
Technische Universität München

TUM School of Computation, Information and Technology

Public Key Infrastructures and Blockchain Systems
Utilizing Internet Public Key Infrastructures to Leverage Their Trust and Adoption in

Blockchain Systems

Ulrich Simon Stefan Gallersdörfer, M.Sc.

Vollständiger Abdruck der von der TUM School of Computation, Information and

Technology der Technischen Universität München zur Erlangung eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Georg Carle

Prüfer der Dissertation: 1. Prof. Dr. Florian Matthes

2. apl. Prof. Dr. Georg Groh

Die Dissertation wurde am 24.04.2023 bei der Technischen Universität München ein-

gereicht und durch die TUM School of Computation, Information and Technology am

16.10.2023 angenommen.

Acknowledgements

First and foremost, I want to thank my advisor Prof. Dr. Florian Matthes, for allowing me

to conduct research under his guidance on blockchain technologies. I greatly appreciated

the discussions, research, and education as a Ph.D. student. It fills me with great pleasure

to witness the continued growth of blockchain research at the chair.

I want to thank the team at the Digital Credentials Consortium and Open Learning

at Massachusetts Institute of Technology for inviting me to Cambridge and fostering

a fantastic collaboration during my time there. Namely, I want to thank J. Philipp

Schmidt, Kim Duffy, Brandon Muramatsu, Dmitri Zagidulin, Gillian Walsh, Krishna

Rajagopal, and Sanjay E. Sarma.

So many great colleagues accompanied me at the chair. Special thanks go to Elena

Scepankova for our discussions that inspired me to develop the idea for this dissertation.

Further, thanks to colleagues that directly or indirectly influenced my work: Patrick Holl,

Felix Hoops, Oleksandra Klymenko, Nektarios Machner, Sascha Nägele, Burak Öz, and

Dr. Bernhard Waltl.

I am grateful for all the students I had the opportunity to advise in their theses and

those who collaborated with me on various projects. Special thanks go to Jonas Ebel,

Friederike Groschupp, Pascal Herrmann, Felix Hoops, Kilian Käslin, Tuan Anh Ma,

Metodi Manov, Jan-Niklas Strugala, and David Stübing.

Thanks to Lena Klaaßen and Christian Stoll for our outstanding collaboration. Thanks

to the entire team at CCRI for having my back during the busy times.

Finally, I want to thank my family and friends for their unwavering support: My parents,

Andrea and Andreas. My siblings, Evi, Felix, and Jonas. Thank you for your support,

encouragement, and love. I am extending my appreciation to Michi and Franzi. I couldn’t

have asked for better friends.

Munich, April 24, 2023

Ulrich Gallersdörfer

i

Abstract

Blockchain networks provide access to novel applications for end-users and enterprises

alike. Regardless of these networks’ trustless design, entities accessing them are confronted

primarily with the absence of information about their respective counterparties. This

deficiency seems counterintuitive, as users of blockchain networks rely mainly on an

information structure domiciled in the World Wide Web (WWW). Underlying protocols

have solved the authentication issues of counterparties and enabled the Internet to achieve

its current socioeconomic importance. However, these protocols are not facilitated in a

blockchain context.

In this thesis, our main research goal is to analyze, conceptualize, design, implement,

and evaluate the utilization of Internet Public Key Infrastructures (PKI), with the aim

of leveraging their trust and adoption in blockchain systems. While several approaches

and applications are in place to mitigate counterparty authentication issues, they fail to

consider the interplay between WWW and blockchain networks or lack generalizability

for other forms of PKI or environments.

This thesis introduces a framework for using cryptographic key material managed by

PKI in a blockchain-based context and establishing identity assertions and authentication

of on-chain identifiers. To this end, the framework relies on the technical foundations,

requirements, and security considerations defined in the protocols that form the foundation

of the Internet, namely Transport Layer Security (TLS), Domain Name System (DNS),

and the certificate standard X.509. The framework supports two forms of authentication:

a) off-chain authentication, verifying the correctness of identity assertions in a user-specific

context, and b) on-chain authentication, allowing a network-wide consensus about the

authenticity of identity assertions. The verification processes leverage systems such as

Certificate Transparency (CT) to detect and prevent illicit behavior. The framework lays

the foundation for a broad set of applications that contribute to a trustworthy blockchain

ecosystem.

We classify the applicability and assess the performance of the framework. First, we

evaluate the relevance and practicability of both forms of authentication. Second, we

include Ethereum Name Service in our analysis, comparing the costs, security, adoption,

and fulfillment of the initially posed requirements.

iii

Zusammenfassung

Blockchain-Netzwerke bieten Nutzern und Unternehmen gleichermaßen Zugang zu neuar-

tigen Anwendungen. Trotz der Sicherheit dieser Technologien werden Entitäten, die

auf diese Netze zugreifen, Informationen über ihre Gegenparteien vorenthalten. Dies

erscheint widersprüchlich, da sich die Nutzer von Blockchain Netzwerken weitgehend

auf Informationen verlassen, die aus dem World Wide Web (WWW) stammen. Die

zugrundeliegenden Protokolle lösten Probleme der Authentifizierung und ermöglichten es

dem Internet, seine heutige sozioökonomische Bedeutung zu erlangen. Dennoch werden

sie in einem Blockchain-Kontext nicht genutzt.

Diese Arbeit hat die Analyse, Konzeption, Gestaltung, Implementierung und Eva-

luierung der Nutzung von Public Key Infrastrukturen (PKI) des Internets zum Ziel,

um deren Vertrauen und Akzeptanz in Blockchain Systemen zu nutzen. Es existieren

zwar mehrere Ansätze und Anwendungen, um Probleme bei der Authentifizierung der

Gegenpartei zu mitigieren, doch sie berücksichtigen nicht das Zusammenspiel zwischen

dem WWW und Blockchain-Netzwerken oder lassen sich nicht für andere Formen von

PKI oder Systeme verallgemeinern.

In dieser Arbeit wird ein Rahmenwerk für die Verwendung von kryptografischem

Schlüsseln, die von PKI verwaltet werden, in einem Blockchain-basierten Kontext und zur

Erstellung von Identitätsbestätigungen und Authentifizierung von On-Chain Adressen

eingeführt. Dabei stützt sich das Framework auf die technischen Grundlagen und

Anforderungen, die in den jeweiligen Protokollen definiert sind, wie z.B. Transport

Layer Security (TLS), Domain Name System (DNS) und der Zertifikatsstandard X.509.

Das Framework unterstützt zwei Formen der Authentifizierung: a) Off-Chain, die die

Korrektheit von Identitätsbehauptungen in einem benutzerspezifischen Kontext verifiziert,

und b) On-Chain, die es ermöglicht, einen Netzwerk-weiten Konsens über die Authentizität

von Identitätsbehauptungen zu bilden. Die Verifikationsprozesse nutzen Systeme wie

Certificate Transparency (CA), um unerlaubtes Verhalten zu erkennen und zu verhindern.

Das Framework bildet die Grundlage für eine breite Basis von Anwendungen, die zu

einem vertrauenswürdigen Blockchain-Ökosystem beitragen.

Wir analysieren die Anwendbarkeit sowie die Performance des Frameworks. Zunächst

evaluieren wir die Relevanz und Praktikabilität beider Formen der Authentifizierung. Im

Anschluss inkludieren wir Ethereum Name Service in unsere Analyse und vergleichen

Kosten, Sicherheit, Adaption und die Erfüllung initial definierter Anforderungen.

v

Contents

Acknowledgements i

Abstract iii

Zusammenfassung v

Contents vii

List of Tables xi

List of Figures xiii

Listings xv

List of Abbreviations xvii

1. Introduction 1

1.1. Motivation . 1

1.2. Research Questions . 4

1.3. Contributions . 6

1.4. Outline . 7

1.5. Prior Publications and Citation Style . 9

2. Foundations and Related Work 11

2.1. Public Key Infrastructures in the Internet 12

2.1.1. Domain Name System . 12

2.1.2. Transport-Layer-Security and X.509 14

2.1.3. Other Security Measures . 18

2.2. Blockchain Networks . 19

2.2.1. Underlying Concepts . 20

2.2.2. Blockchain Programmability . 22

vii

CONTENTS

2.2.3. Smart Contracts . 22

2.2.4. Bridging Information Between the Off-Chain World and On-Chain

Blockchain . 23

2.3. State of the Research . 24

2.3.1. Leveraging Cryptographic Key Material in Blockchain Networks . 25

2.3.2. Enabling Domain Name Usage in Blockchain Networks 26

2.4. Summary . 28

3. Utilizing Public Key Infrastructures in Blockchains 31

3.1. Methodological Approach . 33

3.2. Requirements . 35

3.2.1. Problem-Statement Specific Requirements 36

3.2.2. RFC-Specific Requirements . 39

3.2.3. Overview . 42

3.3. Solution Space . 44

3.3.1. Fundamental Concept and Elements 44

3.3.2. Overview of Solution Space and Relevant Arrangements 49

3.4. Endorsement . 53

3.4.1. Entities . 53

3.4.2. Definition . 54

3.5. Summary . 57

4. Off-Chain Verification 59

4.1. Problem Statement . 61

4.1.1. Address Replacement Attack . 61

4.1.2. Missing Data Authentication . 64

4.2. System Architecture and Processes . 67

4.2.1. On-Chain TLS Endorsed Smart Contract 69

4.2.2. Off-Chain Verifier . 71

4.2.3. Endorsed Smart Contract Registry 73

4.2.4. Endorsement of Pre-Existing Smart Contracts 75

4.2.5. Revocation . 76

4.2.6. TLS Key Management . 77

4.3. Threat Model and Security Implications 78

4.3.1. TLS as a Base Protocol . 79

4.3.2. Cross-Protocol Attack Vectors . 79

viii

CONTENTS

4.3.3. Downgrade Attacks . 80

4.3.4. TLS Private Key Compromise . 81

4.4. Augmentation of User Wallets . 82

4.4.1. Previous Work and Results . 83

4.4.2. Revisiting Browser-based Warnings 85

4.4.3. Limitations and Mitigation Strategies 89

4.5. Summary . 92

5. On-Chain Verification 95

5.1. Problem Statement . 97

5.1.1. Non-Human-Readable Names . 97

5.1.2. Lack of Access Control . 98

5.2. System Architecture and Processes for On-Chain TLS-Certificate Usage . 99

5.2.1. X.509 Certificate Storage Database 99

5.2.2. Smart Contract Endorsement Database 100

5.2.3. Processes and Rationale . 101

5.3. DNSSEC Integration in the Ethereum Name Service 105

5.3.1. Architecture Overview . 105

5.4. Rationale in System Architecture Designs and Decisions 110

5.5. ENS DNSSEC Domain Dataset . 112

5.5.1. Data Collection . 112

5.5.2. Data Cleanup . 114

5.5.3. Data Enrichment . 116

5.5.4. Data Verification . 117

5.6. Summary . 118

6. Evaluation and Comparison of Approaches 119

6.1. Suitability of Ecosystems . 121

6.1.1. Availability . 121

6.1.2. Usage . 123

6.1.3. Implications for Usage . 123

6.2. Applicability and Practicability . 123

6.2.1. Technical Challenges . 124

6.2.2. Autonomy and Simplicity . 125

6.2.3. Ecosystem Bootstrapping . 126

6.2.4. ENS DNSSEC Bootstrapping . 127

ix

CONTENTS

6.2.5. Further Complexities . 130

6.3. Costs . 131

6.3.1. Costs in EVM-based Blockchain Networks 132

6.3.2. Gas Cost Analysis . 133

6.3.3. Overview of Costs . 138

6.4. Assessment of Security . 140

6.4.1. Interference with Underlying Systems 140

6.4.2. Systems Security . 141

6.4.3. User-Specific Risks . 142

6.5. Requirements . 146

6.5.1. Functional Requirements . 147

6.5.2. Non-Functional Requirements . 148

6.5.3. Overview . 150

6.6. Summary . 150

7. Conclusion and Future Work 153

7.1. Conclusion . 153

7.2. Answer to Research Questions . 154

7.3. Future Work . 157

A. Prior Publications and Student Work in the Context of this Thesis 163

B. Endorsement Flags 165

C. Browser Warning Pages 167

D. Related Ethereum Addresses 169

E. DNS Top-Level-Domains in ENS 171

F. DNSSEC Support in Top-Level Domains 173

Bibliography 175

x

List of Tables

4.1. URL bars for all major browsers in four different security states, namely

secured connection (with regular certificate), secured connection (with

extended validation certificate), minor error in the TLS protocol, major

error in the TLS protocol, and protocol downgrade (HTTP only). 88

4.2. Browser support for the getSecurityInfo() function (Mozilla Developer

Network, 2022). Brackets indicate the version in which the feature was

introduced. 89

5.1. DNSSEC cryptographic algorithm numbers and their ENS support. Num-

bers available in (ICANN, 2023) . 108

5.2. Five RRSets provided at the registration of eth.limo in ENS. 109

5.3. Preliminary insights into the data as of 27th February 2023. For each

method, we display the total transaction calls, how many of them were

(not) successful (including shares), and their respective unique domains.

The total number of all unique FQDNs for the three methods is 925.

After accounting for duplicates across the methods, the number of unique

domains is 877. 114

5.4. Top 10 top-level domains and their frequency in the ENS system. 115

5.5. Response codes when requesting the domain contents. 117

5.6. Status of the DNSSEC-records as of 27th February 2023 for all DNS

domains registered on ENS. (s0 : No record available. s1 : Available. s2 :

Available, but address deviates from sender.) 117

6.1. Number of domains managed by TLDs supporting DNSSEC, as of 28th

February 2023. 122

6.2. Sources for gas consumption including applicability for each approach. . 133

6.3. Overview of gas costs for all four approaches. 138

xi

eth.limo

LIST OF TABLES

6.4. All domain combinations (Levenshtein distance of 1) in the ENS DNSSEC

dataset. Changes in the second domain name are marked in bold. Data

as of 27th February 2023. 144

6.5. Fulfillment of requirements of the three systems described in this thesis.

(Fully fulfilled: ✓/ partly fulfilled: ∼ / not fulfilled: ✗.) 151

C.1. Overview of browsers and their behavior in five different security scenarios.168

xii

List of Figures

1.1. Two approaches for verifying a domain-address relationship. The user

instructs the browser to access the smart contract of TU Munich in step

1. In option A, the browser collects all necessary information from the

WWW in step 2 to verify the authenticity and connect to the smart

contract in step 3. In option B, parts of the WWW are first mirrored and

verified to the blockchain network in step 0. The browser directly accesses

the mirrored part and accesses the previously verified smart contract.

A detailed explanation of how domain names can be leveraged within

blockchain networks can be found in Chapter 3. 3

1.2. Structure of this dissertation including chapters and contents. 7

2.1. Structure of a fully qualified domain name. The protocol (https://) is not

part of an FQDN, but is shown for completeness. 13

2.2. Screenshot of the Chrome browser accessing ipfs://vitalik.eth, the

website of the Ethereum co-founder Vitalik Buterin. Accessed on 27th

February 2023. 27

3.1. Exemplary PKI Structure for the TLS certificate of https://example.org.

Please note that www.example.org is included both as Common Name and

Subject Name in the certificate in question. DigiCert Global Root CA

is the certificate from the Root CA, and DigiCert TLS RSA SHA256 2020

CA1 is an intermediary certificate, whereas www.example.org is the domain

certificate or leaf certificate. Website accessed on 27th February 2023. . . 33

3.2. Overview of all dimensions and objects of the hypothesized system. System

A) allows for off-chain verification, whereas system B) allows for on-chain

verification. Horizontal lines mark configurations that deplete security, and

vertical lines mark technically possible configurations that add additional

costs. Cells marked with a dark color are impossible configurations. . . . 51

xiii

ipfs://vitalik.eth
https://example.org

LIST OF FIGURES

4.1. High-level structure of the proposed architecture initially presented in

(Gallersdörfer and Matthes, 2020, 2021b), adapted. 69

4.2. Process of authenticating a smart contract, initially proposed in (Gallersdörfer

and Matthes, 2020) and adapted. 74

5.1. Encoding scheme for domain names within the DNSRegistrar. This

example translates to nish.com. 114

5.2. Data structure of RRSets used in ENS. 115

6.1. Accumulated number of registrations for .eth domains and DNSSEC-

enabled domains from 17th August 2021 until 27th February 2023. Regis-

trations that took place before the 17th August 2021 are not considered.

. 128

6.2. Boxplots and individual points displaying the gas consumption for all

three methods. 136

6.3. Overview of the gas consumption of registrations compared to the number

and type of the respective RRSets. 137

6.4. Chart depicting the costs for each day from 1st January 2021 till 28th

February 2023 in USD. We apply the median gas costs of each approach. 139

6.5. Screenshot of united-domains.de of domains up for registration that

have a valid registration in ENS. For security reasons, we blur the domain

names. 146

E.1. Treemap of all TLDs bridged via DNSSEC managed within ENS as of

28th February 2023. 172

F.1. Treemap of all TLDs categorized by their DNSSEC support as of 28th

February 2023. 174

xiv

united-domains.de

Listings

5.1. TXT-record for ens.eth.limo. Address shortened for readability. 110

5.2. SQL-Query for fetching all transactions calling the claim function on the

DNSRegistrar. 113

5.3. SQL-Query for fetching all transactions calling the proveAndClaim func-

tion on the DNSRegistrar. 113

5.4. SQL-Query for fetching all transactions calling the proveAndClaimWithResolver

function on the DNSRegistrar. 113

6.1. Actively used DNSSECImpl-code on Ethereum (Etherscan, 2023b). 142

xv

List of Abbreviations

CA Certificate Authority

CRL Certificate Revocation List

CT Certificate Transparency

DID Decentralized Identifier

DLT Distributed Ledger Technology

DNS Domain Name System

DNSSEC DNS Security Extensions

ENS Ethereum Name Service

FQDN Fully Qualified Domain Name

GWei Gigawei (0.000000001 ether)

ICO Initial Coin Offering

OCSP Online Certificate Status Protocol

PKI Public Key Infrastructure

RFC Request for Comments

SSL Secure Sockets Layer

TLS Transport Layer Security

xvii

Chapter 1.

Introduction

1.1. Motivation

Blockchain technology serves as the basis for Web 3.0, cryptocurrencies, and the Metaverse.

By enabling near-instant transactions, trustless data storage, and tokenization of digital

and real world assets, blockchain networks enable novel use cases and business models

beyond traditional Web 2.0 enterprises (Blocher et al., 2019). Gartner estimates that

blockchain adds over USD 3.1 trillion in new business value and, thus, will serve as the

backbone of the financial industry by 2030 (Lovelock et al., 2017).

As a first use case, blockchains serve as simple payment layers (Nakamoto, 2008).

Independent parties exchange monetary values via pseudonymous, self-generated ad-

dresses. These addresses consist, similarly to other payment methods, such as IBAN, of

random characters and numbers, making it hard to identify the counterparty and ensure

the correctness of the address. While users are responsible for ensuring that they are

using the correct addresses, tricking users into sending funds to malicious addresses has

been a significant problem in the past:

The CoinDash ICO (Initial Coin Offering) intended to collect investments from

users (Wieczner, 2017). However, when users sent their funds to the address that

was displayed on the website of CoinDash, the money wound up in a hacker’s wallet that

silently swapped the correct address with the malicious address, netting 43,000 ethers

(about USD 12.9 million at that time). We give more insights into the CoinDash ICO

hack in Section 4.1.

With the introduction of smart contracts in Ethereum in 2015, blockchain networks

became more versatile and enabled more elaborate use cases (Wood et al., 2014). As

the underlying programming languages are Turing-complete, any business model can be

deployed on the networks and leveraged for different purposes. As these smart contracts

1

Chapter 1. Introduction

rely on the same address format, again, users are confronted with a similar issue: Is the

address of the contract authentic, and does it belong to an entity that I trust?

Assume universities use public blockchains to publish integrity information about the

credentials they issue. Every participating university has its smart contract that enables

the submission and revocation of cryptographically verifiable information. An employer

receives from a prospective employee a credential, which is also recorded in a smart

contract. The address of the smart contract is displayed on the credential. While the

smart contract exists and stores the cryptographic information in question, it remains

unclear whether it is owned and operated by the university or an illicit entity, as the

employer cannot verify the relationship between the university and the smart contract.

From these two examples, it becomes apparent that determining the authenticity of

addresses is of utmost importance to identify persons, Internet of Things (IoT) devices,

companies, or institutions in order to interact or conduct business with them.

Blockchain networks today face similar issues as the World Wide Web (WWW) in

its early days: How do users find and recognize entities they want to interact with?

Similar to Internet Protocol (IP) addresses, blockchain addresses are hard to memorize

and easy to misspell (Glomann et al., 2020). Today, more than 600 million domain

names exist (Domain Name Stat, 2023), and billions of people use them daily (Ritchie

et al., 2023). For blockchains, a similar service called Ethereum Name Service (ENS)

was proposed in 2017 (Ethereum Name Service, 2023c). ENS allows users to claim a

domain name with the Top Level Domain (TLD) ending .eth. While the service works

as intended, it introduced two new problems (Xia et al., 2022):

• Bootstrapping: ENS initially had no user base and no recognition. Users and

institutions faced a “chicken-or-egg” problem, as the lack of adoption did not

incentivize the purchase of domains in the first place. Finding adoption from users,

companies, and service providers alike remains a key challenge for any naming

service.

• Domain Squatting: ENS, as a fully decentralized system, has no way of regaining

ownership of once-sold domains. In contrast to DNS, domains lost in ENS cannot

be transferred to their rightful owner after being claimed by another entity. For

example, one entity has registered and owns google.eth, mcdonalds.eth, and

redbull.eth, hinting at domain squatting (Xia et al., 2022).

While ENS solves concerns of recognizing the counterparty in blockchain networks, it

introduces these two novel problems. To solve the underlying issues without introducing

2

google.eth
mcdonalds.eth
redbull.eth

1.1. Motivation

new obstacles, we want to leverage the traditional domain landscape including its well-

established naming scheme in blockchain networks and map domain names to blockchain

addresses.

Op�on A: Off-Chain

2.

Blockchain

Browser

WWW

0xA2B9Fa...

1. 3.

Verifica�on within the browser.

Op�on B: On-Chain Blockchain

Browser

WWW

0xA2B9Fa...

1. 2.

Verifica�on within the blockchain.

PKI

0.

3.

TU
Munich?

TU
Munich?

Figure 1.1.: Two approaches for verifying a domain-address relationship. The user instructs
the browser to access the smart contract of TU Munich in step 1. In option A,
the browser collects all necessary information from the WWW in step 2 to verify
the authenticity and connect to the smart contract in step 3. In option B, parts
of the WWW are first mirrored and verified to the blockchain network in step
0. The browser directly accesses the mirrored part and accesses the previously
verified smart contract. A detailed explanation of how domain names can be
leveraged within blockchain networks can be found in Chapter 3.

More technically, we identify existing hierarchical Public Key Infrastructures (PKI)

as a key to introducing domain names in blockchain networks. We aim to a) solve the

current issues with hard-to-memorize blockchain addresses and, simultaneously, b) avoid

the need for bootstrapping and enable already widely accepted domain names to be

used in blockchain networks. We identify two approaches for resolving and verifying the

domain-address binding: off-chain in the browser and on-chain in the respective network.

A simplified depiction of both approaches is displayed in Figure 1.1. We describe and

evaluate these approaches and compare them with existing applications that rely on

comparable infrastructures.

3

Chapter 1. Introduction

1.2. Research Questions

The utilization of WWW technologies in a blockchain-based context poses several chal-

lenges. We investigate potential and existing architectures and system designs and

evaluate their effectiveness. We aim to answer the following research questions.

RQ1: To what extent can one leverage domain names and related

Public Key Infrastructures in a blockchain environment?

RQ 1.1 In which ways have domain names and related PKIs been utilized in a blockchain

context?

Preliminary insights into cryptocurrency naming services suggest that research

into leveraging parts of PKIs of the WWW is available. To understand potential

approaches and limitations, we analyze the current state of research in the area

of PKIs and blockchain networks. We address this question in Chapter 2.

RQ 1.2 What are the technical pathways to enable domain name usage in a blockchain

context?

There are several ways to leverage the underlying PKI of domain names, their

structures, and their data within blockchain networks. We propose dimensions

in which PKIs can be utilized, and we identify relevant configurations. In

Chapter 3, we discuss relevant technical pathways.

Following our initial insights of RQ1, we identify two pathways for enabling domain

name usage in blockchain networks. First, verifying the relationship between domain and

address in a local context, which we address in RQ2. Second, verifying the relationship

between domain and address in an on-chain context, which we address in RQ3.

RQ2: What are ways to verify the connection between a domain

name and a blockchain address in a local context?

RQ 2.1 How can cryptographically verifiable assertions between blockchain addresses

and domain names be made?

The binding between a domain name certificate and an address within a

blockchain system must be robust and cryptographically verifiable. We propose

cryptographically verifiable assertions in Section 3.4.

4

1.2. Research Questions

RQ 2.2 How does the life cycle of cryptographic key material influence the system’s

functionality?

Cryptographic key material used within both the certificates and assertions

might expire or become invalid for other reasons. We need to properly consider

these processes within our systems. In Section 4.2, we investigate the influence

of the cryptographic key material.

RQ 2.3 What are the limitations of verifying assertions in a local context?

The specific context of a browser and the availability of information can influence

functionality, usability, and security assessments. We evaluate these limitations

in Sections 4.3 and 4.4.

The results from RQ2 suggest that an off-chain verification approach comes with

considerable downsides. These downsides lead us to consider a revised design that

conducts verification in an on-chain context.

RQ3: How can we verify the connection between a domain name

and a blockchain address in an on-chain context?

RQ 3.1 What are the technical pathways for enabling the usage of certificates and

endorsements in an on-chain context?

In contrast to an off-chain verification approach, verification that takes place

on-chain has more complexities. We describe and explain ways to enable such

verification in Chapter 5.

RQ 3.2 How does the life cycle of cryptographic key material influence the functionality

of the proposed system?

In contrast to the off-chain verification approach, in which secondary information

can be directly accessed, this information is not available in an on-chain context.

We discuss these implications in Section 5.2.

RQ 3.3 What are the limitations of verifying assertions in an on-chain context?

The on-chain context provides more transparency to all entities but also requires

an extensive analysis and understanding of risks and attack scenarios, as

the blockchain context differs from adversarial scenarios in TLS. We provide

rationale in Section 5.4.

5

Chapter 1. Introduction

RQ 3.4 How can the interactions of users of Ethereum Name Service (ENS) regarding

DNS Security Extensions (DNSSEC) be analyzed?

ENS has utilized DNSSEC in its systems since August 2021. We want to

understand how many domains ENS has issued since its inception and how

the data can be obtained. We describe a process for data collection, cleanup,

enrichment, and verification which we describe in Section 5.5.

RQ 3.5 How do existing approaches for leveraging domain names in a blockchain context

compare to each other?

Given that ENS leverages DNSSEC to fulfill similar goals, it is desirable

to compare costs, security, adoption, and fulfillment of requirements. The

evaluation is conducted in Chapter 6.

1.3. Contributions

This dissertation contributes to the state of research in information exchange between Web

2.0 and blockchain networks by leveraging PKI information in the context of blockchain

networks. We enable secure linkage and references from the WWW to blockchain-

specific entities and addresses, prevent or detect specific fraudulent behavior, enable data

authentication and provenance within blockchain networks, and enable authentication of

smart contract applications based on PKI certificate information. Approaches described

in this dissertation partly eliminate bootstrapping issues and reduce onboarding costs for

entities rooted in Web 2.0. Further, we develop a methodology for extracting information

of DNSSEC-enabled ENS domains and analyzing their current state.

More precisely, we contribute to this field in the following ways:

• analyzing the state of research for leveraging PKI information within blockchain

networks,

• understanding and evaluating dimensions and their arrangements to enable

the usage of certificate information in a blockchain context,

• enabling a generalized framework for utilizing certificate information in

both an on-chain and off-chain context,

• analyzing security implications and strategies for both the underlying crypto-

graphic key material of the PKI and the additional signature data,

6

1.4. Outline

• developing and analyzing a dataset of all domains that have been bridged to

ENS using DNSSEC,

• analyzing the costs and limitations of the described approaches including a

comparison to the DNSSEC approach of ENS, and

• outlining future work and improvements of the approaches described within

this dissertation.

1.4. Outline

This dissertation is structured in seven chapters and includes six appendices. An overview

of the structure is given in Figure 1.2.

Chapters Contents and Contribu�ons Papers

1. Introduc�on

2. Founda�ons and
Related Work

3. U�lizing PKI in
Blockchains

4. Off-Chain
Verifica�on

5. On-Chain
Verifica�on

6. Evalua�on and
Comparison

7. Conclusion and
Future Work

• Mo�va�on, research ques�ons, outline

• PKI and blockchain networks
• State of research

• Fundamental concept of using domain
names in blockchain networks

• Endorsements to cryptographically verify
rela�onship domain and address

• Systems architecture
• Augmenta�on of user wallet

• On-chain TLS system architecture

• ENS DNSSEC system analysis
• ENS DNSSEC dataset

TLS Off-chain

TLS On-chain

DNSSEC

Rela�ons

Concept

Evalua�on

• Applicability
• Costs
• Security

• Answers to research ques�ons
• Outlook and enhancements

Gallersdörfer, Ma�hes(2020)
Gallersdörfer, Ma�hes (2021)
Gallersdörfer, Ebel, Ma�hes
(2021)

Gallersdörfer, Groschupp,
Ma�hes (2021)

Figure 1.2.: Structure of this dissertation including chapters and contents.

In the following, we describe the chapters and their contents. Further, we highlight

relevant related work and prior publications, including additional contributions we made

within this dissertation.

7

Chapter 1. Introduction

Chapter 2, “Foundations and Related Work”, introduces key concepts of the

underlying technologies that form the basis of this thesis, such as PKI and TLS, including

X.509 certificates and other security protocols such as CT and DNSSEC. The target

system, blockchain networks, is also briefly explained, including concepts such as addresses

and smart contracts. In this chapter, we also provide an overview of the state of the

research on enabling the usage of certificate information within blockchain networks.

In Chapter 3, “Utilizing Public Key Infrastructures in Blockchains”, we provide

a detailed analysis of the core concept and approach of enabling information managed in

PKIs within blockchain environments. This analysis includes an insight into the technical

dimensions of such systems. It discusses which approaches are helpful in the context

of the problem statements introduced earlier, proposing a solution space for leveraging

certificate information in a blockchain context. We introduce the endorsement as an

essential building block, an idea initially introduced in (Gallersdörfer and Matthes, 2020,

2021a). We contribute by defining the structure and formalizing all potential approaches

to leverage PKI information within blockchain environments. Chapter 4, “Off-Chain

Verification”, introduces and describes the first approach, namely the off-chain TLS

verification of endorsements stored in a blockchain network. More particularly, the

underlying problem statement is described and analyzed. The second step establishes

the system architecture, components, and processes. A threat model is developed, and

the security implications of additional signatures in TLS are assessed. This concept

was first introduced in (Gallersdörfer and Matthes, 2020, 2021a). Further, we describe

the augmentation of a user wallet to support the system, which was initially developed

and described in (Ebel, 2021) and (Gallersdörfer et al., 2021a). We contribute to this

augmentation by revisiting TLS warnings in browsers to validate the underlying research

observations, sharing insights into the updated results, and discussing and evaluating

limitations and mitigation strategies.

Chapter 5, “On-Chain Verification”, highlights two alternative system designs for

leveraging TLS certificate information in the context of blockchains. On-chain verification

enables a blockchain-wide consensus on the validity of endorsements, enabling novel

use cases. First, we describe the problem statements that necessitate the on-chain

authentication of domain names. Then, we describe the architecture and properties of

the approach initially proposed in (Groschupp, 2020) and (Gallersdörfer et al., 2021c).

We introduce the architecture design of ENS’ approach to leverage DNSSEC and provide

a rationale for both system architecture designs. We further contribute by developing a

methodology to extract and analyze the DNSSEC-related domains transferred to ENS.

8

1.5. Prior Publications and Citation Style

Further, in Chapter 6, “Evaluation and Comparison of Approaches”, we discuss

and evaluate the three approaches described in Chapters 4 and 5. We verify the suitability

of the underlying ecosystems of TLS certificates and DNS Security Extensions. We discuss

and evaluate the applicability and practicability of all systems. Further, we give insights

into the adoption of ENS. Also, we give an overview of the costs of all approaches,

discuss their security implications and analyze the fulfillment of the requirements stated

in Chapter 3.

In Chapter 7, “Conclusion and Future Work”, we summarize and conclude our

work by answering all research questions posed in Section 1.2. Lastly, we suggest

potential avenues for future research into leveraging certificates managed within PKIs in

a blockchain-based context, including security enhancements, cost reductions, and trust

anchor removal of the PKI system.

1.5. Prior Publications and Citation Style

Prior publications exist for this dissertation. Further, the author advised students

completing theses partly related to this area of research. We display all publications,

theses, and semester work relevant to this research in Appendix A. All theses related to

this research project are highlighted and cited in the appropriate passages.

In the manuscript, we directly mark text cited from prior publications by the following

methods:

• enclosing text in quotation marks

(“This is a quote”),

• indenting the paragraphs in question,

• marking when we removed text from the quoted paragraphs

([...]),

• highlighting additions to the text

([This is an addition]), and

• providing a citation after the quotation

– “TeSC: TLS/SSL-Certificate Endorsed Smart Contracts” (Gallersdörfer and

Matthes, 2021a).

9

Chapter 1. Introduction

Changes that are cosmetic (e.g., creating bullet points out of enumerations) or that

enhance the readability (e.g., spelling errors or updated references and citations) of

quotations without changing their meaning are not highlighted. Please note that

quotations can span multiple sections. Footnotes referenced from within quotes are also

part of the individual quotations unless marked otherwise. We standardized terms for

enhanced readability.

10

Chapter 2.

Foundations and Related Work

This chapter explains, discusses, and categorizes the underlying technologies and systems

that enable our conceptualization, system architecture, and implementation for leveraging

Public Key Infrastructures in a blockchain environment. It provides an overview of the

related state-of-the-art research, differentiates existing research from our own, and

categorizes it within the existing landscape.

In more detail this chapter is separated into the following sections:

• Section 2.1, “Public Key Infrastructures in the Internet”, introduces the systems

constituting the World Wide Web including the Domain Name System, Transport

Layer Security, X.509 certificates, Certificate Transparency, and DNS Security

Extensions. We highlight the concepts of these systems that enable our system

architecture.

• In Section 2.2, “Blockchain Networks”, we outline the concepts of the blockchain

and the target network on which our systems are deployed. We briefly cover the

core concept of the technology and underline the importance of smart contracts

within these networks, i.e., trustless, decentralized applications.

• In Section 2.3, “State of the Research”, we provide an overview of related work and

research that targets the intersection of Public Key Infrastructures and blockchain

networks by either a) proposing novel system designs that overcome issues of PKIs

with blockchain-based architectures or b) leveraging existing PKIs in a blockchain-

based context. Furthermore, we highlight the research gap in the existing literature.

11

Chapter 2. Foundations and Related Work

2.1. Public Key Infrastructures in the Internet

The inner workings of the Internet and World Wide Web as they exist today are managed

by several governing bodies; the Internet Engineering Task Force (IETF), the Internet

Corporation for Assigned Names and Numbers (ICANN), and the Internet Assigned

Numbers Authority (IANA), among others. These entities are organized within the

Internet Society (ISOC), a non-governmental organization that “supports and promotes

the development of the Internet as a global technical infrastructure [...]” (Internet Society,

2022b). These entities are responsible for specific areas of the systems, their contents,

and their rules and obligations. For example, the IETF comprises many working groups

that work on and propose technical specifications, recommendations, and standards in

the form of so-called Request for Comments (RFCs). On the other hand, the ICANN

coordinates and manages the allocation of domain names in the DNS, the IANA, among

other entities, is responsible for the assignment of IP addresses (IP version 4 and IP

version 6 addresses) (IANA, 2022).

The Internet, its involved standards, and its concrete implementations serve as an

infrastructure for digital services. For example, the WWW makes use of this underlying

infrastructure (such as the Hypertext Transport Protocol [HTTP], TLS, and DNS) to

enable an information service. Anyone can use browsers and access websites whose

contents are described by the Hypertext Markup Language (HTML), which was also

proposed in its earlier versions within the IETF as RFC 1866 (Berners-Lee and Connolly,

1995). Later versions of HTML, such as HTML5, were proposed by working groups of

the World Wide Web Consortium (W3C) (Hickson and Hyatt, 2011).

Our work relies on selected core technologies; therefore, they are crucial for the

remainder of this thesis. In the following, we cover the DNS, allowing the mapping of

human-readable names to IP addresses, and TLS including X.509 certificates that

enable secure authentication and communication between two entities over the Internet.

Technologies such as Certificate Transparency (CT) and DNSSEC are either used in

related work or pose promising avenues for future work. On their current trajectory, they

are gaining increasing relevance within the Internet infrastructure ecosystem (Internet

Society, 2022a).

2.1.1. Domain Name System

The DNS serves as one of the Internet’s core protocols as a hierarchically organized

directory service. For example, it enables the usage of the WWW as it is known

12

2.1. Public Key Infrastructures in the Internet

today, allowing people to utilize easy-to-memorize names to visit websites. In particular,

DNS helps to resolve human-readable names in the form of a fully qualified domain

name (FQDN) to IP addresses. Entities interested in connecting to the server behind a

specific FQDN such as https://www.example.org can do so, independent of the intended

underlying protocol (i.e., whether the user wants to visit the web server via HTTPS, or

open a shell connection via SSH). DNS was initially described in RFC 882 and 883 and

updated in RFC 1034 and 1035 (Mockapetris, 1983a,b, 1987a,b). We describe specific

extensions to DNS that are noteworthy for this thesis in Section 2.1.3.

Core to the DNS is the specification of domain names. Figure 2.1 depicts the specific

parts of an FQDN, namely the protocol, sub-domains, domain names, and top-level-

domain (TLD). The last dot (“.”) is part of an absolute fully qualified domain name as

specified in the respective standard, but is omitted in practice.

https://︸ ︷︷ ︸
protocol

subdomain︷ ︸︸ ︷
www. example.︸ ︷︷ ︸

domain name

Top-level-domain︷︸︸︷
org.

Figure 2.1.: Structure of a fully qualified domain name. The protocol (https://) is not part
of an FQDN, but is shown for completeness.

DNS is hierarchically structured but decentrally organized. The name server responsible

for the root zone in the form of the “.” forwards requests for specific TLDs to the

respective name servers, which in turn answer or forward requests to the name servers

responsible for the individual domain names. Entities owning a domain (e.g., example.org)

can run their name server, defining IP addresses and further information for the respective

subdomains (e.g., sd1.example.org and sd2.example.org). This approach results in efficient

request processes. Formal definitions and standards for the inner workings of the request

process, zone files, and resolutions exist in the respective RFCs and are not reiterated

within this thesis (Mockapetris, 1983a,b, 1987a,b).

The relevance of the DNS not only for the Internet but for society as a whole is

undisputed. Given the worldwide recognition and acceptance of DNS, most forms of

news, communication, or, more generally, exchange of information are based on the

Internet and domain names. The DNS is estimated to manage 1.01 billion internet

hosts (Statista, 2022). This widespread adoption has led people not to question the

integrity and authenticity of a website when its domain name is recognized or seems to

have a relationship with a trusted company, government, or entity. Domain names have

increased in importance as a form of identity, resulting in high prices for relevant and

13

Chapter 2. Foundations and Related Work

easy-to-remember names (Styler, 2022). Further, legal disputes about trademark rights

for specific domain names have taken place (e.g., lambo.com for the car manufacturer

Automobili Lamborghini S.p.A.1).

In our work, we recognize the importance of domain names and their increased adoption

as a form of identity. Leveraging such a system in a blockchain-specific context might

help solve or mitigate issues we raised in Section 1.1, as it can be unclear whether an

entity is the party it claims to be. DNS might help to understand whether an on-chain

address is connected to a domain and thus a trusted business or government. Nonetheless,

while DNS is the key pillar for human readable names, the integrity, authenticity, and

privacy of communication depend on cryptographic premises defined within TLS and

X.509.

2.1.2. Transport-Layer-Security and X.509

The integrity, authenticity, and privacy of the communication between an entity that

connects to a website and the respective web server are not automatically established by

DNS. However, other systems are in place to provide these security guarantees, namely

TLS2 and the certificate standard X.509.

Transport Layer Security (TLS)

The latest version of TLS, 1.3, is defined in RFC 8446 (Rescorla, 2018), and previous

versions 1.2 and 1.1 were defined in RFC 5246 and RFC 4346, respectively (Dierks

and Rescorla, 2006; Rescorla and Dierks, 2008). TLS “allows client/server applications

to communicate over the Internet in a way that is designed to prevent eavesdropping,

tampering, and message forgery” (Rescorla, 2018). More concretely, the properties of

client/server application communication via the Internet provided by TLS are, as defined

in section 1 of RFC 8446, authentication, confidentiality, and integrity (Rescorla, 2018).

1. Authentication: The client-side authentication is optional, whereas the authenti-

cation of the server side is mandatory.

1https://domainnamewire.com/2022/08/11/lamborghini-wins-lambo-com-as-namepros-

username-defense-fails/, accessed on 4th September 2022.
2TLS is a derivative standard from the Secure Sockets Layer (SSL) standard initially proposed in
the Netscape browser in 1992, which has been deprecated. Nonetheless, these terms are often used
interchangeably; for consistency and clarity, we only use the term TLS.

14

https://domainnamewire.com/2022/08/11/lamborghini-wins-lambo-com-as-namepros-username-defense-fails/
https://domainnamewire.com/2022/08/11/lamborghini-wins-lambo-com-as-namepros-username-defense-fails/

2.1. Public Key Infrastructures in the Internet

2. Confidentiality: The data transported by the TLS layer is readable only by

both endpoints; no party in between can read the communication as long as other

security properties hold up3.

3. Integrity: The TLS layer ensures the integrity of the data, meaning that an

attacker cannot modify the data without detection.

TLS defines a set of steps to establish secure communication between both parties by

a) facilitating a session-specific encryption key and b) relying on trusted cryptographic

information as defined in the X.509 certificate standard. Again, formal definitions,

processes, and methodologies are well-defined in respective RFC documents (Rescorla,

2018) and are not reiterated in this thesis.

Therefore, TLS establishes a secure connection between two parties, but its security

relies on valid and trustworthy certificates.

X.509 Certificate Standard

X.509 is a standard that describes the structure and creation of digitally signed certificates

for hierarchically organized PKIs. It is formalized in the ISO/IEC 9594-8 (ISO, 2022)

and RFC 5280 (Boeyen et al., 2008). This standard also defines the structure and

functionality of the certificate revocation lists (CRLs), which allow certificate authorities

(CAs) to withdraw compromised key material.

X.509 is used predominantly for three specific applications:

• Websites/Web hosts : On the Internet, X.509 certificates4 are leveraged to

authenticate the respective website or host. Modern browsers utilize lists of

trustworthy issuers of such certificates to verify the host’s authenticity and establish

encryption between both nodes in the network. The certificates are bound to the

respective domain name and are issued only to the entity controlling the domain.

• E-mail Communication: The communication between mail servers leverages

transport encryption to protect the contents of emails. However, these systems

do not allow for end-to-end encryption between the sender and receiver of an

email. Secure/Multipurpose Internet Mail Extensions (S/MIME) is a standard for

3For example, if malicious parties can obtain private keys of certificates, the confidentiality of TLS can
be broken.

4Often, they are referred to as SSL-certificates or TLS-certificates. We interchangeably use the term
X.509 or TLS certificate.

15

Chapter 2. Foundations and Related Work

encrypting and signing emails. The X.509 certificate contains the email address.

The certificate’s authenticity is established by the CA or by the company setting

up the PKI. A classification for these certificates exists, providing information on

the quality of user authentication.

• Code Signing: With respective flags in the X.509 certificate5, entities can leverage

certificates for code signing. Code signing is the process of signing software

programs and delivering this signature alongside the actual program. This ensures

the integrity of the software and protects against unintended manipulation when

proper key management is in place.

As previously mentioned, X.509 is organized in a strict hierarchical way. In contrast to

web-of-trust systems, in which individual users weigh the authenticity and trustworthiness

of certificates on a per-case basis, single entities issue new certificates, which, in turn,

can issue certificates themselves. In the case of X.509, a hierarchical tree structure allows

an entity to verify a certificate and the path up to a root certificate. This root certificate

needs to be trusted as well. Often, these certificates are stored in the device’s operating

system or the web browser.

To issue new certificates, entities need to prove that they are in control of a to-be-

certified asset (e.g., a web domain or an email address6). Suppose they want to include

additional information in the certificate (such as the organization’s name, country of

origin, or something else), the correctness of this information needs to be verified as well.

Certificates containing such additional information are often referred to as Extended

Validation (EV) certificates, as this information might be displayed prominently in a

browser. These certificates comprise only a fraction of all certificates (about 0.9% of the

top 1,000,000 websites use an EV certificate (BuiltWith, 2022)).

There are two approaches to proving the ownership of a domain; either controlling the

respective DNS entry or managing the host to which the DNS entry is linking. Proving

the ownership of the DNS entry enables the creation of wildcard certificates and the

equipping of any subdomain with the newly generated certificate. Establishing control of

the web host enables the request of regular certificates linking to one specific FQDN. Both

approaches can be facilitated via the Automated Certificate Management Environment

(ACME), requesting and issuing new certificates for domain owners via, for example,

Let’s Encrypt (Let’s Encrypt, 2022).

5The issuing entity can set Code Signing in X509v3 Extended Key Usage to enable code signing for
the respective certificate.

6For relevance, we cover the issuance of certificates for domain names only.

16

2.1. Public Key Infrastructures in the Internet

The revocation of certificates, or, more generally, digital signatures, is a cumbersome

process. Initially, verifying the integrity and correctness of a signature alongside its

signed content does not involve any third party; after the certificate is retrieved from a

third party, no further information is required to verify the certificate chain. Therefore,

the verification processes is extended to include additional integrity information. Two

methodologies are used to revoke credentials:

• Certificate Revocation Lists (CRLs): CRLs are lists issued periodically by

certificate authorities or a separate trusted entity containing any certificate they

intend to revoke. This period is usually 24 hours or less. The CAs themselves

sign these lists to prevent spoofing. CRLs are vulnerable to denial of service (DoS)

attacks7. Further, distributing all revoked certificates result in high network traffic.

• Online Certificate Status Protocol (OCSP): OSCP is a protocol leveraged

to obtain the validity state of an X.509 certificate and serves as an alternative to

CRL. Instead of requesting the entirety of revoked certificates for a single issuer,

it asks explicitly about the revocation state of a specific certificate. While more

efficient in terms of traffic usage, this method raises concerns about users’ privacy,

as it discloses the surfing behavior of the individual to the relevant CA. A solution

for this problem is OCSP stapling. Instead of each browser requesting the validity

state, the server requests it periodically and provides it as a response “stapled” to

the TLS certificate (Eastlake, 2011).

Implications

Protocol designed to address the problems described in Section 1.1 should have properties

similar to those of TLS and other existing technologies. First, the mandatory authen-

tication of the server side and optional authentication of the client side are desirable.

Entities that host websites could also deploy smart contracts protected by similar security

mechanisms. The protocol could also ensure client-side authentication, but other means

of authentication could be leveraged. Additionally, data integrity is relevant in this

protocol, as information about the to-be-addressed smart contract needs to be valid.

Although TLS provides confidentiality, it is irrelevant for solving the above mentioned

issues. The secrecy of on-chain transactions is diametrically opposed to the goal of

transparency and verifiability of public blockchain systems; therefore, leveraging the same

7If the entity hosting the CRL cannot provide the CRL to requesting browsers, the browsers cannot
verify if a certificate is revoked.

17

Chapter 2. Foundations and Related Work

mechanics in an on-chain context does not provide any confidentiality. Nonetheless, the

confidentiality of on-chain transactions and their contents receives increased attention

through systems such as TornadoCash and other cryptographic mechanisms, such as

Zero-knowledge proofs (ZKP) and homomorphic encryption, allowing for the verification

of contents without actually revealing them.

2.1.3. Other Security Measures

Other security methodologies arose due to issues with existing technologies and protocols.

In this section, we cover two of the more broadly used technologies, CT and DNSSEC.

Certificate Transparency

CAs send newly issued certificates directly to the requesting entity (e.g., the host). One

issue with this approach is that it is unknown whether or how many certificates exist

for a given entity or domain. Malicious actors that have obtained the private key of a

CA or the CA itself could issue new valid certificates for a given domain. This missing

transparency is dangerous, as such certificates can easily be misused. This is a known

attack scenario: In 2011, DigiNotar was a victim of such an attack, and consequently,

malicious certificates for the domains Google, Yahoo, and The Tor Project were issued

and used in man-in-the-middle (MITM) attacks. This attack sparked discussions about

removing the single point of failure from the Internet infrastructure and has led to the

development and usage of CT (Amann, Gasser, Scheitle, Brent, Carle, and Holz, 2017).

CT aims to provide a tamper-proof and append-only log of all newly issued certificates

by any CA. RFC 6962 (Laurie et al., 2013) defines its core functionality and RFC 9162

provides version 2.0 (Laurie et al., 2021). The company Google has been substantially

involved in the development and extension of CT and forces CAs to adhere to the

standard; in case of non-adherence, Google provides warnings for certificates of respective

CAs in Google’s browser Chrome (Sleevi, 2016). Some browsers, such as Edge, support

CT, and others, such as Mozilla Firefox, do not8.

From a technical perspective, CT provides a linked hash tree. CT provides the current

root hash (tn) signed by the respective companies, including Google. On the left side of

the tree, the last root hash (tn−1) is provided, whereas the right side of the tree comprises

all new certificates issued to CT since tn−1. It is impossible to remove certificates once

they have been submitted to CT. Also, it is relatively easy to prove the inclusion of

8See https://bugzilla.mozilla.org/show_bug.cgi?id=1281469, accessed on 8th February 2023.

18

https://bugzilla.mozilla.org/show_bug.cgi?id=1281469

2.2. Blockchain Networks

a certificate in CT. The respective browsers also require this proof before deeming a

certificate valid.

CT does not provide security on the certificate itself; it verifies the correctness of the

certificate, such that it does not include an invalid certificate in the log, but it cannot

decide if a malicious actor issued the certificate. This is the responsibility of the domain

owner. CT allows anyone to monitor newly issued certificates for a given domain. In

case a certificate is issued without the owner’s intention, measures such as invalidating

the individual certificate and an attack analysis can take place9.

DNS Security Extensions

DNSSEC are standards defined in RFC 4033, 4034, 4035, 5011, and 5155 (Arends et al.,

2008; Rose et al., 2005a,b,c; StJohns, 2007). They were initially proposed in 1999 in

RFC 2535 (Eastlake, 1999) but failed due to their complexity. A proposal was made in

2005, again based on the previously mentioned RFCs. It aims to ensure the authenticity

and integrity of DNS records. With DNSSEC, requesting entities can verify the integrity

of the record and prove that it is identical to the version issued by the owner of the

zone file. Regular DNS relies on unsigned communication, enabling the manipulation of

responses from the individual name server. DNSSEC helps to overcome this limitation.

Privacy and confidentiality are, in contrast, not goals of DNSSEC.

To enable the authenticity and integrity of DNS records, DNSSEC relies on public key

cryptography. As the DNS system is strictly hierarchically organized, a similar approach

to TLS and X.509 was chosen. For every zone file that supports DNSSEC, a key is used

to sign the respective responses. This key hash is stored within the zone file, and a key

signature is stored in the overarching zone file.

2.2. Blockchain Networks

Blockchains, more generally known as Distributed Ledger Technologies (DLT)10, describe

networks of interconnected computers, often called nodes, that ensure the integrity of the

9The chance of a compromised CA issuing malicious certificates can be considered lower than an attack
on one’s infrastructure. Therefore, if such wrongly issued certificates exist, verifying the integrity of
the own infrastructure is advisable.

10DLT describes technologies that manage a distributed state in a decentralized network, whereas
blockchains fulfill the same goal by relying on blocks that bundle transaction information. As
technology exists that does not rely on blocks, the more general term DLT is often used. For
readability reasons, we will use both terms interchangeably. The results of our work can be leveraged
in both blockchain and DLT networks.

19

Chapter 2. Foundations and Related Work

state and its continuation of a specific application. For this, they exchange information on

newly occurred transactions and states. Consensus mechanisms ensure that the integrity

of the network is secured and that all honestly behaving nodes accept the same state as

correct.

A blockchain fulfills three core properties, namely the absence of trust, being tamper

proof, and transparency (Narayanan et al., 2016).

• Absence of Trust: The system does not require a specific or privileged third

party to control or run the network. Instead, independent and equal entities run

the network by contributing to its consensus mechanism.

• Tamper Proof: No single party can unilaterally alter the system, its contents,

and the history of all recorded transactions.

• Transparent: The system, contents, and the history of all recorded transactions

are transparent to all participants, and their integrity can be verified.

For the reader to follow the contents of this thesis, the inner workings of a blockchain

network are irrelevant. Nonetheless, we briefly touch on the layers of blockchain networks

and the concepts behind public and private blockchains in subsection 2.2.1, as these

become relevant for later sections. The basis for our work is the concepts and limitations

of the programmability of smart contracts in blockchain networks, which we cover in

subsection 2.2.2. While the concepts introduced in this thesis apply to any programmable

blockchain, we explicitly leverage and utilize Ethereum and the smart contract language

Solidity.

2.2.1. Underlying Concepts

Blockchain networks rely on the already-established Internet and leverage regular trans-

port protocols, such as TCP. Therefore, we locate these networks in layers 5 (session) to 7

(application) in an Open Systems Interconnection Model (Zimmermann, 1980). The layers

of blockchain networks are complex and can deviate in the number of layers, separation,

and system boundaries. For this thesis and essential distinctions relevant to this thesis,

we define three separate layers:

• Network Layer: The network layer contains the computers and nodes that

connect and exchange messages about the network state. Basic syntactic and

semantic rules in this layer also apply to these messages. This layer includes any

20

2.2. Blockchain Networks

consensus mechanism, such as Proof of Work or Proof of Stake. Usually, these

networks are bootstrapped from a few hard-coded nodes that share information

about other nodes, forming a loosely coupled network utilizing a gossip-like protocol.

Limitations introduced in this layer lead to the formation of private or permissioned

blockchain networks, as we outline below.

• Application Layer: The application layer is responsible for the networks’ intents

and purposes, e.g., what the developers of the network intended to do. For example,

Bitcoin establishes an open payment system in this layer. For other networks, such

as Ethereum, this payment system is augmented with a Turing-complete low-level

bytecode language that allows the creation of smart contracts that can interact

similarly to regular accounts. This layer is responsible for the application-specific

state (e.g., which account owns which funds or information storage).

• Interface Layer: The third layer provides the users with the system’s data and

enables them to interact with the underlying application. Interfaces take the form

either of automated systems such as Application Programming Interfaces (APIs),

or actual interfaces in the form of wallets or decentralized applications (dApps)11.

Changes introduced to these layers can severely impact the functionality of perception of

the respective networks and, thus, are considered cornerstones of these networks. We make

a significant differentiation between public permissionless, public permissioned,

and private blockchain networks.

In public permissionless blockchain networks, anyone can participate in the network

itself and in forming the consensus (rather than just validating it). Any node in the

network has the same rights and cannot restrict other entities in any way. This is the case

for most cryptocurrencies, as any limitation on participating in the consensus mechanism

could severely weaken interest in the platform. Examples of public permissionless networks

are Bitcoin and Ethereum.

In public permissioned blockchain networks, anyone can participate by connecting

to existing peers and fetching block data, as well as verifying its integrity and adherence

to the consensus rules, but cannot participate in the consensus itself. This results in

a privileged group of nodes that run and govern the network and are essential to its

correct functioning. Depending on the limitations imposed by the privileged nodes, other

11To be more accurate, dApps refer to both the underlying smart contract as well as the interface that
lets the user interact with it. The smart contract is often decentralized, whereas the interface is
hosted on a centralized server such as a website.

21

Chapter 2. Foundations and Related Work

entities might be able to interact on the application layer. These networks are often run

for a specific purpose or to serve a particular public interest group while these groups

remain in control to a certain extent.

In private blockchain networks, only previously designated nodes can connect to the

network and, depending on the design of the network, might or might not be able to

participate in its consensus. These are often highly specialized networks that serve a

specific industry group interested in sharing non-public data between members, as data

is accessible only for predefined nodes and participants. Manual onboarding, such as

connecting to virtual private networks (VPN), can be cumbersome. Industry consortia

often rely on private blockchain networks.

2.2.2. Blockchain Programmability

Blockchain networks can support arbitrary programming languages; therefore, these

systems can theoretically be Turing-complete.

One often-mentioned limitation of blockchain programmability is runtime complexity.

Given that all nodes in the network verify and execute a transaction, execution costs

are multiplied by the number of nodes in the network. Because of runtime issues and

transaction complexity, execution time is severely limited in these networks. Further,

malicious actors must be prevented from halting the network by occupying all nodes

with non-trivial computational tasks, rendering the network’s utility zero. In public

permissionless networks, transaction fees based on the complexity of transactions prevent

excessive transaction spamming. In permissioned or even private networks, individual

malicious actors can be banned or are non-existent due to the preselected user group.

2.2.3. Smart Contracts

Besides regular users that interact with the blockchain relying on externally owned

accounts (EOA)12, smart contracts exist. A smart contract13, in contrast to an EOA,

is controlled by the code it was set up with. Once invoked, a smart contract behaves

as specified by the code. Apart from one limitation, a smart contract has the same

12EOAs are blockchain addresses that are controlled by a private key and, thus, by the entity that
controls the private key.

13There are more general definitions for the term smart contract, e.g., by Nick Szabo in 1994: “A smart
contract is a computerized transaction protocol that executes the terms of a contract” (Szabo, 1997).
For relevancy reasons, we limit ourselves to discussing smart contracts as a concept in the Ethereum
blockchain.

22

2.2. Blockchain Networks

capabilities and functionality as an EOA; it can receive and send transactions (with or

without money), interact with other smart contracts, and create new smart contracts.

However, a smart contract cannot invoke itself automatically but needs to be called by

an EOA that executes the smart contract in question. Therefore, the originator of any

blockchain interaction is always an EOA.

Ethereum relies on low-level bytecode that is executed in the Ethereum Virtual

Machine (EVM). Multiple programming languages, such as Solidity or Vyper, allow

human-readable code and compilation to EVM bytecode. Given its adoption and broad

community support, the code referred to in this thesis is Solidity.

Many public permissioned and private blockchain networks besides Ethereum rely

on the EVM for their purposes. Even other public permissionless blockchain networks

support the EVM.

2.2.4. Bridging Information Between the Off-Chain World and

On-Chain Blockchain

The three properties and core principles of blockchain networks mentioned in Section 2.2

lead to additional restrictions on the capability of these systems. While these programming

languages can be Turing-complete, access to sources of randomness is severely limited.

Input variables for pseudo-random number generators (PRNGs) are known prior and,

thus, results are predictable. Under specific circumstances, these input factors can be

influenced, rendering the purpose of a random number obsolete.

Also, all state transitions (resulting from transactions) need to be deterministic.

A transaction execution must yield identical results on any machine in a network.

Blockchain networks do not support any non-deterministic behavior. The requirement for

deterministic behavior removes all possibilities to call external services on the blockchain,

e.g., calls to external APIs or other data sources are not natively supported.

The primary mitigation strategy for this limitation is the usage of so-called oracle

services. Oracles are entities that own an EOA, monitor on-chain activity and requests

for data, and collect required information off-chain14 to push it on-chain. While this

might be a straightforward approach, it has a considerable downside: centralization.

The oracle is a centralized entity that controls the data flow. This introduces centralized,

privileged entities in a decentralized context. The oracle might manipulate data, stop

serving specific entities, or block data publishing entirely. Additionally, the oracle likely

14Off-chain refers to any activity that happens in the Internet outside of the blockchain.

23

Chapter 2. Foundations and Related Work

requires a fee for it to operate. Lastly, given the monetary aspects of public permissionless

blockchain networks, oracles might be tempted to change randomness values in their

favor.

There are several methods to enhance the trustworthiness of an oracle service, but

tradeoffs need to be considered.

The decentralization of the oracle service is a straightforward approach. Instead

of relying on a single oracle, multiple oracle services could access identical information

and publish respective data to the blockchain. In an on-chain setting, e.g., in a smart

contract, some form of voting could take place, such that the value reported by the

majority of oracles is accepted. This introduces novel problems such as increased costs,

certification of oracle service providers15, and collaboration attacks, in which multiple

oracles can conspire to push false values to the chain to gain a financial advantage.

Oracles that generate randomness are easier to implement. Users publish the hashes of

random numbers with a commit and reveal scheme (Gallersdörfer et al., 2020) on-chain

to reveal their contents later and compute an overall random number that no entity

could have predicted.

The verification of the integrity of the published information with asymmet-

ric cryptography can be a good approach to enhancing an oracle’s trustworthiness. At

the initial setup of a smart contract system, a public key is stored on the blockchain and

later used to verify the information. Assume a trusted entity (not the oracle provider)

publishes its data with respective signatures online. Oracle services then pick up the

information and push it on-chain. If the smart contract has stored the original public

key, it can verify the integrity of the information pushed on-chain by the oracle service.

We leverage this approach in this thesis. This approach also has downsides, as storing

and verifying data is expensive, significantly increasing costs.

A detailed overview of the state of the research in this area is given in the next section.

2.3. State of the Research

We identify two core areas of related work adjacent to our research. First, some research

leverages the properties and cryptographic key material of TLS certificates to enable

applications within blockchain networks, e.g., proofs of website contents. Second, one

system leverages DNSSEC to allow the usage of standard domain names within a

blockchain network.

15Otherwise, an oracle provider could just create multiple identities.

24

2.3. State of the Research

We acknowledge that much research has been done around either augmenting current

PKI systems with elements from blockchain networks or entirely replacing them with

blockchain-based systems, enhancing accountability and transparency. While existing

systems face issues and limitations, our research focuses on improving usability and

security within blockchain networks and accepts these systems as given. Updating and

enhancing current systems require tremendous effort and time, as it takes many years for

the community to fully adopt such systems (e.g., DNSSEC). An extensive overview is

given in (Brunner et al., 2020).

2.3.1. Leveraging Cryptographic Key Material in Blockchain

Networks

The cryptographic key materials of TLS certificates or other PKIs have previously been

used in research. As a result, we refer to two significant results and explain the delta of

our approach.

• Town Crier is a research project that enables “authenticated data feeds for smart

contracts” (Zhang et al., 2016). The authors identify the same problem described in

subsection 2.2.4: In order to access data outside of the blockchain, oracle providers

are required to push data to the blockchain. The specific use case depends on the

trustworthiness of these oracles; incentives might exist for these oracles to behave

maliciously. To prevent malicious behavior, Town Crier establishes an approach

that forces these oracle providers to a) rely on a Trusted Execution Environment

(TEE), the secure hardware enclave named Intel SGX, and b) provide proofs of

correct execution on the blockchain. This enclave ensures that processed data, e.g.,

the contents and the TLS certificate, are valid and cannot be tampered with. This

also enables the publication of private data so that only the intended recipient is

able to read the data on-chain. While TLS certificates are leveraged, this approach,

unfortunately, relies on the correct functioning of the secure hardware enclave from

Intel, which has been broken in the past (Nilsson et al., 2020). The technology was

adopted in Chainlink in 2019 and continues to be used within their systems16.

• TLSNotary and Oraclize.it17 leverage TLS certificates to prove the authenticity

of the contents of websites to a third party called auditor that can verify the

16See https://blog.chain.link/town-crier-and-chainlink/. Accessed 11th September 2022.
17Oraclize.it has been rebranded to Provable.

25

https://blog.chain.link/town-crier-and-chainlink/

Chapter 2. Foundations and Related Work

correctness of the respective presented contents. It currently supports TLS 1.1

and TLS 1.2. Initially designed as technology-agnostic, it did not require or rely

on a blockchain network. In Provable’s smart contract ecosystem, it is one of

the multiple proof types for the authenticity of data published to the blockchain.

Therefore, it does not rely on a TEE; it depends on “a locked-down AWS instance

of a specially-designed, open-source Amazon Machine Image” (Provable, 2022).

This also introduces dependence on a specifically designed system, which users

must trust.

In both cases, our proposed system does not rely on trusted execution environments or

specific software setups to prove the correctness of on-chain data. Instead, by publishing

key material directly to the blockchain and bootstrapping the smart contract system

with trusted root certificates, we avoid the dependence of other entities on our approach.

2.3.2. Enabling Domain Name Usage in Blockchain Networks

EN) is a system of smart contracts that allows anyone to reserve and claim domains for the

TLD .eth on the Ethereum blockchain (Ethereum Name Service, 2023b). Currently, no

major browser supports the TLD managed by ENS, and it is not an officially recognized

registrar within the traditional DNS PKI systems. Opera supports ENS-domains and

displays their content if a website is available via Interplanetary File System (IPFS) (Benet,

2014), as seen in Figure 2.218. Brave supports crypto-specific DNS systems, such as

ENS and UnstoppableDomains, but requires users to initially opt-in to leverage these

technologies19. ENS is managed by the ENS DAO, which controls the development and

rules of the ENS ecosystem. More than 2.3 million names have been created20 as of

September 2022. The ownership of each name is purely in the control of the respective

registrant, and the DAO itself cannot reclaim previously issued domain names. This is

in contrast to the existing DNS, in which entities are able to take legal action to claim

access to a specific domain name. The technical setup of ENS is explained in great detail

in their docs21, therefore, we do not reiterate the entire technical foundations. We discuss

parts of ENS architecture in Section 5.3. Previous research highlights issues within the

ENS ecosystem, such as domain squatting, malicious websites, and others (Xia et al.,

2022).

18The protocol ipfs:// is not entered manually, but automatically added when visiting vitalik.eth.
19https://brave.com/brave-crypto-dns-strategy/, accessed 11th September 2022.
20https://dune.com/makoto/ens, accessed 11th September 2022.
21https://docs.ens.domains/, accessed on 11th September 2022.

26

vitalik.eth
https://brave.com/brave-crypto-dns-strategy/
https://dune.com/makoto/ens
https://docs.ens.domains/

2.3. State of the Research

Figure 2.2.: Screenshot of the Chrome browser accessing ipfs://vitalik.eth, the website
of the Ethereum co-founder Vitalik Buterin. Accessed on 27th February 2023.

Interesting, and more relevant to our research, is the experimental support of domain

names managed in the traditional DNS system. Instead of requiring users to obtain and

purchase a .eth domain, they can claim the ownership of an already existing domain

managed in the traditional DNS system22. Users must provide proof of ownership utilizing

DNSSSEC, which we introduced in Section 2.1.3. The respective TLD needs to support

DNSSEC, and the users need to update their zone files to point to the registrar address on

Ethereum. The requirement to use DNSSEC restricts the number of domains utilizable in

such an environment, as not all TLDs support DNSSEC. We investigate the availability of

DNSSEC in Section 6.1. An important limitation of this approach is that domain owners

can not claim subdomains. The owner of the second-level domain (e.g., example.org) is

allowed to issue subdomains (e.g., sd1.example.org) in ENS without a requirement to

honor potentially deviating records in the zone file for the domain in question.

Key differences between this system and the TLS-based systems described in this

thesis exist:

• ENS’ main focus is on growing the .eth domain landscape, as this is the main

source of revenue. While the DNSSEC support is integrated into the ecosystem, it

22https://veox-ens.readthedocs.io/en/latest/dns.html, accessed 11th September 2022.

27

ipfs://vitalik.eth
https://veox-ens.readthedocs.io/en/latest/dns.html

Chapter 2. Foundations and Related Work

is still in an experimental phase, although initial work began in 201723.

• ENS relies on DNSSEC, whereas our approach generalizes the approach for any

form of X.509 certificate. In our case, support for proprietary or private PKI

systems is possible, whereas DNSSEC is limited to the existing DNS system.

We thoroughly analyze the ENS DNSSEC approach in Section 5.3 and highlight further

key differences in Section 5.4. Further, in Section 5.5, we develop a dataset of all domains

bridged to ENS using DNSSEC.

2.4. Summary

This overview highlights the importance of the systems that provide the basis for the

WWW and the novel design of blockchain technology and smart contracts. This thesis

identifies the gap between WWW and blockchain networks as a potential area for

research. It contributes to narrowing this gap to mitigate issues arising from the loose

interconnection between these systems. Using standardized cryptographic premises

existing within the WWW and applying them in a blockchain-specific context yields

benefits of the existing WWW in a blockchain context to enhance the usability and

security of these networks. Following concepts enable this potential:

• Trust in DNS: The DNS, as a central pillar of the WWW, ensures the authenticity

and trustworthiness of entities, e.g., companies, governmental institutions, or, in

some cases, individuals. From this perspective, one might recognize domain names

as a globally valid “pseudo”-identity. We are unaware of any other system that

provides trust, security, and adoption comparable to DNS. Although security issues

and other downsides exist, DNS adoption has occurred worldwide.

In this thesis, we utilize DNS and domain names to extend the scope of the validity

and trustworthiness of these certificates in a blockchain context to leverage their

advantages. Additionally, we discuss the relevance and recognition of domain names

in a blockchain context by end users.

• Cryptographic Premises: The existence and usage of cryptographic key material

for establishing secure connections to web servers and other services, including

certificates and certificate chains, allow for a standardized and efficient verification

23https://github.com/ensdomains/dnssec-oracle, accessed on 11th September 2022.

28

https://github.com/ensdomains/dnssec-oracle

2.4. Summary

of the authenticity of the counterparty and ensures the integrity of content and

information.

Based on a standardized format and processes, we propose in this thesis the usage

of certificate and certificate chain information for straightforward and cost-efficient

issuance and authentication of identity attributions that are initially rooted in the

DNS.

• Blockchain as Immutable Storage and Execution Layer: Blockchain systems,

notably public networks, are recognized as immutable ledgers capable of storing

millions of records for prolonged periods. Given the deterministic and Turing-

complete execution environment of some of these networks, it is possible to create

autonomous entities, called smart contracts, within these networks that obey only

the initially provided application code.

In our work, we first utilize blockchain technology to store parts of the certificate

and key and signature information to protect integrity and ensure its availability

of signature statements. Second, this information can be verified in an on-chain

context, relying on the Turing-complete execution environment in blockchains and

enabling a globally-shared perception of the authenticity of stored certificates and

signatures. Third, verification is also enabled in an off-chain context, allowing users

to perceive the authenticity of material stored on-chain individually.

In the next chapter, we introduce the fundamental concept for utilizing certificates of

PKIs in a blockchain context, discuss potential solutions, and define the endorsement as

a way to link from a domain name to a blockchain address.

29

Chapter 3.

Utilizing Public Key Infrastructures in

Blockchains

This chapter covers the core concept and idea enabling the utilization of PKIs in a

blockchain environment. We provide insight into the approach and methodology of

utilizing X.509-certificates and their signatures within blockchain systems, derive and

explain requirements, and analyze the solution space for the architectural design and

implementation.

In more detail, we split this chapter into the following sections:

• Section 3.1, “Methodological Approach”, gives an overview of the core idea and

how components of existing WWW infrastructures can be leveraged in Blockchain

networks. Further, we describe the processes and data required to enable such

usage.

• In Section 3.2, “Requirements”, we derive the requirements for the architecture

design. First, we describe issues and use cases related to the problem statement in

Chapter 1. Second, we analyze the requirements originating from these use cases,

and third, we detail the requirements set out by the RFCs.

• We provide an understanding of the solution space in which PKIs can be used in

blockchain networks in Section 3.3 “Solution Space”. In this section, we differentiate

between two core concepts described in this thesis.

• Lastly, in Section 3.4, “Endorsement”, we introduce the first essential component

of the system: the endorsement. The endorsement represents a verifiable claim that

the entity owning a certificate and its associated rights (e.g., a claim to a domain)

wants to attribute itself to an on-chain entity (e.g., an address or smart contract).

31

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

Parts of Section 3.4 are based on the material of one prepublication, namely “TeSC:

TLS/SSL-Certificate Endorsed Smart Contracts” (Gallersdörfer and Matthes, 2021a).

32

3.1. Methodological Approach

3.1. Methodological Approach

In the previous chapter, we outline the importance and the role of PKIs in the WWW

as a trust anchor of the naming scheme and in providing cryptographic key material to

enable the integrity, privacy, and authenticity of communication between single entities.

More generally, these properties apply not only in the context of the WWW but also

in any other hierarchically organized PKI that serves identical purposes for a group of

entities (e.g., a company-wide or inter-organizational PKI). We display an exemplary

PKI in Figure 3.1, containing the certificate chain of the website https://example.org.

TLS Certificate
Public Key Infrastructure

Company

Certificate

Alt Names

DigiCert Inc. DigiCert Global
Root CA

DigiCert TLS RSA
SHA256 2020 CA1

www.example.orgICANN

example.eduexample.comexample.net …

contains

signs

owns

Figure 3.1.: Exemplary PKI Structure for the TLS certificate of https://example.org.
Please note that www.example.org is included both as Common Name and Subject

Name in the certificate in question. DigiCert Global Root CA is the certificate
from the Root CA, and DigiCert TLS RSA SHA256 2020 CA1 is an intermediary
certificate, whereas www.example.org is the domain certificate or leaf certificate.
Website accessed on 27th February 2023.

The cryptographic key material and its organization into hierarchical structures and

signature chains enable an efficient verification of properties1 and statements2. Given

the limited resources available in Blockchain networks, the leveraging of cryptographic

1Properties are attributes assigned to specific entities within the PKI, e.g., a domain name or, in the
case of S/MIME, e-mail addresses. In Figure 3.1, Alt Names are a form of property.

2We refer to statements for signed or encrypted data that is leveraged for different purposes, e.g., a key
exchange for symmetric encryption.

33

https://example.org
https://example.org

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

key material or certificates must be as efficient as possible to reduce costs.

X.509 certificates and their properties have been widely adopted in the WWW. After

IP address information has been exchanged via DNS, certificates enable secure communi-

cation and authentication through TLS. These certificates and their properties can be

utilized within Blockchain networks. As a result, the certificate or the property itself

is insufficient, as a statement must be formulated to extend the attribute’s scope to a

blockchain address. The root certificates, the certificate verification path, the certificate

itself, and the statement, including its signature, are required to verify the attribution to

the blockchain address successfully.

A valid signature can be interpreted as a statement from the owner of a certificate

to bind a blockchain address to its entity, thereby endorsing the authenticity of the

individual address. The party recognizes that other parties can attribute the original

property (e.g., the domain name) to the blockchain address, thereby enabling the usage

of these properties in the context of blockchain networks. We refer to such a statement

as an endorsement. A more detailed definition of an endorsement is given in Section 3.4.

Between specific use cases and their requirements, the verification and the executing

entity might deviate. In our work, we describe two suitable approaches:

• Decentralized off-chain-verification: The verification of an endorsement takes place

in a decentralized manner, e.g., in the wallet of the user executing a transaction.

• Logically centralized3 on-chain-verification: The endorsement verification takes

place on-chain, and the required data is stored on-chain as well.

These methodologies deviate in their requirements and system architecture, and both

are the basic designs for leveraging certificates in a blockchain context. We describe

the rationale behind the design decisions and solution space in Section 3.3. Chapter 4

analyzes in detail the off-chain system design, whereas Chapter 5 covers the on-chain

system design.

Despite the simplicity of the idea, several challenges occur in the design and development

of such technology. As examples, we name three challenges requiring attention and

potential mitigation efforts.

• As the system builds upon existing standards, such as TLS, DNS, and X.509, their

properties and requirements must be considered.

3Whereas public blockchain networks are often decentralized, the consensus mechanism ensures that
all nodes derive at the same state. Thus, for any computation that takes place on-chain, all nodes
derive the same result, logically centralizing the process.

34

3.2. Requirements

• The cryptographic key material needs to be kept secret, and our systems’ existence

and usage must not weaken the existing infrastructure’s security properties.

• Costs are a major issue in blockchain networks and influence architectural designs

and business decisions. Our system needs to cater to the high costs of single

operations and therefore requires minimal costs sufficient for operation.

To conclude: We utilize the attributes of certificates managed within PKIs by leveraging

their cryptographic key material and signing abilities to enable endorsements that attest

relationships between the original attributes and blockchain-specific addresses. The

challenges of designing a system that supports such an endeavor are manifold, stemming

from the complexity of the underlying systems, their security requirements, and the

restrictions of the blockchain space.

3.2. Requirements

This section discusses our proposed solutions’ architecture and design space requirements.

To this end, we provide problem statements derived from Chapter 1 and develop require-

ments for these. Additionally, the underlying technologies and standards, such as TLS,

X.509, and DNS, pose particular requirements in their RFC specifications.

For clarity, we iterate both over functional and non-functional requirements. In

subsection 3.2.1, we discuss requirements that stem from the problem statements posed

earlier; in subsection 3.2.2, we generate requirements from the underlying technologies

and standards. We summarize all requirements in subsection 3.2.3.

Requirements engineering is a core task of system design. Previous work revolving

around leveraging TLS certificates in a blockchain context has defined requirements as

well (Groschupp, 2020; Hoops, 2021; Strugala, 2020).

• (Groschupp, 2020) proposed a list of requirements for enabling an on-chain au-

thentication framework. We briefly describe this framework in Section 5.2. The

author refers only to on-chain authentication and does not differentiate between

functional and non-functional requirements. We find similar requirements: FR3,

NFR1, NFR3, NFR5, and NFR6 are in line with the author’s findings.

• (Hoops, 2021) developed a set of requirements for the off-chain approach, which we

describe in detail in Chapter 4 and which was previously published in (Gallersdörfer

and Matthes, 2021a). Hoops reviewed over TLS-related RFC documents and prior

35

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

work to develop a set of requirements. No distinction between functional and

non-functional requirements was made. We find similar requirements: FR5, NFR1,

and NFR3 are in line with the author’s findings.

• Subendorsements (see Section 3.4) and their usage are the focus of (Strugala,

2020). The author defines functional and non-functional requirements for a system

enabling the usage of endorsements in an authorization context. Given the different

focus of this work, the requirements do not align.

3.2.1. Problem-Statement Specific Requirements

In the following, we outline a specific set of problems that appear at the intersection of

web and blockchain networks, namely address replacement attacks, missing data

authentication, non-human-readable names, and lack of access control.

Problem Descriptions

We identify the following problems in the context of the interplay between Blockchain

and Web 2.0:

Address Replacement Attacks: Web 2.0 services (such as regular web servers)

often provide information on connecting to blockchain-based applications or services.

However, these linkages are susceptible to attacks, as the respective services do not

contain information for further verification of the authenticity or identity of these on-

chain applications. Attackers use this weakness to trick users into interacting with

malicious blockchain services and addresses, often resulting in lost funds or assets.

Missing Data Authentication: Companies and other institutions rely on sharing

data, parts of data, or the integrity information of data on a blockchain. Proving the

ownership and authenticity of this data to a third party requires interactive challenge-

response mechanisms for which both parties must be online. Additional requirements,

such as data provenance after the issuing institution ceases to exist, might be required.

Non-Human-Readable Names: Users obtain information about blockchain-based

services via websites and other means of communication (e.g., instant messaging or mail).

As there is no direct way to verify the authenticity or recognize the name of these services,

directly relying on these addresses is comparable to surfing the web using IP addresses.

Lack of Access Control: Protecting services or blockchain networks from unau-

thorized access is an often-required feature. These mechanisms often involve a manual

exchange of information via secondary channels such as mail or text. The owner of the

36

3.2. Requirements

service or network is then able to safelist respective addresses. These manual processes

are labor-intensive and prone to errors.

Requirements Engineering

A set of basic requirements must be in place to solve or at least mitigate the above-

mentioned issues.

At first glance, all four problems face the absence of a form of a strong identity

on-chain. Replacement attacks benefit from an entity’s inability to associate its domain

ownership with address ownership. On-chain data authentication and the unavailability

of human-readable names mean there is no way to publish content and act within the

network with a recognized name. As a method of authorization, access control first needs

a proper means of authentication.

We define a strong form of on-chain authentication as the first non-functional require-

ment.

NFR 1: Strong Form of Authentication. Enable a strong form of

authentication in the respective on-chain environment.

Public key authentication already exists within blockchain networks. However, similar

to IP addresses in the WWW, these names are not human-readable or practical for

widespread usage in the ecosystem. Therefore, we define human-readable names as a

second non-functional requirement for easier adoption.

NFR 2: Usage of Human-Readable Names. The names in the system

should be easily recognizable by humans.

As we outline in Section 2.3, some existing systems, such as ENS, provide a form of

human-readable names similar to regular domain names. A better understanding of how

these names are recognized and used is needed, and they still lack adoption within the

community. Further, outside the Ethereum community, these systems are not supported;

rather, they face competition from cryptocurrency-specific name services4, contributing

to the ecosystem’s fragmentation and highlighting the need for bootstrapping.

Therefore, we pose two non-functional requirements:

4For example, on the blockchain network Tezos, Tezos Domains (ending with .tez) exist. So far,
they have only recorded about 140,000 domains in their system. Further information: https:

//tezos.domains, accessed on 8th February 2023.

37

https://tezos.domains
https://tezos.domains

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

NFR 3: No Requirement for Bootstrapping. The system should rely

on a well-established system for name management and authentication.

NFR 4: Blockchain Agnostic. The system and its core concepts should

be applicable in any blockchain network.

We also need to ensure that any entity can interact with the system. The system

should be designed to be open, so no entity can limit access to the system. We aim

to allow broad usage in the blockchain ecosystem, taking an agnostic perspective on

blockchain networks, including the absence of intermediaries. Therefore, we define the

following non-functional requirements:

NFR 5: Decentralization. Avoid centralization beyond already-existing

naming services.

NFR 6: Openness. Allow anyone to participate within the system; thus,

do not rely on intermediaries that could limit access to the system.

From a functional perspective, this form of authentication needs to support basic forms

of interaction, as any similar certificate would:

• Create: Create the data object that later enables the verification of said object in

a blockchain context.

• Read: Allow any interested party to obtain and read the data object that allows

for authentication.

• Update: Allow the update of information within the data object to represent new

states of said object.

• Delete: Delete and remove said object so that it is no longer valid within the

system.

Given that we may deal with identity assertion/usage in the form of a certificate-

like structure, it is recommended not to rely on a create read update delete (CRUD)-

based approach but rather to adhere to certificate standard methodologies and to the

functionalities of issuance, verification, and revocation. Therefore, we propose these three

functional requirements:

38

3.2. Requirements

FR 1: Issuance. An entity should be able to issue a valid form of a

certificate-like object to extend the scope of existing naming rights in a

blockchain-based environment.

FR 2: Verification. Any entity should be able to verify the authenticity of

said object.

FR 3: Revocation. An entity that previously issued such an object should

be able to revoke its validity.

One further functional requirement is necessary for “Lack of Access Control”. If an

entity accesses a resource within a blockchain network, it actively contacts a smart

contract to be authenticated. As smart contracts cannot reach out to third parties to

access information about the authenticity of counterparties by themselves, we define the

following functional requirement.

FR 4: Active Usage. The authenticity information issued within the

envisioned system can be used for active authentication.

3.2.2. RFC-Specific Requirements

The RFCs we rely upon in our work are TLS, X.509, DNS, and CT. While these

documents describe the required features, functionalities, and steps to adhere to the

respective standards, the design goals and guarantees are relevant to our work. For

example, we do not want to implement a TLS key exchange directly. Still, we need to

understand the rationale behind the respective algorithms to properly implement our

solution.

TLS – RFC 2246/4346/5246/8446

In RFC 2246 (TLS 1.0), RFC 4346 (TLS 1.1), and RFC 5246 (TLS 1.2), four goals of the

TLS protocol are defined: cryptographic security (to establish a secure connection),

interoperability (between multiple applications), extensibility (to enable new crypto-

graphic signature and encryption methodologies), and relative efficiency (to reduce

computational and network activity) (Allen and Dierks, 1999; Dierks and Rescorla, 2006;

Rescorla and Dierks, 2008).

In RFC 8446 (TLS 1.3), the goals of the TLS protocol are further clarified: “The primary

goal of TLS is to provide a secure channel between two communicating peers” (Rescorla,

39

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

2018). Further, the properties of the secure channel should be authentication (required

for the server side, optional for the client side), confidentiality (data is visible only to the

endpoints), and data integrity (data cannot be changed without detection) (Rescorla,

2018).

RFC 8446 further refers to RFC 3552: “Guidelines for Writing RFC Text on Security

Considerations” which contains additional security-related requirements and goals (Mc-

Fadden, 2019). Based on this, further subcategories are defined:

• Communication Security, targeting the above-mentioned three properties of con-

fidentiality (2.1.1.), data integrity (2.1.2.), and peer entity authentication (2.1.3.).

• Non-Repudiation (2.2.), enabling one party to prove to a third party in a secure

and authenticated way the existence and validity of any statement the other party

has made.

• Systems Security, such as unauthorized usage (2.3.1.), inappropriate usage

(2.3.2.), and denial of service (2.3.3.).

Given the blockchain context, we identify the following requirements to be relevant to

our system:

• Authentication: A strong form of authentication is a requirement for a system

that aims to extend the scope of TLS authentication at the intersection of Web 2.0

and blockchain. Entities must not be able to impersonate other entities given a

threat model, as outlined in Section 4.3. This threat model includes partial access

to one end-system on the issuing party (e.g., its web server), lowering the security

goal from prevention to detection.

• Data Integrity: The integrity of the data exchanged in the protocol needs to be

protected; given the use of blockchain as a data structure and the secure connections

to other entities (e.g., protected via TLS), this requirement is implicitly fulfilled.

• Non-Repudiation: Entities in our system should not be able to deny their

involvement later, allowing other parties to claim and prove the existence of

signatures and their contents. This requirement should also hold in cases where

signing parties claim the theft of their private keys.

• Systems Security Requirements: Unauthorized and inappropriate usage is

implicitly included in authentication and data integrity requirements. Preventing

40

3.2. Requirements

DoS attacks is essential, as the absence of name-based authentication information

cannot be differentiated from the service’s unavailability, as such information is

standard in blockchain networks.

We remove the confidentiality of a connection as a requirement. However, we do not

expect to directly expose that a cryptographic verification is taking place (protecting

confidentiality at that level). The relationship between actors can be inferred by respective

on-chain transactions, independent of whether verifications have occurred.

As a result, we define the following functional and non-functional requirements and

omit duplicates5:

NFR 7: Non-Repudiation. The extension of the scope of an authentic

certificate to a blockchain address cannot be denied after the fact.

NFR 8: Robustness against Denial of Service Attacks. The system is

robust against DoS attacks.

X.509 – RFC 2459/3280/5280

X.509 is a certificate standard and is part of a family of standards for PKI on the Internet.

It defines the certificate and the certificate revocation list (CRL). The specification

is intended for any application or system that facilitates the use of X.509 certificates,

including our system.

X.509 certificates are broadly used within multiple PKIs for many use cases. To support

a multitude of these PKI, our system should rely on X.509 certificates as a source for

authenticity:

NFR 9: PKI Agnostic and X.509 Support. The system relies on the

X.509 certificate standard and supports any PKI adhering to that standard.

In addition to the certificate structure (to which we implicitly adhere), the CRLs are a

core component for revoking previously issued credentials. We support CRLs, given that

revoking a certificate should also rescind the statements of this certificate. Our proposed

system should also recognize the certificate’s validity as communicated by other means,

such as online certificate status protocol (OCSP).

5For simplicity, we subsume data integrity and additional elements of systems security under NFR 1
(Strong Form of Authentication).

41

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

NFR 10: Adherence to Certificate Status. The status and validity

of the underlying certificates apply to statements and assertions managed

within the system.

Further Specifications

As outlined in Section 2.1.3, CT (RFC 6962) aims to provide a protocol for a tamper-proof,

append-only log of TLS certificates to verify and audit that log. CT enables the detection

of maliciously issued certificates by a CA (e.g., when a CA issues valid certificates that

are outside its scope6). Further, domain owners can recognize when someone issues a

new certificate for their domain (Laurie et al., 2013).

Given the tamper-proof and append-only blockchain context, the fulfillment of this

requirement in our system is implicit. Similarly to CT, the auditability of issued assertions

enables the detection of malicious actors. However, we cannot automatically prevent an

attack.

FR 5: Auditability. Any identity assertions issued within the system need

to be traceable and auditable.

DNS, as outlined in RFC 1034 and RFC 1035, poses additional requirements on our

system: adherence to the hierarchical naming schema, omittance of protocol information,

and inclusion further details (Mockapetris, 1987a,b). If we adhere to an X.509 standard

in an Internet context, we also adhere to respective naming schemes. Therefore, and for

simplicity, we do not set up further functional or non-functional requirements.

3.2.3. Overview

To summarize the findings presented in the previous two subsections, we provide a list of

all functional and non-functional requirements that the systems need to address:

• Functional Requirements:

FR 1: Issuance. An entity should be able to issue a valid form of a certificate-like

object to extend the scope of existing naming rights in a blockchain-based

environment.

FR 2: Verification. Any entity should be able to verify the authenticity of said

object.

6E.g., issuing certificates without user request.

42

3.2. Requirements

FR 3: Revocation. An entity that previously issued such an object should be

able to revoke its validity.

FR 4: Active Usage. The authenticity information issued within the envisioned

system can be used for active authentication.

FR 5: Auditability. Any identity assertions issued within the system need to be

traceable and auditable.

• Non-Functional Requirements:

NFR 1: Strong Form of Authentication. Enable a strong form of authentica-

tion in the respective on-chain environment.

NFR 2: Usage of Human-Readable Names. The names in the system should

be easily recognizable by humans.

NFR 3: No Requirement for Bootstrapping. The system should rely on a

well-established system for name management and authentication.

NFR 4: Blockchain Agnostic. The system and its core concepts should be

applicable in any blockchain network.

NFR 5: Decentralization. Avoid centralization beyond already-existing naming

services.

NFR 6: Openness. Allow anyone to participate within the system; thus, do not

rely on intermediaries that could limit access to the system.

NFR 7: Non-Repudiation. The extension of the scope of an authentic certificate

to a blockchain address cannot be denied after the fact.

NFR 8: Robustness against Denial of Service Attacks. The system is robust

against DoS attacks.

NFR 9: PKI Agnostic and X.509 Support. The system relies on the X.509

certificate standard and supports any PKI adhering to that standard.

NFR 10: Adherence to Certificate Status. The status and validity of the

underlying certificates apply to statements and assertions managed within

the system.

43

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

3.3. Solution Space

After outlining and defining requirements, we sketch a solution space in which the

certificates of PKIs can be leveraged in a blockchain-based context. To this end, we

iterate the individual elements of the hypothetical system and discuss the respective

configuration options.

3.3.1. Fundamental Concept and Elements

The system aims to leverage certificates and their attributes managed within any PKI in

a blockchain-based context. This means that anyone should be able to a) extend the

scope of a certificate to any blockchain address they control and b) verify that this scope

extension is valid. This means that a “sub-certificate” of the respective certificate creates

this association. This association can be verified by anyone with access to the relevant

OKI and, potentially, further information.

The Selection of Public Key Infrastructure

While limiting the system to one specific PKI is possible, an approach using any PKI

that adheres to the X.509 standard is favorable. In this case, we need to define whether

one instance supports multiple PKIs simultaneously or if separate instances are required.

The hierarchical structure of a PKI and its root certificates are core to its functionality.

By definition and induction, the entirety of the certificates managed within one PKI exist

due to the respective root certificates. This means that while we need to store the root

certificates to be able to later verify any certificate or derived endorsement, the number

of these certificates is limited and clearly defined. These root certificates also work on a

trust-basis, meaning that if an entity does not trust a respective root certificate, it does

not trust any of its derivatives. Instead of separately initializing instances of our proposed

system for each PKI, a generalized system can be defined that manages an arbitrary

number of root certificates. Instead of predefining these root certificates, entities that

verify certificates or endorsements must be able to specify which root certificates they

trust. The co-existence of multiple PKIs requires identical standards and the absence of

conflicting objects (such as privacy or spam protection).

To conclude: Independent of other arrangements and decisions, the system is PKI ag-

nostic.

44

3.3. Solution Space

Processes

In addition to understanding the regular life cycle of the TLS certificates (creation, usage,

and revocation), we need to understand the scope of the processes for endorsements and

their integration within blockchain networks and the verification software. Following

the TLS life cycle, we propose three critical processes for our system: the issuance, the

verification, and the revocation of an endorsement. For each of the processes, we define

potential arrangements. As issuance and revocation are closely coupled, we display their

potential options in one section.

Issuance and Revocation. The issuance and revocation of an endorsement play an

elementary role in the system. An endorsement is a derivative of a TLS certificate, or

to be more precise, of its private key and signature. The certificate can also sign a

revocation statement, rendering the endorsement invalid. This process should take place

only locally. If the private key is shared or available to any other party, it might get

misused for malicious purposes.

However, as we outline in Section 3.3.1, the endorsement is stored on-chain and refers

to an on-chain entity. As this on-chain entity can have its own cryptographic material (in

case of an EOA) or deterministic behavior (in case of a smart contract defined through its

byte code), sub-endorsements could be created. In this case, the issuance and revocation

of sub-endorsements could occur purely on-chain.

Verification. Verifying an endorsement and its certificate, including the certificate chain,

is the core process of protecting the integrity of the linkage between an on-chain entity

and the respective domain owner. The process can take place on-chain, and anyone can

execute it. We need to decide in which context such verification can and should happen:

• Local Execution: In Section 3.2, we introduce the problem of loose coupling

between websites, their interfaces, and the linked smart contracts, leading to the

risk of malicious actors redirecting users to smart contract addresses that they

control themselves. To prevent such attacks, it is necessary to verify whether an

address belongs to the website in question and warn the user if it is not. Wallets

must display these warnings to users. The verification can be executed securely

within the user’s local environment, as we assume that the attacker has no access

to the user’s machine7.

7Our system does not aim to prevent attacks in which an attacker has access to a user’s system

45

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

• On-chain Execution: In Section 3.2, we also introduce the problem of missing

data authentication and access control in blockchain-based systems. Smart contract

systems cannot authenticate other addresses on predefined rules and identity

schemes. Suppose a smart contract or other on-chain application wants to enforce

a rule or verification result based on our proposed endorsement. In that case, the

verification must take place on-chain8. These processes are prone to third-party

centralization if the verification takes place off-chain.

This shows that the varying problem statements, as initially defined in Section 3.2,

lead to two conflicting goals: on-chain verification for systems that require that data

to be present on-chain for decision making (e.g., who should be allowed to validate in

a Proof of Authority (PoA)9 network), as well as off-chain verification for processes

that aim to secure the connection of Web 2.0 interfaces with the blockchain ecosystem,

whether in the checkout or during other cryptocurrency-related activities.

These two approaches lead to different data storage requirements and fundamental

approaches. We discuss the off-chain verification approach in Chapter 4 and the on-chain

verification approach in Chapter 5.

Data Storage

In our hypothetical system, there are different possible arrangements for the storage

location of the data managed within the system. We need to define data storage locations

for the following types of data:

• Signature/Endorsement: The cryptographic data that binds endorsers to en-

dorsees needs to be stored publicly for later verification.

• Leaf and Intermediate Certificates: In a hierarchical PKI, the validity of

intermediate and leaf certificates can be deduced by the root certificates, but the

verifier needs to be able to access this data to verify the integrity and authenticity

of any endorsement. As a certificate also contains the certificate chain, we do not

differentiate between leaf and intermediate certificates.

8As we outlined in the previous section on requirements, we require decentralization or trustlessness
within our blockchain applications. Of course, one could employ an oracle that pushes information
about the validity of the endorsement on-chain, but that would introduce an unnecessary point of
centralization. To avoid repetition, we do not repeat this argument in later sections of this thesis.

9PoA networks are usually somewhat centralized, as the entities running the network are predefined.

46

3.3. Solution Space

• Root Certificates: Root certificates also need to be stored for verification purposes.

As these are critical to the trust, and as the validity of the verification result depends

on them, they need to be securely stored.

• User Preferences: The user’s preferences must be considered, including which root

certificates to trust or any caching data speeding up the verification of endorsements.

Generally, we can store data either a) on the relevant blockchain (“on-chain”), b) in the

WWW10, or c) locally. The recommended location depends heavily on the requirements

and the underlying use cases. While from a combinatorial perspective, many possible

arrangements are possible, only a few make sense. We give an overview of the possible

arrangements in subsection 3.3.2.

Below, we argue which potential storage solutions make sense for each type of data.

Endorsement/Signature. The endorsement and signature represent the binding be-

tween a certificate, its properties, and a blockchain address. As anybody should be

able to access the endorsement for verification purposes, local storage is excluded. As

these endorsements are newly created and did not exist previously, we cannot leverage

already-existing storage within the WWW.

Two options remain: store the endorsement in the WWW or on-chain. In case of

on-chain verification, the endorsement must also be stored on-chain; otherwise, the

on-chain verification smart contract cannot access it. In case of off-chain verification, it

is possible to obtain the data from other sources in the WWW. Only the DNS or the

respective web server should be accessed to avoid introducing additional centralization.

As the certificates of regular PKIs cannot be directly accessed (only via a directory

service such as CT), a PKI is unsuitable as a potential place for storage. DNS itself is

able to store the data, but as the unmodified DNS does not offer integrity protection

and, therefore, cannot be verified in an on-chain context, it also fails as a proper means

of storage. DNS could be a viable option if verification of the endorsement takes place

off-chain and DNSSEC is leveraged to ensure the authenticity of data stored in DNS;

ENS leverages DNSSEC to establish a binding between domains and a blockchain address.

Still, the result is stored in the blockchain, as ENS functions purely on-chain. We also do

not recommend storing the endorsement on the web server. While it is possible to access

10Potentially, the required data is already available in the WWW and we do not need to store it
separately, e.g., on the respective web server.

47

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

the relevant data in an off-chain-verification context (e.g., in a /.well-known/-folder)11,

the web server is an often-selected attack vector in tricking users into interacting with

malicious addresses (see Section 1.2). An adversary that gains access to the web server

would also be able to access the respective folder and replace the endorsement. We also

decide against storing additional data on the web server to eliminate this attack vector.

To conclude: All endorsements, whether leveraged in an on-chain or off-chain verifica-

tion process, are stored on-chain.

Leaf and Intermediate Certificates The web server serves the leaf and intermediate

certificate to the browser when it requests the domain. We must consider the possibility

that multiple certificates exist for the same domain. These certificates exist because an

entity might provide its services over multiple endpoints or content delivery networks

(CDNs). Managing these certificates on an individual basis requires less maintenance

and synchronization. Only the relevant service must be updated if a certificate needs to

be replaced or revoked. Another reason for the existence of multiple certificates is that

an attacker may have issued additional certificates, impersonating the web server.

Similar to the endorsement, three options exist: Local storage is not an option,

as the number of certificates is unclear and constantly changing. Storing all relevant

certificates locally is logistically neither practical nor possible. As the certificates are part

of the WWW, serving via both the web server itself and other means, such as certificate

transparency, the verification service can access them directly. Due to the determinism

of blockchain networks, this is not possible in an on-chain context. Therefore, if on-chain

verification occurs, the leaf and intermediate certificates must be stored on-chain.

The endorsement must refer to the relevant certificate when multiple certificates exist.

In this case, the verification service accesses CT to obtain the specific certificate, as

outlined in Section 4.2.6.

To conclude: Leaf and intermediate certificates are stored “inherently” in the response

from the respective web server or in CT if the server does not return the matching

certificate in an off-chain-verification process. These certificates must be stored in an

on-chain context in an on-chain verification process.

Root Certificates Root certificates represent the single point of trust in a PKI. There-

fore, these certificates are crucial to any verification process. In contrast to the short

11RFC 8615 defines well-known Uniform Resource Identifiers (URIs) for accessing site-wide metadata.
This data is placed within a /.well-known/)-folder (Nottingham, 2019).

48

3.3. Solution Space

lifespan of intermediate or leaf certificates, root certificates have a long validity period12.

Further, their number is limited. Google stores 140 root certificates in its Chrome

browser13, whereas the team behind Firefox accepts 168 root certificates in its browser14.

Similar to the leaf and intermediate certificates, in an on-chain verification context, the

root certificates need to be present in the on-chain environment. Otherwise, verification

will fail. In an off-chain verification process, root certificates are not solely distributed

via a regular HTTP request or within CT; they are part of the operating system or the

browser, e.g., Google Chrome or Mozilla Firefox. If the off-chain-verifier maintains or

has access to such a list, retrieval via WWW is unnecessary.

To conclude: In an on-chain verification environment, root certificates must be stored

on-chain, whereas root certificate lists can be accessed locally for an off-chain verifier.

User Preferences. The verifier, in either an on-chain or off-chain context, must be able

to define which root certificates to trust. We previously defined in Section 3.3.1 that our

system needs to support an arbitrary number of PKI systems. This results in a situation

in which users or verifiers do not trust all (root) certificates in the system. Therefore,

they need to be able to define which certificates they trust.

Again, in an on-chain verification process, this information needs to be present at

verification time; otherwise, it is impossible to decide whether a certificate or endorsement

can be deemed valid. In an off-chain verification process, the list of allowed root certificates

can be stored inherently in the respective root certificates, as the users controlling the

service can decide which certificates to trust. Storage in the WWW does not apply in

this case.

To conclude: In an on-chain verification environment, root certificate preferences are

stored on-chain (or provided just in time), whereas for an off-chain verifier, preferences

are stored locally.

3.3.2. Overview of Solution Space and Relevant Arrangements

In the previous section, we identified several key components and their potential design

for a system that allows the leveraging of PKI certificates in a blockchain-based context.

12As of the 6th February 2023, the DigiCert Global Root CA root certificate, that is the root certificate
in example.org ‘s TLS certificate, is valid until the 10th November 2031.

13Data taken from https://chromium.googlesource.com/chromium/src/+/main/net/data/ssl/

chrome_root_store/root_store.md, accessed on 10th October 2022.
14Data taken from https://ccadb-public.secure.force.com/mozilla/

IncludedCACertificateReport, accessed on 10th October 2022.

49

https://chromium.googlesource.com/chromium/src/+/main/net/data/ssl/chrome_root_store/root_store.md
https://chromium.googlesource.com/chromium/src/+/main/net/data/ssl/chrome_root_store/root_store.md
https://ccadb-public.secure.force.com/mozilla/IncludedCACertificateReport
https://ccadb-public.secure.force.com/mozilla/IncludedCACertificateReport

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

These components are as follows:

• Public-Key Infrastructure

• Processes

– Issuance and revocation of endorsements

– Verification of endorsements

• Data

– Endorsements

– Leaf and intermediate certificates

– Root certificates

– User preferences

Our system is agnostic to the type of PKI and depends only on whether the respective

cryptographic key mechanisms are supported. Processes and data storage can occur

locally, on the WWW, or in the blockchain network.

To account for the complexities of smart contracts and blockchain networks, we

extend the on-chain context and introduce centralized and standalone smart contracts as

subdivisions.

• Protocols often use logically centralized but technically decentralized smart

contracts, as this saves execution costs and enables the proper definition of rules

and guidelines. While there are smart contracts that serve as gate-keepers to their

intended functionality (e.g., deciding whether a certificate is valid), the immutability

of the smart contract protects the logic from changes and thus does not allow

anyone to manipulate the smart contract once it is deployed15. This means that

entities can verify the integrity of smart contracts and then decide to use them,

as there is no way for them to have been manipulated. From this perspective, the

system can be seen as its own protocol.

15This describes an ideal situation; in most cases, some form of update mechanism in form of a proxy
smart contract is in place to allow enhancing the protocol or removing bugs. However, this update
mechanism also introduces an attack vector. See OpenZeppelin’s Proxy Upgrade Pattern for more
information: https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies. Accessed on
6th February 2023.

50

https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies

3.3. Solution Space

ProcessesData

Issuance /
Revocation

VerificationPreferencesRoot Certs
Leaf /

Intermediate Certs
Endorsement

B)B)B)B)B)

A)

A)

A) & B)A)A)A)

Centralized

O
n
-c
h
ai
n

L
o
ca
ti
o
n Standalone

www

O
ff
-c
h
ai
n

local

Figure 3.2.: Overview of all dimensions and objects of the hypothesized system. System A)
allows for off-chain verification, whereas system B) allows for on-chain verification.
Horizontal lines mark configurations that deplete security, and vertical lines mark
technically possible configurations that add additional costs. Cells marked with
a dark color are impossible configurations.

• Standalone smart contracts provide a way to define the structure and interfaces

of a smart contract to adhere to a specific standard. This is often useful when

no direct interaction with other smart contracts takes place or in cases in which

centralization is neither possible nor cost-beneficial. From this perspective, the

system can be seen as an interface standard (e.g., comparable with the ERC-20

token interface standard)16.

We provide visualization in Figure 3.2 of all dimensions and elements of our hypothesized

system. This enables us to discuss potential arrangements and why only two possible

system designs make sense.

Our analysis shows that there are two distinct ways to leverage certificates from PKIs

in a blockchain-based context: the first is off-chain verification with off-chain leaf,

intermediate and root certificates, and the second is on-chain verification with on-chain

leaf, intermediate and root certificates. This shows that in the case of on-chain verification,

all relevant information needs to be on-chain, whereas, in an off-chain verification scheme,

we can leverage off-chain data.

Impossible Configurations. Figure 3.2 displays impossible configurations in black.

Noteworthy is the issuance and revocation of endorsements that cannot occur in a

16ERC-20 is an interface standard defining which functions a smart contract needs to expose to be
considered as a token contract. This standardization allows other software vendors to directly integrate
any token instead of adapting their code to individual types of tokens. OpenZeppelin provides
a reference documentation: https://docs.openzeppelin.com/contracts/4.x/api/token/erc20,
accessed on 15th October 2022.

51

https://docs.openzeppelin.com/contracts/4.x/api/token/erc20

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

blockchain-specific context or on a third-party service. As endorsements are based on

the cryptographic key material of X.509 certificates, only the party that possesses the

relevant certificate can issue an endorsement. The verification of an endorsement also

cannot be implicitly outsourced to services in the WWW; building and enabling access

to a service that verifies the endorsements is certainly possible but would require extra

effort compared to leveraging existing infrastructure.

Endorsements and leaf and intermediate certificates cannot be stored locally ahead of

time (e.g., as part of the software package) and therefore need to be retrieved just in

time.

Economically Unsustainable Configurations Leaf, intermediate, and root certificates,

including preferences, could be organized in standalone smart contracts that host the

certificates’ respective data. Also, data could be verified in standalone smart contracts

redeployed for every interested entity. While technically possible, these decisions would

add high costs to the system as they introduce redundancy by storing data repeatedly,

as every smart contract needs to be able to access all data required for verification.

Additionally, these decisions would prevent efficiency gains that would otherwise be

possible due to the PKIs’ hierarchical structure: The verification of intermediate and leaf

certificates should be executed only once. Due to the immutable data structure, users

can ensure that once-verified certificates remain valid17.

Depleting Security Storing the endorsement in a WWW environment is discussed

in Section 3.3.1. Insecure web servers are precisely the reason for address replacement

attacks, which swap a valid smart contract address with an address under possession

of the attackers. Storing the endorsement on the same machine does not provide an

additional layer of security, thus depleting the system’s security.

The same applies to storing or leveraging a third-party web service’s root certificates

and user preferences. While lists of trusted certificate authorities can certainly be

leveraged (e.g., from Google Chrome, Mozilla Firefox, or the operating system), we do

not recommend accessing these lists on-demand, as we see no advantage to this.

17The validity of a certificate depends not only on the correctness of the signature but also on ecosystem
variables such as the date and revocation status. The on-chain smart contracts must cater to and
consider these variables in the verification process.

52

3.4. Endorsement

3.4. Endorsement

In this section, we introduce the concept of an endorsement, as it is a crucial pillar of

the architecture and applies to both approaches, as outlined in Chapter 4, “Off-Chain

Verification”, and Chapter 5, “On-Chain Verification”. An endorsement can be defined

both by its representation and functionality and from a technical perspective, i.e., the

structure and data. First, we define the actors and entities in the system.

3.4.1. Entities

• Endorser: An endorser is an entity that controls and manages a certificate in

a PKI. A given certificate contains properties that are attributed to an endorser

(e.g., a domain name). This endorser intends to extend its property to an endorsee,

which in turn can claim an association to the respective certificate and, thus, the

respective property.

• Endorsee: An endorsee is a unique and securely18 verifiable object on a blockchain

network within (and potentially outside) a given ecosystem. An endorsee can be a

regular address (e.g., 0x123...789) controlled by an externally-owned account or

a smart contract. In theory, any other type of identity or different object in these

networks could be an endorsee (e.g., an ENS name or a non-fungible token). For

the sake of this thesis, we limit endorsees to addresses, meaning externally-owned

accounts and smart contracts.

• Verifier: The verifier is an entity, either within or outside the blockchain network,

that intends to verify the integrity of the endorser-endorsee relationship and,

thus, the endorsement itself. It relies on data from the originating PKI and the

endorsement. The verifier can be a service off-chain, e.g., a regular service that

connects to the blockchain to fetch data, or an on-chain service in the form of a

smart contract.

18Secure in this context means that this object is either able to produce verifiable messages, either
by cryptographic means such as signature schemes or can create messages that are the result of
a well-defined deterministic computational process, e.g., such at it would be the case for a smart
contract execution.

53

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

3.4.2. Definition

The term “endorsement” was first used in (Gallersdörfer and Matthes, 2020) to refer to

a simple means by which a domain owner can endorse a smart contract, with no formal

definition. In (Gallersdörfer and Matthes, 2021a), we gave a formal definition of an

endorsement, consisting of a claim C, a signature S, and an endorsement E. (Groschupp,

2020) and (Gallersdörfer et al., 2021c) also provide definitions of “endorsement” which

deviates slightly from the initial definition in (Gallersdörfer and Matthes, 2021a). We

rely on the initial definition given in (Gallersdörfer and Matthes, 2021a).

To better understand the concept of an endorsement, we divide its definition into

functional and technical definitions.

Functional Definition

An endorsement represents an inclusive reference from a domain owner to a blockchain

address, extending the scope of its web server identity to on-chain blockchain addresses

or applications. In this way, the endorser broadens the scope from the certificate to

the endorsee. That means that domain owners associate their respective identities with

the addresses endorsed. Users and other entities accept the endorsee and endorser as a

union and recognize both forms, e.g., the website and the blockchain address, as different

means of communication, exchange of information, or value.

It is important to note that endorsements should be considered positive references,

as an attacker could create endorsements for addresses it does not control. While an

attacker cannot gain control over endorsed addresses, scenarios can be constructed in

which an attacker could harm the reputation of an on-chain address by associating it

with illicit activity. For example, Tornado Cash, a coin tumbler19, is sanctioned by the

US government. Miners and validators in the US need to comply with this sanction list,

forcing them to censor related transactions in the Ethereum network. An anonymous

user sent funds to popular addresses through Tornado Cash, which could potentially

result in censoring of these addresses (Sun, 2022).

19A coin tumbler is an application that allows users to disguise the origins of their funds by collecting
funds from multiple entities and distributing them back to the respective entities in a separate step.
We use the term coin tumbler (in contrast to coin mixer), as the pure functionality of this application
does not make a statement about the lawfulness of the respective activity (Narayanan et al., 2016).

54

3.4. Endorsement

Technical Definition

“We [...] define three key components [...]: the claim, signature, and endorse-

ment.

First, we define the claim C in Eq. 3.1:

C = {addr, domain, dateexp, f lags} (3.1)

The claim C contains the address addr of the endorsed smart contract, the

FQDN domain, the expiration date dateexp, and further flags defined in flags.

[...] An FQDN domain is provided as-is, and protocol information is omitted,

e.g., hq.example.org. Furthermore, the expiration date dateexp is defined as

Unix epoch time.

We define a valid signature S in Eq. 3.2:

S = {sign(hash(C), certprivKey)} (3.2)

The signature S contains the claim hashed with a cryptographic hash function

signed with the private key certprivKey of the TLS certificate of the respective

domain.

We further define an endorsement E in Eq. 3.3:

E = {S,C, [certfingerprint]} (3.3)

The endorsement E contains the previously defined signature S, the claim

C required to validate the signature, and the optional fingerprint of the

signing certificate certfingerprint. We include the fingerprint of the certificate

to facilitate its retrieval if the certificate is not present at the web server, as

described subsequently in Section 4.2.6.

” – “TeSC: TLS/SSL-Certificate Endorsed Smart Contracts” (Gallersdörfer

and Matthes, 2021a).

Flags flags were initially proposed in (Gallersdörfer and Matthes, 2021b,a) as a way to

enhance, extend or limit the functionality of an endorsement. Given the many variables in

the verification process, the idea is to allow the endorsers to configure their endorsements

55

Chapter 3. Utilizing Public Key Infrastructures in Blockchains

to their needs. For that, endorsements can be equipped with flags. These flags are also

part of the signature, such that the smart contract cannot unilaterally extend the scope of

the endorsement. Although the system supports 19120 flags, only nine have been defined

so far. This allows for the extensibility of the system, such that once deployed, smart

contracts can support more recently introduced features. We reiterate the previously

defined flags in (Gallersdörfer and Matthes, 2021b) in Appendix B.

The following structure gives insights into each variable, including data type and

exemplary values:

• addr: This represents an address of an on-chain entity, either an externally owned

account or a smart contract. In the case of Ethereum, the address starts with 0x

and has 42 additional characters. An example of an address is 0x05a5...4d9f.

• domain: This is the FQDN of the endorsing entity, including subdomains and

omitting the protocol. An example of a valid domain is subdomain.example.org.

• certfingerprint: The certificate ID needs to be unique for every certificate; this is not

the case for the serial number, as, in theory, two CAs can issue a certificate with the

same serial number. Therefore, we rely on the SHA-256 fingerprint of the certificate

as a unique identifier21. An example is 5E:F2:F2:14:26:0A:B8:F5:8E:55:EE:A4:

2E:4A:C0:4B:0F:17:18:07:D8:D1:18:5F:DD:D6:74:70:E9:AB:60:9622.

• dateexp: An expiry date is provided in case the endorsement should have a limited

validity. This information is given as a UNIX time stamp, for example, 1703372400

equals to December 24, 2023, 00:00 (GMT+1).

• sign(hash(C), keyprivKey): The signature over the claim (including the address,

domain name, certificate identifier, and expiry date) is crucial for verifying the

integrity and authenticity of the claim. This information is given as bytes. We

rely on SHA-3 and the ECDSA-signature scheme within our systems for fast and

cost-efficient verification.

• flags: Flags are stored in a bytes24 variable, allowing for the definition of up to

192 binary flags (Gallersdörfer and Matthes, 2021b).

20One flag is always set to True for integrity purposes.
21For SHA-1, attack vectors exist to generate pre-image collisions (Stevens et al., 2017). Therefore, we

stick to SHA-256 despite its larger output size.
22Fingerprint of the certificate of example.org, accessed on 6th February 2023.

56

example.org

3.5. Summary

3.5. Summary

This chapter described how a PKI and its information could be utilized in a blockchain

context. Further, we illustrate a solution space containing the PKI’s application in

different contexts.

Using attributes of X.509 certificates managed in PKI is key to the concept. Although

this concept supports any given X.509-based certificate structure (e.g., enterprise-internal

structures), we focus on the domain name attribute of X.509 certificates, usually utilized

in a WWW setting to enable authentication and secure communication.

Given the complexity and criticality of the underlying technologies, we define a set

of requirements for the system design: First, we outline use cases and include further

requirements for the system design. In particular, openness and the absence of trust

requirements (in addition to already-existing trust requirements, e.g., in the integrity of

the certificate authorities) play a significant role in the respective systems.

Second, we analyze respective RFC documents to align with the specifications stemming

from the existing infrastructure. Many of the explicitly mentioned requirements, such

as authentication, align with the concept and goal of the proposed systems, while

other requirements, such as confidentiality, are in stark contrast to the transparency

principle of blockchains. Furthermore, the underlying infrastructure components’ life

cycles are considered when designing the systems.

Given these sets of requirements, we define two potential system designs, one enabling

the verification of information in an on-chain context, which in turn enables the usage of

certificates and respective signatures as elements of the deterministic execution environ-

ment. In contrast, the other approach allows for the verification of such information in

an off-chain environment, enhancing user-facing software, such as wallets, by providing

additional details on their counterparties.

Lastly, we introduce and coin the concept of endorsements. As the acting entities in

blockchain networks are accounts that can be identified by addresses, which are controlled

either by private keys or code executed on request, a binding between blockchain-

based entities and the entities controlling certificates in PKI is required. Endorsements

constitute a connection between the owner of the domain (as the entity that controls the

X.509 certificate to the domain) and the account that resides in the blockchain network.

In the next chapter, we introduce and discuss the off-chain approach. Resolution and

verification of the domain-address relationship takes place off-chain, for example, in a

browser.

57

Chapter 4.

Off-Chain Verification

Entities interacting with third parties risk being deceived regarding the authenticity

of on-chain addresses. The following chapter proposes the first architectural design to

mitigate the issues of loose coupling between the WWW and blockchains by enabling the

on-chain storage of endorsement information and establishing an off-chain verification

method. In more detail, we divide this chapter into the following sections:

• Section 4.1, “Problem Statement”, describes the issues resulting from loose coupling

between websites and blockchain addresses and discusses examples of attacks that

have occurred in the real world.

• In Section 4.2, “System Architecture and Processes”, we establish the architecture,

the individual components, and the relevant processes for enabling TLS-endorsed

smart contracts and their verification.

• We provide an understanding of the threat model regarding the underlying tech-

nologies as well as the interplay between TLS and endorsements stored on-chain in

Section 4.3, “Threat Model and Security Implications”.

• Lastly, in Section 4.4, “Augmentation of User Wallets”, we give insights into the

augmentation of the user wallet MetaMask to support and recognize TLS-endorsed

smart contracts. We discuss previous work, revisit fundamentals for the design,

and present drawbacks and potential mitigation strategies.

The first three sections of this chapter are based partly on and rely on the material of

two prior publications, namely “TeSC: TLS/SSL-Certificate Endorsed Smart Contracts”

(Gallersdörfer and Matthes, 2021a) and “AuthSC: mind the gap between web and smart

contracts” (Gallersdörfer and Matthes, 2020). Supplementary material in the form of

59

Chapter 4. Off-Chain Verification

Github repositories exists in (Gallersdörfer and Matthes, 2021b). The author of this thesis

implemented the interface specification of the smart contract. Under his supervision, the

implementation of the smart contract was conducted by the authors in (Herrmann et al.,

2021).

In Section 4.4, we reiterate prior work by (Ebel, 2021) and (Gallersdörfer et al., 2021a)

for which supplementary material also exists in (Gallersdörfer et al., 2021b).

60

4.1. Problem Statement

4.1. Problem Statement

In the following, we further examine two different problem statements that exist at

the intersection of blockchain networks and Web 2.0 infrastructure, namely the address

replacement attack and missing data authentication, both of which can be addressed by

an off-chain-verification approach, as outlined in this chapter. Both issues have previously

been raised in subsection 3.2.1.

4.1.1. Address Replacement Attack

In (Gallersdörfer and Matthes, 2021a), we originally coined the term “address replacement

attack”. An address replacement attack aims to trick the user into using a different address

than initially intended. Users obtain data about the address they will interact with (e.g.,

a smart contract or an externally owned account) from sources outside the blockchain,

such as websites. Websites either directly display the address or hide the address within a

web3.js-application1 that connects to the user’s in-browser wallet or other add-ons, such

as MetaMask (MetaMask, 2023). The reason that address replacement attacks exist is

that the relationship between the source and the address is not authenticated. Attackers

with access to the trusted source can replace the contents and link to a different address

that they control.

This type of attack can be labelled as follows:

• Lost credentials or defacing (Lazarenko and Avdoshin, 2018), as the attackers

can often obtain credentials and are therefore able to manipulate contents, or

• Man-in-the-middle attacks, as the attacker can interfere with communication

and act as a man in the middle.

While these definitions may fit specific attacks, we think that they are either too

unspecific (e.g., man-in-the-middle) or describe only one potential attack vector (e.g.,

lost-credentials); therefore, we opt for the term address replacement attack.

Attack Vectors

There are multiple attack vectors or pathways by which to successfully execute an address

replacement attack. We iterate over the most relevant scenarios, give examples of them,

1web3.js is a JavaScript framework that allows the website to connect to the wallet of the user and
initialize interactions, such as executing transactions or signing data.

61

Chapter 4. Off-Chain Verification

and explain whether protecting the relationship between website and smart contract

would prove successful in preventing or mitigating damage.

• Active Phishing Directed at End Users: While all forms of deception can

be seen as phishing attempts, we differentiate between phishing based on sources

besides the website, as it is our main security goal to protect the relationship

between the website and smart contract. Phishing attacks via social media channels

or other forms of communication (e.g., via Telegram or Discord), actively reach

out to users that are part of the community in question and try to trick them into

interacting with a website or smart contract.

In 2022, Bored Ape Yacht Club (BAYC) suffered both an attack on its Instagram

and their Discord channels, in which accounts were hacked and used to promote

new tokens to holders of the previous tokens, leading to a loss of tokens worth

several million USD2.

As attackers are directly in control of the links that a user might click on, protecting

the relationship between the website and the smart contract misses the goal, as both

parts are in full control of the attacker. The attacker can reassure the credibility of

the domain name via Typosquatting, for example, registering domain names with

small changes (e.g., a lower-case l vs. an upper-case I vs. the number 1).

• Web Server: The web server is the main target for attacks. Attacks often take

place either on regularly visited sites (e.g., the user has to regularly interact with a

smart contract) or in times of high demand, such when a new token launches. As

attackers are able to gain access to either the web application itself (e.g., due to

a security exploit) or to the file system (e.g., due to stolen credentials), they are

able to manipulate the contents of the website, misleading users and potentially

stealing funds.

The Coindash ICO took place in July 2017, selling tokens to users in exchange

for the cryptocurrency Ether. At launch time, the original address was replaced

by hackers, resulting in 43,000 Ether being sent to an address controlled by the

attackers. On Coindash’s blog, there is an indication that an attacker was able to

place a web shell on the server using WordPress3.

The attackers had direct access to the web page and were able to manipulate its

2https://therecord.media/bored-ape-yacht-club-says-instagram-hacked-nfts-stolen/, ac-
cessed 25th October 2022.

3https://blog.coindash.io/coindash-tge-hack-findings-report-15-11-17-

9657465192e1,accessed 25th October 2022.

62

https://therecord.media/bored-ape-yacht-club-says-instagram-hacked-nfts-stolen/
https://blog.coindash.io/coindash-tge-hack-findings-report-15-11-17-9657465192e1
https://blog.coindash.io/coindash-tge-hack-findings-report-15-11-17-9657465192e1

4.1. Problem Statement

contents, leading to the loss of user funds. Protecting the relationship between the

web site and the address on the blockchain might have prevented the attack. We

discuss the details of the security model and mitigation strategies in Section 4.3.

• DNS Hijack: In case the web server cannot be directly attacked, an alternative

might be to attack the DNS server that is maintaining a record of the IP to domain

linkage. Such attacks can be the result of stolen credentials or actions of insiders

within DNS registrars. The IP address in question is replaced by another web

server that serves identical content to the original one to avoid notifying users,

whereas only crucial information, such as the address, is changed.

A number of decentralized finance (DeFi) applications were attacked in June

2022, among them ConvexFinance, Ribbon Finance, DeFiSaver, and Allbridge4.

Apparently, a service agent at the DNS registrar NameCheap was able to manipulate

the applications’ respective DNS entries, pointing to different web servers. Besides

the DNS spoofing, the attackers also created vanity addresses that contained the

same four letters at the beginning and end of the addresses5.

An attack at the DNS level is not directly apparent, given that the original web

server remains intact. Protecting the connection between the domain and the smart

contract (or making that connection apparent) might not have prevented the loss

of user funds but could potentially have detected it at an earlier point of time if

proper monitoring were in place as we outline in Section 4.3.

Potential Damage

Overall, the aim of the attacker is to drain the funds of the victim. This damage can be

inflicted in two ways, as the owners or victims control their assets in one of two ways:

either directly stored in their address (e.g., cryptocurrency that has been sent to the

respective addresses) or indirectly (e.g., assets that are stored in a smart contract) but

are controlled by the victims.

This creates to two potential ways for the attacker to obtain respective valuable assets:

• Misdirecting user funds: One way for attackers to separate users from their

money is to misdirect funds. A user may want to execute a transaction that involves

4https://www.trustnodes.com/2022/06/25/defi-dapps-dns-attacked, accessed on 25th October
2022.

5The attackers generated a vanity address for 0xF403C135812408BFbE8713b5A23a04b3D48AAE31 and
were able to generate the address 0xF403a2c10B0B9feF8f0d4F931df5d86aD187AE31. A vanity
address is an address that contains specific, predefined characters. The more characters are defined,
the longer it takes to compute.

63

https://www.trustnodes.com/2022/06/25/defi-dapps-dns-attacked

Chapter 4. Off-Chain Verification

a monetary component, such as “I want to invest in this upcoming ICO” or “I

want to buy a specific asset”. These funds are controlled by the victims directly.

This intention of the user is then misdirected by replacing the respective address

with an illicit address, similar to the case of the Coindash ICO.

• Illicit signature creation: Another way for attackers to steal users’ funds is to

trick them into signing transactions that can later be used to retrieve assets that

the victims control indirectly. Often, it is the case that users already have some

connection to the website or application that they intend to use. In this case, the

application might not directly redirect the users’ actions to another address but

change the contents of the transactions such that they benefit the attacker. For

example, users could accidentally sign transactions that allow the attacker to move

the tokens in an ERC20-contract away from users, basically stealing their funds.

This type of attack scenario took place in the above mentioned BAYC case.

In both cases, we must ask whether a hardened relationship between a website and

the respective smart contract could have notified the user of the attack and led to the

abortion of the transaction? In the first case it is straightforward to decide that a)

if a smart contract does not belong to a website and b) smart contracts with such a

relationship to this website exist, then it is probably an illicit address (or the operators

of this service forgot to make that relationship explicit using the proposed method in

this thesis). In the second case, the detection or even prevention of this type of attack

is very difficult; the address and its relationship to the website are valid, and the type

of transaction can be arbitrary. Our system is not designed to verify the contents of

a transaction, only its recipient. While such an attack could be facilitated by above

mentioned attack vectors, our system is not capable of preventing such attacks. Helping

users to understand the contents of their to-be-signed transactions is an ongoing endeavor

and warrants its own dedicated research (Willmore, Joel, 2022).

4.1.2. Missing Data Authentication

Lack of data authentication or data provenance is a problem that exist within decentralized

networks and economies without central actors able to properly distribute identity or

other reliable authentication information.

To give a more practical example, which will expand the problem of data authentication

which we briefly described in Chapter 1. We briefly describe the use case of digital

credentials for higher education.

64

4.1. Problem Statement

Multiple groups exist that aim to develop a digital credentialing standard, for example

the “Digital Credentials Consortium” (led by Massachusetts Institute of Technology)6,

“DiBiHo” (led by Technical University Munich)7, and “W3C Verifiable Credentials for

Education Task Force”8. The author of this dissertation had actively participated in all

listed groups.

Digital Credentials for Higher Education

Credentials from higher education institutions, such as universities or other internationally

recognized entities, are often issued in analog form. Instead of taking the form of digital

certificates that can be easily verified by other entities such as employers or other

universities, these credentials need to be manually scanned, transferred, and verified or

even translated and notarized by trusted entities.

The endeavor of digital credentials poses a multitude of problems: standardizing

diploma formats, defining course descriptions and comparable learning units, catering for

longevity of certificates (some certificates must be valid for the entire lifespan of a human

being), legal recognition, and bootstrapping to support a critical mass of institutions

and employers. While this thesis and its proposed system architecture cannot address

these problems, it might be able to evince an approach to solving a different issue: the

authenticity of information and its issuing entity. To be more concrete: “How do we

know that the entity issuing a certificate is actually the entity that we think it is?”

In discussions within these above mentioned groups, blockchain technology was sug-

gested as a potential solution to enable longevity of certificates (or their integrity

information) and data provenance. The issue of verifying the authenticity of the issuing

entity remains. There are multiple proposed solutions to ensure the authenticity of

issuers:

• Permissioned:

– Preselecting issuers: A set of entities, e.g., higher education institutions,

could form a group that specifies, defines, develops, and adopts a system that

allows the digital issuing of certificates. By preselecting issuers, this group

asserts its trust to the respective issuer and ensures that only valid issuers

are able to issue credentials and that only credentials by these issuers can be

6See https://digitalcredentials.mit.edu/, accessed 30th October 2022.
7“Digitale Bildungsnachweise für Hochschulen” (German, “Digital education certificates for universities”),
see https://www.it.tum.de/it/dibiho/, accessed 30th October 2022.

8See https://w3c-ccg.github.io/vc-ed/, accessed 30th October 2022.

65

https://digitalcredentials.mit.edu/
https://www.it.tum.de/it/dibiho/
https://w3c-ccg.github.io/vc-ed/

Chapter 4. Off-Chain Verification

verified correctly. While the preselection of issuers is a strong guarantee for

the validity of the issued credentials, it comes with considerable downsides: A)

the on-boarding and continuous management of new issuers is time-consuming

and costly, B) erroneous accepted issuers might be able to erode the trust in

the system, and C) other institutions would need to trust this initial group of

entities, partly giving up their sovereignty over their credentialing processes.

– Trusted governments: A setting sufficient to handle this problem would

be for each state, which already has the competence to define institutions of

higher education, to provide an infrastructure for these institutions to issue

their credentials or at least provide them with verifiable identities that enable

the issuance of signed arbitrary data. With that, both the competency of

defining such institutions, as well as equipping them with the relevant key

material, is within the hands of one entity, the state. Different states, such as

the European Union, are piloting this form of infrastructure9, although it is

unclear at the time of this writing (October 2022), when such services will be

broadly available.

• Permissionless: A permissionless approach without a gatekeeper or reliance on

an identity infrastructure that is already broadly available seems to be a valid

alternative to permissioned solutions, as outlined above. A pure permissionless

approach might face the initial problem that we set out to solve: the lack of

authentication of the issuer. However, relying on a technology that provides

something like a pseudo-identity might mitigate the problem. At this stage, TLS

and DNS might be able to provide the type of information required for certificate-

verifying entities to understand whether an issuer is valid or not. Furthermore,

websites and other forms of fully interactive services (that already integrate TLS

and DNS) were ruled out due to the requirement of “[Enabling] seamless verification

without involvement of the issuer” (Chartrand et al., 2020).

Solution Approach

For reasons of clarity, we do not discuss the individual components of a system that

allows the issuance, verification, and revocation of digital credentials of higher education

institutions. The structure of the architecture and the processes involved, which we

9Compare European Blockchain Services Infrastructure: https://ec.europa.eu/digital-building-
blocks/wikis/display/EBSI, accessed 30th October 2022.

66

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI

4.2. System Architecture and Processes

define and discuss in the following sections, are generalized, meaning they are applicable

to any form of use case that aims to solve or mitigate the above-described issue. Whether

higher-education certificates, other forms of certifications, data in data marketplaces, or

another form, the steps and processes involved in enabling a given use case are identical:

• Definition of life cycle of underlying data: The underlying data and its

contents need to adhere to specific rules and processes. For example, credentials

from higher education institutions need to be issuable, revocable (e.g., in cases of

erroneous issuance), verifiable, and auditable. This type of lifecycle needs to be

integrated within a smart contract functionality, such that other parties are able to

retrieve and verify the respective information in accordance with predefined rules.

• Smart contract creation and deployment: The smart contract needs to be

augmented with the functionality described in the following sections: The inclusion

of the functionality ensures that later processes can verify, in addition to the rules

for the data itself, the integrity and validity of the endorsement, with the ability to

attribute the underlying data to the respective entity.

• Data retrieval and verification: The software that retrieves and verifies the

respective data needs to be able to connect to the blockchain, retrieve the smart

contract and its contents and verify a) the integrity and validity of the underlying

data according to its predefined rules, b) the validity of the endorsement, and c)

any leaf, intermediary, or root certificates that are involved in the process of issuing

the data in the first place.

4.2. System Architecture and Processes

“In this section, we introduce the general approach and give an overview of

the architecture, [the endorsement], the single components, and the smart

contracts structure. We further display processes of the system and design

considerations.

Our goal is to establish a binding between smart contracts and websites using

common TLS-certificates [...]. The owner of a certificate endorses a smart

contract by [...] storing an endorsement within the respective smart contract.

Later, other parties can retrieve the endorsement from the blockchain and

67

Chapter 4. Off-Chain Verification

validate it against their trusted certificate authority servers, thereby authen-

ticating the contract. Afterward, they can engage with the specific smart

contract or further evaluate data stored in the smart contract, aware of the

actual identity of the counterparty.”

– “AuthSC: mind the gap between web and smart contracts” (Gallersdörfer and Matthes,

2020).

“Our system consists of following components:

• The Endorsement ([already introduced in] Section 3.4) holds infor-

mation about the approval of a smart contract by the domain owner

signed with the TLS certificate’s private key. [This information contains

relevant data, such as the smart contract address and further information

such as the expiration date or additional flags.]

• The On-Chain TLS Endorsed Smart Contract (Section 4.2.1)

contains methods for storing and updating the endorsement. In addition,

we provide the reference implementation (Gallersdörfer and Matthes,

2021b) which enables independent usage from the actual smart contract

(e.g., token contract or other purpose).

• Off-Chain Verifier (Section 4.2.2) is an application that runs outside

of the blockchain. It is responsible for verifying endorsements stored on-

chain and retrieves data from the certificate issuer, website owner, smart

contract stored in the blockchain, and potential certificate authorities.

• [...] [Endorsed Smart Contract] Registry (Section 4.2.3) prevents

downgrade attacks by providing a list of smart contracts for domains and

enables easy discovery of smart contracts that implement this library.

[In addition, this component manages a list of existing smart contracts

and their respective domains to be used for verification purposes.]”

– “TeSC: TLS/SSL-Certificate Endorsed Smart Contracts” (Gallersdörfer and Matthes,

2021a).

Following the structure of (Gallersdörfer and Matthes, 2021a), we discuss the en-

dorsement of pre-existing smart contracts10 in subsection 4.2.4, and the revocation of

10Smart contracts that have existed before the design and development of this system.

68

4.2. System Architecture and Processes

Off-Chain Verifier

Blockchain

Endorsed
Contract

Endorsed
Contract

Contract Registry

…
Endorsement
(example.org)

DNS

Root zone

.org .com

… example

TLS PKI

DigiCert Inc.

…

example.org

Certificate
Transparency

CT-Log

example.org

Figure 4.1.: High-level structure of the proposed architecture initially presented in
(Gallersdörfer and Matthes, 2020, 2021b), adapted.

endorsements in subsection 4.2.5. We explain how we address the TLS ecosystems’

technical specialties, such as key rotation and multiple certificates.

Figure 4.1 depicts the overall structure of our proposed architecture, initially presented

in (Gallersdörfer and Matthes, 2020, 2021b) and adapted for this manuscript. We identify

five main components: the blockchain containing both the endorsed smart contract

registry as well as the endorsed smart contracts with the a given endorsement; the

DNS, including its hierarchical naming scheme; the TLS PKI, including its hierarchical

certificate structure; and CT, including its CT-log, as well as an off-chain verifier. The

off-chain verifier has access to all these systems and is able to make an informed decision

about the validity of an endorsement and the authenticity of the respective smart contract.

In addition to the architecture and processes, we propose an interface standard and

highlight a respective reference implementation in Solidity11, originally proposed in

(Gallersdörfer and Matthes, 2021b,a). The implementation was conducted in (Herrmann

et al., 2021) under the supervision of the author of this thesis.

4.2.1. On-Chain TLS Endorsed Smart Contract

The prospective endorsed smart contract needs to store the previously defined endorse-

ment, including the domain name, expiration, and potential rules in the form of flags set

11Our reference implementation targets EVM-based blockchains. For any other blockchain network
that supports the execution of smart contracts, the approach needs to be migrated to the respective
language.

69

Chapter 4. Off-Chain Verification

by the domain owner.

“A domain owner claims the ownership of a smart contract by providing an

endorsement in the respective contract. Information required to authenticate

the smart contract is retrieved from external data sources. [...]

Three steps are required to enable authentication of the smart contract:

smart contract creation, endorsement generation, and endorsement upload.

For simplicity, we omitted the intermediate or supporting activities such as

creating wallet addresses, funding the accounts, and including the library in

the respective smart contract.

Initially, only newly created smart contracts which adhere to the interface

standard can be endorsed. [...]. The to-be endorsed smart contract is supplied

with the respective endorsement data. To create the endorsement, the owner of

the domain retrieves the unique contract address and signs a respective claim

consisting of the smart contract address, domain, expiration, and potential

flags with its private key of the TLS certificate. Because the endorsement

contains only one specific smart contract address, other smart contracts

cannot use this information for fraudulent endorsement. The endorsement is

then added to the smart contract via a regular method call.”

– “TeSC: TLS/SSL-Certificate Endorsed Smart Contracts” (Gallersdörfer

and Matthes, 2021a).

• “Smart Contract Creation: [...] A contract has to be instantiated

with information on the address of the owner of the smart contract and

optionally the domain to which the owner has access to (e.g., the domain

or any subdomain). [...]

• Signature Generation: The signature is still missing in the smart

contract and thus, the TLS certificate has not endorsed this smart

contract, as any party can execute the first step for any domain. The

entity retrieves the unique contract address and signs this string with

its private key of the TLS certificate. As the signature contains only

one specific smart contract address, other smart contracts cannot use

this information to pretend to be also endorsed by this domain.

• Signature Upload: The signature created in the previous step is

transmitted to the smart contract as part of a regular transaction [...].

70

4.2. System Architecture and Processes

The contract validates that the transaction is indeed created by the

original owner of the smart contract, as the contract itself is not able to

verify if the provided data is correct. If the owner issued the transaction,

the payload is stored in the respective field of the smart contract, awaiting

later retrieval.

It is possible to reduce the process to two steps, as it is possible to sign

the address of the contract before its initialization, providing the signature

alongside the domain name. This is possible as the addresses of to-be

generated smart contracts are deterministic. For simplicity and to remove

possible interference with other transactions issued from the same address, we

decided to first upload the contract and then actually submit the signature

data, preventing that an incorrect address is signed.”

– “AuthSC: mind the gap between web and smart contracts” (Gallersdörfer

and Matthes, 2020).

4.2.2. Off-Chain Verifier

“The verification of the smart contract endorsement occurs on the client-side.

The software itself (e.g., a wallet in a browser) needs to access the following

data sources:

• The address of the relevant smart contract, which is usually obtained

via the Internet; alternatively it is obtained by the TeSC registry or

proprietary discovery services,

• The endorsement of this smart contract, e.g., domain name, signature,

and expiration date,

• the signed certificate, its public key alongside the information of the

certificate authority, which is obtained by requesting the domain and

retrieving the TLS certificate12, and

• the list of trusted certificate authorities of the user.

The list of trusted certificate authorities is defined by the user, either by

directly providing a list or by reviewing the CA list stored in the user’s

computer or browser.

12As we discuss in Section 4.2.6, the certificate can be obtained by other methods, e.g., Certificate
Transparency.

71

Chapter 4. Off-Chain Verification

Smart contract authentication involves four steps. Again, we omit intermedi-

ate steps and assume that the user journey starts on the website, such that

the domain is known. Also, we assume that the contract address is known.

• 1. Smart Contract Endorsement Retrieval: The application

first retrieves the endorsement for later authentication. It contains

information about the claim and the signature data of the smart contract.

• 2. Certificate Retrieval: Afterward, it connects to the respective

domain given in the smart contract (or that previously known by the

website) and obtains the certificate. If the optional certfingerprint is set,

the certificate is directly retrieved from Certificate Transparency.

• 3. Smart Contract Endorsement Verification: The software

validates whether the private key of the certificate signed the smart

contract claim and checks any additional properties of the claim, such as

– 1) it first verifies that the address stored in the claim is identical to

the smart contract address. Otherwise, the process is aborted.

– 2) The domain in the claim has to be identical to the domain from

which the information was obtained. If not, the process is aborted13.

– 3)The smart contract is endorsed only until the dateexp. If dateexp <

datetoday, then the smart contract is expired and should not be

trusted.

• 4. Certificate trust: After successfully verifying the endorsement,

the software checks whether a trusted CA has (indirectly) signed or

issued the certificate found in the smart contract and the web server.

If a trusted CA signs the certificate and its public key, the identity is

successfully validated. Otherwise, the program aborts with an error. It

executes the certification path validation algorithm as defined in RFC

5280 (Boeyen et al., 2008). To further verify the authenticity of the

certificate, the verifier requires a proof for inclusion of the certificate

into Certificate Transparency in form of a signed certificate timestamp

(SCT) (Laurie et al., 2013).”

13The explicit statement of the domain is important because certificates exist that are valid for multiple
domains or contain domain wildcards. If the domain would not be stored within the claim, the owner
of the smart contract could decide on its own to which domain it belongs.

72

4.2. System Architecture and Processes

– “TeSC: TLS/SSL-Certificate Endorsed Smart Contracts” (Gallersdörfer and

Matthes, 2021a).

The process of authenticating a smart contract is depicted in Figure 4.2.

4.2.3. Endorsed Smart Contract Registry

“For the client-side verification it is relevant to know 1) whether a contract

exists for a given domain and 2) under which address it is deployed. To find

such contracts or check its existence, we propose extending this architecture by

introducing a smart contract registry that enables the user to find all domains

registered on the blockchain. This registry lists all contracts that adhere to

this interface standard and claim to be the identity contract for a specific

domain. We allow multiple endorsed smart contracts for the same domain

because one domain can endorse multiple smart contracts. Even though it is

possible to search the complete blockchain for such contracts (Fröwis et al.,

2019), it is easier and faster to use an on-chain smart contract.

The registry smart contract is in place to map domains to smart contract

addresses by storing these relationships. The usage of such a contract involves

the following steps.

1. Insertion of Contract Information: All parties in control of endorsed

smart contracts submit information about their contract and optionally

the respective domain to the registry smart contract.

2. Domain Lookup: A user searching for a domain queries the registry

smart contract and asks for all contracts assigned to that specific domain.

The contract returns all relevant contract addresses.

3. Contract authentication: The client can execute the previously

described authentication method for each of the returned contracts,

which ensures that the correct smart contract is found, if it exists.

This registry smart contract relies on owners submitting their endorsed

contracts. Thus, the design for registry should strive for two properties: every

endorsed contract is added, and the amount of incorrect data is minimized.

First, the entities creating contracts have a strong incentive to be found

because it enhances the security by preventing downgrade attacks, and invites

73

Chapter 4. Off-Chain Verification

Verifier v Smart Contract sc www Certificate Transparency

getDomain()

return domain
getExpiry()

return dateexp

getFlags()

return flags

getSignature()

return S
getFingerprint()

return certfingerprint

Step 1Step 1 Verifier fetches E from sc

getCertificate(domain)

return cert

Step 2aStep 2a Verifier retrieves certificate from domain

getCertificate(certfingerprint)

return cert

Step 2bStep 2b Verifier retrieves certificate from CT if certfingerprint is set.

verify(certpk, domain, dateexp, flags, addr, S)

return result

Step 3Step 3 Verifier validates signature and checks for address, domain, expiry date and flags

certificatePathValidation(cert, rootCAList)

return result

Step 4Step 4 Verifier checks if certificate was signed (indirectly) by trusted CAs

Figure 4.2.: Process of authenticating a smart contract, initially proposed in (Gallersdörfer
and Matthes, 2020) and adapted.

74

4.2. System Architecture and Processes

users and other parties to interact with their smart contracts. The registry

smart contract enables owners to advertise their service and helps the users

to find them. Second, malicious entities that do not own the respective TLS

certificate should be discouraged from linking irrelevant contracts. Spamming

the registry smart contract can cost a lot of money; further, spamming

contracts will hardly impact the verification process as modern computation

power is sufficient for processing hundreds of such contracts in milliseconds.

Given this (dis)incentive structure, we have no restrictions in place for adding

data to the registry.”

– “TeSC: TLS/SSL-Certificate Endorsed Smart Contracts” (Gallersdörfer and

Matthes, 2021a).

4.2.4. Endorsement of Pre-Existing Smart Contracts

In principal, it is not possible to update existing smart contracts in a blockchain network.

The immutability of the network and the code of the smart contract is a feature that

prevents malicious entities from changing code after it has been deployed14. This

restriction also applies to previously existing smart contracts, preventing them from

adhering to our proposed interface.

To circumvent this limitation, we decide to enable endorsed smart contracts to suben-

dorse other accounts, irrespective of whether they are smart contracts or externally

owned accounts. These subendorsements are stored in the smart contract alongside the

endorsement. The owner of the TLS certificate needs to consent to the subendorsement

functionality by setting the ALLOW SUBENDORSEMENT-flag (see Section 3.4

and Appendix B) in the endorsement. This feature can be seen as an extension of the

original system without interfering with its inner workings; because it can be thought

that the entity controlling the private key to the TLS certificate could deviate from the

entity that controls the smart contract, we ensure the consent of the endorsing party by

requiring a flag to be set.

The verification of directly endorsed smart contracts differs from the verification of

subendorsements. The subendorsed smart contract does not contain any information

about its endorsement. Therefore, the verifier must first find and verify smart contracts

that are potentially endorsed. To obtain these parent smart contracts, the verifier

retrieves all smart contracts that belong to one domain from the smart contract registry,

14While patterns exsit to enable updates for smart contracts, we do not cover this edge-case.

75

Chapter 4. Off-Chain Verification

verifies them, and examine whether the subendorsed smart contract is stored in the

subendorsement array.

A downside of subendorsements is that a discovery service is mandatory. Additionally,

the smart contract cannot be authenticated if the user journey starts directly at the

subendorsed smart contract and no domain information is available. In directly endorsed

smart contracts, it is possible to obtain the domain information and authenticate the

smart contract by retrieving certificate information from the domain or, if a certificate

fingerprint is available, directly from Certificate Transparency.

4.2.5. Revocation

“There are several reasons to revoke an endorsed smart contract. We describe

two scenarios in which a revocation becomes necessary. First, the entity

wanting to rescind the endorsement might do so voluntarily, e.g., as the smart

contract is no longer in use. Second, the entity might need to involuntarily

revoke the endorsement, e.g., as it has lost access to the smart contract or

the respective private keys controlling the smart contract.

In the first case, if the owner of the domain still has access to the smart

contract or the respective account that administers the smart contract, the

endorsement can just be removed by adding an invalid or empty endorsement.

The off-chain verifier only accesses the latest information added to the smart

contract, therefore, the verification of the endorsement will fail and users

should be discouraged from interacting with the smart contract.

In the second case, an entity does not have access anymore to the smart

contract with the endorsement. To invalidate the contract, the respective

TLS certificate has to be revoked. If the certificates are no longer valid, the

validation will fail for the respective smart contract. As it is not possible

to publish a contradicting statement with the same certificate in the smart

contract, the certificate has to be revoked and a new one has to be used.”

– “TeSC: TLS/SSL-Certificate Endorsed Smart Contracts” (Gallersdörfer

and Matthes, 2021a).

76

4.2. System Architecture and Processes

4.2.6. TLS Key Management

“Private keys used in TLS certificates have characteristics that need to be

kept in mind when designing a system like [...] [we propose]. First, we need

to address the expiry and rotation of key material. Second, we need to care

for revoked TLS certificates. Last, we need to account for multiple existing

TLS-certificates, thus multiple existing keys for one domain.

Key Expiry and Rotation

The key material in the X.509 certificates expires regularly. The Certificate

Authority/Browser Forum has decided that TLS certificates are valid for

a maximum time of 825 days15. Therefore, the public key and signature

information must be regularly updated; otherwise, the verifying entity cannot

assert the validity of the endorsed contract. To update the smart contract, a

new endorsement has to be created with the respective certificate and inserted

in the contract. This procedure ensures that smart contract endorsement

remains valid.

This procedure bears the risk, that users get error messages for a brief time

in which the smart contract endorsement does not match the certificate

provided by the web server. This can be the case, when the endorsement is

updated before the TLS certificate or vice versa. In case the smart contract

experiences high demand, such an error message, even when only displayed

for a short period of time, might not be acceptable to some parties. In this

case, the usage of the certificate fingerprint variable is highly recommended.

In that case, the verifying entity will look up the respective certificate in

Certificate Transparency if it is not presented by the web server. With that,

the certificate and endorsement can be updated independently from each

other without short “downtimes” in the verification process.

Certificate Key Revocation

Key revocation becomes mandatory if the key material of a certificate is

compromised. Such key material could be abused for creating additional

15https://cabforum.org/2017/03/17/ballot-193-825-day-certificate-lifetimes/, accessed
03rd May 2021.

77

https://cabforum.org/2017/03/17/ballot-193-825-day-certificate-lifetimes/

Chapter 4. Off-Chain Verification

endorsed smart contracts, potentially tricking users into believing that the

new smart contract does indeed belong to the compromised entity. However,

because our approach relies on the web server’s public TLS key, revocation

of the respective TLS certificate also renders potentially fraudulent smart

contracts invalid. The software is able to evaluate whether the certificates

not yet verified are included in CRL or if requests made through Online

Certificate Status Protocol (OCSP) are valid.

Multiple Certificates for a Single Domain

Having multiple valid certificates assigned to one domain at the same time

is common. Especially larger enterprises have many certificates, e.g., face-

book.com has 521 valid certificates assigned to it at the time of this writing16.

For this reason, we include the fingerprint certfingerprint as a unique identifier

of the respective certificate within the endorsement. This fingerprint enables

us to retrieve the certificate that signed the endorsement via Certificate

Transparency. Browsers such as Google Chrome require a certificate to be in-

cluded in Certificate Transparency in order to be accepted. The retrieval from

Certificate Transparency allows us to verify the endorsement independent of

the web server’s current certificate. This also allows the owner of the smart

contract to update the server’s certificate or the smart contract’s endorsement

with no concern of the smart contract suddenly becoming unverified.”

– “TeSC: TLS/SSL-Certificate Endorsed Smart Contracts” (Gallersdörfer and

Matthes, 2021a).

4.3. Threat Model and Security Implications

“In this section, we analyze the security and discuss risks [...]. Namely, we

cover risks associated with TLS as a base protocol in subsection 4.3.1, examine

cross-protocol attack vectors in subsection 4.3.2 and discuss other attacks on

[...] [our proposed system] in Sections 4.3.3 and 4.3.4.

16https://crt.sh/?Identity=*.facebook.com&exclude=expired&match==, accessed 07th January
2021.

78

https://crt.sh/?Identity=*.facebook.com&exclude=expired&match==

4.3. Threat Model and Security Implications

4.3.1. TLS as a Base Protocol

TLS certificates are often deemed unreliable and prone to fraud. Owing to

the centralized nature of the system with multiple certificate authorities,

potential points of failure exist: Certificate authorities might maliciously

issue certificates for domains, revoke valid certificates without reason, or

leak private keys, resulting in possible eavesdropping or man-in-the-middle

attacks.

Nonetheless, this public key infrastructure (PKI) is a crucial part of the

Internet. Without proper security mechanisms to reliably identify, connect,

and communicate with a remote server, most current business and commu-

nication [in the World Wide Web] would not be possible. In particular,

because these certificates have become omnipresent on most websites, other

technologies (with potentially better security) lack the adoption for broad

usage (see also subsection 2.1.3 and Section 6.1). The security model of

websites assumes and relies on the proper functioning of this PKI. Thus,

every system attempting to establish a secure connection between websites

and smart contracts (which is the aim of this study) implicitly relies on this

system. In [...] [our work], we make this trust assumption explicit, remove

vulnerable intermediaries (such as the web application), and directly depend

on this PKI by using private keys [...] [from] these certificates. It is also

important to mention that the PKI is under active enhancement by systems

such as Certificate Transparency (Laurie et al., 2013).

4.3.2. Cross-Protocol Attack Vectors

It is of high importance that one protocol does not endanger the functionality

or security of the other. As [...] [our proposed framework] depends on

TLS, there are two potential ways how cross-protocol attacks can occur:

1) An attacker abusing existing systems such as the web server or web

application to attack [...] [the system] and 2) using the signature created

for the specific endorsed contract to launch attacks on existing systems, e.g.,

the web server or users. The first attack scenario requires that a process

or communication protocol unintentionally generates a valid endorsement

(defined by the attacker) for a smart contract. The second scenario discusses

79

Chapter 4. Off-Chain Verification

if the signature in the endorsement can be used to allow an attacker to

impersonate the server.

In scenario 1) it is beneficial for an attacker that the TLS certificate is

frequently used while communicating with the server. Potentially, every

new request to the server leads to a response signed with the TLS certifi-

cate. To better understand the attack scenario, we have to look at the TLS

handshake protocol, as outlined in RFC 8446 for TLS 1.3 (Rescorla, 2018).

The CertificateVerify message “is used to provide explicit proof that an

endpoint possesses the private key corresponding to its certificate” (Rescorla,

2018). It contains the used signature scheme and the signature that signs

the hash of the data transferred previously to the handshake. From there on,

two potential attack vectors exist: Either the hash function is not collision-

resistant, or the same data is hashed. The first case can be discarded, as both

TLS 1.3 and [...] [our proposed system] use cryptographic hash functions that

are [deemed] collision-resistant. For the second case, the attacker would need

to define the contents that are hashed. As the server generates 32 random

bytes in the message SERVER HELLO with a secure random number generator,

it can be assumed that it is not possible to generate a valid endorsement from

the information of a TLS handshake.

In scenario 2), the identical mechanisms apply. As a difference, endorsements

have a longer timespan and are not created as often as TLS handshakes. As

the data signed in the endorsement creation process in no way resembles

messages exchanged between client and server in a TLS handshake, they

cannot be reused in the TLS handshake protocol. Therefore, the signature

stored within the endorsed smart contract does not open up attack vectors

on the TLS protocol or the communication with the server.

4.3.3. Downgrade Attacks

In a downgrade attack, an adversary tricks a party in a communication

protocol to assume that the other party is incapable of adhering to newer

(and more secure) versions of the communication protocol, which leads to

the usage of an older and less secure version of the protocol. Because older

versions are susceptible to further attacks or have no protection at all (e.g.,

plain text), an adversary can further exploit the communication. The same

80

4.3. Threat Model and Security Implications

applies to [...] [our proposed system]. Considering the base case and our

introductory example of CoinDash, it becomes apparent that the user needs to

know that a website uses [...] [the proposed system] to protect the users from

sending transactions to malicious contracts. However, we cannot expect a user

to know whether the counter-party actually implements [...] [a TLS-endorsed

smart contract], and in the case of CoinDash, an address swap is still possible

without the user noticing.

To account for downgrade attacks, the off-chain verifier (or other software

implementing the verification mechanism) needs to know whether a contract

exists for a given domain. If the verifier obtains a contract address from a

website, it checks if this contract supports the [...] interface. If this is not

the case, it checks if another valid smart contract exists for that domain

by asking the [...] [endorsed smart contract]-registry. If such a contract is

encountered without the current smart contract adhering to the interface

standard, a warning is emitted to the user stating that the current contract

has no additional protection against impersonation and that other contracts

with such protection exist.

The [...] [endorsed smart contract]-registry is asked about previously existing

smart contracts for a domain. If the original and endorsed smart contract is

registered within this registry, downgrade attacks [...] [can be] prevented.

4.3.4. TLS Private Key Compromise

In the case of a downgrade attack (and similarly to the CoinDash incident),

the attacker is assumed to have access to the contents of the webpage and

can manipulate them, such as replacing an address. However, this might not

always be the case. Attackers might have higher privileges on the victim’s

machine, allowing them to obtain the TLS certificate’s private keys or the

access to the file system allows them to create new certificates by using

Automatic Certificate Management Environment (ACME) (Barnes et al.,

2019) or Certificate Signing Requests (CSR) (Grajek et al., 2010) [...]. In

such cases, the attackers are able to create new smart contracts with valid

endorsements, allowing them to trick users into believing that they are

interacting with a legit smart contract.

81

Chapter 4. Off-Chain Verification

[...] [Our system] is not able to prevent these attacks but allows detecting

them. Similar to Certificate Transparency (Laurie et al., 2013), [...] [we

enable] owners of TLS endorsed smart contracts to detect whether [...] new

smart contracts are issued [that link to their domain]. As all contracts are

publicly available on the blockchain, the network can be monitored for newly

created smart contracts that contain an endorsement for a specific domain.

With this information, companies are able to implement monitoring services

and act accordingly by reclaiming possessions of their servers and revoking

any compromised key material as outlined in 4.2.5.”

– “TeSC: TLS/SSL-Certificate Endorsed Smart Contracts” (Gallersdörfer and

Matthes, 2021a).

4.4. Augmentation of User Wallets

In this chapter, we outlined the specifications of a system that supports the use of TLS

certificates to endorse smart contracts in a blockchain-specific environment. Given the

specifications, the outlined processes, and involved third-party entities, such as web

servers, it is straight forward to develop an application that accepts a domain name

and a smart contract address to verify that a) the domain and smart contract exist, b)

the smart contract stores an endorsement, c) the respective endorsement links to the

given domain name, d) the endorsement is signed by the public key of a valid certificate

belonging to the domain, and e) the endorsement is not expired.

While this software can easily be made available to users or be provided via an API, the

integration into a user interface and the regular flow of the user journey while executing

a transaction in a blockchain environment needs to be carefully designed.

Previous work was done in (Ebel, 2021), “Augmenting the MetaMask-Wallet with

Domain Name based Authentication of Ethereum Accounts”, and (Gallersdörfer et al.,

2021a), “Augmenting MetaMask to support TLS-endorsed Smart Contracts”, as well

as accompanying supplementary material in GitHub (Gallersdörfer et al., 2021b) that

designed, developed, and tested an augmentation of the browser-based wallet MetaMask

that verifies the authenticity of endorsed smart contracts.

In this section, we first provide an overview of the approach from (Ebel, 2021;

Gallersdörfer et al., 2021a) and critically reflect on its results in subsection 4.4.1. Then,

we extend the results of (Ebel, 2021; Gallersdörfer et al., 2021a) in sections 4.4.2 and

4.4.3, as follows:

82

4.4. Augmentation of User Wallets

• We verify and extend the insights into the design of the browser-based warnings;

the initial analysis was conducted in 2020 and covered only the Google Chrome,

Mozilla Firefox, and Microsoft Edge browsers. We investigate the differences from

2020 to the time of writing and extend the browser list to include Apple’s Safari.

Further, given the availability of mobile wallets for Apple iOS and Google Android,

we also extend the analysis to the respective mobile browsers.

• We verify that limitations preventing a fully decentralized application within Google

Chrome and Microsoft Edge still exist; we further analyze whether this limitation

applies to any browsers, as introduced earlier.

• We discuss required changes to the underlying system to allow for further decen-

tralization, overcoming the limitations of Chromium-based (and potentially other)

browsers.

4.4.1. Previous Work and Results

To briefly reiterate: Users interact with blockchain networks sign transactions using their

private key, which is managed within wallet software. They obtain the information about

with whom to interact via websites that either include address-specific information or

directly contain decentralized applications. These decentralized applications use Web3.js

to provide the user with an easy-to-use interface in case the complexity of a transaction is

higher than just sending funds to another address. Alternatively, users obtain information

about addresses from other communication channels, such as text or email.

Ideally, the software verifying the endorsement does not remain standalone software

but rather integrates as closely as possible to the user signing the transaction, meaning

within the user’s wallet. This work was conducted in (Ebel, 2021; Gallersdörfer et al.,

2021a).

The following steps were conducted in that research:

1. Analysis of browser-based warnings: Browsers, as the oldest interface for

regular users to access the WWW and integrate basic security layers, such as SSL,

also face the issues of displaying warnings to the users about invalid certificates.

2. Analysis of error-cases: In the second step, one needs to understand which error

scenarios are possible when verifying the validity of endorsements stored in smart

contracts.

83

Chapter 4. Off-Chain Verification

3. Model-creation and implementation: Thirdly, the model for warnings related

to the proposed system needs to be conceptualized, designed, and implemented.

4. Verification of approach: A user study is conducted in order to verify the

effectiveness of the newly augmented wallet.

In the first step, (Ebel, 2021; Gallersdörfer et al., 2021a) identified three main states of

the security of a website that a browser communicates to the user: a positive indication,

specifying that the communication with the server is authenticated and private; a negative

indication, indicating that the communication to the server is depleted17; and a downgrade

indication, indicating that no security measurements are in place at all. Upon further

investigation, the browsers’ warnings did not differ much; Chrome and Edge had a

single-page warning design, differentiating only between underlying error messages and

whether users could continue to the website. Firefox had two error pages, one coined

as overridable error page. The second page was displayed only in cases of critical errors

preventing the user from proceeding to the potentially unsafe website. Indications of

protocol downgrade also differed only in small details.

In the second step, common errors within X.509, in combination with TLS and the

proposed system, were analyzed (Ebel, 2021; Gallersdörfer et al., 2021a). In addition to

the reasons to deem an X.509 certificate invalid, as outlined in RFC 5280 (Boeyen et al.,

2008), endorsements can be invalid if the signature is wrong, the endorsement is expired,

the domain is incorrect, or the root CA is not trusted. As endorsed smart contracts

are not adopted within any blockchain system, the absence of an endorsement does not

directly result in a dangerous state. Therefore, a distinction was made between domains

that had already deployed endorsed smart contracts and ones that had not. Domains

that had deployed smart contracts once were susceptible to downgrade attacks, whereas

if no additional security measurement were ever in place, formally speaking, a downgrade

attack could not occur.

A model was conceptualized and implemented in the third step in (Ebel, 2021;

Gallersdörfer et al., 2021a). MetaMask has a two-step approach to sign and send

a transaction from an address: Initially, the dialog is opened as soon as MetaMask

recognizes that the user wants to initiate a transaction. This can happen for two reasons:

Either the user manually opens the plugin and clicks transfer, or the website in combina-

tion with Web3.js indicates to MetaMask that a transaction is required. In the first stage,

17Security measures that are in place are configured poorly, are expired, or do not apply to the respective
domain.

84

4.4. Augmentation of User Wallets

the plugin displays key information such as recipient and monetary and data values. The

user can then “proceed” to the next screen, which summarizes the information about the

transaction, further including information about transaction fees and expected execution

time. The user can confirm and sign the transaction or either revert to the previous

screen or edit the transaction fee settings. The augmented version of MetaMask in (Ebel,

2021; Gallersdörfer et al., 2021a) interrupts the user in a potentially dangerous state on

the second screen and explains the reasoning for interruption; error messages and design

decisions such as button colors are in accordance with the Google Chrome browser, such

as highlighting the “Cancel” button.

During the implementation, an interesting obstacle was discovered. In contrast to

Firefox, Chrome and Edge do not allow access to the X.509 certificate from the website. As

the access to the certificate (to verify the endorsement) is crucial, a purely browser-based

implementation is not possible in Chrome or Edge.

In the fourth step in (Ebel, 2021; Gallersdörfer et al., 2021a), a user study was

conducted that simulated an address replacement attack, a situation similar to the

CoinDash ICO (Initial Coin Offering) hack. The users were introduced to an investment

opportunity via an email that linked to a website. In the first round, they were exposed

to the regular version of the website and were expected to send money to the given

address. In a second email, the users were prompted again to invest on that website, but

the address had been replaced by a malicious one, resulting in the previously designed

warning page, alerting the user of potential problems. It was found that displaying such

a warning page could help to reduce the damage resulting from such attacks. However,

how successful the system is against attacks in which the user is instructed to ignore

warnings remains an open question. This scenario is not unlikely, as the attacker controls

the information on the website. Google’s Chromium team redesigned their browser

warnings in 2015 to increase users’ attention to these messages, but the results fell short

of expectations (Felt et al., 2015).

4.4.2. Revisiting Browser-based Warnings

Browser-based warnings improved greatly. SSL 3.0 was introduced in 1996 as a way to

protect the communication between client and server (Freier et al., 2011)18. Since then,

browsers have needed to communicate the state of the connection to users. Notifying

and warning users about the security of the underlying connection is a challenging task

18Given that no formal publication of SSL 3.0 initially existed, this citation refers to a formal publication
of the historical record of the SSL 3.0 protocol published in 2011.

85

Chapter 4. Off-Chain Verification

of multiple dimensions:

• Frequency of Warnings: If users receive warnings too often, they might ignore

them more easily. However, if warnings appear only on rare occasions, users might

not be warned in all cases of a threat.

• Level of User Knowledge: Warnings need to be properly worded to suit both

informed and uninformed users, enabling both to make conscious decisions.

• Visualization and Guidance: Warnings and errors must be properly visual-

ized. Users need to be guided in their decisions, and might need protection from

potentially unsafe actions.

Despite the importance of safe web browsing, warnings in browsers do not receive

much attention in research. For example, there have been proposals to standardize the

collection of browser warnings (Kraus et al., 2020) and studies on the perception of

IT-professionals (Ukrop et al., 2019), TLS interception in enterprise applications (Waked

et al., 2020) or the redesign of browser warnings (Felt et al., 2015).

Several challenges hinder research in this area: First, the findings of research in this

field are rather short-lived. We found several outdated models in previous research, as the

perception of the importance of security indicators has changed. For example, extended

validation (EV) certificate information is no longer displayed to the users. Second,

browser-warning pages seem to change frequently, and it is challenging for researchers

to obtain current and past forms of browser warnings. Third, data and methods of

obtaining user behavior data are available only to the large enterprises developing the

browsers. For example, researchers working on Chromium have various ways to conduct

user studies with users who opt in to collecting telemetry data (Felt et al., 2016).

Warnings in Major Browsers

To verify the results of the analysis of browser warnings and subsequent design decisions

for a MetaMask augmentation in (Ebel, 2021; Gallersdörfer et al., 2021a), we a) collect

screenshots of warnings in the major browsers, b) synthesize these screenshots into a

tabular overview, and c) share obtained insights. Thereby, we consider three states in the

browser, as proposed in (Ebel, 2021; Gallersdörfer et al., 2021a) and (Felt et al., 2016):

• Positive Indication: Indication that a security protocol is active. We collect

positive indications for two protocols: TLS with regular certificates and TLS with

EV certificates.

86

4.4. Augmentation of User Wallets

• Negative Indication: Indication that a security protocol is active but corrupt for

any reason. We collect negative indications for minor errors (such as an expired

certificate) and major errors (such as having a misconfigured certificate with HTTP

Strict Transport Security enabled).

• Indication of Protocol Downgrade: Indication that a security layer is absent.

We collect indicators active for regular http-connections.

We analyze the following browsers (brackets indicate version number): Google Chrome

(110), Microsoft Edge (109), Mozilla Firefox (109), Opera (95), Safari (16), Firefox

for Android (109) and Safari for iOS (iOS 16.1.2). We analyze 1) the URL-pattern,

2) any symbols next to the URL, 3) the information page about the certificate when

clicking on the symbol, 4) the warning page (when present) and 5) any information

that shows up when clicking on “further information” or “advanced” on the warnings

page. We use https://badssl.com to display warnings in the browser19 and https:

//globalsign.com as an example with an EV certificate (King et al., 2022).

Table 4.1 gives an overview of all browser bars in their various states. Note that for

iOS, the color of the website influences the color of the bar, resulting in a “red” HTTP

state (which comes from a red webpage) and a “green” EV state.

In Appendix C, we give a detailed overview of the browsers’ certificate information

pages, warning pages, and details about the “advanced”-area of the individual warning

pages.

Insights

In contrast to the results in (Ebel, 2021) and (Gallersdörfer et al., 2021a), the single-

page warning design became the dominant form for warning pages. Previously,

Mozilla’s Firefox used two warning pages to display minor and critical errors and it now

uses a single-page warning design, in accordance with browsers such as Chrome, Edge

and Opera. Interestingly, Safari and Safari for iOS have a very simplistic warning page

for critical errors: It strongly resembles the non-security-related “server cannot be found”

error page and leaves no option for the user to further interact with the website, such as

“going back to the previous page” or “reload the page”.

Therefore, the basis for the design and development decisions for the MetaMask plugin,

such as selecting a single-page warning design, still hold up.

19We use the “expired”-error for the minor-error state and the “certificate-pinning”-error for the major
error state.

87

https://badssl.com
https://globalsign.com
https://globalsign.com

Chapter 4. Off-Chain Verification

Secure Secure (EV) Minor Error Major Error HTTP

Chrome

Edge

Firefox

Opera

Safari

Android

iOS

Table 4.1.: URL bars for all major browsers in four different security states, namely secured
connection (with regular certificate), secured connection (with extended validation
certificate), minor error in the TLS protocol, major error in the TLS protocol, and
protocol downgrade (HTTP only).

In addition to the implications on the research in (Ebel, 2021; Gallersdörfer et al.,

2021a), we make following noteworthy observations:

• The differences in warning pages of browsers are marginal. For obvious

reasons, mobile browsers are limited in their display size and thus cannot use the

same visuals and symbols used in desktop browsers but still communicate concisely

to the user. Some browsers, such as Firefox, Chrome and Edge, use a warning

symbol on their error pages, whereas other browsers, such as Opera, use their logo.

We can find changes in little details in icons, but previous research shows that the

effects of such changes on security are minimal (Thompson et al., 2019).

• EV certificates have become meaningless. No browser differentiates between

regular TLS and EV certificates in its UI. Only in the active inspection pop-up for

a certificate (after clicking the “lock”-symbol), browsers might show the entity to

which the certificate is issued, potentially even the issuer. Further, this additional

information is not highlighted in any form, but just appears as a supplement to the

regular security notice (e.g., in Firefox, “You are securely connected to this site”).

This also aligns with research that proposes its removal (Thompson et al., 2019).

• The user’s privacy has gained in importance. Instead of enhancing security

indicators for the connection between the browser and web server, increasing focus

has been put on protecting users’ privacy. Firefox displays a protection icon

prominent beside the security lock, informing the user after a click about trackers

88

4.4. Augmentation of User Wallets

on the respective site and overall blocked trackers. Opera allows blocking trackers

and ads directly within the URL-bar. In 2022, Apple introduced features that

allow blocking trackers in native iOS apps20 and support blocking trackers in their

browser for mobile and desktop.

4.4.3. Limitations and Mitigation Strategies

While the design and user study in (Ebel, 2021; Gallersdörfer et al., 2021a) suggest that

user security could be enhanced by our proposed system, an implementation problem

was discovered. In most browsers, plugins are unable to access certificate information of

the currently visited website. Only in Mozilla Firefox is access to the respective API fully

implemented and allows access to the certificate. We investigate whether this issue still

exists in the browsers’ current versions and potential pathways to overcome this problem.

Situation in Browsers

Mozilla’s web developer documentation gives an extensive overview of the compatibility of

all major browsers (Chrome, Edge, Firefox, Opera, Safari, Firefox for Android, and Safari

on iOS) with functions from the webRequest-API (Mozilla Developer Network, 2022).

Table 4.2 displays the support of each browser with the desired getSecurityInfo()-

function.

Desktop Mobile
Feature Chrome Edge Firefox Opera Safari Firefox Safari

getSecurityInfo() ✗ ✗ ✓(62) ✗ ✗ ✓(62) ✗

Table 4.2.: Browser support for the getSecurityInfo() function (Mozilla Developer Network,
2022). Brackets indicate the version in which the feature was introduced.

The situation in Mozilla Firefox is unchanged. The browser still allows access to

certificate information via the getSecurityInfo() functionality, resulting in an identical

situation to when the initial research was conducted (Ebel, 2021; Gallersdörfer et al.,

2021a).

In Chromium-based browsers such as Chrome, Edge, and Opera, there is still no

support for the desired functionality. However, it remains a rather actively discussed

subject in the respective bug tracker since 2016, in which users and developers urge

20See https://cnb.cx/3gmOmgl, accessed on 13th February 2023.

89

https://cnb.cx/3gmOmgl

Chapter 4. Off-Chain Verification

Google to implement the respective functionality21. Interestingly, it is claimed that the

functionality was not implemented on purpose; it seems that enabling this function

leads to numerous extensions that either overpromise on their functionality or leak web

browsing activity to third parties, which seems to be the case for the Firefox plugin

repository22.

The Webkit-based Safari did not support the entirety of the webRequest-API until

version 14, released in September 2020, in which some features were introduced (Mozilla

Developer Network, 2022). Still, the relevant functionality is missing, and there are no

recent discussions or interest in extending the support for this browser.

In mobile browsers, the situation is almost identical. The Firefox browser for Android

supports the function call in question, and the Safari browser on iOS lacks the entire

webRequest-API. For Chrome on Android, the same results as for the desktop version

apply.

This leaves a dire picture of the ability to access TLS-certificates from plugins within

the browser directly. Only one browser supports the functionality (which makes up

only 3% of world-wide browser usage23), and any other discussions for its support in

other browsers are either stalled or do not exist. From this perspective, widespread

direct access to the TLS certificate within a browser plugin seems to be unrealistic and

an unfavorable design decision. The question remains of whether there are alternative

avenues of system design to mitigate this issue.

Alternative System Designs

Given the infeasibility of using the system purely within a browser plugin in browsers

other than Firefox, we need to reconsider the underlying technological foundation of

authenticated smart contracts and how decentralized verification can occur regardless.

We outline four potential pathways for the underlying architecture to change.

Local Installation Outside the Browser The proposed augmented plugin is not the

first that suffers from being unable to access the TLS certificates of the visited websites.

CheckMyHTTPS helps users to verify whether their secure connection to a website

has been intercepted by TLS proxies or other means, such as Firewalls or security

21See https://bugs.chromium.org/p/chromium/issues/detail?id=628819, accessed on 10th Febru-
ary 2023.

22See https://bugs.chromium.org/p/chromium/issues/detail?id=628819#c33, accessed on 10th

February 2023.
23See https://gs.statcounter.com/browser-market-share, accessed on 10th February 2023.

90

https://bugs.chromium.org/p/chromium/issues/detail?id=628819
https://bugs.chromium.org/p/chromium/issues/detail?id=628819#c33
https://gs.statcounter.com/browser-market-share

4.4. Augmentation of User Wallets

suites (Rey et al., 2023). The browser plugin also accesses TLS certificate information,

which works adequately within Firefox. Given that they cannot access TLS certificates

within Chrome, the developers decided to rely on a locally deployed Python script24

that communicates with the browser via NativeMessagingHosts, an API that allows

the browser to communicate to locally deployed applications.

While this could work in theory, it poses a considerable challenge to the user and an

obstacle to adoption. A user might lack the skillset or the trust to install a full Python

suite alongside the script on their machine. This might result in a similar user experience

to having a native application that integrates the functionality but would hinder adoption

significantly. This is further highlighted in one of the two reviews in the Chrome Web

Store in which a user complains about being required to install Python25.

We deem requiring the installation of a second application alongside the browser plugin

not favorable.

Centralized Service An alternative approach is the usage, as initially suggested, of a

centralized service. This would allow for easy integration, as a centralized API server

would be provided. Each time the user wants to initiate a transaction, the receiver and

currently visited website are sent to the server. This, in return, obtains the certificate,

verifies whether the respective protection is in place or a downgrade pattern is detected,

and sends back the result to the plugin. The plugin then displays the result to the user.

It can be decided whether the verification should occur within the service or the browser

plugin; nonetheless, the domain name must be shared for the service to work. In addition

to the privacy concerns, this centralized service can be at aim for cyber attacks or DoS

attacks.

Given the centralization, privacy, and security concerns, a centralized service is out of

the question to solve the underlying issue.

Certificate Transparency CT, as an append-only log, stores all newly issued certificates;

therefore, it should also include any certificate used within our proposed system. A

browser plugin could access CT, retrieve the respective certificate, and verify whether

the certificate’s private key correctly signs the endorsement. While this seems to be in

theory a feasible approach, in practice, it is not. CT is an append-only log; SSLMate’s

24See https://github.com/checkmyhttps/checkmyhttps/blob/master/Chromium/native-

app/checkmyhttps.py, accessed 13th February 2023.
25See https://chrome.google.com/webstore/detail/checkmyhttps/

jbnodnfpdcegpnflleanllmiihkinkio, accessed 13th February 2023.

91

https://github.com/checkmyhttps/checkmyhttps/blob/master/Chromium/native-app/checkmyhttps.py
https://github.com/checkmyhttps/checkmyhttps/blob/master/Chromium/native-app/checkmyhttps.py
https://chrome.google.com/webstore/detail/checkmyhttps/jbnodnfpdcegpnflleanllmiihkinkio
https://chrome.google.com/webstore/detail/checkmyhttps/jbnodnfpdcegpnflleanllmiihkinkio

Chapter 4. Off-Chain Verification

Cert Spotter Stats highlights that over 8 billion certificates are managed within CT while

using about 28 TB of data storage (SSLMate, 2023). This data size is not manageable

within a browser plugin and puts significant demands on any infrastructure provider.

Services such as crt.sh allow for a simple search within the logs, resulting in the same

issues as with any centralized service that retrieves the certificate from the server on

behalf of the user.

Given the data size and complexity of CT, its usage is not feasible within our proposed

system.

On-chain Authentication Shifting the burden of obtaining certificate information to a

local script, external providers, or CT have their considerable downsides. One potential

avenue, which has not been explored yet, is the shift of certificate storage and verification

on-chain. In this case, owners of domains and issuers of endorsements are required to

put their certificates alongside their signatures in a controlled on-chain environment,

in which proper verification is ensured. Wallets interacting with these smart contracts,

could verify the integrity of respective endorsements using these smart contracts and

displaying the resulting information to their users.

As this comes with significant changes to the system and smart contract design, we

discuss the purely on-chain enabled authentication in Chapter 5.

4.5. Summary

In this chapter, we provided insight into our system, which supports users and enterprises

alike to mitigate the risks of loose coupling between websites and blockchain addresses

by enabling a decentralized verification mechanism for TLS certificate signatures.

Loose coupling of information between the WWW and blockchain networks is a

significant risk to enterprises, start-ups, and users in the blockchain ecosystem alike.

Numerous hacks and incidents have led to the loss of millions of USD.

The architectural approach of storing endorsements on-chain in individual smart

contracts and tracking issuances in a logically centralized smart contract allows the end

user to verify that a smart contract address indeed belongs to a website, as its owner has

previously issued such an endorsement.

Thereby, we showed that the interplay between TLS and endorsements is minimal

and that the issuance of endorsements does not increase the attack surface. Further, we

outlined how, given the adversary model, attacks that replicate the endorsement can

92

crt.sh

4.5. Summary

still take place. However, due to the transparency of the blockchain network, malicious

issuances can be detected and user risks mitigated.

Lastly, we reiterated the integration of the endorsement verification mechanism in the

browser wallet MetaMask conducted in (Ebel, 2021) and (Gallersdörfer et al., 2021a).

We revisited browser-based warnings and verified that assumptions about the browsers

and their features still hold. Given the limitations of modern browsers, we discussed

alternative technological avenues for enabling the verification of endorsements in browsers.

We conclude that an off-chain approach is not feasible at this time.

In the next chapter, we describe an additional architectural approach to enable the

verification of endorsements in an on-chain context, enabling decisions within smart

contracts based on the validity of the endorsement. Thereby, we cover both on-chain

authentication utilizing TLS certificates and on-chain authentication utilizing DNSSEC,

as seen in ENS. Further, we develop a dataset of all domains that have been bridged to

ENS using DNSSEC.

93

Chapter 5.

On-Chain Verification

This chapter discusses different architectural designs to enable the use of certificates and

their signatures in a blockchain-based environment. Different problem statements and

use cases require alternative certificate storage, management, and verification approaches.

The approach enables a consensus about the validity of single certificates and their

signatures, in turn enabling their usage in a deterministic environment, e.g., smart

contracts. We further analyze ENS, as it follows a similar approach utilizing DNSSEC.

This chapter is split into the following sections:

• Section 5.1, “Problem Statement”, discusses the pain points and potential use cases

that require a separate approach for the on-chain usage of TLS-certificates and

their signatures.

• In Section 5.2´, “System Architecture and Processes for On-Chain TLS-Certificate

Usage”, we describe the system architecture design comprising a certificate database

and an endorsement database and mechanisms to validate certificates and their

signatures entirely on-chain as proposed in (Groschupp, 2020) and (Gallersdörfer

et al., 2021c).

• In Section 5.3, “DNSSEC Integration in the Ethereum Name Service”, we analyze

the architecture and integration of DNSSEC within the ENS protocol.

• We discuss architectural design decisions for both ENS’ DNSSEC approach as well

as the proposal described in (Groschupp, 2020) and (Gallersdörfer et al., 2021c), as

well as alternatives and their rationales in Section 5.4.

• Lastly, in Section 5.5, “ENS DNSSEC Domain Dataset”, we develop a dataset of

the ENS DNSSEC ecosystem. We describe how we gather, filter and apply data in

95

Chapter 5. On-Chain Verification

order to derive valuable conclusions for Chapter 6, “Evaluation and Comparison of

Approaches”.

Section 5.2 is based on “Exploring the Use of SSL/TLS Certificates for Identity

Assertion and Verification in Ethereum” (Groschupp, 2020) and “Mirroring Public Key

Infrastructures to Blockchains for On-chain Authentication” (Gallersdörfer et al., 2021c).

96

5.1. Problem Statement

5.1. Problem Statement

In this section, we discuss two additional problem statements that exist at the intersection

of WWW and blockchain networks. Both issues have briefly been raised in subsection 3.2.1.

We discuss the problems of Non-Human-Readable Names and Lack of Access Control

and why these problem statements, besides the drawbacks of the off-chain approach, lead

to a deviating architectural approach.

5.1.1. Non-Human-Readable Names

Users that intend to interact with other parties on blockchain networks often obtain the

information of counterparties by means of the WWW. In case information is accessed

via this approach, the binding between a website and blockchain address can simply be

verified; the required information (the address) arrives via the website and the wallet

(as outlined in Section 4.4) checks whether the domain of the website belongs to the

respective endorsement stored within the address. Verification takes place within the

wallet, and no further information is required from external sources.

Suppose the user receives information via other means than the WWW. In that case,

verifying the endorsement within the address suddenly raises a problem: Which domain

does the smart contract belong to, and is it the domain the user intends to interact

with? Given that no browser context is available, a wallet cannot verify the relationship

between a website and a smart contract.

To summarize: The problem exists in case a user obtains address information without

the given context of the browser.

The need for a diverging approach stretches to further situations in which address

information is expected to be used on-chain. On-chain smart contracts cannot, as

previously outlined, access data from external sources without additional help from

oracles. Surely, the validity of respective endorsements and domains could be provided by

an oracle network incentivized to do so; however, this would introduce third parties that

would be in control of this process, resulting in potential harm ranging from a simple

time delay to potentially wrong statements about the validity of specific endorsements,

given high enough stakes.

An oracle would impose further design questions: Who are the operators of this oracle

network? How are they incentivized? How are disputes between single entities of the

oracle network resolved? What are the expected time delays, and what happens if an

answer from the oracle is missing? Are funds locked indefinitely? Who defines the trusted

97

Chapter 5. On-Chain Verification

root CAs?

When intending to leverage these domains in an on-chain environment, a sufficiently

decentralized and open system must be put in place. Ideally, the verification and

authentication could occur within a single transaction, removing the need for complex

callback structures, as expected in an oracle-enabled system.

5.1.2. Lack of Access Control

Access control is an essential feature within blockchain networks. In public permissionless

networks, some form of access control exists (e.g., in token-gated communities)1. Further,

access control becomes more relevant in public or private permissioned blockchain

networks. Often, these networks are set up so that only specific entities can participate

in the consensus or even join the network.

Access control or similar means always require an exchange of information before

allowing an entity to pass some form of access control successfully. These forms of

information exchange often require secondary channels, such as emails or chat systems.

Anecdotal evidence suggests that no additional entity verification is required beyond

the brief exchange of contact information. Further, manual labor is required to update

access information, which can also be prone to errors. This leaves the question of how

well-protected these access control mechanisms are for specific communities.

To alleviate the problem of these simple access control mechanisms, using domain

names (and, thus, endorsed smart contracts) could enhance security properties and

increase the share of automation in the system, as novel “request for access” methods

could be provided. For example, a two-step method could be in place in which entities

could apply to a community or system using their associated domain name and, the

owner or a respective panel could decide whether to accept or reject the applicants, while

also ensuring that the applicants are the entities that they claim to be.

However, similar to the previously outlined problem, if someone were to use domain

names for access control to their systems, the endorsement verification would have to take

place in an on-chain environment, requiring a system capable of handling this information

purely on-chain.

1Users are required to obtain a token or a NFT before joining the community.

98

5.2. System Architecture and Processes for On-Chain TLS-Certificate Usage

5.2. System Architecture and Processes for On-Chain

TLS-Certificate Usage

In (Groschupp, 2020) and (Gallersdörfer et al., 2021a), a new architecture for storing,

verifying, and retrieving the verification results of TLS certificates alongside any potential

endorsements in a purely on-chain setup was proposed. In this section, we reiterate the

components and give an overview of their functionalities. We discuss any rationale that

led to this specific architecture and alternatives in 5.4. First, in subsection 5.2.1, we

describe the first of two databases: the database for storing X.509 certificates. Then, we

present the smart contract endorsement database in subsection 5.2.2. Lastly, we give an

overview of the relevant processes and considerations in subsection 5.2.3.

5.2.1. X.509 Certificate Storage Database

First, we discuss the functionality of the database. Then, we present the rational for the

design decisions.

To begin, one needs to store any X.509 certificates. The validity of the certificates

is the main objective of such a database. While it seems apparent, certificates need to

be syntactically and semantically correct. Certificates must follow the X.509 certificate

standard, including adherence to any variable types. Signature information, issuer names,

and respective hashes must be consistent to name only a few additional properties.

Further, certificates must either be self-signed (potentially acting as a root certificate) or

signed by a CA certificate.

We discuss the X.509 certificate storage databases’ functionality by highlighting

respective CRUD-operations:

• Create: The X.509 certificate is added to the certificate storage database by

verifying its semantic and syntactic integrity. If the certificate is valid, it is added

to the database alongside any identifying information and its public key.

• Read: Any certificate stored within the database can be retrieved by identifier,

which is the SHA-256 hash in DER-format.

• Update: The contents of a certificate cannot be updated, as new parameters or

variables (such as validity) change the certificate and its fingerprint and require a

new signature from the respective certificate authorities. However, it is possible to

update the state of the certificate: If CRL or OSCP data is pushed to the smart

99

Chapter 5. On-Chain Verification

contract, the certificate’s validity can be confirmed or, if it is included in a CRL,

revoked.

• Delete: It is impossible to delete a certificate; a revocation can change the

certificate’s status to revoked, rendering the certificate useless.

(Groschupp, 2020) and (Gallersdörfer et al., 2021c) propose to allow the storage of

any certificate that adheres to the X.509 protocol. The system is not limited to a

specific list of certificate authorities to keep the system open and allow for any PKI. In

contrast, any certificate can be added, and anyone can create a root certificate to sign

respective sub-certificates. To prevent malicious entities from signing arbitrary data and

endorsing domain names, users must specify which root certificates they want to trust

when verifying endorsements. Harm is thus prevented, as users will not trust arbitrary

certificates but rather a predefined list. Nonetheless, selecting this list of valid issuers

can be a problem, as we outline in subsection 6.2.2.

5.2.2. Smart Contract Endorsement Database

Similar to the certificate database, (Groschupp, 2020) and (Gallersdörfer et al., 2021c)

propose an endorsement database. The specification for endorsements partly follows 2

the description outlined in Section 3.4. Nonetheless, the verification of an endorsement

follows the same specifics initially proposed in Section 4.2. The only difference is that

endorsements and certificates must be verified only once; the verification result for the

endorsement and its respective certificate are stored in the respective databases. If one

of the certificates is invalid, the respective endorsement is also invalid.

In addition to tracking, the database also keeps track of root stores. Root stores are

a list of trusted root certificates, which we informally describe in Equation 5.1:

RootStore = {CertificateList, Owner} (5.1)

Root stores are a way of conveniently storing information about trusted root certificates.

These lists can be created, and new root certificates can be appended or removed. Users

that verify an endorsement can select which root store to trust. As an owner is defined,

these ownerships can be decentralized so that they can be destroyed (e.g., by transferring

2(Groschupp, 2020) and (Gallersdörfer et al., 2021c) use other terminology for parts of the endorsements
and ignore flags set in the endorsements.

100

5.2. System Architecture and Processes for On-Chain TLS-Certificate Usage

the ownership to 0x0), or some form of governance can be set up to decide which

certificates to add and remove.

For endorsements, the functionality is analogous to the certificate database:

• Create: Endorsements are created off-chain using respective key material and sig-

nature information and are then added to the endorsement database. Endorsements

link only implicitly to a root certificate by relying on an intermediate certificate

and do not need to link to root stores.

• Read: Endorsements can be read by their index in the database, associated domain,

or account addresses. The index of a root store needs to be provided to ensure that

the endorsement is valid for the user. The smart contract returns the respective

information.

• Update: Similarly to the certificate database, an update is not possible; instead,

a new endorsement needs to be added to the endorsement database.

• Delete: To revoke an endorsement, a specific signature can be pushed to the smart

contract, which updates the state of the endorsement and sets it to invalid.

The specific smart contracts are described in (Groschupp, 2020) and (Gallersdörfer et

al., 2021d). While these programs provide a proof of concept, they suffer from exhaustive

gas consumption and potentially unreachable states (e.g., if the list over which to iterate

with a for-loop grows too long). In Section 6.3, we provide preliminary cost structures.

5.2.3. Processes and Rationale

In the following, we give insights into the processes of the system. Further, we discuss

the rationale for logically centralizing the smart contract system.

Processes

Several processes are involved in the systems proposed in (Groschupp, 2020) and

(Gallersdörfer et al., 2021c). In the following, we discuss the processes for a) issuance, b)

verification, and c) revocation of endorsements.

101

Chapter 5. On-Chain Verification

Issuance The issuance of a new endorsement to the system involves several steps.

• Creating the Endorsement: In the initial step, the endorsement is created.

Similarly to the off-chain approach outlined in Chapter 4, the endorsement follows

a specific structure and contains information about the domain, the address, the

certificate, the expiry date, and more. The data is then signed with the private key

of the respective TLS certificate and stored for later submission to the blockchain

network.

• Submitting Certificates: Issuers must verify which certificates are already present

in the blockchain context and to what extent they cover the certificate chains of the

TLS certificates they used to generate their endorsement. It can be expected that

at least one certificate has not yet been submitted to the blockchain and needs to be

stored in the certificate storage database. The issuer needs to submit each missing

certificate via a single transaction to the contract. With the given implementation,

a batch submission of multiple certificates is not supported. The smart contract

verifies that each certificate is signed by a previously introduced certificate. Root

certificates can be submitted at will but need to be trusted later by users.

• Submitting Endorsement: After all relevant certificates have been stored in

the certificate storage database, the endorsement can be submitted to the smart

contract. Again, the issuer needs to create a separate transaction that contains the

endorsement; a batch submission is not implemented. The smart contract verifies

the integrity of the endorsement and checks if its contents are correct, and the

provided signature belongs to a prior added and verified TLS certificate. After the

submission, the endorsement is sufficiently verified and can be used. Additionally,

a binding between the endorsement and the respective root certificate is created to

make verifying the endorsement cheaper.

Verification The verification of an endorsement took already place in the previous

step. The verification of the endorsement needs to take place only once; as a result,

the verification can be stored and subsequently accessed by anyone interested in the

endorsement. However, user preferences in the form of different trusted root certificates

can differ, requiring an additional step to verify whether to trust a given endorsement or

not.

• Creating a Root Store: Initially, root stores containing a list of trusted root

certificates need to be created. One transaction is required to create a root store,

102

5.2. System Architecture and Processes for On-Chain TLS-Certificate Usage

and a subsequent transaction is required to add root certificates to the respective

list. Potentially, one root store could be predefined and accepted by the majority of

the community, as otherwise, everyone would need to manage their own root store.

• Verifying an Endorsement Against a Root Store: The root store is the

main denominator for users to understand whether an endorsement is valid. A

valid endorsement can be created at any time for any domain as it is possible to

add its own root certificates, so the trusted list of root certificates is crucial to

correct verification. The user submits a transaction to the system to ask whether

an endorsement for a given account, domain, and root store is valid; given that it is

only a read operation, gas costs are not required. This information can subsequently

be used to facilitate transactions.

Revocation There are two processes for revoking an endorsement: Either the endorse-

ment itself is revoked or the underlying certificate used for creating the endorsement is

revoked. Further, the certificates can be revoked by either CRLs or OCSP. For each

method, the process looks similar:

• Endorsement Revocation: The endorsement can be revoked by submitting a

special endorsement that contains additional information. This additional informa-

tion cannot be found in a regular endorsement and highlights that the certificate

owner does not further endorse the domain-account relationship. This transaction

does not need to be sent from the same address used to create the endorsement,

enabling control over the endorsement even if there is no control of the related

account. The revocation takes place in the endorsement store database.

• Certificate Revocation via CRL: CRLs are lists of certificates that a given CA

has revoked over time. These lists contain all certificates for the given CA. Therefore,

they can become very long. Any entity can submit a transaction containing the

CRL and the certificate fingerprint of the revoked certificate. If the certificate is

stored in the certificate store database and has not been revoked previously, its

state is updated to “revoked”. The revocation takes place in the certificate store

database.

• Certificate Revocation via OCSP: OCSP is a protocol that returns the infor-

mation about the validity of a specific certificate, run by the CA that has issued

the certificate in question. These responses are signed and can be verified similarly

103

Chapter 5. On-Chain Verification

to the certificate itself. Suppose the OSCP message claims that a specific certificate

hash been revoked. In that case, that message can be sent to the smart contract,

which in turn verifies that the message was issued by the relevant CA and updates

the validity state of the certificate. The revocation takes place in the certificate

store database.

Nonetheless, revocation faces a key issue in the system proposed in (Groschupp, 2020)

and (Gallersdörfer et al., 2021c): The information about the revocation status is not

available in real-time, as someone needs to submit the relevant data to the blockchain.

Monitoring systems and individual incentive structures (e.g., rewards for withdrawn

certificates) need to be implemented to ensure a secure on-chain environment.

Logical Centralization of Smart Contracts

“Logically” centralizing the storage and verification of both X.509 certificates and endorse-

ments provides several advantages:

• Reduced Overhead: The code for parsing X.509 certificates, public key cryptog-

raphy mechanisms, specific byte operations, and such are not deployed multiple

times but only once for the entire ecosystem. This centralization also reduces costs,

as (Gallersdörfer et al., 2021c) shows. We compare the respective costs with other

approaches in Section 6.3.

• Compatibility with EOAs and Smart Contracts: As the register and system

link to addresses and provide data on the authenticity of respective endorsements,

an address to does not need to support a specific interface. Only in the case that

an address wants to authenticate itself actively at a smart contract, this smart

contract must be able to ask the system about the authenticity of the sender.

• Endorsing Pre-Existing Smart Contracts: Centralizing the endorsement and

certificate database allows smart contracts to be endorsed later. A decentralized

approach requires smart contracts to be redeployed.

• Trustworthy Deployment: Given that the system is deployed only once, entities

that need to hardcode respective addresses (e.g., wallet developers) only need to

verify the system’s integrity once, protecting against malicious deployments of the

system.

104

5.3. DNSSEC Integration in the Ethereum Name Service

5.3. DNSSEC Integration in the Ethereum Name Service

In contrast to the approach above, the ENS leverages DNSSEC to utilize domain names

in an on-chain context.

DNSSEC (as described in (Rose et al., 2005b,c)) ensures the authenticity of the records

managed within DNS. Thereby, a hierarchical signature scheme, similar to a PKI, is

established to allow the signing and verification of any records, such as A, AAAA, CNAME

or TXT. As a trust anchor, only one key exists that signs respective subordinate zones

(e.g., the zones responsible for the TLDs).

As only the owner of the domain can introduce changes to the DNS record, statements

of the owner of the domain can be cryptographically verified. For that, a TXT-record can

create an arbitrary text message that does not affect the intended functionality of DNS.

To claim their domains within ENS, domain owners use a TXT-record to associate their

domain names with Ethereum-specific addresses.

In the following, we give insight into the overall architecture of ENS. First, we look at

the system in general and the ENS registry that manages all names. Then, we look at

the DNSSEC-specific parts, namely the DNSRegistrar and the DNSSECImpl. Afterward,

we discuss design decisions, their rationale, and their limitations. We develop a dataset

containing all domain names bridged to ENS in Section 5.5. An extensive analysis using

this dataset takes place in Chapter 6.

Within this section, we refer to the ENS documentation (Ethereum Name Service,

2023b) and the respective smart contracts, hosted on Etherscan (Etherscan, 2023a,b) and

on the project’s GitHub page (Ethereum Name Service, 2023a). Given that terminology

is not used consistently within the ENS documentation and system, we adjust terms if

required for consistency. All addresses used in our analysis are displayed in Appendix D

for transparency.

5.3.1. Architecture Overview

ENS is structured similarly to DNS. It follows a hierarchical structure managed within

the ENS registry. Each record3 contains four relevant parts: a) a controller4, b) a resolver,

c) a registrant, and d) additional data (such as TTL). Controller, resolver, and registrants

are Ethereum addresses and, therefore, can be smart contracts or EOAs.

3ENS refers to domains as names that consist of dot-concatenated labels, such as alice.eth being a
name, whereas alice and eth are labels.

4ENS sometimes refers to a controller as an owner. The smart contract interfaces expose the term
owner. We use controller as the web application uses controller as well.

105

Chapter 5. On-Chain Verification

ENS does not directly store the name of each record but instead uses namehash, a

proprietary hash function that leverages Keccak-256. This enables the use of a fixed-

length storage variable and provides efficiency gains. Name hashes have an interesting

side-effect: ENS does not know which names are managed within their systems. ENS

uses dictionary attacks to find the pre-image to the respective hashes, which is not always

successful. In our analysis in Section 5.5, we can obtain all domain names bridged using

DNSSEC, as the domain name is required for verification purposes.

The controller can transfer ownership, set the resolver, set further information, or

create subdomains. The registrant owns the domain, can move the registration, and can

redefine the controller if needed. The resolver is the smart contract providing additional

information to the respective domain, e.g., links to cryptocurrency addresses, IPFS

hashes, avatars, and more. With this approach, multiple goals can be achieved:

• Separation of Ownership and Control: The controller of an ENS domain must

not be identical to the entity that registered the domain. With that, the private

key to the registrant account can be kept in a cold wallet, whereas the controller’s

private key is kept in a hot wallet for active usage.

• Upgradability: Given that the resolver can be replaced anytime, its functionality

can be extended as desired. If a user requires additional fields of storage within its

resolver or requires some advanced functionality, the resolver is replaced.

• Composability: Smart contracts that were not part of the initial design process

can be integrated easily. For example, if a DAO wants to own and manage an

ENS name, it can introduce a governance mechanism by setting the controller to a

respective smart contract.

In this hierarchical system, one entity, root, owns the entire namespace and delegates

domains (in this case, TLD) to other entities in the system. For the TLD .eth, root

handed over the rights to further distribute subdomains (e.g., alice.eth) to the ENS

registrar.

The ENS registrar is a complex system allowing anyone to register .eth-domains.

Domains need to be renewed every year, and depending on the length of the domain,

prices vary. Given the ENS registrar’s complexity and extensive analysis in (Xia et al.,

2022), we refrain from further discussing its contents or functionality.

106

5.3. DNSSEC Integration in the Ethereum Name Service

DNSRegistrar

The DNSRegistrar is equivalent to the ENS registrar for the traditional DNS system.

Instead of having an auction system that enables anyone to claim a subdomain of the

respective TLD, the DNSRegistrar requires proof from the DNSSEC world to assign

the domain to the necessary address. The DNSRegistrar needs to be bootstrapped:

it a) needs the right to set up domains in the respective TLD5, and b) needs to have

the DNSSEC root key stored in its contract. The right to set the respective name in

the ENS registry is automatically granted when the ENS root assigns the right to the

DNSRegistrar.

The following steps are taken if an entity wants to register a domain within the

DNSRegistrar.

1. The domain owner in DNS makes specific preparations and create a proof of

ownership via DNSSEC. We provide a detailed description in Section 5.3.1.

2. The owner sets up an Ethereum address with sufficient funding (see 6.3 for evaluation

of costs).

3. The owners enters the smart contract through one of either three functions: claim,

proveAndClaim, or proveAndClaimWithResolver, accompanied by relevant infor-

mation, such as which domain they want to claim and additional information.

4. The hierarchical key information, including signatures stored in RRSets, is sent to

the DNSSECImpl-contract for inspection and verification. The DNSSECImpl-contract

returns the proof to the registrar smart contract.

5. The contract verifies that the TLD is a PublicSuffix. For that, it calls a contract

PublicSuffixList that returns whether the TLD is valid6.

6. The contract recursively checks whether it already possesses the TLD by calling

enableNode(). If not, it calls the root ENS contract and transfers the ownership

of the TLD to itself. The DNSRegistrar has the right to assign new TLDs within

the Root smart contract.

5That means the ENS root needs to grant the DNSRegistrar the right to manage the respective domain.
6This is currently the case for any TLD. It appears that the ENS developers are not interested in
managing a list of ICANN-approved TLDs but rather accept any TLD as valid, given that ENS only
manages .eth, which ICANN does not claim. Therefore, no naming conflicts exist, and any TLD
that has not been registered before is granted to the DNSRegistrar.

107

Chapter 5. On-Chain Verification

7. Then, the registrar extracts the endorsed address from the proof and sends the

information to the ENS registry, which sets the record and allows the owner to set

respective resolvers.

DNSSECImpl

The DNSSECImpl smart contract was initially deployed in August 2021. In its constructor

transaction, the hash of the root public key was also set. Given its structure, it also

requires the linking of several other smart contracts that implement algorithms to

adhere to the DNSSEC specification. They were created shortly before the DNSSEC

oracle contract. Table 5.1 gives an overview of these algorithms and their support by

ENS. Although it appears that NSEC3-SHA1 is supported, we cannot verify the correct

functionality, as no details about it can be found in the documentation. Also we could

not observe any transaction that called respective functions. Not all algorithms are

relevant, but ENS supports the major algorithms; in particular, algorithm 8 is supported

by all entities that support DNSSEC in general (see subsection 6.1.1).

Number Algorithm Supported by ENS
01 RSA/MD5 ✗

02 Diffie-Hellman ✗

03 DSA/SHA-1 ✗

05 RSA/SHA-1 ✓

07 RSA/SHA1-NSEC3-SHA1 ✓

08 RSA/SHA-256 ✓

10 RSA/SHA-512 ✗

12 GOST ✗

13 ECDSA-256/SHA-256 ✓

14 ECDSA-384/SHA-384 ✗

15 ED25519 ✗

16 ED448 ✗

Table 5.1.: DNSSEC cryptographic algorithm numbers and their ENS support. Numbers
available in (ICANN, 2023)

In theory, there are two functions to enter the smart contract; submitRRSet and

submitRRSets, but only the latter is called in practice. Both functions work almost

identically, given that the latter iterates only over a list of RRSets whereas the first

function processes one RRSet.

Generally, the approach is identical to verifying a record using DNSSEC. The proof

mechanism iterates over the RRSets and their respective proofs, starting from a well

108

5.3. DNSSEC Integration in the Ethereum Name Service

known DNSKey and iterating over RRSets until the last RRSet is reached. This proof is

then returned to the sender; in the case of the verification process, it is the DNSRegistrar.

Let us be more concrete and consider an example for the domain eth.limo, registered

on the 24th February 2023. The transaction called the ProveAndClaimWithResolver-

function. The sender provided five RRSets that we inspect in detail. They are displayed

in Table 5.2. In addition to these RRSets, the sender also provides the initial proof as a

public key.

Type Algo Inception Expiry KeyTag SignerName
1 DS (43) 8 2023-02-24 2023-03-09 951 .
2 DNSKEY (48) 8 2023-02-17 2023-03-10 39862 limo.
3 DS (43) 8 2023-02-17 2023-03-10 61575 limo.
4 DNSKEY (48) 13 2023-02-24 2023-02-25 21598 eth.limo.
5 TXT (16) 13 2023-02-24 2023-02-24 39519 eth.limo.

Table 5.2.: Five RRSets provided at the registration of eth.limo in ENS.

Now we can iterate over each row:

1. Contains a DS record, uses the algorithm 8 and refers to the keytag 951, which is

the zone singing key for the root (.) zone. Given that this key was newly created7,

the entity registering this address was required to prove the validity of this RRSet

with the initially provided proof. Including this RRset within the registry allows

the creation of a new proof that can be used consecutively for the next RRSet.

2. Contains the DNSKEY record which includes the key signing key for the .limo-zone

(given the keytag 39862). Its value is proven by the previous line and allows us to

prove the validity of the next line.

3. The DS, again, referring to one of the two zone signing keys, is then leveraged for

further proofs.

4. For the following zone (eth.limo), a DNSKEY is recorded again. Here, another

algorithm (13) is leveraged, which is still supported by ENS.

5. Lastly, the TXT record for the subdomain (ens.eth.limo) is introduced and verified

in the storage.

7eth.limo was the first domain registered since the key is available.

109

eth.limo
eth.limo
eth.limo

Chapter 5. On-Chain Verification

If the DNSRegistrar wants to verify that the domain is owned, it uses the address

provided by the sender and builds the record itself, as displayed in Listing 5.1. Then, it

verifies that this record is authentic, meaning the proof for the respective record exists.

If a record exists, it was previously confirmed and stored within the database.

1 _ens.eth.limo. 60 IN TXT "a=0 x989A ...29 d3F"

Listing 5.1: TXT-record for ens.eth.limo. Address shortened for readability.

That concludes the verification. The registrar grants the domain to the address in the

record.

5.4. Rationale in System Architecture Designs and

Decisions

In ENS, two systems coexist. The traditional DNS system has over 2000 TLDs, whereas

ENS manages only the TLD .eth. This creates a need for a separation of concerns.

The ENS root grants any TLD that has not been registered previously, and a proof can

be presented to the DNSRegistrar; the only other TLD .eth remains in control of the

ENSRegistrar, enabling anyone to purchase respective domains. Given the setup, we do

not think a different approach would make sense or allow the replacement of individual

components if updates were available. In contrast, the on-chain approach we outlined

does not co-exist with a proprietary system, and therefore, we do not expect interplays

with existing systems on-chain.

Key storage is a rationale within both systems. ENS stores the RRSets, and the

on-chain approach stores TLS certificates and their respective keys. Given that both

solutions profit from pre-existing keys that do not need to be validated again, key storage

makes sense in both cases. We take a closer look at the problem of storing these records.

If the volume of registrations is low, storing the sets might incur more costs than just

pushing them on-chain every time, as these records are very short-lived.

The validity of the initial endorsements differ in both approaches: Whereas in

ENS, the registration never expires, the on-chain system leveraging TLS certificates

adheres to the validity of the respective certificate. In ENS, this is a design decision that

we believe is driven by economic necessities. For TLS certificates, the validity can be

a maximum of one year; Let’s Encrypt even issues certificates valid for only 90 days.

While it can be reasonable to refresh the TLS certificate on-chain every three months,

the validity periods of the RRSets in DNSSEC are much shorter. For the last record in

110

5.4. Rationale in System Architecture Designs and Decisions

Table 5.2, validity was a mere 121 minutes. This timeframe is too short to force entities

to re-validate. Whether to periodically force re-validations after a specific time to prevent

too many abandoned domains within the ENS, is discussed in the next section.

The proof of ownership also deviates between the two approaches. In ENS, control

over the subdomain ens (e.g., ens.example.org) must be proven. In the on-chain

TLS approach, a valid certificate for the actual domain is required. We did not find

any rationale for why the TXT record must be set in the specific sub-domain instead of

the actual domain. A potential reason could be that including the TXT record within

the regular domain could largely inflate proof sizes; often, other entities that require

ownership proof of domains also place TXT records within the domain. As RRsets include

all records of one type, respective proofs become more complex. However, this also leads

to a potential security issue, as a controller of a subdomain (albeit being the specific

ens. subdomain) could masquerade as the parent domain. We discuss this security

issue in subsection 6.4.3.

The subsequent control over records is worthy a discussion. In the TLS on-chain

(and off-chain) approach, the owner of the domain sets all rules and requirements: address,

validity, rules, flags, and more, limiting the scope of action for the on-chain address. In

ENS, the address receives complete control over all concerns; it can change, replace and

update any information associated with the domain in the blockchain context. It can

even register sub-domains, overriding the domain owner’s decisions. We believe that

there are economic reasons for this. Verifying that the sender equals the previously

defined owner is easy, and thus, subsequent changes are cheap. If one had to issue a new

cryptographic proof from DNSSEC to make a change, costs would rise quickly. This

design decision also limits the issuance of subdomains in the on-chain context. Using

the TLS on-chain approach, subdomains can be issued, whereas using ENS, the address

needs to issue respective subdomains.

Also, revocation is more straightforward in the TLS on-chain approach. A signed

statement of the certificate can be published to the chain, and the respective smart

contract considers the endorsement invalid. For ENS, the situation is different. While in

theory, DNSSEC can prove that a record does not exist, practically, the functionality is

either unavailable or untested (see Section 5.3.1). Revocation is a rare scenario for TLS

certificates, and in DNSSEC, key revocation does not exist. In a system where records

are indefinitely valid, users should be instructed to revoke issued domains if they stop

using them.

Lastly, a difference between the two approaches is the existence of user configurations.

111

Chapter 5. On-Chain Verification

In contrast to TLS, DNSSEC has the advantage of having a single point of trust, the root

entity. In the TLS certificate ecosystem, multiple entities exist that can be considered

trustworthy. Also, new, reliable entities (e.g., in an enterprise context) need to be

considered. ENS, which follows a similar approach to DNS, needs one single point of

truth and cannot deviate or allow users to choose which entities they trust; relying on

DNSSEC is a helpful approach.

5.5. ENS DNSSEC Domain Dataset

To our knowledge, no extensive analysis of the domains transferred via DNSSEC in

ENS has occurred. (Xia et al., 2022) have analyzed ENS to a great extent for regular

.eth-domains, but they only partly covered domain names transferred from DNS. They

analyze only domains with the endings .xyz, .club, .luxe, .art, and .kred that rely

on a custom implementation with the registrar8. They did not include the DNSSEC

registrar that can migrate any TLD.

Therefore, we develop a dataset of all domains migrated from DNSSEC to ENS as of

27th February 2023. We employ the following steps: 1) data collection, 2) data cleanup,

3) data enrichment, and 4) data verification.

5.5.1. Data Collection

Given that we focus only on the DNSSEC registrar, we need to focus only on a single

address within the ENS ecosystem: 0x58774bb8acd458a640af0b88238369a167546ef2

is the address that manages all TLDs from the “traditional” DNS system. Its source code

can be obtained from Etherscan.io (Etherscan, 2023a). It was created on 17th August

2021. While the proposal for leveraging DNSSEC exists for much longer, this is the first

occurrence on the main net, to our knowledge. We analyze the domain names up to the

27th February 2023; the last domain in our dataset was recorded on the 26th February

2023. The smart contract exposes three methods that are used to prove the ownership of

a domain:

• proveAndClaim(name, input, proof): Can be considered the standard function-

ality. A user submits information to the DNSRegistrar, including the domain name,

RRSets as an input, and proof of ownership.

8See https://medium.com/coinmonks/an-overview-of-ethereum-name-service-ens-

e736d0b946ba, accessed 27th February 2023.

112

https://medium.com/coinmonks/an-overview-of-ethereum-name-service-ens-e736d0b946ba
https://medium.com/coinmonks/an-overview-of-ethereum-name-service-ens-e736d0b946ba

5.5. ENS DNSSEC Domain Dataset

• proveAndClaimWithResolver(name, input, proof, resolver, addr): This func-

tion extends the initial function by providing the same interface as proveAndClaim

but additionally allows a resolver address as well as a deviating owner to be set.

• claim(name, proof): This function provides just the basic claim functionality,

which requires the user to submit the RRSets in the DNSSECImpl contract before-

hand.

It also supports the event Claim(bytes32 indexed node, address indexed owner,

bytes dnsname) that gives insight into the respective claimed domains. However, as we

want to gain additional insights into the transactions (e.g., how many failed), we access

all transactions that call the functions mentioned above.

We use Dune Analytics to crawl all transactions for the three calls (Dune Analytics

AS, 2023). Dune conveniently provides decoded transaction information, such that we

can easily query the data required for analysis. As we want to get relevant transaction

data alongside the actual call, we join the table of the respective call with the transaction

table. We employ SQL-queries as shown in Listing 5.2, Listing 5.3, and Listing 5.4.

1 SELECT call_block_number , call_block_time , call_success ,

call_tx_hash , gas_price , gas_used , nonce , value , from , to , name ,

proof

2 FROM ens_ethereum.dnsregistrar_call_claim AS ens ,

3 ethereum.transactions AS tx

4 WHERE ens.call_tx_hash = tx.hash

Listing 5.2: SQL-Query for fetching all transactions calling the claim function on the

DNSRegistrar.

1 SELECT call_block_number , call_block_time , call_success ,

call_tx_hash , gas_price , gas_used , nonce , value , from , to , name ,

input , proof

2 FROM ens_ethereum.dnsregistrar_call_proveandclaim AS ens ,

3 ethereum.transactions AS tx

4 WHERE ens.call_tx_hash = tx.hash

Listing 5.3: SQL-Query for fetching all transactions calling the proveAndClaim function on

the DNSRegistrar.

1 SELECT call_block_number , call_block_time , call_success ,

call_tx_hash , gas_price , gas_used , nonce , value , from , to , name ,

input , proof , resolver

113

Chapter 5. On-Chain Verification

2 FROM ens_ethereum.dnsregistrar_call_proveandclaimwithresolver AS

ens ,

3 ethereum.transactions AS tx

4 WHERE ens.call_tx_hash = tx.hash

Listing 5.4: SQL-Query for fetching all transactions calling the proveAndClaimWithResolver

function on the DNSRegistrar.

We give an overview of the respective data in Table 5.3.

Method claim proveAndClaim proveAndClaimWithResolver Total
Call Count 16 190 904 1,110
Success 16 (100%) 169 (88.9%) 798 (88.3%) 983
Failed 0 (0%) 21 (11.1%) 106 (11.7%) 127
Unique FQDN 12 169 833 877

Table 5.3.: Preliminary insights into the data as of 27th February 2023. For each method,
we display the total transaction calls, how many of them were (not) successful
(including shares), and their respective unique domains. The total number of all
unique FQDNs for the three methods is 925. After accounting for duplicates across
the methods, the number of unique domains is 877.

5.5.2. Data Cleanup

In the next step, we need to clean the data we obtained from Dune. First, we remove all

transactions that have failed. Although the share of failed transactions is relatively high,

we attribute them to the general issue of hard-to-set gas fees in Ethereum and do not

consider them further in our domain name analysis.

Second, we must translate the domain names obtained in the dataset to human-readable

names. We display the respective encoding scheme in Figure 5.1.

0x 04︸︷︷︸
byte length

ASCII of SLD︷ ︸︸ ︷
6e 69 73 68 03︸︷︷︸

byte length

ASCII of TLD︷ ︸︸ ︷
63 6f 6d 00︸︷︷︸

stop signal

= nish.com

Figure 5.1.: Encoding scheme for domain names within the DNSRegistrar. This example
translates to nish.com.

With that, we can look more closely at the actual domain names and the TLDs used.

We display the list of the top 10 TLDs in descending occurrence in Table 5.4. Interestingly,

we can find 124 different TLDs in ENS. We provide a treemap in Appendix E to better

114

5.5. ENS DNSSEC Domain Dataset

understand the used TLDs. We use data from IANA to label the TLDs with the types

generic, generic-restricted, or country-code (IANA, 2023b).

TLDs Occurrences
.com 234
.xyz 185
.io 66
.dev 43
.org 27
.net 21
.id 20
.me 17
.wtf 16
.app 10

Table 5.4.: Top 10 top-level domains and their frequency in the ENS system.

For each RRSet, a single hexadecimal string contains all the necessary information

of the respective set. However, we do not find a library that decodes these strings and

instead decide to reverse-engineer the respective format from the solidity smart contract.

We display the encoding scheme in Figure 5.2. After we decode this information, our

transaction dataset is complete.

0 15 16 31

RRType Algorithm Labels

TTL

Signature Expiration in UNIX Timestamp

Signature Inception in UNIX Timestamp

KeyTag

Signers Name (Arbitrary length)

Header

Contents (Arbitrary length)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Payload

Figure 5.2.: Data structure of RRSets used in ENS.

115

Chapter 5. On-Chain Verification

5.5.3. Data Enrichment

The previous steps lead to a dataset that contains all domain names that have been

bridged successfully to ENS from DNSSEC. While this dataset provides preliminary

insights, we are interested in additional information for further analysis in this chapter.

More precisely, we are interested in three variables:

• Hosted Website: Is there a website hosted on the domain? This indicates whether

the system might be used to prevent address replacement attacks, which we initially

set out to address. To check whether a website is available, we call the site and

record the HTTP-response.

• DNSSEC Record: Users need to set the DNSSEC record only once for an

ens.-subdomain, which proves the entry to the DNSSEC oracle. Afterward, they

can, in theory, remove the entry. However, removing the entry could have other

reasons, such as change of ownership. Therefore, we are interested in whether

the record is still set and identical to the initially associated address. We use

DNSPython (Dnspython, 2023) to crawl the TXT-records of the individual subdo-

main.

• Domain Availability: In rare cases, entities might abandon their domains and

allow them to be registered by anyone. If the domain is still used for incoming

funds by other users, attackers could register the domains, claim the domain in

ENS, and redirect funds to themselves. We bulk-submit all domains for which we

do not find a website and a DNS record to UnitedDomains9 to understand whether

they are free to register. We further investigate this security issue in Section 6.4.

Table 5.5 gives an overview over the Hosted Website variable. Only slightly more

than half of all domains even responded to our requests, and most of them responded

with a Status Code 200, meaning that the website is reachable. One domain responded

with an unspecified HTTP code (999). Upon manual inspection, it turns out that the

domain directly forwards to LinkedIn, which blocks Python’s requests-package and

returns the specific 999 error (http.dev, 2023).

Further, Table 5.6 provides data on the specific DNSSEC record in the ens.-sub-

domain. We define three states si = {0, 1, 2}, whereas s0 means that no record is available,

s1 a record is available, and is identical to the sender of the transaction and s2 a record

9See https://www.united-domains.de/, accessed 27th February 2023.

116

https://www.united-domains.de/

5.5. ENS DNSSEC Domain Dataset

HTTP Status Code Message Occurrences
200 OK 430
400 Bad request 1
401 Unauthorized 2
403 Forbidden 17
404 Not Found 18
406 Not Acceptable 5
444 No Response 1
500 Internal Server Error 1
502 Bad Gateway 8
503 Service Unavailable 3
522 Connection Timed Out 2
526 Invalid SSL certificate 1
999 Undefined 1
n.a. No Response 387

Table 5.5.: Response codes when requesting the domain contents.

is available and is not identical to the sender. s2 is not uncommon, given that an entity

can easily own two addresses and use one address to set up a record for another address.

Status s0 s1 s2
Count 115 (13.1%) 666 (75.9%) 96 (10.9%)

Table 5.6.: Status of the DNSSEC-records as of 27th February 2023 for all DNS domains
registered on ENS. (s0 : No record available. s1 : Available. s2 : Available, but
address deviates from sender.)

5.5.4. Data Verification

To verify the integrity of our data, we compare it to the online application of ENS10. We

verify that a sample of domains in our dataset are identical to the data displayed in the

application. Further, we confirm that single domain names displayed in the application

also appear in our dataset. Last, we compare the count for TLDs in the application

to our dataset. We find no deviation from our dataset, therefore we assume it to be

complete for the given timeframe.

10See https://app.ens.domains/, accessed 27th February 2023.

117

https://app.ens.domains/

Chapter 5. On-Chain Verification

5.6. Summary

In this chapter, we discussed system designs that facilitate the storage and verification

of certificates and their signatures in an on-chain context, both for DNSSEC and the

TLS PKI. Both approaches remove the need for any interactions or processes outside the

blockchain to assert the authenticity of addresses on-chain. Furthermore, we showed:

• A system design that mirrors domain names to an on-chain environment is a

worthwhile goal. For example, the system allows for address-independent payments,

abstracting the correct mapping from addresses to identities.

• Creating a usable representation of TLS certificates (or any X.509 certificates) is

feasible within the capabilities of today’s blockchain network. While the system is

more complex than the architecture proposed in Chapter 4, it allows for advanced

use cases.

• Issues that stem from an off-chain verification approach as outlined in Chapter 4

are no longer present, as all information is verified in an on-chain context.

• ENS leverages DNSSEC within its existing infrastructure and uses TXT-records

equivalent to the endorsement, leading to specific deviating choices for system

design.

• Domains that have already been transferred from traditional DNS to ENS can be

extracted, analyzed, and contextualized in our research. We find a total of 1,110

transactions sent to the respective contract.

In the next chapter, we evaluate and compare all techniques outlined in this dissertation

for different metrics, including the suitability of ecosystems, applicability, security, costs,

and fulfillment of requirements.

118

Chapter 6.

Evaluation and Comparison of

Approaches

The system architectures outlined and discussed in Chapters 4 and 5 mitigate loose

coupling between on-chain entities and real-world entities by creating a cryptographically

verifiable binding between these two worlds. To fully understand strengths, impact,

opportunities, and limitations, we evaluate the off-chain, on-chain, and ENS-approach in

distinct dimensions in more detail:

• In Section 6.1, “Suitability of Ecosystems”, we evaluate the suitability and fitness

of the TLS/X.509 certificate ecosystem and the DNSSEC ecosystem to enable the

secure mapping between domain names and on-chain entities.

• We discuss the applicability as well as the advantages and limitations of the

practicability of these systems in Section 6.2, “Applicability and Practicability”.

Further, as data on the DNSSEC integration for ENS is available, we analyze its

adoption within the Ethereum community.

• As the costs of usage of layer 1 blockchain networks have increased, we discuss key

metrics of gas usage and the resulting costs for the Ethereum mainnet in Section 6.3

“Costs”.

• In Section 6.4, “Assessment of Security”, we analyze and evaluate the security

assumptions of all approaches.

• Lastly, we analyze the fulfillment of the requirements initially posed by use cases

as well as RFC documents in Section 6.5, “Requirements”.

119

Chapter 6. Evaluation and Comparison of Approaches

This chapter relies partly on material and insights from prior publications. In Sec-

tion 6.2, we briefly take up and expand discussions from (Ebel, 2021) and (Gallersdörfer

et al., 2021a). In sections 6.3 and 6.4, we use the information on gas prices and security

considerations of the off-chain approach developed in (Gallersdörfer and Matthes, 2021a)

and of the on-chain approach developed in (Groschupp, 2020) and (Gallersdörfer et al.,

2021c).

120

6.1. Suitability of Ecosystems

6.1. Suitability of Ecosystems

The three systems we describe in this thesis rely on the TLS or the DNSSEC ecosystem.

Both deviate in history and functionality. Nonetheless, they can be leveraged for the

same target. In this section, we discuss the implications of the ecosystem properties on

the respective systems. Thereby we differentiate two concepts:

6.1.1 Availability: Is the underlying technology (TLS or DNSSEC) available for the

respective domain?

6.1.2 Usage: Is the underlying technology (TLS or DNSSEC) actively leveraged by the

respective domain?

We provide a summary and implications on using TLS and DNSSEC in subsection 6.1.3.

6.1.1. Availability

TLS certificates, including respective private keys, were initially safeguarded by entities

that charged fees for their provisioning. Depending on certificate type (e.g., extended

validation) and scope of validity (e.g., wildcard-certificates), prices still vary today1.

Users also needed technical expertise to set up web servers with certificates.

This state has changed in the past. Given the increasing surveillance of web connections,

encryption and secure authentication of counterparties became increasingly necessary. In

2015, the company Let’s Encrypt was founded. Since then, their motto has been “encrypt

the entire web” (Let’s Encrypt, 2023). They provide TLS certificates upon request to any

domain and without charge. Let’s Encrypt was also the proposer for the ACME protocol,

which we introduced in 2.1.2, which enables the automatic request and retrieval of TLS

certificates. According to their latest report in November 2022, they issued over 3 billion

certificates and have actively provided about 240 million websites with certificates (ISRG,

2023). Given that the total count of registered domains is about 651 million (Domain

Name Stat, 2023), Let’s Encrypt serves about one-third of the entire WWW with TLS

certificates.

To our knowledge, Let’s Encrypt supports any TLD registered in IANA’s root zone

database. That means TLS is available for every domain free of charge. Beyond these

numbers, it is hard to gauge how easy it is for novices to obtain a certificate, e.g., what

share of web hosters directly provide a certificate or simple means of getting one.

1See https://www.digicert.com/tls-ssl/compare-certificates, accessed 28th February 2023.

121

https://www.digicert.com/tls-ssl/compare-certificates

Chapter 6. Evaluation and Comparison of Approaches

DNSSEC is a relatively novel technology compared to TLS; therefore, its support is

not as widespread. Compared to the initial phase of TLS, DNSSEC does not come with

additional registrar costs. Large providers such as AWS provide DNSSEC free of charge

within their products2.

However, given its hierarchical structure and direct management within the DNS,

DNSSEC support can break at multiple places. First, the TLD needs to support DNSSEC

for the underlying name servers to support DNSSEC. If a third-party entity manages the

underlying name servers, it must also support DNSSEC. Lastly, the domain owner must

set the respective records.

Public lists for DNSSEC support in TLDs exist (Openprovider, 2023). Of the 2532

listed TLDs (including TLDs like .co.uk), 248 do not support any algorithm for DNSSEC,

which is about 10% of all TLDs. However, the most popular TLDs support DNSSEC,

whereas TLDs that do not support DNSSEC are relatively uncommon. To our knowledge,

no precise number exists. Therefore, we combine two sources, namely (Openprovider,

2023) for the list of TLDs that support DNSSEC and (Domain Name Stat, 2023) for the

number of registered domains per TLD. Of the initial 2532 TLDs, (Domain Name Stat,

2023) could provide data for 1302 TLDs3. With this approach, we have data for 51%

of TLDs. Still, we cover about 97% of all domains in this calculation4. Table 6.1 gives

an overview of the respective sum of live domains under a TLD that either supports

DNSSEC or not. We find that only 1.7% of all domains currently cannot enable DNSSEC

support. This number is much smaller than the initially outlined 10%, given that almost

all large TLDs support DNSSEC. Only .ga, as the 11th-largest TLD, does not support

DNSSEC. However, 98.3% is an upper bound and is likely lower given that not all name

servers or hosters support DNSSEC for their customers. We provide a treemap of all

TLDs, including their DNSSEC support in Appendix F.

DNSSEC ✓ DNSSEC ✗

Number of Domains 625,085,556 (98.3%) 10,621,345 (1.7%)

Table 6.1.: Number of domains managed by TLDs supporting DNSSEC, as of 28th February
2023.

2See https://aws.amazon.com/route53/pricing, accessed 28th February 2023.
3This is due to the initial dataset containing not only TLDs, but also Second-layer domains, which we
do not have domain numbers for. The number deviates only slightly because the respective TLD is
included in its higher level TLD.

4Our calculation considers 635 million domains, (Domain Name Stat, 2023) has 651 million domains in
their dataset.

122

https://aws.amazon.com/route53/pricing

6.2. Applicability and Practicability

6.1.2. Usage

The analysis of the availability of the technology under discussion is extensive and covers

large parts of the DNS. Regarding usability, the numbers are harder to obtain; they must

be directly crawled or observed to understand whether a domain uses TLS or DNSSEC.

TLS certificates are certainly widely adopted. Google provides in their transparency

report insights into encryption on the web and browsers (Google, 2023). Given that

they have access to statistics that their users share via the Chrome browser on all major

platforms, they have a general overview of the landscape. Their report finds that a)

depending on the platform, 80% (Linux) to 99% (Chrome Platform) of all requested

websites were served via HTTPS, and b) all top 100 websites support HTTPS.

The adoption of encryption and TLS certificates is omnipresent. HTTPS Everywhere,

a browser plugin by the Electronic Frontier Foundation (EFF), automatically switched to

the HTTPS protocol when present. EFF announced the deprecation of HE, as HTTPS

can be considered fully adopted (EFF, 2021).

DNSSEC has not yet reached full adoption on the WWW. Usage statistics are

available on a region and world basis in (APNIC Labs, 2023). Given that there is already

a strong adoption of TLS, the necessity for DNSSEC is not immediately apparent, given

the additional overhead in properly managing all key material (Huston, 2023). The

DNSSEC validation rate as of 27th February 2023 is 31.6%. It is unclear whether adoption

will significantly rise, given that it has been higher in the past.

6.1.3. Implications for Usage

Overall, both systems are widely accepted in the WWW. TLS has almost full adoption

and support worldwide, with potentially only limitations coming from hosters or providers

(such as access to the certificate’s private key). DNSSEC also has a significant share of

support and supports all major domains. Parties interested in developing or designing

systems that migrate domain names to blockchain networks must consider other factors

besides adoption (such as intended use case) to decide on TLS or DNSSEC as an

underlying technology.

6.2. Applicability and Practicability

Understanding the applicability and practicability of the systems described in this thesis

is highly important. Regardless of technological capabilities, security enhancements,

123

Chapter 6. Evaluation and Comparison of Approaches

audited code, or else: If the application has no ease of use for both the end users that

interact with smart contracts and the entities that set up respective smart contracts,

no significant number of users will adopt the solution. To understand the usability

implications of the full scope of the application, we structure this section as follows:

6.2.1 Technical Challenges: We outline the implications of technical challenges on

the applicability of the systems, such as access to TLS certificates in respective

contexts.

6.2.2 Autonomy and Simplicity: The described systems enable autonomy for their users;

however, this is at the cost of simplicity and comprehension.

6.2.3 Ecosystem Bootstrapping: Despite relying on pre-existing TLS certificates, the

systems still need to find adoption by user-facing software and institutions alike.

6.2.4 ENS DNSSEC Bootstrapping: Given that data is available on the adoption of

DNS-rooted domains in ENS, we give an overview of these bootstrapping efforts.

6.2.5 Further Complexities: Further complexities arise for users and issuers alike.

6.2.1. Technical Challenges

A multitude of technical challenges can hinder applicability and usability.

Major browsers’, such as Chrome, Edge, Opera, and Safari, lack of support for the

retrieval of TLS certificates of recently established connections to web servers render

the off-chain verification approach questionable. As outlined in Section 4.4.3,

there are ways to utilize the system design in which the verification of certificates takes

place on the users’ machine. However, we find that they are unsuitable, either from a

security or privacy perspective (like a centralized approach), or that the usability suffers

(like with the installation of a local script). Only moving the verification of endorsements

on-chain allows the plugin to access and assess the certificate’s information. As we later

see in Section 6.3, this is also a question of costs.

Further technical complexity awaits when moving to a purely on-chain-focused sys-

tem. For example, blockchain networks often support only specific public key

cryptography algorithms while omitting others, e.g., RSA. This leads to the problem

that these algorithms must be implemented in smart contracts and deployed on the

respective chains, potentially leading to security risks and additional costs. To properly

roll out a system that a) supports many cryptographic algorithms, b) is well-tested, and

124

6.2. Applicability and Practicability

c) properly audited is a resource-intensive endeavor that would only ensure the bare

minimum requirements for such a proposal.

The system’s complexity would require setting up a governance scheme for the

smart contract ecosystem. It can be expected that the system and its components

need updates and extensions over time, for example, to support new features or cryp-

tographic algorithms. In such cases, smart contracts would need to be updated. For

these update processes, proper governance mechanisms need to be in place to prevent

fragmentation of the smart contracts that are deployed for the system. Furthermore,

backward compatibility must be ensured such that once-deployed contracts can still

access the system’s services. Update mechanisms can become a security issue or introduce

new problems previously unknown to the system (Parity Technologies, 2017).

6.2.2. Autonomy and Simplicity

The autonomy of users and the simplicity of a system and its applications can be

conflicting targets. For every decision the engineer leaves up for the user to decide, the

user must make a conscious choice. At first, this approach strengthens users’ autonomy;

however, it comes with issues:

• More decisions will likely result in reduced usability,

• Users need to be educated to make well-informed decisions,

• A pre-selection of choices needs to be made, and

• Decisions can come with unintended consequences.

The contrast between autonomy and simplicity in the context of our proposed system

applies to the selection of trusted root certificate authorities. Both TLS systems are

designed so the end-user can decide which certificate authorities to trust, allowing them

to use any PKI or even deploy their own. If users have the autonomy to decide, then the

question remains: How will this autonomous decision-making be available in practice?

Selecting individual CAs to trust is too complex for the regular user, whereas proposing

standard configurations can be seen as biased. A governing body would be required to

introduce new CAs to this predefined list or to remove untrustworthy entities. If the list

is not moderated, the incentive for illicit activity rises. There is a comparable situation

in the decentralized exchange Uniswap. Uniswap allows to list any token, potentially

creating duplicates and fakes of original tokens. Preliminary research suggests that

125

Chapter 6. Evaluation and Comparison of Approaches

over 95 % of all listed tokens are intended to scam users (Mazorra et al., 2022). The

same situation can be envisioned in cases where the list of acceptable root CAs is not

moderated.

6.2.3. Ecosystem Bootstrapping

One of the reasons for the systems to rely on TLS certificates is that they are already a

commodity: There is widespread usage (as outlined in subsection 6.1.1) of the certifi-

cates, they are easy to obtain, they cost next to nothing, and almost all browsers and

software vendors in the WWW acknowledge these certificates. This property makes them

compelling to use. Users are already familiar with domain names and know how to use

them. They also might have some idea of the security protocol, even if it does not go

further than understanding that a regular closed lock in their URL bar is a good sign.

Leveraging these certificates in the context of blockchains should be simple, given their

already widespread adoption.

However, these certificates are not a means to an end by themselves. We intend

to leverage them in a new context, namely in an on-chain environment. Leveraging

these certificates requires us to introduce a new data structure that deals with on-chain

environment specifics. That data structure (the endorsement), although it can be directly

generated from a TLS certificate, has not been adopted so far.

Not only does the endorsement have no adoption but any related software also does

not support the system:

• Wallet software: Ideally, any wallet software should support our proposed system.

Not only does this require lots of programming work, but it also might lead to

similar problems we found when augmenting the browser plugin MetaMask. Other

types of wallets could face similar issues. Although TLS certificates are widely

available, their access might be non-trivial. For example, website-based wallets5

(such as MyEtherWallet6) might only be able to access TLS certificates if the

requested host allows cross-domain requests, requiring solutions, as outlined in

Section 4.4.3.

• Development environments: Software engineering tools for blockchain environ-

ments are broadly available and enhance the teams’ performance. Integration or

support for the described systems is required to allow the responsible entities to

5Wallets that purely rely on Javascript provided by a website without relying on a backend.
6See https://www.myetherwallet.com/, accessed on 16th February 2023.

126

https://www.myetherwallet.com/

6.2. Applicability and Practicability

publish smart contracts that adhere to the respective standard. While the target

audience is smaller, the integration increases the overall complexity of the respective

smart contract systems.

• Automation: Given the short lifetime of TLS certificates, they and their respective

endorsements need to be updated periodically. While for TLS certificates, systems

such as ACME exist that deal with automatic renewal, they also need to integrate

the renewal of the endorsements. Such automation leads to either having both

keys (for the certificate and for the blockchain address) on the same machine or

more error-prone processes to sign-and-transfer schemes between the two machines.

From a security perspective, it makes sense to separate keys, but it further increases

complexity and maintenance.

• Monitoring: Monitoring must be developed and deployed to leverage the system’s

full capacity. While services exist that leverage CT for certificate discovery and

retrieval, they potentially do not support blockchain networks. Given the high

requirements for storage7, a fast and efficient monitoring system is costly to build.

Indeed, a similar system that does not rely on TLS certificates would also be required

to bootstrap a recognizable and accepted naming scheme. Still, the advantage of

bootstrapping is not as significant as initially expected.

6.2.4. ENS DNSSEC Bootstrapping

Given the data set that we generated in Section 5.5, we can lay out the adoption of the

DNSSEC approach of ENS. We further provide an overview of total ENS registrations.

We also briefly overview how wallets and other software use real domains besides .eth-

domains.

Registrations

We observe that in the timeframe of 17th September 2021 to 28th March 2023, about 2.67

million .eth domains have been registered (Dune Analytics AS, 2023). In comparison

to the number of domains managed in traditional DNS TLDs, .eth would rank 36th

between .se (2.70 million domains) and .loan (2.64 million domains) (Domain Name

Stat, 2023). It is interesting to see the high demand for ENS domains. However, further

7A Geth node, storing the entire Ethereum blockchain, requires over 13 TB storage as of February
2023 (Etherscan, 2023c).

127

Chapter 6. Evaluation and Comparison of Approaches

research is warranted, as it is unclear to what extent ENS domains (and regular domains)

are leveraged for speculative purposes. In contrast to the registration number of 2.67

million domains, the system counted only about 665,000 unique participants and only

495,000 set primary names8. Therefore, only about 17.8% of ENS domains are actively

used. However, it is unclear to what extent this also applies to regular domain names in

the WWW.

Further looking into domain registrations that leverage DNSSEC, adoption looks

negligible, especially compared to .eth-domains. During the same timeframe in which

2.67 .eth domains were registered, we found only 877 domains registered using the

DNSSEC approach. Figure 6.1 displays the accumulated domain registrations over time

with a logarithmic scale.

Sep 2021 Nov 2021 Jan 2022 Mar 2022 May 2022 Jul 2022 Sep 2022 Nov 2022 Jan 2023

1

10

100

1000

10k

100k

1M

Registration Type

DNSSEC Registrations

.eth Registrations

Date

A
c
c
u
m

u
la

t
e
d
 R

e
g
is

t
r
a
t
io

n
 C

o
u
n
t

Figure 6.1.: Accumulated number of registrations for .eth domains and DNSSEC-enabled
domains from 17th August 2021 until 27th February 2023. Registrations that
took place before the 17th August 2021 are not considered.

We can only speculate why the adoption of domain names using DNSSEC is so low in

ENS. Multiple reasons can be considered:

8Primary Name is the main resolution from domain name to address. Compare https://dune.com/
makoto/ens, accessed 15th March 2023.

128

https://dune.com/makoto/ens
https://dune.com/makoto/ens

6.2. Applicability and Practicability

• Too Expensive: Transaction fees can be a considerable problem, as we outline in

Section 6.3. Paying a lot of money compared to buying an ENS domain can be an

argument, especially as use cases for blockchain networks are scarce. Leveraging a

new domain instead of an established one might not bring the expected benefits.

• Not Advertised as Not Revenue-generating: It seems that ENS does not

heavily advertise its solution for bridging existing domains to ENS. A reason could

be that it is not generating any profits, as only Ethereum’s transaction fees apply.

Investing in a technology that does not directly yield monetary benefits can be a

difficult decision to make.

• Too Complicated: The users intending to transfer their domains to ENS must

understand varying concepts and handle interfaces for setting DNS records. Setting,

gathering, and submitting information can be tiresome, and users might stop their

attempts to transfer a domain.

We highlight this issue again in Section 7.3.

Wallet and Software Address Support

ENS claims 530 integrations into wallets, browsers, and other software (Ethereum Name

Service, 2023c). We install and test selected tools and make the following observations:

No DNSSEC verification While the ENS app9 displays a warning in case of a DNSSEC

error, other applications were unaware that a) the domain is a DNSSEC-enabled domain

and b) that caution should be exercised in case a DNSSEC record is no longer set. This

can be a sign of an attack or an abandoned domain, as outlined in Section 6.4. Obviously,

the application should communicate the state to the user; however, developers might be

reluctant to integrate the functionality into their system, as this increases the complexity

tremendously. For now, the applications only need to access on-chain information to find

out about the address behind a domain but would be required to make off-chain requests

to check on the validity of the DNSSEC entry.

TLD Confusion In two instances, we noticed confusion about the actual TLD of a

domain. For example, Etherscan.io automatically appends the TLD .eth to any domain

name, even if it is a domain name from the traditional DNS. This creates confusion, as

9See https://app.ens.domains, accessed 15th March 2023.

129

https://app.ens.domains

Chapter 6. Evaluation and Comparison of Approaches

example.org and example.org.eth are two entirely separate domain names. Further,

“Top-Level-Domains” are claimable below the .eth TLD and can be abused by malicious

entities to trick people into sending funds to different addresses. We see that these domains

can be held by separate entities that have respective control over the subdomains. ENS

should clarify how their system works, protect TLD-related names such as com.eth, and

instruct their integration partners to clear up issues with name resolutions.

Conflicts in Name Resolution ENS and DNS partly raise identical claims, as they both

intend to be responsible for the name resolution of websites, similar to the vitalik.eth-

example in subsection 2.3.2. This is not an issue as long as both systems are distinct,

meaning that each system has its TLDs and does not interfere with the other. However,

when ENS allows regular DNS TLDs existing in their system, two records to set a

website exist: one in DNS as an A-record, and another in ENS as a contenthash-record.

As of this writing, we cannot produce resolution errors, as, for example, the browser

Opera properly resolves ENS domains to IPFS and other domains to the respective

DNS-records, but also does not failover from DNS to ENS in case a record is not set

in DNS. This has two effects: There are no conflicts in the name resolution of Opera,

but the contenthash-record for DNSSEC-bridged domain names in ENS is useless, as

it finds no consideration. We do not see any guidance in the ENS documentation on

how to deal with potential conflict resolutions. If both systems become more and more

merged, resolution errors will arise at the cost of security and usability.

6.2.5. Further Complexities

The user is the primary focus of the systems. One intent is to help users make conscious

decisions about signing transactions and protecting their funds. While the user study

displayed in (Ebel, 2021) and (Gallersdörfer et al., 2021a) found that an augmented

MetaMask might protect users from address replacement attacks, it only did so in a

partly adverse situation: The attacker did only change the address, invoking a security

downgrade scenario in the browser plugin.

Suppose an attacker decides not only to replace the address but also to communicate

to users to ignore any warning messages. In this case, the chance that users will ignore

the warning in the browser plugin increases. Countermeasures and protections such as

our system will likely lead to further countermeasures from attackers, fighting for the

user’s attention. It remains up to future work to better understand a) how users behave

in increased adverse situations, b) how such a system will play out in the long run, and

130

6.3. Costs

c) whether it brings the intended security protections or provides a security layer that is

hard for users to understand, resulting in diminished value in the long run.

Another issue comes with the growing ecosystem of blockchain networks. They are not

only the respective blockchain networks but other technologies such as layer 2 networks,

roll ups, and such arise. It remains an open question how these technologies can integrate

our system and leverage the properties of TLS certificates in their respective contexts.

Potentially, systems need to be redeployed on individual layers, resulting in ecosystem

fragmentation and poor user experience. Some domain names might be available on one

layer but not on the other.

Issuers that want to leverage the proposed system in their applications face several

issues. First, they are impacted by the lack of bootstrapping for respective tooling, as

outlined in subsection 6.2.3. Additionally, they face additional issues: Accessing the

TLS certificate of their web server seems trivial but can be a complex endeavor. Smaller

enterprises could be locked out of their servers, as they might only have obtained a web

hosting package with included management; accessing the TLS certificate in this scenario,

especially periodically, might not be economically possible. For larger enterprises, the

problem might be similar: Given their complex structures and protections in place to

ensure the integrity of their IT systems, periodically accessing TLS certificates might

also be problematic.

6.3. Costs

Costs and transaction fees are a significant concern for users within blockchain networks.

For example, in Ethereum, about 736,000,000 USD are spent on transaction fees alone

in 202210. Especially in high-demand situations, prices for transactions can skyrocket.

For that, we analyze the influencing factors and costs of all three approaches. In

subsection 6.3.1, we give an overview of the influencing factors relevant to any blockchain

application. Then, we analyze the influencing factors of gas usage for all three approaches

in subsection 6.3.2. We summarize our findings and give an overview of theoretical and

actual costs in subsection 6.3.3.

10Own calculations based on (Blockchair, 2023).

131

Chapter 6. Evaluation and Comparison of Approaches

6.3.1. Costs in EVM-based Blockchain Networks

In Ethereum and any EVM-based blockchain, three main components contribute to the

price of a transaction. We display the formula in Equation 6.1. First, the computational

intensity of a transaction is described in usedGas. All operations in the blockchain

are priced in units of gas. The transaction sender has to pay for all computations,

including a markup for the initial transaction of 21,000 units. A second factor is the

incentivization of validators to include the transaction in their blocks, which comes as a

GasPrice. The GasPrice determines the price the sender is willing to pay for a single

gas unit priced in the respective blockchain currency (e.g., in Ethereum, Wei). For better

readability, GasPrices are often given in GWei (GigaWei), that is GWei = Wei ∗ 1e9.
Also, Ether = Wei ∗ 1e18. The GasPrice determines how fast a transaction is included in

the block. The third factor is the TokenValue. It describes the value of the respective

blockchain token in USD.

TxFee[USD] = UsedGas ∗GasPrice ∗ TokenValue (6.1)

For a concrete example, Etherscan’s Gas tracker tracks blockchain transactions and

recommends different GasPrices for low, average, and high-speed transactions (Etherscan,

2023d). On the 2nd March 2023, at 08:00:47 UTC, the website recommended 20 Gwei for

low, 21 for average, and 22 for high-speed transactions. For a regular transaction with

average speed, we display the cost calculation in Equation 6.2, reaching about 0.73 USD

for a single transaction. All three variables are prone to change, as the execution of code

results in varying gasUsed. Ether prices and transaction throughput change as well.

TxFee[USD] = 21, 000 ∗ 21 GWei ∗ 1, 644.07 USD = 0.725 USD (6.2)

Therefore, we initially compare all approaches using the variable GasUsed. In the

second step, we plot the actual costs using the historical average daily gas prices and the

Ether/USD exchange rate. We gather average gas prices and the value of ether since

the inception of Ethereum. We obtain this information from Blockchair’s full node block

dumps, which contain the respective information (Blockchair, 2023).

132

6.3. Costs

6.3.2. Gas Cost Analysis

In all three approaches, separate computational steps contribute to the overall gas

consumption of the respective approach. In general, three main actions within smart

contracts consume gas.

• 1. Proof and Endorsement Verification: The submission of proofs, signatures,

certificates, RRSets, and endorsements, including their cryptographic verification,

is computationally intensive and requires large amounts of gas.

• 2. Data Storage: Storing any information, including cryptographic proofs, is also

expensive, as it bloats the blockchain state.

• 3. Usage: Lastly, using the information to retrieve addresses from domain names

can contribute to gas costs.

Table 6.2 gives a preliminary indication of which operation applies to which approach.

Off-chain TLS On-chain TLS On-chain ENS
1. Verification ✗ ✓ ✓

2. Storage ✓ ✓ ∼
3. Usage ✗ ∼ ∼

Table 6.2.: Sources for gas consumption including applicability for each approach.

Given this preliminary indication, we decide to focus on the key elements of each

approach:

• For the off-chain TLS approach, we analyze only the storage and deployment

transaction of the smart contract, as this is the only interaction with the blockchain.

The verification and usage of the endorsement, including its certificates, takes place

off-chain and does not cause any gas costs. Therefore, we skip it in the individual

part.

• The on-chain TLS approach puts heavy weight on verifying and storing leaf,

intermediary, and root certificates, including the endorsement itself. Analyzing

the storage and verification costs separately makes no sense, as one cannot exist

without the other.

133

Chapter 6. Evaluation and Comparison of Approaches

• The same applies for the on-chain ENS approach: The verification and storage

of signed RRsets, including the proof for the address, are by far the most gas-

consuming operation within the smart contract system. Both on-chain approaches

use similar cryptographic algorithms, allowing for a more nuanced discussion. As

we have access to real-world data, we can provide additional insights.

We do not focus on usage activities; accessing verified address storage elements is cheap

within smart contract systems. Further, any optimization for address retrieval applies

to both on-chain systems, as they can be implemented without changing other parts

of the architecture (e.g., the concept of namehashes is interchangeable). Furthermore,

comparing an optimized and live system to a proof of concept yields no additional

insights.

In the following, we iterate over all three approaches and give an overview of expected

costs. The unsuspecting reader might assume that determining the amount of gas in a

transaction can be an exact science. However, many random factors (e.g., the character

composition of the receivers’ addresses) or circumstances can hardly be predicted (such

as how many certificates have been submitted beforehand). For example, people brute

force addresses for leading zeros, as it saves tiny sums of gas for a transaction, leading to

significant savings in the long run11. Therefore, we indicate gas consumption for each

case, and if justified, we analyze the costs in more detail.

Off-chain TLS Approach

The costs of the off-chain approach have already been analyzed in (Gallersdörfer and

Matthes, 2020, 2021a). We reiterate and revise the essential information.

Certificate information storage does not occur on the blockchain, as certificates such as

leaf, intermediary, or root certificates are retrieved just in time for verification. However,

the storage of endorsements requires gas. In contrast to the other two approaches, the

endorsement’s storage is decentralized, which means that with every deployment of a

smart contract, the respective endorsement interface needs to be stored, incurring costs

from the structure and storage allocation of the smart contract.

(Gallersdörfer and Matthes, 2021a) find that the deployment of a smart contract costs

about 1.55 million gas, and a subsequent update on the signature (e.g., due to replacing

an expired certificate with a new one) comes with costs associated with about 100,000

11See a short example here: https://twitter.com/jconorgrogan/status/1623463549447335936,
accessed 3rd March 2023.

134

https://twitter.com/jconorgrogan/status/1623463549447335936

6.3. Costs

gas. Adding the contract to the registry costs an additional 124,000 gas, putting the

entire initialization at 1.68 million gas. The main costs come from the smart contract

creation; changing variable lengths or contents did not significantly change gas costs.

Overall, the code in (Gallersdörfer and Matthes, 2021b) is not optimized; indeed, room

for improvement exists.

On-chain TLS Approach

(Groschupp, 2020) and (Gallersdörfer et al., 2021c) give detailed insight into the costs

associated with the on-chain TLS approach. We use key information and apply it in the

context of this work.

Verification is a key element in the gas costs of the on-chain approach. In contrast to

the off-chain approach, the smart contract is deployed only once, and we do not consider

deployment costs, similar to users in ENS not paying for the main contract deployment. A

fully functioning domain needs four elements: A working root certificate, an intermediate

certificate, a leaf or domain certificate, and the endorsement. (Gallersdörfer et al., 2021c;

Groschupp, 2020) found median gas costs of 1.1 million, 780,000, 790,000, and 580,000

for storing each element, respectively. To even the playing field, we assume that all

certificates are issued in a single transaction, similar to ENS. Therefore, the 21,000 base

gas for a transaction only has to be paid once. As the root certificates are the trust anchor,

they are already deployed and covered by the deployers. That results in the total costs

of (780, 000− 21, 000) + (790, 000− 21, 000) + (580, 000− 21, 000) + 21, 000 = 2, 108, 000.

In (Groschupp, 2020) and (Gallersdörfer et al., 2021c), the authors highlight two

noteworthy insights: First, the choice of the algorithm influences the gas cost, whereas

the prices for SHA-1 are higher than SHA-256. Second, the size of the signed data

has a considerable influence on costs; the verification of a domain certificate with 225

alternative domain names resulted in costs of 4.5 million gas.

It is not surprising that different algorithms result in a deviating gas consumption.

However, it is noteworthy that root certificates still use SHA-1: Despite SHA-1 being

practically broken (Stevens et al., 2017), using SHA-1 in root certificates does not endanger

the system’s functionality, as they are not verified by browsers (TBS Internet, 2021).

With this knowledge, the proposed approach in (Groschupp, 2020) and (Gallersdörfer and

Matthes, 2021b) should refrain from verifying the root certificate’s signature, saving a lot

of gas in the process. We do not include root certificates in our calculation, regardless.

The storage costs are included in the verification process; it is hard to differentiate the

costs of pure storage vs. other operations (e.g., cryptographic algorithms), but as the

135

Chapter 6. Evaluation and Comparison of Approaches

results from the off-chain approach suggest, they are minor. Nonetheless, the on-chain

TLS approach certainly requires the most data to be stored on-chain and thus resulting

in the comparatively highest cost structure.

ENS DNSSEC Approach

We leverage the dataset gathered in Section 5.5 to gain insights into the gas consumption

of ENS DNSSEC approach. For an initial overview, we create a boxplot for each of

the three functions an address can use to enter the contract. We display the plots in

Figure 6.2.

claim proveAndClaim proveAndClaimWithResolver

0M

1MM

2MM

3MM

4MM

5MM

6MM

7MM

Method

G
a
s
 U

s
e
d

Figure 6.2.: Boxplots and individual points displaying the gas consumption for all three
methods.

We make the following observations:

• The claim-function requires a very homogeneous amount of gas (108,000 to 109,000).

As it only completes the last step of the verification, it requires previous proof

submission, and only 16 domains are claimed that way, we do not further consider

it.

136

6.3. Costs

• There appear to be several different clusters: For PAC and PACWR, one cheap

and one expensive cluster exist. For PACWR, an additional more expensive cluster

exists.

• PAC has a slight cost advantage, potentially the “WithResolver”-part is responsible

for the marginally increased costs.

We further investigate the RRSets included as arguments in the respective transactions.

We decode the RRSets and explore the respective counts and the algorithms used. We

find that two algorithms are mainly in use, 8 (RSA-SHA256) and 13 (ECDSA-SHA256).

Figure 6.3 provides an overview of the findings. Each dot represents a single domain,

and we display the count of RRSets on the x-axis and the gas consumption on the y-axis.

The color describes the number of RRSets that use algorithm 13. For example, the green

dots with RRSet Count 3 all have in total 3 RRsets, two with algorithm 13 and one with

algorithm 8.

0 1 2 3 4 5 6

0M

1MM

2MM

3MM

4MM

5MM

6MM

7MM

8MM

ECDSA Operations

0

1

2

3

4

RRSet Count

G
a
s
 U

s
e
d

Figure 6.3.: Overview of the gas consumption of registrations compared to the number and
type of the respective RRSets.

We find a clear correlation between leveraged cryptographic algorithms and the gas

consumption of the respective transaction. RSA is much cheaper than ECDSA in terms

137

Chapter 6. Evaluation and Comparison of Approaches

of gas costs. Thereby, we find that:

• On average, ab RSA-signed RRSet adds about 150, 000 gas to the total costs of

the transaction.

• On average, an ECDSA-signed RRSet adds about 1, 500, 000 gas to the total costs

of the transaction, which is about ten times that of an RSA-signed RRSet.

We can confirm the initial thought from (Gallersdörfer et al., 2021c; Groschupp, 2020):

The costs of cryptographic algorithms are the main determining factor in the overall

picture.

For the overall comparison, we use the mean value of all successful transactions

excluding transactions that call the claim-function and come up with a mean value of

2,595,415 gas spent.

6.3.3. Overview of Costs

We give an overview of all three approaches and their respective costs per issuance over

the last three years, applying the gas price and token value of the Ethereum network. We

use the mean value for the two on-chain approaches and the fixed value for the off-chain

approach. Besides the overall DNSSEC approach value, we also introduce a fourth data

point: an RSA-only DNSSEC point. The reason is that the on-chain TLS approach

leverages only RSA, whereas the DNSSEC approach also leverages ECDSA. We limit

ENS to the RSA algorithm only to enable a fair comparison. The mean value for all

RSA-only issuances on the ENS is 724, 466. We overview all four gas costs, including

respective median, Q1, and Q3 USD costs in Table 6.3.

Off-chain TLS On-chain TLS ENS ENS (RSA only)
Gas 1,680,000 2,108,000 2,595,000 724,000
Q1 [USD] 65.34 81.99 100.92 28.16
Med [USD] 204.47 256.57 315.84 88.12
Q3 [USD] 501.68 629.48 774.91 216.20

Table 6.3.: Overview of gas costs for all four approaches.

Figure 6.4 provider an overview of the respective costs. Ethereum is a volatile network,

and given the charts, prices can rise to 3,064.32 USD12 while being 7.49 USD as the

lowest. We develop the following insights:

123,000 USD is not much higher than the most expensive domain proof that took place on ENS. On
11th November 2021, the domain game.com was claimed for 2,605.56 USD.

138

game.com

6.3. Costs

Jan 2021 Apr 2021 Jul 2021 Oct 2021 Jan 2022 Apr 2022 Jul 2022 Oct 2022 Jan 2023

0

500

1,000

1,500

2,000

2,500

3,000
Approach

Off-Chain TLS

On-Chain TLS

ENS

ENS (RSA only)

Date

C
o
s
t
s
 [

U
S
D

]

Figure 6.4.: Chart depicting the costs for each day from 1st January 2021 till 28th February
2023 in USD. We apply the median gas costs of each approach.

• Given the demand for such solutions, it becomes clear that neither approach is

feasible for large-scale adoption. The median cost for registering a domain using

the on-chain DNSSEC RSA-only approach still costs 88 USD. This is 8-fold the

actual registration of a .com-domain13.

• The usage of cryptographic algorithms matters. Unfortunately, users have no idea,

and the application does not share why the user has to pay 3- to 4-fold more than

other users.

• Timing matters: The more valid RRSets are included in the smart contract, the

higher the chance that one has to submit fewer RRSets to the smart contract. A

potential cost-enhancing way could be to batch these operations. We describe this

idea in Section 7.3.

• The network should be urged to provide precompilations of contracts for crypto-

graphic algorithms. These contracts could be much more cost effective than their

Solidity-based counterparts.

13Compare to https://www.domain.com/domains/domain-name-pricing, accessed 4th March 2023.

139

https://www.domain.com/domains/domain-name-pricing

Chapter 6. Evaluation and Comparison of Approaches

6.4. Assessment of Security

The security of systems that rely largely on the correct functioning of underlying crypto-

graphic systems and their algorithms warrants a dedicated discussion about potential

security implications. We divide the following section into dedicated parts, namely:

• Section 6.4.1: All systems leverage cryptographic material and signatures from

TLS or DNSSEC. It needs to be ensured that crafting these signatures does not

harm the underlying systems.

• Section 6.4.2: The security of the system must be ensured. We discuss key

elements for considering these approaches and shed light on blockchain-specific

parameters.

• Section 6.4.3: Users, both entities issuing and using domains, need to be under-

stood as primary sources of risk. We give an overview of the respective considera-

tions.

Given the importance of security, much work has taken place. An initial assessment of

the security of the off-chain TLS approach is done in (Gallersdörfer and Matthes, 2020,

2021a). The user-specific perspective of whether to consider warnings in wallets has been

discussed extensively in (Ebel, 2021; Gallersdörfer et al., 2021a). In (Gallersdörfer et al.,

2021c; Groschupp, 2020), security considerations of the on-chain TLS approach have

been discussed extensively. Additional discussions and assessments have taken place in

(Hoops, 2021) and (Käslin, 2020). Given this body of knowledge, we provide a generalized

overview of security considerations and specifically cover elements of ENS, if warranted.

6.4.1. Interference with Underlying Systems

The interference with underlying systems can be discarded in the TLS-based approaches

(Gallersdörfer et al., 2021c; Gallersdörfer and Matthes, 2020, 2021a; Groschupp, 2020).

Generating signatures using cryptographic mechanisms and key material that is leveraged

in another context would require adherence to semantic and syntactic specifications.

These specifications are complex and do not align with any specifications we make in

endorsements. In addition, the goals of the signatures are very different:

• In regular HTTPS communication, the signatures are very short-lived to authenti-

cate the counterparty (often, only the server) and to exchange a symmetric key

between the browser and the web server.

140

6.4. Assessment of Security

• In the on-chain or off-chain TLS approach, the signatures have a shelf-life identical

to the validity of the certificate that was used for creating the signature; therefore,

the signature only changes when a new TLS certificate is issued. In this case, the

signatures are for authentication purposes only.

In addition to these two approaches, the ENS approach leverages DNSSEC. Here,

the signatures and contents’ format does not even deviate from its original intentions.

TXT-records are intended to be used within DNS for plenty of reasons, so leveraging them,

alongside respective signature information, is valid within a blockchain-specific context.

A risk of interference with the underlying system can be ruled out.

6.4.2. Systems Security

Building secure systems on blockchain networks is inherently hard and has led to many

hacks and billions in lost funds (Kushwaha et al., 2022). The reasons for this are manifold:

• Code deployed once is immutable. This means that smart contracts installed on

the blockchain cannot be changed, and any error or bug introduced remains there

forever. Patterns exist to allow “updating” smart contracts (see subsection 3.3.2

for details), but they come with their problems. Simply fixing a bug is not possible

and requires complex routines.

• Source code is always available. Cryptocurrency communities consider it best

practice to publish the source code to their deployed smart contracts so that people

can look up the contract they intend to interact with. While this is certainly a good

practice, the transparency allows for an extensive analysis (similar to the analysis in

Section 5.5) from bad actors. In theory, regular people look into the code and spot

errors before interacting with the code. In practice, they are hardly incentivized to

do so. In contrast, malicious entities see ‘inherent bug bounty programs’ in smart

contracts. They can withdraw all contract funds if they can exploit the smart

contract.

• Data is transparent as well. While there are complexities in accessing all relevant

data of a smart contract, it is still possible to log, trace, and debug all transactions

that a smart contract has received. This information can subsequently be leveraged

to find bugs or vulnerabilities in the system. Especially in systems that interact

with outside entities, such as bridges, or that require proofs from external systems

are prone to attacks (Duong, 2022).

141

Chapter 6. Evaluation and Comparison of Approaches

• Smart contracts are programmed in novel languages such as Solidity. While

these were designed to adhere to the developer and leverage concepts similar to

famous languages, concepts are not understood or improperly applied. Additionally,

these programming languages might face issues that are not apparent. For example,

Solidity allowed for the over- or underflow of integers until version 0.8.0, released

five years after the first release (Solidity Team, 2023). Certainly, many developers

starting to work with Solidity were surprised by this feature.

• New attack vectors surfaced in blockchain systems. As smart contracts can call

each other, novel concepts such as reentrancy attacks are enabled. Reentrancy

leads to a situation in which a smart contract is partly called multiple times, and

the execution of relevant parts is done multiple times (e.g., “withdraw funds”). In

contrast, the check (“user has sufficient balance”) took place only once. This kind

of attack led to the largest heist of Ether in 2016, when 3.6 million Ether was

stolen, leading to the rollback of Ethereum and the consequent fork into Ethereum

and Ethereum Classic (ConsenSys, 2023).

There is an entire industry focusing on auditing smart contract code. Often, pricing

and timeline are contrary to the teams’ goals. Additionally, extensive funding might be

available only once an application becomes successful, often too late for a proper security

audit. This can also be seen in the DNSSECImpl-code of ENS. During our smart contract

analysis, we find several test variables and structures in live code, which are displayed in

Listing 6.1. While they do not harm the system, it is questionable how much attention

has been paid to auditing or verifying the correct functionality. To contextualize: the

entire ENS network is ranked 126th with a market capitalization of 285 million USD on

CoinMarketCap as of this writing14.

53 event Test(uint t);

54 event Marker ();

Listing 6.1: Actively used DNSSECImpl-code on Ethereum (Etherscan, 2023b).

6.4.3. User-Specific Risks

There are three user-specific risks that we discuss: typo squatting (also briefly discussed

in (Gallersdörfer et al., 2021c; Groschupp, 2020)), right to claim ownership and domain

expiry.

14Compare https://coinmarketcap.com/currencies/ethereum-name-service/, accessed on 4th

March 2023.

142

https://coinmarketcap.com/currencies/ethereum-name-service/

6.4. Assessment of Security

Right to Claim Ownership

A system should not affect entities that do not interfere with it. The systems we analyze

in this manuscript should be designed so that the attack surface of uninvolved third

parties is not enlarged. For the TLS-based approaches, this holds true. No one can

leverage certificates or certificate signatures from subdomains to claim to be the main

domain in the respective system; however, this is not true for the DNSSEC approach.

The specific question is: Does an entity own a domain if it owns the ens-subdomain?

We raised this question in Section 5.4 and revisit it here again.

Granting the domain in ENS to the entity that owns the subdomain does not seem

to be an issue initially. However, one has to recognize that services that hand over

subdomains exist primarily as a way to enable dynamic DNS. This includes setting any

records for the respective host name.

Underscores in domain names are used in the wild. Using an underscore in the second-

level domain name (e.g., example.org) is prohibited, but it is not in host names. While

we often refer to ens as a subdomain, it is a host name of the domain. More specifically,

RFC 8552 exists with the title “Scoped Interpretation of DNS Resource Records through

“Underscored” Naming of Attribute Leaves” (Crocker, 2019). This RFC describes a best

current practice: The host names of “well-known” services start with an underscore. It

further “defines the “Underscored and Globally Scoped DNS Node Names” registry with

IANA”. Its aims to highlight usage of “well-known” services and thus avoid collisions.

Two questions arise from this RFC:

• Does ENS adhere to this registry and has ENS registered ens within this registry?

• Do providers of dynamic DNS services recognize the underscore as problematic for

host names, specifically for ens?

We can briefly answer the first question with no. IANA hosts the list, and while

there are several entries, ens is not one of them (IANA, 2023a). ENS should follow the

procedure outlined in section 3 of RFC 8552 to register the usage.

The second question is more difficult to answer. Instead of conducting a field study to

register the respective subdomain with as many providers as possible, we took a sample

size of several providers. We found that none allowed us to claim the individual address

because the underscore was considered illegal. One operator of such a service rejected

the request with the notice that only the domain owner is allowed to claim host names

starting with an underscore.

143

Chapter 6. Evaluation and Comparison of Approaches

Typo-Squatting

Typo-squatting is a known attack vector in which users are tricked into believing that

they are on the intended website. In contrast, they are actually on a website controlled

by an attacker. They are tricked into believing that the domain name is identical while

exchanging single characters for similar looking, for example, an uppercase i (I) for a

lowercase l (l). This security issue warrants an entire research field (Szurdi et al., 2014).

Given that only 877 domains exist in our dataset, we can list all domain combinations

and their Levenshtein distance. We find four domain combinations with a distance of 1

and 31 with a distance of 2. The list of domain name combinations with a distance of 1

is displayed in Table 6.4.

First Domain Second Domain
z80.lol a80.lol
chi.xyz chai.xyz
aaronbomb.xyz aaronbombs.xyz
collective.xyz ecollective.xyz

Table 6.4.: All domain combinations (Levenshtein distance of 1) in the ENS DNSSEC dataset.
Changes in the second domain name are marked in bold. Data as of 27th February
2023.

Upon manual inspection, domain combinations with a distance of 2 appear irrelevant.

For example, domain combinations such as pwn.xyz/ibn.xyz or mty3.io/mex3.io do

not hint at typo-squatting attempts, as they are fairly easy to distinguish between.

However, the existence of domains with a distance of 1, such as collective.xyz and

ecollective.xyz, is interesting. In the following, we investigate them further:

• a80.lol and z80.lol were registered in October 2022 two days apart from each

other. It appears that z80.lol was registered as a demo to showcase the DNSSEC

feature of ENS15. Both websites are not accessible and their domain names are

owned by different entities. A typo-squatting attack can be likely ruled out.

• chi.xyz belongs to a private person and was registered in December 2021, whereas

chai.xyz was registered in April 2022. Little information can be found on the

second domain, which appears to be some form of decentralized finance hub

according to AwesomeNEAR16 which seems to be offline for some time. A typo-

squatting attack can be likely ruled out.

15See https://twitter.com/0xz80/status/1584687805015687170, accessed 15th April 2023.
16See https://awesomenear.com/chai-xyz, accessed 15th April 2023.

144

collective.xyz
ecollective.xyz
a80.lol
z80.lol
z80.lol
chi.xyz
chai.xyz
https://twitter.com/0xz80/status/1584687805015687170
https://awesomenear.com/chai-xyz

6.4. Assessment of Security

• aaronbombs.xyz and aaronbomb.xyz are likely not typo-squatting attempts. Both

were registered at the same day in November 2022. Additionally, they are owned

by the same Ethereum address.

• collective.xyz describes itself as “the home of NFT communities” and seems

to have some relevance17. The first domain was registered in 2021, whereas the

second domain was recently registered in January 2023 and transferred to ENS in

February 2023. As of this writing, the second domain did not host any content,

and a respective Twitter account does not seem to exist. With this information, we

cannot decide whether a typo-squatting attack has taken place or will take place.

The analysis shows the difficulty to discern between typo-squatting attacks and similar

names without a malicious attempt. Developing algorithms that compare and detect

such attacks can be considered very challenging.

Domain Expiry

Domain expiry can be an issue if the validity of a bridged domain is infinite. This is

not an issue for the off-chain and on-chain TLS approaches, given that the verifier, in

this case the registry, honors the validity of the underlying TLS certificate and does not

further verify the authenticity of the respective address. In ENS, however, as the validity

is indefinite, this can result in a problem from two perspectives:

• Domain Expires but is Still Valid On-Chain: While long-expired domains

hint at a low or non-existent usage, the domain can still be used in a blockchain

context, especially when no website is involved in the interaction.

• Domain Expires and is Reclaimed Quickly: Often, it happens that access to

domains is lost for a short period, allowing anyone to claim the domain name (e.g.,

someone was able to register google.com for a minute in 2015 (CNET, 2015)).

Even if only possessed for a brief time, it would allow the temporary owner to

generate proof that lasts a lifetime on the blockchain. We find examples in which

domains were re-registered with different sender addresses but cannot confirm or

deny whether these are attacks or registrations with no connection.

17For example, collective.xyz has 29.3 k followers on Twitter, compare https://twitter.com/

collectivexyz, accessed 4th March 2023.

145

aaronbombs.xyz
aaronbomb.xyz
collective.xyz
google.com
collective.xyz
https://twitter.com/collectivexyz
https://twitter.com/collectivexyz

Chapter 6. Evaluation and Comparison of Approaches

In Section 5.5, we analyzed how many of the domains transferred to ENS were up for

registration. Of the 62 domains that did not respond to HTTP requests and had no

DNS records, 16 domains can be registered, as partly seen in Figure 6.5. For privacy and

security reasons, we blur the domain list.

Figure 6.5.: Screenshot of united-domains.de of domains up for registration that have a
valid registration in ENS. For security reasons, we blur the domain names.

Upon manual inspection, we find that the list partly includes personal websites, NFT

projects, and DAOs. It is concerning to see that about 1.8% of all DNSSEC domains on

ENS are free to register. Less than two years ago, the smart contract was created on 17th

August 2021. We expect this number to rise, given that projects become irrelevant or

abandoned. It needs to be decided case by case, whether the existence of such domains

poses a security issue.

6.5. Requirements

In Section 3.2, we proposed functional and non-functional requirements to which the

systems described in this thesis should adhere. At the end of this chapter, we discuss

whether the requirements are fully fulfilled, partly fulfilled, or not fulfilled. We extend

this discussion to ENS and its DNSSEC implementation, as it provides valuable insights

146

united-domains.de

6.5. Requirements

into the comparability of all three systems. We discuss functional requirements in

subsection 6.5.1 and non-functional requirements in subsection 6.5.2. To conclude this

section, we summarize our findings in subsection 6.5.3.

For simplicity, we refer to the approach outlined in Chapter 4 as the off-chain approach,

the approach outlined in Section 5.2 as the on-chain approach whereas we refer to the

approach outlined in Section 5.3 as the ENS approach.

6.5.1. Functional Requirements

FR 1: Issuance. An entity should be able to issue a valid form of a

certificate-like object to extend the scope of existing naming rights in a

blockchain-based environment.

Both the off-chain approach and the on-chain approach can issue a certificate-like

object to an address and define the respective rules and scope of this object, for example,

whether the issuance of subdomains is allowed or how long the endorsement is valid. In

ENS, however, the entity that provides the signed DNSSEC entry hands over all power

to the respective address. The individual address can then decide on setting information

in its registry, such as addresses for receiving funds, social media URLs, and more. These

two approaches result in different designs: We propose keeping the right to decisions

within the hands of the certificate owners, as they are the factual owners of the domain

name. ENS hands the rights over to the address, which allows for cheaper updates to

any information, as no signature needs to be verified again.

FR 2: Verification. Any entity should be able to verify the authenticity of

said object.

In all three approaches, off-chain entities can verify the authenticity of the endorsement

or signature. Only the on-chain approach and the ENS approach allow for the verification

of the endorsement or signature on-chain, which is the main reason for the two deviating

approaches.

FR 3: Revocation. An entity that previously issued such an object should

be able to revoke its validity.

Revocation is currently only supported by the off-chain and on-chain approaches. In

the off-chain approach to revoke an endorsement, the entire certificate needs to be revoked.

147

Chapter 6. Evaluation and Comparison of Approaches

An updated endorsement containing a revoked flag can be published in the on-chain

approach to rescind the endorsement. In the ENS approach, the owner needs to reassign

the owner of the controller and delete any assigned information. Technically, there is no

way to delete or revoke ownership.

FR 4: Active Usage. The authenticity information issued within the

envisioned system can be used for active authentication.

The Active usage requirement strongly correlates to the on-chain verification require-

ment. Within the off-chain approach, we cannot authenticate active or passive. Only

the on-chain approach and the ENS approach allow the use of information in logically

centralized smart contracts to decide whether a domain actively endorses an address.

FR 5: Auditability. Any identity assertions issued within the system need

to be traceable and auditable.

All three systems are auditable. Given that all three systems have some form of central

registry in which endorsements must be either stored or linked, anyone can access these

registries and verify their contents. We generate a dataset for the ENS DNSSEC registry

in Section 5.5, which could also serve auditing purposes.

6.5.2. Non-Functional Requirements

NFR 1: Strong Form of Authentication. Enable a strong form of

authentication in the respective on-chain environment.

The on-chain approach and the ENS approach both provide a strong form of authentication

on-chain, but the off-chain approach does not.

NFR 2: Usage of Human-Readable Names. The names in the system

should be easily recognizable by humans.

All three systems rely on domain names as a means and therefore provide human-

readable domains. However, from a UX perspective, domain integration in ENS is not

perfect. While in their application, names are correctly displayed as example.org, other

applications that support ENS display them as example.org.eth18.

18For example, nft.com, which is bridged to ENS, resolves in their app correctly to nft.com, whereas
Etherscan resolves it to nft.com.eth. See https://app.ens.domains/name/nft.com/details

and https://etherscan.io/enslookup-search?search=nft.com, both accessed on 28th February
2023.

148

example.org
example.org.eth
nft.com
nft.com
nft.com.eth
https://app.ens.domains/name/nft.com/details
https://etherscan.io/enslookup-search?search=nft.com

6.5. Requirements

NFR 3: No Requirement for Bootstrapping. The system should rely

on a well-established system for name management and authentication.

While all three systems rely on well-established systems for name management, adoption

within the software, wallets, and more has not happened for the off-chain and on-chain

approaches. In contrast, ENS is widely adopted in many systems and block explorers.

NFR 4: Blockchain Agnostic. The system and its core concepts should

be applicable in any blockchain network.

All systems are blockchain-agnostic. The ENS approach could also be leveraged in any

other chain. Still, given its close collaboration and association with Ethereum, it might

be harder to migrate to other chains and gain adoption.

NFR 5: Decentralization. Avoid centralization beyond already-existing

naming services.

All systems are somewhat decentralized and rely on a third party. The management

of ENS and the ENS system relies on the ENS DAO to ensure further development. The

off-chain and on-chain approaches would face similar dependencies to ensure continuous

growth.

NFR 6: Openness. Allow anyone to participate within the system; thus,

do not rely on intermediaries that could limit access to the system.

All systems allow any entity to participate in their systems. The only requirement to

participate is domain ownership, which comes with additional costs.

NFR 7: Non-Repudiation. The extension of the scope of an authentic

certificate to a blockchain address cannot be denied after the fact.

Given the immutability of blockchain networks, all systems support non-repudiation,

as any data submitted to the blockchain can be retrieved later.

NFR 8: Robustness against Denial of Service Attacks. The system is

robust against DoS attacks.

No approach introduces additional centralized systems that could be subject to a DoS

attack.

149

Chapter 6. Evaluation and Comparison of Approaches

NFR 9: PKI Agnostic and X.509 Support. The system relies on the

X.509 certificate standard and supports any PKI adhering to that standard.

The on-chain and off-chain approaches are PKI agnostic and support X.509 certificates.

The ENS approach supports only DNSSEC and is incompatible with any other form of

PKI or certificate.

NFR 10: Adherence to Certificate Status. The status and validity

of the underlying certificates apply to statements and assertions managed

within the system.

The off-chain approach and on-chain approach honor the certificate’s status. However,

the on-chain approach cannot directly retrieve the certificate’s status, but it needs to be

provided on-chain. The off-chain approach can directly access the status of the certificate.

ENS ignores any change to the DNSSEC information and does not allow any proof that

the entry was removed.

6.5.3. Overview

In Table 6.5, we give an overview of the fulfillment of the requirements of the three

systems.

6.6. Summary

The evaluation of all three systems in varying dimensions shows that specific trade-offs

were made to leverage the underlying infrastructures of the WWW in a blockchain context

and achieve the use-case-specific goals. When using and implementing any approach,

developers and system engineers must be aware of the characteristics of these systems as

well as their advantages and drawbacks, in particular:

• Suitability of DNS / TLS / X.509 Certificate and DNSSEC Ecosystem:

TLS has been fully adopted by the WWW, and there is no major website that does

not support TLS inherently. Even if a website does not support TLS from the start,

the owner can easily obtain the respective certificates at no cost. Systems such

as Let’s Encrypt have paved the way for a fully encrypted WWW. There are no

reasons why TLS cannot be leveraged as a base system for the outlined use cases.

Almost the same can be said about DNSSEC. Its adoption is not as widespread as

150

6.6. Summary

Off-chain approach On-chain approach ENS approach
FR 1 ✓ ✓ ✓

FR 2 ∼ ✓ ✓

FR 3 ✓ ✓ ∼
FR 4 ✗ ✓ ✓

FR 5 ✓ ✓ ✓

NFR 1 ✗ ✓ ✓

NFR 2 ✓ ✓ ∼
NFR 3 ∼ ∼ ✓

NFR 4 ✓ ✓ ∼
NFR 5 ∼ ∼ ∼
NFR 6 ✓ ✓ ✓

NFR 7 ✓ ✓ ✓

NFR 8 ✓ ✓ ✓

NFR 9 ✓ ✓ ✗

NFR 10 ✓ ∼ ✗

Table 6.5.: Fulfillment of requirements of the three systems described in this thesis. (Fully
fulfilled: ✓/ partly fulfilled: ∼ / not fulfilled: ✗.)

that of TLS. However, from a practical perspective, it can still be considered fully

functional for the intended use cases. Only 1.7% of domains exist under TLDs that

do not support DNSSEC, the most notable being .ga. It can be expected that

most entities intending to leverage DNSSEC for similar applications should not

face any issues.

• Requirement for Bootstrap: The broad availability and adoption of TLS and

DNSSEC allow almost anyone to link domain names to addresses quickly, mitigating

the requirement for a complex bootstrapping process of creating and assigning a

naming scheme for anyone to adhere to. Regardless, a bootstrapping process is

still required, as wallets, monitoring, and blockchain-specific software need to be

augmented with the respective functionality. Users and vendors also need to adopt

the system. Just because a naming scheme is available, the need for bootstrapping

is not absent. ENS has already been implemented in many wallets for the Web3

community. Nonetheless, the number of adoptions shows that ENS users mostly

focus on claiming new .eth-names, not on bridging their regular domains. Why

adoption is still lacking remains a key question.

• Costs of deployment and operation: If these systems are deployed in a public

permissionless setting, the respective sender must pay for the resulting gas usage.

151

Chapter 6. Evaluation and Comparison of Approaches

The average costs for all approaches from 2021 to March 2023 lie between 88 and

316 USD. Signature algorithms are a key contributor to gas costs, resulting in

high fees for the entities transferring domains. As ENS leverages ECDSA, prices

are slightly higher. Nonetheless, private or public permissioned systems do not

require monetary payment. Thus, these systems can be leveraged more easily

within these networks. Potential ideas for moving parts of the deployment and

verification process to second-layer networks, further reducing the costs, are outlined

in Section 7.3 Future Work.

• Security: The proposed systems rely on the security of the underlying systems and

therefore inherit well-known issues such as typo-squatting. However, the complexity

and additional signature material that needs to be managed do not contribute to

the attack surface of the underlying systems. ENS should inform ICANN that they

are using subdomains to prove ownership of the to-be-claimed domain; respective

protections can then be set in place. Any approach can contribute to the security

of the underlying system by spreading awareness of its functionality, potential

downsides, and countermeasures.

• Fulfillment of Requirements: No system satisfies all requirements. While the

off-chain approach suffers from missing usability, the on-chain approach faces high

costs, whereas ENS misses crucial features, such as the revocation of once-endorsed

Ethereum addresses. The individual application, its requirements, and its users

must be considered when deciding which approach suits best.

In the next chapter, we summarize the findings, answer the research questions, and

conclude with an outlook for future work.

152

Chapter 7.

Conclusion and Future Work

7.1. Conclusion

Identifying and authenticating counterparties in blockchain networks is essential to

properly engage in commercial activities for businesses and end users. Naming services

try to solve the existing issues in blockchain networks, but still face issues of missing

adoption and high bootstrapping efforts.

In this dissertation, we proposed a framework for leveraging the TLS PKI or any other

form of X.509 PKI and its contents in the form of certificates and endorsements to assert

a relationship between the properties of the certificates (in case of TLS, domain names)

and on-chain addresses.

While other systems exist that partly rely on PKI to leverage certificate attributes, this

dissertation closes the gap in understanding potential ways to leverage the certificates

alongside their signatures in both an off-chain and on-chain verification context, resulting

in different feature sets, security assumptions, and execution costs, targeting different

problem statements and use cases.

Furthermore, we investigated a system that leverages DNSSEC with the same goal

of enabling the usage of domain names in an on-chain context. We analyzed the

infrastructure, gathered data, developed a set of key differences in system designs, and

analyzed costs and usage.

This dissertation shows that using TLS and DNSSEC in an on-chain context is feasible

and can be integrated with new and preexisting smart contracts. Verifying endorsements

in an off-chain context is limited by browser support. The hierarchical structure of PKIs

and DNSSEC allows for the one-time verification of intermediary certificates and keys,

reducing the cost structure for all approaches. Using TLS certificates or DNSSEC partly

minimizes the need for bootstrapping a novel identity management system.

153

Chapter 7. Conclusion and Future Work

Nonetheless, trade-offs exist for all described systems. While the need to bootstrap a

naming scheme is eliminated, bootstrapping from a software-centric perspective is still

required. Website owners, wallets, and users must adopt a software stack that allows

the issuance, verification, and revocation of such endorsements, including all technical

complexities, such as accessing certificate information, setting DNS records, or generating

respective signatures. For the TLS-based approaches, the software for the automatic

renewal and update of endorsements is still missing. A “chicken-or-egg” problem still

exists: Website owners will not set up an enhanced security protocol if no user can profit

from it. The same applies to the other side, as users will not benefit from it. While there

is no need to bootstrap an identity management and naming system from the ground up,

these systems still require bootstrapping efforts from users and companies.

From an ideological perspective, all described systems undermine the purpose of the

respective blockchain network, using a decentralized network while introducing centralized

entities that control the naming or identity management system. Nonetheless, these

systems are optional, and no one is forced to use them. Further, the systems using X.509

certificates are generalizable, so any PKI can be leveraged if valid use cases exist.

7.2. Answer to Research Questions

In the following, we answer the research questions initially posed in Chapter 1. While

the initial questions are italicized, the answers are written in regular font styling.

RQ1: To what extent can one leverage domain names and related

Public Key Infrastructures in a blockchain environment?

RQ 1.1 In which ways have domain names and related PKIs been utilized in a blockchain

context?

We identified that a form of PKI, namely DNSSEC, is actively leveraged in

the ENS ecosystem, allowing the usage of respective domain names in the

ENS ecosystem. Further, other systems, such as TLSNotary and Town Crier,

leverage signature information of TLS certificates to prove on a blockchain that

a website once displayed respective information.

RQ 1.2 What are the technical pathways to enable domain name usage in a blockchain

context?

We identify two technical pathways to utilize PKIs in a blockchain context; if

154

7.2. Answer to Research Questions

verification occurs locally on the users’ device, only the endorsement must be

stored alongside the smart contract. If someone wants to verify the endorsement

in an on-chain context, all respective certificate information, including its path,

must be available on-chain. We refer to these approaches as off-chain verification

and on-chain verification, respectively.

RQ2: What are ways to verify the connection between a domain

name and a blockchain address in a local context?

RQ 2.1 How can cryptographically verifiable assertions between blockchain addresses

and domain names be made?

We leverage the cryptographic key material in the form of the private key of the

respective certificate of a domain to create a signature over data that uniquely

describes the relationship of the certificate and its properties to the address.

We refer to this signature, including the data, as an endorsement.

RQ 2.2 How does the life cycle of cryptographic key material influence the system’s

functionality?

The life cycle and validity of the cryptographic key material significantly affect

the functionality of the proposed system. Invalid or expired certificates will

impact the functionality of the respectively generated endorsements, requiring

a re-creation of any endorsements.

RQ 2.3 What are the limitations of verifying assertions in a local context?

Off-chain verification limits the functionality to preventing or detecting address

replacement attacks and data authentication. Additionally, certificate retrieval

and verification are issues in browser-based add-ons, drastically limiting usage.

RQ3: How can we verify the connection between a domain name

and a blockchain address in an on-chain context?

RQ 3.1 What are the technical pathways for enabling the usage of certificates and

endorsements in an on-chain context?

We identify two possible ways of verifying certificates and endorsements on-

chain; with the support of oracle networks, we can compute the results of

verifications off-chain and bridge them on-chain for decision-making. Further, it

155

Chapter 7. Conclusion and Future Work

is possible to predefine the root certificates on-chain and verify the contents of

the certificates and endorsements using the root certificates as a trust anchor.

From a decentralization standpoint, the second option is more desirable.

RQ 3.2 How does the life cycle of cryptographic key material influence the functionality

of the proposed system?

The life cycle of the cryptographic key material significantly influences the

proposed system. In contrast to the off-chain verification approach, blockchain

networks cannot access revocation information directly. Therefore, proper

mechanisms must be developed to incentivize entities to publish this information

on-chain and invalidate respective certificates and endorsements.

RQ 3.3 What are the limitations of verifying assertions in an on-chain context?

While on-chain verification allows for elaborate use cases and integration in

access control schemes, the usage and verification of assertions on-chain come

with a significant cost increase in on-chain fees. Furthermore, no direct access

to revocation information might delay the invalidation of respective on-chain

endorsements.

RQ 3.4 How can the interactions of users of Ethereum Name Service (ENS) regarding

DNS Security Extensions (DNSSEC) be analyzed?

All domain names that users bridge to ENS interact with a single smart

contract, exposing three distinct functions for submitting and proving respective

information. We can analyze these transactions and extract relevant information,

such as domain name, RRSets, and additional metadata such as creation time

and transaction fees.

RQ 3.5 How do existing approaches for leveraging domain names in a blockchain context

compare to each other?

Several key differences exist between the approaches. While the differences

in their leveraged systems, such as TLS and DNSSEC, are obvious, design

decisions regarding the proof of ownership, key material longevity, and costs

became apparent.

156

7.3. Future Work

7.3. Future Work

Leveraging PKI systems in a blockchain-specific context requires additional research to

fully understand the complexities and enable efficient ways to issue and verify endorse-

ments for blockchain addresses.

We identify the following areas for further research:

• Expanding Scope:

– Application in Alternative Contexts: The feature set resulting from any of

these systems allows the exploration of novel use cases that partly rely on

information from the DNS. For example, bootstrapping communities or entities

that belong to a specific group becomes possible, as outlined in (Strugala,

2020).

– Decentralized Identifiers : Decentralized Identifiers (DIDs) are a novel form of

identity mechanism proposed by the W3C (Sporny et al., 2022). Knowledge

gathered by leveraging PKI information in a blockchain context could be

helpful to develop DID methods that do not rely on centralized parties beyond

existing naming schemes, such as the DID:TLS method proposed in (Käslin,

2020).

– Investigating Alternative Base Layers : Other technologies exist that protect

the integrity of naming schemes but that are not PKIs, such as CT. In

particular, CT resembles, from a technological perspective, a blockchain-like

approach, creating a form of audit log. The root hash is singed and all

certificates are part of it. Relying on CT, the inclusion and verification

of certificates on-chain could be much cheaper than alternative approaches.

Furthermore, ENS opted for DNSSEC as their primary building block for

bridging domain names to their systems. Understanding the implications of

leveraging alternative methods such as TLS or CT could yield enhancements

to their systems.

– Investigating Layer 2 Usage: Blockchain networks consist not only of the

respective base layer but also integrate different technologies such as layer 2

networks, rollups, or other scaling solutions. One needs to understand how

these naming systems can be used in these novel scaling solutions or if a

redeployment for the respective layer is required.

• Enhancing Cost Structures:

157

Chapter 7. Conclusion and Future Work

– Precompilation of Cryptographic Algorithms: Cryptographic algorithms are

omnipresent in blockchains. However, only a limited set of these is implemented

in any blockchain. Some cryptographic algorithms are already provided in a

pre-compiled form (Wood et al., 2014), avoiding the overhead of the EVM

language. However, the list of such contracts should be extended to fit more

use cases, including verifying TLS and DNSSEC proofs on-chain.

– Batch Issuance of RRSets in ENS : One could trustless batch multiple RRSets

and domains in a separate smart contract. Users could set up their DNSSEC

correctly and submit an intention to claim their domain in ENS to this

separate smart contract, including some funds to cover the costs. When

enough entities joined the pool, anyone could batch-submit all RRSets and

prove their respective inclusion to the ENS DNSSEC oracle. As DNSSEC

“automatically renews” the signatures, a third party can use the proofs without

further interaction from the actual domain owner.

– Leveraging Secure Off-Chain Data Retrieval : ERC-3668 specifies a way to

enable regular wallets to supplement a standard transaction with information

from an off-chain source that, in turn, is verified by the on-chain smart

contract (Johnson, 2020). This could help to circumvent directly issuing the

domain on-chain but using information just in time. Layer 2 networks in

particular could benefit from this approach, as an issuance on the respective

network is no longer required. However, further work is necessary to understand

the implications of ERC-3668 on the usability and security of individual

systems.

• Understanding Human Behavior:

– The Influence of Warning Messages on Users : Generally, warning messages

in browsers and other software and their influence on user behavior are poorly

understood. The same applies to the software described before; for example,

it is unclear how users perform if they are informed of the security warning

beforehand and instructed to ignore it. In addition, as any domain can

endorse any smart contract, it remains unclear whether an assertion can have

a negative effect on an address (e.g., if from a domain associated with illicit

content).

– Enhancing Protection against Typosqatting : Typosquatting remains an issue

with no apparent solution, existing in novel systems described in this thesis and

158

7.3. Future Work

in regular WWW environments such as browsers. It needs to be understood

which information is helping the user to decide whether to trust a website or

how systems can be developed that better find and mark such typosquatting

attempts, as outlined in (Hoops, 2021).

– Adoption of Domain Names in ENS : While ENS is reasonably large and has

issued millions of domain names in their .eth TLD, adoption of common

domain names remains very low, with below 1,000 domains bridged as of

this writing. Understanding the reasons for low adoption is essential to help

design better systems. Potentially, the high costs and complexity of issuance

can deter users from doing so, but the solution is potentially not well-known

within the community.

• Abandoning Existing Systems:

While TLS or DNSSEC serve as the backbone of the respective systems, one

should explore ways to cut ties to the underlying system after a specific time

and bootstrapping, potentially changing the identity management system from a

hierarchical structure to a web of trust structure. ENS has introduced NameWrap-

pers (Ethereum Name Service, 2023d) which allow the domain owner to abandon

the control of a subdomain. Still, it remains unclear which long-term effects such

approaches have when viewpoints from the WWW deviate from on-chain viewpoints.

Nonetheless, these approaches could also serve as a basis for bootstrapping an

entirely different DNS.

159

Appendix

161

Appendix A.

Prior Publications and Student Work in

the Context of this Thesis

In the following, we display prior publications by the author of this dissertation, in detail

the title, authors, conference or proceedings, and year of publication.

• Ulrich Gallersdörfer and Florian Matthes (2020). AuthSC: mind the gap between

web and smart contracts. arXiv preprint arXiv:2004.14033. url: http://arxiv

.org/abs/2004.14033

• Ulrich Gallersdörfer and Florian Matthes (2021a). TeSC: TLS/SSL-Certificate En-

dorsed Smart Contracts. The 3rd IEEE International Conference on Decentralized

Applications and Infrastructures

• Ulrich Gallersdörfer, Friederike Groschupp, and Florian Matthes (2021c). Mirror-

ing Public Key Infrastructures to Blockchains for On-chain Authentication. 5th

Workshop on Trusted Smart Contracts In Association with Financial Cryptography

2021

• Ulrich Gallersdörfer, Jonas Ebel, and Florian Matthes (2021a). Augmenting

MetaMask to support TLS-endorsed Smart Contracts. 5th International Workshop

on Cryptocurrencies and Blockchain Technology

163

http://arxiv.org/abs/2004.14033
http://arxiv.org/abs/2004.14033

Appendix A. Prior Publications and Student Work in the Context of this Thesis

In addition, following student work in the form of theses and semester projects was exe-

cuted under the technical and scientific advisory of the author. We highlight manuscripts

relevant to this dissertation. They are separately referenced in the bibliography and

relevant sections. Thank you to all the students for supporting this research project.

• Friederike Groschupp (2020). Exploring the Use of SSL/TLS Certificates for Identity

Assertion and Verification in Ethereum. Master’s Thesis. Technical University of

Munich. (Groschupp, 2020)

• Kilian Käslin (2020). Establishment of a Minimum Viable Self-Sovereign Identity

Network. Master’s Thesis. Technical University of Munich. (Käslin, 2020)

• Jan-Niklas Strugala (2020). Leveraging TLS/SSL-based Identity Assertion and

Verification Systems for On-chain Authentication and Authorization of Real-world

Entities. Master’s Thesis. Technical University of Munich. (Strugala, 2020)

• Jonas Ebel (2021). Augmenting the MetaMask-Wallet with Domain Name based

Authentication of Ethereum Accounts. Master’s Thesis. Technical University of

Munich. (Ebel, 2021)

• Jan Felix Hoops (2021). Threat Analysis, Evaluation, and Mitigation for Smart

Contracts Endorsed by TLS/SSL Certificates. Master’s Thesis. Technical University

of Munich. (Hoops, 2021)

• Pascal Herrmann, Tuan Anh Ma, Metodi Manov, David Stübing (Winter Term

2020/2021). TLS-based Authentication Management on Blockchain. Project Work

in Software-Engineering for Business Applications - Lab (IN2106, 2129, 4077).

Technical University of Munich. (Herrmann et al., 2021)

164

Appendix B.

Endorsement Flags

In Chapter 3, we briefly introduce the concept of flags as a way to further configure an

endorsement. This appendix gives an overview on all previously defined flags with their

definition.

The following flags have been initially proposed in (Gallersdörfer and Matthes, 2021b):

“Flags enable additional functionality or restrictions in handling an endorse-

ment. We display a list of all available flags and reasoning. In the smart

contracts, we store flags in a bytes24 variable. This allows us to store up to

192 flags, addressing them from f1 to f191. Each flag can be set either to true

or false, resulting in fi = {0, 1}.

• f0 SANITY: The sanity flag is always set to 1 to check if the flag

variable is uninitialized or if all flags are actually set intentionally to 0.

• f1 DOMAIN HASHED: This flag is set if a domain is stored as a

hash for privacy reasons. The hash is constructed as h = hash(domain).

This flag is set if an owner does not want the smart contract to be

easily attributed to the domain by crawling the blockchain. We rely on

keccak256 as hash function.

• f2 ALLOW SUBENDORSEMENT: This flag is set if a smart con-

tract is able to endorse further addresses such as contracts or externally

owned accounts. The referenced smart contracts are stored in an array

of the respective endorsing smart contract. If this flag is not set, the

verification of the subendorsements fails.

• f3 EXCLUSIVE: If this flag is set, one contract equipped with a valid

endorsement can exist; if multiples exist, no contract is considered to be

165

Appendix B. Endorsement Flags

valid as long as the owner resolves the issues by either invalidating the

endorsements, or removing the EXCLUSIVE flag from the contracts.

• f4 PAYABLE: If a domain owner wants to allow users to send funds

to the domain (owner), the owner sets this flag to let users know that

this contract accepts funds.

• f5 ALLOW SUBDOMAIN: If this flag is set, smart contract addresses

that are displayed in a subdomain context (the smart contract only being

endorsed by the regular domain) can be verified. This is similar to a

wildcard in TLS certificates and requires the certificate being issued for

the respective domain.

• f6 TRUST AFTER EXPIRY: Data that has been entered while

the endorsement was valid can still be considered as valid after the

endorsement or the TLS certificate expires. Because this information is

time-stamped and no one can add or modify the data (without being

noticed), the data is considered to be valid if this flag is set. This flag is

especially useful for cases in which the blockchain is used to store data

for public verification.

• f7 STRICT: If this flag is set, the certificate returned via the web

server must be identical to the certificate that signed the endorsement;

otherwise, the verification fails.

• fx reserved: All other flags are reserved.

” – TeSC: TLS/SSL-Certificate Endorsed Smart Contracts – Supplementary

Material (Gallersdörfer and Matthes, 2021b).

166

Appendix C.

Browser Warning Pages

In Chapter 4, we analyze TLS-related warning pages for application within our approaches.

This appendix contains the details of the warning pages for all browsers in question.

Table C.1 gives an overview of all warning-related information that is displayed to the

user when visiting a) a certificate-protected web page (case “Secure”), b) an extended

validation certificate protected web page (case “Secure EV”), c) a web page with a minor

certificate error (e.g., expired certificate) (case “Minor”), d) a web page with a major

error (e.g., malfunctioning certificate pinning) (case “Major”), and e) an unprotected

web page over HTTP (case “HTTP”). Unreachable states are marked with a dash (-).

We include the following metrics and observe respective characteristics:

• URL: How the URL’s text is displayed to the user. Either the protocol (HTTPS)

is shown, omitted, or crossed out.

• Lock-Symbol: The way the lock symbol is represented in the URL bar. We

observe black-colored locks, crossed-out locks, absent locks, or additional warning

messages “not secure” instead of the lock.

• Cert Info: Information displayed about the certificate after clicking the lock

symbol in the URL bar. We observe information about the validity, issuer, receiver,

or information about the certificate error.

• Warning: Contents of the warning page in case of any certificate error, such as

error details and options such as “reload”, “go back”, or “close website”.

• Advanced: Contents of the advanced section after clicking “Advanced” on the

warning page in case of a minor or major certificate error. We receive further

detailed information about the error and potential options such as “Continue” or

“go back”.

167

Appendix C. Browser Warning Pages

C
h
r
o
m

e
(1

1
0
)

E
d
g
e

(1
0
9
)

F
ir
e
fo

x
(1

0
9
)

O
p
e
r
a

(9
5
)

S
a
fa

r
i
(1

6
)

F
F

A
n
d
r
o
id

(1
0
9
)

S
a
fa

r
i
iO

S
(i
O
S

1
6
.1
.2
)

S
e
c
u
r
e

U
R
L

N
o

H
T
T
P
S

H
T
T
P
S

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

L
o
c
k
-S

y
m
bo

l
B
la
c
k

B
la
c
k

B
la
c
k

B
la
c
k

B
la
c
k

B
la
c
k

B
la
c
k

C
e
r
t
In

fo
V
a
li
d

V
a
li
d

V
a
li
d
,
Is
su

e
r

V
a
li
d

V
a
li
d

V
a
li
d
,
Is
su

e
r

-

W
a
r
n
in

g
-

-
-

-
-

-
-

A
d
v
a
n
ce
d

-
-

-
-

-
-

-

S
e
c
u
r
e

E
V

U
R
L

N
o

H
T
T
P
S

H
T
T
P
S

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

L
o
c
k
-S

y
m
bo

l
B
la
c
k

B
la
c
k

B
la
c
k

B
la
c
k

B
la
c
k

B
la
c
k

B
la
c
k

C
e
r
t
In

fo
V
a
li
d
,
Is
su

e
d

to
V
a
li
d
,
Is
su

e
d

to
V
a
li
d
,
Is
su

e
d

to
,
Is
su

e
r

V
a
li
d
,
Is
su

e
d

to
V
a
li
d
,
Is
su

e
d

to
,
Is
su

e
r

V
a
li
d
,
Is
su

e
r

-

W
a
r
n
in

g
-

-
-

-
-

-
-

A
d
v
a
n
ce
d

-
-

-
-

-
-

-

M
in

o
r

U
R
L

H
T
T
P
S

c
ro

ss
e
d

o
u
t

H
T
T
P
S

c
ro

ss
e
d

o
u
t

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

L
o
c
k
-S

y
m
bo

l
“
N
o
t
se

c
u
re

”
“
N
o
t
se

c
u
re

”
“
N
o
t
se

c
u
re

”
“
N
o
t
se

c
u
re

”
N
o
n
e

C
ro

ss
e
d

o
u
t

N
o
n
e

C
e
r
t
In

fo
W

a
rn

in
g

W
a
rn

in
g

W
a
rn

in
g

W
a
rn

in
g

-
W

a
rn

in
g

-

W
a
r
n
in

g
W

a
rn

in
g
,
“
G
o

B
a
c
k
”

W
a
rn

in
g
,
“
G
o

B
a
c
k
”

W
a
rn

in
g
,
“
G
o

B
a
c
k
”

W
a
rn

in
g
,
“
G
o

B
a
c
k
”

W
a
rn

in
g
,
“
C
lo
se

”
W

a
rn

in
g
,
“
T
ry

a
g
a
in

”
W

a
rn

in
g
,
“
G
o

B
a
c
k
”

A
d
v
a
n
ce
d

“
C
o
n
ti
n
u
e
”

“
C
o
n
ti
n
u
e
”

“
C
o
n
ti
n
u
e
”

“
C
o
n
ti
n
u
e
”

“
C
o
n
ti
n
u
e
”

“
C
o
n
ti
n
u
e
”

“
C
o
n
ti
n
u
e
”

M
a
jo

r

U
R
L

H
T
T
P
S

c
ro

ss
e
d

o
u
t

H
T
T
P
S

c
ro

ss
e
d

o
u
t

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

L
o
c
k
-S

y
m
bo

l
“
N
o
t
se

c
u
re

”
“
N
o
t
se

c
u
re

”
“
N
o
t
se

c
u
re

”
“
N
o
t
se

c
u
re

”
N
o
n
e

C
ro

ss
e
d

o
u
t

N
o
n
e

C
e
r
t
In

fo
W

a
rn

in
g

W
a
rn

in
g

W
a
rn

in
g

W
a
rn

in
g

-
W

a
rn

in
g

-

W
a
r
n
in

g
W

a
rn

in
g
,
“
R
e
lo
a
d
”

W
a
rn

in
g
,
“
R
e
lo
a
d
”

W
a
rn

in
g
,
“
G
o

B
a
c
k
”

W
a
rn

in
g
,
“
R
e
lo
a
d
”

E
rr
o
r

W
a
rn

in
g
,
“
R
e
lo
a
d
”

E
rr
o
r

A
d
v
a
n
ce
d

In
fo
rm

a
ti
o
n

In
fo
rm

a
ti
o
n

In
fo
rm

a
ti
o
n
,
“
G
o

B
a
c
k
”

In
fo
rm

a
ti
o
n

-
In

fo
rm

a
ti
o
n
,
“
G
o

B
a
c
k
”

-

H
T
T
P

U
R
L

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

N
o

H
T
T
P
S

L
o
c
k
-S

y
m
bo

l
“
N
o
t
se

c
u
re

”
“
N
o
t
se

c
u
re

”
C
ro

ss
e
d

o
u
t

“
N
o
t
se

c
u
re

”
“
N
o
t
se

c
u
re

”
C
ro

ss
e
d

o
u
t

“
N
o
t
se

c
u
re

”

C
e
r
t
In

fo
W

a
rn

in
g

W
a
rn

in
g

W
a
rn

in
g

W
a
rn

in
g

W
a
rn

in
g

W
a
rn

in
g

-

W
a
r
n
in

g
-

-
-

-
-

-
-

A
d
v
a
n
ce
d

-
-

-
-

-
-

-

Table C.1.: Overview of browsers and their behavior in five different security scenarios.

168

Appendix D.

Related Ethereum Addresses

In the following, we list all addresses and transaction hashes we found and used throughout

this dissertation.

Main Contracts

• 0x00000000000C2E074eC69A0dFb2997BA6C7d2e1e (ENS Registry)

• 0xaB528d626EC275E3faD363fF1393A41F581c5897 (ENS Root)

• 0x58774Bb8acD458A640aF0B88238369A167546ef2 (DNSRegistrar)

• 0x21745FF62108968fBf5aB1E07961CC0FCBeB2364 (DNSSECImpl)

• 0x765653c78f609826DfD091F9208Aeb610949A28F (RSA/SHA1)

• 0xB83A8AC6900f19d77333e640550Bd8830d5fcb26 (RSA/SHA256)

• 0xe571A50F76ff7404F3Ce380D06CBd2c9c6Ca3670 (ECDSA/SHA256)

Transaction Hashes

limo.eth registration:

0xfe0f462e55f552c7ddd63be5b1c9c7e64c4addcc50f26f99a391fb236948b3f2

nish.com registration:

0x9bc94188116067fb2b8194a30af7ee904e6b3473a831cc02ac76883431adbb84

collective.xyz registration:

0xcf56c4f4b6c4e5e9cd9b91886062e9e8e7055e9b8735f05f20e258e09f7eb2f4

ecollective.xyz registration:

0x1663883aceb6f690c99cb6b28d5dc4d9d21141027113cb90465a628eb07b0ca2

169

Appendix E.

DNS Top-Level-Domains in ENS

In Chapter 5, we develop a dataset for all domains that have been bridged to ENS using

DNSSEC. This appendix highlights the distribution of domains over the relevant TLDs.

Figure E.1 gives an overview of all top-level-domains managed within ENS that stem

from traditional DNS. Three main TLD categories exist (IANA, 2023b):

• Generic (gTLD): Generic TLDs that do not belong to a country or state.

• Country-code (ccTLDs): TLDs that belong to a country and are managed by

respective entities. Noteworthy are TLDs such as .io or .id that are assigned to

British Indian Ocean Territory and Indonesia, respectively. However, communities,

such as the computer science community, use these domains for their own purpose

as a reference to Input/Output.

• Generic-restricted: Domains registered in these TLDs must satisfy specific

requirements.

In the ENS dataset, three different TLDs are present in the generic-restricted

category: .name (2 records), .biz (1 record), and .pro (1 record) with the following

restrictions:

• .name is intended to be used by private persons only1,

• .biz must be used primarliy for commercial purposes2, and

• .pro registrants need to state their profession3.

1See https://www.verisign.com/en_US/domain-names/name-domains, accessed 9th March 2023.
2See https://www.icann.org/resources/unthemed-pages/registry-agmt-appl-2001-04-18-en.

html, accessed 9th March 2023.
3See http://www.prweb.com/releases/register_a_pro/domain_name/prweb13076072.htm, ac-
cessed 9th March 2023.

171

https://www.verisign.com/en_US/domain-names/name-domains
https://www.icann.org/resources/unthemed-pages/registry-agmt-appl-2001-04-18-en.html
https://www.icann.org/resources/unthemed-pages/registry-agmt-appl-2001-04-18-en.html
http://www.prweb.com/releases/register_a_pro/domain_name/prweb13076072.htm

Appendix E. DNS Top-Level-Domains in ENS

g
e
n
e
r
ic

c
o
u
n
t
r
y
-
c
o
d
e

g
e
n
e
r
ic

-
r
e
s
t
r
ic

t
e
d

c
o
m

2
3

4

x
y
z

1
8

5

d
e
v

4
3

o
r
g

2
7

n
e
t

2
1

w
t
f

1
6

a
p
p

1
0

a
r
t

1
0

fi
n
a
n
c
e

8

lo
l

8

m
o
n
e
y

8

t
e
c
h

7

in
fo

6

n
e
t
w

o
r
k

5

c
a
s
h

4

n
in

ja

4

a
r
m

y

3c
a
p
it

a
l

3c
lo

u
d

3h
e
a
lt

h
c
a
r
e

3la
n
d

3

r
o
c
k
s

3w
o
r
ld

3c
a
fe

2c
o
m

m
u
n
it

y

2c
o
m

p
u
t
e
r

2c
o
o
l

2

d
a
y

2

fu
n

2

fu
n
d

2

fy
i

2

g
a
m

e

2

lim
o

2

liv
e

2n
e
w

s

2o
n
e

2o
n
lin

e

2o
o
o

2p
iz

z
a

2

r
ip

2

s
o
c
ia

l

2

s
p
a
c
e

2

v
ip

2

a
u
t
o

1

a
u
t
o
s

1

b
o
a
t
s

1

c
it

y

1

c
o
m

p
a
n
y

1

c
o
u
n
t
r
y

1

d
ir

e
c
t

1d
o
m

a
in

s

1e
c
o

1fa
r
m

1fi
n
a
n
c
ia

l

1fo
r
s
a
le

1

g
a
m

e
s

1

g
la

s
s

1

g
lo

b
a
l

1

g
o
ld

1

g
u
r
u

1

h
a
u
s

1ir
is

h

1lin
k

1llc

1lo
v
e

1

m
e
d
ia

1

m
o
n
s
t
e
r

1

n
g
o

1

p
h
o
t
o
s

1

s
h
o
p

1s
o
lu

t
io

n
s

1s
o
y

1s
t
u
d
io

1

s
t
y
le

1

t
e
a
m

1

t
o
d
a
y

1

t
o
k
y
o

1t
o
o
ls

1t
o
p

1

u
n
o

1

v
e
n
t
u
r
e
s

1

v
is

io
n

1v
o
t
e

1

w
a
n
g

1w
o
r
k
s

1

io6
6

id2
0

m
e

1
7

c
o

6

u
k

5

c
a

4

g
g

4

s
h

4

a
u

3

c
c

3

c
h

3fi3in3u
s

3

e
u

2

h
k

2

is2

jp2

li2n
l

2r
o

2

t
w

2

a
c

1

a
f

1

a
t

1c
z

1d
e

1

e
e

1

e
s

1

fm1

fr1g
r

1

k
r

1

lu1

m
y

1

v
c

1

5
0

1
0

0

1
5

0

2
0

0

C
o
u
n
t

F
ig
u
re

E
.1
.:

T
reem

ap
o
f
a
ll
T
L
D
s
b
rid

ged
v
ia

D
N
S
S
E
C

m
an

aged
w
ith

in
E
N
S
as

of
28

th
F
eb

ru
ary

2023.

172

Appendix F.

DNSSEC Support in Top-Level Domains

In Chapter 6, we investigate the DNSSEC-support of all TLDs and develop a respective

dataset including domain count for each TLD. This appendix gives further insights into

this dataset.

Figure F.1 gives an overview over all top-level domains categorized by their DNSSEC

support. The sizes of the tiles are dependent on the logarithmic count of the domains.

To generate Figure F.1, we

• leveraged the list of TLDs that support DNSSEC by Openprovider (Openprovider,

2023), and

• merged it with a list of domain registrations per TLD by Domain Name Stat (Do-

main Name Stat, 2023).

173

Appendix F. DNSSEC Support in Top-Level Domains

F
ig
u
re

F
.1
.:

T
reem

ap
o
f
all

T
L
D
s
categorized

b
y
th
eir

D
N
S
S
E
C

su
p
p
ort

as
of

28
th

F
eb

ru
ary

2023.

174

Bibliography

APNIC Labs (2023). DNSSEC Validation Rate by country. https://stats.labs.apni

c.net/dnssec. Accessed: 2023-02-28.

Allen, Christopher and Tim Dierks (Jan. 1999). The TLS Protocol Version 1.0. RFC

2246. doi: 10.17487/RFC2246. url: https://rfc-editor.org/rfc/rfc2246.txt.

Amann, Johanna, Oliver Gasser, Quirin Scheitle, Lexi Brent, Georg Carle, and Ralph

Holz (2017). Mission accomplished? HTTPS security after DigiNotar. Proceedings of

the 2017 Internet Measurement Conference, pp. 325–340.

Arends, Roy, Geoffrey Sisson, David Blacka, and Ben Laurie (Mar. 2008). DNS Security

(DNSSEC) Hashed Authenticated Denial of Existence. RFC 5155. doi: 10.17487/R

FC5155. url: https://www.rfc-editor.org/info/rfc5155.

Barnes, Richard, Jacob Hoffman-Andrews, Daniel McCarney, and James Kasten (Mar.

2019). Automatic Certificate Management Environment (ACME). RFC 8555. doi:

10.17487/RFC8555. url: https://www.rfc-editor.org/info/rfc8555.

Benet, Juan (2014). Ipfs-content addressed, versioned, p2p file system. arXiv preprint

arXiv:1407.3561.

Berners-Lee, Tim and Daniel W. Connolly (Nov. 1995). Hypertext Markup Language -

2.0. RFC 1866. doi: 10.17487/RFC1866. url: https://www.rfc-editor.org/inf

o/rfc1866.

Blocher, Walter et al. (2019). Rechtshandbuch Smart Contracts. CH Beck.

Blockchair (2023). Index of /ethereum/blocks/. https://gz.blockchair.com/ethereu

m/blocks/. Accessed: 2023-02-27.

Boeyen, Sharon, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell, and Dave

Cooper (May 2008). Internet X.509 Public Key Infrastructure Certificate and Cer-

tificate Revocation List (CRL) Profile. RFC 5280. doi: 10.17487/RFC5280. url:

https://rfc-editor.org/rfc/rfc5280.txt.

Brunner, Clemens, Fabian Knirsch, Andreas Unterweger, and Dominik Engel (2020).

A Comparison of Blockchain-based PKI Implementations. Proceedings of the 6th

International Conference on Information Systems Security and Privacy - Volume 1:

175

https://stats.labs.apnic.net/dnssec
https://stats.labs.apnic.net/dnssec
https://doi.org/10.17487/RFC2246
https://rfc-editor.org/rfc/rfc2246.txt
https://doi.org/10.17487/RFC5155
https://doi.org/10.17487/RFC5155
https://www.rfc-editor.org/info/rfc5155
https://doi.org/10.17487/RFC8555
https://www.rfc-editor.org/info/rfc8555
https://doi.org/10.17487/RFC1866
https://www.rfc-editor.org/info/rfc1866
https://www.rfc-editor.org/info/rfc1866
https://gz.blockchair.com/ethereum/blocks/
https://gz.blockchair.com/ethereum/blocks/
https://doi.org/10.17487/RFC5280
https://rfc-editor.org/rfc/rfc5280.txt

Bibliography

ICISSP, INSTICC. SciTePress, pp. 333–340. isbn: 978-989-758-399-5. doi: 10.5220

/0008914503330340.

BuiltWith (2022). Extended Validation Usage Distribution in the Top 1 Million Sites.

https://trends.builtwith.com/ssl/extended-validation. Accessed: 2022-09-

04.

CNET (2015). This guy bought Google.com for $12. https://www.cnet.com/tech/ser
vices-and-software/this-guy-bought-the-most-valuable-website-in-the-

world-for-12/. Accessed: 2023-03-04.

Chartrand, James, Stuart Freeman, Ulrich Gallersdörfer, Matt Lisle, Alexander Mühle,

and Sélinde van Engelenburg (2020). Building the digital credential infrastructure

for the future. The Digital Credentials Consortium. url: https://digitalcredent

ials.mit.edu/docs/white-paper-building-digital-credential-infrastruc

ture-future.pdf.

ConsenSys (2023). Reentrancy - Ethereum Smart Contract Best Practices. https://c

onsensys.github.io/smart-contract-best-practices/attacks/reentrancy/.

Accessed: 2023-03-04.

Crocker, Dave (Mar. 2019). Scoped Interpretation of DNS Resource Records through

”Underscored” Naming of Attribute Leaves. RFC 8553. doi: 10.17487/RFC8553.

url: https://www.rfc-editor.org/info/rfc8553.

Dierks, Tim and Eric Rescorla (Apr. 2006). The Transport Layer Security (TLS) Protocol

Version 1.1. RFC 4346. doi: 10.17487/RFC4346. url: https://rfc-editor.org/r

fc/rfc4346.txt.

Dnspython (2023). dnspython. https://www.dnspython.org/. Accessed: 2023-02-27.

Domain Name Stat (2023). Domain name registrations in All TLDs. https://domainna

mestat.com/statistics/tldtype/all. Accessed: 2023-02-28.

Dune Analytics AS (2023). Dune: Crypto data by and for the community. https://dun

e.com. Accessed: 2023-02-27.

Duong, Tuyet Anh (2022). Quick Analysis of the Wormhole attack. https://research

.kudelskisecurity.com/2022/02/03/quick-analysis-of-the-wormhole-atta

ck/. Accessed: 2023-03-08.

EFF (2021). HTTPS Is Actually Everywhere. https://www.eff.org/deeplinks/2021

/09/https-actually-everywhere. Accessed: 2023-02-28.

Eastlake 3rd, Donald E. (Mar. 1999). Domain Name System Security Extensions. RFC

2535. doi: 10.17487/RFC2535. url: https://www.rfc-editor.org/info/rfc253

5.

176

https://doi.org/10.5220/0008914503330340
https://doi.org/10.5220/0008914503330340
https://trends.builtwith.com/ssl/extended-validation
https://www.cnet.com/tech/services-and-software/this-guy-bought-the-most-valuable-website-in-the-world-for-12/
https://www.cnet.com/tech/services-and-software/this-guy-bought-the-most-valuable-website-in-the-world-for-12/
https://www.cnet.com/tech/services-and-software/this-guy-bought-the-most-valuable-website-in-the-world-for-12/
https://digitalcredentials.mit.edu/docs/white-paper-building-digital-credential-infrastructure-future.pdf
https://digitalcredentials.mit.edu/docs/white-paper-building-digital-credential-infrastructure-future.pdf
https://digitalcredentials.mit.edu/docs/white-paper-building-digital-credential-infrastructure-future.pdf
https://consensys.github.io/smart-contract-best-practices/attacks/reentrancy/
https://consensys.github.io/smart-contract-best-practices/attacks/reentrancy/
https://doi.org/10.17487/RFC8553
https://www.rfc-editor.org/info/rfc8553
https://doi.org/10.17487/RFC4346
https://rfc-editor.org/rfc/rfc4346.txt
https://rfc-editor.org/rfc/rfc4346.txt
https://www.dnspython.org/
https://domainnamestat.com/statistics/tldtype/all
https://domainnamestat.com/statistics/tldtype/all
https://dune.com
https://dune.com
https://research.kudelskisecurity.com/2022/02/03/quick-analysis-of-the-wormhole-attack/
https://research.kudelskisecurity.com/2022/02/03/quick-analysis-of-the-wormhole-attack/
https://research.kudelskisecurity.com/2022/02/03/quick-analysis-of-the-wormhole-attack/
https://www.eff.org/deeplinks/2021/09/https-actually-everywhere
https://www.eff.org/deeplinks/2021/09/https-actually-everywhere
https://doi.org/10.17487/RFC2535
https://www.rfc-editor.org/info/rfc2535
https://www.rfc-editor.org/info/rfc2535

Bibliography

— (Jan. 2011). Transport Layer Security (TLS) Extensions: Extension Definitions. RFC

6066. doi: 10.17487/RFC6066. url: https://www.rfc-editor.org/info/rfc606

6.

Ebel, Jonas (2021). Augmenting the MetaMask-Wallet with Domain Name based Au-

thentication of Ethereum Accounts. Master’s Thesis. Technical University of Munich.

Ethereum Name Service (2023a). ENS Contract. https://github.com/ensdomains/en

s-contracts. Accessed: 2023-03-04.

— (2023b). ENS Documentation. https://docs.ens.domains. Accessed: 2023-03-01.

— (2023c). Ethereum Name Service. https://ens.domains/. Accessed: 2023-03-15.

— (2023d). NameWrapper docs. https://github.com/ensdomains/ens-contracts

/tree/master/contracts/wrapper. Accessed: 2023-03-11.

Etherscan (2023a). Contract Source Code Verified. https://etherscan.io/address/0

x58774bb8acd458a640af0b88238369a167546ef2. Accessed: 2023-03-04.

— (2023b). Contract Source Code Verified. https://etherscan.io/address/0x21745

ff62108968fbf5ab1e07961cc0fcbeb2364. Accessed: 2023-03-04.

— (2023c). Ethereum Full Node Sync (Archive) Chart — Etherscan. https://ethersc

an.io/chartsync/chainarchive. Accessed: 2023-02-16.

— (2023d). Ethereum Gas Tracker. https://etherscan.io/gastracker. Accessed:

2023-03-02.

Felt, Adrienne Porter et al. (2015). Improving SSL warnings: Comprehension and adher-

ence. Proceedings of the 33rd annual ACM conference on human factors in computing

systems, pp. 2893–2902.

Felt, Adrienne Porter et al. (2016). Rethinking connection security indicators. Twelfth

Symposium on Usable Privacy and Security (SOUPS 2016). USENIX Association,

pp. 1–14.

Freier, Alan O., Philip Karlton, and Paul C. Kocher (Aug. 2011). The Secure Sockets

Layer (SSL) Protocol Version 3.0. RFC 6101. doi: 10.17487/RFC6101. url: https:

//www.rfc-editor.org/info/rfc6101.

Fröwis, Michael, Andreas Fuchs, and Rainer Böhme (2019). Detecting Token Systems on

Ethereum. Financial Cryptography and Data Security. Ed. by Ian Goldberg and Tyler

Moore. Cham: Springer International Publishing, pp. 93–112. isbn: 978-3-030-32101-7.

Gallersdörfer, Ulrich, Jonas Ebel, and Florian Matthes (2021b). Augmenting MetaMask

to support TLS-endorsed Smart Contracts – Supplementary Material. https://git

hub.com/UliGall/paper-tesc-metamask.

177

https://doi.org/10.17487/RFC6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://github.com/ensdomains/ens-contracts
https://github.com/ensdomains/ens-contracts
https://docs.ens.domains
https://ens.domains/
https://github.com/ensdomains/ens-contracts/tree/master/contracts/wrapper
https://github.com/ensdomains/ens-contracts/tree/master/contracts/wrapper
https://etherscan.io/address/0x58774bb8acd458a640af0b88238369a167546ef2
https://etherscan.io/address/0x58774bb8acd458a640af0b88238369a167546ef2
https://etherscan.io/address/0x21745ff62108968fbf5ab1e07961cc0fcbeb2364
https://etherscan.io/address/0x21745ff62108968fbf5ab1e07961cc0fcbeb2364
https://etherscan.io/chartsync/chainarchive
https://etherscan.io/chartsync/chainarchive
https://etherscan.io/gastracker
https://doi.org/10.17487/RFC6101
https://www.rfc-editor.org/info/rfc6101
https://www.rfc-editor.org/info/rfc6101
https://github.com/UliGall/paper-tesc-metamask
https://github.com/UliGall/paper-tesc-metamask

Bibliography

Gallersdörfer, Ulrich, Jonas Ebel, and Florian Matthes (2021a). Augmenting Meta-

Mask to support TLS-endorsed Smart Contracts. 5th International Workshop on

Cryptocurrencies and Blockchain Technology.

Gallersdörfer, Ulrich, Friederike Groschupp, and Florian Matthes (2021d). Mirroring Pub-

lic Key Infrastructures to Blockchains for On-chain Authentication – Supplementary

Material.

— (2021c). Mirroring Public Key Infrastructures to Blockchains for On-chain Authen-

tication. 5th Workshop on Trusted Smart Contracts In Association with Financial

Cryptography 2021.

Gallersdörfer, Ulrich, Patrick Holl, and Florian Matthes (2020). Blockchain-based Systems

Engineering – Lecture Slides. url: https://github.com/sebischair/bbse.

Gallersdörfer, Ulrich and Florian Matthes (2020). AuthSC: mind the gap between web

and smart contracts. arXiv preprint arXiv:2004.14033. url: http://arxiv.org/ab

s/2004.14033.

— (2021b). TeSC: TLS/SSL-Certificate Endorsed Smart Contracts – Supplementary

Material. https://github.com/UliGall/paper-TeSC. Accessed: 2022-10-31.

— (2021a). TeSC: TLS/SSL-Certificate Endorsed Smart Contracts. The 3rd IEEE

International Conference on Decentralized Applications and Infrastructures.

Glomann, Leonhard, Maximilian Schmid, and Nika Kitajewa (2020). Improving the

blockchain user experience-an approach to address blockchain mass adoption issues

from a human-centred perspective. Advances in Artificial Intelligence, Software and

Systems Engineering: Proceedings of the AHFE 2019 International Conference on

Human Factors in Artificial Intelligence and Social Computing, the AHFE Interna-

tional Conference on Human Factors, Software, Service and Systems Engineering,

and the AHFE International Conference of Human Factors in Energy, July 24-28,

2019, Washington DC, USA 10. Springer, pp. 608–616.

Google (2023). HTTPS encryption on the web. https://transparencyreport.google

.com/https/overview. Accessed: 2023-02-28.

Grajek, Garret, Stephen Moore, and Mark Lambiase (2010). Method and system for gener-

ating digital certificates and certificate signing requests. US Patent App. 12/326,002.

Groschupp, Friederike (2020). Exploring the Use of SSL/TLS Certificates for Identity

Assertion and Verification in Ethereum. Master’s Thesis. Technical University of

Munich.

178

https://github.com/sebischair/bbse
http://arxiv.org/abs/2004.14033
http://arxiv.org/abs/2004.14033
https://github.com/UliGall/paper-TeSC
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview

Bibliography

Herrmann, Pascal, Manov Metodi Ma Tuan Anh, and David Stübing (2021). TLS-based

Authentication Management on Blockchain. Project Work in Software-Engineering for

Business Applications - Lab (IN2106, 2129, 4077). Technical University of Munich.

Hickson, Ian and David Hyatt (2011). Html5. W3C Working Draft WD-html5-20110525,

p. 53.

Hoops, Jan Felix (2021). Threat Analysis, Evaluation, and Mitigation for Smart Contracts

Endorsed by TLS/SSL Certificates. Master’s Thesis. Technical University of Munich.

Huston, Geoff (2023). To DNSSEC or Not? https://labs.apnic.net/index.php/202

3/02/21/to-dnssec-or-not/. Accessed: 2023-02-28.

IANA (2022). About us. https://www.iana.org/about. Accessed: 2022-06-20.

— (2023a). Domain Name System (DNS) Parameters – Underscored and Globally

Scoped DNS Node Names. https://www.iana.org/assignments/dns-paramet

ers/dns-parameters.xhtml#underscored-globally-scoped-dns-node-names.

Accessed: 2023-03-04.

— (2023b). Root Zone Database. https://www.iana.org/domains/root/db. Accessed:

2023-02-27.

ICANN (2023). Domain Name System Security (DNSSEC) Algorithm Numbers. https:

//www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.x

html. Accessed: 2023-03-02.

ISO (2022). ISO/IEC 9594-8:2020. https://www.iso.org/standard/80325.html.

Accessed: 2022-09-04.

ISRG (2023). Let’s build a better Internet – 2022 Annual Report. https://www.abetter

internet.org/documents/2022-ISRG-Annual-Report.pdf. Accessed: 2023-02-28.

Internet Society (2022a). DNSSEC Statistics. https://www.internetsociety.org/dep

loy360/dnssec/statistics/. Accessed: 2022-09-04.

— (2022b). Our Vision: The Internet Is for Everyone. https://www.internetsociety

.org/mission/. Accessed: 2022-05-19.

Johnson, Nick (2020). ERC-3668: CCIP Read: Secure offchain data retrieval. https://e

ips.ethereum.org/EIPS/eip-3668. Ethereum Improvement Proposal.

King, April, Lucas Garron, and Chris Thompson (2022). https://badssl.com. https://b

adssl.com. Accessed: 2023-02-22.

Kraus, Lydia, Martin Ukrop, Vashek Matyas, and Tobias Fiebig (2020). Evolution of

SSL/TLS Indicators and Warnings in Web Browsers. Security Protocols XXVII: 27th

International Workshop, Cambridge, UK, April 10–12, 2019, Revised Selected Papers

27. Springer, pp. 267–280.

179

https://labs.apnic.net/index.php/2023/02/21/to-dnssec-or-not/
https://labs.apnic.net/index.php/2023/02/21/to-dnssec-or-not/
https://www.iana.org/about
https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#underscored-globally-scoped-dns-node-names
https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#underscored-globally-scoped-dns-node-names
https://www.iana.org/domains/root/db
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iso.org/standard/80325.html
https://www.abetterinternet.org/documents/2022-ISRG-Annual-Report.pdf
https://www.abetterinternet.org/documents/2022-ISRG-Annual-Report.pdf
https://www.internetsociety.org/deploy360/dnssec/statistics/
https://www.internetsociety.org/deploy360/dnssec/statistics/
https://www.internetsociety.org/mission/
https://www.internetsociety.org/mission/
https://eips.ethereum.org/EIPS/eip-3668
https://eips.ethereum.org/EIPS/eip-3668
https://badssl.com
https://badssl.com

Bibliography

Kushwaha, Satpal Singh, Sandeep Joshi, Dilbag Singh, Manjit Kaur, and Heung-No Lee

(2022). Systematic review of security vulnerabilities in ethereum blockchain smart

contract. IEEE Access 10, pp. 6605–6621.

Käslin, Kilian (2020). Establishment of a Minimum Viable Self-Sovereign Identity Network.

Master’s Thesis. Technical University of Munich.

Laurie, Ben, Adam Langley, and Emilia Kasper (June 2013). Certificate Transparency.

RFC 6962. doi: 10.17487/RFC6962. url: https://www.rfc-editor.org/info/rf

c6962.

Laurie, Ben, Adam Langley, Emilia Kasper, Eran Messeri, and Rob Stradling (Dec.

2021). Certificate Transparency Version 2.0. RFC 9162. doi: 10.17487/RFC9162.

url: https://www.rfc-editor.org/info/rfc9162.

Lazarenko, Aleksandr and Sergey Avdoshin (2018). Financial risks of the blockchain

industry: A survey of cyberattacks. Proceedings of the Future Technologies Conference.

Springer, pp. 368–384.

Let’s Encrypt (2022). ACME Client Implementations. https://letsencrypt.org/docs

/client-options/. Accessed: 2022-09-04.

— (2023). A nonprofit Certificate Authority providing TLS certificates to 300 million

websites. https://letsencrypt.org/. Accessed: 2023-02-28.

Lovelock, John-David, Martin Reynolds, B Granetto, and Rajesh Kandaswamy (2017).

Forecast: Blockchain business value, worldwide, 2017-2030. Gartner, Stamford, USA.

Mazorra, Bruno, Victor Adan, and Vanesa Daza (2022). Do not rug on me: Zero-

dimensional Scam Detection. arXiv preprint arXiv:2201.07220.

McFadden, Mark (June 2019). Methodology for Researching Security Considerations Sec-

tions. Internet-Draft draft-mcfadden-smart-rfc3552-research-methodology-00. Work

in Progress. Internet Engineering Task Force. 10 pp. url: https://datatracker.i

etf.org/doc/draft-mcfadden-smart-rfc3552-research-methodology/00/.

MetaMask (2023). A crypto wallet & gateway to blockchain apps. https://metamask.i

o/. Accessed: 2023-03-09.

Mockapetris, Paul (Nov. 1983a). Domain names: Concepts and facilities. RFC 882. doi:

10.17487/RFC0882. url: https://www.rfc-editor.org/info/rfc882.

— (Nov. 1983b). Domain names: Implementation specification. RFC 883. doi: 10.1748

7/RFC0883. url: https://www.rfc-editor.org/info/rfc883.

— (Nov. 1987a). Domain names - concepts and facilities. RFC 1034. doi: 10.17487/RF

C1034. url: https://rfc-editor.org/rfc/rfc1034.txt.

180

https://doi.org/10.17487/RFC6962
https://www.rfc-editor.org/info/rfc6962
https://www.rfc-editor.org/info/rfc6962
https://doi.org/10.17487/RFC9162
https://www.rfc-editor.org/info/rfc9162
https://letsencrypt.org/docs/client-options/
https://letsencrypt.org/docs/client-options/
https://letsencrypt.org/
https://datatracker.ietf.org/doc/draft-mcfadden-smart-rfc3552-research-methodology/00/
https://datatracker.ietf.org/doc/draft-mcfadden-smart-rfc3552-research-methodology/00/
https://metamask.io/
https://metamask.io/
https://doi.org/10.17487/RFC0882
https://www.rfc-editor.org/info/rfc882
https://doi.org/10.17487/RFC0883
https://doi.org/10.17487/RFC0883
https://www.rfc-editor.org/info/rfc883
https://doi.org/10.17487/RFC1034
https://doi.org/10.17487/RFC1034
https://rfc-editor.org/rfc/rfc1034.txt

Bibliography

— (Nov. 1987b). Domain names - implementation and specification. RFC 1035. doi:

10.17487/RFC1035. url: https://rfc-editor.org/rfc/rfc1035.txt.

Mozilla Developer Network (2022). webRequest.getSecurityInfo() – Mozilla — MDN.

url: https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExte

nsions/API/webRequest/getSecurityInfo.

Nakamoto, Satoshi (2008). Bitcoin: A peer-to-peer electronic cash system.

Narayanan, Arvind, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder

(2016). Bitcoin and cryptocurrency technologies: a comprehensive introduction. Prince-

ton University Press.

Nilsson, Alexander, Pegah Nikbakht Bideh, and Joakim Brorsson (2020). A survey of

published attacks on Intel SGX. arXiv preprint arXiv:2006.13598.

Nottingham, Mark (May 2019). Well-Known Uniform Resource Identifiers (URIs). RFC

8615. doi: 10.17487/RFC8615. url: https://www.rfc-editor.org/info/rfc861

5.

Openprovider (2023). List of TLDs that support DNSSEC. https://support.openprov

ider.eu/hc/en-us/articles/216648838-List-of-TLDs-that-support-DNSSEC.

Accessed: 2023-02-28.

Parity Technologies (2017). A Postmortem on the Parity Multi-Sig Library Self-Destruct.

https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-libr

ary-self-destruct/. Accessed: 2023-02-15.

Provable (2022). Provable Documentation. http://docs.provable.xyz/#security-de

epdive-authenticity-proofs-types. Accessed: 2022-09-11.

Rescorla, Eric (Aug. 2018). The Transport Layer Security (TLS) Protocol Version 1.3.

RFC 8446. doi: 10.17487/RFC8446. url: https://rfc-editor.org/rfc/rfc8446

.txt.

Rescorla, Eric and Tim Dierks (Aug. 2008). The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246. doi: 10.17487/RFC5246. url: https://rfc-editor.org/r

fc/rfc5246.txt.

Rey, Richard et al. (2023). CheckMyHTTPS – Check your secured WEB flows. https:

//checkmyhttps.net/. Accessed: 2023-02-13.

Ritchie, Hannah, Edouard Mathieu, Max Roser, and Esteban Ortiz-Ospina (2023).

Internet. Our World in Data. https://ourworldindata.org/internet.

Rose, Scott, Matt Larson, Dan Massey, Rob Austein, and Roy Arends (Mar. 2005a).

DNS Security Introduction and Requirements. RFC 4033. doi: 10.17487/RFC4033.

url: https://www.rfc-editor.org/info/rfc4033.

181

https://doi.org/10.17487/RFC1035
https://rfc-editor.org/rfc/rfc1035.txt
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/getSecurityInfo
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/getSecurityInfo
https://doi.org/10.17487/RFC8615
https://www.rfc-editor.org/info/rfc8615
https://www.rfc-editor.org/info/rfc8615
https://support.openprovider.eu/hc/en-us/articles/216648838-List-of-TLDs-that-support-DNSSEC
https://support.openprovider.eu/hc/en-us/articles/216648838-List-of-TLDs-that-support-DNSSEC
https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
http://docs.provable.xyz/#security-deepdive-authenticity-proofs-types
http://docs.provable.xyz/#security-deepdive-authenticity-proofs-types
https://doi.org/10.17487/RFC8446
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.17487/RFC5246
https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc5246.txt
https://checkmyhttps.net/
https://checkmyhttps.net/
https://doi.org/10.17487/RFC4033
https://www.rfc-editor.org/info/rfc4033

Bibliography

Rose, Scott, Matt Larson, Dan Massey, Rob Austein, and Roy Arends (Mar. 2005b).

Protocol Modifications for the DNS Security Extensions. RFC 4035. doi: 10.17487

/RFC4035. url: https://www.rfc-editor.org/info/rfc4035.

— (Mar. 2005c). Resource Records for the DNS Security Extensions. RFC 4034. doi:

10.17487/RFC4034. url: https://www.rfc-editor.org/info/rfc4034.

SSLMate (2023). Cert Spotter - Stats. https://sslmate.com/resources/certspotte

r_stats. Accessed: 2023-02-13.

Sleevi, Ryan (2016). New CT Policy for Chrome Published. https://archive.cabforu

m.org/pipermail/public/2016-May/007573.html. Accessed: 2022-09-04.

Solidity Team (2023). Solidity Releases. https://blog.soliditylang.org/category

/releases/. Accessed: 2023-03-04.

Sporny, Manu, Dave Longley, Markus Sabadello, Drummond Reed, Orie Steele, and

Christopher Allen (2022). Decentralized Identifiers (DIDs) v1.0. https://www.w3.o

rg/TR/did-core/. W3C Recommendation.

StJohns, Michael (Sept. 2007). Automated Updates of DNS Security (DNSSEC) Trust

Anchors. RFC 5011. doi: 10.17487/RFC5011. url: https://www.rfc-editor.org

/info/rfc5011.

Statista (2022). Number of worldwide internet hosts in the domain name system (DNS)

from 1993 to 2019. https://www.statista.com/statistics/264473/number-of-

internet-hosts-in-the-domain-name-system/. Accessed: 2022-09-04.

Stevens, Marc, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov

(2017). The first collision for full SHA-1. Advances in Cryptology–CRYPTO 2017:

37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August

20–24, 2017, Proceedings, Part I 37. Springer, pp. 570–596.

Strugala, Jan-Niklas (2020). Leveraging TLS/SSL-based Identity Assertion and Verifica-

tion Systems for On-chain Authentication and Authorization of Real-world Entities.

Master’s Thesis. Technical University of Munich.

Styler, Joe (2022). The top 25 most expensive domain names. https://www.godaddy.c

om/garage/the-top-20-most-expensive-domain-names/. Accessed: 2022-09-04.

Sun, Zhiyuan (2022). Anonymous user sends ETH from Tornado Cash to prominent

figures following sanctions. https://cointelegraph.com/news/anonymous-user-

sends-eth-from-tornado-cash-to-prominent-figures-following-sanctions.

Accessed: 2022-10-09.

Szabo, Nick (1997). Formalizing and securing relationships on public networks. First

monday.

182

https://doi.org/10.17487/RFC4035
https://doi.org/10.17487/RFC4035
https://www.rfc-editor.org/info/rfc4035
https://doi.org/10.17487/RFC4034
https://www.rfc-editor.org/info/rfc4034
https://sslmate.com/resources/certspotter_stats
https://sslmate.com/resources/certspotter_stats
https://archive.cabforum.org/pipermail/public/2016-May/007573.html
https://archive.cabforum.org/pipermail/public/2016-May/007573.html
https://blog.soliditylang.org/category/releases/
https://blog.soliditylang.org/category/releases/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://doi.org/10.17487/RFC5011
https://www.rfc-editor.org/info/rfc5011
https://www.rfc-editor.org/info/rfc5011
https://www.statista.com/statistics/264473/number-of-internet-hosts-in-the-domain-name-system/
https://www.statista.com/statistics/264473/number-of-internet-hosts-in-the-domain-name-system/
https://www.godaddy.com/garage/the-top-20-most-expensive-domain-names/
https://www.godaddy.com/garage/the-top-20-most-expensive-domain-names/
https://cointelegraph.com/news/anonymous-user-sends-eth-from-tornado-cash-to-prominent-figures-following-sanctions
https://cointelegraph.com/news/anonymous-user-sends-eth-from-tornado-cash-to-prominent-figures-following-sanctions

Bibliography

Szurdi, Janos, Balazs Kocso, Gabor Cseh, Jonathan Spring, Mark Felegyhazi, and Chris

Kanich (2014). The long “taile” of typosquatting domain names. 23rd {USENIX}
Security Symposium ({USENIX} Security 14), pp. 191–206.

TBS Internet (2021). SHA1 Root Certificates - the case of servers returning the root

certificate. https://www.tbs-certificates.co.uk/FAQ/en/serveur-avec-raci

ne.html. Accessed: 2023-03-03.

Thompson, Christopher, Martin Shelton, Emily Stark, Maximilian Walker, Emily Schechter,

and Adrienne Porter Felt (2019). The web’s identity crisis: understanding the effective-

ness of website identity indicators. 28th {USENIX} Security Symposium ({USENIX}
Security 19), pp. 1715–1732.

Ukrop, Martin, Lydia Kraus, Vashek Matyas, and Heider Ahmad Mutleq Wahsheh (2019).

Will you trust this tls certificate? perceptions of people working in it. Proceedings of

the 35th annual computer security applications conference, pp. 718–731.

Waked, Louis, Mohammad Mannan, and Amr Youssef (2020). The sorry state of TLS

security in enterprise interception appliances. Digital Threats: Research and Practice

1 (2), pp. 1–26.

Wieczner, Jen (2017). Ethereum: CoinDash ICO Hacked, $7 Million in Ether Stolen —

Fortune. url: https://fortune.com/2017/07/18/ethereum-coindash-ico-hack

/.

Willmore, Joel (2022). The Seal of Approval: Know What You’re Consenting To With

Permissions and Approvals in MetaMask. https://consensys.net/blog/metamask

/the-seal-of-approval-know-what-youre-consenting-to-with-permissions-

and-approvals-in-metamask/. Accessed: 2022-10-30.

Wood, Gavin et al. (2014). Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151 (2014), pp. 1–32.

Xia, Pengcheng, Haoyu Wang, Zhou Yu, Xinyu Liu, Xiapu Luo, Guoai Xu, and Gareth

Tyson (2022). Challenges in decentralized name management: the case of ENS,

pp. 65–82.

Zhang, Fan, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi (2016). Town

Crier: An Authenticated Data Feed for Smart Contracts. Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security. CCS ’16.

Vienna, Austria: ACM, pp. 270–282. isbn: 978-1-4503-4139-4. doi: 10.1145/297674

9.2978326. url: http://doi.acm.org/10.1145/2976749.2978326.

Zimmermann, Hubert (1980). OSI reference model-the ISO model of architecture for open

systems interconnection. IEEE Transactions on communications 28 (4), pp. 425–432.

183

https://www.tbs-certificates.co.uk/FAQ/en/serveur-avec-racine.html
https://www.tbs-certificates.co.uk/FAQ/en/serveur-avec-racine.html
https://fortune.com/2017/07/18/ethereum-coindash-ico-hack/
https://fortune.com/2017/07/18/ethereum-coindash-ico-hack/
https://consensys.net/blog/metamask/the-seal-of-approval-know-what-youre-consenting-to-with-permissions-and-approvals-in-metamask/
https://consensys.net/blog/metamask/the-seal-of-approval-know-what-youre-consenting-to-with-permissions-and-approvals-in-metamask/
https://consensys.net/blog/metamask/the-seal-of-approval-know-what-youre-consenting-to-with-permissions-and-approvals-in-metamask/
https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1145/2976749.2978326
http://doi.acm.org/10.1145/2976749.2978326

Bibliography

http.dev (2023). 999 Request Denied. https://http.dev/999. Accessed: 2023-02-28.

184

https://http.dev/999

	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	List of Tables
	List of Figures
	Listings
	List of Abbreviations
	Introduction
	Motivation
	Research Questions
	Contributions
	Outline
	Prior Publications and Citation Style

	Foundations and Related Work
	Public Key Infrastructures in the Internet
	Domain Name System
	Transport-Layer-Security and X.509
	Other Security Measures

	Blockchain Networks
	Underlying Concepts
	Blockchain Programmability
	Smart Contracts
	Bridging Information Between the Off-Chain World and On-Chain Blockchain

	State of the Research
	Leveraging Cryptographic Key Material in Blockchain Networks
	Enabling Domain Name Usage in Blockchain Networks

	Summary

	Utilizing Public Key Infrastructures in Blockchains
	Methodological Approach
	Requirements
	Problem-Statement Specific Requirements
	RFC-Specific Requirements
	Overview

	Solution Space
	Fundamental Concept and Elements
	Overview of Solution Space and Relevant Arrangements

	Endorsement
	Entities
	Definition

	Summary

	Off-Chain Verification
	Problem Statement
	Address Replacement Attack
	Missing Data Authentication

	System Architecture and Processes
	On-Chain TLS Endorsed Smart Contract
	Off-Chain Verifier
	Endorsed Smart Contract Registry
	Endorsement of Pre-Existing Smart Contracts
	Revocation
	TLS Key Management

	Threat Model and Security Implications
	TLS as a Base Protocol
	Cross-Protocol Attack Vectors
	Downgrade Attacks
	TLS Private Key Compromise

	Augmentation of User Wallets
	Previous Work and Results
	Revisiting Browser-based Warnings
	Limitations and Mitigation Strategies

	Summary

	On-Chain Verification
	Problem Statement
	Non-Human-Readable Names
	Lack of Access Control

	System Architecture and Processes for On-Chain TLS-Certificate Usage
	X.509 Certificate Storage Database
	Smart Contract Endorsement Database
	Processes and Rationale

	DNSSEC Integration in the Ethereum Name Service
	Architecture Overview

	Rationale in System Architecture Designs and Decisions
	ENS DNSSEC Domain Dataset
	Data Collection
	Data Cleanup
	Data Enrichment
	Data Verification

	Summary

	Evaluation and Comparison of Approaches
	Suitability of Ecosystems
	Availability
	Usage
	Implications for Usage

	Applicability and Practicability
	Technical Challenges
	Autonomy and Simplicity
	Ecosystem Bootstrapping
	ENS DNSSEC Bootstrapping
	Further Complexities

	Costs
	Costs in EVM-based Blockchain Networks
	Gas Cost Analysis
	Overview of Costs

	Assessment of Security
	Interference with Underlying Systems
	Systems Security
	User-Specific Risks

	Requirements
	Functional Requirements
	Non-Functional Requirements
	Overview

	Summary

	Conclusion and Future Work
	Conclusion
	Answer to Research Questions
	Future Work

	Prior Publications and Student Work in the Context of this Thesis
	Endorsement Flags
	Browser Warning Pages
	Related Ethereum Addresses
	DNS Top-Level-Domains in ENS
	DNSSEC Support in Top-Level Domains
	Bibliography

