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Abstract

For many years, myoelectric prostheses — upper-limb prosthetic devices controlled by
one’s own muscle signals — have been much-heralded innovations for people with limb
absence. Developments are manifold and have promised mind-controlled, easy-to-use de-
vices for everyone. However, only a fraction of what was promised has been delivered. To
this day, users have issues with stability in various situations, difficulty in naturally and
reliably controlling their prosthesis and frustration with an extensive learning process
for said control.
Interaction is key to resolving the issues of myoelectric prostheses, and involving

people who need such devices is thus essential. Therefore, we have investigated the
co-adaptation of the user and prosthesis through incrementality in myocontrol to
advance the field of upper-limb prosthetics. Our contribution to the field covers three
distinct areas. These are the detection and interpretation of muscle signals, theoretical
considerations regarding interaction and novel concepts in the assessment of modern
myoelectric prostheses.
Besides Electromyography (EMG), further methods such as Forcemyography (FMG)

are valid muscle signal detection techniques. We have shown the merits of using FMG
in myocontrol in an online user study, where EMG and FMG were fused. We have also
found that action interference is lower for FMG compared to EMG, leading to higher
control stability. Furthermore, we have designed a transparent myocontrol algorithm
and investigated it in a user study. By reducing the complexity of the controller, we
were able to show the capability of the user to abstract to untrained tasks.
In order to approach interaction in a structured manner, we took the view of Radical

Constructivism (RC) on prosthesis and user. Through the rich theoretical background
of RC in the area of learning, we were able to show that interaction indeed is an improve-
ment for prosthetic control, and the change of perspective might offer further benefits.
Finally, we developed a novel assessment protocol for multi-articulated upper-limb

prostheses, the Simultaneous Assessment and Training of Myoelectric Control (SATMC)
protocol. It considers important aspects of modern prosthetic devices, such as the learn-
ing process, the usage of different actions in different situations and the possibility of
interaction. We performed a longitudinal user study according to the SATMC proto-
col and were able to show an effective learning process of a myocontroller based on
incremental machine learning with a high level of satisfaction for the user.
In summary, we implemented interactive co-adaptation at different stages of prosthetic

control, starting at the sensor level all the way to a comprehensive long-term evaluation of
a person with limb absence in activities of daily living. The integration of these findings
in modern upper-limb prostheses will, in our opinion, lead to substantial improvements
for people with limb absence.
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Zusammenfassung

Myoelektrische Prothesen — Prothesen der oberen Gliedmaßen gesteuert durch Muskel-
signale — werden seit Jahren als herausragende Innovation für Betroffene angepriesen,
die gedankengesteuerte, einfach zu bedienende Geräte verspricht. Jedoch erfahren An-
wender*innen noch immer Probleme im Bereich der Stabilität, Schwierigkeiten bei der
intuitiven und zuverlässigen Steuerung, sowie Frustration bezüglich des langwierigen
Lernprozesses für ebendiese Steuerung.
Im Zentrum der Lösung der genannten Herausforderungen liegt die Einbeziehung

Betroffener in die Weiterentwicklungen. Die vorliegende Forschungsarbeit hat sich daher
mit der Koadaption von Anwender*innen und Prothese durch Inkrementalität der
Myokontrolle auseinandergesetzt. ImWesentlichen umfassen die Beiträge die drei Aspekte:
Erfassung und Interpretation von Muskelsignalen, theoretische Überlegungen zur In-
teraktion, sowie neuartige Konzepte zurBewertungmoderner myoelektrischer Prothe-
sen.
Neben Elektromyographie (EMG) lassen sich Muskelsignale über weitere Methoden,

wie z.B. die Kraftmyographie (FMG), erfassen. Eine Nutzer*innenstudie, in der EMG
und FMG miteinander fusioniert wurden, konnte belegen, dass die gegenseitige Inter-
ferenz der Aktionen bei FMG geringer ausfällt als bei EMG, was eine höhere Stabilität
der Steuerung ermöglicht. Weiterhin wurde im Rahmen der Forschungsarbeit ein trans-
parenter Algorithmus zur Myokontrolle entwickelt und in einer Nutzer*innenstudie un-
tersucht. In dieser Studie konnte demonstriert werden, dass die Reduktion der Kom-
plexität der Steuerung die Fähigkeit der Anwender*innen zur Abstraktion nicht-trainierter
Aufgaben entscheidend verbessert.
Zur Strukturierung der Interaktion wurde das theoretische Konzept des Radikalen

Konstruktivismus (RC) angewandt. Aufgrund des umfangreichen theoretischen Hinter-
grundes des RC im Bereich des Lernens konnte entsprechend dargestellt werden, dass und
inwieweit die Nutzer*innen-Interaktion zu einer Verbesserung der Prothesensteuerung
führt.
Letztlich wurde unter Berücksichtigung verschiedener Aspekte neuartiger Prothesen —

wie z.B. dem Lernprozess, die Anwendung verschiedener Aktionen in unterschiedlichen
Situationen, sowie die Möglichkeit der Interaktion — ein neuartiges Bewertungsprotokoll
entwickelt. Basierend auf dem SATMC-Protokoll (Simultaneous Assessment and Train-
ing of Myoelectric Control) wurde eine Langzeitstudie durchgeführt, im Rahmen derer
ein effektiver Lernprozess eines auf inkrementellem maschinellem Lernen basierenden
Myocontrollers mit hoher Nutzer*innenzufriedenheit nachgewiesen werden konnte.
Zusammenfassend wurde also eine interaktive Koadaption auf unterschiedlichen Ebenen

der Prothesensteuerung implementiert, von der künftige Generationen von Prothesen der
oberen Gliedmaßen profitieren werden.
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B., Roa, M. A., Castellini, C., “Stable Myoelectric Control of a Hand Prosthesis
Using Non-Linear Incremental Learning”. In: Frontiers in Neurorobotics 8 (2014).
doi: 10.3389/fnbot.2014.00008.

[d] Nowak, M. “Simultaneous and Proportional Control of Hand Prostheses with
Multiple Degrees of Freedom: A New Method of Improving the Training Process”.
Monograph. Technische Universität München, 2014.

[e] Brunelli, D., Tadesse, A. M., Vodermayer, B., Nowak, M., Castellini, C., “Low-
Cost Wearable Multichannel Surface EMG Acquisition for Prosthetic Hand Con-
trol”. In: 2015 6th International Workshop on Advances in Sensors and Interfaces
(IWASI). June 2015, pp. 94–99. doi: 10.1109/IWASI.2015.7184964.

[f] Comerford, A., Chooi, K. Y., Nowak, M., Weinberg, P. D., Sherwin, S. J., “A
Combined Numerical and Experimental Framework for Determining Permeability
Properties of the Arterial Media”. In: Biomechanics and Modeling in Mechanobi-
ology 14.2 (Apr. 2015), pp. 297–313. doi: 10.1007/s10237-014-0604-6.

[g] Nowak, M., Castellini, C., “Wrist and Grasp Myocontrol: Simplifying the Train-
ing Phase”. In: 2015 IEEE International Conference on Rehabilitation Robotics
(ICORR). Aug. 2015, pp. 339–344. doi: 10.1109/ICORR.2015.7281222.

[h] Castellini, C., Bongers, R. M., Nowak, M., van der Sluis, C. K., “Upper-Limb
Prosthetic Myocontrol: Two Recommendations”. In: Frontiers in Neuroscience 9
(2016). doi: 10.3389/fnins.2015.00496.

[i] Nowak, M., Aretz, B., Castellini, C., “Wrist and Grasp Myocontrol: Online
Validation in a Goal-Reaching Task”. In: 2016 25th IEEE International Sympo-
sium on Robot and Human Interactive Communication (RO-MAN). Aug. 2016,
pp. 132–137. doi: 10.1109/ROMAN.2016.7745101.

x

https://doi.org/10.1109/BIOROB.2014.6913835
https://doi.org/10.1109/BIOROB.2014.6913835
https://doi.org/10.3389/fnbot.2014.00008
https://doi.org/10.1109/IWASI.2015.7184964
https://doi.org/10.1007/s10237-014-0604-6
https://doi.org/10.1109/ICORR.2015.7281222
https://doi.org/10.3389/fnins.2015.00496
https://doi.org/10.1109/ROMAN.2016.7745101


Further Publications

[j] Nowak, M., Castellini, C., “The LET Procedure for Prosthetic Myocontrol:
Towards Multi-DOF Control Using Single-DOF Activations”. In: PLOS ONE
11.9 (Sept. 2016), e0161678. doi: 10.1371/journal.pone.0161678.

[k] Kossyk, I., Nowak, M., Nissler, C., Castellini, C., Márton, Z.-C., “Virtual
Reality-System Und Verfahren Zum Betreiben Eines Solchen”. DE102016205849A1.
Oct. 2017.

[l] Nissler, C., Connan, M., Nowak, M., Castellini, C., “Online Tactile Myography
for Simultaneous and Proportional Hand and Wrist Myocontrol”. In: Myoelectric
Control and Upper Limb Prosthetics Symposium (MEC). 2017, p. 94.

[m] Nowak, M., Bongers, R. M., van der Sluis, C. K., Castellini, C., “Introducing
a Novel Training and Assessment Protocol for Pattern Matching in Myocontrol:
Case-Study of a Trans-Radial Amputee”. In: Myoelectric Control and Upper Limb
Prosthetics Symposium (MEC). 2017, p. 78.

[n] Nowak, M., Eiband, T., Castellini, C., “Multi-Modal Myocontrol: Testing Com-
bined Force- and Electromyography”. In: 2017 International Conference on Re-
habilitation Robotics (ICORR). July 2017, pp. 1364–1368. doi: 10.1109/ICORR.
2017.8009438.

[o] Nowak, M., Engel, S., Castellini, C., “A Preliminary Study Towards Automatic
Detection of Failures in Myocontrol”. In: Myoelectric Control and Upper Limb
Prosthetics Symposium (MEC). 2017, p. 82.

[p] Patel, G. K., Nowak, M., Castellini, C., “Exploiting Knowledge Composition to
Improve Real-Life Hand Prosthetic Control”. In: IEEE Transactions on Neural
Systems and Rehabilitation Engineering 25.7 (July 2017), pp. 967–975. doi: 10.
1109/TNSRE.2017.2676467.

[q] Strazzulla, I., Nowak, M., Controzzi, M., Cipriani, C., Castellini, C., “Online
Bimanual Manipulation Using Surface Electromyography and Incremental Learn-
ing”. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering
25.3 (Mar. 2017), pp. 227–234. doi: 10.1109/TNSRE.2016.2554884.

[r] Meattini, R., Nowak, M., Melchiorri, C., Castellini, C., “Towards Improving
Myocontrol of Prosthetic Hands: A Study on Automated Instability Detection”.
In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Hu-
manoids). Nov. 2018, pp. 1–7. doi: 10.1109/HUMANOIDS.2018.8625021.

[s] Bongers, R. M., Franzke, A. W., Kristoffersen, M. B., Valka, T. A., Nowak, M.,
van der Sluis, C. K., Castellini, C., “Implications of Movement Coordination for
Developing Myocontrolled Prostheses”. In: TIPS-Trent International Prosthetics
Symposium. 2019, pp. 30–30.

[t] Heiwolt, K., Zito, C., Nowak, M., Castellini, C., Stolkin, R., “Automatic De-
tection of Myocontrol Failures Based upon Situational Context Information”. In:
2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR).
June 2019, pp. 398–404. doi: 10.1109/ICORR.2019.8779478.

xi

https://doi.org/10.1371/journal.pone.0161678
https://doi.org/10.1109/ICORR.2017.8009438
https://doi.org/10.1109/ICORR.2017.8009438
https://doi.org/10.1109/TNSRE.2017.2676467
https://doi.org/10.1109/TNSRE.2017.2676467
https://doi.org/10.1109/TNSRE.2016.2554884
https://doi.org/10.1109/HUMANOIDS.2018.8625021
https://doi.org/10.1109/ICORR.2019.8779478


[u] Meattini, R., Nowak, M., Melchiorri, C., Castellini, C., “Automated Instabil-
ity Detection for Interactive Myocontrol of Prosthetic Hands”. In: Frontiers in
Neurorobotics 13 (2019). doi: 10.3389/fnbot.2019.00068.

[v] Nissler, C., Nowak, M., Connan, M., Büttner, S., Vogel, J., Kossyk, I., Márton,
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1 Introduction

The human-made world is built for interaction with hands. We grasp tools with our
hands, we open doors by turning the door handles with our hands, and we use computers
with our hands. A partial or full loss or congenital absence of one’s hands or arms severely
influences the ease of interacting with the world. Beyond physical interaction, we also
communicate with our limbs and express ourselves through them. Having that in mind,
the absence of a limb has social implications affecting participation in social activities [1].

Manifold options exist to support people with limb absence in regaining some func-
tionality and autonomy. Although developments in prosthetics in recent decades have
been substantial, a number of challenges still prevent their success as a satisfactory
replacement.

1.1 Prosthetics

Prosthetic devices are options to reenable people with limb absence to interact with their
environment. These can be categorised coarsely in active and passive prostheses, and
a few examples can be found in Figure 1.1.

Among passive prostheses, there are options that aim to resemble the absent limb
purely from a cosmetic point of view. Figure 1.1a depicts some examples that bear a
high resemblance to hands and fingers.

Beyond cosmetics, prostheses can also be tailored for individual tasks. For example,
these can be prostheses for swimming that are shaped like a fin rather than a hand or
for cycling that provide a connector to the handlebar of a bicycle. These follow rather
the concept of a tool and provide the maximum functionality in these situations. An
example of a prosthesis with a contraption to hold a pen can be seen in Figure 1.1b.
These functional prostheses also fall in the category of passive prostheses, which require
external manipulation to change their configuration [2].

There are also options that are active and provide functionality to the wearer based on
the capabilities of human hands. Examples are hooks that can be controlled using one’s
body and provide substantial functionality compared to their level of complexity, see Fig-
ure 1.1c. Controlling these body-powered prostheses only requires mechanical cables
and no added electronic components. This bears two advantages. First, low technical
complexity makes these devices rather robust. Second, due to the cable-driven control
with another body part, body-powered prostheses inherently provide haptic feedback to
the wearer [3].

However, the prosthesis type that provides the highest potential to be an equivalent
human hand or arm replacement in any given situation is a mechanical self-powered
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prosthesis. Modern mechanical hands have individual finger actuation and can include
wrist modules with multiple Degrees of Freedom (DOFs) and arms with actuated el-
bow and shoulder joints, e.g. the Modular Prosthetic Limb [4], see Figure 1.1d. This
prosthesis type offers the most functionality to the wearer and, due to its number of
controllable DOFs, is often referred to as a multi-articulated prosthesis. To fully
harness the level of functionality, the wearer needs to control the prosthetic device reli-
ably. As the functionality of modern prosthetic devices increases, so does the complexity
of controlling them. It might require a considerable effort of the wearer to master such
a device.

(a) (b)

(c) (d)

Figure 1.1: Different prosthesis types: (a) cosmetic [5]; (b) functional or everyday aid [5];
(c) body-powered hook (sketch based on [6]; modern hook [7]); (d) self-powered
prosthetic arm [4]

Each of these prostheses is a unique solution, which offers benefits for some wearers but
not necessarily for others. The choice of prosthesis type is individual [8]. No prosthesis
has yet reached a level of proficiency to be a universal solution for everyone.

1.2 Myoelectric Prostheses

This thesis will focus on modern multi-articulated prosthetic devices. Although this
prosthesis type could offer the highest benefits, rejection rates of around 44% have been
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1.3 Problem Statement

reported in the past [9]. Numerous aspects for improvement were identified. These are
most often concerned with the control of the prosthesis [1, 10], which is based on muscle
signals. This type of control is called myocontrol and originates from the Greek word
for muscle µυς/mys. For the scope of this thesis, we will briefly introduce myocontrol in
this section in order to aptly describe the challenges that come with this type of control.
Section 2.3 will cover the topic in more detail.
Skeletal muscles move our body by actuating limbs and joints. After an amputation,

a portion of the skeletal muscles of the amputated limb remains. The situation is similar
for the congenital absence of a limb. In both cases, muscle structure is present that
does not serve the purpose of moving a part of a limb. However, these muscles remain
innervated and can be actuated voluntarily. Muscular activity can be measured, and the
most common method for this purpose is Electromyography (EMG). It detects muscular
activity based on the electric field that is created in the muscle-contraction process.
There are two different ways of utilising the EMG signal for prosthetic control. The

first one, known as direct control, uses the signals directly to control a DOF of a
prosthesis. Usually, two sensors are placed on opposing sides of the forearm; one side is
associated with opening and the other one with closing the hand. A threshold on the
signal magnitude determines when an action is triggered. In case the prosthesis supports
a number of different actions, these can be cycled through by a specific muscle activation,
e.g. simultaneous signals at both sensors. The second method involves Machine Learning
(ML). Instead of using the EMG signals directly, an ML-based layer first interprets the
signals and then uses the detected actions as control inputs for the prosthesis. Usually,
this method involves training or calibration by the wearer, during which EMG signals
are collected and associated with certain actions of the prosthesis.
ML-based control approaches can be used to operate multi-articulated prostheses.

Only two systems of that kind have made it to the market so far: the Ottobock Myo
Plus [11] and the Coapt Complete Control [12]. Although advanced, a number of chal-
lenges still remain in their usage. Their improvement is the focus of this thesis.

1.3 Problem Statement

Prosthetic arm technology is still so limited
that I become more disabled when I wear one.

Britt H. Young [13]

Although an extreme statement, the quote by Britt H. Young, a writer, geographer
and person with limb absence, summarises the dissatisfaction with meeting the promises
of modern prostheses quite well. On a more specific level, a number of current challenges
have been identified.
A common source of dissatisfaction is the robustness of the control. This has been

reported in a number of studies [1, 10, 14, 15]. People with limb absence voiced the wish
for “lower reaction and execution times”, a higher level of intuitiveness or “to allow the
execution of the daily life tasks”.
A recent review [16] groups the current challenges in myocontrol into four categories:
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Limb position effect: Scheme et al. [17] have first described the influence of this effect
on intent detection. Relative movement between muscles and skin is possible. Therefore,
changing the pose of one’s limb can lead to a displacement between the two. Measuring
the EMG signal on the surface of the skin, hence, can lead to measurements of another
part of a muscle or an entirely different muscle. Additionally, depending on the limb
position, a varying amount of muscular activity is required to counteract the gravitational
force, thus changing the EMG signal as well. These changes can negatively influence the
detection of the user’s intent.

Contraction intensity effect: This effect is similar to the limb position effect but covers
the negative effects that result from changes in the EMG signal based on different levels
of muscle contraction intensity. The increase in muscular activity is based on specific
recruitment principles. These principles affect the frequency properties at different levels
of muscular activity and can make the relationship between muscular activity and EMG
amplitude non-linear [18].

Electrode shift effect: Relative changes between skin and electrode can have negative
influences on signal interpretation. A shift can result in measuring a different muscle or
a muscle area with lower signal quality. Furthermore, the lift-off of an electrode leads
to signal loss and can introduce noise into the system. A provision with a well-fitted
prosthetic socket can reduce this issue considerably. For the purpose of this thesis,
we will not consider this an issue of ML-based myocontrol but rather of the prosthetic
provision.

Within/between day effect: The skin-electrode interface is influenced by a number of
factors. These include, for example, sweat, temperature, and other physiological mech-
anisms. Fatigue and differences in donning the prosthesis can be further factors that
influence intent detection. The changes introduced by these factors over the course of
time are summarised in the within/between day effect.

Further challenges have been identified by Franzke et al. [15]. These include:

Process of switching prosthesis actions: In direct control, cycling through different
actions using a switching command is often experienced as cumbersome. The higher
the number of possible actions, the longer it takes to select a specific one. Since the
focus of this thesis lies on ML-based myocontrol, which has the beneficial property of
not requiring a switching command, this challenge will not be covered explicitly.

Extensive training in ML-based myocontrol: In ML-based myocontrol, the learning
process can be lengthy, potentially unsuccessful and, therefore, dissatisfying. Multiple
attempts might be required. Furthermore, more complex ML methods might be more
sensitive to changes in the EMG signal and require recalibration at regular intervals.
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With the exception of the Electrode shift effect, all of the challenges mentioned are
concerned with the control of myoelectric prostheses, which is our core focus in this
thesis, specifically ML-based myocontrol. We will not cover issues arising from durability,
comfort of wear, appearance or level of noise, as hardware development is not part of this
thesis. These issues, however, are as important as a natural control of one’s prosthesis.
In this context, some studies have reported haptic feedback to be a desired feature [8,
10, 19]; on the other hand, another study could not verify that [14]. Although feedback
is an essential concept in this thesis, haptic feedback will not be covered here.

1.4 Contributions

The aforementioned challenges emerge from very different areas of upper-limb prosthet-
ics. However, we believe that employing co-adaptation and facilitating the interaction
between the user and prosthesis is key in dealing with all of them.

Co-adaptation refers to the adaptation that occurs both on the side of the ML method
and on the side of the user. Using this keyword, we want to put the user in the focus of
our work and put them in the loop from the beginning. A well-known issue in prosthetics
regards results that have been found without the user in the loop. It has been shown
that the transfer of findings without the user in the loop to usability is controversial [20,
21, 22]. Closing the loop, i.e., providing the user with live feedback on their actions,
will lead to learning and adaptation on the side of the user. The fact that a user can
learn to compensate for the shortcomings of a given controller might be the reason for
the mismatch between offline and online findings. User adaptation is a highly desirable
feature that needs to be accompanied by the potential for adaptation on the side of
the ML algorithms. In this thesis, we realise this property by means of incremental
Machine Learning (iML).

This term covers ML methods that allow for updates of the training data and don’t
require full retraining, i.e. full replacement of the training data and rebuilding of the
model. By updating the training data, iML methods adapt to changes and improvements
on the side of the user. Regarding the limb position effect, for example, updates can
be issued in poses where the myocontroller reaches its limits. This allows the user to
start with a minimal functional training dataset, which can be extended when required.
A direct connection can also be drawn to the challenge regarding extensive training
in ML-based myocontrol. With minimal initial training and occasional updates, the
overall time for training could be reduced. More details about the iML method used
for the majority of the thesis can be found in Section 2.3 and specifically in Section 2.3.4.

With iML methods granting us access to co-adaptative interaction between the user
and prosthesis, we approached the challenges mentioned in the previous section from
three different angles in this thesis. These are muscle signals, theory on user-
prosthesis interaction and simultaneous assessment and training. Figure 1.2
visualises this concept. Circles of different colours highlight what area of the user and
their prosthesis they encompass, starting from the smallest and most specific one at the
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Figure 1.2: Different areas of user and prosthesis interaction addressed in this thesis. • muscle
signals: benefits of different sensors for signal detection and transparent design
of the myocontroller; • theory on user-prosthesis interaction: influence of the
degree of interaction of the user with the prosthesis; • simultaneous assessment
and training: development and testing of a protocol to appropriately evaluation the
usage of modern prosthetic devices

sensor level, gradually increasing to include the prosthesis at the direct interaction level
and eventually leading to a holistic view of user and prosthesis at the assessment and
training level.

• Muscle Signals: The gold standard to detect muscle signals in prosthetics is EMG.
Our contribution to this area is two-fold. First, we show the validity of a different
sensor type for muscle-signal detection, namely Forcemyography (FMG). This method
has been investigated before, and a number of publications have highlighted the benefits
of FMG, among them some of our own [n, l]. However, to the best of our knowledge, we
have, for the first time, fused EMG and FMG in a user study with online goal-reaching
tasks, see Publication 1. We were able to confirm, with the user in the loop, the
benefits so far only demonstrated in offline scenarios. Furthermore, we were able to show
that FMG is less prone to the contraction intensity effect than EMG. Interference
between different actions at low levels of activation was only present for EMG and
not for FMG. Second, we employ High-Density Surface Electromyography (HD-sEMG),
which consists of a high number of EMG sensors arranged in a grid structure, in the
implementation of a myocontroller specifically designed for robustness and intuitive use,
see Publication 2. In a user study involving people without limb absence and a person
with limb absence, we showed that an algorithm with reduced complexity and tailored
towards transparency for the user showed remarkable capabilities in online goal-reaching
tasks. We were able to deal with extensive training in ML-based myocontrol
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by realising Simultaneous and Proportional Control (SPC) only training on individual
actions but reaching goals involving up to three DOFs at the same time in an online user
study. Furthermore, this myocontroller was trained with one level of activation only and
could abstract to the full range physically possible, hence, dealing with the contraction
intensity effect. Moreover, there were no significant differences in performance between
people without limb absence and the person with limb absence, which shows the potential
of this approach for application in myoelectric prostheses.

• Theory on User-Prosthesis Interaction: The field of psychology offers manifold the-
ories regarding learning and interaction. In Publication 3, we use methods from Rad-
ical Constructivism (RC) to change the perspective on prosthetic myocontrol. Within
this framework, the prosthesis is seen as an entity of its own. The prosthesis is learning
to understand information the user provides and builds a model of what it perceives.
Where the model fails to explain the data, novel information needs to be acquired to
update the model. This concept, in its essence, describes iML. In an online user study,
we were able to show that the interaction between prosthesis and user indeed leads to a
subjectively better controller. This, in turn, emphasises iML as an effective improvement
in myocontrol, which helps deal with extensive training in ML-based myocontrol.

A central concept within the RC framework is perturbation, which is the experience of
novel information to update one’s model. We have developed an oracle to automatically
detect these situations and trigger the interaction with the user from the prosthetic
side [o, r, u]. These findings go beyond the development of the RC framework and are
not directly part of this thesis.

• Simultaneous Assessment and Training: Finally, we address the lack of an adequate
assessment and training protocol for modern ML-based prostheses by designing such a
tool, the Simultaneous Assessment and Training of Myoelectric Control (SATMC). In
this process, we have taken the challenges outlined in the previous section into account
and put particular emphasis on the limb position effect, the within/between day
effect and extensive training in ML-based myocontrol [h, m, s]. The result is
a multi-session protocol of increasing complexity and difficulty, which is composed of
tasks involving multiple actions performed in different positions. Using the SATMC,
we demonstrated the effectiveness of incrementality and co-adaptation in a long-term
user study involving a person with limb absence using a custom-built prosthesis with
an iML-based myocontroller, see Publication 4. The design, according to Single Case
Experimental Design (SCED), allowed us to draw conclusions with only one subject and
fostered the reproduction of studies based on the SATMC.

Beyond these contributions, the myocontrol algorithm refined in the investigation of
this thesis was integrated into a Virtual Reality (VR) application for rehabilitation, the
Virtual Therapy Arm (VITA) system [v]. The original idea of treating Phantom Limb
Pain (PLP) in VR was awarded the “DLR IDEA AWARD 2015 Leben 4.0” and funding
to develop the first prototype. The successful development allowed us to secure further
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(a) (b)

(c)

(d)

Figure 1.3: The VITA system: (a) a patient after his first experience with the VITA system;
(b) the VITA logo; (c) visualisation of a patient in the VITA environment; (d) the
author and a colleague of the author presenting the VITA system at the DIGITAL-
X 2022 in Cologne, Germany

funding for a study that is currently being carried out in four rehabilitation institutes
in Germany and Italy to validate the functionality of the VITA system to treat PLP for
upper and lower limbs and support rehabilitation after a stroke [w]. Figure 1.3 shows a
patient after using the VITA system, the VITA logo, a patient using the VITA system,
and the author of this thesis and his colleague presenting the VITA system to the public.
We have also patented the muscle-signal-based interaction in VR [k].

The work presented in this thesis demonstrates the benefits of co-adaptation enabled
by iML for the control of myoelectric prostheses. With the implementation of these
findings, we hope to provide a positive impact on the lives of people with limb absence.

1.5 Structure of Work

The remainder of this thesis is organised as follows. Chapter 2 provides background
for our investigations and describes in more detail what our studies are based on. This
covers the fundamentals of muscles and how to measure their activity, different strategies
for prosthetic control based on these signals, theoretical background on interaction and
methods for assessment of myocontrol. Chapter 3 contains a short summary of the
four core publications that build this thesis. Chapter 4 discusses the contributions of
this thesis, compares them to relevant existing literature and covers their limitations.
Chapter 5 provides concluding words and an outlook on future work. In Appendix A,
full-text versions of the core publications comprising this thesis can be found.
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2 Background & Methods

Similar to most domains, upper-limb prosthetics also hosts a prestigious competition
where the most advanced technical accomplishments compete against each other. It
is the Arm Prosthesis Race (ARM) of the Cybathlon, which is organised by Ei-
dgenössische Technische Hochschule Zürich (ETH Zürich) [23]. It is a series of tasks
based on Activities of Daily Living (ADLs) that test dexterity, precision and reliability.
Figure 2.1 shows the winners of the ARM competitions of the two Cybathlons in 2016
and 2020.

(a) (b)

Figure 2.1: Winners of the ARM competition of the Cybathlon: (a) Robert Radocy [24] (Win-
ner, 2016) and (b) Krunoslav Mihić [24] (Winner, 2020)

Remarkably, although there was strong competition in modern myoelectric prostheses,
the winners in both iterations were people using a body-powered prosthesis. Robert
Radocy, the winner of the first Cybathlon in 2016, was eager to show what could
be achieved with a body-powered prosthesis, and he and his team succeeded. The
Maker Hand team followed in his footsteps in the second iteration of the Cybathlon
in 2020.

This example shows the duality of the state of the art. Although the scientific state
of the art pushes the limits of what can be achieved with technical solutions, in daily
life, the usage of a reliable body-powered gripper can bring you remarkably far.

Our goal is to bring the scientific state of the art, which will be described in the
following, closer to the user by employing co-adaptation through iML.
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2.1 Muscles

Muscle tissue drives voluntary and involuntary motion of the human body. Since this
work is centred around the intent of the user, we will focus on skeletal muscles only,
which can be activated voluntarily [25]. Other types are cardiac and smooth, which can
be found in the heart or the intestine, respectively [26].

The macroscopic skeletal muscle consists of three hierarchical levels of encapsulation,
which go down in scale to the individual muscle cell, the muscle fibre. An image taken
with an optical microscope of tissue from a skeletal muscle can be found in Figure 2.2. It
shows a number of longitudinal muscle fibres in the area of the Neuromuscular Junction
(NMJ). The NMJ is the location where the efferent motor neuron innervates the muscle
fibre. The areal black structures in Figure 2.2 are these innervation sites, where a
signal from the nervous system arrives and a muscle activation is triggered. The same
motor neuron can innervate between 50 − 1000 muscle fibres [27]. The combination of
motorneuron and the muscle fibres it innervates is called Motor Unit (MU).

Figure 2.2: Image of muscle innervation using an optical microscope [28]: horizontal red struc-
tures are the muscle fibres; black lines are the axons innervating the muscle fibres;
areal black structures are the NMJs

All fibres in a MU are of the same type, of which there are three in the skeletal muscle.
These are called Type I, Type IIa and Type IIb/x, and they differ in their discharge rate
and their susceptibility to fatigue [29]. Type I is slow twitching and fatigue resistant,
Type IIa is fast twitching and fatigue resistant, and Type IIb/x is fast twitching and
fatiguing. These types serve different purposes. Type I is predominantly involved in
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endurance activities, while Type IIa/b/x are rather involved in tasks requiring power.
This distinction is also important when increasing the contraction of a muscle. MUs
of different types are recruited in a specific order [30]. The recruitment follows two
principles: Henneman’s principle [31] and the Onion Skin principle [32, 33]. According
to Henneman’s principle, at low levels of Maximum Voluntary Contraction (MVC), small
MUs are recruited first, followed by MUs of increasing size. This continues up to 50−60%
MVC, after which a further increase in force is realised by an increase in discharge rate.
The Onion Skin principle states that MUs with high discharge frequency are recruited
earlier than MUs with low discharge frequency.

When a MU is recruited, originating from the NMJ, the muscle fibre depolarises,
leading to a shortening of the muscle fibre and eventually to a force along the muscle
direction [26]. This shortening is based on the relative movement of two proteins in the
muscle fibre, myosin and actin [34]. Due to a periodic attachment, stroke, detachment,
and reconfiguration of the myosin heads, this process is called the cross-bridge cycle [35].
The depolarisation travels with 4− 5m/s from the NMJ in both directions towards the
end of the muscle fibre [36].

2.2 Measuring Muscular Activity

The most direct way of measuring muscular activity can be achieved by measuring the
forces or torque at the end effector or joint created by the shortening of the muscle tissue.
As this thesis is concerned with upper-limb prosthetics for people with limb absence, we
have to resolve to other means.

The most common one is EMG, which frequently sees clinical application in myo-
electric prostheses. FMG can be considered second to EMG as manifold studies have
investigated its use in myocontrol, although no prosthetic hardware with FMG-based
control has reached the market yet. These two methods and their combination are a
central point in this thesis. Further methods involve Mechanomyography (MMG), Son-
omyography (SMG) and Electrical Impedance Tomography (EIT).

2.2.1 Electromyography (EMG)

EMG describes the measurement of muscular activity by detecting the change in elec-
tric potential caused by the activation of the muscle. Section 2.1 described the process
of activating muscles, the depolarisation of MUs and the signal propagation along the
fibre. The combined signal of all fibres in a MU creates the Motor Unit Action Potential
(MUAP). Since the NMJ is not in the same position for all fibres of a MU, see Figure 2.2,
the superposition of the individual depolarisation signals creates a unique MUAP finger-
print [37]. The EMG signal consists of the potential of a number of different MUAPs,
creating its characteristic signal due to superposition and cancellation. Figure 2.3 de-
picts this process. A number of the findings regarding the underlying functionality of
muscles were only possible through EMG [32, 38].
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(a) (b)

(c)

(d) (e)

Figure 2.3: EMG-signal generation: (a) depolarisation of muscle fibres originating from the
NMJs travelling along fibres; (b) superposition of individual muscle-fibre signals
leads to characteristic MUAP; (c) superposition of multiple MUAPs results in the
EMG signal; (d) frequency spectrum of an exemplary EMG signal sequence; (e)
decomposing into spike trains and MUAPs

The EMG signal can be read invasively and non-invasively. Invasive techniques
using needle or fine-wire electrodes allow targeted measurements with little cross-talk
and noise [39, 40] and have been used successfully to control prostheses [41, 42, 43].

However, for daily use in prosthetic devices, measuring the EMG signal on the surface
of the skin, which is referred to as Surface Electromyography (sEMG), is preferred to
percutaneous approaches. Implantable electrodes [44] don’t require percutaneous access
and are capable of measuring at the source. They have shown better EMG-data quality
compared to sEMG recordings [45]. In sEMG, the electrode measuring EMG signals is
not located at the source directly and, therefore, is subjected to source mixing. Muscles of
different depths beneath the sensor, as well as muscles in the general vicinity, contribute
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to the reading of the sensor, i.e. cross-talk [46]. Furthermore, the skin and, in general,
the tissue between the muscle and the sensor act as a filter for the EMG signal. In this
work, we will not go further into detail. Several remarkable publications have dealt with
this topic extensively [18, 37, 47]. Additionally, the properties of a sensor contribute
to the measurements. Differences exist in the type, e.g. wet or dry electrodes, or form
and dimension. A recent tutorial provides a great overview of the factors influencing the
EMG-signal readings [48].
In short, the sEMG signal ranges between −5mV and 5mV with a bandwidth of

0 − 500Hz and a mean frequency of 70 − 130Hz [49]. Figure 2.3 visualises the power
spectrum of the EMG signal on the bottom left.
From the EMG signal, manifold information can be extracted. Originally, this method

was developed as a diagnostic tool and is still used for this purpose. Electrocardiogra-
phy (ECG) might be the most widely known diagnostic tool based on the changes in the
electric potential of a muscle. While ECG helps diagnose abnormalities in the heart mus-
cle, EMG measurements do the same for neuromuscular abnormalities. These include
muscular dystrophy, carpal tunnel syndrome or amyotrophic lateral sclerosis [50].
In terms of this thesis, EMG signals are used to draw conclusions about the intent

of the person expressing them. As the strength of the EMG signal is proportional
to the muscular activity [18], information regarding force and action can already be
extracted from its envelope. However, more information can be extracted from other
characteristics of the EMG signal. Regarding the use of EMG in prosthetic control,
a set of four Time Domain (TD) features has been developed by Hudgins et al. [51].
Although still very common, there are a large number of additional features that have
been developed for myocontrol. Phinyomark et al. [52] have reviewed 37 features for
classification based on EMG data. This analysis was extended to 58 features, and using
a clustering approach resulted in a topologically informed chart with recommendations
of representative features [53], see Figure 2.4. With the advent of wearable EMG-sensor
bracelets, a comparison was performed between conventional sensors with sampling rates
> 1000Hz and wearable sensors with a lower sampling rate of 200Hz [54]. This study
suggests two feature sets for usage with low-sampling-rate sensors.
Besides the advent of wearable sensors, advancements have also been made based

on spatial information of sEMG data. These investigations require a high number of
sensors in a specific orientation, such as a grid, called HD-sEMG. Based on HD-sEMG,
further information can be extracted, such as the decomposition of the sEMG. As a
result, individual MUAPs can be extracted. Mathematically, the composition of an
EMG signal x can be expressed as follows

x(k) =

L−1∑
l=0

H(l) · s(k − l) + n(k) (2.1)

where

x(k) = [x1(k), x2(k), · · · , xm(k)]T (2.2)

s(k) = [s1(k), s2(k), · · · , sn(k)]T (2.3)
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2 Background & Methods

Figure 2.4: Feature map created by Phinyomark et al. [53] clustering and arranging multiple
features based on their kth nearest neighbour distance; reprinted under license CC
BY 4.0

xi(k) is the kth sample of the ith EMG sensor, m is the number of EMG sensors,
sj(k) is the kth sample of the spike train of the jth MU, n is the number of MU and
H(l) is a m × n matrix of the MUAPs with l = 0, · · · , L − 1 and L the length of
the MUAPs. Different methods exist to identify MU spike trains. Among them are
manual methods such as spike sorting using EMGLAB [55] and automatic ones based
on Convolution Kernel Compensation [56], fast Independent Component Analysis [57]
and their combination [58]. The accuracy of the identified MUs can be assessed using
methods such as the pulse-to-noise ratio [59].
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2.2 Measuring Muscular Activity

Initial work on EMG decomposition was based on invasive sensors [55, 60, 61, 62].
Due to the selective nature of invasive sensors, only a few MUs could be detected [40].
New developments allowed for decoding at the surface [39, 56, 63, 64], which, however,
only allows the decomposition of superficial MUs [65]. Invasive methods have been used
to validate decomposition approaches together with model-based approaches [59, 66].
Newly developed invasive high-density sensors [67] have further improved automated
decomposition based on HD-sEMG [58]. EMG decomposition allows us to improve our
understanding of motor control from the intent formed in the brain to the synergistic
activation of MUs [68].

In a sense, the EMG signal can be seen as an encoded version of the neural information,
which are the original impulses sent by the brain. Reading neural information directly
is more complex since the signal is approximately three magnitudes smaller than EMG
(µV vs. mV ) and can not be done from the surface [49]. Therefore, the EMG signal can
be seen as an amplification of the efferent neural information. In case of high levels of
amputation, e.g. transhumeral or shoulder disarticulation, the muscles that controlled
more distal actions, such as hand or wrist movements, might not be present any more.
However, the nerves originally innervating these muscles can remain without serving a
purpose. Using the example of shoulder disarticulation, the median, radial, ulnar and
musculocutaneous nerves have lost the muscles to innervate and the pectoralis major,
and pectoralis minor muscles have lost the limb to actuate. These muscles and nerves
can be seen in Figure 2.5. Based on these considerations, a revolutionary new surgical
technique was developed called Targeted Muscle Reinnervation (TMR) [69, 70, 71, 72].
During TMR, the aforementioned muscles can be denervated and reinnervated with the
aforementioned nerves. This process allows the detection of the intent to move the hand
and/or wrist through EMG readings of the pectoralis muscles. Additionally, the skin
can be reinnervated as well, which is a procedure called Targeted Sensory Reinnervation
(TSR) [69, 73, 74]. This procedure restores the sensation of touching parts of the lost
limb at the site of reinnervation. Gaining sensation can close the loop in prosthetic
control by providing haptic feedback. Additionally, TMR can lead to the reduction of
neuroma pain and PLP [75, 76, 77]. Considering these aspects, TMR has become an
essential step in the provision of people who have lost a limb [78].

2.2.2 Forcemyography (FMG)

Measuring muscular activity using FMG is based on the macroscopic bulging of muscles.
Due to the conservation of volume, the shorting of a muscle results in an increase in its
cross-section, which can be measured using a force sensor at the surface of the skin, see
Figure 2.6.

Different pressure sensors have been used to measure FMG [80, 81, 82]. The introduc-
tion of robust and miniaturised force-sensitive resistors allowed a broader application
of FMG [83, 84]. A number of studies have investigated FMG for myocontrol. Among
these are studies involving FMG bracelets [85, 86, 87] or sockets with a high number
of sensors [88, 89]. Xiao et al. [90] published a comprehensive overview of FMG-based
developments in myocontrol.
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2 Background & Methods

(a) (b)

Figure 2.5: Muscles and nerves of the upper limb: (a) focus on pectoralis major muscle [79];
(b) focus on median, radial, ulnar and musculocutaneous nerve [79]

Furthermore, the same group investigated the signal properties in more detail, pro-
viding insight into FMG readings [91]. The FMG signal can be measured in a number
of ways, i.e. varying the material and structure in contact with the skin. Based on its
properties, this layer can act as a filter and change the FMG signal characteristics. It
can also lead to drift or hysteresis in the signal readings [80, 92, 93].

However, certain advantages over EMG exist [86]. FMG sensors produce signals that
are more reliable, placement does not require the same precision as for EMG sensors,
they are less sensitive to sweating, and they support intuitive control [94]. In general,
FMG is less sensitive to the skin-sensor interface. The electrical impedance does not play
a role in the measurement, which allows the user to wear clothing underneath the sensor.
This property plays an important role, e.g. in industrial scenarios. Sierotowicz et al. [95]
controlled an exoskeleton using FMG signals. The integration of FMG sensors in the
exoskeleton that can be worn over clothing simplifies the usage of a muscle-signal-driven
assistive device. Comparisons to other measures of muscular activity have been per-
formed, demonstrating the capabilities of FMG. Ravindra et al. [96] have compared
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(a)

(b)
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Figure 2.6: FMG-signal generation: (a) muscle force generation originates from fibre shorten-
ing, which, due to the isovolumetric contraction, results in a force orthogonal to
the muscle fibre; (b) raw FMG signal; (c) frequency spectrum of an exemplary
FMG-signal sequence

FMG, SMG and sEMG and concluded that FMG, with its benefits in signal stability
and its comparable accuracy and wearability, can be a promising alternative to sEMG.
A comparison by Connan et al. [97] using a wearable acquisition device supports these
findings. They focused on the comparison of signal properties and illustrated the higher
signal stability of FMG.

Although superior to sEMG in the areas described above, there are other factors that
influence FMG. FMG also suffers from the limb position effect, which changes the load
distribution on sites where the signal is measured. Furthermore, external loads on the
sensors, e.g. originating from heavy loads carried by a prosthetic hand, influence the
readings directly [94].
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Similar to sEMG, there is a high-density version of FMG, which is known as FMG-
arrays or Tactile Myography (TMG) [88, 98, 99]. This method has been studied involving
people with limb absence, showing its potential for prosthetic control [92, 93].

2.2.3 Further Methods

Although only EMG and FMG have been investigated in depth over the course of this
thesis, there are further interesting methods for measuring muscular activity.

We have mentioned MMG before, which measures high-frequency oscillations of the
muscle due to the cross-bridge cycle [34]. The phenomenon is also known as acoustic
myography, as it can be measured with microphones [100, 101, 102]. MMG has the
beneficial feature that it can be measured through clothing [103]

Furthermore, there are methods that are of a tomographic nature. These include SMG
and EIT. SMG uses ultrasound to create an image of the cross-section of the underlying
tissue. It has been adapted for myocontrol [104] and was used in a study to play the
harmonium [a]. A comparison of sEMG, FMG and SMG has been mentioned in the
previous section [96]. EIT-based tomography relies on impedance measurements using
electric currents. The circular sensor orientation spans a network, where each sensor-
connecting line represents a measurement, see Figure 2.7. These individual measure-
ments can be combined to produce a tomographic image. Based on the cross-sectional
information, up to eight different actions could be detected in user studies using an EIT
bracelet [105, 106, 107]. A recent study compares FMG, EIT and SMG with a particular
focus on their applicability for myocontrol [108].

(a) (b) (c)

Figure 2.7: Tomography based on EIT: (a) EIT bracelet; (b) raw EIT measurements between
sensors; (c) reconstructed tomographic information based on raw EIT measure-
ments

These tomographic techniques have a higher power consumption and are larger in
size. However, technical advancements in SMG have shown promising results in terms of
modification towards embeddable sensors for prosthetic control [109, 110]. Furthermore,
a number of wearable EIT bracelets have been developed [105, 107, 111].
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2.3 Myocontrol

2.3 Myocontrol

Myocontrol refers to the control of a device using muscle signals. This includes direct
control and ML-based control (also known as pattern recognition).
Direct control has been introduced in Section 1.2. The main aspects are the direct use

of the envelope of the EMG signal to control the opening and the closing of an action
using a threshold and a switching command, e.g. coactivation, to cycle through different
actions. This approach is easy to learn and transparent to the user and, therefore,
reliable and robust, while the switching is cumbersome and unintuitive, see Section 1.3.

2.3.1 Sequential & Discrete

The goal of ML-based control is to provide a more natural way to control a prosthetic de-
vice. Early work mentioned the benefits of natural control and introduced the previously
mentioned TD feature set or Hudgins features [51]. Their approach was based on an Ar-
tificial Neural Network (ANN) and was later adapted by investigating features from the
Time-Frequency Domain (TFD) and changing the classifier to an Linear Discriminant
Analysis (LDA) classifier [112]. Further improvements led to the myocontroller, which
has been the foundation of prosthetic myocontrol up until today [113, 114]. It is based
on four TD features and an LDA classifier.
The Mean Absolute Value (MAV) estimates the mean absolute value of a window

of N samples of an EMG measurement xi.

MAV =
1

N

N∑
i

|xi| (2.4)

The Zero Crossings is a frequency measure based on the oscillating character of the
EMG signal. A threshold was introduced to distinguish the measure from noise and was
set to xth = 2µV in the original publication [51].

ZC =
N−1∑
i

f(xi · xi+1) =

{
1 if xi · xi+1 < 0 and |xi − xi+1| > xth

0 else
(2.5)

The Slope Sign Changes is a frequency feature measuring changes in the waveform,
similar to the Zero Crossings. A threshold aims at distinguishing noise from signal with
zth = 2µV [51].

SSC =
N−1∑
i=2

f([xi − xi−1] · [xi − xi+1]) with f(z) =

{
1 if z > zth

0 else
(2.6)

The Waveform Length is a complexity measure of the waveform based on the cu-
mulative length of the EMG signal.

WL =
N−1∑
i

|xi − xi+1| (2.7)
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The LDA method seeks to find a projection that maximises the relative class distance,
see Figure 2.8. For this purpose, a cost function is minimised, which is defined as follows

J(W ) =
|W T · SB ·W |
|W T · SW ·W |

(2.8)

with

SW =

c∑
i

∑
x∈classi

(x− µi) · (x− µi)
T (2.9)

SB =

c∑
i

ni(µ− µi) · (µ− µi)
T . (2.10)

W is the projection matrix, SW the within-class scatter, SB the between-class scatter,
x the EMG data, µ the data mean, µi the class mean, c the number of classes and ni

the number of samples in a class.

Figure 2.8: Visualisation of the projection determined using LDA based on [d]

Besides LDA, a number of different classification methods are common algorithms to
detect the user’s intent. Overviews can be found in a number of review articles [10,
49, 115, 116]. Among these classification methods are further LDA variants [114, 117,
118], ANN/Multi-Layer Perceptron (MLP) [51, 117, 119], fuzzy logic [120, 121, 122,
123], Support Vector Machine (SVM) [117, 124, 125, 126, 127], Hidden Markov Model
(HMM) [128, 129], and Gaussian Mixture Model (GMM) [130, 131]. These approaches
used manifold features of the EMG signal. They can be divided into TD, Time-Serial
Domain (TSD), Frequency Domain, and TFD [49]. A remarkable overview has been
published by Phinyomark et al. [53], which we have mentioned before, see Figure 2.4.
The vast majority of these and similar studies managed to achieve a recognition rate of
> 95%, distinguishing eight or more different actions. To a large extent, these studies
were evaluated offline. This term refers to collecting a dataset, performing all processing
steps, splitting the dataset, tuning and training a model with one part and testing it
with the other. Early studies aimed at improving and optimising offline measures, which
yielded almost perfect classification.
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2.3.2 Simultaneous & Proportional

The results mentioned in the last section, which date back more than ten years, are
in stark contrast with the initial quote of the thesis and the results of the Cybathlon
outlined at the beginning of this chapter.
New concepts were developed, and SPC became an important keyword [132]. The

rationale was that classification-based control with discrete action detection does not
resemble natural control. Contrary to discrete actions, continuous proportional acti-
vations and their simultaneous combination do so more closely. Proportionality can be
added to classifiers, e.g. by calculating the power of the EMG signals [133, 134]. Even si-
multaneous activations can be achieved in combination with classification methods [135,
136]. However, this requires training combined activations, which is feasible for two-DOF
combinations but starts to become demanding with three-DOF combinations [135].
This gave rise to regression-based control algorithms. Particularly, Non-negative

Matrix Factorisation (NMF) [137], a semi-supervised decomposition method, showed
promising results. Jiang et al. [132] derived the NMF approach from EMG-signal gener-
ation based on muscle synergies [138] to realise SPC of two DOFs. The intended actions
yj(t) ∈ R are mapped through synergy gains sij into muscle activations mi(t)

mi(t) =
N∑
j=1

sij · yj(t) (2.11)

assuming a linear instantaneous mixture

xk(t) =
M∑
i=1

gki ·mi(t) (2.12)

=
N∑
j=1

(
M∑
i=1

gki · sij
)
yj(t) (2.13)

=
N∑
j=1

wkj · yj(t) (2.14)

with the kth sensor reading xk(t), the attenuation factor for the kth sensor and ith
muscle gki and the resulting weights wkj . In matrix notation Equation (2.14) can be
rewritten as

X(t) = W · Y (t). (2.15)

W can be determined using NMF and a training procedure proposed by Jiang et al. [132].
Each DOF involved is trained individually by activating it in both directions, e.g. wrist
flexion/extension. This leads to following expression for W and yj(t)

X(t) = [W+
1 ,W−

1 ,W+
2 ,W−

2 , · · · ,W+
D ,W−

D ]

· [y+1 (t), y−1 (t), y+2 (t), y−2 (t), · · · , y+D(t), y−D(t)]T . (2.16)
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Finally calculating W †, the Moore-Penrose pseudoinverse of W , leads to an expression
for the intended actions Y (t).

Y (t) = W † ·X(t) (2.17)

The assumption of linear instantaneous mixture was proven experimentally, and it was
shown that the approach is robust to sensor shift and reduction [139]. Furthermore, this
approach was successfully tested in an online scenario with people with limb absence [140,
141]. Besides NMF, further regression-based algorithms have been investigated; among
them were Support Vector Regression (SVR) [142], Linear Regression (LR) [143, 144],
incremental Ridge Regression with Random Fourier Features (iRRRFF) [c, j, q, u],
ANN [145, 146, 147, 148] and Probability-Weighted Regression (PWD) [149, 150].

For any of these algorithms, gathering relevant ground truth or target values is es-
sential. Since measuring forces or joint angles ipsilateral is infeasible, an option is to
perform bimanual actions and use the contralateral measurements as ground truth [145,
148, 151]. However, it was shown that the quality of these mirror movements suffers
from a large variance [144]. As an alternative approach or in the case of bimanual limb
absence, visual cues can be used for training. These can be continuous, e.g. following
a trajectory [136, 152, 153, 154], or discrete, e.g. maintaining a contraction level of a
specific action for a certain amount of time [u, j, q]. Hagengruber et al. recently inves-
tigated the impact of different ways to acquire ground truth [155]. Both cue-based and
mirror-movements-based training can suffer from synchronisation issues, such as a delay
due to the reaction time of the user [156, 157]. Here, semi-supervised methods such as
NMF have an advantage. The training procedure by Jiang et al. [132] does not require
individually labelled data points but rather identifies the components of the input data
that compose the two directions of a DOF.

With a suitable ground truth, regression-based algorithms can demonstrate advantages
over classification-based algorithms. From a clinical point of view, regression-based my-
ocontrol is seen as very promising due to the natural control modality they provide [158].
The benefit of a natural combination of DOF activations comes with physiological con-
straints. It has been shown that an action of two or more DOFs is not equal to the
vector sum of the individual DOFs [j, 93]. To deal with this issue, a notion of extending
the training data by adding artificially created multi-DOF data points was proposed [j].
This technique, named Linearly Enhanced Training (LET), was applied to different sets
of DOFs [j, i, 159].

While the possibility of naturally combining actions is a benefit of regression-based
myocontrol, the stability of single-DOF action detection is the one of classification.
Hence, efforts have been taken to combine both of these methods. Amsüss et al. have
combined a classifier based on common spatial patterns [134] with an LR algorithm [160].
Both methods ran in parallel, and a measure was used to determine whether a single-
or double-DOF action was more likely and provided continuous interpolation between
the two methods. This approach required only single-DOF training data and resulted
in improved performance compared to the classifier without any additions in an online
user study involving people with limb absence.
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2.3.3 Closing the loop

In upper-limb myocontrol, the vast majority of approaches use batch learning. This
refers to a single initial data acquisition followed by algorithm training followed by
myocontrol usage. Incremental approaches can update an already trained algorithm with
new training data samples. Whether incremental updates can be performed depends
on the ML method. LR can be incrementally updated using the Sherman-Morrison-
Formula [161]. Further methods can be incrementally updated in this manner, see
Section 2.3.4. Incremental updates of these linear and non-linear approaches have found
application in upper-limb myocontrol [104, q, 162]. Not only EMG-based approaches
but also myocontrol based on FMG have shown promising results using incremental
updates [163], where detrimental influences of the limb position effect were counteracted
with regular updates to maintain a high classification rate of 98.75%.

Similar to incrementally adding new samples, algorithms can be modified to be capable
of forgetting older samples. By introducing a forgetting factor, the weights of older
samples can be reduced, effectively putting more emphasis on new data. Combining
exponentially growing weights with LR results in exponentially weighted Recursive Least
Squares [164]. This method and modifications thereof have been successfully applied to
upper-limb prosthetic control [165, 166].

The aforementioned studies involve unsupervised updates of the myocontroller. How-
ever, updates can also be triggered on-demand. Doing so takes advantage of the user in
the loop. Usually, updates are required when the algorithm does not perform the way
the user intended. Exploiting the knowledge of the user in this scenario by offering the
possibility to interact with the control system can be an improvement for myocontrol.

The updates issued by the user are a form of incrementality as well. However, this
definition is softer than the one given above. Whether new samples are added through an
incremental update or through full retraining of the ML algorithm is mostly a question
of resources. Even providing the user with the option of performing a full retraining has
improved myocontrol. Comparisons between ML-based myocontrol and direct control
have been performed, showing that home trials over an extended amount of time with
the option to recalibrate the prosthesis yield better functional outcomes [167, 168, 169].

With this notion, the aforementioned forgetting can also be simplified. When updating
a myocontroller with a new repetition of a certain action, previous repetitions become
obsolete since the user has learned and improved [170]. Assuming enough storage space
for all training data is available, the structure becomes equivalent to that of a ring
buffer. The addition of a new repetition, therefore, results in the removal of the oldest
one of that action. This simplification allows ML methods that are not capable of
incremental updates or forgetting to benefit from the interaction with the user if the
required resources are available. These concepts are visualised in Figure 2.9.

We combined the aforementioned simplified incrementality and the aforementioned
simplified forgetting with the ML method described in the next section and used the
resulting myocontroller to perform a long-term user study involving a person with limb
absence, see Publication 4.
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(a)

(b)

(c)

(d)

Figure 2.9: Visualisation of incrementality and forgetting. Rounded shapes • are repetitions,
and the remaining ones • represent the amount of training data used (or the
weights in (c) case): (a) sample-wise continuous incremental addition of data; (b)
repetition-wise discrete incremental addition of data; (c) sample-wise exponential
increase of weights; (d) repetition-wise addition of a new repetition and removal of
an old one

2.3.4 Incremental Ridge Regression with Random Fourier Features

The myocontroller used in the majority of the studies performed in this thesis is iRRRFF.
Fundamentally, iRRRFF is based on regularised LR or Ridge Regression (RR) [171],
which can be expressed as follows

ŷ = wTx. (2.18)

Given the input xi ∈ Rd and the output yi ∈ R, the projection vector w can be found
using

argmin
w

(Xw − y)2 + λ∥w∥2 (2.19)

which yields the closed-form solution

w = (XTX + λI)−1XTy (2.20)

with X = [x1, · · · ,xn]
T and y = [y1, · · · , yn]T , n the number of training samples, λ the

regularisation parameter and I the identity matrix.
RR can be extended using a kernel, resulting in Kernel Ridge Regression (KRR) [172,

173]. A common choice for kernel functions are Radial Basis Functions (RBF),

k(xi,xj) = e−γ∥xi−xj∥2 for γ > 0 (2.21)
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with γ = 1
2σ2 and σ2 the variance of the Gaussian. However, due to the kernel function,

the computational cost becomes dependent on the number of samples n, which increases
with incremental updates. This can become an issue in real-time applications. However,
the potentially infinite feature space of a kernel can be approximated with a set of
Random Fourier Features under specific conditions [174],

k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩ ≈ z(xi)
Tz(xj) (2.22)

For the RBF, these features take the following form

z(x) =
1√
D
[z1(x), · · · , zD(x)]T with zk(x) =

√
2 cos(ωkx+ βk) (2.23)

with ω ∼ N (0, 2γ), β ∼ U(0, 2π) and hyperparameter D, the dimensionality of the
feature space. For convenience and to follow the established nomenclature, we will, from
now on, use ϕ(x) as follows

ϕ(x) =

√
2

D

 cos(ω1x+ β1)
...

cos(ωDx+ βD)

 , (2.24)

which results in the following expression for w the projection vector

w = (ΦTΦ+ λI)−1ΦTy (2.25)

= A−1b (2.26)

with Φ = ϕ(X), A−1 = (ΦTΦ + λI)−1 and b = ΦTy. Based on Equation (2.25),
incremental updates can be performed using the Sherman-Morrison-Formula [161] for
rank-1 updates of A−1,

A−1
n+1 = A−1

n − A−1
n · ϕn+1 · ϕT

n+1 ·A−1
n

1 + ϕT
n+1 ·A−1

n · ϕn+1

. (2.27)

iRRRFF, as defined above, is a non-linear regression algorithm that can be updated
incrementally. Its efficiency for myocontrol has been shown by Gijsberts et al. [c]. This
method has mostly been used with the envelope of the EMG signal as the singular
feature. Specifically, the Root Mean Square (RMS) was used, which falls in the same
feature category as the MAV [53]. Envelope-based features are commonly used in clinical
practice. It has been shown that the majority of discriminatory power in the Hudgins
feature set stems from the MAV [175]. However, the extension to any feature set is
possible.

2.3.5 Sensor Fusion

With manifold methods of measuring muscular activity at hand, fusing different modal-
ities is a natural consideration. Extending EMG with another sensing method is the
most common approach and an essential research direction in prosthetic control.
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A number of excellent reviews on sensor fusion have been published recently with
a focus on intent detection [176], specific to upper-limb prosthetics [177] and covering
fusion in hand rehabilitation [178].

Among the most common extensions to EMG-based myocontrol that also reads mus-
cular signals is FMG. A notable contribution to this topic is the prosthetic design for
the Cybathlon 2016, containing both sEMG and FMG sensors [89]. In that study, a
prosthetic socket was equipped with 37 FMG1 and two sEMG sensors. Using a dynamic
training procedure and an offline data analysis, Ahmadizadeh et al. showed that high
accuracy using FMG signals can be reached, and fusion of FMG and sEMG leads only
to a small and non-significant increase in accuracy. Other studies have come to similar
conclusions about little improvement in fusing FMG and sEMG compared to sEMG [97,
179, 180]. However, a study involving a custom-designed bracelet with co-located FMG-
and sEMG-sensors showed significant improvements in a fused approach compared to
either method individually [181]. All these results have been obtained in offline analy-
ses, and only a few online results are available in upper-limb prosthetics [n] compared to
other domains [182, 183, 184]. We have investigated this topic ourselves and contributed
to existing knowledge on fusing sEMG and FMG [n, l]. The investigations led to an
online user study to validate the aforementioned offline findings, see Publication 1.

sEMG and FMG are both modalities that measure muscular activity at the surface
of the skin. An interesting option for fusion is the addition of modalities that can
measure information for deeper structures. This can be achieved, e.g. with tomographic
modalities such as EIT or SMG, see Section 2.2.3. The fusion of sEMG and SMG has
been shown to outperform unimodal approaches [185] and to provide higher resistance
against fatigue than sEMG [186]. The development of co-located sensors can further
advance the applicability of the fusion of sEMG and SMG [187].

The modalities described so far measure muscular or physiological information. Fu-
sion, however, can extend further and include non-physiological sensor modalities, such
as Inertial Measurement Units (IMUs) and vision. The addition of IMU signals has
shown promising results for intent detection [188, 189], specifically in dealing with the
limb position effect [17, 190, 191]. Furthermore, sEMG signals combined with accelera-
tion information have proven effective in sign-language recognition [129].

Besides what types of sensor modalities to fuse, there is a further aspect to the topic of
sensor fusion, i.e. how to fuse these sensors. Bao et al. [192] have analysed multiple fusion
studies and identified three distinct approaches. These are feature combination, parallel
processing and cascading prediction. A visual representation can be found in Figure 2.10.
Parallel processing has been applied in teleoperation tasks. Connan et al. [193, 194] have
realised direct bimanual pose teleoperation of a humanoid robot based on IMUs and hand
action control using sEMG. A cascading approach has been used to deal with the limb
position effect. Fougner et al. [191] have used IMU information to determine the limb
position to subsequently switch between different classifiers trained with data from the

1Multiple sensor configurations were tested in this study. The one involving sEMG sensors used 37
FMG sensors. The maximum number of FMG sensors was 58.
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Figure 2.10: Different types of multi-modal fusion in myocontrol [192]: (a) parallel processing;
(b) feature combination; (c) cascading prediction

determined limb position. In Publication 1, among other aspects, we investigate different
types of feature combinations for sEMG and FMG.

2.4 Theory of Interaction

The previous section has provided an overview of methods used for controlling prosthetic
devices. To a large part, we have described these methods not taking the person using
them into account. This section will specifically deal with the interaction between the
wearer and the prosthesis.

2.4.1 Embodiment

The integration of a prosthetic arm (among other objects) into one’s body representation
is referred to as embodiment [195]. A phenomenon that can be demonstrated with a
number of objects, famously illustrated by the rubber hand illusion [196]. Embodiment
can support people with limb absence in learning to control a prosthesis and result in a
higher level of satisfaction [197].

Besides improved acceptance of prosthetic devices, embodiment can have further bene-
ficial outcomes for people with limb absence. After an amputation, up to 80% of people
suffer from PLP [198]. One explanation of this neuropathic pain places its origin in
cortical reorganisation due to the missing limb [199, 200]. The embodiment of an artifi-
cial limb can help in alleviating PLP by closing the visual feedback loop [201]. Among
the many treatments, mirror therapy is a well-known approach to treat PLP [202]. By
mirroring the present limb onto the side of the absent limb, the optical illusion of a
whole-body image is created. The embodiment of this image and activations involving
both limbs are likely the pathway that leads to the reduction of PLP. However, a con-
sensus has not yet been reached in the community regarding the origin and treatment
of PLP [203].
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The aforementioned phenomenon of a closed-visual-loop activity can be transferred
into the virtual realm. In VR, the same optical illusion can be created and furthermore
enhanced by using myocontrol methods [204]. A number of examples exist, among them
a development of our own [v, w] that is currently in clinical evaluation to demonstrate its
effectiveness. Furthermore, the usage of a myoelectric prosthesis has similar effects. The
embodiment of a prosthetic limb coupled with myocontrol draws on the same underlying
principle and, therefore, can also lead to a reduction of PLP.

However, a true embodiment of a prosthetic device can have further implications.
Bottlenecks in the embodiment of technology have been described [205], among them
maladaptive plasticity [206] and effects of the comprehensive embodiment of a prosthetic
device. Would such a level of embodiment also lead to the sensation of pain through the
device or due to its breakage?

2.4.2 Radical Constructivism

Prosthetic devices can also be approached differently. Instead of taking the view of
embodying the prosthesis into one’s own body image, the prosthesis can be seen as a
tool or even as an entity of its own. Indeed, the view of a prosthesis as one’s own limb
has been challenged [207]. In terms of a human-centred approach, constructivist theories
have been suggested [208].

The theoretical background of RC was developed starting in the 1980s by Ernst von
Glasersfeld [209, 210]. This philosophical concept is concerned with nothing less than the
view of the world. It is a concept contrary to realism, for example, where learning about
the world is based on discovering the real qualities of things. Each new piece of real
information helps build a model of the world, which eventually leads to an independent
truth about the world. RC, on the other hand, is built on the notion that each piece
of new information about the world has been perceived and, through this process of
perception, subjectively influenced. In other words, everything we know about the world
has been socially influenced, and reality can not possibly be discovered independent of
human interpretation.

This concept can not only be used for human learning but also for ML. Fundamentally,
an ML algorithm processes perceived data to build a model of its world. The purpose is
to recognise patterns, an essential concept in RC [209] and a common term for ML [211].
The internal model is constantly challenged. New information that is perceived and
does not agree with the model will lead to a reevaluation of said model and result in an
updated version of it. This perturbation resembles incremental updates in ML.

The RC concept fits the notion of iML very well. Therefore, the rich learning theory of
RC can be applied to iML to improve interaction in ML. In prosthetic control specifically,
the prosthesis equipped with an iML-based myocontroller can be seen through the glass
of the RC framework. It builds a model of what it perceives, which are the signals
expressed by the person wearing the prosthesis. This approach provides a different view
on embodiment than previously described. It expands it by adding the ability to interact
and a certain level of autonomy to the prosthetic tool. This potentially changes how a
prosthesis would be embodied towards a view as an extended semi-autonomous tool that
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one still has agency over. In this context, the RC framework can provide a structured
methodology for the topic of interaction in prosthetic control.

The idea of combining RC and iML has been theorised before [212]. However, we
have applied RC to prosthetics for the first time in an online user study involving the
incremental algorithm outlined in Section 2.3.4, see Publication 3.

2.5 Assessment

Evaluating the functionality of a prosthetic system is an essential step in the develop-
ment of novel approaches. Calculating measures to compare results in combination with
statistical testing enables well-founded scientific advancements. However, the situation
in prosthetic control is more nuanced and requires a larger toolbox.

2.5.1 Scientific Results

In the field of myocontrol, a large part of the body of research has been done on the de-
velopment of feature sets (Section 2.1) and ML algorithms (Section 2.3). Novel develop-
ments in both of these areas can be assessed by applying the methods to a given dataset,
e.g. the Ninapro data [213], and comparing measures of classification rate for classifiers,
goodness of fit for regressors, e.g. R2 or Root-Mean-Square Error (RMSE) [211], or data
clustering properties for features, e.g. Mahalanobis distance or Fisher’s separability.

Assessing a myocontroller using these means provides insights purely from an ML
point of view. However, pure offline analyses are not enough. Early studies noted that
accuracy did not necessarily result in usability [133, 214]. This issue, alongside the
discrepancy between research and clinical practice, led to the question of whether there
is a need to change focus [20]. This discrepancy refers to the fact that there were neither
any ML-based prostheses on the market at that time nor were myoelectric prostheses
using direct control very popular, while numerous results were extremely promising.
Further studies showed that, indeed, offline results do not necessarily translate to online
usage [152, 215, 216]. Investigations concerned with this lack of correlation are still
ongoing, and potentially useful offline measures are being investigated [217].

Therefore, the online and real-time tests became the standard for the evaluation of
ML-based myocontrol algorithms [70, 133, 214, 218, 219, 220, 221]. Virtual or on-
screen environments to perform goal-reaching tasks [104, 133, 218, 220] were developed.
Figure 2.11 depicts two examples where targets are displayed on a screen, and the user
has to reach them. The environment on the left shows two hands, one target and one
controlled in real-time by the user. The goal for the user is to match the two actions.
The visualisation on the right is more abstract. Two arrows are displayed, and the goal
for the user is again to match them while they control different properties of the arrow,
e.g., rotation or size, by performing a specific action. In order to successfully reach a
target, a certain action has to be maintained for the dwelling time tD and with an error
smaller than a threshold eth. Based on these goal-reaching tasks, measures to assess the
performance have been developed [152, 222]. They involve:
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(a) (b)

Figure 2.11: On-screen environments to perform goal-reaching tasks: (a) two hand models,
where the grey one demonstrates the goal action and the beige one is controlled
by the user; (b) the lighter of the two arrows • displays the goal configuration,
while the properties (angle, position, size) of the darker arrow • are controlled
by the user

The Success Rate (SR) is the ratio between the number of successfully reached
goals and the number of all tasks.

The Task Completion Time (TCT) is the duration from the beginning of the task
until a goal has been successfully completed.

The Overshoots (OV) is the number of instances per task where the goal area (error
< eth) was reached but was exited again before tD was reached.

The Speed (SP) is the ratio between the length of the path travelled and TCT.

The Path Efficiency (PE) is the ratio between the shortest path from the start to
the goal and the length of the path travelled.

The Throughput (TP) is a further measure of efficiency, taking the task diffi-
culty Id [223] and TCT into account.

TP =
Id

TCT
with Id = log2

(
D

2 · eth
+ 1

)
(2.28)

with D the distance to the target.

These online and real-time tests can be collected under the term Target Achievement
Control (TAC). They have become the gold standard in assessing novel developments in
myocontrol in laboratory conditions due to the ease of their implementation in a virtual
or on-screen environment.
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2.5.2 Functional tests

A more comprehensive way of assessing novel developments involves not only the user
and the myocontrol algorithm but the prosthesis as well. Tools that do so aim at the
functional assessment of the user with their prosthetic provision.

Numerous assessment protocols exist in the area of prosthetic hand control. A recent
overview has been provided by Kyberd [224]. Among the most common tests for pros-
thetic control are the Assessment of Capacity for Myoelectric Control (ACMC) [225],
the Southampton Hand Assessment Procedure (SHAP) [226], the Clothespin Relocation
Task (CRT) [227], and the Box and Blocks Test (BBT) [228].

The ACMC is an observational assessment tool for prosthetic usage. The person
administering the ACMC has to have undergone training to do so in a proper manner.
Being based on the observation of the user brings the advantage that the ACMC can
be performed in the home of the user. In case this is not desired or feasible, a room
specifically designed to provide a household environment can be an alternative. Being
able to observe a user in an environment as close as possible to daily living provides highly
relevant insights into the validity of a given prosthetic system since the activities are very
close to the ones the user would engage in in daily life. The aim of observing a user in a
natural environment allows only for a few restrictions or little structure to be provided to
the user. This aspect complicates objective measurements and makes repeatability across
a number of users more difficult. Specific guidelines have been developed and validated
to increase inter-rater reliability. Although the natural environment constitutes a major
advantage of the ACMC test, it has not been designed to be used with multi-articulated
prostheses in its current version, and it is not encouraged to do so [224]. Additionally,
requiring training of the experimenter to properly assess a person increases the difficulty
of applying the ACMC test.

The SHAP, on the other hand, is a test that can be administered with minimal training
of the experimenter and only requires a suitcase of objects for its execution. The SHAP
includes several tasks devised to assess the capabilities of a user with their prosthetic
hand. These tasks are abstractions of ADLs, and they are evaluated based on the time
a user takes to complete them. All of the tasks are performed in a seated position at a
table and evaluated using an easy-to-use measure, the TCT. The seated position only
allows for limited assessment of issues arising from the limb position effect. Furthermore,
the SHAP is comprised of unilateral tasks, which are all based on grasping actions.

A good example of a test targeted at multi-articulated prostheses and complex tasks is
the CRT. This test requires simultaneous activation of a prosthetic wrist and hand. As
the name suggests, clothespins need to be relocated from a horizontal bar to a vertical
one, which, in this case, requires a rotation of the clothespins while maintaining a firm
grip. Since the CRT consists of one task only, it offers rather little variability in its
execution. Furthermore, only once a user is proficient in the use of their prosthesis can
the CRT offer insight into the user’s capabilities. Additionally, assessing a single task
may offer only a little information about a user’s capabilities in daily living tasks.

Finally, a common and easy-to-administer tool for hand functionality assessment is
the BBT. The setup of this test consists of two compartments separated by a divider.
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Multiple 25mm blocks are placed in one compartment, and the goal of the test is to
transfer as many blocks as possible from one compartment to the other within a certain
amount of time. Versions of this test have been implemented in VR [v]. The BBT
has a drawback, which relates to the random arrangement of the blocks to transfer.
Potentially, the arrangement can be such that blocks are located directly next to each
other, forming an almost closed surface, which makes grasping them challenging. To
avoid issues of that sort, a modified BBT was developed with a specific arrangement of
blocks [229].

These tools are established clinical tests that provide, to a large extent, objective
measures of performance. They address a number of essential characteristics of a multi-
articulated prosthesis with ML-based myocontrol, such as repeatability and appropriate
difficulty, tasks based on ADLs involving multiple actions, tasks requiring different body
poses and an easy-to-use objective assessment measure. None of the aforementioned tests
combines all of these points. However, the ARM competition of the Cybathlon covers
the aforementioned aspects quite well and can provide benchmark measurements. Due
to its strong competitive nature and focus on retraining the same tasks to improve the
performance speed, it makes its application as an assessment and training tool difficult.
We addressed the necessity for such a tool in Publication 4 by developing and testing

the SATMC, an assessment tool designed for modern prostheses using an ML-based
myocontroller. It combines assessment with user training in a multi-session protocol
that supports training at a user-specific level of difficulty while using simple measures
to assess performance.
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3 Summary of Publications

This chapter contains summaries of all publications that contributed to this thesis. For
each publication, we provide the authors, the medium of publication, the abstract, the
contribution of the thesis author based on CRediT [230], and information regarding
copyright.

Publication 1 Action Interference in Simultaneous and
Proportional Myocontrol:
Comparing Force- and Electromyography

Authors Markus Nowak, Thomas Eiband, Eduardo Ruiz Ramı́rez, and Claudio Castellini

Journal Journal of Neural Engineering

Abstract Myocontrol, that is, control of a prosthesis via muscle signals, is still a surpris-
ingly hard problem. Recent research indicates that surface electromyography (sEMG),
the traditional technique used to detect a subject’s intent, could proficiently be re-
placed, or conjoined with, other techniques (multi-modal myocontrol), with the aim to
improve both on dexterity and reliability. In this paper we present an online assess-
ment of multi-modal sEMG and force myography (FMG) targeted at hand and wrist
myocontrol. Twenty sEMG and FMG sensors in total were used to enforce simultaneous
and proportional control of hand opening/closing, wrist pronation/supination and wrist
flexion/extension of 12 intact subjects. We found that FMG yields in general a better
performance than sEMG, and that the main drawback of the sEMG array we used is
not the inability to perform a desired action, but rather action interference, that is, the
undesired concurrent activation of another action. FMG, on the other hand, causes less
interference.

Contribution of the thesis author Data curation, Formal Analysis, Methodology, Soft-
ware, Supervision, Validation, Visualization, Writing — original draft, Writing — review
& editing

Copyright © IOP Publishing. Reproduced with permission. All rights reserved
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Publication 2 Simultaneous and Proportional Real-Time
Myocontrol of up to Three Degrees of Freedom
of the Wrist and Hand

Authors Markus Nowak, Ivan Vujaklija, Agnes Sturma, Claudio Castellini, and Dario
Farina

Journal IEEE Transactions on Biomedical Engineering

Abstract Achieving robust, intuitive, simultaneous and proportional control over mul-
tiple degrees of freedom (DOFs) is an outstanding challenge in the development of my-
oelectric prosthetic systems. Since the priority in myoelectric prosthesis solutions is
robustness and stability, their number of functions is usually limited.
Objective: Here, we introduce a system for intuitive concurrent hand and wrist control,
based on a robust feature-extraction protocol and machine-learning.
Methods: Using the mean absolute value of high-density EMG, we train a ridge-
regressor (RR) on only the sustained portions of the single-DOF contractions and lever-
age the regressor’s inherent ability to provide simultaneous multi-DOF estimates. In
this way, we robustly capture the amplitude information of the inputs while harnessing
the power of the RR to extrapolate otherwise noisy and often overfitted estimations of
dynamic portions of movements.
Results: The real-time evaluation of the system on 13 able-bodied participants and an
amputee shows that almost all single-DOF tasks could be reached (96% success rate),
while at the same time users were able to complete most of the two-DOF (62%) and
even some of the very challenging three-DOF tasks (37%). To further investigate the
translational potential of the approach, we reduced the original 192-channel setup to a
16-channel one and the observed performance did not deteriorate. The amputee per-
formed similarly well to the other participants, according to all considered metrics.
Conclusion: This is the first real-time operated myocontrol system that consistently
provides intuitive simultaneous and proportional control over 3-DOFs of wrist and hand,
relying on only surface EMG signals from the forearm.
Significance: Focusing on reduced complexity, a real-time test and the inclusion of
an amputee in the study demonstrate the translational potential of the control system
for future applications in prosthetic control.

Contribution of the thesis author Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Visualization, Writing — original draft, Writing
— review & editing

Copyright © 2023 IEEE. Reprinted, with permission, from Markus Nowak, Ivan Vujak-
lija, Agnes Sturma, Claudio Castellini, and Dario Farina, Simultaneous and Proportional
Real-Time Myocontrol of up to Three Degrees of Freedom of the Wrist and Hand, Feb.
2023
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Publication 3 Applying Radical Constructivism to Machine
Learning: A Pilot Study in Assistive Robotics

Authors Markus Nowak, Claudio Castellini, and Carlo Massironi

Journal Constructivist Foundations

Abstract Context In this article we match machine learning (ML) and interactive
machine learning (iML) with radical constructivism (RC) to build a tentative radical
constructivist framework for iML; we then present a pilot study in which RC-framed
iML is applied to assistive robotics, namely upper-limb prosthetics (myocontrol).
Problem Despite more than 40 years of academic research, myocontrol is still unsolved,
with rejection rates of up to 75%. This is mainly due to its unreliability — the inability
to correctly predict the patient’s intent in daily life.
Method We propose a description of the typical problems posed by ML-based myocon-
trol through the lingo of RC, highlighting the advantages of such a modelisation. We
abstract some aspects of RC and project them onto the concepts of ML, to make it
evolve into the concept of RC-framed iML.
Results Such a projection leads to the design and development of a myocontrol system
based upon RC-framed iML, used to foster the co-adaptation of human and prosthesis.
The iML-based myocontrol system is then compared to a traditional ML-based one in a
pilot study involving human participants in a goal-reaching task mimicking the control
of a prosthetic hand and wrist.
Implications We argue that the usage of RC-framed iML in myocontrol could be of
great help to the community of assistive robotics, and that the constructivist perspective
can lead to principled design of the system itself, as well as of the training/calibration/co-
adaptation procedure.
Constructivist content Ernst von Glasersfeld’s RC is the leading principle pushing
for the usage of RC-framed iML; it also provides guidelines for the design of the system,
the human/machine interface, the experiments and the experimental setups.

Contribution of the thesis author Data curation, Formal Analysis, Investigation,
Methodology, Software, Visualization, Writing — review & editing

Copyright No copyright statement required according to the editor-in-chief.
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Publication 4 Simultaneous Assessment and Training of an
Upper-Limb Amputee using Incremental
Machine-Learning-based Myocontrol:
A Single-Case Experimental Design

Authors Markus Nowak, Raoul M. Bongers, Corry K. van der Sluis, Alin Albu-Schäffer,
and Claudio Castellini

Journal Journal of NeuroEngineering and Rehabilitation

Abstract Background Machine-learning-based myocontrol of prosthetic devices suf-
fers from a high rate of abandonment due to dissatisfaction with the training procedure
and with the reliability of day-to-day control. Incremental myocontrol is a promising
approach as it allows on-demand updating of the system, thus enforcing continuous
interaction with the user. Nevertheless, a long-term study assessing the efficacy of incre-
mental myocontrol is still missing, partially due to the lack of an adequate tool to do so.
In this work we close this gap and report about a person with upper-limb absence who
learned to control a dexterous hand prosthesis using incremental myocontrol through a
novel functional assessment protocol called SATMC.
Methods The participant was fitted with a custom-made prosthetic setup with a con-
troller based on Ridge Regression with Random Fourier Features (RR-RFF), a non-
linear, incremental machine learning method, used to build and progressively update the
myocontrol system. During a 13-month user study, the participant performed increas-
ingly complex daily-living tasks, requiring fine bimanual coordination and manipulation
with a multi-fingered hand prosthesis, in a realistic laboratory setup. The SATMC was
used both to compose the tasks and continually assess the participant’s progress. Patient
satisfaction was measured using Visual Analog Scales.
Results Over the course of the study, the participant progressively improved his perfor-
mance both objectively, e.g., the time required to complete each task became shorter,
and subjectively, meaning that his satisfaction improved. The SATMC actively sup-
ported the improvement of the participant by progressively increasing the difficulty of
the tasks in a structured way. In combination with the incremental RR-RFF allowing
for small adjustments when required, the participant was capable of reliably using four
actions of the prosthetic hand to perform all required tasks at the end of the study.
Conclusions Incremental myocontrol enabled an upper-limb amputee to reliably con-
trol a dexterous hand prosthesis while providing a subjectively satisfactory experience.
SATMC can be an effective tool to this aim.

Contribution of the thesis author Conceptualisation, Data curation, Formal Analysis,
Investigation, Methodology, Software, Visualisation, Writing — original draft, Writing
— review & editing

Copyright © 2023, The Author(s)
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In the context of this work, we approached the improvements of myocontrol for upper-
limb prosthetics from different angles. As outlined in Section 1.4, these involve advance-
ments in the areas of muscle signals, theory on user-prosthesis interaction and
simultaneous assessment and training.

We could successfully show that FMG contains additional information for myocon-
trol compared to EMG, that interaction is key in controlling prosthetics devices, that
a transparent and robust myocontroller can be intuitively used and that structured as-
sessing and training leads to successful and satisfying usage of ML-based prostheses.
We were able to show improvements regarding limb position effect, contraction in-
tensity effect, within/between day effect, and extensive training in ML-based
myocontrol. These areas are considered current challenges in ML-based myocontrol.
The investigations that led to these conclusions concentrated on putting the user in the
focus, providing high significance to the impact of our results. This was achieved through
fostering co-adaptation by using interactive ML approaches.

4.1 User Adaptation

Figure 4.1: Area of user and prosthesis interaction: • muscle signals

Closing the loop by providing feedback to the user allows for user adaptation. Avoid-
ing this pathway by drawing conclusions about myocontrol purely from data-driven
studies has led to issues in the conversion of scientific findings to novel prosthetic devel-
opments [20, 133, 152, 214, 215, 216]. For this reason, all the studies this thesis is based
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upon are online user studies with real-time visual feedback to the user. The studies per-
formed for Publication 1, Publication 2 and Publication 3 involved goal-reaching tasks
in an on-screen environment. The long-term user study for Publication 4 went one step
further and included tasks based on ADLs and a custom-built prosthetic provision.

Two studies were specifically concerned with the adaptation of the user, Publication 3
and Publication 4. In Publication 1 and Publication 2, no adaptation on the side of
the ML-based myocontroller was used. In these studies, we provided the user with
improved myocontrollers and investigated their capability to adapt and apply the control
algorithm.

Fusion

One of the aforementioned improvements was the addition of FMG to an sEMG-based
myocontroller. Fusion of these sensor modalities aimed at providing the user with a
more robust and stable myocontroller.

The study covered a comparison between three different sensor-modality configura-
tions. These are only using sEMG sensors, only using FMG sensors, and a fusion of the
two sensor types. For fusion, we investigated two approaches, one fusing the two sensor
modalities on the feature level and an ensemble approach [231]. User adaptation was
investigated in an online user study involving 12 people without limb absence by reach-
ing targets that were not explicitly trained. The users trained the myocontroller with
three DOFs, hand open/close, wrist pronation/supination and wrist flexion/extension
at a comfortable level of force. These were labelled with full activation of the associated
DOF (1.0), and subsequently, the users were asked to reach targets at different levels
of activation, i.e. 0.33, 0.67 and 1.0. The choice of goals allowed us to investigate the
contraction intensity effect. Figure 4.2 presents a visualisation of this process. To
our understanding, this was the first online user study with a myocontroller based on
the fusion of sEMG and FMG.

In this study, we were able to show that FMG is a promising extension of sEMG. As
the FMG-only modality led to a similar performance as the fused approach and to an
improved one compared to the sEMG-only modality, it could even be seen as a potential
alternative. These online results confirm the offline findings of other studies [89, 96,
97, 232]. Ahmadizadeh et al. [89] have equipped a prosthetic socket with 37 FMG
sensors and two sEMG sensors. In an offline comparison, the conclusion was drawn that
the addition of sEMG does not lead to a significant improvement. As the number of
sensors per modality is highly unbalanced, a potential unwanted influence could have
been the higher number of FMG sensors. Hence, we have put particular effort into
balancing the sensor numbers in Publication 1. We used 20 sensors in total: ten FMG
sensors and ten sEMG sensors. For individual-modality myocontrol, ten sensors of the
same type were used, while in the fused approach, five of each modality were combined.
An alternating arrangement on two bracelets with a one-electrode offset between the
bracelets allowed measuring approximately the same underlying structure with both
modalities. Eventually, the results of the balanced case matched the unbalanced one.
However, promising findings have been made with co-located fused sensors [181]. With
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Figure 4.2: Visualisation of training and testing data for the goal-reaching tasks of the user
study in Publication 1. Training actions in •, and testing actions in •. Training
actions were among the testing actions

this type of sensor, the fusion of FMG and sEMG provides significantly better offline
results.

Furthermore, we were able to identify a promising feature of FMG related to user
adaptation, which directly concerns the contraction intensity effect. Based on our
training and testing approach, users were asked to reach goals at untrained lower levels of
activation intensity. While we were not able to find online differences in the performance
at the trained full activation level, the adaptation and fine control at lower levels of
activation intensity were significantly better with FMG than with sEMG. We were able
to show that the difference in performance originated from action interference at these
low levels of activation for sEMG, potentially the origin of the contraction intensity
effect. Ke et al. [180] came to a very similar conclusion in their study about a novel
sEMGFMG sensor. They showed that at low levels of muscular activity, FMG signals
are more prominent than sEMG signals.

In our study, we were able to show that FMG provides highly promising features
that can support user adaptation by reducing the impact of the contraction intensity
effect. By doing so, a more stable, robust, and potentially more intuitive myocontroller
could be realised.

Transparent Control

User adaptation is not only a beneficial feature when dealing with different activation
levels of an action but can also be extended to the combination of multiple DOFs. Un-
der the keyword transparent control, we investigated the capability of a user to control
multiple DOFs at different levels of intensity as well as in combined actions. Such a my-
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ocontroller is an instance of SPC. A number of SPC approaches have been investigated,
either using extended classification [133, 134, 135, 136] or regression algorithms [132,
140, 141, 143, 144].

To achieve SPC, the majority of studies require training data of combined actions
and continuously labelled data. When more than two DOFs are controlled, gathering
training data becomes extensive, with an exponentially growing number of combinations
and potential difficulties executing these combined actions [104, c, 165]. Furthermore,
continuously labelled data requires contra-lateral labelling, following a visual stimulus
or similar measures, which can potentially lead to wrongly labelled data due to delays
or difficulty in mirror movement performance [144].
In order to design a realistic myocontroller, we relied on user adaptation rather than

extensive ML training. Hence, in the study for Publication 2, the users train only on
the full activation of an action and no training on combined actions was required due to
a linear design of the myocontroller. This myocontroller effectively reduced extensive
training in ML-based myocontrol and dealt with the contraction intensity effect,
two major challenges in myocontrol described in Section 1.3.
We chose to use a simple and linear ML approach, namely RR. For a near-to-linear

relation between measured sEMG and control output, the only sEMG feature extracted
was its envelope calculated using the RMS [132]. To ensure that we gathered as much
muscular information as possible, we used HD-sEMG. Investigations have shown that
choosing the appropriate feature set can make the intent detection problem essentially
linear [115, 233]. Furthermore, with an appropriate feature set, linear and non-linear
regression methods perform comparably [144]. Based on these findings, we designed a
myocontroller using HD-sEMG, the RMS, and RR that puts the focus on the capabilities
of the user rather than on controller complexity. A user study with 13 people without
limb absence and one person with limb absence was designed using goals that take phys-
iological considerations of combined DOFs into account, as mentioned in Section 2.3.2.
Figure 4.3 depicts the training and online testing data to visualise the capability of the
user and myocontroller to generalise to unseen data.
The aim of transparent control is to provide an easy-to-use interface for the user.

Transparency in this work refers to the property of a controller, which allows the user
to easily anticipate the outcome. With this property, the potential shortcomings of a
controller can be compensated by the ability of the user to adapt.
With this transparent controller, we were able to demonstrate SPC of three DOFs

by only training on individual DOFs at one single level of activation. A result that
directly affects extensive training in ML-based myocontrol and the contraction
intensity effect. It has to be noted that the performance drops significantly with an
increasing number of DOFs. However, the capability to reach goals involving simultane-
ous activation of up to three DOFs does not come at the expanse of single-DOF control.
Such a controller has been successfully implemented and tested for two DOFs [153].
Other studies report three- and even four-DOFs SPC based on muscle signals [221, 234,
235]. However, some differences have to be highlighted. Although simultaneous acti-
vation is possible, eventually, it is not required to reach multi-DOF goals due to the
type of controller used. These studies utilise velocity control, which allows sequential
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Figure 4.3: Visualisation of training and testing data for the goal-reaching tasks of the user
study in Publication 2. Untrained combined actions were among the test tasks.
Training actions in •, and testing actions in •. The training action for power
grasp was among the testing actions

activation of individual DOFs to reach multi-DOF targets. Ortiz-Catalan et al. [221]
have shown consistent SR of approx. 90% for single- and multi-DOF targets. However,
in addition to velocity control, the ML algorithm was trained with multi-DOF actions.
This simplifies the intent detection considerably, and the authors do not mention to what
extent simultaneous activation of DOFs contributed to reaching multi-DOF goals. On
the other hand, Smith et al. [235] were able to quantify this value and reported that the
maximal two-DOF activation occurred in two-DOF tasks with 48.7%± 1.7% of the task
duration and respectively 26.4% ± 3.0% for three-DOF activation in three-DOF tasks.
Their myocontrol algorithm was trained with multi-DOF activations and predicted the
velocity per DOF, as well. Ison et al. [234] used an NMF-based regression framework to
control the velocity along four DOFs. No SR in the virtual or robotic tasks was reported
since the tasks were evaluated based on the time they took, not whether they could be
accomplished within a specific time frame. Furthermore, there was no mention of the
amount of simultaneous activations that were used during task execution. An interesting
similarity stems from the sparsity of the NMF method. In our study, we have performed
a sensor-reduction analysis to successfully show the robustness and translational poten-
tial of the developed myocontroller to a prosthetic setup. The NMF-based controller by
Ison et al. identified areas of high information content and, due to sparsity, effectively
performed a sensor reduction. These findings agree with what has been found in the
literature regarding sensor reduction [139, 236, 237].

Outside of wrist and hand actions, Barsotti et al. [238] have performed a similar study
concerned with the combination of single-finger actions. Their training and testing
protocol is, to a large extent, consistent with ours, with the exception that a trapezoidal
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stimulus was used instead of steady-state training. Furthermore, their myocontrol was
also based on 192 EMG sensors and a RR myocontroller with a slightly different EMG
feature, i.e. linear envelope instead of an RMS envelope. The resulting performance
was similar to our study but at a lower level, with an SR for single-DOF tasks of
85%± 9% compared to 96%± 2%, 40% compared to 55%± 5% for two-DOF tasks and
18% compared to 37%± 7% for three-DOF tasks. The main objective of said study was
the comparison between a linear feature and a non-linear one. The non-linear feature
led to a considerably better performance, with an SR for double-DOF tasks of 67% and
33% for three-DOF tasks. These values agree to a large extent with our findings. Since
the non-linear feature was based on physiological considerations, it potentially could
compensate for non-linearities in multi-finger actions that were not present in combined
wrist and hand actions in our study.

Other approaches to SPC for multiple DOFs have been investigated. Amsüss et al. [160]
have combined a classification approach for single-DOF actions with a regression-based
approach for multi-DOF actions. Based on a dimensionality estimator, a continuous
transition was possible between the prediction of the single-DOF classifier and the multi-
DOF regressor. ML training required three trapezoidal data acquisitions at three dif-
ferent levels of activation, and the regressor was only able to predict the combination of
two DOFs. The results obtained in Publication 2 suggest that the classifier might not
be required as the SR for single-DOF tasks was at 96%±2%. However, the authors were
able to show significant improvement over a classical sequential myocontrol in functional
tests (SHAP and BBT).

4.2 Adaptation in Machine Learning

Figure 4.4: Area of user and prosthesis interaction: • theory on user-prosthesis interaction

In order to fully make use of co-adaptation in myocontrol, the ability of the user to
adapt has to be accompanied by an adaptive myocontrol algorithm. This requires an
ML method that allows for interaction, such as iML approaches. As the user adapts and

42



4.2 Adaptation in Machine Learning

learns the signals they produce likely change. This novel information should be presented
to the myocontroller so it can update its model while potentially discarding obsolete
information. iML methods have mechanisms for both of these scenarios: updates and
forgetting [c, 164]. In case it is not mathematically possible for a myocontrol algorithm to
be updated incrementally, a simplified definition of incrementality can be applied. Given
enough memory and enough computational power to perform sufficiently fast training,
a reevaluation of the training data after the addition of novel and/or removal of obsolete
data can be considered. This simplified definition has been applied in Publication 4,
where the reevaluation of the training data lasted only a few seconds.

Adaptive approaches have found appeal in myocontrol. They have been used for dif-
ferent purposes in ML-based myocontrol. Figure 4.5 depicts four different approaches in
that area that are characterised by interactive or non-interactive training and interactive
or non-interactive testing.

(a)

(b)

(c)

(d)

Figure 4.5: Different types of ML adaptation in myocontrol. • represents non-interactive
training or testing, • represents interactive training or testing, and • represents
a dedicated model training phase. From left to right, the chronological process
of ML training and testing is visualised with training data acquisition, dedicated
model training and model testing. (a) non-interactive training, model training, and
non-interactive testing; (b) non-interactive training, model training, and interactive
testing; (c) interactive training, and non-interactive testing; (d) interactive training
and testing

One application of adaptive approaches aims to deal with non-stationary changes
due to donning and doffing, sweating, fatigue or electrode shift [239, 240, 241]. These
algorithms are usually based on supervised updates or updates with high-confidence data.
It has been shown that an adaptive approach for this purpose leads to better performance
compared to non-adaptive ones [242, 239, 240]. A study of our own has come to the
same conclusion [c]. As these approaches are characterised by updates during online
usage, they correspond to the ones in Figure 4.5b and Figure 4.5d. Sensinger et al. [242]
have investigated multiple supervised and unsupervised adaptation approaches and have
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found that a larger error reduction is possible with supervised methods compared to
unsupervised ones.

Another area in myocontrol where adaptive algorithms have been applied is during
data acquisition for ML training [165, 166, 243]. The training phase of these approaches
includes not only a supervised data acquisition but also a testing phase of the preliminary
model. A set of goal-reaching tasks are performed based on the initial data collection.
In case a target can not be reached, the ML algorithms adapt to make said target
reachable. After this adaptive training phase, the following usage of the model usually
does not involve interaction possibilities. A visualisation of this approach can be found
in Figure 4.5c.
The supervised interaction investigated in Publication 3 can be considered another

type of adaptation in myocontrol. The variants described before involve automatic
supervised updates with data that has a high likelihood of being correctly labelled.
However, there are a number of situations where an ML algorithm fails because of
unknown data or data with low certainty. In these situations, the user performs an
action, and the algorithm can not interpret the data correctly. However, since the user
is aware of the correct action, a triggered update in these situations can be labelled
correctly and provide highly relevant data to the ML algorithm.
This interaction step between the user and the ML algorithm is not present in the

adaptive approaches described before and, in our opinion, is key to establishing a success-
ful myocontroller. The interaction-based mechanism has been described in Publication 3
from an RC point of view.
In this study, we investigated three different levels of interaction between the user

and the ML algorithm. These were non-interactive training and non-interactive testing,
interactive training and non-interactive testing and a single phase of interactive training
and testing, which can be found in Figure 4.5a, Figure 4.5c, and Figure 4.5d, respectively.
We were able to show the benefits of interaction between the user and ML algorithm.
Although not significant, the error (normalised RMSE) was lowest for the interactive
approach. The judgement of the user, however, was significant, with significantly more
“good” evaluations in the interactive case than in the other two.
Furthermore, we could show that the person providing the signals can assess correctly

whether the prosthesis performs appropriately or not. Although this finding appears
obvious, the implications are highly relevant. Being able to correctly evaluate the per-
formance of the prosthesis further underlines the necessity of interaction between the
user and the prosthesis in prosthetic control. Given an incremental myocontroller and
the theoretical capability of the said algorithm to find an appropriate model, the RC
framework can push myocontrol to become truly robust in daily living.
In order to reduce the duration of the experiment for the individual user, the study

was designed between-subject instead of within-subject. This led to the unfortunate
situation where two subjects had to be excluded from the study since their performance
was considered to be outliers. In order to have a balanced comparison, four instead of the
originally planned five participants per category were included in the statistical analysis.
The result of the ANOVA (F (2, 9) = 3.96, p = 0.058) gives room to the conclusion that
an effect could have been found with a higher number of participants.
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Furthermore, we would like to highlight that there might be another interesting phe-
nomenon that could be exploited for interaction. In the non-interactive part, a partic-
ipant expressed they felt “the machine was learning”. In fact, the trained model did
not change, and if there was improvement, it originated from the participant learning.
Due to the change in perspective in the RC framework, the participant is already ca-
pable of performing every action; only the prosthesis has not understood it yet. This
might remove some pressure from the users as, in their perception, it’s the prosthesis
that has to learn rather than them. As mentioned in Section 1.3, extensive training
in ML-based myocontrol is among the current challenges in myocontrol and reduced
burden through interaction would directly affect this issue. Changing the framing of
this process is a promising approach to reducing abandonment. The importance of this
approach can be further underlined by the personal experience of the author in the user
study performed for Publication 2. A person with limb absence involved in said study
expressed during the preparation process for their participation that they simply could
not perform one of the actions required for the study. There was no possibility of even
attempting to perform that action since they insisted they were not capable of doing
so. While this statement can very well be true, a different approach through the RC
framing could have made a difference. The point of view where they are already able to
perform that action, the prosthesis just hasn’t learnt it yet, might have unlocked hidden
capabilities they were not aware of.

These ideas have found footing in the community and may shape the next develop-
ments in user-prosthesis interaction [244]. Based on these ideas, we designed an auto-
mated oracle with the goal to support the user in identifying situations of uncertainty
and, therefore, opportunities to update the system [o, r, u]. The oracle monitors the
stability of the prosthetic provision by explicitly taking information from the prosthetic
hardware into account. We were able to show that this additional source of information
leads to more informed decisions on the stability of the prosthetic performance.

4.3 Co-Adaptation in Practice

Having shown the benefits of adaptation on the side of the user and the ML algorithm
now requires the demonstration of improvements due to co-adaptation in myocontrol.
To do so, one needs an appropriate test that considers all relevant aspects [224].

This test should include the assessment of interaction and should be tailored to multi-
articulated prostheses capable of multiple actions. Furthermore, multiple sessions or
retests are required since interaction particularly leads to improvement when learning
or, in general, changes are involved. Due to potential improvements, one single task
or one single level of difficulty is not sufficient, and a modality to involve increasing
difficulty is required. Based on these ideas, we defined four essential aspects for such a
test: repeatability and increasing difficulty (A1), postural variation during tasks (A2),
multiple actions per task (A3), and a short familiarisation time for the rater (A4).
Furthermore, these four aspects allow us to assess a number of current challenges in
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Figure 4.6: Area of user and prosthesis interaction: • simultaneous assessment and training

myocontrol, such as limb position effect, within/between day effect and extensive
training in ML-based myocontrol.

On the basis of the essential aspects (A1-A4), we have compared different functional
tests to find a suitable candidate. A description of a number of functional tests has
been provided in Section 2.5.2. The comparison between ACMC, SHAP, CRT and
BBT showed that none of these tests is capable of fully assessing interaction using iML
methods for myocontrol, and only the CRT is capable of assessing multi-articulated
prostheses. Needs for a standardised assessment framework have been voiced in the
community [115, 245].

Therefore, we designed the SATMC, an assessment protocol that could deal with all
the aforementioned aspects (A1-A4) and which, at the same time, serves as a training
tool based on incremental updates, see Publication 4. Using the SATMC, we performed
a user study involving a person with limb absence that was fitted with a custom-built
socket and a multi-articulated prosthetic hand controlled by the iML-based algorithm
introduced in Section 2.3.4. From being completely new to ML-based myocontrol, the
user learned to control four DOFs of the prosthetic hand reliably. A protocol and user
study that lasted more than 30 sessions over 13 months, that was based on an objective
increase in complexity of tasks, and that involved an iML-based myocontrol has, to the
best of our knowledge, not been performed prior to this work.

However, there are a number of studies that have dealt with user training for ML-based
myocontrol. Atkins and Sturma [246] have provided a hands-on overview regarding the
testing and training of myoelectric prosthetic hands. Usually, the first step in prepa-
ration for myoelectric control is pure signal training [169]. In this early period, the
number of actions, as well as the different EMG-signal patterns, are identified. As the
first months of rehabilitation are essential for acceptance of a prosthesis, early training
with the prosthesis, as promoted by the SATMC, can be beneficial. A comparable inter-
active training has been successfully shown by Simon et al. [247]. Instead of incremental
updates, full retraining was performed for each update. However, in this home trial,
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the retraining could be triggered by the users themselves. Already with this interaction
possibility, ML-based control showed better outcome measures than direct control [167].
The SATMC could provide further improvements since an initial evaluation of the ca-
pabilities and the number of DOFs to control preceded these home trials [248].
Roche et al. [249] have developed a training protocol for multi-articulated prosthetic

control that builds on ideas similar to ours. The goal is to support the user in reach-
ing more dexterity, i.e., learning more actions. Through a process involving imitation,
repetition, and reinforcement, they were able to show the efficacy involving one person
with limb absence. The approach does not feature an incremental increase in controller
complexity nor an increase in the difficulty of the tasks. Imitation of the movement of
a real hand appears to have played a central role in this protocol [250].
Resnik et al. [169] have performed a multi-session experiment to compare direct control

and ML-based control. No clear conclusion could be drawn since both control modalities
performed similarly in the assessment tasks. The ML-based control involved two DOFs,
and taking this into account, we have found similar results in our study. The user in
our study performed a single session of the SATMC with his own prosthesis with direct
control. At that time of the study, the user was capable of controlling two actions (and
a rest gesture). Timing and self-assessment were on a similar level as the ML-based
controller. When increasing the number of DOFs to control to three, ML-based control
performs better than direct control [251]. We were not able to recreate this comparison
directly. However, for three-DOF control (and a rest gesture), satisfaction and timing
reached levels similar to those of the session with direct control, which could indicate
higher dexterity while maintaining a stable control behaviour.
The study by Resnik et al., as well as a number of similar ones [252, 253], have

performed multi-session user studies involving at least one person with limb absence.
Although the number of participants is low, these studies have the potential to provide
strong evidence of their results. Using the concept of SCED can improve user studies
in myocontrol, where getting access to prosthetic provisions custom-built for an investi-
gation can be challenging. In Publication 4, we applied SCED, used direct replication,
and a consistent baseline measure to strengthen our findings.

4.4 Limitations

Although the investigations performed in this thesis led to a number of promising results,
they are not without limitations. In short, these are:

• The potential impact of the limb position effect on the sEMG-FMG-fusion study
in Publication 1 and on the transparent control study in Publication 2 was not
investigated.

• The results in the interaction study in Publication 3 only weakly show the im-
provement interaction offers to myocontrol.

• The cohort of participants in the studies in Publication 1 and Publication 3 con-
sisted only of people without limb absence.
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• Physiologically inspired approaches could be an alternative to interaction to deal
with the instabilities of ML-based myocontroller.

For one, the study regarding sEMG and FMG fusion could be impacted by the limb
position effect. The participants were seated at a table and were asked to rest their
elbows on the table. With an elbow angle of approximately 90◦, the forearm and hand
were almost vertically pointing towards the ceiling. Figure 1 in Publication 1 shows a
participant during the user study. The participants were asked to perform the entire
user study in said position. This was the only pose where the comparison between fusion
methods was performed. Radmand et al. [88] have investigated the impact of the limb
position effect on a myocontroller based on high-density FMG (TMG). They have found
that training the myocontroller in multiple positions can reduce the classification error
from around 10% to around 2% in ADLs. Ahmadizadeh et al. [89] have used a dynamic
training approach to include different limb positions in the training data. Since our online
findings matched their offline analysis, the influence of the limb position effect could,
therefore, be low. An online user study with tasks requiring different limb positions
that tests different fusion approaches with a balanced sensor number should provide a
more realistic scenario and, therefore, a better indication of the benefits of the fusion
of sEMG and FMG. Since the data acquisition setup used in Publication 1 is portable,
the extension to investigate the limb position effect is feasible. In the study regarding
transparent control published in Publication 2, the same considerations regarding the
limb position apply since the restrictions to the pose of the arm were essentially the
same. However, the setup of that study can not easily be used in a portable manner.
Alternative mobile HD-sEMG acquisition devices exist, such as the MuoviPro [254] or
Muovi+Pro [255] by OT Bioelettronica s.r.l..

Furthermore, the results obtained in the interaction study of Publication 3 do not
show significant improvement in normalised RMSE when increasing the interaction level.
However, the effect could have been too weak to be shown with four participants per
condition. It was required to remove one participant per category (moving from five
participants to four) since their performance was considered to be outliers, which could
lead to a false bias in the between-subject design of the study. A repetition or extension
of the experiment with a larger number of participants could lead to stronger results.

Additionally, a limitation in the aforementioned fusion study and interaction study
in Publication 1 and Publication 3, respectively, concerns the lack of people with limb
absence. Investigations in a cohort of people without limb absence can be a valuable
source to identify promising avenues that are worth investigating with prosthetic setups
and people with limb absence. The fusion study of Publication 1 was, to the best
of our knowledge, the first online comparison of sEMG and FMG fusion approaches.
Investigations regarding said sensor fusion have been performed with people with limb
absence as participants; however, only offline. In Ahmadizadeh et al. [89], a prosthetic
socket equipped with 37 FMG and two sEMG sensors was used to assess sensor fusion
approaches with a person with limb absence. Our online results confirmed their findings
that the addition of sEMG does not significantly improve the FMG-only myocontroller.
This indicates that our findings with people without limb absence could transfer to
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people with limb absence. However, a dedicated user study is still required. Regarding
the interaction study of Publication 3, the involvement of people with limb absence would
provide highly valuable insights. The findings of the initial study could be extended by
an investigation of whether there is a transfer of findings from people without limb
absence to people with limb absence. This is particularly interesting since it has been
shown that prosthesis users embody a prosthesis neither as a tool nor as a hand but
rather as a category of its own [207]. This could potentially have a relevant effect on the
changed perspective the RC framework provides.
Finally, interaction is not the only approach to deal with instabilities in ML-based

myocontrol. Alternative concepts aim at resolving this issue through physiologically
inspired approaches [256, 257, 258]. These can rely on musculoskeletal models, such as
the upper-limb model by Holzbaur et al. [259] or Saul et al. [260], which can be used
with OpenSim [261], a simulation environment where muscles are simulated using a Hill-
type model [262]. Further simulation environments exist, e.g. the AnyBody Modeling
System [263]. Model-based approaches can also be based on the composition of the EMG
signal. They involve EMG decomposition to extract the neural drive, see Section 2.2.1.
Real-time implementations of these decomposition algorithms have been developed in
recent years [264, 265, 266]. With a deeper understanding of the underlying generation of
neural control, such as the newly developed concept of synergistic activation of MUs [68],
the ambitious goal of decomposing the entire motor control of the central nervous system
is drawing nearer, which could make supervised ML-based myocontrol obsolete.
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Figure 5.1: Different areas of user and prosthesis interaction addressed in this thesis. • muscle
signals; • theory on user-prosthesis interaction; • simultaneous assessment and
training

In the studies performed in this thesis, we were able to show the improvements that
interaction can bring to myocontrol and how co-adaptation can be a solution to the
current challenges in myocontrol.
We addressed each challenge related to ML-based myocontrol that was introduced

in Section 1.3. Interactive incremental updates proved to be a successful modality to
deal with the limb position effect in the user study in Publication 4. Investigating
the benefits of different sensor modalities, such as the fusion of FMG and sEMG, in
the user study in Publication 1 showed the reduced susceptibility of FMG signals to the
contraction intensity effect. Furthermore, the user study in Publication 2 showed the
positive aspects of adaptation of the user on the contraction intensity effect and on
extensive training in ML-based myocontrol. With a transparent ML approach and
minimal training, the users were capable of navigating the full action space using SPC.
Since interaction through incremental updates directly impacts extensive training in
ML-based myocontrol, the user studies in Publication 3 and Publication 4 provide
evidence of reducing the negative aspects of this effect. Regarding the within/between
day effect, the multi-session user study in Publication 4 showed that only occasional
updates are required once a satisfactory level of control is reached. This has been evident
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in the said study due to a number of consecutive sessions with a high-performance level
and no model updates.

We have successfully addressed the aforementioned challenges by exploiting the ability
of the user to adapt through interaction using iML-based myocontrol. Our investigations
in different areas of user and prosthesis interaction — muscle signals, theory on user-
prosthesis interaction and simultaneous assessment and training — depicted
in Figure 5.1 demonstrate that co-adaptation in upper-limb prosthetics is a promising
avenue to improving the user experience.

5.1 Future Work

Based on the work in this thesis, its limitations and existing literature, a number of
perspectives for future investigations can be identified. In short, these can involve:

• Extending our user studies regarding FMG and sEMG fusion and transparent
control by tasks involving different limb poses to assess the limb position effect.

• Performing a user study based on the SATMC with a multi-modal and transparent
myocontroller.

• Investigating different features regarding their potential for transparent control.

• Extending co-adaptive training with unsupervised methods to further emphasise
the capabilities of the user.

• Automating the SATMC to reduce experimenter errors.

• Transfer of findings to human-robot interaction.

As pointed out in Section 4.4, the user studies performed on the muscle signal level
have not included investigations regarding changes in limb pose. Since resistance to
the limb position effect is essential for successful daily-life prosthetic usage, such an
extension of the existing studies can be seen as a natural next step. For this purpose,
the VR framework that we developed in the context of the VITA projects [v, w] could
be used as a platform to perform user studies. In this or other VR environments,
different conditions can be implemented and tested with a high level of immersion and
embodiment.
On a similar note, the SATMC has been developed to be a general tool to assess and

train myocontrol approaches. The study performed using the SATMC in Publication 4
applied a myocontroller with eight sEMG sensors and the algorithm described in Sec-
tion 2.3.4. Joining the findings from the studies regarding sensor-modality fusion and
transparent control with said algorithm could further improve myocontrol and user sat-
isfaction. A multi-session user study with such a myocontroller is a feasible endeavour
providing adequate hardware and an interested participant.
Based on our collective results, exploiting co-adaptation for myocontrol is a highly

desirable concept. To build on this notion further, different features of EMG or other
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modalities could be investigated based on their capability to support transparent control.
In our studies, we chose only to use the envelope of the sEMG or FMG signal as input to
our myocontrol as this feature is intuitive and predictable for the user. However, further
features could have similar or even better properties. A starting point for identifying
relevant features can be the extensive review by Phinyomark et al. [53].
Moreover, unsupervised ML methods could further support co-adaptation in user

training for myocontrol. Recently, incremental variants of these methods have been
applied to myocontrol [267, 268]. Since they don’t require labelled data, this potentially
problematic step in myocontroller training is no longer required. Additionally, these
synergy-based methods remove the constraint on the user to produce dedicated signals
associated with specific actions. Instead of accidentally selecting actions that interfere
with each other — as we have experienced in the user study of Publication 4 — unsu-
pervised approaches extract independent components that can be used for myocontrol.
An extension of these approaches with incrementality in the action set could lead to an
improved control experience that could be assessed and trained using the SATMC.
Regarding the SATMC, we have experienced a few experimenter errors in the user

study in Publication 4. The majority of steps in the protocol are described in the
guidelines. Therefore, an automated SATMC execution could reduce potential errors.
Pen and paper were used to collect the visual analogue scale scores. Replacing that with
a digital medium could automatically determine the next task or indicate whether a new
phase can be started.
Lastly, myocontrol has not only drawn inspiration from concepts originating from

robotics, such as shared control [269, 270], but it was also used to interact with robotic
devices [184, 234, 271, 272]. With the advent of cobots [273] and increasingly close
collaboration between humans and robots [274, 275, 276], the concepts that have been
developed for user and prosthesis interaction could be of benefit to the area of human-
robot collaboration.

5.2 Perspective

A holistic approach combining scientific achievements involving novel control modalities
and modern prosthetic devices with surgical techniques and appropriate training will
provide users with the best prosthetic provisions. A person who has undergone TMR
and was equipped with a multi-DOF prosthetic arm made the following statement:

When I use the new prosthesis, I just do things.
I don’t have to think about it.

Person with limb absence [277]
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[68] Hug, F., Avrillon, S., Ibáñez, J., Farina, D., “Common Synaptic Input, Synergies
and Size Principle: Control of Spinal Motor Neurons for Movement Generation”.
In: The Journal of Physiology 601.1 (2023), pp. 11–20. doi: 10.1113/JP283698.

60

https://doi.org/10.1088/1741-2560/13/2/026027
https://doi.org/10.1088/1741-2560/11/1/016008
https://doi.org/10.1016/S1050-6411(00)00051-1
https://doi.org/10.1016/S1050-6411(00)00051-1
https://doi.org/10.1152/japplphysiol.00170.2007
https://doi.org/10.1109/TBME.2005.863893
https://doi.org/10.1152/jn.00009.2006
https://doi.org/10.1152/jn.90219.2008
https://doi.org/10.1152/jn.90219.2008
https://doi.org/10.1016/j.clinph.2009.10.040
https://doi.org/10.1152/jn.00855.2010
https://doi.org/10.1113/JP270902
https://doi.org/10.1113/JP283698


Bibliography

[69] Kuiken, T. A., Miller, L. A., Lipschutz, R. D., Lock, B. A., Stubblefield, K. A.,
Marasco, P. D., Zhou, P., Dumanian, G. A., “Targeted Reinnervation for En-
hanced Prosthetic Arm Function in a Woman with a Proximal Amputation: A
Case Study”. In: The Lancet 369.9559 (Feb. 2007), pp. 371–380. doi: 10.1016/
S0140-6736(07)60193-7.

[70] Kuiken, T. A., Li, G., Lock, B. A., Lipschutz, R. D., Miller, L. A., Stubblefield,
K. A., Englehart, K. B., “Targeted Muscle Reinnervation for Real-time Myo-
electric Control of Multifunction Artificial Arms”. In: JAMA 301.6 (Feb. 2009),
pp. 619–628. doi: 10.1001/jama.2009.116.

[71] Gart, M. S., Souza, J. M., Dumanian, G. A., “Targeted Muscle Reinnervation
in the Upper Extremity Amputee: A Technical Roadmap”. In: Journal of Hand
Surgery 40.9 (Sept. 2015), pp. 1877–1888. doi: 10.1016/j.jhsa.2015.06.119.

[72] Aszmann, O. C., Roche, A. D., Salminger, S., Paternostro-Sluga, T., Herceg,
M., Sturma, A., Hofer, C., Farina, D., “Bionic Reconstruction to Restore Hand
Function after Brachial Plexus Injury: A Case Series of Three Patients”. In: The
Lancet 385.9983 (May 2015), pp. 2183–2189. doi: 10.1016/S0140-6736(14)
61776-1.

[73] Marasco, P. D., Schultz, A. E., Kuiken, T. A., “Sensory Capacity of Reinnervated
Skin after Redirection of Amputated Upper Limb Nerves to the Chest”. In: Brain
132.6 (June 2009), pp. 1441–1448. doi: 10.1093/brain/awp082.

[74] Marasco, P. D., Kim, K., Colgate, J. E., Peshkin, M. A., Kuiken, T. A., “Robotic
Touch Shifts Perception of Embodiment to a Prosthesis in Targeted Reinnervation
Amputees”. In: Brain 134.3 (Mar. 2011), pp. 747–758. doi: 10.1093/brain/
awq361.

[75] Souza, J. M., Cheesborough, J. E., Ko, J. H., Cho, M. S., Kuiken, T. A., Duma-
nian, G. A., “Targeted Muscle Reinnervation: A Novel Approach to Postampu-
tation Neuroma Pain”. In: Clinical Orthopaedics and Related Research® 472.10
(Oct. 2014), pp. 2984–2990. doi: 10.1007/s11999-014-3528-7.

[76] Valerio, I. L., Dumanian, G. A., Jordan, S. W., Mioton, L. M., Bowen, J. B., West,
J. M., Porter, K., Ko, J. H., Souza, J. M., Potter, B. K., “Preemptive Treatment
of Phantom and Residual Limb Pain with Targeted Muscle Reinnervation at
the Time of Major Limb Amputation”. In: Journal of the American College of
Surgeons 228.3 (Mar. 2019), pp. 217–226. doi: 10.1016/j.jamcollsurg.2018.
12.015.

[77] Dumanian, G. A., Potter, B. K., Mioton, L. M., Ko, J. H., Cheesborough, J. E.,
Souza, J. M., Ertl, W. J., Tintle, S. M., Nanos, G. P., Valerio, I. L., Kuiken, T. A.,
Apkarian, A. V., Porter, K., Jordan, S. W., “Targeted Muscle Reinnervation
Treats Neuroma and Phantom Pain in Major Limb Amputees: A Randomized
Clinical Trial”. In: Annals of Surgery 270.2 (Aug. 2019), pp. 238–246. doi: 10.
1097/SLA.0000000000003088.

61

https://doi.org/10.1016/S0140-6736(07)60193-7
https://doi.org/10.1016/S0140-6736(07)60193-7
https://doi.org/10.1001/jama.2009.116
https://doi.org/10.1016/j.jhsa.2015.06.119
https://doi.org/10.1016/S0140-6736(14)61776-1
https://doi.org/10.1016/S0140-6736(14)61776-1
https://doi.org/10.1093/brain/awp082
https://doi.org/10.1093/brain/awq361
https://doi.org/10.1093/brain/awq361
https://doi.org/10.1007/s11999-014-3528-7
https://doi.org/10.1016/j.jamcollsurg.2018.12.015
https://doi.org/10.1016/j.jamcollsurg.2018.12.015
https://doi.org/10.1097/SLA.0000000000003088
https://doi.org/10.1097/SLA.0000000000003088


Bibliography

[78] Farina, D., Vujaklija, I., Br̊anemark, R., Bull, A. M. J., Dietl, H., Graimann, B.,
Hargrove, L. J., Hoffmann, K.-P., Huang, H. (, Ingvarsson, T., Janusson, H. B.,
Kristjánsson, K., Kuiken, T. A., Micera, S., Stieglitz, T., Sturma, A., Tyler,
D. J., Weir, R. F., Aszmann, O. C., “Toward Higher-Performance Bionic Limbs
for Wider Clinical Use”. In: Nature Biomedical Engineering (May 2021). doi:
10.1038/s41551-021-00732-x.

[79] Gray, H. Anatomy of the Human Body. Lea & Febiger, 1878.

[80] Abboudi, R. L., Glass, C. A., Newby, N. A., Flint, J. A., Craelius, W., “A
Biomimetic Controller for a Multifinger Prosthesis”. In: IEEE Transactions on
Rehabilitation Engineering 7.2 (June 1999), pp. 121–129. doi: 10.1109/86.
769401.

[81] Craelius, W. “The Bionic Man: Restoring Mobility”. In: Science 295.5557 (Feb.
2002), pp. 1018–1021. doi: 10.1126/science.295.5557.1018.

[82] Phillips, S. L., Craelius, W., “Residual Kinetic Imaging: A Versatile Interface for
Prosthetic Control”. In: Robotica 23.3 (May 2005), pp. 277–282. doi: 10.1017/
S0263574704001298.

[83] Lukowicz, P., Hanser, F., Szubski, C., Schobersberger, W., “Detecting and Inter-
preting Muscle Activity with Wearable Force Sensors”. In: Pervasive Computing.
Vol. 3968. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 101–116. doi:
10.1007/11748625_7.

[84] Wininger, M. T., Kim, N.-H., Craelius, W., “Pressure Signature of Forearm as
Predictor of Grip Force”. In: Journal of Rehabilitation Research and Development
45.6 (2008), pp. 883–892. doi: 10.1682/jrrd.2007.11.0187.

[85] Cho, E., Chen, R., Merhi, L.-K., Xiao, Z., Pousett, B., Menon, C., “Force Myog-
raphy to Control Robotic Upper Extremity Prostheses: A Feasibility Study”. In:
Frontiers in Bioengineering and Biotechnology 4 (2016).

[86] Jiang, X., Merhi, L.-K., Xiao, Z. G., Menon, C., “Exploration of Force Myogra-
phy and Surface Electromyography in Hand Gesture Classification”. In: Medical
Engineering & Physics 41 (Mar. 2017), pp. 63–73. doi: 10.1016/j.medengphy.
2017.01.015.

[87] Anvaripour, M., Khoshnam, M., Menon, C., Saif, M., “FMG- and RNN-Based
Estimation of Motor Intention of Upper-Limb Motion in Human-Robot Collabo-
ration”. In: Frontiers in Robotics and AI 7 (2020), p. 183. doi: 10.3389/frobt.
2020.573096.

[88] Radmand, A., Scheme, E. J., Englehart, K. B., “High-Density Force Myography:
A Possible Alternative for Upper-Limb Prosthetic Control”. In: Journal of Re-
habilitation Research and Development 53.4 (2016), pp. 443–456. doi: 10.1682/
JRRD.2015.03.0041.

62

https://doi.org/10.1038/s41551-021-00732-x
https://doi.org/10.1109/86.769401
https://doi.org/10.1109/86.769401
https://doi.org/10.1126/science.295.5557.1018
https://doi.org/10.1017/S0263574704001298
https://doi.org/10.1017/S0263574704001298
https://doi.org/10.1007/11748625_7
https://doi.org/10.1682/jrrd.2007.11.0187
https://doi.org/10.1016/j.medengphy.2017.01.015
https://doi.org/10.1016/j.medengphy.2017.01.015
https://doi.org/10.3389/frobt.2020.573096
https://doi.org/10.3389/frobt.2020.573096
https://doi.org/10.1682/JRRD.2015.03.0041
https://doi.org/10.1682/JRRD.2015.03.0041


Bibliography

[89] Ahmadizadeh, C., Merhi, L.-K., Pousett, B., Sangha, S., Menon, C., “Toward
Intuitive Prosthetic Control: Solving Common Issues Using Force Myography,
Surface Electromyography, and Pattern Recognition in a Pilot Case Study”. In:
IEEE Robotics & Automation Magazine 24.4 (Dec. 2017), pp. 102–111. doi: 10.
1109/MRA.2017.2747899.

[90] Xiao, Z. G., Menon, C., “A Review of Force Myography Research and Develop-
ment”. In: Sensors 19.20 (Jan. 2019), p. 4557. doi: 10.3390/s19204557.

[91] Xiao, Z. G., Menon, C., “An Investigation on the Sampling Frequency of the
Upper-Limb Force Myographic Signals”. In: Sensors 19.11 (May 2019), p. 2432.
doi: 10.3390/s19112432.
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[104] Sierra González, D., Castellini, C., “A Realistic Implementation of Ultrasound
Imaging as a Human-Machine Interface for Upper-Limb Amputees”. In: Frontiers
in Neurorobotics 7 (2013).

[105] Zhang, Y., Harrison, C., “Tomo: Wearable, Low-Cost Electrical Impedance To-
mography for Hand Gesture Recognition”. In: Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology. Charlotte NC USA:
ACM, Nov. 2015, pp. 167–173. doi: 10.1145/2807442.2807480.

[106] Zhang, Y., Xiao, R., Harrison, C., “Advancing Hand Gesture Recognition with
High Resolution Electrical Impedance Tomography”. In: Proceedings of the 29th
Annual Symposium on User Interface Software and Technology. Tokyo Japan:
ACM, Oct. 2016, pp. 843–850. doi: 10.1145/2984511.2984574.

[107] Wu, Y., Jiang, D., Duan, J., Liu, X., Bayford, R., Demosthenous, A., “Towards
a High Accuracy Wearable Hand Gesture Recognition System Using EIT”. In:
2018 IEEE International Symposium on Circuits and Systems (ISCAS). Florence:
IEEE, 2018, pp. 1–4. doi: 10.1109/ISCAS.2018.8351296.

[108] Connan, M., Yu, B., Gibas, C., Brück, R., Kirchner, E. A., Castellini, C., “Deep
and Surface Sensor Modalities for Myo-Intent Detection”. In: Proceedings of MEC
- Myoelectric Control Symposium. 2022.

[109] Acuña, S., Engdahl, S. M., Bashatah, A., Otto, P., Kaliki, R. R., Sikdar, S.,
“A Wearable Sonomyography System for Prosthesis Control”. In: Proceedings of
MEC - Myoelectric Control Symposium. 2022.

64

https://doi.org/10.1109/ICORR.2015.7281192
https://doi.org/10.1113/jphysiol.1948.sp004290
https://doi.org/10.1002/mus.880080303
https://doi.org/10.1109/NER.2013.6696036
https://doi.org/10.1007/978-3-030-27532-7_1
https://doi.org/10.1007/978-3-030-27532-7_1
https://doi.org/10.1145/2807442.2807480
https://doi.org/10.1145/2984511.2984574
https://doi.org/10.1109/ISCAS.2018.8351296


Bibliography

[110] Engdahl, S., Acuña, S., Bashatah, A., Dhawan, A., King, E., Mukherjee, B., Hol-
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[237] Rojas-Mart́ınez, M., Mañanas, M. A., Alonso, J. F., Merletti, R., “Identification
of Isometric Contractions Based on High Density EMG Maps”. In: Journal of
Electromyography and Kinesiology 23.1 (Feb. 2013), pp. 33–42. doi: 10.1016/j.
jelekin.2012.06.009.

[238] Barsotti, M., Dupan, S., Vujaklija, I., Došen, S., Frisoli, A., Farina, D., “On-
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Abstract.

Myocontrol, that is, control of a prosthesis via muscle signals, is still a surprisingly

hard problem. Recent research indicates that surface electromyography (sEMG), the

traditional technique used to detect a subject’s intent, could proficiently be replaced,

or conjoined with, other techniques (multi-modal myocontrol), with the aim to improve

both on dexterity and reliability. In this paper we present an online assessment of multi-

modal sEMG and force myography (FMG) targeted at hand and wrist myocontrol.

Twenty sEMG and FMG sensors in total were used to enforce simultaneous and

proportional control of hand opening/closing, wrist pronation/supination and wrist

flexion/extension of 12 intact subjects. We found that FMG yields in general a better

performance than sEMG, and that the main drawback of the sEMG array we used

is not the inability to perform a desired action, but rather action interference, that

is, the undesired concurrent activation of another action. FMG, on the other hand,

causes less interference.

Keywords: myocontrol, surface electromyography, force myography, prosthetics, target

achievement control, action interference

Submitted to: J. Neural Eng.

1. Introduction

Smooth, natural control of upper-limb prostheses (an instance of myocontrol) is the

typical problem which looks simple from an abstract point of view and turns out to

be extremely hard in practice. Back in the Fifties surface electromyography (sEMG),
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Online combination of FMG and sEMG 2

formerly a musculoskeletal condition diagnostic technique, began to be used in a

two-sensors configuration to open and close a one-degree-of-freedom (DOF) motorized

gripper — actually, the first self-powered hand prosthesis in history. Surprisingly, this

rudimentary form of control is, still today, unsurpassed in practice, although (multi-

sensor) sEMG was targeted by control theorists and mathematicians soon after the

pioneers’ era (an early example can be found in [11]).

Yet, dexterous myocontrol, e.g., control of multi-DOF self-powered prosthetic hands

and wrists, is still by and large unsolved, the main problem being unreliability in

daily-life activities. On top of this, upper-limb prosthetic hardware is still expensive,

heavy and clumsy: these are the main reasons why self-powered prostheses are so

often rejected [12, 23], although better functionality and control are highly desired

characteristics in the population of patients [6, 8]. Only two commercially available

solutions employing machine learning are known, namely Complete control by COAPT

Engineerings and the Myo Plus by Ottobock. Proper myocontrol is a surprisingly hard

problem and fifty years of research have not yet produced a reliable, dexterous, natural

and clinically accepted system, enabling upper-limb amputees to smoothly control their

prostheses [2].

Specifically, if we consider the human-machine interface devoted to enforcing

myocontrol, multi-modal sensing is one of the solutions the community is attempting

[9, 12, 15]. The idea is to gather more information from the surface of the amputee’s

missing limb than sEMG currently can, by using different kinds of sensors as a substitute

of, or as a companion to, sEMG. Novel sensor modalities are being explored, which could

yield information less prone to the well-known problems of sEMG (sweat, muscle fatigue,

variability of the signal during isometric contractions due to motor unit recruitment); as

well, they should be targeted at gathering information which sEMG cannot in principle

provide such as, e.g., the status of deep muscles [3].

In this paper we focus upon one such alternative technique, force myography

(FMG). As opposed to sEMG, which directly detects the electrical fields generated

by muscle contractions, FMG uses pressure sensors placed on a body part of interest

to interpret the deformations induced on the stump by said contractions. While

contracting, muscles bulge and change the shape of, for instance, the forearm, in ways

that can be quite reliably be associated to the actions enforced by the human wrist

and hand [24]. FMG has potential to detect different information with respect to

sEMG [26], provides similar accuracy and better-conditioned signals than sEMG [5,32]

and has already been tested offline and online even on amputees [4]; but as far as we

know, studies on the combination of FMG and sEMG while in action are still scarce (a

remarkable example being, e.g., [1]).

Building on our own previous work, in this paper we report about an experiment

in which several intact subjects were fitted with twenty sEMG and FMG sensors on the

forearm; they were then engaged in a repetitive online goal-reaching task involving the

opening/closing of the hand, flexion/extension and pronation/supination of the wrist —

an instance of the Target Achievement Control (TAC) test [28]. It is worthwhile to stress
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Online combination of FMG and sEMG 3

that the task was online, although still in controlled conditions (i.e., not in a daily-living-

activity setup), since offline performance can only offer limited information of online

performance in myocontrol [14, 21, 30]. The results of our experiment indicate that

for proportional control, particularly for fine movements, requiring low forces, sEMG

does not suffice and is outperformed by FMG. The shortcoming can be traced back to

the unintended activation of an action, when trying to perform a different action, a

phenomenon we call action interference.

1.1. Related work

Surface EMG [16,17] detects a superposition of many Motor Unit Activation Potentials,

filtered by the tissue the signal travels through. These signals are, electrical fields

generated by motor units during muscle contraction. FMG [24, 31], on the other side,

detects the pressure exerted by the muscles towards the surface of the skin by volumetric

changes induced during muscle activity. Due to the very different nature of the signals

gathered by these two techniques, it seems reasonable that they could be proficiently

fused in order to better detect a subject’s intent.

In particular, FMG alone has already been tested by and large, and has proved to

yield a signal which is more resilient to motion artefacts and fatigue than sEMG [32],

and has been directly applied to amputees: in [4] four amputated subjects were able

to enforce six primary grips through classification, with an accuracy of above 70%. On

the other hand, FMG and sEMG have been comparatively examined but in parallel,

i.e., without combining them, in [5, 26]. The results shown therein indicate that FMG

provides a signal which is less oscillatory during isometric contractions than sEMG,

thereby providing a significantly better performance during intent detection, performed

using a regression approach, i.e., without classification of patterns but rather enforcing

simultaneous and proportional control.

To the best of our knowledge, this study represents the first attempt to mix sEMG

and FMG in an online task, with the aim of determining how to best combine the two

techniques. In our own previous work [20], an offline analysis was performed of data

obtained in conditions similar to the ones we report about here. The results therein

showed that (a) it is not important how the sensors are laid out on the forearm, but

(b) it can make a significant difference how the signals are combined. In particular,

four ML approaches were tested, and it was determined that sEMG alone performed

significantly worse than any other approach (i.e., FMG alone or combined with sEMG in

two different ways). Moreover, quite surprisingly, it was determined that the best way of

combining the two techniques consisted of just feeding to the ML system the sEMG and

FMG signals juxtaposed. This approach led to smaller normalised root-mean-squared

error in the offline analysis, as well as to better success ratio and shorter task completion

times in a preliminary online test, performed on one subject only. This very work can

be therefore viewed as the natural companion and completion of the above-mentioned

paper.
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Online combination of FMG and sEMG 4

2. Materials and Methods

As an extension of [20], where the comparison was performed mostly offline (only a

single user online test), this study involved 12 able-bodied subjects in a completely

online goal-reaching scenario — an instance of the Target Achievement Control test [28].

Furthermore, the design of this study allows an in-depth comparison of the approaches

for different types of goals that the subjects had to reach. These goals differ as far as the

action (the hand gesture) that had to be performed is concerned, as well as regarding

the level of activation, the intensity / force to which the action had to be performed.

An example would be wrist flexion at level 0.33. Here the subjects would need to flex

their wrist to 33% of full flexion to reach the goal.‡ Notice that, in this work, we have

intentionally left out the problem of predicting combined actions (e.g., grasping while

pronating the wrist) since it would have led to too complex an experimental protocol,

and it would probably have failed due to the small number of sensors.

2.1. Participants

We engaged 12 able-bodied subjects in our study (three women, nine men; age between

22 and 45; all but one right handed). Prior to the experiment all participants

received written and oral descriptions of the experiment. After all questions about the

experiments and associated risks were answered, all participants signed an informed

consent form. This study was formally approved by the host institution’s internal

committee for data protection and it followed the guidelines of the World Medical

Association’s declaration of Helsinki.

2.2. Experimental Setup

The participant was comfortably seated in front of a computer screen and asked to

wear a sEMG and FMG acquisition device that consists of two separate bracelets. A

depiction of the full setup and the bracelet can be found in Figure 1.

The ten sEMG and ten FMG sensors were arranged in alternating order on

the bracelets to cover the full circumference of the forearm by both the sEMG and

FMG sensors. The influence of different sensors arrangements has already been

investigated in [20] and no significant influence of the different sensor selections has

been found. Therefore, we were not required to change the bracelet placement and

sensor organisation for each of the four configurations we intended to compare.

On the screen the participants were shown two hand models, see the left image of

Figure 1. Each of these hands serves a particular purpose. The left/grey hand serves as

a stimulus to the participant. During the data acquisition or ML training, it indicates to

the user which hand action to perform. During the goal-reaching part of the experiment,

it indicates the target hand position the participant has to reach. The right/beige hand

‡ The percentage is related to a level set by the subject. The experimenter asked the subject to perform

a tense, but comfortable level of force.
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Online combination of FMG and sEMG 5

wireless
sensor board

battery pack

sEMG sensor

FMG sensor
upper arm

fixation

Figure 1: (left) the forearm of a participant wearing the sensors, the wireless data

acquisition device, and the computer screen showing a target hand configuration (grey

hand) and the current prediction of the ML algorithm (beige hand). (right) The wireless

data acquisition device, consisting of a battery powered analog-digital converted and two

bracelets with sEMG and FMG sensors.

is controlled by the user. It displays the prediction of the ML configuration that is

currently in use. It is only active in the goal-reaching part of the experiment. With this

setup the goal reaching becomes a matching task of left and right hand.

2.3. Hardware and Signal Processing

The sEMG electrodes are of type Ottobock 13E200=50 Myobock with internal filtering

electronics, supplying an amplified, rectified and band-pass filtered sEMG signal. This

sensor type has been designed for clinical applications. Explicit details about internal

electronics and filters are not publicly available. The FMG sensors and its electronics are

custom made and described in more detail in [5]. Basically, voltage over a force-sensing

resistor (FSR) is amplified and then digitized. The FSR is embedded in a flexible 3D-

printed housing. The sampling rate of both sEMG and FMG sensors is 100 Hz. Signals

of both types have been filtered on the software side, using a 1st-order Butterworth

low-pass filter with a cut-off frequency of 1 Hz. The output after the filtering stage is

directly used for training and prediction.

2.4. Experimental Protocol

The experiment consists of two major parts. First, labelled muscle activation data is

gathered from the participant, which is used to train a ML algorithm in four different

signal mixing configurations. The underlying ML method is always the same. The

difference lies in the sensors selection as well as in the modality of mixing the two sensor

types. Furthermore, depending on what sensor type is used a hyperparameter is varied.
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Online combination of FMG and sEMG 6

The four ML configurations are the same as in the offline analysis performed in [20],

therefore the hyperparameters have been taken from that analysis.

The ML algorithm that we used is the well established Ridge Regression with

Random Fourier Features (RRRFF), first introduced in prosthetic control in [13] and

successfully used by this group numerous times [18,19,22,29]. This algorithm can be seen

as a finite dimensional approximation of a Support Vector Machine (SVM) using a Radial

Basis Function Kernel. This algorithm has certain in our opinion highly important

characteristics, e.g. bounded in space and therefore fast computation, incrementality,

and proportionality.

The central point of this work is an in-depth comparison between sEMG, FMG and

the mixture of both. For this purpose we compared four configurations of training our

ML algorithm, based on i.e. sEMG only, FMG only, a stacked mixture of both (STA)

and a hierarchical mixture of both (ENS). The hierarchical configuration will be referred

to as ensemble learning [7].

For the RRRFF algorithm, there is a target signal for each of the actions to be

trained. These target values represent the hand/wrist configuration for the specific

action. For the ENS model, a set of target signals is obtained from each, sEMG and

FMG models. These target values correspond to the target values from the sEMG and

FMG models, which are the predicted finger/hand configurations. Then a third model

is trained with the stacked output of the first two models. From that third model, the

final target values are obtained.

A visualisation of all four mixing configurations can be found in Figure 2.

RRRFF

xsEMG

ŷsEMG

RRRFF

xFMG

ŷFMG

RRRFF

xFMG

ŷSTA

RRRFF

ŷENS

xsEMG

RRRFF

RRRFF

xFMGxsEMG

ŷsEMG ŷFMG

Figure 2: Visual representation of the four different ML configurations investigated

in this work. From left to right: sEMG only, FMG only, stacked mixing (STA) and

ensemble learning (ENS). This is a supplement to the description in Section 2.4.

To guarantee a fair comparison between these four configurations we always used

a subset of ten sensors to test each configuration. This means we used all ten of the

respective sensors, when we trained the ML algorithm for one specific sensor type only,

but reduced the number of each sensor type to five, when training a mixing approach.

Following this chain of thought, we were able to acquire training data once from all 20

sensors and train all four ML configurations with a subset of this data. This effectively

reduced the duration of the experiment, easing the participants’ task. Following the

stimulus (grey hand model) the participant had to perform six different hand and wrist

actions, namely rest or relaxed (no action), power grasp, wrist flexion, wrist extension,
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Online combination of FMG and sEMG 7

wrist pronation and wrist supination. A depiction of these actions can be found in

Figure 3.

Figure 3: Depiction of the six actions the participants had to perform during the ML

training phase.

These six actions were repeated 5 times. After the data acquisition and the

subsequent ML training the participant was allowed to quickly test the quality of the

online prediction performing free movements and comparing them to the predicted

actions. In case the participants verbally stated that they are not satisfied the

training session was repeated until the participants were satisfied with the performance.

Thereafter the participants were presented with 120 goal reaching tasks. This segment

of the experiment lasted on average 29′50′′±3′20′′. The distinctive feature of these tasks

is the fact that we train only on ”on/off”-data, i.e. full activation of a particular action,

but the goals can be intermediate values for these actions (a realistic training method

already defined in [27]). Figure 4 depicts different levels for the actions wrist flexion and

wrist extension. No updates or retraining were allowed once the first goal was presented

to the participants.

Figure 4: Range of targets using the example of wrist flexion, rest and wrist extension.

The levels from left to right refer to full (1.0) wrist flexion, 0.67 wrist flexion, 0.33 wrist

flexion, rest, 0.33 wrist extension, 0.67 wrist extension, full (1.0) wrist extension. For

clarification: For ML training we only used the beige actions, while the participant were

asked to match all of the target configurations depicted here.

In the training phase the user only performed the first (full wrist flexion), the middle

(rest) and the last (full wrist extension) action. While in the goal reaching phase the

user was asked not only to reach those full activations, but intermediate levels of these

activations as well , i.e. at a level of 0.33 and 0.67. For each of the four ML configurations

we asked the user to perform two repetitions of these five actions at three different levels
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Online combination of FMG and sEMG 8

(excluding relaxed/no action). Hence, we end up with 120 tasks. To assure that time

dependent effects, e.g. a learning effect or fatigue, have a limited influence on our results

we presented each subject with a different order of the three factors we were varying,

i.e. the ML configuration, the action and the level.

The measure to evaluate the performance of each ML configuration is the success

or failure in reaching each individual goal. For each task the participant had 15s to

finish the task. Successfully finish means reaching the target area (approx. 1.2% of the

work space) and staying in that area for 1.5s. Once the target area is left the timer

resets. The design of the study allows us to compare the different mixing configurations

at different action levels and for different actions.

3. Experimental Results

Since successfully reaching a goal or not is a binary outcome measure, we used a log-

linear analysis [10] to investigate the outcome of our study. A visualisation of the fitted

model using a mosaic plot can be found in Figure 5.

The Figure is split into four major columns and three major rows, representing the

four ML configurations and the three levels of activation. Furthermore, in each major

column there are five minor ones, which represent the five different actions, and in

each major row there are two minor ones, which represent the relative relation between

successful and failed tasks for each task type§.
Two more characteristics are highlighted in this plot. First, the borders of each

block are either solid or dashed. A solid line represents a positive deviation from the

expected value, while a dashed line represents a negative deviation from the expected

value. Second, while the majority of blocks are grey some are coloured in teal or purple.

A teal block represents a positive deviation from the expected value as well , but in this

case the deviation is significant. Purple blocks represent a significant negative deviation.

The colour is based on the Pearson residuals, which is a version of a standardised

residual. Values > 2 or < −2 imply that the deviation from the expected value is

significant.

Remarkably, the number of cases with a significant deviation increases as the level

of activation decreases: in three cases the number of failures is significantly higher than

expected whereas in six cases the number of failures is significantly lower than expected.

The three cases with significantly more failures all occur when the ML algorithm is

trained only on sEMG data and at lower levels of activation of the degree of freedom

(DOF) of wrist flexion/extension. For these three cases we have plotted the absolute

error per DOF for the failed tasks in Figure 6. Additionally, for each case we performed a

one-way ANOVA to compare the error of the three DOFs. The results are the following:

• F (2, 57) = 7.027, p = 0.002 for wrist extension at level 0.33

§ A task type is determined by the action performed, the ML configuration used and the level of

activation.
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Figure 5: Mosaic plot of the full results of the experiment. Major columns represent the

different ML configurations, minor columns represent the different actions (pwr: power

grasp, w.ex: wrist extension, w.fl: wrist extension, w.pr: wrist pronation, w.sp: wrist

supination), major rows represent different level of activation and minor rows show the

relative relation between successful and failed tasks. Dashed outlines imply a negative

deviation from the expected value, while solid outlines imply a positive deviation. Grey

blocks mean that a deviation is not significant, while teal stands for a significant positive

deviation and purple stands for significant negative deviation.

• F (2, 63) = 4.002, p = 0.02 for wrist flexion at level 0.33

• F (2, 60) = 4.070, p = 0.02 for wrist extension at level 0.67

Since significant difference was found we followed up the one-way ANOVA with a Tukey

Test. The results can be found in Table 1.

For Figure 5 we investigate the saturated model of the log-linear regression. We

chose this test, since the result of each task (success or failure) is binominal and we

only preformed two repetitions of each task per subject to reduce the duration of the

experiment. Therefore, we are not able to analyse the success rate in a sensible way

without reducing the data along one of the factors. However, this information would

provide a broader understanding of the results of the experiment. Hence, we preformed

said reduction along each of the three factors, which we depict in three boxplots in

Figure 7.

Furthermore, we highlight the difference between the four ML configurations with

three additional plots at each activation level. For this purpose we have collapsed the

two factors “action” and “configuration” into one factor and compared this new factor
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Figure 6: Boxplot of absolute error per DOF for failed tasks for the three cases, where

the number of failures is significantly higher than expected. Brackets with an asterisk

imply significant difference. A group with an asterisk implies significant difference from

all other groups.

DOFs p-value

w.fl/ex-pwr 0.998

w.sp/pr-pwr 0.005

w.sp/pr-w.fl/ex 0.006

(a) for wrist extension at level 0.33

DOFs p-value

w.fl/ex-pwr 0.521

w.sp/pr-pwr 0.018

w.sp/pr-w.fl/ex 0.209

(b) for wrist flexion at level 0.33

DOFs p-value

w.fl/ex-pwr 0.955

w.sp/pr-pwr 0.031

w.sp/pr-w.fl/ex 0.061

(c) for wrist extension at level 0.67

Table 1: Results of post-hoc Tukey-Test for the cases plotted in Figure 6.
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Figure 7: Boxplot of reduction by each of the three factors. The success rate is calculated

or each subject and the boxplots visualise the success rate across all 12 subjects.

by the number of successful tasks (Figure 8). To some extent this is a rearrangement of

Figure 5 by success rate over all subjects and repetitions.

4. Discussion and conclusions

Can FMG be proficiently coupled with sEMG for simultaneous and proportional

myocontrol, and if so, how? The experimental results we obtained let us draw two

major conclusions. Firstly, there are statistically significant differences in performance,

according to the different sensor type set and mixing approach; secondly, the difference

becomes larger at lower levels of activation.

Regarding the first issue, in general, the configurations involving FMG perform

better than those involving sEMG, and by simply “stacking” FMG and sEMG sensors

together we get better results than by using the more complicated ensemble mixing.

When FMG alone or the stacked approach are used, we get significantly better

performance for the lower activation levels of the wrist — especially for wrist pronation.

The ensemble learning seems to somehow “mix” the signals in such a way to cancel out

the poor performance of sEMG, but the stacked approach additionally preserves the

good performances of FMG. So FMG seems, all in all, to perform better than sEMG,

both alone and when combined with it.

As far as the second issue is concerned, this fact is not surprising: during low-

activation tasks the magnitude of both sEMG and FMG signals is accordingly low,
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Figure 8: Number of successful tasks for each action and method combination sorted in

descending order for activation level 0.33 (top), 0.67 (middle) and 1.0 (bottom). Colours

highlight the ML configuration that was used.
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therefore the related signal-to-noise ratio decreases, quite obviously leading to worse

performances. Furthermore, at full activation level (1.00) all ML configurations perform

comparably well, whereas at the lower levels differences become more evident. It is here

worthwhile to stress that all ML configurations were trained only on data provided at

level 1.00, hence we claim that FMG generalises better than sEMG across activation

levels. Actually, the sEMG-alone approach performs significantly worse than expected

— these cases occur for wrist flexion and extension at the lower levels of activation.

4.1. Action interference: a major reason of failure

It is interesting to have a deeper look at the reason behind these failures. We therefore

compared the absolute error obtained for each DOF while performing an action — that

is, not restraining the analysis to the error obtained for the DOF required for that specific

action, see Figure 6. This was done to determine whether, in general, the goals could

not be reached because the desired DOF could not be activated to the desired level, or

because another DOF was being simultaneously unintentionally activated. All subplots

of Figure 6 indicate that the source of failure was an inadvertently high wrist pronation

or supination, never the inability to flex or extend the wrist. This phenomenon, which

we call action interference, has already been observed [25] and seems to be related to

the sEMG signal while it is basically absent in the FMG signal.

Figure 9 visualises this phenomenon. Using linear discriminant analysis (LDA) as a

dimensionality reduction technique we created a 3D representation of the training data

of one single subject. We selected the subject with the overall success rate closest to

the overall median. We can clearly see that for sEMG data some actions, i.e. wrist

flexion (light teal) and wrist pronation (purple), are clustered close to the rest action.

Assuming an approximately linear increase in sEMG activation, one would need to ”pass

through” an action that is close to the rest action, when trying to reach an action that

is far from the rest action. Therefore, activating an action far from the rest cluster at

a low level inevitably leads to a coactivation of the action close to the rest action. This

behaviour is what we call action interference. On the other hand, in case of FMG the

action clusters seem to be evenly spread around the rest action, which would explain

why action interference appears to be absent in this case. Here we would like to refer

to the supplementary material, where the interested reader can find a rotating version

of these 3D plots.

Although we cannot yet exactly say why this is the case, we speculate that it could

be due to the location of the muscles involved in the actions we tested. As a matter

of fact, while the muscles used to flex / extend the wrist are superficial, the muscles

involved in pronation and supination are deep, inducing a relatively smaller magnitude

of the sEMG signal due to the connective and fat tissue it has to travel through. As

opposed to that, FMG records the superficial deformation of the forearm occurring when

pronating / supinating, which has in principle nothing to do with the location of the

muscles, but rather with the global bulging induced by the muscle activation.
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Figure 9: 3D plot of the training data of the median subject (left sEMG, right FMG).

LDA was used to reduce the dimensionality to 3. (Rotating version in supplementary

material)

The three graphs in Figure 8 further emphasise this behaviour. While at level 1.00

we can see an almost even distribution of different ML configurations, for the lower levels

it becomes more and more clustered. We can see that for level 0.33 configurations FMG

and stacked are located more to the left at high numbers of successfully accomplished

tasks, while the only sEMG configuration can be found on the very right at lower

number of successful tasks. The ensemble learning is situated more in the middle. The

behaviour at level 0.67 appears to be in between the one at level 0.33 and level 1.00.

We speculate that action interference, present whenever sEMG is part of the input

space, can ”deceive” both mixed approaches, therefore lowering the potentially better

perforance obtained by FMG.

4.2. Conclusions and future work

FMG achieved a more robust myocontrol than sEMG in our experiment, and could

better generalise to activation levels which were not present in the training set. FMG

qualifies than once more as a viable and interesting replacement to sEMG in myocontrol,

although more experiments are required, particularly as far as the embedding of FMG

sensors in a socket is concerned [4]. The main conclusion we draw from this study is

that to achieve a robust myocontrol that is capable to generalise to untrained data we

need more than just sEMG sensors. Here, we have shown that the addition of FMG

sensors leads to significant improvements, particularly for fine and precise manipulation.

We can see, particularly in Figure 5, that to truly achieve proportionality, that means

reliable control along the full spectrum of activations, we can not only rely on sEMG

sensor, but need additional information.

We were able to identify the action interference of two DOF of the wrist to be

the source of failure at low levels of activation, when using sEMG sensors. This is

not the first time we encountered this issue and we already launched investigation to
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find a solution [25]. However, for FMG this interference does not seem to be present.

The separability is preserved across the full range of activation and therefore allows

fine and precise manipulation. As a general way of eliminating action interference from

myocontrol, we envision that one or more quality indexes could be devised, leading to

the possibility of ruling out interference even before it would actually happen [25], by

increasing or changing the sensor array and/or by extracting different features from the

signals.

As a further remark, our comparison shows no advantage of mixing sEMG

information with FMG over only using FMG information. This is a very interesting

finding. As a last remark, note that this investigation was performed in a seated position

without large scale motion of the arm and/or subject and without external load on the

hand/prosthesis. These conditions could influence the performance, and lifting this

assumption is subject to future investigations.
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Simultaneous and Proportional Real-Time
Myocontrol of up to three Degrees of Freedom of

the Wrist and Hand
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Abstract— Achieving robust, intuitive, simultaneous and
proportional control over multiple degrees of freedom
(DOFs) is an outstanding challenge in the development
of myoelectric prosthetic systems. Since the priority in
myoelectric prosthesis solutions is robustness and stabil-
ity, their number of functions is usually limited. Objective:
Here, we introduce a system for intuitive concurrent hand
and wrist control, based on a robust feature-extraction
protocol and machine-learning. Methods: Using the mean
absolute value of high-density EMG, we train a ridge-
regressor (RR) on only the sustained portions of the single-
DOF contractions and leverage the regressor’s inherent
ability to provide simultaneous multi-DOF estimates. In this
way, we robustly capture the amplitude information of the
inputs while harnessing the power of the RR to extrap-
olate otherwise noisy and often overfitted estimations of
dynamic portions of movements. Results: The real-time
evaluation of the system on 13 able-bodied participants and
an amputee shows that almost all single-DOF tasks could
be reached (96% success rate), while at the same time
users were able to complete most of the two-DOF (62%) and
even some of the very challenging three-DOF tasks (37%).
To further investigate the translational potential of the ap-
proach, we reduced the original 192-channel setup to a 16-
channel configuration and the observed performance did
not deteriorate. Notably, the amputee performed similarly
well to the other participants, according to all considered
metrics. Conclusion: This is the first real-time operated
myocontrol system that consistently provides intuitive si-
multaneous and proportional control over 3-DOFs of wrist
and hand, relying on only surface EMG signals from the
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forearm. Significance: Focusing on reduced complexity,
a real-time test and the inclusion of an amputee in the
study demonstrate the translational potential of the control
system for future applications in prosthetic control.

Index Terms— bionics, hand, high-density EMG, myocon-
trol, prosthetics, ridge-regression, surface EMG

I. INTRODUCTION

UPPER limb deficiency is a consequence of traumatic in-
cidents, underlying pathological conditions, comorbidity

or a genetic predicament. The resulting functional impairment
affects almost every aspect of daily living. For most acquired
amputations, and some congenital limb disorders, prosthetic
fittings are offered as a primary form of functional support.
Most commercially available prosthetic hands provide a small
number of selected functions, such as grasping and some form
of wrist adjustment, which are controlled individually in a
proportional fashion [1]. The most advanced systems rely on
the use of surface electromyography (EMG) to establish an
interface that decodes the user’s motor intent [2].

Commercial myoelectric devices detect EMG signals from
an antagonistic pair of remnant muscles (e.g. wrist flex-
ors/extensors) and map them into proportional control of the
available prosthetic functions (e.g. gripper open/close) [1].
The access to other available prosthetic degrees of freedom
(DOFs), such as wrist rotation, is gained by introducing a
switching event that can be determined by a cocontraction or
a pulsed signal [3]. While highly robust, this state machine
control is unnatural and not suited for restoring dexterous
functions. For this reason, myoelectric prostheses have a high
rate of abandonment by patients [4].

More recent control approaches consist of EMG signal
classification across a finite set of classes (prosthetic func-
tions) [5]–[7] and regression over multiple DOFs [8]. While
classification methods usually provide a sequential control
(one function at a time), regression-based controllers inher-
ently support concurrent activations of multiple functions. On
the other hand, robust regression control of more than two
DOFs in transradial amputees has been proven challenging.
In Hahne et. al. [9] such a system is investigated in ADL-
like assessment tasks. They claim, increasing the number
of DOFs to control beyond two becomes unfeasibly due to
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increased number of combinations to train [10]. In Ortiz-
Catalan et. al. [11] a three-DOF control is reported using a
different control approach than the one to be introduced in
this work and the one presented by Hahne et. al. [9]. Instead
of controlling the position of a prosthesis directly (position
control), the velocity to reach a certain DOF configuration is
commanded. This allows a wearer to perform a multi-DOF
activation either by sequential or simultaneous activation of
the involved DOFs. Ortiz-Catalan et. al. [11] do not indicate
the amount of simultaneous activation present in reaching two-
or three-DOF tasks. In Smith et. al. [12] on the other hand,
a further study involving a three-DOF controller, the usage
of simultaneity is explicitly investigated. The highest task-
specific percentage reported is less than 50% (two-DOF tasks).
All these approaches require explicit training of combined
activations and only in Hahne et. al. [9] simultaneous two-
DOF activation is required to achieve the respective goals.

A further challenge in current myoelectric controllers is the
lack of robustness in the presence of instabilities due to altered
motor control [13] and methodological factors [14], [15].
Certain academic efforts have been dedicated into tackling
this issue [16]–[18] however, a clinically viable solution is
yet to be found. At the same time, the induced controller
instabilities lead to a lack of predictability which is paramount
for establishing an engaging human-machine interface [19]–
[21].

Moreover, the usage of more complex control algorithms,
e.g. non-linear ones, has not led to significant improve-
ment compared to simpler ones, e.g. linear models [22],
[23]. An example of advanced algorithms was presented by
Ameri et. al. [24]. The study evaluates a regression convolu-
tional neural network offline and in a two-DOF goal-reaching
task. Impressive advantages of this approach are a 100%
success rate and no need to engineer EMG features. How-
ever, these results require training of simultaneous activations
(difficult for higher number of DOFs), a velocity control (yet
a very high level of simultaneous activation can be seen in the
results), and additional engineering required for the design and
tuning of the neural network. Furthermore, the possibility for
a user to consistently anticipate the behaviour of the controller
allows the simpler solutions to harness the power of human
motor learning and thus effectively increase the robustness of
the interface [25], [26].

Taking all these points into consideration and in order to
avoid negative effects of overfitting [27], we propose a three
DOFs simultaneous and proportional estimator of wrist and
hand actions based on ridge-regression which is trained only
on the sustained portions (steady state) of single-DOF contrac-
tions, but is tested on multiple activation levels and multi-DOF
activation (up to three-DOF combinations). Since our approach
resembles a position control scheme, two- and three-DOF
targets can only be reached using simultaneous activation.
Controlling multiple DOFs simultaneously and proportionally
has been investigated using high-density EMG under various
arrangements employing a velocity control approach, which
not necessarily requires simultaneous activation [28], [29].

In this study we focus on the translational potential of
our approach. Therefore, we tested the robustness of the

performance not only using a high-density EMG with 192
sensors, but also with a reduced sensor arrangement with 16
sensors. Robustness here refers to control stability, e.g. due to
changes in the signal during the experiment. The influence of
electrode shift or other perturbations are not explicitly tested.
To evaluate our approach, we conducted a set of real-time on-
screen tests with a group of able-bodied participants and an
amputee.

A preliminary version of this work has been reported
previously [30].

II. MOTION ESTIMATION AND CONTROL ALGORITHM

In order to provide the users with predictable, intuitive and
robust myocontrol, the established interface should ideally
be consistent and transparent in the way it maps the inputs
(the EMG signals) into output control commands (prosthetic
motions). This may be achieved by providing as close to
linear mapping as possible, and by ensuring system robustness
through appropriate signal conditioning and output estimation
algorithm design (training) procedure. In this section we
describe our proposal for designing this system. We initially
describe the EMG signal conditioning, which is followed
by the details of the applied motion estimation regression
algorithm and the workings of the resulting controller.

EMG signal processing: In order to provide robust inputs to
the motion estimation algorithm, the raw acquired EMG signal
is filtered by a 5th order Butterworth bandpass filter in the
frequency range 20Hz−500Hz. Furthermore, in order to com-
pensate for power-line interference, a 2nd order Butterworth
band stop filter with cut-off frequencies 45Hz and 55Hz was
applied to the signal. Then, the envelope of the filtered EMG
signals was used as input to the regressor. EMG amplitude
envelope was selected as it is a robust, commonly used signal
feature in myocontrol, which is linearly related to force [31].
The envelope was extracted from the raw EMG by estimates
of the root mean square (RMS) values in 100ms intervals
with an overlap of 90ms. No channel-wise normalisation was
performed, in order to avoid amplification of channels with
low signal-to-noise ratio, which could negatively influence the
regressor.

Machine Learning: In order to decode user intention, a Ridge
Regression motion estimation algorithm was employed. The
algorithm needs to be trained using representatively labelled
EMG data. Contrary to previous regression studies in my-
ocontrol [12], [22], [32], we propose to train the algorithm
exclusively on data recorded during steady (constant force)
contractions while omitting the dynamic segments from the
training set. This approach to training is commonly used with
classification methods [33]–[35], but can support users who
have difficulties with phantom movements [36], [37]. Here it
is chosen in order to reduce the training data variability which
reinforces the linear behaviour of the controller, thus poten-
tially increasing the robustness by ensuring the predictability
of the controller. Similar ideas have been used to deal with
uncertainties in classification approaches [38].

Under the assumption of linearity, the Ridge Regression
estimator interpolates the intermediate activations to provide
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proportional control and is applied in the following form:

ŷ = Wx with W = (XTX + λI)−1XTY (1)

where ŷ denotes the predicted hand/wrist DOFs, W are the
regression weights, and x denotes a sample of EMG features.
Ridge Regression is a regularised version of least-squares
regression. The second part in Equation 1 represents the
regularisation λI , with λ denoting the regularisation parameter
and I the identity matrix. The parameter λ was set to 1
as previous studies have indicated this value to be well
fit for a wide range of users [37], [39]. The regularisation
counters poorly conditioned problems and provides solutions
with a lower norm. Furthermore, X stands for the design
matrix with all samples of EMG features collected during
the algorithm training and Y represents the corresponding
hand/wrist configurations. This machine learning (ML) method
is one of the fundamental regression techniques, and due to its
low computational cost and predictive behaviour it has been
used for myoelectric control in previous studies [22], [40]–
[42].

Resulting Controller: For the purpose of providing control
over multiple DOFs, each DOF is assigned to one regressor,
which is trained on both extends of the DOF, e.g. the DOF
wrist rotation is trained with both wrist pronation (y = 1)
and wrist supination (y = −1). The output of the controller
are real numbers in the range of −1 to 1 and correspond
to the activation of a certain DOF rather than to specific
forces or joint angles. Therefore, the user is able to utilise
the full spectrum of intermediate and/or combined gesture
activations, even though only the full activations of individual
gestures have been collected during ML training. In order to
further improve user experience, depending on the personal
preferences, either a fifth or a seventh-order moving-average
filter was applied to the predicted output values effectively
reducing the control jitter. With the windowing of 100ms and
the delay introduced by the output filtering, the perceived delay
remained well under the real-time threshold of 300ms [43].
Considering the treatment of the input signals, the applied
motion estimation algorithm, and the conditioning of the
estimated outputs, the overall control strategy proposed here
provides a near-linear translation of EMG readings from the
forearm to estimated activations of DOFs of the wrist and
hand. A visualisation of the intermediate steps of the resulting
controller can be found in the Supplementary Material.

III. EXPERIMENT DESIGN AND EVALUATION

The proposed control algorithm was tested in a real-time
virtual environment. The experimental setup included two
arrangements with different numbers of EMG channels. The
recruited study participants were asked to complete a number
of goal-reaching tasks requiring proportional articulation of
up to three wrist and hand DOFs concurrently. An extensive
analysis of the online performance metrics has been done in
order to determine the translational potential of this control
approach.

A. Experimental Setup

The main setup components consisted of a high-density
EMG acquisition device, a laptop used for computation and
execution of the control algorithm, and an external screen used
to show visual cues and the online predicted gestures to the
participants (Figure 1a).

We recruited 13 able-bodied participants (age 27.5± 3, 5
female, 8 male) and one amputee (age 35, male) for the
experiments. All participants were provided with a description
of the experiment with associated risks and signed an informed
consent form after all their questions were answered. The
study was approved by the local ethics committee of Imperial
College London (ethical approval number: 18IC4685).

Three 8-by-8 ELSCH064NM3 electrode grids were applied
around the full circumference of the proximal part of the
forearm of each participant. In case of the amputee only two
matrices were fitted due to the small dimensions of the residual
limb. The acquisition of these 192 monopolar channels (128
for the amputee was realised through a custom made Matlab
(Mathworks, Natick, MA, USA) software using the EMG-
USB2+ amplifier by OTBioelettronica (Turin, Italy). Reference
electrodes were placed on the wrist of the participants (black
band in Figure 1a) and the data acquisition was performed at
2048Hz.

All computations were performed on a Windows 10 laptop
with a 2.2Ghz Intel Core i7 CPU and 16GB RAM.

B. Experimental Protocol

Based on user surveys [44], six gestures along three DOFs
of hand and wrist were selected. These were: relaxed state,
power grasp, wrist flexion, wrist extension, wrist pronation
and wrist supination.

In order to train the Ridge Regression estimation algorithm,
the subjects were first instructed, using the visual cues shown
in Figure 1c, to perform three repetitions of the desired
gestures at a strong, but comfortable levels of force. During
these contractions, only 2s of sustained EMG data were
recorded and the remaining dynamic portions were excluded.
These recordings were then synthetically labelled denoting the
cued gesture (no kinematics or kinetics were acquired). No
activation (relaxed state) was labelled with y = 0.0, while
the 2s steady-state data was labelled with either y = 1.0 (e.g.
wrist flexion) or y = −1.0 (e.g. wrist extension) depending on
the direction of the specific DOF. Any data corresponding to
the transition between relaxed and steady state was neglected
as previously described.

Upon successful system training, the users were prompted
to get familiar with the control and the user interface (UI).
After about ten minutes of familiarisation, the participants
were instructed to reach different targets on the screen across
the DOFs of interest.

These targets were presented to the user in an abstract
fashion, as already done in previous studies [45], [46]. This
experimental protocol meets the requirements of the later
defined Target Achievement Control (TAC) test [47]. Figure 1c
shows the goal-reaching UI with two vertical arrows. These
arrows were shown on the screen and the user was asked to
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(a)

(b)

(c)

Fig. 1: Overview of the experimental setup: (a) hardware setup with EMG-USB2+ amplifier, external screen showing motion
prediction and target cue, and participant equipped with two (only in case of amputee, otherwise three) 8x8 sensor matrices; (b)
visualisation of the arrangement of the sensor matrices and of the reduced sensor set (highlighted in black); (c) goal-reaching
UI: with three-DOF combined target in pink and current prediction in yellow

align them. For each of the DOFs, the arrow would change
one of its properties. Translation movement left and right was
controlled using the wrist flexion and wrist extension, rotation
was controlled using wrist pronation and wrist supination
and performing a power grasp made the arrow shrink. The
objective of each task was to reach the target and to remain
in its proximity (the error threshold was set to 15% of
the normalised work space) for at least 0.3s. Leaving the
target area led to a reset of this dwell time. The user had
20s to complete each task, after which the next target was
displayed. Reaching the target area was visually indicated to
the participant by a change of colour of the arrow from yellow
to green. The colour changed back to yellow if the user left the
target area. In case the task was not successfully accomplished
and the timeout of 20s was reached, the colour of the target
changed to red and the user was instructed to fully relax before
resetting for the next task.

In addition to the arrow representation of the tasks and the
control, participants were also shown two hand models. These
two hand models, a grey one for the target posture and a
beige one for the current prediction, are shown in Figure 1a.
However, the users mostly preferred the arrow-based UI.

A total of 24 targets comprised of either individual gestures,
such as power grasp, or combinations, such as concurrent

activation of power grasp and wrist pronation, were shown to
the participants. An added difficulty to the testing was included
by introducing intermediate levels of these actions. This was
done for both individual gestures, e.g. 30% wrist pronation, as
well as for combinations, e.g. 30% wrist pronation combined
with 80% power grasp. The targets with the highest difficulty
were those which involved a combination of gestures along
all three DOFs. Given that the system evaluation focused on
the viability of the solution, the overall selection of tasks
was based on the ability to conduct robust systematic testing
while ensuring not to overburden and fatigue the participants.
This meant selecting task activation levels in relation to the
increasing difficulty of the concurrent DOF manipulation [47]
and thus focusing on the combination levels which are more
commonly used during ADLs [48]. A list of gestures used for
both training the algorithm and real-time testing is reported in
Table I and a visualisation of the execution of ten randomly
selected tasks can be found in the Supplementary Material.
Furthermore, the Supplementary Material also contains a short
clip of the amputee performing a task.

To further test the limits of the approach, four out of the
13 able-bodied participants were selected at random and were
asked to perform an additional experiment with a reduced
number of sensors and the same 24 goals from Table I. A
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TABLE I: Training actions and goals with further categorical information.

Wr. Fl./Ex. Wr. Sp./Pr. Grasp TargetDoFs wFlex/Ext wRot wGrasp AccLvl

tr
ai

ni
ng

da
ta

1.00 0.00 0.00 - - - - -
-1.00 0.00 0.00 - - - - -
0.00 1.00 0.00 - - - - -
0.00 -1.00 0.00 - - - - -
0.00 0.00 1.00 - - - - -
0.00 0.00 0.00 - - - - -

te
st

in
g

da
ta

1 0.30 0.00 0.00 1 yes no no 0.30
2 -0.30 0.00 0.00 1 yes no no 0.30
3 0.00 0.30 0.00 1 no yes no 0.30
4 0.00 -0.30 0.00 1 no yes no 0.30
5 0.00 0.00 0.30 1 no no yes 0.30
6 0.00 0.00 0.55 1 no no yes 0.55
7 0.80 0.00 0.00 1 yes no no 0.80
8 -0.80 0.00 0.00 1 yes no no 0.80
9 0.00 0.80 0.00 1 no yes no 0.80

10 0.00 -0.80 0.00 1 no yes no 0.80
11 0.00 0.00 0.80 1 no no yes 0.80
12 0.00 0.00 1.00 1 no no yes 1.00
13 0.55 0.55 0.00 2 yes yes no 1.10
14 0.55 -0.55 0.00 2 yes yes no 1.10
15 -0.55 0.55 0.00 2 yes yes no 1.10
16 -0.55 -0.55 0.00 2 yes yes no 1.10
17 0.55 0.00 0.80 2 yes no yes 1.35
18 -0.55 0.00 0.80 2 yes no yes 1.35
19 0.00 0.55 0.80 2 no yes yes 1.35
20 0.00 -0.55 0.80 2 no yes yes 1.35
21 0.55 0.55 0.80 3 yes yes yes 1.90
22 0.55 -0.55 0.80 3 yes yes yes 1.90
23 -0.55 0.55 0.80 3 yes yes yes 1.90
24 -0.55 -0.55 0.80 3 yes yes yes 1.90

reduced set of 16 electrodes was uniformly distributed around
the circumference of the forearm in pairs of two channels
along the muscle fibres (black dots in Figure 1b).

C. Performance Measures
The primary performance measure was Success, which

determines whether the participant is able to successfully
complete the task of reaching a goal. Successful tasks were
further analysed with three secondary performance measures:
TimeToReach, Speed and PathEfficiency. TimeToReach indi-
cates the time it takes a user to successfully accomplish a
task, Speed is the ratio between the length of the path travelled
and TimeToReach, and PathEfficiency is the ratio of the length
of the shortest path from start (origin of the UI shown in
Figure 1c) to endpoint (target location) and the length of the
path actually taken by the user.

D. Statistical Evaluation
The primary and each of the three secondary measures were

analysed individually. The tasks were chosen to cover several
relevant aspects of simultaneous and proportional control.
These properties were the independent factors in the statistical
evaluation and their values can be found in Table I in columns
6-10 (TargetDOFs to AccLvl). TargetDOFs is a factor with
three levels which denote the number of DOFs involved in
a task (1 stands for individual gesture goals, while 2 and 3
stand for combinations of 2 or 3 gestures in a goal). wFlex/Ext,
wRot and wGrasp indicate whether the corresponding DOF is
present in a given task or not. AccLvl is the summation of the
levels of activation for each gesture involved in a goal. This

parameter tells the extent to which each gesture involved in the
task should be activated. A further factor (not listed in Table I)
is SensorNumber, which indicates whether the experiment was
conducted with a full set of 192 sensors or the reduced set of
16 sensors.

The statistical analysis was performed for able-bodied par-
ticipants and only statistical model comparison was done for
the amputee data.

The first step was an investigation of the two major factors
for evaluating the translational potential of the system, Tar-
getDOFs and SensorNumber. These can tell how well more
complex targets can be reached and how well they can be
reached after the number of sensors has been reduced from
192 to 16.

For statistical model fitting of the able-bodied participants’
data, all the factors were considered at first, including the
interaction terms. In a stepwise process the models have been
reduced by removing the factor (and all associated interaction
terms) that contributed the least to the explained variance
for as long as the reduction was not significantly affecting
the corresponding fits. The last non-significant reduction step
became the final statistical model, which was followed by post-
hoc tests. The post-hoc was a pair-wise t-test with Bonferroni-
Correction.

Finally, these models were extended by the data from the
amputee in order to understand whether there was a significant
difference.

Due to the nature of the data statistical Multilevel Modelling
[49]–[53] has been considered. Namely, we have chosen Lin-
ear Mixed-Effects Models for normally distributed measures
and Generalized Linear Mixed-Effects Models for Success,
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which follows a binomial distribution. These methods can deal
with unbalanced samples in different groups.

IV. RESULTS

The overview of observed performance across all measures
grouped by TargetDOFs and SensorNumber is shown in Fig-
ure 2. The overall success rate with respect to the number
of DOFs included in the task is displayed as a bar plot. At
the same time, individual measures for TimeToReach, Speed,
and PathEfficiency are shown as dots on top of violin plots
indicating the distribution of the data. The horizontal line
on each violin plot denotes its respective mean and its value
is printed in black. Furthermore, all these values (with their
standard errors) and the corresponding performance for the
amputee participant can be found in Table II.

The performance of the four randomly selected subjects
invited to complete the additional experiment with reduced
number of sensors has been reported separately. For easier
comparison their results for the full sensor configuration and
the reduced one are shown side by side (“4 subjects” in
Figure 2a). Although the four participants were selected at
random, the subset resulted in a group that had a higher
success rate than the pool of all participants.

A. Real-time performance analysis
In order to understand different aspects of the observed

real-time performance of the system, previously described
statistical models were gradually reduced with respect to all
outlined factors. The reduction was done until only the factors
that had a significant influence on the data remained. The final
models were largely similar, yet still feature certain differences
for each performance measure:

Success ∼ TargetDOFs

log(TimeToReach) ∼ AccLvl + wGrasp

log(Speed) ∼ AccLvl

PathEfficiency ∼ TargetDOFs + wGrasp

From the initial list of six factor introduced in Subsec-
tion III-D at most two remain per model. For the performance
measure Success, only the factor TargetDOFs had a significant
influence on the Success value. Similarly, only AccLvl and
wGrasp significantly influenced TimeToReach, only AccLvl
significantly influenced Speed and only TargetDOFs and
wGrasp significantly influenced PathEfficiency. As a remark,
the factors TargetDOFs and AccLvl describe similar properties
in the models regarding the difficulty of a task. Thus, they
could be correlated. Calculating the Spearman and Kendall
correlation confirms this notion with values of ρ = 0.93 and
τ = 0.87, respectively. Due to the stepwise factor-reduction
process the influence of this property should be minimal as
the addition to the explained variance is low and therefore
one factor is discarded early.

Figure 3 shows the bar plot indicating the subjects’ Success
over different target types, and the violin plots for the perfor-
mance with respect to the remaining three metrics. However,
this time the factors were determined by the statistical model

reduction instead of the default ones. Furthermore, brackets
in these plots indicate the identified significant pair-wise
interactions. The significant interactions are highlighted with
asterisks, where ‘*’ stands for p ∈ ]0.05, 0.01], ‘**’ for
p ∈ ]0.01, 0.001] and ‘***’ for p < 0.001.

When considering the rate of success in reaching different
targets, with respect to number of channels used to drive
the system, the process of reducing the statistical model
showed that there are no statistical differences (Figure 3a,
χ2(3) = 5.5346, p = 0.1366 in the stepwise reduction).
Similarly, the number of used sensors also had no statistically
significant influence on the three secondary performance mea-
sures (TimeToReach: χ2(10) = 7.1755, p = 0.7088, Speed:
χ2(7) = 3.5986, p = 0.8247, and PathEfficiency: χ2(10) =
14.52, p = 0.1506).

The only factor that did indeed impact the Success was
the TargetDOFs. Targets that only involve one DOF could be
reached with a success rate of 96%. However, the performance
significantly decreased when the number of DOFs increased
from 1 to 2 (p < 0.001), from 1 to 3 (p < 0.001) and from 2
to 3 (p = 0.0017).

The conducted statistical analysis has shown that subjects
took significantly longer (Figure 3c, p < 0.001) and had a
statistically less efficient reaching paths (Figure 3f, p < 0.001),
when faced with tasks that included power grasp (wGrasp).
No significant differences were observed in tasks that featured
other DOFs (wFlex/Ext and wRot).

Analysing the data shown in Figure 3b, participants required
a significantly shorter time (p < 0.001) to complete single
DOF tasks that considered the lowest AccLvl (0.3) in compar-
ison to those tasks prompting subjects to exert moderate levels
of activation (0.8). This was a general trend as the complexity
of tasks increased (both in terms of AccLvl and TargetDOFs).

Similarly, Figure 3d indicates that participants tended to
reach higher velocities when they were prompted to complete
tasks with higher AccLvl and TargetDOFs. At the same time,
they took significantly less efficient paths (p < 0.001) when
faced with tasks that involved more than a single DOF.
Furthermore

B. Amputee performance

Figure 4 shows the violin plots based on the reduced
statistical models for the able-bodied participants overlaid with
the individual measurements of the amputee. The horizontal
black line representing the mean of the able-bodied partici-
pants has now been supplemented with an additional dashed
line, indicating the respective mean of the amputee. All these
values (with standard errors) and the respective values for the
remaining participants are reported in Table II.

This comparison indicated that the amputee subject was as
successful as the other subjects (χ2(3) = 2.8011, p = 0.4233).
In fact, the overall behaviour was similar with a reduction of
the success rate as TargetDOFs increased (Figure 4a).

At the same time, he was completing the given tasks at
comparable speeds (χ2(7) = 4.379, p = 0.7352). On the
other hand, he required significantly more time (χ2(9) =
32.286, p < 0.001) and it took him almost consistently
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Fig. 2: Overview of the observed performance across four metrics separated by TargetDOFs and by SensorNumber

longer to complete targets with higher AccLvl as seen in
Figure 4b. Surprisingly, the amputee subject required less time
to complete tasks that included the power grasp (Figure 4c).

Finally, the amputee took significantly longer paths
(χ2(4) = 12.031, p = 0.01712) than other participants, as
shown in Figures 4e and 4f.

V. DISCUSSION

In this study we demonstrated real-time simultaneous and
proportional myocontrol over three DOFs of hand and wrist
using EMG signals from the forearm muscles. The proposed
paradigm enables intuitive control by relying on almost lin-
ear mapping between input commands and the target output
gestures. This is achieved using a simple Ridge Regression
motion estimation algorithm trained only on three repetitions
of single-DOF steady-state contractions corresponding to the
desired motions. The translational potential of this approach

has been investigated in real-time experiments with both able-
bodied subjects and an amputee, and by eventually reducing
the number of EMG channels to a subset of sensors corre-
sponding in number to those present in commercially available
prostheses.

Throughout the evaluation of the proposed control algo-
rithm, from the plots shown in Figure 3 and the statistical
model analysis presented in Section IV-A, we can conclude
that the number of factors that truly influence the control
performance is relatively small. Looking into specifics of the
observed metrics, there are three main findings to highlight.

First, the proposed approach is capable of extending single
DOF control to two and even three DOF control at no
additional effort (system training is done only on single-
DOF data). The extension to multiple DOF is associated
to a decrease in performance in complex tasks, however,
the additional capability does not compromise the single-
DOF control, which remained at a high success rate. Around
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Fig. 3: Final models for all performance measures. Brackets with an asterisk represent significant difference between levels,
while brackets without an asterisk represent grouping of different levels. The expression ‘*/**/***’ indicates significant differ-
ence between groups with at least p < 0.05 for the individual interaction. Significance codes: p = [0‘***’0.001‘**’0.01‘*’0.05]

2/3 of the tasks involving two DOFs and 1/3 of the tasks
involving three DOFs could be successfully completed, even
though these combinations had not been specifically trained.
Furthermore, proportional control over up to three DOFs was
achieved without explicitly training on the dynamic portion
of the training data. Potential challenges that arise from these
training data segments have been linearly interpolated by the
controller. Another approach is treating these segments as
classes of their own [17], [18]. Similar trends and performance
values have been observed previously [54], however, only two
DOFs of the wrist have been considered. Barsotti et. al. [40]
performed a study only training on individual DOFs and
predicting combined activation for up to five finger activa-
tions. Both the SR for individual and simultaneous targets
are comparable, but lower than in our study, with ca. 85%

and ca. 25% respectively for linear feature. Focus of the
study has been the comparison between a linear and a non-
linear feature. Dealing with combinations of finger activations
requires addressing a high level of physiological coupling [39].
Non-linear features can be beneficial in this scenario [40].
These and other more powerful features are potential avenues
for improving our control. Furthermore, while a number of
studies have used regression for natural combination of DOFs
(for an overview see [55]), a simultaneous combination of
three DOFs over wrist and hand with proportional capabilities
using intuitive mapping has not been experimentally evaluated
so far. Smith et. al. [12] and Ortiz-Catalan et. al. [11] have both
performed studies regarding simultaneous and proportional
control. Both studies have reached success rate similar to
ours of more than 90%. These rates have also been achieved
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Fig. 4: Final models for the secondary performance measures updated with the performance of the amputee. Full horizontal line
represents able-bodied participant sample mean and dashed horizontal line mean of amputee. The violin plots indicating the
distribution of the different measure are based on the data of the non-amputee participants. Lines with an asterisk indicate that
for this performance measure the difference between the amputee and the remaining participants was significant. Significance
codes: p = [0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05]

in combined tasks, while the performance in our study was
significantly lower. However, in said studies the combined
activations have been trained explicitly and velocity control
was employed. The latter allows the participant to reach multi-
DOF targets without using simultaneous activations of these
DOFs. Our controller does not require explicit training and
yet allows the participants to perform multi-DOF activations.
Therefore, in 100% of our multi-DOF tasks simultaneity was
used, while simultaneity was used in less than 50% of cases
in [12]. Ortiz-Catalan et. al. [11] did not report the usage of
simultaneity during target reaching.

Furthermore, it is worth noting that the control over the
power grasp (wGrasp) seemed to have been more challenging

than other gestures for able-bodied subjects and yet easier for
the amputee. This was presumably due to a larger variance
present in the data related to this movement as it involves
more prominent co-activation of different muscle groups. As
a further remark, the power grasp was the only DOF that
had four different levels instead of three for the remaining
DOFs. Additional emphasis was put on said DOF due to its
importance in prosthetic control. This could have resulted in an
unintentional additional difficulty in activating this DOF. On
the other hand, the amputee performed better in tasks involving
the power grasp. An explanation could be that he is a long-
term (more than 5 years of daily use) user of a myoelectric
prosthesis with hand open and close functionality. Therefore,
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TABLE II: Mean values (± standard error of the mean, where
possible) of the variables indicated in the first column for
each combination of TargetDOFs and SensorNumber for the
amputee participant and the remaining participants

Target SensorNumber
Variable DOFs full reduced amputee

SR 1 0.96± 0.016 0.98± 0.024 0.82± 0.12
SR 2 0.55± 0.049 0.84± 0.065 0.62± 0.18
SR 3 0.37± 0.067 0.38± 0.16 0.25± 0.25

log(TTR) 1 1.30± 0.052 1.22± 0.075 2.12± 0.27
log(TTR) 2 1.98± 0.072 1.93± 0.11 2.17± 0.34
log(TTR) 3 2.22± 0.089 2.31± 0.097 2.37
TTR 1 3.67 3.40 8.31
TTR 2 7.23 6.86 8.75
TTR 3 9.19 10.09 10.68

log(SP) 1 −1.08±0.046 −1.17±0.066 −0.88± 0.14
log(SP) 2 −0.84±0.049 −0.93±0.079 −0.70±0.080
log(SP) 3 −0.61±0.091 −0.71± 0.16 −0.18

SP 1 0.34 0.31 0.42
SP 2 0.43 0.39 0.50
SP 3 0.54 0.49 0.84
PE 1 47.72± 2.02 59.95± 3.64 24.25± 7.71
PE 2 28.93± 2.47 35.98± 4.58 28.27± 9.77
PE 3 24.39± 3.03 25.39± 4.18 11.64

while acknowledging that this is a consideration based only on
a single subject, the increase in performance on this particular
DOF could be attributed to previous training and the frequent,
isolated use of the specific muscles related to this particular
function.

Second, the performance of the proposed system remained
consistent even with a reduced number of input channels.
To demonstrate the translational potential of the approach,
we decreased the number of EMG channels from 192 to 16
(Figure 1b), which is a number comparable to that of sensors
already available in advanced commercial solutions [5], [6].
Although we use the 16 individual sensors in a monopolar
configuration, the technical complexity of such a configuration
is not significantly different from an 8-channel differential
arrangement, as it can be found in said commercial solutions.
This reduction in number of electrodes had no significant
impact on any of the observed measures. This outcome
is consistent with previous work on both regression- and
classification-based estimators for myocontrol [46], [56], [57].
Muceli et al. [46] have shown that a channel reduction from
192 to 6 does not negatively influence regression-based user
performance, Amma et al. [56] demonstrated that going from
168 to ca. 20 sensors yields a decrease in performance from ca.
95% to ca. 80% and Rojas-Martı́nez et al. [57] have come to
a similar result when reducing from 342−354 channels to 27.
However, our study is the first that successfully demonstrates
such resilience during concurrent control of three DOFs of
wrist and hand. This is an important observation, since in the
process of embedding a myocontroller in a prosthetic device,
a lower number of sensors can be beneficial as it drastically
reduces the overall technical complexity of the device. An
offline analysis further supports the online findings of no
significant influence of the sensor reduction. Based on the four
subject that participated in the second part of the experiment,
we have used the training data of the online experiment to train
four regressors with different sensor configurations, i.e. all

192 sensors, the optimal 16 sensors, the optimal eight sensor
pairs, and our uniform configuration of eight sensor pairs. In
a repetition-wise three-fold cross-validation we evaluated two
measures of fit, i.e. R2 and normalised root mean square error
(nRMSE) using a forward search based on Ridge Regression
adding iteratively the channels that results in the best fit. The
results can be found in Table III.

TABLE III: Offline comparison of four sensor configurations,
i.e. all 192 sensors, the optimal 16 sensors, the optimal eight
sensor pairs, and uniform configuration of eight sensor pairs,
for the four participants of the second part of the experiment
assessed using R2 and normalised root mean square error
(nRMSE).

sensor conf. R2 nRMSE
192 0.787± 0.085 0.195± 0.037

opt. 16 0.824± 0.084 0.166± 0.027
opt. 8 pairs 0.765± 0.099 0.191± 0.027

uniform 8 pairs 0.597± 0.100 0.244± 0.018

The uniform sensor configuration has a lower fit of the data
then the full sensor configuration or the optimal selection.
However, in the online scenario this difference proves not
to be significant. Furthermore, the optimal channel selection
yields a better fit of the data then the full 192 channels, which
could indicate overfit in the full-channel configuration. Since
the user-specific optimal channel selection yields a better fit
than the uniform selection, a potential improvement could be
achieved with individual sensor placement per user.

Third, while using the proposed control approach an am-
putee was similarly successful in completing the presented
tasks as other subjects. However, he took longer to complete
them and his PathEfficiency was lower than the one from
the remaining participants. While these results have to be
considered cautiously since based on a single patient, they
indicate that the proposed system has the potential to be used
by amputees.

Beyond these main findings, from Figures 3d and 3e it
could be argued that for higher AccLvl the oscillation and
the instability of the provided control increases. This could
be explained by the fact that with increasing AccLvl, and
therefore also with a rise in number of DOFs that need to be
addressed (TargetDOFs), the user has to navigate the controller
in an area where the algorithm was not explicitly trained.
This potentially leads to a more jittery behaviour, which is
emphasized by the fact that there is no significant differ-
ence for PathEfficiency between two- and three-DOF tasks.
System training data only consisted of single-DOF motions,
thus when reaching for the targets that require combined
movements, the control may become more unstable. Besides
the influence of the training data a reduced PathEfficiency
can also be explained by physiological aspects. A theoretical
combination of e.g. wrist flexion and power grasp at their
maximum voluntary contraction (MVC) is physiologically not
possible [58]. These properties have been taken into account
for the design of the goal-reaching tasks. However, specific
combinations can pose added difficulty and could require less
efficient reaching paths. Physiological aspects could explain
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the different performance for tasks involving the power grasp.
Potentially, this unstable behaviour could be alleviated by
the user gaining more experience with the controller [26]
or an incremental learning scheme [41] to update training
data when needed. Nevertheless, the benefit of having a very
simple and quick system training, and the fact that single-DOF
control remains high with combined actions still well handled,
arguably outweighs the observed reduction in performance.

VI. CONCLUSION

We have proposed and demonstrated a system for simultane-
ous and proportional real-time EMG control over 3-DOFs with
an intuitive interface, and minimal user and machine training.
This was done by training a Ridge Regression algorithm solely
on steady portions of three repetitions of the single DOF
dynamic contractions of wrist and hand. Such design choice
has allowed us to reduce the influence of data variability
introduced by dynamic inputs and to leverage on the simplicity
of the estimator.

REFERENCES

[1] I. Vujaklija, D. Farina, and O. Aszmann, “New developments in pros-
thetic arm systems,” Orthopedic Research and Reviews, vol. Volume 8,
pp. 31–39, Jul. 2016.

[2] N. Jiang, S. Dosen, K.-R. Muller, and D. Farina, “Myoelectric Control of
Artificial Limbs—Is There a Need to Change Focus? [In the Spotlight],”
IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 152–150, Sep.
2012.

[3] R. N. Scott and P. A. Parker, “Myoelectric Prostheses: State of the art,”
Journal of Medical Engineering & Technology, vol. 12, no. 4, pp. 143–
151, Jan. 1988.

[4] E. Biddiss and T. Chau, “Upper-Limb Prosthetics: Critical Factors
in Device Abandonment,” American Journal of Physical Medicine &
Rehabilitation, vol. 86, no. 12, pp. 977–987, Dec. 2007.

[5] Coapt LLC, “COMPLETE CONTROL Handbook,” 2018.
[6] Ottobock, “Technology for people 4.0: Ottobock at OTWorld 2018,”

https://www.ottobock.com/en/newsroom/news/technology-for-people-4-
0-ottobock-at-otworld-2018.html, May 2018.

[7] E. Scheme and K. Englehart, “Electromyogram pattern recognition
for control of powered upper-limb prostheses: State of the art and
challenges for clinical use,” The Journal of Rehabilitation Research and
Development, vol. 48, no. 6, p. 643, 2011.

[8] I. Vujaklija, “Novel Control Strategies for Upper Limb Prosthetics,” in
Converging Clinical and Engineering Research on Neurorehabilitation
III, ser. Biosystems & Biorobotics, L. Masia, S. Micera, M. Akay, and
J. L. Pons, Eds. Cham: Springer International Publishing, 2019, pp.
171–174.

[9] J. M. Hahne, M. A. Schweisfurth, M. Koppe, and D. Farina, “Simultane-
ous control of multiple functions of bionic hand prostheses: Performance
and robustness in end users,” Science Robotics, vol. 3, no. 19, Jun. 2018.

[10] J. M. Hahne, S. Dahne, H.-J. Hwang, K.-R. Muller, and L. C. Parra,
“Concurrent Adaptation of Human and Machine Improves Simultaneous
and Proportional Myoelectric Control,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 23, no. 4, pp. 618–627,
Jul. 2015.
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> Context • In this article we match machine learning (ML) and interactive machine learning (iML) with radical con-
structivism (RC) to build a tentative radical constructivist framework for iML; we then present a pilot study in which 
RC-framed iML is applied to assistive robotics, namely upper-limb prosthetics (myocontrol). > Problem • Despite more 
than 40 years of academic research, myocontrol is still unsolved, with rejection rates of up to 75%. This is mainly due to 
its unreliability – the inability to correctly predict the patient’s intent in daily life. > Method • We propose a description 
of the typical problems posed by ML-based myocontrol through the lingo of RC, highlighting the advantages of such 
a modelisation. We abstract some aspects of RC and project them onto the concepts of ML, to make it evolve into the 
concept of RC-framed iML. > Results • Such a projection leads to the design and development of a myocontrol system 
based upon RC-framed iML, used to foster the co-adaptation of human and prosthesis. The iML-based myocontrol sys-
tem is then compared to a traditional ML-based one in a pilot study involving human participants in a goal-reaching 
task mimicking the control of a prosthetic hand and wrist. > Implications • We argue that the usage of RC-framed 
iML in myocontrol could be of great help to the community of assistive robotics, and that the constructivist perspec-
tive can lead to principled design of the system itself, as well as of the training/calibration/co-adaptation procedure. 
> Constructivist content • Ernst von Glasersfeld’s RC is the leading principle pushing for the usage of RC-framed iML; it 
also provides guidelines for the design of the system, the human/machine interface, the experiments and the experi-
mental setups. > Key words • Machine learning, interactive machine learning, radical constructivism, assistive robotics, 
human-machine interaction, co-adaptation.

Introduction

« 1 »  According to Arthur Samuel 
(1959), machine learning (ML from now on) 
is “the subfield of computer science that […] 
gives computers the ability to learn without 
being explicitly programmed.” Can radical 
constructivism say something useful about 
machine learning, something which would 
enrich its capabilities, our understanding of 
it, and possibly shed light on learning tout 
court?

« 2 »  First of all, what is machine learn-
ing? For the benefit of those readers start-
ing from a realist perspective, let us look at 
it, at least initially, using a realist language. 
Samuel’s definition is to some extent cor-
rect: indeed, ML is an “explicit program,” 
since it runs on computers, and today’s 
computers must still be programmed in the 

old-fashioned way; but it is a program that 
observes statistical regularities in the world 
and matches them against one another.

« 3 »  As a direct consequence of this, 
the output of ML will sometimes not match 
our expectations, i.e., “it will do the wrong 
thing,” and not as the result of a bug. This, as 
a realist statistician would put it, “is due to 
the uncertainty inherent to statistics – one 
can never be statistically sure that something 
is true.” Or, as a hypothetical realist (the 
most common sub-type of realism among 
the ML community) would put it: “statistical 
truth is only true most of the times.” There-
fore, a program that searches for statistical 
similarities in the world will now and then, 
e.g., deem as similar two things which the 
researcher defines as not belonging to the 
same category, and vice versa. This is correct 
and must be accepted, as opposed to bugs 

in standard programming, which are always 
bad and must be eliminated.

« 4 »  The only way to “debug” an ML 
program is to show it more exemplary regu-
larities – to “teach” it something more about 
the world – to enrich its own model of how 
the world works – to help it to better orga-
nise its own private world according to the 
researcher’s idea of the world.

« 5 »  More concretely, ML builds a 
mathematical function (a “model” from now 
on) approximating the observable behavior 
of some variables of an unknown process of 
interest, given some very basic restrictions 
on the shape of the model itself, and a set of 
examples – a set of input data (values of the 
variables) and corresponding target values 
to which each datum is associated, sampled 
from the process itself. This set represents 
the regularities so far observed during the 
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past behavior of the process. The model, 
which compactly represents them, can be 
used to predict the future behavior of the 
process (an excellent introductory text is 
Shalev-Shwartz & Ben-David 2014).

« 6 »  For instance, an ML model can be 
built using a set of images acquired from a 
street camera and corresponding (face-yes/
face-no) values, denoting whether an im-
age contains a human face or not. After the 
model has been built, will it correctly iden-
tify new images as containing/not contain-
ing a face? Another example: an ML model 
of the temperature of the Mediterranean Sea 
can be built using a set of temperature values 
and the times at which they were observed.
Will the temperature of the Mediterranean 
at specific future times be correctly predict-
ed by the model?

« 7 »  Mathematically speaking, the mod-
el is built by minimising a cost functional as-
sociated to the examples. It is an optimal fit 
of the examples, naturally endowed with the 
ability to both compactly explain the past tar-
get values for each known input datum, and 
to approximate target values associated with 
so-far-unseen input data. The model is there-
fore an attempt to “make sense” of the exam-
ples, to “organise” them, to use them in order 
to predict the future behavior of the process.

« 8 »  It obviously follows that the qual-
ity of the model (its predictive power) de-
pends on how much the samples collected 
so far are representative of the behavior of 
the process both in the past and in the fu-
ture. So, the answer to the questions posed 
in §6 is “yes, provided that a good set of ex-
amples was collected in the beginning.”

« 9 »  Notice that the minimisation of a 
cost functional is a completely mechanical 
procedure; moreover, no a priori physical 
knowledge about the process to be modelled 
is, in principle, required – only the ability 
to draw examples from it. In this sense, an 
ML model is indeed a machine that “learns 
without being explicitly programmed” – a 
softer, perhaps more flexible way of telling 
our computers what to do, than program-
ming. And the idea is a winning one: ML has 
recently (at least to some remarkable extent) 
solved problems that were considered be-
yond the reach of computers, e.g., form de-
tection in pictures, automated medical diag-
nosis, speech recognition, content analysis 
of a text, the game of Go, etc. So far, so good.

Is machine learning 
a radical constructivist 
business?
« 10 »  A great deal of the research in ML 

seems to suffer from a methodological weak-
ness: machine learning tends to be used as 
a number-crunching black box, at which to 
throw as many examples as possible, hoping 
that it will yield a usable relationship between 
input data and target values. Too often, scarce 
attention is paid to the quality, the origin and 
the meaning of the examples (e.g., Wagstaff 
2012). Moreover, examples are considered to 
be “the reality,” rather than being considered 
artefacts manufactured by the researcher’s 
explicit or implicit choices. The whole proce-
dure suffers from an insufficient awareness of 
the epistemological problem.1

« 11 »  T﻿his weakness stems, in our opin-
ion, from a widespread realist attitude to 
knowledge and learning, in statistics in gen-
eral and in ML in particular. A “realist stat-
istician,” we can say, assumes that “there is 
a world out there” and that “we can build a 
real, even if somewhat rough, model of this 
world.” Once such a model is built, no fur-
ther changes are needed. In the case of ML, 
the example set represents knowledge about 
the world out there, given at the beginning of 
time, used to predict the future evolution of 
the target process.

« 12 »  In one sentence, ML is so far 
prevalently a realist love affair, for realist stat-
isticians. But even a realist statistician (and 
those who adopt some form of realism) may 
observe that there are indeed many cases 
in which this attitude will fail; in particular, 
it will fail whenever too few examples are 
available, e.g., because they are expensive to 
collect, or if the process of interest is non-sta-
tionary, implying that the examples collected 
at the beginning of time will at some point no 
longer represent its behavior.

« 13 »  Thus, we propose to shift the atti-
tude to ML from realist to radical constructiv-
ist, as radical constructivism (RC from now 
on) is defined by Ernst von Glasersfeld (e.g., 
Glasersfeld 1983, 1995).

1 | D eep learning coupled with big data rep-
resents an unfortunate push in this very direction, 
albeit a very successful one from a practical point 
of view.

« 14 »  There are at least four remarks sug-
gesting such a change in paradigm to a realist 
ML researcher.

« 15 »  In the first place, let us notice that if 
we strip the concept of ML to the bare bones, 
all we are left with (§5) is an agent that tries to 
organise perceptual objects, obtained through 
specific sensory channels, as best as it can. 
No physical, chemical, mathematical, onto-
logical, …, knowledge about the process of 
interest is required. This means that in ML, 
no knowledge of “external reality” need be as-
sumed. ML deals only with “perceptual” data. 
This is a very radical-constructivist concept 
(Glasersfeld 1995: 58f) that we call in short 
“the construction of experiential reality.”

« 16 »  In the second place, ML is about 
matching “perceptual” patterns – finding 
regularities among subsets of examples, com-
pactly representing these regularities and 
using them to predict new target values (§5 
again). That is what an ML model does.2 Not 
incidentally, matching perceptual patterns is 
also one of the foundations of RC: “learning 
as a constructive activity” (Glasersfeld 1983).

« 17 »  Thirdly, consider again the real-
ist attitude to ML (§11): as opposed to the 
realist statistician, for the RC statistician in-
deed “there is a world out there,” but as well 
“we cannot build a real model of this world 
– we can only build a viable representation 
of it (one of the many possible), useful to 
do something specific in it” (utilitarianism) 
and in agreement with our pre-conceptions 
of this world (conceptual coherence). We are 
continually forced to test the viability of this 
representation, for our specific purposes and 
according to our pre-knowledge, through our 
interaction with the world. The value of an 
idea of the world is measured in term of fit-
ness to achieve a specific goal and (better) fit-
ness against other ideas the subject has about 
the world, not in term of the correspondence 
between the idea and a mind-independent 
reality (Glasersfeld 1995: 68f). We say in this 
case, that viability is utilitarianism plus con-
ceptual coherence.

« 18 »  Fourthly, “pre-knowledge and 
learning.” The realist attitude to ML assumes 
that knowledge is free from pre-knowledge. 
The radical-constructivist attitude, as op-
posed to that, contends that knowledge – 

2 |  Actually, pattern matching or pattern rec-
ognition is the old umbrella term for ML.
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every possible segmentation of the percep-
tive field – depends on, and is shaped by, the 
subject’s pre-definition of what can be seen 
in the perceptive field, and that this pre-def-
inition is shaped, in turn, by the interaction 
the subject has had with the others and with 
the world (learning). Furthermore, accord-
ing to RC, the subject does not interact with 
the other (and the other’s signals), but only 
and exclusively with her perception of the 
other (and of the other’s signals) and with 
her previous personal ideas of the other and 
of the world, since human beings cannot ac-
cess the “real world” (a mind-independent 
reality) but only their perception of the world. 
This is a very different model of interaction 
from the realist one

« 19 »  Particularly, during interaction 
with the others, the subject
a	 recognizes a specific situation according 

to her memorized “schemata,”
b	 performs a specific activity associated 

with the situation, and
c	 checks her own specific expectations 

that that activity should produce a spe-
cific previously experienced result.

If this does not happen, the subject is per-
turbed and forced to review her initial sen-
sory elements to find a new structure in these 
sensory elements and eliminate the perturba-
tion. All these processes are presumed to be 
subjective and internal to the cognizing agent 
(again, Glasersfeld 1995: 68f). So, an ML en-
gineer will endow her ML system with an 
initial simple set of schemata (pre-education) 
and an engine to apply these schemata, hav-
ing expectations, possibly to be disconfirmed, 
and trying to reshape her sensory material 
(learning). This actually is, and we can call it 
in short, “von Glasersfeld’s learning theory.”

« 20 »  Therefore, an RC statistician en-
gaged in ML would, as opposed to her realist 
colleague,
a	 collect examples according to her cul-

tural pre-conception of the world,
b	 build a temporarily viable model of the 

world – viable according to her own ex-
plicit or implicit goals and pre-assump-
tions/pre-definitions of the world,

c	 have expectations and check how well 
the model works, and if the response is 
not good, she would

d	 try to reorganize the examples and/or 
collect new ones, with which to update 
the model – go back to step (a).

From a (realist) engineer’s perspective, this 
endless loop aims at countering the poten-
tial non-stationarity of the process to be 
modelled.

« 21 »  From what we have said so far, it 
almost appears as if ML already were an RC 
business. In order to complete the picture 
though, we also need to enforce the loop 
outlined in §§19f – we need the ability to 
have expectations and update the model at 
any time, specifically whenever it does no 
longer reflects the expectations about the 
underlying process or the system’s goals – 
whenever its predictive power has become 
unsatisfactory. Updating a model means 
changing it in order for it to accommodate 
old and new knowledge – to accommodate 
new examples, gathered on demand without 
the need to obliterate all past knowledge. 
(Notice that sometimes some of the past 
knowledge must be forgotten, but it is es-
sential not to be forced to forget it upon up-
dating!) Model updates must be triggered by 
some kind of feedback from the world con-
firming or perturbing the model, perhaps 
an external agent, able to judge the model’s 
current performance, on the basis of some 
well-defined purpose.

« 22 »  Although little practiced (and 
even less theoretically studied) in ML lit-
erature, this idea already exists and is called, 
not incidentally, interactive machine learning 
(iML from now on). iML adds to standard 
ML the possibility of being helped by an ex-
ternal agent, recognising that the predictive 
power of the current model has become in-
sufficient, and that a new data gathering and 
model update is required. iML, so far, has 
been tested in conditions that are particu-
larly hard for standard ML, such as recog-
nising the presence of complex structures in 
an image: whenever the model failed to cor-
rectly categorise an image, a human opera-
tor would weigh in, give the system a further 
example, and request a model update.

« 23 »  Interestingly, iML has recently 
been linked to (non-radical) constructivism 
by Adavait Sarkar, who claims that

“ the interaction loop of interactive machine 
learning systems facilitates constructivist learn-
ing, as it maximises the interaction between the 
end-user’s experience of the model, and their 
ideas regarding the model status.” (Sarkar 2016: 
1472)

However, this is, to the best of our knowledge, 
the only case so far in which these two fields 
have talked to each other. This, although 
iML has been used and implicitly defined 
in a number of cases (for instance, in Fails 
& Olsen 2003; Iturrate et al. 2015; Strazzulla 
et al. 2017). Some recently revamped ML ap-
proaches, e.g., recurrent neural networks, can 
even be viewed as “interactive in nature”; to 
the best of our knowledge, however, a coher-
ent conceptual framework about interactivity 
(e.g., the RC’s learning theory) in ML is still 
missing, and this is where RC can help.

« 24 »  Ipractice, interactivity is enforced 
through incrementality. An incremental ML 
system is precisely an ML system that allows 
for updating/downdating its current model. 
The good news is that, in principle, any stan-
dard ML system can easily be turned into an 
incremental one by keeping the examples 
seen up to now, and whenever a model up-
date is (somehow) triggered, adding the new 
examples to the old ones, selecting the ex-
amples of interest from the new example set, 
and then re-building the model from scratch 
using the selected examples only.3

« 25 »  To some extent iML, as enforced 
so far in literature, already smells like RC; 
but this generally remains an intuition of 
the researcher – there is no adoption of a 
theory of knowledge and learning as RC. It 
is interaction conceived as a realist scientist 
can conceive it (sometime as an anti-theo-
retical scientist can conceive it). Actually, 
through the interaction, the iML system, in 
the intention of a realist scientist, builds a 
“true” model of reality (this way bypassing 
the problem of a changing reality) simply by 
“adding input data.” We claim that adding 
to this an epistemological awareness and a 
more robust learning theory, as offered by 
RC, will open new paths of research and 
technological improvement.

« 26 »  Our argumentation shows that 
in the end it will be useful to adopt an RC-
framed iML. The tentative framework we 
sketched above is an attempt at opening a 
discussion between the RC community and 
the ML community to enrich our idea of 
RC-framed iML.

3 |  This solution can be computationally/
memory intensive but there are ways around the 
problem in the majority of the cases of interest.
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Radical constructivist 
machine learning in action
« 27 »  This new point of view of an RC-

framed iML raises the question: what is it 
useful for? An immediate, almost trivial 
idea (also inspired by the definition of iML 
in§§22f), is that human-machine interaction 
should be the typical problem area in which 
ML, and iML, can be empowered by RC.

« 28 »  A second, perhaps less immedi-
ate way of empowering ML with RC consists 
in empowering the statistical analytical tools 
behind ML with the ideas outlined in §§15f, 
e.g., giving the ML system a “set of schema-
ta” (a sort of “culture”), some pre-selectors 
to segment its perceptive field, to pre-treat/
pre-interpret the information it will crunch 
and match (to have some “expectations” on 
the world and the possibility of being “per-
turbed”). We can call this pathway “crunch 
before match.”4

« 29 »  We talk about human-machine 
interaction whenever a human subject must 
guide, teach, control a machine (a robot, a 
computer, a virtual avatar, etc.) that is en-
dowed with only limited autonomy (Card, 
Newell & Moran 1983). Here, the standard 
ML tools at the disposal of the engineer usu-
ally fail since, for the machine, modelling 
human behavior is extremely hard; never-
theless, it is needed to some extent, if one 
wants to detect the subject’s intent, that is, 
what the subject wants the machine to do. 
Human behavior is non-stationary, com-
plex, culture- and goal-directed, almost 
unpredictable in the medium and long run; 
plus, usable examples from humans can be 
excruciatingly hard to obtain. All these as-
pects make the problem of human-machine 
interaction extremely hard for “realist” ML.

« 30 »  So, what is needed in human-
machine interaction is a way to constantly 
“monitor” the desires of the subject, con-
tinually gather new examples and learn 
from her, engage her in a dialog with the 

4 |  What statistical analysis can gain by 
adopting the RC perspective – how the “maths” 
can be used differently – is a very interesting re-
search agenda for the future; notice that nowadays 
the ML community “teaches a culture or schemata 
to the system” by choosing an ML algorithm spe-
cific to each different task the ML system needs 
to pursue.

expectations of the ML system – the perfect 
problem for an RC-framed iML system. In 
addition, in this field we have the almost 
obvious chance to exploit the judgment of 
the human as the feedback system/external 
agent (“the world talks back to the know-
ing machine”) mentioned in §§21f, to trig-
ger the perturbation and the model updates 
(Castellini 2016). The match with the RC 
concepts of assimilation, scheme theory, ac-
commodation, and equilibration is hereby 
clear: the ML system must have the capabil-
ity to be perturbed and to re-equilibrate the 
perturbation produced by the interaction 
with the world into its model of the world/
of human intent.

« 31 »  We claim that RC-framed iML 
could be a more useful/interesting/sophisti-
cated choice than traditional ML and iML, 
and especially so whenever dealing with 
“feedback” in human-machine interaction.

« 32 »  We have arrived at this idea in a 
somehow non-linear way. Namely, the need 
for iML in human-machine interaction 
stems from the frustration of the second 
author of this article, an engineer who has 
been trying for 10 years to build smart pros-
thetic arm/hand control systems (upper-
limb myocontrol), which is a typical case of 
human-machine interaction. Unhappy with 
ML-based myocontrol, he recently tried 
to evolve ML pursuing “a more interactive 
pathway” (Castellini 2016); while doing so, 
he faced a new set of problems which called 
for appropriate conceptual tools. The en-
counter with the third author of this article, 
a trained RC psychologist dealing with de-
cision-making models and decision-support 
systems in the subfield of investing, resulted 
in the usage of the concepts of knowledge, 
learning, communication, and feedback as 
traditionally developed within RC.

« 33 »  Upper-limb myocontrol (Fougn-
er et al. 2012) consists of using muscle ac-
tivation of the remaining upper limb of an 
amputated human subject to detect her in-
tention to move and accordingly control a 
prosthetic arm/hand to perform the desired 
action quickly, precisely, safely and reli-
ably – in this case ML is used to transform 
such activity (input data) into control com-
mands (target values). Most such systems 
are, currently, realist ML systems: a great 
deal of arm/hand/muscle configurations are 
gathered initially, a model is built, then its 

accuracy is tested while the amputated sub-
ject tries to control the prosthesis. The few 
exceptions (e.g., Gijsberts et al. 2014; Hahne, 
Markovic & Farina 2017; Mathewson & Pi-
larski 2017) are proving to work in practice. 
The only commercial solution enforcing 
ML, namely the Complete Control system 
by CoApt LLC, employs iML in the form of 
the option to “re-calibrate” the prosthetic 
control system whenever the user so wishes 
(Lock et al. 2011; Simon, Lock & Stubble-
field 2012; also, personal communication by 
Blair Lock, CEO of CoApt LLC, 2017).

« 34 »  The traditional realist approach 
to myocontrol still fails after 40 years of 
research (Jiang et al. 2012; Farina, Jiang & 
Rehbaum 2014), the main problem being 
unreliability: the inability to guarantee that 
an arm prosthesis will do exactly what the 
subject wants, for exactly the length of time 
she wants. Unreliability can be catastrophic 
(e.g., prosthetic hand unwantedly releasing 
the steering wheel while driving) or in the 
best case “just” frustrating, humiliating and 
socially unacceptable. As a consequence of 
this impasse, the acceptance of self-powered 
prostheses by upper-limb amputees is very 
limited, with rejection rates of up to 75%. 
Simply put, state-of-the-art upper-limb 
prostheses do not work well enough to jus-
tify the cost and effort required to use them 
(Micera, Carpaneto & Raspopovic 2010; 
Peerdeman et al. 2011; Castellini et al. 2014).

« 35 »  Our goal is to show that RC-
framed iML could change the situation. 
Unreliability arises from the innumerable 
variety of different situations in which a 
prosthesis must perform a certain action. 
For instance, maintaining a firm grasp on 
a rail must be ensured notwithstanding ex-
ternal force disturbances, changes in applied 
muscle activation, the posture of the arm, 
etc. Since it is de facto impossible to build 
an example set, at the outset, containing ex-
amples of all these situations and all further 
possible ones, sooner or later realist ML-
based myocontrol will fail (Castellini 2016). 
A spectacular example of this is represented 
by the outcome of the ARM competition 
of the 2016 Cybathlon – see, e.g., Wolf Sch-
weitzer, Michael Thali & David Egger (2018) 
for a detailed analysis of the current pitfalls 
and practical requirements of myocontrol.

« 36 »  As opposed to that, existing iML-
based myocontrol counters this problem ex-
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actly thanks to on-demand model updating: 
whenever a new situation arises in which it 
fails, the subject “teaches” the system how 
to cope with it; the system, in turn, read-
ily adapts to the new knowledge (Castellini 
2016). Unsurprisingly, iML-based myocon-
trol already is reported by, at least, Arjan 
Gijsberts et al. (2014) and Ilaria Strazzulla et 
al. (2017), where, however, very little is said 
about the most proficient/natural way to de-
sign and enforce the interaction between the 
system and the user. Another crucial aspect 
or side-product of iML, namely co-adapta-
tion, is only now being explored (Hahne, 
Markovic & Farina 2017), yet there is no 
indication of what theoretical framework 
could/would optimally guide the design of 
the interaction interface.

« 37 »  Is our claim that RC-framed iML 
is superior when dealing with “feedback” in 
human-machine interaction (§31) justified, 
specifically as far as upper-limb myocontrol 
(§35) is concerned? Does RC-framed iML 
enforce better myocontrol than realist ML? 
This is a subset of our RC research agenda: 
“Can a knowing subject (here an ML system) 
that adopts a non-realist theory of knowledge 
do better than a realist one?” To shed some 
light on this question we have compared an 
RC-framed iML-based myocontrol system 
with a traditional ML-based myocontrol 
system in a pilot experiment involving hu-
man subjects.

Experiment

Overview
« 38 »  Ideally, two upper-limb myocon-

trol systems, an RC-framed and interac-
tive one and a non-interactive (RC versus 
realist) one would be compared during 
completely unrestricted daily-living us-
age by two distinct groups of amputated 
subjects. Here we adopted some simplifi-
cations. Firstly, we engaged fifteen intact 
human subjects only; secondly, we used 
two 3D hand models displayed on a com-
puter screen instead of tangible prosthetic 
devices.

« 39 »  The experiment as a whole con-
sisted of three sub-experiments, each of 
which will be from now on referred to as 
Experiment 0, 1 and 2, respectively. Namely, 
we compared (Experiment 0) a traditional, 

non-interactive, realist upper-limb myo-
control ML system, with (Experiment  1) 
a “part-time” RC-framed interactive ML 
system, a “weakly RC” system, and (Experi-
ment 2) a “full-time” RC-framed interactive 
ML system, a “fully-fledged” RC system.

ML method
« 40 »  Following the motto “keep it 

as simple as possible, but not simpler than 
that,” attributed to Albert Einstein, all three 
ML systems employed in the experiment are 
based upon least-squares regression in the 
regularised form called Ridge Regression, fil-
tered through a non-linear mapping called 
Random Fourier Features (RR-RFF). RR-
RFF exists both in “batch” form (i.e., non-
incremental and therefore non-interactive) 
and in incremental form (iRR-RFF – for the 
mathematical details see Castellini 2016). 
Notice that iRR-RFF is guaranteed to yield 
the same optimal model as RR-RFF, when-
ever the same example sets are used with ei-
ther method. This enables a fair comparison 
between an ML and an RC-framed iML sys-
tem even from an exquisitely mathematical 
point of view.

Participants
« 41 »  Fifteen intact human subjects 

(5 females and 10 males, age 19–54 years) 
participated in the experiment. Before the 
experiment took place, it was clearly ex-
plained to each participant, both orally and 
in writing, that no health risk was involved. 
Each participant signed an informed con-
sent form. The experiment was previously 
approved by the internal committee for data 
protection of the Institution where the ex-
periments took place, and it followed the 
guidelines of the World Medical Association 
Declaration of Helsinki. The participants 
were randomly assigned to one experiment 
only, so that five participants took part in 
each experiment.

Experimental setup
« 42 »  The experimental setup was com-

mon to all three experiments, and consisted 
of

�� a Myo bracelet by Thalmic Labs,
�� two 3D hand models displayed on a 

computer screen, and
�� a simple voice reproduction/speech re-

cognition system.

« 43 »  The Myo bracelet (https://www.
thalmic.com) consists of eight uniformly 
spaced sensors, able to detect the electro-
myographic signal generated by the muscle 
activity of the subject’s forearm.

« 44 »  The 3D hand models realisti-
cally mimic the motions of a human wrist 
and hand. One of the models is white while 
the other is rendered in skin-like texture; 
the former (from now on referred to as the 
stimulus) is used to provide visual stimuli to 
the participants, i.e., it is controlled by the 
software itself; whereas the latter (from now 
on referred to as the prosthesis) simulates 
the prosthesis – given the current model, it 
enforces the predicted motions of the hand 
and wrist, as evaluated from the data pro-
vided by the bracelet.

« 45 »  The speech recognition and 
synthesis system is the one embedded in 
Microsoft.NET Framework 4.5, able to dis-
tinguish a small set of words (in this case, 
“good”/“bad”) pronounced by the subjects, 
and to utter predefined voice messages, 
which we configured with a clearly synthetic 
female voice. All sentences were uttered in 
the first person and address the participant 
in the second person (e.g., “you are now go-
ing to teach me how I should move”).

Experimental protocol
« 46 »  Each participant sat comfortably 

in front of the computer screen, and the 
bracelet was wrapped around her forearm. 
She was instructed to hold the forearm ver-
tically, leaning the elbow on the table.

« 47 »  A voice message was played. The 
prosthesis “spoke,” explaining to the subject 
that the “training session” (the experiment) 
was about teaching it – a new kind of hand/
wrist prosthesis able to learn – how to prop-
erly perform the movements intended by 
the participant, and that to this aim, a 3D 
hand model would eventually appear on the 
screen, representing itself (the prosthesis). 
The prosthesis clearly stated that the par-
ticipant would not be judged on her per-
formance, but rather that she was going to 
“show” the prosthesis how each single move-
ment was to be performed, by simply doing 
it; rather, the prosthesis was to be judged by 
the participant on its learning ability. Par-
ticular care was taken by the prosthesis in 
asking the participant to be patient and not 
to get disappointed if it did not correctly ex-
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ecute the required task. After all, concluded 
the prosthesis, its learning ability was “only 
in its infancy.”

« 48 »  We chose this way to commu-
nicate to the subject what to do in the ex-
periment, to try and build a psychological 
context of interaction rules and reciprocal 
roles, potentially inducing in the subject the 
construction of positive “emotions” (Harré 
1986) toward the “learning” prosthesis. 
More generally, while designing the experi-
mental protocol, we also tried to take into 
account the main criticisms raised by post-
modern social psychology with regard to 
the way human subjects are treated in most 
experimental psychology (and in general 
in experiments involving human subjects), 
i.e., that experimenters neglect to offer to 
(co-construct with) the subject a semiotic 
definition of the experimental situation 
meaningful to her, and take into account 
the meaning of the experimental setting 
from their own perspective only (Gergen 
1978a, 1978b, 1985; Gergen & Gergen 1985; 
Harré 1979; Harré, Smith & van Langenhove 
1995). Figure 1 shows a schematic represen-
tation of the experimental setup.

Experiment 0
« 49 »  Experiment 0 (the realist ma-

chine learning system) consisted of two 
phases that we will call model building (MB) 
and model testing (MT).

« 50 »  At the beginning of MB, the stim-
ulus was shown on the screen; the prosthe-
sis then explained that “the white hand on 
the screen” (the stimulus) would now per-
form a series of hand and wrist movements 
(tasks), and that the participant should sim-
ply mimic what the stimulus was doing with 
her hand and wrist, as accurately as possible, 
in order to give the prosthesis a chance to 
“try and understand” what each movement 
looked like when seen through the signals it 
received from the bracelet.

« 51 »  Soon afterwards, the stimulus 
was shown on the screen. A randomised se-
quence of 30 tasks (6 actions, each action re-
peated 5 times), was played by the stimulus. 
The actions were: no-action; wrist flexion; 
wrist extension; wrist pronation; wrist su-
pination; and hand closing. No voice inter-
action was provided during this phase. MB 
would end at the end of this sequence.

« 52 »  In this experiment, the ML sys-
tem had, so to speak, the expectation that 
all signals it would receive would be “good” 
signals. The system would experience no per-
turbation in the building of its inner vision of 
the “world.” In other words, each signal was 
“fitting” with previous signals, and the sys-
tem was forced to accept all signals as good 
ones, upon which to build its own “reality” 
(model).

« 53 »  In practice, the model was evalu-
ated in the interval between MB and MT, 

using the data collected during MB. The 
evaluation took a few seconds, so that no 
apparent interruption would be felt by the 
participant.

« 54 »  At the beginning of MT, the fore-
arm of the participant would be hidden 
from view using an opaque cardboard par-
tition (this is our rough approximation for 
the subject “wearing” the prosthesis); then 
the prosthesis would appear on the screen, 
beside the stimulus. It would then explain 
that now the stimulus would show a further 
series of tasks, similar to those that had ap-
peared during MB, that the participant must 
reproduce those actions, and that the pros-
thesis would try to understand the signals 
it received from the bracelet and mimic the 
action performed by the participant as best 
it could.

« 55 »  It also explained that, after each 
task had been performed, the prosthesis 
would verbally ask that the participant eval-
uate its performance; the participant would 
then be asked to say “good” or “bad” accord-
ing to her own judgment.

« 56 »  Soon afterwards, a further, ran-
domised sequence of 90 tasks (the same 6 
actions as during MB, but in this case each 
action was repeated 15 times) was played 
by the stimulus. After each task, the judg-
ment would happen: the prosthesis would 
ask how it had performed, and the partici-
pant would answer “good” or “bad.” Figure 2 
shows a bird’s eye view of the experimental 
setup while a subject was engaged in Experi-
ment 0, MT.

Experiment 1
« 57 »  Experiment 1 (the “part-time” 

interactive machine learning system) con-
sisted of two phases like Experiment 0. In 
this case, however, the hand of the partici-
pant was hidden behind the cardboard par-
tition already during MB, and the prosthe-
sis would be immediately visualised beside 
the stimulus (the participants “wear” the 
prosthesis from the beginning). The same 
randomised sequence of tasks as in Experi-
ment 0 was played by the stimulus; but in 
this case, after each task, the participant 
would be asked by the prosthesis to evaluate 
its own performance, just like during MT of 
Experiment 0.

« 58 »  If the participant answered 
“good,” the data gathered during the task 

Stimulus

Protocol

ML
EMG

Prosthesis

Speech
synthesis
Speech

recognition

Figure 1 • A schematic depiction of the experimental setup. Subjects interact with the protocol 
controller via speech recognition, speech synthesis, and by looking at a PC screen on which the 
stimulus is displayed. The ML method “converts” EMG signals into live configurations of the 
prosthesis to be shown as well to the subject; while the protocol controller establishes what 
to display and utter, and when to open/close the flow of information between the subject and 
the ML method. The protocol controller, together with the ML method, constitute a flexible 
framework for all three experiments, allowing for different levels of interactivity.
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was directly added to the machine-learning 
model in order to reinforce the positive re-
sult. If the participant answered “bad,” she 
was vocally instructed to perform the task 
once again, and the data collected during 
this new instance of the action would be 
added to the model in order to correct for 
the previous negative performance. In both 
cases, the model would be immediately 
re-evaluated in order to reflect the new ac-
quired data without delay. This way, assimi-
lation and accommodation directly enter 
the picture of iML: via the external/human 
feedback.

« 59 »  In this case, we can say, the ML 
system had the expectation that all signals 
it would receive would be “good” ones, but 
at the same time it would indeed experience 
some perturbation (the negative human 
feedback), so it was forced to not assimi-
late all signals, but rather to accommodate 
some specific ones, changing its recogni-
tion pattern and building a different scheme 
(model).

« 60 »  MT in Experiment 1 was identical 
to MT of Experiment 0.

« 61 »  Substantially, Experiment 1 con-
sisted of a partially interactive version of 
Experiment 0: during MB, the participant 
would offer the prosthesis some confirma-
tion and some perturbation, therefore help-
ing the prosthesis to better learn the patterns 
corresponding to the required actions, so 
that in the end the model would reflect the 
corrections.

« 62 »  Notice that the amount of data 
used to build the model in Experiment 1 
was exactly the same as in Experiment 0 (30 
tasks) – what changed was the added inter-
action with the participant, and consequent-
ly, the possibility for the system to have con-
firmation or perturbation of its inner world 
formed with the data gathered during MB.

Experiment 2
« 63 »  Experiment 2 consisted of one 

phase only, identical to MB of Experiment 
1, except that the stimulus would play a ran-
domised sequence of 120 tasks (the same 
6 actions as in the previous experiments, 
but in this case each action was repeated 
20 times). As in Experiment 1, the model 
would be re-evaluated after each task (again, 
according to the “good”/“bad” judgement 
of the participant); but for each task, data 

gathered during the past five repetitions only 
of this action were used to build the model. 
This ensured that the amount of data used 
to build the model was, again, the same as in 
the previous experiments (30 tasks).

« 64 »  Experiment 2 consisted therefore 
of a “continual learning/feedback” version of 
Experiment 1, enforcing vocal interaction 
between the participant and the system at 
all times.

« 65 »  According to the RC learning 
theory, our ML system did have a scheme 
of the world: it had indeed the expectation 

that all signals received would be “good” 
ones, but constantly experienced (internal) 
confirmation and perturbation, thus being 
forced to modify its own model of the world. 
The system designed for Experiment 2 is our 
main conceptual (and practical) attempt at 
arriving at iML via the RC theory of knowl-
edge and learning, prevalently stressing the 
RC idea of viability relating to “utilitarian-
ism” (see above, §17).

« 66 »  Figure  3 graphically represents 
the three experiments, while Figure 4 shows 
flow-charts of each experiment.

Figure 2 • The experimental setup while a subject performs Experiment 0, MT. The stimulus (white 
hand) and the “prosthesis” (skin-textured hand) are displayed on the screen; the subject’s right 
arm (wearing the Myo bracelet) and hand are shielded from view using a cardboard partition.

MT

MT

MB
6x5 tasks

6x20 tasks

6x15 tasks

6x5 tasks

No interaction Interaction Model evaluation

6x15 tasks

Exp0

Exp1

Exp2

MB

(single phase)

Figure 3 • A graphical representation of the three experiments. Phase MB (Model Building) of 
Experiment 1 and the entire Experiment 2 are interactive; model generation happens between 
phases MB and MT (Model Testing) in Experiment 0, during phase MB in Experiment 1 and dur-
ing the entire experiment in Experiment 2.
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Evaluation measures
« 67 »  We wanted to measure which of 

the three machine learning systems (realist, 
“part-time” RC-framed interactive and “full-
time” RC-framed interactive) could produce 
a model capable of better understanding the 
patterns produced by the subject, thereby 
properly performing (as a prosthesis) the 
actions that the subject wanted to do. So, we 
adopted a measure that was objective for the 
experimenter and the research community 
of upper-limb myocontrol: the normalised 
root-mean-squared error (nRMSE) between 
the position of the stimulus and that of the 
“prosthesis” during each task – essentially, 
the discrepancy between the desired posi-

tion and what the prosthesis manages to 
do. To evaluate the nRMSE, for each task 
we considered the last second in which the 
stimulus was performing the required ac-
tion, in order to neglect as far as possible 
any transition effect (i.e., the time the sub-
jects needed to become aware of what was 
asked of them, and to move their own hand 
and wrist to the required position).

« 68 »  We also wanted to measure 
which of the three machine learning sys-
tems was perceived as the best one by the 
subjects, so we also adopted a measure that 
was objective for the subject: the number 
of poor/good judgements expressed by the 
subject during the experiment.

« 69 »  These two measures described 
in the two preceding paragraphs make our 
experimental evaluation akin to the Target 
Achievement Control test (TAC test, see, 
e.g., Simon et al. 2011), an assessment test 
well-known in the myocontrol commu-
nity; the only remarkable difference is that 
whether a task is successful or not is left to 
the participant’s judgment.

« 70 »  Lastly, we wanted to evaluate the 
quality of the subject-prosthesis relationship 
from both the subject’s and the machine’s 
point of view – we were interested not only 
in measuring the performance, but also in 
checking the reciprocal adaptation. So, first 
of all we estimated how the signals of each 
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Figure 4 • Flow-charts of the three experiments (from left to right: Experiment 0, 1 and 2). Notice that the single phase in Experiment 2 is identical 
to MB in Experiment 1. Also notice that model evaluation happens only once during Experiment 0, whereas it happens within an interaction loop 
in Experiments 1 and 2.
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subject changed during the experiments; this 
was done by evaluating, at each task, Roland 
Fisher’s cluster separateness index (Fisher 
1936) for the signal clusters corresponding 
to the past 30 tasks (one cluster per action, 
resulting in six clusters). Fisher’s index in-
creases the more the clusters are separated, 
compact and distinct from each other; it rep-
resents therefore a measure of improvement 
in the “quality” of the signals produced by a 
subject.

« 71 »  Moreover, after the experiment, 
we conducted a semi-structured interview 
with each subject, focused on

�� the quality of the subject-machine learn-
ing system interaction,

�� the subject’s judgment of the system’s 
learning capacity, and

�� the fatigue experienced by the subject 
while teaching the system.

We conducted a qualitative thematic analysis 
on the semi-structured interview transcripts, 
through the conventional process of familia-
risation with data, generating initial codes, 
searching for themes among codes, review-
ing themes, defining and naming themes, 
and producing the final report.

Experimental results and analysis
« 72 »  In a first round of evaluation, it 

was determined that subject #13 in Experi-
ment 0 performed exceptionally badly (ex-
tremely high nRMSE) while subject #11 in 
Experiment 1 performed exceptionally well 
(extremely low nRMSE); data from these 
two subjects were removed from the analy-

sis as they were considered outliers. To keep 
the data sets balanced, we also removed one 
subject’s data at random (namely subject 
#7) from Experiment 2. So, the analysis was 
based upon data from 4 subjects per experi-
ment.

« 73 »  Furthermore, the analysis was 
conducted on the last 90 tasks only, in order, 
again, to maintain a balanced dataset, and 
to avoid considering the inevitable acquain-
tance effect that each subject went through 
in the beginning of each experiment (phases 
MB of Experiments 0 and 1 and first 30 tasks 
of Experiment 2).

Global statistics
« 74 »  Figure 5 shows the global statistics 

of the experiment. The average nRMSE was 
11.61% (SD = 9.23%), 12.81% (SD = 11.39%) 
and 8.87% (SD = 9.01%), respectively, for 
Experiment 0, 1 and 2 (left panel, no statisti-
cally significant difference was found using 
a repeated-measures one-way ANOVA test 
– F(2, 9) = 3.96, p = 0.058). In order to check 
whether nRMSE was correlated with the 
good/bad judgment, we also verified that the 
nRMSE is on average 7.9% (SD = 6.5%) and 
16.76% (SD = 12.48%) in turn, if grouped ac-
cording to the good/bad judgement (right 
panel, Welch’s t-test yields t(510.41) = 13.06, 
p < 10–4). Moreover, the number of good/bad 
judgments was 230/130 201/159 and 259/101 
in turn for Experiment 0, 1 and 2, with a 
statistically significant difference (the Chi-
squared significance test yields χ2(2) = 20.15, 
p < 10–4).

« 75 »  From these results we can say that
�� Experiment 2 resulted in an overall 

slightly better error rate than Experi-
ments 0 and 1, although the high stan-
dard deviations reduce the statistical 
significance of these results;

�� Experiment  2 elicited more “good” 
judgments than Experiment 0, which in 
turn elicited more than Experiment  1; 
and

�� “good” subjective judgments are posi-
tively correlated with lower nRMSE.

All in all, nRMSE values are in line with 
previous literature obtained from analogous 
experiments (Gijsberts et al. 2014; Ravindra 
& Castellini 2014; Connan et al. 2016).

Evolution in time
« 76 »  Figures 6 and 7 go into a little 

more detail, showing the nRMSE and num-
ber of good/bad responses for each experi-
ment, subject and task, along time. From 
these further graphs, we conclude that

�� Experiments 0 and 1 produced high 
values of the nRMSE roughly scattered 
in Figure 6 all along the course of time 
(yellowish cells appearing all along the 
course of the tasks) whereas in Experi-
ment 2 the error seems to settle to lower 
values in the second half;

�� subjects seemed to be much happier 
(prevalence of “good” judgments) in 
Experiment 2, especially subjects #3 
and #8, than in the other experiments 
– particularly, subject #4 almost consis-
tently judged the performance as “bad.”
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Figure 5 • Left: nRMSE grouped per experiment. Right: nRMSE grouped according to the subjective good/bad judgment. Median values (thick 
black lines), 25%/75% percentiles (“hinges”), extreme values (larger/smaller than 1.5 times the inter-quartile range) from the hinge (whiskers), and 
outliers (single dots).
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« 77 »  Figure 8 shows the temporal evo-
lution of the nRMSE, averaged across all sub-
jects (mean values and standard deviations), 
which confirms (consider §76 again) that not 
only the mean values, but also the standard 
deviations of the nRMSE remain lower in 
Experiment 2 than in the other two Experi-
ments.

« 78 »  Figure  9 shows Fisher’s index 
along time, for all tasks, subjects and experi-
ments. Experiments 0 and 2 elicited, on av-
erage, an increase in the separateness of the 
signal clusters.

« 79 »  Lastly, Figure  10 shows 2D-re-
duced signal clusters obtained from two sub-
jects, #4 and #6, at tasks 1 and 90 of MT in 
Experiment 0. (These two subjects are cho-
sen as an exemplary good and an exemplary 
bad subject.) The higher compactness and 
separateness of the clusters at task 90 (that 
is, at the end of the Experiment) is apparent, 
especially for Subject #4. Subject #6 shows 
poorer cluster separateness, though – five ac-
tions appear “lumped” together.

Semi-structured interviews
« 80 »  The semi-structured interviews 

we conducted allow us to conclude, in the 
first place, that all subjects involved in Ex-
periment 2 complained about muscle fatigue 
towards the end, whereas only one subject 
not involved in Experiment 2 did. This is due 
to the increased number of tasks performed, 
in turn due to the possibility of judging “bad” 
and potentially having to repeat the previ-
ous action at all times. The finding that the 
nRMSE obtained in Experiment 2 seems 
not to particularly increase towards the end 
(Figure 6 and 8, bottom panel), and that its 
standard deviation remains low (Figure  8, 
bottom panel), is all the more remarkable.

« 81 »  Secondly, no pattern is appar-
ent in the judgments along time (Figure 7); 
we found that, each subject approached the 
Experiments with seemingly different hopes 
and expectations. For example, subjects #4 
and #12 mostly judged “bad” and both re-
ported posture/muscle discomfort; subjects 
#2 and #5 judged “bad” quite often, the for-
mer reporting difficulty in rating the move-
ments only as good or bad and the latter 
reporting frustration due to the “continual 
oscillation” of the prosthesis; lastly, subjects 
#3, #6 and #8 mostly judged “good,” and all 
reported being “positively impressed” by the 

progress obtained by the prosthesis in the 
beginning.

« 82 »  It is interesting to note that, upon 
a closer look at Fisher’s index for each subject 
(not displayed), subjects who mostly judged 
“good” consistently ended up with higher 
Fisher’s index and vice versa.

General remarks
« 83 »  The experimental results shown 

above let us make a few claims. Given the 
low number of subjects involved, match-
ing the semi-structured interviews with the 
experimental results allowed us to add a 
“layer” of meaning-for-the-subject of what 
happened during the experiment, offering us 
clues on how to read the data gathered in the 
experimental setting. Something particularly 
useful in a pilot study with a small number of 
subjects, but also useful in general in experi-
ments involving human beings.

« 84 »  The subjective measure of satis-
faction, that is the good/bad judgments, is 
by and large in agreement with the objec-
tive one for the experimenter (the nRMSE), 
as is apparent from Figure 5, right panel: on 
average, whenever the subjects saw that the 
prosthesis was “doing the right thing,” they 
judged “good” and vice versa. This shows 
that the voice and visual interaction was well 
designed. As opposed to that, the experiment 
number (0, 1 or 2) turns out to significantly 
skew the number of good/bad judgments 
(for instance, Experiment 2 elicited signifi-
cantly more “good” than “bad” judgments) 
but not the nRMSE: although the error is 
on average lower for Experiment 2 than for 
0 and 1, and lower for 0 than for 1, it is not 
significantly so. These two remarks seem to 
somehow collide, but it is not yet clear to us 
in what sense.

« 85 »  There is a significant evolution in 
time of the subjects’ signals (Figures 9 and 
10 – consider the attached video clips, too) 
during Experiments 0 and 2. We speculate 
that the increase in Fisher’s index during Ex-
periment 2 could be due to the concurrent 
evolution of the subjects and the machines. 
Notice, however, that during Experiment 0 
the ML model was not adapting at all during 
the MT phase, although some of the subjects 
involved in Experiment 0 reported that they 
felt that “the machine was learning.”

« 86 »  All in all, the “partially inter-
active” experiment, that is Experiment 1, 

seemed to produce slightly worse results 
than the non-interactive one; whereas the 
“fully interactive” one, Experiment 2, pro-
duced slightly better objective results than 
both the other experiments, and definitely 
better subjective results – higher satisfaction 
expressed by the subject.

« 87 »  Muscle fatigue seems to have 
played a significant role in the experiment, 
which we had not foreseen. Unfortunately, 
this was mostly the case in Experiment 2 
since interaction means more tasks to per-
form by the subject. Still, the error in Experi-
ment 2 is more “uniform” (lower mean, lower 
standard deviation) than in the other cases. 
A further refinement of the experimental 
design will need to take into account fatigue 
as an unavoidable problem; but we should at 
the same time remember that fatigue is one 
of the factors that make myocontrol a non-
stationary modelling problem, that is to say, 
one of the problems that iML should be bet-
ter at tackling, in principle.

Conclusion

« 88 »  One must admit that, if taken 
from the point of view of the engineer, the re-
sults of the experimental analysis are some-
what disappointing – there is no definite, 
statistically significant objective improve-
ment (although there is some) when enforc-
ing more interactivity, also conceptualised 
in line with RC’s learning theory. Still, the 
subjects involved in the experiments gener-
ally reported a smoother interaction with the 
ML system in the case of Experiment 2.

« 89 »  Therefore, the missing suggestion 
that the RC approach gives to the ML practi-
tioner – that of using RC-framed iML – goes 
farther toward creating a better experience 
for the user of an upper-limb prosthesis. The 
application of RC to this problem gives us 
useful insight into how to design the interac-
tive prosthesis of the future; points us toward 
more ecological experiments, more deeply 
embedded in daily life, aiming at enforcing 
interactivity with the subject at all times, just 
like it happens with modern gadgets such as, 
e.g., smartphones. Reciprocal adaptation in-
spired by RC’s learning theory seems to defi-
nitely be a factor to be exploited in this field.

« 90 »  The main contribution of this 
work is to reframe iML within radical con-
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structivism. Although still far from fully 
tackling the theoretical implications of this 
idea, in this article we try to show what the 
potentialities of such a link are. Especially, 
we expect the marriage between RC and ML 
to produce, in the near future, a set of guide-
lines on how to design the ML “statistical 
engine” and the interaction that is at the core 
of interactive machine learning: how to re-
frame interaction and feedback according to 
RC’s learning theory. What should be asked 
of the human operator, how and when? How 
should the information so obtained be used? 
Neither the engineers’ community, nor the 
world of functional assessment can, at this 
stage, thoroughly answer this question.

« 91 »  Extensions to this research 
should definitely include at least the capabil-
ity, for an RC-framed ML system, to decide 
internally, autonomously whether a signal is 

not a good one. This means that the system 
must trigger by itself a perturbation when-
ever a signal does not fit its conceptualiza-
tion (model) of the world, thus enforcing 
the RC idea of viability related to conceptual 
coherence.

« 92 »  All in all, this article has explored 
the application of radically constructivist 
“glasses” to a typical problem in human-
robot interaction, and specifically to upper-
limb myocontrol. More generally, we have 
tried to rework, in RC terms, some of the 
problems faced by ML and iML; we have 
speculated that the usage of RC-framed iML 
matches some of the ideas that, among oth-
ers, von Glasersfeld applied to human learn-
ing. Our results suggest that RC-inspired 
interactivity has the potential to improve 
human-robot interaction, especially from 
the point of view of the humans.

Additional material

The dynamic 3D evolution of the clus-
ters from Task 1 to 90 can be seen in two 
short movie clips at http://constructivist.
info/data/13/2/s4e0.gif and http://construc-
tivist.info/data/13/2/s6e0.gif.
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> Upshot • Thousands of projects aimed 
at improving the functionality of upper-
limb prostheses over the decades have 
failed to significantly advance the field 
of assistive robotics. Having been unfa-
miliar with radical constructivism (RC) so 
far, I want to see how its approach could 
contribute, particularly for amputees. 
Perhaps the most profound insight to 
be gained from RC is that the prosthesis 
is the machine to be taught by the user 
to serve her needs, not the other way 
around.

« 1 »  Current myoelectric (hereafter 
“myoe”) control systems for upper-limb 
prostheses embody a small repertoire of 
utilitarian movements that can be executed 
individually upon user activation of specific 
muscles in the residual limb. The movement 
repertoire is severely limited by inadequacy 
of the user’s interface with her prosthesis, i.e., 
the human–machine interface (HMI). Thus, 
while the mechanical hardware of modern 
robotic hands can nearly or completely re-
produce human dexterity, prosthetic us-
ers cannot, and new control paradigms are 
urgently needed. Currently available HMI’s 
are non-intuitive, and demand much more 
mental attention than do natural move-
ments. Typically, prosthetic grasping is trig-

gered by user volition for “wrist flexion” (de-
spite the user’s having no functional wrist), 
that produces a particular muscle activation 
signal in the residuum. In some prostheses, 
several different similarly pre-programmed 
tasks may be activated, depending on the 
user’s ability to learn and produce a se-
quence of the correct muscle activations 
in her residuum. The practical utility of a 
prosthesis thus depends on the user’s abil-
ity to learn not only the right moves by her 
residuum, but also of her body poses, which 
are an important part of the motor control 
loop (Metzger et al. 2012). Functionality 
also depends upon the situation: relatively 
good control can be achieved under rela-
tively fixed, static conditions; however, in 
situations requiring careful calibration of 
overall body movements (e.g., carrying an 
egg), it falls short. In general, most activities 
of daily living that involve manipulation, 
and certainly any tasks that require dexter-
ity, exceed the capabilities of available HMIs. 
A common failure that cannot be fixed by 
the myoe controller is malfunction of the 
sensors themselves, commonly caused by 
sweating or dislodgement, which is not the 
fault of the ML. Alternative sensors of mus-
cle activity, which are less subject to failure, 
have been demonstrated (Castellini et al. 
2014: 22), but are not yet widely adopted. 
Thus, for several reasons, including some 
that have nothing to do with the type of ML 
used, many users of upper-limb prostheses 
abandon theirs.

« 2 »  Myoe controllers, in their most 
primitive (typical) configuration, direct pre-
programmed prosthetic actions upon re-
ceiving signals from specific muscles. Mus-
cular activities are statistical events that can 
be compared against an explicitly pre-pro-

grammed value, a paradigm that is consid-
ered to be a form of machine learning (ML) 
(§2). Any muscle signal that exceeds a pre-
set amplitude threshold produces a binary 
“1” input to the prosthesis. In some cases, 
the user can serially trigger several different 
prosthetic motions from a pre-programmed 
repertoire, by executing particular sequenc-
es of discrete motions, each of which pro-
duces distinguishable muscle contractions. 
The potential movement repertoire is lim-
ited by the skill and patience of the user in 
producing strings of supra-threshold muscle 
contractions, and the abilities of the HMI 
(computer) to compare the input with the 
pre-programmed threshold. One advantage 
of the current myoe paradigm is binariza-
tion of muscle activations, which provides 
relatively noise-free, unambiguous examples 
to serve as ML inputs; this feature, however, 
is at the expense of information about move-
ment magnitude and force.

« 3 »  RC theory requires any “viable” 
model of the world to be both utilitarian and 
“conceptually coherent” (Glasersfeld 2005), 
so we can ask whether the realist model is 
viable (§17) and otherwise conformable 
to RC principles. In terms of RC, the real-
ist model embodies utility, i.e., it produces 
at least one useful task fairly well: grasping. 
With regard to being conceptually coherent 
(§17), however, it fails, since there are now 
better solutions to the problem. Moreover, 
the RC idea of “learning as a constructive 
activity” requires continual learning by the 
prosthesis as it interacts with its user, repre-
senting a 180-degree shift from the current 
myoe control paradigm. The current myoe 
model, as described in the first two para-
graphs above, is based on a “‘realist” attitude, 
which assumes, according to §11, continual 
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performance as programmed, requiring “no 
further changes.” If accurate, this attitude 
would represent the antithesis of RC prin-
ciples, however, it may be a bit exaggerated 
if taken too literally. The need for periodic 
myoe program adjustments is widely rec-
ognized and in practice, and changes are 
implemented where practical, regardless of 
what type of controller. In the traditional 
sense of the word, “viable,” however, we 
must acknowledge the practical viability of 
realist myoe control, because it serves many 
thousands of amputees.

« 4 »  The RC framework, as elaborated 
by Markus Nowak, Claudio Castellini and 
Carlo Massironi, introduces a radically new, 
and possibly improved, prosthetic control 
paradigm. The first and most obvious in-
sight from RC is that our present prosthetic 
model employs a strategy opposite to ma-
chine learning: instead of the prosthesis 
learning the proper responses to the user, 
it acts as the teacher, demanding the cor-
rect input from the user (who is the learner) 
for proper performance. A second insight 
is the potential pitfalls of a supposed realist 
attitude to statistics. Muscle activation sig-
nals are composed of Gaussian noise, gen-
erated by a large number of asynchronous 
motor units, which are variably active for 
each movement in a sequence. The applica-
tion of a statistical test to such signals, using 
fixed decision boundaries, is bound to lead 
to erroneous decisions, since two identical 
events, such as sequential movement com-
mands, can be statistically different in their 
muscular representations. Thirdly, the idea 
of incrementally updating the controller (in-
cremental ML) is integral to constructivism. 
This process, iML, was demonstrated in the 
pilot studies, consisting of constant moni-
toring and teaching of the prosthesis by the 
user (§65), and appears to be viable.

« 5 »  It is useful to compare the current 
(realist) myoe model with a hypothetical 
RC-framed control model. Current myoe 
systems treat their input as an unequivocal 
signal, either to be detected or rejected, ac-
cording to its magnitude. RC insight recog-
nizes that inputs to an ML system exist only 
as “perceptual objects” that must by organ-
ized, without knowledge of their meaning. 
This is an important reminder that ML in-
puts represent a “reality” constructed by 
myoe sensors and thus constitute a noisy es-

timate of reality, which in our case consists 
of muscle activations. These perceptual ob-
jects must be matched against patterns con-
sisting of objects perceived by an imperfect 
system. This framework compensates for 
mistakes and mis-interpretations, by incor-
porating explicit procedures for correcting 
them. This ongoing positive feedback tends 
to promote positive emotions between user 
and her assistive robot.

« 6 »  It is also useful to evaluate the pi-
lot study of incorporating RC principles into 
prosthetic control (§38 ff). The experiments 
were elegantly designed and executed, but 
the results rather disappointing (§88). Here, 
I critique the experimental design from my 
interpretation of RC principles.

« 7 »  Firstly, training the prosthesis 
(machine) was done by subjects performing 
general movements and static positioning 
of joints related to their hands. While the 
prosthesis may more easily execute these 
movements, they do not fit well within the 
RC framework. The protocol involved no 
purpose, and lacked motivation. Humans 
like to perform tasks, especially those that 
are interesting, challenging, and have utility 
(Gorsic et al. 2017). Examples of this phe-
nomenon can be seen in previous studies 
wherein motor-disabled persons and am-
putees taught their virtual prosthesis to play 
and win standard games, such as pegboard 
(Kuttuva et al. 2005; Yungher & Craelius 
2012).

« 8 »  A second critique is testing non-
disabled subjects on the use of an assistive 
robot. From an RC perspective, this seems 
conceptually incoherent. Persons with motor 
disabilities may be better teachers of assis-
tive robots than able-bodied persons, as sug-
gested by the two studies cited above. In a 
study of 12 persons with arm paresis due to 
brain injury playing a virtual pegboard game 
wearing a sensor sleeve on the affected arm, 
a significant improvement in speed of 15% 
was achieved after 30 trials with their virtual 
assistive robot; controls, in contrast, showed 
negligible improvement with their prosthe-
sis (Yungher & Craelius 2012). Qualitatively 
similar results were found in a smaller study 
comparing virtual prosthetic teaching by 
controls with that of persons having upper-
limb amputation (Kuttuva et al. 2005). A fi-
nal critique relates to the anatomical differ-
ences between the residuum and the intact 

limb. Muscles and tendons in the residuum 
are radically rearranged, and any natural 
synergies among them are disrupted. Addi-
tionally, the typical conical shape of the re-
siduum may be a better substrate for sensor 
sleeves, which can readily accommodate 32 
sensors as opposed to 8 sensors typically ap-
plied to sound limbs.

« 9 »  Since the experiment with subjects 
(§55) incorporated their vocal feedback to 
the prosthesis via speech recognition (SR), 
it is interesting to compare that technology, 
perhaps the oldest and most common ML 
system, with the current myoe ML system. 
There are four ways in which the systems 
differ radically from each other:

�� myoe systems are necessarily custom-
tailored to individual users, whereas SR 
systems are designed to be universal,

�� myoe systems are trained with relatively 
few examples, whereas SR systems are 
trained by as many examples as possible,

�� SR is inherently interactive, whereas 
current myoe systems are not, and

�� SR employs statistical predictive meth-
ods, unlike myoe, which does this mini-
mally.
« 10 »  At the same time, myoe and SR 

systems share a major commonality, since 
both can be considered recursive translators. 
An SR translator interacts with a human who 
verbalizes an idea as words in one language, 
interprets those and translates the idea into 
words in another language. The myoe con-
troller interacts with a human who expresses 
a desired movement by muscle activations, 
and interprets those and translates the de-
sired movement as a robotic movement. It 
is noteworthy that speech recognition was 
not too long ago ridiculed as “crack-pot” 
by some, whose anecdote referred to the 
case when a computer program translated 
the phrase, “out of mind, out of sight” into 
Chinese and back to English, and it replied, 
“blind idiot.” We see analogous sorts of 
anomalies occurring in myoe control, when 
the prosthesis “goes off the rails,” but given 
progress along the right directions, as exem-
plified in this pilot study, assistive robotics 
technology may now be at a developmental 
stage resembling that of SR several years 
ago. When prosthetic controllers achieve the 
same accuracy as speech recognizers, ampu-
tees will then be able to enjoy a high degree 
of dexterity.
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The EMG Properties Limit 
Ultimate Classification 
Accuracy in Machine Learning 
for Prosthesis Control
Richard F. ff. Weir
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richard.weir/at/ucdenver.edu

> Upshot • Machine learning (ML) has 
been applied in many forms and under 
many names over the years to the prob-
lem of mapping arrays of surface elec-
tromyogram (EMG) signals measured on 
the arm of a person with an amputation 
and then trying to correlate those sig-
nals to the control of multi-degree-of-
freedom prosthetic arms. While being 
intrigued by the idea of the interactive 
machine learning (iML) component of 
the study, I am not surprised that iML did 
not do noticeably better than standard 
approaches. The issue, as demonstrated 
by many researchers, is not our ability to 
do ML but rather the fundamental prob-
lem associated with using EMG as the 
inputs to the ML system and the clinical 
issues associated with stable acquisition 
of those signals.

« 1 »  Markus Nowak, Claudio Castellini 
and Carlo Massironi present a flawed argu-
ment for the problems of machine learning 

(ML) in EMG control of multifunctional 
upper-extremity (UE) prostheses. Also, they 
present an engineering-/science-centric 
view of persons with amputations and how 
they use their prostheses as justification for 
the use of advanced ML techniques, with lit-
tle understanding of the clinical drivers for 
the current state of UE prostheses control.

« 2 »  In §10 the authors claim that

“ machine learning tends to be used as a num-
ber-crunching black box, at which to throw as 
many examples as possible, hoping that it will 
yield a usable relationship between input data and 
target values. Too often, scarce attention is paid 
to the quality, the origin and the meaning of the 
examples […]”
I claim that the authors and others are guilty 
of exactly this. If we stopped to consider the 
problem a little more, we might be able to 
achieve a different result.

« 3 »  First, we need to consider the 
population for whom we hope to fabricate 
hands and arms. Persons with trans-radial 
(TR) level amputations make up more than 
70% of the upper-limb amputee population. 
For 99% of these individuals this is a uni-
lateral involvement. Of this TR population 
80% will use some sort of prostheses. But 
the implication of the unilateral involve-
ment is that most people with an upper-
limb amputation still have a good limb that 
they will use, over their prosthesis, for most 
tasks. This makes the barrier to acceptance 
for UE prostheses very high and means that 
anything that is perceived as heavy, uncom-
fortable, bothersome, or a hassle will not be 
used.

« 4 »  Trans-humeral (TH) level aban-
donment rates tend to be higher because of 
the need for an elbow, which serves to iso-
late the hand from the residual limb. Here 
abandonment rates are at about 50%. This 
population makes up 10–15% of the UE 
population. So, when Nowak et al. say in 
their abstract that “[d]espite more than 40 
years of academic research, myocontrol is 
still unsolved, with rejection rates of up to 
75%,” this appears to be a hyperbole used to 
justify their technology. I consider it not ac-
curate as it continues to propagate the myth 
that the current devices are not useful.

« 5 »  Second, we need to consider stan-
dard-of-care fitting practices and why we 

are where we are. The most common stan-
dard-of-care myoelectric (EMG control) 
fitting is a 2-site myoelectric prosthesis for 
persons with TR loss. Myoelectric systems 
have been widely accepted as a viable clini-
cal option since the 1980s and in particular 
the TR myoelectric fitting has found suc-
cess due to its cosmetic appeal, lack of sus-
pension straps and high grip strength, but 
system robustness, weight, and cost are still 
issues (Atkins, Heard & Donovan 1996). A 
standard 2-site myoelectric system is typi-
cally limited to 2 degrees of freedom (DoF) 
with a co-contraction, or rate, used to switch 
between DoF because, in general, one can 
only get 2–3 independent surface EMG sites 
on the residual limb of a trans-radial subject 
before cross-talk becomes an issue (Ajiboye 
& Weir 2005). It is the limited number of 
control sites and the associated limit on the 
number of controllable DoF that led inves-
tigators to explore other means of acquiring 
and using multi-DoF control schemes such 
as ML. Users certainly want more DoFs, but 
not if it is a hassle.

« 6 »  Pattern recognition (PR, which 
is what the field of prosthetics control calls 
ML) was first explored in the 1960s (Her-
berts et al. 1973; Lawrence & Kadefors 1974; 
Taylor & Finley 1974) and reinvented in 
its current form in 1993 (Hudgins, Parker 
& Scott 1993). Since then it has undergone 
much development (Englehart & Hudgins 
2003; Scheme & Englehart 2011; Sensinger, 
Lock & Kuiken 2009; Farrell & Weir 2008a, 
2008b; Simon, Lock & Stubblefield 2012; 
Zhou et al. 2007) to get it to a point where it 
could transition to the clinic. PR algorithms 
seek to correlate patterns of EMG activity 
with a given/desired arm motion or hand 
posture. EMG signals are measured by an 
array of myoelectrodes on the residual limb. 
Other “features” in addition to amplitude 
are extracted and correlation between the 
EMG activity pattern and a desired motion 
is determined by training an ML algorithm/
classifier with the extracted features for each 
EMG signal.

« 7 »  Currently, a good ML/PR classifier 
can readily achieve about 90–95% accuracy. 
During training, patterns of muscle activity 
are recorded while the user holds a desired 
posture. Multiple trials are recorded for each 
posture. This has to be repeated for every 
desired posture. One can see how, if a large 
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number of different postures are desired 
with multiple trials for each posture, train-
ing the system can get tiresome for the user 
quickly. Also, as currently implemented, PR 
is sequential in nature and users are limited 
to only those postures that they have trained 
the ML system to recognize. So far, because 
of this, PR techniques have met with little 
success outside the laboratory, so why is this 
so?

« 8 »  Returning to the idea that the 
barrier to success is high for persons with 
unilateral amputations – the training is a 
bother that has limited pattern recognition 
adoption. People want to put on their pros-
thesis and go. They do not want extended 
training periods every time they don their 
arm and they do not want to then have to 
repeat the training throughout the day as 
the environment in their socket changes the 
electrode properties. As a result, it has taken 
a long time for PR systems to make it to the 
clinic.

« 9 »  Third, we need to consider the 
nature of the EMG signal used for the con-
trol. The raw myoelectric (EMG) signal is 
a broadly Gaussian random signal whose 
amplitude increases with muscle contrac-
tion level. This signal needs amplification/ 
filtering/integrating/processing to extract 
the RMS value for use in amplitude-based 
myoelectric control (Childress & Weir 
2004; Parker & Scott 1985). Filtering adds 
a delay to the system, decreasing system 
responsiveness, which, if excessive, frus-
trates the user. Furthermore, EMG control 
provides no feedback – myoelectric signals 
are recorded on the surface of the skin and 
sent out to the motor and nothing deliber-
ate comes back. Incidental feedback in the 
form of motor whine and socket pressures 
are used by skilled users. Clinical issues 
such as motion artifact, skin impedance 
changes and electrode lift-off also present 
challenges that must be overcome during 
the fitting process.

« 10 »  When using EMG signals as in-
puts to the ML algorithms, the random 
noisy nature of the EMG signals presents 
difficulties for ML classifiers of choice. Small 
changes in electrode position can have a 
dramatic effect on the machine-learning/
classification accuracy. Donning and doff-
ing the prosthesis can alter the classifica-
tion. As the number of degrees of freedom 

(DoF) to be controlled increases, moving 
from one posture to another may result in 
overlapping muscle activity patterns, reduc-
ing the ability of the classifier to separate 
the EMG patterns. In addition, extrinsic 
factors such as electrode movement, elec-
trode lift-off, changes in skin impedance, or 
moving to positions outside of the initially 
trained position or using the prostheses un-
der varying loads or in different positions 
can all significantly degrade classifier per-
formance (Fougner et al. 2011). This makes 
it extremely difficult for PR systems to find 
success with users.

« 11 »  Finally, we must understand that 
the goal of research into ML systems for UL 
prosthesis control is to build systems that 
will someday be worn by individuals with 
limb loss and that given what I said above 
in §§3f there are a host of clinical issues that 
will be ultimate drivers of success.

« 12 »  The way CoApt, LLC, (Chicago, 
IL) was able to circumvent these issues and 
launch the first clinically successful pattern-
recognition system was to use an eight-elec-
trode system to control 1 DoF in the hand 
(no grip patterns) and only 3 DoF in total 
(hand, wrist, and elbow) (Uellendahl & 
Tyler 2016; Baschuk et al. 2016). This ena-
bles a user to do the “on-the-fly” training 
using CoApt’s prosthesis guided training 
(Lock et al. 2011; Simon et al. 2011) system, 
which since users are only controlling 2–3 
DoF, does not have onerously long training. 
In a field that has been locked into only 2 
electrodes as standard of care, CoApt’s ap-
proach of providing a system of 8 integrated 
myoelectrodes to control 2 DoF is changing 
how clinicians and researchers are thinking 
about the provision of myoelectric care.

« 13 »  What we see is that it was a 
knowledge of the field and the population 
to be fitted, as well as a clinically viable way 
to allow training by users on the go that en-
abled the CoApt system to move from the 
laboratory to the field. The ML algorithm 
CoApt uses is not sophisticated, just good 
enough, because it is not the determinant 
for success. What we see in ML/PR is that 
by using every available technique (includ-
ing fuzzy logic, linear discriminant analysis 
(LDA), principal component analysis, non-
negative matrix factorization, self-organiz-
ing feature maps, support vector machines, 
random forests, cepstral constants, neural 

networks, and multinomial regression) a 
classification accuracy of about 90–95% can 
be achieved but not more. So, in the field of 
prosthetics control, the LDA classifier with 
a time-domain feature set or auto-regressive 
constants has become the standard, because 
it is low cost from a computational perspec-
tive, easy to implement, and is as good as 
anything else. Could the authors expand on 
the feature set as well as the actual classifier 
they used? There was a lack of detail on the 
actual classifier used and no mention of the 
features used to train the classifier.

« 14 »  So, bottom line, the interactive 
aspect of the iML trial is an interesting con-
cept in the target article, and ought to be a 
good thing in the long run. Talking to the 
subject and telling them as the training ses-
sion progresses that a training movement 
is “good” or “bad” and then only using the 
“good” training datasets to build the classi-
fier ought to bias the classifier training da-
taset to “good” examples. But when I read 
that ultimately the iML pilot study results 
did not show much improvement it did not 
surprise me. It is hard to get beyond the 
90–95% classification accuracy rate, since 
this is most likely a consequence of the poor 
properties of the EMG signals used as the 
system inputs. We need to do something 
different with the EMG signals or integrate 
them with other types of input signals.
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Biomechatronics Development Laboratory at the 

University of Colorado Denver | Anschutz Medical 
Campus. The Laboratory’s research is focused on 

the development of advanced prosthetic systems for 
individuals with limb loss. This research covers all 

aspects of the problem ranging from neural control and 
sensing; signal decode and algorithm development; 

mechatronic design and development; and and novel 
actuator technologies; to clinical deployment of these 

systems. We led the development of the implantable 
myoelectric sensor (IMES) system, which is currently 
undergoing first-in-human trials. Most recently, we 
have been exploring optogenetics to non-invasively 

optically interface with the peripheral nervous system 
to provide enhanced control and sensory feedback. 

Dr. Weir has been involved in the field of prosthetics 
research in one form or another for over 30 years.

Received: 1 March 2018 
Accepted: 5 March 2018



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

column A column B column C

column A column B column C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

ar
ti

ficial



 in

te
lli

g
en

ce
 E

xp
erim


en

ts
 in

 R
ad

ical


 C
on

st
ru

ct
iv

ism


418

Choosing the Right Observables  Peter Cariani

 Constructivist Foundations vol. 13, N°2

Choosing the Right 
Observables
Peter Cariani
Boston University, USA 
cariani/at/bu.edu

> Upshot • The stripped-down experi-
mental setup may be missing impor-
tant sensory proprioceptive and tactile 
observables that may well be crucial for 
designing useful, effective, and flexible 
general-purpose motor prosthetic de-
vices. Because trainable machines can-
not by themselves add new observables, 
designers must foresee which ones are 
needed.

« 1 »  Motor substitution – the replace-
ment of organic effector organs with arti-
ficial ones – has long been stymied by the 
problem of control – how to effectively con-
trol the artificial muscles using neural and/
or muscle signals that are produced by the 
human operator. Markus Nowak, Claudio 
Castellini and Carlo Massironi address the 
problem of controlling arms and hands via 
muscle activation signals (myocontrol) ob-
served via electrical sensors (upper arm 
electromyography (EMG)).

« 2 »  Their target article focuses on the 
human-machine feedback loops in play 
when one has a human training and operat-
ing an adaptive prosthetic device. After first 
introducing machine-learning schemes, the 
discussion quickly moves away from the 
ultimate problem of effective motor substi-
tution and into the stripped-down experi-
mental setup, where an adaptive machine 
controller is trained to produce a small set 
of six alternative discrete static wrist-hand 
positions (§51: rest/no-action, wrist supi-
nation, extension, flexion, pronation, and 
hand-closing). The adaptive controller de-
cides how to move a simulated hand given 
a particular goal (a target wrist-position 
category) and the eight-channel EMG out-
put of the Myo bracelet (§42), which here is 
worn by normal subjects with intact upper 
limbs. The main focus of the target article is 
on the role of human-machine interactions 
during different stagings of model building 
and training phases.

« 3 »  Effectively solving the problem 
of motor substitution will substantially en-
hance the lives of many people, and I think 
the limited experiments outlined here are 
well worth pursuing. Innovations in design 
strategies and how we think about them also 
have large ripple effects in other domains, 
such that bringing constructivist ideas to 
the design process have implications far 
beyond prosthetic devices (as I say, all tech-
nology is prosthesis, in that every technology 
that is meaningful is some amplification or 
augmentation of our biological, bodily and 
mental functionalities).

Motor control under natural 
vs. experimental conditions
« 4 »  In order to understand the experi-

mental setup, I found it necessary to draw 
schematics that depict the functional orga-
nizations of humans with intact upper limbs 
vs. those of the trainable machines that are 
considered here (Figure  1). The first order 
of business when evaluating a system that is 
designed to operate in non-virtual realms is 
to examine its goals (the functions it imple-
ments, whether for itself or in service of a 
designer’s goals), what its observables (mea-
surements, realized through sensors) and 
modes of action (realized through effectors) 
are, and how these are coordinated (how 
percept-action mappings are determined). 
These are the basic functionalities of any 
purposive, percept-coordination-action sys-
tem (Cariani 1989, 2011, 2015). A system 
is purposive by virtue of embedded goals, 
evaluation mechanisms for assessing wheth-
er goals are attained (satisficed) or better 
performed, and means of directing or steer-
ing behavior to better attain goals. For each 
goal, the steering mechanism consists of a 
percept-action mapping, i.e., how the sys-
tem should behave given its sensory inputs 
(its-current-observed-state-of-its-environ-
ment) given that current goal. Such a system 
has agency vis-à-vis that goal if it has the 
autonomy to pursue attainment of that goal.

« 5 »  In the target article, we have two 
adaptive, purposive percept-coordination-
action systems that interact to train each 
other, namely the human operator and 
the trainable prosthetic device. This could 
be seen as two problems of first-order cy-
bernetics: how does the human best give 
evaluative feedback that trains the machine 

to recognize different muscle activation 
patterns (EMG signals), and how does the 
machine train the human to modify pat-
terns of muscle activations such that it can 
better classify the signals? Provided that the 
two systems have enough variety in their re-
sponses and in channels that mediate their 
communications for mutual adaptation to 
be possible and functionally beneficial, we 
can also view this as one problem of second-
order cybernetics in which the dynamics of 
the interactions might be crucial.

« 6 »  However, whether the order of 
interactions ultimately matters in improv-
ing the quality of prosthetic movements 
may depend on whether there is room for 
improvement. If the human user cannot ef-
fectively learn to change muscle activation 
patterns that are observable via the eight 
channels of EMG or the trainable machine 
is already exploiting the limited data it has 
to the fullest, then not much benefit in pros-
thetic function may be gained from modify-
ing sequences of model building and testing. 
If I understand Figure 8 correctly, the mean 
hand-configuration errors (nRMSE), which 
quantify the similarity of the hand positions 
produced by trainable classifier with the 
target hand positions, should be improving 
with training. However, no such trend in 
the error metric is seen for any of the three 
experimental protocols over the course of 
90 trials. This could possibly be indicative 
of a ceiling effect – the classifier rapidly 
achieves its optimal performance such that 
further training does not help and also that 
the potential benefits of modifications of the 
training-test protocol are hidden. As the au-
thors note (§§80f), there are also additional 
subjective factors, such as perceived muscle 
fatigue, smoother interaction, and positive 
impressions of prosthesis operation that are 
entirely relevant to patient acceptance and 
use that may be amenable to improvement 
by adjusting training and testing protocols.

« 7 »  It could be the case that including 
additional physiological observables would 
permit higher optimal levels of functioning 
that could benefit from mutual adaptation. 
Choice of observables – measurements to 
be made – is the most important decision to 
be made in constructing a predictive model, 
and choice of feature primitives is likewise 
the most important decision in designing 
a trainable classifier. In general, choosing 
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what measurements to make, however, is an 
ill-defined, unformalizable, domain-specific 
problem for which there are no effective pro-
cedures other than building new measuring 
devices and trying them out. In practice, 
designers think of as many possible relevant 
observables as they can and then eliminate 
those feature primitives that yield no ben-
efit. Biological systems have solved this fun-
damental problem by evolving new sensory 
receptors, modes of neural coordination, 
new effectors, and new possibilities for ac-
tion. Long ago (Cariani 1989), I proposed 
a class of biologically inspired devices that 
would adaptively build their own hardware 
including their sensors, coordinative parts, 
and effectors such that they would construct 
their own primitives, thereby solving the 
problem, in principle at least, of finding the 
right ones.

« 8 »  A machine-learning classifier can 
only be as good as its feature primitives and 
a machine-learning controller can only be as 
good as its set of possible actions. A train-
able machine does not have the means of 
creating new feature or action primitives, 
such that it is prisoner to the sets of sen-
sors and effectors its designer chooses for it. 
Without adequate variety in these domains, 
such systems can learn up to a point, but 
they will be ultimately constrained by the 
limitations of their pre-specified sets of fea-
tures and actions.

« 9 »  When tackling a problem in bi-
onics, and especially when troubleshooting 
why artificial prostheses do not work as well 
as their biological counterparts, it is useful 
to first compare the functional organization 
and operational structure (physiology) of 
the two systems. My concerns as a physi-
ologist, systems scientist, and cybernetician 
would be what the experimental setup is 
leaving out in terms of observables, actions, 
and feedbacks.

« 10 »  In the normal, intact biological 
case (Figure 1, left), a human (or animal) has 
a number of sensory channels that provide 
critical feedback for movement and posi-
tioning of limbs. Perhaps most importantly, 
humans and animals have proprioceptive 
feedback that provides information about 
the limb positions and muscle stretch. I once 
worked on the problem of spinal cord regen-
eration (Wang et al. 2008), which involved 
facilitating the regrowth of neural connec-

tions between proprioceptive afferents and 
their associated sensory pathways in the spi-
nal cord. Despite intact muscles and motor 
neurons, rats deprived of neural signals in 
forelimb afferents completely lose the use of 
their forelimbs, but once these connections 
are restored, functions also return. Humans 
who have lost their proprioceptive afferents 
through disease have great difficulty execut-
ing movements such as walking, and only 
through concerted, sustained attentional 
effort can they learn to use visual feedback 
to guide their limbs. In many common situ-
ations, we can also benefit from tactile feed-
back. There are also thought to be neural 
efferent copy signals that provide the brain 
with copies of the command signals that 
are activating muscles. As far as I can tell, 
the present prosthetic setup involves only 
eight channels of EMG data that would be 
analogous to using motor command sig-
nals or their efferent copies. There is thus 
visual feedback, which may be adequate for 
simple, static hand positions, but there is no 
proprioceptive or tactile feedback, which 

might be necessary for flexible movements 
or grasps. If I were involved in the problem 
of designing a flexible, general-purpose 
prosthetic device, I would look first to incor-
porating proprioceptive and tactile feedback 
signals from artificial hands and arms into 
prosthetic controllers (Ciancio et al. 2016). 
Incorporating whole new classes of observ-
ables is, of course, a much more formidable 
task for an experimenter, so it is entirely 
understandable why the experimental setup 
reported here would not (yet) include them.

Understanding the experiments
« 11 »  The experimental setup in the tar-

get article is complicated to the uninitiated 
and is confusing to sort out, especially if one 
is more focused on the motor substitution 
problem than on human-machine interac-
tions. The nature, adequacy, robustness, and 
informational content of the eight channels 
of EMG data and the effects of alternative 
machine-learning algorithms are never 
spelled out in detail: Are they operating 
on time-series EMG data? How similar are 

Human (without prosthesis) Trainable prosthetic

Effectors:
Muscles

Sensors:
Internal neural
efferent copy

Proprioceptive
Tactile
Visual

Coordinator:
Nervous system

Hand
position

Goal: Target
Hand position

Evaluation
of performance

Self-
modification

Sensors:
EMG

8-channel
myo bracelet

Coordinator:
Trainable machine

Simulated
hand position

Goal: Target
Hand position

Evaluation
of performance

Self-
modification

Figure 1 • Functional organization of human upper arm control (left) compared with the train-
able prosthetic used in the experiments (right). Sensors that carry out measurement operations 
are indicated by circles, coordinations that map input sensory states to output decision states 
by boxes, and effectors that carry out actions by triangles. Arrows indicate causal chains of ef-
fects. Black arrow indicates goal directive (task target). Gray arrow indicates evaluative feed-
back about the efficacy of the last action (measurement of performance) and the operation of 
modifying percept-action mappings. Note that the experimental setup is highly impoverished 
in terms of sensory observables for feedback control and possible action states (many vs 6 hand 
positions). 
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signals from amputees and non-amputees? 
How many independent dimensions or 
distinctions can they convey? Does perfor-
mance using the Myo bracelet data depend 
critically on the type of machine-learning 
algorithm that is used? However, these con-
siderations may be critical for interpreting 
these results and for solving the more gen-
eral problem of designing prosthetic devices 
that are going to be practically useful to 
their users. There are many detailed techni-
cal questions that can be asked concerning 
the transferability of findings from the ex-
perimental setup to the practical situations 
of amputees who will use such devices.

« 12 »  The multiple means of evaluation 
and sequencing of performance and train-
ing trials further complicate understand-
ing. Multiple means of evaluative feedback 
included human subjects seeing their own 
hands or seeing simulated hands on a com-
puter screen and giving good/bad judge-
ments vs. machine-based distance geometry 
metrics (nRMSE) of hand configuration 
similarity. However, was the nRMSE met-
ric used directly in some cases to train the 
machine or was the training feedback always 
from the human operator (good/bad) and 
the nRMSE simply used as a non-subjective 
(intersubjectively verifiable) measure of the 
accuracy of the system? (Q1)

« 13 »  In §22 interactive machine learn-
ing (iML) is contrasted with good-old-
fashioned machine learning (ML) in that a 
human operator, rather than some com-
pletely artificial evaluation process, provides 
physiological observables (eight channels of 
upper arm EMG) and feedback to the train-
able classifier/controller (as seen in Figure 2 
of the target article). In this case, it seems 
that by far the most important role for the 
humans in this setup is to provide the EMG 
patterns (via the Myo bracelet cuff on the 
operator’s right arm) that will be classified 
by the trainable machine to generate simu-
lated hand positions. In this situation we 
have two adaptive systems, the operator, 
who may be learning to adjust muscle ac-
tions in order to steer the trainable machine 
to produce more appropriate hand posi-
tions, and the trainable machine, which is 
simultaneously updating its classification of 
the EMG data based on the evaluative feed-
back it receives from the user. Given that 
the evaluations of six simulated hand posi-

tions by human trainers are binary decisions 
(good/bad) concerning the similarity of 
target and produced (the 3D simulated and 
visually rendered and displayed images in 
the figure) hand positions, could the evalu-
ative feedback have been easily replaced by 
the nRMSE distance-geometry metric? (Q2)

« 14 »  On the other hand, perhaps the 
main rationale for making the human op-
erator give explicit feedback is to focus the 
operator’s attention on the task and to pro-
vide greater reward when desired actions are 
obtained. From the increasing separations of 
the EMG patterns depicted in Figure 9, the 
training of the human operator did appear 
to significantly modify the EMG signals that 
are picked up from the Myo bracelet. One 
would think that this greater separation 
of input signals would cause the system to 
make fewer confusions that produce clas-
sification errors. However, as the authors 
remark (§88), the effects of training on per-
formance appear to be minimal. The time 
course of the position-error metric (mean 
nRMSE) in Figure 8 shows no obvious im-
provement with training (trial 1 to trial 90). 
The hand-position separations at the first 
and last trials for best and worst perform-
ers in Figure 10 similarly show little obvious 
improvement.

« 15 »  In summary, it appears that most 
of the effectiveness of the prosthetic classi-
fier-controller is due to its ability to sepa-
rate the EMG patterns without the benefit 
of human evaluative feedback. In these ex-
periments, the human operator is critical in 
the generation of the EMG patterns but not 
essential for giving the trainable machine 
feedback. Nevertheless, I agree with the 
authors that interactive machine learning, 
which gives the user control over when and 
under what circumstances to update the in-
put-output function of the machine, is nev-
ertheless likely to be a promising strategy for 
prosthetic design.

Realist vs. constructivist 
approaches to design
« 16 »  Some sections of the target article 

(§§34–37) discuss the effects of epistemol-
ogy on design. We humans are all self-mod-
ifying, self-constructing systems, whereas 
most of our artificial systems are not. Ma-
chine-learning systems, to the extent that 
they do self-modify and self-construct, do 

so within much more constrained avenues 
of possible modifications than we humans 
and animals do. On the other hand, we can 
be clearer about what is going on within the 
trainable machine than we can about what 
is going on in the minds of its designers. 
I tend to prefer to talk about the capabili-
ties and limitations of self-constructing vs. 
non-constructing systems rather than de-
sign paradigms, which reside in the heads 
of human designers, as important as these 
can be.

« 17 »  It is possible to talk in terms of 
(realist) ontology-based design (§§3–12), 
where a physical or virtual world with a de-
scription that is meant to be complete is first 
postulated, and then a system within that 
world is specified to have some sort of ef-
fective behavior that fulfills some function. 
Partial, often statistical, observations of this 
“god’s eye” universe by limited actors are 
then overlaid onto this postulated world. 
Three basic types of realism are physical re-
alism, mathematical realism (platonic ideal-
ism), and logical realism (propositional ob-
jectivism). In realism, an objective world of 
one sort or another is held to exist indepen-
dently of any observers, such that realists 
find it meaningful to talk in terms of “true” 
knowledge of the details of this world even 
apart from how one would observe them.

« 18 »  An alternative to realism is to take 
an epistemological approach in which one 
adopts the perspective of a limited observer-
actor. The observer-actor strives to achieve 
particular ends, such as predicting future 
events or bringing about particular desir-
able events), given limited means of observ-
ing the world and acting on it. The observer-
actor, without needing an explicit ontology 
or access to any unobserved world-states, 
forms a (non-referentialist) model for effec-
tive prediction and action that then guides 
expectations and actions. This model is 
based entirely on tangible observations and 
evaluations.

« 19 »  Although I have no evidence for 
this assertion, I would think that realist 
designers would be more inclined to try to 
design devices directly, from physical prin-
ciples, whereas constructivists would be in-
clined towards making devices adaptive and 
semi-autonomous, such that they construct 
their own effective means for anticipation 
and action.
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> Upshot • Applying radical constructiv-
ism to machine learning is a challenge 
that requires us to dive very deeply into 
its theory of knowing and learning. We 
need to clarify its fundamental concepts, 
if possible, in operational terms. This 
commentary aims at outlining how this 
kind of clarification could look in the case 
of 3 such concepts: (a) the construction 
of experiential reality; (b) learning as a 
constructive activity; (c) the viability of 
conceptual structures.

Introduction
« 1 »  One of the major experiences 

that led Ernst von Glasersfeld to adopt 
a constructivist way of thinking was his 
pioneering work in artificial intelligence, 
starting in 1959 with the machine transla-
tion project at the Centre for Cybernetics 
at the University of Milan, created and di-
rected by Silvio Ceccato (Glasersfeld 1995: 
7). Thus, I am rather enthusiastic about the 
idea of applying von Glasersfeld’s theory of 
knowing and learning to machine learning 
(ML) and hope that my comments will sup-
port the efforts of Markus Nowak, Claudio 

Castellini and Carlo Massironi in continu-
ing this promising line of research.

« 2 »  In the field of assistive robotics 
for limb amputees, electromyographic sig-
nals generated by muscle activity in the re-
maining upper limb are used as input data 
for a machine learning (ML) system; the 
system should then produce control com-
mands for a prosthetic arm/hand accord-
ingly in order to let it perform the desired 
action (§33).

« 3 »  Unfortunately, this so-called 
upper-limb myocontrol, after 40 years 
of research, is still failing (§34) with re-
jection rates of up to 75%. As a means of 
improving such systems (smart prosthetic 
arm/hand control systems), the authors of 
the target article suggest (§32) develop-
ing traditional ML to form an interactive 
machine learning (iML), which allows for 
system updates whenever its actions are 
unsatisfactory (§§21f). But this poses new 
problems, which require appropriate con-
ceptual tools, in particular, a coherent con-
ceptual framework about interactivity. This 
is where the authors anticipate that radical 
constructivism (RC) could help (§23), es-
pecially through its concepts of experien-
tial reality (§15), learning as a constructive 
activity (§16), viability (§17), assimilation, 
scheme theory, accommodation and equili-
bration (§30).

« 4 »  The application of RC to iML – so 
called RC-framed iML – for the task of up-
per-limb prosthesis is expected to provide 
useful insight into how to design the inter-
active prosthesis of the future (§89). The 
authors are convinced that their approach 
has the potential to improve human-robot 
interaction. Thus, they propose to shift 
the attitude towards ML from a realist to 
a radical constructivist attitude, as defined 
by von Glasersfeld (§13). They see their 
draft of an RC-framed iML presented in 
the target article, as an attempt at opening a 
discussion between the RC community and 
the ML community (§26).

« 5 »  Applying RC to ML requires us to 
dive very deeply into radical constructiv-
ism and clarify its fundamental concepts. 
So, I will look at three fundamental con-
cepts used in what the target article calls a 
“tentative framework” (§26) about “inter-
activity” (§23) and will try to dive deeper 
into them.

A | The construction of experiential 
reality
« 6 »  Nowak et al. mention this con-

cept and quote von Glasersfeld (1995: 58f) 
as a reference where it appears as a section 
title. I will highlight the essential parts of 
this section by not only repeating the same 
formulation but also by reformulating and 
extending them in my own terms.

« 7 »  Humans, as infants and later as 
adults, can construct the reality they expe-
rience for themselves. As infants, humans 
develop the basic concepts that constitute 
the essential structure of their individual 
experiential reality, without needing a spe-
cific physical structure to exist in its own 
right as a corresponding structure.

« 8 »  For example, let us look at the de-
velopment of the notion of the “object” in 
a human infant. In phase 1, the infant co-
ordinates sensory signals recurrently avail-
able at the same time in its sensory field 
(the “locus” of raw material that Immanuel 
Kant called “the manifold”) and establishes 
by that many different object concepts; 
these object concepts are like operational 
routines for constructing the formerly con-
structed objects of interest again at a later 
point (a ball, a face, a cat, etc.) whenever 
suitable sensory components are available. 
The notion of “object” in general, then, is 
whatever the mind constructs as common 
to all these routines (a kind of abstract, 
generalised, operational routine) due to a 
principle of efficiency, implemented like in 
perception by means of “preferred paths” 
or “sequence patterns” (de Bono 1991: 81f; 
de Bono 1992: 10f). Later, in phase 2, the 
infant becomes able to run through such 
operational routines even when no suitable 
sensory components are available in its sen-
sory field; in this case, the infant executes 
a conceptual coordination of a previously 
constructed object; it produces a re-pre-
sentation (written with the hyphen as a re-
minder that this term means a repetition, a 
replay, a re-construction from memory, of a 
past experience, not a picture of something 
in a mind-independent world).

« 9 »  Thus, I do not agree with Nowak 
et al. when they say that the agent tries to 
“organize perceptual objects” (§15). Rather, 
I would avoid both “perceptual” and “ob-
jects” and say that the agent “organises a 
sensory field,” conceived as the raw material 
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that Kant called “the manifold,” in which 
there are no objects unless we construct 
them. And when we have constructed them, 
I would not assign them to the sensory field 
but rather to our experiential reality, and 
there to a process that operates at a higher 
operational level. It is similar to looking at 
the skies on a clear night: you can only see 
an ordered pattern of stars, even a constella-
tion, if you organise the single stars (the sig-
nals in your sensory field) by selecting some 
and connecting them, thus constructing the 
pattern in your mind rather than perceiv-
ing it (Glasersfeld 1999: 12; Bettoni & Eggs 
2010: 133).

« 10 »  Moreover, the essence of a “very 
radical-constructivist concept” here is not 
dealing with “‘perceptual’ data” (§15) but 
that the “object” as a generic concept, as a 
conceptual structure (and later many oth-
ers), is constructed by organising a sensory 
manifold in many different ways and later 
by abstracting what is common to these 
previously constructed conceptual struc-
tures.

B | Learning as a constructive 
activity
« 11 »  This concept used in the target 

article (§16) references an early article by 
von Glasersfeld (1983) of the same title. 
But I would not say that this early article 
presents “matching ‘perceptual’ patterns” as 
a foundation of RC. Since the fundamental 
epistemological principle of RC is “fit” not 
“match” (“viability” not “correspondence”), 
I would suggest avoiding the use of “match” 
altogether, even when it refers to sensory 
patterns or conceptual structures and not to 
pictures of the physical world.

« 12 »  An elementary form of learning 
requires two components (Glasersfeld 1995: 
152f):

�� something like a memory,
�� the ability to compare two signals, a 

present one and a goal-signal that con-
stitutes a reference value.

Once these requirements are met, the pre-
conditions of inductive learning are satis-
fied. In the event of a perturbation, all that 
is further needed for this elementary form 
of learning to occur is a rule or principle 
that leads the system to repeat actions that 
were recorded as successful in its past ex-
perience (see also de Bono 1991: 42f), thus 

reducing or eliminating this kind of new 
perturbation.

« 13 »  Although the interactions the 
subject has had with the world shape what 
will be the result of new interactions (§18), 
the previous knowledge that they provide 
is not enough for the re-cognition of a cer-
tain situation (§19; Glasersfeld 1995: 65). In 
fact, the sensory field provides vastly more 
signals than those needed for its segmenta-
tion. The organism must therefore always 
actively select which signals to use in order 
to construct either a known or a new pat-
tern that will trigger a particular scheme, 
so that the pattern can be assimilated. 
How can the agent do this active selection? 
I agree with von Glasersfeld (1995: 78f) 
that Ceccato’s idea of an attentional system 
(Ceccato 1964) that produces successive 
pulses of attention and has the ability to 
form combinatorial patterns of attentional 
moments, can provide a model of how the 
mind actively selects signals in the sensory 
field. These pulses of attention, which I have 
called “attentional quanta” (Bettoni 2018), 
also constitute the operational structure of 
abstract concepts (Glasersfeld 1995: 167f). 
Could Ceccato’s attentional system also be 
implemented in the ML system for enabling 
it to do the needed active selection?

« 14 »  Whenever a scheme is activated 
and the triggered activity does not yield the 
expected result, the discrepancy between 
expectation (reference value) and the expe-
rienced result creates a perturbation in the 
system. This perturbation is equivalent to a 
variation of the input into a controller unit 
of a control loop with negative feedback 

(cybernetics, control engineering). It is a 
novel kind of perturbation; it is not associ-
ated with a specific sensory pattern or with 
a specific scheme and may lead to an ac-
commodation, an adjustment of the scheme 
or the formation of a new one. In this way, 
assimilation and accommodation enable an 
agent to learn.

C | The viability of conceptual 
structures
« 15 »  I agree that we cannot “build a 

real model of this world” (§17) but I dis-
agree with saying that we can “build a vi-
able representation of it” because, again, our 
conceptual structures cannot be said to rep-
resent a real mind-independent world. They 
merely fit with our own experience and they 
are viable as means for consistently organis-
ing our experience (Glasersfeld 1983).

« 16 »  In order to dive deeper into the 
concept of viability, I suggest making use 
of the language of cybernetics and control 
engineering. This allows us to illustrate the 
concept of viability by means of a system 
model (see Figure  1) where we have one 
control unit that controls two process units; 
it is a very peculiar architecture of a coupled 
control system with two fundamentally dif-
ferent processes and hence two fundamen-
tally different, but coupled, control loops.

The control loop of physical reality
« 17 »  On the right-hand side of the 

diagram, I differentiate between reality as 
a physical controlled system or process, the 
person as its controller and two interactions 
between these two units: the physical effect 

UE UP

YE
w YP

Experiential reality Physical reality
Control unit

e

Figure 1 • The cybernetic model of viability: A coupled system of two processes controlled by one 
control unit. Abbreviations: Y = controlled variable; w = set point variable; e = control deviation; 
U = manipulated variable; index E = experiential reality; index P = physical reality.
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of a person on reality (controller output, 
manipulated variable UP) and the physical 
effect of this reality1 on a person (controller 
input, controlled variable YP).

« 18 »  The controlled variable YP only 
affects the person in the form of a manifold 
(Kant 1966: B 102; Glasersfeld 1995: 40f), 
i.e., in an unstructured manner. In the dia-
gram, this is indicated by the fact that the 
arrow ends at the periphery of the control 
unit and does not penetrate into the inner 
circle, like the other variables.

The control loop of experiential 
reality
« 19 »  On the left-hand side of the dia-

gram, I differentiate between the experien-
tial world as the entirety of the experiences 
acquired by a person (her knowledge base) 
and the person as the controller in the form 
of a separate unit; this separation is purely 
heuristic in nature for illustrative purposes. 
In this model, I also assign to the experien-
tial world the role of a controlled system, 
but a conceptual (conceptually construct-
ed) rather than a physical controlled sys-
tem.

« 20 »  There are three interactions be-
tween these two units here: the conceptual 
effect of a person’s control unit on her ex-
periential world (manipulated variable UE) 
and two conceptual effects of the experi-
ential world on the person’s control unit. 
The set point variable w corresponds to 
the goals, intentions and expectations. The 
controlled variable YE is somewhat more 
complicated: a person takes the controlled 
variable YP, transforms it into thought con-
tent (manipulated variable UE), seeks to in-
tegrate this into her experiential world (as-
similation, accommodation etc.) and ends 
up with the controlled variable YE.

« 21 »  The control deviation e is formed 
from a comparison between the set point 
variable w and the controlled variable YE; 
this produces a binary variable e, which 
provides information as to whether or not 
there are any obstacles in the way of pursu-
ing the goals, i.e., whether or not the cur-
rent state can be deemed viable. If the ma-

1 |  By “physical reality” I mean the world of 
constraints in which organisms live (Glasersfeld 
1983) and by “physical effect” I mean variations in 
the sensory field due to those constraints.

nipulated variable UP has led to a solution 
or generates any concepts that are either 
compatible with existing conceptual struc-
tures (lack of contradictions) or in harmo-
ny with conceptual structures that others 
regard as viable, then in the control unit we 
will obtain e = 0, i.e., the current state will 
be considered viable and will be reinforced.

Conclusion
« 22 »   Diving deeper into concepts such 

as the construction of experiential reality and 
learning as constructive activity ensures that 
the development of an RC-framed iML will 
be more consistent with RC. Furthermore, 
due to the central role assigned to interac-
tivity by an iML approach, the double-loop 
model of viability presented here could be-
come the starting point or foundation for 
developing the missing “coherent concep-
tual framework about interactivity” that ML 
needs (§23). Here the model deals with a 
human-world interaction, where the human 
is the active agent and the world provides 
constraints. In ML the roles are swapped: we 
have to model an ML-human interaction, 
where the ML system is the active agent and 
the constraints are provided by the human 
(§30).
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> Upshot • I point out that from a socio-
cultural perspective, repeated experien-
tial interaction loops are not enough for 
constructing new context-dependent 
knowledge: the loops must be grounded 
in specific social practices, which are ei-
ther culturally or historically situated. 
Also, to tightly connect human user and 
interactive machine-learning system, 
triple-loop learning needs to be used as 
well as criteria for validating an expecta-
tion’s confirmation.

« 1 »  The improved interaction between 
users and learning systems in interactive 
machine learning (iML) needs a better un-
derstanding of how end-user involvement 
impacts the learning process (Amershi et al. 
2014). To contribute to the discussion that 
Markus Nowak, Claudio Castellini and Car-
lo Massironi have opened, I want to high-
light some properties of this interaction.

« 2 »  Gregory Bateson (1979: 78) point-
ed out that one cannot hear the sound of one 
hand  clapping. Likewise, the contributions 
of the human and the iML system to solving 
these problems cannot be decoupled. Thus, 
in iML we have to put the “human into the 
loop” (Holzinger 2016) to enable what nei-
ther a human nor a computer could do on 
their own.

« 3 »  A conventional machine-learning 
(ML) system can be instructed with ever 
more examples when learning a stationary 
process (§12). Human behavior, however, is 
non-stationary (§29) and biomedical data 
sets are full of uncertainty and incomplete-
ness (e.g., missing data, noisy data, etc.), 
which makes the application of convention-
al ML difficult or even impossible (Holzin-
ger 2016).

« 4 »  Since a human and iML system 
forms a tight coupling, some form of re-
flexivity is required to take into account the 
relationship that includes both elements as 
a part of it. As Erving Goffman (1974: 85) 
states, “a reflexive element must necessarily 
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be present in any participant’s clearheaded 
view  of events; a  correct view of a scene 
must include the viewing of it as part of it.”

« 5 »  What kind of relationship do we 
have to take into account if every descrip-
tion implies an observer who describes it 
(Foerster 1981: 258)? Obviously, reflexivity 
is not confined only to our observed inter-
action between human and iML system, but 
extends to a different level that also includes 
us as knowing subjects. For example, in 
§47ff the authors build a psychological con-
text of interaction rules and reciprocal roles 
for the human – reassuring that the prosthe-
sis learning ability was “only in its infancy” 
– which also involves readers who identify 
with this parental role.

« 6 »  We can find another example of 
reflexivity in §37, where the authors claim 
that iML, based on radical constructivism, 
is superior to conventional realist ML. But 
who is the knowing subject in the experi-
ment described afterwards (§§38ff): the iML 
system (here the learner) or the human (here 
the user) who adopts a non-realist theory of 
knowledge? Or both? The interaction loops 
increase the opportunities for users to im-
pact the learner and, in turn, for the learner 
to impact the users (Amershi et al. 2014).

« 7 »  Can we assume that the human, 
while providing feedback to the iML sys-
tem, is developing a better awareness of her 
knowledge constructs? Does the iML sys-
tem build on cultural knowledge thanks to 
the feedback provided by the human? Can 
the human and iML system create, togeth-
er, new knowledge outside a social context 
where distances, shapes and sizes are cultur-
ally defined?

« 8 »  An iML system can be conceived 
as a constructivist system that generates a 

certain kind of knowledge through experi-
ential interaction loops (Sarkar 2016). This is 
how the prosthetic hand learns movements, 
i.e., by means of acquiring correct examples 
and feedback (§57ff). However, I claim that 
repeated experiential interaction loops are 
not enough for constructing new knowl-
edge: the loops must be grounded in specific 
social practices, which are either culturally 
or historically situated. These practices are 
governed by constraints, in which people 
engage with “objects” or other constructed 
entities, understood in terms of apparently 
independent, decontextualized properties. 
As Peter Berger and Thomas Luckmann 
(1967: 61) observed, humans are capable of 
producing a world that they then experience 
as something other than a human product 
(see also Packer & Goicoechea 2000).

« 9 »  So, assuming a sociocultural per-
spective, activities are characterized as prac-
tices of a community. There are many dif-
ferent ways of moving a hand, because, as 
Goffman observed:

“ […] while the substratum of a gesture derives 
from the maker’s body, the form of the gesture can 
be intimately determined by the microecological 
orbit in which the speaker finds himself. To de-
scribe the gesture, let alone uncover its meaning, 
we might then have to introduce the human and 
material setting in which the gesture is made.” 
(Goffman 1964: 133)

« 10 »  In order to execute an action such 
as grasping a cup of tea or repairing a bicy-
cle, in addition to movements and validated 
procedures, does an iML have to learn some-
thing about the “frame” (Goffman 1974), 
i.e., the human and material setting in which 
the action has to be executed? (Q1). For the 

experiment described in §§38ff this means 
the prosthetic hand’s activity requires a rich 
context where meaning can be negotiated, 
and understanding can emerge and evolve 
(Sarkar 2016).

« 11 »  In order to establish a tight cou-
pling between a human and her iML system, 
we need triple-loop learning that is able to 
transcend single- and double-loop learning:

�� Single-loop learning occurs when the 
system learns new skills and capabilities 
through incremental improvement: the 
system assimilates the information that 
it can already recognize. Errors are de-
tected and corrected by a human agent, 
who acts without perturbing the system 
(see also, in §53, the evaluation phase of 
experiment 0).

�� Double-loop learning is reflective and 
occurs when errors are detected and 
corrected, and expectations, and/or as-
sumptions are called into question and 
challenged. As Nowak et al. report in 
§59ff (Experiments 1 and 2), when deal-
ing with complex, non-programmable 
issues, the iML system was perturbed. 
The concept of perturbation refers to a 
stimulus that does not conform, or gen-
tly subverts, the expectations and men-
tal model of the users, forcing them to 
construct new knowledge in order to 
accommodate this experience (Sarkar 
2016). Error detection still occurs, but 
the iML system is required to change its 
assumptions and mental model to try to 
understand the “connecting structure” 
(Bateson 1979) that helps to detect these 
errors.

�� Triple-loop learning involves a learning 
framework where “the subject learns the 
context of the action and how these ac-
tions are connected to the world” (Lut-
terer 2012). Here we must include the 
context, because movements and men-
tal processes are formed in and through 
participation in specific social practices, 
which can be both culturally and his-
torically situated (Packer & Goicoechea 
2000). Learning to move a hand is also, 
and always, a learning of context (Bate-
son 1972: 293): activity is dialectically 
constituted in relation to the setting 
(Lave 1988: 151).
« 12 »  Figure 1 shows how the relation-

ship between the three loops of learning can 

Learning
framework

Mental models,
assumptions

Actions

Single-loop
Double-loop

Consequences

Triple-loop

Figure 1 • Learning loops (Modified from “Modes of organizational learning” by Soren Eilertsen and 
Kellan London, https://le2oa.wikispaces.com/file/view/Modes+of+Organisational+Learning.pdf)
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be depicted. Each successive loop extends 
beyond the boundary of, and includes, the 
previous loop.

« 13 »  Coming back to the experiments 
in the target article, positive feedback or 
confirming a prediction strengthens the ex-
periential reality that the human and iML 
system are constructing together. In §52, 
during model building, all the instantiations 
are supposed to be “good” signals. In other 
words, the human confirms the expecta-
tions of the system, which was building its 
own “reality.” Furthermore, during model 
testing, whenever a particular prediction 
concerning an action or reaction of the oth-
er turns out to be corroborated by what the 
other does, this strengthens, in a different 
loop, the experiential reality and the mental 
models that both are constructing together.

« 14 »  Since prediction is different from 
explanation, in §59 when the system re-
ceived negative feedback, I claim that the 
iML system was perturbed in a twofold 
manner: because its expectations did not fit 
and because its assumptions were not con-
firmed.

« 15 »  Likewise, by means of perturba-
tion, the iML system was stimulated by the 
human to construct new knowledge, for ex-
ample, some criteria for validating an expec-
tation confirmation, or using our previous 
terminology, both are construing concur-
rently a new shared learning framework.

Marco Guicciardi is a psychologist and 
psychotherapist. He holds a degree in psychology from 
the University of Padua, Italy. Since 2000 he has been 
Associate Professor in Psychometric at the University 

of Cagliari, Sardinia. His research and publications 
focus on health, sport and exercise psychology. He 

specializes in the construction and validation of 
psychological instruments for enhancing well-being. 

Nowadays, in collaboration with engineers and IT, he is 
studying prototypes and mobile devices for proactive 

health, targeted at people with non-communicable 
diseases as Diabetes, Parkinson’s, Alzheimer’s, etc.
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Are Our Limbs Agents 
that Need to Estimate 
Our Intentions?
Martin Flament Fultot
University of Connecticut, USA
martin.flament_fultot/at/uconn.edu

> Upshot • I argue that the authors miss 
an important distinction between real-
ism and representationalism. Because of 
this, their diagnosis of the current state 
of machine learning is valid, but for the 
wrong reasons. As a consequence, their 
approach to upper limb prosthetics may 
not be a step in the right direction.

« 1 »  The target article constitutes a 
positive and very welcome contribution to a 
problem that has been plaguing human-ma-
chine interaction since its inception, namely 
prosthetics. Although Markus Nowak, Clau-
dio Castellini and Carlo Massironi intro-
duce their reflection as being about machine 
learning (ML) in general, the particular case 
of prosthetics is of such significance that the 
authors’ ideas about the latter deserve as 
much scrutiny as their general concern with 
machine learning. This commentary will 
thus focus both on the authors’ contention 
with what they take to be the realist stance 
towards ML and on the particular study they 
chose.

« 2 »  Nowak et al. start by noting in 
§10 that ML tends to be used currently as 
a “number-crunching black box” the func-
tion of which is simply to yield useful map-
pings from input to output according to the 
designers’ interests. I agree with the authors’ 
lament that, very often, the meaning of the 
mappings and the processes going on in the 
machine are opaque to the designers, who 
do not seem to care. A quick and shallow 
rebuttal to this could be: “So what? There is 
nothing wrong a priori with having a com-
pletely instrumental attitude towards a par-
ticular computational tool.” But the authors 
go further and they argue that whenever the 
model fails in practice it is indeed because 
of that theoretical attitude just mentioned, 
in other words, ML models are being lim-
ited because their designers are not pay-
ing attention to deeper conceptual issues. 
Examples of such limitation are a model’s 

failure to produce the expected output or, 
as in the case of prosthetics, the dramatic 
and systematic failure to produce a satisfac-
tory coupling between human and machine, 
as exemplified by the painful figure of 75% 
rejection rate the authors rightly mention. 
This part of their assessment and critique 
seems accurate and there does seem to be a 
connection between the practical shortcom-
ings of ML and its conceptual foundations. 
However, the rest of the authors’ diagnosis 
and subsequent suggestion of a solution may 
not be so accurate.

« 3 »  The main contention here is that 
Nowak et al. conflate two different things 
in their critique, to wit, realism and repre-
sentationalism. To be fair, they are not the 
first ones to do this conflation, which can 
be traced back at least to Francisco Varela, 
Evan Thompson and Eleanor Rosch (1991) 
and perhaps even as far back as Edmund 
Husserl’s phenomenology. In a nutshell, the 
argument of Nowak et al. is that ML fails 
because it is designed to naively attempt 
to build a statistical model of an external 
world, but for any modeling of “reality” to 
be accurate, the sample input – the exam-
ples to which the model is exposed – needs 
to be exceedingly large. We can already no-
tice here that any reasoning that reaches this 
conclusion is faced with a choice point. We 
can either blame the realist attitude of be-
lieving that there is an external world that 
the model needs to reflect, or we can blame 
the very attempt to model such a reality. Per-
haps, and this option is rather ignored by 
the authors, there is a “naive” external real-
ity, but the right approach to learning and 
knowledge in artificial intelligence, at least 
if the goal is to approach human perform-
ance or to make interaction with humans 
possible, is not that of trying to represent the 
world through a model, but rather to fit the 
world. Just like the woodpecker’s beak does 
not represent the tree – the beak is definitely 
not a model of the tree, yet it is a perfect 
complement to the tree for the purposes of 
the woodpecker (e.g., drilling a hole and 
catching termites) – ML systems could ben-
efit from not attempting to represent their 
targets but to fit them in some meaningful 
way. The problem, in short, is not trying to 
represent the world, but rather trying to rep-
resent the world.
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« 4 »  Interestingly, Nowak et al. seem to 
have a tacit understanding of this problem, 
but I suggest that, because they fail to dis-
cern between realism and representational-
ism, they aim their criticism at the wrong 
target. For instance, following Ernst von 
Glasersfeld they claim §17 that “the value of 
an idea of the world is measured in terms 
of fitness to achieve a specific goal […], not 
in terms of the correspondence between the 
idea and a mind-independent reality.” But 
we can readily see in this statement that if 
the value of the idea resides in its ability to 
contribute to the achievement of a specific 
goal, then the content of the idea itself must 
be about achieving that goal. That, I sug-
gest, should be the reason why the authors 
contrast fitness with “correspondence” and 
not the belief that there is indeed a mind-
independent reality. Again, the woodpecker 
is successful in drilling a hole in the tree 
and catching insects for its nourishment, 
not because it refuses to treat the tree as 
“bird-independent,” but because the beak 
and the muscular forces it applies to the tree 
adequately fit the latter’s material properties 
for the purpose of drilling a hole in it. Bird 
and beak are in direct contact with the tree, 
they are both complementary and fit each 
other as mathematical duals (Gibson 1979; 
Shaw, Kugler & Kinsella-Shaw 1990). It is 
not the tree, or the external world for that 
matter, that needs to go, but mediational 
states between it and the subject (or learning 
machine).

« 5 »  Furthermore, if we give up re-
alism, it is virtually impossible to make 
sense of what the meaning of constructivist 
“perturbations” to the system are. If per-
turbations are mind-dependent and do not 
come from an external reality, then what is 
the system adapting to? But a deeper ques-
tion actually addresses the authors’ own 
concern about the meaning of what ML 
models do and the origin of that mean-
ing. Perturbations must have an independ-
ent origin at least partially if they are to be 
meaningful to the system and effective in 
driving it towards improved performance. 
But according to Nowak et al., following 
their understanding of radical construc-
tivist theory, “[a]ll these processes” must 
be subjective and internal – including 
the perturbation §19 (emphasis original). 
This idea is not, however, that an idealist 

mind is generating ideal perturbations to 
its own ideal perception. The issues with 
such forms of idealism are well known. 
We must rather interpret that wherever 
the perturbations come from, they are be-
ing shaped, interpreted, idealized some-
how by the subjective agent, and they only 
make sense as perturbations to the agent 
from that subjective perspective, product 
of her own making (or construction). In-
ternal conceptual schemata – the subject’s 
pre-knowledge – are the usual posit since 
Kant, although they have not been without 
detractors (see, e.g., Donald Davidson’s 
well-known 1974 paper). But then again, 
even these schemata must have an origin 
and we cannot posit more regressing sub-
jects and their own schemata to account for 
them. It is revealing that the ethologist does 
not have this problem. Bird’s beak and tree 
form a closed system, they evolved together 
and interact straightforwardly perturbing 
each other. No pre-knowledge or schemata 
are needed, Jakob von Uexküll’s seemingly 
constructivist concept of Umwelt notwith-
standing (Uexküll 2010).

« 6 »  Thus, it seems that the authors’ 
move towards radical constructivism as a 
solution to the current state in ML is a right 
step, although in the wrong direction. It is a 
move towards more reliance on representa-
tion as intermediate subjective constructs, 
and that could be precisely what is crip-
pling progress in statistics-based ML. In 
the following I will address the point that, 
as a consequence of the authors’ failure to 
identify representation as the origin of the 
issues faced by ML, their proposal for pros-
thetics misses the target too.

« 7 »  It is very surprising to find no 
mention at all of embodiment in the tar-
get article. Yet upper-limb prosthetics 
constitutes a proverbial problem of em-
bodiment. The challenge is to make an 
external object part of the patient’s body, 
as the lost limb used to be. But notice that 
our healthy limbs are the exact opposite of 
an autonomous subjective agent trying to 
construct an internal model of ourselves 
where all the interactions with us are “us-
er-independent.” Such an idea is actually 
strikingly counter-intuitive. It is one thing 
to acknowledge that, because of the limita-
tions of prosthetics that need to be coupled 
to a body ex novo, unlike our limbs, which 

grew with us and have interacted with us 
since our fetal stage, one needs to adapt 
the prosthetic limb to the body in a very 
short time and thus some form of ML, in-
teractive or otherwise seems necessary as 
a practical necessity. It is another thing, 
however, to approach this problem, which 
is actually an unfortunate contingency, 
by making the disconnect between limb 
and body even deeper, yet that is precisely 
what the radical constructivist approach 
to prosthetic adaptation appears to imply. 
The ideal goal would be to be able to grow 
a new limb, as salamanders do, and let the 
interactions between neural, muscular and 
bony tissues adapt to one another during 
the growth process. The end result would 
be an embodied limb, one that is part of the 
subject, directly coupled to all the other 
limbs, nervous cells, etc., and certainly not 
anything that resembles a separate agent 
that interacts with us through intermediate 
mental schemata.

« 8 »  Moreover, some of the negative 
consequences of Nowak et al.’s second ex-
periment, namely the patient’s painful 
fatigue, are a cruel reminder that the per-
turbations a subject needs to deal with are 
quite “real,” for lack of a better term. The 
prosthetic is a massive body, and the earth 
is pulling on it through gravity. These are 
external constraints that the learning proc-
ess taking place on the side of the prosthet-
ic limb simply cannot anticipate or cope 
with. From its agential, subjective point of 
view, it is all a matter of guessing the agent’s 
intentions, constructing a model, a predic-
tive schema of EMG patterns and adapting 
to its constraints. Little does it know that 
there is a concrete living being on the other 
side struggling to produce movements by 
generating the right muscular contractions 
against torques and discomfort. But these 
muscular contractions not only need to 
deal with gravitational forces, they are also 
not meant to serve as signals for an ML-
based prosthetic limb to interpret – we do 
not move our healthy limbs through vicari-
ous muscular contractions and high-am-
plitude electric potential at the surface of 
our muscles. We move our healthy limbs by 
fitting our intentions to the external non-
muscular forces, but our intentions are em-
bodied and include the limb itself as well 
as the external force fields (Merleau-Ponty 
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1962). By applying the authors’ version of a 
radical constructivist ML solution to pros-
thetic limbs, this embodiment is lost, and 
what was a direct, high-bandwidth, logi-
cally shallow flow from intention to mo-
tor performance in the healthy coupling is 
interrupted by representations (Neumann 
1958; Haugeland 1998; Dreyfus 2002). The 
result is qualitatively the same as it was 
with so-called “realist” ML, because both 
the latter and what the authors take to be 
a radical constructivist ML remain repre-
sentational. Restoring the functionality of 
a lost limb, given the loss of its deeply in-

timate coupling with the rest of our body 
and nervous system, is extremely difficult. 
However, progress will hardly be made by 
establishing even more subjective discon-
tinuities between patient, prosthetic limb 
and world. On the contrary, what is needed 
is a blurring of the boundaries between 
them as much as possible and an acknowl-
edgement of the overwhelming influence of 
material constraints such as external forces, 
which are more than meaningless pertur-
bations, and can also be an active part of 
the coordination of movement (Bernstein 
1967).

Martin Flament Fultot holds a MA in Philosophy from 
the University of Paris IV Sorbonne. He is currently a 
PhD candidate also at the Center for the Ecological 
Study of Perception and Action at the University of 
Connecticut and a member of the Science, Norms, 

Decisions research team in France in association with 
the CNRS. His research interests include the philosophy 

of cognitive and behavioral sciences, behaviorism, 
ecological psychology, enactivism, self-organization, 

dynamical systems, robotics, artificial intelligence, 
embodied cognition, biology and thermodynamics.
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Authors’ Response
Radical Constructivism 
in Machine Learning: 
We Want More! Markus Nowak et al.

Markus Nowak, Claudio 
Castellini & Carlo Massironi
> Upshot • Our commentators’ very con-
structive criticisms point out a number 
of weaknesses in the design of our ex-
periment, and offer insight into how 
such weaknesses might have led to the 
poor results of the experiments. We 
summarize the suggestions, which point 
in a few precise directions, and outline 
how we will try to implement them in 
the near future.

« 1 »  While there seems to be general 
agreement among our commentators that 
framing interactive machine learning (iML) 
in radical constructivism (RC) is a valid 
contribution to research in machine learn-
ing (ML) and could improve the situation 
of myocontrol, they also point out that the 
experiment might have been too simple, and 
for that reason it has failed to fully prove our 
point. They all suggest improvements to 
both the setup and the experimental design, 
and it is fascinating to note that similar sug-
gestions, or at least suggestions that hint at 
similar directions, come from researchers 

who are experienced in very different fields. 
We feel inspired and will continue on this 
path, extending it further.

As simple as possible, but not 
simpler
« 2 »  Our working assumption was that 

rethinking myocontrol through RC would 
give hints and suggestions for the design of 
the upper-limb prosthesis of the near future. 
This intuition stemmed from our own pre-
vious work in incremental/interactive learn-
ing applied to myocontrol, for which RC 
seems to provide an ideal theoretical frame-
work, as it is rich in ideas to be applied in 
practice. So, we put in place a simple experi-
ment with three variants, each variant being 
“more radical constructivist” than the previ-
ous one, hoping that the ideas based upon 
RC would have led to a clear improvement 
in performance.

« 3 »  This has turned out to hardly be 
the case. So, was our working assumption 
correct? The consensus emerging from the 
open peer commentaries that we received 
seems to indicate that it was. But at the same 
time, the general feeling is that the experi-
ment was too simple with respect to medical 
applications, and that this excess simplic-
ity has blurred the distinctions between the 
three experiments almost completely. Once 
again, Albert Einstein’s motto, which we 
have cited already in §40 of our target arti-
cle, is key: if you simplify too much you lose 

sight of the problem you are trying to solve, 
and you might end up finding an inadequate 
solution.

Did we simplify too much?
« 4 »  William Craelius’s statement “The 

experiments were elegantly designed and 
executed, but the results rather disappoint-
ing” (§6) is a perfect synopsis of our work. 
His first criticism refers to the lack of pur-
pose in the tasks and therefore the lack of 
motivation for the participant. Although we 
fully agree with his remedy of shaping the 
tasks in a game-like manner, some studies, 
such as one by Ludger van Dijk et al. (2016), 
point out that improvements achieved in 
games using control modalities based on 
muscle signals do not necessarily trans-
fer to improvements in prosthetic control. 
Craelius himself, with reference to Yungher 
& Craelius (2012), states that “a significant 
improvement in speed of 15% was achieved 
after 30 trials with their virtual assistive ro-
bot; controls, in contrast, showed negligible 
improvement with their prosthesis” (§8). 
Therefore, we chose tasks or actions that 
reflect what a user would do with her pros-
thesis, although a repetitive task might lack 
excitement for her.

« 5 »  Craelius issued two more criti-
cisms. Firstly, he pointed out that there 
was a lack of disabled subjects in our study. 
This is undeniably a shortcoming, as is the 
low number of participants, which we will 
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amend in the mid-term future. Secondly, 
Craelius stated that the residuum can accom-
modate a larger number of sensors than a 
sound limb. In our experience, though, the 
opposite seems to be the case. Still, we agree 
that an increased number of sensors can 
lead to richer information about muscle ac-
tivity. When it comes to placement, our ap-
proach is to cover the whole circumference 
of the residuum rather than to target specific 
muscles. Doing so is our way of dealing with 
the mentioned radical muscle and tendon 
rearrangement and disruption of synergies 
among them.

« 6 »  This last criticism is shared by 
Richard Weir. His lament against the non-
patient-centric view of the ML community 
(§§1f), of which we are part and parcel, is 
totally well founded. For starters, electro-
myography has a number of well-known 
downsides, and the scientific community 
has been suggesting for almost a decade now 
that novel ways to detect muscle activity in a 
residual limb should be conceived and test-
ed (Castellini 2014). We ourselves are active 
in this field so we could not agree more on 
this, but this was not the focus of this work. 
Anyway, we acknowledge that using too few 
sensors (possibly of the wrong kind) would 
inevitably make sophisticated interaction 
useless – a view that all our commentators 
seem to share. Improving the sensors should 
be synergistically coupled with the RC-
framed approach to iML. Furthermore, the 
lack of feedback is an issue that is present in 
the entire field of myoelectric control. So far, 
no clinical system (besides body-powered 
hooks) provides relevant feedback to the 
wearer. As yet, we ourselves have investi-
gated this topic very little.

« 7 »  Again, we fully agree with Weir 
(§13) that the “ML algorithm […] is not the 
determinant for success”; we rather argue 
that the ML method, whatever it is, needs 
to possess certain characteristics – at least 
incrementality, which leads to interactivity. 
The pilot study presented here makes in-
tentional use of a standard method, briefly 
mentioned in §40 of our target article. We 
solely used the low-pass filtered rectified 
amplitude of the signals. (For further details 
on the method we refer the interested reader 
to Gijsberts et al. 2014.)

« 8 »  Furthermore, our work does not 
in any way challenge the effectiveness of 

the standard two-sites-of-residual-activity 
myoelectric system widely used in clinics. 
Pattern recognition (PR) potentially solves 
the issue of switching commands required 
in two-sites control, leading to “natural” 
control. From our experience, not having 
to rely on these commands would be a very 
welcome advancement for the prosthesis 
wearers; however, PR comes at a price, one 
of which being the lengthy initial calibration 
process. But the work that we present in our 
article is aimed at tackling exactly this prob-
lem: we want to eliminate the need to train 
all possible actions, in all required postures, 
for several times at once, in the beginning.

« 9 »  This is exactly where interactivity 
leads to a better combined performance of 
wearer and prosthesis, following the impera-
tive: “do not collect more data, rather collect 
better data.” In Experiment 2 for example, 
we started with an empty model (no training 
data at all) and updates only occurred when, 
and if, required. Repeating all gestures in all 
postures, as mentioned by Weir (“moving 
from one posture to another may result in 
overlapping muscle activity patterns,” §10), 
is exactly what the RC-framed iML should 
avoid.

« 10 »  All in all, the picture starts to 
emerge – myocontrol could be a paradig-
matically holistic problem: either you solve 
all its aspects at once, or you will not be able 
to solve it at all. Therefore, all suggestions we 
received (design more engaging tasks; im-
prove the sensors; improve interaction; and 
give feedback) need to be taken into account 
collectively. Peter Cariani, starting from his 
conceptual background and his research 
agenda as a physiologist, gets to a similar 
conclusion. He compares the physiology 
of motor control under natural vs. experi-
mental conditions and suggests enriching 
the human-machine interaction by adding 
more observables, actions, and feedbacks 
available to both the machine and the hu-
man, such as incorporating proprioceptive 
and tactile feedback signals from artificial 
hands and arms into prosthetic controllers. 
The grand goal is that of reproducing the 
wealth of bidirectional flow of information 
taking place in intact subjects: a large num-
ber of sensory channels, significant proprio-
ceptive feedback, tactile feedback, copies 
of the command signals that are activating 
muscles.

« 11 »  Regarding Cariani’s questions 
about the usage of the normalised root mean 
squared error: the nRMSE was used only as 
an a posteriori inter-subjective measure of 
the accuracy of the system and it played no 
role whatsoever in the selection of the train-
ing data. The training feedback was always 
and only that provided by the subject (Q1). 
We confirm that in this case the feedback 
could have easily been replaced by a thresh-
old posed on the nRMSE itself (Q2), which 
is what usually is done in the field of myo-
control – for instance when using the Target 
Achievement Control test as described by 
Ann Simon et al. (2011). Actually, from the 
point of view of the engineer, this is a very 
unusual characteristic of our experimental 
protocol: to employ a subjective judgment 
to determine whether a task was successful 
or not, instead of an inter-subjectively verifi-
ably measure. We ourselves have used such 
measures in the past.

« 12 »  Particularly fascinating in Cari-
ani’s commentary is the idea that the initial 
choice of observables, actions and feedbacks 
determines a cognitive “cage” in which the 
ML system is trapped – and since we have 
had no chance so far to design a ML system 
that evolves its own sensors and actuators, 
the cage remains as it is for the rest of the ex-
periment and plays a key role in its outcome.

« 13 »  There is an unfortunate practical 
implication of Cariani’s idea: any prosthetic 
system endowed with insufficient hardware 
will never get to a satisfactory level of inte-
gration and performance, no matter how 
smart the ML method and/or the interac-
tion schema is – one more hint at the holistic 
nature of myocontrol. Things are made even 
worse by the extremely high acceptance 
threshold in the field, as pointed out by Weir 
(§3), who, by the way, also touches upon this 
“cannot-neglect-the-hardware” conundrum 
when he says:

“ It is the limited number of control sites and the 
associated limit on the number of controllable 
DoF [degrees of freedom] that led investigators to 
explore other means of acquiring and using multi-
DoF control schemes such as ML. Users certainly 
want more DoFs, but not if it is a hassle.” (§5)

« 14 »  Cariani’s view is that human-ma-
chine interaction can be seen as two adap-
tive, purposive percept-coordination-action 
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systems, in which the data collection should 
be even more dependent on the evaluative 
feedback to the machine than in our simple 
experiment. Here too, we could not agree 
more.

Attention and culture
« 15 »  More ideas and suggestions, par-

ticularly focussing on the interaction, are to 
be found in the remaining commentaries. 
Starting from an exquisitely radical con-
structivist perspective and adopting our 
research agenda as a working hypothesis, 
Marco Bettoni offers some useful linguistic/
conceptual suggestions and two operational 
models. Bettoni suggests operating a concep-
tual switch from organising perceptual ob-
jects to organising a sensory field and then, 
after having constructed a conceptual ob-
ject, assigning the object not to the sensory 
field but rather to the “experiential reality” 
(a higher operational level). We definitely 
agree with his suggestions, particularly with 
the request to avoid using the word “match” 
altogether, “even when it refers to sensory 
patterns or conceptual structures and not to 
pictures of the physical world” (§11).

« 16 »  From a sociocultural perspective, 
Marco Guicciardi argues that human-machine 
interaction loops must be grounded in spe-
cific social practices, culturally and histori-
cally situated (repeated experiential inter-
action loops are not enough). In designing 
our experiments, we have already tried to 
enrich the socio-cultural dimension with 
respect to a classical experimental setting by 
working on the dimension of meaning, and 
on the mutual roles of human and machine: 
designing meanings for the interaction and 
inventing reciprocal roles for human and 
machine.

« 17 »  Still, Guicciardi goes even further, 
suggesting giving the iML system the capac-
ity to grasp the “frame” of the interaction 
(the rich context), to uncover the meaning 
(culturally and historically situated) of a ges-
ture. His suggestions are twofold: we should 
give the iML system the capacity to grasp the 
sociocultural context of the interaction; at 
the same time, we should enable the partici-
pant to be more aware of the iML system’s 
knowledge constructs; and both should have 
the capacity to create together new knowl-
edge outside the original social context 
where distances, shapes and sizes are cul-

turally defined. In order to provide at least 
a partial answer to his Q1, one initial move 
in this direction is to diversify and enhance 
the sensor modalities available to the iML 
system – not only to have more sensors of a 
specific kind, but also more different kinds 
of sensors relating to different kinds of data. 
For instance, there could be feedback from 
the device, environmental information, a 
more articulated dialogue between the pros-
thesis and the participant and a skilled way 
of extracting information from it. In this 
sense, it is likely that the more data, the bet-
ter, provided that the iML system is able to 
discern the relevant information from that 
which is irrelevant.

As salamanders do?
« 18 »  Finally, Martin Flament Fultot starts 

from a non-representationalist concep-
tual background, à la “intelligence without 
representation” (Brooks 1991), mixing be-
haviorism and Maurice Merleau-Ponty’s 
phenomenology. Flament Fultot’s research 
agenda is extremely different from ours:

“ The ideal goal would be to be able to grow a 
new limb, as salamanders do, and let the interac-
tions between neural, muscular and bony tissues 
adapt to one another during the growth process. 
The end result would be an embodied limb.” 
(§7)

As he clearly states, he is not interested in 
trying to build “anything that resembles a 
separate agent that interacts with us through 
intermediate mental schemata” (ibid), as we, 
instead, are.

« 19 »  For instance, in §3, Flament Fultot 
suggests trying not to represent the world 
through a model, but rather to fit the world 
just like the woodpecker’s beak fits the tree. 
But what is meant by representation here? In 
ML it is customary to do away with this con-
cept by blurring the distinction between a 
representation and, for example, the weights 
of a neural network. These two positions do 
not clash with each other, rather they start 
from two completely different definitions of 
a representation. For instance, we agree with 
Flament Fultot about stressing the concept of 
fitting, but we are definitely not interested in 
equipping the iML system with the capacity 
to build a “true representation” of the world. 
Rather, our ideal iML system should just 

organize its sensory field to build its experi-
ential reality (see Bettoni’s commentary and 
our response above).

« 20 »  Surprisingly, there is a final point 
of strong agreement between Flament Fultot 
and us, and this is the concept of embodi-
ment, or more precisely having the prosthesis 
feel like a part of the patient’s body. This con-
cept is slowly finding its way in the human-
robot-interaction community, too, due to 
the intuition that control will improve as the 
user embodies the prosthesis. Such embodi-
ment can only be realised via technologies 
that are not yet in sight, including extreme 
mechatronic dexterity, detailed feedback 
with sensory substitution, and close-to-
perfect myocontrol. Given the current state 
of the art, for this experiment we have in-
stead chosen to make the prosthesis a better, 
friendly, more responsive, tool/buddy, but in 
the future an upper-limb prosthesis will be 
used like a pair of glasses: don it and it works 
fine, doff it and go to sleep, don it again the 
next morning and it will work again just 
like yesterday – see Weir’s remark at §8. The 
road to embodiment is still very long, but we 
would like to see our attempt as a small step 
towards that goal.
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Abstract 

Background  Machine-learning-based myocontrol of prosthetic devices suffers from a high rate of abandonment 
due to dissatisfaction with the training procedure and with the reliability of day-to-day control. Incremental myo‑
control is a promising approach as it allows on-demand updating of the system, thus enforcing continuous interac‑
tion with the user. Nevertheless, a long-term study assessing the efficacy of incremental myocontrol is still missing, 
partially due to the lack of an adequate tool to do so. In this work we close this gap and report about a person with 
upper-limb absence who learned to control a dexterous hand prosthesis using incremental myocontrol through a 
novel functional assessment protocol called SATMC (Simultaneous Assessment and Training of Myoelectric Control).

Methods  The participant was fitted with a custom-made prosthetic setup with a controller based on Ridge Regression 
with Random Fourier Features (RR-RFF), a non-linear, incremental machine learning method, used to build and progres‑
sively update the myocontrol system. During a 13-month user study, the participant performed increasingly complex 
daily-living tasks, requiring fine bimanual coordination and manipulation with a multi-fingered hand prosthesis, in 
a realistic laboratory setup. The SATMC was used both to compose the tasks and continually assess the participant’s 
progress. Patient satisfaction was measured using Visual Analog Scales.

Results  Over the course of the study, the participant progressively improved his performance both objectively, e.g., 
the time required to complete each task became shorter, and subjectively, meaning that his satisfaction improved. 
The SATMC actively supported the improvement of the participant by progressively increasing the difficulty of the 
tasks in a structured way. In combination with the incremental RR-RFF allowing for small adjustments when required, 
the participant was capable of reliably using four actions of the prosthetic hand to perform all required tasks at the 
end of the study.

Conclusions  Incremental myocontrol enabled an upper-limb amputee to reliably control a dexterous hand prosthe‑
sis while providing a subjectively satisfactory experience. The SATMC can be an effective tool to this aim.

Keywords  Hand prosthesis, Machine-learning control, Myocontrol, Training, Single-case experimental design
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Background
In our world tailored to interact using one’s hands peo-
ple with upper limb absence use prosthetic limbs to 
overcome resulting challenges. Upper-limb prostheses 
have seen major technological advances in the last dec-
ade. Multi-articulated prosthetic hands with individual 
finger actuation are becoming more present and can be 
combined with (multi-articulated) actuated prosthetic 
wrists [1].

These technological advancements are accompanied 
by novel developments in myocontrol, which is the con-
trol of (prosthetic) devices using muscle signals, most 
commonly based on electromyography (EMG). These 
developments are manifold and include the distinction 
of up to 11 intended actions, such as power grasp, point-
ing index or wrist flexion, with a success rate above 94% 
[2], the usage of high-density sensor matrices for con-
trol of up to 4 degrees of freedom (DOFs) of a robotic 
arm [3] or for decoding spike trains [4, 5], feature extrac-
tion based on deep learning  [6] or the usage of differ-
ent sensor modalities, such as forcemyography  [7–10], 
ultrasound  [11, 12] or electrical impedance tomogra-
phy [13, 14]. Yet, the clinical standard since decades is a 
two-electrode control that uses a EMG-based switching 
command to cycle through the DOFs of the prosthetic 
setup [15]. Although many approaches, such as the ones 
mentioned in this paragraph, provide promising results, 
only few that are based on machine learning (ML) have 
reached the users [16, 17].

The process from initial algorithm development to 
applying the algorithm in daily living prosthesis use faces 
a number of challenges. An early involvement of the user 
is essential, since findings offline (without the user in the 
loop) do not translate to the online application (with the 
user in the loop) [18]. Hence, online testing with the user 
performing goal-reaching tasks has become the standard 
in evaluating the performance of a novel method [8, 19–
22]. Moreover, the introduction of ML-based methods 
adds a further processing step to myocontrol. Instead of 
directly using sensor readings as control for prostheses, 
these signals are first processed and interpreted before 
they can be converted into control signals of the hand. 
This introduces a further layer of complexity for the user. 
Although measures have been taken to make this layer 
as intuitive and easy-to-use as possible  [23, 24], studies 
have shown that ML-based methods require an extended 
training and learning phase  [25, 26], which users can 
experience as exhaustive, potentially leading to abandon-
ment  [27–29]. A further aspect that is challenging for 
ML-based myocontrollers is the limb-position effect  [30, 
31]. It describes the issue that the measured EMG 
depends on the specific body posture, potentially lead-
ing to the myocontroller detecting another action then 

intended. Particularly ML-based myocontrollers suffer 
from this effect as already minor changes in the muscle 
configuration can have a significant influence on the rec-
ognition of an action [31].

Incrementality can be a solution to deal with these 
issues. Incremental ML methods allow the user to update 
or add new information to the training data, instead of 
retraining completely anew. This reduces calibration time 
significantly. Small and/or regular updates to an ML-
based myocontroller in positions where it is required 
have been shown to improve performance of a myocon-
troller [25, 32–34].

However, existing validated assessment tools don’t 
explicitly take incrementality into account and are not 
tailored for use with ML-based myocontrollers. A recent 
overview has been provided by Kyberd [35].

We have taken inspiration from a number of validated 
assessment tools and developed the Simultaneous Assess-
ment and Training of Myoelectric Control (SATMC) pro-
cedure. It can deal with incrementality and the specifics 
of novel myocontrol methods, allows the user to gradu-
ally improve and at the same time continuously assesses 
the myocontrol system. We have published a preliminary 
description and evaluation previously [36].

In this work we performed a long-term study involving 
one transradial amputee fitted with a multi-articulated 
prosthetic hand and a custom-built socket controlled by 
an incremental myocontroller based on Ridge Regression 
with Random Fourier Features (RR-RFF) [7, 8, 25, 32, 33]. 
Using the SATMC procedure allowed the participant to 
train how to use the incremental myocontroller, while 
simultaneously assessing the performance of the user in 
daily-living tasks. The goal of this study was to show that 
an incremental training protocol can be used to train a 
user to learn a complex myocontroller while at the same 
time assess the improvement of the user.

Methods
User study
After being thoroughly informed about the content and 
risks of the study, the participant (P) signed an informed 
consent form and agreed to participate. This study was 
formally approved by the host institution’s internal com-
mittee for data protection (ASDA 14/05 TOP 6.5 on 
02.09.2014) and it followed the guidelines of the World 
Medical Association’s declaration of Helsinki. The male 
participant was 35 years old at the start of the study. 
He had undergone a traumatic transradial amputation 
of his left arm 11 years prior to the study. He routinely 
used a Variplus hand (Otto Bock GmbH) with a stand-
ard two-sensor control for opening and closing of the 
hand. He had neither experience with multi-articulated 
prosthetic hands nor with ML-based myocontrol. For the 
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participation he received financial compensation for the 
cost of the commute and his time.

During the experiment two experimenters were pre-
sent at all times. One person was the operator, who was 
concerned with supervising the myocontrol including 
updates, monitoring of the signals and assuring the cor-
rect completion of the protocol. A second person had a 
purely observational role making notes regarding the 
behaviour and manner of task execution.

The user study is based on Single-Case Experimen-
tal Design (SCED)  [37–39], which provides guidelines 
for performing structured experiments involving only 
a small number of participants. Although less common 
in the field of prosthetics, a number of studies following 
these guidelines have been performed  [40–43]. SCED-
based studies can provide a high level of evidence, if car-
ried out correctly [38].

Prosthetic hardware
For the purpose of this study P was fitted with a custom-
made prosthetic socket that could house eight myoelectric 
sensors. The design and the fitting were done by a certi-
fied prosthetist of Pohlig GmbH in Traunstein, Bavaria, 
Germany (part of Otto Bock GmbH). For the setup in this 
study eight 13E200=50 MyoBock sensors were used  [44]. 
This is a larger number than the two-sensor arrangement 
of direct control, but eight sensors have already been suc-
cessfully used in daily living as part of commercially availa-
ble solutions [16, 17]. The electrodes were placed uniformly 
distributed around the circumference of the proximal 
forearm using snap-on domes. The most proximal snap-
ons were placed 6cm from the medial epicondyle. The 
inter-dome distance spans 1.5cm. With this arrangement 
the electrodes cover the majority of the forearm muscles. 
These were embedded in the inner silicone layer of the 

design, while the outer layer was manufactured out of car-
bon fibre, see Fig.  1. Using custom-made electronics, the 
sensors were connected to the aforementioned snap-on 
domes. The communication between the sensors and the 
desktop computer used for computation was wired in the 
beginning of the experiment and wireless from session 24 
onwards. The hardware was not optimised to fit in the con-
fined space of the prosthetic socket. Hence, P was required 
to carry a small backpack with battery-powered electronics 
for reading the sensors and transmitting these readings to 
the desktop machine (Fig. 1, left-hand side). There was no 
additional weight on the prosthesis impacting the perfor-
mance besides the socket and the prosthetic hand, which 
was an i-LIMB Revolution (Össur hf). The i-LIMB Revolu-
tion is capable of individual finger flexion for all five fingers 
and additionally thumb abduction.

Incremental myocontrol algorithm
The basis of RR-RFF is Ridge Regression, which is linear 
regression with a regularisation parameter,

The terms in Eq. (1) represent the predicted values ŷ , the 
regression weights W  , the input x , as well as the regulari-
sation hyperparameter � and the identity matrix I . X and 
Y  are the collection of all data used for training and the 
associated target values, respectively.

RR-RFF is an extension of Ridge Regression, where the 
input x is projected into a higher-dimensional space using 
a finite-dimensional approximation of a Gaussian Kernel,

(1)ŷ = Wx with W = (XTX + �I)−1XTY .

(2)φ = φ(x) =
√

2 cos(�x + β),

(3)� = φ(X) = 2/D cos(X�T
+ B),

Fig. 1  Prosthetic setup in our study; On the left: Participant P wearing custom-build hardware consisting of a small backpack housing hardware for 
data acquisition and wireless communication and a battery. On the right: Custom-build socket with eight snap-on electrodes uniformly distributed 
around the circumference of the stump. The prosthetic hand was the i-LIMB Revolution (Össur hf )
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where σ 2 is a hyperparameter and represents the vari-
ance of the Gaussian Kernel. This mapping φ : Rd

→ RD 
transforms the d-dimensional input space into a 
D-dimensional feature space. D is a further hyperparam-
eter of the algorithm. Applying this transformation to 
Eq. (1) results in the final expression of RR-RFF,

This non-linear mapping allows the algorithm to ade-
quately fit data, where a linear mapping would not be 
sufficient. A detailed description of the underlying prop-
erties will not be covered here as previous publications 
already have done so [32, 45, 46].

An arbitrary number of electrodes can serve as input 
to the algorithm. The eight sensors used in this study are 
non-invasive and provide an already pre-filtered surface 
EMG (sEMG) signal, which is amplified, bandpass-fil-
tered, and rectified onboard [44]. This signal was sampled 
at 100  Hz and further low-pass filtered with a 1st order 
Butterworth filter with a cut-off frequency of 1 Hz. The 
resulting feature was the envelope of the sEMG signal 
and comprised the input to the RR-RFF-based myocon-
troller. The predicted output ŷ of Eq.  (6) was the indi-
vidual DOFs of the prosthetic hand. These were the 
flexion of each of the five fingers plus the abduction of 
the thumb. By controlling each finger different actions 
can be composed, e.g. power grasp.

Furthermore, a number of features of RR-RFF were 
relevant in the context of this user study. First, based on 
previous studies, hyperparameters and modifications 
have been identified that allow for a fast and incremental 
update of the algorithm [32]. This feature is particularly 
relevant when dealing with the limb position effect. Due 
to incremental learning in positions, where the control 
becomes unstable, additional repetitions can be gath-
ered, the algorithm can be updated and the execution can 
continue after a few seconds. Furthermore, the RR-RFF-
based myocontroller predicts the individual DOFs of the 
prosthetic hand, e.g. index flexion, instead of action as 
a whole, e.g. power grasp. This feature allowed us to use 
incrementality for action training. That is, a new action 
that is added to an existing action set is represented by 
an additional configuration of the individual DOFs of 
the prosthetic limb and therefore does not require a fur-
ther DOF in the vector of the target values ŷ . This fea-
ture allows the user to start with a minimal functional 
training and perform updates only when required and, 

(4)� ∼ N (0, σ 2),

(5)β , B ∼ U(−π ,π),

(6)ŷ = Wφwith W = (�T�+ �I)−1�TY .

therefore, reduces the initial calibration time of the myo-
controller. An initial training can consist of only rest and 
power grasp and in a later update additional actions can 
be added, e.g. precision grasp.

Second, collection of training data is only done on the 
sustained part of action execution. This is the static part 
of the feature-data, when the user maintains an action 
with an approximately constant force. Often ramped 
training data is collected for regression-based algo-
rithms  [47–49]. This refers to the onset (and offset) of 
the feature-data, when transitioning from resting to an 
action. While there are benefits of using the dynamic 
part of the contraction  [31], some users are not capable 
to follow a ramped signal closely [32, 50]. To avoid poorly 
labelled data, only the sustained part of an action is taken 
into account, which can be maintained for a few seconds. 
This has the added benefit that a screen displaying the 
visual stimulus is not required simplifying updates in 
positions and during tasks, where no screen is visible.

Third, the myocontroller is capable of progressive for-
getting. Under the assumption that updates are required 
once a given situation has changed and/or the partici-
pant expresses different/improved sEMG signals, older 
training data becomes obsolete. The behaviour is that of 
a ring buffer, where the addition of an entry beyond the 
size of the buffer leads to the removal of the first/oldest 
entry. Since the training of the myocontrol is based on 
repetitions of actions, the size was set to five repetitions 
per action. This means that up to the fifth repetition the 
repetitions are added to the training data and therefore 
increasing the amount of training data. With the addition 
of the sixth repetition the chronologically first repetition 
will be removed. Therefore, after adding the fifth repeti-
tion to the training data the amount of data remains con-
stant. This process applies to each action trained.

Simultaneous assessment and training of myoelectric 
control (SATMC)
Based on the issues described in “Background” we for-
mulated four aspects (A1–A4) that we deem important 
in the design of an assessment and training tool for ML-
based myocontrol: repeatability and increasing diffi-
culty (A1), postural variation during tasks (A2), multiple 
actions per task (A3), and a short familiarisation time for 
the rater (A4).

Among validated assessment tools none satisfies all 
four of these aspects. Exemplary from the most common 
tests for prosthetic control we evaluate the Assessment 
of Capacity for Myoelectric Control (ACMC)  [51], the 
Southampton Hand Assessment Procedure (SHAP)  [52], 
and the Clothespin Relocation Test (CRT) [53] consider-
ing the aspects A1–A4.
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The ACMC is an observational assessment tool for 
prosthetic usage that can be performed in the home of a 
user or a room specifically designed to provide a house-
hold environment. Being able to observe a user in an 
environment as close as possible to daily living provides 
highly relevant insights in the validity of a given pros-
thetic system. As the tasks can be any activity of daily-liv-
ing aspects A2 and A3 can easily be fulfilled. However, no 
specific guidelines provide structure to task repetition or 
increase of task difficulty (A1). Furthermore, professional 
training is required to draw proper conclusions purely 
from observations, making the ACMC less accessible 
(A4). Its current version is not tailored to multi-articu-
lated prostheses [35].

The SHAP on the other hand is a test that can be 
administered with minimal training of the experi-
menter (A4) and only requires a suitcase of objects for 
its execution. The SHAP is a collection of tasks that are 
abstractions of activities of daily living (ADLs). They are 
performed in a seated position at a table and evaluated 
using an easy-to-use measure, the time to finish a task. 
The seated position only allows for limited assessment 
of issues arising from the limb position effect and there-
fore does not fulfil A2. The tasks have different levels of 
difficulty, however the limited options to vary tasks do 
not allow for a structured approach to increase difficulty 
(A1). Furthermore, the SHAP is comprised of unilateral 
tasks, which are all based on grasping actions (A3).

A good example of a test targeted at multi-articu-
lated prostheses and complex tasks is the CRT. This test 
requires simultaneous activation of a prosthetic wrist 
and hand and thereby satisfies A3. As the name suggests 
clothespins need to be relocated from a horizontal bar 
to a vertical one, which in this case requires a rotation of 
the clothespins while maintaining a firm grip. Since the 
CRT consists of one task only, it offers rather little vari-
ability in its execution and difficulty (A1), but it contains 
postural variation (A2). Furthermore, only once a user is 
proficient in the use of their prosthesis the CRT can offer 
insight in the user’s capabilities. As no dedicated training 
of the experimenter is required A4 is satisfied.

The SATMC combines the advantages of the afore-
mentioned assessment tools with added focus on aspects 
A1–A4. The following paragraphs describe how these 
aspects are implemented in the SATMC. They describe 
the guidelines, the implementation of structured tasks 
and a customised experimental setup.

Guidelines
An essential feature of the SATMC is a progressive 
increase in difficulty at a speed adaptable to the capa-
bilities of the user (A1). This increase is two-fold. On the 
one hand each task has different levels of difficulty and 

on the other hand within the protocol we employ a step-
wise increase in control complexity. The latter is real-
ised by increasing the number of actions to control. In 
the beginning only two actions are available to the user. 
Starting with an action very commonly used, e.g. a hand 
close gesture/power grasp and a hand open / rest gesture. 
This initial action set already provides the functionality of 
common gripper prostheses.

The SATMC is organised in sessions and phases. A ses-
sion is a collection of tasks administered as a closed unit. 
Per visit only one session is performed. A phase is charac-
terised by multiple sessions with a specific action set and 
therefore spans multiple visits of the participant. Moving 
from one phase to another represents an increase in con-
troller complexity as another action is added to the cur-
rent action set.

In a session the user performs three repetitions of a 
set of five tasks. Each task has five variations of increas-
ing difficulty, which are designed to fulfil aspects A2 and 
A3. Further details regarding tasks can be found in Para-
graph “Tasks”. After a set of five tasks, the user is asked 
to self-evaluate their performance. For this purpose, we 
use a visual analogue scale (VAS), on which better or 
easier performance is rated higher. These self-evaluations 
determine the degree of difficulty for the next task varia-
tions. Based on an equal split of the scale, an evaluation 
of VAS 0–3.3 results in a repetition of the previous level 
of difficulty, while an evaluation of VAS 3.4–6.6 leads to 
an increase by one step and an evaluation of VAS 6.7–
10 leads to an increase by two steps. These evaluations 
determine the next five variants of the tasks. Following 
their execution, this second set of task variants is evalu-
ated determining the third and last five variants of the 
tasks. They are performed and evaluated, which then 
concludes one session with a total of 15 task executions. 
It is possible that in case of low VAS ratings a variant of 
a task is repeated three times within one session. Once a 
user becomes proficient in the performance with a given 
set of actions, a new phase of the study can be started. 
Two consecutive sessions, in which the self-assessment of 
all 15 tasks is in the range VAS 6.6–10 determines this 
point and a new action can be added to the existing set. 
Since the set of actions has been expanded the tasks have 
to be updated as well to ensure the usage of all available 
actions. An exemplary graphical representation of this 
process is given in Fig. 2.

Additionally to the self-assessment by the user, an easy-
to-use measure has been chosen to assess the tasks in 
order to only require little to no training of the experi-
menter (A4). For this purpose, the task completion time 
(TCT) was selected. It has been shown that timing tasks 
is a key parameter for prosthetic use [54]. It is important 
to note that a focus was put on continuing a task rather 
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than ending it prematurely due to erroneous behaviour. 
In case an object e.g. is dropped, rather than ending a task 
and counting this task as failed the user is encouraged 
to pick the object up again and continue with the task. 
This becomes particularly relevant in  situations where 
the control algorithm reaches its limits, e.g. postures in 
which no training was performed. In these situations, 
where an execution is not possible due to poor perfor-
mance of the myocontroller and retraining is required, 
the additional time spent on retraining is part of the task 
execution time and contributes to the overall evaluation. 
Therefore, algorithms that allow for a quick recalibration 
or even incremental learning will have shorter task dura-
tions in difficult situations.

Moreover, in order to reduce the burden on the user, 
they should be informed that the tasks are being timed, 
but they are not required to perform the tasks as fast as 
possible. The ADL-like tasks are not of a competitive 
nature. A fundamental principle in SATMC is repetition 
and improvement over time. The latter should still be 
evident in case the tasks are not executed as quickly as 
possible.

As it was mentioned in “User study” the SATMC fol-
lows SCED. Two central aspects are direct replication 
and the introduction of a baseline. The different phases of 
the SATMC correspond to direct replication, where each 
phase is a different condition the ML-based myocon-
troller is assessed in. To ensure a baseline throughout the 

administration of the SATMC one of the five tasks should 
be kept unchanged.

Following these guidelines, users can train their capa-
bilities and the experimenter can assess the performance 
of user, prosthesis and myocontrol algorithm. The end 
of an experimental study can either be reached once this 
performance reaches its limits or by personal preference 
of the participant.

Tasks
Task design is influenced by aspects A1–A3 defined in 
“Simultaneous assessment and training of myoelectric 
control (SATMC)”. They mutual influence one another, 
as changes in posture (A2) and changes in the number of 
actions per task (A3) impact the difficulty of a task (A1). 
Height and rotational distance play an important role 
for grasp stability, i.e. at what height an object needs to 
be manipulated or over what height difference an object 
needs to be moved, and the extent of rotation required 
at the wrist. Furthermore, larger planar distances require 
for longer periods of stable grasping, which in turn make 
a task more difficult. These three distance measures (pla-
nar, vertical and angular) have been quantified as null, 
short, middle and long in order to compare different lev-
els of task difficulty. Additionally, introducing subtasks in 
a given task is a further option to increase difficulty.

We have developed five variations for each task to 
reflect increasing levels of difficulty. These variations are 

Fig. 2  Diagram of the SATMC: Each bifurcation indicates the onset of a new phase, where an action is added to the existing ones and the tasks are 
updated. Sessions are visualised by rows spanning a set of actions of the same colour. Balloons tasks and task variations list exemplary tasks with 
exemplary task variations for a given session. Furthermore, balloon sample session gives a short overview of the process in an example session, 
where the tasks in the first column are executed, evaluated in column two and updated accordingly. The update is based on the VAS evaluation, see 
balloon task updates. This process is then repeated until 15 tasks have been performed and evaluated. ti,j represent variation j of task i. ak is action k 
and lm is landmark m in the study setup
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indicated in the task number, e.g. t2,3 , which represents 
the third variation of task number 2. A list of tasks that 
we have developed according to the aforementioned con-
siderations can be found in Table  1. The values of the 
three different distance measures per task variation can 
also be found in Table 1. This list of tasks is not exhaus-
tive and not all tasks are required for the execution of the 
SATMC. Further tasks can be added keeping the afore-
mentioned criteria in mind. In Table 1 tasks 10–12 have 
been omitted, since they were not used in the present 
user study. The tasks for each phase are selected by the 
person administering the SATMC. The set of five tasks 
should require all actions that have been trained so far, 
but not more, and should not be changed during a phase.

In the task descriptions in Table 1 several abbreviations 
are used. The landmarks ln can be found in the next para-
graph describing the setup. The actions that are involved 
in each task are abbreviated by an and correspond to 

(a1)	� power grasp,
(a2)	� precision grasp,
(a3)	� pointing gesture,
(a4)	� preshaping for flat grasp (thumbs up), and
(a5)	� flat grasp.

Setup
An overview of an instance of a setup with landmarks 
ln indicated as numbers n can be found in Fig. 3. These 
landmarks can be described as follows: 

(l1)	� on the rectangular table, straight in front of the 
participant

(l2)	� on the rectangular table, half a meter laterally 
towards the intact hand.

(l3)	� on the corner of the rectangular table.
(l4)	� on the round table.
(l5)	� on the ground, one side of the round table.
(l6)	� on the ground, other side of the round table 

(wastebasket).
(l7)	� on the shelf, lower level ( ∼ 0.20  m above the 

ground).
(l8)	� on the shelf, middle level ( ∼ 1.00  m above the 

ground).
(l9)	� on the shelf, top level ( ∼ 1.80 m above the ground).

 The participant is seated in front of l1 at the beginning 
of a task. Based on these landmarks we approximated 
the difficulty in terms of planar and vertical distance, 
see Table 1. For example, picking up an object at l1 and 

releasing it at l2 is easier than picking it up at l1 and bring-
ing it to l9.

Each task requires some objects to manipulate or move 
around. A set of objects required for the tasks in Table 1 
can be found in Fig. 4.

Analysis
Additionally to the primary measures TCT and VAS, we 
recorded sEMG-data for the entire duration of the exper-
iment and logged each algorithm update with sEMG-data 
and timing for further evaluation.

Training data can be evaluated using common meas-
ures of data properties, e.g. the Separability Index (SI) 
and the Repeatability Index (RI) [21, 55, 56]. SI is a meas-
ure of cluster separation, where the distance between 
cluster centroids is weighted with the spread of the 
clusters.

with n representing the number of actions, µi the cen-
troid of action i, µci the centroid of the most conflicting 
action for action i and S =

Si+Sci
2  with Si and Sci repre-

senting the covariance of the aforementioned two corre-
sponding actions.

RI usually compares the feature-data collected during 
training with the feature-data from the testing phase. 
Since the execution of the tasks in the SATMC is rather 
free, there is no ground truth in the testing phase that can 
be used for this comparison. As an alternative, we com-
pare the repetitions of an action that are used to train the 
myocontrol, which in turn provides information on the 
data consistency between repetitions. The RI is a meas-
ure of difference between these repetitions per action, i.e. 
a distance measure of the repetition centroid weighted 
with the spread of the repetitions.

with n representing the number of actions, ri the number 
of repetitions for action i, µi,j/k the centroid of repetitions 

j/k of action i, and S =
Si,j+Si,k

2  with Si,j and Si,k represent-
ing the covariance of two different repetitions of action i. 
The measures SI and RI were calculated only using train-
ing data.

Throughout the study sEMG-data was gathered dur-
ing task execution together with the parameters and 
hyperparameters of the RR-RFF-based algorithm. Since 

(7)SI =
1

n

n
∑
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(
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2

√
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Table 1  Description of tasks

Action(s) Distance

Task # Involved Planar Vertical Angular Description

t1,0 (a1) Short Null Null Pick up a bottle at l1 ; release it at l3.

t1,1 (a1) Middle Short Null Pick up a bottle at l1 ; release it at l4.

t1,2 (a1) Long Middle Null Pick up a bottle at l1 ; release it at l9.

t1,3 (a1) Short Null Middle Pick up a bottle at l1 ; pour water from it in a mug at l2 ; release it at l1.

t1,4 (a1) Middle Middle Middle Pick up a bottle at l9 ; pour water from it in a mug at l4 ; release it at l9.

t2,0 (a1) Short Null Null Pick up a jar at l1 ; open it (unscrew the cap); release it at l3.

t2,1 (a1) Short Null Middle Pick up a jar at l1 ; open it; pour ball at l2 ; release it at l2.

t2,2 (a1) Middle Middle Middle Pick up a jar at l1 ; open it; pour ball at l2 ; release it at l6.

t2,3 (a1) Long Middle Middle Pick up a jar at l8 ; open it; pour ball at l2 ; release it at l6.

t2,4 (a1) Long Long Middle Pick up a jar at l9 ; open it; pour ball at l2 ; release it at l6.

t3,0 (a1) Short Null Null Pick up a basket at l1 ; release it at l3.

t3,1 (a1) Middle Null Null Pick up a basket at l1 ; release it at l4.

t3,2 (a1) Middle Middle Null Pick up a basket at l5 ; release it at l4.

t3,3 (a1) Middle Middle Null Pick up a basket at l5 ; release it at l2 ; take out object to l1.

t3,4 (a1) Middle Long Null Pick up a basket at l5 ; release it at l2 ; take out object to l9
t4,0 (a1) Short Null Null Pick up salami at l1 ; bring it to chopping board at l2 ; slice it with knife.

t4,1 (a1) Middle Null Null Pick up salami at l3 ; bring it to chopping board at l2 ; slice it with knife.

t4,2 (a1) Middle Null Null Pick up salami at l4 ; bring it to chopping board at l2 ; slice it with knife.

t4,3 (a1) Long Middle Null Pick up salami at l9 ; bring it to chopping board at l2 ; slice it with knife.

t4,4 (a1) Long Middle Null Pick up cutting board at l8 ; bring it to l2 ; pick up salami at l9 ; bring it to chopping board at l2 ; slice it 
with knife.

t5,0 (a1) Short Null Null Pick up duster and dustpan at l1 ; sweep the dust from the table at l2.

t5,1 (a1) Middle Null Null Pick up duster and dustpan at l1 ; sweep the dust from the table at l4.

t5,2 (a1) Long Null Null Pick up duster and dustpan at l1 ; sweep the dust from the table at l4 ; chuck the dust out in a waste‑
basket at l6.

t5,3 (a1) Long Middle Null Pick up duster and dustpan at l7 ; sweep the dust from the table at l4 ; chuck the dust out in a waste‑
basket at l6.

t5,4 (a1) Long Middle Null Pick up duster and dustpan at l7 ; sweep dust from the table at l4 ; chuck dust in wastebasket at l6 ; 
bring duster and dustpan back at l7.

t6,0 (a2) Short Null Null Pick up DLR cube at l1 ; stack it on another DLR cube at l2.

t6,1 (a2) Middle Null Null Pick up DLR cube at l1 ; stack it on another DLR cube at l4.

t6,2 (a2) Long Long Null Pick up DLR cube at l7 ; another at l9 ; stack it on another DLR cube at l2.

t6,3 (a2) Middle Null Null Pick up a checker at l1 ; stack it on another checker at l4.

t6,4 (a2) Long Long Null Pick up a checker at l7 ; another at l9 ; stack it on another checker at l2.

t7,0 (a2) Null Null Null Fold towel at l2.

t7,1 (a2 , a1) Short Null Null Get towel at l3 ; Fold towel at l2.

t7,2 (a2 , a1) Middle Middle Null Get towel at l3 ; Fold towel at l2 ; return to l9.

t7,3 (a2 , a1) Middle Long Null Get towel at l4 ; Fold towel at l2 ; return to l9.

t7,4 NA

t8,0 (a2) Null Null Null Pull the handle up to zip the jacket at l2.

t8,1 (a2) Middle Null Null Get jacket from l8 ; place it at l1 ; Pull the handle up to zip the jacket at l1.

t8,2 (a2) Null Null Null Wear a jacket with a zipper; pick up the zipper’s handle; pull the handle up to zip the jacket.

t8,3 (a2) Middle Null Null Pick up jacket at l1 ; Put jacket on; pick up the zipper’s handle; pull the handle up to zip the jacket.

t8,4 (a2) Middle Null Null Unzip jacket at l1 ; Pick up jacket at l1 ; Put jacket on; pick up the zipper’s handle; pull the handle up to 
zip the jacket.

t9,0 (a3) Middle Short Null Turn on the lights.

t9,1 (a3 , a1) Long Middle Short Turn on the lights, grasp jar at l9 , put it back at l2 , turn the light off.

t9,2 (a3) Null Null Null Dial a number at l1 (vertical key).

t9,3 (a3) Short Null Middle Dial a number at l1 (horizontal key).
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the myocontroller is based on Ridge Regression, the least-
squares formulation in Eq.  (1) can be interpreted from 
a Bayesian perspective  [57, 58]. Based on a new sample 
of data xn+1 , we can not only predict a single value ŷn+1 , 

but also get information about the uncertainty of the pre-
dicted value. For this purpose, the predictive distribution is 
required

with data representing all samples xi and labels yi used 
for the calculation of the ML model. For Ridge Regres-
sion a closed form for the predictive distribution can be 
found. It follows a normal distribution with mean µn+1 
and variance σ 2

n+1

with

(9)f (ŷn+1|xn+1, data),

(10)f (ŷn+1|xn+1, data) ∼ N (µn+1, σ
2
n+1),

(11)µn+1 =

(

XTX +
b

a
I

)

−1

XTYxn+1,

Table 1  (continued)

Action(s) Distance

Task # Involved Planar Vertical Angular Description

t9,4 (a3 , a1) Short Null Middle Dial a number at l1 (horizontal key); pick up handle; put it back down.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
t13,0 (a3) Short Null Null Roll small ball from l1 to l2.

t13,1 (a3 , a1) Middle Null Null Roll small ball from l3 to l2 , grasp it and put it at l8.

t13,2 (a3 , a1) Short Middle Null Roll small ball from l9 towards you, let it fall, grasp it with the intact hand

t13,3 (a3 , a1) Middle Middle Null Roll small ball from l5 towards you, grasp it and put it in wastebasket at l6
t13,4 NA

an correspond to actions: ( a1 ) power grasp, ( a2 ) precision grasp, ( a3 ) pointing gesture, ( a4 ) preshaping for flat grasp (thumbs up), and ( a5 ) flat grasp; ln corresponds 
to landmarks described in Sect. “Setup” and can be seen in Fig. 3. Distance cut-offs are based on the setup and DOF usage. planar: short—only on rectangular table, 
middle—between rectangular table and round table or between shelf and round table, long—beyond that; vertical: short—between rectangular table and round 
table, middle – involving one level on the shelf, long—involving two levels on the shelf; angular: short— involving some rotation at the wrist level, middle – involving 
up to 90◦ rotation at the wrist level (supination or pronation), long—involving up to 90◦ rotation at the wrist level (supination and pronation). Note that tasks 10–12 
are not presented since they were not used in this study

Fig. 3  Overview of the setup used in the SATMC; a sketch on the left and the implementation in our laboratory on the right. Numbers in the setup 
indicate landmarks ln , which are used in task descriptions

Fig. 4  Objects used in the user study; from left to right: duster and 
dust pan, phone, basket, bowl with knife, bottle with “fluid”, jar with 
ball, shirt to fold, mug, and Jenga tower
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For a full derivation of µn+1 and σ 2
n+1 we refer the inter-

ested reader to Bolstad and Curran [57].
From Eq. (11) we can see that the mean is equal to the 

predicted value from Eq.  (1). The variance σ 2
n+1 allows 

us to evaluate the uncertainty of a predicted value, 
where high values represent high uncertainty and low 
values low uncertainty. Therefore, we can assess given 
the data, whether an action has been predicted with a 
high or a low confidence.

Results
Our participant was followed for 13 months, dur-
ing which P performed 31 sessions. The sessions took 
place once per week or every two weeks and lasted 
between 30 min and 2 h. A longer gap of three months 
occurred between sessions 22 and 23. Over these 31 
sessions we attempted four different phases (character-
ised by an increase in number of actions), of which one 
was unsuccessful (precision grasp). As a baseline a task 
was needed that was not too complex but useful and 
it needed to fit the possibilities provided after initial 
action training. To this end, we selected task t2,0 from 
Table  1 as a baseline measure. Furthermore, in order 
to compare the incremental ML-based myocontrol to 
the standard two-sensor myocontrol a second baseline 
measure was introduced. This was a single session (ses-
sion 20) where P used his own prosthesis, which is con-
trolled in this manner.

As a further note, at the beginning of each new ses-
sion the ML model from the previous session was 
reloaded. The training data was only updated, when it 
was required and either asked for by the participant 
or initiated by the experimenters. This is based on our 
idea of incrementality, where only minimal initial ML 
training is performed and changes or uncertainties are 
dealt with by deliberate updates.

(12)σ 2
n+1 =

1

a
+ xTn+1(aX

TX + bI)−1xn+1.
Protocol overview
Figure  5 shows the process of the SATMC indicating 
each session and all actions that were attempted during 
the different phases. In session 7 the precision grasp was 
introduced, while from session 11 onwards said action 
was no longer part of the action set. P encountered diffi-
culties with distinguishing the power grasp and precision 
grasp reliably. This became evident to the experimenters 
in terms of heavy jitter and instability in the myocontrol. 
Therefore, it was decided to consider this phase (phase 2) 
failed and P switched to a different grasp that was consid-
ered to be more likely to create a distinguishable action 
set, i.e. pointing index (phase 2’).

After reaching the end of phase  2’ P performed the 
second baseline in session 20 by using his own prosthe-
sis, a myoelectric gripper. The tasks performed therein, 
were the ones from phase  2’. This session is highlighted 
in orange.

Timing evaluation
TCT was measured from the beginning of a task to its 
end, including potential missteps and / or updates to the 
controller. A summary of the TCT across the full user 
study can be found in Fig.  6. We can see an improve-
ment within phases. Particularly, phases 2’ and 3 show a 
reduction in baseline TCT from session to session until 
reaching a plateau, see Fig. 6b. For phase 1 the trend for 
baseline TCT is slightly positive. Taking the plateau area 
of phase  2’ into account these values seem to be on a 
similar level. As phase 2 has only one measurement, no 
trends can be seen. However, the single value is higher 
than in phases  1 and 2’, which could indicate issues in 
task performance.

The TCT boxplots in Fig.  6a are in line with what 
is shown in Fig.  6b. Earlier sessions of phase  1 and 3 
seem to have higher TCT values and a higher variance, 
which then drops towards the end of the phases. The 
trend seems to be less prominent in phase 2’, yet earlier 

Fig. 5  Overview of all sessions and phases present in the user study. Colours indicate different phases. In session 20, highlighted in orange, P 
performed tasks from the SATMC with his own prosthesis using direct two-electrode control
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sessions seem to have slightly higher values. Phase  2 
again has only one measure, which is on a similar yet 
slightly higher level than the initial values of phase  2’ 
taking into account the outlines of the boxplot.

Additionally, we can see from the plots in Fig. 6 that 
the TCT with the incremental myocontroller is on 
a comparable level with P using his own prosthesis. 
The comparison should be drawn to phase  2’, since it 
involves the same tasks.

VAS self‑assessment
The self-assessment using a VAS followed a similar 
behaviour as TCT, see Fig.  7. Here the satisfaction 
was lower in the earlier parts of a phase than towards 
the end. This is particularly evident in phase  1 and 
3. Phase  2’ contained a session that was particularly 
unsatisfying to P in the baseline task, see session 16 in 
Fig. 7b. Considering Fig. 7a, it seems that only this par-
ticular task was unsatisfying, since the remaining ones 

Fig. 6  Primary assessment measure TCT with boxplot over all tasks per session and baseline values for task t2,0

Fig. 7  Self-assessment measure VAS with boxplot per session and baseline values for task t2,0
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were evaluated similarly to the previous and following 
sessions and the VAS value for the baseline task was 
considered an outlier in the boxplot.

In general, the VAS assessment tended to be rather 
positive with 89% of its values above 7.5 and a median 
of 9.3. Notable exceptions were the very early sessions 
of phase  1. The VAS values varied heavily within one 
session. Starting with session 5 the self-assessment 
became more consistent with higher values.

All individual VAS self-assessments can be found in 
Table 2.

Updates
The number of updates per session can be found in Fig. 8. 
It depicts how many of those updates were required 

during the performance of a task and what action was 
updated.

In phase  1 regular updates were required, which indi-
cates a level of uncertainty in a situation where only resting 
pose and power grasp were required. The introduction of a 
further action in phase 2 increased the number of updates 
required even further. This shows the difficulty in finding a 
stable control for the action set of resting post, power grasp 
and precision grasp. Eventually, this phase was aborted 
and after the changes to the action set, a functional train-
ing data set could be found within one session. After 24 
updates in session 11 only very few additional updates 
were required throughout the rest of phase  2’. Notable 
exception here is session  24 where a retraining with 15 
updates occurred. Due to an error of the experimenter a 
full retraining was initiated, which would not have been 
required. Phase  3, where the pre-lateral grasp was intro-
duced, provides a further indication of confidence in the 
navigation of the novel myocontroller. Only five repetitions 
of the newly added action were required to successfully 
perform tasks. Compared to phases 1 and 2 the number of 
additional updates was rather low.

Furthermore, we would like to point out that due to the 
myocontrollers capability to forget obsolete training data, 
the amount of training data used per action was almost 
constant throughout the user study. The limit for repeti-
tions per action was set to 5. For phases 1, 2 and 2′ this 
level was already reached in the first session of a new 
phase, while for phase 3 this level was reached in the sec-
ond session of the phase.

EMG‑data measures
Figure  9 shows the evolution of SI and RI over the 
course of the entire study. Different phases have been 

Fig. 8  Updates of the myocontrol per session. Each symbol 
represents one update of an action. The shape indicates the 
respective action, the colour during which phase the update was 
performed and white or black outlines indicate, whether the update 
was performed during a task or in between tasks, respectively

Fig. 9  SI and RI after every update to the myocontroller. Coloured lines indicate the changes within one phase. Multiple updates per session were 
possible resulting in multiple points per session. Not every session required updates, which led to gaps in the visualisation
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colour-coded and the individual values of a phase were 
connected with a line to better visualise the changes 
within each phase. For several sessions more than one 
value is reported. Every time a model update had been 
performed, SI and RI were re-evaluated. In case there 
were several updates per session, all values are reported.

As we have mentioned in “Incremental myocontrol 
algorithm”, for our controller we implemented progres-
sive forgetting. Obsolete repetitions of an action were 
discarded and therefore both SI and RI should converge 
to an optimal value for the user without the influence of 
obsolete data. As both SI and RI are measures of distance, 
SI should increase, signifying better separability between 
actions and RI should decrease, signifying higher repeat-
ability and consistency in controlling one’s muscles.

In phases 1 and 2 both SI and RI did not seem to follow 
a clear trend. Phase 1 ended with positive developments 
from a theoretical point of view, i.e. a large increase in SI 
and considerable drop in RI. Phase 2 started with a high 
separability, dropped significantly and then remained at 
rather low values. RI started low, increased and expressed 
a varying behaviour that did not resemble a clear trend. 
The initial decrease of SI and increase of RI were theoret-
ically negative developments. Phase 2’ started with both 
high SI and RI and then dropped within the first session. 
In the development of the RI a trend towards higher val-
ues became evident. For the SI we can see a plateau area 
followed by a large jump, after which a trend to lower 
values can be seen. This trend continued throughout 
phase 3 for both SI and RI.

Furthermore, we have calculated the predictive distri-
bution for each data sample in each task of our study. Fig-
ure  10 shows the mean variance of the predictive 
distribution  σ 2

pred for each task in chronological order. 
Different phases of the experiment have been highlighted 
with different colours.

Phase  1 started with higher variance until task  37 in 
session 5, where a large drop can be seen. Thereafter the 
remaining tasks of phase 1 were performed with very low 
σ 2
pred indicating high consistency in the expressed control 

signals by P. After the transition to phase  2 the highest 
σ 2
pred-values in the entire study can be seen. Neither a 

drop nor a considerable decrease was evident within this 
phase. The values represent a high level of uncertainty in 
P’s control and eventually this phase was considered 
failed. The change in the action set that came with 
phase  2’ led to decreased, yet still rather high values of 
σ 2
pred . These remained consistent until task 143 in session 

18, where a second considerable drop can be noticed. 
After the second drop there were no higher values for the 
rest of the study. This is even true after introducing a fur-
ther action in phase 3.

Discussion
Using an incremental myocontroller and the SATMC 
P was able to learn to reliably control four actions per-
formed by a multi-articulated hand prosthesis in daily-
living tasks. At the same time, the SATMC showed its 
capabilities to monitor P’s progress and to assess the 
performance of user and myocontroller. We were able to 
observe improvement within phases, improvement over 
the full study, identify failed phases, show the benefit of 
incremental myocontrol, and show comparable perfor-
mance to using standard two-sensor control.

For both primary measures, TCT and VAS, we can see 
a positive development within phases. These trends can 
be seen particularly in the baseline task. The improve-
ment within phases can also be seen in the predictive 
variance σ 2

pred . Here, phases  1  and  2’ are of particular 
interest as in both cases a substantial drop can be seen. 
These measures indicate that the beginning of a phase 
required more effort and learning from P and within a 
few sessions improvement could be observed. Interest-
ingly, the improvement in session 5 of phase  1 can be 
seen in both VAS and σ 2

pred . The VAS self-assessment 
until session 4 showed considerable variance indicating a 

Fig. 10  Variance of the predictive distribution σ 2
pred averaged per 

task. Colour-coding indicates the phase of the experiment. The top 
plot has been cropped to better visualise the low end of the scale
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Table 2  Self-assessment of all tasks using a VAS

Session Task VAS Task VAS Task VAS

2 t1,0 9.4 t1,2 7.9 t1,4 2.9
t2,0 9.2 t2,2 5.7 t2,3 3.0
t3,0 5.0 t3,1 9.0 t3,3 3.3
t4,0 9.4 t4,2 9.2 t4,4 6.8
t5,0 1.0 t5,0 5.0 t5,1 7.9

3 t1,0 9.2 t1,2 5.9
t2,0 9.2 t2,2 3.9
t3,0 9.3 t3,2 9.6
t4,0 5.0 t4,1 5.0
t5,0 9.2 t5,2 NaN

4 t1,0 8.7 t1,2 5.0 t1,3 0.5
t2,0 8.5 t2,2 8.9 t2,4 0.5
t3,0 7.7 t3,2 8.5 t3,4 NaN
t4,0 4.8 t4,1 5.4 t4,2 NaN
t5,0 8.3 t5,2 7.0 t5,4 NaN

5 t1,0 7.7 t1,2 8.3 t1,4 9.1
t2,0 9.2 t2,2 9.6 t2,4 9.5
t3,0 9.2 t3,2 9.6 t3,4 9.4
t4,0 9.2 t4,2 8.1 t4,4 9.2
t5,0 9.1 t5,2 9.5 t5,4 9.2

6 t1,0 9.3 t1,2 9.5 t1,4 9.4
t2,0 9.3 t2,2 9.5 t2,4 9.4
t3,0 8.1 t3,2 9.5 t3,4 9.3
t4,0 8.9 t4,2 9.3 t4,4 8.5
t5,0 9.3 t5,2 9.2 t5,4 9.5

8 t4,5 7.9 t4,2 9.2
t2,0 7.9 t2,2 8.0
t6,0 9.6 t6,2 9.4
t7,0 9.6 t7,2 9.4
t8,0 7.8 t8,1 4.7

10 t4,0 8.3 t4,2 6.1
t2,0 4.9 t2,1 9.3
t6,0 8.9 t6,2 9.1
t7,0 8.9 t7,2 8.0
t5,0 8.9 t5,2 9.3

12 t9,0 9.1 t9,0 9.2
t9,1 7.7 t9,1 8.4
t9,2 9.4 t9,2 9.0
t9,3 9.6 t9,3 9.3
t9,1 8.9 t9,4 7.8
t9,4 7.2

13 t2,0 7.6 t2,1 9.1 t2,3 7.9
t4,0 9.5 t4,2 9.3 t4,4 9.5
t5,0 9.4 t5,2 9.2 t5,4 9.4
t9,0 9.5 t9,2 8.2 t9,4 8.4
t13,0 9.5 t13,2 9.2 t13,3 9.4

14 t2,0 8.4 t2,2 9.5 t2,4 8.6
t4,0 9.5 t4,2 9.6 t4,4 9.8
t5,0 9.5 t5,2 9.4 t5,4 9.7
t9,0 9.5 t9,2 9.5 t9,4 9.7
t13,0 9.5 t13,2 9.5 t13,3 9.6

15 t2,0 8.3 t2,2 7.8 t2,3 7.6
t4,0 9.3 t4,2 9.3 t4,4 9.4
t5,0 9.2 t5,2 9.2 t5,4 9.5
t9,0 9.4 t9,2 9.3 t9,4 9.3
t13,0 9.5 t13,2 9.3 t13,3 9.5

16 t2,0 4.4 t2,2 NaN
t4,0 9.0 t4,2 NaN
t5,0 9.2

t9,0 9.0

t13,0 9.7
...

...
...

...
...

...
...

Session Task VAS Task VAS Task VAS

...
...

...
...

...
...

...
17 t2,0 8.0 t2,2 5.2 t2,3 3.5

t4,0 9.6 t4,2 8.9 t4,4 9.7
t5,0 9.3 t5,2 8.8 t5,4 9.6
t9,0 8.0 t9,2 8.8 t9,4 9.7
t13,0 9.6 t13,2 8.8 t13,3 9.7

18 t2,0 9.5 t2,2 9.5 t2,4 9.5
t4,0 9.6 t4,2 9.5 t4,4 9.7
t5,0 9.6 t5,2 9.6 t5,4 9.6
t9,0 8.6 t9,2 8.4 t9,4 8.7
t13,0 9.6 t13,2 9.6 t13,3 9.6

19 t2,0 9.4 t2,2 9.6 t2,4 9.5
t4,0 9.5 t4,2 9.7 t4,4 9.5
t5,0 9.5 t5,2 9.6 t5,4 9.5
t9,0 8.8 t9,2 9.0 t9,4 8.8
t13,0 9.7 t13,2 9.6 t13,3 9.6

20 t2,0 8.9 t2,2 7.6 t2,4 8.0
t4,0 9.5 t4,2 9.6 t4,4 9.5
t5,0 9.4 t5,2 9.6 t5,4 9.3
t9,0 9.5 t9,2 9.5 t9,4 8.4
t13,0 9.5 t13,2 9.5 t13,3 9.5

23 t2,0 2.1

t4,0 2.2

t5,0 4.2

t9,0 2.1

t13,0 9.1

24 t2,0 8.5 t2,4 9.4
t4,0 9.0 t4,4 8.9
t5,0 9.5 t5,4 9.4
t9,0 7.8 t9,4 9.4
t13,0 9.7 t13,3 9.6

25 t2,0 8.5 t2,2 9.0 t2,4 8.4
t4,0 8.7 t4,2 8.1 t4,4 8.3
t5,0 9.4 t5,2 9.4 t5,4 9.1
t9,0 5.4 t9,1 6.3 t9,2 9.0
t13,0 6.6 t13,1 7.4 t13,2 9.0

26 t2,0 7.7 t2,2 8.6 t2,4 7.6
t4,0 7.5 t4,2 7.6 t4,4 8.6
t5,0 8.1 t5,2 9.4 t5,4 8.9
t9,0 8.1 t9,2 8.5 t9,4 8.5
t13,0 7.2 t13,2 9.4 t13,3 9.6

27 t2,0 9.4 t2,2 9.6 t2,4 9.6
t4,0 8.7 t4,2 8.8 t4,4 9.4
t5,0 9.5 t5,2 9.1 t5,4 9.3
t9,0 9.0 t9,2 9.5 t9,4 8.8
t13,0 9.7 t13,2 9.5 t13,3 8.2

28 t2,0 9.4 t2,2 9.3 t2,4 9.5
t4,0 9.4 t4,2 9.0 t4,4 9.4
t5,0 9.0 t5,2 9.6 t5,4 9.4
t9,0 8.4 t9,2 9.5 t9,4 9.4
t13,0 9.5 t13,2 9.4 t13,3 9.4

29 t2,0 9.4 t2,2 9.5 t2,4 9.5
t4,0 8.8 t4,2 9.5 t4,4 9.6
t5,0 9.5 t5,2 9.5 t5,4 9.5
t9,0 9.4 t9,2 9.4 t9,4 9.0
t13,0 9.3 t13,2 9.4 t13,3 9.5

30 t2,0 9.4 t2,2 9.6 t2,4 9.6
t4,0 9.4 t4,2 9.5 t4,4 9.6
t5,0 9.4 t5,2 9.6 t5,4 9.6
t9,0 8.8 t9,2 9.5 t9,4 9.5
t13,0 9.5 t13,2 9.5 t13,3 9.6

31 t2,0 9.6 t2,2 9.6 t2,4 7.7
t4,0 9.6 t4,2 9.6 t4,4 9.4
t5,0 9.4 t5,2 9.6 t5,4 9.5
t9,0 9.5 t9,2 9.6 t9,4 9.5
t13,0 7.9 t13,2 9.4 t13,3 9.5

VAS values are colour-coded between black VAS = 0 (poor evaluation) and white for VAS = 10 (good evaluation); the colour in the session column indicates the 
phase
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varying level of satisfaction with the performance. High 
σ 2
pred-values indicate uncertainty in the myocontrol, as 

well. With the update in session 5 σ 2
pred and the variance 

of the VAS self-assessment both decreased. The average 
VAS for session 5 was very high, which indicated satisfac-
tion and low σ 2

pred indicated high certainty in the usage of 
the myocontrol. This suggests that with the update in ses-
sion 5 a suitable training dataset had been found and the 
lack of further updates indicated a stable and reliable 
myocontrol. This initial period of the study could have 
been an explorative period for P. Since P is a user of a 
prosthesis with direct control, switching to ML-based 
myocontrol could have initially required a high effort. 
Note that from the outset the myocontroller of the exper-
iment was different from the myocontroller P used in his 
daily life.

The following phase 2 showed that an increase in myo-
controller complexity required further training. However, 
the choice of action proved to be too demanding and a 
switch in the action set was required to continue with the 
user study.

Phase 2’ started similarly to phase 1. Decrease in TCT 
and increase in VAS values in the first sessions indicated 
improvement in the beginning, although with lower vari-
ance in the self-assessment as in phase 1. A further mile-
stone marks session  18: after task 143 there was a 
substantial second drop in the variance of the predictive 
distribution σ 2

pred . Both instances where σ 2
pred dropped 

considerably and remained low for a certain period 
exhibited a considerable increase in SI, as well. The RI on 
the other hand dropped with the first σ 2

pred-drop and 
remained on a similar level with the second one. For SI, 
these are the two largest changes in the entire user study 
and seem to align very well with good performance. 
However, the remaining trend of SI towards lower values 
following the increase does not support the claim of cor-
relation between good performance and a high SI [55, 59, 
60]. The very last model used in the study even had a 
lower SI than the value before the drop in σ 2

pred . Although 
non-conclusive, these findings are in line with what has 
been reported in literature regarding SI and RI and other 
offline measures [18, 20, 21].

Since after the second σ 2
pred-drop, there were no tasks 

with high values for σ 2
pred for the rest of the study, this 

could indicate the beginning of another period for P. It 
could be argued that at this point P became proficient in 
the usage of ML-based myocontrol and an understanding 
of the myocontroller was established. The addition of a 
further action in phase  3 did not lead to uncertainty in 
the usage of the myocontroller. Yet P needed to adapt to 
the new myocontroller, which is apparent from the 

improvements in baseline TCT and baseline VAS, see 
Figs. 6b and 7b.

These two jumps could indicate three different periods 
in the improvement over the course of the study. First a 
familiarisation period, followed by a learning period and 
ending with a proficient adaptation period.

Two further points support the notion of reaching a 
proficient state. First, the performance in the second 
baseline measure, session  20 with P’s own prosthesis, is 
on a comparable level as the ML-based myocontroller. 
Under the assumption that P is proficient with his own 
prosthesis he could have reached a certain level of profi-
ciency with the ML-based myocontroller as well. Switch-
ing from a familiar control modality to a more complex, 
yet more capable one can initially result in a reduced per-
formance  [40]. Even after 7 training sessions it was 
reported that people achieved better results with their 
own prothesis than with ML-based ones [26]. Second, the 
erroneously performed retraining in session  24 did not 
appear to have an impact on the performance, i.e. TCT, 
VAS or σ 2

pred . One could argue that P’s performance 
didn’t originate from accidentally good data, but that P 
learned to consistently produce good signals to pilot the 
prosthesis and myocontroller.

Incrementality
Incrementality played a key role in learning to use the 
myocontroller and in dealing with challenging situations.

There was no need for a separate training of sEMG-sig-
nals focused on separateness and repeatability, a process 
that commonly is required in learning to use a ML-based 
prosthesis. Exemplary duration of this process is 7–10 h 
over 5–7 session [26, 28]. The exact values vary consider-
ably based on the individual person. Taken the two mile-
stones of P in session 5 (after 1 month) and 18 (around 
the 7th month) into account, the training time can be 
considered longer. However, prosthesis fitting and train-
ing is most important in the first six months after ampu-
tation  [61]. The fact that from the first session training 
involved functional tasks while wearing a prosthesis, 
could support prosthetist acceptance.

During P’s training, an update consisted of 2.7 rep-
etitions on average, which includes the instances of full 
retraining. A full retraining would consist of five repeti-
tions per action. In phase 1 this would be 10 repetitions 
and 20 repetitions in phase 3. This results in a consider-
able amount of time saved on individual updates when 
using an incremental myocontrol algorithm. Further-
more, updates were often asked for by P to make a cer-
tain action more stable or improve the performance in a 
specific situation. In our opinion, the threshold for issu-
ing a small update is lower than issuing a full retraining. 
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This could lead to faster learning and a better adaptation, 
and thus faster improvement in performance.

The combination of training only on the sustained part 
of an action and incremental updates further helped in 
dealing with the limb position effect. Instead of initially 
training in multiple positions to cover all required pos-
tural variations, updates could be issued in challenging 
positions only when required. Training on the sustained 
part of an action does not require the participant to fol-
low a specific trajectory, however, an action has to be 
maintained at a strong but comfortable level of force. 
This allowed P to maintain exactly in the pose, where the 
myocontroller reached its limits, and update the train-
ing data with highly specific information to improve the 
myocontroller.

The capability of the RR-RFF-based myocontroller to 
add actions incrementally, reduced the calibration effort 
for P additionally. This effect became relevant at a later 
point in the user study, when P transitioned from phase 2’ 
to phase 3. Instead of requiring a full retraining only the 
new action had to be updated and P could continue with 
performing tasks.

A further testament to the robustness of the RR-RFF-
based myocontroller is the fact that over the course of 
the study there were several instances where P did not 
require any update over several sessions. Hence, for mul-
tiple visits involving donning and doffing of the prosthe-
sis no changes to the myocontroller were required and 
all tasks could be performed satisfactorily. In addition 
to that we want to highlight that no initial training after 
donning the prosthesis was issued at the beginning of a 
session.

SATMC protocol
ML-based myocontrollers are intuitive in terms of the 
type of sEMG-signals that are required for training the 
algorithm. However, learning to pilot such a myocon-
troller reliably has proven to be challenging, lengthy, and 
not necessarily intuitive for many users. The SATMC 
appears to be a promising tool for assessing ML-based 
myocontrollers and training users in their usage. Sup-
ported by the structured multi-phased approach a grad-
ual improvement was possible for P. Due to the usage 
of tasks of different levels of complexity, training was 
possible at a level comfortable for the participant. In 
“Simultaneous assessment and training of myoelectric 
control (SATMC)” we have formulated four aspects that 
should be fulfilled for an adequate assessment and train-
ing of ML-based myocontrol. These were repeatability 
and increasing difficulty (A1), postural variation during 
tasks (A2), multiple actions per task (A3), and a short 
familiarisation time for the rater (A4). In the user study 
P attempted scenarios with different levels of difficulty. 

Expressing a level of satisfaction through the VAS assess-
ment confirms that A1 was successfully implemented. A 
number of tasks involved larger distances that needed 
to be covered, i.e. wrist rotation and height differences. 
These variations adequately cover the postural variation 
required in A2. Changes between different grasps were 
part of several of the tasks, which satisfied A3. Regard-
ing A4, easy to acquire measures, i.e. VAS and TCT, 
have been introduced, which simplified the tasks of the 
experimenter. However, a number of errors occurred on 
the side of the experimenter, where instructions were 
not given correctly. As the SATMC has grown to cover 
as many relevant features as possible, the complexity of 
performing a study using the protocol increased over 
its development. Here, we believe that the initial level 
of simplicity intended for the SATMC has not been fully 
reached.

During the user study and in its evaluations two poten-
tial improvements to the SATMC have been identified. 
First, as stated in “User study” no initial training in a ses-
sion was required, since the model from the previous 
session could be reloaded and reused directly. This ben-
eficial feature is not reflected in any measure besides the 
number of updates. A solution could be adding to the 15 
tasks an initial calibration stage that is timed and in case 
no initial training is required set to 0s.

Second, since phase 2 was considered failed, a measure 
to determine at what point a phase can be considered 
failed could be useful. One option could be based on the 
VAS evaluation of the user. However, the evaluation of 
sessions 8 and 10 in phase 2 was overly positive1. A sec-
ond option could be a threshold on the variance of the 
predictive distribution σ 2

pred . The highest values of σ 2
pred 

were measured in phase 2. This is only feasible, if the ML 
method allows for the calculation of the predictive distri-
bution. Another option could be to use the number of 
updates required during a session. The failed phase con-
tained the session with the highest number of updates in 
the entire study. A threshold on the number of updates 
could help identify failed phases.

With the structure and repetition that the SATMC 
introduces, we also introduce the risk of learning spe-
cific tasks rather than acquiring general motor skills. At 
the beginning of a phase five tasks are chosen by the per-
son administering the SATMC and in each session the 
participant starts with the basic variants of these tasks. 
However, the fact that at the beginning of phase 2’ P only 
required a few repetitions to learn a new action com-
pared to many repetitions in all previous phases, could 

1  For session  8 VAS evaluations by P are available, but no TCT values, see 
Figs. 6a and 7a. Unfortunately, the data was lost.
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indicate motor skill acquisition rather than task-specific 
learning, see Fig. 8. On the other hand, we also introduce 
variability with the SATMC. Depending on the skill of the 
participant different variants of these tasks are executed 
throughout a phase. Earlier session will likely involve 
easier task variants, while the last session will involve the 
most difficult ones. This variance potentially affects our 
primary measure TCT. Considering Fig. 6, we can see ini-
tially large values of TCT for phases 2’ and 3 followed by 
a plateau area. The low variance in the plateau area could 
indicate that influence of the task variants is small.

With these improvements we see a high potential of 
the SATMC to be applied in clinical use. Since training 
and assessment are both part of the SATMC training the 
participant to produce good sEMG-signals and func-
tional assessment of prosthesis both occur at the same 
time. The user would start earlier with performing tasks 
with their prosthesis, which could have beneficial effects 
on motivation and acceptance. Furthermore, a number 
of steps in the SATMC can be automated as they follow 
strict guidelines, see “Guidelines”. This would reduce the 
burden on the person administering the SATMC and 
therefore increase the clinical applicability. In addition, 
the SATMC is not restricted to training the use of hand 
prostheses but can also be used to train more proximal 
prosthesis joints.

Limitations
During the analysis of the results we were able to identify 
some limitations of the user study with P. In 
phases  2’  and  3 the SI exhibited a trend towards values 
indicating poorer training data quality, yet the participant 
improved and was more satisfied. As SI and RI are pure 
offline measures and TCT and VAS are online measures 
(with the user in the loop), a mismatch between them is a 
common phenomenon. A further possible explanation 
could be the way training data was gathered. The user is 
encouraged to update the myocontroller, when instabili-
ties occur in the control. These instabilities could origi-
nate from changes in the muscle and limb orientation, i.e. 
limb position effect. An update will therefore contain 
data that is rather different from what was present in the 
training data before the update. This could lead to an 
increase in RI, since the update is labelled with the action 
that was updated without taking specific information of 
the position into account. A larger spread of the action 
cluster (containing all repetitions) would be the result 
and hence potentially lead to a lower SI. In general, a 
higher level of repeatability, as in being able to precisely 
reproduce a muscle signal, is a desirable feature. How-
ever, based on the training protocol RI and SI could 
potentially reflect a different measure than the intended 
separability and repeatability. On the other hand, both 

drops in the values of the variance of the predictive dis-
tribution σ 2

pred coincided with an increase in SI as one 
would expect.

Furthermore, we have identified some general improve-
ments for the SATMC. A comparison to different vali-
dated assessment method, such as the ones described in 
In “Simultaneous assessment and training of myoelectric 
control (SATMC)”, would have strengthened the results 
of this user study. The administration of validated assess-
ment tools at regular intervals of the user study, e.g. at 
the beginning and end of a phase, would have provided 
further insights in the validity of the SATMC. We see 
such an addition as useful for future studies based on the 
SATMC.

Additionally, some unfortunate mistakes by the 
experimenter were made during the user study. For 
one, phase  2’ was continued longer than it should have 
been. In sessions 13 and 15 the VAS scores were evalu-
ated wrongly, which led to single-step increases in task 
variants instead of two-step increases. A correct decision 
in either of these sessions would have led to an earlier 
successful conclusion of phase  2’. Additionally, experi-
menter errors occurred in session 24, session 27 and the 
session thereafter: the experimenter gave instructions 
regarding the wrong phase. While the instructions were 
instances of phase 2’, they should have been instances of 
phase  3 according to the SATMC guidelines. Although 
unfortunate, in our opinion additional repetitions of a 
phase should not severely impact the overall conclu-
sions drawn from this study. We believe that all errors 
regarding wrong VAS evaluation or wrong phase selec-
tion could be avoided by automating the SATMC. This 
could be achieved in form of a specific software that pro-
vides directions based the data acquired. This would also 
be a step towards aspect A4, defined in the beginning of 
“Simultaneous assessment and training of myoelectric 
control (SATMC)”. On the other hand, the unnecessary 
full retraining that occurred, which we considered an 
error, would not profit from this measure, since no strict 
guidelines were designed regarding updates. The user or 
the experimenter decide whether they are required.

Another limiting factor in this user study is the 
involvement of only one participant. To minimise 
the impact of this factor, we have used SCED in the 
design of the SATMC and the user study. SCED pro-
vides guidelines for performing structured experiments 
involving only a small number of participants. Meth-
ods such as direct replication and the introduction of 
a baseline, help in lowering the impact of a low number 
of participants. We have implemented these two meth-
ods by incrementally changing the set of actions and by 
choosing a specific task that remains unchanged for the 
entire user study.
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Finally, in its current form the tasks incorporated in the 
SATMC are not validated. The current paper describes a 
first proposal to train and assess myoelectric control. Fur-
ther development of the SATMC protocol might require 
validation studies. For example, a Rasch analysis could 
verify that the task variants are indeed increasing in dif-
ficulty. Additionally, a validation study should include 
investigations how the outcome measures TCT and VAS 
are affected by the variance within a phase due to poten-
tially different task variants between sessions.

Conclusion
By the end of the user study P was able to achieve propor-
tional myocontrol of four actions with a multi-articulated 
prosthetic hand using the incremental RR-RFF-based 
myocontroller. He was naive to such a control modality 
at the beginning of the study. Supported by the directions 
realised in the simultaneous training and assessment of 
the SATMC he succeeded in reaching a dexterous myo-
control in ADL-like tasks. The incrementality in both the 
myocontroller and the SATMC allowed P to progress at a 
level comfortable for him.

As the SATMC can be applied independent of the 
myocontroller, the protocol can be used in future stud-
ies to train a user in ML-based myocontrol and assess 
novel myocontrol approaches. This in turn will provide 
more validity to the SATMC and lead to results allowing 
for comparisons between ML-based myocontrollers.
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