder and a decoder connected by skip
connections. The encoder captures contextual information and compresses it into a
representation, while the decoder reconstructs the output images from this compressed
representation. To improve localization capabilities, high resolution features are forwarded
from the encoder to the decoder via skip connections. Skip connections help the network
recover spatial information lost during downsampling and prevent gradients from becoming
too small during backpropagation.

In Figure 3.4, a parameterized U-Net model is depicted for 2D images with a model depth
Dm= 1, which can be easily extended to 3D by incorporating additionally the image depth
D.

Input

After conv. block

After downsampling

After upsampling

Output

Skip connection

d = 0

d = 1

Upsampling

W

W/2H

H
/2

Cin CoutCbase

Cbase · (Cmul)
d

Cbase

Figure 3.4: Parametrized U-Net model

The input images have dimensions H×W and consist of Cin input channels. The encoder
starts with a convolution block that consists of a convolution operation followed by BN
and a LeakyReLU activation function resulting in an increase of the number of channels
to Cbase. This is followed by another convolution block, after which a downsampling
operation is applied to halve the image dimensions. The downsampling is performed using
a convolution operation with a kernel size K= 2, a stride S= 2, and no padding P= 0. This
operation is learned since the weights and biases are adjusted during training. Alternatively,
max-pooling or average pooling can be applied as a not learned downsampling operation,
which have a smaller expressive power and are hence not utilized.

After downsampling, two convolution blocks follow that increase the number of channels
by the factor Cmul. For models with a depth greater than one, this procedure is repeated,
resulting in further halving of the image dimensions and an increase in the number of
channels.

The decoder component of the model begins by upsampling the images from the previous
depth dimension d received from the encoder. Upsampling can be either a learned or a
not learned operation. The current model uses an upsampling method based on linear

16

interpolation, which is a not learned operation. Alternatively, transposed convolutions are
a learned upsampling strategy, which applies the basic convolution operation in reverse,
where one input value is expanded into multiple output values. Due to the proneness
of transposed convolutions to checkerboard patterns (ODENA et al., 2016), upsampling
based on interpolation is preferred in this work.

The upsampled images are concatenated with images from the encoder that were for-
warded unchanged to the decoder via skip connections. The basic convolution block is
then applied twice to the concatenated images. Finally, a convolution is applied to obtain
the output channels Cout, without the application of BN and activation function.

17

18

Chapter 4

Data Generation

To train the CNN in a supervised fashion a labeled dataset containing both input and target
variables is necessary. The methodology for acquiring the labeled dataset is outlined in
the chapters ahead.

4.1 Geometry Creation

The input data includes the geometry, which is defined using a voxel-based description.
The geometries in this thesis were generated using the Hyperganic core voxel engine,
which follows a set of instructions known as a recipe. The recipe outlines the sequence
of operations to produce the desired geometry and depends on specific input param-
eters defining a low-dimensional subspace in which the investigated geometries exist.
Theoretically, the subspace should be well-suited for the learning process of NNs.

This work employs a layered stochastic lattice recipe. This geometric recipe involves
the definition of a volume by its surface and subsequent population with a series of
interconnected layers featuring stochastic lattice structures. The overarching structure of
the recipe is summarized in Algorithm 4.1. To simplify the explanation, the input arguments
are sometimes not specified explicitly, but are described in the following. It is important
to note that this recipe is just one example of a data generation method and can be
substituted with any other recipe.

Initially, the recipe transforms an input volume, specified by its boundary representation,
into a voxel description. A voxel denotes a three-dimensional pixel that represents a value
in 3D space. The data structure used to represent volumetric data, where the value of
each voxel describes the material density is called density field.

Next, the layer properties are calculated utilizing the following parameters:

- The number of layers nLayers

- The minimum layer thickness

- The maximum layer thickness

- The minimum beam thickness for connecting points within layers

- The maximum beam thickness

- The distribution method: determines whether the beam and layer thickness
increase or decrease linearly towards the interior of the volume

19

Algorithm 4.1: Geometric Recipe
Input :Geometric Parameters
Output :Layered Stochastic Lattice

Function layeredStochasticLattice = geometricRecipe(geometricParameters)
inputDensityField = voxelize(inputGeometry) // converts geometry to voxels

layerProperties = calculateLayerProperties(...)
surfacePointsList = []
volumePointsList = []
// For the first layer, the whole object is considered to distribute

the points.

remainingDensityField = inputDensityField
// Zero based indexing is used here.

for layer < nLayers do
layerSurfacePoints = distributeSurfacePoints(remainingDensityField)
surfacePointsList.append(layerSurfacePoints)
// Object is offset inward. Removed density is the shell.

RemainingDensityField is used for next layer.

shell, remainingDensityField = offsetDensityField(remainingDensityField,
currentLayerThickness)

layerVolumePoints = distributeVolumePoints(shell, ...)
// Only volume points inside the shell points are retained.

volumePointsList.append(layerVolumePoints)

end for
latticesList = []
// Zero based indexing is used here.

for layer < nLayers − 1 do
// One lattice is created per layer, which connects surface points

from the current and next layer, as well as volume points from

the current layer. This ensures connectivity between layers.

layerLattice = connectClosestPoints(surfacePoints[layer:layer+1],
volumePoints[layer])

latticesList.append(layerLattice)

end for
// Only final surface and volume points are used.

latticeFinalLayer = connectClosestPoints(surfacePoints[-1], volumePoints[-1])
latticesList.append(latticeFinalLayer)
layeredStochasticLattice = mergeLattices(latticesList)
return layeredStochasticLattice

end

20

The main part of the geometric recipe comprises two distinct parts. The first part generates
points in space, while the subsequent section connects the generated points to create the
desired geometry.

For each layer, a series of points is generated on the surface of the remaining density field,
which is subsequently offset inward by a thickness equivalent to the layer thickness. The
shell generated via this offsetting procedure is utilized to create volume points, achieved
through the stochastic generation of points within the bounding box of the shell and
confinement within the shell itself.

The following parameters govern this operation:

- The grid size: for each cell in the grid one point is generated.

- The noise ratio and the random seed: controls the stochasticity of the generated
points.

The generated surface and volume points are subsequently connected based on their
proximity and the parameter specifying the number of points to connect. During this
connecting procedure, the surface and volume points from the current layer, as well as the
surface points from the subsequent layer, are considered for all layers except the final one.

The images presented in Figure 4.1 depict the diverse geometries produced through the
use of this recipe, resulting in notable differences in fill ratios.

Figure 4.1: Example geometries created with the geometric recipe

21

4.2 Simulation Setup

Once a voxel-based geometry is obtained using Algorithm 4.1, the following simulation
parameters must be specified to set up a valid simulation:

- Analysis type, which specifies the physics

- Material properties

- Discretization parameters for the simulation

- Boundary conditions

In this work, the analysis type is set to static linear elastic and the material is assumed to
be isotropic and homogenous.

Consequently, the specification of two essential material parameters like Young’s modulus
(E) and Poisson’s ratio (ν) is required. Alternatively, other material constants like the Lamé
parameters could be used. The Partial Differential Equation (PDE) governing the physical
phenomena is expressed as:

E

2(1 + ν)

[
∆u+

1

1− 2ν
∇(∇ · u)

]
+ f = 0 in Ωphy (4.1)

u is the displacement vector of each point in the domain, f is the force density resulting
from sources like gravity. To solve this PDE, at least a valid set of prescribed displacements
uΓD

on the Dirichlet boundary ΓD must be specified along with the possibility of specifying
prescribed traction vectors tΓN

on the Neumann boundary ΓN.

Although the model problem presented herein serves as the basis for the subsequent
investigations, other PDEs can be employed to generate data for the learning process of
the CNN.

The solution to the PDE is approximated using the Finite Cell Method (FCM), an embedded
domain method that leverages simple unfitted structured grids, thus avoiding the need
for complex body-conforming mesh generation. Figure 4.2 illustrates the general idea of
the FCM. The physical domain is embedded within the extended domain Ωe, where the
structured grid is applied. Continuous shape functions are defined on this structured grid.
However, since the true solution is discontinuous, the integration procedure must account
for this discrepancy by introducing the indicator function α. Specifically, the value of α is
set to 1 inside and close to 0 outside the physical domain. For more detailed explanations,
refer to DÜSTER et al. (2017).

In the general case, the embedded domain approach entails incorporating Boundary
Conditions (BCs) within elements, which necessitates weakly enforcing DBCs (RUESS

et al., 2013). In this study, DBCs are treated as volumetric constraints on voxel geometries
and Neumann Boundary Conditions (NBCs) are converted to local force densities.

22

tΓN

ΓN
Ωphy

ΓD

uΓD

(a) Physical domain Ωphy

Ωe

α = 1

α ≪ 1

tΓN

ΓN
Ωphy

ΓD

uΓD

(b) Extended domain Ωe with structured grid

Figure 4.2: General idea of the FCM

The simulation workflow is presented in Figure 4.3. Initially, the analysis type and the
required material properties E and ν are specified for the geometries generated by
Algorithm 4.1. The simulation domain is then set up using the number of voxels per
element as a discretization parameter, which is determined from a convergence study
presented in Chapter 4.3. Subsequently, the volumetric constraints originating from the
DBCs and the local force densities arising from the NBCs are imposed on the voxel
geometry, resulting in a continuous solution for the displacement field.

NBC

DBC

Geometry Simulation Domain

Material: E, ν

Analysis type

Discretization

Simulation Results

Figure 4.3: Simulation workflow

4.3 Convergence

When applying deep learning-based surrogate models in practice, it is crucial to learn the
actual solution to the problem rather than one that results from a coarse discretization.
Therefore, a convergence study is conducted to determine the appropriate number of
voxels per element for achieving a converged solution. The convergence is measured

23

by the energy norm, which depends on the stress tensor σ and the strain tensor ϵ and
is given by Equation (4.2). The convergence behavior is shown in Figure 4.4, where the
energy norm is plotted against the Degrees of Freedom (DoFs). The voxel size is kept
constant at 0.1 length units, while the number of voxels per element is decreased and
labeled accordingly.

∥u∥E(Ωphy)
:=

√
1

2

∫
Ωphy

σ(u) : ϵ(u) dΩphy (4.2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Degrees of Freedom ×106

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

E
ne

rg
y

no
rm

16

12

8

6

4
3

2

Figure 4.4: Convergence of the energy norm, depending on the DoFs. The number of
voxels per element as the discretization parameter are used as a label.

At 4 voxels per element a flattening-out behavior is observed. Although the energy norm
has not achieved full convergence, a discretization of 4 voxels per element is utilized
throughout this study due to limited computer resources for creating the dataset. This
decision does not adversely affect the conclusions obtained regarding the training of the
CNNs. However, it is important to consider this when evaluating errors in practical cases.

4.4 Sampling

To create the labeled dataset necessary for the supervised learning approach, the generic
geometric recipe, specified in Algorithm 4.1, along with the simulation setup from Chap-
ter 4.2 needs to be sampled. Figure 4.5 summarizes the sampling strategy. A fixed
Stereolithography (STL) file, defining a part of a hip implant, is used to establish the input
geometry for all simulations. Every geometric parameter is uniformly sampled within
the specified range and according to its type, meaning integer, floating-point number or
enumeration. It is important to note that creating the dataset is a time-intensive process,
as a single simulation resulting in one sample point takes approximately three minutes.

24

These parameters serve as the input to the geometric recipe, resulting in a certain voxel
geometry. However, for certain parameter combinations the geometric recipe may lead
to an invalid geometry. In all conducted simulations, the material parameters are fixed at
E = 2.1 × 105 and ν = 0.3. The volumetric constraints arising from the DBCs are also
kept constant, with the volumetric displacement constraint u applied to the bottom voxels
within a single length unit and possessing the components (0, 0, 0). Similarly, the NBCs
are considered as a volumetric total force constraint F with the components (30, 80, 530),
which is applied to the voxels situated atop the inclined plane within a single length unit.
Given the varying nature of the geometries across different samples, the volumes of the
prescribed constraints may exhibit slight variations.

input geometry

number of layers

min. layer thickness

max. layer thickness

min. beam thickness

max. beam thickness

seed

neighbours to connect

distribution method

grid size

noise ratio

3 6

int
1 99999

int
0 1

float
1 15

float
asc. des.

enum
0.5 1.5

float
0.5 1.5

float
1 4

float
1 3

float
1 3

int

fixed STL file

Geometric Parameters
Geometric

Recipe
E 2.1 × 105 ν 0.3

F (30, 80, 530) u (0, 0, 0)

F

u

E
ν

SimulationSimulation
Parameters

Figure 4.5: Sampling strategy

25

26

Chapter 5

Learning Methodology

This chapter describes the methodology used to prepare the simulation results obtained in
Chapter 4 for training the investigated CNNs. Two models are presented, each utilizing
two preprocessing techniques: data encoding and scaling of input and target data. Data
encoding involves transforming the simulation data into a format that can be fed into the
CNNs, as explained in Chapter 5.1. The encoding process is unidirectional, meaning
that the simulation data is encoded in the unscaled dataset, but it cannot be uniquely
reconstructed from the unscaled data.
In contrast, data scaling, described in Chapter 5.2, is bidirectional and there exists a
unique relationship between scaled and unscaled data.
The two examined models differ in their prediction and target variables. The loss function
used to train the models compares the model’s prediction with a scaled target. The
performance evaluation, on the other hand, relies on metrics that compare the unscaled
predictions and targets.

Data generation

S
im

ul
at

io
n

In
pu

t

U
ns

ca
le

d
In

pu
t

In
pu

t

CNN model

P
re

di
ct

io
n

U
ns

ca
le

d
P

re
di

ct
io

n

S
im

ul
at

io
n

O
ut

pu
t

Ta
rg

et
Lo

ss

U
ns

ca
le

d
Ta

rg
et

Different

Chapter 4

Data

Encoding
Chapter 5.1

Data

Encoding
Chapter 5.1

M
et

ric
s

C
ha

pt
er

6.
2

Data

Scaling
Chapter 5.2

Data

Scaling
Chapter 5.2

Data

Scaling
Chapter 5.2

Chapter 5.3, Chapter 5.4
approaches

Figure 5.1: Summary of the learning methodology

27

5.1 Data Encoding

The learning task will be formulated as an image-to-image regression problem, wherein the
input and target consist of floating-point number images. While the geometries originate
from a low-dimensional subspace, they are encoded as images because this encoding
method is not limited to a specific geometric recipe, enabling the use of geometries from
similar recipes. The unscaled input is composed of 11 images, as outlined below:

- Two images representing the spatial distribution of the material parameters,
namely E and ν. In the case of a homogenous material, all voxels within each
image in the physical simulation domain Ωphy exhibit identical values.

- Six images are designated for the volumetric constraints arising from the DBCs.
For every component of u, a binary mask image and a prescribed value image
are employed. The binary mask enables the CNN to distinguish between vox-
els with and without volumetric constraints, since the voxel value zero in the
prescribed value image would not be uniquely defined. The value zero would
encode both the absence of prescribed volumetric constraints and a prescribed
component of zero.

- Three images defining the components of the applied force density in the physical
simulation domain Ωphy resulting from the NBCs or, also not considered in this
work, other volumetric sources like gravity.

The unscaled target images encompass the three components of the displacement.

To generate the simulation input and output, the sampling strategy outlined in Chapter 4.4
is employed, and the resulting data is preprocessed to create the aforementioned images.
The subsequent steps are followed:

1. The continuous simulation results are evaluated at the voxel midpoint forming
3D image tensors.

2. The simulation results, domain geometry, and volumetric constraints are down-
sampled to reduce computational cost and leverage the approximation capabili-
ties of CNNs. In this work, 6×6×6 voxels are merged into one voxel by selecting
the value of every sixth voxel. However, alternative downsampling techniques
can also be used. It is worth mentioning that this step may be skipped in certain
scenarios.

3. The value of voxels belonging to the extended domain Ωe but not to the physical
domain Ωphy is set to zero.

4. To enable the up- and downsampling operations performed by the CNN models,
the 3D image tensor is subjected to zero padding, wherein zeros are appended
to the edges of the tensor until its dimensions become a power of two.

28

The following serves as an example for the development of the tensor dimensions during
the aforementioned steps:

- After step 1: 1335× 335× 150

- After step 2: 223× 56× 25

- After step 3: 223× 56× 25

- After step 4: 256× 64× 32, defining the image dimensions D,H,W

- Resulting input dimensions (N ,Cin,D,H,W): N × 11× 256× 64× 32

- Resulting output dimensions (N ,Cout,D,H,W): N × 3× 256× 64× 32

Due to this specific encoding method, the major part of the images is outside the physical
domain Ωphy and encoded as zero, hence the images are quite sparse. Moreover, the
images of the volumetric constraints arising from the DBCs contain only a few non-zero
voxels.
This step can be performed independently for each simulation sample obtained with the
sampling strategy described in Chapter 4.4.

5.2 Data Scaling

Scaling the labeled dataset to a uniform data range is a frequently used preprocessing
step in deep learning. This technique improves the optimization process by improving
the conditioning of the loss function. When the data spans a wide range of values, the
gradients of the loss function can become too large or too small, causing slow convergence
or even preventing convergence altogether (LECUN et al., 2012). Another advantage is the
reduced sensitivity to the initialization of the parameters of the CNN, potentially improving
the training process’s stability (BISHOP, 1995).

In this work, standardization is used as a data scaling method, which applies the linear
transformation given by Equation (5.1) to a distribution z, resulting in a distribution z̃ with
mean 0 and standard deviation 1. µz and σz denote the mean and standard deviation of
the distribution z.

z̃ =
z − µz

σz
(5.1)

Other commonly used scaling techniques include Min-Max scaling, which scales data to a
specified range such as [−1, 1] by also applying a linear transformation. Standardization,
on the other hand, does not limit the data to a predetermined range but instead adjusts
the statistics of the scaled and shifted distribution. All linear transformations preserve the
linear correlation coefficient between variables (NAVIDI, 2011), which is important for the
CNN to extract the underlying patterns of the data.

29

For the image-to-image regression problems, the input and target channels are standard-
ized separately. Since a binary encoding of the physical domain Ωphy and the volumetric
constraints arising from the DBCs is utilized, only voxel values belonging to their specific
binary mask are scaled. The binary masks extract a simulation and channel dependent
subset of the voxel values from the input dataset tensor Xijklm and target dataset ten-
sor Yijklm, where i represents the simulation, j represents the channel index, and klm

represent spatial locations. The masked versions of the input and target datasets are
denoted as Xmasked

ijk and Y masked
ijk , respectively. The size of the third dimension of the

masked datasets varies depending on the simulation i and channel j since the binary
masks are simulation and channel-specific. Although the length of the index k of the
masked datasets varies, the common index notation of tensors is used, albeit with an
abuse of notation. Statistical quantities such as mean and standard deviation vectors µX ,
σX ∈ RCin and µY , σY ∈ RCout are calculated based on the first and third dimensions of
the masked tensors, where the simulation belongs to the training set. These statistical
quantities are then used to apply a linear transformation on the masked dataset tensors,
resulting in their standardized form X̃masked

ijk and Ỹ masked
ijk .

X̃masked
ijk =

Xmasked
ijk − µX

j

σX
j

(5.2)

Ỹ masked
ijk =

Y masked
ijk − µY

j

σY
j

(5.3)

If the voxel values are homogenous across the entire dataset, such as in the case of
material parameters like E and ν, the standard deviation is zero. In such cases, the
transformation is adjusted such that the scaled value is 1 if the mean is not equal to zero,
or 0 if the mean is zero. This results in a scaled version of the input and target image
tensors, denoted as X̃ijklm and Ỹijklm.

5.3 Base Model

The U-Net serves as a base model, which learns to map the 11 channel-wise scaled input
images to the channel-wise scaled target images, consisting of the three displacement
components. The model learns the input-output mapping based on the scaled dataset
tensors belonging to the training set. Scaled input data samples are denoted as x̃i

∈ RCin×D×H×W and scaled target samples as ỹi ∈ RCout×D×H×W . The model’s predictions
ˆ̃yi ∈ RCout×D×H×W are compared with the scaled target based on the loss function.
Figure 5.2 summaries the aforementioned.

30

In
pu

t

U-Net

P
re

di
ct

io
n

Ta
rg

et
Lo

ss

Predicted
Displacement
Components

ˆ̃uij

Displacement
Components

ũij

x̃i
ˆ̃yi

ỹi

Figure 5.2: Base model: U-Net

5.4 Image Network and Scaling Network

The second approach examined in this study involved a CNN model comprised of two
parts: the Scaling-Net and the Image-Net. The Image-Net is similar to the basic U-Net
model, but it is trained to learn a different target. Specifically, it learns the spatial distribution
of values within the simulation- and channel-wise standardized target dataset denoted
as ˜̃Yijklm, hence it is referred to as the Image-Net. An additional standardization step is
necessary, which ensures that all masked images ˜̃Y masked

ijk of the simulations have a mean
of 0 and a standard deviation of 1 individually. The scaling factors µỸ , σỸ ∈ RN×Cout apply
a linear transformation defined as:

˜̃Y masked
ijk =

Ỹ masked
ijk − µỸ

ij

σỸ
ij

(5.4)

The prediction of the Image-Net, denoted as
ˆ̃̃
Yijklm, is compared with the unmasked

image tensor ˜̃Yijklm using an appropriate loss function. Since the additional scaling factors
are dependent on the individual simulation, they cannot be precomputed but need to be
learned.
The Scaling-Net consists of the encoder of the U-Net and two fully connected layers with a
LeakyReLU activation function after the first linear layer. The purpose of the Scaling-Net is
to learn a standardized version of the scaling factors µỸ and σỸ , which are denoted as µ̃Ỹ

and σ̃Ỹ . To obtain this standardized version, additional scaling factors are precomputed
based on the training dataset, and are denoted as µµỸ

, µσỸ
, σµỸ

, σσỸ ∈ RCout . These

31

factors are used to apply linear transformations defined as:

µ̃Ỹ
ij =

µỸ
ij − µµỸ

j

σµỸ

j

(5.5)

σ̃Ỹ
ij =

σỸ
ij − µσỸ

j

σσỸ

j

(5.6)

The Scaling-Net predicts ˆ̃µỸ and ˆ̃σỸ ∈ RCout , which are compared with the target scaling
factors µ̃Ỹ and σ̃Ỹ using a second loss function. The predicted scaling factors ˆ̃µỸ and
ˆ̃σỸ are then used to unscale the prediction of the Image-Net. The total loss of the model
is the sum of both loss functions. The aforementioned is summarized in Figure 5.3, as
shown below.

Ta
rg

et

ỹi

S
ta

nd
ar

di
ze

d
Ta

rg
et

˜̃yi

µỸ ,σỸ

Equation (5.4)

P
re

di
ct

io
n

Im
ag

e
N

et

ˆ̃̃yi

Lo
ss

2

Ta
rg

et
S

ca
lin

g
Fa

ct
or

s
P

re
di

ct
io

n
S

ca
lin

g
N

et
Lo

ss
1

Equation (5.5), Equation (5.6)

Dec
od

erEncoder

Skip
Connections

In
pu

t

Image Net

Scaling Net

CNN Model

µ̃Ỹ , σ̃Ỹ

ˆ̃µỸ , ˆ̃σỸ

x̃i

P
re

di
ct

io
n

µ̂Ỹ , σ̂Ỹ

Equation (5.4)

ˆ̃yi

Equation (5.5), Equation (5.6)

Figure 5.3: Image-Net and Scaling-Net

32

Chapter 6

Results

In Chapter 5.3 and Chapter 5.4, two distinct models were introduced. This chapter delves
into the specifics of the model and training procedures, followed by a description of metrics
employed to evaluate the performance of the model. Particular attention is given to
metrics that are relevant for potential real-world applications, which helps to bridge the
gap between the cost function used for model training and the actual performance of the
model. Subsequently, the results are presented for different scenarios.

6.1 Model and Training Setup

In Figure 3.4, a parametrized 2D U-Net version was presented. To adapt the model to
the 3D scenario, an extra image depth dimension D is required. The specific model
specifications are outlined in Table 6.1.

Table 6.1: Network specifications

Base Model/Image-Net

Input channels (Cin) 11

d = 0

d = 1

W

W/2H

H
/2

Cin CoutCbase

Cbase · (Cmul)
d

Cbase

Output channels (Cout) 3

Image depth (D) 256

Image height (H) 64

Image width (W) 32

Base channels (Cbase) 16

Model depth (Dm) 5

Channel multiplier (Cmul) 2

Scaling-Net Extension

Number of neurons
D ·H ·W/23Dm · Cbase · Cmul

Dm
8192

6

8192

Hidden LayerEncoder end

=
Number of hidden layers 1

Activation function LeakyReLU

Output channels (2Cout) 6

All training images used have dimensions of 256 × 64 × 32 derived from the encoding
procedure elaborated in Chapter 5.1. The model predicts the three displacement compo-
nents from the 11 input channels Cin. The model’s size is controlled by the number of base
channels Cbase, the channel multiplier factor Cmul, and the model depth Dm. Likewise, the

33

number of neurons in the encoder extension for the Scaling-Net is also determined by
these parameters. Given that the Scaling-Net learns the mean and standard deviation for
each output channel of the Image-Net, it possesses 2Cout output channels.

The number of parameters is a crucial factor in controlling the model’s capacity and its
ability to approximate any continuous function, as stated by the universal approximation
theorem discussed in Chapter 2.2. The network specifications provided in Table 6.1
determine the number of parameters for the different model types, as shown in Table 6.2.

Table 6.2: Network parameters

Network type Number of parameters

Base Model/Image-Net 24.3M

Image-Net + Scaling-Net 91.5M

The models are implemented in PyTorch and trained with the Adam optimizer, employing
different loss functions, as described in subsequent chapters. Training is performed on
an NVIDIA Quadro RTX 4000 with 8 GB memory. To maximize training throughput and
optimize the training process for the given hardware a batch size of ten is utilized. A
learning rate of 10−5 was found to be suitable for training the different models.

The dataset is divided such that 80% is designated for training the models, and the
remaining 20% is set aside for validation. Models are trained for a maximum of 1500
epochs, resulting in approximately 21 hours training time for the largest dataset. To
expedite the training process, early stopping is employed if the validation cost fails to
improve for 500 epochs and mixed precision training is used, which is a technique that
was proposed in MICIKEVICIUS et al. (2017) to reduce memory usage and accelerate
computations while maintaining model accuracy. The models are trained deterministically
by fixing the seed for the random number generators responsible for model parameter
initialization and dataset partitioning. Once training is completed, the model parameters
are loaded based on the epoch exhibiting the lowest validation cost, which serves to
establish the final model performance. A summary of the training specifications can be
found in Table 6.3.

Table 6.3: Training specifications

Training parameter Value

Training dataset size 0.8N

Validation dataset size 0.2N

Max epochs 1500

Batch size 10

Loss function see Chapter 6.3

Optimizer Adam

Learning rate γ 10−5

34

6.2 Metrics

The proposed metrics aim to evaluate the accuracy of the predicted simulation outcomes.
The displacement error DE is computed by calculating the magnitude of the difference
between the predicted displacement û and the actual displacement u, divided by the
maximum displacement magnitude for the corresponding simulation. This method ensures
equal treatment for all simulations, irrespective of their individual displacement magnitude.
The resulting scalar field, which is dependent on the spatial position r, can be formulated
as:

DEi(r) =
∥ui(r)− ûi(r)∥2
max
r

∥ui(r)∥2
(6.1)

To derive a value unique to each simulation, the displacement error is spatially averaged
according to the simulation’s physical domain. The average displacement error (ADE) is
calculated by averaging the displacement error over all voxels situated within the physical
domain Ωphy. The number of inside voxels ninvox can significantly vary between simulations
due to the differences in fill ratio, as depicted in Figure 4.1.

ADEi =
1

ninvox,i

ninvox,i∑
j=1

DEi(rj) (6.2)

where rj collects all contributions of the inside voxels for the specific simulation i.

Furthermore, the error of the maximum displacement magnitude relative to the maximum
displacement magnitude of the specific simulation (DEMAXU) is observed. DEMAXU has
significant importance in engineering design decisions.

DEMAXUi =

∣∣∣max
r

∥ui(r)∥2 −max
r

∥ûi(r)∥2
∣∣∣

max
r

∥ui(r)∥2
(6.3)

To assess the overall predictive performance, the average and max of both metrics can be
computed for a given dataset.

6.3 Comparison of Loss Functions

Initially, the basic U-Net model explained in Chapter 5.3 is used to investigate various
loss functions. As outlined in Chapter 2.3.1, squared loss L2 and absolute loss L1 are
commonly used for regression problems. L1 is more robust to outliers, whereas L2 offers
better learning properties. However, when training the displacement surrogate model, both
loss functions encounter a conceptional issue because all errors are treated absolutely.
The tolerable absolute difference varies significantly depending on the magnitude of the
simulation results. Smaller absolute errors are acceptable for smaller displacement results,
while larger absolute errors are permissible for larger displacement results.

35

To address this issue, a weighted version of the squared error is proposed. For the base
model the L2,w for the simulation i is defined as:

L2,w,i =
1

Cout

Cout∑
j=1

1

ninvox
wij

ninvox∑
k=1

(Ỹ masked
ijk − ˆ̃Y masked

ijk)2 (6.4)

where the model prediction inside the physical domain ˆ̃Y masked
ijk is compared to the target

value Ỹ masked
ijk , and is subject to simulation- and channel-dependent weighting. The weights

w are defined as:

wij =

1
N

∑N
k=1max

r
|ukj(r)|

max
r

|uij(r)|
(6.5)

The numerator represents the simulation-wise mean of the maximum magnitude of the
unscaled displacement component, whereas the denominator is the simulation- and
channel-wise maximum magnitude of the unscaled displacement component. The de-
nominator ensures that more importance is given to simulations with small displacement
results, while the numerator ensures that the average weight is one.

L1 and L2, as defined in Equation (2.4) and Equation (2.3), can be easily adapted to this
specific case by ensuring that the sum over nfeat collects all the contributions for each
channel within the physical domain Ωphy.

Figure 6.1 shows the standard deviation of displacement components for a dataset
consisting of N= 100 observations. The histogram is further smoothed using a kernel
density estimator and reveals that the distribution is highly skewed and contains numerous
outliers. This skewed feature becomes increasingly noticeable in the larger dataset of
N= 800, as shown in Figure 6.2.

It is worth noting that the values presented in the figures are unscaled. Applying a linear
transformation through standardization, as shown in Equation (5.1), would only alter the
axis values, keeping the visual appearance of the images unaltered.

The evolution of the mean and max for both metrics, namely ADE and DEMAXU, during
training is depicted in Figure 6.3 for the validation set and a dataset size N= 100. The L2

loss function exhibit significant oscillations, likely due to its sensitivity to outliers. Although
the L1 demonstrates more favorable behavior, it is outperformed by the proposed weighted
loss L2,w for all metrics. Moreover, the weighted loss function requires less training time
as the training stops earlier due to stagnation of the validation cost. Due to these favorable
outcomes, the subsequent chapters use the weighted loss L2,w. The best model score is
achieved at epoch 276, with a mean average displacement error of 12.2% and a maximum
of 24.7%. On average, the error of the maximum displacement is 38.3%, while in the
worst-case scenario it reaches 86.9%.

36

0

2

4

6

σ
u
1

0

1

2
σ
u
2

0 5

σu1

0.00

0.25

0.50

0.75

σ
u
3

0 2

σu2

0.0 0.5

σu3

Set
Training
Validation

Figure 6.1: Standard deviations of the displacement components for N= 100

0

10

20

σ
u
1

0

10

20

σ
u
2

0 10 20

σu1

0

2

4

6

σ
u
3

0 10 20

σu2

0.0 2.5 5.0

σu3

Set
Training
Validation

Figure 6.2: Standard deviations of the displacement components for N= 800

37

0 250 500 750 1000 1250

Epoch

0.20

0.40

0.60

0.80

0.15

0.30

µ
A
D
E

L1

L2,w

L2

(a) Mean average displacement error

0 250 500 750 1000 1250

Epoch

1.00

2.00

3.00

0.30

m
a
x
A
D
E

L1

L2,w

L2

(b) Max average displacement error

0 250 500 750 1000 1250

Epoch

0.50

1.00

1.50
2.00
2.50

0.30

µ
D
E
M

A
X

U

L1

L2,w

L2

(c) Mean error of max displacement

0 250 500 750 1000 1250

Epoch

2.00

4.00

6.00
8.00

1.00m
a
x
D
E
M

A
X
U

L1

L2,w

L2

(d) Max error of max displacement

Figure 6.3: Development of the metrics for the validation set during training with N= 100.
A shorter time series means that the early stopping criteria was reached earlier.

6.4 Generalization Capabilities of the Base Model

Chapter 6.3 pinpointed a suitable loss function for the given problem, yet it revealed an un-
desirably large error. The subsequent subchapters discuss the base model’s generalization
abilities.

6.4.1 Increasing the Dataset Size

To enhance the model’s performance, the dataset size is doubled incrementally until it
reaches a size of 800. This larger dataset provides the model with more support points
for interpolation. However, this advantage may be offset by increased skewness of the
dataset, as illustrated in Figure 6.1 and Figure 6.2, which highlights an increase in the
interpolation space.

The evolution of the simulation means of the two metrics ADE and DEMAXU for the
validation set is presented in Figure 6.4. The metrics display no substantial improvement
between N= 100 and N= 400. When the dataset size is increased to 800, there is a slight
improvement in the mean of the average displacement error and a significant improvement
in the mean of the error of the maximum displacement. Despite these improvements, the

38

validation errors remain high due to the discrepancy between training and validation cost,
which is demonstrates in Figure 6.5.

100 200 400 800
Dataset size

0.10

0.15

0.20

0.25

0.30

0.35

E
rr

or

0.123 0.129 0.122
0.108

0.383

0.354 0.351

0.218

µADE

µDEMAXU

Figure 6.4: Evolution of the metric means when increasing the dataset size N

During the training process, the training cost and associated metrics steadily decrease.
However, the validation cost remains high, which may indicate that the model is overfitting
to the training data and struggling to generalize effectively.

0 100 200 300 400 500 600

Epoch

10−3

10−2

10−1

C
os

t

Training cost
Validation cost

Figure 6.5: Development of training and validation cost during training of the base model
with a dataset size N= 800

In Figure 6.6, the expected accuracy of the model prediction is illustrated. The data ranges
of the model prediction and target are rescaled to the largest range to emphasize the
differences. The right column displays the error of the displacement magnitude, as defined

39

by Equation (6.1). The first row of the figure depicts the best-case scenario, showing the
results for the simulation with the smallest average error within the validation set. Only a
few voxels exhibit significant error, and the target and the prediction show good agreement.
The second row illustrates the worst-case scenario based on the simulation within the
validation set with the highest average error. In this case, the prediction and target data
do not agree, with large regions showing significant errors, and some points being off by
almost 100%. To mitigate this problem, the next chapter will investigate the use of weight
decay as a regularization method.

(a) Best-case target (b) Best-case prediction (c) Best-case error

(d) Worst-case target (e) Worst-case prediction (f) Worst-case error

Figure 6.6: Comparison of the expected displacement error of the base model in the best-
and worst-case scenario for a dataset size N= 800

40

6.4.2 Weight Decay

Weight decay is a regularization technique that penalizes large model parameters, aiming
to reduce overfitting by encouraging the model to learn simpler patterns. It is implemented
as part of the optimizer by modifying the gradient with respect to the model parameters,
as explained in Chapter 2.3.3. In Figure 6.7, the impact of weight decay on the two
metrics is demonstrated for a dataset size of 800, with values ranging from 10−6 to
10−2. The results show that a small weight decay of λ= 10−5 improves the error of the
maximum displacement but gradually worsens the mean of the average displacement
error. According to THUEREY et al. (2021), convolutional neural networks CNNs usually
require minimal regularization. Thus, it is plausible that weight decay did not improve the
overall performance of the model.

Furthermore, the high number of outliers in the dataset may also contribute to the discrep-
ancy between training and validation cost. The upcoming chapter will explore the effect of
outliers in further detail.

0 10−6 10−5 10−4 10−3 10−2

Weight decay parameter λ

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
rr

or

0.108 0.109 0.109 0.111 0.115 0.121

0.218

0.247

0.197

0.259

0.210

0.338

µADE

µDEMAXU

Figure 6.7: Evolution of the metric means for different weight decay parameters and
N= 800

6.4.3 Removing Outliers

As outlined in Chapter 6.3, the dataset exhibits significant skewness and contains nu-
merous outliers, which may hinder the model’s ability to generalize. To examine the
impact of outliers, an outlier-free version of the dataset with N= 800 was generated by
removing data points with z-scores greater than three. The z-score zscore is equivalent to
z̃ in Equation (5.1), therefore standardized values larger than three are eliminated. The
mean and standard deviation are computed channel-wise based on the voxels inside the

41

physical domain, and the maximum value of each displacement component is used as z.

zscoreij =
maxY masked

ijk − µY
j

σY
j

(6.6)

This procedure is performed recursively until it converges, as it alters the statistical
properties of the dataset. The resulting outlier-free dataset has a size of N= 560, and its
standard deviation distribution is illustrated in 6.8.

0.5

1.0

σ
u
1

0.2

0.4

σ
u
2

0.5 1.0

σu1

0.1

0.2

σ
u
3

0.2 0.4

σu2

0.1 0.2

σu3

Set
Training
Validation

Figure 6.8: Standard deviations of the displacement components for the outlier-free dataset
with N= 560

A comparison between the original dataset with N= 800 and its outlier-free version is
shown in Figure 6.9, presenting the mean and maximum of both metrics. Despite a slight
improvement in both metrics, there is no significant impact on the model performance.
The average displacement error decreases slightly from 10.8% to 9.5%, and the average
error of the maximum displacement decreases from 21.8% to 17.6%.

42

0 200 400 600

Epoch

0.10

0.15

0.20

0.25

0.30

µ
A
D
E

With outliers
Without outliers

(a) Mean average displacement error

0 200 400 600

Epoch

0.30

0.40

0.50

0.60

0.70

m
a
x
A
D
E

With outliers
Without outliers

(b) Max average displacement error

0 200 400 600

Epoch

0.50

1.00

1.50

0.20

µ
D
E
M

A
X

U

With outliers
Without outliers

(c) Mean error of max displacement

0 200 400 600

Epoch

2.00

4.00

6.00
8.00

0.50

1.00

m
ax

D
E
M

A
X
U

With outliers
Without outliers

(d) Max error of max displacement

Figure 6.9: Comparison of the metrics development for the validation set during training
for the dataset with N= 800 and its outlier-free version with N= 560

6.5 Image-Net: Displacements

The second type of model discussed, as explained in Chapter 5.4, is composed of two
network parts: the Image-Net and the Scaling-Net. The idea is to split the image-to-image
regression task into two distinct parts. Firstly, the Image-Net learns the distribution of
values within standardized images, and secondly, the scaling reverts the standardization
with a learned linear transformation.

To evaluate the performance of the Image-Net, the metric development is observed as
the dataset size increases, assuming perfect rescaling. This implies no errors from the
Scaling-Net and therefore sets ˆ̃µỸ and ˆ̃σỸ , equal to the true scaling factors µ̃Ỹ and σ̃Ỹ .
Since the standardization of each image already treats all simulations equally, the L2 loss
function is used. The evolution of the metric means is illustrated in Figure 6.10, indicating
that errors are minimal even for a dataset size of 100 and continue to decrease steadily
with increasing dataset size. However, there is a significant discrepancy between the
training and validation cost even for the largest dataset with N= 800, as demonstrated in
Figure 6.11.

43

100 200 400 800
Dataset size

0.003

0.004

0.005

0.006

0.007

0.008

E
rr

or

0.0075

0.0063

0.0056
0.0053

0.0078

0.0056

0.0038 0.0032

µADE

µDEMAXU

Figure 6.10: Evolution of the metric means with increasing dataset size N for the Image-
Net

0 200 400 600 800 1000 1200 1400

Epoch

10−4

10−3

10−2

10−1

100

C
os

t

Training cost
Validation cost

Figure 6.11: Development of training and validation cost during training of the Image-Net
with a dataset size N= 800

6.6 Image-Net and Scaling-Net

As discussed in Chapter 5.4, the loss function for the Image-Net and Scaling-Net model is
composed of two parts: one comparing the images and the other the scaling factors. The
total loss is the sum of these two parts. Following similar arguments as in Chapter 6.3 the
weighted loss L2,w is used for the scaling factors and a normal L2 for the image part as
stated in Chapter 6.5.

44

The performance of the Image-Net and Scaling-Net model is compared with the base
model using the average values of the metrics. As depicted in Figure 6.12, the combined
model outperforms the base model in terms of the maximum displacement error, particu-
larly for small dataset sizes. However, this advantage diminishes with increasing dataset
size. Additionally, the average displacement error is slightly improved. For a dataset size
N= 800, the average displacement error is 10.8% for the base model and 9.7% for the
combined model, while the maximum displacement error is 21.8% and 15.5%, respectively.
The addition of weight decay to the combined model does not lead to improved metrics,
similar to the case of the base model.

100 200 400 800
Dataset size

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E
rr

or

Base model µADE

Combined model µADE

Base model µDEMAXU

Combined model µDEMAXU

Figure 6.12: Evolution of metric means with increasing dataset size N : Base Model vs
Image-Net and Scaling-Net

6.7 Image-Net: Extension to Stresses

This chapter presents the performance of the Image-Net when learning stresses in addition
to displacements. Learning stresses is an even more complex task for the studied
geometries, as they lead to stress concentrations due to geometric effects. The presented
results do not account for rescaling errors, which were found to dominate the total error
of the combined model in Chapter 6.6, but assume perfect rescaling. This serves as
a theoretical example, which could become relevant if a more sophisticated rescaling
method would be developed.

The model’s architecture remains unchanged, with only the number of output channels
Cout increasing to nine. This slightly changes the number of model parameters, since it
alters the last convolution layer. However, the rounded number of parameters nevertheless
stays at 24.3M.

45

Similarly to the error of the maximum displacement, the error of the maximum von Mises
stress SEMAXVM can be defined as:

SEMAXVMi =

∣∣∣max
r

∥σi(r)∥VM −max
r

∥σ̂i(r)∥VM

∣∣∣
max
r

∥σi(r)∥VM

(6.7)

where ∥· · · ∥VM denotes the computation of the von Mises stress. The stress prediction of
the model is denoted as σ̂. As stress is a local phenomenon in this specific case, reporting
the spatial average of the error would be misleading, and hence is not done. Figure 6.13
shows the evolution of the mean values of the metrics for the validation set during training.
The best epoch value is reached close to the end of training, indicating that the model
may benefit from further training time and may reach slightly better performance. Since
the learning task becomes more complex, the average displacement error increases from
0.53% to 1.42%, while the error of the maximum displacement increase from 0.32% to
1.12% compared to the displacement Image-Net from Chapter 6.5. The average error of
the maximum von Mises stress reaches 12.65%.

0 200 400 600 800 1000 1200 1400

Epoch

0.01

0.10

1.00

0.02

0.04

0.20

0.40

E
rr

or

µADE

µDEMAXU

µSEMAXV M

Figure 6.13: Evolution of metric means for the Image-Net during training with a dataset
size N= 800

46

Chapter 7

Conclusion and Outlook

The aim of this thesis was to investigate deep learning-based surrogate models for Linear
Elasticity. In contrast to previous research, which mainly focused on 2D Computational
Fluid Dynamics (CFD) or thermal problems, the following new contributions were made:

- Expanded surrogate models to encompass 3D Linear Elasticity.

- Encoded the image-to-image learning task with a binary mask resulting in strong
variations of the simulation domain and hence a changing learning domain for
the network.

- Developed a weighted loss function to enhance the model performance for
predicting the displacement results of the simulations.

- Investigated the performance of a basic U-Net model for predicting the displace-
ment results of the simulation.

- Examined the impact of outliers on the model’s accuracy.

- Proposed a splitting of the learning task into two simpler parts: learning stan-
dardized images (Image-Net) and associated scaling factors (Scaling-Net) to
manage large datasets containing numerous outliers.

The task of learning the displacement solution for the 3D linear elastic problem posed
significant challenges for the investigated CNN models. Formulating the problem as an
image-to-image task based on binary masks resulted in a large discrepancy between the
training and validation cost, leading to unacceptable errors. The presence of numerous
outliers in the dataset resulted in slightly worse performance compared to a dataset
without outliers. Only the Image-Net model performed well, however only under the
assumption of perfect rescaling, which requires the development of new rescaling methods.
This model also showed a significant gap between the training and validation cost. To
improve performance on unseen data, it may be beneficial to use a larger dataset or
more sophisticated sampling strategies that increase the coverage of the sampling space.
These steps could be taken to further develop deep learning-based surrogate models for
Linear Elasticity based on the problem formulation and encoding process, used in this
study.

However, it may be worthwhile to explore alternative surrogate modeling techniques, such
as the following:

47

- One approach is to utilize various encoding techniques for geometric data. For
example, signed distance functions can be employed to increase the information
density of mask images, as demonstrated for airfoils in BHATNAGAR et al. (2019).
Another option is geometric encoding using modes that describe the shape
based on Principal Component Analysis (PCA) as shown in HEIMANN and
MEINZER (2009), or learned representations such as those presented in ZUO

et al. (2022).

- Another possibility is to switch to unsupervised learning techniques based on
Physics-informed Neural Networks (PINNs), where the residual of the PDE
is used as a cost function. The necessary derivatives for the residual can
be computed through finite differences, as demonstrated in WANDEL et al.
(2020) and WANDEL et al. (2021), or by directly utilizing the NN, as outlined in
KOLLMANNSBERGER et al. (2021).

- Exploring operator learning based on the universal approximation theorem of
continuous operators, as shown in T. CHEN and CHEN (1995), may also prove
fruitful. Prominent network architectures in this field include the DeepONet (LU,
JIN, et al., 2021) and the Fourier Feature Networks (TANCIK et al., 2020). A
comparison of these two variants is available in LU, MENG, et al. (2021).

48

Bibliography

BA, J. L., KIROS, J. R., & HINTON, G. E. (2016). Layer Normalization. https://doi.org/10.
48550/ARXIV.1607.06450

BHATNAGAR, S., AFSHAR, Y., PAN, S., DURAISAMY, K., & KAUSHIK, S. (2019). Prediction
of aerodynamic flow fields using convolutional neural networks. Computational
Mechanics, 64(2), 525–545. https://doi.org/10.1007/s00466-019-01740-0

BISHOP, C. M. (1995). Neural networks for pattern recognition. Clarendon Press ; Oxford
University Press. ISBN:978-0-19-853864-6

CHEN, L.-W., CAKAL, B. A., HU, X., & THUEREY, N. (2020). Numerical investigation of
minimum drag profiles in laminar flow using deep learning surrogates. arXiv: Fluid
Dynamics. https://doi.org/10.1017/jfm.2021.398

CHEN, L., & THUEREY, N. (2022). Towards high-accuracy deep learning inference of
compressible flows over aerofoils. Computers & Fluids, 250, 105707–105707.
https://doi.org/10.1016/j.compfluid.2022.105707

CHEN, T., & CHEN, H. (1995). Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems.
IEEE Transactions on Neural Networks, 6(4), 911–917. https://doi.org/10.1109/72.
392253

CHEN, X., CHEN, X., ZHAO, X., GONG, Z., ZHANG, J., ZHOU, W., CHEN, X., & YAO, W.
(2021). A deep neural network surrogate modeling benchmark for temperature field
prediction of heat source layout. Science China-physics Mechanics & Astronomy,
64(11). https://doi.org/10.1007/s11433-021-1755-6

DUBEY, S. R., SINGH, S. K., & CHAUDHURI, B. B. (2021). Activation Functions in Deep
Learning: A Comprehensive Survey and Benchmark. https://doi.org/10.48550/
ARXIV.2109.14545

DURU, C., ALEMDAR, H., & BARAN, O. U. (2022). A deep learning approach for the
transonic flow field predictions around airfoils. Computers & Fluids, 236, 105312.
https://doi.org/10.1016/j.compfluid.2022.105312

DÜSTER, A., RANK, E., & SZABÓ, B. A. (2017). The p-Version of the Finite Element and
Finite Cell Methods, 1–35. https://doi.org/10.1002/9781119176817.ecm2003g

GODBOLE, V., DAHL, G. E., GILMER, J., SHALLUE, C. J., & NADO, Z. (2023). Deep Learning
Tuning Playbook. https://github.com/google-research/tuning_playbook

GOODFELLOW, I., BENGIO, Y., & COURVILLE, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org

GRIEWANK, A., & WALTHER, A. (2008). Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation, Second Edition (Second). Society for Industrial and
Applied Mathematics. https://doi.org/10.1137/1.9780898717761

HEIMANN, T., & MEINZER, H.-P. (2009). Statistical shape models for 3D medical image
segmentation: A review. Medical Image Analysis, 13(4), 543–563. https://doi.org/
10.1016/j.media.2009.05.004

49

https://doi.org/10.48550/ARXIV.1607.06450
https://doi.org/10.48550/ARXIV.1607.06450
https://doi.org/10.1007/s00466-019-01740-0
ISBN:978-0-19-853864-6
https://doi.org/10.1017/jfm.2021.398
https://doi.org/10.1016/j.compfluid.2022.105707
https://doi.org/10.1109/72.392253
https://doi.org/10.1109/72.392253
https://doi.org/10.1007/s11433-021-1755-6
https://doi.org/10.48550/ARXIV.2109.14545
https://doi.org/10.48550/ARXIV.2109.14545
https://doi.org/10.1016/j.compfluid.2022.105312
https://doi.org/10.1002/9781119176817.ecm2003g
https://github.com/google-research/tuning_playbook
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1016/j.media.2009.05.004
https://doi.org/10.1016/j.media.2009.05.004

HORNIK, K., STINCHCOMBE, M., & WHITE, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5), 359–366. https://doi.org/10.1016/
0893-6080(89)90020-8

IOFFE, S., & SZEGEDY, C. (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv: Learning. https://doi.org/10.
48550/arXiv.1505.04597

KINGMA, D. P., & BA, J. (2014). Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations. https://doi.org/10.48550/arXiv.1412.
6980

KOLLMANNSBERGER, S., D’ANGELLA, D., JOKEIT, M., & HERRMANN, L. (2021). Deep
Learning in Computational Mechanics: An Introductory Course. Springer. http:
//dx.doi.org/10.1007/978-3-030-76587-3

LECUN, Y. A., BOTTOU, L., ORR, G. B., & MÜLLER, K.-R. (2012). Efficient BackProp. In
G. MONTAVON, G. B. ORR, & K.-R. MÜLLER (Eds.), Neural Networks: Tricks of the
Trade (pp. 9–48, Vol. 7700). Springer Berlin Heidelberg. https://doi.org/10.1007/
978-3-642-35289-8_3

LU, L., JIN, P., PANG, G., ZHANG, Z., & KARNIADAKIS, G. E. (2021). Learning nonlinear op-
erators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3), 218–229. https://doi.org/10.1038/s42256-021-
00302-5

LU, L., MENG, X., CAI, S., MAO, Z., GOSWAMI, S., ZHANG, Z., & KARNIADAKIS, G. E.
(2021). A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data. https://doi.org/10.48550/ARXIV.2111.05512

MALLIK, W., FARVOLDEN, N., JELOVICA, J., & JAIMAN, R. K. (2022). Deep convolutional
neural network for shape optimization using level-set approach. https://doi.org/10.
48550/ARXIV.2201.06210

MESSNER, M. C. (2020). Convolutional Neural Network Surrogate Models for the Me-
chanical Properties of Periodic Structures. Journal of Mechanical Design, 142(2),
024503. https://doi.org/10.1115/1.4045040

MICIKEVICIUS, P., NARANG, S., ALBEN, J., DIAMOS, G., ELSEN, E., GARCIA, D., GINS-
BURG, B., HOUSTON, M., KUCHAIEV, O., VENKATESH, G., & WU, H. (2017). Mixed
Precision Training. https://doi.org/10.48550/ARXIV.1710.03740

NAVIDI, W. C. (2011). Statistics for engineers and scientists (3rd ed). McGraw-Hill. ISBN:
978-0-07-337633-2

NIELSEN, M. A. (2015). Neural Networks and Deep Learning. Determination Press. http:
//neuralnetworksanddeeplearning.com/

ODENA, A., DUMOULIN, V., & OLAH, C. (2016). Deconvolution and Checkerboard Artifacts.
Distill, 1(10). https://doi.org/10.23915/distill.00003

PENG, J.-Z., LIU, X., AUBRY, N., CHEN, Z., & WU, W.-T. (2020). Data-Driven Modeling of
Geometry-Adaptive Steady Heat Transfer based on Convolutional Neural Networks:
Heat Conduction. https://doi.org/10.48550/ARXIV.2010.03854

RONNEBERGER, O., FISCHER, P., & BROX, T. (2015). U-Net: Convolutional Networks for
Biomedical Image Segmentation. In N. NAVAB, J. HORNEGGER, W. M. WELLS, &

50

https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.1007/978-3-030-76587-3
http://dx.doi.org/10.1007/978-3-030-76587-3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.48550/ARXIV.2111.05512
https://doi.org/10.48550/ARXIV.2201.06210
https://doi.org/10.48550/ARXIV.2201.06210
https://doi.org/10.1115/1.4045040
https://doi.org/10.48550/ARXIV.1710.03740
ISBN:978-0-07-337633-2
ISBN:978-0-07-337633-2
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.23915/distill.00003
https://doi.org/10.48550/ARXIV.2010.03854

A. F. FRANGI (Eds.), Medical Image Computing and Computer-Assisted Interven-
tion – MICCAI 2015 (pp. 234–241, Vol. 9351). Springer International Publishing.
https://doi.org/10.1007/978-3-319-24574-4_28

RUESS, M., SCHILLINGER, D., BAZILEVS, Y., VARDUHN, V., & RANK, E. (2013). Weakly en-
forced essential boundary conditions for NURBS-embedded and trimmed NURBS
geometries on the basis of the finite cell method. International Journal for Numerical
Methods in Engineering, 95(10), 811–846. https://doi.org/10.1002/nme.4522

SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER, I., & SALAKHUTDINOV, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting. https:
//doi.org/10.5555/2627435.2670313

TANCIK, M., SRINIVASAN, P. P., MILDENHALL, B., FRIDOVICH-KEIL, S., RAGHAVAN, N.,
SINGHAL, U., RAMAMOORTHI, R., BARRON, J. T., & NG, R. (2020). Fourier Features
Let Networks Learn High Frequency Functions in Low Dimensional Domains.
https://doi.org/10.48550/ARXIV.2006.10739

THUEREY, N., HOLL, P., MUELLER, M., SCHNELL, P., TROST, F., & UM, K. (2021). Physics-
based Deep Learning. WWW. https://physicsbaseddeeplearning.org

THUEREY, N., WEISSENOW, K., PRANTL, L., & HU, X. (2020). Deep Learning Methods
for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows. AIAA Journal,
58(1), 25–36. https://doi.org/10.2514/1.j058291

ULYANOV, D., VEDALDI, A., & LEMPITSKY, V. (2016). Instance Normalization: The Missing
Ingredient for Fast Stylization. https://doi.org/10.48550/ARXIV.1607.08022

UM, K., BRAND, R., YUN, FEI, HOLL, P., & THUEREY, N. (2020). Solver-in-the-Loop:
Learning from Differentiable Physics to Interact with Iterative PDE-Solvers. https:
//doi.org/10.48550/ARXIV.2007.00016

WANDEL, N., WEINMANN, M., & KLEIN, R. (2020). Learning Incompressible Fluid Dynamics
from Scratch – Towards Fast, Differentiable Fluid Models that Generalize. https:
//doi.org/10.48550/ARXIV.2006.08762

WANDEL, N., WEINMANN, M., & KLEIN, R. (2021). Teaching the incompressible Navier–Stokes
equations to fast neural surrogate models in three dimensions. Physics of Fluids,
33(4), 047117. https://doi.org/10.1063/5.0047428

WANG, Q., MA, Y., ZHAO, K., & TIAN, Y. (2020). A Comprehensive Survey of Loss Functions
in Machine Learning. Annals of Data Science, 1–26. https://doi.org/10.1007/
s40745-020-00253-5

ZUO, K., BU, S., ZHANG, W., HU, J., YE, Z., & YUAN, X. (2022). Fast sparse flow field pre-
diction around airfoils via multi-head perceptron based deep learning architecture.
https://doi.org/10.48550/ARXIV.2207.00936

51

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1002/nme.4522
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.48550/ARXIV.2006.10739
https://physicsbaseddeeplearning.org
https://doi.org/10.2514/1.j058291
https://doi.org/10.48550/ARXIV.1607.08022
https://doi.org/10.48550/ARXIV.2007.00016
https://doi.org/10.48550/ARXIV.2007.00016
https://doi.org/10.48550/ARXIV.2006.08762
https://doi.org/10.48550/ARXIV.2006.08762
https://doi.org/10.1063/5.0047428
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.48550/ARXIV.2207.00936

52

Declaration

I hereby affirm that I have independently written the thesis submitted by me and have not
used any sources or aids other than those indicated.

Location, Date, Signature

TorstenSchmid
Typewriter
München, den 31.03.2023

TorstenSchmid
Stamp

54

	Introduction
	Motivation
	Objectives
	Outline

	Basics of Neural Networks
	Neural Networks in the Context of Artificial Intelligence
	Properties of Neural Networks
	Optimization/Learning
	Cost Function
	Optimization Problem
	Optimizer

	Convolutional Neural Networks
	Convolution
	Normalization
	Activation Function
	The U-Net Family

	Data Generation
	Geometry Creation
	Simulation Setup
	Convergence
	Sampling

	Learning Methodology
	Data Encoding
	Data Scaling
	Base Model
	Image Network and Scaling Network

	Results
	Model and Training Setup
	Metrics
	Comparison of Loss Functions
	Generalization Capabilities of the Base Model
	Increasing the Dataset Size
	Weight Decay
	Removing Outliers

	Image-Net: Displacements
	Image-Net and Scaling-Net
	Image-Net: Extension to Stresses

	Conclusion and Outlook
	Bibliography

