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Abstract

In medical, industrial, financial, and many other domains, it is common practice to
monitor how measurements change over time. In such settings, the times of measurements
are often not uniformly spaced. In this thesis, we consider such irregularly-sampled time
series, with the goal of defining a generative model for both the measurements and their
arrival times. We further extend our approach to address critical tasks such as time series
classification, forecasting future values, and imputing missing data. First, we combine
neural density estimation and temporal point processes to define a scalable generative
model of the arrival times. Our model offers closed-form maximum likelihood training and
straightforward sampling. Next, using the time of the measurement as input, we introduce
a model that predicts the class of the measurement along with its associated uncertainty.
For data that is continuously observed, we propose a diffusion-based generative model
that can also be conditioned on other available information to successfully forecast and
impute missing values. Finally, we design a model that learns the solutions to differential
equations by imposing certain design constraints on the neural network. Our model
naturally handles the continuous time while offering fast evaluation. Therefore, it can
be used to model dynamical systems and, when coupled with recurrent neural networks,
defines an encoder for irregularly-sampled time series.

iii





Zusammenfassung

In medizinischen, industriellen, finanziellen und vielen anderen Bereichen ist es üblich,
zu überwachen, wie sich Messungen im Laufe der Zeit ändern. In solchen Situationen
sind die Messzeiten oft nicht gleichmäßig verteilt. In dieser Arbeit betrachten wir solche
unregelmäßig erfassten Zeitreihen mit dem Ziel, ein generatives Modell sowohl für die
Messungen als auch für deren Ankunftszeiten zu definieren. Wir erweitern unseren Ansatz
weiter, um kritische Aufgaben wie die Klassifizierung von Zeitreihen, die Vorhersage zukün-
ftiger Werte und die Imputation fehlender Daten anzugehen. Zunächst kombinieren wir
neuronale Dichteschätzung und temporale Punktprozesse, um ein skalierbares generatives
Modell der Ankunftszeiten zu definieren. Unser Modell bietet Maximum-Likelihood-
Training und unkompliziertes Sampling. Als nächstes führen wir unter Verwendung der
Messzeit als Eingabe ein Modell ein, das die Klasse der Messung zusammen mit ihrer
zugehörigen Unsicherheit vorhersagt. Für kontinuierlich beobachtete Daten schlagen wir
ein diffusionsbasiertes generatives Modell vor, das auch auf andere verfügbare Informatio-
nen konditioniert werden kann, um erfolgreich Vorhersagen zu treffen und fehlende Werte
zu imputieren. Schließlich entwerfen wir ein Modell, das die Lösungen von Differentialgle-
ichungen lernt, indem es bestimmte Designbeschränkungen auf das neuronale Netzwerk
auferlegt. Unser Modell behandelt die kontinuierliche Zeit auf natürliche Weise und ist
schnell auszuwerten. Es kann daher zur Modellierung dynamischer Systeme verwendet
werden und definiert in Verbindung mit rekurrenten neuronalen Netzwerken einen Encoder
für unregelmäßig erfasste Zeitreihen.

v





Acknowledgments

I would like to thank my supervisor Prof. Stephan Günnemann for providing me an
outstanding support through this academic journey. I am grateful for your mentorship
and for creating a relaxed atmosphere mixed with a good dose of humor.

Thanks to all the wonderful people at DAML group, I will especially cherish our lunch
conversations. I would like to thank my DAML collaborators Oleksandr Shchur, Bertrand
Charpentier and Johanna Sommer for being a big part of this thesis.

Special thanks to my collaborators Syama Sundar Rangapuram, Tim Januschowski,
Kashif Rasul, Anderson Schneider and Yuriy Nevmyvaka, especially for your support
during my internships.
Thanks to Nicholas Gao who helped translate the abstract to German.
Htio bih se zahvaliti obitelji na pruženoj podršci i ljubavi.
Ivana, hvala ti za sve.

vii





Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

1 Introduction 1
1.1 Contributions and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Own publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Residual networks and dynamical systems . . . . . . . . . . . . . . 6
2.1.2 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Attention and transformers . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Generative modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Temporal point processes . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Normalizing flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Generative diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Temporal Point Processes 25
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Modeling p(τ) with normalizing flows . . . . . . . . . . . . . . . . 28
3.2.2 Modeling p(τ) with mixture distributions . . . . . . . . . . . . . . 29
3.2.3 Incorporating the conditional information . . . . . . . . . . . . . . 30
3.2.4 Universal approximation . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.5 Intensity function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.6 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Event time prediction using history . . . . . . . . . . . . . . . . . . 34
3.3.2 Learning with marks . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Learning with additional conditional information . . . . . . . . . . 35
3.3.4 Missing data imputation . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



CONTENTS

3.3.5 Sequence embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Spatial point processes . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Uncertainty on Event Prediction 39
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Logistic-normal via weighted Gaussian process (WGP-LN) . . . . . 42
4.1.2 Dirichlet via function decomposition (FD-Dir) . . . . . . . . . . . . 44
4.1.3 Model training with the distributional uncertainty loss . . . . . . . 46
4.1.4 Modeling the temporal point process . . . . . . . . . . . . . . . . . 47

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Class prediction accuracy . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Time-Error evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.4 Anomaly detection and uncertainty . . . . . . . . . . . . . . . . . . 52

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Neural Flows 55
5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Proposed architectures . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.2 On approximation capabilities . . . . . . . . . . . . . . . . . . . . . 59

5.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.1 Continuous-time latent variable models . . . . . . . . . . . . . . . 59
5.2.2 Temporal point processes . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.3 Time-dependent density estimation . . . . . . . . . . . . . . . . . . 62

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Stiff ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 Smoothing approach . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.4 Speed improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.5 Filtering approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.6 Temporal point processes . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.7 Spatial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.1 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.2 Autonomous ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.3 Modeling stochastic differential equations . . . . . . . . . . . . . . 70
5.4.4 Modeling partial differential equations . . . . . . . . . . . . . . . . 71

6 Denoising Diffusion for Functions 73
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.1 Fixed-step diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.2 Score-based SDE diffusion . . . . . . . . . . . . . . . . . . . . . . . 76

x



CONTENTS

6.1.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Stochastic processes as noise sources for diffusion . . . . . . . . . . 77
6.2.2 Discrete stochastic process diffusion (DSPD) . . . . . . . . . . . . 79
6.2.3 Continuous stochastic process diffusion (CSPD) . . . . . . . . . . . 80

6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.1 Forecasting multivariate time series . . . . . . . . . . . . . . . . . . 81
6.3.2 Diffusion process as a neural process . . . . . . . . . . . . . . . . . 82
6.3.3 Probabilistic time series imputation . . . . . . . . . . . . . . . . . 84

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4.1 Probabilistic modeling . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4.2 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.3 Neural process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.4.4 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Conclusion 91
7.1 Retrospection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 99

A Appendix for Chapter 3 121
A.1 Intensity function of flow and mixture models . . . . . . . . . . . . . . . . 121
A.2 Discussion of constant & exponential intensity models . . . . . . . . . . . 122
A.3 Discussion of the FullyNN model . . . . . . . . . . . . . . . . . . . . . . . 123
A.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.4.1 Shared architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.4.2 Log-normal mixture . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.4.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.4.4 Deep sigmoidal flow . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.4.5 Sum-of-squares polynomial flow . . . . . . . . . . . . . . . . . . . . 126
A.4.6 Reparameterization sampling . . . . . . . . . . . . . . . . . . . . . 126

A.5 Dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.5.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.5.2 Real-world data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.6 Additional discussion of the experiments . . . . . . . . . . . . . . . . . . . 128
A.6.1 Event time prediction using history . . . . . . . . . . . . . . . . . . 128
A.6.2 Learning with marks . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.6.3 Learning with additional conditional information . . . . . . . . . . 132
A.6.4 Missing data imputation . . . . . . . . . . . . . . . . . . . . . . . . 132
A.6.5 Sequence embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xi



CONTENTS

B Appendix for Chapter 4 135
B.1 Approximation of the uncertainty cross-entropy for WGP-LN . . . . . . . 135
B.2 Comparison of the classical cross-entropy and the uncertainty cross-entropy136

B.2.1 Simple classification task . . . . . . . . . . . . . . . . . . . . . . . . 136
B.2.2 Irregularly-sampled Event Prediction . . . . . . . . . . . . . . . . . 136

B.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
B.4 Details of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.4.1 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.4.2 Time prediction with point processes . . . . . . . . . . . . . . . . . 142

C Appendix for Chapter 5 143
C.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.1.1 Training loss for GRU-ODE-Bayes . . . . . . . . . . . . . . . . . . 143
C.1.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.1.2.1 Properties of GRU flow . . . . . . . . . . . . . . . . . . . 145
C.1.3 ODE reparameterization . . . . . . . . . . . . . . . . . . . . . . . . 145
C.1.4 Attentive normalizing flow . . . . . . . . . . . . . . . . . . . . . . . 146
C.1.5 Linear ODE and change of variables . . . . . . . . . . . . . . . . . 146
C.1.6 Computation complexity of (continuous) normalizing flows . . . . . 146

C.2 Synthetic experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.2.1 Comparing adaptive and fixed-step solvers . . . . . . . . . . . . . . 148
C.2.2 Comparing flow configurations . . . . . . . . . . . . . . . . . . . . 149

C.3 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.4 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.4.1 Encoder-decoder datasets . . . . . . . . . . . . . . . . . . . . . . . 150
C.4.2 MIMIC-III and MIMIC-IV . . . . . . . . . . . . . . . . . . . . . . 151
C.4.3 TPP datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
C.4.4 Spatial datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
C.4.5 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

D Appendix for Chapter 6 155
D.1 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

D.1.1 Discrete diffusion posterior probability . . . . . . . . . . . . . . . . 155
D.1.2 Discrete diffusion loss . . . . . . . . . . . . . . . . . . . . . . . . . 156
D.1.3 Continuous diffusion transition probability . . . . . . . . . . . . . . 157
D.1.4 Sampling from an Ornstein-Uhlenbeck process . . . . . . . . . . . . 157

D.2 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
D.2.1 Probabilistic modeling . . . . . . . . . . . . . . . . . . . . . . . . . 158

D.2.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
D.2.1.2 CTFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
D.2.1.3 Latent ODE . . . . . . . . . . . . . . . . . . . . . . . . . 159
D.2.1.4 Our models . . . . . . . . . . . . . . . . . . . . . . . . . . 159

D.2.2 Neural process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
D.2.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xii



CONTENTS

D.2.2.2 Additional results . . . . . . . . . . . . . . . . . . . . . . 161
D.2.3 CSDI imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xiii





1 Introduction

It is increasingly common to regard data as a commodity, not unlike a typical ore. Sensors
capture raw signals by observing their surroundings and the scrappers save the footprints
across the online world. This raw material is then refined and sometimes enriched with
manual labeling, for it to be fed into algorithmic machines that compress and abstract
away, with the aim of producing models. Once the learning is complete, the original data
is all discarded but its task-dependent, distilled representation is embedded in the model’s
parameters. At that point, the model is deployed to perform its designated task with the
promise of efficiency and accuracy, beyond what humans could achieve.

The history of machine learning predates modern computing machines; Gauss had been
fitting curves to the motions of celestial bodies already in the early 19th century [77]. In
the simplest case, the collection of points can be summarized by two parameters, the
slope and the offset of the curve—a straight line passing through the points. However,
with more complicated data, we have to utilize more advanced approaches. The first step
was to make the models non-linear [174] which, in the above example, gives us access to
all kinds of different curves, matching the real trajectory more closely. For even more
complicated data like images and time series, it is hard to find a simple mapping between
input and output. The progress was made by stacking representations into a hierarchy,
where each layer abstracts more that the previous, essentially learning the features of
data which are then easier to map to the correct output [113]. This is referred to as deep
learning, a revolution in machine learning that was led by improvements in both the
hardware and the software [194, 207] and which allowed achieving great results in image
classification [142], as well as speech recognition [101], language translation [257], time
series forecasting [232], and others.

In this thesis, we will consider data that is collected irregularly in continuous time,1

with missing values, and having varying sequence lengths. This kind of data can be found
in many domains, including medical measurements, dynamical systems, stock prices,
location data, social interactions and various systems’ logs, to name a few.

1.1 Contributions and outline

We aim to answer a research question that naturally imposes itself when we consider
applying neural networks to data that has some special structure:

How to represent and output irregularly-sampled data using neural networks?

1Meaning with varying time lengths between the observations; not having a constant sampling rate.
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1 Introduction

Irregularly-sampled
time series data

Event data

Continuous
functions

How to input and
output data?

When events occur?

Which events occur?

Intensity-free Learning of
Temporal Point Processes [240]
(Chapter 3)

Uncertainty on Asynchronous
Time Event Prediction [14]
(Chapter 4)

How to generate?

Modeling Temporal Data
as Continuous Functions
with Process Diffusion [17]
(Chapter 6)

Neural Flows: Efficient Alternative
to Neural ODEs [19]
(Chapter 5)

Figure 1.1: Frequently asked questions when encountering irregular time series. Depending on
the task we can use different methods that we present throughout this thesis. The
above diagram shows the structure of the chapters together with the corresponding
papers they are based on. For a full list of publications, see Section 1.2.

When using neural networks, we prefer representing data compactly, with a fixed-sized
vector that can be passed on to the downstream task. Compared to the conventional
data types such as images or even regular time series, the main challenge here is tackling
the nonuniform sampling rate. In this thesis, we will explore models that can handle
continuous time and irregularity to produce useful representations of such data.

Figure 1.1 shows some common questions one might ask when dealing with irregularly-
sampled time series. The first thing to notice are the two main types of time series that
we consider: events and continuous values. For example, some observations are only made
at a specific time point and do not persist, like earthquakes or messages between two
people. On the other hand, measurements like temperature or velocity are assumed to be
continuous in time and they exist even when we do not take a measurement. Based on
this categorization we will approach modeling such data in different ways.

Since event data is strictly tied to their observation times, a natural thing to ask is
whether we can model the arrival time of new events. A common solution to this problem
specifies density over time, that is, a function that tells us how many new events we
expect to see on some time interval. The framework we will use to model this is called a
temporal point process (TPP). In Chapter 3 we will see how to combine TPPs with deep
learning, to produce more expressive models, along with some other desirable properties.

Time points are rarely observed on their own, we usually have additional information
tied to them; for example, who is messaging whom or the location of the earthquake.
Therefore, given a history of observations we would like to be able to predict what happens
at some future time point. Modern machine learning, in particular deep learning, excels
at predictive supervised tasks, however, we often observe overconfidence in prediction,
especially when encountered with an out-of-distribution data. We discuss this in more

2



1.2 Own publications

detail in Chapter 4. The way we solve this problem is by designing a model that can
assign an amount of certainty to a prediction, including the case when it is uncertain if
any event will happen.

In all of the previous cases we had some kind of model that inputs an irregularly-sampled
time series and outputs the same type again or represents it as a fixed-sized vector. One
way to output irregular data is to assume it follows some function, learn this function,
and evaluate it at the given time points. For that, we can use an ordinary differential
equation as it describes how given initial points evolve over time. Combining the ODEs
with neural networks allows learning the dynamics from data directly. In Chapter 5 we
present an alternative model called neural flows that also learns the dynamic, same as
neural ODEs, but without ever specifying the differential equation. Instead, we learn
the solutions to differential equations directly with a neural network which allows us to
have computationally efficient model while preserving the desired properties of ODEs. To
represent the data with a fixed-sized vector we can assume it too evolves over time and
gets updated whenever we encounter a new data point. Thus, the model can naturally
handle irregularity. We can use such a model to, for example, represent the history on
which we condition TPPs.

As mentioned before, some quantities might not be best described as events since the
time of measurement is dependent on our sensors and the value can be queried at any time
point, like when measuring temperature. Therefore, we assume there is some underlying
continuous function from which we sample measurements. In Chapter 6 we aim to find
a model that generates functions as samples, and we make a connection to stochastic
processes. One way to generate new data is to start from pure noise and gradually denoise
the sample until we reach a sample from the data distribution. The denoising is performed
with a neural network which is trained on many clean-noisy data pairs. In our case, we
extend this framework to temporal data and present different applications that our model
supports, such as imputation and interpolation.
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In: Neural Information Processing Systems (NeurIPS). 2021.
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Günnemann. “Modeling Temporal Data as Continuous Functions with Process
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2 Background

In this chapter we provide a background on neural networks (Section 2.1) as well as a
short overview of the methods for generative modeling (Section 2.2). The structure in
some sections is inspired by [84, 48, 240, 202, 22]; for a more extensive treatment of the
topics that follow, the reader is referred to these materials.

2.1 Neural networks

An artificial1 neural network is, in the broadest sense, any differentiable function f with
a set of learnable parameters θ. We denote an input value with x ∈ Rdx and the network
output with y ∈ Rdy , y = fθ(x). Perhaps the simplest example of a neural network is
the single-layer feedforward network y = σ(Wx) + b, where W ∈ Rdy×dx , b ∈ Rdy , and
σ : R → R is a non-linear function which acts elementwise2 on an input vector preserving
the dimension—also known as the activation function. The learnable parameters in this
case constitute of a matrix W and vector b. An intermediate value h = Wx+ b is called
a hidden or latent value.

Although, in theory, a single hidden layer with an activation function is enough to
capture a large family of functions [46], the success of neural networks comes from stacking
multiple layers on top of each other. If we alternate between affine transformations and
activation functions, we get a multilayer feedforward network:3

y = σl(Wlσl−1(. . . σ1(W1x+ b1) . . . ) + bl), (2.1)

with all the weights and biases having compatible dimensions. The learnable parameters
are θ = {W1, . . . ,Wl, b1, . . . , bl}. This is one of the basic building blocks for our models;
we cover others, such as recurrent neural networks, later in the chapter.

Given data and an architecture such as Equation 2.1, we want to find the best θ for the
task at hand, for example, regression. To actually find the parameters, we have to specify
what we mean by saying that “something is the best fit.” In case of linear regression this
can be the average distance between the true values y and predicted points fθ(x) which
we call a loss function. The problem of finding the best parameters is now the problem of
minimizing the loss, also known as training.

For classification one would use a network that outputs a probability that a certain
class is the correct one and optimize cross-entropy loss. The network is now constrained

1We omit artificial in the rest of the text and refer to the models simply as neural.
2This is not always the case, consider softmax(z)i = ezi∑

j e
zj which is used to output probabilities in a

classification task. It will also be used in Section 2.1.3 as a key element of transformer model.
3Also sometimes referred to as a multilayer perceptron and abbreviated as MLP.
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to output values between zero and one which can be achieved by using softmax as the
final activation. In this example, we can already see how a given task imposes certain
constraints that can be directly implemented inside a model. Many of the methods
presented in the thesis will follow this pattern.

Finally, to actually learn the optimal values of θ given a loss function we usually
perform gradient descent. First, the gradient of the loss is computed with respect to
all the learnable parameters, using automatic differentiation. Second, we update the
parameters using the gradient information to minimize the loss in an iterative manner.4

Loss landscape can be visualized as a surface whose height depends on θ. The gradient
then points in the direction of the slope, and the gradient descent will lead us to a
minimum, analogous to rolling a ball downhill.

Therefore, it is crucial that the neural network and the loss are built from differentiable
operations. This is a requirement that is already satisfied by many functions which
allowed designing neural networks with ease, which in turn allows building models that
specialize on different, structured data types. For example, recurrent neural networks
excel on temporal data (Section 2.1.2). In the following, we will see more examples.

2.1.1 Residual networks and dynamical systems

When we scale the number of layers, the feedforward network (Equation 2.1) suffers from
vanishing gradients, that is, the magnitude of the gradient is lower in the first layers
and approaches zero, meaning the parameters cannot be updated. This is especially true
when using a sigmoid or tanh activation function. A part of the solution is to use a
better suited activation function σ(z) = max(0, z), called ReLU. Another improvement
is to introduce residual connections that allow the gradients to flow deeper through the
network. Let xt be the output after t layers, then the residual layer is defined as:

xt+1 = xt + gt(xt), (2.2)

where gt : Rd → Rd is a feedforward network. Even if gt does not pass any gradient
information, the skip connection “+xt” will. Stacking multiple residual layers gives us
the residual network (ResNet) that is used in image classification and other tasks [100,
273], where we need many layers to extract hierarchical features.

Coincidentally, Equation 2.2 bears a resemblance to a discretization of a dynamical
system, which was noticed by several previous works [160, 277]. Instead of viewing xt as
a result of t consecutive layers, we can think of it as a result of some dynamics after t
time steps, given a starting point x0 (network input). Further, gt is seen as being copied
across all layers, but it now depends on t and not only xt. If gt is independent of time
we call the system autonomous. If t remains an integer, we get a discrete system and
Equation 2.2 is called a map. Letting t be continuous and updating Equation 2.2 in small
increments t 7→ t+ ϵ defines a continuous system that is called a flow. We will discuss
flows in more detail in Chapter 5.

4In practice, it is customary to use existing programming frameworks that implement backpropagation,
optimizers and other useful functions. In this thesis we mostly use PyTorch [207], in Chapter 4 we
use TensorFlow [173].
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2.1 Neural networks

Neural ordinary differential equations. The continuous time case is the one we are
mostly interested in. This corresponds to defining an ordinary differential equation (ODE).
Stating it more explicitly, let us define the time dependent variable x(t) ∈ Rd and the
neural network f : Rd+1 → Rd. Then the neural ODE can be written as [35]:

dx(t)

dt
= f(x(t), t). (2.3)

Abusing the notation to rearrange the terms we get dx(t) = x(t+ ϵ)−x(t) = dt ·f(x(t), t)
which highlights the similarity to Equation 2.2. Note that, although we interpret t as time,
it can represent any change in some scalar quantity, for instance, the distance traveled
along some line. Given the starting point x(t0) at t0 and the final time point t1, we can
compute x(t1) with:

x(t1) = x(t0) +

∫ t1

t0

f(x(t), t) dt = ODESolve(f,x(t0), t0, t1), (2.4)

where the final right-hand side operation hints that the solution is often obtained by
running a numerical solver, as the closed-form solution is usually nonexistent. The
simplest numerical solver (Euler method) works similarly to Equation 2.2 as it performs
the first-order updates. It is, however, imprecise so more advanced solvers are preferred
as they can augment the number of steps and offer more numerical stability [60].

The uniqueness of the obtained solution x(t1) is covered by the Picard-Lindelöf theorem
[43] that states it is sufficient for f to be continuous in t and Lipschitz continuous in x.
Lipschitz continuity tells us that the function will not blow up at some points, by bounding
the amount of change in the output given the change in the input. More rigorously, a
function f is Lipschitz with constant α if for any x and y, |f(x)− f(y)| < α|x− y|.

A function that has a Lipschitz constant α < 1 is called a contraction since it is
not expanding the space. A useful property of such maps is that they have a unique
fixed point, that is, applying f to any input x repeatedly converges to the same output
x⋆ = (f ◦ · · · ◦f)(x), by the Banach fixed-point theorem [8]. If we make gt in Equation 2.2
a contraction, the whole residual layer becomes invertible which will prove to be useful in
Chapter 5 for constructing invertible neural networks.

Given input data x(t0), t0 and t1 and a target value x(t1) we want to learn the dynamics
f . Since f is a neural network and the solver simply invokes f multiple times, adding
up the derivatives df from t0 to t1, the ODESolve call is fully differentiable and we
can propagate the gradients through it. However, the solver might require hundreds of
evaluations of f , meaning that the full computation graph looks like a very deep ResNet,
leading to potential memory issues. A solution to this problem is presented in an adjoint
sensitivity method which allows us to get the gradients by solving another ODE backwards
in time, without storing all the intermediate values [35, 212]. This works with any ODE
solver and has a much lower memory cost since the intermediate solutions are not stored.

In Chapter 5 we will discuss the drawbacks of specifying a dynamic with Equation 2.3
and argue in favor of modeling the solution of the dynamic directly. This will require
implementing certain constraints in our network which we will solve by designing modified
ResNets that satisfy the desired properties.
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2.1.2 Recurrent neural networks

Given a sequence of inputs (x(1), . . . ,x(N)), a common task is to predict the outputs
(y(1), . . . ,y(N)). What we often want to know is the probability p(y(t)|x(1), . . . ,x(t)) of
an output y(t) at a step t, given previous inputs. The restriction to only use the first t
inputs comes from the natural temporal ordering of the data—we cannot look into the
future. The model we consider is a neural network that takes the current input x(t) and
all the preceding inputs, and maps them to a vector h(t), called a hidden state, from
which we can predict the output. We use the same neural network to obtain hidden states
at every step; the final result is the latent representation of a sequence. This network is
called a recurrent neural network (RNN) and the update equations are defined as follows:

z(t) = Wh(t−1) +Ux(t) + b (2.5)

h(t) = tanh
(
z(t)
)

(2.6)

o(t) = V h(t) (2.7)

ŷ(t) = softmax
(
o(t)
)

(2.8)

where the learnable parameters W , U and V are shared at every time step. Here, we
specify a classification model with a softmax activation at the end. Since the operations
are differentiable, we can train this model with backpropagation. The loss in this case is
summed over all of the time steps.

To perform backpropagation we can think of an RNN as a classical neural network
with N layers and with inputs and outputs at every layer. This is sometimes referred to
as unrolling the RNN. We will again encounter a known issue of trying to propagate the
gradient for many layers, or equivalently in our case, far into the past. The equations that
update the parameters W and U depend on the gradient of loss with respect to hidden
state ∂L/∂h(t). If we write out this term for a simple one-dimensional case we get:

∂L
∂h(t)

=
N∑
s=t

∂L(s)

∂h(s)
∂h(s)

∂h(t)
=

N∑
s=t

∂L(s)

∂h(s)

∏
t≤k≤s

∂h(k)

∂h(k−1)
=

N∑
s=t

∂L(s)

∂h(s)

∏
t≤k≤s

W

(
1−

(
h(k)

)2)
(2.9)

If W under the product is smaller than 1, the whole term will approach 0 (vanish) and if
W is larger than 1 it will approach ∞ (explode), as t→ ∞. That means we cannot keep
the gradient information over many steps, which in turn means the network cannot learn
long-term dependencies. Pascanu et al. [206] prove that it is sufficient that ρ < 1, where
ρ is the spectral radius of the recurrent weight matrix W , for long term components to
vanish and necessary that ρ > 1 for them to explode.

The problem of learning long term dependencies can be solved by introducing new
architectures, similar to the residual networks (Section 2.1.1). Unlike ResNets, which
simply pass the information in an additive way, new RNNs employ a gating mechanism
that decides when to keep and when to discard the information. This allows the model to
keep the hidden state intact for longer periods of time.
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2.1 Neural networks

Gated recurrent unit (GRU) is one RNN improvement that updates a hidden state
given previous state h(t−1) and new input x(t) using gating [40]:

z(t) = σ(Wz[h
(t−1),x(t)]) (2.10)

r(t) = σ(Wr[h
(t−1),x(t)]) (2.11)

h̃(t) = tanh(W [r(t) ⊙ h(t−1),x(t)]) (2.12)

h(t) = (1− z(t))⊙ h(t−1) + z(t) ⊙ h̃(t) (2.13)

Equation 2.12 is the same as the update equation in a simple RNN if we think of a vector
(r(t) ⊙ h(t−1)) as the previous state. Instead of getting the new state we get a candidate
h̃(t). The motivation for the following steps is that not every input should be fully taken
into account when updating the hidden state. For that, we calculate the gate z(t) that
determines how much information from the candidate state are we going to take, and at
the same time, how much information from previous state will be written over. When
z(t) = 0 the whole previous state is kept and the network has completely discarded the
new input (Equation 2.13). On the other hand, when z(t) = 1 it forgets everything about
the past and only keeps the new state based on the new input. Note that z(t) is a vector
so the network can keep and discard per individual dimension of h(t).

A different architecture is the long short-term memory (LSTM) [103] that historically
preceded GRU. Instead of having one hidden state, there are two: a cell state vector c(t)

and a hidden state h(t) that is also used as the output. Given a previous cell, a hidden
state, and a new input, we can update the cell and hidden state as follows:

f (t) = σ(Wf [h
(t−1),x(t)]) (2.14)

i(t) = σ(Wi[h
(t−1),x(t)]) (2.15)

o(t) = σ(Wo[h
(t−1),x(t)]) (2.16)

c(t) = f (t) ⊙ c(t−1) + i(t) tanh(W [h(t−1),x(t)]) (2.17)

h(t) = o(t) ⊙ tanh(c(t)) (2.18)

where f (t), i(t) and o(t) are forget, input and output gates, respectively. Second term on
the right-hand side in Equation 2.17 is the familiar update of the hidden state from an
RNN. It is multiplied with the input gate and combined with the gated previous state cell
similar to Equation 2.13. Finally, we get the output by multiplying the cell state with the
output gate. Notice that, since there are multiple gates, we can keep the previous state
and the new input, or discard both of them. There are other variants that have different
connections. For example, peephole LSTM replaces h(t) with c(t) in all equations [78].

We will use GRU and LSTM extensively through the thesis since they are one of the
most common ways to encode a time series with a neural network. However, since we are
dealing with irregularly-sampled time series, we will have to adapt the models to account
for this. For example, in Chapter 5 we present an extension of GRU architecture that
evolves the hidden state in continuous time between observations, instead of just using
Equation 2.13.
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2.1.3 Attention and transformers

As we have seen in Section 2.1.2, RNNs struggle learning to keep the information for many
time steps. Such a behavior is undesirable in certain tasks like machine translation where
the dependence between the words persists over longer horizons. The first encoder-decoder
architectures [257] used one RNN to process the text in the source language and another
RNN to output the translation to the target language, word-by-word. However, by the
time the decoder would start translating, the first word from the source would be a
full sentence away. This turned out to be an issue since the first word from the source
is usually the most relevant when starting the translation. Therefore, Bahdanau et al.
[6] introduced a way to look-up all the words in the source sentence and pick the most
relevant one when generating the currently translated word, called attention.

Attention in neural networks is used to denote a soft selection from a set of elements. If
we continue with the previous example, the set consists of individual words and we would
like to select one of them. The simplest way to implement this is to have a layer that
outputs the index of the word we want to select, however, this is not differentiable and
therefore is not learnable. An alternative approach is to assign a unique weight value to
all the words, and then multiply the vector representations of words by their (normalized)
weights and sum everything up. If the weight vector is, for example, (0.01, 0.99, . . . , 0),
we would be essentially selecting the second element, although the final vector would also
include some information from other elements as well (note the 0.01 weight).

More formally, if we have a set of elements (v1, . . . ,vn), vi ∈ Rd and a query vector
q ∈ Rd, the output of the attention layer will be:

y =
∑
i

aivi, a = softmax(vT
1 q, . . . ,v

T
n q). (2.19)

The inner product vT
i q measures the similarity of each input to the query, whereas the

softmax can be seen as a way to normalize the resulting similarity scores. If some value
is very close to q, it will be preserved in the output. Vaswani et al. [273] abstract this
further and introduce three matrices that pack together the vectors: Q ∈ Rn×dk ,K ∈
Rn×dk ,V ∈ Rn×dv , corresponding to queries, keys and values, respectively. The attention
is now defined as:

Attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V , (2.20)

which differs from Equation 2.19 by introducing multiple query vectors and separating
the keys from the values. The keys play a role in measuring the similarity and the values
correspond to the actual quantity we care about. Coming back to the machine translation
example, K and V would both correspond to the source sentence representation and Q
would represent the current state of the translated sentence. The separation of keys and
values allows us to have one representation for the word that will be translated and one
representation that is used for selection of the word with respect to the query.
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Multi-head and self attention. Attention layer (Equation 2.20) can be applied to any
set-like data: words, time series, point clouds, patches of pixels, etc. In practice, it is
useful to apply attention in parallel which is referred to as multi-head attention. In the
simplest case, we can copy the matrices Q,K,V h-times, transform them with the linear
layers, run attention on each of the copies and concatenate back the results. Another
useful transformation is when we apply the attention to the set itself, that is, given a set
of points X, we obtain the query, key and value matrices directly from X with a neural
network and collect the result of an attention layer, which will preserve the cardinality.
This allows for rich interactions between all the set elements.

Positional encoding. Attention, as proposed in Equation 2.20, does not distinguish
between the different orderings of the elements and is, therefore, a permutation equivariant
transformation. Although this can be useful in some cases [15], we would usually like to
have a notion of ordering, especially when dealing with time series data. Vaswani et al.
[273] propose using a positional encoding that takes the element position i and outputs
the vector p = (p1, . . . , pd), where d is the dimension of the input data:

pj = sin

(
j

100002j/d
+ jπ

)
. (2.21)

Transformer is an architecture that combines all of the previously presented ideas to get
an expressive encoder-decoder model. For example, in machine translation the encoder
input will be the sentence tokens with the positional encoding added to them. Multiple
stacked layers of multi-head (self) attention, layer normalization [4], and feedforward
layers, with residual connections between them produce the source language sentence
embeddings. The decoder has the same structure, however, the multi-head attention
takes the encoder embeddings as keys and values and the currently translated sentence as
query. The decoder has to be autoregressive, producing one token at a time, but during
training the ground-truth translation is simply shifted to the right by one token and the
attention implements masking such that it is impossible to attend to the future tokens.
That is, the masking is causal and prevents leaking any information from the future when
predicting the current token. Thus, the training can be parallelized.

We will use attention and transformers as a building block for a spatio-temporal model
in Section 5.2.3. We build an attention-like model to capture distance between points
in Section 6.3.2. Finally, we discuss how attention can be reparameterized to allow fast
evaluation of its Jacobian for density modeling (see Section 3.4.1 for motivation, and [15]
for a more detailed discussion).

2.2 Generative modeling

Most of the questions we ask when dealing with irregular time series (see Figure 1.1)
can be answered by finding the appropriate distribution, for example, we rephrase when
events occur to which distribution captures the arrival time of events. For a more
concrete example, in regression we can specify the probability of the predicted value for
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a given input p(y|x). The value y is a scalar and the probability p is usually a normal
distribution. However, in real-world, we will encounter other, more complicated cases. In
machine translation, the conditional distribution p(y|x) is over the vector y. Language
embedding models, on the other hand, capture the distribution p(x), where x is a set
of tokens. Models that specify the distribution of the observables are called generative
models, in contrast to modeling probability of target given observation which is known
as discriminative modeling. In the rest of this section we will take a look at the ways
to define a generative model, where the common goal between all of them is to enable
generating new samples from the learned distribution.

In our case, we are dealing with temporal data {(xi, ti)}ni and would like to know when
something happens, and what happens at a given time point. That is, we are interested in
p(t) where the set of time points t = (t1, . . . , tn) is strictly increasing and the number of
points is random, following some underlying process. The “what happens” question can be
written as p(x|t)—for a given time we model the distribution of the observations. Further,
we might be interested in forecasting the future values given a history of n observations
Hn = {(xi, ti)}ni : p(xn+1, tn+1|Hn). When dealing with partially observed data we can
ask what is the distribution of the missing values given the observed, and so on.

2.2.1 Temporal point processes

In this section we answer the question of when the event happens by defining the process
that generates time points on an interval [0, T ]. The number of points we observe on this
interval together with their positions are random. This can be naturally described using
the framework of temporal point processes (TPP). We first introduce the notion of a
counting process N(t) that returns the number of events on the interval [0, t]. Let N(t)
be a random variable and consider the following distribution:

Pr{N(t) = n} =
(λt)n

n!
e−λt. (2.22)

This is known as a Poisson distribution so we say Equation 2.22 specifies a Poisson
process. The expected number of points on [0, t] will be λt and the process is stationary
(homogeneous) since it is Poisson with the same rate λ∆t on any of the subsets of the
interval with length ∆t. The term λ is also known as the intensity of a process and
is defined as a probability Pr{observing exactly one event on [t, t + ϵ)}. To generate
new points from this process we first draw the number of elements n from a Poisson
distribution, and then independently and uniformly sample n points from interval [0, T ].

Another way to sample new points is by drawing new arrival times one by one,
sequentially in an increasing order. This is also a more natural way to perform sampling
as the data was generated sequentially in time. For that, we consider the distribution
Pr{N(t) = 0} = e−λt, that is, the interval until the first point arrives which is also
known as the survival function. Since the original process is stationary and points are
independent, this distribution applies everywhere because it does not matter where we
place the origin t = 0. Therefore, we can conclude the inter-arrival times τi = ti − ti−1,
with t0 = 0, are exponentially distributed in the case of homogeneous Poisson process.

12



2.2 Generative modeling

Having a uniform distribution in time is usually not very realistic. If we consider
counting the cars on the highway, we expect different values at different times of the
day, while observing the peak numbers during the rush hour. The solution is to make
the intensity λ a function that changes with time: λ(t). This allows us to define regions
with more expected points and regions with less points. The sampling procedure is still
the same, the total intensity Λ =

∫ T
0 λ(t) dt now acts as the parameter of the Poisson

distribution and the locations of points follow the probability density function proportional
to λ(t), normalized to integrate to 1 on the interval which is easily obtained by dividing
with Λ. We can write down the likelihood of the so-called inhomogeneous process:

p(t1, . . . , tn) =
n∏
i

λ(ti) exp

(
−
∫ T

0
λ(t) dt

)
. (2.23)

However, this kind of a process still does not capture all the rich interactions we might
expect to see in real-world. For example, the occurrence of one event could influence
the future events. This is often observed in earthquake data and social networks since
sending a message to another person increases the probability of getting a response soon
after in a similar way how a single big earthquake is always followed by aftershocks. We
can model this behavior by defining a TPP in an autoregressive manner. Let pi(t|Hi−1)
denote the conditional probability density function of observing ith event at t, where
Hi−1 = {t1, . . . , ti−1} is the history of previous observations. Then the TPP can be
defined with the sequence of conditional distributions {p1(t), p2(t|t1), . . . }.

We now define the conditional survival function similarly: Si(t|Hi−1) = Pr{ti > t|Hi−1},
specifying the probability that a new point arrives after t, having observed i− 1 points
already. Conditional survival and probability density functions are connected by:

Si(t|Hi−1) = 1− Fi(t|Hi−1) = 1−
∫ t

ti−1

pi(s|Hi−1) ds, (2.24)

where Fi(t|Hi−1) is the cumulative distribution function. Now, we define the hazard
function as the probability that the first next event happens precisely at t:

hi(t|Hi−1) = p(t|Hi−1, ti /∈ [ti−1, t)) =
pi(t|Hi−1)

Si(t|Hi−1)
. (2.25)

The hazard function can be interpreted as the failure rate in the field of survival analysis
since it measures the ratio between the number of failures and the size of the alive
population, both at time t. From Equations 2.24 and 2.25 we can derive the following
connection: Si(t|Hi−1) = exp(−

∫ t
ti−1

hi(t|Hi−1)). From here, we define the conditional
intensity as a piecewise function by concatenating the hazard functions:

λ∗(t) =

{
h1(t), 0 < t ≤ t1

hi(t|Hi−1), ti−1 < t ≤ ti.
(2.26)

The conditional intensity is interpreted as the expected rate of events, given the history.
Finally, we can write down the likelihood of observing the realization {t1, . . . , tn} on
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interval [0, T ] using the conditional intensity:

p(t1, . . . , tn) =
n∏
i

λ∗(ti) exp
(
−
∫ T

0
λ∗(t) dt

)
. (2.27)

Random time change. Since λ∗(t) = λ(t) holds for a Poisson process, Equations 2.23
and 2.27 look exactly the same, as expected. However, there exists a deeper connection
between any TPP specified by λ∗(t) and a Poisson process. By transforming the time
points with t 7→

∫ t
0 λ

∗(s) ds we obtain a new process which is a Poisson process with unit
rate [47, Theorem 7.4.I]. This is similar to the fact that the values of a cumulative density
function of any random variable follow uniform distribution. We can use random time
change to simulate realizations from TPPs, design scalable neural models and perform
anomaly detection [241, 242].

Conventional models. Although we can define a TPP in many different but equivalent
ways, conditional intensity is often preferred in literature. From the above definition it is
clear that the intensity function only has to be non-negative. Therefore, the requirements
are not too strict and we are free to pick from a large family of functions, however, the
properties of the process will heavily depend on what kind of function we choose.

In case we want bursty behavior, as is the case with earthquake data, we need one
event to trigger the next one. This is captured with a self-exciting or Hawkes process [99]:

λ∗(t) = µ(t) + α
∑
tj<t

ϕ(t− tj), (2.28)

where µ(t) is some base intensity corresponding to an inhomogeneous Poisson process and
ϕ is a kernel function, usually decaying in time. Therefore, the intensity is the highest
immediately after the event occurs and decays to a base intensity µ with time. The
resulting realization will consist of clusters of points.

On the other hand, if we want to capture the process which tends to have equally
spaced time points we can use a self-correcting process [112]:

λ∗(t) = exp

µt−∑
tj<t

α

 . (2.29)

Unlike Hawkes process, the intensity decreases after each event and then rises with time.

Neural approaches. When we are given data that we know comes from a Hawkes process
(Equation 2.28), we can ask the question of finding the optimal µ, α and ϕ that maximize
the likelihood in Equation 2.27. As we have seen in Section 2.1, we can use gradient-based
optimization for this. The next step towards pure neural models is specifying λ∗(t) with
a neural network. The model should input the full history Hi−1 and the time point t,
and output the value of the conditional intensity at t which should be non-negative.
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2.2 Generative modeling

An example architecture could be an RNN (Section 2.1.2) that uses previous time
points as inputs and outputs the latent representation of the sequence h ∈ Rh. Then,
a neural network with a non-negative final activation function (for example, softplus:
σ(x) = log(1+exp(x))) takes h together with t and outputs λ∗(t). The loss is the negative
log-likelihood as defined in Equation 2.27. Computing the likelihood is not possible in
closed-form due to an integral term which depends on a neural network. Therefore, one
solution is to approximate the integral using Monte Carlo sampling and another is to
find a way to compute the integral directly. In Chapter 3 we will present an approach
that does the latter by specifying the probability density function instead, which allows
closed-form likelihood and straightforward sampling.

Marked TPPs. Besides the time of the event, we often care about the type of the event
as well. In social networks this could be information containing who is sending a message
to whom. We call this additional information marks, and denote them with m. Marks are
usually categorical features that we can predict by modeling the categorical distribution.
Given history, the TPP then describes p(t,m) which can be factorized as p(t)p(m|t),
that is, we separately model the TPP p(t) and simply output p(m|t) given the known
time t. This straightforward implementation is equivalent to having K different TPPs,
for K mark types, obtained by reweighing the base intensity λ∗(t) with the categorical
distribution p(m|t). That is, for kth mark type we have the following conditional intensity:
λ∗k(t) = p(m = k|t)λ∗(t). On the other hand, if we decide to factorize the joint distribution
such that p(t,m) = p(m)p(t|m), we then model K separate TPPs, one for each mark
type and which cannot be expressed in as simple reweighed terms.

Spatial point processes. We can think of spatio-temporal processes as marked TPPs,
where the mark is a value from Rd that usually corresponds to the location of the event.
Omitting time, the spatial process specifies the probability of observing the set of points
{x1, . . . ,xn} where n is random. Similar to TPPs, we can define the counting process
and use a Poisson distribution to model the number of points we observe on a domain
B ⊂ Rd (for TPPs this was the interval on R). The realization of a homogeneous Poisson
process can be again sampled by first sampling n from a Poisson distribution and then
sampling n points uniformly on the domain B. The inhomogeneous process replaces
the uniform distribution with a probability density function p(x) on B. Since there is
no canonical ordering of the points, as we had in the TPP case, we cannot define the
conditional intensity function in the same way. Given the observed set of n points, the
likelihood can be written as [48]:

p(x1, . . . ,xn) = n!p(n)p̃(x1, . . . ,xn), (2.30)

where p̃ is the permutation invariant density, that is, the order of points does not matter
when evaluating it. We refer to data that lacks ordering as exchangeable.
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2.2.2 Normalizing flows

In the previous section we saw through the random time change theorem that transforming
the points which were sampled from one process returns the points which correspond to
another process. This will hold for general distributions as well. Consider the uniform
distribution p(z) = 1 on [0, 1]. Values f(z) = 2z will also follow a uniform distribution,
however, on twice the size of the interval and with half the density: p(f(z)) = 0.5 on
[0, 2]. To make a generative model from this, we have to first fix the base distribution (for
example, set it to be uniform) and then learn the transformation f such that the samples
from the base distribution get transformed into samples from the target distribution.

The concept of transforming noise to data is not unheard of, in fact, this is what
most generative models do, including generative adversarial networks [85], variational
autoencoders (Section 2.2.3), and diffusion models (Section 2.2.4). What is specific to
normalizing flows is that f is a one-to-one map which means we can always uniquely go
from noise to data and vice versa. In the end, this allows us to compute the likelihood in
closed-form using the change of variables formula (Equation 2.32), which is not possible
when using the previously mentioned generative models.

First, we define a Jacobian matrix that describes local function’s behavior, similar to a
derivative. Given a function f : Rm → Rn, the Jacobian matrix J ∈ Rn×m is defined as:

Jij =
∂f(x)i
∂xj

. (2.31)

It contains all the partial derivatives of a function f and measures the best linear
approximation of a function f at a point x.

Change of variables. Let z ∈ Rd be the sample from a base distribution z ∼ q(z) and
let x = f(z) be the result of an invertible and differentiable map (a diffeomorphism)
f : Rd → Rd. Then, x follows the distribution p which is defined as:

p(x) = q(z) |detJf (z)|−1

= q(f−1(x))
∣∣detJf−1(x)

∣∣ , (2.32)

where J is the Jacobian consisting of all the partial derivatives as defined in Equation 2.31.
The determinant measures the volume of a linear transformation and the Jacobian is
the best linear approximation of f . Then, the right-hand term under the absolute value
measures the change of density at a point. That is, if we have a transformation that
preserves volume (like rotation or translation), its determinant of Jacobian will be equal
to 1 since we do not squash or expand the space. In the introductory example, we had
f(z) = 2z meaning that the scaling term is |detJf (z)|−1 = |d2zdz |

−1 = 0.5 as expected.
Another useful property of Equation 2.32 is that it goes both ways, that is, if we know
the inverse f−1, we can compute the density p(x), given x and q(z).

Inspired by successes of neural networks we would like f and f−1 to be expressive
functions, however, it is not immediately obvious how to design a neural network that is
both expressive and invertible. Further, to maximize the likelihood we need to compute
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2.2 Generative modeling

the determinant of the Jacobian which generally has O(d3) time cost. This operation
is in practice intractable if data is high-dimensional, as is the case with images or time
series with many features. To this end, previous works have designed models that can be
easily inverted and which have O(d) cost for evaluating Equation 2.32.

Coupling normalizing flow [58, 59] relies on a fact that we can transform one part of
data conditioned on another part, while keeping the second part intact. Let us partition
the dimensions of z into two disjoint sets: A and B, A∪B = {1, . . . , d}, A∩B = ∅. The
transformation is then defined as:

x(A) = z(A) exp(ϕ(z(B))) + ψ(z(B))

x(B) = z(B),
(2.33)

where ϕ, ψ : R|A| → R|A| are arbitrary neural networks. Note that the Jacobian of this
transformation is triangular with ones on the diagonal corresponding to the B-indexed
values and exp(ϕ(z(B))) on the diagonal for A-indexed values. The determinant of a
triangular matrix is the product of the values on the diagonal. This transformation works
because we can treat z(B) as constant and then the transformation of x(A) reduces to an
affine transform which is easy to invert:

z(A) = (x(A) − ψ(x(B))) exp(−ϕ(x(B)))

z(B) = x(B).
(2.34)

Applying only one coupling transformation would keep a large chunk of data unchanged.
Luckily, we can treat the resulting distribution p(x) as our new starting distribution to
apply another normalizing flow on top of it. That is, if we have a composition of invertible
functions, the whole transformation is invertible, and if we can compute the determinant
of the Jacobian for all of them, the total determinant is their product. Stacking multiple
transformations is a common approach to increase the expressivity.

Autoregressive normalizing flow [203, 135] applies a similar idea to coupling transfor-
mation but with a more fine grained partition of dimensions. Since every distribution
can be factorized as p(x1, . . . , xd) = p(x1)p(x2|x1) . . . p(xd|x1, . . . , xd−1), we can assign an
arbitrary ordering to the dimensions of x ∈ Rd and model the conditional distributions
p(xi|x<i). In the spirit of normalizing flows, we again start with the base distribution
q(z) and apply the transformation:

x1 = z1

xi = zi exp(ϕ(z<i)) + ψ(z<i), i > 1,
(2.35)

where ϕi, ψi : Ri−1 → R are arbitrary neural networks, as in Equation 2.33. Note that
we can compute this transformation in parallel, whereas the inverse is strictly sequential,
that is, we have to apply the transformations in a certain order and use the result of a
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previous transform to apply the next one:

z1 = x1

z2 = (x2 − ψ2(z<2)) exp(−ϕ2(z<2))

z3 = (x3 − ψ3(z<3)) exp(−ϕ3(z<3))

...
zd = (xd − ψd(z<d)) exp(−ϕd(z<d)).

(2.36)

Spline flow [63]. We can again stack multiple layers of autoregressive flows with different
orderings of the dimensions. In both the coupling and autoregressive flows we designed
the transformation with an affine function. However, we can also find other functions
that are invertible and have derivatives that are easy to evaluate. Since the conditional
transformations can be viewed as applying a one-dimensional mapping, it is sufficient to
find a monotonic function with the desired computational properties. One choice is using
splines, which are specified as piecewise polynomials. Therefore, the conditioning neural
network takes in z(B) in a coupling flow or z<i in an autoregressive flow and outputs the
spline parameters corresponding to the polynomial coefficients. The value xi is the output
of the polynomial evaluated at zi and the derivative is computed with the polynomial of
a lower degree that is easy to find analytically.

Choosing the direction. As we have seen in the case of autoregressive flows, one direction
of the flow (Equation 2.35) is faster to compute than the other (Equation 2.36). Let
us consider a case where we are given data and want to learn its distribution with
a normalizing flow using maximum likelihood, to later perform anomaly detection by
evaluating the density on new data. In this case, we only need one direction—the one
that computes the likelihood, that is, we only need the inverse transformation f−1. Then,
we can parameterize f−1 with a function that is faster to evaluate: Equation 2.35. The
inverse of this still exists, it is precisely Equation 2.36, and can be now used for sampling.

On the other hand, if we wish to only sample new points and use a loss that is sampling-
based, we can parameterize the forward direction. This is something that is quite often
used in variational inference (Section 2.2.3) and was the original motivation for designing
such computationally asymmetric models [135]. Some architectures, such as coupling
flows, have the same computational cost for both directions while others do not have
closed-form inverse at all [224].5

We will use normalizing flows for modeling TPP densities in Chapter 3 and to define
an invertible mapping in Chapter 5, as well as to demonstrate an application in spatio-
temporal modeling in Section 5.2.3.

Continuous normalizing flows [35] define how the density changes as we change the
random variable with an ordinary differential equation (Equation 2.3). Let z(t0) ∈ Rd

5Note the inverse does exists, we just cannot write it down as a simple formula.
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be a random variable following z(t0) ∼ q(z(t0)) and let dz(t)
dt = f(t, z(t)) define the

immediate transformation which, in turn, defines the instantaneous change of variables:

∂

∂t
log p(z(t)) = −Tr

(
∂f

∂z(t)

)
. (2.37)

Integrating f from t0 to t1 gives a solution x = z(t1) which follows the distribution:

log p(x) = log q(z(t0))−
∫ t1

t0

Tr

(
∂f

∂z(t)

)
dt. (2.38)

Function f can be specified with any neural network that gives unique ODE solutions
(see Section 2.1.1). Since t0 and t1 do not have any assigned meaning to them, they are
usually set to 0 and 1, respectively. In contrast to previous flows, here we have an option
to use arbitrary architectures f : Rd → Rd with “dense Jacobians” because we avoid
computing the determinant and instead evaluate the trace. The inverse can be obtained
easily, by integrating in reverse from t1 to t0.

The bottleneck of this approach is evaluating the diagonal elements of the Jacobian.
Since we are encouraged to use arbitrary neural networks, the Jacobian has to be computed
using automatic differentiation. However, due to the way autodiff is implemented [207], it
has to be computed separately for each dimension resulting in an overall O(d2) cost. To
add on this, we have to perform this same computation at each solver step. An alternative
is performing the estimation of the trace [109]; given a random variable ϵ ∈ Rd with mean
zero and identity covariance it follows that:

Tr(J) = Eϵ[ϵ
TJϵ]. (2.39)

Although reverse-mode autodiff seemingly hindered the computation of the Jacobian,
it now enables computing the term ϵTJ , since modern frameworks excel when dealing
with vector-Jacobian products. The cost falls down to O(d). However, it gives us a noisy
estimate so when we want to exactly compute the density (during testing, for example),
we again need to use the more expensive Jacobian computation.

In Section 3.4.1 we propose an application for continuous normalizing flows in modeling
spatial point processes since CNFs can easily implement permutation invariant densities.
We alleviate the issue of computing the Jacobian by decoupling the transformations in
such a way that we can easily compute the diagonal elements exactly and with O(d) cost.

Universal approximation of normalizing flows is answering the question of whether a
generative model defined with the transformation f can capture any distribution p(x)
given a base distribution p(z). Since for a pair of well-behaved distributions p(x) and p(z)
there always exists a diffeomorphism between the two [202], the question of universality
becomes whether the specific transformation can approximate any invertible function.
For example, autoregressive flows are universal approximators if they can represent any
conditional CDF which is easy to achieve with arbitrary neural networks but not so with
a single affine flow layer (Equation 2.35). In general, most normalizing flows answer
affirmatively to the question of universal approximation [264, 265], however, this does not
give any guarantees into how they will behave in practice.
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2.2.3 Variational inference

A common way to specify data generation is with a latent variable model, a two step
process where we first sample a latent variable z ∼ p(z) and then sample data conditioned
on it x ∼ p(x|z). For example, we can first pick the content of an image and then draw
the image based on this. Given data, we are often interested in uncovering (inferring)
the latent variable, that is, we want to find a distribution p(z|x). In time series data, one
might be interested in finding the states that the system is in, for example, server logs
can correspond to normal operations or anomalous behavior [241].

The main issue is the intractability of the true posterior distribution p(z|x) which
is why we have to find a way to approximate it. One established way is to sample
from the posterior using Markov chain Monte Carlo (MCMC) and use the empirical
distribution of the samples [227]. An alternative is to approximate the posterior with
some distribution q(z), called a variational distribution, that we learn together with the
model likelihood p(x|z). Although MCMC is an exact method, it is computationally
expensive so variational inference is often the preferred choice when dealing with large
datasets, as is the case in modern machine learning.

We predefine a family of distributions Q, where each qϑ ∈ Q is parameterized with a
set of learnable parameters ϑ. The aim is to find an optimal q⋆ϑ ∈ Q that minimizes the
Kullback-Leibler divergence to the true posterior, that is, minimizes the distance between
the two distributions:

q⋆ϑ = argmin
qϑ∈Q

DKL(qϑ(z)∥p(z|x))

= argmin
qϑ∈Q

∫
qϑ(z) log

qϑ(z)

p(z|x)
dz

= argmin
qϑ∈Q

Eqϑ [log qϑ(z)]− Eqϑ [log p(z|x)].

(2.40)

As we can see, the goal is to approximate the posterior by learning it. By choosing different
families Q we trade-off the expressive power and the approximation capabilities. For
example, we can use a normal distribution or a normalizing flow for the approximation.

ELBO. Again, we do not have acess to p(z|x) but we can expand the KL divergence:

DKL(qϑ(z)∥p(z|x)) = Eqϑ [log qϑ(z)]− Eqϑ [log p(z,x)]︸ ︷︷ ︸
−L(q)

+ log p(x), (2.41)

where log p(x), called the evidence, does not depend on q so it escapes the expectation.
Since the KL divergence is always non-negative, the first two terms, which we denote by
L, form an evidence lower bound (ELBO). That means that regardless of which q we
choose, the ELBO will always be lower or equal to log p(x), while the gap corresponds
exactly to the KL divergence between q and the true posterior. Optimizing ELBO finds
the best q that reduces this gap. Further expanding the ELBO:

L(q) = Eqϑ [log pθ(x|z)] + Eqϑ [log p(z)]− Eqϑ [log qϑ(z)]

= Eqϑ [log pθ(x|z)]−DKL(qϑ(z)∥p(z))
(2.42)
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shows that we want to maximize the likelihood and minimize the divergence between
the variational distribution qϑ(z) and the latent prior p(z). To recap, given data x
and having picked the parameterization of the model pθ(x|z), the prior p(z), and the
approximate posterior qϑ(z), we can learn the parameters θ and ϑ by maximizing the
ELBO (Equation 2.42).

Variational autoencoder. Performing the inference on the whole dataset x1, . . . ,xN

gives us a distribution over random variables z1, . . . ,zN . It is common to simplify the
learning of q by using the so-called mean-field assumption which keeps the individual
latent variable distributions independent q(z1, . . . ,zN ) =

∏
i qi(zi). However, we still

need to learn the parameters of all N distributions and, additionally, this formulation
forces us to retrain every time we encounter a new data point xN+1.

The solution is to use amortized inference where we specify the variational distribution
conditioned on data qϑ(z|x). For example, we might use a neural network that outputs
the mean and the variance of a normal distribution qϑ(z|x) = N (µ(x), σ(x)). Together
with a network that defines the distribution pθ(x|z), this forms a variational autoencoder
(VAE). We can again learn the parameters of the encoder qϑ(z|x) and the decoder pθ(x|z)
by maximizing the same ELBO objective (Equation 2.42).

Since we usually learn by backpropagation and gradient descent, we encounter another
hurdle—the gradient of the expectation ∇ϑEqϑ [fθ(z)] is not the same as the expectation
of the gradient Eqϑ [∇ϑfθ(z)]. Luckily, if we find a way to sample from some fixed
distribution and reparameterize sampling from q in terms of this distribution, we can
mitigate all the issues. As a concrete example, consider parameterizing q as a normal
distribution N (µ,σI), where ϑ = {µ,σ} are learnable. We can sample from q using:

1. ϵ ∼ N (0, I),

2. z = Tϑ(ϵ) = µ+
√
σϵ.

Then, Ez∼qϑ [fθ(z)] is the same as Eϵ∼N (0,I)[fθ(Tϑ(ϵ))] and finally:

∇ϑEqϑ [fθ(z)] = Eϵ∼N (0,I)[∇ϑfθ(Tϑ(ϵ))].

The above procedure is known as the reparameterization trick which allows us to take
gradients with sampling-based objectives.

2.2.4 Generative diffusion

So far we have generated new data by drawing from a known distribution and denoised it
to get a data sample using neural networks (Sections 2.2.2 and 2.2.3). That is, we had a
single deterministic transformation (neural network) between noise and data z 7→ x or
noise and data distribution z 7→ p(x). Instead, in this section, we will approach denoising
as an iterative process where samples are refined over many steps starting with pure noise
and ending with target distribution—we will now have a sequence of latent variables
which converge to data distribution zN → zN−1 → · · · → z1 → x. To do so, we will first
see how it is possible to sample new points by maximizing the likelihood using the score,
similar to how we perform gradient descent to minimize the loss.
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Score is defined as the gradient of the log-density: s(x) = ∇x log p(x). Similarly to
gradient-based optimization, we can imagine starting at some random point x which has
low probability and “optimizing” s(x) using gradient ascent to reach a high probability
point. This gives us a way to sample new points from the data distribution. At first,
it is not clear how could learning ∇x log p(x) be easier, or even possible, if we cannot
learn log p(x) directly. To see why, let us first consider an unnormalized distribution
p̄(x) = Zp(x), Z =

∫
p̄(x) dx. Then, the score for both of these functions (p and p̄) is

the same. Finally, if we parameterize the unnormalized density p̄θ(x); for instance, as an
energy-based model [150], our goal becomes optimizing the score-matching loss [111]:

L(θ) = 1

2

∫
p(x)∥sθ(x)− s(x)∥2 dx, (2.43)

where sθ(x) is model’s score, and s(x) is the true score. This is the same as minimizing the
Fisher divergence. Note that if we only care about generating new samples we do not have
to specify p̄θ, rather we can parameterize sθ directly. If L(θ) = 0, the distributions are
equal and the model maximizes the likelihood. Again, s(x) is inaccessible but Hyvärinen
[111] show that Equation 2.43 can be rewritten as:

L(θ) =
∫
p(x)

(
Tr(∇xsθ(x)) +

1

2
∥sθ(x)∥2

)
dx, (2.44)

where they apply the partial integration trick which removes the true score function from
the equation. Although we now have a way to perform score-matching using only the
model’s predicted score together with the samples from p (using true data to get a Monte
Carlo estimate), evaluating Equation 2.44 is expensive due to the Hessian term. One way
to get around this is to use sliced score matching [251], which is using a similar trick to
approximate the Hessian as continuous normalizing flows did to approximate the Jacobian
(Section 2.2.2). Finally, after we have obtained the trained score model sθ(x), we can
sample from p(x) using Langevin dynamics [204], starting from random xN and applying
the following update N times until we reach x0 ∼ p(x):

xn−1 = xn + δn∇xnsθ(xn) +
√

2δnϵ (2.45)

where δn is step size and ϵ ∼ N (0, I). This is similar to gradient ascent but we also add a
small amount of noise at each step. The above update is actually an Euler discretization
of the Langevin stochastic differential equation:

dxt = ∇xt log p(xt) dt+
√
2 dWt. (2.46)

In general, for an SDE defined with dx = f dt+ g dWt, we say that f is a drift function
(with the same interpretation as in ordinary differential equations) and g is the diffusion
function, while dWt denotes adding infinitesimal amount of noise to each dt-sized step.
The term Wt is a standard Brownian motion (Wiener process) which is a stochastic
process starting at zero, with independent increments, each with mean zero and variance
equal to the time difference: Wt −Ws ∼ N (0, t− s). Since SDE is not deterministic, its
solutions will follow some distribution that we denote with q(x, t). It can be shown that
q(x, t) of Equation 2.46 will become stationary and equal p(x) as t→ ∞ [189, 278].
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Noise perturbations. Another issue occurs, besides computation complexity, that is less
obvious—when we want to sample from our model we will almost surely start at a low
density region and climb towards the high density sample. But our model has not seen
many (or any) examples with low density that would correspond to pure noise. This can
be seen directly from Equation 2.43 which weighs these terms down with p(x) so learning
the correct score on low density regions is hard. As a result, the learned score in some
locations will point in random directions and model samples will be of low quality. One
solution is to learn with multiple noise perturbations, as presented in the following.

We start with a clean data point x and index it as x0. We add a small amount of noise
to x0 to produce x1, for example, x1 = x0 + ϵ, ϵ ∼ N (0, 10−4). We continue doing this
for N steps, increasing the noise size, to obtain progressively noisier values x2,x3, . . . ,xN ,
where the last one is pure noise, containing no information about the original data. We
can now model the conditional score sθ(x, n), which depends on the noising step n. Since
the final value xN comes from the known distribution, we can sample from it. The learned
score sθ(x, N) has good coverage compared to the previous approach, thus, the gradient
is correct and not just a random direction in space.

The usefulness of this approach can be seen when we start sampling, going from xN to
x0. We first sample initial noise value from some fixed distribution, for example uniform,
and perform the Langevin dynamics to obtain xN . We then repeat this for xN−1 using
xN as the initial sample. The score is well defined since there is significant overlap
between p(xN ) and p(xN−1). We continue for n = N − 2, . . . , 2, 1 to reach the sample
from the data distribution x0. The total number of steps N should be large enough that
the consecutive distributions are similar, the first step should be close to the true data
distribution while the last should be close to pure noise from which we can sample.

Note that previously we sampled from p(x) using a procedure that iteratively obtains
high density points xN ,xN−1, . . . ; however, all of xn belonged to the same distribution and
we evaluated their score with respect to that distribution. Now, we have N distributions
and sample from each independently, where the result of sampling from nth distribution
acts a starting point for sampling from (n− 1)th distribution.

Stochastic differential equation noising can be seen as a generalization of the above
approach when the number of noising steps approaches infinity. In particular, we define
the noising process with a predetermined SDE:

dx = f(x, t) dt+ g(t) dw. (2.47)

The simplest example of Equation 2.47 is dx = dw which just adds increasing amounts of
noise to x over time. As before, the forward process is fixed and known so the SDE has to
be chosen beforehand. Previous works tried to find those that have desirable properties,
for example, where the distribution of xt approaches unit normal as t→ ∞ [252]. So we
have only seen how to add noise to data, luckily, the following result shows us how to
reverse this process. Given an SDE as in Equation 2.47, there is a reverse process [2]:

dx = [f(x, t)− g(t)2∇x log pt(x)] dt+ g(t) dw, (2.48)
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where ∇x log pt(x) is the score of the conditional noising distribution pt, indexed by the
diffusion step t, similar to previous indexing with discrete steps n. This shows us that
once we specify the forward SDE, we can reverse it if we know the score. Since we pick
the forward SDE ourselves, the true score with respect to the noisy point xt can be found
in closed-form given the clean data point x0 that produced xt. We can then use the loss
from Equation 2.43 directly to learn the true score with our model sθ(xt, t).

To recap, using score-matching with multiple noise perturbations and SDEs allows us
to learn complicated distributions by utilizing the following nice properties:

• The distribution of the final noisy value xt as t→ ∞ is known and we can sample
from it in closed-form.

• The true score is known and depends on the clean data x0, thus, can be used to
learn it with model sθ(xt, t) that depends only on xt.

• The reverse process exists and depends on the terms that we predefined (functions
f and g), and on the learned score, meaning we can start from pure noise and get
the sample from a data distribution by using the reverse SDE.

Denoising diffusion. To solve an SDE accurately one has to use numerical solvers which
are simply discretizing the time domain and performing a fixed amount of updates. This
could again be viewed as adding noise for N steps, similar to what we described before.
The forward (noising) process is called diffusion and can be written down as a Markov
chain; here we show one specific parameterization choice [102]:

q(xn|xn−1) = N (
√

1− βnxn−1, βnI) (2.49)

where βn is an increasing sequence of noise scales such that xn is more noisy than xn−1,
and x0 again corresponds to clean data. Since we use normal distribution it is possible
to specify q(xn|x0) and q(xn−1|xn,x0) directly. The loss is the negative ELBO, that
is, we optimize the lower bound on the likelihood. We will revisit both the continuous
(SDE-based) and the discrete diffusion (Equation 2.49) in Chapter 6 in the context of
modeling continuous functions.
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Figure 3.1: In our approach
the parameters of a temporal
point process are generated
based on the history. The
TPP itself is specified as a
density model instead of us-
ing an intensity.

Visits to hospitals, purchases in e-commerce systems, financial transactions, posts in social
media; various forms of human activity can be represented as discrete events happening
at irregular intervals. The framework of temporal point processes is a natural choice for
modeling such data. By combining temporal point process models with deep learning, we
can design algorithms able to learn complex behavior from real-world data. Designing
such models, however, usually involves trade-offs along the following dimensions:

• Flexibility: can the model approximate any distribution?

• Efficiency: can the likelihood function be evaluated in closed-form?

• Ease of use: is sampling and computing summary statistics easy?

Existing methods [61, 180, 199] that are defined in terms of the conditional intensity
function typically fall short in at least one of these categories.

Instead of modeling the intensity function, we suggest treating the problem of learning
in temporal point processes as an instance of conditional density estimation. By using
tools from neural density estimation [21, 224], we can develop methods that have all of
the above properties. To summarize, our contributions are the following:

• We connect the fields of temporal point processes and neural density estimation. We
show how normalizing flows can be used to define flexible and theoretically sound
models for learning in temporal point processes.

• We propose a simple mixture model that performs on par with the state-of-the-art
methods. Thanks to its simplicity, the model permits closed-form sampling and
moment computation.

• We show through a wide range of experiments how the proposed models can be
used for prediction, conditional generation, sequence embedding and training with
missing data.
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Exponential
intensity

Neural
Hawkes Fully NN Normalizing

Flows
Mixture

Distribution

Closed-form likelihood ✓ ✗ ✓ ✓ ✓

Flexible ✗ ✓ ✓ ✓ ✓

Closed-form E[τ ] ✗ ✗ ✗ ✗ ✓

Closed-form sampling ✓ ✗ ✗ ✗ ✓

Table 3.1: Comparison of neural TPP models that encode history with an RNN.

3.1 Background

In this section we present the background on neural temporal point processes while
reusing the notation from Section 2.2.1.

Definition. A temporal point process (TPP) is a random process whose realizations
consist of a sequence of strictly increasing arrival times T = {t1, . . . , tN}. A TPP can
equivalently be represented as a sequence of strictly positive inter-event times τi =
ti − ti−1 ∈ R+. Representations in terms of ti and τi are isomorphic—we will use them
interchangeably throughout this chapter. The traditional way of specifying the dependency
of the next arrival time t on the history Ht = {tj ∈ T : tj < t} is using the conditional
intensity function λ∗(t) := λ(t|Ht) (Equation 2.26). Given the conditional intensity
function, we can obtain the conditional probability density function (PDF) of the time τi
until the next event by integration as:

p∗(τi) := p(τi|Hti) = λ∗(ti−1 + τi) exp

(
−
∫ τi

0
λ∗(ti−1 + s) ds

)
, (3.1)

which is equivalent to Equation 2.27 but for a single event, given history.

Learning temporal point processes. Conditional intensity functions provide a convenient
way to specify point processes with a simple predefined behavior, such as self-exciting
[99] and self-correcting [112] processes as shown in Equations 2.28 and 2.29. Intensity
parametrization is also commonly used when learning a model from the data—given a
parametric intensity function λ∗θ(t) and a sequence of observations T , the parameters θ
can be estimated by maximizing the log-likelihood:

θ∗ = argmax
θ

∑
i

log p∗θ(τi) = argmax
θ

[∑
i

log λ∗θ(ti)−
∫ T

0
λ∗θ(s) ds

]
. (3.2)

The main challenge of such intensity-based approaches lies in choosing a good parametric
form for λ∗θ(t). This usually involves the following trade-off: For a simple intensity
function [61, 107], the integral Λ∗(τi) :=

∫ τi
0 λ∗(ti−1 + s) ds has a closed-form, which

makes the log-likelihood easy to compute. However, such models usually have limited
expressiveness. A more sophisticated intensity function [180] can better capture the
dynamics of the system, but computing log-likelihood will require approximating the
integral using Monte Carlo.
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3.2 Models

Recurrent marked temporal point processes [61] fall in the category of models with
closed-form likelihood. It uses an RNN to encode the event history into a vector hi. The
history embedding hi is then used to define the conditional intensity, for example, using
the constant intensity model [107, 155]:

λ∗(ti) = exp(vThi + b), (3.3)

or the more flexible exponential intensity model [61, 271]:

λ∗(ti) = exp(w(ti − ti−1) + vThi + b). (3.4)

By considering the conditional distribution p∗(τ) of the two models, we can better
understand their properties. Constant intensity corresponds to an exponential distribution,
and exponential intensity corresponds to a Gompertz distribution (see Appendix A.2).
Since these distributions are only unimodal, they might not be able to capture more
complicated intensity functions.

FullyNN [199] is a flexible fully neural network intensity model, where they model
the cumulative intensity function Λ∗(τ) with a neural network. It was proposed as a
flexible, yet computationally tractable model for TPPs. The function Λ∗ converts τ
into an exponentially distributed random variable with unit rate [220], similarly to how
normalizing flows model (Section 2.2.2) might convert τ into a random variable with
a simple distribution (see Section 3.2). However, due to a suboptimal choice of the
network architecture, the PDF of the FullyNN model does not integrate to 1, and the
model assigns non-zero probability to negative inter-event times. We discuss this in more
detail in Appendix A.3. Moreover, similar to other flow-based models, sampling from the
FullyNN model requires iterative root finding.

This work. We show that the drawbacks of the existing approaches can be remedied by
looking at the problem of learning TPPs from a different angle. Instead of modeling the
conditional intensity λ∗(t), we suggest to directly learn the conditional distribution p∗(τ).
Modeling distributions with neural networks is a well-researched topic, that, surprisingly,
was not usually discussed in the context of TPPs. By adopting this alternative point of
view, we are able to develop new theoretically sound and effective methods (Section 3.2),
as well as better understand the existing approaches (Section 3.2.6).

3.2 Models

We develop several approaches for modeling the distribution of inter-event times. First,
we assume for simplicity that each inter-event time τi is conditionally independent of
the history, given the model parameters (that is, p∗(τi) = p(τi)). In Section 3.2.1, we
show how state-of-the-art neural density estimation methods based on normalizing flows
can be used to model p(τi). Then in Section 3.2.2, we propose a simple mixture model
that can match the performance of the more sophisticated flow-based models, while also
addressing some of their shortcomings. Finally, we discuss how to make p(τi) depend on
the history Hti in Section 3.2.3.
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Figure 3.2: Normalizing flows define a flexible distribution via transformations.

3.2.1 Modeling p(τ) with normalizing flows

Recall from Section 2.2.2 that the core idea of normalizing flows is to define a flexible
probability distribution by transforming a simple one. Assume that z has a PDF q(z). Let
x = g(z) for some differentiable invertible transformation g : Z → X (where Z,X ⊆ R).
We consider only the one-dimensional case since our goal is to model the distribution of
inter-event times τ ∈ R+.

We can obtain the PDF p(x) of x using the change of variables formula as defined in
Equation 2.32. By stacking multiple transformations g1, . . . , gM , we obtain an expressive
probability distribution p(x). To draw a sample x ∼ p(x), we need to draw z ∼ q(z)
and compute the forward transformation x = (gM ◦ · · · ◦ g1)(z). To get the density
of an arbitrary point x, it is necessary to evaluate the inverse transformation z =
(g−1

1 ◦ · · · ◦ g−1
M )(x) and compute q(z).

Modern normalizing flows architectures parameterize the transformations using ex-
tremely flexible functions fθ, such as polynomials [116] or neural networks [106]. In this
work, we don’t consider invertible normalizing flows based on dimension splitting, such as
RealNVP [59], since they are not applicable to one-dimensional data.

In the context of TPPs, our goal is to model the distribution p(τ) of inter-event times.
In order to be able to learn the parameters of p(τ) using maximum likelihood, we need
to be able to evaluate the density at any point τ . For this we need to define the inverse
transformation g−1 := (g−1

1 ◦ · · · ◦ g−1
M ). First, we set zM = g−1

M (τ) = log τ to convert a
positive τ ∈ R+ into zM ∈ R. Then, we stack multiple layers of parametric functions
fθ : R → R that can approximate any transformation. We consider two choices for fθ:

• Deep sigmoidal flow (DSF) from Huang et al. [106]:

fDSF (x) = σ−1

(
K∑
k=1

wkσ

(
x− µk
sk

))
, (3.5)
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• Sum-of-squares (SOS) polynomial flow from Jaini et al. [116]:

fSOS(x) = a0 +
K∑
k=1

R∑
p=0

R∑
q=0

ap,kaq,k
p+ q + 1

xp+q+1, (3.6)

where a,w, s,µ are the transformation parameters, K is the number of components, R is
the polynomial degree. We denote the two variants of the model based on fDSF and fSOS

building blocks as DSFlow and SOSFlow, respectively. Finally, after stacking multiple
g−1
m = fθm , we apply a sigmoid transformation g−1

1 = σ to convert z2 into z1 ∈ (0, 1).
For both models, we can evaluate the inverse transformations (g−1

1 ◦ · · · ◦ g−1
M ), which

means the model can be efficiently trained via maximum likelihood. The density p(τ)
defined by either DSFlow or SOSFlow model is extremely flexible and can approximate
any distribution (Section 3.2.4). However, for some use cases, this is not sufficient. For
example, we may be interested in the expected time until the next event, Ep[τ ]. In this
case, flow-based models are not optimal, since for them Ep[τ ] does not in general have a
closed-form. Moreover, the forward transformation (gM ◦ · · · ◦ g1) cannot be computed in
closed-form since the functions fDSF and fSOS cannot be inverted analytically. Therefore,
sampling from p(τ) is also problematic and requires iterative root finding.

This raises the question: Can we design a model for p(τ) that is as expressive as the
flow-based models, but in which sampling and computing moments is easy and can be
done in closed-form?

3.2.2 Modeling p(τ) with mixture distributions

Model definition. While mixture models are commonly used for clustering, they can
also be used for density estimation. Mixtures work especially well in low dimensions
[176], which is the case in TPPs, where we model the distribution of one-dimensional
inter-event times τ . Since the inter-event times τ are positive, we choose to use a mixture
of log-normal distributions to model p(τ). The PDF of a log-normal mixture is defined as:

p(τ |w,µ, s) =
K∑
k=1

wk
1

τsk
√
2π

exp

(
−(log τ − µk)

2

2s2k

)
, (3.7)

where w are the mixture weights, µ are the mixture means, and s are the standard
deviations. Because of its simplicity, the log-normal mixture model has a number of
attractive properties.

Moments. Since each component k has a finite mean, the mean of the entire distribution
can be computed as a weighted average of component means:

Ep[τ ] =
∑
k

wk exp(µk + s2k/2). (3.8)

Higher moments can be computed based on the moments of each component [74].
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Sampling. While flow-based models from Section 3.2.1 require iterative root-finding
algorithms to generate samples, sampling from a mixture model can be done in closed-form:

1. z ∼ Categorical(w), where z is a one-hot vector of size K,

2. ε ∼ Normal(0, 1),

3. τ = exp(sTz · ε+ µTz).

In some applications, such as reinforcement learning [271], we might be interested in
computing gradients of the samples with respect to the model parameters. The samples τ
drawn using the procedure above are differentiable with respect to the means µ and scales
s. By using the Gumbel-softmax trick [117] when sampling z, we can obtain gradients
w.r.t. all the model parameters (Appendix A.4.6). Such reparameterization gradients have
lower variance and are easier to implement than the score function estimators typically
used in other works [182]. Other flexible models (such as multi-layer flow models from
Section 3.2.1) do not permit sampling through reparameterization, and thus are not well-
suited for the above-mentioned scenario. In Section 3.3.4, we show how reparameterization
sampling can also be used to train with missing data by performing imputation on the fly.

3.2.3 Incorporating the conditional information

History. A crucial feature of temporal point processes is that the time τi = (ti − ti−1)
until the next event may be influenced by all the events that happened before. A standard
way of capturing this dependency is to process the event history Hti with a recurrent
neural network (RNN) and embed it into a fixed-dimensional vector hi ∈ RH [61]. A
detailed description of different RNN architectures can be found in Section 2.1.2.

Conditioning on additional features. The distribution of the time until the next event
might depend on factors other than the history. For instance, distribution of arrival times
of customers in a restaurant depends on the day of the week. As another example, if we
are modeling user behavior in an online system, we can obtain a different distribution
p∗(τ) for each user by conditioning on their metadata. We denote such side information
as a vector yi. Such information is different from marks, since (i) the metadata may be
shared for the entire sequence, and (ii) yi only influences the distribution p∗(τi|yi), not
the objective function. Such additional information is also known as covariates in the
time series literature.

In some scenarios, we might be interested in learning from multiple event sequences.
In such case, we can assign each sequence Tj a learnable sequence embedding vector
ej . By optimizing ej , the model can learn to distinguish between sequences that come
from different distributions. The learned embeddings can then be used for visualization,
clustering or other downstream tasks.

Obtaining the parameters. We model the conditional dependence of the distribution
p∗(τi) on all of the above factors in the following way. The history embedding hi, metadata
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yi and sequence embedding ej are concatenated into a context vector ci = [hi||yi||ej ].
Then, we obtain the parameters of the distribution p∗(τi) as an affine function of ci. For
example, for the mixture model we have:

wi = softmax(Vwci + bw) (3.9)
si = exp(Vsci + bs) (3.10)
µi = Vµci + bµ (3.11)

where the softmax and exp transformations are applied to enforce the constraints on the
distribution parameters, and θ = {Vw,Vs,Vµ, bw, bs, bµ} are learnable parameters. Such
model resembles the mixture density network architecture [21]. The whole process is
illustrated in Figure 3.1. We obtain the parameters of the flow-based models in a similar
way (see Appendix A.4).

3.2.4 Universal approximation

The SOSFlow and DSFlow models can approximate any probability density on R arbitrarily
well [116, Theorem 3], [106, Theorem 4]. It turns out, a mixture model has the same
universal approximation property.

Theorem 1. [50, Theorem 33.2] Let p(x) be a continuous density on R. If q(x) is any
density on R and is also continuous, then, given ε > 0 and a compact set S ⊂ R, there
exist number of components K ∈ N, mixture coefficients w ∈ ∆K−1, locations µ ∈ RK ,
and scales s ∈ RK

+ such that for the mixture distribution p̂(x) =
∑K

k=1wk
1
sk
q(x−µk

sk
) it

holds supx∈S |p(x)− p̂(x)| < ε.

This result shows that, in principle, the mixture distribution is as expressive as the
flow-based models. Since we are modeling the conditional density, we additionally need to
assume for all of the above models that the RNN can encode all the relevant information
into the history embedding hi. This can be accomplished by invoking the universal
approximation theorems for RNNs [244, 235].

Note that this result, like other universal approximation theorems of this kind [46,
49], does not provide any practical guarantees on the obtained approximation quality,
and doesn’t say how to learn the model parameters. Still, universal approximation
intuitively seems like a desirable property of a distribution. This intuition is supported
by experimental results. In Section 3.3.1, we show that models with the universal
approximation property consistently outperform the less flexible ones.

Interestingly, Theorem 1 does not make any assumptions about the form of the base
density q(x). This means we could as well use a mixture of distribution other than
log-normal. However, other popular distributions on R+ have drawbacks: log-logistic does
not always have defined moments and gamma distribution doesn’t permit straightforward
sampling with reparameterization.

3.2.5 Intensity function

For both flow-based and mixture models, the conditional cumulative distribution function
(CDF) F ∗(τ) and the PDF p∗(τ) are readily available. This means we can easily compute
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Figure 3.3: Different choices for modeling p(τ): exponential distribution (left), Gompertz distri-
bution (center), log-normal mixture (right). Mixture distribution can approximate
any density while being tractable and easy to sample from.

the respective intensity functions (see Appendix A.1). However, we should still ask
whether we lose anything by modeling p∗(τ) instead of λ∗(t). The main arguments in
favor of modeling the intensity function in traditional models (e.g. self-exciting process)
are that it’s intuitive, easy to specify and reusable [272].

• “Intensity function is intuitive, while the conditional density is not.”—While it is
true that in simple models (e.g. in self-exciting or self-correcting processes) the
dependence of λ∗(t) on the history is intuitive and interpretable, modern RNN-based
intensity functions (as in Du et al. [61], Mei and Eisner [180], and Omi et al. [199])
cannot be easily understood by humans. In this sense, our proposed models are as
intuitive and interpretable as other existing intensity-based neural network models.

• “λ∗(t) is easy to specify, since it only has to be positive. On the other hand, p∗(τ)
must integrate to one.”—As we saw, by using either normalizing flows or a mixture
distribution, we automatically enforce that the PDF integrates to one, without
sacrificing the flexibility of our model.

• “Reusability: If we merge two independent point processes with intensities λ∗1(t)
and λ∗2(t), the merged process has intensity λ∗(t) = λ∗1(t) + λ∗2(t).”—An equivalent
result exists for the CDFs F ∗

1 (τ) and F ∗
2 (τ) of the two independent processes. The

CDF of the merged process is obtained as F ∗(τ) = F ∗
1 (τ) + F ∗

2 (τ) − F ∗
1 (τ)F

∗
2 (τ)

(derivation is provided in Appendix A.1).

As we just showed, modeling p∗(τ) instead of λ∗(t) does not impose any limitations on
our approach. Moreover, a mixture distribution is flexible, easy to sample from and has
well-defined moments, which favorably compares it to other intensity-based deep learning
models. Figure 3.3 shows densities that can be represented by some of our competitors:
exponential and Gompertz distributions [61] (see Appendix A.2 for more details). Even
though the history embedding hi produced by an RNN may capture rich information, the
resulting distribution p∗(τi) for both models has very limited flexibility, is unimodal and
light-tailed. In contrast, a flow-based or a mixture model is significantly more flexible
and can approximate any density.
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3.2.6 Other related work

Neural temporal point processes. Fitting simple TPP models, such as self-exciting
[99] or self-correcting [112] processes, to real-world data may lead to poor results because
of model misspecification. Multiple recent works address this issue by proposing more
flexible neural-network-based point process models. These neural models are usually
defined in terms of the conditional intensity function. For example, Mei and Eisner [180]
propose a novel RNN architecture that can model sophisticated intensity functions. This
flexibility comes at the cost of inability to evaluate the likelihood in closed-form, and thus
requiring Monte Carlo integration. We already discussed limitations of some other works
in Section 3.1 and in Appendix.

Several works used mixtures of kernels to parameterize the conditional intensity function
[261, 260, 196]. Such models can only capture self-exciting influence from past events.
Moreover, these models do not permit computing expectation and drawing samples in
closed-form. Türkmen et al. [268] propose neural models for learning marked TPPs. We
pursue a similar goal in Chapter 4, with the emphasis on assigning uncertainty estimate
to the mark prediction. Other recent works consider alternatives to the maximum
likelihood objective for training TPPs. Examples include noise-contrastive estimation
[91], Wasserstein distance [284, 285, 286], and reinforcement learning [155, 271]. This line
of research is orthogonal to our contribution, and the models proposed in our work can
be combined with the above-mentioned training procedures.

Neural density estimation. There exist two popular paradigms for learning flexible
probability distributions using neural networks: in mixture density networks [21], a neural
net directly produces the distribution parameters; in normalizing flows [259, 224], we
obtain a complex distribution by transforming a simple one. Both mixture models [238,
66, 90] and normalizing flows [200, 303] have been applied for modeling sequential data.
However, surprisingly, none of the existing works make the connection and consider these
approaches in the context of TPPs. Other approaches, such as variational inference
(Section 2.2.3), generative diffusion (Section 2.2.4) or GANs [85], do not offer exact
likelihood computation.

3.3 Experiments

We evaluate the proposed models on the established task of event time prediction (with
and without marks) in Sections 3.3.1 and 3.3.2. In the remaining experiments, we
show how the log-normal mixture model can be used for incorporating extra conditional
information, training with missing data and learning sequence embeddings. We use 6
real-world datasets containing event data from various domains: Wikipedia (article edits),
MOOC (user interaction with an online course), Reddit (posts in social media) [143], Stack
Overflow (badges received by users), LastFM (music playback) [61], and Yelp (check-ins
to restaurants). We also generate 5 synthetic datasets (Poisson, Renewal, Self-correcting,
Hawkes1, Hawkes2), as described in Omi et al. [199]. Detailed descriptions and summary
statistics of all the datasets are provided in Appendix A.5.
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Figure 3.4: NLL loss for event time prediction without marks (Left) and with marks (Right).
NLL of each model is standardized by subtracting the score of LogNormMix. Lower
values are better. Despite its simplicity, LogNormMix consistently achieves
excellent loss values.

3.3.1 Event time prediction using history

Setup. We consider two normalizing flow models, SOSFlow and DSFlow (Equations 3.6
and 3.5), as well a log-normal mixture model (Equation 3.7), denoted as LogNormMix.
As baselines, we consider RMTPP (that is, Gompertz and exponential from Du et al.
[61]) and FullyNN model by Omi et al. [199]. Additionally, we use a single log-normal
distribution (denoted LogNormal) to highlight the benefits of the mixture model. For
all models, an RNN encodes the history into a vector hi. The parameters of p∗(τ) are
then obtained using hi (Equation 3.11). We exclude the NeuralHawkes model from our
comparison, since it is known to be inferior to RMTPP in time prediction [180], and,
unlike other models, doesn’t have a closed-form likelihood.

Each dataset consists of multiple sequences of event times. The task is to predict the
time τi until the next event given the history Hti . For each dataset, we use 60% of the
sequences for training, 20% for validation and 20% for testing. We train all models by
minimizing the negative log-likelihood (NLL) of the inter-event times in the training set.
To ensure a fair comparison, we try multiple hyperparameter configurations for each model
and select the best configuration using the validation set. Finally, we report the NLL
loss of each model on the test set. All results are averaged over 10 train/validation/test
splits. Details about the implementation, training process and hyperparameter ranges
are provided in Appendix A.4. For each real-world dataset, we report the difference
between the NLL loss of each method and the LogNormMix model (Figure 3.4). We
report the differences, since scores of all models can be shifted arbitrarily by scaling the
data. Absolute scores (not differences) in a tabular format, as well as results for synthetic
datasets are provided in Appendix A.6.1.

Results. Simple unimodal distributions (Gompertz, RMTPP, LogNormal) are always
dominated by the more flexible models with the universal approximation property (Log-
NormMix, DSFlow, SOSFlow, FullyNN). Among the simple models, LogNormal provides
a much better fit to the data than RMTPP. The distribution of inter-event times in
real-world data often has heavy tails, and the Gompertz distributions fails to capture
this behavior. We observe that the two proposed models, LogNormMix and DSFlow
consistently achieve the best loss values.
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3.3.2 Learning with marks

Setup. We apply the models for learning in marked temporal point processes. Marks
are known to improve performance of simpler models [61], we want to establish whether
our proposed models work well in this setting. We use the same setup as in the previous
section, except for two differences. The RNN takes a tuple (τi,mi) as input at each time
step, where mi is the mark. Moreover, the loss function now includes a term for predicting
the next mark (implementation details in Appendix A.6.2):

L(θ) = −
∑
i

[log p∗θ(τi) + log p∗θ(mi)] . (3.12)

Results. Figure 3.4 (Right) shows the time NLL loss (that is, −
∑

i log p
∗(τi)) for Reddit

and MOOC datasets. LogNormMix shows dominant performance in the marked case,
just like in the previous experiment. Like before, we provide the results in tabular format,
as well as report the marks NLL loss in Appendix A.6.

3.3.3 Learning with additional conditional information

Setup. We investigate whether the additional conditional information (Section 3.2.3)
can improve performance of the model. In the Yelp dataset, the task is predict the time
τ until the next check-in for a given restaurant. We postulate that the distribution p∗(τ)
is different, depending on whether it’s a weekday and whether it’s an evening hour, and
encode this information as a vector yi. We consider 4 variants of the LogNormMix model,
that either use or don’t use yi and the history embedding hi.

Results. Figure 3.6 shows the test set loss for 4 variants of the model. We see that addi-
tional conditional information boosts performance of the LogNormMix model, regardless
of whether the history embedding is used.

3.3.4 Missing data imputation

In practical scenarios, one often has to deal with missing data. For example, we may
know that records were not kept for a period of time, or that the data is unusable for
some reason. Since TPPs are a generative model, they provide a principled way to handle
the missing data through imputation.

Setup. We are given several sequences generated by a Hawkes process, where some parts
are known to be missing. We consider three different strategies for learning from such a
partially observed sequence:

(a) ignore the gaps, maximize log-likelihood of observed inter-event times,

(b) fill the gaps with the average τ estimated from observed data, maximize log-likelihood
of observed data,
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Figure 3.5: (Left) Illustration of the experiment with missing data imputation, (Middle) training
curves for different models, (Right) resulting negative log-likelihood on the imputed
data. By sampling the missing values from p∗(τ) during training, LogNormMix
learns the true underlying data distribution. Other imputation strategies overfit the
partially observed sequence.

(c) fill the gaps with samples generated by the model, maximize the expected log-
likelihood of the observed points.

The setup is demonstrated in Figure 3.5. Note that in case (c) the expected value
depends on the parameters of the distribution, hence we need to perform sampling with
reparameterization to optimize such loss. A more detailed description of the setup is
given in Appendix A.6.4.

Results. The 3 model variants are trained on the partially-observed sequence. Figure 3.5
shows the NLL of the fully observed sequence (not seen by any model at training time)
produced by each strategy. We see that strategies (a) and (b) overfit the partially observed
sequence. In contrast, strategy (c) generalizes and learns the true underlying distribution.
The ability of the LogNormMix model to draw samples with reparameterization was
crucial to enable such training procedure.

3.3.5 Sequence embedding

Different sequences in the dataset might be generated by different processes, and exhibit
different distribution of inter-event times. We can "help" the model distinguish between
them by assigning a trainable embedding vector ej to each sequence j in the dataset. It
seems intuitive that embedding vectors learned this way should capture some notion of
similarity between sequences.

Learned sequence embeddings. We learn a sequence embedding for each of the sequences
in the synthetic datasets (along with other model parameters). We visualize the learned
embeddings using t-SNE [169] in Figure 3.8 colored by the true class. As we see, the
model learns to differentiate between sequences from different distributions in a completely
unsupervised way.
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Generation. We fit the LogNormMix model to two sequences generated from self-
correcting and renewal processes, and, respectively, learn two embedding vectors eSC and
eRN for them. After training, we generate three sequences from our model, using eSC ,
1
2(eSC + eRN ) and eRN as sequence embeddings. That is, the first sampled sequence
should correspond to self-correcting process, the third to renewal process and the second
to something in between. Additionally, we plot the learned conditional intensity function
of our model for each generated sequence in Figure 3.7. We can see that the model learns
to map the sequence embeddings to very different distributions.

3.4 Discussion

We used tools from neural density estimation to design new models for learning temporal
point processes. We show that a simple mixture model is competitive with state-of-the-art
normalizing flows methods, as well as convincingly outperforms other existing approaches.
By looking at “learning in TPPs” from a different perspective, we were able to address
the shortcomings of existing intensity-based approaches, such as insufficient flexibility,
lack of closed-form likelihoods and inability to generate samples analytically.

The success of our approach can be found in imposing certain constraints on the neural
network such that we get nicer behavior during both training and evaluation. By replacing
the intensity function with the probability density we create a familiar setting for the
maximum likelihood training. Although intensity parameterization is equivalent, the lack
of numerical integration and the greater flexibility ensures we achieve better results at
the lower training and evaluation costs.

3.4.1 Spatial point processes

So far we have seen how to model positions of points recorded on a real line. Let us
briefly turn our attention to the problem of modeling point processes beyond the line,
in particular, we are interested in spatial point processes whose realizations are sets of
points lying on Rd. The goal is to find a model that offers straightforward sampling and
likelihood evaluation, similar to what we have for TPPs.

However, unlike the TPPs, data points now lack ordering so we cannot directly use an
autoregressive model. We refer to such data as exchangeable, that is, any permutation of
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Base distribution Target distributionf
t0 t1

Figure 3.9: Illustration of the approach. Transforming random sets of points from the base
distribution with an ordinary differential equation gives a realization in the target
distribution. The opposite direction calculates the likelihood of the observed sample.
The dynamics f has to be a permutation equivariant neural network.

random variables will have the same probability. Examples include point clouds, items in
a shopping cart, tracking household electricity consumption in a city etc. Additionally,
the number of points is also a random variable. The setup is explained in Section 2.2.3
and the probability of observing a set of points {x1, . . . ,xn} can be written as:

p(x1, . . . ,xn) = n!p(n)p̃(x1, . . . ,xn), (2.30)

where p̃ is the symmetric density—one that is invariant to point permutations. We want to
model p̃ without taking the i.i.d. assumption meaning the points should be able to interact
with each other in order to capture clustering behavior, as an example. Previous works
either impose the ordering on the points [11, 188, 255, 292] or model the conditionally
independent per-point distribution with a variational autoencoder [288, 293].

We [15] propose an alternative solution by using normalizing flows to model the density
of sets. The general approach is illustrated in Figure 3.9. The constraint on a network is
that it has to take in arbitrary number of points and model permutation invariant densities.
It can be shown that the resulting normalizing flow transformation has to be permutation
equivariant for this to hold. In particular, we use a continuous normalizing flow since it
can support arbitrary transformations, including the special case we actually need. On
its own, this would result in a computationally heavy model since the computation of the
trace of the Jacobian is expensive (see Equation 2.38). Therefore, we address the issue by
decoupling the computation into different parts such that the trace is computed quickly
in closed-form without losing the expressivity [15].

The final model has better performance, both in terms of training time and accuracy.
The takeaway message is that marrying neural density estimation with point processes
results in powerful models with very convenient properties: exact likelihood and straight-
forward sampling. Additional constraints imposed on a model (here: invariance) guarantee
that it is operating withing prescribed bounds and often improve the final performance.
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4 Uncertainty on Event Prediction
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Figure 4.1: Two different levels of predicting
with uncertainty. (a) An event can be expected
multiple times in the future and the uncertainty
is written down as a percentage. For example,
we can believe there is 70% change that Class 2
will occur. (b) What we actually want is assign
the amount of certainty in this percentage. Here,
yellow shows high certainty areas where we are
confident in the prediction and green denotes
high uncertainty, both evolving with time. For
example, we can be certain that “there is 70%
probability Class 2 will occur” but uncertain if
anything will happen in the future. That means
we can reason beyond either this or that to in-
clude neither and how sure.

The problem we are solving in this chapter is: “given a (past) sequence of irregularly-
sampled1 events, what will happen next?” Answering this question enables us to predict
real-world outcomes, for example, which action will an online user perform next or which
car part will become anomalous so we can schedule the maintenance.

While many recurrent models for irregularly-sampled sequences have been proposed in
the past [190, 61], they are ill-suited for this task since they output a single prediction
only, for example, the most likely next event. In an irregular setting, however, such a
single prediction is not enough since the most likely event can change with the passage
of time—even if no other events happen. Consider a car approaching another vehicle in
front of it. Assuming nothing happens in the meantime, we can expect different events at
different times in the future. When forecasting on a short time window, one expects the
driver to start overtaking; after a bit more time one would expect braking; in the long
term, one would expect a collision! Thus, the expected behavior changes depending on
the time we forecast, assuming no events occurred in the meantime.

Figure 4.2a illustrates this schematically: having observed events denoted with a square
and a pentagon, it is likely to observe a square after a short amount of time and a circle

1In the original publication [14], we called these events asynchronous; it was even in the title. Here,
however, we switch to irregular/irregularly-sampled to have uniform notation across all chapters.

39



4 Uncertainty on Event Prediction

after more time has passed. Clearly, if some event occurs (for example, ‘braking’ or
‘square’), the event at the new observed time will be taken into account, updating the
temporal prediction. An ad-hoc solution to this problem would be to discretize time.
However, if the events are near each other, we need a high sampling frequency, giving us
high computational cost. Besides, since there can be intervals without events, an artificial
‘no event’ class is required.

In this work, we solve these problems by directly predicting the entire evolution of the
events over (continuous) time. Given a past irregularly-sampled sequence as input, we
can predict and evaluate for any future time point what the event is likely to be (under
the assumption that no other event happens in between which would lead to an update
of our model). Crucially, the likelihood of the events might change and one event can be
more likely than others over multiple time points in the future. This periodicity exists in
many event sequences. For instance, given that a person is currently at home, a smart
home would predict a high probability that the kitchen will be used at lunch and/or
dinner time (see Figure 4.1a for an illustration of such periodicity). We require that our
model captures this kind of multimodality.

While Figure 4.1a illustrates the evolution of the categorical distribution (corresponding
to the probability of a specific event class to happen), the issue still arises outside of the
observed data distribution. For example, in some time intervals we can be certain that
two classes are equiprobable, having observed many similar examples. However, if the
model has not seen any examples at specific time intervals during training, we do not
want to give a confident prediction.

Therefore, we incorporate uncertainty in a prediction directly in our model. In places
where we expect events, the confidence will be higher, and outside of these areas the
uncertainty in a prediction will grow as illustrated in Figure 4.1b. Technically, instead
of modeling the evolution of a categorical distribution, we model the evolution of a
distribution on the probability simplex. Overall, our model enables us to operate with
the irregular discrete event data from the past as input to perform continuous-time
predictions to the future incorporating the predictions’ uncertainty. This is in contrast to
the temporal point process works as described in Chapter 3.

4.1 Method

We consider a sequence of events [e1, . . . , en], where each event ei = (ci, ti) is a tuple of
an event class ci ∈ {1, . . . , C} and ti ∈ R is its time of occurrence. This is similar to
notation of marked TPPs from Chapter 3. Therefore, we assume the events arrive over
time with ti > ti−1, and we introduce τ∗i = ti− ti−1 as the observed time gap between the
ith and the (i− 1)th event. The history preceding the ith event is denoted again by Hi.

Let S = {p ∈ [0, 1]C ,
∑

c pc = 1} denote the set of probability vectors that form
the (C − 1)-dimensional simplex, and P (θ) be a family of probability distributions on
this simplex parameterized by parameters θ. Every sample p ∼ P (θ) corresponds to
a categorical class distribution. Such a simplex is illustrated on the right-hand side of
Figure 4.2b. Each point inside the two-dimensional simplex (triangle) corresponds to the
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Figure 4.2: The model framework. (a) During training we use sequences si. (b) Given a new
sequence of events s the model generates pseudo points that describe θ(τ), i.e. the
temporal evolution of the distribution on the simplex. These pseudo points are based
on the data that was observed in the training examples and weighted accordingly.
We also have a measure of certainty in our prediction.

probability of choosing each of the three classes. The main idea in this work is to put the
probability over the simplex.

Given ei−1 and Hi−1, our goal is to model the evolution of the class probabilities of the
next event i over time, together with their uncertainty. Technically, we model parameters
θ(τ), leading to a distribution P over the class probabilities p for all τ ≥ 0. Thus, we can
estimate the most likely class after a time gap τ by calculating:

c⋆ = argmax
c

Ep(τ)∼P (θ(τ))[p(τ)]c,

that is, we compute the expected probability vector at τ and then simply take the class
with the largest value in the expected vector. Alternatively, we can view this as finding
the class that carries the most probability mass over the simplex.

Further, since we do not consider only a point estimate, we can obtain the amount of
certainty in a prediction. For this, we estimate the probability of class c being more likely
than the other classes, given by:

qc(τ) := Ep(τ)∼P (θ(τ))[1p(τ)c≥maxc′ ̸=c p(τ)c′
].

This tells us how certain we are that one class is the most probable, that is, how often is
c the argmax when sampling from P .

We have to tackle two core challenges:

1. Expressiveness. Since the time dependence of θ(τ) may be of different forms, we
need to capture complex behavior.

2. Locality. For regions out of the observed data we want to have a higher uncertainty
in our predictions. Specifically for τ → ∞, that is, far into the future, the distribution
should have a high uncertainty.

Two expressive and well-established choices for the family P are the Dirichlet distribution
and the logistic-normal distribution.
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4 Uncertainty on Event Prediction

Dirichlet distribution with concentration parameters α = (α1, . . . , αK), where αi > 0,
has the probability density function:

f(x;α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

) K∏
i=1

xαi−1
i , (4.1)

where Γ is a Gamma function: Γ(α) =
∫∞
0 αz−1e−α dz.

Logistic-normal distribution (LN) is a generalization of the logit-normal distribution
for the multivariate case. If y ∈ RC follows y ∼ N (µ,Σ) then

x =

[
ey1∑C
i=1 e

yi
, . . . ,

eyC∑C
i=1 e

yi

]
follows a logistic-normal distribution.

Based on a common modeling idea, in the following we present two models that exploit
the specificities of these distributions: the WGP-LN (Section 4.1.1) and the FD-Dir
(Section 4.1.2). We also introduce a novel loss to train these models in Section 4.1.3.

4.1.1 Logistic-normal via weighted Gaussian process (WGP-LN)

We start by describing our model for the case when P is the family of logistic-normal (LN)
distributions. How to model a compact yet expressive evolution of the LN distribution?
Our core idea is to exploit the fact that the LN distribution corresponds to a multivariate
random variable whose logits follow a normal distribution. From here, a natural way to
model the evolution of a normal distribution is a Gaussian Process. Given this insight,
the core idea of our model is illustrated in Figure 4.2:

1. We generate M pseudo points from the hidden state of the RNN,

2. We fit a Gaussian Process to the pseudo points, capturing the temporal evolution,

3. We use the fitted GP for obtaining the parameters µ(τ) and Σ(τ) of the final LN
distribution at any specific time τ .

Therefore, by generating a small number of points we characterize the full distribution.

Classic GP. To keep the complexity low, we fit one GP per class c. That is, our model
generates M points (τ

(c)
j , y

(c)
j ) per class c, where y(c)j represents logits. Note that the first

coordinate of each pseudo point corresponds to time, leading to the temporal evolution
when fitting the GP. Essentially, we perform a non-parametric regression from the time
domain to the logit space. Indeed, using a classic GP along with the pseudo points, the
parameters θ of the logistic-normal distribution, µ and Σ, can be easily computed for
any time τ in closed-form [219]:

µc(τ) = kT
c K

−1
c yc, σ

2
c (τ) = sc − kT

c K
−1
c kc (4.2)
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(a) w = (1, 1, 1) (b) w = (1, 0, 0) (c) w = (0.2, 0.5, 0.8)

Figure 4.3: Weighted GP on toy data with different weight values. (a) When all the weights are
one we recover a classic GP. (b) Wherever we have zero weights, we discard points.
(c) Mixed weight assignment offers the tradeoff between the two extremes.

where Kc is the Gram matrix with respect to M pseudo points of class c based on a
kernel k. For example, we can use a radial basis function:

k(τ1, τ2) = exp(−γ2(τ1 − τ2)
2). (4.3)

Vector kc contains at position j the value k(τ (c)j , τ), and yc the value y(c)j , and sc = k(τ, τ).
At every time point τ the logits then follow a multivariate normal distribution with mean
µ(τ) and covariance Σ = diag(σ2(τ)).

Using a GP enables us to describe complex functions. Furthermore, since GP models
uncertainty in the prediction depending on the pseudo points, uncertainty is higher in
areas far away from the pseudo points. Specifically, it holds for distant future; thus,
matching the idea of locality. However, uncertainty is always low around the M pseudo
points. Therefore, M should be carefully picked since there is a trade-off between having
high certainty at (too) many time points and the ability to capture complex behavior. In
the following we present an alternative version that solves this problem.

Weighted GP. We would like to pick M large enough to express rich multimodal
functions but also allow the model to discard unnecessary points. To do this we generate
an additional weight vector w(c) ∈ [0, 1]M that assigns the weight w(c)

j to a point at τ (c)j .
Setting the weight to zero at any point should discard it, and setting it to one will return
the same result as with a classic GP. To achieve this goal, we propose a new kernel:

k′(τ1, τ2) = f(w1, w2)k(τ1, τ2) (4.4)

where k is the same as above. The function f gives weights to the kernel k according to
the weights for τ1 and τ2. We require f to have the following properties:

1. Function f should be a valid kernel over the weights, since then the function k′ is a
valid kernel as well,

2. The importance of pseudo points should not increase, giving f(w1, w2) ≤ min(w1, w2);
this fact implies that a point with zero weight will be discarded since f(w1, 0) = 0
as desired.

The function f(w1, w2) = min(w1, w2) is a simple choice that fulfills these properties. In
Figure 4.3 we show the effect of different weights when fitting a GP.
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4 Uncertainty on Event Prediction

The behavior of the min kernel can intuitively explained by considering the Gram
matrix K and vector k, which are required to estimate µ and σ2 for a new time point τ .
Without loss of generality, consider M pseudo points τ1, . . . , τM such that w1 < · · · < wM .
Since the new query point is observed we assign it weight 1. It follows:

k =


w1

w2
...

wM

⊙


k(τ1, τ)
k(τ2, τ)

...
k(τM , τ)

 , K =


w1 w1 . . . w1

w1 w2 . . . w2
...

...
. . .

...
w1 w2 . . . wM

⊙


k(τ1, τ1) . . . k(τ1, τM )
k(τ2, τ1) . . . k(τ2, τM )

...
. . .

...
k(τM , τ1) . . . k(τM , τM )


(4.5)

Setting w1 = 0 returns k without the first row and K without the first row and column.
Plugging them back into Equation 4.2 we can see that the point τ1 is discarded, as desired.
In practice, the weights have values from interval [0, 1] which in turn gives us the ability
to softly discard points. This is shown in Figure 4.3 as we can see that the mean line
does not have to cross through the points with weights < 1 and the variance can remain
higher around them.

Hi−1
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RNN

[w
(c)
j ,τ

(c)
j ,y

(c)
j ]Mj=1

GP

τc(τ), σ
2
c (τ)

p(τ) ∼ P (θ(τ))

Figure 4.4: Model diagram

Full model. To predict µ and σ2 for a new time τ , we can
now simply apply Equation 4.2 based on the new kernel k′,
where the weight for the query point τ is 1.

To summarize: From a hidden state hi = RNN(ei−1,Hi−1)
we use a neural network to generate M weighted pseudo
points (w

(c)
j , τ

(c)
j , x

(c)
j ) per class c. Fitting a Weighted GP

to these points enables us to model the temporal evolution
of N (µc(τ), σ

2
c (τ)) and, therefore, of the logistic-Normal

distribution. Figure 4.4 shows an illustration of the model.
Note that the cubic complexity of a GP, due to the matrix

inversion, is not an issue since the number M is usually small
(< 10), while still allowing to represent rich multimodal func-
tions. Crucially, given the loss defined in Section 4.1.3, our
model is fully differentiable, enabling us efficient training.

4.1.2 Dirichlet via function decomposition (FD-Dir)

Next, we consider the Dirichlet distribution to model the uncertainty in the predictions.
The goal is to model the evolution of the concentrations parameters α = (α1, . . . , αC)

T

of the Dirichlet over time. Since, unlike the logistic-normal case, we cannot draw the
connection to the GP, we propose to decompose the parameters of the Dirichlet distribution
with expressive (local) functions in order to allow complex dependence on time.

The concentration parameters αc(τ) need to be positive so we propose the following
decomposition of αc(τ) in the log-space:

logαc(τ) =
M∑
j=1

w
(c)
j · N (τ |τ (c)j , σ

(c)
j ) + ν, (4.6)
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(a) τ = 0 (b) τ = 0.5 (c) τ = 1 (d) τ = 2

Figure 4.5: FD-Dir learns to evolve the Dirichlet distribution in continuous time.

where the real-valued scalar ν is a constant prior on logαc(τ) which takes over in regions
where the Gaussians are close to 0. The decomposition into a sum of Gaussians is
beneficial for various reasons:

1. Note that the concentration parameter αc can be viewed as the effective number
of observations of class c. Accordingly, the larger the value logα, the more certain
becomes the prediction. Functions N (τ |τ (c)j , σ

(c)
j ) can then describe time regions

where we observed data and, thus, correspond to more certainty, in regions around
the time τ (c)j where the ‘width’ is controlled by σ(c)j .

2. Since most of the functions’ mass is centered around the mean, the locality property
is fulfilled. Put differently: In regions where we did not observe data, that is, where
the functions N (τ |τ (c)j , σ

(c)
j ) are close to 0, the value logαc(τ) is close to the prior

ν. In the experiments, we use ν = 0 so αc(τ) = 1 holds in the out-of-observed
data regions. This is a common uninformative prior for the Dirichlet parameters.
Specifically for τ → ∞, the resulting predictions have high uncertainty.

3. Lastly, a linear combination of translated Gaussians is able to approximate a large
family of functions [27]. And similarly to the weighted GP, the coefficients w(c)

j

allow discarding unnecessary basis functions.

The basis functions parameters (w
(c)
j , τ

(c)
j , σ

(c)
j ) are the output of the neural network,

and can also be interpreted as weighted pseudo points that determine the regression
of Dirichlet parameters θ(τ), that is, αc(τ) over time (Figure 4.2 & Figure 4.5). The
concentration parameters αc(τ) themselves also have a natural interpretation: they can
be viewed as the rate of events after time gap τ .

Example. Our goal was to model the evolution of a distribution on a probability simplex.
Figure 4.1b shows this for two classes. In general, we can do the same for multiple classes.
Figure 4.5 shows an example of the Dirichlet distribution for three classes, and how
it changes over time. This evolution is the output of the FD-Dir model trained on a
synthetic dataset that is created to mimic the car example from the introduction (see
also Figure B.5a in Appendix B.3). The three classes: overtaking, breaking and collision
occur independently of each other at three different times. The corners of the triangle
correspond to the classes.
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We can distinguish three cases: (a) at first we are certain that the most likely class is
overtaking—high density at the bottom-left corner; (b) as time passes, the most likely
class becomes breaking, (c) and finally collision. After that, we are in the area where we
have not seen any data and do not have a confident prediction (d)—density is uniform
over the whole triangle.

4.1.3 Model training with the distributional uncertainty loss

The core feature of our models is forecasting into the future with uncertainty. The classical
cross-entropy loss, however, is not well suited to learn uncertainty on the categorical
distribution since it is only based on a single (point estimate) of the class distribution.
That is, the standard cross-entropy loss for the ith event between the true categorical
distribution p∗

i and the predicted mean categorical distribution pi is:

LCE
i = H[p∗

i ,pi(τ
∗
i )] = −

∑
c

p∗ic log pic(τ
∗
i )

Because of the point estimate pi(τ) = Epi∼Pi(θ(τ))[pi], the uncertainty on pi is ignored.
Instead, we propose the loss which takes into account uncertainty, which we call uncertainty
cross-entropy :

LUCE
i = Epi∼Pi(θ(τ∗i ))

[H[p∗
i ,pi]] = −

∫
Pi(θ(τ

∗
i ))
∑
c

p∗ic log pic (4.7)

Remark that the uncertainty cross-entropy does not use the compound distribution
pi(τ) but considers the expected cross-entropy. Based on Jensen’s inequality, it holds:
0 ≤ LCE

i ≤ LUCE
i . Consequently, a low value of the uncertainty cross-entropy guarantees

a low value for the classical cross-entropy loss, while additionally taking the variation in
the class probabilities into account. A comparison between the classical cross-entropy
and the uncertainty cross-entropy on a simple classification task and anomaly detection
in irregular event setting is presented in Appendix B.2.

In practice the true distribution p∗
i is often a one hot-encoded representation of the

observed class ci which simplifies the computations. During training, the models compute
Pi(θ(τ)) and evaluate it at the true time of the next event τ∗i given the past event ei−1 and
the history Hi−1. The final loss for a sequence of events is simply obtained by summing
up the loss for each event L =

∑
i Epi∼Pi(θ(τ∗i ))

[H[p∗
i ,pi]].

Fast computation. In order to have an efficient computation of the uncertainty cross-
entropy, we propose closed-form expressions.

(1) Closed-form loss for Dirichlet. Given that the observed class ci is one hot-encoded by
p∗
i , the uncertainty loss can be computed in closed-form for the Dirichlet distribution:

LUCE
i = Epi(τ∗i )∼Dir(α(τ∗i ))

[log pci(τ
∗
i )] = Ψ(αci(τ

∗
i ))−Ψ(α0(τ

∗
i )), (4.8)

where Ψ denotes the digamma function and α0(τ
∗
i ) =

∑C
c αc(τ

∗
i ).
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(2) Loss approximation for GP. For WGP-LN, we approximate LUCE
i based on second

order series expansion (proof is provided in Appendix B.1):

LUCE
i ≈ µci(τ

∗
i )− log

(
C∑
c

exp

(
µc(τ

∗
i ) +

σ2c (τ
∗
i )

2

))

+

∑C
c (exp(σ

2
c (τ

∗
i ))− 1) exp(2µc(τ

∗
i ) + σ2c (τ

∗
i ))

2
(∑C

c exp
(
µc(τ∗i ) +

σ2
c (τ

∗
i )

2

))2 .

(4.9)

Note that we can take the gradient of the above losses and, therefore, fully backpropa-
gate through our models, enabling us to implement them in any modern deep learning
framework and train efficiently with gradient descent.

Regularization. While the above loss incorporates uncertainty much better compared to
cross-entropy, it is still possible to generate pseudo points with high weight values outside
of the observed data regime giving us predictions with high confidence. To eliminate this
behavior we introduce a regularization term rc:

rc = α

∫ T

0
(µc(τ))

2 dτ︸ ︷︷ ︸
Pushes mean to 0

+β

∫ T

0
(ν − σ2c (τ))

2 dτ︸ ︷︷ ︸
Pushes variance to ν

. (4.10)

For the WGP-LN, µc(τ) and σc(τ) correspond to the mean and the variance of the class
logits which are pushed to prior values of 0 and ν. For the FD-Dir, µc(τ) and σc(τ)
correspond to the mean and the variance of the class probabilities where the regularizer
on the mean can actually be neglected because of the prior ν introduced in the function
decomposition (Equation 4.6). In experiments, ν is set to 1 for WGP-LN and C−1

C2(C+1)
for

FD-Dir which is the variance of the classic Dirichlet prior with concentration parameters
equal to 1. For both models, this regularizer forces high uncertainty on the interval [0, T ].
In practice, the integrals can be estimated with Monte-Carlo sampling whereas α and β
are hyperparameters which are tuned on a validation set.

In Malinin and Gales [171], training models capable of uncertain prediction requires
out-of-distribution samples, by using another dataset or a generative model. In contrast,
our regularizer suggests a simple way to consider out-of-distribution data which does not
require another model or dataset.

4.1.4 Modeling the temporal point process

Our models FD-Dir and WGP-LN predict P (θ(τ)), enabling us to evaluate, for example,
p after a specific time gap τ . This corresponds to a conditional distribution q(c|τ) := pc(τ)
over the classes. In this section, we introduce a point process framework to generalize
FD-Dir to also predict the time distribution q(τ). This enables us to predict, for example,
the most likely time the next event is expected or to evaluate the joint distribution q(c, τ).
We call the model FD-Dir-PP.
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We modify the model so that each class c is modeled using an inhomogeneous Pois-
son point process with positive locally integrable intensity function λc(τ). Instead of
generating parameters θ(τ) = (α1(τ), . . . , αC(τ)) by function decomposition, FD-Dir-PP
generates intensity parameters over time: log λc(τ) =

∑M
j=1w

(c)
j N (τ |τ (c)j , σ

(c)
j ) + ν. The

main advantage of such general decomposition is its potential to describe complex mul-
timodal intensity functions contrary to other models like RMTPP [61] (see Chapter 3).
Since the concentration parameter αc(τ) and the intensity parameter λc(τ) both relate to
the number of events of class c around time τ , it is natural to convert one to the other.

Given this C-multivariate point process, the probability of the next class given time
and the probability of the next event time are q(c|τ) = λc(τ)

λ0(τ)
and q(τ) = λ0(τ)e

−
∫ τ
0 λ0(s)ds

where λ0(τ) =
∑C

c=1 λc(τ). Since the classes are now modeled via TPP, the log-likelihood
of the event ei = (ci, τ

∗
i ) is:

log q(ci, τ
∗
i ) = log q(ci|τ∗i ) + log q(τ∗i ) = log

λci(τ
∗
i )

λ0(τ∗i )︸ ︷︷ ︸
(i)

+ log λ0(τ
∗
i )︸ ︷︷ ︸

(ii)

−
∫ τ∗i

0
λ0(t)dt︸ ︷︷ ︸
(iii)

.
(4.11)

The terms (ii) and (iii) act like a regularizer on the intensities by penalizing large
cumulative intensity λ0(τ) on the time interval [ti−1, ti] where no events occurred. This
exactly corresponds to Equation 2.27. The term (i) is the standard cross-entropy loss
at time τi. Or equivalently, by modeling the distribution Dir(λ1(τ), . . . , λC(τ)), we see
that term (i) is equal to LCE

i (see Section 4.1.3). Using this insight, we obtain our final
FD-Dir-PP model: We achieve uncertainty on the class prediction by modeling λc(τ)
as concentration parameters of a Dirichlet distribution and train the model with the
loss from Equation 4.11 replacing the term (i) with LUCE

i . As it becomes apparent,
FD-Dir-PP differs from FD-Dir only in the regularization of the loss function, enabling it
to be interpreted as a point process.

4.2 Related work

Predictions based on discrete sequences of events ignoring the continuous time have been
modeled by Markov models [9] and recurrent neural networks [103, 38]. To exploit the
time information some models [157, 190] additionally take time as an input but still output
a single prediction for the entire future. In contrast, temporal point process framework
defines the intensity function that describes the rate of events occurring over time and
can naturally capture the irregularly-sampled sequences (Chapter 3).

As discussed in Chapter 3, RMTPP [61] is not able to capture complex evolution over
time, such as multimodal distributions. Similarly, classical TPPs [99, 112] are restricted
to a certain type of behavior. On the other hand, neural Hawkes process [180] uses
continuous-time LSTM which allows specifying more complex intensity functions but the
likelihood evaluation is not in closed-form anymore. Finally, these approaches, unlike our
models, do not provide the same kind of uncertainty in the predictions. We proposed the
solution in Section 4.1.4 to extend WGP-LN and FD-Dir with a point process framework
while having the expressive power to represent complex time evolutions.
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Uncertainty in machine learning is, in general, an important topic with many proposed
different approaches [73, 69, 148]. For example, uncertainty can be imposed by introducing
distributions over the weights to define the so-called Bayesian neural networks [23, 175,
226]. A simpler approach is to introduce uncertainty on the class prediction directly,
by using Dirichlet distribution [171, 230], similar to how we defined it but without
time dependence. That is, FD-Dir models complex temporal evolution of Dirichlet
distribution via function decomposition, which can also be adapted to have a point
process interpretation. Other methods introduce uncertainty in time series forecasting
by learning state space model with Gaussian processes [67, 269]. Alternatively, RNN
architecture has been used to model the probability density function over time [290].
Compared to these models, WGP-LN uses both Gaussian processes and RNNs to model
uncertainty together with the time.

Both models are defined using pseudo points which has a connection to inducing
points in sparse Gaussian processes. There, the goal is to have a reduced computational
complexity [247], while our goal is to give the points different importance. If necessary,
we can speed up the computation simply by using less pseudo points. Wen et al. [279]
introduce a weighted Gaussian process that rescales the data points; in contrast, our
model uses a custom kernel to discard (pseudo) points.

4.3 Experiments

We evaluate our models on large-scale synthetic and real-world data. We compare to neural
point process models: RMTPP [61] and Neural hawkes process [180]. Additionally,
we use various RNN models with the knowledge of the time of the next event. We measure
the accuracy of class prediction, accuracy of time prediction, and evaluate on an anomaly
detection task to show prediction uncertainty.

We split the data into train, validation and test set (60%–20%–20%) and tune all
models on a validation set using grid search over learning rate, hidden state dimension and
L2 regularization. After running models on all datasets 5 times we report the mean and
the standard deviation of the test set accuracy. Details on model selection can be found
in Appendix B.4.1. The code and further supplementary material is available online.2

We use the following data (more details in Appendix B.3):

• Graph. We generate data from a directed Erdős-Rényi graph where nodes represent
the states and edges the weighted transitions between them. The time it takes to
cross one edge is modeled with one normal distribution per edge. By randomly
walking along this graph we created 10k irregularly-sampled events with 10 unique
classes.

• Stack Exchange. Sequences contain rewards as events that users get for partici-
pation on a question answering website. After preprocessing according to [61] we
have 40 classes and over 480k events spread over 2 years of activity of around 6700
users. The goal is to predict the next reward a particular user will receive.

2https://www.cs.cit.tum.de/daml/uncertainty-event-prediction/
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• Smart Home [33]. We use a recorded sequence from a smart house with 14 classes
and over 1000 events. Events correspond to the usage of different appliances. The
next event will depend on the time of the day, history of usage and other appliances.

• Car Indicators. We obtained a sequence of events from car’s indicators that has
around 4000 events with 12 unique classes. The sequence is highly irregular in time,
with τ ranging from milliseconds to minutes.

4.3.1 Visualization

To analyze the behavior of the models, we propose visualizations of the evolutions of the
parameters predicted by FD-Dir and WGP-LN.

Setup. We use two toy datasets where the probability of an event depends only on time.
The first one (3-G) has three classes occurring at three distinct times. It represents the
events in the Figure B.5a. The second one (Multi-G) consists of two classes where one
of them has two modes and corresponds to the Figure 4.1a. We use these datasets to
showcase the importance of time when predicting the next event. In Figure 4.6, the four
top plots show the evolution of the categorical distribution for the FD-Dir and the logits
for the WGP-LN with 10 points each. The four bottom plots describe the certainty of the
models on the probability prediction by plotting the probability qc(τ) that the probability
of class c is higher than others, as introduced in Section 4.1.

Results. Both models learn meaningful evolutions of the distribution on the simplex.
For the 3-G data, we can distinguish four areas: the first three correspond to the three
classes; after that the prediction is uncertain. The Multi-G data shows that both models
are able to approximate multimodal evolutions.

4.3.2 Class prediction accuracy

The goal of this experiment is to assess whether our models can correctly predict the class
of the next event, given the time at which it occurs. For this purpose, we compare our
models against Hawkes and RMTPP and evaluate prediction accuracy on the test set.

Results. We can see from Figure 4.7 that our models consistently outperform their com-
petitors on all datasets. Results including other baselines can be found in Appendix B.4,
where we reach the same conclusion—our models perform the best.

4.3.3 Time-Error evaluation

Next, we aim to assess the quality of the time intervals at which we have confidence in
one class. Even though WGP-LN and the FD-Dir do not model explicit distribution over
time, like TPPs, they still have intervals at which we are certain in a class prediction,
making the conditional probability a good indicator of the time occurrence of the event.
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Figure 4.6: Visualization of the prediction evolution. The dotted vertical red line indicates
the true time of the next event for the example sequence. Here, both models
correctly predict the second class (in orange), and capture the variation of the class
distributions over time. Generated points from WGP-LN are plotted with the size
corresponding to the weight. We can see that the model does not need all the
pseudo points to capture the true evolution of the prediction so it discards them
by assigning small weights to them. For predictions in the far future, both models
given high uncertainty.
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Figure 4.7: Class accuracy (top; higher is better) and Time-Error (bottom; lower is better).

Setup. While models predicting a single time τ̂i for the next event often use the MSE
score 1

n

∑n
i=1(τ̂i − τ∗i )

2, in our case the MSE is not suitable since one event can occur at
multiple time points. In the conventional least-squares approach, the mean of the true
distribution is an optimal prediction; however, here it is almost always wrong. Therefore,
we use another metric which is better suited for multimodal distributions. Assume that a
model returns a score function g(c)i (τ) for each class regarding the next event i, where a
large value means the class c is likely to occur at time τ . We define:

Time-Error =
1

n

n∑
i=1

∫
1
g
(c)
i (τ)≥g

(c)
i (τ∗i )

dτ.

The Time-Error computes the size of the time intervals where the predicted score is larger
than the score of the observed time τ∗i . Hence, a performant model would achieve a low
Time-Error if its score function g(c)i (τ) is high at time τ∗. As the score function in our
models, we use the corresponding class probability p̄ic(τ).

Results. We can see that our models clearly obtain the best results on all datasets. The
point process version of FD-Dir does not improve the performance. Thus, taking also into
account the class prediction performance, we recommend to use our other two models. In
Appendix B.4.2 we compare FD-Dir-PP with other neural point process models on time
prediction using the MSE score and achieve similar results.

4.3.4 Anomaly detection and uncertainty

The goal of this experiment is twofold: (1) it assesses the ability of the models to detect
anomalies in irregular sequences, (2) it evaluates the quality of the predicted uncertainty
on the categorical distribution. For this, we use a similar set-up as described in Malinin
and Gales [171].

Setup. The experiments consist in introducing anomalies in datasets by changing the
occurrence time of 10% of the events (at random after the time transformation described in
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Figure 4.8: AUROC and APR comparison on different datasets for the anomaly detection task.
The orange and blue bars use categorical uncertainty score whereas the green bars
use distributional uncertainty.

Appendix B.3). Hence, the anomalies form out-of-distribution data, whereas unchanged
events represent in-distribution data. The performance of the anomaly detection is
measured using an area under the receiver operating characteristic (AUROC) and an
area under the precision-recall curve (AUPR). We use two approaches: (i) We consider
the categorical uncertainty on p̄(τ), that is, we detect anomalies by using the predicted
probability of the true event as the anomaly score. (ii) We use the distribution uncertainty
at the observed occurrence time provided by our models. For WGP-LN, we can evaluate
qc(τ) directly as a difference between the two normal distributions. For FD-Dir, this
probability does not have a closed-form solution so, instead, we use the concentration
parameters which are also indicators of out-of-distribution events. For all scores, that is,
for p̄(τ)c, qc(τ) and αc(τ), a low value indicates a potential anomaly around time τ .

Results. As seen in Figure 4.8, the FD-Dir and the WGP-LN have particularly good
performance. We observe that the FD-Dir gives better results especially with distributional
uncertainty. This might be due to the power of the concentration parameters that can be
viewed as number of similar events around a given time.

4.4 Conclusion

We proposed two new methods to predict the evolution of the probability of the next event
in irregularly-sampled sequences, including the distributions’ uncertainty. Both methods
follow a common framework consisting in generating pseudo points able to describe rich
multimodal time-dependent parameters for the distribution over the probability simplex.
The complex evolution is captured via Gaussian Process or function decomposition,
respectively; while still enabling straightforward training. We also provided an extension
and interpretation within a point process framework. In the experiments, WGP-LN and
FD-Dir have clearly outperformed state-of-the-art models based on point processes; for
event and time prediction as well as for anomaly detection.
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Neural ODE Neural Flow

x0

ODESolve(·)

f(t,x(t))

x0

F (t,x0) Figure 5.1: Comparison between learning a
vector field (Left) and learning a flow (Right).
Neural ordinary differential equations require
a numerical solver and evaluate the neural
network f at many points along the solution
curve. Our approach learns the solutions
from initial conditions directly, avoiding the
solvers.

Ordinary differential equations (ODEs) are among the most important tools for modeling
complex systems, both in natural and social sciences. They describe the instantaneous
change in the system, which is often an easier way to model physical phenomena than
specifying the whole system itself. For example, the change of the pendulum angle or the
change in population can be naturally expressed in the differential form. Similarly, Chen
et al. [35] introduce neural ODEs that describe how some quantity of interest, represented
as a vector x, changes with time: ẋ = f(t,x(t)), where f is now a neural network. We
repeat the solution to a given ODE from Section 2.1.1: starting at some initial value x(t0)
measured at time t0 we can find the result of this dynamic at any t1:

x(t1) = x(t0) +

∫ t1

t0

f(t,x(t)) dt = ODESolve(x(t0), f, t0, t1). (2.4)

As already discussed in Section 2.1.1, it is sufficient for f to be continuous in t and
Lipschitz continuous in x to have a unique solution. This mild condition is already
satisfied by a large family of neural networks. In most practically relevant scenarios,
the integral in Equation 2.4 has to be solved numerically, requiring a trade-off between
computation cost and numerical precision. Much of the followup work to [35] focused on
retaining expressive dynamics while requiring fewer solver evaluations [71, 125].

In the machine learning context we are given a set of initial conditions (often at t0 = 0)
and a loss function for the solution evaluated at time t1. One example is modeling
time series where the latent state is evolved in continuous time and is used to predict
the observed measurements [51]. Here, unlike in physics for example, the function f is
completely unknown and needs to be learned from data. Thus, Chen et al. [35] use neural
networks for their ability to capture complex dynamics. Note, however, that unlike in
physics the resulting ODE is not as interpretable.
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Since solving an ODE is expensive, we want to find a way to keep the desired properties
of neural ODEs at a much smaller computation cost. If we take a step back, we see that
neural ODEs take initial values as inputs and return non-intersecting solution curves
(Figure 5.1). We propose to model the solution curves directly, with a neural network,
instead of specifying the derivative. That is, given an initial condition we return the
solution with a single forward pass through our network. Straight away, this leads to
improvements in computation performance because we avoid using ODE solvers altogether.
We will show how our method can be used as a faster alternative to ODEs in existing
models [34, 51, 118, 229], while improving the modeling performance at the same time.
In the following, we derive the conditions that our method needs to satisfy and propose
different architectures that implement them.

5.1 Method

In this section, we present our method, neural flows, that directly models the solution
curve of an ODE with a neural network. For simplicity, let us briefly assume that the
initial condition x0 = x(t0) is specified at t0 = 0. We handle the general case shortly.
Then, Equation 2.4 can be written as x(t) = F (t,x0), where F is the solution to the
initial value problem, ẋ = f(t,x(t)), x0 = x(0). We will model F with a neural network.
For this, we first list the conditions that F must satisfy so that it is a solution to some
ODE. Let F : [0, T ]× Rd → Rd be a smooth function satisfying:

i) F (0,x0) = x0,

ii) F (t, ·) is invertible, ∀t.

Property i) ensures we satisfy the initial condition. Property ii) ensures the uniqueness of
the solution given the initial value x0, that is, the curves specified by F corresponding to
different initial values do not intersect for any t.

There is an exact correspondence between a function F with the above properties and
an ODE defined with f such that the derivative d

dtF (t,x0) matches f(t,x(t)) everywhere,
given x0 = x(0) [152, Theorem 9.12]. In general, we can say that f defines a vector field
and F defines a family of integral curves, also known as the flow in mathematics.1 As
F will be parameterized with a neural network, property i) requires that its parameters
must depend on t such that we have an identity map at t = 0.

Note that by providing x0 we define a smooth trajectory F (·,x0)—the solution to some
ODE with the initial condition at t0 = 0. If we relax the restriction t0 = 0 and allow
x0 to be specified at an arbitrary t0 ∈ R, the solution can be obtained with a simple
procedure. We first go back to the case t = 0 where we obtain the corresponding “initial”
value x̂0 := x(0) = F−1(t0,x0). This then gives us the required solution F (·, x̂0) to the
original initial value problem. Thus, we often prefer functions with an analytical inverse.

Finally, we tackle implementing F . The second property instructs us that the function
F (t, ·) is a diffeomorphism on Rd. We can satisfy this by drawing inspiration from existing

1Not to be confused with normalizing flow from Section 2.2.2, although, we will take inspiration in
normalizing flows to satisfy the invertibility constraint.
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works on normalizing flows and invertible neural networks (Section 2.2.2). In our case,
the parameters must be conditioned on time, with identity at t = 0. As a starting
example, consider a linear ODE f(t,x(t)) = Ax(t), with x(0) = x0. Its solution can
be expressed as F (t,x0) = exp(At)x0, where exp is the matrix exponential. Here, the
learnable parameters A are simply multiplied by t to ensure property i); and given fixed
t, the network behaves as an invertible linear transformation. In the following we propose
other, more expressive functions suitable for applications such as time series modeling.

5.1.1 Proposed architectures

ResNet flow. A single residual layer xt+1 = xt + g(xt) [100] is similar to Equation 2.4
since we can view it as a discretized version of a continuous transformation, as was already
discussed in Section 2.1.1. Although plain ResNets are not invertible, one could use
spectral normalization [87] to enforce a small Lipschitz constant of the network, which
guarantees invertibility [10, Theorem 1]. Thus, ResNets become a natural choice for
modeling the solution curve F resulting in the following extension:

F (t,x) = x+ φ(t)g(t,x), (5.1)

where φ : R → Rd. This satisfies properties i) and ii) from above when φ(0) = 0 and
|φ(t)i| < 1; and g : Rd+1 → Rd is an arbitrary contractive neural network (Lip(g) < 1).
One simple choice for φ is a tanh function. The inverse of F can be found via fixed point
iteration similar to [10].

GRU flow. Time series data is traditionally modeled with recurrent neural networks,
for example, with a gated recurrent unit (GRU) [38], such that the hidden state ht−1 is
updated at fixed intervals with the new observation xt:

ht = GRUCell(ht−1,xt) = zt ⊙ ht−1 + (1− zt)⊙ ct, (5.2)

where zt and ct are the result of the transformation acting on the combination of the
previous state ht−1 and the new input xt (see Section 2.1.2).

De Brouwer et al. [51] derived the continuous equivalent of this architecture called
GRU-ODE. Given the initial condition h0 = h(t0), they evolve the hidden state h(t)
between the observations with an ODE:

dh(t)

dt
= (1− z(t))⊙ (c(t)− h(t)). (5.3)

With the new observation x, the hidden state is updated using a discrete GRU update
(Equation 5.2). In summary, given an initial state h0 and the observation xt1 at t1 we
get the updated hidden state in a two-step process:

1. h̄t1 = ODESolve(h0,Equation 5.3, t0, t1),
2. ht1 = GRUCell(h̄t1 ,xt1).

(5.4)

Here, we will derive the flow version of GRU-ODE. If we rewrite Equation 5.2 by regrouping
the terms: ht = ht−1 + (1− zt)⊙ (ct − ht−1), we see that GRU update acts as a single
ResNet layer. This leads to the following result.
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Definition 1. Let fz, fr, fc : Rd+1 → Rd be any arbitrary neural networks and let
z(t,h) = α · σ(fz(t,h)), r(t,h) = β · σ(fr(t,h)), c(t,h) = tanh(fc(t, r(t,h)⊙ h)), where
α, β ∈ R and σ is a sigmoid function. Further, let φ : R → Rd be a continuous function
with φ(0) = 0 and |φ(t)i| < 1. Then the evolution of GRU state in continuous time is
defined as:

F (t,h) = h+ φ(t)(1− z(t,h))⊙ (c(t,h)− h). (5.5)

Theorem 2. A neural network defined by Equation 5.5 specifies a flow when the functions
fz, fr and fc are contractive maps; it is sufficient Lip(f·) < 1, and α = 2

5 , β = 4
5 .

We prove Theorem 2 in Appendix C.1.2 by showing that the second summand on the
right hand side in Equation 5.5 satisfies Lipschitz constraint making the whole network
invertible. We also show that the GRU flow has the same desired properties as GRU-ODE,
namely, bounding the hidden state in (−1, 1) and having the Lipschitz constant of 2.
Note that GRU flow (Equation 5.5) acts as a replacement to ODESolve in Equation 5.4.
Alternatively, we can append xt to the input of fz, fr and fc, which would give us a
continuous-in-time version of GRU.

Coupling flow. The disadvantage of both the ResNet flow and GRU flow is the missing
analytical inverse. Although it is not always required, having an easy to compute inverse
will be useful in a density estimation task. To this end, we propose a continuous-in-time
version of an invertible transformation based on splitting the input dimensions into two
disjoint sets A and B, A ∪B = {1, 2, . . . , d}. Recall from Equation 2.33 (Section 2.2.2)
that we copy the values indexed by B and transform the rest with, for example, an affine
function. To make this a flow we also have to implement the initial condition:

F (t,x)A = xA exp(u(t,xB)φu(t)) + v(t,xB)φv(t), (5.6)

where u, v are arbitrary neural networks and φu(0) = φv(0) = 0. We can easily see that
this satisfies property i): at t = 0, xB is copied regardless and Equation 5.6 evaluates to
xA. Since it is also invertible by design [59], regardless of t, it defines a proper flow. Same
as in Section 2.2.2, we apply multiple consecutive transformations, choosing different
partitions A and B, as some values stay constant after a single transformation.

More generally, for all flow models we can stack multiple layers of transformations
F = F1 ◦ · · · ◦Fn and still define a proper flow since the composition of invertible functions
is invertible, and consecutive identities give an identity.

We can think of φ (including φu, φv) as a time embedding function that has to be zero
at t = 0. Since it is a function of a single variable, we would like to keep the complexity
low and avoid using general neural networks in favor of interpretable and expressive
basis functions. A simple example is linear dependence on time φ(t) = αt, or tanh(αt)
for ResNet flow. An alternative, more powerful embedding consists of Fourier features
φ(t)i =

∑
k αik sin(βikt).
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5.1.2 On approximation capabilities

Previous works established that neural ODEs are sup-universal for diffeomorphic functions
[265] and are Lp-universal for continuous maps when composed with terminal family [153].
A similar result also holds for affine coupling flows [264], whereas general residual networks
can approximate any function [163]. The ResNet flow, as defined in Equation 5.1, can
be viewed as an Euler discretization, meaning it is enough to stack appropriately many
layers to uniformly approximate any ODE solution [153]. GRU flow can be viewed as a
ResNet flow and coupling flow shares a similar structure, meaning that if we can set them
to act as an Euler discretization we can match any ODE. However, this is of limited use
in practice, as is often the case with theoretical approximation results, since we can only
use finitely many layers. The main focus of this work is to provide the empirical evidence
that we can outperform neural ODEs on relevant real-world tasks.

Other results [62, 295] consider limitations of neural ODEs in modeling general home-
omorphisms (for example, x 7→ −x) and propose the solution that adds dimensions to
the input x. Such augmented networks can model higher order dynamics. This can be
explicitly defined through certain constraints for further improvements in performance
and better interpretability [193]. We can apply the same trick to our models. However,
instead of augmenting x, a simpler solution is to relax the conditions on F given the task.
For example, if we do not need invertibility, we can remove the Lipschitz constraint in
Equation 5.1. Since neural flows offer such flexibility, they might be of more practical
relevance in these use cases.

5.2 Applications

In this section we review two main applications of neural ODEs: modeling irregularly-
sampled time series and density estimation. We describe the existing modeling approaches
and propose extensions using neural flows. In Section 5.3 we will use models presented
here to qualitatively and quantitatively compare neural flows with neural ODEs.

5.2.1 Continuous-time latent variable models

Autoregressive [200, 232] and state space models [110, 218] have achieved considerable
success modeling regularly-sampled time series. However, many real-world applications
do not have a constant sampling rate and may contain missing values, e.g., in healthcare
we have very sparse measurements at irregular time intervals. Here we describe how our
neural flow models can be used in such scenario.

Encoder. In this setting, we are given a sequence of observations X = (x1, . . . ,xn),
xi ∈ Rd at times t = (t1, . . . , tn). To represent this type of data, previous RNN-based
works relied on exponentially decaying hidden state [32], time gating [190], or simply
adding time as an additional input [61]. More recently, various ODE-based models built
on top of RNNs to evolve the hidden state between observations in continuous time,
giving rise to, e.g., ODE-RNN [229], while outperforming previous approaches. Another
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model is GRU-ODE [51], which we already described in Equation 5.4. We proposed the
GRU flow (Equation 5.5) that can be used as a straightforward replacement.

Lechner and Hasani [149] showed that simply evolving the hidden state with a neural
ODE can cause vanishing or exploding gradients, a known issue in RNNs (Section 2.1.2).
Thus, they propose using an LSTM-based [103] model instead. The difference to ODE-
RNN [229] is using an LSTMCell and introducing another hidden state that is not updated
continuously in time, which in turn allows gradient propagation via internal LSTM gating.
To adapt this to our framework, we simply replace the ODESolve with the ResNet or
coupling flow to obtain a neural flow model.

Decoder. Once we have a hidden state representation hi of the irregularly-sampled
sequence up to xi, we are interested in making future predictions. The ODE based models
continue evolving the hidden state using a numerical solver to get the representation at
time ti+1, with hi+1 = ODESolve(hi, f, ti, ti+1). With neural flows we can simply pass
the next time point ti+1 into F and get the next hidden state directly. In the following
we show how the presented encoder-decoder model is used in both the smoothing and
filtering approaches for irregular time series modeling.

Smoothing approach. The given sequence of observations (X, t) is modeled with latent
variables or states (z1, . . . ,zn) ∼ Rh, such that xi ∼ p(xi|zi), conditionally independent
of other xj [35, 229]. That is, we assume there is a continuous underlying sequence of
latent states which produces our observations.2 There is a predesignated prior state z0 at
t = 0 from which the latent state is assumed to evolve continuously. More precisely, if z0
is a sample from the initial latent state distribution, then a latent state sample at any
future time step t is given by zt = F (t, z0).

Since the exact inference on the initial state z0, p(z0|X, t), is intractable, we proceed
by doing approximate inference following the variational auto-encoder approach [35, 229].
Recall from Section 2.2.3 that we have to define an approximate posterior q(z0|X, t)
conditioned on the input data. Using an LSTM-based neural flow encoder we process the
input (X, t) to obtain the vector representation of time series (final hidden state), and
output the posterior parameters µ and σ to define q(z0|X, t) = N (µ,σI).

The decoder returns all zi deterministically at times t with F (t, z0), with initial
condition z0 ∼ q(z0|X, t). For the latent state at an arbitrary ti, the target is generated
according to the model xi ∼ p(xi|zi). Given the prior p(z0) = N (0, I), the overall model
is trained by maximizing the evidence lower bound, same as in Equation 2.42:

ELBO = Ez0∼q(z0|X,t))[log p(X)]−KL[q(z0|X, t)||p(z0)]. (5.7)

Using continuous time models brings up multiple advantages, from handling irregular
time points automatically to making predictions at any, and as many time points as
required. This allows us to do reconstruction of the time series, impute missing values

2This would correspond to treating the data as continuous instead of event-based (see Chapter 1).
Note that we will still model event data using the TPP framework because the intensity function is
continuous.
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and forecast into the future. Since both neural flows and ODEs share the same desired
properties, the defining difference becomes the computational complexity, where we offer
a more efficient model which will matter especially as we scale to bigger data.

Filtering approach. In contrast to the previous approach, we can alternatively do the
inference in an online fashion at each of the observed time points, that is, by estimating
the posterior p(zi|x1:i, t1:i) after seeing observations until the current time step i. This is
also known as filtering. Here, the prediction for future time steps is done by evolving the
posterior corresponding to the final observed time point p(zn|X, t) instead of the initial
time point p(z0|X, t), as was done in the smoothing approach.

In this work, we follow the general approach suggested by De Brouwer et al. [51] for
capturing non-linear dynamics. We use GRU flow (instead of GRU-ODE) for evolving
the hidden state hi ∈ Rh and we output the mean and the variance of the approximate
posterior q(zi|x1:i, t1:i). The log-likelihood cannot be computed exactly under this model
so De Brouwer et al. [51] suggest using a custom objective that is the analogue to Bayesian
filtering (see Appendix C.1.1 for details). Unlike [51], which needs to solve one ODE
per observation, our method only needs a single pass through the network for every
observation, therefore, it is again more computationally efficient.

5.2.2 Temporal point processes

Sometimes temporal data is measured irregularly and the times at which we observe
the events come from some underlying process modeled with temporal point processes
(see Section 2.2.1 and Chapter 3). We reuse the notation and observe a realization of
a TPP on an interval [0, T ] as an increasing sequence of arrival times t = (t1, . . . , tn),
ti ∈ [0, T ], where n is a random variable. The model is defined with an intensity function
λ(t) which has to be positive. We define the history Hti as the events that precede
ti, and further define the conditional intensity function λ∗(t) which depends on history.
Alternatively, working with inter-event times τi = ti − ti−1 is equivalent. We train the
model by maximizing the likelihood defined in Equation 2.27.

Following the approach from Chapter 3 we use an autoregressive model to represent
the history with a fixed-size vector hi. We differentiate between two approaches:

1) Exact likelihood—The intensity function can correspond to a simple distribution
[61] or a mixture of distributions [240].

2) Estimated likelihood—Modeling λ(t) with an arbitrary neural network which requires
Monte Carlo integration [14, 180].

In the context of neural ODE models, Jia and Benson [118] propose a jump ODE
model that evolves the hidden state h(t) with an ODE and updates the state with new
observations, similar to LSTM-ODE. In this case, obtaining the hidden state and solving
the integral in Equation 2.27 can be done in a single solver call. That means the numerical
ODE solver computes both the integral corresponding to the solution of the intensity
function at t and the area under the intensity curve up to t, at the same time. Note that
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this is still more expensive than having a closed-form likelihood since such models can
simply evaluate the intensity at a point without a solver. We will define both versions of
models, 1) those that replace the RNN from previous works with a neural flow encoder
but keep the closed-form loss, and 2) those that evolve the intensity with a neural flow
and estimate the loss using Monte Carlo.

Marked point processes. Since we are often interested in what type of event happened
at time point ti, we can model the observed type xi, also called mark, along with the
arrival times: p(t,X) = p(t)p(X|t). Written like this, we can keep the TPP model for
arrival times as discussed above. We add a module that inputs the history hi and the
next time point ti+1 that outputs the probabilities for each mark type. The special case
is having continuous marks xi ∈ Rd which is covered in the next section.

5.2.3 Time-dependent density estimation

We again denote the arrival times with t and marks with X, xi ∈ Rd, which are now
continuous variables. This is known as the spatio-temporal point process (Section 2.2.1)
since xi often correspond to locations of events, for example, earthquakes [195] or disease
outbreaks [181]. The TPP models p(t) the same way as in Section 5.2.2, so we are
only left with the conditional density p(X|t). There are plenty of generative model
choices to pick from (Section 2.2), but using the same reasoning as in Chapter 3 we
opt for normalizing flows. In particular, they offer closed-form likelihood and allow for
straightforward sampling. A natural candidate is a continuous normalizing flow [35] which
defines the instantaneous change of variables (Equation 2.37) and the corresponding
log-likelihood formulation (Equation 2.38). In the usual density estimation setting, the
ODE integration boundaries are fixed, however, since we now have continuous data we
could utilize the continuity to naturally evolve the distribution with time.

Chen et al. [34] propose several spatio-temporal models that use this idea, the first
one being the time-varying CNF where p(xi|ti) is estimated by integrating Equation 2.38
from t0 = 0 until the observed ti:

log p(xi|ti) = log q(z(0))−
∫ ti

0
Tr

(
∂f

∂z(t)

)
dt. (5.8)

where q(z(0)) is the base density learned with another normalizing flow to avoid trivial
solutions at t = 0. An alternative model, attentive CNF [34], is more expressive compared
to the time-varying CNF and more efficient than jump ODE models [118]. The density of
xi depends on all the previous values xj<i through the attention mechanism [273].

We can keep the same kind of time dependence by using our notation for neural flows
in the familiar discrete change of variables formula:3

p(xi|ti) = q(F−1(ti,xi))|det JF−1(xi)|. (5.9)

3The term “discrete” here refers to the fact we do not use continuous normalizing flows. However, our
proposed model is aware of continuous nature of the data and evolves the density with time.
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This works because F is a diffeomorphism by definition and will define a valid distribution
at any ti. The only question is whether we can compute the inverse and the determinant
with ease. This is simply satisfied if we use our coupling flow as defined in Equation 5.6.
The determinant is the product of the diagonal values of the Jacobian with respect to xi,
which are simply exponential terms from Equation 5.6. The difference between a RealNVP
coupling model [59] and our implementation is that we include the time dependency
meaning the density changes with time and is equal to the base density at t = 0. Unlike
a CNF model, we do not use the solver or trace estimation to compute the likelihood.
To generate new realizations at ti, we first sample from q to get x0 ∼ q(x0), then simply
evaluate F (ti,x0).

For the attentive version of our model, we represent all the previous points xj<i with
an attention encoder and define a conditional coupling NF p(xi|ti,xj<i). We describe
the full model in Appendix C.1.4. It is also possible to use ResNet flow, but the benefits
over ODEs vanish since the determinant and the inverse require iterative procedure.

5.3 Experiments

In this section we show that flow-based models can match or outperform ODEs at a
smaller computation cost, both in latent variable time series modeling, as well as TPPs
and time-dependent density estimation. To make fair comparison, we used recently
introduced reparameterization trick for ODEs that allows faster mini-batching [34], and
the semi-norm trick for faster backpropagation [127], making the models more competitive
compared to the original works. In all experiments we split the data into train, validation
and test set; train with early stopping and report results on test set. We use Adam
optimizer [134]. For training we use two different machines, one with 3.4GHz processor
and 32GB RAM and another with 61GB RAM and NVIDIA Tesla V100 GPU 16GB
[161]. All datasets are publicly available, we include the download links and release the
code that reproduces the results.4

5.3.1 Synthetic data

We compare the performance of neural ODEs and neural flows on periodic signals and
data generated from autonomous ODEs, in particular: sine, sawtooth, square and triangle
signals, and sink and ellipse ODEs (Figure C.1). A detailed setup and results are presented
in Appendix C.2. We observe that training with adaptive solvers [60] is slower compared
to fixed-step solvers (Figure C.2), as expected. With the fixed step, however, we are not
guaranteed invertibility [201], which can be an issue in, for example, density estimation
(see Appendix C.2.1). Using the same setup, our models are an order of magnitude faster.
Finally, as can be seen from Figure 5.2, neural ODEs struggle with non-smooth signals
while neural flows perform much better, although they also only output smooth dynamics.
Neural flows are also better at extrapolating, although none of the models excel here.

4https://www.cs.cit.tum.de/daml/neural-flows/
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Figure 5.2: (Left) Test error for synthetic data. (Right) All models fail extrapolating in time.

5.3.2 Stiff ODEs

The numerical approach to solving ODEs is not only slow but it can be unstable. This
can happen when the ODE becomes stiff, that is, when the solver needs to take very small
steps even though the solution curve is smooth. For neural ODEs, it can happen that the
target dynamic is known to be stiff or the latent dynamic becomes stiff during training.
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Figure 5.3: Flows handle stiffness better.

To see the effects of this, we use the
experiment from Ghosh et al. [80]. The
ODE is given by: ẋ = −1000x + 3000 −
2000e−t. We train a neural ODE model
and a coupling flow to match the data,
minimizing MSE. The data contains initial
conditions and solutions, on small intervals
with t2 − t1 = 0.125, t ∈ [0, 15]. The flow
first finds the solution at t0 = 0 and then
solves for t2 (Section 5.1). We evaluate on
an extended time interval given x0 = 0. Figure 5.3 shows that the neural ODE with an
adaptive solver does not match the correct solution, due to its stiffness. In contrast, flow
captures the solution correctly, as expected, since it does not use a numerical solver. The
test MSE is lower compared to an ODE with temporal regularization [80].

5.3.3 Smoothing approach

Following Rubanova et al. [229], we use three datasets: Activity, Physionet, and MuJoCo.
Activity contains 6554 time series of 3d positions of 4 sensors attached to an individual.
The goal is to classify one of the 7 possible activities (e.g., walking, lying, etc.). Physionet
[245] contains 8000 time series and 37 features of patients’ measurements from the first
48 hours after being admitted to ICU. The goal is to predict the mortality. MuJoCo is
created from a simple physics simulation “Hopper” [263] by randomly sampling initial
positions and velocities and letting dynamics evolve deterministically in time. There are
10000 sequences, with 100 time steps and 14 features.

We use the encoder-decoder model (Section 5.2.1) and maximize the ELBO (Equa-
tion 2.42). We use the same number of hidden layers and the same size of latent states
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MuJoCo Activity Physionet
MSE MSE Accuracy MSE AUC

Neural ODE 8.403±0.142 6.390±0.136 0.756±0.013 4.833±0.078 0.777±0.012
Coupling flow 4.217±0.147 6.579±0.049 0.752±0.012 4.860±0.070 0.788±0.004
ResNet flow 5.147±0.171 6.279±0.098 0.760±0.004 4.903±0.125 0.784±0.010

Table 5.1: Test mean squared error (lower is better) and accuracy/area under curve (higher is
better). Best result is bolded, result within one standard deviation is underlined.
Averaged over 5 runs.

MIMIC-III MIMIC-IV
MSE NLL MSE NLL

GRU-ODE 0.507±0.005 0.770±0.023 0.379±0.005 0.748±0.045
ResNet flow 0.508±0.007 0.779±0.023 0.379±0.005 0.774±0.059
GRU flow 0.499±0.004 0.781±0.041 0.364±0.008 0.734±0.054

Table 5.2: Forecasting on healthcare data averaged over 5 runs (lower is better).

for both the neural ODE, coupling flow and ResNet flow, giving approximately the same
number of trainable parameters. ODE models use either Euler or adaptive solvers and
we report whichever has the better results in the end. The results in Table 5.1 show the
reconstruction error and the accuracy of prediction. For better readability, we scale MSE
scores the same way as in Rubanova et al. [229], by 102 for Activity and 103 for the rest.

Neural flows outperform ODE models everywhere, with Physionet reconstruction task
being within the confidence interval. A further improvement of the results might be
possible with bigger flow models but we focused on having similar sized models to show
that we can get better results at a much smaller cost.

5.3.4 Speed improvements

In the smoothing experiment, our method offers more than two times speed-up during
training compared to an ODE using an Euler method (Figure 5.4, different boxes corre-
sponding to different datasets, grouped by experiment types). The gap is even larger for
adaptive solvers. Note that Figure 5.4 shows an average time to run one training epoch
which includes other operations, such as data fetching, state update etc. This shows that
ODESolve contributes significantly to long training times. When comparing ODEs and
flows alone, our method is much faster. In the following we will discuss the results from
Figure 5.4 for other experiments as well as other results.

5.3.5 Filtering approach

Following De Brouwer et al. [51], we use clinical database MIMIC-III [120], pre-processed
to contain 21250 patients’ time series, with 96 features. We also process newly released
MIMIC-IV [83, 119] to obtain 17874 patients. The details are in Appendix C.4.2. The
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MOOC Reddit Wiki

Discrete GRU -0.4448 2.7563 -0.9299 1.8468 -0.5832 8.0527

C
on

t. Jump ODE 0.8710 4.6118 0.1308 3.6654 -0.3115 10.6040
Coupling flow 0.7694 5.5494 -0.1263 3.6312 -0.2807 9.7214
ResNet flow -1.2379 2.9466 -1.2962 2.3932 -1.2907 10.4368

M
ix

. Jump ODE -0.2626 3.0723 -1.0907 1.9057 -1.3635 7.5537
Coupling flow -0.4026 2.5877 -1.0933 1.6817 -1.2702 8.8018
ResNet flow -0.5664 3.0005 -1.0605 1.9491 -1.1937 8.5489

Table 5.3: Test NLL for TPP (left columns, per dataset) and marked TPP (right columns);
full results in Appendix C.3. ‘Cont.’ denotes models with continuous intensity, and
‘Mix.’ with mixture distribution.

goal is to predict the next three measurements in the 12 hour interval after the observation
window of 36 hours.

Table 5.2 shows that our GRU flow model (Equation 5.5) mostly outperforms GRU-ODE
[51]. Additionally, we show that the ordinary ResNet flow with 4 stacked transformations
(Equation 5.1) performs worse. The reason might be because it is missing GRU flow
properties, such as boundedness. Similarly, an ODE with a regular neural network does
not outperform GRU-ODE [51]. Finally, we report that the model with GRU flow requires
60% less time to run one training epoch.

5.3.6 Temporal point processes

As we saw in Section 5.2.2, most of the TPP models consist of two parts: the encoder that
processes the history, and the network that outputs the intensity. In the context of neural
ODEs, we would like to answer: 1) whether having continuous state h(t) outperforms
RNNs, and 2) if intertwining the hidden state evolution with the intensity outperforms
other approaches. For this purpose we propose the following models based on continuous
intensity and mixture distributions.

Jump ODE evolves h(t) continuously together with the intensity function λ(t) = g(h(t))
[118, 34], where g is a neural network. The neural flow version replaces an ODE with
our proposed flow models to evolve h(t) and uses Monte Carlo integration to evaluate
Equation 2.27. Note that this operation can be parallelized unlike solving an ODE.

The mixture-based models keep the same continuous time encoders (ODEs and flows)
but output the stationary log-normal mixture for the next arrival time. That is, instead of
outputting the continuous intensity, they only use the hidden state at the last observation
to define the probability density function [240]. As a baseline, we use a discrete GRU
with the same mixture decoder.

We use both synthetic and real-world data, following [199, 240]. We generate 4 synthetic
datasets corresponding to homogeneous, renewal and self-correcting processes. For real-
world data, we collect timestamps of forum posts (Reddit), interactions of students with
an online course system (MOOC), and Wiki page edits [143]. The details of the data are
in Appendix C.4.3.

66



5.3 Experiments

Bikes Covid EQ

Time-var. CNF 2.315 1.984 1.709
Attentive CNF 2.371 1.973 1.668
Time-var. coupling 2.280 1.916 1.633
Attentive coupling 2.330 1.926 1.457

Table 5.4: Test NLL for spatial datasets.
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Figure 5.4: Comparing per-epoch wall-clock
times. Each column represents a dataset (from
left to right: order by appearance in text).

We report the test negative log-likelihood on real-world data in Table 5.3, for models
trained both with and without marks. Full results, including synthetic data can be found
in the Appendix C.3. We note that all the models capture the synthetic data, although
continuous intensity models struggle compared to those with the mixture distribution.
We can see this is the case for real-world data too, where the mixture distribution usually
outperforms the corresponding continuous intensity model. In general, neural flows
are better than ODE-based models, with the exception of one ODE model on Wiki
dataset. We can conclude that having a continuous encoder is preferred to a discrete
RNN because it can capture the irregular time sequence better. However, there is no
benefit in parameterizing the intensity function in a continuous fashion, especially since
this is a much slower approach.

Table C.4 in Appendix C.3 shows the comparison of wall clock times. Comparing only
continuous intensity models we can see that Monte Carlo integration is faster than solving
an ODE. As expected, using the mixture distribution gives the best performance. Thus,
our flow models offer more than an order of magnitude faster processing compared to
ODEs with continuous intensity. Figure 5.4 shows the difference for continuous models
on the respective real-world datasets, the gap is even bigger if we include mixture-based
models, where the speed-up is over an order of magnitude.

5.3.7 Spatial data

We compare the continuous normalizing flows with our continuous-time version of the
coupling NF on time-dependent density estimation. We use two versions of each model:
time-varying and attentive, as described in Section 5.2.3. Following Chen et al. [34], we
use locations of bike rentals (Bikes), Covid cases for the state of New Jersey [266], and
earthquake events in Japan (EQ) [270].

Results in Table 5.4 show the test NLL for spatial data, that is, we do not report
the TPP loss since this is shared between models. Our continuous coupling NF models
perform better on all datasets. Since affine coupling is a simple transformation, we require
bigger models with more parameters. At the same time, our models are still more than
an order of magnitude faster. Adapting some other, more expressive normalizing flows to
satisfy flow constraints might reduce the number of parameters.
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5.4 Discussion

In this work we presented neural flows as an efficient alternative to neural ODEs. We retain
all the desirable properties of neural ODEs, without using numerical solvers. Our method
outperforms the ODE based models in time series modeling and density estimation, at a
much smaller computation cost. This brings the possibility to scale to larger datasets
and models in the future.

A potential limitation of our approach is the fact that many ODEs do not have closed-
form solutions, so we cannot always find the exact flow corresponding to a particular ODE.
However, this is usually not an issue since in most applications, such as those presented
in Section 5.2, it is sufficient for both neural ODEs and neural flows to approximate an
unknown dynamic.

Additionally, since neural ODEs reuse the same function f in the solver, essentially
defining implicit layers, they can be more parameter efficient. Sometimes we might need
more parameters to represent the same dynamic when using neural flows, as we have
observed in the density estimation task. But even here, the results show neural flows are
more computationally efficient. In the restrictive setting with limited memory, we can
resort to existing solutions such as Chen et al. [36].

5.4.1 Other related work

Early works on approximating the ODE solutions without numerical solvers used splines
or radial basis functions [177, 159], or functions similar to modern ResNets [146]. More
recently, [209] approximate the solution by minimizing the error of the solution points
and of the boundary condition. Unlike these approaches, we do not approximate the
solution to some given ODE but learn the solutions which corresponds to learning the
unknown ODE. Also, our method guarantees that we always define a proper flow, as is
required in certain applications.

ResNets were initially recognized as a discretization of dynamical systems [160, 277]
and were used to tackle infinite depth [7, 165], stability [41, 96] and invertibility [30, 114].
We take a different approach and propose modified ResNets, among other, avoiding any
iterative procedure. Viewing ResNets as a discretized dynamical system ultimately led
to neural ODEs which introduce memory efficient backpropagation as one of the main
features [70, 35]. Further, to combat solver inefficiency, many improvements have been
proposed, such as adding regularization [71, 80, 125], improving training [79, 127, 302]
and having faster inference [211].

5.4.2 Autonomous ODEs

Autonomous differential equations are defined with a vector field that is fixed in time
ẋ = f(x(t)). Note that function f does not depend on time t like before. Therefore, the
conditions i) and ii) from Section 5.1 are not enough to define the corresponding flow. To
be precise, the flow F defines an autonomous ODE if it satisfies the additional condition:

3. F (t1 + t2,x0) = F (t2, F (t1,x0)),
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x1

x
2

Without regularization

x1

With regularization

Figure 5.5: Comparison of the phase space for the same model trained with and without the
autonomous regularization (Equation 5.10). Dots denote initial conditions. Note
that the overlapping dynamic does not mean the solutions are not unique, only that
the vector field is dependent on time.

meaning that solving for t1 first, then t2, is the same as solving for t1 + t2 once, given
initial condition x0.

More formally, we defined flow F on set Rd as a group action of the additive group
G = (R,+) (elements being time points). Equivalently, group action of G on Rd is a
group homeomorphism from G to Sym(Rd) (symmetric group, bijective functions and
composition (ϕ, ◦)), i.e., some function φ : G→ Sym(Rd) maps time t to parameters of
an invertible neural network ϕ, with φ(t1 + t2) = φ(t1) ◦ φ(t2). Identity element of G, 0
is mapped to an identity function, inverse −t is mapped to an inverse function.

It’s clear that our proposed architectures from Section 5.1 do not satisfy condition
iii), unless we redefine it to allow time-dependence. Therefore, one way to satisfy iii) is
to have d

dtF independent of time. Note, however, that if we define the ResNet flow as
xt := F (t,x0) = x0 + t · h(x0), then even though time disappears from the derivative
d
dtF , the derivative is expressed in terms of x0, not xt. This means time is still implicitly
included since starting at different x0 gives different values.

Matrix exponential exp(At)x, as a solution to a linear ODE: ẋ = Ax, is one example
of a closed-form solution to an autonomous ODE. Another potential autonomous flow
is of the form x+ φ(t), but not g(x) + φ(t), since this does not satisfy initial condition
or g must depend on time. To the best of our knowledge, there is no general neural
flow parametrization that can capture all autonomous ODEs. Therefore, we can try to
approximate the desired behavior instead of guaranteeing it.

We can add a penalty to our loss that directly corresponds to condition iii). Given
the loss function L and the current batch of n elements X ∈ Rn×d, t ∈ Rn, where we
can represent each ti ∈ t as ti = t

(1)
i + t

(2)
i , with t(1)i , t

(2)
i uniformly sampled on [0, ti], the

total loss is:

Ltotal = L+ γ
1

n

∑
i

(F (ti,xi)− F (t
(2)
i , F (t

(1)
i ,xi)))

2, (5.10)

where γ is some positive value. The second term penalizes flows that do not satisfy iii),
meaning we should get the flow that is closer to the underlying autonomous ODE. This
can be calculated in parallel to other computations.
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Figure 5.5 shows the comparison between learning the data generated from an au-
tonomous ODE, using the regularization as defined in Equation 5.10 and without such
regularization. We can see that the base model already learns good behavior but when
we include the regularization, the trajectories overlap less frequently.

5.4.3 Modeling stochastic differential equations

Neural ODEs define how vector values change with a small time step. If we add some
noise to that change, we arrive at stochastic differential equations, which are widely used
in physics and mathematical finance [185, 197]. The SDE can be defined as follows:

dxt = µ(xt, t) dt+ σ(xt, t) dWt, (5.11)

where µ : [0, T ]×Rd → Rd is a drift function similar to ODE, and σ : [0, T ]×Rh → Rh×d

is a new term representing diffusion, with Wt being Brownian motion. The solution F
to Equation 5.11 shares the same properties as the solution to an ODE, namely, it is a
diffeomorphism, identity at t = 0, and has the group action property. The only difference
is that here, F depends on the full Brownian path w(·),5 which is why it is also known as
the stochastic flow of diffeomorphisms [144, 145]. There are two main challenges:

1. Embedding the Brownian path. The continuous path w is infinite dimensional
and we cannot directly use it as an input. A simple way to get around this issue
is to discretize it and use the sampled points W1, . . . ,Wn ∈ w(·) to get a unique
fixed-size representation. One idea is to use some non-parametric embedding such
as a signature transform [37, 129] which is, conveniently, invariant to the number of
the samples and their positions.

2. Learning. Given a general stochastic flow model Ft,w, that is, a flow that depends
on time and Brownian path, we are usually not able to estimate the likelihood
efficiently. We can adopt viewing the SDE learning as equivalent to training a GAN
[128]. If we want likelihood-based method we can, for example, adopt the normalizing
flows to transform the initial samples (Brownian path) with a diffeomorphism to
the target distribution, similar to Deng et al. [56].

An alternative is to only model the distribution of the SDE solutions, which is also
known as the Fokker-Planck PDE [72, 210]. The limitation of this approach is that
we cannot distinguish different stationary processes, that is, those with the constant
marginal distribution. However, since we are learning with exact likelihood, the training
is significantly simplified. This setting is the most similar to Section 5.2.3.

We [18] evaluate different proposed approaches and show that it is feasible to model
SDEs with a stochastic flow. However, since the training is the same as in the neural
SDE literature, it can suffer from various issues, like underestimating the diffusion part
of the SDE. In Chapter 6 we propose an alternative for modeling SDEs, and continuous
functions in general, based on generative diffusion that mitigates these issues.

5More precisely, when evaluating at a time point t we use the path on [0, t].
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5.4.4 Modeling partial differential equations

In many cases, the dynamical system is governed by a partial differential equation:

∂tu = f(t,x, u, ∂xu, ∂xxu, . . . ), (5.12)

where u is the solution, and we are given the initial condition u0(x) at t = 0. The ∂
notation is used to represent the partial derivatives. PDEs are usually defined on some
bounded domain so we get an additional boundary condition, for example, a so-called
Dirichlet condition uB(t) specifies the values on the boundary B.

We want to model the solution u with an initial value model F , a neural network that
satisfies both initial and boundary conditions. One way to model the solutions of PDEs
is with physics informed neural networks (PINNs) by using the known structure of the
Equation 5.12 to achieve a more efficient and accurate learning [215]. The boundary and
initial condition are not guaranteed to be satisfied but the model learns them through
additional terms in the loss function.

We can extend this by implementing the initial condition the same way as before
and additionally have to ensure the model satisfies the boundary condition. Since these
conditions can differ, they would have to be implemented on a case-by-case basis. In [18]
we show how one can specify the condition for a periodic boundary. Note that we do not
need the invertibility anymore since PDE solutions are not always unique.

Another neural PDE method is simply learning the solution based on the previous
observations, that is, the model is an encoder-decoder which inputs one or more previous
time steps and outputs the prediction for one or more future time steps. When such a
model is also resolution invariant, it is referred to as a neural operator, since it learns
mappings between function spaces. The approach can be written as [158, 25]:

F (t+∆t) = A(F (t),∆t), (5.13)

where existing methods usually fix ∆t. We do not want to discretize the time domain
and, additionally, we want to satisfy the initial condition at ∆t = 0. Further, our model
will now have the ability to predict at multiple time points at once with unlimited time
horizon. In [18] we extend Fourier neural operators [158] to include initial condition. The
constrained architecture outperforms the baseline on two synthetic datasets [18].

Again, we can conclude that introducing additional, informative constraints on the
network removes the burden of learning the constraints from the network and allows it to
focus on optimizing the task at hand.
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Figure 6.1: Data, represented with
blue points in the top figure, assumed to
follow some unknown continuous func-
tion (blue curve). The diffusion is de-
fined as the forward process in which
we add noise from a stochastic process
(SP) to the whole time series to get
pure noise (bottom figure). The model
ϵθ learns to reverse this process which
ultimately allows generating new data.

Time series data is collected from measurements of some real-world system that evolves
via some complex unknown dynamics. In Chapters 3 and 4, we have seen how to model
event data—things that occur sparingly. In Chapter 5 we encountered continuously
measured data, such as that recorded from a dynamical system. In this chapter we will
only consider the latter case and propose a generative model for continuous data that is
based on the diffusion framework (Section 2.2.4). In particular, we assume time series
follows some underlying continuous function and, as a consequence, our generative model
will generate functions. Therefore, we make a natural connection to neural processes—a
way to model stochastic processes with neural networks.

As we have seen in the previous chapter, different approaches for modeling continuous
data have been proposed, from neural (ordinary or stochastic) differential equations [35,
156], neural flows (Chapter 5) to normalizing flows [56] and neural processes [76]. As
it turns out, capturing the true generative process proves difficult, especially with the
inherent stochasticity of the data. Take neural SDEs as an example. If one trains them
with a VAE formulation [156], the term corresponding to the noise is often underestimated,
while the same does not happen if they are trained with an adversarial loss [128]; however,
the latter inherits all training issues that GANs observe. Our goal is to have a model that
is easy to train and produces correct samples. We will see that the generative diffusion
framework is exactly what we are looking for.
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Recently, denoising diffusion models have shown great promise in modeling very com-
plicated data distributions such as those in the image domain [102, 252]. The approach
consists of first adding the noise to data gradually until it becomes pure noise, correspond-
ing to some base distributions. At the same time, the model is trained to reverse this
process. To generate a new data point, we start with an initial noisy value sampled from
the base distribution; then the model gradually denoises it to reach a sample from the
learned data distribution. The general idea behind diffusion is covered in Section 2.2.4 and
the implementations we base our approach on are defined more rigorously in Section 6.1.

In this work, we expand on this general framework to define the diffusion for data
measured in continuous time by treating it as a discretization of some continuous function.
That is, instead of adding noise to each data point independently, we add the noise to
the whole function while preserving its continuity. In Section 6.2, we show that this can
be done by using stochastic processes as noise generators. We additionally show that the
final noisy function will also correspond to a sample from a known stochastic process.
Next, we specify the transition probabilities in the forward noising process, the evidence
bound on the likelihood used in the training, and the new sampling procedure, for both
the fixed-step and SDE-based diffusion approaches.

Figure 6.1 shows an illustration of our approach. Data is observed as a set of (irregularly-
sampled) points that correspond to some underlying function. By adding noise to this
function we reach the prior stochastic process. At the same time, the model can reverse
this process, allowing us to generate new function samples.

In Section 6.3 we describe different use cases that we can tackle with our model while
highlighting the benefits over previous approaches. For example, we can use conditioning
to output the distribution over future values, that is, we use our method for multivariate
probabilistic forecasting. Since we define the distribution over functions we can also
view our model as a neural process [76], allowing us to estimate missing points from
the observed data. In Section 6.4 we empirically show that our model outperforms the
baselines on these tasks and others.

6.1 Background

Given training data {xi}, with xi ∈ Rd, the goal of generative modeling is to learn the
probability density function p(x) and be able to generate new samples from this learned
distribution. Diffusion models achieve both of these goals by learning to reverse some
fixed process that adds noise to the data. In the following, we present a brief overview of
the two ways to define diffusion; in Section 6.1.1 the noise is added across N increasing
scales [102], which is then taken to the limit in Section 6.1.2 using a stochastic differential
equation (SDE) [252].

6.1.1 Fixed-step diffusion

Sohl-Dickstein et al. [248] and Ho et al. [102] propose the denoising diffusion probabilistic
model (DDPM) which gradually adds fixed Gaussian noise to the observed data point x0

via known scales βn to define a sequence of progressively noisier values x1,x2, . . . ,xN .
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The final noisy output xN ∼ N (0, I) carries no information about the original data point.
The sequence of positive noise (variance) scales β1, . . . , βN has to be increasing such that
the first noisy output x1 is close to the original data x0, and the final value xN is pure
noise. The goal is then to learn to reverse this process.

As diffusion forms a Markov chain, the transition between any two consecutive points
is defined with a conditional probability q(xn|xn−1) = N (

√
1− βnxn−1, βnI). Since the

transition kernel is Gaussian, the value at any step n can be sampled directly from x0.
Let αn = 1− βn and ᾱn =

∏n
k=1 αk, then we can write:

q(xn|x0) = N (
√
ᾱnx0, (1− ᾱn)I). (6.1)

Further, we can derive a posterior probability of any intermediate value xn−1 given its
successor xn and initial x0 as:

q(xn−1|xn,x0) = N (µ̃n, β̃nI), (6.2)

where: µ̃n =

√
ᾱn−1βn
1− ᾱn

x0 +

√
αn(1− ᾱn−1)

1− ᾱn
xn,

β̃n =
1− ᾱn−1

1− ᾱn
βn.

The generative model learns the reverse process. To this end, Sohl-Dickstein et al. [248]
set p(xn−1|xn) = N (µθ(xn, n), βnI), and parameterized µθ with a neural network. The
training objective is to maximize the evidence lower bound:

log p(x0) ≥ Eq [log p(x0|x1)]−DKL(q(xN |x0)∥p(xN ))

−
∑
n>1

DKL(q(xn−1|xn,x0)∥p(xn−1|xn)).
(6.3)

The objective boils down to minimizing the KL-divergence between the known posterior
distribution q(xn−1|xn,x0) and the learned reverse transition distribution p(xn−1|xn). In
practice, however, the approach by Ho et al. [102] is to reparameterize µθ and predict the
noise ϵ that was added to x0, using a neural network ϵθ(xn, n), and minimize a simplified,
yet equivalent loss function:

L = Eϵ∼N (0,I)En∼U({0,...,N})
[
∥ϵθ(

√
ᾱnx0 +

√
1− ᾱnϵ, n)− ϵ∥22

]
, (6.4)

To generate new data, the first step is to sample a point from the final distribution xN ∼
N (0, I) and then iteratively denoise it using the above model (xN 7→ xN−1 7→ · · · 7→ x0)
to get a sample from the data distribution, using Langevin sampling from Section 2.2.4.
To summarize, the forward process adds the noise ϵ to the input x0, at different scales,
to produce xn. The model inverts this, that is, predicts ϵ from xn.
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6.1.2 Score-based SDE diffusion

Instead of taking a finite number of diffusion steps as in Section 6.1.1, Song et al. [252]
introduce a continuous diffusion of vector valued data, x0 7→ xs where s ∈ [0, S] is now a
continuous variable. We repeat the forward and reverse SDE equations from Section 2.2.4
using s for the diffusion step instead of t to avoid confusing it with the time of observation:

dxs = f(xs, s) ds+ g(s) dWs, (2.47)

dxs = [f(xs, s)− g(s)2∇xs log p(xs)] ds+ g(s) dWs. (2.48)

Solving the above SDE from S to 0, given initial condition xS ∼ p(xS), returns a sample
from the data distribution. The generative model’s goal is to learn the score function via
a neural network ψθ(xs, s), by minimizing:

L = Exs∼SDESolve(dxt,x0,0,s)Es∼U(0,S)

[
∥ψθ(xs, s)−∇xs log p(xs)∥22

]
, (6.5)

where the first expectation is over SDE solutions of Equation 2.47 at time s given initial x0.
Song et al. [252] define a continuous analogue to DDPM forward process (Section 6.1.1)
as the following SDE:

dxs = −1

2
β(s)xs ds+

√
β(s) dWs, (6.6)

where β(s) and S are chosen in such a way that ensures the final noise distribution
is unit normal, xS ∼ N (0, I). Since the variance is constant in the end, this kind of
diffusion is named variance preserving. There are other potential parameterizations, such
as using a variance exploding process or modifying Equation 6.6 to perform better on
likelihoods [252]. Given a specific parameterization, one can easily derive the transition
probability q(xs|x0) and calculate the exact score in closed-form (see Section 6.2.3 and
Appendix D.1.3). This allows trivial loss computation as in Equation 6.5 compared to a
more complicated Equation 2.44 from Section 2.2.4.

6.1.3 Extensions

Generative modeling with diffusion recently gained a lot of traction as it provides good
sampling quality synthesizing images [57, 216, 228], replacing GANs [85] as the state-of-
the-art method. The modeling power translates to other tasks as well, with successful
applications in modeling waveforms [139] and time series forecasting [222], but also
generating discrete data such as text [3] and molecules [1, 151].

Many of the advances over the original diffusion focused on improving the sampling
speed [39, 121, 167], while others implement the noise scheduling for better modeling
capacity [192, 133]. Although this particular area of research is orthogonal to the ideas
we present in this chapter, we can easily implement these techniques to make our method
perform faster or have better sampling quality. That is, since we later show that modeling
continuous functions with diffusion resembles the original formulation, any improvement
in diffusion modeling can be applied to our method as well.
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6.2 Method

In contrast to the previous section which explicitly deals with data points that are
represented by vectors or sequences of vectors, we are interested in generative modeling of
the underlying continuous function. We still represent the data as a time-indexed sequence
of points observed across M timestamps: X = (x(t0), . . . ,x(tM−1)), ti ∈ t ⊂ [0, T ]. The
observations can be equally spaced but this formulation encompasses irregularly-sampled
data as well. We assume that each observed time series comes from its corresponding
underlying continuous function x(·).

Our approach can be viewed as modeling the distribution “p(x(·))” over functions
instead of vectors, which amounts to learning the stochastic process. We review stochastic
processes in more detail in Section 6.3.2. To preserve continuity, we cannot apply the
ideas from Section 6.1 directly, unless we assume measurements are independent of each
other. A direct consequence of adding an independent noise in the forward and reverse
process is that it produces discontinuous samples, which is at odds with our assumption.

6.2.1 Stochastic processes as noise sources for diffusion

Instead of defining the diffusion by adding some scaled noise vector ϵ ∼ N (0, I) to a
data vector x, we add a noise function (stochastic process) ϵ(·) to the underlying data
function x(·). The only restriction on ϵ(·) is that it has to be continuous so that the
output remains continuous as well, which clearly rules out stochastic processes where
time is indexed by a finite set, e.g., ϵ(t) ∼ N (0, I). However, using a normal distribution
proved to be very convenient in Section 6.1 as it allowed for closed-form formulations
of various terms, especially the loss. This is mostly due to the nice properties of the
Gaussian distribution.

Therefore, our goal is to define ϵ(·) which will satisfy the continuity property while
giving us tractable training and sampling. Note that t refers to the time of the observation
and ϵ(t) ∈ Rd is the noise at t and ϵ(t) ∈ RM×d is noise added to a time series with M
observations. In contrast, in previous section we had time-like variables n and s that
refer to the noise scale, not arrival time.

We could consider obtaining the noise from a standard Wiener process ϵ(t) =Wt. A
clear disadvantage of this approach is that variance grows with time. Additionally, the
distribution of W0 is degenerate as we never add any noise. This can be solved in an ad
hoc manner by shifting the whole time series similar to Deng et al. [56].

Instead, in the following, we present two stationary stochastic processes that add the
same amount of noise regardless of the time of the observation. Note that the noise is
correlated in the time dimension, hence the use of the stochastic process. An additional
nice property of these processes is that they reduce to the diffusion from Section 6.1 in
the trivial case of time series with only one element.

Let us shortly restrict the discussion to univariate time series X ∈ RM and producing
noise ϵ(t) ∈ RM . We present the general approach at the end of this section.
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A) Gaussian process prior. Given a set of M time points t, we propose sampling ϵ(t)
from a Gaussian process N (0,Σ), where each element of the covariance matrix is specified
with a kernel Σij = k(ti, tj), where ti, tj ∈ t. This produces smooth noise functions ϵ(·)
that can be evaluated at any point t, even outside given t.

To define a stationary process, we have to use a stationary kernel; we will use a radial
basis function k(ti, tj) = exp(−γ(ti − tj)

2). Adjusting the parameter γ lets us vary the
flatness of the noise curves, higher values give noisier curves. Given a set of time points t,
we can easily sample from this process by first computing the covariance Σ(t) and then
sample from the multivariate normal distribution N (0,Σ).

B) Ornstein-Uhlenbeck diffusion. An alternative noise distribution is a stationary OU
process that is specified as a solution to the following SDE:

dϵt = −γϵt dt+ dWt, (6.7)

where Wt is the standard Wiener process and we use the initial condition ϵ0 ∼ N (0, 1).
We can obtain samples from OU process easily by sampling from a time-changed
and scaled Wiener process: exp(−γt)Wexp(2γt). The covariance can be calculated as
Σij = exp(−γ|ti − tj |). The OU process is a special case of a Gaussian process with a
Matérn kernel (ν = 0.5) [219, p. 86]. We discuss different sampling techniques and their
trade-offs in Appendix D.1.4.

In the end, both the GP and OU processes are defined with a multivariate normal
distribution over a finite collection of points, where the covariance is calculated using the
times of the observations. As opposed to the methods from Section 6.1, we use correlated
noise in the forward process. Our approach allows us to produce continuous functions as
samples and will prove to be a natural way to do forecasting and imputation.

Multivariate time series. In our work, we consider multivariate time series which means
we record measurements coming from d univariate time series. Alternatively, we can
view this as observing a d-dimensional vector and its evolution over time. In the forward
diffusion process, we treat the data as d individual univariate time series and add the
noise to them independently. In case of noise coming from a Gaussian process, this is
equivalent to using block-diagonal covariance matrix of size (Md)×(Md) with Σ repeated
on the diagonal. This is in line with the previous works where, for example, independent
noise is added to individual pixels in an image.

Note that this does not mean we do not model correlations between dimensions. As we
will see in the following section, the reverse process takes a complete multivariate time
series and captures these correlations. This is again similar to image synthesis—although
forward process is independent over pixels, the reverse process captures the whole image.
The difference in our approach is that we also enforce the continuity across the time
dimension, which means our model is guaranteed to produce continuous samples.
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Algorithm 1 Training (DSPD-GP diffusion)
1: while not converged do
2: X0, t ∼ pdata(X, t)
3: Σ = k(t, tT )
4: L = Cholesky(Σ)
5: ϵ̃ ∼ N (0, I)
6: n ∼ U({1, . . . , N})
7: Xn =

√
αnX0 +

√
1− αnLϵ̃

8: Take gradient step on
9: ∇θ||ϵ̃− ϵθ(Xn, t, n)||22

10: end while

6.2.2 Discrete stochastic process diffusion (DSPD)

We apply the discrete diffusion framework to the time series setting. Note, discrete
refers to the number of diffusion steps (Section 6.1.1), that is, we still model continuous
functions. Reusing the notation from before, X0 denotes the input data and Xn =
(xn(t0), . . . ,xn(tM−1)) is the noisy output after n diffusion steps. In contrast to the
classical DDPM [102] where one adds independent Gaussian noise to data, we now add
the noise from a stochastic process. In particular, given the times of the observations, we
can compute the covariance Σ and sample noise ϵ(·) from a GP or OU process as defined
in Section 6.2.1. We write the transition kernel and the posterior as:

q(Xn|X0) = N (
√
ᾱnX0, (1− ᾱn)Σ), (6.8)

q(Xn−1|Xn,X0) = N (µ̃n, β̃nΣ), (6.9)

where µ̃n, β̃n are the same as in Equation 6.2 (full derivation is in Appendix D.1.1). Even
though we are now able to sample functions instead of a single point, the distributions
are still similar to the previous case, with the main change occurring in the covariance.
This nice result will be useful later to define the loss which is analogous to Equation 6.4.

We define a generative model p(Xn−1|Xn) = N (µθ(Xn, t, n), βnΣ) as a reverse process,
similar to Ho et al. [102] while keeping our time-dependent covariance Σ. The key difference
is that the model now takes the full time series consisting of noisy observations Xn with
their timestamps t in order to predict the noise ϵ which has the same size as Xn. The
architecture, therefore, has to be a type of a time series encoder-decoder.

Since all the distributions that appear in the ELBO (Equation 6.3) are now multivariate
normal, the loss can be calculated in closed-form. In Appendix D.1.2 we show the
full derivation. Further, we show how we can reparameterize the model such that the
covariance Σ disappears from the final loss. In particular, if our model predicts the noise
that was added to the original data we can simplify the loss to only compute the squared
difference between the predicted and true noise, similar to Equation 6.4:

L = Eϵ,n

[
∥ϵθ(

√
ᾱnX0 +

√
1− ᾱnϵ, t, n)− ϵ∥22

]
. (6.10)
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Algorithm 2 Sampling (DSPD-GP diffusion)

1: input: t = (t0, . . . , tM−1)
2: Σ = k(t, tT )
3: L = Cholesky(Σ)
4: XN ∼ N (0,Σ)
5: for n = N, . . . , 1 do
6: z ∼ N (0,Σ)
7: Xn−1 =

1√
αn

(
Xn − 1−αn√

1−ᾱn
Lϵθ(Xn, t, n)

)
+ βnz

8: end for
9: return X0

Finally, in order to sample, the initial noise has to come from a stochastic process instead
of an independent normal distribution. The same is the case for the noise that is used in
the intermediate steps of the Langevin dynamics.

In Algorithms 1 and 2 we provide the pseudocode for training the model and sampling
new data, when using DSPD-GP model. Analogously for OU, we would replace the noise
source using the third sampling option from Appendix D.1.4. For the score-based model
we compute the mean squared error between the predicted and true conditional score
function where the sampling procedure uses either ODE or SDE solver, just as in [252].

6.2.3 Continuous stochastic process diffusion (CSPD)

Similarly to the previous section, we can extend the continuous diffusion framework to
use the noise coming from a Gaussian or OU process. Now, the noise scaling β(s) is
continuous in the diffusion time s, see Section 6.1.2. Given a factorized covariance matrix
Σ = LLT , we modify the variance preserving diffusion SDE [252]:

dXs = −1

2
β(s)Xs ds+

√
β(s)L dWs, (6.11)

which gives us the following transition probability:

q(Xs|X0) = N (µ̃, Σ̃)

= N
(
X0e

− 1
2

∫ s
0 β(s) ds,Σ

(
1− e−

∫ s
0 β(s) ds

))
.

(6.12)

This result is derived using Equation 5.51 from Särkkä and Solin [234], with an analogous
result for non time series data in Song et al. [252]. We discuss this in more detail in
Appendix D.1.3. Since this probability is normal, the value of the score function can be
computed in closed-form:

∇Xs log q(Xs|X0) = −Σ̃−1(Xs − µ̃), (6.13)

which we can use to optimize the same objective as in Equation 6.5. Our neural network
ϵθ(Xs, t, s) will take in the full time series, together with the observation times t and the
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diffusion time s, and predict the values of the score function. As it turns out, we can
again use the reparameterization in which we predict the noise, whilst the score is only
calculated when sampling new realizations. That is, since the model predicts ϵ̃θ which is
assumed to come from an isotropic normal, we have to multiply it by L to get the noise
prediction from a stochastic process. Equation 6.13 then reduces to −Σ̃−1σLϵ̃θ, where
σ2 = 1− exp(−

∫ s
0 β(s) ds) (Equation 6.12). However, since Σ = LLT and Σ̃ = σ2Σ, we

get that the predicted score is simply (LT )−1ϵ̃θ/σ which is easy to evaluate and does not
require explicitly inverting LT as it is a triangular matrix.

6.3 Applications

To train a generative model, it must learn to reverse the forward diffusion process by
predicting the noise that was added to the clean data. The input to the model is the time
series (X0, t) along with the diffusion step n or diffusion time s, and the output is of the
same size as X0. If additional inputs are available, we can also model the conditional
distribution; for example, we often have covariates for each time point of t. We can also
condition the generation on the past observations which essentially defines a probabilistic
forecaster (Section 6.3.1) or condition only on the observed values which defines a neural
process (Section 6.3.2) or an imputation model (Section 6.3.3).

6.3.1 Forecasting multivariate time series

Forecasting is answering what is going to happen, given what we have seen, and as such
is the most prominent task in time series analysis. Probabilistic forecasting adds the layer
of (aleatoric) uncertainty on top of that and returns the confidence intervals which is
often a requirement for deploying models in real-world settings. Neural forecasters are
usually encoder-decoders, where the history of observations (XH , tH) is represented with
a single vector z and the decoder outputs the distribution of the future values XF given
z at time points tF . Previous works relied on specifying the parameters of the output
distribution, for example, via a diagonal covariance [232] or some low-rank approximation
[231], relying on normalizing flows [13, 223], or GANs [140].

Recently, Rasul et al. [222] introduced a diffusion based forecasting model to learn the
conditional probability p(XF |XH). In particular, let XH = (x(t0), . . . ,x(tM−1)) be a
history window of size M sampled randomly from the full training data. They specify the
distribution p(x(tM )|XH) using a conditional DDPM model. The forward process adds
independent Gaussian noise to x(tM ) the same way as in DDPM. However, the reverse
denoising model is conditioned on the history XH which is represented with a fixed sized
vector z. After training is completed, the predictions are made in the following way:

1. Encode the history XH with an RNN to get z,

2. Sample initial prediction xN (tM ) ∼ N (0, I) from unit normal distribution,

3. Denoising using the sampling algorithm from Ho et al. [102] but conditioned on z
to obtain x0(tM ).

81



6 Denoising Diffusion for Functions

Conv2d

Pos emb

MLP

MLP

Linear

Linear

Linear

Conv2d+ReLU

Conv2d+ReLU Dilated Conv2d

Gated activation


Conv2d

ReLU

Conv2d

Residual layer

Figure 6.2: Overview of the forecasting model. The inputs are the noisy time series Xn, diffusion
steps n, observation times t, and the history vector z. The output is the predicted
noise value ϵn.

The final denoised value is the forecast whereas sampling multiple values allows computing
empirical confidence intervals of interest.

In Rasul et al. [222], the timestamps are always discrete and the prediction is autore-
gressive, that is, the values are produced one by one. Our diffusion framework offers the
following key improvements: (i) the predictions can be made at any future time point,
that is, in continuous time, not discrete steps; and (ii) we can predict multiple values in
parallel which scales better on modern hardware.

In our case, the prediction XF will not be a single vector but a sequence of vectors
(x(tM ), . . . ,x(tM+K)) of size K, where K can vary in size. This type of data is naturally
handled by our stochastic process diffusion as defined in Section 6.2. Note that the
predicted values are also not conditionally independent but we model the interactions
between them in the denoising model ϵθ.

We design ϵθ in the following way. Previous observations are again represented with
an RNN to obtain z and condition the reverse process. We propose an architecture
similar to the TimeGrad model [222, 139] but which is not autoregressive as it outputs
all the values simultaneously. Figure 6.2 shows the architecture overview. The inputs
are the noisy future predictions XF

n , the diffusion step n, future timestamps t and the
encoded history z. In contrast to previous works, we use 2D convolution where the extra
dimension corresponds to the time dimension.

For example, after training a Gaussian process DSPD model (Section 6.2.2), we can
forecast in the following way:

1. Encode the history XH with an RNN to get z,

2. Sample initial prediction XF
N from a GP prior,

3. Denoise using ϵθ(X
F
n , t, n,z) with Algorithm 2.

Instead of an RNN we can also use transformers [273] but we wanted to keep the
architecture similar to Rasul et al. [222] and showcase the novel stochastic process-based
diffusion.
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6.3.2 Diffusion process as a neural process

So far we have used stochastic processes as noise sources to generate continuous functions.
We can view such a model as a type of a stochastic process as well. Stochastic process
is defined as a collection of random variables {X(t)}t indexed over some set T , in our
case T ⊆ R. We usually care about the finite sequences of points since this is what we
encounter in real-world. In that case, a model that specifies a probability measure p is
a stochastic process if it satisfies consistency conditions, as defined in the Kolmogorov
extension theorem [198]. Essentially, the model has to be permutation equivariant, that
is, the order of the incoming points should not matter.

Based on this, neural processes [76] are a class of latent variable models that define
a stochastic process with neural networks. Given a set of data points (a dataset), the
model outputs the probability distribution over the functions that generated this dataset.
That is, for different datasets, the model will define different stochastic processes. Due to
this behavior, neural processes bear a resemblance to the Gaussian processes but can also
be viewed as a meta learning approach [105].

Let XA denote the observed data, in our case, a time series, and let XB be the
unobserved data at the time points tB . Garnelo et al. [76] construct the encoder-decoder
model that uses amortized variational inference for training [136]. The encoder takes in
a set of observed points (XA, tA) and outputs the distribution over the latent variable
q(z). The decoder takes in the sampled latent vector z and the query time points tB

and predicts the values of the unobserved points XB. In order to produce permutation
equivariant measure, it is crucial that the encoder is permutation invariant, that is,
the input order does not alter the result. Then the probability of XB is conditionally
independent given z [52]. This is easy to achieve using, for example, deep sets [294].

Since our approach samples functions, we can condition the generation on an input
dataset (XA, tA) in order to create our version of a neural process, based purely on the
diffusion framework. The encoder will be a deterministic neural network that outputs the
latent vector z, contrary to Garnelo et al. [76] which outputs the distribution. Similar to
Section 6.3.1, the diffusion is conditioned on z and we can output samples for any query
tB. For example, if we again take DSPD-GP model, we sample as follows:

1. Permutation invariant encode (XA, tA) to get z,

2. Sample initial points XB
N at tB from a GP prior,

3. Denoise using ϵθ(X
B
n , t

B, n,z) with Algorithm 2.

Therefore, we capture the distribution p(XB|XA) directly.
We achieve equivariance using a transformer-like model ϵθ [273] that utilizes a learnable

RBF kernel as a similarity function. In particular, the model takes in XA (observed
points) as a conditioning variable and XB

n (target points) as the noisy input. We first run
a learnable RBF kernel k(tA, tB) to obtain a similarity matrix K between the observed
and unobserved time points. We project XA with a neural network by transforming
each point independently to obtain Z, and then obtain the latent variable of the same
time dimension size as XB by multiplying K and Z. We then use Z as a conditioning
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vector and add it to projected XB, transform with a multilayer network, and obtain the
output. During training, we adopt the approach from Garnelo et al. [76] of feeding in
data such that we actually learn p(XA ∪XB|XA) which helps the model learn to output
high certainty around tA.

In the end, our model sees many observed-unobserved pairs corresponding to different
true underlying processes. The model learns to represent the observed points XA such
that the denoising process corresponds to the correct distribution, given XA. After
training is completed, we take a time series XA and output the samples at any set of
query time points tB. We can view such an approach as an interpolation or imputation
model that fills-in the missing values across time. The main appeal is the ability to
capture different stochastic processes within a single model.

A concurrent work [64] proposes using diffusion as an alternative to Gaussian pro-
cesses, however, it uses an independent noise, therefore, it does not guarantee producing
continuous functions.

6.3.3 Probabilistic time series imputation

The previous section considered interpolating in time. Now, we look into filling-in the
missing values across the observation dimensions, that is, the imputation of the vectors.
Each element x(ti) of the time series X is assigned a mask m of the same dimension that
indicates whether the j-th value x(j) of the vector x(ti) has been observed (m(j) = 1) or
if it is missing (m(j) = 0).

Given observed XA and missing points XB, Tashiro et al. [262] propose a model
that learns a conditional distribution p(XB|XA). The model is built upon a diffusion
framework and the reverse process is conditioned on XA, similar to that in Section 6.3.2.
We extend this by introducing noise from a stochastic process, as presented above. The
learnable model remains the same but we introduce the correlated noise in the loss and
sampling. We posit that continuous noise process, as an inductive bias for the irregular
time series, is a more natural choice.

6.4 Experiments

In this section we will present experimental evidence that suggests using stochastic process
diffusion, as defined in Section 6.3 is favorable to regular diffusion on time series, and
additionally, outperforms other time series models.

6.4.1 Probabilistic modeling

We start by investigating the pure generative capabilities of our model, that is, uncondi-
tional generation of time series.

Baselines. Previously, neural ODEs [35] were introduced as a way to capture the
irregularly sampled time series since they can naturally handle the continuous time. As
such, they can be seen as a building block that can also be used alongside our method to
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CSPD– Gauss GP OU

CIR -0.4769±0.0249 -0.4766±0.0224 -0.4688±0.0178
OU 0.5089±0.0092 0.5222±0.0281 0.529±0.0138
Predator-prey -3.4643±0.1039 -9.4934±0.2561 -7.0098±1.4929
Sine -1.3438±0.0938 -3.2526±1.4108 -3.851±0.1231
Sink -5.6637±0.1839 -11.4179±0.3627 -9.8487±1.2962
Lorenz 1.5162±0.3861 -3.4893±8.2181 -6.6377±0.2015

Table 6.1: Negative log-likelihood on synthetic data (lower is better) shows OU and Gaussian
process noise are a better option than independent noise on datasets that exhibit
smoothness, while being on par on stochastic datasets.

CTFP Latent ODE DSPD-GP (Our)

CIR 0.999±0.0012 1.0±0.0 0.511±0.0282
Lorenz 0.995±0.0057 0.998±0.0019 0.513±0.0288
OU 0.783±0.0756 0.512±0.0331 0.505±0.0458
Predator-prey 0.789±0.0227 0.958±0.0213 0.585±0.0219
Sine 0.981±0.0104 1.0±0.0 0.525±0.009
Sink 0.727±0.1378 0.907±0.0394 0.513±0.0103

Table 6.2: Accuracy of the discriminator trained to distinguish real data and model samples.
The closer the result is to 0.5 the better.

devise different denoising networks. Rubanova et al. [229] construct an encoder-decoder
architecture based on neural ODEs which resembles the variational autoencoder [136].
The time series is, thus, modeled in a latent space by sampling a random vector which is
propagated with an ODE. Neural SDEs [156] extend this by adding noise in every solver
step but they either do not produce noisy-enough samples [156] or are GAN-based and
difficult to train [128]. Finally, continuous-time flow process (CTFP) [56] uses normalizing
flows (Section 2.2.2) to generate the time series by sampling the initial noise from the
stochastic process and transforms it with an invertible function to obtain a sample from
the target distribution. Although this allows exact likelihood training, the method cannot
capture some processes [55] and is often augmented to be trained as a VAE.

Ablation. We test our DSPD and CSPD with independent Gaussian noise and noise
from a stochastic process (GP and OU) on six synthetic datasets, corresponding to
deterministic and stochastic dynamical systems. See Appendix D.2.1 for more details.
We first check whether using a model that captures interactions across time (for example,
RNN or transformer) outperforms the model that treats each data point in the time series
independently. Table D.2 shows we need to model interactions across time, as expected.

Now, we check if using our stochastic process outperforms independent Gaussian noise;
we compare our method to Ho et al. [102] and Song et al. [252]. Table 6.1 shows that using
a stochastic process achieves lower negative log-likelihood for CSPD (see Appendix D.2.1
for DSPD). This is especially evident on datasets where we need to generate smoother
samples. Finally, Figure 6.3 demonstrates the quality of the samples.
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Figure 6.3: Real data (left column) and 5 samples generated from DSPD using Gaussian noise
(corresponds to DDPM), OU process, and Gaussian process noise, respectively.
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Electricity Exchange Solar

TimeGrad NRMSE 0.064±0.007 0.013±0.003 0.799±0.096
Energy score 8425±613 0.057±0.002 150±17

Ours NRMSE 0.045±0.002 0.012±0.001 0.757±0.026
Energy score 7079±164 0.031±0.002 166±12

Table 6.3: NRMSE (top rows) and energy score (bottom rows) on real-world forecasting data.

Results. We quantitatively compare the generative power of our model with the estab-
lished baselines for irregular time series modeling, namely, latent ODEs [229] and CTFP
[56] (more details are in Appendix D.2.1). In short, after training a single generative
model we use it to sample new data. The original and generated data is used to train
a new model that learns to discriminate between them. If the discriminator cannot be
trained, that is, its prediction is not better than a random guess (having accuracy of
around 50%), we say the generative model captures the true distribution.

Table 6.2 compares our model with the baselines and demonstrates that we produce
samples that are indistinguishable to a powerful transformer-based discriminator. The
same does not hold for the competing methods.

6.4.2 Forecasting

We test our model as defined in Section 6.3.1 and Figure 6.2 against TimeGrad [223]
on three established real-world datasets: Electricity, Exchange and Solar [147]. Due to
the limitations of the CRPS-sum metric [141], we report the NRMSE and the energy
score [81] averaged over five runs, but we note that the rank of the model’s performance
does not change when using other metrics as well. Table 6.3 shows that our method
outperforms TimeGrad even though we predict over the complete forecast horizon at once,
and Figure 6.4 demonstrates the prediction quality alongside the uncertainty estimate.
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Figure 6.4: Forecast and uncertainty intervals on Electricity.
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Missing ratio: 10% 50% 90%

CSDI 0.520±0.055 0.644±0.024 0.818±0.02
DSPD-GP (Our) 0.498±0.036 0.644±0.029 0.815±0.019

Table 6.4: Imputation RMSE on Physionet data with varying amounts of missingness.
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Figure 6.5: Sampled curves given a set of points.

6.4.3 Neural process

We construct a dataset where each time series X comes from a different stochastic
process, by sampling from Gaussian processes with varying kernel parameters and time
series lengths. This is a standard training setting in neural process literature [76].
In our denoising network, we modify the attention-like layer to make it stationary (see
Appendix D.2.2) and train as described in Section 6.3.2. Due to the use of tanh activations
in the final layers, combined with its stationary, our model extrapolates well, that is, when
tanh saturates the mean and the variance fall to zero-one. This is the same behaviour we
see in the GP with an RBF kernel, for example. The quantile loss of the unobserved data
under the true GP model is 0.845 while we achieve 0.737 which indicates we capture the
true process, which can also be seen in Figure 6.5. We remark that the attentive neural
process [132] does not produce the correct uncertainty.

Finally, in Figure D.1 (Appendix D.2.2) we compare the OU and GP, across different
kernels. It shows that the noise process is connected to the final sample smoothness,
however, the marginal distributions are the same and correct.

6.4.4 Imputation

We compare to the CSDI [262], introduced in Section 6.3.3, on an imputation task. To
this end, we use exactly the same training setup, including the random seeds and model
architecture, but change the noise source to a Gaussian process. Following Tashiro et al.
[262], we use Physionet dataset [245] which is a collection of medical time series collected
at an hourly rate. It already contains missing values but for testing purposes, we choose
varying degrees of missingness and report the results on the test set. We update the loss
and sampling accordingly, as in Section 6.2. Table 6.4 shows that we outperform the
original CSDI model even though we only changed the noise, and the dataset we used has
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regular time sampling. Appendix D.2.3 contains more details, including the statistical
test that shows our results have statistical significance.

6.5 Discussion

In this chapter, we introduced a novel generative model for continuous functions. It
can also be viewed as a neural stochastic process or a generative model for solutions to
stochastic differential equations. We also demonstrate how it can be used in conventional
(both regular and irregularly-sampled) time series tasks such as forecasting, interpolation,
and imputation. In the experiments we showed that the improvements over the previous
works come from using the stochastic process as the noise source, and using the model
that takes in the whole time series at once. The results demonstrate the practical utility
of our method and validate our motivation.

We used bare-bones diffusion without extensive tuning to demonstrate the modeling
potential and make a fair comparison to other methods. However, it should be straight-
forward to improve upon our models by implementing recent advances in diffusion models
[e.g., 192]. In case we have a large number of points, we can consider replacing the
current sampling strategies with more scalable variants, such as switching to a sparse
GP [213]. Additionally, one can train a latent diffusion model [228] by first learning the
time series encoder-decoder which might be helpful for high-dimensional data, such as
those we encountered in the forecasting task. It would be interesting to explore different
architecture choices, for example, implement improvements in conditioning models via
learned activations [217]. Finally, we can also apply the presented methods to other areas
outside the time series domain, such as modeling point clouds or even images, as we have
demonstrated that our method is competitive on regular grids.
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In this thesis we answered important questions regarding irregularly-sampled time series;
namely, how to process such data using modern machine learning methods, and how to
define deep generative models that produce new realizations and forecast with uncertainty.
The main takeaway is that combining the expressive power of neural networks with the
formal frameworks that implement constraints on the model results in state-of-the-art
performance. Neural flows are a good example of this: we design a neural network in such
a way that it always defines a flow—a solution to an ordinary differential equation—which
allows us to evaluate queries very quickly while having enough expressive power to learn
complicated dynamics. We expand on this architecture to design irregular time series
encoders and decoders and demonstrate the usefulness on various applications.

The main goal of the thesis was to define generative models for irregular sequences, both
in the case of event-based data and continuous measurements. The former is the problem
of modeling arrival times in an irregular sequence which is traditionally approached
with temporal point processes. We frame the task of learning the intensity as a neural
density estimation problem which enables evaluating exact likelihood and straightforward
sampling of new sequences. Since events can have different types, we classify them with a
model conditioned on the arrival time. Our model can change the prediction over time
by evolving the distribution over the simplex. This allows us to assign an amount of
certainty in the prediction including the case where the model predicts that no event
will occur. Finally, we tackle the case of sequences which are measured continuously; the
assumption is that the data follows an underlying continuous function so we augment the
denoising diffusion approach to include this constraint. The resulting model can be seen
as a neural process as it samples functions as new realizations.

7.1 Retrospection

The approaches and results we presented in the thesis have been published across several
years which is why we now discuss our contributions in the broader research context.

Encoder architectures for irregular time series are an important part of each of the
proposed approaches (Chapters 3-6) that could be investigated in more detail, but we
focused on highlighting other main contributions in these chapters. Additionally, the
state-of-the-art is constantly evolving and some new approaches have been introduced in
the meantime; our neural flows are one such example since they were not available as
the encoder architecture in Chapters 3 and 4. The choice of the encoder is orthogonal to
the conclusions we want to show, in particular, Chapter 3 demonstrates how, given an
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RNN encoder, the density parameterization improves upon the intensity models. It is
reasonable to expect that the same result will hold if we replace an RNN with a neural
flow, which is what we finally show in Section 5.3.

Nevertheless, we will take a look at some of the recent advances in time series modeling.
One example are transformers (Section 2.1.3) which can be successfully used as a drop
in replacement for RNNs [154, 164, 283, 296, 300]. Shukla and Marlin [243] propose a
modification of the basic architecture to encode irregular samples. They introduce a
set of reference time points that correspond to queries, similar to pseudo points in our
uncertainty model (Chapter 4), and additionally, in the attention layer, they use actual
arrival times as keys and observations as values. We use transformers for time series in
Chapter 6 and design a modified similarity function that resembles a radial basis kernel.

A different type of encoder is based on neural controlled differential equations [130,
184]. The data is assumed to follow a continuous underlying function, like in Chapter 6,
so it is interpolated with piecewise polynomial functions called splines. The network
is a continuous analogue of the RNN since it takes values from a continuous function
and continuously updates the hidden state with the passage of time. We [16] propose
an alternative where the operations on the interpolated data are done in a functional
form until the very last layer where we collect the actual values in order to forecast or
classify. Although both approaches show some improvements on irregular time series
tasks, transformers and RNNs are the preferred option for simplicity of implementation
and lower computational requirements.

Temporal point processes. A natural way to define a TPP is via autoregressive intensity,
which is a common approach in both classical [99] and neural TPP models [61, 180]. We
did the same in Chapter 3, replacing the intensity with density. The drawback of this
method is an inherent sequential nature of computation so sampling new sequences is
done by sampling points one by one. Shchur et al. [241] extend on our approach and define
a normalizing flow model—the observed sequence is transformed in parallel to a base
process, corresponding to a homogenenous Poisson process. The reverse transformation is
also done in parallel and corresponds to sampling new sequences. The method is build on
top of the random time change theorem (Section 2.2.1) combined with triangular maps
that preserve the causality. Although less flexible by design, Shchur et al. [241] show that
such a model can match the performance of autoregressive models at a fraction of a cost,
while supporting new applications such as modeling discrete-state systems.

Our log-normal model (Section 3.2.2) has proved to be useful in many applications,
including distributed systems [253], cybersecurity [183], imputation [94], retrieval [95],
anomaly detection [239], learning temporal knowledge graphs [205], human activity
prediction [93], healthcare [68], and so on.

Uncertainty. The two models that we introduced in Chapter 4 use the same type of loss:
an expectation over the categorical distribution. The parameterized output is also known
as the epistemic distribution [31]. Our models are specifically designed for the irregular
time series, therefore, we output the evolution of this distribution across time. As already
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hinted in the results from Section 4.3, Dirichlet seems to be a more robust model choice
compared to the one based on a Gaussian process. It is also more interpretable as the
mean and the variance, together with the weight, correspond to the time, confidence
range and confidence in the prediction, respectively. We avoid using out-of-distribution
samples and introduce regularization to obtain higher uncertainty on parts where we did
not observe data. A followup work by Charpentier et al. [31] uses a similar Dirichlet
parameterization together with our uncertainty cross entropy loss and additionally adds
the entropy regularizer. They introduce a learnable posterior distribution which allows
evaluating the confidence in the prediction. This is similar in spirit to our original paper
but it is extended for general classification, beyond time series.

Historically, Chapter 4 preceded Chapter 3, setting up the ground works for parameter-
izing the irregular time series decoders. Since we are dealing with one-dimensional outputs
in both cases, we opt for simple parametric functions. In Chapter 4, for example, we
output the mixture of Gaussians as a function of time which corresponds to the intensity
in the TPP approach. However, our preferred TPP approach uses normalized functions
(densities) over the positive reals, as it gives an equivalent but simpler implementation.
For higher dimensional continuous dynamics, we propose a solution in Chapter 5.

Neural flows. Just as neural differential equations grew in popularity [35, 156, 246], the
interest in learning their closed-form solutions was becoming ever larger, including our
work presented in Chapter 5. Recently, Hasani et al. [98] investigated a continuous-time
neural network defined with a specific differential equation and derived a closed-form
approximation, again avoiding the expensive numerical solvers. Song et al. [250] aim to
produce a diffusion model without iterative generative procedure by defining a function
that stays on the probability flow curve, a property which they call consistency. They also
enforce an initial condition so the final model resembles our ResNet flow (Equation 5.1).

Schirmer et al. [236] redefine a continuous RNN by evolving the hidden state between
the observations with a linear SDE. This exactly corresponds to a Kalman filter, therefore,
the predict and update steps can be easily computed, unlike in GRU-ODE [51]. Previously,
Bézenac et al. [13] proposed a similar approach to model regular time series coupled with
normalizing flows as the emission function, making the inference tractable. Such a linear
flow is less expressive than a general neural flow, however, the hidden dimension can be
arbitrarily larger than the input data so it might still capture the correct dynamics [281].

In Section 5.4.2, we show that neural flows cannot guarantee solutions to autonomous
dynamics, without explicitly implementing this additional constraint. The constraint is,
however, limiting the expressiveness of the network so not all possible configurations can
be modeled. Despite this, Zhi et al. [298] model ODEs in a similar manner as normalizing
flows—a base ODE (for example, linear) is mapped to the target space via diffeomorphism.
The drawback of the method is that it preserves the topology of the original space, which
was not an issue in density estimation, but becomes problematic in dynamical systems.

Another approach is to learn solutions to differential equations in the Laplace domain
[104]. This can capture a large family of equations, beyond ODEs, such as delay differential
equations, integro-differential, forced and stiff differential equations. Holt et al. [104] show

93



7 Conclusion

that our neural flows can, without any modifications, beat ODE-based methods on these
exotic problems, but they lack in performance compared to the Laplace approach. We
find the conclusion that flows outperform ODEs satisfying as that was the main focus of
our comparison. It might be possible to extend the neural flows to these problems by
introducing further inductive biases in the architecture.

It is worth noting that neural ODEs still have their place, especially when the domain
knowledge can aid us in constructing the equation [214]. This argument can again be
flipped, that is, in physics-informed neural networks we use known PDEs to guide learning
the solution [215] and in neural operators we utilize the boundary condition to build a
solver [158]. Although differential equations offer a compact way to write down laws of
nature, the neural version is far from easy to parse. In addition, many fields actually only
care about solutions, for example, fluid dynamics is governed by known equations which
are notoriously hard to solve. A lot of the effort is put into solving these equations as
efficiently as possible and some recent works use machine learning to achieve this [158,
25].

As a final remark, we recall that we used a continuous normalizing flow, an ODE-based
generative model, to capture invariant densities (Section 3.4.1). This was an example of
a model that was simpler to define through vector fields. However, Bose and Kobyzev
[24] recently show that the equivariance in transformation can be achieved with discrete
normalizing flows, such as residual-based flows.

In the end, choosing between flows and differential equations is the matter of convenience.
For some problems, specifying an ODE is easy but learning it will be expensive so there will
always be an incentive to optimize for best computation performance while incorporating
the most domain knowledge. This is a setting in which neural flows thrive. As we have
seen, neural flows and, more generally, much of the recent research surrounding neural
networks uses known primitives (for example, fully connected layers and attention) and
incorporates the constraints, such as invertibility, to make known frameworks (like TPPs
and ODEs) more flexible. Combining known frameworks and neural networks in such a
principled way seems to be the way to create powerful models that solve hard problems.

Denoising diffusion. Our generative model from Chapter 6 operates on functions instead
of discrete points. Concurrently, Kerrigan et al. [126] propose a very similar approach of
modeling functions with diffusion by defining a Gaussian measure on Hilbert spaces. This
formalizes our ideas using the results from measure theory. Another concurrent work [64]
views diffusion on functions as neural processes, similar to our formulation in Section 6.3.2.
Subsequent work by Lim et al. [162] replaces the Gaussian process noise with a Gaussian
random field, an extension which generalizes to higher dimensions. Together with neural
operators, this allows them to model solutions to PDEs, in particular, they generate
solutions to the Navier-Stokes equation. This can also be applied to sample images or
to generate functional data on non-Euclidean spaces. Finally, Pidstrigach et al. [208]
use an empirical covariance matrix, calculated from data, to achieve certain amount
of smoothness of the generated functions. This answers the question of how to choose
hyperparameters of GP and OU covariances from Chapter 6.
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7.2 Open questions

In this section we take a look at the future of machine learning in irregularly-sampled
time series. The questions from the introduction have been answered through the thesis
and although we cannot say there is one correct answer to any of them, we believe
that the approaches we presented in Chapters 3-6 will stand the test of time. In favor
of this statement are all the followup works that we presented in the previous section.
In particular, modeling TPPs with density or intensity with closed-form integral is a
natural improvement over the unconstrained neural TPPs. The method still relies on
the decades of TPP research but brings additional flexibility in the advent of big data.
Capturing uncertainty with the distribution over the categorical distribution can be seen
as a Bayesian way to make predictions. Modeling closed-form solutions with neural
networks is becoming increasingly popular, and in more general, incorporating domain
specific constraints is a powerful way to create flexible and accurate models. Generative
diffusion has a simple philosophy—predict the added noise to remove it from corrupted
data. It is similar to VAEs and normalizing flows but iterative, and it keeps a simple
single scalar loss unlike GANs that play an adversarial game which is harder to train.
Further, our application to functions can be expanded to other spaces such as images and
manifolds. Taking all of this into consideration, we believe that the presented ideas are
here to stay; so we now turn to the remaining unanswered questions.

Representing time series. Even though we have spent quite some time looking at
different irregular time series encoders, it seems there is no single one that should
always be used across all tasks. As we have seen, there are various trade offs that we
can make, for example, we can choose between fast RNNs with linear evolution of the
hidden state and neural CDEs that interpolate data, basically oversampling across time.
Choosing the best encoder is the problem of Pareto optimality, but we cannot rule out
that new better architectures could dominate across multiple relevant properties. Many
datasets that we considered do not have very long dependencies so it is possible to
use transformers, especially with modern hardware and their proven track record on
other domains. A different approach is using random untrained convolutional layers that
extract random features which are then fed into a simple linear layer [53]. Similarly,
reservoir computing [168, 115] is common in modeling dynamical systems—randomly
initialized transformations are used to extract features which are then used as an input
to a simpler, often linear, network. These approaches hint that extracting many low
level features (wider networks) is preferable to extracting hierarchical features (deeper
networks). Although this works on some datasets, it is not hard to imagine that such an
approach would not scale to more complicated tasks. In this thesis, we have shown that
continuous time equivalents of RNNs (Chapter 5) achieve competitive results.

The problem of showing that some encoder is preferred to others directly connects to a
lack of common benchmarks for irregular time series, which are present in many other
data types [54, 275]. It is therefore harder to demonstrate if some method achieves better
results overall or only on some specific subset of problems. The main issue could actually
be a bit more subtle: time series come from very different domains and it might not be
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reasonable to expect that a single architecture excels on all, compared to many specialized
models. After all, we have shown that introducing domain specific constraints improves
performance. Thus, it might only make sense to talk about the need for benchmarking in
TPPs, or in dynamical systems, but not both at the same time.

On the other hand, large language models have recently shown impressive results on a
vast variety of natural language tasks, exhibiting few-shot behavior [26]. Could we build a
similar universal model for time series, even when dealing with irregularly-sampled data?
Using periodic activations to embed irregular time [124, 243] promises unification between
regular and irregular methods, at least for fixed-sized vector representation of the whole
time series. Although pre-trained networks for time series exist [92, 123, 170, 287], we are
yet to see wider adoption of this approach, especially compared to how omnipresent it is
in natural language processing.

Applications. We have considered many different data sources, including healthcare,
social media, smart houses and location data, besides others. This demonstrates that
irregularly-sampled time series can be naturally found in many domains and we can also
have different applications per domain: forecasting, classification, imputation etc. Beyond
direct application of our methods to other data sources, we can also consider using ideas
and applying them to other tasks; just like Chapter 4 inspired uncertainty in general
classification [31], the ideas of Chapter 6 have already been applied to PDEs [162] and can
be used in image modeling. Lastly, adapting our methods for real-world use would require
satisfying different requirements, from those imposed by data itself to legal compliance.
We will discuss different ways to inspect deep models in the rest of this section.

Broader impact of black box models. Software development often prefers deploying
quickly at the expense of verifiability. This should not apply to all software—self driving
cars are an obvious example. However, the impact of even seemingly innocent technologies
can be unexpectedly catastrophic.1 As the models slowly shift from research domain
to real-world usage, it becomes our responsibility to provide safety guarantees that the
models align with what we want from them. Improving upon a single scalar objective2

is what allows deep learning to thrive but it also allows for perverse solutions that find
shortcuts in data [187]. The reasoning3 that models use in such solutions would certainly
be regarded as unacceptable, if it was accessible for inspection in the first place. This is
because models are not transparent, they are black boxes so it is not possible to anticipate
their behavior from the structure and parameters alone.

1Social media that optimizes for engagement can amplify hate speech.
2Simple objectives are bad in general, this fact is expressed through different names: perverse incentive,

Campbell’s [28] or Goodhart’s law [86], or the cobra effect. The last name comes from an attempt
at eradicating cobras in Delhi using a financial incentive for each captured cobra which resulted in
breeding cobras to earn from the program.

3Here, and in much of the remaining text we use human traits to describe inanimate. Since we already
used the term neural to describe all of our models, although there is not much connection to the
biological brain, such personification should mostly be seen as a stylistic choice.
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Explaining the prediction post-hoc is one way to enable users inspect models. Some
works use backpropagation to highlight parts of an input that contribute the most to a
particular prediction [254, 276, 299]. A different feature importance extraction method
builds a surrogate model that locally explains the current prediction [166, 225], which
has been successfully applied to time series [237]. Shapelets build a representative set of
time series subsequences that are then used in prediction [289]. That is, shapelets are
learned shapes which are used as a signal for prediction when found in a particular time
series. There exists an extension for irregular data [131], whereas we propose a deeper
architecture that uses spline convolution layers which are interpretable in a similar way
to shapelets [16].

Adversarial attacks are purposefully changed inputs designed to fool the network and
get a behavior different than expected. For example, one can modify images with a
small amount of noise to change the predicted class [258] or change the structure of the
graph yielding the same undesirable outcome [304]. Unsurprisingly, time series models
can also be attacked by such methods [122]. A way of defending against adversaries
is by making models robust. One method that works on time series is to obtain the
robustness certificates [291] from randomized smoothing [44]—majority vote under input
perturbations.

Interpretability and robustness of irregular time series have not been studied in detail
but there is no reason to believe that the outcome would be any different than with
regular time series, or other data types. However, since healthcare measurements often
contain nonuniform sampling, it will be necessary to study these questions in more detail
in order to have trustworthy algorithms that can be applied in real-world environments.

Another important topic in machine learning and, consequently, in irregular time series
is mitigating biases. A decision-maker that is biased can be considered unfair, meaning
it will base the decision on properties that should not be relevant. One example is
discriminating based on race or sex which already falls under illegal activity in many
countries.4 Therefore, one has to take such issues into account when building real-world
applications, if for no other reason, to comply with local laws. Unfortunately, it is very
easy to introduce biases into models from an early stage of gathering data, by adding or
omitting features [42, 186], using inappropriate sampling and aggregation [256, 274]. The
question is how can we avoid generating further discrimination using machine learning.

There are various definitions of fairness [179], such as achieving equal odds or equal
opportunity regardless of whether data comes from a protected group or not. Note that it
is not possible to satisfy multiple fairness criteria at once [137] which further complicates
things. An example of trying to resolve representation issue is data augmentation. For
example, to deal with the problem of gender representation in natural language datasets,
one can augment data to create a gender-swapped corpora [297]. It is not immediately
clear how this would translate to time series data since there might be complicated
features that reveal the protected group and allow the model to discriminate based on it.

Models themselves can also exhibit bias and there have been approaches that try to
mitigate this [5, 82, 178], for example, by modifying the training procedure [12, 233].

4In Germany, Allgemeines Gleichbehandlungsgesetz is an act that aims to prevent discrimination.
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Lastly, one can apply post-processing techniques to convert a potentially unfair predictor
to a fair one [97]. Since we treat the model as a black box here, we can readily apply
this to time series models. Fairness in time series [301] benefits a lot from the general
fairness research so it is reasonable to believe it will be used more in practice as the field
progresses. Since irregular data can have special properties (for example, continuity) it
will be interesting to see how the above mentioned methods can adapt to this.

In many applications, large amounts of sensitive data are used for training which raises
the questions of safe storage but also the prevention of leakage from a trained model [249].
Differential privacy [65] is a field that investigates disclosing datasets and aggregates from
data without disclosing any private information. Again, these methods are quite general
but time series data comes with its own challenges which should be addressed [221].

Finally, we also have to consider model safety, especially when running in critical
applications such as healthcare or critical infrastructure like powerplants. AI safety is an
umbrella term which connects, besides other, robustness and interpretability. Recently,
the term alignment grew in popularity, which denotes aligning model’s given objective
with an intended objective. A part of the problem can be ascribed to optimizing simple
objectives without any constraints, as we have mentioned before. Another potential issue
that some researchers consider is that building larger models can lead to unexpected
consequences [75, 191]. So far this is mostly concerning large (language) models, and
while we do not believe the same issues can arise in the methods that we considered in
this thesis due to the model sizes and the tasks we tackle, it is important to keep such
considerations in mind going forward.

Ideas presented in this thesis are not inherently good nor bad. We anticipate that using
marked point processes might lead to unfair models if marks are not representative of real
population or if they contain unnecessary sensitive information. For example, a spatial
model trained on crime data [15] can suggest increased policing in perceived dangerous
areas which results in more reported crimes—creating a feedback loop [108]. It is clear
that the type of fairness is dictated by the task at hand, so there is no single off-the-shelf
solution that fits all problems. We hope that one of the main future applications will be in
healthcare. The importance of making the effort to make models safe cannot be overstated
since the consequences of poorly designed models can lead to undesirable outcomes both
on an individual level but also creating further social disparity [172]. Incorporating all
of the above requirements, such as safety and privacy, might not be easy but we believe
that the final products can impact the world in a positive way that will be measured in
the number of saved lives.
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A.1 Intensity function of flow and mixture models

CDF and conditional intensity function of proposed models. The cumulative distribu-
tion function (CDF) of a normalizing flow model can be obtained in the following way.
If z has a CDF Q(z) and τ = g(z), then the CDF F (τ) of τ is obtained as:

F (τ) = Q(g−1(τ)).

Since for both SOSFlow and DSFlow we can evaluate g−1 in closed-form, F (τ) is also
easy to compute. For the log-normal mixture model, CDF is by definition equal to:

F (τ) =
K∑
k=1

wkΦ

(
log τ − µk

sk

)
,

where Φ(·) is the CDF of a standard normal distribution.
Given the conditional PDF and CDF, we can compute the conditional intensity λ∗(t)

and the cumulative intensity Λ∗(τ) for each model as

λ∗(t) =
p∗(t− ti−1)

1− F ∗(t− ti−1)
, Λ∗(τi) :=

∫ τi

0
λ∗(ti−1 + s)ds = − log(1− F ∗(τi)),

where ti−1 is the arrival time of most recent event before t.

Merging two independent processes. We replicate the setup from Upadhyay and
Rodriguez [272] and consider what happens if we merge two independent TPPs with
intensity functions λ∗1(t) and λ∗2(t) (and respectively, cumulative intensity functions
Λ∗
1(τ) and Λ∗

2(τ)). According to [272], the intensity function of the new process is
λ∗(t) = λ∗1(t) + λ∗2(t). Therefore, the cumulative intensity function of the new process is

Λ∗(τ) =
∫ τ

0
λ∗(ti−1 + s)ds

=

∫ τ

0
λ∗1(ti−1 + s)ds+

∫ τ

0
λ∗2(ti−1 + s)ds

= Λ∗
1(τ) + Λ∗

2(τ).
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Using the previous result, we can obtain the CDF of the merged process as

F ∗(τ) = 1− exp(−Λ∗(τ))

= 1− exp(−Λ∗
1(τ)− Λ∗

2(τ))

= 1− exp(log(1− F ∗
1 (τ)) + log(1− F ∗

2 (τ)))

= 1− (1 + F ∗
1 (τ)F

∗
2 (τ)− F ∗

1 (τ)− F ∗
2 (τ))

= F ∗
1 (τ) + F ∗

2 (τ)− F ∗
1 (τ)F

∗
2 (τ).

The PDF of the merged process is obtained by simply differentiating the CDF w.r.t. τ .
This means that by using either normalizing flows or mixture distributions, and

thus directly modeling PDF or CDF, we are not losing any benefits of the intensity
parametrization.

A.2 Discussion of constant & exponential intensity models

Constant intensity model as exponential distribution. The conditional intensity func-
tion of the constant intensity model [271] is defined as λ∗(ti) = exp(vThi + b), where
hi ∈ RH is the history embedding produced by an RNN, and b ∈ R is a learnable
parameter. By setting c = exp(vThi + b), it’s easy to see that the PDF of the constant
intensity model p∗(τ) = c exp(−c) corresponds to an exponential distribution.

Exponential intensity model as Gompertz distribution. PDF of a Gompertz distribution
[280] is defined as:

p(τ |α, β) = α exp

(
βτ − α

β
exp(βt) +

α

β

)
.

for α, β > 0. The two parameters α and β define its shape and rate, respectively. For
any choice of its parameters, Gompertz distribution is unimodal and light-tailed. The
mean of the Gompertz distribution can be computed as E[τ ] = 1

β exp
(
α
β

)
Ei(−α

β ), where
Ei(z) =

∫∞
−z

exp(−v)/v dv is the exponential integral function (that can be approximated
numerically).

The conditional intensity function of the exponential intensity model [61] is defined as
λ∗(ti) = exp(w(ti−ti−1)+vThi+b), where hi ∈ RH is the history embedding produced by
an RNN, and v ∈ RH , b ∈ R, w ∈ R+ are learnable parameters. By defining d = vThi + b,
we obtain the PDF of the exponential intensity model [61, Equation 12] as:

p(τ |w, d) = exp

(
wτ + d− 1

w
exp(wτ + d) +

1

w
exp(d)

)
.

By setting α = exp(d) and β = w we see that the exponential intensity model is equivalent
to a Gompertz distribution.
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A.3 Discussion of the FullyNN model

Summary The main idea of the approach by [199] is to model the integrated conditional
intensity function:

Λ∗(τ) =
∫ τ

0
λ∗(ti−1 + s)ds.

using a feedforward neural network with non-negative weights:

Λ∗(τ) := f(τ) = ζ(W (3) tanh(W (2) tanh(W (1)τ + b̃(1)) + b(2)) + b(3)), (A.1)

where b̃(1) = V h+ b(0), h ∈ RH is the history embedding, W (1) ∈ RD×1
+ , W (2) ∈ RD×D

+ ,
W (3) ∈ R1×D

+ are non-negative weight matrices, and V ∈ RD×H , b(0) ∈ RD, b(2) ∈ RD,
b(3) ∈ R are the remaining model parameters.

FullyNN as a normalizing flow Let z ∼ Exponential(1), that is

F (z) = 1− exp(−z), p(z) = exp(−z).

We can view f : R+ → R+ as a transformation that maps τ to z

z = f(τ) ⇐⇒ τ = f−1(z).

We can now use the change of variables formula to obtain the conditional CDF and PDF
of τ . Alternatively, we can obtain the conditional intensity as:

λ∗(τ) =
∂

∂τ
Λ∗(τ) =

∂

∂τ
f(τ),

and use the fact that p∗(τi) = λ∗(ti−1 + τi) exp
(
−
∫ τi
0 λ∗(ti−1 + s)ds

)
. Both approaches

lead to the same conclusion:

F ∗(τ) = 1− exp(−f(τ)), p∗(τ) = exp(−f(τ)) ∂
∂τ
f(τ).

However, the first approach also provides intuition on how to draw samples τ̃ from the
resulting distribution p∗(τ) — an approach known as the inverse method [220]

1. Sample z̃ ∼ Exponential(1),

2. Obtain τ̃ by solving f(τ)− z̃ = 0 for τ (using e.g. bisection method).

Similarly to other flow-based models, sampling from the FullyNN model cannot be done
exactly and requires a numerical approximation.
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Shortcomings of the FullyNN model

1. The PDF defined by the FullyNN model doesn’t integrate to 1.

By definition of the CDF, the condition that the PDF integrates to 1 is equivalent
to limτ→∞ F ∗(τ) = 1, which in turn is equivalent to limτ→∞ Λ∗(τ) = ∞. However,
because of saturation of tanh activations (i.e. supx∈R | tanh(x)| = 1) in Equation A.1

lim
τ→∞

Λ∗(τ) = lim
τ→∞

f(τ) < ζ

(
D∑

d=1

|w(3)
d |+ b(3)

)
<∞

. Therefore, the PDF doesn’t integrate to 1.

2. The FullyNN model assigns a non-zero amount of probability mass to the (−∞, 0)
interval, which violates the assumption that inter-event times are strictly positive.

Since the inter-event times τ are assumed to be strictly positive almost surely, it
must hold that Prob(τ ≤ 0) = F ∗(0) = 0, or equivalently Λ∗(0) = 0. However, we
can see that

Λ∗(0) = f(0) = ζ(W (3) tanh(W (2) tanh(b̃(1)) + b(2)) + b(3)) > 0,

which means that the FullyNN model permits negative inter-event times.

A.4 Implementation details

A.4.1 Shared architecture

We implement SOSFlow, DSFlow and LogNormMix, together with baselines: RMTPP
(Gompertz distribution), exponential distribution and a FullyNN model. All of them
share the same pipeline, from the data preprocessing to the parameter tuning and model
selection, differing only in the way we calculate p∗(τ). This way we ensure a fair evaluation.
Our implementation uses Pytorch [207].

From arrival times ti we calculate the inter-event times τi = ti − ti−1. Since they can
contain very large values, RNN takes log-transformed and centered inter-event time and
produces hi ∈ RH . In case we have marks, we additionally input mi — the index of the
mark class from which we get mark embedding vector mi. In some experiments we use
extra conditional information, such as metadata yi and sequence embedding ej , where j
is the index of the sequence.

As illustrated in Section 3.2.3 we generate the parameters θ of the distribution p∗(τi)
from [hi||yi||ej ] using an affine layer. We apply a transformation of the parameters to
enforce the constraints, if necessary.

All decoders are implemented using a common framework relying on normalizing flows.
By defining the base distribution q(z) and the inverse transformation (g−1

1 ◦ · · · ◦ g−1
M ) we

can evaluate the PDF p∗(τ) at any τ , which allows us to train with maximum likelihood
(Section 3.2.1).
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A.4.2 Log-normal mixture

The log-normal mixture distribution is defined in Equation 3.7. We generate the pa-
rameters of the distribution w ∈ RK ,µ ∈ RK , s ∈ RK (subject to

∑
k wk = 1, wk ≥ 0

and sk > 0), using an affine transformation (Equation 3.11). The log-normal mixture is
equivalent to the following normalizing flow model

z1 ∼ GaussianMixture(w,µ, s)

z2 = az1 + b

τ = exp(z2)

By using the affine transformation z2 = az1 + b before the exp transformation, we
obtain a better initialization, and thus faster convergence. This is similar to the batch

normalization flow layer [59], except that b = 1
N

∑N
i=1 log τi and a =

√
1
N

∑N
i=1(log τi − b)

are estimated using the entire dataset, not using batches.
Forward direction samples a value from a Gaussian mixture, applies an affine trans-

formation and applies exp. In the backward direction we apply log-transformation to an
observed data, center it with an affine layer and compute the density under the Gaussian
mixture.

A.4.3 Baselines

We implement FullyNN model [199] as described in Appendix A.3, using the official
implementation as a reference1. The model uses feed-forward neural network with non-
negative weights (enforced by clipping values at 0 after every gradient step). Output
of the network is a cumulative intensity function Λ∗(τ) from which we can easily get
intensity function λ∗(τ) as a derivative w.r.t. τ using automatic differentiation in Pytorch.
We get the PDF as p∗(τ) = λ∗(τ) exp(−Λ∗(τ)).

We implement RMTPP / Gompertz distribution [61] and the exponential distribution
[271] models as described in Appendix A.2.2

All of the above methods define the distribution p∗(τ). Since the inter-event times may
come at very different scales, we apply a linear scaling τ̃ = aτ , where a = 1

N

∑N
i=1 τi is

estimated from the data. This ensures a good initialization for all models and speeds up
training.

A.4.4 Deep sigmoidal flow

A single layer of DSFlow model is defined as:

fDSF
θ (x) = σ−1

(
K∑
k=1

wkσ

(
x− µk
sk

))
,

1https://github.com/omitakahiro/NeuralNetworkPointProcess
2https://github.com/musically-ut/tf_rmtpp
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with parameters θ = {w ∈ RK ,µ ∈ RK , s ∈ RK} (subject to
∑

k wk = 1, wk ≥ 0 and
sk > 0). We obtain the parameters of each layer using Equation 3.11.

We define p(τ) through the inverse transformation (g−1
1 ◦ · · · ◦ g−1

M ), as described in
Section 3.2.1.

zM = g−1
M (τ) = log τ

...

zm = g−1
m (zm+1) = fDSF

θm (zm+1)

...
z1 = σ(z2)

z1 ∼ q1(z1) = Uniform(0, 1)

We use the batch normalization flow layer [59] between every pair of consecutive layers,
which significantly speeds up convergence.

A.4.5 Sum-of-squares polynomial flow

A single layer of SOSFlow model is defined as:

fSOS(x) = a0 +
K∑
k=1

R∑
p=0

R∑
q=0

ap,kaq,k
p+ q + 1

xp+q+1.

There are no constraints on the polynomial coefficients a ∈ R(R+1)×K . We obtain a
similarly to Equation 3.11 as a = Vac+ ba, where c is the context vector.

We define p(τ) by through the inverse transformation (g−1
1 ◦ · · · ◦ g−1

M ), as described in
Section 3.2.1.

zM = g−1
M (τ) = log τ

...

zm = g−1
m (zm+1) = fSOS

θm (zm+1)

...
z1 = σ(z2)

z1 ∼ q1(z1) = Uniform(0, 1)

Same as for DSFlow, we use the batch normalization flow layer between every pair of
consecutive layers. When implementing SOSFlow, we used Pyro [20] for reference.

A.4.6 Reparameterization sampling

Using a log-normal mixture model allows us to sample with reparameterization (see also
Section 2.2.3) which proves to be useful, e.g. when imputing missing data (Section 3.3.4).
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In a score function estimator [282] given a random variable x ∼ pθ(x), where θ are
parameters, we can compute ∇θEx∼pθ(x)[f(x)] as Ex∼pθ(x)[f(x)∇θ log pθ(x)]. This is an
unbiased estimator of the gradients but it often suffers from high variance. If the function
f is differentiable, we can obtain an alternative estimator using the reparameteriza-
tion trick: ϵ ∼ q(ϵ), x = gθ(ϵ). Thanks to this reparameterization, we can compute
∇θEx∼pθ(x)[f(x)] = Eϵ∼q(ϵ)[∇θf(gθ(ϵ))]. Such reparameterization estimator typically has
lower variance than the score function estimator [182]. In both cases, we estimate the
expectation using Monte Carlo.

To sample with reparameterization from the mixture model we use the Straight-Through
Gumbel Estimator [117]. We first obtain a relaxed sample z∗ = softmax((logw + o)/T ),
where each oi is sampled i.i.d. from a Gumbel distribution with zero mean and unit
scale, and T is the temperature parameter. Finally, we get a one-hot sample z =
onehot(argmaxk z

∗
k). While a discrete z is used in the forward pass, during the backward

pass the gradients will flow through the differentiable z∗.
The gradients obtained by the Straight-Through Gumbel Estimator are slightly biased,

which in practice doesn’t have a significant effect on the model’s performance. There
exist alternatives [267, 89] that provide unbiased gradients, but are more expensive to
compute.

A.5 Dataset statistics

A.5.1 Synthetic data

Synthetic data is generated according to Omi et al. [199] using well known point processes.
We sample 64 sequences for each process, each sequence containing 1024 events.

• Poisson. Conditional intensity function for a homogeneous (or stationary) Poisson
point process is given as λ∗(t) = 1. Constant intensity corresponds to exponential
distribution.

• Renewal. A stationary process defined by a log-normal probability density function
p(τ), where we set the parameters to be µ = 1.0 and σ = 6.0. Sequences appear
clustered.

• Self-correcting. Unlike the previous two, this point process depends on the history
and is defined by a conditional intensity function λ∗(t) = exp(t−

∑
ti<t 1). After

every new event the intensity suddenly drops, inhibiting the future points. The
resulting point patterns appear regular.

• Hawkes. We use a self-exciting point process with a conditional intensity function
given as λ∗(t) = µ +

∑
ti<t

∑M
j=1 αjβj exp(−βj(t − ti)). As per Omi et al. [199],

we create two different datasets: Hawkes1 with M = 1, µ = 0.02, α1 = 0.8 and
β1 = 1.0; and Hawkes2 with M = 2, µ = 0.2, α1 = 0.4, β1 = 1.0, α2 = 0.4 and
β2 = 20. For the imputation experiment we use Hawkes1 to generate the data and
remove some of the events.
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A.5.2 Real-world data

In addition we use real-world datasets that are described bellow. Table A.1 shows their
summary. All datasets have a large amount of unique sequences and the number of events
per sequence varies a lot. Using marked temporal point processes to predict the type of
an event is feasible for some datasets (e.g. when the number of classes is low), and is
meaningless for other.

• LastFM Celma [29]. The dataset contains sequences of songs that selected users
listen over time. Artists are used as an event type.

• Reddit.3 On this social network website users submit posts to subreddits. In the
dataset, most active subreddits are selected, and posts from the most active users on
those subreddits are recodered. Each sequence corresponds to a list of submissions
a user makes. The data contains 984 unique subreddits that we use as classes in
mark prediction.

• Stack Overflow.4 Users of a question-answering website get rewards (called
badges) over time for participation. A sequence contains a list of rewards for each
user. Only the most active users are selected and only those badges that users can
get more than once.

• MOOC. Contains the interaction of students with an online course system. An
interaction is an event and can be of various types (97 unique types), e.g. watching
a video, solving a quiz etc.

• Wikipedia. A sequence corresponds to edits of a Wikipedia page. The dataset
contains most edited pages and users that have an activity (number of edits) above
a certain threshold.

• Yelp.5 We use the data from the review forum and consider the reviews for the
300 most visited restaurants in Toronto. Each restaurant then has a corresponding
sequence of reviews over time.

A.6 Additional discussion of the experiments

A.6.1 Event time prediction using history

Detailed setup. Each dataset consists of multiple sequences of inter-event times. We
consider 10 train/validation/test splits of the sequences (of sizes 60%/20%/20%). We
train all model parameters by minimizing the negative log-likelihood (NLL) of the training
sequences, defined as Ltime(θ) = − 1

N

∑N
i=1 log p

∗
θ(τi). After splitting the data into the

3https://github.com/srijankr/jodie/ [143]
4https://archive.org/details/stackexchange preprocessed according to Du et al. [61]
5https://www.yelp.com/dataset/challenge
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Dataset name Number of sequences Number of events

LastFM 929 1268385
Reddit 10000 672350
Stack Overflow 6633 480414
MOOC 7047 396633
Wikipedia 1000 157471
Yelp 300 215146

Table A.1: Dataset statistics.

3 sets, we break down long training sequences into sequences of length at most 128.
Optimization is performed using Adam [134] with learning rate 10−3. We perform training
using mini-batches of 64 sequences. We train for up to 2000 epochs (1 epoch = 1 full pass
through all the training sequences). For all models, we compute the validation loss at
every epoch. If there is no improvement for 100 epochs, we stop optimization and revert
to the model parameters with the lowest validation loss.

We select hyperparameter configuration for each model that achieves the lowest average
loss on the validation set. For each model, we consider different values of L2 regular-
ization strength C ∈ {0, 10−5, 10−3}. Additionally, for SOSFlow we tune the number of
transformation layers M ∈ {1, 2, 3} and for DSFlow M ∈ {1, 2, 3, 5, 10}. We have chosen
the values of K such that the mixture model has approximately the same number of
parameters as a 1-layer DSFlow or a 1-layer FullyNN model. More specifically, we set
K = 64 for LogNormMix, DSFlow and FullyNN. We found all these models to be rather
robust to the choice of K, as can be seen in Table A.2 for LogNormMix. For SOSFlow
we used K = 4 and R = 3, resulting in a polynomial of degree 7 (per each layer). Higher
values of R led to unstable training, even when using batch normalization.

Additional discussion. In this experiment, we only condition the distribution p∗(τi) on
the history embedding hi. We don’t learn sequence embeddings ej since they can only
be learned for the training sequences, and not fore the validation/test sets.

There are two important aspects related to the NLL loss values that we report. First,
the absolute loss values can be arbitrarily shifted by rescaling the data. Assume, that
we have a distribution p(τ) that models the distribution of τ . Now assume that we are
interested in the distribution q(x) of x = aτ (for a > 0). Using the change of variables
formula, we obtain log q(x) = log p(τ)+ log a. This means that by simply scaling the data
we can arbitrarily offset the log-likelihood score that we obtain. Therefore, the absolute
values of of the (negative) log-likelihood L for different models are of little interest — all
that matters are the differences between them.

The loss values are dependent on the train/val/test split. Assume that model 1
achieves loss values L1 = {1.0, 3.0} on two train/val/test splits, and model 2 achieves
L2 = {2.0, 4.0} on the same splits. If we first aggregate the scores and report the
average L̂1 = 2.0± 1.0, L̂2 = 3.0± 1.0, it may seem that the difference between the two
models is not significant. However, if we first compute the differences and then aggregate
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Figure A.1: Models learn different conditional distribution p(τ |H) on Yelp dataset. Since check-
ins occur during the opening hours, true distribution of the next check-in resembles
the one on the right.

(L2 − L1) = 1.0± 0.0 we see a different picture. Therefore, we use the latter strategy in
Figure 3.4. For completeness, we also report the numbers obtained using the first strategy
in Table A.3.

As a baseline, we also considered the constant intensity / exponential distribution
model [271]. However, we excluded the results for it from Figure 3.4, since it consistently
achieved the worst loss values and had high variance. We still include the results for
the constant intensity model in Table A.3. We also performed all the experiments on
the synthetic datasets (Appendix A.5.1). The results are shown in Table A.4, together
with NLL scores under the true model. We see that LogNormMix and DSFlow, besides
achieving the best results, recover the true distribution.

Finally, in Figure A.1 we plot the conditional distribution p(τ |H) with models trained
on Yelp dataset. The events represent check-ins into a specific restaurant. Since check-ins
mostly happen during the opening hours, the inter-event time is likely to be on the
same day (0h), next day (24h), the day after (48h), etc. LogNormMix can fully recover
this behavior from data while others either cannot learn multimodal distributions (e.g.,
RMTPP) or struggle to capture it (e.g. FullyNN).

K 2 4 8 16 32 64

Reddit 10.239 10.208 10.189 10.185 10.191 10.192
LastFM -2.828 -2.879 -2.881 -2.880 -2.877 -2.860
MOOC 6.246 6.053 6.055 6.055 6.050 5.660
Stack Overflow 14.461 14.438 14.435 14.435 14.436 14.428
Wikipedia 8.399 8.389 8.385 8.384 8.384 8.386
Yelp 13.169 13.103 13.058 13.045 13.032 13.024
Poisson 1.006 0.992 0.991 0.991 0.990 0.991
Renewal 0.256 0.254 0.254 0.254 0.256 0.259
Self-correcting 0.831 0.785 0.782 0.783 0.784 0.784
Hawkes1 0.530 0.523 0.532 0.532 0.523 0.523
Hawkes2 0.036 0.026 0.024 0.024 0.026 0.024

Table A.2: Performance of LogNormMix model for different numbers K of mixture components.
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Reddit LastFM MOOC Stack Overflow Wikipedia Yelp

LogNormMix 10.19 ± 0.078 -2.88 ± 0.147 6.03 ± 0.092 14.44 ± 0.013 8.39 ± 0.079 13.02 ± 0.070
DSFlow 10.20 ± 0.074 -2.88 ± 0.148 6.03 ± 0.090 14.44 ± 0.019 8.40 ± 0.090 13.09 ± 0.065
SOSFlow 10.27 ± 0.106 -2.56 ± 0.133 6.27 ± 0.058 14.47 ± 0.049 8.44 ± 0.120 13.21 ± 0.068
FullyNN 10.23 ± 0.072 -2.84 ± 0.179 6.83 ± 0.152 14.45 ± 0.014 8.40 ± 0.086 13.04 ± 0.073
LogNormal 10.38 ± 0.077 -2.60 ± 0.140 6.53 ± 0.016 14.62 ± 0.013 8.52 ± 0.078 13.44 ± 0.074
RMTPP 10.88 ± 0.293 -1.30 ± 0.164 10.65 ± 0.023 14.51 ± 0.014 10.02 ± 0.085 13.36 ± 0.056
Exponential 11.07 ± 0.070 -1.28 ± 0.152 10.64 ± 0.026 18.48 ± 3.257 10.03 ± 0.083 13.78 ± 1.250

Table A.3: Time prediction test NLL on real-world data.

Poisson Renewal Self-correcting Hawkes1 Hawkes2

True model 0.999 0.254 0.757 0.453 -0.043

LogNormMix 0.99 ± 0.006 0.25 ± 0.010 0.78 ± 0.003 0.52 ± 0.047 0.02 ± 0.049
DSFlow 0.99 ± 0.006 0.25 ± 0.010 0.78 ± 0.002 0.52 ± 0.047 0.02 ± 0.050
SOSFlow 1.00 ± 0.013 0.25 ± 0.010 0.88 ± 0.011 0.59 ± 0.056 0.06 ± 0.046
FullyNN 1.00 ± 0.006 0.28 ± 0.013 0.78 ± 0.004 0.55 ± 0.047 0.06 ± 0.047
LogNormal 1.08 ± 0.008 0.25 ± 0.010 1.03 ± 0.006 0.55 ± 0.047 0.06 ± 0.049
RMTPP 0.99 ± 0.006 1.01 ± 0.023 0.78 ± 0.003 0.74 ± 0.057 0.69 ± 0.058
Exponential 0.99 ± 0.006 1.00 ± 0.023 0.94 ± 0.002 0.74 ± 0.055 0.69 ± 0.054

Table A.4: Time prediction test NLL on synthetic data.

A.6.2 Learning with marks

Detailed setup. We use the same setup as in Section A.6.1, except two differences. For
learning in a marked temporal point process, we mimic the architecture from Du et al.
[61]. The RNN takes a tuple (τi,mi) as input at each time step, where mi is the mark.
Moreover, the loss function now includes a term for predicting the next mark:

Ltotal(θ) = − 1

N

N∑
i=1

[log p∗θ(τi) + log p∗θ(mi)] .

The next mark mi at time ti is predicted using a categorical distribution p∗(mi). The
distribution is parameterized by the vector πi, where πi,c is the probability of event
mi = c. We obtain πi using the history embedding hi passed through a feedforward neural
network: πi = softmax

(
V

(2)
π tanh(V

(1)
π hi + b

(1)
π ) + b

(2)
π

)
, where V

(1)
π ,V

(2)
π b

(1)
π , b

(2)
π are

the parameters of the neural network.

Additional discussion. In Figure 3.4 (right) we reported the differences in time NLL
between different models Ltime(θ) = − 1

N

∑N
i=1 log p

∗
θ(τi). In Table A.5 we additionally

provide the total NLL Ltotal(θ) = − 1
N

∑N
i=1 [log p

∗
θ(τi) + log p∗θ(mi)] averaged over mul-

tiple splits. Using marks as input to the RNN improves time prediction quality for all
the models. However, since we assume that the marks are conditionally independent of
the time given the history (as was done in earlier works), all models have similar mark
prediction accuracy.
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Time NLL Total NLL Mark accuracy
Reddit MOOC Reddit MOOC Reddit MOOC

LogNormMix 10.28 ± 0.066 5.75 ± 0.040 12.40 ± 0.094 7.58 ± 0.047 0.62±0.014 0.45±0.003
DSFlow 10.28 ± 0.073 5.78 ± 0.067 12.39 ± 0.064 7.52 ± 0.074 0.62±0.013 0.45±0.004
SOSFlow 10.35 ± 0.106 6.06 ± 0.084 12.49 ± 0.158 7.78 ± 0.107 0.62±0.013 0.46±0.009
FullyNN 10.41 ± 0.079 6.22 ± 0.224 12.51 ± 0.094 7.93 ± 0.230 0.63±0.013 0.46±0.004
LogNormal 10.42 ± 0.076 6.38 ± 0.019 12.51 ± 0.080 8.11 ± 0.026 0.62±0.013 0.42±0.005
RMTPP 11.15 ± 0.061 10.29 ± 0.209 13.26 ± 0.085 12.14 ± 0.220 0.62±0.014 0.41±0.006

Table A.5: Time and total NLL and mark accuracy when learning a marked TPP.

A.6.3 Learning with additional conditional information

Detailed setup. In the Yelp dataset, the task is to predict the time τi until the next
customer check-in, given the history of check-ins up until the current time ti−1. We want
to verify our intuition that the distribution p∗(τi) depends on the current time ti−1. For
example, p∗(τi) might be different depending on whether it’s a weekday and / or it’s an
evening hour. Unfortunately, a model that processes the history with an RNN cannot
easily obtain this information. Therefore, we provide this information directly as a context
vector yi when modeling p∗(τi).

The first entry of context vector yi ∈ {0, 1}2 indicates whether the previous event ti−1

took place on a weekday or a weekend, and the second entry indicates whether ti−1 was
in the 5PM–11PM time window. To each of the four possibilities we assign a learnable
64-dimensional embedding vector. The distribution of p∗(τi) until the next event depends
on the embedding vector of the time stamp ti−1 of the most recent event.

A.6.4 Missing data imputation

Detailed setup. The dataset for the experiment is generated as a two step process: 1)
We generate a sequence of 100 events from the model used for Hawkes1 dataset (Appendix
A.5.1) resulting in a sequence of arrival times {t1, . . . tN}, 2) We choose random ti and
remove all the events that fall inside the interval [ti, ti+k] where k is selected such that
the interval length is approximately tN/3.

We consider three strategies for learning with missing data (shown in Figure 3.5 (left)):

a) No imputation. The missing block spans the time interval [ti, ti+k]. We simply
ignore the missing data, i.e. training objective Ltime will include an inter-event
time τ = ti+k − ti.

b) Mean imputation. We estimate the average inter-event time τ̂ from the observed
data, and impute events at times {ti + nτ̂ for n ∈ N, such that ti + nτ̂ < ti+k}.
These imputed events are fed into the history-encoding RNN, but are not part of
the training objective.

c) Sampling. The RNN encodes the history up to and including ti and produces
hi that we use to define the distribution p∗(τ |hi). We draw a sample τ (imp)

j form
this distribution and feed it into the RNN. We keep repeating this procedure
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until the samples get past the point ti+k. The imputed inter-event times τ (imp)
j

are affecting the hidden state of the RNN (thus influencing the likelihood of fu-
ture observed inter-event times τ (obs)i ). We sample multiple such sequences in
order to approximate the expected log-likelihood of the observed inter-event times
Eτ (imp)∼p∗

[∑
i log p

∗(τ (obs)i )
]
. Since this objective includes an expectation that

depends on p∗, we make use of reparameterization sampling to obtain the gradients
w.r.t. the distribution parameters [182].

A.6.5 Sequence embedding

Detailed setup. When learning sequence embeddings, we train the model as described
in Appendix A.6.1, besides one difference. First, we pre-train the sequence embeddings ej
by disabling the history embedding hi and optimizing − 1

N

∑
i log pθ(τi|ej). Afterwards,

we enable the history and minimize − 1
N

∑
i log pθ(τi|ej ,hi).

In Figure 3.7 the top row shows samples generated using eSC , embedding of a self-
correcting sequence, the bottom row was generated using eSC , embedding of a renewal
sequence, and the middle row was generated using 1/2(eSC + eRN ), an average of the two
embeddings.
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B.1 Approximation of the uncertainty cross-entropy for
WGP-LN

Given true categorical distribution p∗
i , and predicted pi(τ), the uncertainty cross-entropy

can be calculated as in Equation 4.7. For the WGP-LN model, pi(τ) = softmax(zi(τ)),
where zi(τ) are logits that come from a Gaussian process and follow a normal distribution
N (µi(τ),Σi(τ)),. Therefore, exp(zi(τ)) follows a log-normal distribution. We will use
this to derive an approximation of the loss. From now on, we omit τ from the equations.
The mean and the variance of

∑C
c exp(zci) are then:

E
[∑C

c
exp(zci)

]
=
∑C

c
exp(µci + σ2

ci/2),

Var
[∑C

ci
exp(zci)

]
=
∑C

ci
(exp(σ2ci)− 1) exp(2µci + σ2

ci).

(B.1)

The expectation of the cross entropy loss given that the logits are following a normal
distribution is:

LUCE
i = E[LCE

i ] = E[log(exp(zci))]− E
[
log

(∑C

c
exp(zci)

)]
. (B.2)

In general, given a random variable x, we can approximate expectation of log x by
performing a second order Taylor expansion around the mean µ:

E[log x] ≈ E
[
logµ+

(logµ)′

1!
(x− µ)︸ ︷︷ ︸

E[x−µ]=0

+
(logµ)′′

2!
(x− µ)2

]

≈ E[logµ]− Var[x]
2µ2

.

(B.3)

Using Equation B.3 together with Equation B.1 and plugging into Equation B.2 we get a
closed-form solution for the loss for event i:

LUCE
i ≈ µci(τ

∗
i )−log

( C∑
c

exp(µc(τ
∗
i )+σ

2
c (τ

∗
i )/2)

)
+

∑C
c (exp(σ

2
c (τ

∗
i ))− 1) exp(2µc(τ

∗
i ) + σ2

c (τ
∗
i ))

2
(∑C

c exp(µc(τ∗i ) + σ2
c (τ

∗
i )/2)

)2 .

(B.4)
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B.2 Comparison of the classical cross-entropy and the
uncertainty cross-entropy

B.2.1 Simple classification task

In this section, we do not consider temporal data. The goal of this experiment is to show
the benefit of the uncertainty cross-entropy compared to a classical cross-entropy loss on
a simple classification task. As a consequence, we use a simple two layer neural network
to predict the concentration parameters of a Dirichlet distribution from the input vector.

Setup. The set-up is similar to Malinin and Gales [171] and consists of two datasets
of 1500 instances divided in three equidistant 2-D Gaussians. One dataset contains
non-overlapping classes (NOG) whereas the other contains overlapping classes (OG).
We train simple two layer neural networks to predict the concentration parameters of a
Dirichlet distribution Dir(α1(xi), α2(xi), α3(xi)) which captures the uncertainty on the
categorical distribution p(xi), for a data point xi. On each dataset, we train two neural
networks. One neural network is trained with the classic cross-entropy loss LCE which
uses only the mean prediction p̄(xi). The second neural network is trained with the
uncertainty cross-entropy loss together with a simple α-regularizer:

LUCE +
∣∣α0(xi)−

∑
j

1xj∈Nw(xi)

∣∣, (B.5)

where xi is the input 2-D vector and Nw(xi) = {x′, ||x′ − xi||22 < w} is its euclidean
neighborhood of size w. We set w = 10−5 for the non-overlapping Gaussians and w = 10−2

for the overlapping Gaussians.

Results. The categorical entropy, equal to −
∑

c pc(xi) log pc(xi), is a good indicator
that tells us how certain is the categorical distribution p(xi) at point xi. High entropy
means that the categorical distribution is uncertain and vice versa. For non overlapping
Gaussians shown in Figures B.1a and B.1b, we remark that both losses learn uncertain
categorical distribution only on thin boundaries. However, for overlapping Gaussians
as can be seen in Figures B.1c and B.1d, the uncertainty cross-entropy loss learns more
uncertain categorical distributions due to its thicker boundaries.

Another interesting result are the concentration parameters learned by the two models
(Figure B.3 and Figure B.4). The classic cross-entropy loss learns very high values for
α1(xi), α2(xi), α3(xi) which does match with the true distribution of the data. In contrast,
the uncertainty cross-entropy learn meaningful alpha values for both datasets (delimiting
the in-distribution areas for α0 and centred around the classes for the others).

B.2.2 Irregularly-sampled Event Prediction

In this section, we consider temporal data. The goal of this experiment is again to show
the benefit of the uncertainty cross-entropy compared to the classical cross-entropy in the
case of irregular event prediction.
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(a) NOG - CE (b) NOG - UCE

(c) OG - CE (d) OG - UCE

Figure B.1: Figures B.1a and B.1b plot the entropy of the categorical distribution learned on a
classification task with three non-overlapping Gaussians. They show categorical
entropy learned with the classical cross-entropy and with the uncertainty cross-
entropy. Figures B.1c and B.1d plot the same for the dataset with three overlapping
Gaussians.

Setup. For this purpose, we use the same set-up describe in the experiment with an
anomaly detection and uncertainty. We trained the model FD-Dir with three different
type of losses: (1) The classical cross-entropy (CE), (2) The classical cross-entropy with
regularization described in section 4.1.3 (CE + reg) and (3) The classical uncertainty
cross-entropy with regularization described in section 4.1.3 (UCE + reg).

Results. The results are shown in Figure B.2. The UCE loss with the regularization
consistently improves the anomaly detection based on the distribution uncertainty.

Figure B.2: Loss comparison in anomaly detection
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(a) CE - α0 (b) CE - α1

(c) CE - α2 (d) CE - α3

(e) UCE - α0 (f) UCE - α1

(g) UCE - α2 (h) UCE - α3

Figure B.3: Concentration parameters of the Dirichlet distribution on a classification task with
three non-overlapping Gaussians. Figures B.3a, B.3b, B.3c, B.3d show α0, α1,
α2, α3 learned with the classic cross-entropy. Figures B.3e, B.3f, B.3g, B.3h show
α0, α1, α2, α3 learned with the uncertainty cross-entropy, respectively.
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(a) CE - α0 (b) CE - α1

(c) CE - α2 (d) CE - α3

(e) UCE - α0 (f) UCE - α1

(g) UCE - α2 (h) UCE - α3

Figure B.4: Concentration parameters of the Dirichlet distribution on a classification task with
three overlapping Gaussians. Figures B.4a, B.4b, B.3c, B.4d show α0, α1, α2, α3

learned with the classic cross-entropy. Figures B.4e, B.4f, B.3g, B.4h show α0, α1,
α2, α3 learned with the uncertainty cross-entropy, respectively.
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(a) Illustration of a car example, from the intro-
duction of Chapter 4, where probabilities
of the events change over time.
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(b) Probability density of events in 3-G dataset.
We can see that classes are independent of
history.

Figure B.5: The motivating example (a) and the resulting synthetic dataset (b).
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Figure B.6: Probability density of events in Car Indicators dataset for 2 selected classes. Time
is log-transformed.

B.3 Datasets

In this section we describe the datasets in more detail. For the preprocessing step, the
time gap between the two events τ∗i = ti − ti−1 is first log-transformed before applying

min-max normalization: τ̂i∗ =
τ ′i−min(τ∗

′
i )

(max(τ∗
′

i )−min(τ∗
′

i )
with τ∗′i = log(τ∗i + ϵ), ϵ > 0.

3-G. We set the number of classes C = 3 and draw from a normal distribution P (τ |ci) =
N (i+ 1, 1.). This dataset tries to imitate the setting from Figure B.5a as explained in
the introduction. We generate 1000 events. Probability density is shown in Figure B.5b.
Multi-G dataset is created similarly.

Car Indicators. A sequence contains signals from a single car during one ride. We
remove signals that are perfectly correlated giving 6 unique classes in the end. Top 3
classes make up 33%, 32%, and 16% of a total respectively. From Figure B.6 we can see
that the setting is again irregular.
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200 400 600 800 1000
t

Random Graph: Event Sequence

Figure B.7: Trace of events for a random graph. Different colors represent different classes and
the width of a single column represents the time that has passed.

Graph. We generate graph G with 10 nodes and 48 edges between them. We assign
variables µ and σ to each transition (edge) between events (nodes). The time it takes to
make a transition between nodes i and j is drawn from normal distribution N (µij , σ

2
ij).

By performing a random walk on the graph we create 10 thousand events. This dataset
is similar to 3-G with the difference that a model needs to learn the relationship between
events together with the time dependency. Parts of the trace are shown in Figure B.7.

B.4 Details of experiments

We test our models (WGP-LN, FD-Dir and FD-Dir-PP) against neural point process
models (RMTPP and Hawkes) and simple baselines (RNN and LSTM—getting only
history as an input, F-RNN and F-LSTM—having also the real time of the next event as
an additional input; thus, they get a strong advantage!). We test on real-world (Stack
Exchange, Car Indicators and Smart Home) and synthetic datasets (Graph). We show
that our models consistently outperform all the other models when evaluated with class
prediction accuracy and Time-Error.

B.4.1 Model selection

We apply the same tuning technique to all models. We split all datasets into train–
validation–test sets (60% − 20% − 20%), use the validation set to select a model and
the test set to get the final scores. For Stack Exchange dataset we split on users. In
all other datasets we split the trace based on time. We search over dimension of a
hidden state {32, 64, 128, 256}, batch size {16, 32, 64} and L2 regularization parameter
{0, 10−3, 10−2, 10−1}. We use the same learning rate 0.001 for all models using an Adam
optimizer [134], run each of them 5 times for maximum of 100 epochs with early stopping
after 5 consecutive epochs without improvement in the validation loss. For the number
of points M we pick 3 for WGP-LN and 20 for FD-Dir. WGP-LN and FD-Dir have
additional regularization (Equation 4.10) with hyperparameters α and β. For both models
we choose α = β = 10−3. Model with the highest mean accuracy on the validation set is
selected. We use GRU cell [38] for both of our models.
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Car Indicators Graph Smart Home Stack Exchange

FD-Dir 0.909 ± 0.005 0.701 ± 0.002 0.522 ± 0.013 0.522 ± 0.001
Dir-PP 0.912 ± 0.006 0.691 ± 0.006 0.415 ± 0.054 0.515 ± 0.002
WGP-LN 0.877 ± 0.010 0.685 ± 0.005 0.500 ± 0.017 0.519 ± 0.003

Hawkes 0.834 ± 0.022 0.585 ± 0.008 0.435 ± 0.017 0.513 ± 0.001
RMTPP 0.858 ± 0.004 0.257 ± 0.005 0.472 ± 0.016 0.492 ± 0.000
F-LSTM 0.855 ± 0.006 0.657 ± 0.002 0.411 ± 0.029 -
F-RNN 0.849 ± 0.013 0.615 ± 0.011 0.472 ± 0.035 -
LSTM 0.858 ± 0.010 0.251 ± 0.008 0.375 ± 0.026 -
RNN 0.838 ± 0.016 0.258 ± 0.008 0.437 ± 0.017 -

Table B.1: Class accuracy comparison for all models on all datasets

Car Indicators Graph Smart Home Stack Exchange

FD-Dir 0.115 ± 0.040 0.101 ± 0.001 0.111 ± 0.011 0.289 ± 0.019
WGP-LN 0.184 ± 0.047 0.120 ± 0.008 0.127 ± 0.010 0.077 ± 0.016
FD-Dir-PP 0.132 ± 0.031 0.106 ± 0.004 0.143 ± 0.022 0.375 ± 0.007

Hawkes 0.412 ± 0.091 0.158 ± 0.005 0.170 ± 0.035 0.507 ± 0.003
RMTPP 0.860 ± 0.004 0.257 ± 0.005 0.474 ± 0.016 0.721 ± 0.001
F-LSTM 0.277 ± 0.118 0.141 ± 0.002 0.209 ± 0.023 -
F-RNN 0.516 ± 0.105 0.146 ± 0.004 0.186 ± 0.011 -
LSTM 0.860 ± 0.010 0.251 ± 0.008 0.376 ± 0.026 -
RNN 0.841 ± 0.016 0.258 ± 0.008 0.439 ± 0.017 -

Table B.2: Time-Error comparison for all models on all datasets

Tables B.1 and B.2 show test results for all models on all datasets for Class accuracy
and Time-Error.

B.4.2 Time prediction with point processes

TPP framework allows estimating the time τ̂ of the next event:

τ̂ =

∫ ∞

0
tq(τ)dt, (B.6)

where q(τ) = λ0(τ) exp
(
−
∫ τ
0 λ0(s)ds

)
.

The usual way to evaluate the quality of this prediction is with a squared error. As we
have already discussed in Section 4.3.3, this is not optimal for our use case. Nevertheless,
we did compare our FD-Dir-PP model to RMTPP. On Car Indicators dataset our model
has the mean MSE of 0.4783 while RMTPP achieves 0.4736. At the same time FD-Dir-PP
outperforms RMTPP on other tasks (see Section 4.3).
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C.1 Theoretical background

C.1.1 Training loss for GRU-ODE-Bayes

De Brouwer et al. [51] define an objective that mimics the Bayesian filtering. It consists
of two parts:

L = Lpre + λLpost, (C.1)

where Lpre is masked negative log-likelihood and Lpost is the Bayesian part of the loss.
The model outputs the normal distribution for the observations, conditional on hidden
state h(t). Since only some features are observed at a time, we mask out the missing values
when calculating Lpre. We denote our predicted distribution with ppre, and predicted
distribution after updating the state with ppost. Now, the Bayesian update can be written
as pBayes ∝ ppre · pobs, with pobs being the noise of the observations. Lpost is defined as a
KL-divergence between pBayes and ppost. This can be calculated in closed-form for normal
distribution.

C.1.2 Proof of Theorem 2

Preliminaries. Function f has the Lipschitz constant L if |f(x) − f(y)| ≤ L|x − y|,
∀x, y. We first derive a few useful inequalities.

For the sum of two Lipschitz functions f + g, the following holds:

|f(x) + g(x)− f(y)− g(y)| ≤ |f(x)− f(y)|+ |g(x)− g(y)|
≤ Lip(f)|x− y|+ Lip(g)|x− y|
= (Lip(f) + Lip(g))|x− y|,

(C.2)

by the triangle inequality and the definition of the Lipschitz function. Similarly, for the
product of two Lipschitz functions f · g, the following holds:

|f(x)g(x)− f(y)g(y)| = |f(x)g(x) + f(x)g(y)− f(x)g(y)− f(y)g(y)|
= |f(x)(g(x)− g(y)) + g(y)(f(x)− f(y))|
≤ |f(x)||g(x)− g(y)|+ |g(y)||f(x)− f(y)|
≤ |f(x)| · Lip(g) · |x− y|+ |g(y)| · Lip(f) · |x− y|
= (|f(x)| · Lip(g) + |g(y)| · Lip(f))|x− y|.

(C.3)

If f and g are bounded, we can bound the above terms as well.
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Let f be contractive function, Lip(f) < 1. Then, for the composition of functions σ ◦ f ,
where σ(x) = (1 + exp(−x))−1 is the sigmoid activation, the following holds:

|σ(f(x))− σ(f(y))| ≤ Lip(σ)|f(x)− f(y)| = 1

4
|f(x)− f(y)| < 1

4
|x− y|,

where we used Lip(σ) = max(σ′) = 1
4 , by the mean value theorem. Similarly, we can

derive: Lip(tanh) = 1.

Proof. (Theorem 2)
Equation 5.2 defines GRU as: zt ⊙ ht−1 + (1− zt)⊙ ct. Since zt is defined as σ(fc(·)),

and acts as a gate, we can equivalently define GRU with: (1− zt)⊙ ht−1 + zt ⊙ ct. This
will slightly simplify further calculations. Then, the GRU flow is defined as:

F (t,h) = h+ φ(t)⊙ z(t,h)⊙ (c(t,h)− h). (5.5)

F is invertible when the second summand on the right hand side is a contractive map,
i.e., has a Lipschitz constant smaller than one. Since φ(t) is bounded to [0, 1] and does
not depend on h, we only need to show that z(t,h)⊙ (c(t,h)− h) is contractive. From
here, we denote with x and y the input to our functions.

Following Definition 1, let r(x) = β · σ(fr(x)), with Lip(fr) < 1. Then we can write:

|r(x)− r(y)| = |β · σ(fr(x))− β · σ(fr(y))|
≤ β|σ(fr(x))− σ(fr(y))|

≤ 1

4
β|fr(x)− fr(y)|

<
1

4
β|x− y|.

(C.4)

Similarly, for z(x), where z(x) = α · σ(fz(x)), and Lip(fz) < 1:

|z(x)− z(y)| ≤ |α · σ(fz(x))− α · σ(fz(y))| <
1

4
α|x− y|. (C.5)

Then for c(x) = tanh(fc(r(x) · x)), with Lip(fc) < 1, we can write:

|c(x)− c(y)| = | tanh(fc(r(x) · x))− tanh(fc(r(y) · y))|
≤ |fc(r(x) · x)− fc(r(y) · y)|
< |r(x) · x− r(y) · y|
< (|r(x)|︸ ︷︷ ︸

<β

·Lip(Id)︸ ︷︷ ︸
=1

+ |x|︸︷︷︸
<1

·Lip(r)︸ ︷︷ ︸
< 1

4
β

)|x− y|,
(C.6)

where we used Equation C.3 in the last line. Then Lip(c) < 5
4β. Now, for c(x)− x, and

using Equation C.2, we write:

|c(x)− x− c(y) + y| ≤ (Lip(c) + 1)|x− y|, (C.7)
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meaning the whole term has Lipschitz constant 5
4β + 1. Finally, for the term on the right

hand side of Equation 5.5, the following holds:

|z(x)(c(x)− x)− z(y)(c(y)− y)|
< (|z(x)|︸ ︷︷ ︸

<α

·Lip(c(x)− x)︸ ︷︷ ︸
< 5

4
β+1

+ |c(x)− x|︸ ︷︷ ︸
<2

·Lip(z(x))︸ ︷︷ ︸
< 1

4
α

|x− y|.

If we set α = 2
5 , β = 4

5 , then the Lipschitz constant is smaller than 1, as required.

C.1.2.1 Properties of GRU flow

Our GRU flow has the same desired properties as GRU-ODE:

1. Boundedness: hidden state h stays within range (−1, 1),

2. Continuity: the full transformation h+ g(h) has Lipschitz constant 1 + Lip(g) ≤ 2.

The gating mechanism in discrete GRU helps with gradient propagation to enable learning
long-term dependencies. We emphasize that both GRU flow and GRU-ODE update the
hidden state in two distinct ways: 1) with discrete GRU when the new observation arrives,
and 2) with continuous GRU between observations. Thus, the gates z and r do not have
the same interpretation in discrete GRUCell and in continuous GRU flow or GRU-ODE.

The same way, scalars α and β should not be interpreted as bounds to how much
information can pass, but as a way to ensure invertibility. GRU flow has the ability to
keep the old state h, and does so at the initial condition t = 0, but can also overwrite it
completely.

C.1.3 ODE reparameterization

The ODESolve operation is usually implemented such that it takes scalar start and end
times, t0 and t1. However, we are often interested in processing the data in batches, to get
speed-up from parallelism on modern hardware. When the previous works [35, 229, 51]
received the vectors of start and end times, e.g., t0 = [0, 0, 0] and t1 = [5, 1, 4], they would
concatenate all the values into a single vector and sort them to get a sequence of strictly
ascending times, e.g., [0, 1, 4, 5]. The solver would then first solve 0 → 1, then 1 → 4,
and finally 4 → 5. Note that for the element in the batch with the largest end time, this
requires calling ODESolve multiple times (number of unique time values), instead of only
once. Without this procedure, the adaptive solver could take larger steps then the ones
imposed by the current batch, meaning we would get better performance.

Chen et al. [34] propose a reparameterization, such that, instead of solving the ODE
on the interval t ∈ [0, tmax], they solve it on s ∈ [0, 1], with s = t/tmax. For the batch of
size n, the joint system is:

d

ds


x1

x2
...
xn

 =


t1f(st1,x1)
t2f(st2,x2)

...
tnf(stn,xn)

 .
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This allows solving the system in parallel, in contrast to previous works. We used this
reparameterization in all of our experiments.

C.1.4 Attentive normalizing flow

We follow the setup from Section 5.2.3, denoting times with t = (t1, . . . , tn), and marks
with X = (x1, . . . ,xn), xi ∈ Rd. We define the self-attention layer as in Equation 2.20.
Chen et al. [34], in their attentive CNF model, define the function f from Equation 2.38
for each xi, as the ith output of the attention function. It is important that elements xj ,
j > i, do not influence xi to ensure we have a proper temporal model. This is achieved
by placing −∞ for values above the diagonal of the QKT matrix so that softmax returns
zero on these places.

Discrete normalizing flows cannot define the transformation using attention and have
tractable determinant of the Jacobian at the same time. However, since we actually need
an autoregressive model, i.e., the dependence is strictly on the past values, not future, we
can define a model similar to attentive CNF. We use Equation 2.20 with diagonal masking
to embed the history of all the elements that preceded xi: hi = SelfAttention(X1:i−1).
This is in contrast to [34], who used X1:i. Then, the conditioning vector hi is used as
an additional input to neural networks u and v from Equation 5.6, essentially defining a
conditional affine coupling normalizing flow.

C.1.5 Linear ODE and change of variables

Consider a linear ODE f(t, z(t)) = Az(t), with z(0) = z and z(1) = x. Solving the ODE
0 → 1 is the same as calculating exp(A)z, where exp is the matrix exponential. Suppose
that z ∼ q(z), then the distribution p(x) that we get by transforming x with an ODE is
defined as:

log p(x) = log q(z)−
∫ 1

0
tr

(
∂f

∂z(t)

)
dt = log q(z)− tr(A), (C.8)

or simply: p(x) = q(z) exp(tr(A))−1.
When using a Hutchinson’s trace estimator for the trace approximation we get the same

result: Ep(ϵ)[
∫ 1
0 ϵT ∂f

∂z(t)ϵ dt] = Ep(ϵ)[ϵ
TAϵ] = tr(A), where E(ϵ) = 0 and Cov(ϵ) = I.

Similarly, applying the discrete change of variables, we get the same outcome when
using the matrix exponential:

p(x) = q(z)|det JF (z)|−1 = q(z)| det exp(A)|−1 = q(z) exp(tr(A))−1, (C.9)

proving the equivalence of the three different ways to define a CNF with a linear ODE.

C.1.6 Computation complexity of (continuous) normalizing flows

In general, evaluating the trace of the Jacobian of function f : Rd → Rd requires O(d2)
operations. In CNFs, this operation has to be performed at every solver step. Since the
number of steps can be very large for more complicated distributions [88], this becomes
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Ellipse Sawtooth Sink Square Triangle

Figure C.1: Sample trajectories for synthetic data.

prohibitively expensive. Because of this, Grathwohl et al. [88] introduce computing the
approximation of the trace during training. This has the benefit of having a lower cost,
O(d). The issue with this method is that the training becomes noisier and after training
we have to again rely on exact trace to get the exact density.

On the other hand, computing the determinant of the Jacobian is O(d3) operation in
general. Because of this, regular normalizing flows do not use unconstrained functions f ,
but rather opt for those that produce triangular Jacobians, e.g., autoregressive [135] or
coupling transformations [59], where the determinant is just the product of the diagonal
elements, i.e., it is of linear cost O(d).

C.2 Synthetic experiments

We first test the capabilities of our models on periodic signals:

• Sine: f(t, x) = cos(t) which corresponds to flow F (t, x) = x+ sin(t), x ∈ R,

• Sawtooth: F (t, x) = x+ t− ⌊t⌋,

• Square: F (t, x) = x+ sign(sin(t)),

• Triangle: F (t, x) =
∫ t
0 sign(sin(u)) du.

We sample initial values x uniformly in (−2, 2) and set the time interval to (0, 10). We
additionally check how well the models extrapolate by extending the initial condition
interval to (−4, 4) and time to 30. We also use two datasets, generated as solutions to
known ODEs:

• Sink: f(t,x) =
[
−4 10
−3 2

] [
x1
x2

]
,

• Ellipse: f(t,x) =
[
2
3x1 −

2
3x1x2

x1x2 − x2

]
, which is a particular parametrization of Lotka-

Volterra equations, also known as the predator-prey equations,

where we sample initial conditions x1, x2 ∈ [0, 1] uniformly. For extrapolation, we use
x1, x2 ∈ [1, 2]. Figure C.1 shows the generated trajectories for all synthetic datasets.
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Figure C.2: Fixed solvers are faster to train on synthetic data (Left) but they still have similar
accuracy compared to adaptive solvers (Right).

C.2.1 Comparing adaptive and fixed-step solvers

We ran an extensive hyperparameter search for Sine dataset. We test models with 2
or 3 hidden layers, each having dimension of 32 or 64, use tanh or ELU activations
between them, and have tanh or identity as the final activation. For each of the model
configurations we apply either no regularization or weigh the penalty term with 10−3.
Finally, we run each trial 5 times with different seeds and compare between Runge-Kutta
fixed-step solver with 20 steps and an adaptive 5th order Dormand-Prince method [60].

As expected, the vast majority of the trials fit the data very well. However, as Figure C.2
shows, an adaptive solver always requires significantly longer training times, regardless
of the size of the model, choice of the activations or regularization. We used default
tolerance settings (rtol = 10−7, atol = 10−9) which is why we get such long training
times. Therefore, in the other experiments, in the main text, whenever we use dopri5, we
use rtol = 10−3 and atol = 10−4 to make training feasible. This once again shows the
trade-off between speed and numerical accuracy.

Euler dopri5

Figure C.3: Density learned with Euler and
dopri5 solver. The estimated area under the
curve for Euler method is 1.06, meaning it
does not define a proper density.

From the results, one would expect that we
can safely use fixed-step solvers and achieve
similar or better results with smaller compu-
tational demand. However, as Ott et al. [201]
showed, this can lead to overlapping trajecto-
ries which give non-unique solutions. Break-
ing the assumptions of our model can lead
to misleading results in some cases. Here, we
tackle density estimation with continuous nor-
malizing flows as an example. We construct
a synthetic 2-dim. dataset as a mixture of
zero-centered normal distribution (σ = 0.05)
and uniform points on the perimeter of a unit circle with small noise (σ = 0.01). We test
adaptive dopri5 solver and Euler method with 20 steps.

The fixed solver achieves better results but Figure C.3 visually demonstrates that it is
not really capturing the true distribution. In reality, it cheats by not defining a proper
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MSE (×10−2) Ellipse Sawtooth Sink Square Triangle

Neural ODE 25.59±3.19 8.74±1.10 1.38±0.17 24.34±0.3 2.76±0.09

Coupling flow 14.16±4.80 1.25±0.33 0.50±0.06 3.38±0.4 0.19±0.02

ResNet flow 9.48±2.64 1.38±0.13 0.40±0.04 3.56±0.1 0.0±0.0

Table C.1: Test error on synthetic data, lower is better. Best results in bold.

MSE (×10−2) Ellipse Sawtooth Sink Square Triangle

Neural ODE 19.82±1.34 10.64±1.76 18.0±1.18 32.96±3.0 4.22±0.56

Coupling flow 515.8±555.6 1.32±0.36 5.53±2.23 3.93±0.76 0.2±0.04

ResNet flow 100.4±45.4 3.49±1.14 6.65±2.23 9.84±2.94 0.79±0.21

Table C.2: Error on trajectories that start at initial conditions out of training distribution. Some
trials returned outliers that skew the results (e.g., coupling flow on ellipse dataset).

Ellipse Sawtooth Sink Square Triangle

Neural ODE 9.3±0.88 8.25±0.33 8.78±0.81 7.81±0.34 7.91±0.35

Coupling flow 0.7±0.11 0.46±0.22 0.6±0.05 0.49±0.14 0.58±0.16

ResNet flow 1.05±0.04 1.01±0.15 1.24±0.13 0.98±0.04 1.01±0.09

Table C.3: Wall-clock time (in seconds) to run the last training epoch, using the same batch
size.

density function that integrates to 1. Since it has more mass to distribute, it can achieve
better likelihood results. This might be harder to detect in higher dimensions which is
particularly problematic since most of the literature reports log-likelihood on test data.
Even though we took Euler method as an extreme example, the same can happen in other
solvers as well.

C.2.2 Comparing flow configurations

Similar to Appendix C.2.1, we compare different flow models on synthetic sine data. We
try coupling and ResNet models with linear and tanh for φ, as well as an embedding with
8 Fourier features (bounded to (0, 1) interval in ResNet model), see Section 5.1.1 for more
details. Both models have either 2 or 4 stacked transformations, each with a two hidden
layer neural network with 64 hidden dimensions. We run each configuration 5 times with
and without weight regularization (10−3).

All the models capture the data perfectly, except for the coupling flow with linear
function of time φ which does not converge. This could be due to inability of neural
networks to process large input values. The issue can be fixed with different initialization
or normalizing the input time values.

Tables C.1, C.2 and C.3 show that neural flows outperform neural ODEs in forecasting,
extrapolation with different initial values, and are faster during training.
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C.3 Additional results

Table C.4 compares the training times for smoothing experiment. Neural ODE models use
Euler method with 20 steps (the adaptive method is slower). Table C.5 shows the average
wall-clock time to run a single epoch for different TPP models. We include ablations for
flow and ODE models that use different continuous RNN encoders, and a model without
an encoder. Table C.6 shows full negative log-likelihood results for the TPP experiment.
Table C.7 shows the full NLL results for marked TPPs.

Activity MuJoCo Physionet

Neural ODE 200.884±7.239 192.209±2.526 103.198±4.977

Coupling flow 106.298±2.314 46.171±1.742 78.561±1.050

ResNet flow 134.336±3.453 102.745±2.369 101.966±8.285

Table C.4: Average time (in seconds) to run a single epoch during training for different models,
all other training parameters being the same.

Poisson Hawkes1 Hawkes2 Renewal MOOC Reddit Wiki

C
on

t. Neural ODE 96.7 129.8 208.6 111.2 844.2 612.8 157.9
Coupling flow 10.8 11.2 10.8 11.1 180.8 113.1 31.7
ResNet flow 7.1 7.1 7.2 7.3 130.0 83.8 19.9

M
ix

tu
re

GRU-ODE 39.7 42.3 55.9 39.3 600.0 419.5 97.9
ODE-LSTM 35.9 39.0 37.8 43.8 569.4 443.6 109.4
Coupling flow 3.4 3.4 3.3 3.3 47.0 37.2 8.5
ResNet flow 5.9 5.9 5.8 5.9 96.5 64.9 16.1
GRU flow 3.6 3.5 3.3 3.7 52.8 36.4 9.7

Table C.5: Average time (in seconds) to run a single epoch during training for TPP models.

C.4 Data pre-processing

C.4.1 Encoder-decoder datasets

MuJoCo dataset. Using Deep Mind Control Suite and MuJoCo simulator, Rubanova
et al. [229] generate 10000 sequences by sampling initial body position in R2 uniformly
from [0, 0.5], limbs from [−2, 2], and velocities from [−5, 5] interval. We use this dataset
without any changes.

Activity dataset. Following [229], we round up the time measurements to 100ms intervals.
This was done to reduce the size of the union of all the points when batching but is
unnecessary when using our flow models, and also when using the reparameterization for
ODEs [34].

Original labels are: ‘walking’, ‘falling’, ‘lying down’, ‘lying’, ‘sitting down’, ‘sitting’,
‘standing up from lying’, ‘on all fours’, ‘sitting on the ground’, ‘standing up from sitting’,
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Synthetic data Poisson Hawkes1 Hawkes2 Renewal

Ground truth 0.9996 0.6405 0.1192 0.2667
Without history 1.0046 0.7826 0.2354 0.2837
Discrete GRU 1.0097±0.005 0.6424±0.006 0.1267±0.006 0.2598±0.016

C
on

t. Jump ODE 0.9945±0.016 0.6461±0.009 0.2246±0.042 0.3124±0.022

Coupling flow 1.0099±0.005 0.6441±0.007 0.1376±0.005 0.2720±0.017

ResNet flow 1.0105±0.005 0.6426±0.007 0.1813±0.025 0.2851±0.018

M
ix

.

GRU-ODE 1.0100±0.005 0.6419±0.007 0.1239±0.005 0.2601±0.017

ODE-LSTM 1.0108±0.005 0.6448±0.006 0.1253±0.005 0.2605±0.017

Coupling flow 1.0103±0.005 0.6450±0.008 0.1254±0.006 0.2605±0.016

GRU flow 1.0100±0.005 0.6439±0.007 0.1270±0.006 0.2608±0.016

ResNet flow 1.0104±0.005 0.6443±0.006 0.1249±0.005 0.2603±0.017

Real-word data MOOC Reddit Wiki

Without history 2.0623 1.5402 1.5813
Discrete GRU -0.4448±0.294 -0.9299±0.118 -0.5832±0.321

C
on

t. Jump ODE 0.8710±0.157 0.1308±0.018 -0.3115±0.011

Coupling flow 0.7694±0.172 -0.1263±0.273 -0.2807±0.500

ResNet flow -1.2379±0.049 -1.2962±0.126 -1.2907±0.045

M
ix

.

GRU-ODE -0.2626±0.183 -1.0907±0.076 -1.3635±0.071

ODE-LSTM -0.2277±0.331 -1.0888±0.029 -1.3727±0.327

Coupling flow -0.4026±0.584 -1.0933±0.161 -1.2702±0.178

GRU flow -0.3509±0.220 -1.0605±0.113 -0.9852±0.105

ResNet flow -0.5664±0.278 -1.0291±0.174 -1.1937±0.048

Table C.6: Test negative log-likelihood (mean±standard deviation) for all TPP models.

‘standing up from sitting on the ground’. Rubanova et al. [229] combine similar positions
into one group resulting in 7 classes: ‘walking’, ‘falling’, ‘lying’, ‘sitting’, ‘standing up’,
‘on all fours’, ‘sitting on the ground’. Data is split in train, validation and test set
(75%–5%–20%).

Physionet dataset. We use PhysioNet Challenge 2012 [245], where the goal is to predict
the mortality of patients upon being admitted to ICU. We process the data following
[229] to exclude time-invariant features, and round the time stamps to one minute. Each
feature is normalized to [0, 1] interval. Data is split 60%–20%–20%.

When reporting MSE scores for the reconstruction task we scale the results by 102

for activity dataset and by 103 for others, following Rubanova et al. [229] to have better
readability. This is equivalent to scaling the data beforehand.

C.4.2 MIMIC-III and MIMIC-IV

We follow [51] for processing MIMIC-III dataset. We process MIMIC-IV similarly.
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MOOC Reddit Wiki

Discrete GRU 2.7563±0.141 1.8468±0.016 8.0527±0.170

C
on

t. Jump ODE 4.6118±0.070 3.6654±0.000 10.6040±0.304

Coupling flow 5.5494±0.413 3.6312±0.324 9.7214±0.101

ResNet flow 2.9466±0.000 2.3932±0.131 10.4368±0.034

M
ix

.

GRU-ODE 3.5344±0.242 2.3078±0.033 7.5537±0.065

ODE-LSTM 3.0723±0.114 1.9057±0.164 8.3187±0.231

Coupling flow 2.5877±0.176 1.6817±0.095 8.8018±0.057

ResNet flow 3.0005±0.081 1.9491±0.008 8.5489±0.267

Table C.7: Test negative log-likelihood (mean±standard deviation) for all marked TPP models.

The publicly available MIMIC-IV database provides clinical data of intensive care
unit (ICU) patients at the tertiary academic medical center in Boston [119, 83]. It builds
upon the MIMIC-III database and contains de-identified patient records from 2008 to
2019 [120]. We use version MIMIC-IV 1.0, which was released March 16th, 2021.

To preprocess the data, we first select the subset of patients who:

• are registered in the admissions table,

• stayed in the ICU for at least 2 days and no more than 30 days,

• are older than 15 years at the time of the admission,

• have chart-event data available,

which leaves us with 17874 patients.
There are four types of data sources available for ICU patients: chart-events, inputs,

outputs and prescriptions. The chart-events table contains the patient’s routine vital
signs as well as any additional information such as laboratory tests. The input table
documents drugs administered to the patient through, e.g., solutions and the prescription
table stores information about medication given in any other form. Lastly, the outputs
table contains any output data from, e.g., a catheter for the patient during their stay.

Because the medication in the input table is administered over time, the administered
units and doses have to be unified and then split into entries which are spread out over
time. We choose 30 minutes as our sampling window and, for all administered medications
with duration longer than an hour, split them into fixed time injections.

For all other tables, we only keep the most commonly used entries:

• Chart-events: Alanine Aminotransferase, Albumin, Alkaline Phosphatase, Anion
Gap, Asparate Aminotransferase, Base Excess, Basophils, Bicarbonate, Bilirubin,
Calcium, Chloride, Creatinine, Eosinophils, Glucose, Hematocrit, Hemoglobin,
Lactate, Lymphocytes, Magnesium, MCH, MCV, Monocytes, Neutrophils, pCO2,
pH, pO2, Phosphate, Platelet Count, Potassium, PT, PTT, RDW, Red Blood Cells,
Sodium, Specific Gravity, Total CO2, Urea Nitrogen and White Blood Cells.
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• Outputs: Chest Tube, Emesis, Fecal Bag, Foley, Jackson Pratt, Nasogastric, OR
EBL, OR Urine, Oral Gastric, Pre-Admission, Stool, Straight Cath, TF Residual,
TF Residual Output and Void.

• Prescriptions: Acetaminophen, Aspirin, Bisacodyl, D5W, Docusate Sodium,
Heparin, Humulin-R Insulin, Insulin, Magnesium Sulfate, Metoprolol Tartrate,
Pantoprazole, Potassium Chloride and Sodium Chloride 0.9% Flush.

C.4.3 TPP datasets

We follow previous works [199, 143] to generate and pre-process temporal point process
data, all of which have been already introduced in Chapter 3. We use four synthetic
datasets: Poisson, Renewal, Hawkes1, and Hawkes2, generated the same way as described
in Appendix A.5.1. We also use three real-world dataset: Reddit, MOOC, and Wiki, as
described in Appendix A.5.2.

In our implementation, we use inter-event times τi = ti − ti−1 and for real-world data,
we normalize them by dividing them with the empirical mean τ̄ from the training set
τi 7→ τi/τ̄ . This can still yield quite large values so for better numerical stability during
training, we use log-transform τ 7→ log(τ + 1). We can think of log-transformation as a
change of variables and include it in the negative log-likelihood loss using the probability
change of variables formula (see Section 5.2.3).

C.4.4 Spatial datasets

For spatial data used in time-dependent density estimation experiment, we used the
datasets from Chen et al. [34] with the same pre-processing pipeline. See [34] for details.

Earthquakes contains events gathered between 1990 and 2020 in Japan, with the
magnitude of at least 2.5 [270]. Each sequence has length of 30 days, with the gap of
7 days between them. There are 950 training sequences, and 50 validation and test
sequences.

Covid data uses daily cases from March to July 2020 in New Jersey state [266]. The
data is gathered on county level and dequantized. Each sequence covers 7 days. There
are 1450 sequences in the training set, 100 in validation and 100 in test set.

Bikes contains rental events from a bike sharing service in New York using data from
April to August 2019. Each sequence corresponds to a single day, starting at 5am. The
data is split in training, test and validation set: 2440, 300, 320 sequences, respectively.

All the spatial values are normalized to zero mean and unit variance. We also normalize
the temporal component to [0, 1] interval.

C.4.5 Hyperparameters

In all experiments we use Adam optimizer [134]. Below, we list other hyperparameters.
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Smoothing experiments: Batch size: 100, Learning rate: 1e-3 with decay 0.5 every 20
epochs, Hidden layers: 3. Models: ODE models: Solver: euler or dopri5. Flow models:
ResNet or coupling flow, Flow layers: 1 or 2, φ(t): tanh for ResNet and linear for coupling
(used in all experiments). Datasets:

Encoder-decoder hidden dim. Latent state dim. GRU dim.
MuJoCo 100-100 20 50
Activity 30-100 20 100
Physionet 40-50 20 50

Filtering experiment: Batch size: 100, Learning rate: 1e-3 with decay 0.33 every 20
epochs, Hidden dimension: 64, Datasets: MIMIC-III or MIMIC-IV. ODE models: Solver:
euler or dopri5, Hidden layers: 3. Flow models: GRU flow or ResNet flow, Flow layers: 1
or 4, Hidden layers: 2.

TPP experiment: (With or without marks) Batch size: 50, Learning rate: 1e-3, Hidden
dimension: 64, Datasets: Reddit or MOOC or Wiki. ODE models: Models: continuous or
mixture (ODE-LSTM or GRU-ODE), Hidden layers: 3. Flow models: Models: continuous
(ResNet or coupling flow) or mixture (ResNet or coupling or GRU flow), Flow layers: 1,
Hidden layers: 2. RNN models: GRU.

Density estimation experiment: Batch size: 50, Learning rate: 1e-3, Hidden dimension:
64, Models: time-varying or attentive (for both CNFs and NFs). CNF: Hidden layers: 4.
Coupling normalizing flows: Base density layers: 4 or 8, Time-dependent NF layers: 4 or
8.
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D.1 Derivations

D.1.1 Discrete diffusion posterior probability

We extend Ho et al. [102] by using full covariance Σ(t) to define the noise distribution
across time t. If Σ = LLT and keeping the same definitions from Section 6.1.1 for βn,
αn, and ᾱn, we can write:

Xn =
√
1− βnXn−1 +

√
βnLϵ, (D.1)

Xn =
√
ᾱnX0 +

√
1− ᾱnLϵ, (D.2)

with ϵ ∈ N (0, I). This corresponds to the following transition distributions:

q(Xn|Xn−1) = N (
√

1− βnXn−1, βnΣ), (D.3)
q(Xn|X0) = N (

√
ᾱnX0, (1− ᾱn)Σ). (D.4)

We are interested in q(Xn−1|Xn,X0) ∝ q(Xn|Xn−1)q(Xn−1|X0). Since both distribu-
tions on the right-hand side are normal, the result will be normal as well. We can write
the resulting distribution as N (µ̃, Σ̃), where:

µ̃ = R(Xn −Aµ1) + µ1

Σ̃ = Σ1 −RAΣT
1

R = Σ1A
T (AΣ1A

T +Σ2)
−1,

with A =
√
1− βnI, µ1 =

√
ᾱn−1X0, Σ1 = (1− ᾱn−1)Σ, and Σ2 = βnΣ. We can now

write:

R = (1− ᾱn−1)Σ
√

1− βn

(√
1− βn(1− ᾱn−1)Σ

√
1− βn + βnΣ

)−1

=
(1− ᾱn−1)

√
αn

αn(1− ᾱn−1) + 1− αn
ΣΣ−1

=
1− ᾱn−1

1− ᾱn

√
αn,

and from there:

µ̃ =
1− ᾱn−1

1− ᾱn

√
αn

(
Xn −

√
1− βn

√
ᾱn−1X0

)
+
√
ᾱn−1X0

=
1− ᾱn−1

1− ᾱn

√
αnXn +

√
ᾱn−1

(
1− 1− ᾱn−1

1− ᾱn
αn

)
X0

=
1− ᾱn−1

1− ᾱn

√
αnXn +

√
ᾱn−1

1− ᾱn
βnX0,

(D.5)
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and using the fact that Σ is a symmetric matrix:

Σ̃ = (1− ᾱn−1)Σ− 1− ᾱn−1

1− ᾱn

√
αn

√
1− βn(1− ᾱn−1)Σ

T

=

(
1− ᾱn−1 −

1− ᾱn−1

1− ᾱn
αn(1− ᾱn−1)

)
Σ

=
1− ᾱn−1

1− ᾱn
βnΣ.

(D.6)

Therefore, the only difference to the derivation in Ho et al. [102] is the Σ(t) instead of
the identity matrix I in the covariance.

D.1.2 Discrete diffusion loss

We use the evidence lower bound from Equation 6.3. The distribution q(Xn−1|Xn,X0)
is defined as N (µ̃, C1Σ), where C1 is some constant (Equations D.5 and D.6). Similar to
Ho et al. [102], we start with the parameterization for the reverse process p(Xn−1|Xn) =
N (µθ(Xn, t, n), βnΣ), where:

µθ(Xn, t, n) =
1

√
αn

(
Xn − βn√

1− ᾱn
ϵθ(Xn, t, n)

)
.

Then the KL-divergence is between two normal distributions so we can write the following,
where C2 is a term that does not depend on the parameters θ:

DKL[q(Xn−1|Xn,X0) ∥ p(Xn−1|Xn)] = DKL[N (µ̃, C1Σ) ∥ N (µθ(Xn, t, n), βnΣ)]

=
1

2
(µ̃− µθ)

TΣ−1(µ̃− µθ) + C2.

Ho et al. [102] show that their loss can be simplified to Equation 6.4 given their particular
parameterization. Recall that we obtain noise by computing Lϵ̃, where ϵ̃ is unit normal
and L is the lower triangular matrix from the Cholesky decomposition of the covariance
Σ = LLT .

Therefore, we can factorize L from the bracket containing the difference of two means
to get:

DKL[q(Xn−1|Xn,X0) ∥ p(Xn−1|Xn)] = (La)TΣ−1(La) = aTLTΣ−1La,

where we write a as a shorthand for the term depending on X0 and unit normal noise ϵ̃.
The term LTΣ−1L evaluates to identity and we are again left with the same loss as in Ho
et al. [102]. That is, we can use the same trick to simplify the loss to be the mean squared
error between the true noise and the predicted noise, which leads to faster evaluation
and better results. Note that in the above notation, we have a set of observations X for
times t that we feed into the model ϵθ to predict a set of noise values ϵ(t), t ∈ t, whereas,
previous works predicted the noise for each data point independently.
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D.1.3 Continuous diffusion transition probability

Given an SDE in Equation 6.11 we want to compute the change in the variance Σ̃s, where
s denotes the diffusion time. The derivation is similar to that in Song et al. [252]. We
start with the Equation 5.51 from Särkkä and Solin [234]:

dΣ̃s

ds
= E[f(Xs, s)(Xs − µ)T ] + E[(Xs − µ)f(Xs, s)

T ] + E[L(Xs, s)QL(Xs, s)
T ],

where f is the drift, L is the SDE diffusion term and Q is the diffusion matrix. From
here, the only difference to Song et al. [252] is in the last term; they obtain β(s)I while
we have a full covariance matrix from the stochastic process: β(s)Σ. Therefore, we only
need to slightly modify the result:

dΣs

ds
= β(s)(Σ− Σ̃s),

which will give us the covariance of the transition probability as in Equation 6.12. The
derivation for the mean is unchanged as our drift term is the same as in Song et al. [252].

D.1.4 Sampling from an Ornstein-Uhlenbeck process

In the following, we discuss three different approaches to sampling noise ϵ(·) from an OU
process defined by γ at time points t0, . . . , tM−1.

1. Modified Wiener. As we already mentioned in Section 6.2.1, we can use a time-
changed and scaled Wiener process: e−γtWe2γt . Sampling from a Wiener process
is straightforward: given a set of time increments ∆t0, . . . ,∆tM−1, we sample M
points independently from N (0,∆ti) and cumulatively sum all the samples. The
time changed process first needs to reparameterize the time values. The issue arises
when applying the exponential for large t which leads to numerical instability. This
can be mitigated by re-scaling t.

2. Discretized SDE. A numerically stable approach involves solving the OU SDE in
fixed steps. The point at t = 0, ϵ(0) is sampled from unit Gaussian. After that,
each point is obtained based on the previous, that is, i-th point ϵ(ti) is calculated
as ϵ(ti) = cϵ(ti−1) +

√
1− c2z, where c = exp(−γ(ti − ti−1)) and z ∼ N (0, 1). This

is an iterative procedure but is quite fast and stable.

3. Multivariate normal. Finally, we can treat the process as a multivariate normal
distribution with mean zero and covariance Σij(ti, tj) = exp(−γ|ti − tj |). Given a
set of time points t it is easy to obtain the covariance matrix Σ and its factorization
LTL. To sample, we first draw ϵ̃ ∼ N (0, I) and then ϵ = Lϵ̃. Since our model
performs best if it predicts ϵ̃, we opted for this particular sampling approach. If
t is not changing, L can be computed once and the performance impact will be
minimal. Also when sampling new realizations, L has to be computed only once,
before the sampling loop (see Algorithm 2).
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D.2 Experimental details

D.2.1 Probabilistic modeling

D.2.1.1 Datasets

The properties of the open datasets used in the forecasting experiment are detailed in
Table D.1. Additionally, we generate 6 synthetic datasets, each with 10000 samples, that
involve stochastic processes, dynamical and chaotic systems.

1. CIR (Cox-Ingersoll-Ross SDE) is the stochastic differential equations defined by:

dx = a(b− x) dt+ σ
√
x dWt,

where we set a = 1, b = 1.2, σ = 0.2 and sample x0 ∼ N (0, 1) but only take the
positive values, otherwise the

√
x term is undefined. We solve for t ∈ {1, . . . , 64}.

2. Lorenz is a chaotic system in three dimensions. It is governed by the following
equations:

ẋ = σ(y − x),

ẏ = ρx− y − xz,

ż = xy − βz,

where ρ = 28, σ = 10, β = 2.667, and t is sampled 100 times, uniformly on [0, 2],
and x, y, z ∼ N (0, 100I).

3. Ornstein-Uhlenbeck is defined as:

dx = (µt− θx) dt+ σ dWt,

with µ = 0.02, θ = 0.1 and σ = 0.4. We sample time the same way as for CIR.

4. Predator-prey is a 2D dynamical system defined with an ODE:

ẋ = 2/3x− 2/3xy,

ẏ = xy − y.

5. Sine dataset is generated as a mixture of 5 random sine waves a sin(bx+ c), where
a ∼ N (3, 1), b ∼ N (0, 0.25), and c ∼ N (0, 1).

6. Sink is again a dynamical system, governed by:

dx

dt
=

[
−4 10
−3 2

]
x,

with x0 ∼ N (0, I).
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Dataset Dim. d Dom. Freq. Time steps Pred. steps

Exchange 8 R+ day 6, 071 30
Solar 137 R+ hour 7, 009 24
Electricity 370 R+ hour 5, 833 24

Table D.1: Multivariate dimension, domain, frequency, total training time steps, and prediction
length properties of the training datasets used in the forecasting experiments.

D.2.1.2 CTFP

We implement continuous-time flow process [56] which is a normalizing flow model for
stochastic processes. That is, there is a predefined base distribution p(z) and a series of
invertible transformations f such that we can generate samples x = f(z), and evaluate
the density in closed-form by computing z = f−1(x) and using the change of variables
formula. For more details on normalizing flows, see Kobyzev et al. [138]. The novel idea
in CTFP is to change the base density to a stochastic process, i.e., a Wiener process, to
obtain the distribution over the functions, similar to our work. In our case, we do not
use invertible functions but learn to inverse the noising process, and additionally, we add
noise at multiple levels instead only in the beginning. In the experiments, we define a
CTFP model as a 12-layer real NVP architecture [59] with 2 hidden layers in each layer’s
MLP.

D.2.1.3 Latent ODE

Latent ODE is a variational autoencoder architecture, with an encoder that represents
the complete time series as a single vector following q(z), and a decoder that produces
the samples at observation times ti, z(ti) = f(z), z ∼ q(z). The final step is projection
to a data space q(ti) 7→ x(ti). The key idea is to use the neural ordinary differential
equation [35] to define the evolution of the latent variable z(·), thus, have a probabilistic
model of the function. This is different from our approach as it models the function in
a latent space, with a single source of randomness at the beginning of the time series.
That is, the random value is sampled at t = 0 and the time series is determined from
there onward, whereas our method samples random values on the whole interval [0, T ]
and does so multiple times (for N diffusion steps) until we get the new realization. In the
experiments, we use a two layer neural network for the neural ODE, and another two
layer network for projection to the data space.

D.2.1.4 Our models

We use two models, one is a simple feedforward network, and the second is an RNN-based
model. We also use a simple transformer-based model [273] that achieves similar results
to an RNN. The model takes in the time series X, times of the observations t and the
diffusion step n or diffusion time s. The output is the same size as X. The feedforward
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CIR Lorenz OU Predator-prey Sine Sink
RNN-based model

D
SP

D Gauss 0.5245±0.0252 0.512±0.0212 0.568±0.051 0.5275±0.0383 0.5565±0.0353 0.526±0.0085
GP 0.5115±0.0282 0.5135±0.0288 0.5055±0.0458 0.5855±0.0219 0.5255±0.009 0.513±0.0103
OU 0.514±0.0737 0.6095±0.0964 0.5605±0.0581 0.5865±0.053 0.507±0.11 0.6255±0.1672

C
SP

D Gauss 0.644±0.0373 0.5015±0.0243 0.6105±0.0153 0.548±0.0751 0.611±0.0516 0.5495±0.0313
GP 0.5795±0.0541 0.674±0.0739 0.5025±0.0622 0.607±0.0538 0.5575±0.0376 0.5345±0.0201
OU 0.4535±0.165 0.715±0.0884 0.5255±0.011 0.5835±0.0723 0.556±0.118 0.5795±0.0173

Feedforward model

D
SP

D Gauss 0.624±0.0438 0.713±0.1798 0.5275±0.0371 1.0±0.0 0.7875±0.0585 0.9695±0.0302
GP 0.558±0.0611 0.894±0.212 0.5535±0.1152 0.7565±0.1362 0.735±0.2146 0.784±0.2281
OU 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0

C
SP

D Gauss 0.537±0.0458 0.959±0.0808 0.5155±0.0165 0.9995±0.001 0.6335±0.0765 0.9095±0.1306
GP 0.645±0.1034 1.0±0.0 0.507±0.0264 0.894±0.212 0.894±0.212 0.88±0.088
OU 0.984±0.032 1.0±0.0 0.9905±0.019 1.0±0.0 1.0±0.0 1.0±0.0

Table D.2: Accuracy of the discriminator trained on samples from a diffusion model. Values
around 0.5 indicate the discriminative model cannot distinguish the model samples
and real data. Values closer to 1 indicate the generative model is not capturing the
data distribution.

model embeds the time and the diffusion step with a positional encoding [273] and passes
it together with X through the multilayer neural network. Here, there is no interaction
between the points along the time dimension. The model, however, has the capacity to
learn transformation based on time of observation. The second model is RNN based, that
is, we pass the same concatenated input as before to a 2-layer bidirectional GRU [40]
and use a single linear layer to project to the output dimension. Table D.2 shows that it
is important to have interactions in the time dimension, regardless of the noise source,
because otherwise we only learn the marginal distribution and the quality of the samples
suffers.

D.2.2 Neural process

D.2.2.1 Dataset

We sample points from a Gaussian process to obtain a single time series. In the end, we
have 8000 time series and 2000 test time series. We sample the number of time points
from a Poisson distribution with λ = 10 but restrict the values to always be above 5 and
below 50. The time points are sampled uniformly on [0, 1]. The observations are sampled
from a multivariate normal distribution with mean zero and covariance obtained from an
RBF kernel. The σ value in the kernel is uniformly sampled in [0.01, 0.05] for each time
series independently. Half of the sampled points are treated as unobserved while the rest
are used as a context in the model.
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D.2.2.2 Additional results

We test the hypothesis that using a stochastic process with similar properties to the data
will lead to better performance. The difference to the neural process setup in Section 6.4 is
that we fix the synthetic GP to always have σ = 0.05. As can be seen from Figure D.1, the
marginal distribution will be equal regardless of which process and which kernel parameter
we use. On the other hand, when we look at path probability p(X), we notice better
results when the noise process matches data properties (as was also shown in Table 6.1
and D.2). That means, while our model can reverse the process well, the qualitative
properties of the sampled curves will be different. In particular, the curves will be rougher
with increasing γ in OU and smoother with increasing σ in GP.

D.2.3 CSDI imputation

The imputation experiment presented in Sections 6.3.3 and 6.4 uses the original CSDI
model [262] and only changes the noise to include the stochastic process source. In this
case, the time points at which we evaluate the stochastic process are regular which does
not reflect the true nature of the Physionet dataset. Here, we change the setup such
that the measurements keep the actual time that has passed instead of rounding to the
nearest hour. This is still in favour of the original paper as it only takes one measurement
per hour and discards others if they are present. The model from Tashiro et al. [262]
remains the same and we replace the independent normal noise with the GP noise with
σ ∈ {0.005, 0.01, 0.02}.

We run each experimental setup 10 times with different data maskings (see Tashiro
et al. [262] for more details) and report the results in Table D.3. We perform the Wilcoxon
one-sided signed-rank test [45] and reject the null hypothesis that the expected RMSE
values are the same when p < 0.05. As we can see, higher values of σ produce better
results which makes sense since σ = 0.005 is, informally, closer to independent Gaussian
sampling than σ = 0.02, which has stronger temporal dependency between the samples.
We suspect 10%-missing case does not produce significant results due to noise. Using
higher σ does not further improve the results.

Missingness: 10% 50% 90%
Metrics: RMSE p-value RMSE p-value RMSE p-value

CSDI (baseline) 0.603±0.274 – 0.658±0.060 – 0.839±0.043 –

0.005 0.541±0.085 0.125 0.647±0.049 0.116 0.824±0.032 0.188
σ = 0.01 0.575±0.195 0.125 0.640±0.050 0.001 0.823±0.028 0.032

0.02 0.515±0.039 0.326 0.636±0.050 0.001 0.811±0.032 0.001

Table D.3: Imputation results averaged over 10 runs and p-value of Wilcoxon one-sided test.
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Figure D.1: (Top) Neural process with Gaussian process diffusion, fitted on GP synthetic data.
Columns correspond to different values of the kernel parameter σ. The first row
shows samples from the GP prior. As we can see, the higher the value of σ the
smoother the process is. This is also reflected in the samples from the model.
(Bottom) Same but for the Ornstein-Uhlenbeck process, however, increasing the
kernel parameter γ now decreases the smoothness. All of the models perfectly
capture the marginal distribution.
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