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Abstract

Both practical and theoretical reasons justify why we need uncertainty estimation to build
reliable machine learning models. While uncertainty estimation is expected to provide
trust, safety, fairness and facilitate maintenance in real-world applications, uncertainty
estimation is also highly required to represent the real physical world which is inherently
non-deterministic and only partially observable.

Furthermore, machine learning models must deal with various types of input data
(e.g. tabular, images, graph data, sequential data) and output data (classes, real values,
counts, time events) which can be assumed either independent or non-independent. While
the independence assumption is convenient to represent various data types, the non-
independence assumption is particularly useful to represent complex data types with
network effects or time effects.

In this dissertation, we look at uncertainty estimation for both independent and non-
independent data. To this end, we elaborate on three main aspects. (1) We propose
desiderata capturing the desired behavior of uncertainty estimation. These desiderata
cover both aleatoric and epistemic uncertainty in the presence of perturbations – in par-
ticular adversarial perturbations –, as well as network effects, or time effects. Further, we
analyze the desired behavior for uncertainty estimates at both training and testing time.
(2) We present a large family of new Bayesian models which provide uncertainty esti-
mates at a low practical cost. These models demonstrate strong empirical performance
and have theoretical guarantees for different data types. (3) We develop extensive met-
rics to evaluate uncertainty estimates for practical tasks. These experimental setups
cover correct/wrong prediction detection, Out-Of-Distribution (OOD) detection, dataset
shifts, and calibration metrics in the presence of (adversarial) perturbations, network
effects, or time effects. Finally, we analyze the benefit of using uncertainty estimates to
achieve good exploration/exploitation trade-off with high sample efficiency.
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Zusammenfassung

Sowohl praktische als auch theoretische Überlegeungen zeigen auf, dass Unsicherheitss-
chätzung benötigen für zuverlässige Modell des maschinellen Lernens benötigt werden.
Während Unsicherheitsschätzung dazu beitragen soll Vertrauen, Sicherheit, und Fairness
zu schaffen, sowie die Wartung in realen Anwendungen zu erleichtern, ist Unsicherheitss-
chätzung außerdem erforderlich, um die echte Welt, welche nicht-deterministisch und nur
teilweise beobachtbar ist, adäquat abbilden zu können.

Modelle des maschinellen Lernens müssen darüber hinaus mit verschiedenen Arten
von Eingabedaten – Tabellen, Bildern, Graphen, oder sequentiellen Daten – und Aus-
gabedaten – Klassen, reale Werte, Anzahl, Zeitereignisse – umgehen können, wobei diese
sowohl als unabhängige oder nicht unabhängige Instanzen auftreten können. Während
die Unabhängigkeitsannahme dabei hilft, verschiedene Datentypen abzubilden, ist die
Nicht-Unabhängigkeitsannahme besonders im Kontext von komplexen Datentypen mit
Netzwerkeffekten oder Zeiteffekten nützlich.

In dieser Dissertation betrachten wir die Unsicherheitsschätzung sowohl für unab-
hängige als auch für nicht unabhängige Daten und gehen hierfür auf drei Hauptaspekte
ein. (1) Wir schlagen Desiderata vor und diskutieren diese, um das gewünschte Verhalten
der Unsicherheitsschätzung zu umreißen. Diese Desiderata umfassen sowohl aleatorische
als auch epistemische Ungewissheit in Gegenwart von Störungen – insbesondere kon-
tradiktorischer Störungen – sowie Netzwerk- oder Zeiteffekten. Außerdem analysieren wir
das gewünschte Verhalten für Unsicherheitsschätzungen sowohl zur Trainings- als auch
zur Testzeit. (2) Wir stellen eine Familie neuer bayesscher Modelle vor, die Unsicher-
heitsschätzungen zu geringen praktischen Kosten liefern. Diese Modelle zeigen eine starke
empirische Leistung und liefern theoretische Garantien für verschiedene Datentypen.
(3) Wir entwickeln umfangreiche Metriken zur Bewertung von Unsicherheitsschätzungen
für praktische Aufgaben. Diese Versuchsaufbauten decken die Erkennung richtiger und
falscher Vorhersagen, Out-Of-Distribution (OOD)-Erkennung, Datensatzverschiebungen
und Kalibrierungsmetriken in Gegenwart von (gegensätzlichen) Störungen, Netzwerkef-
fekten oder Zeiteffekten ab. Zuletzt analysieren wir den Nutzen der Verwendung von
Unsicherheitsschätzungen, um einen guten Kompromiss zwischen Exploration und Aus-
beutung mit hoher Probeneffizienz zu erreichen.
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1 Introduction

As far as the laws of mathematics refer to reality, they are not certain; and
as far as they are certain, they do not refer to reality.

Albert Einstein

Madness is the consequence not of uncertainty but of certainty.

Friedrich W. Nietzsche

Artificial Intelligence (AI) consists in the intelligence demonstrated by machines in
contrast with intelligence demonstrated by humans or animals. Hence, AI models are
usually computing systems able to perform tasks which would normally require human
intelligence, such as visual perception, speech recognition, decision-making, translation
between languages, or even art generation. AI includes Machine Learning (ML) which
consists in the study of computer programs which automatically learn from experience
[290], and Deep Learning (DL) which is a subfield of ML and can be defined as models
which hierarchically learn complex representations based on simpler ones [164]. AI is a
very important technology with high potential economic and ethical impacts.

Economically, AI has a high momentum. Indeed, 48% of companies claim that they
use AI [326] and 83% companies have AI is their priority [136]. Overall, the market
value of AI is $136 billion in 2022 [357] and had a Compound Annual Growth Rate
(CAGR) of 38.5% between 2022-2030 [357], thus indicating a very fast growth. Hence,
AI finds many applications in industry and science. Industry applications include e.g.
agriculture (e.g. Cropin, Iron Ox, FarmWise), manufacturing (e.g. Exotec, Bright Ma-
chines, Fieldbox), automotive industry (e.g. Tesla, Waymo), medicine (e.g. Exscientia,
Valence Discovery, Radium), construction (Procore Technologies, OpenSpace), finance
(e.g. Affirm, Kreditech, Kayrros), education (e.g. Duolingo, Age of Learning), or even
AI for art (e.g. Bytedance, OpenAI). Scientific applications include e.g. physics (e.g.
[145]), chemistry (e.g. [198]), biology (e.g. [186]), or even mathematics (e.g. [88]). In all
these applications, AI have shown to be applicable with various data types (e.g. images,
tabular, text, graphs) and at various scales from very small (e.g. quantum systems or
molecules) to very large systems (e.g. social networks or climate).

Ethically, AI systems raises multiple major concerns [24]. It does not guarantee a safe
behavior and can create accidents [11]. It can generate fake data, thus potentially to fake
news [317]. It does not provide clear explanations for its predictions or provide unreliable
explanations [304, 297, 236]. It can be racist and discriminate minorities, e.g., due to
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biased data or manipulation of learning by users [284]. It can partially replace human jobs
by stealing human creations which leaves the question of intellectual property unclear
[294, 155]. The replaced jobs include activities like art which can also be enjoyable for
humans. It might reduce individuals’ control over their lives and diminish individuals’
cognitive, social and survival skills as they become dependent on AI [12]. It might lead
to persistent surveillance and violate data privacy [23]. Finally, it might have goals which
are not aligned with human goals. This turns out to be particularly problematic when AI
systems achieve super-intelligence [50] which is realistic in many tasks where AI systems
are already better than humans [134].

Hence, the fast AI economic growth and the multiple AI ethical concerns urge the
development of reliable AI models which is the main subject of this thesis.

1.1 Why do we need uncertainty estimation?

Uncertainty estimation (a.k.a. uncertainty quantification) consists in evaluating the con-
fidence of models in their predictions. This task is crucial for both practical and theoretical
reasons summarized in Fig. 1.1.

Trust Safety Maintenance

Non-deterministic
world at large scale

Non-deterministic
world at small scale

Partially observable 
world

Fairness

Practical reasons for uncertainty estimation

Theoretical reasons for uncertainty estimation

Figure 1.1: Overview of the practical and theoretical reasons for uncertainty estimation.

Practical reasons. The Dunning-Kruger effect [240] describes a psychological cognitive
bias in which people lacking knowledge in a particular domain overestimate their abilities.
Interestingly, a similar phenomenon also applies to machine learning models. Traditional
neural networks show overconfident predictions, in particular on data that are different
from the data utilized during training [182]. The illusion of knowledge of machine learning
models highly impacts the reliability of such models in safety-critical domains. First, it
affects the trust in ML model predictions. Ideally, we expect ML models to be confident
when predicting correctly and uncertain when predicting wrongly. Second, it affects the
safety of ML predictions in unfamiliar situations. Ideally, we expect ML models to flag
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predictions on unknown domains corresponding to anomaly detection. Third, it affects
the ease of development and maintenance of ML models. Ideally, we expect ML models
to assign high uncertainty to data worth to train on or become more uncertain when
the testing data has drifted away from the training data, thus indicating the need of
retraining the model. This is particularly important in application where ML models
need to efficiently explore and learn all life-long. And finally, it affects the fairness of
ML models. Ideally, we expect ML models to provide calibrated predictions on all input
regions including underrepresented data. We relate each of this practical motivation for
uncertainty estimation to concrete uncertainty metrics in Section 2.3.

Theoretical reasons. ML models aim at precisely representing the flow of information
in the world which is inherently uncertain. First, the world is non-deterministic at
a large scale. Indeed, uncertainty emerges when small individual events contribute to
macro phenomena like GDP growth, micro phenomena like the growth rate of firms,
and non-economic events like war and climate change [41]. Second, the world is non-
deterministic at a small scale. A prominent evidence of this is the uncertainty principle
in (quantum) physics. Indeed, the uncertainty principle implies that it is in general not
possible to predict the value of a particle quantity (like position and speed) with arbitrary
certainty, even if all initial conditions are specified [187]. Eventually, the world is also
only partially observable. On one hand, any agent (e.g. human or robot) has to deal
with incomplete information on the environment in which it evolves [212]. Indeed, its
available information is limited by its internal sensors which cannot capture any signal
type at any resolution. On the other hand, the accessible information is restricted to
the observable world which is, at the extreme, limited by the speed of light [325], thus
making the world inherently uncertain for any agent (even if it is equipped with perfect
sensors).

All these reasons underline the need of accurate uncertainty estimation methods in
ML. Specifically, a reliable ML model should provide high-quality estimates of aleatoric
and epistemic uncertainty [140]. The aleatoric uncertainty allows a model to account
for the irreducible data uncertainty (e.g. the inherent sensor noise, or the inherent
environment stochasticity). The epistemic uncertainty allows a model to account for its
lack of knowledge about unseen data regions (e.g. testing data differs significantly from
training data). Aleatoric and epistemic uncertainty levels can eventually be combined
into an overall predictive uncertainty [140]. Hence, this thesis studies the usage of different
types of uncertainty for ML methods.

1.2 Why do we need to handle independent and
non-independent data?

In this thesis, we consider ML models which process input data xi to accurately predict
output targets yi. More specifically, we expect ML models to be able to process any
type of input data (e.g. tabular, images, graph or time series) to predict any type of
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output data (e.g. classes, continuous values, counts). To this end, independence and
non-independence are key assumptions to create practical and accurate models which
precisely describe the real-world.

Feature 1 Feature 2 Feature 3 Label

0.32 0 102

0.10 1 4

0.99 1 6

0.12 0 53

0.6 1 22

𝒙𝟑

𝒙𝟏
𝒙𝟐

𝒙𝟒
𝒙𝟓

(a) Tabular data

𝒙𝟏

𝒙𝟑

𝒙𝟐

𝒙𝟒

(b) Image data

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

Edge

Node

(c) Graph data

𝒙𝟏𝒙𝟐𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔

Time

(d) Sequential data

Figure 1.2: Overview of different data types covering independent xi inputs like tabular and
image data, and dependent xi inputs like graph nodes and sequential time events.

Independent Data. The independence assumption means that, given the knowledge of
the underlying mechanism that generates the data, different data samples do not have
any internal dependency amongst themselves. In other words, the knowledge of one data
sample does not bring any information on another data sample given the true data gen-
erating process. The independence assumption is particularly useful when representing
tabular data [355] (e.g. a group of unrelated persons for a medicine trial, defects on mul-
tiple different devices) or image data [264, 257] (e.g. disease detection on medical images
of different patients, object detection in different self-driving cars or robots). Visualiza-
tions of such data are represented in Fig. 1.2a and Fig. 1.2b. In this case, representing
the interaction between data samples does not bring much information to perform the
predictions. Hence, the key advantage of the independence assumption is that it allows
mathematical factorization for practical modelling simplifications [37] without important
information loss.

Non-Independent Data. The non-independence assumption means that, given the knowl-
edge of the underlying mechanism that generates the data, different data samples might
still have some internal dependencies amongst themselves. In other words, observing
a data sample gives some information on the value of another data sample even when
knowing the true data generating process. The non-independence assumption is particu-
larly useful when representing graph data [447] (e.g. social networks, citation networks)
or sequential data [383, 107] (e.g. financial time series, interaction history of a user).
Visualizations of such data are represented in Fig. 1.2c and Fig. 1.2d. In this case, neigh-
boring nodes of a graph are expected to share important information and past events are
expected to give important information on future events. Hence, the key advantage of
the non-independence assumption is that it retains the information contained in graph
and sequential interactions to model the world more precisely.

Beyond the (non-)independence assumption, another common assumption in ML is
that data are identically distributed. This assumption assumes that all input data comes
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from the same data distribution which also has strong limitations related to the reasons
motivating the usage of uncertainty estimates for ML predictions. While the training
data are assumed to come from the same data distribution, the testing data might come
from different distributions and suffer from Distribution Shifts [350, 335]. Indeed, the
testing data might come from the In-Distribution (ID) similar to the training data, or a
Out-Of-Distribution (OOD) which could be any distribution different from the training
distribution [453, 385]. This scenario frequently happens in safety and maintenance use-
cases where the data distribution observed by the model continuously drifts at testing
time.

Hence, this thesis acknowledges the limitation of the standard independent and identi-
cally distributed (i.i.d.) assumptions by studying the application of uncertainty estima-
tion to independent and non-independent data.

1.3 Contributions and outline

This thesis studies the application of uncertainty estimation for independent and non-
independent data via three main components:

• Explicit desiderata capturing the desired behavior of uncertainty estimation.

• Accurate and efficient models for uncertainty estimation with low practical over-
head.

• Practical metrics evaluating uncertainty estimation in real-world applications in-
cluding worst-case scenarios.

In Chapter 2, we start by establishing the background knowledge on uncertainty esti-
mation around which this thesis is articulated. In particular, we first present the desider-
ata related to the Bayesian properties, the different types of uncertainty estimates, and
the practical requirements in Section 2.1. Second, we present an overview of the impor-
tant families of methods for uncertainty estimation in Section 2.2. Third, we present
metrics used in experimental setups for uncertainty estimation which answer practical
questions on reliability for ML models in Section 2.3.

In Part II, we present a study of uncertainty estimation for independent data: In
Chapter 3, we construct a new Bayesian model for uncertainty estimation for classifica-
tion called Posterior Network (PostNet). PostNet requires a single-forward pass, does
need no OOD data during training, and adapt to many core architectures. In Chapter 4,
we construct a new Bayesian model for uncertainty estimation for regression called Nat-
ural Posterior Network (NatPN). Beyond regression, NatPN applies to a large variety of
supervised tasks (incl. classification and count prediction) with very low computational
overhead. In Chapter 5, we study the practicality of efficient uncertainty estimation
methods by analyzing the role of the training, the architecture and the prior in their final
performances. In particular, we show a fundamental trade-off between OOD generaliza-
tion and OOD detection performance in the presence of feature collapse. In Chapter 6,
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Table 1.1: List of own publications that this thesis is based on. Code and datasets for the
respective publications are available at www.cs.cit.tum.de/daml/[project].

Ch. Ref. Title Conference Repository

3 [67] Posterior network: Uncertainty estimation without
ood samples via density-based pseudo-counts NeurIPS 2020 /postnet/

4 [68] Natural posterior network: Deep bayesian predictive
uncertainty for exponential family distributions. ICLR 2021 /natpn/

5 [72] Training, Architecture, and Prior
for Deterministic Uncertainty Methods? TrustML - ICLR 2023 /training-architecture-prior-dum/

6 [235] Evaluating robustness of predictive uncertainty estimation:
Are dirichlet-based models reliable? ICML 2020 /dbu-robustness/

8 [398] Graph posterior network: Bayesian predictive uncertainty
for node classification. NeurIPS 2021 /graph-postnet/

9 [36] Uncertainty on asynchronous time event prediction NeurIPS 2019 /uncertainty-event-prediction/

10 [71] Disentangling epistemic and aleatoric uncertainty
in reinforcement learning DFUQ - ICML 2022 /aleatoric-epistemic-uncertainty-rl/

we present the first study of the robustness of uncertainty models in the worst-case sce-
nario of adversarial attacks. We show that uncertainty estimates of an important family
of single-forward pass models are not robust for many important real-world tasks (incl.
correct/wrong prediction detection, adversarial examples detection, and ID/OOD detec-
tion). Further, we explore first approaches methods to improve uncertainty robustness
by using adversarial training and randomized smoothing. In Chapter 7, we present a
retrospective on the evolution of the research field since our first study on independent
data.

In Part III, we present a study of uncertainty estimation for non-independent data: In
Chapter 8, we present the first framework for uncertainty estimation for node classifica-
tion on graph data. This framework proposes explicit desiderata, a new Bayesian model,
and an exhaustive evaluation setup which covers aleatoric and epistemic uncertainty es-
timation without and with network effects. In Chapter 9, we present new models for
uncertainty estimation in sequential data with asynchronous time events. The two pro-
posed models are able of accurate event types and event time predictions while capturing
uncertainty with rich temporal evolution. In Chapter 10, we present the first framework
to disentangle aleatoric and epistemic uncertainty estimation in reinforcement learning.
This framework proposes explicit desiderata, four models inspired from supervised learn-
ing, and a detailed experimental setup which cover aleatoric and epistemic uncertainty
estimation at both training time and testing time. In Chapter 11, we present a retro-
spective on the evolution of the research field since our first study on non-independent
data.

In Part IV, we present a conclusion including open questions as suggestion to future
research directions (see Chapter 12).

1.4 Own publications

The content of Chapters 3 to 10 is mostly based on papers previously published at
international peer-reviewed conferences. We list these papers in Table 1.1. We also
provide the full list of publications that the author was involved in during the PhD

8



1.4 Own publications

studies below. In case of multiple equal contributions, the name of the first authors are
starred with "*". These publications focus on three main topics: uncertainty estimation
including Bayesian models, energy-based models and robustness [67, 68, 235, 72, 398,
36, 71, 120, 21], structure learning including hierarchical and directed acyclic graphs
[70, 66, 481, 48], and efficient ML including pruning methods and sparse neural networks
[351, 21, 157].

[1] Morgane Ayle, Bertrand Charpentier, John Rachwan, Daniel Zügner, Simon Geisler,
and Stephan Günnemann. On the robustness and anomaly detection of sparse neural
networks. In Sparsity in Neural Networks Workshop, SNN, 2022.

[2] *Marin Biloš, *Bertrand Charpentier, and Stephan Günnemann. Uncertainty
on asynchronous time event prediction. Neural Information Processing Systems,
NeurIPS, 2019.

[3] Thomas Bonald, Nathan de Lara, Quentin Lutz, and Bertrand Charpentier. Scikit-
network: Graph analysis in python. Journal of Machine Learning Research, JMLR,
2020.

[4] Bertrand Charpentier and Thomas Bonald. Tree sampling divergence: An
information-theoretic metric for hierarchical graph clustering. In International Joint
Conference on Artificial Intelligence, IJCAI, 2019.

[5] *Bertrand Charpentier, *Oliver Borchert, Daniel Zügner, Simon Geisler, and
Stephan Günnemann. Natural posterior network: Deep bayesian predictive uncer-
tainty for exponential family distributions. In International Conference on Learning
Representations, ICLR, 2021.

[6] Bertrand Charpentier, Simon Kibler, and Stephan Günnemann. Differentiable dag
sampling. In International Conference on Learning Representations, ICLR, 2022.

[7] Bertrand Charpentier, Ransalu Senanayake, Mykel Kochenderfer, and Stephan Gün-
nemann. Disentangling epistemic and aleatoric uncertainty in reinforcement learn-
ing. In ICML Workshop on Distribution-Free Uncertainty Quantification, ICML -
DFUQ, 2022.

[8] Bertrand Charpentier, Chenxiang Zhang, and Stephan Günnemann. Training, ar-
chitecture, and prior for deterministic uncertainty methods. In ICLR 2023 Workshop
on Pitfalls of limited data and computation for Trustworthy ML, 2023.

[9] Bertrand Charpentier, Daniel Zügner, and Stephan Günnemann. Posterior network:
Uncertainty estimation without ood samples via density-based pseudo-counts. Neu-
ral Information Processing Systems, NeurIPS, 2020.

[10] Sven Elflein, Bertrand Charpentier, Daniel Zügner, and Stephan Günnemann. On
out-of-distribution detection with energy-based models. In ICML workshop on Un-
certainty and Robustness in Deep Learning Workshop, UDL - ICML, 2021.
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[11] Johannes Getzner, Bertrand Charpentier, and Stephan Günnemann. Accuracy is
not the only metric that matters: Estimating the energy consumption of deep learn-
ing models. In ICLR 2023 Workshop on Tackling Climate Change with Machine
Learning: Global Perspectives and Local Challenges, 2023.

[12] *Anna-Kathrin Kopetzki, *Bertrand Charpentier Daniel Zügner, Sandhya Giri, and
Stephan Günnemann. Evaluating robustness of predictive uncertainty estimation:
Are dirichlet-based models reliable? In International Conference on Machine Learn-
ing, ICML, 2020.

[13] John Rachwan, Daniel Zügner, Bertrand Charpentier, Simon Geisler, Morgane Ayle,
and Stephan Günnemann. Winning the lottery ahead of time: Efficient early network
pruning. In International Conference on Machine Learning, ICML, 2022.

[14] *Maximilian Stadler, *Bertrand Charpentier, Simon Geisler, Daniel Zügner, and
Stephan Günnemann. Graph posterior network: Bayesian predictive uncertainty for
node classification. In Advances in Neural Information Processing Systems, 2021.

[15] Daniel Zügner, Bertrand Charpentier, Morgane Ayle, Sascha Geringer, and Stephan
Günnemann. End-to-end learning of probabilistic hierarchies on graphs. In Inter-
national Conference on Learning Representations, ICLR, 2022.
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2 Background

Science is the outcome of being prepared to live without certainty and
therefore a mark of maturity. It embraces doubt and loose ends.

A.C. Grayling

In this chapter, we introduce the main background on the content of this thesis. It
covers background on the desiderata, models, and metrics for uncertainty estimation in
Machine Learning. In order to preserve the original storyline of the original publications,
we kept the background sections in Chapters 3, 4, 6 and 8 to 10. Beyond this chapter,
we also recommend existing surveys on uncertainty estimation for further details on
uncertainty estimation in deep learning [150, 3, 348, 13, 202].

2.1 Uncertainty desiderata

In this section, we review important desiderata for uncertainty estimation. We provide
a summary of these desiderata in Table 2.1.

Bayesian distributions

Q(ϕ | D) where ϕ are model weights
Q(a | D,x) where a are values of the activations

Q(θ | D,x) where θ are parameters of the target distribution

Uncertainty types

Aleatoric uncertainty
Epistemic uncertainty
Predictive uncertainty

Practical requirements

Efficiency: Data & Time
Flexibility: Architecture & Optimization

Robustness: Natural & Adversarial

Table 2.1: Overview of desiderata for models for uncertainty estimation. Important desiderata
involve modelling Bayesian distributions, distinguishing between uncertainty types,
and fulfilling practical requirements.

2.1.1 Bayesian Distributions

Bayesian distributions offer a convenient framework to express beliefs in the realization
of an event. In particular, the Bayesian framework allows to easily incorporate prior
knowledge and update our beliefs given additional new observations in a principled way.
Hence, we first recall the key concept of the Bayesian framework since it is a core concept
in many uncertainty estimation approaches.
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2 Background

Unsupervised learning. We define the distribution P(y |θ) over the target variable y ∈
RK given the parameter θ. Given a dataset D = {y(1), ..., y(N)}, the Bayes formula is:

Q(θ | D) =
P(D |θ)×Q(θ)

P(D)
(2.1)

where P(D |θ) is the likelihood, Q(θ) is the prior, Q(θ | D) is the posterior, and P(D)
is the evidence. Intuitively, the Bayesian formula updates the prior belief represented
by Q(θ) into the posterior belief represented by Q(θ | D) after observing a dataset D
[37]. The choice of prior is crucial. A common choice is to follow the principle of
maximum entropy [364] and enforce high entropy for the prior distribution which is
usually considered less informative. However, note that many works studied different
choices of priors [209, 388]. The evidence term P(D) corresponds to a normalization
constant which can sometimes be ignored [37].

After observing a dataset D, we can update the distribution over the target variable
y in two ways. A first option is to use a point-wise estimate of the target distribution
parameter, i.e.:

P(y |θ∗) (2.2)

where θ∗ = argmaxP(D |θ) would be the maximum likelihood estimate, or θ∗ =
argmaxQ(θ | D) would be the maximum a posteriori estimate. A second option is to
integrate over all possible values for the target distribution parameter, i.e.:

P(y | D) =

∫
P(y |θ)Q(θ | D)dθ (2.3)

where P(y | D) is called the posterior predictive distribution. This second approach is
often considered to be more Bayesian since it depends on the full posterior distribution
Q(θ | D). However, it might be costly to compute the posterior distribution since it
requires integration.

Supervised learning. In supervised learning, the goal is to predict the value of a tar-
get output variable y given an input x after observing a dataset D = {(x(1), y(1)), ...,
(x(N), y(N))}. In this case the posterior predictive requires to be adapted with three
main options: compute the posterior distribution over the weights Q(ϕ | D), compute
the posterior over the activations Q(a | D,x), and compute the posterior over the pa-
rameters of the target distribution Q(θ | D,x) (see Table 2.1 left). The first option is:

P(y | D,x) =
∫

P(y |ϕ,x)Q(ϕ | D)dϕ (2.4)

where ϕ denote the model weights. In this case, the parameter distribution Q(ϕ | D) is
not conditioned on the input x and only accounts for an uncertainty dependent on the
dataset D. Examples of such models are Bayesian neural networks which learn Bayesian
distribution Q(ϕ | D) where ϕ denote the model weights [42]. The second option is:

P(y | D,x) =
∫

P(y |a)Q(a | D,x)da (2.5)
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where a denote intermediate representations of x. In this case, the parameter distribution
Q(a | D,x) is conditioned on the new input x and accounts for an uncertainty dependent
on the input x. Examples of such models are Bayesian neural networks which learn
Bayesian distribution Q(a | D,x) where a denote the values of the activations [300, 425].
Alternatively, the third option is:

P(y | D,x) =
∫

P(y |θ)Q(θ | D,x)dθ (2.6)

where θ denote the direct parameters of the distribution over the target y. In this
case, the parameter distribution Q(θ | D,x) is conditioned on the new input x and also
accounts for an uncertainty dependent on the input x. Examples of such models are
the Bayesian neural networks proposed in this thesis [67, 69, 398, 71, 36] which learn
Bayesian distributions Q(θ | D,x) where θ denote the parameters of the distribution
over the target labels y. In this thesis, we focus on learning Bayesian distributions
on the (generally) low dimensional target parameters θ, in contrast to the (generally)
high dimensional activation a or weights ϕ, thus advantageously allowing to reduce the
computation complexity of the posterior distribution.

2.1.2 Aleatoric, Epistemic & Predictive Uncertainty

The Bayesian formula in Eq. (2.3) involves three types of distribution (i.e. P(y |θ),
Q(θ | D), and P(y | D)) which cover the three main sources of uncertainty: the aleatoric
uncertainty represented by the distribution P(y |θ), the epistemic uncertainty repre-
sented by the distribution Q(θ | D), and the predictive uncertainty represented by the
distribution P(y | D) (see Table 2.1 middle).

Aleatoric uncertainty. The aleatoric uncertainty is sometimes also called data un-
certainty, stochastic uncertainty or risk [202, 231, 271]. The aleatoric uncertainty is
represented by the distribution P(y |θ). The aleatoric uncertainty should be high when
the model does not know because of inherent noise in a given context (e.g. noisy environ-
ment, noisy sensors, low computation resources, model mispecification) [437, 202]. Given
a specific context, the aleatoric uncertainty is irreducible since additional observations
cannot resolve the information loss due noisy measurements or misspecifications. How-
ever, aleatoric uncertainty can be reduced by using higher measurement resolution or
improving the model specification.

Epistemic uncertainty. The epistemic uncertainty is sometimes also called knowl-
edge uncertainty, systematic uncertainty, or knightian uncertainty [202, 231, 271]. The
epistemic uncertainty is represented by the distribution Q(θ | D). The epistemic uncer-
tainty should be high when the model does not know because of a lack of observed data
in the dataset D. Hence, the epistemic uncertainty is reducible since it should decrease
when collecting additional data.

Predictive uncertainty. The predictive uncertainty is sometimes also called total
uncertainty [202, 271]. The predictive uncertainty is represented by the distribution
P(y | D). Intuitively, the predictive uncertainty aggregates the effect of the aleatoric and
epistemic uncertainty by integrating jointly the distributions P(y |θ) and Q(θ | D).
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In practice, each uncertainty type can be measured by computing the spread of its
respective distribution with the (differential) entropy which represents its variability [270,
140], i.e.:

ualea = H[P(y |θ)], uepist = H[Q(θ | D)], upred = H[P(y | D)] (2.7)

Apart from the entropy, other uncertainty metrics can be commonly used. E.g. the vari-
ance of the distributions can indicate different uncertainty types, the max probability for
classification [271] can indicate the aleatoric uncertainty, or the concentration parameters
can indicate the epistemic uncertainty if they exist [67].

In this thesis, we focus on methods capable to estimates the three types of uncertainty
types.

2.1.3 Efficiency, Flexibility & Robustness

Uncertainty methods are also expected to have practical characteristics (see Table 2.1
right).

First, an uncertainty method is expected to be efficient at both training and testing
time. A first aspect is time efficiency meaning that the method should be fast with low
computational overhead. E.g. uncertainty methods requiring multiple forward passes are
usually more expensive than method require a single forward pass. As second aspect is
data efficiency meaning that the method should require as few data as possible to train.

Second, an uncertainty method is expected to be flexible. A first aspect is architecture
flexibility meaning that the method should easily adapt to any architectures in order to
easily adapt to different input types (e.g. tabular, images, graphs, and sequential data)
and output types (e.g. classification and regression). A second aspect is optimization
flexibility meaning that the method should easily adapt to different training schemes
including end-to-end training or fine-tuning based on pretrained models.

Finally, an uncertainty method is expected to be robust. A first aspect is natural
robustness meaning that the method should be performant even if there is some natural
drift in the data. Natural drifts could be due to time evolution or location variability
[233, 314, 278]. A second aspect is adversarial robustness meaning that the method should
be performant even against adversarial perturbations which are specifically designed to
fool the model. Adversarial perturbations can be viewed as the worst-case scenario for
the model. Different methods to compute adversarial perturbations including white box
attacks which do not have information about the model, black box attacks which have
full access to the model information, and gray box which have partial information about
the model [451].

In this thesis, we focus on proposing practical methods which are efficient in terms of
data and time, flexible in terms of architecture and optimization schemes, and robust in
terms of natural and adversarial perturbations.
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2.2 Uncertainty models

2.2 Uncertainty models

In this section, we review important families of models for uncertainty estimation. We
provide a summary of these models in Fig. 2.1. We refer the reader to seed papers
and surveys provided in the following paragraphs presenting each family of methods
for a detailed presentation of their concepts. Overall, we observed that these families
of methods could be approximately be classified in two groups. On one hand, ensem-
bles, Monte Carlo dropout, Markov chain Monte Carlo, variational inference, Laplace
approximation, and Gaussian process methods form a first group of methods with strong
Bayesian guarantees but often requiring expensive computations. On the other hand,
evidential, calibration, density-based, energy-based, and distance-based methods form a
second group of methods sometimes capable of efficient uncertainty predictions to the
cost of weaker Bayesian guarantees or additional practical constraints like the need of
additional training or validation data.

Ensembles
Monte Carlo 

Dropout

Evidential Calibration

Energy-based
Model

Gaussian Process

Density-based
Model

Distance-based
Model

Monte Carlo 
Markov Chain

Variational
Inference

Laplace 
Approximation

Figure 2.1: Overview of the different families of methods for uncertainty estimation.

Ensembles. This family of methods consists in combining the predictions of a set of
multiple models fϕ1 , ·, fϕK

by using stacking, bagging, boosting, Bayesian averaging or
other Bayesian combinations [298]. The variance of the different model predictions can be
viewed as uncertainty estimates. These uncertainty estimates can be considered Bayesian
where the member weights are sampled from the posterior weight distribution, i.e. ϕk ∼
Q(ϕ | D). The ensembles can be homogeneous ensembles, i.e. the models share the same
architecture, be heterogeneous ensembles, i.e. the models have different architectures,
or implicit ensembles, i.e. a single model approximated ensembles parameter sampling
[4]. Further, the different models can be trained sequentially (see e.g. [370, 74]) or
independently (see e.g. [246]). Ensembles are considered as strong baselines in terms of
uncertainty estimation and predictive performances [335]. Ensembles also benefit from
a simple implementation [246]. Ensembles are often considered to be expensive as they
require multiple forward passes. Many approaches [434, 178] proposed to make faster
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ensembles. Further, while ensembles improve predictive performance, this performance
gain can actually be replicated through the use of (larger) single models [4].

Variational Inference. This family of methods consists in approximating a (generally
intractable) posterior distribution with a variational distribution belonging to a tractable
family of distributions [40]. The approximate posterior distribution is often optimized
using an Evidence Lower Bound (ELBO) loss. Many methods (see e.g. [170, 42, 328]) are
interested in the posterior distribution over the model weights, i.e. Q(ϕ | D) where ϕ are
the model weights. Thus, similarly to ensembles, uncertainty estimates can be obtained
by sampling from the posterior distribution on the weights and computing the variance
of their predictions. These methods generally needs to trade off the expressivity of
the posterior distribution with computational complexity. To approximate the posterior
distribution over the high dimensional weights, many works proposed to use techniques
like mean-field approximations [170, 42, 328], normalizing flows [358, 263], or matrix
decomposition with low rank or Kronecker products [289, 22, 466]. In contrast with
methods which are interested in posterior distributions Q(ϕ | D) over model weights ϕ,
we present in this thesis variational methods which approximate the posterior distribution
Q(θ | D,x) over the target distribution parameters θ (see Chapters 3 and 4).

Monte Carlo Dropout. Monte Carlo (MC) dropout consists in randomly dropping neu-
rons to form different models fϕ1 , ·, fϕK

and combine their predictions [141] at both train-
ing and testing time. This approach can be considered as an ensemble of implicit models
[4] but also as performing variational inference [141]. Hence, similarly to ensembles, the
variance of the predictions can be viewed as Bayesian uncertainty estimates the member
weights are sampled from the posterior weight distribution, i.e. ϕk ∼ Q(ϕ | D). Many
works extended this approach for e.g. convolutional layers [322] or dropping connection
instead of activations [424].

Markov Chain Monte Carlo. Markov Chain Monte Carlo (MCMC) methods, consists in
building a Markov Chain which will converge to samples from the posterior distribution.
A key example is the Metropolis-Hastings algorithm which iteratively draw a sample
from a transition rule and then decide to accept or reject it [360]. Many works focus on
sampling from the approximate posterior distribution Q(ϕ | D) over model weights ϕ (see
e.g. [112, 432]). In this case, the Markov Chain builds a sequence ϕ, ·,ϕt by following e.g.
Hamiltonian dynamics [112] or Stochastic Gradient Langevin Dynamics [432, 148, 267]
which converge to sample from the posterior distribution, i.e. ϕt ∼ Q(ϕ | D) when
t → ∞. On one hand, while full batch MCMC has managed to scale to modern tasks
and models, they often come at a heavy computational cost [206]. On the other hand,
while stochastic gradient MCMC improve the computational efficiency [432, 148, 267], it
might introduce bias in the stationary distribution by omitting the Metropolis-Hasting
rejection or subsampling the data [34, 206].
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Laplace Approximation. The Laplace approximation consists in approximating the pos-
terior distribution with a Gaussian distribution centered around a mode of the posterior
distribution. Many works focus on approximating the posterior distribution Q(ϕ | D)
over model weights ϕ. In this case the Laplace approximation gives:

Q(ϕ | D) ≈ N (ϕMAP,Σ)

where ϕMAP is the maximum a posteriori estimate, and Σ = −(∇2
ϕ L(D;ϕ)|ϕMAP

)−1

is the Laplace approximation of the covariance based on the Hessian of the loss. The
posterior distribution can be defined on all model weights, subnetworks [100], or only
the last layer [237]. The Hessian computation can be costly and can be approximated
using the different techniques like the Fisher information matrix, the generalized Gauss-
Newton matrix, diagonal factorization, Kronecker-factored approximate curvature, or
low-rank approximation [99]. Finally, the computation of the predictive distribution
needs further approximation like linearizing the neural network or using Monte-Carlo
approximation [99].

Gaussian Process. Gaussian Processes (GPs) are a family of Bayesian methods which,
given a dataset D, associates to each new input x a predictive Gaussian distribution
over the output y ∼ P(y | D,x) = N (m(x), σ2(x)). The mean function m(x) and the
variance function σ2(x) depends on the kernel function κ(., .) which encodes the similarity
between data samples. Intuitively, uncertainty estimates can be obtained by computing
the variance or the entropy of the predicted Gaussian distribution. On one hand, standard
GPs have computational and storage limitations [208]. E.g. the computation of the
variance function is cubic in the number of data samples which does not scale well to large
datasets. To mitigate this issue, previous works proposed sparse Gaussian process which
introduce variational pseudo-points can be optimized with stochastic gradient descent
(see e.g. [393, 412, 421]). On the other hand, standard GPs does not naturally extract
hierarchical representations from structured data. To mitigate this issue, previous works
proposed e.g. to use multilayer GPs [95] or deep neural networks as the kernel function
[442]. We refer to existing survey on Gaussian process in deep learning for further details
[356, 95, 208].

Evidential. Evidential methods are derived from the theory of evidence which can be
seen as generalization of the Bayesian theory to subjective probables [102, 376]. Instead
of predicting directly the parameters θ of the target distribution P(y |θ), evidential meth-
ods consist in predicting the parameters of the distribution Q(θ | D,x) defined over the
parameters θ, thus following the factorization in Eq. (2.6). In this case, uncertainty
estimates can be obtained by computing the variance or the entropy of the predicted
target or evidential distributions. This family of models is generally effective since it
only requires a single forward pass for uncertainty estimation. To improve performances
of evidential models, other works proposed to use OOD data during training [270, 273],
knowledge distillation [277], or contrastive learning [375]. In this thesis, we introduce a
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new family of evidential models called Posterior networks with a clear Bayesian interpre-
tation and low practical overhead (see Chapters 3, 4, 6 and 8 to 10). We refer to existing
survey on evidential deep learning for uncertainty quantification for further details [419].

Calibration. Calibration metrics consists at evaluating if the probabilities predicted by
a model correspond to the true probabilities of the model to be correct (see Section 2.3.1
for further details). Hence, in order to achieve high performance w.r.t. calibration met-
rics, calibration methods aim at predicting probabilities which are good approximations
of their true probability of correctness. Beyond uncertainty-aware models which are
expected to be well-calibrated, we distinguish between two other groups of calibration
methods: during-training calibration methods and post-training calibration methods.
During-training calibration methods apply regularization techniques in the loss objective
to create inherently calibrated models (see e.g. [252, 90, 288]). Post-training calibration
methods recalibrate the model predictions after training (see e.g. [175, 436]). While these
methods can adapt well to different architectures types, they usually require additional
held-out validation data and assume that validation and test distribution are similar.
Prominent classes of post-training calibration method are histogram binning [458], Tem-
perature scaling [175], isotonic calibration [459], Dirichlet calibration [243], or conformal
predictions [13, 279].

Density-based models. This family of models assigned to every data sample x a prob-
ability density estimate P(x |ϕ). In this case, a data sample considered uncertain by the
model should be assigned a low density value while a data sample considered certain for
the model should be assigned a high density value. The density estimator can be of dif-
ferent nature like a mixture of Gaussian [253, 110] or a normalizing flow [232, 224, 345].
The choice of space on which the density estimator operates is crucial. While den-
sity estimation on the input space might be difficult due to the curse of dimensionality
[77, 307, 308], other works [67, 224, 302, 443] improved the performance of density-based
methods on uncertainty tasks by leveraging a task-induced bias or low-dimensional statis-
tics. In particular, density-based models methods have achieved impressive success in
OOD detection tasks [453].

Energy-based models. Energy-based models (EBMs) associate to every combination
of input x and output y, a scalar energy value Eϕ(y,x) [250]. Interestingly, EBMs
can often be viewed as density-based models. Indeed, the energy function Eϕ(y,x) can
be transformed into Gibbs distributions P(y |ϕ,x), P(y,x |ϕ), or even P(x |ϕ) given
some integrations constraints on Eϕ(y,x), thus assigning uncertainty estimates on for
different combinations of variables y,x [167]. In this case, low predicted energy values
correspond to high uncertainty estimates. EBMs are flexible models capable to achieve
great performances in OOD detection in many tasks [259, 429] as long as they can capture
semantic features of the data [120].
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Distance-based models. The core idea of distance-based methods is that the model
should assign high uncertainty to testing data samples which are far away from training
data samples. Hence, distance-based models can e.g. use distance to class centroids
[296], nearest-neighbor [401], or inducing points [421] to estimate uncertainty. Further,
they can also use Mahalanobis distance [296], euclidean distance [200], or geodesic dis-
tance [162]. Similarly to density-based models, distance-based models can also achieve
great performance in OOD detection tasks [453]. Further, distance awareness has been
shown to be an important component for uncertainty estimation tasks [247, 421].

2.3 Uncertainty metrics

While ML models are primarily expected to provide accurate predictions, we present in
this section an exhaustive summary of the main metrics used to evaluate the quality of
uncertainty estimation. It covers correct/wrong predictions detection, OOD & dataset
shifts detection, calibration, and sample efficiency. We provide a collection of evaluation
setups covering various tasks to benchmark uncertainty models in Table 2.2. Beyond
these metrics, note that Bayesian methods have been also used in other tasks like model
pruning, model selection, or hyper-parameter tuning [42, 99].

Uncertainty metrics Existing evaluation setups Practical reason

Uncertainty calibration [335, 81, 305, 414] Fairness, Trust

Correct/wrong pred. detection [235, 184, 278, 414] Trust

OOD detection [235, 71, 454, 59, 223, 184, 71, 414] Safety

Robustness to dataset shifts [235, 233, 314, 278, 183, 406, 335, 92, 71, 414] Maintenance

Sample efficiency [71, 194, 256, 14, 414] Development, Maintenance

Table 2.2: Overview of metrics for uncertainty estimation. We relate each of the uncertainty
metric to existing evaluation setups and practical reason for uncertainty estimation
presented in Section 1.1

2.3.1 Uncertainty Calibration

It is crucial to provide confidence intervals accurately reflecting the true chance of an
event to happen. This allows to increase fairness and trust of the ML prediction even on
under-represented data regions. Intuitively, if the model predict 80% chance for a class
to be the correct one, we would expect the model to be 80% of the time correct. Hence,
uncertainty estimates are important to answer the following practical question:

Do probabilities predicted by ML models correspond to the true
probabilities?

In practice, the confidence intervals provided by the models can be used to esti-
mate risks when making decisions. Appropriate metrics to evaluate calibration involve
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(strictly) proper scoring rules like Brier scores for classification and quantiles scores for
regression [161].

2.3.2 Correct & Wrong Predictions

It is also crucial to detect when ML models are likely to provide correct or wrong pre-
dictions. This allows to increase trust in the model predictions, especially when the
predictions are used to make important decisions. Intuitively, while the model predic-
tions should be accurate, uncertainty estimates should also be good indicators of the
prediction errors. Indeed, high uncertainty should indicate likely wrong prediction while
low uncertainty should indicate likely correct predictions. Hence, uncertainty estimates
are important to answer the following practical question:

Can we detect prediction errors of ML models?

In practice, each application would require to set a threshold on the uncertainty esti-
mates. Ideally, while predictions associated with uncertainty estimates below this thresh-
old should be correct, the predictions associated with uncertainty estimates above this
threshold should be wrong. Hence, we can use evaluation metrics which compare scores
(i.e. uncertainty estimates) with binary classes (i.e. correct/wrong predictions). Com-
mon metrics are based on false and true positive and negative rates given a specific
threshold like precision, recall, or F1 score [347]. However, these metrics have the im-
portant limitation to depend on a specific choice of threshold. Instead, there exist other
evaluations like receiving operator curves (ROC) and precision-recall curves (PR) which
can compare the prediction correctness and the predicted uncertainty scores for any
choice of threshold. In particular, the area under the ROC curve (AUC-ROC) and the
area under the PR curve (AUC-PR) are appropriate metrics to evaluate the overall per-
formance of the uncertainty scores independently of the choice of threshold [98]. All
the data used for the evaluation of the correct/wrong predictions should be relevant to
the task meaning that every input has a corresponding output label. This requirement
contrasts data used for out-of-distribution detection data where inputs might not have
corresponding labels.

2.3.3 Out-Of-Distribution

It is crucial to detect when incoming data are anomalous to increase the safety of model
predictions. The anomalous data are often considered out-of-distribution (OOD) in
contrast with normal data similar to data observed during training which are consid-
ered in-distribution (ID). Intuitively, uncertainty estimates should be good indicators of
anomalous data. Indeed, high uncertainty should indicate likely abnormal data while
low uncertainty should indicate likely normal data. Hence, uncertainty estimates are
important to answer the following practical question:

Can uncertainty estimates detect anomalous data?
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Similarly to the detection of correct and wrong predictions, the detection of anomalous
data would also require to set a threshold on the uncertainty estimates. In this case, while
predictions associated with uncertainty estimates below this threshold should be normal
ID data, predictions associated with uncertainty estimates above this threshold should
ideally be abnormal OOD data. Hence, we can also use evaluation metrics like precision,
recall, AUC-ROC, and AUC-PR which compare scores (i.e. uncertainty estimates) with
binary classes (i.e. ID/OOD data). While ID data should be relevant to the task (i.e.
ID inputs have output labels), the OOD data should be clear anomalies (e.g. OOD data
come from a different dataset) and might not be relevant to the task (e.g. OOD data are
noisy inputs without output labels).

2.3.4 Dataset Shifts

It is crucial to detect and be robust against shifts in the data to primarily increase the
ease of maintenance of ML models. Intuitively, while the predictions should be robust
to dataset shifts, the uncertainty estimates should increase under dataset shifts. Hence,
uncertainty estimates are able to indicate when the incoming data drifts away from the
training data before that the model breaks. Hence, uncertainty estimates are important
to answer the following practical question:

Are model predictions robust to data shift?

In practice, the model would require to jointly look at the evolution of the accuracy
and the uncertainty estimates under different magnitudes of perturbations. Ideally, while
the model should maintain high accuracy on shifted data (a.k.a. OOD generalization per-
formance [385]), the uncertainty estimates of the model should increase on shifted data
(a.k.a. OOD detection performance [453]). Further, other expectations on the predictions
under dataset shifts involve maintaining good calibration [335], high correct/wrong pre-
diction detection performance (see Chapter 6), and high OOD detection performances
(see Chapter 6). In this case, the shifted dataset is still relevant to the original task
(i.e. inputs in the shifted dataset have output labels) but differ from the original ID
dataset. We distinguish between natural and adversarial dataset shifts. Natural shifts
correspond to natural perturbations which could occur in real world scenarios like time
shifts [233, 314, 278], location shifts [233, 314, 278], or corrupted data [183, 406]. In
contrast, adversarial perturbations shifts actions correspond to the worst-case scenario
where the perturbations are designed to fool the model.

2.3.5 Sample efficiency

It is crucial to wisely select data samples to learn efficiently while avoiding failures. This
allows to ease the development and maintenance of the ML models by reducing training
time, number of model failures, or enabling to continually learn from the environment.
Intuitively, samples with high confidence might not be interesting since already learned,
while samples with too high uncertainty might not be irrelevant outliers Hence, uncer-
tainty estimates are important to answer the following practical question:
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How can uncertainty estimates efficiently select data samples to learn from?

In practice, the sample selection process is particularly relevant in reinforcement learn-
ing (see Chapter 10), active learning (e.g. [143, 227]), continual learning [194, 256], or
few-shots learning [14]. Appropriate metrics would be e.g. to measure the training speed
by counting the required number of training samples or the time to train.
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Uncertainty Estimation for
Independent Data
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3 Uncertainty Estimation for
Classification

To know what you know and what you do not know, that is true knowledge.

Confucius

The only true wisdom is in knowing you know nothing.

Socrates

3.1 Introduction

In Chapters 1 and 2, we have reviewed the motivation and background for uncertainty
estimation for independent and non-independent data in ML. In this part, we first focus
on uncertainty estimation on independent data (e.g. tabular or images). To this end, we
start in this chapter to focus on uncertainty estimation for the well-established classifica-
tion tasks. Despite the necessity for accurate uncertainty estimation, traditional neural
networks for classification tasks cannot distinguish between aleatoric and epistemic un-
certainty and show overconfident predictions, even for data that is significantly different
from the training data [246] [175].

As discussed in Section 2.2, multiple uncertainty methods have been proposed to mit-
igate this problem. In particular, many methods like ensembles, variational Inference,
MC Dropout, MCMC have demonstrated remarkable performance but only describe im-
plicit distributions for predictions which require a costly sampling phase for uncertainty
estimation.

Recently, a new class of evidential models aim to directly predict the parameters of a
prior distribution on the categorical probability predictions, accounting for the different
types of uncertainty [270, 273, 374, 36]. However, these methods require (i) the definition
of arbitrary target prior distributions [270, 273, 374], and most importantly, (ii) out-of-
distribution (OOD) samples during training time, which is an unrealistic assumption in
most applications [270, 273].

Classically, these models would use both ID and OOD samples (e.g. MNIST and
FashionMNIST) during training to detect similar OOD samples (i.e. FashionMNIST) at
inference time. We show that preventing access to explicit OOD data during training
leads to poor results using these approaches (see Fig. 3.1 for MNIST; or Appendix A.4
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(a) Data labels - Prior-
Net

(b) Uncertainty - Pri-
orNet

(c) Data labels - Post-
Net

(d) Uncertainty - Post-
Net

Figure 3.1: PriorNet has a pre-ultimate layer of dimension 2 and was trained with Reverse
KL and uniform noise on [0, 255]28×28 as OOD data. PostNet has a latent space of
dimension 2 and was trained without OOD data. (a) and (c) show the learned latent
positions of data with colored labels. (b) and (d) show uncertainty estimates in the
latent spaces where darker regions indicate high uncertainty. PostNet correctly
assigns high uncertainty to OOD regions contrary to PriorNet.

for toy datasets). Contrary to the expected results, these models produce increasingly
confident predictions for samples far from observed data.

Contributions. In contrast, we propose in this chapter, Posterior Network (PostNet),
which assigns high epistemic uncertainty to out-of-distribution samples, low overall un-
certainty to regions nearby observed data of a single class, and high aleatoric and low
epistemic uncertainty to regions nearby observed data of different classes. PostNet uses
normalizing flows to learn a distribution over Dirichlet parameters in latent space. We
enforce the densities of the individual classes to integrate to the number of training
samples in that class, which matches well with the intuition of Dirichlet parameters cor-
responding to the number of observations per class. PostNet does not require any OOD
samples for training, the (arbitrary) specification of target prior distributions, or costly
sampling for uncertainty estimation at test time.

3.2 Posterior Network

In classification, we can distinguish between two types of uncertainty for a given input
x(i): the uncertainty on the class prediction y(i) ∈ {1, . . . , C} (i.e. aleatoric unceratinty),
and the uncertainty on the categorical distribution prediction p(i) = [p

(i)
1 , . . . , p

(i)
C ] (i.e.

epistemic uncertainty). A convenient way to model both is to describe the epistemic
distribution q(i) of the categorical distribution prediction p(i), i.e. p(i) ∼ q(i). From the
epistemic distribution follows naturally an estimate of the aleatoric distribution of the
class prediction y(i) ∼ Cat(p̄(i)) where Eq(i) [p(i)] = p̄(i).

Approaches like ensembles [246] and dropout [141] model q(i) implicitly, which only
allows them to estimate statistics at the cost of S samples (e.g. Eq(i) [p(i)] ≈ 1

S

∑S
s=1 p̃

(i)

where p̃(i) is sampled from q(i)). Another class of models [270, 273, 36, 374] explicitly
parametrizes the epistemic distribution with a Dirichlet distribution (i.e. q(i) = Dir(α(i))
where fθ(x(i)) = α(i) ∈ RC+), which is the natural prior for categorical distributions. This
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parametrization is convenient since it requires only one pass to compute epistemic dis-
tribution, aleatoric distribution and class prediction:

q(i) = Dir(α(i)), p̄(i)c =
αc
α0

with α0 =
C∑
c=1

αc, y(i) = argmax [p̄1, ..., p̄C ]

(3.1)
The concentration parameters α(i)

c can be interpreted as the number of observed samples
of class c and, thus, are a good indicator of epistemic uncertainty for non-degenerate
Dirichlet distributions (i.e. α(i)

c ≥ 1). To learn these parameters, Prior Networks [270,
273] use OOD samples for training and define different target values for ID and OOD
data. For ID data, α(i)

c is set to an arbitrary, large number if c is the correct class and 1
otherwise. For OOD data, α(i)

c is set to 1 for all classes.
This approach has four issues: (1) The knowledge of OOD data for training is unreal-

istic. In practice, we might not have these data, since OOD samples are by definition not
likely to be observed. (2) Discriminating in- from out-of-distribution data by providing
an explicit set of OOD samples is hopeless. Since any data not from the data distribution
is OOD, it is therefore impossible to characterize the infinitely large OOD distribution
with an explicit data set. (3) The predicted Dirichlet parameters can take any value,
especially for new OOD samples which were not seen during training. In the same way,
the sum of the total fictitious prior observations over the full input domain

∫
α0(x)dx is

not bounded and in particular can be much larger than the number of ground-truth ob-
servations N . This can result in undesired behavior and assign arbitrarily high epistemic
certainty for OOD data not seen during training. (4) Besides producing such arbitrarily
high prior confidence, PNs can also produce degenerate concentration parameters (i.e.
αc < 1). While [273] tried to fix this issue by using a different loss, nothing intrinsically
prevents Prior Networks from predicting degenerate prior distributions. In the following
section we describe how Posterior Network solves these drawbacks.

3.2.1 An input-dependent Bayesian posterior

First, recall the Bayesian update of a single categorical distribution y ∼ Cat(p). It con-
sists in (1) introducing a prior Dirichlet distribution over its parameters i.e. P(p) =
Dir(βprior) where βprior ∈ RC+, and (2) using N given observations y(1), ..., y(N) to form
the posterior distribution P(p|{y(j)}Nj=1) = Dir(βprior + βdata) where βdata

c =
∑

j 1y(j)=c

are the class counts. That is, the Bayesian update is

P(p|{y(j)}nj=1) ∝ P({y(j)}nj=1|p)× P(p). (3.2)

Observing no data (i.e. βdata
c → 0) would lead to flat categorical distribution (i.e.

pc = βprior
c · (∑c′ β

prior
c′ )−1), while observing many samples (i.e. βdata

c is large) would
converge to the true data distribution (i.e. pc ≈ βc∑

i βi
). Furthermore, we remark that N

behaves like a certainty budget distributed over all classes i.e. N =
∑

c β
data
c .

Classification is more complex. Generally, we predict the class label y(i) from a different
categorical distribution Cat(p(i)) for each input x(i). PostNet extends the Bayesian
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treatment of a single categorical distribution to classification by predicting an individual
posterior update for any possible input. To this end, it distinguishes between a fixed prior
parameter βprior and the additional learned (pseudo) counts β(i) to form the parameters
of the posterior Dirichlet distribution α(i) = βprior + β(i). Hence, PostNet’s posterior
update is equivalent to predicting a set of pseudo observations {ỹ(j)}(i)j per input x(i),
accordingly β(i)c =

∑
j 1ỹ(j)=c and

P(p(i)|{ỹ(j)}(i)j ) ∝ P({ỹ(j)}(i)j |p(i))× P(p(i)). (3.3)

In practice, we set βprior = 1 leading to a flat equiprobable prior when the model brings
no additional evidence, i.e. when β(i) = 0.

The parametrization of β(i)c is crucial and based on two main components. The first
component is an encoder neural network, fθ that maps a data point x(i) onto a low-
dimensional latent vector z(i) = fθ(x

(i)) ∈ RH . The second component is to learn a
normalized probability density P(z|c;ϕ) per class on this latent space; intuitively acting
as class conditionals in the latent space. Given these and the number of ground-truth
observations Nc in class c, we define:

β(i)c = Nc · P(z(i)|c;ϕ) = N · P(z(i)|c;ϕ) · P(c), (3.4)

which corresponds to the number of (pseudo) observations of class c at z(i). Note that
it is crucial that P(z|c;ϕ) corresponds to a proper normalized density function since this
will ensure the model’s epistemic uncertainty to increase outside the known distribution.
Indeed, the core idea of our approach is to parameterize these distributions by a flexible,
yet tractable family: normalizing flows (e.g. radial flow [358] or IAF [221]). Note that
normalizing flows are theoretically capable of modeling any continuous distribution given
an expressive and deep enough model [199, 221].

In practice, we observed that various architectures can be used for the encoder. Also,
similarly to GAN training [352], we observed that adding a batch normalization after
the encoder made the training more stable. It facilitates the match between the latent
positions output by the encoder and non-zero density regions learned by the normalizing
flows. Remark that we can theoretically use any density estimator on the latent space. We
experimentally compared Mixtures of Gaussians (MoG), radial flow [358] and IAF [221].
While all density types performed reasonably well (see Table 3.1 and Appendix A.4), we
observed a better performance of flow-based density estimation in general. We decided
to use radial flow for its good trade-off between flexibility, stability, and compactness
(only few parameters).

Model discussion. The Eq. (3.4) exhibits a set of interesting properties which ensure
reasonable uncertainty estimates for ID and OOD samples. To highlight the properties
of the Dirichlet distributions learned by PostNet, we assume in this paragraph that we
have a fixed encoder fθ and normalizing flow model parameterized by ϕ. Writing the
mean of the Dirichlet distribution parametrized by Eq. (3.4) and using Bayes’ theorem
gives:

Ep∼Dir(α(i))[pc] =
βprior
c +N · P(c|z(i);ϕ) · P(z(i);ϕ)∑

c β
prior
c +N · P(z(i);ϕ)

(3.5)
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For very likely in-distribution data (i.e. P(z(i);ϕ) → ∞), the aleatoric distribution es-
timate p̄(i) = Ep∼Dir(α(i))[pc] converges to the true categorical distribution P(c|z(i);ϕ).
Thus, predictions are more accurate and calibrated for likely samples. Conversely,
for out-of-distribution samples (i.e. P(z(i);ϕ) → 0), the aleatoric distribution estimate
p̄(i) = Ep∼Dir(α(i))[pc] converges to the flat prior distribution (e.g. pc = 1

C if βprior = 1).
In the same way, we show in the appendix that the covariance of the epistemic distribu-
tion converges to 0 for very likely in-distribution data, meaning no epistemic uncertainty.
Thus, uncertainty for in-distribution data is reduced to the (inherent) aleatoric uncer-
tainty and zero epistemic uncertainty. Similarly to the single categorical distribution
case, increasing the training dataset size (i.e. N → ∞) also leads to the mean prediction
Ep∼Dir(α)[pc] converging to the class posterior P(c|z(i);ϕ). On the contrary, no observed
data (i.e N = 0) again leads to the model reverting to a flat prior.

Posterior Network also handles limited certainty budgets at different levels. At the
sample level, the certainty budget α(i)

0 =
∑

c α
(i)
c is distributed over classes. At the class

level, the certainty budget Nc =
∫
Nc P(z|c;ϕ) dz = Nc

∫
P(z|c;ϕ) dz is distributed over

samples. At the dataset level, the certainty budget N =
∑

c

∫
Nc P(z|c;ϕ) dz is dis-

tributed over classes and samples. Regions of latent space with many training examples
are assigned high density P(z|c;ϕ), forcing low density elsewhere to fulfill the integration
constraint. Consequently, density estimation using normalizing flows enables PostNet to
learn out-of-distribution uncertainty by observing only in-distribution data.

Latent spaceInput Prediction

Normalizing Flow

6

40

Figure 3.2: Overview of Posterior Network.

Overview. In Fig. 3.2 we provide an
overview of Posterior Network. We have
three example inputs, x(1), x(2), and x(3),
which are mapped onto their respective la-
tent space coordinates z(i) by the encod-
ing neural network fθ. The normalizing
flow component learns flexible (normal-
ized) density functions P(z|c;ϕ), for which
we evaluate their densities at the positions
of the latent vectors z(i). These densities
are used to parameterize a Dirichlet distri-
bution for each data point, as seen on the
right hand side. Higher densities corre-
spond to higher confidence in the Dirich-
let distributions – we can observe that the
out-of-distribution sample x(3) is mapped
to a point with (almost) no density, and hence its predicted Dirichlet distribution has very
high epistemic uncertainty. On the other hand, x(2) is an ambiguous example that could
depict either the digit 0 or 6. This is reflected in its corresponding Dirichlet distribution,
which has high aleatoric uncertainty (as the sample is ambiguous), but low epistemic
uncertainty (since it is from the distribution of hand-drawn digits). The unambiguous
sample x(1) has low overall uncertainty.
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3 Uncertainty Estimation for Classification

Lastly, since both the encoder network fθ and the normalizing flow parameterized by
ϕ are fully differentiable, we can learn their parameters jointly in an end-to-end fashion.
We do this via a novel loss defined in Section 3.3 which emerges from Bayesian learning
principles [378] and is related to UCE [36].

3.2.2 Density estimation for OOD detection

Normalized densities, as used by PostNet, are well suited to discriminate between ID data
(with high likelihoood) and OOD data (with low likelihood). While it is also possible
to learn a normalizing flow model on the input domain directly (e.g., [339, 224, 166]),
this is very computationally demanding and might not be necessary for a discriminative
model. Futhermore, density estimation is prone to the curse of dimensionality in high
dimensional spaces [308, 77]. For example, unsupervised deep generative models like
[220] or [422] have been shown to be unable to distinguish between ID and OOD samples
in some situations when working on all features directly [307, 167].

To circumvent these issues, PostNet leverages two techniques. First, it uses the full
class label information. Thus, PostNet assigns a density per class and regularizes the
epistemic uncertainty with the training class counts Nc. Second, PostNet performs den-
sity estimation on a low dimensional latent space describing relevant features for the
classification task (Fig. 3.1; Fig. 3.2). Hence, PostNet does not suffer from the curse of
dimensionality and still enjoys the benefits of a properly normalized density function. Us-
ing the inductive bias of a discriminative task and low dimensional latent representations
improved OOD detection in [224] as well.

3.3 Uncertainty-Aware Loss Computation

A crucial design choice for neural network learning is the loss function. PostNet estimates
both aleatoric and epistemic uncertainty by learning a distribution q(i) for data point i
which is close to the true posterior of the categorical distribution p(i) given the training
data x(i): q(p(i)) ≃ P(p(i)|x(i)). One way to approximate the posterior is the following
Bayesian loss function [38, 378, 462], which has the nice property of being optimal when
q(i) is equal to the true posterior distribution:

q∗ = argmin
q(i)∈P

Eψ(i)∼q(ψ(i))[l(ψ
(i),x(i))]−H(q(i)), (3.6)

where l is a generic loss over ψ(i) satisfying 0 <
∫
exp(−l(ψ, x))dψ <∞, P is the family

of distributions we consider and H(q(i)) denotes the entropy of q(i).
Applied in our case, Posterior Network learns a distribution q from the family of the

Dirichlet distributions Dir(α(i)) = P over the parameters p(i) = ψ(i). Instantiating the
loss l with the cross-entropy loss (CE) we obtain the following optimization objective

min
θ,ϕ

L = min
θ,ϕ

1

N

N∑
i

Eq(p(i))[CE(p(i),y(i))]︸ ︷︷ ︸
(1)

−H(q(i))︸ ︷︷ ︸
(2)

(3.7)
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3.4 Experimental Evaluation

where y(i) corresponds to the one-hot encoded ground-truth class of data point i. Opti-
mizing this loss approximates the true posterior distribution for the the categorical dis-
tribution p(i). The first term (1) corresponds the Uncertain Cross Entropy loss (UCE)
introduced by [36], which is known to increase confidence for observed data. The second
term (2) is an entropy regularizer, which emerges naturally and favors smooth distri-
butions q(i). Here we are optimizing jointly over the neural network parameters θ and
ϕ. We also experimented with sequential training i.e. optimizing over the normalizing
flow component only with a pre-trained model (see Table 3.2 and Appendix A.4). Once
trained, PostNet can predict uncertainty-aware Dirichlet distributions for unseen data
points.

Observe that Eq. (3.7) is equivalent to the ELBO loss used in variational inference
when using a uniform Dirichlet prior (i.e. (1) = −Eq(p(i))[logP(y(i)|p(i))] and (2) =

KL(q(i)||P(p(i))) where P(p(i)) = Dir(1)). The more general Eq. (3.6), however, is not
necessarily equal to an ELBO loss.

Another interesting special case is to consider the family of Dirac distributions as P
instead of the family of Dirichlet distributions. In this case we find back the traditional
cross-entropy loss, which performs a simple point estimate for the distribution p(i). CE
is therefore not suited to learn a distribution with non-zero variance, as explained in [36].

Other approaches, such as dropout, approximate the expectation in UCE by sampling
from q(i). Our approach has the advantage of using closed-form expressions both for
UCE [36] and the entropy term, thus being efficient and exact. The weight of the en-
tropy regularization is a hyperparameter; experiments have shown PostNet to be fairly
insensitive to it, so in our experiments we set it to 10−5.

3.4 Experimental Evaluation

In this section we compare our model to previous methods on a rich set of experiments.
The code and further supplementary material is available online (www.daml.in.tum.de/
postnet).

Baselines. We have special focus on comparing with other models parametrizing Dirich-
let distributions. We use Prior Networks (PN) trained with KL divergence (KL-PN)
[270] and Reverse KL divergence (RKL-PN) [273]. These methods assume the knowl-
edge of in- and out-of-distribution samples. For fair evaluation, the actual OOD test data
cannot be used; instead, we used uniform noise on the valid domain as OOD training
data. Additionally we trained RKL-PN with FashionMNIST as OOD data for MNIST
(RKL-PN w/ F.). We also compare to Distribution Distillation (Distill.) [277], which
learns Dirichlet distributions with maximum likelihood by using soft-labels from an en-
semble of networks. As further baselines, we compare to dropout models (Dropout
Net) [141] and ensemble methods (Ensemble Net) [246], which are state of the art
in many tasks involving uncertainty estimation [335]. Empirical estimates of the mean
and variance of q(i) are computed based on the neuron drop probability pdrop, and m
individually trained networks for ensemble.
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3 Uncertainty Estimation for Classification

All models share the same core architecture using 3 dense layers for tabular data, and
3 conv. + 3 dense layers for image data. Similarly to [270, 273], we also used the VGG16
architecture [389] on CIFAR10. We performed a grid search on pdrop, m, learning rate and
hidden dimensions, and report results for the best configurations. Results are obtained
from 5 trained models with different initializations. Moreoever, for all experiments, we
split the data into train, validation and test set (60%, 20%, 20%) and train/evaluate all
models on 5 different splits. Besides the mean we also report the standard error of the
mean. Further details are given in the appendix.

Datasets. We evaluate on the following real-world datasets: Segment [111], Sensor-
less Drive [111], MNIST [249] and CIFAR10 [238]. The former two datasets (Segment
and Sensorless Drive) are tabular datasets with dimensionality 18 and 49 and with 7 and
11 classes, respectively. We rescale all inputs between [0, 1] by using the min and max
value of each dimension from the training set. Additionally, we compare all models on
2D synthetic data composed of three Gaussians each. Datasets are presented in more
detail in the appendix.

Metrics. We follow the method proposed in [335] and evaluate the coherence of confi-
dence, uncertainty calibration and OOD detection. Note that our goal is not to improve
accuracy; still we report the numbers in the experiments.

Confidence calibration: We aim to answer ‘Are more confident (i.e. less uncertain)
predictions more likely to be correct? ’. We use the area under the precision-recall curve
(AUC-PR) to measure confidence calibration. For aleatoric confidence calibration (Alea.
Conf.) we use max

c
p̄
(i)
c as the scores with labels 1 for correct and 0 for incorrect pre-

dictions. For epistemic confidence calibration (Epist. Conf.), we distinguish Dirichlet-
based models, and dropout and ensemble models. For the former we use max

c
α

(i)
c as

scores, and for the latter we use the (inverse) empirical variance p̃(i)c of the predicted
class, estimated from 10 samples.

Uncertainty calibration: We used Brier score (Brier), which is computed as 1
N

∑N
i ∥p̄(i)−

y(i)∥2, where y(i) is the one-hot encoded ground-truth class of data point i. For Brier
score, lower is better.

OOD detection: Our main focus lies on the models’ ability to detect out-of-distribution
samples. We used AUC-PR to measure performance. For aleatoric OOD detection
(Alea. OOD), the scores are max

c
p̄
(i)
c with labels 1 for ID data and 0 for OOD data.

Fo epistemic OOD detection (Epist. OOD), the scores for Dirichlet-based models are
given by α

(i)
0 =

∑
c α

(i)
c , while we use the (inverse) empirical variance p̃(i) for ensemble

and dropout models. To provide a comprehensive overview of OOD detection results we
use different types of OOD data as described in the following:

• Unseen datasets. We use data from other datasets as OOD data for the image-based
models. We use data from FashionMNIST [450] and K-MNIST [83] as OOD data
for models trained on MNIST, and data from SVHN [313] as OOD for CIFAR10.
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3.4 Experimental Evaluation

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist.

Drop Out 89.32±0.2 98.21±0.1 95.24±0.2 28.86±0.4 35.41±0.4 40.61±0.7
Ensemble 99.37±0.0 99.99±0.0 *99.98±0.0 2.47±0.1 50.01±0.0 50.62±0.1

Distill. 93.66±1.5 98.29±0.5 98.15±0.5 44.94±1.4 32.1±0.6 31.17±0.2
KL-PN 94.77±0.9 99.52±0.1 99.47±0.1 21.47±1.9 35.48±0.8 33.2±0.6
RKL-PN 99.42±0.0 99.96±0.0 99.89±0.0 9.07±0.1 45.89±1.6 38.14±0.8
PostN Rad. 98.02±0.1 99.89±0.0 99.47±0.0 5.51±0.2 72.89±0.8 *88.73±0.5
PostN IAF *99.52±0.0 *100.0±0.0 99.92±0.0 *1.43±0.1 *82.96±0.8 88.65±0.4

Table 3.1: Results on Sensorless Drive dataset. Bold numbers indicate best score among Dirich-
let parametrized models and starred numbers indicate best scores among all models.

• Left-out classes. For the tabular datasets (Segment and Sensorless Drive) there
are no other datasets that are from the same domain. To simulate OOD data we
remove one or more classes from the training data and instead consider them as
OOD data. We removed one class (class sky) from the Segment dataset and two
classes from Sensorless Drive (class 10 and 11).

• Out-of-domain. In this novel evaluation we consider an extreme case of OOD data
for which the data comes from different value ranges (OODom). E.g., for images
we feed unscaled versions in the range [0, 255] instead of scaled versions in [0, 1].
We argue that models should easily be able to detect data that is extremely far
from the data distribution. However, as it turns out, this is surprisingly difficult
for many baseline models.

• Dataset shifts. Finally, for CIFAR10, we use 15 different image corruptions at 5
different severity levels [183]. This setting evaluates the models’ ability to detect
low-quality data (Fig. 3.4b,c).

Results. Results for the Sensorles Drive dataset are shown in Table 3.1. Tables for
other datasets are in the appendix. Even without requiring expensive sampling, PostNet
performs on par for accuracy and confidence scores with other models, brings a signifi-
cant improvement for calibration within the Dirichlet-based models, and outperforms all
other models by a large margin (more than +30% abs. improvement) for OOD detec-
tion. Radial flow and IAF variants both achieve strong performance for all datasets (see
Appendix A.4). We use the smaller model (i.e. Radial flow) for comparison in the fol-
lowing. In our experiments, note that using one Radial flow per class represents a small
overhead of only 80 parameters per class, which is negligible compared to the encoder
architectures (e.g. VGG16 has 138M parameters).

33



3 Uncertainty Estimation for Classification

(a) PostNet: No-Flow (b) PostNet: No-Bayes-Loss (c) PostNet: Complete

Figure 3.3: Uncertainty visualization for a 2D 3-Gaussians dataset. Red dots indicate the
Gaussians means. Darker regions indicate high epistemic uncertainty for a class
prediction. Ablated models fail even a simple dataset while PostNet shows high
certainty around gaussians means only.

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist.

PostN: No-Flow 55.38±0.7 85.46±0.3 82.58±0.6 64.4±0.6 29.59±0.1 31.15±0.4
PostN: No-Bayes-Loss 96.6±0.2 99.74±0.0 98.68±0.1 8.85±0.4 62.39±1.5 82.63±1.4
PostN: Seq-No-Bn 15.09±1.0 39.88±7.2 39.86±7.2 89.88±1.3 57.19±2.5 56.74±2.4
PostN: Seq-Bn 98.42±0.1 99.92±0.0 98.76±0.1 5.41±0.1 52.35±0.7 71.75±1.9

Table 3.2: Ablation study results on Sensorless Drive dataset. Gray cells indicate significant
drops in scores compared to complete PostNet Rad. in Table 3.1.

We performed an ablation study on each component of PostNet to evaluate their
individual contributions. We were especially interested in comparing stability and un-
certainty estimates. Thus, we removed independently the normalizing flow component
(No-Flow) and the novel Bayesian loss (No-Bayes-Loss) replaced by the classic cross-
entropy loss. Furthermore, we used pre-trained models and subsequently only trained
the normalizing flow component, with or without a batch normalization layer (Seq-Bn
and Seq-No-Bn). We report results in Table 3.2. No-Flow has a significant drop in OOD
detection scores similarly to Prior Networks; not surprising since they mainly differ by
their loss. This underlines the importance of using normalized density estimation to
differentiate ID and OOD data. The lower performance of No-Bayes-Loss compared to
the original model indicates the benefit of using our Bayesian loss. Seq-Bn obtains good
performance for some of the metrics, which as a by-product, allows to estimate uncer-
tainty on pre-trained models. Though, we noticed better performance for joint training
in general. As shown by Seq-No-Bn scores, the batch normalization layer brings stability.
It intuitively facilitates predicted latent positions to lie on non-zero density regions. Sim-
ilar conclusions can be drawn on the toy dataset (see Fig. 3.3) and the Segment dataset
(see Appendix A.4). We further compare various density types and latent dimensions in
appendix. We noticed that a too high latent dimension leads to a performance decrease.
We also observed that flow-based density estimation generally achieves better scores.
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OOD K. OOD K. OOD F. OOD F. OODom K. OODom K. OODom F. OODom F.
Alea. Epist. Alea. Epist. Alea. Epist. Alea. Epist.

RKL-PN 60.76±2.9 53.76±3.4 78.45±3.1 72.18±3.6 9.35±0.1 8.94±0.0 9.53±0.1 8.96±0.0
RKL-PN w/ F. 81.34±4.5 78.07±4.8 100.0±0.0 100.0±0.0 9.24±0.1 9.08±0.1 88.96±4.4 87.49±5.0
PostN 95.75±0.2 94.59±0.3 97.78±0.2 97.24±0.3 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Table 3.3: Results on MNIST for OOD detection against KMNIST (K.) and FashionMNIST
(F.). We trained Rev. KL divergence PriorNets with uniform noise (RKL-PN) and
Fashion MNIST (RKL-PN w/ F.) as OOD. PostNet requires no OOD data. Larger
numbers are better.

Results of the comparison between RKL-PN, RKL-PN w/ F and PostNet for OOD de-
tection on MNIST are shown in Table 3.3. Not surprisingly, the usage of FashionMNIST
as OOD data for training helped RKL-PN to detect other FashionMNIST data. Except
for FashionMNIST OOD, PostNet still outperforms RKL-PN w/ F. in OOD detection
for other datasets. We noticed that tabular datasets, defined on an unbounded input
domain, are more difficult for baselines. One explanation is that due to the min/max
normalization it can happen that test samples lie outside the interval [0, 1] observed dur-
ing training. For images, the input domain is compact, which allows to define a valid
distribution for OOD data (e.g. uniform) which makes OODom data challenging (see
OOD vs OODom in Table 3.3).

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist. OODom Alea. OODom Epist.

Drop Out C. 71.73±0.2 92.18±0.1 84.38±0.3 49.76±0.2 72.94±0.3 41.68±0.5 28.3±1.8 47.1±3.3
KL-PN C. 48.84±0.5 78.01±0.6 77.99±0.7 83.11±0.6 59.32±1.1 58.03±0.8 17.79±0.0 20.25±0.2
RKL-PN C. 62.91±0.3 85.62±0.2 81.73±0.2 58.12±0.4 67.07±0.4 56.64±0.8 17.83±0.0 17.76±0.0
PostN C. 76.46±0.3 94.75±0.1 94.34±0.1 37.39±0.4 72.83±0.6 72.82±0.7 100.0±0.0 100.0±0.0

Drop Out V. 82.84±0.1 97.15±0.0 96.6±0.0 27.15±0.2 51.39±0.1 53.64±0.1 51.38±0.1 53.66±0.1
KL-PN V. 27.46±1.7 50.61±4.0 52.49±4.2 87.28±1.0 43.96±1.9 43.23±2.3 18.14±0.1 19.12±0.4
RKL-PN V. 64.76±0.3 86.11±0.4 85.59±0.3 54.73±0.4 53.61±1.1 49.37±0.8 29.07±2.1 24.84±1.3
PostN V. 84.85±0.0 97.76±0.0 97.25±0.0 22.84±0.0 80.21±0.2 77.71±0.3 91.35±0.5 99.25±0.1

Table 3.4: Results on CIFAR10 with simple convolutional architectures (C.) and VGG16 (V.).
Bold numbers indicate best score among one architecture type.

Uncertainty estimation should be good regardless of the model accuracy. It is even
more important for less accurate models since they actually do not know (i.e. they do
more mistakes). Thus, we compared the models that use a single network for training
(using a convolutional architecture and VGG16) in Table 3.4. Without the knowledge
of true OOD data (SVHN) during training, Prior Networks struggle to achieve good
performance. In contrast, PostNet outputs high quality uncertainty estimates regardless
of the architecture used for the encoder. We report additional results for PostNet using
other encoder architectures (convolutional architecture, AlexNet [239], VGG [389] and
ResNet [181]) in Table 3.5. Deep generative models as Glow [220] using density estimation
on input space are unable to distinguish between CIFAR10 and SVHN [307]. In contrast,
PostNet clearly distinguishes between in-distribution data (CIFAR10) with low entropy,
out-of-distribution (OOD SVHN) with high entropy, and close to the maximum possible
entropy for out-of-domain data (OODom SVHN) (see Fig. 3.4a). Similar conclusions hold
for MNIST and FashionMNIST (see Appendix A.4). Furthermore, results for the image
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perturbations on CIFAR10 introduced by [183] are presented in Fig. 3.4. We define the
average change in confidence as the ratio between the average confidence 1

N

∑N
i α

(i)
0 at

severity 1 vs other severity levels. As larger shifts correspond to larger differences in the
underlying distributions, we expect uncertainty-aware models to become less certain for
more severe perturbations. Posterior Network exhibits, as desired, the largest decrease
in confidence with stronger corruptions (see Fig. 3.4b) while maintaining a high accuracy
(see Fig. 3.4c).

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist. OODom Alea. OODom Epist.

PostNet: Conv. 78.58±0.1 95.45±0.0 93.36±0.0 33.84±0.2 72.21±0.1 57.72±0.7 100.0±0.0 100.0±0.0
PostNet: Alexnet 80.81±0.2 96.33±0.1 95.35±0.1 29.99±0.3 73.4±0.7 67.05±0.6 97.64±0.4 99.64±0.1
PostNet: VGG 84.85±0.0 97.76±0.0 97.25±0.0 22.84±0.0 80.21±0.2 77.71±0.3 91.35±0.5 99.25±0.1
PostNet: Resnet 87.86±0.2 98.35±0.0 97.13±0.0 19.33±0.3 79.92±0.4 72.25±0.6 99.94±0.0 99.94±0.0

Table 3.5: Results of PostNet with different encoder architectures. It shows good uncertainty
estimation regardless of the architecture complexity.

(a) ID/OOD/OODom entropy (b) Confidence under data shifts (c) Accuracy under data shifts

Figure 3.4: (a) shows entropy of the aleatoric distributions predicted by PostNet on CIFAR10
(ID) and SVHN (OOD, OODom). The value 2.3026∗ denotes the highest achievable
entropy for 10 classes. PostNet can easily distinguish between the three data types.
(b) and (c) present averaged confidence and accuracy under 15 dataset shifts intro-
duced by [183] on CIFAR10 with conv. architecture. On more severe perturbations
(i.e. data further away from data distribution), PostNet assigns higher epistemic
uncertainty as desired. Baselines keeps same confidence even for less accurate pre-
dictions.

3.5 Conclusion

We propose Posterior Network, a model for uncertainty estimation in classification with-
out requiring out-of-distribution samples for training or costly sampling for uncertainty
estimation. PostNet is composed of three main components: an encoder which outputs
a position in a latent space, a normalizing flow which performs a density estimation in
this latent space, and a Bayesian loss for uncertainty-aware training. In our extensive
experimental evaluation, PostNet achieves state-of-the-art performance with a strong
improvement for detection of in- and out-of-distribution samples.
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4 Uncertainty Estimation for Regression

Ignorance more frequently begets confidence than does knowledge.

Charles Darwin

4.1 Introduction

In Chapter 3, we have viewed how we can efficiently predict uncertainty estimates for
classification tasks on independent data. In this chapter, we now study how to efficiently
predict uncertainty estimates for a more diverse set of tasks. More Specifically, beyond
classification tasks, we focus on uncertainty estimation for regressions and count predic-
tion on independent data. In these tasks, traditional neural networks are not readily
applicable in safety-critical domains as they show overconfident prediction, in particular
on data that is different from training data [175, 246]. To mitigate this problem, we have
seen the important family of evidential models for uncertainty estimation directly predicts
the parameters of a conjugate prior distribution on the predicted target probability distri-
bution, thus accounting for the different levels of uncertainty. These models are efficient
as they only require a single forward pass for target and uncertainty prediction. Similarly
to PostNet presented in Chapter 3, most of those models focus on classification and thus
predict parameters of a Dirichlet distribution [36, 270, 273, 310, 375, 386, 398, 471, 149].
However, only two works [10, 276] have focused on regression by learning parameters of
a Normal Inverse-Gamma (NIG) distribution as conjugate prior. Hence, all these models
are limited to a single task (e.g. either classification or regression). Some approaches

(a) Toy Regression Task (b) Toy Classification Task

Figure 4.1: Visualization of the aleatoric and predictive uncertainty estimates of NatPN on two
toy regressions and classification tasks. NatPN correctly assigns higher uncertainty
to regions far from the training data.
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even require out-of-distribution (OOD) data at training time [270, 273] which is an unre-
alistic assumption in many real-world applications where anomalies are a priori diverse,
rare or unknown.

Contributions. We propose Natural Posterior Network (NatPN) as a new approach
parametrizing conjugate prior distributions for versatile uncertainty estimation. NatPN
is motivated from both the theoretical and practical perspective. (1) NatPN can estimate
predictive uncertainty for any task described by the general group of exponential family
distributions contrary to existing approaches from this family of models. Notably, this
encompasses very common tasks such as classification, regression and count prediction
which can be described with Categorical, Normal and Poisson distributions, respectively.
(2) In theory, NatPN is based on a new unified exponential family framework which
performs an input-dependent Bayesian update. For every input, it predicts the parame-
ters of the posterior over the target exponential family distribution. We show that this
Bayesian update is guaranteed to predict high uncertainty far from training data. (3) In
practice, NatPN requires no OOD data for training, only adds a single normalizing flow
density to the last predictor layer and provides fast uncertainty estimation in a single
forward pass. Our extensive experiments showcase the high performances of NatPN for
various criteria (accuracy, calibration, OOD and shift detection) and tasks (classification,
regression and count prediction). We illustrate the accurate aleatoric and predictive un-
certainty predictions of NatPN on two toy examples for classification and regression in
Fig. 4.1. None of the conjugate prior related works have similar theoretical and practical
properties.

4.2 Related Work

In this section, we describe other work related to uncertainty estimation for supervised
learning. We refer to [150] for a detailed survey on uncertainty estimation in deep learn-
ing.

Sampling-based methods. A first family of models estimates uncertainty by aggregat-
ing statistics (e.g. mean and variance) from different samples of an implicit predictive
distribution. Examples are ensemble [217, 246, 390, 434, 439] and dropout [141] mod-
els which provide high-quality uncertainty estimates [335] at the cost of an expensive
sampling phase at inference time. Moreover, ensembles usually require training multiple
models. Further, Bayesian neural networks (BNN) [42, 359, 268] model the uncertainty
on the weights and also require multiple samples to estimate the uncertainty on the final
prediction. While recent BNNs have shown reasonably good performance [114, 327, 128],
modelling the distribution on the weights suffers from pathological behavior thus limiting
these approaches in practice [135, 170, 206]. In particular, [206] uses an enormous com-
putation budget by parallelizing the computation over 512 TPUv3 devices and running
tens of thousands of training epochs to achieve a more exact Bayesian inference which
is not suitable for practical applications. In contrast, NatPN predicts uncertainty in a
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4.3 Natural Posterior Network

single forward pass with a closed-form posterior distribution over the target variable.
NatPN does not model uncertainty on the weights.

Sampling-free methods. A second family of models is capable of estimating uncertainty
in a single forward pass. The family of models parametrizing conjugate prior distribu-
tions is the main focus of this chapter [419, 235, 310, 375, 386, 398, 149]. Beyond this
family of models, we differentiate between four other families of sampling-free models
for uncertainty estimation. A first family aims at learning deep Gaussian processes with
random features projections or learned inducing points [247, 421, 420, 36]. A second
family aims at learning deep energy-based models [120, 168]. Another family of models
aims at propagating uncertainty across layers [425, 343, 384, 149, 185]. They model un-
certainty at the weight and/or activation levels and are generally constrained to specific
transformations. In contrast, NatPN only models the uncertainty on the predicted target
variable and does not enforce any constraint on the encoder architecture. Further, some
of the models propagating uncertainty already used the exponential family framework
[425, 354]. However, while they parametrize exponential family distributions, NatPN
parametrizes the conjugate prior of the target exponential family distributions which ac-
counts for the epistemic uncertainty. Finally, while the family of calibration models aims
at calibrating predictions [242, 299, 469, 396, 353], NatPN aims at accurately modelling
both aleatoric and epistemic uncertainty on in- and out-of-distribution data.

4.3 Natural Posterior Network

At the very core of NatPN stands the Bayesian update rule: Q(θ | D) ∝ P(D |θ)×Q(θ)
where P(D |θ) is the target distribution of the target data D given its parameter θ,
and Q(θ) and Q(θ | D) are the prior and posterior distributions, respectively, over the
target distribution parameters. The target distribution P(D |θ) could be any likelihood
describing the observed target labels. The Bayesian update has three main advantages:
(1) it introduces a prior belief which represents the safe default prediction if no data is
observed, (2) it updates the prior prediction based on observed target labels, and (3) it
assigns a confidence for the new target prediction given the aggregated evidence count of
observed target labels. While NatPN is capable to perform a Bayesian update for every
possible input given the observed training data, we first recall the Bayesian background
for a single exponential family distribution.

Likelihood P Conjugate Prior Q Parametrization Mapping m Bayesian Loss (Eq. (4.5))

y ∼ Cat(p) p ∼ Dir(α)
χ = α/n
n =

∑
c αc

(i) = ψ(α
(i)
y∗ )− ψ(α

(i)
0 )

(ii) = logB(α(i)) + (α
(i)
0 − C)ψ(α

(i)
0 )−∑c(α

(i)
c − 1)ψ(α

(i)
c )

y ∼ N (µ, σ) µ, σ ∼ NΓ-1(µ0, λ, α, β)
χ =

(
µ0

µ20 +
2β
n

)
n = λ = 2α

(i) = 1
2

(
−α
β (y − µ0)

2 − 1
λ + ψ(α)− log β − log 2π

)
(ii) = 1

2 + log
(
(2π)

1
2β

3
2Γ(α)

)
− 1

2 log λ+ α− (α+ 3
2)ψ(α)

y ∼ Poi(λ) λ ∼ Γ(α, β)
χ = α/n
n = β

(i) = (ψ(α)− log β)y − α
β −∑y

k=1 log k

(ii) = α+ log Γ(α)− log β + (1− α)ψ(α)

Table 4.1: Examples of Exponential Family Distributions where ψ(x) and B(x) denote
Digamma and Beta function, respectively.
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4.3.1 Exponential Family Distribution

Distributions from the exponential family are very widely used and have favorable ana-
lytical properties. Indeed, (1) they cover a wide range of target variables like discrete,
continuous, counts or spherical coordinates, and (2) they benefit from intuitive and
generic formulae for their parameters, density functions and statistics which can often
be evaluated in closed-form. Important examples of exponential family distributions are
Normal, Categorical and Poisson distributions (see Table 4.1). Formally, an exponential
family distribution on a target variable y ∈ R with natural parameters θ ∈ RL can be
denoted as

P(y |θ) = h(y) exp
(
θTu(y)−A(θ)

)
(4.1)

where h : R → R is the carrier or base measure, A : RL → R the log-normalizer and
u : R → RL the sufficient statistics [37, 319]. The entropy of an exponential family
distribution can always be written as H[P] = A(θ)− θT∇θA(θ)− E[log h(y)] [319]. An
exponential family distribution always admits a conjugate prior, which often also is a
member of the exponential family:

Q(θ |χ, n) = η(χ, n) exp
(
nθTχ− nA(θ)

)
(4.2)

where η(χ, n) is a normalization coefficient, χ ∈ RL are prior parameters and n ∈ R+

is the evidence. Given a set of N target observations {y(i)}Ni , it is easy to compute a
closed-form Bayesian update Q(θ |χpost, npost) ∝ P({y(i)}Ni |θ)×Q(θ |χprior, nprior):

Q(θ |χpost, npost) ∝ exp
(
npostθTχpost − npostA(θ)

)
(4.3)

where χpost =
npriorχprior+

∑N
j u(y

(j))

nprior+N
and npost = nprior + N . We see that χprior (resp.

χpost) can be viewed as the average sufficient statistics of nprior (resp. npost) fictitious
samples [37]. Further, the average sufficient statistic of fictitious samples is equal to the
expected sufficient statistic of the conjugate distribution, i.e. χ = EQ(χ,n)[θ] [55, 106].
Thus, the parameter χpost carries the inherent aleatoric uncertainty on the target distri-
bution with natural parameters θ, while the evidence npost aligns well with the epistemic
uncertainty (i.e. a low evidence means few prior target observations). We stress that
the natural conjugate prior parametrization χ, n is often different from the “well-known”
parametrization κ used by standard coding libraries. By definition, a bijective mapping
m(κ) = (χ, n) from the natural parametrization to the commonly used parametrization
always exists (see examples in Table 4.1). Finally, exponential family distributions always
admit a closed-form posterior predictive distribution [152].

4.3.2 Input-Dependent Bayesian Update for Exponential Family
Distributions

We propose to leverage the power of exponential family distributions for the more com-
plex task when the prediction y(i) depends on the input x(i). Hence, NatPN extends the
Bayesian treatment of a single exponential family distribution prediction by predicting
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Figure 4.2: Overview of Natural Posterior Network. Inputs x(i) are first mapped to a low-
dimensional latent representation z(i) by the encoder fϕ. From z(i), the decoder gψ
derives the parameter update χ(i) while a normalizing flow Pω yields the evidence
update n(i). Posterior parameters are obtained from a weighted combination of
prior and update parameters according to npost,(i).

an individual posterior update per input. We distinguish between the chosen prior pa-
rameters χprior, nprior shared among samples, and the additional predicted parameters
χ(i), n(i) dependent on the input x(i) leading to the updated posterior parameters:

χpost,(i) =
npriorχprior + n(i)χ(i)

nprior + n(i)
, npost,(i) = nprior + n(i) (4.4)

Equivalently, NatPN may be interpreted as predicting a set of n(i) pseudo observations
{y(j)}(i)j such that their aggregated sufficient statistics satisfy

∑n(i)

j y(j) = n(i)χ(i), and
perform the respective Bayesian update. This Bayesian update works for any choice
of exponential family distributions as long as parameters are mapped to their standard
form (see Table 4.1). According to the principle of maximum entropy [364], a practical
choice for the prior is to enforce high entropy for the prior distribution which is usually
considered less informative. It is typically achieved when the prior pseudo-count nprior

is small and the prior parameter χprior shows a high aleatoric uncertainty.
Hence, NatPN proposes a generic way to perform the input-dependent Bayesian up-

date χ(i), n(i) for any exponential family distribution in three steps (see Fig. 4.2): (1) An
encoder fϕ maps the input x(i) onto a low-dimensional latent vector z(i) = fϕ(x

(i)) ∈ RH
representing useful features for the prediction task (see left Fig. 4.2). Note that the ar-
chitecture of the encoder can be arbitrarily complex. Then, (2) the latent representation
z(i) is used in two different ways to predict the parameter update χ(i) and the evidence
update n(i) (see center Fig. 4.2). On the one hand, a linear decoder gψ is trained to out-
put the parameter update χ(i) = gψ(z

(i)) ∈ RL accounting for the aleatoric uncertainty.
On the other hand, a single normalized density is trained to output the evidence update
n(i) = NHP(z(i) |ω) accounting for the epistemic uncertainty. The intuition is that in-
creasing the evidence on training data during training forces the evidence everywhere else
(incl. far from training data) to decrease thanks to the density normalization constraint.
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The constant NH is a certainty budget distributed by the normalized density P(z(i) |ω)
over the latent representations z(i) i.e. NH =

∫
NHP(z(i) |ω)dz(i) =

∫
n(i)dz(i). In

practice, we observed that scaling the certainty budget w.r.t. the latent dimension H
helped the density to cover larger volumes in higher dimension (see Appendix B.9). Fi-
nally, (3) NatPN computes the posterior parameters χpost,(i) and npost,(i) which can be
viewed respectively as the mean and concentration of the posterior distribution (see right
Fig. 4.2). Note that the posterior parameter χpost,(i) is a simple weighted average of the
prior parameter χprior and the update parameter χ(i) as shown by Eq. (4.4).

NatPN extends PostNet [67] which also performs an input-dependent Bayesian update
with density estimation. Yet, it has three crucial differences which lead to major practical
improvements. First, the new exponential family framework is significantly more flexible
and is not restricted to classification. Second, the Dirichlet α parameter computation
is different: NatPN computes the χ parameters – which can be viewed as standard
softmax output – and the n evidence separately (i.e. α = nχ) while PostNet computes
one evidence pseudo-count per class. Third, NatPN is computationally more efficient. It
requires a single density while PostNet requires C densities.

4.3.3 ID and OOD Uncertainty Estimates

NatPN intuitively leads to reasonable uncertainty estimation for the two limit cases of
strong in-distribution (ID) and out-of-distribution (OOD) inputs (see red and purple
samples in Fig. 4.2). For very likely in-distribution data (i.e. P(z(i) |ω) → ∞), the
posterior parameter overrules the prior (i.e. χpost,(i) → χ(i)). Conversely, for very
unlikely out-of-distribution data (i.e. P(z(i) |ω) → 0), the prior parameter takes over in
the posterior update (i.e. χpost,(i) → χprior). Hence, the choice of the prior parameter
should reflect the default prediction when the model lacks knowledge. We formally show
under mild assumptions on the encoder that NatPN predicts very low additional evidence
(n(i) ≈ 0) for (almost) any input x(i) far away from the training data (i.e. ||x(i)|| → +∞),
thus recovering prior predictions (i.e. χpost,(i) ≈ χprior) (see proof in Appendix B.1).

Theorem 1. Let a NatPN model be parametrized with a (deep) encoder fϕ with ReLU
activations, a decoder gψ and the density P(z |ω). Let fϕ(x) = V (l)x + a(l) be the
piecewise affine representation of the ReLU network fϕ on the finite number of affine
regions Q(l) [17]. Suppose that V (l) have independent rows and the density function
P(z |ω) has bounded derivatives, then for almost any x we have P(fϕ(δ · x) |ω) →

δ→∞
0.

i.e the evidence becomes small far from training data.

This theorem only requires that the density avoids very unlikely pathological behavior
with unbounded derivatives [108]. A slightly weaker conclusion holds using the notion of
limit in density if the density function does not have bounded derivatives [318]. Finally,
the independent rows condition is realistic for trained networks with no constant output
[182]. It advantageously leads NatPN to consistent uncertainty estimation contrary to
standard ReLU networks which are overconfident far from training data [182].
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4.3.4 Bayesian NatPN Ensemble

Interestingly, it is natural to extend the Bayesian treatment of a single NatPN to an en-
semble of NatPN models (NatPE). An ensemble of m NatPN models is intuitively equiva-
lent to performing m successive Bayesian updates using each NatPN member separately.
More formally, given an input x(i) and an ensemble of m jointly trained NatPN models,

the Bayesian update for the posterior distribution becomes χpost,(i) =
npriorχprior+

∑m
k n

(i)
k χ

(i)
k

nprior+
∑m

k n
(i)
k

and npost,(i) = nprior +
∑m

k n
(i)
k . Note that the standard Bayesian averaging which is used

in many ensembling methods [76, 246, 434, 439] is different from this Bayesian combi-
nation. While Bayesian averaging assume that only one model is correct, the Bayesian
combination of NatPN allows more or none of the models to be “expert” for some input
[298]. For example, an input x(i) unfamiliar to every model m (i.e. n

(i)
m ≈ 0) would

recover the prior default prediction χprior, nprior. Existing models already had similar
properties for Bayesian combination of classifiers [217, 390].

4.3.5 Optimization

The choice of the optimization procedure is of primary importance in order to obtain
both high-quality target predictions and uncertainty estimates regardless of the task.

Bayesian Loss. We follow [67] and aim at minimizing the Bayesian formulation:

L(i) = −Eθ(i)∼Qpost,(i) [logP(y(i) |θ(i))]︸ ︷︷ ︸
(i)

−H[Qpost,(i)]︸ ︷︷ ︸
(ii)

(4.5)

where H[Qpost,(i)] denotes the entropy of the predicted posterior distribution Qpost,(i).
Similarly to the ELBO loss, this loss is guaranteed to be optimal when the predicted
posterior distribution is close to the true posterior distribution Q∗(θ |x(i)) i.e. Qpost,(i) ≈
Q∗(θ |x(i)) [38, 378, 461]. However, this loss is generally not equal to the ELBO loss espe-
cially for real valued targets i.e. y ∈ R (see Appendix B.2). The term (i) is the expected
likelihood under the predicted posterior distribution. It can be viewed as the Uncertain
Cross Entropy (UCE) loss [36] which is known to reduce uncertainty on observed data.
The term (ii) is an entropy regularizer acting as a prior which favors uninformative dis-
tributions Qpost,(i) with high entropy. In our case, we assume the likelihood P(y(i) |θ(i))
and the posterior Qpost,(i) to be members of the exponential family. We take advantage
of the convenient computations for such distributions and derive a more explicit formula
for the Bayesian formulation (4.5) (see derivation in the appendix):

L(i)
λ ∝ E[θ]Tu(y(i))− E[A(θ)]− λH[Qpost,(i)] (4.6)

where λ is an additional regularization weight tuned with a grid search. Note that the
term E[θ]Tu(y(i)) favors a good alignment of the expected sufficient statistic E[θ] = χ
with the observed sufficient statistic u(y(i)). In practice, all terms can be computed
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efficiently in closed form for most exponential family distributions (see examples in Ta-
ble 4.1). In particular, simplifications are possible when the conjugate prior distribution
is also in an exponential family which is often the case. Ultimately Eq. (4.6) applies to
any exponential family distribution unlike [67].

Optimization Scheme. NatPN is fully differentiable using the closed-form Bayesian
loss. Thus, we train the encoder fϕ, the parameter decoder gψ and the normalizing
flow P(z(i) |ω) w.r.t. parameters ϕ,ψ,ω jointly. Further, we observed that “warm-
up training” [19] and “fine-tuning” [211] of the density helped to improve uncertainty
estimation for more complex flows and datasets. Thus, we train the normalizing flow
density to maximize the likelihood of the latent representations before and after the joint
optimization while keeping all other parameters fixed.

4.3.6 Model Limitations

Task-Specific OOD. Previous works show that density estimation is unsuitable for
acting on the raw image input [77, 307, 308] or on a non-carefully transformed space
[248]. To circumvent this issue, NatPN does not perform OOD detection directly on the
input but rather fits a normalizing flow on a learned space. In particular, the latent
space is (1) low-dimensional, (2) task-specific and (3) encodes meaningful semantic
features. Similarly, [67, 224, 302, 443] already improved OOD detection of density-based
methods by leveraging a task-induced bias or low-dimensional statistics. In the case
of NatPN, the low-dimensional latent space has to contain relevant features to linearly
predict the sufficient statistics required for the task. For example, NatPN aims at a
linearly separable latent space for classification. The downside is that NatPN is capable
of detecting OOD samples only with respect to the considered task and requires labeled
examples during training. As an example, NatPN likely fails to detect a change of image
color if the task aims at classifying object shapes and the latent space has no notion of
color. Hence, we underline that NatPN comes with a task-dependent OOD definition,
which is a reasonable choice in practice.

Model-Task Mismatch. Second, we emphasize that the uncertainty estimation quality
of NatPN for (close to) ID data depends on the convergence of the model, the encoder
architecture (e.g. MLP, Conv., DenseDepth [118]) and the target distribution (e.g. Pois-
son, Normal distributions) choice which should match the task needs. However, we show
empirically that NatPN provides high quality uncertainty estimates in practice on a
wide range of tasks. Further, we show theoretically that NatPN leads to uncertain pre-
diction far away from training data for any exponential family target distributions. In
comparison, [286] showed akin guarantees for classification only.

4.4 Experiments

In this section, we compare NatPN to existing methods on extensive experiments includ-
ing three different tasks: classification, regression and count prediction. For each task
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type, we evaluate the prediction quality based on target error and uncertainty metrics.
These various set-ups aim to highlight the versatility of NatPN. In particular, NatPN is
the only model that adapts to all tasks and achieves high performances for all metrics
without requiring multiple forward passes.

Table 4.2: Classification results on Sensorless Drive with Categorical target distribution. Best
scores among all single-pass models are in bold. Best scores among all models are
starred.

Accuracy Brier 9/10 Alea. 9/10 Epist. OODom Alea. OODom Epist.

Dropout 98.62 ± 0.11 3.79 ± 0.29 30.20 ± 0.85 32.57 ± 1.45 27.03 ± 0.51 95.30 ± 1.66
Ensemble 98.83 ± 0.17 3.00 ± 0.54 30.79 ± 0.74 32.61 ± 1.06 27.16 ± 0.59 99.97 ± 0.01
NatPE *99.66 ± 0.03 *0.68 ± 0.05 77.05 ± 1.93 83.73 ± 1.89 99.99 ± 0.00 *100.00 ± 0.00

R-PriorNet 98.85 ± 0.25 2.01 ± 0.47 40.13 ± 2.99 30.07 ± 0.81 *100.00 ± 0.00 23.59 ± 0.00
EnD2 93.95 ± 2.35 28.09 ± 6.40 26.35 ± 0.60 24.85 ± 0.43 84.43 ± 15.21 23.58 ± 0.00
PostNet 99.64 ± 0.02 0.75 ± 0.08 80.60 ± 1.68 *92.57 ± 1.41 *100.00 ± 0.00 *100.00 ± 0.00
NatPN 99.61 ± 0.05 1.04 ± 0.29 *81.43 ± 1.89 79.54 ± 2.62 99.98 ± 0.00 *100.00 ± 0.00

Table 4.3: Classification results on CIFAR-10 with Categorical target distribution. Best scores
among all single-pass models are in bold. Best scores among all models are starred.
Gray numbers indicate that R-PriorNet has seen samples from the SVHN dataset
during training.

Accuracy Brier SVHN Alea. SVHN Epist. CelebA Alea. CelebA Epist. OODom Alea. OODom Epist.

Dropout 88.15 ± 0.20 19.59 ± 0.41 80.63 ± 1.59 73.09 ± 1.51 71.84 ± 4.28 71.04 ± 3.92 18.42 ± 1.11 49.69 ± 9.10
Ensemble *89.95 ± 0.11 17.33 ± 0.17 85.26 ± 0.84 82.51 ± 0.63 76.20 ± 0.87 74.23 ± 0.78 25.30 ± 4.02 89.21 ± 7.55
NatPE 89.21 ± 0.09 17.41 ± 0.12 85.66 ± 0.34 *83.16 ± 0.67 *78.95 ± 1.15 *82.06 ± 1.30 87.27 ± 1.79 *98.88 ± 0.26

R-PriorNet 88.94 ± 0.23 *15.99 ± 0.32 99.87 ± 0.02 99.94 ± 0.01 67.74 ± 4.86 59.55 ± 7.90 42.21 ± 8.77 38.25 ± 9.82
EnD2 84.03 ± 0.25 40.84 ± 0.36 *86.47 ± 0.66 81.84 ± 0.92 75.54 ± 1.79 75.94 ± 1.82 42.19 ± 8.77 15.79 ± 0.27
PostNet 87.95 ± 0.20 20.19 ± 0.40 82.35 ± 0.68 79.24 ± 1.49 72.96 ± 2.33 75.84 ± 1.61 85.89 ± 4.10 92.30 ± 2.18
NatPN 87.90 ± 0.16 19.99 ± 0.46 82.29 ± 1.11 77.83 ± 1.22 76.01 ± 1.18 76.87 ± 3.38 *93.67 ± 3.03 94.90 ± 3.09

Table 4.4: Results on the Bike Sharing Dataset with Normal N and Poison Poi target distri-
butions. Best scores among all single-pass models are in bold. Best scores among all
models are starred.

RMSE Calibration Winter Epist. Spring Epist. Autumn Epist. OODom Epist.

Dropout-N 70.20 ± 1.30 6.05 ± 0.77 15.26 ± 0.51 13.66 ± 0.16 15.11 ± 0.46 99.99 ± 0.01
Ensemble-N *48.02 ± 2.78 5.88 ± 1.00 42.46 ± 2.29 21.28 ± 0.38 21.97 ± 0.58 *100.00 ± 0.00

EvReg-N 49.58 ± 1.51 3.77 ± 0.81 17.19 ± 0.76 15.54 ± 0.65 14.75 ± 0.29 34.99 ± 17.02
NatPN-N 49.85 ± 1.38 *1.95 ± 0.34 *55.04 ± 6.81 *23.25 ± 1.20 *27.78 ± 2.47 *100.00 ± 0.00

Dropout-Poi 66.57 ± 4.61 55.00 ± 0.22 16.02 ± 0.48 13.48 ± 0.38 18.09 ± 0.82 *100.00 ± 0.00
Ensemble-Poi *48.22 ± 2.06 55.31 ± 0.21 83.88 ± 1.22 34.21 ± 1.81 41.29 ± 3.23 *100.00 ± 0.00

NatPN-Poi 51.79 ± 0.78 *31.04 ± 1.81 *85.15 ± 3.61 *37.03 ± 2.35 *42.73 ± 4.38 *100.00 ± 0.00

4.4.1 Setup

In our experiments, we change the encoder architecture of NatPN to match the dataset
needs. We perform a grid search over normalizing flows types (i.e. radial flows [358]
and MAF [154, 339]) and latent dimensions. We show further experiments on archi-
tecture, latent dimension, normalizing flow choices and certainty budget choice in the
appendix. Furthermore, we use approximations of the log-Gamma log Γ(x) and the
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Table 4.5: Regression results on models trained on different UCI datasets with Normal target
distribution. The upper half displays models trained on Kin8nm, the lower half
shows models trained on Concrete Compressive Strength.

RMSE Calibration Energy Alea. Energy Epist. Concrete Alea. Concrete Epist. Kin8nm Alea. Kin8nm Epist.

Dropout 0.09 ± 0.00 3.13 ± 0.43 90.18 ± 6.00 99.94 ± 0.06 *100.00 ± 0.00 *100.00 ± 0.00
in-distributionEnsemble *0.07 ± 0.00 2.69 ± 0.49 *100.00 ± 0.00 *100.00 ± 0.00 *100.00 ± 0.00 *100.00 ± 0.00

NatPE 0.08 ± 0.00 5.49 ± 0.30 *100.00 ± 0.00 *100.00 ± 0.00 *100.00 ± 0.00 *100.00 ± 0.00

EvReg 0.09 ± 0.00 3.74 ± 0.53 88.06 ± 11.94 88.06 ± 11.94 *100.00 ± 0.00 86.84 ± 13.16 in-distributionNatPN 0.08 ± 0.00 *2.04 ± 0.45 *100.00 ± 0.00 *100.00 ± 0.00 *100.00 ± 0.00 *100.00 ± 0.00

Dropout 5.67 ± 0.07 *3.03 ± 0.40 9.33 ± 0.36 93.53 ± 2.41
in-distribution

1.09 ± 0.13 64.30 ± 7.14
Ensemble 5.69 ± 0.20 3.81 ± 0.67 54.19 ± 18.93 *100.00 ± 0.00 72.57 ± 19.32 *100.00 ± 0.00
NatPE *4.78 ± 0.20 5.58 ± 1.27 *100.00 ± 0.00 *100.00 ± 0.00 *100.00 ± 0.00 *100.00 ± 0.00

EvReg 6.04 ± 0.18 7.36 ± 1.04 8.93 ± 0.02 51.39 ± 18.56 in-distribution 0.93 ± 0.00 34.44 ± 20.95
NatPN 5.83 ± 0.23 5.41 ± 1.33 *100.00 ± 0.00 *100.00 ± 0.00 *100.00 ± 0.00 *100.00 ± 0.00

Table 4.6: Regression results on NYU Depth v2 with Normal target distribution. RMSE is in
cm. OOD scores on LSUN are reported on the held-out classes ‘classrooms’ (left)
and ‘churches’ (right).

RMSE Calibration LSUN Alea. LSUN Epist. KITTI Alea. KITTI Epist. OODom Alea. OODom Epist.

Dropout 46.95 4.03 *95.29 / 97.74 83.89 / 83.22 98.07 84.90 74.40 *100.00

EvReg *28.88 *1.05 58.70 / 56.71 70.19 / 64.02 56.60 62.67 75.43 56.39
NatPN 29.72 1.14 94.13 / *98.67 *89.08 / *90.56 *98.93 *93.15 *100.00 *100.00

Digamma ψ(x) functions for large input values to avoid unstable floating computations
(see Appendix B.2). As prior parameters, we set χprior = 1C/C, n

prior = C for classifi-
cation, χprior = (0, 100)T , nprior = 1 for regression and χprior = 1, nprior = 1 for count
prediction enforcing high entropy for prior distributions.

Baselines. We focus on recent models parametrizing prior distributions over the target
distribution. For classification, we compare NatPN to Reverse KL divergence Prior Net-
works (R-PriorNet) [273], Ensemble Distribution Distillation (EnD2) [277] and Posterior
Networks (PostNet) [67]. Note that Prior Networks require OOD training data — we
use an auxiliary dataset when available and Gaussian noise otherwise. For regression,
we compare to Evidential Regression (EvReg) [10]. Beyond baselines parametrizing con-
jugate prior distributions, we also compare to dropout (Dropout) [141] and ensemble
(Ensemble) [246] models for all tasks. These sampling baselines require multiple forward
passes for uncertainty estimation. Further details are given in the appendix.

Datasets. We split all datasets into train, validation and test sets. For classification,
we use one tabular dataset (Sensorless Drive [111]) and three image datasets (MNIST
[249], FMNIST [450] and CIFAR-10 [238]). For count prediction, we use the Bike Sharing
dataset [126] to predict the number of bike rentals within an hour. For regression, we
also use the Bike Sharing dataset where the target is viewed as continuous, real-world
UCI datasets used in [10, 185] and the image NYU Depth v2 dataset [311] where the
goal is to predict the image depth per pixel. All inputs are rescaled with zero mean and
unit variance. We also scale the output target for regression. Further details are given
in the appendix.
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Figure 4.3: Averaged accuracy and confidence under 15 dataset shifts on CIFAR-10 [183]. On
more severe perturbations (i.e. data further away from data distribution), NatPN
maintains a competitive accuracy while assigning higher epistemic uncertainty as
desired. Baselines provide a slower relative confidence decay.

Metrics. Beyond the target prediction error, we evaluate model uncertainty estima-
tion using calibration and OOD detection scores. Furthermore, we report the inference
speed. Further results including histograms with uncertainty estimates or latent space
visualization are presented in appendix.

Target error: We use the accuracy (Accuracy) for classification and the Root Mean
Squared Error (RMSE) for regression and count prediction.

Calibration: For classification, we use the Brier score (Brier) [161]. For regression and
count prediction, we use the quantile calibration score (Calibration) [242].

OOD detection: We evaluate how the uncertainty scores enable to detect OOD data
using the area under the precision-recall curve (AUC-PR) the area under the receiver
operating characteristic curve (AUC-ROC) in the appendix. We use two different un-
certainty measures: the negative entropy of the predicted target distribution accounting
for the aleatoric uncertainty (Alea. OOD) and the predicted evidence or variance of
the predicted mean (Epist. OOD). Similarly to [335, 67], we use four different types of
clear OOD samples: Unseen datasets (KMNIST [83], Fashion-MNIST [450], SVHN [313],
LSUN [457], CelebA [262], KITTI [151]), left-out data (classes 9/10 for Sensorless Drive,
winter/spring/autumn seasons for Bike Sharing), out-of-domain data not normalized in
[0, 1] (OODom) and dataset shifts (corrupted CIFAR-10 [183]). Further details are given
in the appendix.

4.4.2 Results

Classification. We show results for the tabular dataset Sensorless Drive with unbounded
input domain in Table 4.2, and the image datasets MNIST, FMNIST and CIFAR-10 with
bounded input domain in Table 4.3 and appendix. Overall, for classification NatPN per-
forms on par with best single-pass baselines (i.e. 12/30 top-1 scores, 25/30 top-2 scores)
and NatPE performs the best among multiple-pass models (i.e. 28/30 top-1 scores). A
single NatPN achieves accuracy and calibration performance on par with the most cal-
ibrated baselines, namely PostNet and R-PriorNet which requires one normalizing flow
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per class or training OOD data. Further, NatPE consistently improves accuracy and
calibration performance of a single NatPN which underlines the benefit of aggregating
multiple models predictions for accuracy and calibration [246]. Without requiring OOD
data during training, both NatPN and NatPE achieve excellent OOD detection scores
w.r.t. all OOD types. This strongly suggests that NatPN does not suffer from the
flaws in [77, 307, 308]. In particular, NatPN and NatPE achieve almost perfect OODom
scores contrary to all other baselines except PostNet. This observation aligns well with
the theoretical guarantee of NatPN far from training data (see Theorem 1) which also
applies to each NatPE member. The similar performance of NatPN and PostNet for
classification is intuitively explained by their akin design: both models perform density
estimation on a low-dimensional latent space. Similarly to [67], we compute the average
confidence avg-conf = 1

N

∑N
i n

(i) = 1
N

∑N
i α

(i)
0 and then compare the average confidence

change. The average confidence change is computed by taking the ratio of the average
confidence of N corrupted data at severity s and the average confidence of N clean data
(i.e. the corrupted data at severity 0) i.e. avg-confs

avg-conf0
for s ∈ [[1, 5]]. NatPN maintains

a competitive accuracy (Fig. 4.3, left) while assigning higher epistemic uncertainty as
desired (Fig. 4.3, right). Baselines provide a slower relative confidence decay.

Regression & Count Prediction. We show the results for the Bike Sharing, the tab-
ular UCI datasets and the image NYU Depth v2 datasets in Tables 4.4 to 4.6. For the
large NYU dataset, we compare against all baselines which require only a single model
to be trained. Overall, NatPN outperforms other single-pass models for 23/26 scores for
regression, thus significantly improving calibration and OOD detection scores. Further,
NatPN shows a strong improvement for calibration and OOD detection for count predic-
tion with Poisson distributions among all models. Interestingly, all the models are less
calibrated on the Bike Sharing dataset using a target Poisson distribution rather than a
target Normal distribution. This suggests a mismatch of the Poisson distribution for this
particular task. The almost perfect OODom scores of NatPN validate again Theorem 1
which also holds for regression.

Table 4.7: Batched Inference Time (in
ms), NVIDIA GTX 1080 Ti

CIFAR-10 NYU Depth v2
(batch size 4,096) (batch size 4)

Dropout 407.91 ± 5.65 650.96 ± 0.22
Ensemble 361.61 ± 5.41 649.78 ± 0.18
R-PriorNet 61.83 ± 2.57 −
EnD2 61.83 ± 2.57 −
PostNet 88.56 ± 0.06 −
EvReg − 129.88 ± 0.75
NatPN 75.64 ± 0.04 137.13 ± 0.18
NatPE 370.17 ± 0.09 676.74 ± 0.38

Inference Speed. We show the average infer-
ence time per batch for all models on CIFAR-
10 for classification and the NYU Depth v2
dataset for regression in Table 4.7. NatPN
shows a significant improvement over Dropout
and Ensemble which are both approximately
five times slower since they require five forward
passes for prediction. Notably, the NatPN
speedup does not deteriorate target error and
uncertainty scores. NatPN is slightly slower
than R-PriorNet, EnD2 and EvReg as they do
not evaluate an additional normalizing flow.
However, NatPN – which uses a single normalizing flow – is faster than PostNet – which
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scales linearly w.r.t. the number of classes since it evaluates one normalizing flow per
class. Lastly, NatPN is the only single-pass model that can be used for both tasks.

4.5 Conclusion

We introduce Natural Posterior Network which belongs to the family of models parametriz-
ing conjugate prior distributions. NatPN is capable of efficient uncertainty estimation for
any task where the target distribution is in the exponential family (incl. classification,
regression and count prediction). NatPN relies on the Bayes formula and the general form
of exponential family distributions to perform a closed-form input-dependent posterior
update over the target distribution. Further, an ensemble of NatPNs has a principled
Bayesian combination interpretation. Theoretically, NatPN guarantees high uncertainty
far from training data. Experimentally, NatPN achieves fast, versatile and high-quality
uncertainty predictions with strong performance in calibration and OOD detection.
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I can live with doubt and uncertainty and not knowing.
I think it is much more interesting to live not knowing than to have answers

that might be wrong.

Richard P. Feynman

5.1 Introduction

While we have focused in the previous sections on proposing new Bayesian models for
efficient uncertainty estimation on independent data, we now turn our attention on the
practical considerations when using Deterministic Uncertainty Methods (DUMs) [346]
like evidential models and GP-based models discussed in Section 2.2. Contrary to un-
certainty methods such as Ensembles [246], MC Dropout [141] or other Bayesian neural
networks on weights [42], which require multiple forward passes to make predictions,
DUMs only require a single forward pass, thus making them significantly more com-
putationally efficient. Generally, DUMs are composed of three components with high
potential impact on their performances: the training procedure which is supposed to
optimize the model toward high predictive and uncertainty performances, the core ar-
chitecture which is supposed to define informative embeddings used to make predictions,
and the prior which is supposed to define the default uncertain predictions.

Contributions. In this chapter, we investigate the role of the three training, architec-
ture, and prior components on the quality of DUMs uncertainty estimates by evaluating
calibration performances, OOD detection, and OOD generalization. Our main contribu-
tions are:

• Training: We show that decoupling the learning rates of the core architecture
and uncertainty heads of DUMs, jointly training the core architecture and the
uncertainty head of DUMs, and pretraining with more data and higher data quality
improve uncertainty performances.

• Architecture: We demonstrate that the expressiveness of the core architecture
defined by the architecture type, architecture size, and dimension of the latent space
is crucial for both predictive and uncertainty performances. Further, we show that
applying additional regularization constraints to avoid feature collapse does not
find better trade-off between OOD detection and generalization, even sometimes
degrading performances.
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• Prior: In contrast to Bayesian neural networks on weights where the choice of
prior is critical [438, 137, 323, 214], we empirically show that the choice of prior
defined in the training loss or in the uncertainty head of DUMs has a relatively
small effect on the final uncertainty performances.

5.2 Deterministic Uncertainty Methods

We consider a classification task where the goal is to predict the label y(i) ∈ {1, . . . , C}
based on the input feature x(i) ∈ RD. In this case, a DUM generally performs predictions
in two main steps: (1) A core architecture fϕ maps the input features x(i) ∈ RD to a
latent representation z(i) ∈ RH , i.e. fϕ(x(i)) = z(i). In practice, important design choices
are the latent dimension H and the architecture fϕ which should be adapted to the task
(see Section 5.4). Further, multiple works proposed to apply additional bi-Lipschitz or
reconstruction constraints to enrich the informativeness of the latent representation z(i)

(see Section 5.4). (2) An uncertainty head gψ maps the latent representation z(i) to
a predicted label ŷ(i) and an associated (aleatoric, epistemic, or predictive) uncertainty
estimate u(i), i.e. gψ(z

(i)) = (ŷ(i), u(i)). In practice, important design choices are the
type of uncertainty head which are generally instantiated with a Gaussian Process (GP)
[247, 421, 420, 36, 71], a density estimator [67, 68, 71, 398, 36, 303, 344, 443, 448],
or an evidential model [67, 68, 71, 398, 36, 271], and the choice of the prior used by
the uncertainty head (see Section 5.5). Beyond core architecture and uncertainty head,
another important choice is the training procedure which can either couple or decouple
the parameters of the core architecture and uncertainty head (see Section 5.3).

In this work we focus on two recent DUMs which cover different types of uncertainty
heads: Natural Posterior Network (NatPN) [68] which learns an evidential distribution
based on density estimation on the latent space, and Deterministic Uncertainty Estimator
(DUE) [421] which learns a deep Gaussian Process by parametrizing learnable inducing
points in the latent space (see Appendix C.0.1 for further method details). While NatPN
is capable to differentiate aleatoric, epistemic, and predictive uncertainty, DUE only out-
puts the predictive uncertainty. For all the experiments, we use the same default setup:
we first pretrain the encoder with the cross-entropy loss until convergence, then load
the pretrained encoder and jointly train the encoder and uncertainty head (see Appen-
dices C.1 to C.3 for further component details). We report the predictive performance via
accuracy, and the uncertainty performances with Brier Score and OOD detection results
after averaging over 5 seeds (see Appendix C.0.3 for further metric details). We perform
our experiments on MNIST [249], CIFAR10 and CIFAR100 [238], and Camelyon [233].
OOD results reported in Tables 5.1 to 5.4 averages the uncertainty estimation from five
OOD datasets: SVHN, STL10, CelebA, Camelyon and SVHN OODom [313, 86, 262].
Our code and additional material is available online1.

Related work. Previous works survey OOD detection methods [453], OOD generazi-
lation methods [385], or a wide range of uncertainty estimation methods [150, 348, 419, 3]
by presenting key methods and challenges. These surveys do not focus on determinis-

1https://www.cs.cit.tum.de/daml/training-architecture-prior-dum/
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tic methods and do not make empirical analysis. Other works propose great empirical
studies to compare uncertainty estimation methods under shifts [335], or analyze the role
of the prior in Bayesian neural networks on weights [438, 137, 323, 214]. These works
do not focus on DUMs. Closer to our work, Postels et al. [346] compares methods in
the DUMs family and demonstrate calibration limitations. In contrast, we evaluate the
role of components in DUMs and show that carefully specifying training, architecture, or
prior can improve uncertainty metrics like calibration and OOD detection but also ID
and OOD predictive performances.

5.3 Training for DUMs

In this section, we study the importance of the training procedure in the performance
of DUMs. To this end, we look at decoupling the learning rates of the core encoder ar-
chitecture and the uncertainty head, different training schemes, and different pretraining
schemes.

Decoupling learning rates. We decouple the learning rates of the core architecture
and the uncertainty head. We show the validation results for CIFAR100 as ID and SVHN
as OOD with the core architecture ResNet18 in Fig. 5.1. Observation: We observe that,
when using different learning rates for the core architecture and the uncertainty head,
NatPN improves Brier Score and OOD epistemic results and DUE significantly improves
both predictive and uncertainty results. Hence, this shows that decoupling learning
rates can improve results of DUMs, thus suggesting that the core architecture and the
uncertainty head have training dynamics which requires different considerations.
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Figure 5.1: Results of DUMS on CIFAR100 with ResNet18 when decoupling learning rates
of the core architecture and the uncertainty head. Decoupling learning rates im-
prove DUMs performance.

Training schemes. We compare two settings: the joint training in which we jointly
train the weights of the core architecture and uncertainty head, and the sequential train-
ing in which we only train the uncertainty head by keeping the weights of the pretrained
core architecture fixed. For each of the setting, we apply two additional techniques to
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stabilize the training: adding a batch normalization to the last layer of the encoder to
enforce latent representations to locate in a normalized region [204, 68], and resetting
the last layer to retrain its weights to improve robustness to spurious correlation [225].
We show the results for CIFAR100 as ID and five difference OOD datasets with the
ResNet18 as core architecture in Table 5.1 and additional results in the appendix Ta-
ble C.3. Observation: We observe that, compared to its sequential counterpart, joint
training consistently improves DUMs performance for most metrics, thus suggesting that
joint training should be preferred in practice for DUMs. Furthermore, while the GP-
based method DUE does not benefit from stabilization techniques, we observe that they
can significantly increase performance of the density-based method NatPN. This behav-
ior is intuitively explained by the practical difficulty to accurately fit densities in high
dimensional latent space. This can be significantly improved by using more powerful
density estimator (see Table C.1 in appendix).

Pretraining schemes. We compare multiple training schemes which differ in terms
of amount and quality of data used for pretraining. Hence, we do not pretrain the
core architecture or pretrain it with 10% of CIFAR100, 100% of CIFAR100 without and
with Gaussian noise, or ImageNet. We show the results for CIFAR100 as ID and five
different OOD datasets with ResNet50 as core architecture in Table 5.2 and additional
results in the appendix Table C.4. Observation: We observe that, while too few data
for pretraining does not improve final performance of DUMs, the overall performance
significantly increase when the encoder is pretrained with high quantity and high quality
of data. Similarly to Kirichenko et al. [224], this suggests that the embedding quality
is important to improve uncertainty quantification. Here, we show additionally that
embeddings pretrained with many high quality data are crucial to facilitate the prediction
of the uncertainty head.

Table 5.1: Results of DUMs on CIFAR100 with ResNet18 under different training schemes
using joint/sequential training with no additional layer, an additional batch norm
layer, or resetting the last layer. Gray cells indicate the best between joint/sequential
while bold numbers indicate the best overall. OOD results are averaged over OOD
datasets. We observe that joint training works best and stabilization techniques can
improve performances.

Method Train Schema Accuracy (↑) Brier Score (↓) OOD Pred. (↑) OOD Epis. (↑)

NatPN

joint 71.12 ± 0.18 41.06 ± 0.18 75.17 ± 1.60 63.94 ± 2.80
joint + bn 71.60 ± 0.14 41.11 ± 0.12 74.22 ± 0.94 66.17 ± 2.55
joint + reset 71.61 ± 0.18 40.76 ± 0.18 75.35 ± 0.71 69.02 ± 1.49
sequential 72.00 ± 0.19 42.20 ± 0.09 75.09 ± 0.86 53.49 ± 2.56
sequential + bn 71.98 ± 0.18 42.39 ± 0.11 75.01 ± 0.86 52.34 ± 2.81
sequential + reset 71.79 ± 0.17 40.95 ± 0.14 74.63 ± 0.85 61.90 ± 2.14

DUE

joint 72.33 ± 0.11 40.80 ± 0.11 74.74 ± 0.89 -
joint + bn 72.30 ± 0.09 40.85 ± 0.12 74.63 ± 0.95 -
joint + reset 71.94 ± 0.12 41.43 ± 0.12 74.89 ± 0.76 -
sequential 72.07 ± 0.10 41.66 ± 0.10 74.82 ± 0.90 -
sequential + bn 72.04 ± 0.13 41.73 ± 0.11 74.88 ± 0.95 -
sequential + reset 71.56 ± 0.14 42.30 ± 0.11 75.08 ± 1.01 -
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Table 5.2: Results of DUMs with ResNet50 under different pretraining schemes using no
pretraining, pretraining on 10% of CIFAR100, 100% of CIFAR100 without Gaussian
noise and with Gaussian noise, or ImageNet. OOD results are averaged over OOD
datasets. Bold numbers indicate best results among all settings. We observe that
high quantity and high quality of data can improve performances.

Method Pretrain Schema Accuracy (↑) Brier Score (↓) OOD Pred. (↑) OOD Epis. (↑)

NatPN

None 78.45 ± 1.94 30.16 ± 2.57 79.85 ± 3.30 85.81 ± 2.05
C100 (10%) 67.25 ± 0.71 44.69 ± 0.94 68.10 ± 1.90 78.50 ± 3.27
C100 (100%) + N (0.5) 72.50 ± 1.07 39.36 ± 1.43 68.66 ± 3.76 73.54 ± 1.84
C100 (100%) + N (0.1) 75.25 ± 0.61 35.99 ± 0.88 69.78 ± 4.65 75.81 ± 2.85
C100 (100%) 76.31 ± 0.45 34.32 ± 0.51 78.95 ± 3.19 76.91 ± 2.64
ImageNet 84.22 ± 0.12 23.67 ± 0.27 84.95 ± 1.48 89.08 ± 0.70

DUE

None 72.41 ± 0.24 47.35 ± 0.25 80.04 ± 1.28 -
C100 (10%) 63.86 ± 0.58 50.94 ± 0.53 72.44 ± 1.32 -
C100 (100%) 76.38 ± 0.35 36.89 ± 0.50 81.71 ± 1.87 -
C100 (100%) + N (0.5) 72.10 ± 1.00 42.48 ± 1.18 74.89 ± 1.97 -
C100 (100%) + N (0.1) 75.31 ± 0.91 38.31 ± 1.22 79.43 ± 1.93 -
ImageNet 82.42 ± 0.14 28.09 ± 0.19 90.24 ± 0.51 -

5.4 Architecture for DUMs

In this section, we study the impact of the architecture component in DUMs. To this
end, we look at different latent dimensions, different architectural types and size, and
applying different regularization constraints to avoid feature collapse [421].

Latent dimension. We vary the dimension of the output space of the core archi-
tecture. We show the results for each pair of ID dataset and its distribution shifted
OOD dataset (MNIST/CMNIST, CIFAR/CIFAR-C, CamelyonID/CamelyonOOD) with
the core architecture ResNet18 for MNIST/CIFAR, and WideResNet-28-10 for Came-
lyon in Fig. 5.2 and additional uncertainty estimation results in the appendix Fig. C.5.
Observation: We observe that increasing the latent dimensions leads to improvement for
DUMs on ID and OOD datasets with particularly significant improvement for NatPN
(see Fig. 5.2). This suggests that higher latent dimensions are more expressive by en-
coding more information. However, we observe that a too high latent dimension can
degrade OOD detection performance by causing numerical instabilities in the training
(see Fig. C.5), suggesting a trade-off between OOD generalization and OOD detection.

Architecture type and size. We compare the influence of the type and size of the
core architecture on the performance of DUMs. We consider residual, convolutional, and
transformer architectures like ResNet18, ResNet50, EfficientNetV2, and Swin [181, 405,
260]. We show the results for DUMs trained on CIFAR100 as ID with the different core
architectures in Table 5.3 and additional results at appendix Table C.5. Observation:
We observe that models with more parameters achieve better results. In particular,
ResNet50 achieves significantly better results than ResNet18. Further, more recent core
architectures like EfficientNetV2 and Swin are better calibrated and more expressive
leading to a better overall performance. This can be explained by the fact that they are
more expressive and provide more informative embeddings for the uncertainty head to
operate on. This aligns with Minderer et al. [288] which states that the architecture type
is important for the calibration properties.
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Figure 5.2: Results of DUMs when varying the latent dimension size. We observe that
increasing the latent dimension consistently leads to similar or better predictive
performance.

Table 5.3: Results of DUMs for different architecture types. including residual, convolu-
tional, and transformer architectures on CIFAR100. OOD results are averaged over
OOD datasets. Bold numbers indicate best results among all settings. Larger and
more recent architectures are better calibrated with similar or better uncertainty
estimation.

Method Architecture #Parameters Accuracy (↑) Brier Score (↓) OOD Pred. (↑) OOD Epis. (↑)

NatPN

ResNet18 11.6M 80.31 ± 0.09 33.69 ± 0.15 87.49 ± 1.90 81.79 ± 1.38
ResNet50 25.5M 84.22 ± 0.12 23.67 ± 0.27 84.95 ± 1.48 89.08 ± 0.70
EffNet_V2_S 21.4M 88.43 ± 0.10 17.08 ± 0.10 87.79 ± 0.77 89.47 ± 0.59
Swin_T 28.2M 87.99 ± 0.09 18.48 ± 0.06 85.91 ± 1.17 90.23 ± 0.81

DUE

ResNet18 11.6M 78.85 ± 0.19 36.57 ± 0.15 88.04 ± 0.67 -
ResNet50 25.5M 82.42 ± 0.14 28.09 ± 0.19 90.24 ± 0.51 -
EffNet_V2_S 21.4M 86.92 ± 0.08 21.07 ± 0.06 89.43 ± 0.67 -
Swin_T 28.2M 86.93 ± 0.05 23.23 ± 0.05 89.90 ± 0.36 -

Regularization constraints. Feature collapse is a phenomenon where a model may
discard important parts of the input information during its training phase, which may
degrade OOD detection performance [421]. Two techniques to avoid feature collapses
are bi-Lipschitz constraints via combining residual connections and lipschitz constraints
[247], and reconstruction constraints via adding an additional reconstruction term in the
loss [344]. We show the results for DUMs trained on the datasets MNIST and CIFAR100
with ResNet18 in Figs. 5.3 and 5.4 and additional results for other datasets (Toy dataset,
CIFAR10, Camelyon) at Appendix C.2. Observation: We observe that the reconstruc-
tion technique is not capable to avoid feature collapse. Indeed, we show that, even with
reconstruction constraints, some (non-discriminative) features can completely collapse
(see Figs. C.3b and C.4b for toy examples). Hence, while this method can lead to small
OOD improvements on simple tasks (see e.g. MNIST in Fig. 5.4), this benefit does not
generalize to more complex tasks (see e.g. CIFAR100 in Fig. 5.4). In contrast, we ob-
serve that bilipschitz constraints indeed mitigate the collapse of features (see Figs. C.3a
and C.4a for toy examples), leading to similar or higher OOD detection performance (see
Fig. 5.3). The mitigation of feature collapse can be mostly assigned to the residual con-
nection constraints. However, bilipschitz constraints can improve OOD detection results
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Figure 5.3: Results OOD generalization
and detection of DUMs with
none, residual and bi-lipschitz
architecture constraints
on MNIST/CMNIST and
CIFAR/CIFAR-C. Bi-lipschitz
can improve OOD detection by
mitigating feature collapse (see
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Figure 5.4: Results OOD generalization and
detection of DUMs with re-
construction architecture con-
straints on MNIST/CMNIST
and CIFAR/CIFAR-C. Increas-
ing the reconstruction strength
λ improves the OOD general-
ization on simple MNIST/CM-
NIST dataset but fails for com-
plex datasets. Reconstruction
fails to improve OOD detection
since it does not avoid feature
collapse (see Fig. C.3b).

on simple tasks (e.g. MNIST, CIFAR10), it degrades OOD generalization performance
(see Fig. 5.3) and does not significantly improve OOD detection on more complex tasks
(see e.g. Camelyon, CIFAR100 in Fig. C.1). Intuitively, maintaining features which
are not discriminative to the task might introduce spurious correlations, thus degrading
performances. E.g. enforces the architecture to encode the color feature in the latent
space decreases the performance of the OOD CMNIST datasets after training on the ID
MNIST dataset.

5.5 Prior for DUMs

In this section, we study the effect that the prior component has in DUMs. More specif-
ically, we investigate the relationships between aleatoric uncertainty and the prior spec-
ified for DUMs. In particular, this is motivated by Kapoor et al. [214] which shows that
using priors that forces model to be confident on the training data points can improve
its performance by explicitly accounting for aleatoric uncertainty. To this end, we look
at entropy regularization defining a training prior in the loss, prior evidence and kernel
function defining a functional prior in the uncertainty head.

Prior. We compare different prior specifications including entropy regularization defin-
ing a training prior in the loss, prior evidence and kernel function defining a functional
prior in the uncertainty head. Entropy regularization is the entropy term H(Q) in the
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Bayesian loss used to train NatPN which encourages a (uniform) prior distributions with
high entropy [68]. We control the strength of the regularization factor λ. Further, NatPN
also explicitly defines a prior via the parameters χprior and nprior. While χprior defines the
default categorical prediction via a uniform categorical distribution, the evidence param-
eter nprior defines the prior number of pseudo-observations and can be varied. Finally,
we vary the prior of DUE by using different kernel functions in the learned GP includ-
ing Matern kernel, RQ kernel, and RBF [356]. Observation: Contrary to other Bayesian
neural networks [214], we observe that predictive and uncertainty performances of DUMs
are not very sensitive to the prior specification (see Figs. 5.5 and C.9 and Table 5.4),
thus suggesting a higher robustness to prior mispecification. Nonetheless, a too strong
entropy regularization toward an uniform prior degrades more performance of DUMs
trained on dataset with low label noise than on high label noise. This suggests that a
too high discrepancy between the model prior and the dataset aleatoric uncertainties can
impact performance.
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Figure 5.5: Results of enforcing different prior in NatPN on CIFAR100 by changing the (top)
entropy regularization λ and the (bottom) evidence prior nprior. Different priors
do not lead consistent results improvements.

Table 5.4: Results of enforcing different prior in DUE on CIFAR100 and Camelyon by changing
the kernel function. OOD results are averaged over OOD datasets. Different priors
lead to similar performance.

CIFAR100 Camelyon

Kernel Accuracy (↑) Brier Score (↓) OOD Pred. (↑) Accuracy (↑) Brier Score (↓) OOD Pred. (↑)

Matern52 71.80 ± 0.18 41.37 ± 0.24 75.90 ± 1.18 79.81 ± 2.72 32.46 ± 3.22 58.86 ± 6.20
Matern32 71.80 ± 0.21 41.62 ± 0.22 76.15 ± 1.18 80.23 ± 2.71 32.77 ± 3.20 58.50 ± 5.83
Matern12 71.70 ± 0.18 43.10 ± 0.22 75.70 ± 1.19 79.30 ± 2.96 32.67 ± 3.28 59.13 ± 6.39
RQ 71.83 ± 0.19 41.16 ± 0.25 75.93 ± 1.21 80.31 ± 2.55 32.22 ± 3.14 58.69 ± 6.09
RBF 71.85 ± 0.19 41.17 ± 0.24 76.14 ± 1.19 80.45 ± 2.49 32.13 ± 3.11 58.86 ± 5.91

5.6 Conclusion

We investigate important design choice in DUMs. We show that training of DUMs can be
improved by decoupling the the optimization of the core architecture and the uncertainty
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5.6 Conclusion

head. We show that expressive core architecture can improve DUMs performances. In
contrast, additional constraints to avoid feature collapse do not consistently lead to
better performance, potentially degrading the OOD generalization and detection trade-
off. Finally, we show that the choice of prior for DUMs does not lead to important
performance improvements.
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6 Robustness of Uncertainty Estimation

Uncertainty is the only certainty there is, and knowing how to live with
insecurity is the only security.

John Allen Paulos

6.1 Introduction

In Chapter 5, we studied practical considerations when using efficient uncertainty es-
timation methods in non-adversarial contexts. In this chapter, we now focus on the
robustness of uncertainty estimates in adversarial contexts.

Indeed, although neural networks achieve high predictive accuracy in many tasks, they
are known to have two substantial weaknesses: First, neural networks are not robust
against adversarial perturbations, i.e., semantically meaningless input changes that lead
to wrong predictions [403, 163]. Second, standard neural networks are unable to identify
samples that are different from the ones they were trained on and tend to make over-
confident predictions at test time [246]. These weaknesses make them impracticable in
sensitive domains like financial, autonomous driving or medical areas which require trust
in predictions.

To increase trust in neural networks, models that provide predictions along with the
corresponding uncertainty have been proposed. In previous chapters we have seen Post-
Net (see Chapter 3) and NatPN (see Chapter 4) which, when applied to classification
tasks, belong to the important family of Dirichlet-based uncertainty (DBU) models
[271, 277, 374, 273, 67, 471, 310, 386, 375]. Contrary to other approaches such as Bayesian
Neural Networks [42, 327, 268], drop out [141] or ensembles [246], DBU models provide
efficient uncertainty estimates at test time in a single forward pass by directly predicting
the parameters of a Dirichlet distribution over categorical probability distributions. DBU
models have the advantage that they provide both, aleatoric uncertainty estimates result-
ing from irreducible uncertainty (e.g. class overlap or noise) and epistemic uncertainty
estimates resulting from the lack of knowledge about unseen data (e.g. an unknown ob-
ject is presented to the model). Both uncertainty types can be quantified from Dirichlet
distributions using different uncertainty measures such as differential entropy, mutual in-
formation, or pseudo-counts. These uncertainty measures show outstanding performance
in, e.g., the detection of OOD samples and thus are superior to softmax based confidence
[271, 273, 67].

Neural networks from the families outlined above are expected to know what they
don’t know, i.e. they are supposed to notice when they are unsure about a prediction.
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Figure 6.1: Visualization of the desired uncertainty estimates.

This raises questions with regards to adversarial examples: should uncertainty estima-
tion methods detect these corrupted samples by indicating a high uncertainty on them
and abstain from making a prediction? Or should uncertainty estimation be robust to
adversarial examples and assign the correct label even under perturbations? We argue
that being robust to adversarial perturbations is the best option (see Fig. 6.1) for two
reasons. First, in image classification a human is usually not able to observe any dif-
ference between an adversarial example and an unperturbed image. Second, the size of
the perturbation corresponding to a good adversarial example is typically small w.r.t.
the Lp-norm and thus assumed to be semantically meaningless. Importantly, robustness
should not only be required for the class predictions, but also for the uncertainty esti-
mates. This means that DBU models should be able to distinguish robustly between ID
and OOD data even if those are perturbed.

In this chapter, we focus on DBU models and analyze their robustness capacity w.r.t.
class predictions as well as uncertainty predictions. In doing so, we go beyond sim-
ple softmax output confidence by investigating advanced uncertainty measures such as
differential entropy. Specifically, we study the following questions:

1. Is low uncertainty a reliable indicator of correct predictions?

2. Can we use uncertainty estimates to detect label attacks on the class prediction?

3. Are uncertainty estimates such as differential entropy a robust feature for OOD
detection?

In addressing these questions we place particular focus on adversarial perturbations of
the input to evaluate the worst case performance of the models on increasing complex
data sets and attacks. We evaluate robustness of DBU models w.r.t. to these three ques-
tions by comparing their performance on unperturbed and perturbed inputs. Perturbed
inputs are obtained by computing label attacks and uncertainty attacks, which are a new
type of attacks we propose. While label attacks aim at changing the class prediction, un-
certainty attacks aim at changing the uncertainty estimate such that ID data is marked
as OOD data and vice versa. In total, we performed more than 138, 800 attack settings
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to explore the robustness landscape of DBU models. Those settings cover different data
sets, attack types, attack losses, attack radii, DBU model types and initialisation seeds.
Finally, we propose and evaluate median smoothing and adversarial training based on
label attacks and uncertainty attacks to make DBU models more robust. Our median
smoothing approach provides certificates on epistemic uncertainty measures such as dif-
ferential entropy and allows to certify uncertainty estimation. The code and further
supplementary material is available online (www.daml.in.tum.de/dbu-robustness).

6.2 Related work

The existence of adversarial examples is a problematic property of neural networks [403,
163]. Previous works have study this phenomena by proposing adversarial attacks [63,
53, 477], defenses [82, 171] and verification techniques [446, 391, 89, 47, 234]. This
includes the study of different settings such as i.i.d. inputs, sequential inputs and graphs
[472, 46, 75, 371].

In the context of uncertainty estimation, robustness of the class prediction has been
studied in previous works for Bayesian Neural Networks [42, 327, 268], drop out [141] or
ensembles [246] focusing on data set shifts [335] or adversarial attacks [60, 61, 441]. De-
spite their efficient and high quality uncertainty estimates, the robustness of DBU models
has not been investigated in detail yet — indeed only for one single DBU model, [273]
has briefly performed attacks aiming to change the label. In contrast, our work focuses
on a large variety of DBU models and analyzes two robustness properties: robustness
of the class prediction w.r.t. adversarial perturbations and robustness of uncertainty
estimation w.r.t. our newly proposed attacks against uncertainty measures.

This so called uncertainty attack directly targets uncertainty estimation and are differ-
ent from traditional label attacks, which target the class prediction [269, 97]. They allow
us to jointly evaluate robustness of the class prediction and robustness of uncertainty
estimation. This goes beyond previous attack defenses that were either focused on eval-
uating robustness w.r.t. class predictions [63, 435] or detecting attacks against the class
prediction [62].

Different models have been proposed to account for uncertainty while being robust.
[392] and [253] have tried to improve label attack detection based on uncertainty using
drop-out or density estimation. In addition to improving label attack detection for large
unseen perturbations, [400] aimed at improving robustness w.r.t. class label predictions
on small input perturbations. They used adversarial training and soft labels for adversar-
ial samples further from the original input. [349] suggested a similar adversarial training
procedure, that softens labels depending on the input robustness. These previous works
consider the aleatoric uncertainty that is contained in the predicted categorical probabil-
ities, but in contrast to DBU models they are not capable of taking epistemic uncertainty
into account.

Recently, four studies tried to obtain certificates on aleatoric uncertainty estimates.
[404] and [244] compute confidence intervals and certificates on softmax predictions.
[39] uses interval bound propagation to compute bounds on softmax predictions within
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the L∞-ball around an OOD sample using ReLU networks. [286] focuses on obtaining
certifiably low confidence for OOD data. These four studies estimate confidence based
on softmax predictions, which accounts for aleatoric uncertainty only. In this chapter,
we provide certificates which apply for all uncertainty measures. In particular, we use
our certificates on epistemic uncertainty measures such as differential entropy which are
well suited for OOD detection.

6.3 Dirichlet-based uncertainty models

Standard (softmax) neural networks predict the parameters of a categorical distribution
p(i) = [p

(i)
1 , . . . , p

(i)
C ] for a given input x(i) ∈ Rd, where C is the number of classes. Given

the parameters of a categorical distribution, the aleatoric uncertainty can be evaluated.
The aleatoric uncertainty is the uncertainty on the class label prediction y(i) ∈ {1, . . . , C}.
For example if we predict the outcome of an unbiased coin flip, the model is expected to
have high aleatoric uncertainty and predict p(head) = 0.5.

α(i)-parametrization Loss OOD training data Ensemble training Density estimation

Posterior Network fθ(x
(i)) = 1+α(i) Bayesian loss No No Yes

PriorNet fθ(x
(i)) = α(i) Reverse KL Yes No No

DDNet fθ(x
(i)) = α(i) Dir. Likelihood No Yes No

EvNet fθ(x
(i)) = 1+α(i) Expected MSE No No No

Table 6.1: Summary of DBU models. Further details on the loss functions are provided in the
appendix.

In contrast to standard (softmax) neural networks, DBU models predict the parameters
of a Dirichlet distribution – the natural prior of categorical distributions – given input x(i)

(i.e. q(i) = Dir(α(i)) where fθ(x(i)) = α(i) ∈ RC+). Hence, the epistemic distribution q(i)

expresses the epistemic uncertainty on x(i), i.e. the uncertainty on the categorical dis-
tribution prediction p(i). From the epistemic distribution, follows an estimate of the
aleatoric distribution of the class label prediction Cat(p̄(i)) where Eq(i) [p(i)] = p̄(i). An
advantage of DBU models is that one pass through the neural network is sufficient to
compute epistemic distribution, aleatoric distribution, and predict the class label:

q(i) = Dir(α(i)), p̄(i)c =
α
(i)
c

α
(i)
0

, y(i) = argmax
c

[p̄(i)c ] (6.1)

where α
(i)
0 =

∑C
c=1 α

(i)
c . This parametrization allows to compute classic uncertainty

measures in closed-form such as the total pseudo-count m(i)
α0 =

∑
c α

(i)
c , the differential

entropy of the Dirichlet distribution m
(i)
diffE = h(Dir(α(i))) or the mutual information

m
(i)
MI = I(y(i),p(i)) (Appendix D.1.1, [271]). Hence, these measure can efficiently be used

to assign high uncertainty to unknown data, which makes DBU models specifically suited
for detection of OOD samples.

Several recently proposed models for uncertainty estimations belong to the family of
DBU models, such as PriorNet, EvNet, DDNet and Posterior Network. These models
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differ in terms of their parametrization of the Dirichlet distribution, the training, and
density estimation. An overview of theses differences is provided in Table 6.1. In our
study we evaluate all recent versions of these models.

Contrary to the other models, Prior Networks (PriorNet) [271, 273] require OOD
data for training to “teach” the neural network the difference between ID and OOD data.
PriorNet is trained with a loss function consisting of two KL-divergence terms. The fist
term is designed to learn Dirichlet parameters for ID data, while the second one is used
to learn a flat Dirichlet distribution for OOD data:

LPriorNet =
1

N

 ∑
x(i)∈ID data

[KL[Dir(αID)||q(i)]]

+
∑

x(i)∈OODdata
[KL[Dir(αOOD)||q(i)]]

 (6.2)

where αID and αOOD are hyper-parameters. Usually αID is set to 1e1 for the correct class
and 1 for all other classes, while αOOD is set to 1 for all classes. There a two variants of
PriorNet. The first one is trained based on reverse KL-divergence [273], while the second
one is trained with KL-divergence [271]. In our experiments, we include the most recent
reverse version of PriorNet, as it shows superior performance [277].

Evidential Networks (EvNet) [374] are trained with a loss that computes the sum of
squares between the on-hot encoded true label y∗(i) and the predicted categorical p(i)

under the Dirichlet distribution:

LEvNet =
1

N

∑
i

Ep(i)∼Dir(α(i))||y ∗(i) −p(i)||2 (6.3)

Ensemble Distribution Distillation (DDNet) [277] is trained in two steps. First, an en-
semble of M classic neural networks needs to be trained. Then, the soft-labels {p(i)m }Mm=1

provided by the ensemble of networks are distilled into a Dirichlet-based network by
fitting them with the maximum likelihood under the Dirichlet distribution:

LDDNet = − 1

N

∑
i

M∑
m=1

[ln q(i)(πim)] (6.4)

where πim denotes the soft-label of mth neural network.
Posterior Network (PostNet) [67] performs density estimation for ID data with nor-

malizing flows and uses a Bayesian loss formulation:

LPosteriorNetwork =
1

N

∑
i

Eq(p(i))[CE(p
(i), y(i))]−H(q(i)) (6.5)

where CE denotes the cross-entropy. All loss functions can be computed in closed-form.
For more details please have a look at the original paper on PriorNet [271], Posterior
Network [67], DDNet [277] and EvNet [374]. Note that EvNet and Posterior Network
model the Dirichlet parameters as fθ(x(i)) = 1 +α(i) while PriorNet, RevPriorNet and
DDNet compute them as fθ(x(i)) = α(i).
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6 Robustness of Uncertainty Estimation

6.4 Robustness of Dirichlet-based uncertainty models

We analyze robustness of DBU models on tasks in connection with uncertainty estimation
w.r.t. the following four aspects: accuracy, confidence calibration, label attack detection
and OOD detection. Uncertainty is quantified by differential entropy, mutual information
or pseudo counts. A formal definition of all uncertainty estimation measures is provided
in the appendix (see Appendix D.1.1).

Robustness of Dirichlet-based uncertainty models is evaluated based on label attacks
and a newly proposed type of attacks called uncertainty attacks. While label attacks
aim at changing the predicted class, uncertainty attacks aim at changing the uncertainty
assigned to a prediction. All previous works are based on label attacks and focus on
robustness w.r.t. the class prediction. Thus, we are the first to propose attacks targeting
uncertainty estimates such as differential entropy and analyze desirable robustness prop-
erties of DBU models beyond the class prediction. Label attacks and uncertainty attacks
both compute a perturbed input x̃(i) close to the original input x(i) i.e. ||x(i)−x̃(i)||2 < r
where r is the attack radius. This perturbed input is obtained by optimizing a loss
function l(x) using Fast Gradient Sign Method (FGSM) or Projected Gradient Descent
(PGD). Furthermore, we include a black box attack setting (Noise) which generates 10
noise samples from a Gaussian distribution, which is centered at the original input. From
these 10 perturbed samples we choose the one with the greatest effect on the loss func-
tion and use it as attack. To complement attacks, we compute certificates on uncertainty
estimates using median smoothing [455].

The following questions we address by our experiments have a common assessment
metric and can be treated as binary classification problems: distinguishing between cor-
rectly and wrongly classified samples, discriminating between non-attacked input and
attacked inputs or differentiating between ID data and OOD data. To quantify the per-
formance of the models on these binary classification problems, we compute the area
under the precision recall curve (AUC-PR).

Experiments are performed on two image data sets (MNIST [249] and CIFAR10 [238]),
which contain bounded inputs and two tabular data sets (Segment [111] and Sensorless
drive [111]), consisting of unbounded inputs. Note that unbounded inputs are challenging
since it is impossible to describe the infinitely large OOD distribution. As PriorNet
requires OOD training data, we use two further image data sets (FashionMNIST [450]
and CIFAR100 [238]) for training on MNIST and CIFAR10, respectively. All other
models are trained without OOD data. To obtain OOD data for the tabular data sets,
we remove classes from the ID data set (class window for the Segment data set and class 9
for Sensorless drive) and use them as the OOD data. Further details on the experimental
setup are provided in the appendix (see Appendix D.1.2).

6.4.1 Uncertainty estimation under label attacks

Label attacks aim at changing the predicted class. To obtain a perturbed input with a
different label, we maximize the cross-entropy loss x̃(i) ≈ argmaxx l(x) = CE(p(i),y(i))
under the radius constraint. For the sake of completeness we additionally analyze label
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6.4 Robustness of Dirichlet-based uncertainty models

attacks w.r.t. to their performance of changing the class prediction and the accuracy
of the neural network under label attacks constraint by different radii (see Appendix,
Table D.1). As expected and partially shown by previous works, none of the DBU
models is robust against label attacks. However, we note that PriorNet is slightly more
robust than the other DBU models. This might be explained by the use of OOD data
during training, which can be seen as some kind of robust training. From now on, we
switch to the core focus of this chapter and analyze robustness properties of uncertainty
estimation.

CIFAR10 Sensorless

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 0.0 0.1 0.2 0.5 1.0 2.0

PostNet 98.7 88.6 56.2 7.8 1.2 0.4 99.7 8.3 3.9 3.6 7.0 9.8
PriorNet 92.9 77.7 60.5 37.6 24.9 11.3 99.8 10.5 3.2 0.7 0.2 0.2

DDNet 97.6 91.8 78.3 18.1 0.8 0.0 99.7 11.9 1.6 0.4 0.2 0.1
EvNet 97.9 85.9 57.2 10.2 4.0 2.4 99.9 22.9 13.0 6.0 3.7 3.2

Table 6.2: Distinguishing between correctly predicted and wrongly predicted labels based on
the differential entropy under PGD label attacks (metric: AUC-PR).

Is low uncertainty a reliable indicator of correct predictions?

Expected behavior: Predictions with low uncertainty are more likely to be correct than
high uncertainty predictions. Assessment metric: We distinguish between correctly clas-
sified samples (label 0) and wrongly classified ones (label 1) based on the differential
entropy scores produced by the DBU models [271]. Correctly classified samples are
expected to have low differential entropy, reflecting the model’s confidence, and anal-
ogously wrongly predicted samples are expected to have higher differential entropy.
Observed behavior: Note that the positive and negative class are not balanced, thus,
the use of AUC-PR scores [369] are important to enable meaningful measures. While un-
certainty estimates are indeed an indicator of correctly classified samples on unperturbed
data, none of the models maintains its high performance on perturbed data computed
by PGD, FGSM or Noise label attacks (see. Tables 6.2, D.7 and D.8). Thus, using un-
certainty estimates as indicator for correctly labeled inputs is not robust to adversarial
perturbations. This result is notable, since the used attacks do not target uncertainty.

CIFAR10 Sensorless

Att. Rad. 0.1 0.2 0.5 1.0 2.0 0.1 0.2 0.5 1.0 2.0

PostNet 63.4 66.9 42.1 32.9 31.6 47.7 42.3 36.9 48.5 85.0
PriorNet 53.3 56.0 55.6 49.2 42.2 38.8 33.6 31.4 33.1 40.9

DDNet 55.8 60.5 57.3 38.7 32.3 53.5 42.2 35.0 32.8 32.6
EvNet 48.4 46.9 46.3 46.3 44.5 48.2 42.6 38.2 36.0 37.2

Table 6.3: Label Attack-Detection by normally trained DBU models based on differential en-
tropy under PGD label attacks (AUC-PR).
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Can uncertainty estimates be used to detect label attacks against the class
prediction?

Expected behavior: Adversarial examples are not from the natural data distribution.
Therefore, DBU models are expected to detect them as OOD data by assigning them
a higher uncertainty. We expect that perturbations computed based on a bigger at-
tack radius r are easier to detect as their distance from the data distribution is larger.
Assessment metric: The goal of attack-detection is to distinguish between unperturbed
samples (label 0) and perturbed samples (label 1). Uncertainty on samples is quantified
by the differential uncertainty [271]. Unperturbed samples are expected to have low dif-
ferential entropy, because they are from the same distribution as the training data, while
perturbed samples are expected to have a high differential entropy. Observed behavior:
Table D.1 shows that the accuracy of all models decreases significantly under PGD la-
bel attacks, but none of the models is able to provide an equivalently increasing attack
detection rate (see Table 6.3). Even larger perturbations are hard to detect for DBU
models.

Similar results are obtained when we use mutual information or the precision α0 to
quantify uncertainty (see appendix Tables D.5 and D.6). Although PGD label attacks
do not explicitly consider uncertainty, they seem to generate adversarial examples with
similar uncertainty as the original input. Such high-certainty adversarial examples are
illustrated in Fig. 6.2, where certainty is visualized based on the precision α0, which
is supposed to be high for ID data and low for OOD data. While the original input
(perturbation size 0.0) is correctly classified as frog and ID data, there exist adversarial
examples that are classified as deer or bird. The certainty (α0-score) on the prediction
of these adversarial examples has a similar or even higher value than on the prediction
of the original input. Using the differential entropy to distinguish between ID and OOD
data results in the same ID/OOD assignment since the differential entropy of the three
right-most adversarial examples is similar or even smaller than on the unperturbed input.

Under the less powerful FGSM and Noise attacks (see Appendix), DBU models achieve
mostly higher attack detection rates than under PGD attacks. This suggests that uncer-
tainty estimation is able to detect weak attacks, which is consistent with the observations
in [272] but fails under stronger PGD attacks.

On tabular data sets, PostNet shows a better label attack detection rate for large per-
turbations. This observation might be explained by the fact that the density estimation
of the ID samples has been shown to work better for tabular data sets [67]. Overall,
none of the DBU models provides a reliable indicator for adversarial inputs that target
the class prediction.

6.4.2 Attacking uncertainty estimation

DBU models are designed to provide sophisticated uncertainty estimates (beyond softmax
scores) alongside predictions and use them to detect OOD samples. In this section,
we propose and analyze a new attack type that targets these uncertainty estimates.
DBU models enable us to compute uncertainty measures i.e. differential entropy, mutual
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6.4 Robustness of Dirichlet-based uncertainty models

Figure 6.2: Input and predicted Dirichlet-parameters under label attacks (dotted line: thresh-
old to distinguish ID and OOD data).

information and precision α0 in closed from (see [271] for a derivation). Uncertainty
attacks use this closed form solution as loss function for PGD, FGSM or Noise attacks.
Since differential entropy is the most widely used metric for ID-OOD-differentiation, we
present results based on the differential entropy loss function x̃(i) ≈ argmaxx l(x) =
Diff-E(Dir(α(i))):

Diff-E(Dir(α(i))) =
K∑
c

ln Γ(α(i)
c )− ln Γ(α

(i)
0 )

−
K∑
c

(α(i)
c − 1) · (Ψ(α(i)

c )−Ψ(α
(i)
0 ))

(6.6)

where α(i)
0 =

∑
c α

(i)
c . Result based on further uncertainty measures, loss functions and

more details on attacks are provided in the appendix.
We analyze the performance of DBU models under uncertainty attacks w.r.t. two tasks.

First, uncertainty attacks are computed on ID data aiming to indicate it as OOD data,
while OOD data is left non-attacked. Second, we attack OOD data aiming to indicate it
as ID data, while ID data is not attacked. Hence, uncertainty attacks target at posing
ID data as OOD data and vice versa.

Are uncertainty estimates a robust feature for OOD detection?

Expected behavior: We expect DBU models to be able to distinguish between ID and
OOD data by providing reliable uncertainty estimates, even under small perturbations.
Thus, we expect uncertainty estimates of DBU models to be robust under attacks.
Assessment metric: We distinguish between ID data (label 0) and OOD data (label
1) based on the differential entropy as uncertainty scoring function [271]. Differential
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6 Robustness of Uncertainty Estimation

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 0.0 0.1 0.2 0.5 1.0 2.0

CIFAR10 – SVHN
PostNet 81.8 64.3 47.2 22.4 17.6 16.9 81.8 60.5 40.7 23.3 21.8 19.8
PriorNet 54.4 40.1 30.0 17.9 15.6 15.4 54.4 40.7 30.7 19.5 16.5 15.7

DDNet 82.8 71.4 59.2 28.9 16.0 15.4 82.8 72.0 57.2 20.8 15.6 15.4
EvNet 80.3 62.4 45.4 21.7 17.9 16.5 80.3 58.2 46.5 34.6 28.0 23.9

Sens. – Sens. class 10, 11
PostNet 74.5 39.8 36.1 36.0 45.9 46.0 74.5 43.3 42.0 32.1 35.1 82.6
PriorNet 32.3 26.6 26.5 26.5 26.6 28.3 32.3 26.7 26.6 26.6 27.0 30.4

DDNet 31.7 26.8 26.6 26.5 26.6 27.1 31.7 27.1 26.7 26.7 26.8 26.9
EvNet 66.5 30.5 28.2 27.1 28.1 31.8 66.5 38.7 36.1 30.2 28.2 28.8

Table 6.4: OOD detection based on differential entropy under PGD uncertainty attacks against
differential entropy computed on ID data and OOD data (metric: AUC-PR).

(a) OOD uncertainty attack (b) ID uncertainty attack

Figure 6.3: ID and OOD input with corresponding Dirichlet-parameters under uncertainty at-
tacks (dotted line: threshold to distinguish ID and OOD).

entropy is expected to be small on ID samples and high on OOD samples. Experiments
on further uncertainty measure and results on the AUROC metric are provided in the
appendix. Observed behavior: OOD samples are perturbed as illustrated in Fig. 6.3. Part
(a) of the figure illustrates an OOD-samples, that is correctly identified as OOD. Adding
adversarial perturbations ≥ 0.5 changes the Dirichlet parameters such that the result-
ing images are identified as ID, based on precision or differential entropy as uncertainty
measure. Perturbing an ID sample (part (b)) results in images that are marked as OOD
samples. OOD detection performance of all DBU models rapidly decreases with the size
of the perturbation, regardless of whether attacks are computed on ID or OOD data (see
Table 6.4). This performance decrease is also observed with AUROC as metric, attacks
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6.4 Robustness of Dirichlet-based uncertainty models

based on FGSM, Noise, when we use mutual information or precision α0 to distinguish
between ID samples and OOD samples (see appendix Tables D.14 to D.21). Thus, using
uncertainty estimation to distinguish between ID and OOD data is not robust.

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 80.5 · 91.5 · 94.5 52.8 · 71.6 · 95.2 31.9 · 51.0 · 96.8 5.6 · 11.7 · 100.0 0.3 · 0.6 · 100.0 0.0 · 0.0 · 100.0
PriorNet 81.9 · 86.8 · 88.0 69.6 · 78.0 · 90.1 50.9 · 65.8 · 89.4 36.5 · 59.9 · 97.0 24.3 · 39.3 · 100.0 9.2 · 17.9 · 100.0
DDNet 65.9 · 81.2 · 83.0 55.8 · 70.5 · 87.2 37.8 · 56.8 · 88.1 10.1 · 21.9 · 94.3 0.9 · 1.6 · 99.6 0.0 · 0.0 · 100.0
EvNet 76.3 · 90.2 · 91.7 54.7 · 74.3 · 95.7 31.6 · 51.5 · 94.5 5.8 · 11.9 · 86.9 1.9 · 7.0 · 100.0 1.1 · 4.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 52.1 · 71.8 · 95.6 31.2 · 47.9 · 96.1 7.8 · 14.7 · 98.6 1.8 · 4.4 · 100.0 0.3 · 0.5 · 100.0
PriorNet - 57.6 · 71.7 · 88.9 46.1 · 64.5 · 90.1 38.1 · 59.3 · 99.5 32.3 · 51.7 · 100.0 22.1 · 41.6 · 97.4
DDNet - 58.6 · 78.4 · 92.2 49.4 · 66.0 · 90.5 12.0 · 21.4 · 98.1 0.8 · 1.0 · 96.6 0.0 · 0.0 · 100.0
EvNet - 24.3 · 34.2 · 51.8 32.6 · 49.5 · 95.5 5.9 · 13.0 · 100.0 2.6 · 5.2 · 99.9 2.9 · 5.9 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 52.8 · 74.2 · 94.6 33.0 · 49.4 · 87.5 7.7 · 14.2 · 99.0 0.6 · 1.2 · 100.0 0.7 · 1.1 · 100.0
PriorNet - 50.6 · 68.1 · 88.6 44.4 · 66.1 · 96.0 35.1 · 57.4 · 98.4 18.4 · 32.2 · 100.0 15.2 · 29.3 · 100.0
DDNet - 68.8 · 84.4 · 93.2 45.1 · 60.8 · 86.8 12.3 · 22.0 · 91.0 0.8 · 1.7 · 87.0 0.0 · 0.0 · 100.0
EvNet - 54.2 · 73.7 · 96.1 30.5 · 50.0 · 99.5 7.1 · 13.9 · 100.0 3.7 · 8.7 · 75.2 3.3 · 5.8 · 100.0

Table 6.5: Distinguishing between correctly and wrongly predicted labels based on differential
entropy under PGD label attacks. Smoothed DBU models on CIFAR10. Column
format: guaranteed lowest performance · empirical performance · guaranteed highest
performance (blue: normally/adversarially trained smooth classifier is more robust
than the base model).

Att. Rad. 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 33.1 · 50.4 · 89.9 31.0 · 50.2 · 96.9 30.7 · 50.2 · 100.0 30.7 · 50.0 · 100.0 30.7 · 50.2 · 100.0
PriorNet 35.9 · 50.6 · 74.5 33.0 · 50.3 · 82.8 31.2 · 50.0 · 95.7 30.7 · 50.4 · 99.9 30.7 · 50.4 · 100.0
DDNet 36.3 · 50.3 · 76.4 32.8 · 49.9 · 84.6 30.8 · 50.1 · 98.0 30.7 · 50.2 · 100.0 30.7 · 50.2 · 100.0
EvNet 32.9 · 50.4 · 89.8 31.4 · 50.1 · 94.0 30.8 · 50.0 · 98.0 30.7 · 50.3 · 100.0 30.7 · 49.6 · 100.0

Smoothed
+ adv.
label
attacks

PostNet 32.7 · 50.1 · 90.4 31.1 · 50.2 · 96.5 30.7 · 50.2 · 99.7 30.7 · 50.3 · 100.0 30.7 · 50.2 · 100.0
PriorNet 35.2 · 51.8 · 78.6 32.8 · 51.1 · 84.4 30.8 · 50.2 · 98.7 30.7 · 50.5 · 100.0 30.8 · 50.1 · 98.2
DDNet 35.5 · 50.6 · 79.2 33.4 · 50.3 · 84.1 30.8 · 50.1 · 99.2 30.7 · 50.0 · 100.0 30.7 · 50.5 · 100.0
EvNet 40.3 · 50.4 · 66.8 31.4 · 50.3 · 95.8 30.7 · 50.3 · 100.0 30.7 · 50.1 · 100.0 30.7 · 50.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet 33.3 · 50.6 · 88.7 32.5 · 50.1 · 87.9 30.7 · 49.9 · 99.8 30.7 · 50.1 · 100.0 30.7 · 50.0 · 100.0
PriorNet 34.5 · 51.0 · 80.1 31.4 · 50.6 · 92.8 30.9 · 50.0 · 97.7 30.7 · 50.1 · 100.0 30.7 · 50.0 · 100.0
DDNet 37.4 · 50.8 · 74.5 33.4 · 50.2 · 83.0 30.9 · 50.1 · 96.8 30.8 · 49.9 · 98.1 30.7 · 49.9 · 100.0
EvNet 32.8 · 50.1 · 92.0 30.8 · 50.0 · 99.6 30.7 · 50.1 · 100.0 31.2 · 50.2 · 96.1 31.0 · 50.0 · 100.0

Table 6.6: Attack detection (PGD label attacks) based on differential entropy. Smoothed DBU
models on CIFAR10. Column format: guaranteed lowest performance · empirical
performance · guaranteed highest performance (blue: normally/adversarially trained
smooth classifier is more robust than the base model).

6.4.3 How to make DBU models more robust?

Our robustness analysis based on label attacks and uncertainty attacks shows that predic-
tions, uncertainty estimation and the differentiation between ID and OOD data are not
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Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

ID-Attack

Smoothed
models

PostNet 72.1 · 82.7 · 88.0 35.0 · 56.6 · 97.4 31.9 · 65.6 · 99.8 30.7 · 50.6 · 100.0 30.7 · 46.9 · 100.0 30.7 · 51.6 · 100.0
PriorNet 50.2 · 53.1 · 55.9 33.5 · 43.3 · 65.3 31.3 · 39.7 · 69.1 31.3 · 48.3 · 98.2 30.7 · 44.4 · 99.9 30.7 · 45.4 · 100.0
DDNet 72.0 · 75.8 · 79.8 35.6 · 46.2 · 69.8 32.9 · 50.3 · 87.1 31.1 · 58.7 · 98.6 30.7 · 59.3 · 100.0 30.7 · 44.5 · 100.0
EvNet 79.5 · 87.1 · 92.8 34.1 · 58.6 · 95.1 32.5 · 61.2 · 96.9 31.7 · 60.6 · 98.7 30.7 · 62.4 · 100.0 30.7 · 57.3 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 35.0 · 58.5 · 97.7 31.2 · 46.6 · 97.4 30.8 · 57.7 · 99.7 30.7 · 49.8 · 100.0 30.7 · 50.9 · 100.0
PriorNet - 31.5 · 36.7 · 57.2 33.1 · 51.8 · 84.8 30.7 · 57.7 · 98.7 30.7 · 40.0 · 99.9 30.9 · 53.6 · 96.7
DDNet - 36.2 · 50.0 · 78.6 32.1 · 41.3 · 70.2 30.8 · 56.4 · 100.0 30.7 · 49.4 · 100.0 30.7 · 54.8 · 100.0
EvNet - 46.8 · 61.0 · 79.7 32.3 · 58.9 · 99.1 30.7 · 45.0 · 100.0 30.7 · 63.3 · 100.0 30.8 · 38.1 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 35.2 · 55.9 · 96.0 34.5 · 59.2 · 94.9 30.7 · 47.0 · 100.0 30.7 · 58.2 · 100.0 30.7 · 42.9 · 100.0
PriorNet - 31.8 · 38.9 · 64.1 31.0 · 41.8 · 87.9 30.7 · 42.9 · 99.2 30.7 · 48.6 · 100.0 30.7 · 46.6 · 100.0
DDNet - 39.7 · 52.1 · 75.7 36.4 · 56.8 · 83.8 31.0 · 51.5 · 97.4 31.0 · 56.8 · 97.8 30.7 · 49.1 · 100.0
EvNet - 34.8 · 64.9 · 99.6 30.8 · 48.9 · 99.8 30.7 · 66.8 · 100.0 30.9 · 41.5 · 93.8 31.1 · 55.1 · 100.0

OOD-Attack

Smoothed
models

PostNet 72.0 · 82.7 · 88.0 35.1 · 56.8 · 97.3 32.0 · 65.8 · 99.8 30.7 · 50.7 · 100.0 30.7 · 46.5 · 100.0 30.7 · 51.7 · 100.0
PriorNet 50.3 · 53.1 · 55.9 33.6 · 43.7 · 65.9 31.3 · 39.8 · 69.4 31.3 · 48.3 · 98.2 30.7 · 44.5 · 99.9 30.7 · 46.4 · 100.0
DDNet 72.0 · 75.8 · 79.8 35.6 · 46.2 · 70.0 32.9 · 50.1 · 86.7 31.1 · 58.8 · 98.6 30.7 · 59.3 · 100.0 30.7 · 44.6 · 100.0
EvNet 79.5 · 87.1 · 92.8 34.1 · 58.8 · 95.2 32.6 · 61.2 · 96.9 31.7 · 60.5 · 98.7 30.7 · 62.4 · 100.0 30.7 · 57.6 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 35.0 · 58.5 · 97.8 31.2 · 46.6 · 97.2 30.8 · 57.7 · 99.7 30.7 · 50.2 · 100.0 30.7 · 51.5 · 100.0
PriorNet - 31.6 · 37.3 · 59.3 33.2 · 52.7 · 85.8 30.7 · 57.8 · 98.7 30.7 · 40.1 · 99.9 30.9 · 53.8 · 96.8
DDNet - 36.4 · 50.2 · 78.9 32.1 · 41.5 · 70.4 30.9 · 56.2 · 100.0 30.7 · 49.3 · 100.0 30.7 · 55.1 · 100.0
EvNet - 47.2 · 61.1 · 80.0 32.4 · 59.1 · 99.1 30.7 · 45.0 · 100.0 30.7 · 63.2 · 100.0 30.8 · 38.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 35.3 · 56.4 · 96.1 34.5 · 59.0 · 94.9 30.7 · 46.8 · 100.0 30.7 · 57.8 · 100.0 30.7 · 43.2 · 100.0
PriorNet - 31.9 · 39.4 · 65.5 31.0 · 42.0 · 88.6 30.7 · 42.9 · 99.2 30.7 · 48.4 · 100.0 30.7 · 47.1 · 100.0
DDNet - 40.2 · 52.9 · 76.5 36.4 · 56.9 · 83.9 31.1 · 51.5 · 97.3 31.0 · 57.0 · 97.8 30.7 · 49.1 · 100.0
EvNet - 34.9 · 64.8 · 99.6 30.8 · 48.8 · 99.8 30.7 · 66.1 · 100.0 30.9 · 41.6 · 93.6 31.1 · 54.7 · 100.0

Table 6.7: OOD detection based on differential entropy under PGD uncertainty attacks against
differential entropy on ID data and OOD data. Smoothed DBU models on CIFAR10.
Column format: guaranteed lowest performance · empirical performance · guaranteed
highest performance (blue: normally/adversarially trained smooth classifier is more
robust than the base model).

robust. Next, we explore approaches to improve robustness properties of DBU models
w.r.t. these tasks based on randomized smoothing and adversarial training.

Randomized smoothing was originally proposed for certification of classifiers [89]. The
core idea is to draw multiple samples x(i)

s ∼ N (x(i), σ) around the input data x(i),
to feed all these samples through the neural network, and to aggregate the resulting
set of predictions (e.g. by taking their mean), to get a smoothed prediction. Besides
allowing certification, as a side effect, the smoothed model is more robust. Our idea is
to use randomized smoothing to improve robustness of DBU models, particularly w.r.t.
uncertainty estimation. In contrast to discrete class predictions, however, certifying
uncertainty estimates such as differential entropy scores requires a smoothing approach
that is able to handle continuous values as in regression tasks. So far, only few works for
randomized smoothing for regression models have been proposed [244, 455]. We choose
median smoothing [455], because it is applicable to unbounded domains as required for
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the uncertainty estimates covered in this chapter. In simple words: The set of uncertainty
scores obtained from the x(i)

s ∼ N (x(i), σ) is aggregated by taking their median.
In the following experiments we focus on differential entropy as the uncertainty score.

We denote the resulting smoothed differential entropy, i.e. the median output, asm(x(i)).
Intuitively, we expect that the random sampling around a data point as well as the outlier-
insensitivity of the median to improve the robustness of the uncertainty estimates w.r.t.
adversarial examples.

To measure the performance and robustness of our smoothed DBU models, we apply
median smoothing on the same tasks as in the previous sections, i.e., distinguishing
between correctly and wrongly labeled inputs, attack detection, OOD detection and
compute the corresponding AUC-PR score under label attacks and uncertainty attacks.
The bold, middle part of the columns in Tables 6.5 to 6.7 show the AUC-PR scores on
CIFAR10, which we call empirical performance of the smoothed models. To facilitate the
comparison with the base model of Section 6.4, we highlight the AUC-PR scores in blue
in cases where the smooth model is more robust. The highlighting clearly shows that
randomized smoothing increases the robustness of the empirical performance on OOD
detection. OOD detection under strong PGD attacks (attack radius ≥ 0.5) performs
comparable to random guessing (i.e. AUC-PR scores around 50% whith 50% ID and
50% OOD data). This shows that DBU models are not reliably efficient w.r.t. this task.
In attack detection and distinguishing between correctly and wrongly predicted labels
the smoothed DBU model are mostly more robust than the base models for attack radii
≥ 0.5.

Certified performance. Using the median based on smoothing improves the empirical
robustness, but it does not provide formal guarantees how low/high the performance
might actually get under perturbed data (since any attack is only a heuristic). Here, we
propose novel guarantees by exploiting the individual certificates we obtain via random-
ized smoothing. Note that the certification procedure [455] enables us to derive lower
and upper bounds m(x(i)) ≤ m(x(i)) ≤ m(x(i)) which hold with high probability and
indicate how much the median might change in the worst-case when x(i) gets perturbed
subject to a specific (attack) radius.

These bounds allow us to compute certificates that bound the performance of the
smooth models, which we refer to as the guaranteed lowest performance and guaranteed
highest performance. More precisely, for the guaranteed lowest performance of the model
we take the pessimistic view that all ID data points realize their individual upper bounds
m(x(i)), i.e. have their highest possible uncertainty (worst case). On the other hand, we
assume all OOD samples realize their lower bounds m(x

(i)
s ). Using these values as the

uncertainty scores for all data points we obtain the guaranteed lowest performance of the
model. A guaranteed lowest performance of e.g. 35.0 means that even under the worst
case conditions an attack is not able to decrease the performance below 35.0. Analogously,
we can take the optimistic view to obtain the guaranteed highest performance of the
smoothed models. Tables 6.5 to 6.7 show the guaranteed lowest/highest performance
(non-bold, left/right of the empirical performance). Our results show that the difference
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6 Robustness of Uncertainty Estimation

between guaranteed highest and guaranteed lowest performance increases with the attack
radius, which might be explained by the underlying lower/upper bounds on the median
being tighter for smaller perturbations.

Adversarial training. Randomized smoothing improves robustness of DBU models and
allows us to compute performance guarantees. However, an open question is whether it
is possible to increase robustness even further by combining it with adversarial training.
To obtain adversarially trained models we augment the data set using perturbed samples
that are computed by PGD attacks against the cross-entropy loss (label attacks) or the
differential entropy (uncertainty attacks). These perturbed samples x̃(i) are computed
during each epoch of the training based on inputs x(i) and added to the training data
(with the label y(i) of the original input). Tables 6.5 to 6.7 illustrate the results. We
choose the attack radius used during training and the σ used for smoothing to be equal.
To facilitate comparison, we highlight the empirical performance of the adversarially
trained models in blue if it is better than the performance of the base model. Our results
show that the additional use of adversarial training has a minor effect on the robustness
and does not result in a significant further increase of the robustness.

We conclude that median smoothing is a promising technique to increase robustness
w.r.t. distinguishing between correctly labeled samples and wrongly labeled samples,
attack detection and differentiation between in-distribution data and out-of-distribution
data of all Dirichlet-based uncertainty models, while additional adversarial training has
a minor positive effect on robustness.

6.5 Conclusion

This chapter analyzes robustness of uncertainty estimation by DBU models and answers
multiple questions in this context. Our results show: (1) While uncertainty estimates
are a good indicator to identify correctly classified samples on unperturbed data, per-
formance decrease drastically on perturbed data-points. (2) None of the Dirichlet-based
uncertainty models is able to detect PGD label attacks against the class prediction by
uncertainty estimation, regardless of the used uncertainty measure. (3) Detecting OOD
samples and distinguishing between ID-data and OOD-data is not robust. (4) Applying
median smoothing to uncertainty estimates increases robustness of DBU models w.r.t. all
analyzed tasks, while adversarial training based on label or uncertainty attacks resulted
in minor improvements.
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In this section, we provide a retrospective on the Chapters 3 to 6 since their publication
by discussing potential improvements and the related works published a posteriori.

7.1 Uncertainty estimation for classification and regression

Potential improvements. The proposed methods PostNet (see Chapter 3) and NatPN
(see Chapter 4) for uncertainty estimation for classification and regression are composed
of several components (e.g. encoder/decoder, density estimator, prior, loss, optimizer)
with potential improvements. While Chapter 5 studies the impact of training, archi-
tecture, and prior specification for deterministic uncertainty methods, we believe that
further improvements can be achieved in these directions. First, more expressive den-
sity estimator like other recent normalizing flows [232] and diffusion models [218] could
improve uncertainty estimation. Second, it would be interesting to explore if different
choices of prior can improve performance as it have been shown to have a significant
impact in other Bayesian neural networks [438, 5]. Finally, the design of Bayesian loss
has shown to be an important choice for uncertainty estimation [32, 33].

Recent related works. Recently, the approaches presented in this thesis have been at
the core of a survey on evidential deep learning [419] and implemented in Google un-
certainty benchmark [305]. Similar to our approach, other works have also subsequently
explored Bayesian neural networks which are not fully stochastic [377] and uncertainty
estimation methods with density estimation [110, 345, 375]. Some other works explored
efficient uncertainty estimation by proposing to train a single larger network [4], an
ensemble of subnetworks [178], training energy-based models [120], or pruning neural
networks [21]. Further, multiple methods proposed to use conformal predictions to pro-
vide uncertainty estimates for any trained model by using an additional calibration set
[13, 340]. Finally, other recent works [288, 414] had a close look at the evaluation of
uncertainty estimation for modern and large pretrained models. Beyond uncertainty
models, [203] has also analyzed what are appropriate uncertainty measures for epistemic
and aleatoric uncertainty in machine learning.

7.2 Practicality and Robustness of uncertainty estimation

Potential improvements. First, the study in Chapter 5 could be extended to account
for different task settings involving small datasets, large datasets, or active learning sce-
narios. Beyond further analysis and improvements of the components of deterministic
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uncertainty methods, we believe that it would be interesting to extend the practical
study in Chapter 5 with theoretical results. In particular, it might be interesting to show
that the trade-off between OOD generalization and OOD detection is not only due to
empirically observed feature collapse but is also due to fundamental theoretical limita-
tions. Second, the proposed methods and evaluations for the robustness of uncertainty
estimation in Chapter 6 has two main directions of improvements. First, it would be
interesting to extend the benchmark to other recent uncertainty methods and datasets.
This would allow to give a more extensive view on the weaknesses of existing uncertainty
methods. Second, no approaches have shown significant gain in uncertainty robustness.
Indeed, adversarial training and smoothing approaches detailed in Chapter 6 have shown
only small improvement.

Recent related works. Recently, [144] and [463] proposed attacks on uncertainty esti-
mations which are very similar to our approach without proposing solutions for robust
uncertainty estimation. Only [287] has proposed another method for certifiable uncer-
tainty estimation. On a different direction, [105] proposed to use input uncertainty to
design less perceptible adversarial attacks. Finally, [9] proposed to provide uncertainty
estimates based on adversarial attacks. Despite the fast progress of uncertainty attacks,
this field is relatively new and adversarial robustness for uncertainty estimation is still
unsolved.
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8 Uncertainty Estimation for Graph Data

Doubt is not a pleasant condition, but certainty is absurd.

Voltaire

8.1 Introduction

After previously studying uncertainty estimation on independent data in Part II, we now
focus on uncertainty estimation for non-independent data (e.g. graph data, sequential
data). To this end, we start in this chapter by considering the task of node classification
on graphs.

Traditionally, machine learning models assume i.i.d. inputs, thus performing predic-
tions based on input features only. For uncertainty estimation on i.i.d. inputs, a large
class of definitions, models and evaluation methods have been introduced [141, 275, 3,
335, 235]. Further, uncertainty estimation has been successfully applied to different
tasks e.g. out-of-distribution (OOD) or shift detection [335], active learning [316, 251],
continual learning [7] or reinforcement learning [84].

In contrast, uncertainty estimation on interdependent nodes is more complex than on
i.i.d. inputs and under-explored [3]. A node in an attributed graph is characterized by
two types of information: its features and its neighborhood. While the feature informa-
tion indicates the node position in the feature space – similarly to i.i.d. inputs –, the
neighborhood information indicates the additional node position in the network space.
To leverage the neighborhood information, recent graph neural networks (GNNs) suc-
cessfully proposed to enrich and correct the possibly noisy information of the features of
a single node by aggregating them with the features of its neighborhood [222, 423, 229].
It naturally leads to the distinction between predictions without network effects based
exclusively on their own node feature representation, and predictions with network effects
based on neighborhood aggregation. The aggregation step commonly assumes network
homophily which states that nodes with similar properties tend to connect to each other
more densely, thus violating the i.i.d. assumption between node features given their
neighborhood.

The core motivation of our work is to transfer some of the existing uncertainty estima-
tion definitions, models and evaluations from i.i.d. inputs to interdependent node inputs
by leveraging both the feature and the neighborhood information. In particular, we aim
at an accurate quantification of the aleatoric and epistemic uncertainty without and with
network effect under network homophily (see Fig. 8.1).
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Figure 8.1: Illustration of aleatoric uncertainty (AU) and epistemic uncertainty (EU) without
and with network effects (i.e. i.i.d. inputs vs interdependent inputs). Nodes have
the same features in all cases. Network effects are visualized through edges between
nodes which change the predicted distributions. The aleatoric uncertainty is high
if the categorical distribution ŷ(v) ∼ Cat(p(v)) is flat. The epistemic uncertainty
is high if the Dirichlet distribution p(v) ∼ Dir(α(v)) is spread out. We refer the
reader to Section 8.3.2 for formal definitions of those distributions.

Our contribution. In this chapter, we consider uncertainty estimation on semi-supervised
node classification. First, we derive three desiderata which materialize reasonable un-
certainty for non-independent inputs. These desiderata cover the traditional notions
of aleatoric and epistemic uncertainty and distinguish between the uncertainty with and
without network effects. Second, we propose Graph Posterior Network (GPN)1 for uncer-
tainty estimation for node classification and prove formally that it follows the desiderata
requirements contrary to popular GNNs. Third, we build an extensive evaluation setup
for uncertainty estimation which relies on the assessment of uncertainty estimation qual-
ity of OOD detection and robustness against shifts of the attributed graph properties.
Both OOD data and attributed graph shifts distinguish between attribute and structure
anomalies. The theoretical properties of GPN manifest in these experiments where it
outperforms all other baselines on uncertainty evaluation.

8.2 Related Work

In this section, we cover the related work for predictive uncertainty estimation for i.i.d.
inputs and for graphs. To this end, we review the commonly accepted desiderata defining
the desired uncertainty estimation under different circumstances, the methods capable
of consistent uncertainty quantification and the evaluation validating the quality of the
uncertainty estimates in practice.

Uncertainty for i.i.d. inputs. The related work for uncertainty quantification on i.i.d.
inputs is rich as for example shown in a recent survey [3]. Desiderata: Far from ID data,
the predicted uncertainty is expected to be high [286, 68, 237, 142]. Close to ID data,
the desired uncertainty is more complicated. Indeed, while some works expected models
to be robust to small dataset shifts [335, 400], other works expected to detect near OOD
classes based on uncertainty [443, 235, 64]. Methods: Many methods already exist for

1Project page including code at https://www.daml.in.tum.de/graph-postnet
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uncertainty quantification for i.i.d. inputs like images or tabular data. A first family of
models quantifies uncertainty by aggregating statistics (e.g. mean, variance or entropy)
from sub-networks with different weights. Important examples are ensemble [246, 434,
439, 178], dropout [397] or Bayesian Neural Networks (BNN) [42, 103, 268, 128, 114].
Most of these approaches require multiple forward-passes for uncertainty quantification.
Further, dropout and BNN may have other pitfalls regarding their limited applicability
to more complex tasks [329, 191, 170, 135]. A second family quantifies uncertainty by
using the logit information. Important examples are temperature scaling which rescale
the logits after training [175, 255] and energy-based models which interpret the logits
as energy scores [259, 169]. A third family of model quantifies uncertainty based on
deep Gaussian Processes (GP). Important examples use GP at activation-level [300]
or at (last) layer-level [247, 237, 420, 36]. Finally, a last family of models quantifies
uncertainty by directly parameterizing a conjugate prior distribution over the target
variable. Important examples explicitly parameterize prior distributions [374, 277, 270,
273, 10] or posterior distributions [67, 68]. Methods based on GP and conjugate prior
usually have the advantage of deterministic and fast inference. Evaluation: Previous
works have already proposed empirical evaluation of uncertainty estimation by looking
at accuracy, calibration or OOD detection metrics under dataset shifts or adversarial
perturbations for i.i.d. inputs [335, 235]. In contrast with all these approaches, this
chapter studies uncertainty quantification for classification of interdependent nodes.

Uncertainty for graphs. Notably, the recent survey [3] points out that there is only
a limited number of studies on uncertainty quantification on GNN and semi-supervised
learning. Moreover, they recommend proposing new methods. desiderata: To the best
of our knowledge, only [124] proposed explicit desiderata for node classification for non-
attributed graphs. They expect disconnected nodes to recover prior predictions and
nodes with higher beliefs to be more convincing. In this chapter, we clarify the desired
uncertainty estimation for node classification on attributed graphs based on motivated
and explicit desiderata. Methods: The largest family of models for uncertainty for graphs
are dropout- or Bayesian-based methods. Important examples propose to drop or assign
probabilities to edges [363, 73, 177, 94, 195]. Further works proposed to combine the
uncertainty on the graph structure with uncertainty on the transformation weights sim-
ilarly to BNN [121, 468, 337, 338]. Importantly, these models do not directly quantify
uncertainty on the prediction. Similarly to the i.i.d. case, a second family of models fo-
cuses on deterministic uncertainty quantification. Important examples mostly use Graph
Gaussian Processes, which do not easily scale to large graphs [315, 473, 261, 49]. Only
[470] explicitly parameterized a Dirichlet conjugate prior. They combined it with mul-
tiple components (Graph-Based Kernel, dropout, Teacher Network, loss regularizations)
which cannot easily distinguish between uncertainty without and with network effects. In
contrast, GPN is a simple approach based on conjugate prior parametrization and disen-
tangles uncertainty with and without network effects. Evaluation: The evaluation of most
of those methods was not focused on the quality of the uncertainty estimates but on the
target task metrics (e.g. accuracy for classification, distance to ground truth for regres-
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8 Uncertainty Estimation for Graph Data

sion). Some methods focus on robustness of the target task metrics against adversarial
perturbations [174, 480, 478]. Other methods only relied on uncertainty quantification
to build more robust models [475, 132]. For node classification, only few works evalu-
ated uncertainty by using Left-Out classes or detection of missclassified samples [470],
active learning [315] or visualization [49]. Note that proposed uncertainty evaluations on
molecules at graph level [467, 367, 8, 188, 415] is an orthogonal problem. In this chapter,
we propose a sound and extensive evaluation for uncertainty in node classification. It
distinguishes between OOD nodes w.r.t. features and structure, and graph dataset shifts
w.r.t. the percentage of perturbed node features and the percentage of perturbed edges.

8.3 Uncertainty Quantification for Node Classification

We consider the task of (semi-supervised) node classification on an attributed graph
G = (A,X) with adjacency matrix A ∈ {0, 1}N×N and node attribute matrix X ∈
RN×D. We aim at inferring the labels y(v) ∈ {1, ..., C} plus the the aleatoric uncer-
tainty u(v)alea and the epistemic uncertainty u(v)epist of unlabeled nodes v ∈ T given a set of
labelled nodes u ∈ U in the graph where V = T ∪ U denotes the set of vertices.

8.3.1 Desiderata

Uncertainty estimation in the setting of interdependent inputs is not well-studied. It of-
ten leaves the expected behavior and interpretations for uncertainty estimation unclear.
Thus, we need well-grounded desiderata to derive meaningful models. In this section, we
aim at specifying the desired uncertainty predictions under various circumstances in ho-
mophilic attributed graphs. To this end, we propose three desiderata which are based on
the two following distinctions. The first distinction differentiates between aleatoric and
epistemic uncertainty which are commonly used concepts under the i.i.d. assumptions
[141, 275]. The second distinction differentiates between uncertainty without and with
network effects which are motivated by the concepts of attribute and structure anoma-
lies used in the attributed graph setting [45]. These new desiderata cover all possible
combinations encountered by these distinctions and extend the desiderata proposed by
[124] for non-attributed graphs. We designed the desiderata to be informal and generic
so that they are application independent, model-agnostic and do not require complex
mathematical notations similarly to [124, 324]. In practice, formal definitions need to
instantiate general concepts like aleatoric/epistemic uncertainty and with/without net-
work effects noting that some definitions might be more convenient depending on the
task. The first desideratum deals with (epistemic and aleatoric) uncertainty estimation
without network effects (see Figs. 8.1a and 8.1c). :

Desideratum 8.3.1. A node’s prediction in the absence of network effects should only
depend on its own features. A node with features more different from training features
should be assigned higher uncertainty.

Desideratum 8.3.1 states that if a node v has no neighbors, then the final prediction p(v)

should only depend on its own node features x(v). Further, for anomalous features the
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model should fall back to safe prior predictions, indicating high aleatoric and epistemic
uncertainty. This aligns with [124] which expects to recover prior predictions for non-
attributed nodes without network effect, and [286, 68] which expect to recover prior
predictions far from training data for i.i.d. inputs. The second desideratum deals with
epistemic uncertainty estimation with network effects (see Figs. 8.1c and 8.1d):

Desideratum 8.3.2. All else being equal, if a node’s prediction in the absence of net-
work effects is more epistemically certain, then its neighbors’ predictions in the presence
of network effects should become more epistemically certain.

Desideratum 8.3.2 states that a node v with confident feature predictions x(v) is ex-
pected to be convincing and make its neighbors u ∈ N (v) more confident. Conversely,
a node with anomalous features is expected to make its neighborhood less confident.
This desideratum materializes the network homophily assumption at the epistemic level
i.e. connected nodes have similar epistemic uncertainty estimates. For non-attributed
graphs, [124] similarly expects a more confident node to have more influence on a di-
rect neighbor. The third desideratum deals with aleatoric uncertainty estimation with
network effects (see Figs. 8.1a and 8.1b):

Desideratum 8.3.3. All else being equal, a node’s prediction in the presence of network
effects should have higher aleatoric uncertainty if its neighbors’ predictions in the absence
of network effects have high aleatoric uncertainty. Further, a node prediction in the pres-
ence network effects should have higher aleatoric uncertainty if its neighbors’ predictions
in the absence network effects are more conflicting.

Desideratum 8.3.3 states that no clear classification decision should be made for a
node v if no clear classification decisions can be made for its neighbors. Further, the
classification decision becomes less certain if a neighbor has a conflicting classification
decision. Note that this desideratum is more subtle than the direct application of network
homophily at the aleatoric level. Indeed a node can have a high aleatoric uncertainty con-
trary to its neighbors which predict different classes with low aleatoric uncertainty. This
aligns with the intuition that conflicting information from the neighborhood provides an
irreducible uncertainty to the considered node.

8.3.2 Graph Posterior Network

The Bayesian update rule is a key component of GPN to model uncertainty on the pre-
dicted categorical distribution. For a single categorical distribution y ∼ Cat(p), the stan-
dard Bayesian update is straightforward. A natural choice for a prior distribution over
the parameters p is its conjugate prior i.e. the Dirichlet distribution P(p) = Dir(αprior)
with αprior

c ∈ RC+. Given the observations y(1), ..., y(N), the Bayesian update then consists
in applying the Bayes’ theorem

P
(
p | {y(j)}Nj=1

)
∝ P

(
{y(j)}Nj=1 |p

)
× P(p) (8.1)

producing the posterior distribution P(p | {y(j)}Nj=1) = Dir(αpost) where αpost = αprior+
β are the parameters of the posterior and βc =

∑
j = 1y(j)=c are the class counts. This
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Figure 8.2: Overview of Graph Posterior Network: (1) node-level pseudo-counts computed by
the feature encoder in the orange box, (2) PPR-based message passing visualized
between the curly braces, and (3) input-dependent Bayesian update illustrated with
the Dirichlet triangles on the right.

framework naturally disentangles the aleatoric and epistemic uncertainty by defining the
Dirichlet mean p̄ = α

α0
and the total evidence count α0 =

∑
c αc. Indeed, the aleatoric

uncertainty is commonly measured by the entropy of the categorical distribution i.e.
ualea = HCat(p̄) [275, 67, 68] and the epistemic uncertainty can be measured by the
total evidence count α0 of observations i.e. uepist = −α0 [67, 68]. Alternatively, the
epistemic uncertainty can also be measured with the Dirichlet differential entropy [275].
Note that the reparameterization using p̄ and α0 can apply to any class counts including
the prior counts αprior, the class counts β and the posterior counts αpost.

For classification, the predicted categorical distribution ŷ(v) ∼ Cat(p(v)) additionally
depends on the specific input v. Hence, the input-dependent Bayesian rule [67, 68] extends
the Bayesian treatment of a single categorical distribution to classification by predicting
an individual posterior update for any possible input. Specifically, it first introduces a
fixed Dirichlet prior over the categorical distribution p(v) ∼ Dir(αprior) where αprior ∈ RC+
is usually set to 1, and second predicts the input-dependent update β(v) which forms the
posterior distribution p(v) ∼ Dir(αpost,(v)) where the posterior parameters are equal to

αpost,(v) = αprior + β(v). (8.2)

The variable β(v) can be interpreted as learned class pseudo-counts and its parametriza-
tion is crucial. For i.i.d. inputs, PostNet [67] models the pseudo-counts β(v) in two
main steps. (1) it maps the inputs features x(v) onto a low-dimensional latent vector
z(v) = fθ(x

(v)) ∈ RH . (2), it fits one conditional probability density P(z(v)|c;ϕ) per
class on this latent space with normalizing flows. The final pseudo count for class c is
set proportional to its respective conditional density i.e. β(v)c = NP(z(v)|c;ϕ)P(c) where
N is a total certainty budget and P(c) = 1

C for balanced classes. Note that this implies
α
(v)
0 = NP(z(v)|ϕ). This architecture has the advantage of decreasing the evidence out-

side the known distribution when increasing the evidence inside the known distribution,
thus leading to consistent uncertainty estimation far from training data.

Bayesian Update for Interdependent Inputs. We propose a simple yet efficient modifi-
cation for parameterizing β(v)c to extend the input-dependent Bayesian update for interde-
pendent attributed nodes. The core idea is to first predict the feature class pseudo-counts
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βft,(v) based on independent node features only, and then diffuse them to form the aggre-
gated class pseudo-counts βagg,(v) based on neighborhood features. Hence, the feature
class pseudo-counts βft,(v) intuitively act as uncertainty estimates without network effects
while the aggregated class pseudo-counts βagg,(v) intuitively act as uncertainty estimates
with network effects.

To this end, GPN performs three main steps (see Fig. 8.2). (1) A (feature) en-
coder maps the features of v onto a low-dimensional latent representation z i.e. z(v) =
fθ(x

(v)) ∈ RH . In practice, we use a simple MLP encoder in our experiments simi-
larly to APPNP [229]. (2) One conditional probability density per class P(z(v) | c;ϕ) is
used to compute βft,(v)

c i.e βft,(v)
c ∝ P(z(v) | c;ϕ). Note that the the total feature evidence

α
ft,(v)
0 =

∑
c β

ft,(v)
c and the parameter p̄ft,(v) = βft,(v)/αft,(v)

0 are only based on node features
and can be seen as epistemic and aleatoric uncertainty measures without network effects.
In practice, we used radial normalizing flows for density estimation similarly to [67] and
scaled the certainty N budget w.r.t. the latent dimension H similarly to [68]. (3) A
Personalized Page Rank (PPR) message passing scheme is used to diffuse the feature
class pseudo-counts βft,(v)

c and form the aggregated class pseudo-counts βagg,(v)
c i.e.

βagg,(v)
c =

∑
u∈V

Πpprv,uβ
ft,(u)
c (8.3)

where Πpprv,u are the dense PPR scores implicitly reflecting the importance of node u on v.
We approximate the dense PPR scores using power iteration similarly to [229]. The ag-
gregated pseudo-count βagg,(v)

c is then used in the input-dependent Bayesian update (see
Eq. (8.2)). Remark that the scores Πpprv,u define a valid conditional distribution over all
nodes associated to the PPR random walk (i.e.

∑
uΠ

ppr
v,u = 1). It can be viewed as a soft

neighborhood for v accounting for all neighborhood hops through infinitely many message
passing steps [229]. Hence, on one hand, the PPR scores define a probability distribution
over nodes using the node edges only. On the other hand, the quantity P(z(u) | c;ϕ)
defines a probability distribution over nodes using the node features only. Therefore,
we can equivalently rewrite this step using probabilistic notations P(v |u) = Πpprv,u and
P(u | c) = P(z(u) | c;ϕ):

βagg,(v)
c ∝ P̄(v | c) =

∑
u∈V

P(v |u)P(u | c) (8.4)

Interestingly, the quantity P̄(v | c) defines a valid distribution which normalizes over all
node features and accounts for the soft neighborhood (i.e.

∫
...
∫
P̄(v | c)dz(u1)...dz(u|V|) =

1). Hence, the message passing step is a simple but efficient method to transform the
feature distributions of a single node into a joint distributions over the soft neighbor-
hood features. Finally, the evidence αagg,(v)

0 =
∑

c β
agg,(v)
c and the parameter pagg,(v) =

βagg,(v)/αagg,(v)
0 are based on neighborhood features and can be seen as epistemic and

aleatoric uncertainty measures with network effects. Remark that, the sequential pro-
cessing of the features (i.e. steps (1)+(2)) and network information (i.e. step (3)) in
GPN is a key element to differentiate between the uncertainty without and with network
effects and is a building block to provably obey the desiderata.
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GPN extends both APPNP [229] and PostNet [67] approaches. The key difference to
APPNP is the density estimation modeling the epistemic uncertainty (i.e. steps (1)+(2))
and the input-dependent Bayesian update allowing to recover the prior prediction (i.e.
Eq. (8.2)). The key difference to PostNet is the PPR diffusion which accounts for depen-
dence between nodes (step (3)).

Optimization. We follow [67] and train GPN by minimizing the following Bayesian loss
with two terms i.e.:

L(v) = −Ep(v)∼Qpost,(v)

[
logP(y(v) |p(v))

]
− λHQpost,(v) (8.5)

where λ is a regularization factor. It can be computed quickly in closed-form and provides
theoretical guarantees for optimal solutions [67]. All parameters of GPN are trained
jointly. Similarly to [68], we also observed that "warm-up" training for the normalizing
flows is helpful.

8.3.3 Uncertainty Estimation Guarantees

In this section, we provide theoretical guarantees showing that GPN fulfills the three
desiderata under mild assumptions given the specific definitions of concepts of aleatoric/epis-
temic uncertainty and with/without network effects presented in Section 8.3.2. Through-
out this section, we consider a GPN model parameterized with a (feature) encoder fϕ
with piecewise ReLU activations, a PPR diffusion, and a density estimator P(zft,(v) |ω)
with bounded derivatives. We present detailed proofs in appendix.

The first theorem shows that GPN follows des. 8.3.1 and guarantees that GPN achieves
reasonable uncertainty estimation on extreme node features without network effects:

Theorem 2. Lets consider a GPN model. Let fϕ(x(v)) = V (l)x(v) + a(l) be the piece-
wise affine representation of the ReLU network fϕ on the finite number of affine regions
Q(l) [17]. Suppose that V (l) have independent rows, then for any node v and almost
any x(v) we have P(fϕ(δ · x(v)) | c;ϕ) →

δ→∞
0. Without network effects, it implies that

β
ft,(v)
c = β

agg,(v)
c →

δ→∞
0.

The proof relies on two main points: the equivalence of the GPN and PostNet ar-
chitectures without network effects, and the uncertainty guarantees of PostNet far from
training data similarly to [68]. It intuitively states that, without network effects, GPN
predict small evidence (i.e. βagg,(v) ≈ 0) far from training features (i.e. ||δ · x(v)|| → ∞)
and thus recover the prior prediction (i.e. αpost,(v) ≈ αprior). Note that contrary to GPN,
methods which do not account for node features (e.g. Label Propagation) or methods
which only use ReLU activations [182] cannot validate des. 8.3.1. Further, methods which
perform aggregation steps in early layers (e.g. GCN [222]) do not separate the process-
ing of the feature and network information making unclear if they fulfill the des. 8.3.1
requirements.

The second theorem shows that GPN follows des. 8.3.2 and guarantees that a node v
becomes more epistemically certain if its neighbors are more epistemically certain:
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Theorem 3. Lets consider a GPN model. Then, given a node v, the aggregated fea-
ture evidence αagg,(v)

0 is increasing if the feature evidence αft,(u)
0 of one of its neighbors

u ∈ N (v) is increasing.

The proof directly relies on Eq. (8.3). Intuitively, this theorem states that the epis-
temic uncertainty u

(v)
epist = −αagg, (v)

0 of a node v with network effects decreases if the
epistemic uncertainty of the neighboring nodes without network effects decreases. Note
that contrary to GPN, methods which do not model the epistemic uncertainty explicitly
(e.g. GCN [222], GAT [423] or APPNP [229]) are not guaranteed to fulfil des. 8.3.2.

The third theorem shows that GPN follows des. 8.3.3. It guarantees that a node v
becomes more aleatorically uncertain if its neighbors are more aleatorically uncertain, or
if a neighbor prediction disagrees more with the current node prediction:

Theorem 4. Lets consider a GPN model. Lets denote p̄agg, (v) = βagg,(v)/αagg,(v)
0 the dif-

fused categorical prediction for node v where c∗ is its winning class. Further, lets denote
p̄ft, (u) = βft,(v)/αft,(v)

0 the non-diffused categorical prediction for a node u ∈ V. First, there
exists normalized weights Π′

v,u such that
∑

u∈V Π
′
v,uHCat(p̄ft, (u)) ≤ HCat(p̄agg, (v)). Sec-

ond, if for any node u ∈ V the probability of p̄ft, (u)
c∗ decreases, then HCat(p̄agg, (v)) in-

creases.

The proof of the first part of the theorem is based on the entropy convexity. Intu-
itively, it states that the aleatoric uncertainty u

(v)
alea = HCat(p̄agg, (v)) of a node v with

network effects is lower bounded by a weighted average of the aleatoric uncertainty with-
out network effects of its soft neighborhood. The second part of the theorem intuitively
states that if the prediction of a neighboring node u without neighbor effects disagrees
more with the current class prediction c∗ of the node v, then the aleatoric uncertainty
u
(v)
alea = HCat(p̄agg, (v)) with network effects becomes higher. Note that contrary to GPN,

methods which do not use edges (e.g. PostNet [67]) cannot validate des. 8.3.3 and
des. 8.3.2.

8.3.4 Limitations & Impact

OOD data close to ID data. While GPN is guaranteed to provide consistent uncer-
tainty estimates for nodes with extreme OOD features, it does not guarantee any specific
uncertainty estimation behavior for OOD data close to ID data. Note that there exist
two possible desired behaviors for OOD close to ID data: being robust to small dataset
shifts [335, 400] or detect near OOD data [443, 235, 64]. The duality of these two views
makes unclear what would be the desired behavior even for i.i.d. data.

Non-homophilic uncertainty. Our approach assumes that connected nodes are likely
to have similar uncertainty estimates as defined in des. 8.3.2 and des. 8.3.3. Contrary to
[476], we do not tackle the problem of heterophilic graphs where two neighboring nodes
might reasonably have different uncertainty estimates.
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Task-specific OOD. Density estimation is shown to be inappropriate for OOD detec-
tion when acting directly on raw images [308, 77, 307] or on arbitrarily transformed space
[248]. One of the reasons is that normalizing flows learn pixel correlations in images. This
phenomena does not happen for tabular data with more semantic features [224]. First
note that, similarly to tabular data, semantic node features are less likely to suffer from
the same flaws. Second, following previous works [67, 68, 224, 302, 443], GPN mitigates
this issue by using density estimation on a latent space which is low-dimensional and
task-specific. Nonetheless, we emphasize that GPN provides predictive uncertainty es-
timates which depends on the considered task i.e. OOD data w.r.t. features which are
not useful for the specific task are likely not to be encoded in the latent space, and thus
not to be detected.

8.4 Experiments

In this section, we provide an extensive evaluation set-up for uncertainty quantification
for node classification. It compares GPN to 13 baselines on 8 datasets and consists in two
task types. First, we evaluate the detection of OOD nodes with features perturbations
and Left-Out classes. Second, we evaluate the robustness of accuracy, calibration and
uncertainty metrics w.r.t. feature and edge shifts.

8.4.1 Setup

Ablation. In the experiments, GPN uses a MLP as feature encoder, radial normaliz-
ing flows [358] for the density estimation and a certainty budget N which scales with
respect to the latent dimension [68]. We provide an ablation study covering aleatoric
uncertainty through APPNP, feature-level estimates through PostNet, diffusing result-
ing pseudo-counts after training, and GPN with diffusion of log(βft,(v)

c ) instead of βft,(v)
c

(see Appendix E.5.1). The complete GPN model outperforms the ablated models for
uncertainty estimation. Further, we provide a hyper-parameter study covering for ex-
ample different number of flow layers, latent dimensions, PPR teleport probabilities (see
Appendix E.5.2)).

Baselines. We used 13 baselines covering a wide variety of models for semi-supervised
node classification and uncertainty estimation. We show the results of 5 baselines in
the main paper and the full results in appendix. It contains two standard GNNs (i.e.
Vanilla GCN VGCN [222, 379] and APPNP [229]), one robust GNN (i.e. RGCN
[475]), one dropout-based method for GNN (i.e. DropEdge [363]), two Graph Gaussian
Processes methods (i.e. GGP [315] and Matern-GGP [49]), the Graph-based Kernel
Dirichlet GCN method (i.e. GKDE-GCN [470]) and two parameter-less methods (i.e.
GKDE [470] and Label Propagation LP see Appendix E.4). Further, we also compared
to direct adaptation of dropout (i.e. VGCN-Dropout[141]), ensemble (i.e. VGCN-
Ensemble [246]), BNN (i.e. VGCN-BNN [42]) and energy-based models (i.e. VGCN-
Energy [259]) to vanilla GCNs. All models are trained using the same number of layers
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and similar number of hidden dimensions. We used early stopping and report the used
hyperparameters in appendix. The results are averaged over 10 initialization seeds per
split. Further model details are given in appendix.

Datasets. We used 8 datasets with different properties summarized in appendix. We
show the results of 3 datasets in the main part of this chapter and the full results in
appendix. It contains common citation network datasets (i.e. CoraML [282, 160, 156,
373], CiteSeer [160, 156, 373], PubMed [309], CoauthorPhysics [379] CoauthorCS
[379]) and co-purchase datasets (i.e. AmazonPhotos [281, 379], AmazonComputers
[281, 379]). The results are averaged over 10 initialization splits with a train/val/test split
of 5%/15%/80% using stratified sampling. Further, we evaluate on the large OGBN
Arxiv dataset with 169, 343 nodes and 2, 315, 598 edges [196, 427]. Further dataset
details are given in the appendix.

8.4.2 Results

OOD Detection. In this section, we evaluate uncertainty estimation for OOD detection.
To this end, we use the Area Under Receiving Operator Characteristics Curve (AUC-
ROC) with aleatoric scores u(v)alea (Alea) and epistemic scores u(v)epist (Epist) similarly to
[67, 470, 270, 273, 277, 259]. For GPN, we differentiate between epistemic uncertainty
scores without network effects (w/o Net.) and with network effects (w/ Net.). Further,
we report results with the Area Under the Precision-Recall Curve (AUC-PR) in appendix.
The definition of OOD for nodes in the presence of feature and network information is
more complex than for i.i.d. input features. Hence, we propose two types of OOD
nodes: nodes with OOD feature perturbations and nodes from Left-Out classes. For
feature perturbations, we compute the accuracy on the perturbed nodes (OOD-Acc) to
evaluate if the model can correct anomalous features. For Left-Out classes, we compute
the accuracy on the observed classes (ID-Acc). We report the short results in Table 8.1.
We set a threshold of 64 GiB and 12 hours per training run. We also exclude methods
which do not use attributes for detection of OOD feature perturbations.

Feature perturbations: These perturbations aim at isolating the contribution of the
node feature information on the model predictions. To this end, we randomly select a
subset of the nodes. For each single node v, we perturb individually its features using a
Bernoulli or a Normal distribution (i.e. x(v) ∼ Ber(0.5) and x(v) ∼ N (0,1)) keeping all
other node features fixed. We then compare the uncertainty prediction on the perturbed
and unperturbed node. On one hand, Bernoulli noise corresponds to small perturbations
in the domain of discrete bag-of-words features. On the other hand, Normal noise cor-
responds to extreme perturbations out of the domain of discrete bag-of-words features.
In practice, we expect out-of-domain perturbations to be easily detected [67]. First, we
remark that uncertainty estimates of GPN based on features achieves an absolute im-
provement of at least +15% and +29% for Bernoulli and Normal perturbations over all
baselines using network effects. This shows that GPN disentangles well the uncertainty
without and with network effects. Second, we remark that all uncertainty estimates with
network effects achieve poor results. This is expected if models can recover the correct
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prediction after aggregation steps. Specifically, we observe that GPN achieves an ac-
curacy improvement between +16% and +64% for Normal perturbations on perturbed
nodes compared to baselines. It stresses that GPN performs a consistent evidence aggre-
gation from neighborhood to recover from anomalous features. Further, note that GPN is
still capable to detect those perturbed nodes almost perfectly using feature uncertainty.
These remarks aligns with des. 8.3.1.

Left-Out classes: Detection of Left-Out classes involves both feature and neighborhood
information. In this case, we remove the Left-Out classes from the training set but keep
them in the graph similarly to [470]. We observe that the uncertainty estimates with
network effects of GPN achieves an absolute improvement between +12% and +16%
compared to its uncertainty estimates without network effects. It highlights the benefit
of incorporating network information for uncertainty predictions when OOD samples (i.e.
samples from the Left-Out classes) are likely to be connected to each other. This remark
aligns with des. 8.3.2. Further, GPN outperforms other baselines by +2% to +22% for
LOC detection while maintaining a competitive accuracy on other classes.

Misclassified samples: In addition to the OOD scores, we also report the results for
the detection of misclassified samples with aleatoric and epistemic uncertainty on several
datasets and models in Appendix E.5.3 for the sake of completeness. GPN performs com-
petitively with the baselines. Moreover, we observe that epistemic uncertainty is better
for OOD detection and aleatoric uncertainty is better for misclassification detection as
already observed e.g. in [470].

Model ID-ACC OOD-AUC-ROC OOD-ACC OOD-AUC-ROC OOD-ACC OOD-AUC-ROC
Leave-Out Classes x(v) ∼ Ber(0.5) x(v) ∼ N (0, 1)

CoraML

Matern-GGP 87.03 83.13 / 82.98 / n.a. n.a. n.a. n.a. n.a.
VGCN-Dropout 89.08 81.27 / 71.65 / n.a. 77.76 62.06 / 50.38 / n.a. 18.28 40.53 / 71.06 / n.a.
VGCN-Energy 89.66 81.70 / 83.15 / n.a. 78.90 63.68 / 66.26 / n.a. 18.37 9.34 / 0.32 / n.a.
VGCN-Ensemble 89.87 81.85 / 74.24 / n.a. 78.00 63.58 / 56.81 / n.a. 21.00 33.72 / 64.92 / n.a.
GKDE-GCN 89.33 82.23 / 82.09 / n.a. 76.40 61.74 / 63.15 / n.a. 16.86 40.03 / 1.42 / n.a.
GPN 88.51 83.25 / 86.28 / 80.95 80.98 57.99 / 55.23 / 89.47 81.53 55.96 / 56.51 / 100.00

Amazon
Photos

Matern-GGP 88.65 87.26 / 86.75 / n.a. n.a. n.a. n.a. n.a.
VGCN-Dropout 94.04 80.90 / 70.11 / n.a. 83.86 56.85 / 55.04 / n.a. 22.29 49.11 / 66.74 / n.a.
VGCN-Energy 94.24 82.44 / 79.64 / n.a. 83.91 57.91 / 59.07 / n.a. 21.40 31.07 / 6.42 / n.a.
VGCN-Ensemble 94.28 82.72 / 88.53 / n.a. 84.40 57.86 / 56.01 / n.a. 20.30 44.14 / 69.01 / n.a.
GKDE-GCN 89.84 73.65 / 69.09 / n.a. 73.17 57.01 / 58.00 / n.a. 24.04 24.45 / 9.82 / n.a.
GPN 94.01 82.72 / 91.98 / 76.57 87.47 56.25 / 60.52 / 75.24 88.29 51.89 / 61.89 / 100.00

OGBN
Arxiv

Matern-GGP n.f. n.f. n.f. n.f. n.f. n.f.
VGCN-Dropout 75.47 65.35 / 64.24 / n.a. 65.30 48.11 / 50.64 / n.a. 49.90 60.10 / 62.87 / n.a.
VGCN-Energy 75.61 64.91 / 64.50 / n.a. 65.70 46.16 / 48.54 / n.a. 51.30 53.83 / 48.53 / n.a.
VGCN-Ensemble 76.12 65.93 / 70.77 / n.a. 67.00 45.99 / 47.41 / n.a. 49.00 59.94 / 66.44 / n.a.
GKDE-GCN 73.89 68.84 / 72.44 / n.a. 65.20 50.98 / 51.31 / n.a. 45.40 53.94 / 55.28 / n.a.
GPN 73.84 66.33 / 74.82 / 62.17 65.50 51.49 / 55.82 / 93.05 65.50 51.43 / 55.85 / 95.54

Table 8.1: LOC and Feature Perturbations: Accuracy is reported on ID nodes for LOC exper-
iments and on OOD nodes for feature perturbation experiments. OOD-AUC-ROC
scores are given as [Alea w/ Net] / [Epist w/ Net] / [Epist w/o Net]. n.a. means
either model or metric not applicable and n.f. means not finished within our con-
straints.

Attributed Graph Shifts. In this section, we focus on evaluating the robustness of the
accuracy, calibration and the evolution of the uncertainty estimation under node feature
shifts and edges shifts. This aligns with [335] which aims at evaluating the reliability
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of uncertainty estimates under dataset shifts for i.i.d. inputs. Specifically, we evaluates
the evolution of the accuracy, the ECE [306] calibration score, the epistemic and the
aleatoric uncertainty measures.

Feature shifts: We perturbed the features of a fraction of the nodes using unit Gaussian
perturbations. We report the short results in Fig. 8.3 and the full results in appendix. On
one hand, we observe that GPN is significantly more robust to feature perturbations than
all baselines. Indeed, the accuracy of GPN decreases by less than 5% even when 80% of
the nodes are perturbed while the accuracy of other baselines decreases by more than 50%
when only 20% of the nodes are perturbed. Similarly, we observed that GPN remains
calibrated even when a high fraction of nodes are perturbed contrary to baselines. Hence,
GPN intuitively discards uncertain features from perturbed nodes and only accounts for
certain features from other nodes for more accurate predictions. On the other hand, we
observe that, as desired, the average epistemic uncertainty of GPN consistently decreases
when more nodes are perturbed. This remark aligns with des. 8.3.2. In contrast, baselines
dangerously become more certain while achieving a poorer accuracy similarly to ReLU
networks [182]. Hence GPN predictions are significantly more reliable than baselines
under feature shifts.

Edge shifts: For edge shifts, we perturbed a fraction of edges at random. We report the
results in appendix. As desired, we observe that the aleatoric uncertainty increases for all
models including GPN. This aligns with des. 8.3.3 and the expectations that conflicting
neighborhood should lead to more aleatorically uncertain predictions. Furthermore, the
average epistemic uncertainty of GPN remains constant which is reasonable since the
average evidence of a node’s neighborhood remains constant.
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Figure 8.3: Accuracy, ECE, and average epistemic confidence under feature shifts for CoraML.
We perturb features of different percentage of nodes using a Unit Gaussian noise.

Qualitative Evaluation. We show the abstracts of the CoraML papers achieving the
highest and the lowest epistemic uncertainty without network effects in Table 8.2 and in
the appendix. Interestingly, we observed that most uncertain papers corresponds to short
and unconventional abstracts which can be seen as anomalous features. Furthermore, we
also ranked the nodes w.r.t. to their epistemic uncertainty with network effects. In this
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case, we observed that 78/100 nodes with the highest uncertainty do not belong to the
largest connected component of the CoraML dataset. We propose additional uncertainty
visualizations for GPN in Appendix E.5.6.

Inference & training time. We provide a comparison of inference and training times
for most of the datasets and models under consideration in Appendix E.5.7. GPN needs
a single pass for uncertainty estimation but requires the additional evaluation of one nor-
malizing flow per class compared to APPNP. Hence, GPN brings a small computational
overhead for uncertainty estimation at inference time. Furthermore, GPN is usually con-
verging relatively fast during training and does not require pre-computing kernel values.
In contrast, GKDE-GCN [470] requires the computation of the underlying Graph Kernel
with a complexity of O

(
N2
)

where N is the number of nodes in the graph. Finally, GPN
is significantly more efficient than dropout or ensemble approaches as it does not require
training or evaluating multiple models.

IlliGAL Report No. 95006 July 1995 Report of the 1996 Workshop on Reinforcement

Reihe FABEL-Report Status: extern Dokumentbezeichner:
Org/Reports/nr-35 Erstellt am: 21.06.94 Korrigiert am:
28.05.95 ISSN 0942-413X

We tend to think of what we really know as what we
can talk about, and disparage knowledge that we can’t
verbalize. [Dowling 1989, p. 252]

Keith Mathias and Darrell Whitley Technical Report
CS-94-101 January 7, 1994

Multigrid Q-Learning Charles W. Anderson and Stewart G.
Crawford-Hines Technical Report CS-94-121 October 11, 1994

Internal Report 97-01 A Learning Result for Abstract

Table 8.2: A selection of abstracts from CoraML which are assigned low feature evidences by
GPN.

8.5 Conclusion

We introduce a well-grounded framework for uncertainty estimation on interdependent
nodes. First, we propose explicit and motivated desiderata describing desired properties
for aleatoric and epistemic uncertainty in the absence or in the presence of network
effects. Second, we propose GPN, a GNN for uncertainty estimation which provably
follows our desiderata. GPN performs a Bayesian update over the class predictions
based on density estimation and diffusion. Third, we conduct extensive experiments to
evaluate the uncertainty performances of a broad range of baselines for OOD detection
and robustness against node feature or edge shifts. GPN outperforms all baselines in
these experiments.

92



9 Uncertainty Estimation for Sequential
Data

Uncertainty that comes from knowledge (knowing what you don’t know) is
different from uncertainty coming from ignorance.

Isaac Asimov

9.1 Introduction

In Chapter 8, we have introduced a Bayesian method to estimate uncertainty estimation
on graph data. In this chapter, we now focus on uncertainty estimation on time events.

Discrete events, occurring irregularly over time, are a common data type generated
naturally in our everyday interactions with the environment (see Fig. 9.2a for an illus-
tration). Examples include messages in social networks, medical histories of patients
in healthcare, and integrated information from multiple sensors in complex systems like
cars. The problem we are solving in this chapter is: given a (past) sequence of asyn-
chronous events, what will happen next? Answering this question enables us to predict,
e.g., what action an internet user will likely perform or which part of a car might fail.

While many recurrent models for asynchronous sequences have been proposed in the
past [312, 109], they are ill-suited for this task since they output a single prediction (e.g.
the most likely next event) only. In an asynchronous setting, however, such a single
prediction is not enough since the most likely event can change with the passage of
time – even if no other events happen. Consider a car approaching another vehicle in
front of it. Assuming nothing happens in the meantime, we can expect different events
at different times in the future. When forecasting a short time, one expects the driver
to start overtaking; after a longer time one would expect braking; in the long term,
one would expect a collision. Thus, the expected behavior changes depending on the
time we forecast, assuming no events occured in the meantime. Fig. 9.2a illustrates this
schematically: having observed a square and a pentagon, it is likely to observe a square
after a short time, while a circle after a longer time. Clearly, if some event occurs,
e.g. braking/square, the event at the (then) observed time will be taken into account,
updating the temporal prediction.

An ad-hoc solution to this problem would be to discretize time. However, if the
events are near each other, a high sampling frequency is required, giving us very high
computational cost. Besides, since there can be intervals without events, an artificial ‘no
event’ class is required.
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In this chapter, we solve these problems by directly predicting the entire evolution of
the events over (continuous) time. Given a past asynchronous sequence as input, we can
predict and evaluate for any future timepoint what the next event will likely be (under
the assumption that no other event happens in between which would lead to an update
of our model). Crucially, the likelihood of the events might change and one event can be
more likely than others multiple times in the future. This periodicity exists in many event
sequences. For instance, given that a person is currently at home, a smart home would
predict a high probability that the kitchen will be used at lunch and/or dinner time (see
Fig. 9.1a for an illustration). We require that our model captures such multimodality.
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Figure 9.1: (a) An event can be expected
multiple times in the future. (b)
At some times we should be un-
certain in the prediction. Yellow
denotes higher probability den-
sity.

While Fig. 9.1a illustrates the evolution
of the categorical distribution (correspond-
ing to the probability of a specific event
class to happen), an issue still arises out-
side of the observed data distribution. E.g.
in some time intervals we can be certain
that two classes are equiprobable, having ob-
served many similar examples. However, if
the model has not seen any examples at spe-
cific time intervals during training, we do not
want to give a confident prediction. Thus,
we incorporate uncertainty in a prediction
directly in our model. In places where we
expect events, the confidence will be higher, and outside of these areas the uncertainty
in a prediction will grow as illustrated in Fig. 9.1b. Technically, instead of modeling
the evolution of a categorical distribution, we model the evolution of a distribution on
the probability simplex. Overall, our model enables us to operate with the asynchronous
discrete event data from the past as input to perform continuous-time predictions to the
future incorporating the predictions’ uncertainty. This is in contrast to existing works
as [109, 285].

9.2 Model Description

We consider a sequence [e1, . . . , en] of events ei = (ci, ti), where ci ∈ {1, . . . , C} denotes
the class of the ith event and ti ∈ R is its time of occurrence. We assume the events
arrive over time, i.e. ti > ti−1, and we introduce τ∗i = ti − ti−1 as the observed time gap
between the ith and the (i− 1)th event. The history preceding the ith event is denoted
by Hi. Let S = {p ∈ [0, 1]C ,

∑
c pc = 1} denote the set of probability vectors that form

the (C − 1)-dimensional simplex, and P (θ) be a family of probability distributions on
this simplex parametrized by parameters θ. Every sample p ∼ P (θ) corresponds to a
(categorical) class distribution.

Given ei−1 and Hi−1, our goal is to model the evolution of the class probabilities, and
their uncertainty, of the next event i over time. Technically, we model parameters θ(τ),
leading to a distribution P over the class probabilities p for all τ ≥ 0. Thus, we can
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Model
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Figure 9.2: The model framework. (a) During training we use sequences si. (b) Given a new
sequence of events s the model generates pseudo points that describe θ(τ), i.e.
the temporal evolution of the distribution on the simplex. These pseudo points
are based on the data that was observed in the training examples and weighted
accordingly. We also have a measure of certainty in our prediction.

estimate the most likely class after a time gap τ by calculating argmaxc p̄(τ)c, where
p̄(τ) := Ep(τ)∼P (θ(τ))[p(τ)] is the expected probability vector. Even more, since we do
not consider a point estimate, we can get the amount of certainty in a prediction. For
this, we estimate the probability of class c being more likely than the other classes, given
by qc(τ) := Ep(τ)∼P (θ(τ))[⊮p(τ)c≥maxc′ ̸=c p(τ)c′

]. This tells us how certain we are that one
class is the most probable (i.e. ’how often’ is c the argmax when sampling from P ).

Two expressive and well-established choices for the family P are the Dirichlet distribu-
tion and the logistic-normal distribution (Appendix F.1). Based on a common modeling
idea, we present two models that exploit the specificities of these distributions: the WGP-
LN (Section 9.2.1) and the FD-Dir (Section 9.2.2). We also introduce a novel loss to train
these models in Section 9.2.3.

Independent of the chosen model, we have to tackle two core challenges: (1) Expres-
siveness. Since the time dependence of θ(τ) may be of different forms, we need to
capture complex behavior. (2) Locality. For regions out of the observed data we want
to have a higher uncertainty in our predictions. Specifically for τ → ∞, i.e. far into the
future, the distribution should have a high uncertainty.

9.2.1 Logistic-Normal via a Weighted Gaussian Process (WGP-LN)

We start by describing our model for the case when P is the family of logistic-normal (LN)
distributions. How to model a compact yet expressive evolution of the LN distribution?
Our core idea is to exploit the fact that the LN distribution corresponds to a multivariate
random variable whose logits follow a normal distribution – and a natural way to model
the evolution of a normal distribution is a Gaussian Process. Given this insight, the core
idea of our model is illustrated in Fig. 9.2: (1) we generate M pseudo points based on a
hidden state of an RNN whose input is a sequence, (2) we fit a Gaussian Process to the
pseudo points, thus capturing the temporal evolution, and (3) we use the learned GP for
estimating the parameters µ(τ) and Σ(τ) of the final LN distribution at any specific time
τ . Thus, by generating a small number of points we characterize the full distribution.
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9 Uncertainty Estimation for Sequential Data

(a) w = (1, 1, 1) (b) w = (1, 0, 0) (c) w = (0.2, 0.5, 0.8)

Figure 9.3: WGP on toy data with different weights. (a) All weights are 1 – classic GP. (b)
Zero weights discard points. (c) Mixed weight assignment.

Classic GP. To keep the complexity low, we train one GP per class c. That is, our model
generates M points (τ (c)j , y

(c)
j ) per class c, where y(c)j represents logits. Note that the first

coordinate of each pseudo point corresponds to time, leading to the temporal evolution
when fitting the GP. Essentially we perform a non-parameteric regression from the time
domain to the logit space. Indeed, using a classic GP along with the pseudo points, the
parameters θ of the logistic-normal distribution, µ and Σ, can be easily computed for
any time τ in closed form:

µc(τ) = k
T
cK

−1
c yc, σ

2
c (τ) = sc − kTcK−1

c kc (9.1)

where Kc is the gram matrix w.r.t. the M pseudo points of class c based on a kernel k
(e.g. k(τ1, τ2) = exp(−γ2(τ1 − τ2)

2)). Vector kc contains at position j the value k(τ (c)j , τ),
and yc the value y(c)j , and sc = k(τ, τ). At every time point τ the logits then follow a
multivariate normal distribution with mean µ(τ) and covariance Σ = diag(σ2(τ)).

Using a GP enables us to describe complex functions. Furthermore, since a GP models
uncertainty in the prediction depending on the pseudo points, uncertainty is higher in
areas far away from the pseudo points. Specifically, it holds for distant future; thus,
matching the idea of locality. However, uncertainty is always low around the M pseudo
points. Thus M should be carefully picked since there is a trade-off between having high
certainty at (too) many time points and the ability to capture complex behavior. Thus,
in the following we present an extended version solving this problem.

Hi−1

ei−1

RNN

[w
(c)
j ,τ

(c)
j ,y

(c)
j ]Mj=1

GP

τc(τ), σ
2
c (τ)

p(τ) ∼ P (θ(τ))

Figure 9.4: Model di-
agram

Weighted GP. We would like to pick M large enough to express
rich multimodal functions and allow the model to discard unnec-
essary points. To do this we generate an additional weight vector
w(c) ∈ [0, 1]M that assigns the weight w(c)

j to a point τ (c)j . Giv-
ing a zero weight to a point should discard it, and giving 1 will
return the same result as with a classic GP. To achieve this goal,
we introduce a new kernel function:

k′(τ1, τ2) = f(w1, w2)k(τ1, τ2) (9.2)

where k is the same as above. The function f weights the kernel
k according to the weigths for τ1 and τ2. We require f to have
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9.2 Model Description

the following properties: (1) f should be a valid kernel over the weights, since then the
function k′ is a valid kernel as well; (2) the importance of pseudo points should not
increase, giving f(w1, w2) ≤ min(w1, w2); this fact implies that a point with zero weight
will be discarded since f(w1, 0) = 0 as desired. The function f(w1, w2) = min(w1, w2) is
a simple choice that fulfills these properties. In Fig. 9.3 we show the effect of different
weights when fitting of a GP (see Appendix F.2 for a more detailed discussion of the
behavior of the min kernel). To predict µ and σ2 for a new time τ , we can now simply
apply Eq. (9.1) based on the new kernel k′, where the weight for the query point τ is 1.

To summarize: From a hidden state hi = RNN(ei−1,Hi−1) we use a a neural network
to generate M weighted pseudo points (w

(c)
j , τ

(c)
j , x

(c)
j ) per class c. Fitting a Weighted

GP to these points enables us to model the temporal evolution of N (µc(τ), σ
2
c (τ)) and,

thus, accordingly of the logistic-Normal distribution. Fig. 9.4 shows an illustration of
this model. Note that the cubic complexity of a GP, due to the matrix inversion, is not
an issue since the number M is usually small (< 10), while still allowing to represent
rich multimodal functions. Crucially, given the loss defined in Section 9.2.3, our model
is fully differentiable, enabling us efficient training.

9.2.2 Dirichlet via a Function Decomposition (FD-Dir)

Next, we consider the Dirichlet distribution to model the uncertainty in the predictions.
The goal is to model the evolution of the concentrations parameters α = (α1, . . . , αC)

T

of the Dirichlet over time. Since unlike to the logistic-normal, we cannot draw the con-
nection to the GP, we propose to decompose the parameters of the Dirichlet distribution
with expressive (local) functions in order to allow complex dependence on time. Since
the concentration parameters αc(τ) need to be positive, we propose the following decom-
position of αc(τ) in the log-space

logαc(τ) =

M∑
j=1

w
(c)
j · N (τ |τ (c)j , σ

(c)
j ) + ν (9.3)

where the real-valued scalar ν is a constant prior on logαc(τ) which takes over in
regions where the Gaussians are close to 0.

The decomposition into a sum of Gaussians is beneficial for various reasons: (i) First
note that the concentration parameter αc can be viewed as the effective number of obser-
vations of class c. Accordingly the larger logα, the more certain becomes the prediction.
Thus, the functions N (τ |τ (c)j , σ

(c)
j ) can describe time regions where we observed data

and, thus, should be more certain; i.e. regions around the time τ (c)j where the ’width’ is
controlled by σ(c)j . (ii) Since most of the functions’ mass is centered around their mean,
the locality property is fulfilled. Put differently: In regions where we did not observed
data (i.e. where the functions N (τ |τ (c)j , σ

(c)
j ) are close to 0), the value logαc(τ) is close

to the prior value ν. In the experiments, we use ν = 0 , thus αc(τ) = 1 in the out of
observed data regions; a common (uninformative) prior value for the Dirichlet param-
eters. Specifically for τ → ∞ the resulting predictions have a high uncertainty. (iii)
Lastly, a linear combination of translated Gaussians is able to approximate a wide family
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9 Uncertainty Estimation for Sequential Data

of functions [58]. And similar to the weighted GP, the coefficients w(c)
j allow discarding

unnecessary basis functions.
The basis functions parameters (w

(c)
j , τ

(c)
j , σ

(c)
j ) are the output of the neural network,

and can also be interpreted as weighted pseudo points that determine the regression of
Dirichlet parameters θ(τ), i.e. αc(τ), over time (Figs. 9.2 and 9.4). The concentration
parameters αc(τ) themselves have also a natural interpretation: they can be viewed as
the rate of events after time gap τ .

9.2.3 Model Training with the Distributional Uncertainty Loss

The core feature of our models is to perform predictions in the future with uncertainty.
The classical cross-entropy loss, however, is not well suited to learn uncertainty on the
categorical distribution since it is only based on a single (point estimate) of the class
distribution. That is, the standard cross-entropy loss for the ith event between the true
categorical distribution p∗i and the predicted (mean) categorical distribution pi is LCE

i =
H[p∗i ,pi(τ

∗
i )] = −∑c p

∗
ic log pic(τ

∗
i ). Due to the point estimate pi(τ) = Epi∼Pi(θ(τ))[pi],

the uncertainty on pi is completely neglected.
Instead, we propose the uncertainty cross-entropy which takes into account uncer-

tainty:

LUCE
i = Epi∼Pi(θ(τ∗i ))

[H[p∗i ,pi]] = −
∫
Pi(θ(τ

∗
i ))
∑
c

p∗ic log pic (9.4)

Remark that the uncertainty cross-entropy does not use the compound distribution pi(τ)
but considers the expected cross-entropy. Based on Jensen’s inequality, it holds: 0 ≤
LCE
i ≤ LUCE

i . Consequently, a low value of the uncertainty cross-entropy guarantees
a low value for the classic cross entropy loss, while additionally taking the variation in
the class probabilities into account. A comparison between the classic cross entropy and
the uncertainty cross-entropy on a simple classification task and anomaly detection in
asynchronous event setting is presented in Appendix F.6.

In practice the true distribution p∗i is often a one hot-encoded representation of the
observed class ci which simplifies the computations. During training, the models compute
Pi(θ(τ)) and evaluate it at the true time of the next event τ∗i given the past event ei−1

and the history Hi−1. The final loss for a sequence of events is simply obtained by
summing up the loss for each event L =

∑
i Epi∼Pi(θ(τ∗i ))

[H[p∗i ,pi]].

Fast computation. In order to have an efficient computation of the uncertainty cross-
entropy, we propose closed-form expressions. (1) Closed-form loss for Dirichlet. Given
that the observed class ci is one hot-encoded by p∗i , the uncertain loss can be computed
in closed form for the Dirichlet:

LUCE
i = Epi(τ∗i )∼Dir(α(τ∗i ))[log pci(τ

∗
i )] = Ψ(αci(τ

∗
i ))−Ψ(α0(τ

∗
i )) (9.5)

where Ψ denotes the digamma function and α0(τ
∗
i ) =

∑C
c αc(τ

∗
i ). (2) Loss approximation

for GP. For WGP-LN, we approximate LUCE
i based on second order series expansion
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(Appendix F.3):

LUCE
i ≈ µci(τ

∗
i )−log

( C∑
c

exp(µc(τ
∗
i )+σ

2
c (τ

∗
i )/2)

)
+

∑C
c (exp(σ

2
c (τ

∗
i ))− 1) exp(2µc(τ

∗
i ) + σ2

c (τ
∗
i ))

2
(∑C

c exp(µc(τ∗i ) + σ2
c (τ

∗
i )/2)

)2
(9.6)

Note that we can now fully backpropagate through our loss (and through the models as
well), enabling to train our methods efficiently with automatic differentiation frameworks
and, e.g., gradient descent.

Regularization. While the above loss much better incorporates uncertainty, it is still
possible to generate pseudo points with high weight values outside of the observed data
regime giving us predictions with high confidence. To eliminate this behaviour we intro-
duce a regularization term rc:

rc = α

∫ T

0
(µc(τ))

2 dτ︸ ︷︷ ︸
Pushes mean to 0

+β

∫ T

0
(ν − σ2c (τ))

2 dτ︸ ︷︷ ︸
Pushes variance to ν

(9.7)

For the WGP-LN, µc(τ) and σc(τ) correspond to the mean and the variance of the class
logits which are pushed to prior values of 0 and ν. For the FD-Dir, µc(τ) and σc(τ)
correspond to the mean and the variance of the class probabilities where the regularizer
on the mean can actually be neglected because of the prior ν introduced in the function
decomposition (Eq. (9.3)). In experiments, ν is set to 1 for WGP-LN and C−1

C2(C+1)
for

FD-Dir which is the variance of the classic Dirichlet prior with concentration parameters
equal to 1. For both models, this regularizer forces high uncertainty on the interval
(0, T ). In practice, the integrals can be estimated with Monte-Carlo sampling whereas α
and β are hyperparameters which are tuned on a validation set.

In [270], to train models capable of uncertain predictions, another dataset or a gen-
erative models to access out of observed distribution samples is required. In contrast,
our regularizer suggests a simple way to consider out of distribution data which does not
require another model or dataset.

9.3 Point Process Framework

Our models FD-Dir and WGP-LN predict P (θ(τ)), enabling to evaluate, e.g., p after a
specific time gap τ . This corresponds to a conditional distribution q(c|τ) := pc(τ) over
the classes. In this section, we introduce a point process framework to generalize FD-Dir
to also predict the time distribution q(τ). This enables us to predict, e.g., the most likely
time the next event is expected or to evaluate the joint distribution q(c|τ) · q(τ). We call
the model FD-Dir-PP.

We modify the model so that each class c is modelled using an inhomogeneous Pois-
son point process with positive locally integrable intensity function λc(τ). Instead of
generating parameters θ(τ) = (α1(τ), ..., αC(τ)) by function decomposition, FD-Dir-PP
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9 Uncertainty Estimation for Sequential Data

generates intensity parameters over time: log λc(τ) =
∑M

j=1w
(c)
j N (τ |τ (c)j , σ

(c)
j ) + ν. The

main advantage of such general decomposition is its potential to describe complex mul-
timodal intensity functions contrary to other models like RMTPP [109] (Appendix F.4).
Since the concentration parameter αc(τ) and the intensity parameter λc(τ) both relate
to the number of events of class c around time τ , it is natural to convert one to the other.

Given this C-multivariate point process, the probability of the next class given time
and the probability of the next event time are q(c|τ) = λc(τ)

λ0(τ)
and q(τ) = λ0(τ)e

−
∫ τ
0 λ0(s)ds

where λ0(τ) =
∑C

c=1 λc(τ). Since the classes are now modelled via a point proc., the log-
likelihood of the event ei = (ci, τ

∗
i ) is:

log q(ci, τ
∗
i ) = log q(ci|τ∗i ) + log q(τ∗i ) = log

λci(τ
∗
i )

λ0(τ∗i )︸ ︷︷ ︸
(i)

+ log λ0(τ
∗
i )︸ ︷︷ ︸

(ii)

−
∫ τ∗i

0
λ0(t)dt︸ ︷︷ ︸
(iii)

(9.8)

The terms (ii) and (iii) act like a regularizer on the intensities by penalizing large cu-
mulative intensity λ0(τ) on the time interval [ti−1, ti] where no events occurred. The
term (i) is the standard cross-entropy loss at time τi. Or equivalently, by modeling the
distribution Dir(λ1(τ), .., λC(τ)), we see that term (i) is equal to LCE

i (see Section 9.2.3).
Using this insight, we obtain our final FD-Dir-PP model: We achieve uncertainty on the
class prediction by modeling λc(τ) as concentration parameters of a Dirichlet distribution
and train the model with the loss of Eq. (9.8) replacing term (i) by LUCE

i . As it becomes
apparent FD-Dir-PP differs from FD-Dir only in the regularization of the loss function,
enabling it to be interpreted as a point process.

9.4 Related Work

Predictions based on discrete sequences of events regardless of time can be modelled by
Markov Models [28] or RNNs, usually with its more advanced variants like LSTMs [189]
and GRUs [80]. To exploit the time information some models [254, 312] additionally take
time as an input but still output a single prediction for the entire future. In contrast,
temporal point process framework defines the intensity function that describes the rate
of events occuring over time.

RMTPP [109] uses an RNN to encode the event history into a vector that defines an
exponential intensity function. Hence, it is able to capture complex past dependencies
and model distributions resulting from simple point processes, such as Hawkes [179] or
self-correcting [205], but not e.g. multimodal distributions. On the other hand, Neural
Hawkes Process [285] uses continuous-time LSTM which allows specifying more complex
intensity functions. Now the likelihood evaluation is not in closed-form anymore, but
requires Monte Carlo integration. However, these approaches, unlike our models, do not
provide any uncertainty in the predictions. In addition, WGP-LN and FD-Dir can be
extended with a point process framework while having the expressive power to represent
complex time evolutions.

Uncertainty in machine learning has shown a great interest [138, 124, 246]. For
example, uncertainty can be imposed by introducing distributions over the weights
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[42, 283, 359]. Simpler approaches introduce uncertainty directly on the class predic-
tion by using Dirichlet distribution independent of time [270, 368]. In contrast, the
FD-Dir model models complex temporal evolution of Dirichlet distribution via function
decomposition which can be adapted to have a point process interpretation.

Other methods introduce uncertainty time series prediction by learning state space
model with Gaussian processes [119, 418]. Alternatively, RNN architecture has been used
to model the probability density function over time [456]. Compared to these models, the
WGP-LN model uses both Gaussian processes and RNN to model uncertainty and time.
Our models are based on pseudo points. Pseudo points in a GP have been used to reduce
the computational complexity [394]. Our goal is not to speed up the computation, since
we control the number of points that are generated, but to give them different importance.
In [433] a weighted GP has been considered by rescaling points; in contrast, our model
uses a custom kernel to discard (pseudo) points.

9.5 Experiments

We evaluate our models on large-scale synthetic and real world data. We compare to
neural point process models: RMTPP [109] and Neural hawkes process [285]. Ad-
ditionally, we use various RNN models with the knowledge of the time of the next event.
We measure the accuracy of class prediction, accuracy of time prediction, and evaluate
on an anomaly detection task to show prediction uncertainty.

We split the data into train, validation and test set (60%–20%–20%) and tune all
models on a validation set using grid search over learning rate, hidden state dimension
and L2 regularization. After running models on all datasets 5 times we report mean
and standard deviation of test set accuracy. Details on model selection can be found in
Appendix F.8.1. The code and further supplementary material is available online.1

We use the following data (more details in Appendix F.7): (1) Graph. We generate
data from a directed Erdős–Rényi graph where nodes represent the states and edges the
weighted transitions between them. The time it takes to cross one edge is modelled with
one normal distribution per edge. By randomly walking along this graph we created 10K
asynchronous events with 10 unique classes. (2) Stack Exchange.2 Sequences contain
rewards as events that users get for participation on a question answering website. After
preprocessing according to [109] we have 40 classes and over 480K events spread over 2
years of activity of around 6700 users. The goal is to predict the next reward a user will
receive. (3) Smart Home [413].3 We use a recorded sequence from a smart house with
14 classes and over 1000 events. Events correspond to the usage of different appliances.
The next event will depend on the time of the day, history of usage and other appliances.
(4) Car Indicators. We obtained a sequence of events from car’s indicators that has
around 4000 events with 12 unique classes. The sequence is highly asynchronous, with τ
ranging from milliseconds to minutes.

1https://www.daml.in.tum.de/uncertainty-event-prediction
2https://archive.org/details/stackexchange
3https://sites.google.com/site/tim0306/datasets
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Figure 9.5: Visualization of the prediction evolution. The red line indicates the true time of
the next event for an example sequence. Here, both models predict the orange
class, which is correct, and capture the variation of the class distributions over
time. Generated points from WGP-LN are plotted with the size corresponding to
the weight. For predictions in the far future, both models given high uncertainty.

Visualization. To analyze the behaviour of the models, we propose visualizations of
the evolutions of the parameters predicted by FD-Dir and WGP-LN.

Set-up: We use two toy datasets where the probability of an event depends only on
time. The first one (3-G) has three classes occuring at three distinct times. It represents
the events in the Fig. F.6a. The second one (Multi-G) consists of two classes where
one of them has two modes and corresponds to the Fig. 9.1a. We use these datasets to
showcase the importance of time when predicting the next event. In Fig. 9.5, the four
top plots show the evolution of the categorical distribution for the FD-Dir and the logits
for the WGP-LN with 10 points each. The four bottom plots describe the certainty
of the models on the probability prediction by plotting the probability qc(τ) that the
probability of class c is higher than others, as introduced in Section 9.2. Additionally,
the evolution of the dirichlet distribution over the probability simplex is presented in
Appendix F.5.

Results. Both models learn meaningful evolutions of the distribution on the simplex.
For the 3-G data, we can distinguish four areas: the first three correspond to the three
classes; after that the prediction is uncertain. The Multi-G data shows that both models
are able to approximate multimodal evolutions.

Class prediction accuracy. The aim of this experiment is to assess whether our models
can correctly predict the class of the next event, given the time at which it occurs. For
this purpose, we compare our models against Hawkes and RMTPP and evalute prediction
accuracy on the test set.

Results. We can see (Fig. 9.6) that our models consistently outperform the other
methods on all datasets. Results of the other baselines can be found in Appendix F.8.2.

Time-Error evaluation. Next, we aim to assess the quality of the time intervals at
which we have confidence in one class. Even though WGP-LN and the FD-Dir do not
model a distribution on time, they still have intervals at which we are certain in a class
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Figure 9.6: Class accuracy (top; higher is better) and Time-Error (bottom; lower is better).

prediction, making the conditional probability a good indicator of the time occurrence
of the event.

Set-up. While models predicting a single time τ̂i for the next event often use the
MSE score 1

n

∑n
i=1(τ̂i − τ∗i )

2, in our case the MSE is not suitable since one event can
occur at multiple time points. In the conventional least-squares approach, the mean of
the true distribution is an optimal prediction; however, here it is almost always wrong.
Therefore, we use another metric which is better suited for multimodal distributions.
Assume that a model returns a score function g

(c)
i (τ) for each class regarding the next

event i, where a large value means the class c is likely to occur at time τ . We define
Time-Error = 1

n

∑n
i=1

∫
⊮
g
(c)
i (τ)≥g(c)i (τ∗i )

dτ . The Time-Error computes the size of the time
intervals where the predicted score is larger than the score of the observed time τ∗i . Hence,
a performant model would achieve a low Time-Error if its score function g(c)i (τ) is high at
time τ∗. As the score function in our models, we use the corresponding class probability
p̄ic(τ).

Results. We can see that our models clearly obtain the best results on all datasets. The
point process version of FD-Dir does not improve the performance. Thus, taking also into
account the class prediction performance, we recommend to use our other two models.
In Appendix F.8.3 we compare FD-Dir-PP with other neural point process models on
time prediction using the MSE score and achieve similar results.

Anomaly detection & Uncertainty. The goal of this experiment is twofold: (1) it
assesses the ability of the models to detect anomalies in asynchronous sequences, (2) it
evaluates the quality of the predicted uncertainty on the categorical distribution. For
this, we use a similar set-up as [270].

Set-up: The experiments consist in introducing anomalies in datasets by changing
the occurrence time of 10% of the events (at random after the time transformation de-
scribed in appendix F.7). Hence, the anomalies form out-of-distribution data, whereas
unchanged events represent in-distribution data. The performance of the anomaly de-
tection is assessed using Area Under Receiver Operating Characteristic (AUROC) and
Area Under Precision-Recall (AUPR). We use two approaches: (i) We consider the cat-
egorical uncertainty on p̄(τ), i.e., to detect anomalies we use the predicted probability
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Figure 9.7: AUROC and APR comparison across dataset on anomaly detection. The orange
and blue bars use categorical uncertainty score whereas the green bars use distri-
butional uncertainty.

of the true event as the anomaly score. (ii) We use the distribution uncertainty at the
observed occurrence time provided by our models. For WGP-LN, we can evaluate qc(τ)
directly (difference of two normal distributions). For FD-Dir, this probability does not
have a closed-form solution so instead, we use the concentration parameters which are
also indicators of out-of-distribution events. For all scores, i.e p̄(τ)c, qc(τ) and αc(τ), a
low value indicates a potential anomaly around time τ .

Results. As seen in Fig. 9.5, the FD-Dir and the WGP-LN have particularly good per-
formance. We observe that the FD-Dir gives better results especially with distributional
uncertainty. This might be due to the power of the concentration parameters that can
be viewed as number of similar events around a given time.

9.6 Conclusion

We proposed two new methods to predict the evolution of the probability of the next
event in asynchronous sequences, including the distributions’ uncertainty. Both methods
follow a common framework consisting in generating pseudo points able to describe rich
multimodal time-dependent parameters for the distribution over the probability simplex.
The complex evolution is captured via a Gaussian Process or a function decomposition,
respectively; still enabling easy training. We also provided an extension and interpreta-
tion within a point process framework. In the experiments, WGP-LN and FD-Dir have
clearly outperformed state-of-the-art models based on point processes; for event and time
prediction as well as for anomaly detection.
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Reinforcement Learning

Knowledge progresses by integrating uncertainty into itself,
not by exorcising it

Edgar Morin

10.1 Introduction

In the previous chapters, we focused on application of uncertainty estimation in super-
vised tasks where target labels are provided by the task during training. In contrast, we
consider in this chapter the application of uncertainty estimation to reinforcement learn-
ing tasks where the agent aims to maximize its total return without taking excessive
risks.

We generally want to satisfy three important properties for a reliable deployment of an
RL agent in real-world applications: (i) The agent should learn fast with as few episode
failures as possible. (ii) The agent should maintain high reward when facing new envi-
ronments similar to the training environment after deployment. (iii) The agent should
flag anomalous environment states when it does not know what action to take in an
unknown environment. These three practically desirable properties translate into three
technical properties in reinforcement learning agents. Indeed, a reinforcement learning
agent should achieve high sample efficiency at training time [430], high generalization
performance on test environments similar to the training environment [159], and high
Out-Of-Distribution (OOD) detection scores on environments unrelated to the training
task [453, 321].

In this chapter, we argue that aleatoric and epistemic uncertainty are key concepts
to achieve these desired practical and technical properties. The aleatoric uncertainty
represents the irreducible and inherent stochasticity of the environment. Thus, an en-
vironment region with high aleatoric uncertainty is unlikely to be interesting to explore
at training time because it could be uninformative (e.g. a sensor is very noisy) or dan-
gerous (e.g. the environment has an unpredictable behavior). In contrast, the epistemic
uncertainty represents the lack of information for accurate prediction. Thus, an envi-
ronment region with high epistemic uncertainty is potentially promising to explore to
build a better understanding of the environment (e.g., a state has unknown transition
dynamics because it has never been explored).
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Figure 10.1: Overview of our proposed desiderata for uncertainty in RL (See Section 10.3).

The core motivation of this chapter is to disentangle the properties of aleatoric and
epistemic uncertainty estimates in RL to build agents with reliable performance in real-
world applications. This motivation is similar to supervised learning (SL) where pre-
vious works defined desiderata, models, and evaluation methods for aleatoric and epis-
temic uncertainty [140, 3, 335, 235]. Important examples of models using a single or
multiple forward passes for uncertainty estimation in SL are MC dropout [141], ensem-
ble [246, 439, 434], deep kernel learning [268, 421, 420, 36], and evidential networks
[67, 270, 69, 10]. Further, empirical evaluation of uncertainty estimates in SL focuses
only on testing time with Out-Of-Distribution (OOD) detection and generalization or
detection of shifts [335, 278]. In contrast to SL, the RL setting is more complex because
it involves the performance of uncertainty estimates at both training and testing time.

Our Contributions. In this chapter, we propose a framework for aleatoric and epis-
temic uncertainty estimation in RL: (Desiderata) We explicitly define four desiderata
for uncertainty estimation in RL at both training and testing time (See Fig. 10.1). They
cover the behavior of aleatoric and epistemic uncertainty estimates w.r.t. the sample
efficiency in the training environment, and anomaly detection and generalization perfor-
mance in different testing environments. (Models) We carefully combine a diverse set of
uncertainty estimation methods in SL (i.e. MC dropout, ensemble, deep kernel learning,
and evidential networks) with Deep Q-Networks (DQN) [291], a RL model that is not
equipped with uncertainty estimates by default. These combinations require a minimal
modification to the training procedure of the RL agent. We discuss theoretical evidence
on the ability of these combinations to fulfill the uncertainty desiderata. (Evaluation)
Finally, we also propose a practical methodology to evaluate uncertainty in RL based on
OOD environments and domain shifts..
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10.2 Problem Setup

Uncertainty in SL. The objective of SL is to accurately predict the output y(i) given
an input x(i) with index i. It differentiates between two types of uncertainty: the un-
certainty on the label prediction y(i) described by the aleatoric distribution P(y(i) | θ(i))
with parameters θ(i) estimated from the input x(i), and the uncertainty on the predicted
label distribution parameters θ(i) described by the epistemic distribution Q(θ(i) | χ(i))
with parameters χ(i) estimated from the input x(i). Intuitively, the variations of the
aleatoric distribution will be high when the input x(i) does not provide discrimina-
tive information to determine the label y(i). The variations of the epistemic distri-
bution will be high when the input x(i) does not provide enough information to de-
termine the label distribution Q(θ(i) | χ(i)) described by the parameters χ(i). Thus,
the aleatoric uncertainty can be measured in practice by computing the entropy, i.e
ualea(x

(i)) = H(P(y(i) |θ(i))), or the variance, i.e. ualea(x
(i)) = Var(P(y(i) |θ(i))), of the

aleatoric distribution, while the epistemic uncertainty can be measured by computing
the entropy, i.e. uepist(x

(i)) = H(Q(θ(i) | χ(i)), of the epistemic distribution [270, 67, 69].
Further, SL also distinguishes between sampling-based which often require multiple for-
ward passes for uncertainty estimation, and sampling-free methods which often require a
single forward pass for uncertainty estimation. Sampling-based methods like MC drop-
out [141] and ensemble [246, 439, 434] estimate uncertainty by aggregating statistics
(e.g. mean and variance) from different samples which implicitly describe the epis-
temic distribution Q(θ(i) | χ(i)). Sampling-free methods like deep kernel learning models
[268, 421, 420, 36] and evidential networks [67, 270, 69, 10] estimate uncertainty by
explicitly parametrizing the epistemic distributions Q(θ(i)) | χ(i)) with known distribu-
tions such as Normal and Normal Inverse-Gamma (NIG) distributions, thus enabling
efficient and closed-form computation of the distribution statistics (e.g. mean, variance
or entropy).

Uncertainty in RL. We consider the task of learning RL policies interacting with
an environment with fully observed states at every time step t. The environment is
described by a Markov Decision Process (MDP) (S,A,R, T, ρ, γ), where S is the state
space, A is the action space, R(s(t), a(t)) is the reward associated with the action a(t)

and state s(t), T (s(t+1)|s(t), a(t)) is the transition probability, ρ(s(0)) is the initial state
distribution, and γ is the discount factor. Given the current state s(t), our goal is
to learn a policy predicting the action a(t) leading to the highest discounted return
Qπ(s(t), a(t)) = R(s(t), a(t)) + γ ET,π[Qπ(s(t+1), a(t+1))] (a.k.a. discounted expected re-
ward) in addition to the aleatoric uncertainty ualea(s

(t), a(t)) and the epistemic uncer-
tainty uepist(s

(t), a(t)) on the predicted return. Similar to SL, the aleatoric and epis-
temic distributions can be instantiated with P(y(t) | θ(t)) and Q(θ(t) | χ(t)) where the pre-
dicted value is the future return i.e. y(t) = Qπ(s(t), a(t)). Intuitively, the variation of the
aleatoric distribution will be high when the current state s(t) and action a(t) only contains
noisy information to determine the future return y(t), while the epistemic uncertainty will
be high when the current state s(t) and action a(t) does not provide enough information
according to the model to determine the return distribution Q(θ(t) | χ(t)) described by
the parameters χ(t). We decide to estimate uncertainty of the return y(t) = Qπ(s(t), a(t))
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for two reasons. First, the return is estimated in many common Deep RL models (e.g.
DQN [291], PPO [372], A2C [293]). Second, uncertainty of the return implicitly quantifies
uncertainty of the optimal action defined by a(t) = argmaxaQ

π(s(t), a(t)).
Finally, we consider three action selection strategies which is a crucial choice for ex-

ploration and generalization in RL:
• The epsilon-greedy strategy [292] which selects the action with the highest predicted

reward with probability 1− ϵ and samples randomly otherwise.

• The sampling-aleatoric strategy which takes the action with the highest predicted
reward based on one aleatoric distribution sample i.e. a(t) = argmaxa y

(t) where
y(t) ∼ P(y(t)|θ(t)).

• The sampling-epistemic strategy which takes the action with the highest predicted
reward based on one epistemic distribution sample i.e. a(t) = argmaxa EP(y(t)|θ(t))[y

(t)]
where θ(t) ∼ Q(θ(t)|χ(t)). This strategy is similar to Thompson sampling [411].

10.3 Desiderata for Uncertainty Quantification in RL

In this section, we explicitly define four intuitive and general desiderata that capture the
desired behavior for uncertainty estimates in our RL setup. The desiderata cover aleatoric
and epistemic uncertainty at both training and testing time. The distinction between
aleatoric and epistemic uncertainty is commonly studied in SL [140, 270, 69]. In contrast,
RL mostly focuses on accounting for aleatoric uncertainty with risk-sensitive policy or
distributional RL to achieve higher returns [29, 30, 93]. We design the desiderata to be
informal and generic for two main reasons. First, it allows them to intuitively indicate the
expected behavior of the uncertainty estimation without complex mathematical notations
[398, 124]. Second, it makes the desiderata application independent and model-agnostic.

The second distinction differentiates between training and testing time relevant to
sample efficiency and generalization in RL. In contrast, SL mostly focuses on testing
time performance.

Training Time. We describe the desired behavior of uncertainty estimates at training
time. First, we describe the desired uncertainty behavior when observing more samples
of the training environment.

Desideratum 10.3.1. An agent interacting longer with one specific environment at
training time should become more epistemically confident when predicting actions on this
same environment.

Intuitively, an agent observing more samples from the same environment distribution
should accumulate more knowledge through time, thus being more epistemically certain.
In practice, des. 10.3.1 expresses that the epistemic uncertainty estimates should reflect
the accumulated knowledge, and thus the convergence, of the agent during training. We
test des. 10.3.1 in the experiments by tracking the epistemic uncertainty at training time
(see Section 10.5). Second, we describe the behavior of the total reward when selecting
actions based on uncertainty estimates at training time.
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Desideratum 10.3.2. All else being equal, an agent selecting actions with the sampling-
aleatoric strategy at training time should achieve lower sample efficiency than an agent
selecting actions with the sampling-epistemic strategy.

Intuitively, an agent exploring states with more (irreducible) aleatoric uncertainty
would gain less knowledge about the environment dynamic than an agent exploring states
with high epistemic uncertainty where the agent lacks knowledge. However, there is
an important trade-off between over- or under-exploring epistemically uncertain actions
which could lead to lower sample efficiency. The sampling-epistemic strategy, which cor-
responds to Thompson sampling [411], mitigates this exploration-exploitation problem
by sampling action w.r.t. the epistemic distribution. Thompson sampling has already
empirically demonstrated high sample efficiency in deep RL problems [141] and provably
achieve low regret in many decision-making problems like multi-arm Bandits [6, 366]. In
practice, des. 10.3.2 suggests that an agent should use the sampling-epistemic strategy
for a better exploration-exploitation trade-off. We test des. 10.3.2 in the experiments
by comparing the sample efficiency of the sampling-aleatoric and the sampling-epistemic
strategies during training (see Section 10.5).

Testing Time. We describe the desired behavior of uncertainty estimates at testing
time. First, we describe the desired uncertainty behavior when observing samples from
an environment different from the training environment.

Desideratum 10.3.3. At testing time, epistemic uncertainty should be greater when
the agent interact with environments that are very different from the original training
environments.

The environment difference can be measured using different distance metrics depend-
ing on the task or application requirements [176]. Intuitively, an agent should be less
confident when observing new states at test time that were not used to collect knowl-
edge at training time. In practice, des. 10.3.3 suggests that an agent should be able to
use epistemic uncertainty estimates to detect states that are abnormal compared to the
states observed during training. We test des. 10.3.3 in the experiments by comparing the
epistemic uncertainty of the training environment against the uncertainty in noisy envi-
ronments at testing time (see Section 10.5). Noisy environments include environments
with completely random states, and environments with different strengths of perturba-
tion on the original states, actions, or transition dynamics. Depending on the application,
different noise or perturbation types might be used to characterize the difference of the
testing environment with the training environment. Second, we describe the behavior of
the total reward when selecting at testing time actions based on uncertainty aleatoric or
epistemic uncertainty estimates.

Desideratum 10.3.4. All else being equal, an agent sampling actions from the epistemic
uncertainty at training and testing time should generalize better at testing time than an
agent sampling actions from the aleatoric uncertainty.

Intuitively, an agent exploring more epistemically uncertain states at training time
would collect more knowledge about the environment, thus generalizing to more states
at testing time. Further, since the environment dynamic is not directly observed, an
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agent should account for the epistemic certainty on the current state to take actions that
generalize better at testing time. In particular, it has been shown that the Bayes-optimal
Markovian policy at testing time is stochastic in general due to the partially observed
MDP dynamic sometimes called epistemic POMDP [159]. In practice, des. 10.3.4 suggests
that an agent should use the sampling-epistemic strategy for more robust generalization
performance. We test des. 10.3.4 in the experiments (see Section 10.5) by comparing
the reward obtained by the sampling-aleatoric and the sampling-epistemic strategies at
testing time. The two latter desiderata 10.3.3 and 10.3.4 express an important trade-off
between assigning high uncertainty and generalizing to new test environments. Since an
agent cannot generalize to all new environments because of the No Free Lunch Theorem
[445], an agent should assign higher uncertainty to environments where it does not gen-
eralize. We jointly test des. 10.3.3 and des. 10.3.4 in the experiments (see Section 10.5)
by tracking the reward and the uncertainty estimates in test environments with different
perturbation strengths.

10.4 Models for Uncertainty Quantification in RL

Model-free RL agents commonly rely on learning the expected return Qπ(s(t), a(t)) as-
sociated with taking action a(t) in state s(t) and then following a policy π. It is defined
by the Bellman equation: Qπ(s(t), a(t)) = R(s(t), a(t))+γ E[Qπ(s(t+1), a(t+1))]. Similarly,
the optimal policy π∗ satisfies the highest expected return Q∗(s(t), a(t)) defined by the
optimal Bellman equation [31]:

Q∗(s(t), a(t)) =R(s(t), a(t)) + γ E[max
a(t+1)

Q∗(s(t+1), a(t+1))] (10.1)

where the expectation is taken over the random transitions. However, the exact computa-
tion of the optimal Q-value is often intractable for large action or state spaces. Therefore,
deep RL agents like DQN [291], PPO [372], and A2C [293] aim at approximating the
optimal Q-value Qπ∗

(s(t), a(t)) with a neural network fθ(s(t), a(t)) with parameter θ. In
particular, DQN enforces Eq. (10.1) by minimizing the squared temporal difference (TD)
error ∥R(s(t), a(t))+γmaxa(t+1) fθ′(s

(t+1), a(t+1))−fθ(s(t), a(t))∥2, where fθ is the learned
prediction network and fθ′ is the frozen target network regularly updated with the pre-
diction network parameters during training. The TD error minimization is similar to
SL regression with a MSE loss between the prediction ŷ(t) = fθ(s

(t), a(t)) and the tar-
get y(t) = R(s(t), a(t)) + γfθ′(s

(t+1), a(t+1)) with the key difference that the exploration
strategy select the data samples that will be used during training.

Model-free Deep RL agents often show important limitations for uncertainty estima-
tion because of their neural network architecture choice. For, instance, while DQN only
outputs a single scalar representing the mean Q-value with no uncertainty estimates,
PPO and A2C policies parameterized with standard ReLU networks would provably
produce overconfident predictions for extreme input states [182]. In this chapter, we
focus on equipping the widely used DQN RL agent with reliable uncertainty estimates.
To this end, we combine DQN with four SL architectures for uncertainty estimation (e.g.
MC dropout, ensemble, deep kernel learning, and evidential networks) covering a diverse
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range of sampling-based and sampling-free methods. These four DQN combinations al-
low to instantiate both aleatoric and epistemic uncertainty with minimal modifications
to the training procedure. We provide a summary of the uncertainty properties of these
models in Table 10.1.

Table 10.1: Summary of the uncertainty properties of the models.
DropOut Ensemble Deep Kernel Learning Evidential Networks

Uncertainty concentration (Des. 10.3.1) ✗ ✗ ✗ ✓

Alea. vs epist. sampling at training time (Des. 10.3.2) ✓ ✓ ✗ ✓

OOD detection (Des. 10.3.3) ✗ ✗ ✓ ✓

Alea. vs epist. sampling at testing time (Des. 10.3.2) ✓ ✓ ✗ ✓

MC Dropout. DQN is combined with MC Dropout [141] in three steps: (1) it sam-
ples K independent sets of model parameters {θk}Kk=1 by dropping activations with
probability p, (2) it performs K forward passes µk, σk = fθk(s

(t), a(t)), and (3) it ag-
gregates predictions to form the mean prediction µ(s(t), a(t)) = 1

K

∑K
k=1 µk, the aleatoric

uncertainty estimate ualea(s
(t), a(t)) = 1

K

∑K
k=1 σs, and the epistemic uncertainty esti-

mate uepist(st, at) =
1
K

∑K
k=1(µk − µ(s(t), a(t)))2. In this case, the aleatoric distribution

is Gaussian while the epistemic distribution is implicitly represented by the sampled pa-
rameters {θk}Kk=1. Further, the sampling-epistemic strategy is achieved by performing
one single forward pass with a single set of sampled model parameters. This is similar to
the Thompson sampling strategy used by Gal and Ghahramani [141]. During training, we
train the neural network parameters θ by using a Gaussian negative log-likelihood loss.
The combination of DQN and dropout has been shown to practically improve sample
efficiency Gal and Ghahramani [141]. However, dropout has several limitations. First,
the dropout uncertainty estimates provably do not concentrate with more observed data
[331], thus potentially violating des. 10.3.1. Second, there is no guarantee that dropout
produce meaningful uncertainty estimates for extreme input states with a finite number
of samples K, thus potentially violating des. 10.3.3. Third, dropout might be compu-
tationally expensive for large K value since it would require many forward passes for
uncertainty estimation.

Ensemble. DQN is combined with ensembles [246] in three steps: (1) it train K in-
dependent models with parameters {θk}Kk=1, (2) it performs K forward passes µk, σk =
fθk(s

(t), a(t)), and (3) it aggregates predictions to form the mean prediction µ(s(t), a(t)) =
1
K

∑K
k=1 µk, the aleatoric uncertainty estimate ualea(s

(t), a(t)) = 1
K

∑K
k=1 σs, and the epis-

temic uncertainty estimate uepist(st, at) =
1
K

∑K
k=1(µk − µ(s(t), a(t)))2. In this case, the

aleatoric and epistemic distributions have the same form as for MC Dropout. Further,
the sampling-epistemic strategy is achieved by performing one single forward pass with
one randomly selected network. This is similar to the Thompson sampling strategy used
by Osband et al. [330]. We train the K independent neural network parameters θk with
a Gaussian negative log-likelihood loss. However, an ensemble has several limitations.
First, while the combination of DQN with bootstrapped ensemble and prior functions

111



10 Uncertainty Estimation for Reinforcement Learning

has been empirically shown to improve learning for complex tasks with sparse rewards
[330, 331], there is no explicit theoretical or empirical evidence that their uncertainty
estimates concentrate with more observed data. Second, there is no guarantee that en-
sembles produce meaningful uncertainty estimates for extreme input states with a finite
number of samples K, thus potentially violating des. 10.3.3. Third, an ensemble is com-
putationally expensive for large K value since it would require many forward passes and
many neural networks.

Deep Kernel Learning. DQN is combined with deep kernel learning [421] in three
steps: (1) it predicts one latent representation of each input state i.e. z(t) = fθ(s

(t)),
and (2) one Gaussian Process per action a defined from a fixed set of K learnable
inducing points {ϕa,k}Kk=1 and a predefined positive definite kernel κ(·, ·) predicts the
mean µ(s(t), a) and the variance σ(s(t), a) of a Gaussian distribution. We train the
neural network parameters θ and the inducing points {ϕa,k}Kk=1 jointly with a varia-
tional ELBO loss similarly to [421]. In this case, the epistemic distribution is Gaussian,
i.e. uepist(st, at) = H(N (µ(s(t), a(t)), σ(s(t), a(t)))). Indeed, we show theoretically that
epistemic uncertainty increases far from training data (see Appendix G.1). Thus, the
combination of DQN and deep kernel learning does not suffer from arbitrary uncertainty
estimates for extreme input states contrary to ReLU networks [182]. However, one of the
limitation of deep kernel learning is that it does not disentangle aleatoric and epistemic
uncertainty. This is similar to deep kernel learning methods in SL [421, 420].

Evidential Networks. The combination of DQN and posterior networks [69, 67] which
belong to the class of evidential networks consists of three steps: (1) an encoder fθ
predicts one latent representation of each input state i.e. z(t) = fθ(s

(t)), (2) one normal-
izing flow density estimator P(. |ωa) and one linear decoder gψa per action a predict a
Normal Inverse-Gamma distribution Q(χ(s(t), a), n(s(t), a)) with parameters χ(s(t), a) =
gψa(z

(t), a) and n(s(t), a) ∝ P(z(i) |ωa), and (3) it computes the posterior parameters
χpost(s(t), a) = npriorχprior+n(s(t),a))χ(s(t),a)

nprior+n(s(t),a))
, npost(s(t), a)) = nprior + n(s(t), a) where the

prior parameters are chosen to enforce high entropy for the prior distribution e.g. χprior =
(0, 100)T , nprior = 1 [69]. In this case, the epistemic distribution is a Normal Inverse-
Gamma distribution and the aleatoric distribution is a Normal distribution [69]. We train
the neural network parameters θ and ψ and the normalizing flow parameters ω jointly
with the MSE loss. The entropy of the conjugate prior distribution represents the epis-
temic uncertainty, i.e. uepist(s

(t), a(t)) = H(NΓ-1(χ(s(t), a(t)), n(s(t), a(t)))). The entropy
of the likelihood distribution represents the aleatoric uncertainty, i.e. ualea(s

(t), a(t)) =
H(N (µ(s(t), a(t)), σ(s(t), a(t)))). Indeed, it has been showed theoretically that epistemic
uncertainty increases for input states far from input states observed during training (see
Appendix G.1) [69]. Thus, the combination of DQN and posterior networks does not
suffer from arbitrary uncertainty estimates for extreme input states contrary to ReLU
networks [182].
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10.5 Evaluation of Uncertainty Quantification in RL

In this section, we provide an extensive evaluation of uncertainty estimation for model-
free RL. It compares four uncertainty estimation methods for model-free RL in three envi-
ronments. First, we evaluate the uncertainty predictions at training time to assess the un-
certainty concentration (des. 10.3.1) and the sample efficiency of the uncertainty-guided
exploration-exploitation strategy (des. 10.3.2). Second, we evaluate the uncertainty es-
timates at testing time to assess the OOD detection performances (des. 10.3.3) and the
generalization performances of the uncertainty-guided decision strategy (des. 10.3.4). In
particular, we evaluate the trade-off between the generalization performance and the
detection performance in new perturbed test environments.

Models. We consider the four uncertainty models MC Dropout (DropOut), Ensem-
ble, deep kernel learning (DKL) and the evidential model based on Posterior Networks
(PostNet) combined with the DQN RL policy (see sec. 10.4). In this chapter, we focus
on DQN [291] since it is a widely used model-free RL agent that does not provide any
uncertainty estimates by default. All models use the same encoder architecture and DQN
hyper-parameters. We performed a grid search over all hyper-parameters. We compute
the mean and standard error of the mean over 5 seeds. Further details are given in
Appendix G.2.

Environments. We used three training environments CartPole [25], Acrobot [402,
153] and LunarLander [52] from the Open AI gym environments [54]. Packer et al.
[336] also used similar environments to assess generalization in RL. We focus on these
environments since they turn out to be challenging settings for the uncertainty methods
and the sampling strategies. Some methods and strategies are indeed already unable to
achieve high performance for sample efficiency, generalization, and OOD detection. We
provide further details on the environments in Appendix G.3.

OOD environments: The states, actions, and transition dynamics of the OOD envi-
ronments should not be relevant to the original training environment task, thus being a
reasonable failure mode. To this end, the input state is composed of Gaussian noise at
every time step independently of the previous actions.

Perturbed environments: These environments are perturbed versions of the original
training environment with different perturbation strengths. We separately perturb the
state space, the action space, and the transition dynamics with different strengths of
Gaussian or uniform noises. These perturbations follow the MDP structure of the en-
vironment as proposed by the formal framework for domain shifts presented by Haider
et al. [176]. We did not consider perturbation on the initial state only, which would be a
weaker version of the state perturbations, and perturbations on the reward function which
would not affect the model at testing time. Further details are given in Appendix G.3.

Training Time. First, we compare the sample efficiency and the uncertainty predic-
tions of the four uncertainty methods using the epsilon-greedy exploration-exploitation
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(a) (b) (c) (d)

Figure 10.2: Comparison of the training performance (Figs. 10.2a and 10.2b) and testing per-
formance (Figs. 10.2c and 10.2d) of the four uncertainty methods using epsilon-
greedy strategies on CartPole. Ideally, an uncertainty aware-model in RL should
achieve high reward with few training samples at training and testing time, a de-
creasing epistemic uncertainty at training time and high OOD detection scores at
testing time.

strategy at training time. We normalize the epistemic uncertainty in [0, 1] with min-max
normalization to compute the relative epistemic uncertainty. It allows us to easily com-
pare the trend of the epistemic uncertainty of all models. We show the key results for
Cartpole in Fig. 10.2 and the detailed results for CartPole, Acrobot, and LunarLander
in Fig. G.1 in Appendix G.5. We observe that all methods achieve similar sample effi-
ciency. Ensemble with an epsilon-greedy strategy struggles to maintain high reward on
CartPole. This can be explained by the under-exploration of the epsilon-greedy strategy
as also observed by Osband et al. [331] and Gal and Ghahramani [141]. Further, we
observe that only the epistemic uncertainty estimates of the combination of DQN and
PostNet decreases during training. Thus, PostNet empirically validates des. 10.3.1. In
contrast, the epistemic uncertainty estimates of other methods increase or do not con-
verge. This corroborates with the findings of [331] which theoretically shows that the
uncertainty estimates of dropout and ensemble might not converge even on simple tasks.

Second, we compare the sample and episode efficiency of the sampling-epistemic and
the sampling-aleatoric strategies for each model during training. We show the results for
Acrobot in Fig. 10.3, and additional results for CartPole and LunarLander in Fig. G.2 in
Appendix G.5. We observe that all models achieve high rewards by using the sampling-
epistemic strategy. In particular, we observed that Ensemble with epistemic sampling
achieves more stable rewards than with epsilon-greedy which aligns with observations
in Osband et al. [330]. Further, we observe that all models instantiating both aleatoric
and epistemic uncertainty achieve significantly better sample efficiency with sampling-
epistemic than sampling-aleatoric. Contrary to the sampling-epistemic strategy, the
sampling-aleatoric strategy intuitively fails at visiting new under-explored states/actions,
thus achieving low and unstable rewards. Hence, Drop-Out, Ensemble and PostNet em-
pirically validate des. 10.3.2. Thus, disentangling aleatoric and epistemic uncertainty
can speed learning in a training environment. Further, the sampling-epistemic strategy
requires fewer finished episodes on CartPole and LunarLander. This represents a more
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Figure 10.3: Comparison of the training performance on Acrobot. The four uncertainty meth-
ods use the sampling-aleatoric or the sampling-epistemic at training time. Ideally,
an uncertainty aware-model should high reward with few samples.

reliable training for these two environments since each finished episode translates into a
failure and a restart of the systems (see Appendix G.5).

Testing Time. In this section, we save 20 models during training to evaluate their
performance at testing time. The testing performance can be viewed as the model per-
formance after deployment. First, we evaluate the testing in-distribution (ID) reward
in the training environment and the out-of-distribution (OOD) detection performance
against the OOD environment composed of fully noisy states. All the methods used the
same epsilon-greedy strategy at training time and the action lead to the highest pre-
dicted expected return at testing time. The OOD detection performance is measured
by comparing the predicted epistemic uncertainty of the states/actions of 10 episodes
with the area under the receiver operating characteristic curve (AUC-ROC). We show
the results for CartPole in Fig. 10.2, and additional results for Acrobot and LunarLan-
der in Fig. G.3 in Appendix G.5. We observe that DKL and PostNet achieve very high
OOD detection scores compared to DropOut and Ensemble. These empirical results
align with the theoretical results stating that DKL and PostNet should assign high un-
certainty to states very different from states observed during training. Thus, DKL and
PostNet validate des. 10.3.3. In particular, DKL and PostNet can reliably equip DQN
with epistemic uncertainty estimates that can be used to flag anomalous OOD states.
In contrast, DropOut and Ensemble achieve poor OOD detection scores. This aligns
with Osband et al. [331] and Charpentier et al. [69] who show through multiple experi-
ments that the uncertainty estimates assigned to OOD inputs by DropOut and Ensemble
are not significantly smaller than the uncertainty estimates assigned to inputs close to
training data.

Second, we compare the testing in-distribution (ID) reward and the out-of-distribution
(OOD) detection performance when models use the sampling-aleatoric and sampling-
epistemic strategies at both training and testing time. We show the results for the testing
reward and the OOD detection scores on the LunarLander in Fig. 10.4, and additional re-
sults on the CartPole and the Acrobot environments in Fig. G.4 in Appendix G.5. We ob-
serve that the sampling-epistemic strategy achieves significantly better rewards than the
sampling-aleatoric for almost any checkpointed models during training. Thus, all models
empirically satisfy des. 10.3.3. These empirical results underline the need to disentangle
both aleatoric and epistemic uncertainty for high reward performance at testing time.
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Figure 10.4: Comparison of the testing reward and OOD performance on LunarLander. The
four uncertainty methods use the sampling-aleatoric or sampling-epistemic strate-
gies at both training and testing time. Ideally, an uncertainty aware-model should
achieve high testing reward and high OOD AUC-ROC detection score.

Third, we compare the sampling-epistemic and the sampling-aleatoric strategies for
each model at testing time. All models use the same epsilon-greedy strategy at training
time. We show the key results for the testing reward and the testing epistemic uncertainty
on Cartpole with perturbed states, actions, and transition dynamics in Fig. 10.5, and
detailed results with other perturbations and environments in Appendix G.5. We observe
that stronger state and action perturbations deteriorate the reward performance of all
models. This is expected because the input state or the output actions diverge from the
training environment with stronger perturbations. Further, while the models were trained
using the same epsilon-greedy strategy, we observe that the sampling-epistemic strategy
generalizes significantly better to all types of perturbed environments than the sampling-
aleatoric strategy. In particular, all models achieve high rewards with epistemic sampling
on environments with perturbed transitions. Intuitively, sampling-aleatoric select actions
with more inherent risk, while the sampling-epistemic select actions accounting for the
knowledge accumulated by the agent in the training environment. The generalization ca-
pacity of the sampling-epistemic strategy aligns with that of Ghosh et al. [159] who recasts
the problem of generalization in RL as solving an epistemic POMDP. Thus, differentiat-
ing between aleatoric and epistemic uncertainty can improve generalization. Finally, we
observed that DKL and PostNet consistently assign higher epistemic uncertainty to en-
vironments with perturbed states, aligning with their theoretical guarantees on extreme
input states. The most challenging perturbations are perturbed actions since none of
the models provide guarantees for this perturbation type. Overall, DKL and PostNet
reliably assign higher epistemic uncertainty to most of the perturbation types. Therefore,
DKL and PostNet perform a good trade-off between generalization and detection of new
perturbed environments.
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Figure 10.5: Comparison of the testing performance and the epistemic uncertainty predictions
on CartPole with perturbed states. The four uncertainty methods use the epsilon-
greedy strategy at training time and the sampling-aleatoric or sampling-epistemic
strategy at testing time. Ideally, an uncertainty-aware model should maintain high
reward while assigning higher epistemic uncertainty on more severe perturbations.

10.6 Related Work

In this section, we cover the related work for aleatoric and epistemic uncertainty es-
timation for RL. We refer the reader to the survey [3] for an exhaustive overview on
uncertainty estimation.

Desiderata: The notion of risk is well studied in RL and closely connected to the notion
of uncertainty. Risk-sensitive RL usually aims at reducing the number of failures at train-
ing time for safer RL [129, 78, 190, 146]. In particular, [85, 130, 123] discuss the trade-off
between risk-sensitivity and sample efficiency at training time. Distributional RL meth-
ods expect that accounting for aleatoric uncertainty allows to achieve higher returns.
Further, [159] aim at improving generalization at testing time within the Bayesian RL
framework. In SL, the predicted uncertainty is expected to increase further from training
data [286, 69, 237, 398]. None of these previous works give explicit desiderata for both
aleatoric and epistemic uncertainty in RL at both training and testing time.

Models: The related work for uncertainty-aware model in RL is rich as shown in surveys
on distributional and Bayesian RL [158, 30]. Distributional RL [30, 301, 29, 93] achieves
higher returns by learning the distribution of return which generally captures the aleatoric
uncertainty [320]. Bayesian RL methods includes sampling-based methods models such
as on dropout [141, 213] and ensembles [330, 331, 266, 416, 159]. These methods are often
combined with bootstrapping during training. In particular, [85] proposed to decompose
aleatoric and epistemic uncertainty to the cost of multiple trained networks and [103]
decompose aleatoric and epistemic uncertainty with latent variables for model-based RL.
Bayesian RL also includes Gaussian processes [245, 122] and more specifically the deep
kernel learning method [452] which requires storing uncertainty estimates in the experi-
ence replay buffer during training. Unlike RL, SL includes many uncertainty methods us-
ing deep kernel learning [421, 420] and evidential network [67, 69, 398, 270, 276, 10, 235].
In contrast, we look at both sampled-based and sampled-free uncertainty methods for
aleatoric and epistemic uncertainty estimation with minimal modification to the training
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procedure of the RL agent, thus ensuring easy adaptation of new uncertainty quantifica-
tion techniques from SL to RL.

Evaluation: [332, 333] proposed to evaluate uncertainty in RL by focusing on joint pre-
dictive distributions instead of marginal distributions. Many works [430, 57, 172, 51] used
sample efficiency as evaluation method. Further, previous works proposed generalization
benchmarks for RL [226, 336, 87]. Finally, [96, 295] have recently proposed benchmarks
for OOD detection relevant to RL. In contrast, we propose a simple evaluation method
which jointly look at multiple tasks relevant to real-world applications of uncertainty
in RL. It covers epistemic uncertainty tracking and sample efficiency at training time,
and generalization and OOD detection at testing time. In particular, we evaluate the
trade-off between OOD generalization [385] and OOD detection [453].

10.7 Limitations

Desiderata: Our desiderata, similar to others [398, 20, 304], are designed to be applica-
tion and model agnostic. In practice, the desiderata should be instantiated with formal
definitions and could be customized depending on the application. Models: To validate
the key contributions, similar to [29, 93, 330], we restrict our experiments to DQNs.
However, the four uncertainty methods essentially modify the encoder architecture, it is
possible to adapt them to other model-free RL methods such as PPO [372] and A2C [293].
Evaluation: Our approach focuses on a simple and task-diverse evaluation methodology
for uncertainty estimation. Contrary to Cobbe et al. [87], we do not focus on scaling RL
methods to more complex tasks in this chapter.

Conclusion

We introduce a new framework to characterize aleatoric and epistemic uncertainty estima-
tion in RL with four explicit desiderata, four RL models inspired from SL and a practical
evaluation methodology. The desiderata characterize the behavior of uncertainty esti-
mates at both training and testing time. The models combine DQN with sampling-based
and sampling-free uncertainty methods in SL. We give theoretical and empirical evidence
that these methods can fulfil the uncertainty desiderata. The evaluation method assesses
the quality of uncertainty estimates on sample efficiency, generalization and OOD detec-
tion tasks.
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In this section, we provide a retrospective on the Chapters 8 to 10 since their publications
by discussing potential improvements and the related works published a posteriori.

11.1 Uncertainty for graph data.

Potential improvements. The proposed method GPN (see Chapter 8) has two main
directions of improvements. First, GPN focuses on homophilic graphs. Recent works
have proposed methods [43, 104] working on both homophilic and heterophilic graphs
but do not provide uncertainty estimates. In particular, we proposed in [365] a simple
method to improve leanring on heterophilic graphs by using edge directionality. Second,
it would be interesting to extend our proposed benchmark for uncertainty estimation on
more datasets including very large scale datasets. Recently, [173] has proposed to extend
OOD detection benchmarks for graph datasets.

Recent related works. While the field of uncertainty estimation for graph data is still
new, multiple recent works already proposed extension for uncertainty estimation at
node level, edge level, and graph level. Indeed, [27] proposed to benchmark uncertainty
estimation for node classification and finds that GPN and its combination with Natural
Posterior Network achieves strong results on various datasets. Further, other recent
works [409, 193, 428] had a deeper focused on calibration for GNNs at node level. They
observed that GNNs are generally miscalibrated but can be partially recalibrated with
calibration methods like temperature rescaling. Other works [474, 192] have extended our
approach by proposing uncertainty on edges for calibration and OOD detection. Finally,
other approaches [444, 395] focused on uncertainty estimation for graph-level tasks like
molecular property prediction. In particular, [26] showed that OOD detection on graph
classification is still a widely open research field.

11.2 Uncertainty for sequential data.

Potential improvements. The approaches proposed in Chapter 9 for uncertainty esti-
mation has two main directions of improvement. First, while the uncertainty on the event
type is represented via explicit and expressive categorical distributions, the uncertainty
on the event time is represented via implicit temporal point processes distributions with
contained intensity functions. To solve this issue, [380] and [381] extended our work by
modelling expressive point processes which are intensity free and point processes where
likelihood computation, sampling, and prediction can all be done efficiently in closed
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form. Second, it would be interesting to extend the benchmark for uncertainty estima-
tion for event sequences. Recently, [382] had a closer look at anomalous event detection
in both simulated and real-world data and [383] provided an overview of application areas
for temporal point processes.

Recent related works. Beyond sequential data with time events, other works have re-
cently looked at uncertainty estimation for sequential data with text to account for the
emergence of new powerful large language models. For example, [274] models uncertainty
at token and sequence level with applications to translation datasets. [241] recently pro-
poses to estimate uncertainty on semantic meaning in question answering tasks. Further,
[180, 197] proposed uncertainty methods for text classification.

11.3 Uncertainty for reinforcement learning.

Potential improvements. The uncertainty framework proposed in Chapter 10 has sev-
eral directions of improvements. First, similarly to generalization benchmarks for RL
[226, 336, 87], it would be interesting to extend this uncertainty benchmark for RL to
more complex environments. Second, our uncertainty framework is limited to model-free
RL methods and could be extended to model-based RL methods.

Recent related works. Although the uncertainty estimation for RL is not new, this
field is still an active domanin of research. Recently, [410] and [449] proposed a new un-
certainty methods for model-based RL. Similar to our approach, another work [258] used
aleatoric and epistemic uncertainty with density estimation in RL for player evaluation
in games. Finally, another work [265] developed other method for distributional RL.
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12 Conclusion

The more I see the less I know for sure.

John Lennon

I know one thing, that I know nothing.

Socrates

12.1 Uncertainty estimation for independent and
non-independent data

Figure 12.1: Overview of the contributions of this thesis.

In this thesis, we cover a wide range of data structures. While some of them satisfy the
independence assumption (e.g. tabular data, image data), some of them satisfy the non-
independence assumption (e.g. graph data, seqential data). Beyond label predictions,
this thesis brings uncertainty estimation on these data structures for various task types
by defining desiderata, designing models, and completing benchmarks for uncertainty
estimation. In particular, we show how to leverage the crucial information described by
the data sctructure to provide informative uncertainty estimates with important benefits
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for critical objective values like reliability, accuracy, efficiency, and ease of use of machine
learning models (see Fig. 12.1).

12.2 Reliable ML beyond uncertainty estimation

Accurate uncertainty estimation aims at improving trust in safety-critical domains sub-
ject to automation, in application of ML models in areas requiring fairness, or in a main-
tenance context where the underlying data distribution might slowly shift over time. In
this regard, this thesis significantly improves the applicability of uncertainty estimation
across a wide range of input (e.g. tabular, images, graph data, sequential data, etc) and
output domains (e.g. classification, regression, count prediction, etc) while maintaining
a fast inference time. This could be particularly beneficial in industrial applications
with time pressure and potential critical consequences (e.g. finance, medicine, policy
decision-making, etc).

Nonetheless, while methods described in this thesis achieve high-quality uncertainty
estimation, there is always a risk that they do not fully capture the real-world complexity
e.g. for OOD data close to ID data. Furthermore, we raise awareness about two other
risks of excessive trust related to the Dunning-Kruger effect [240]: human excessive trust
in Machine Learning model capacity, and human excessive trust in its own interpretation
capacity. Therefore, we encourage practitioners to proactively confront the model design
and its uncertainty estimates to desired behaviors in real-world use cases.

Further, beyond uncertainty estimation, multiple other aspects play a critical role in the
reliability of ML models including robustness, interpretability, privacy, or AI alignment.

Robustness. While Chapter 6 focuses on the robustness of uncertainty estimates, ro-
bustness is a more general field which aims to guarantee that any types of model pre-
dictions do not change when imperceptible perturbations are applied to the input data.
This covers empirical robustness and certifiable robustness against both natural and ad-
versarial perturbations [417, 79, 89, 479]. Robustness is a very active field of research
with many studies on robustness for independent data [387] but also for dependent data
like graph data [174, 165] or sequential data [75].

Interpretability. Interpretability is important in ML to explain the reasons for model
predictions. It ensures impartial decision-making and indicate if meaningful variables
are used to infer the prediction output. It covers different types of explanations like
text explanations, visual explanations, local explanations or explanations by example.
Interpretability and explainability are also very active fields with many existing studies
[18, 304].

Privacy. Privacy consists in preventing an attacker to infer facts about members of a
population, about data in the training set, or about the model parameters [101, 91].
Privacy is important to avoid data leakage in both centralized and federated learning.
An important defense against privacy attackers is differential privacy [116] which tried
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to learn useful information from the whole training dataset without retaining specific
information about individual samples.

AI alignment. AI alignment aim to align the intended goals of the AI designers, the
specified goals to the AI system, and the emergent goals that the AI system actually
advances [50, 139]. This field is still at its infancy. Recent works on AI alignment involve
large foundational models (e.g. [56, 362, 408]) which might show misaligned behavior
which can be (partially) realigned similarly to InstructGPT [334] or ChatGPT [1].

12.3 Open questions

Beyond the potential improvements mentioned in Chapters 7 and 11, we identified other
open questions related to uncertainty estimation in ML which are not directly treated in
this thesis.

How to estimate uncertainty for large foundational models? Recently, many large
foundational models have been developed (e.g. [56, 362, 408]) with already high impact
on real-world applications like art creation, text writing, coding, or scientific research. It
is important to develop uncertainty methods adapted to these methods to avoid misusage
of their (potentially wrong) predictions. Hence, multiple recent works already started
to develop promising methods to efficiently estimate uncertainty for large models with a
focus on languages models (e.g. [241, 210]). Nonetheless, the emergence of foundational
models for different data types and applications motivates further research on uncertainty
methods for large models especially when their defined goals might be misaligned with
the intended goals.

How to continually learn in the presence of uncertainty? Intuitively, uncertainty is
expected to help to continually learn on a series of tasks (e.g. [117, 216, 127]) or actively
select useful data for training (e.g. [207, 143, 227, 228, 407]). Indeed, low uncertainty
should indicate already learned inputs, while high uncertainty should indicate unknown
data regions. However, the study of uncertainty estimation to achieve state-of-the-arts
performance is still an important research direction.

Why is the model uncertain? Uncertainty estimates on the predictions might be sen-
sitive to small input data perturbations (see Chapter 6) which makes unclear whether
uncertainty predictions are always based on valid reasons. Hence, it is crucial to have
reliable explanations on the causes of the uncertainty predictions. However, apart from
[15] which proposed a first method to interpret uncertainty estimates and [280] which aim
to construct uncertainty set which contains the correct explanation with high probability,
there have been very few works on generating explanations on the causes of uncertainty
estimates.
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How to estimate uncertainty on inferred causal relationships? Causal inference aims
at inferring causal relationships from observed data. However, the observed data might
not be sufficient to have a clear conclusion on the causal relationship between two vari-
ables, thus making them non-identifiable [342]. Only very few works defined distributions
on DAGs to provide uncertainty estimates [70]. Hence, the area of uncertainty estimation
for causal inference is still underexplored.
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A Uncertainty Estimation for
Classification

A.1 Dirichlet Distribution Computations

A.1.1 Dirichlet distribution

The Dirichlet distribution with concentration parameters α = (α1, . . . , αC), where αc >
0, has the probability density function:

f(x;α) =

∏C
c=1 Γ(αc)

Γ
(∑C

c=1 αc

) C∏
c=1

xαc−1
i (A.1)

where Γ is a gamma function:

Γ(α) =

∫ ∞

0
αz−1e−αdz

A.1.2 Closed-form formula for Bayesian loss.

The novel Bayesian loss described in Eq. (3.7) can be computed in closed form. For the
sample x(i), it is given by:

L(i) = Eq(p(i))[CE(p(i),y(i))]︸ ︷︷ ︸
(1)

−H(q(i))︸ ︷︷ ︸
(2)

(A.2)

where the distribution q belongs to the family of the Dirichlet distributions Dir(α(i)).
The term (1) is the UCE loss [36]. Given that the observed class one-hot encoded by y(i)

is denoted by c∗, the term (1) is equal to:

Eq(p(i))[CE(p(i),y(i))] = Ψ(α
(i)
c∗ )−Ψ(α

(i)
0 ) (A.3)

where Ψ denotes the digamma function. The term (2) is the entropy of a Dirichlet
distribution and is given by:

H(q(i)) = logB(α(i)) + (α
(i)
0 − C)Ψ(α

(i)
0 )−

∑
c

(α(i)
c − 1)Ψ(α(i)

c ) (A.4)

where B denotes the beta function.
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A.1.3 Epistemic covariance for in-distribution samples in PostNet.

The epistemic distribution in PostNet is a Dirichlet distribution Dir(α(i)) with the fol-
lowing concentration parameters α(i)

c = βprior
c + N · P(c|z(i);ϕ) · P(z(i);ϕ) and α

(i)
0 =∑

c β
prior
c +N · P(z(i);ϕ). We can write the variance:

Varp∼Dir(α(i))(pc) =
αc(α0 − αc)

α2
0(α0 + 1)

; Covp∼Dir(α(i))(pc, pc′) =
−αcαc′

α2
0(α0 + 1)

(A.5)

For in-distribution data (i.e. P(z(i);ϕ) → ∞), we have

Varp∼Dir(α(i))(pc) = O
(
P(c|z(i);ϕ)(1− P(c|z(i);ϕ))

P(z(i);ϕ)N

)

Covp∼Dir(α(i))(pc, pc′) = O
(
−P(c|z(i);ϕ)P(c′|z(i);ϕ)

P(z(i);ϕ)N

)
. Hence both terms converge to 0 when P(z(i);ϕ) → ∞.

A.2 Model details

For vector datasets, all models share an architecture of 3 linear layers with Relu acti-
vation. A grid search in [32, 64, 128] led to no significant changes in the performances.
Therefore, we decided to use 64 hidden units for each layer. For image datasets, we used
LeakyRelu activation and add on the top 3 convolutional layers with kernel size of 5,
followed by a Max-pooling of size 2. Alternatively, we used the VGG16 architecture with
batch normalization [389] adapted from PyTorch implementation [341]. All models are
trained after a grid search for learning rate in [1e−3, 1e−5]. All models were optimized
with Adam optimizer without further learning rate scheduling. We performed early stop-
ping by checking loss improvement every 2 epochs and a patience equal to 10. We trained
all models on GPUs (1TB SSD).

For the dropout models, we used pdrop = .25 after a grid search in [.25, .5, .75] and
sampled 10 times for uncertainty estimation. As an indicator, the original paper [141],
uses a dropout probability of .5 for MNIST. It also states that 10 samples already lead
to reasonable uncertainty estimates. For the ensemble models, we used m = 10 networks
after a grid search in [2, 5, 10, 20]. A greater number of networks was also found to give no
great improvements in the original paper [246]. To be fair with these models, we distilled
the knowledge of 10 neural networks for Distribution Distillation. We also trained Prior
Networks where target parameters βin = 1e2 as suggested in original papers [270, 273].

For PostNet, we used a 1D batch normalization after the encoder. Experiments on
latent dimensions and density types are presented in following sections. If not explicitley
mentioned otherwise, we used by default radial flow with a flow length of 6 and a latent
dimension of 6. This leads to only 80 parameters. Comparison with IAF are done with
two layers of size 256. In general, we found out that a latent dimension smaller or equal
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to the number of classes is sufficient. It enables classes to be orthogonal in the latent
space if necessary.

All metrics have been scaled by 100. We obtain numbers in [0, 100] for all scores instead
of [0, 1].

A.3 Datasets details

For all datasets, we use 5 different random splits to train all models. We split the data
in training, validation and test sets (60%, 20%, 20%). In particular, we did not restrict
to classic MNIST and CIFAR10 splits in order do prevent overfitting to a specific split.

We use one toy dataset composed of three 2D isotropic Gaussians corresponding to
three classes. The Gaussians means are [0, 2.], [−1.73205081,−1.] and [1.73205081,−1.].
The variance of the Gaussians is 0.2. A visualization of the true distributions for the
three Gaussians is given in Fig. A.1. The final dataset is composed in total of 1500
samples.

We use the segment vector dataset [111], where the goal is to classify areas of images
into 7 classes (window, foliage, grass, brickface, path, cement, sky). We remove the class
’sky’ from training and instead use it as the OOD dataset for OOD detection experiments.
Each input is composed of 18 attributes describing the image area. The dataset contains
2, 310 samples in total.

We further use the Sensorless Drive vector dataset [111], where the goal is to classify
extracted motor current measurements into 11 different classes. We remove classes 10 and
11 from training and use them as the OOD dataset for OOD detection experiments. Each
input is composed of 49 attributes describing motor behaviour. The dataset contains
58, 509 samples in total.

Additionally, we use the MNIST image dataset [249] where the goal is to classify
pictures of hand-drawn digits into 10 classes (from digit 0 to digit 9). Each input is
composed of a 1 × 28 × 28 tensor. The dataset contains 70, 000 samples. For OOD
detection experiments, we use KMNIST [83] and FashionMNIST [450] containing images
of Japanese characters and images of clothes, respectively.

Finally, we use the CIFAR10 image dataset [238] where the goal is to classify a picture
of objects into 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck). Each input is a 3 × 32 × 32 tensor. The dataset contains 60, 000 samples. For
OOD detection experiments, we use street view house numbers (SVHN) [313] containing
images of numbers. For the dataset shift experiments, we use the classic split of CIFAR10
to avoid data leakage with the corrupted images from the test set that is provided online.

A.4 Additional Experimental Results

In this section, we present additional results for uncertainty estimation on other datasets.
Tables A.1, A.3 to A.5 and A.7 show the performance of all models on the Segment,
Sensorless Drive, MNIST, and CIFAR10 datasets. In the same way as for the other
datasets, PostNet is competitive for all metrics and show a significant improvement on

165



A Uncertainty Estimation for Classification

calibration among Dirichlet parametrized models and on OOD detection tasks among
all models. We evaluated the performances of all models on MNIST using different
uncertainty measures and observed very correlated results (see Table A.6). We compared
different encoder architectures on CIFAR10 (see Table 3.5). Without further parameter
tuning, PostNet adapted well to the convolutional architecture, AlexNet [239], VGG [389]
and ResNet [181]. For easier comparison, we also trained models on the classic CIFAR10
split (79%, 5%, 16%) with VGG architecture. We noticed that a larger training set leads
to better accuracy for all models.

We also show results of experiments with different latent dimensions (see Figs. A.3,
A.4, A.9 and A.10) and density types (MoG, radial, IAF) (see Tables A.1, A.3 to A.5
and A.7) for all datasets. We remarked that PostNet works with various type of densities
even if using mixture of Gaussians presented more instability in practice. We observed
no clear winner between Radial flow and IAF. We observed a bit lower performances for
MoG which could be explained by its lack of expressiveness. Furthermore, we observed
that a too high latent dimension would affect the performance.

Beside tables and figures with detailed metrics, we report additional visualizations.
We present the uncertainty visualization on the input space for a 2D toy dataset (see
Fig. A.2). We show this visualization for all models parametrizing Dirichlet distributions.
PostNet is the only model which is not overconfident for OOD data. In particular, it
demonstrates the best fit of the true in-distribution data shown in Fig. A.1. Other models
show overconfident prediction for OOD regions and fail even on this simple dataset.

Furthermore, we plotted histograms of entropy of ID, OOD, OODom data for MNIST
and CIFAR10 (see Figs. 3.4 and A.6). For both datasets, PostNet can easily distinguish
between the three data types.

Finally, We also included the evolution of the uncertainty while interpolating linearly
between images of MNIST (see Figs. A.7 and A.8). It corresponds to a smooth walk
in latent space. As shown in Fig. A.7, PostNet predicts correctly on clean images and
outputs more balanced class predictions for mixed images. Additionally Fig. A.8 shows
the evolution of the concentration parameters and consequently the epistemic uncertainty.
We observe that the epistemic uncertainty (i.e. low αc) is higher on mixed images which
do not correspond to proper digits.
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Figure A.1: Three Gaussians toy dataset.
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Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist.

Drop Out 95.25±0.1 99.75±0.0 99.43±0.0 11.89±0.2 41.48±0.5 43.11±0.6
Ensemble *97.27±0.1 *99.88±0.0 *99.85±0.0 *7.64±0.2 54.76±1.6 58.13±1.7

Distill. 96.21±0.1 99.82±0.0 99.8±0.0 57.77±0.6 37.12±0.5 35.83±0.4
KL-PN 95.61±0.1 99.79±0.0 99.76±0.0 16.84±0.3 65.62±2.4 57.07±3.7
RKL-PN 96.36±0.2 99.71±0.0 99.58±0.0 11.97±0.1 75.46±2.4 51.02±0.6
PostN Rad. (2) 95.76±0.1 99.23±0.1 98.82±0.1 13.33±1.3 92.75±1.3 90.41±1.5
PostN Rad. (6) 96.52±0.2 99.82±0.0 99.43±0.0 8.69±0.3 98.27±0.2 98.09±0.3
PostN Rad. (10) 94.9±0.2 99.51±0.0 98.57±0.1 12.22±0.7 95.53±0.8 97.51±0.7
PostN IAF (2) 93.94±0.3 99.02±0.1 98.3±0.2 15.33±0.7 *98.3±0.3 *99.33±0.1
PostN IAF (6) 95.71±0.2 99.63±0.0 99.11±0.1 10.16±0.3 96.92±0.9 98.17±0.6
PostN IAF (10) 96.92±0.1 99.83±0.0 99.49±0.0 8.45±0.4 95.75±1.1 96.74±0.9
PostN MoG (2) 63.43±5.3 79.61±6.2 79.05±6.1 54.14±5.4 90.87±1.4 91.62±1.4
PostN MoG (6) 89.75±2.5 95.28±1.6 93.15±2.1 24.42±4.3 96.04±1.3 97.71±0.8
PostN MoG (10) 94.44±0.5 99.64±0.1 99.08±0.2 14.79±1.3 91.14±1.5 90.82±1.3

Table A.1: Results on Segment dataset with all models. It shows results with different density
types. Number into parentheses indicates flow size (for radial flow and IAF) or
number of components (for MoG). Bold numbers indicate best score among Dirichlet
parametrized models and starred numbers indicate best scores among all models.

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist.

PostN: No-Flow 93.13±0.3 99.48±0.1 98.41±0.3 12.94±0.3 47.3±2.9 35.49±0.3
PostN: No-Bayes-Loss 93.94±0.8 98.53±0.3 96.08±1.1 16.15±1.9 94.71±1.0 95.92±0.8
PostN: Seq-No-Bn 18.94±1.1 20.42±1.7 20.42±1.7 91.29±0.0 58.91±0.8 58.43±0.8
PostN: Seq-Bn 93.89±0.1 99.38±0.1 98.93±0.0 14.64±0.3 98.02±0.4 99.93±0.0

Table A.2: Ablation study results on Segment dataset. Gray cells indicate significant drops in
scores compare to the complete PostNet Rad. (6) model in Table A.1.

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist.

Drop Out 89.32±0.2 98.21±0.1 95.24±0.2 28.86±0.4 35.41±0.4 40.61±0.7
Ensemble 99.37±0.0 99.99±0.0 *99.98±0.0 2.47±0.1 50.01±0.0 50.62±0.1

Distill. 93.66±1.5 98.29±0.5 98.15±0.5 44.94±1.4 32.1±0.6 31.17±0.2
KL-PN 94.77±0.9 99.52±0.1 99.47±0.1 21.47±1.9 35.48±0.8 33.2±0.6
RKL-PN 99.42±0.0 99.96±0.0 99.89±0.0 9.07±0.1 45.89±1.6 38.14±0.8
PostN Rad. (2) 96.07±0.0 99.28±0.0 98.88±0.0 19.94±0.0 *98.22±0.0 *98.03±0.0
PostN Rad. (6) 98.02±0.1 99.89±0.0 99.47±0.0 5.51±0.2 72.89±0.8 88.73±0.5
PostN Rad. (10) 97.3±0.0 99.82±0.0 99.31±0.0 7.93±0.0 66.65±0.0 87.91±0.0
PostN IAF (2) 99.19±0.0 99.98±0.0 99.78±0.0 2.45±0.0 78.13±0.0 85.9±0.0
PostN IAF (6) 99.11±0.1 99.98±0.0 99.72±0.0 2.71±0.1 78.48±0.7 86.47±0.5
PostN IAF (10) *99.52±0.0 *100.0±0.0 99.92±0.0 *1.43±0.1 82.96±0.8 88.65±0.4
PostN MoG (2) 59.63±4.8 72.2±4.7 70.38±4.8 68.41±4.6 67.2±3.1 72.3±2.9
PostN MoG (6) 96.83±0.2 99.72±0.0 99.16±0.1 13.24±1.0 59.82±2.3 60.61±2.6
PostN MoG (10) 96.65±0.2 99.64±0.0 99.12±0.1 13.12±1.1 61.54±1.8 65.35±2.0

Table A.3: Results on Sensorless Drive dataset with all models. It shows results with different
density types. Number into parentheses indicates flow size (for radial flow and IAF)
or number of components (for MoG).
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Figure A.2: Visualization of the concentration parameters predicted by Distribution Distilla-
tion, Prior Networks trained with KL and reverse KL divergence and Posterior
Network on a 3-Gaussians toy dataset over 5 runs. Red dots indicate the mean
of the 3 Gaussians. Colours indicate class labels predicted by the models, dark
regions correspond to high epistemic uncertainty. PostNet consistently predicts
low uncertainty around the training data and high uncertainty for OOD data.
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Figure A.3: Accuracy and uncertainty scores of PostNet with latent dimension in [2, 6, 10, 32]
on the Segment dataset. We observed that the performances remains high for small
dimensions (i.e. 2, 6, 10) and drop for a too high dimension (i.e. 32).

Figure A.4: Accuracy and uncertainty scores of PostNet with latent dimension in [2, 6, 10, 32]
on the Sensorless Drive dataset. OOD scores are computed against the left out sky
class. We observed that the performances remains high for medium dimensions
(i.e. 6, 10) and drop for a too high dimension (i.e. 32).
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(a) ID/OOD data (PriorNetworks) (b) ID/OOD data (PostNet)

Figure A.5: This figure should be seen in perspective with Fig. 3.1. We plot FashionMNIST
OODom data with black crosses to show where these data would land. OODom
data were not used for training the models, A comparison of Fig. A.5(a) with
Fig. 3.1(b) show that Prior Network assigns high certainty to OODom data. In
contrast, a comparison of Fig. A.5(b) and Fig. 3.1(c) shows that Posterior Network
assigns low uncertainty to OODom data as desired.

(a) MNIST

Figure A.6: Histograms of the entropy of the predicted categorical distributions for in-
distribution (green), out-of-distribution (yellow) and out-of-domain (red) data.
The value 2.3026∗ denotes the maximal entropy achievable for a categorical distri-
bution with 10 classes. We use MNIST, FashionMNIST and the unscaled version
of FashionMNIST as in-distribution, out-of-distribution and out-of-domain data.
PostNet clearly distinguishes between the three types of data with low entropy
for in-distribution data and high entropy for out-of-distribution, and close to the
maximum possible entropy for out-of-domain data.
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Figure A.7: Evolution of the probability predictions when interpolating linearly between four
MNIST images. The interpolation goes from the clean digits 5, 4, 6 and 2 in
a cyclic way with 20 interpolated images between each pair. As desired, We can
observe correct predictions around clean images with higher (aleatoric) uncertainty
for mixed images, and smooth transitions in between.
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Figure A.8: Evolution of the concentration parameters predictions when interpolating linearly
between four MNIST images. The interpolation goes from the clean digits 5, 4, 6
and 2 in a cyclic way with 20 interpolated images between each pair. As desired,
we can observe correct and confident predictions around clean images with higher
(epistemic) uncertainty for mixed images.
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Acc. Alea. Conf. Epist. Conf. Brier

Drop Out 99.26±0.0 99.98±0.0 99.97±0.0 1.78±0.0
Ensemble *99.35±0.0 *99.99±0.0 *99.98±0.0 1.67±0.0

Distill. 99.34±0.0 99.98±0.0 *99.98±0.0 72.55±0.2
KL-PN 99.01±0.0 99.92±0.0 99.95±0.0 10.82±0.0
RKL-PN 99.21±0.0 99.67±0.0 99.57±0.0 9.76±0.0
RKL-PN w/ F. 99.2±0.0 99.75±0.0 99.68±0.0 9.9±0.0
PostN Rad. (2) 99.34±0.0 99.98±0.0 99.97±0.0 *1.25±0.0
PostN Rad. (6) 99.28±0.0 99.97±0.0 99.96±0.0 1.36±0.0
PostN Rad. (10) 99.22±0.0 99.97±0.0 99.97±0.0 1.41±0.0
PostN IAF (2) 99.06±0.0 99.96±0.0 99.94±0.0 1.48±0.0
PostN IAF (6) 99.08±0.0 99.96±0.0 99.94±0.0 1.45±0.1
PostN IAF (10) 98.97±0.0 99.96±0.0 99.94±0.0 1.61±0.0
PostN MoG (2) 76.41±2.3 99.93±0.0 99.92±0.0 23.23±2.2
PostN MoG (6) 99.21±0.0 99.94±0.0 99.92±0.0 1.61±0.0
PostN MoG (10) 99.22±0.0 99.94±0.0 99.92±0.0 1.53±0.0

Table A.4: Accuracy, confidence and calibration results on MNIST dataset with all models. It
shows results with different density types. Number into parentheses indicates flow
size (for radial flow and IAF) or number of components (for MoG). Bold numbers
indicate best score among Dirichlet parametrized models and starred numbers in-
dicate best scores among all models.

OOD K. OOD K. OOD F. OOD F. OODom K. OODom K. OODom F. OODom F.
Alea. Epist. Alea. Epist. Alea. Epist. Alea. Epist.

Drop Out 94.0±0.1 93.01±0.2 96.56±0.2 95.0±0.2 31.59±0.5 31.97±0.5 27.2±1.1 27.52±1.1
Ensemble *97.12±0.0 *96.5±0.0 98.15±0.1 96.76±0.0 41.7±0.3 42.25±0.3 37.22±1.0 37.73±1.0

Distill. 96.64±0.1 85.17±1.0 98.83±0.0 94.09±0.4 11.49±0.3 10.66±0.2 13.82±0.5 12.03±0.3
KL-PN 92.97±1.2 93.39±1.0 98.44±0.1 98.16±0.0 9.54±0.1 9.78±0.1 9.57±0.1 10.06±0.1
RKL-PN 60.76±2.9 53.76±3.4 78.45±3.1 72.18±3.6 9.35±0.1 8.94±0.0 9.53±0.1 8.96±0.0
RKL-PN w/ F. 81.34±4.5 78.07±4.8 *100.0±0.0 *100.0±0.0 9.24±0.1 9.08±0.1 88.96±4.4 87.49±5.0
PostN Rad. (2) 95.49±0.3 93.12±0.7 96.2±0.3 94.6±0.4 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN Rad. (6) 95.75±0.2 94.59±0.3 97.78±0.2 97.24±0.3 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN Rad. (10) 95.46±0.4 94.19±0.4 97.33±0.2 96.75±0.3 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN IAF (2) 92.24±0.3 91.75±0.3 96.58±0.2 96.6±0.2 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN IAF (6) 90.74±0.6 90.63±0.6 93.66±0.5 93.17±0.6 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN IAF (10) 87.08±0.2 86.52±0.3 92.34±0.6 91.27±0.9 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN MoG (2) 74.27±2.0 73.34±1.9 76.99±2.0 76.74±1.9 *100.0±0.0 *100.0±0.0 99.99±0.0 99.99±0.0
PostN MoG (6) 84.67±1.5 81.46±1.9 88.98±1.7 87.07±2.1 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0
PostN MoG (10) 85.14±1.3 81.12±1.5 94.43±0.8 93.8±1.0 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0

Table A.5: OOD results on MNIST dataset with all models. It shows results with different
density types. Number into parentheses indicates flow size (for radial flow and IAF)
or number of components (for MoG).

OOD K. α0/var. OOD K. MI. OOD F. α0/var. OOD F. MI. OODom K. α0/var. OODom K. MI. OODom F. α0/var. OODom F. MI

Ensemble *97.19±0.0 *97.44±0.0 97.53±0.1 97.69±0.1 42.36±0.3 42.38±0.3 37.85±1.1 37.86±1.1

RKL-PN 54.11±3.4 54.9±3.3 72.54±3.6 73.33±3.5 8.94±0.0 8.94±0.0 8.96±0.0 8.96±0.0
RKL-PN w/ F. 78.4±4.8 78.73±4.8 *100.0±0.0 *100.0±0.0 9.08±0.1 9.08±0.1 87.49±5.0 87.49±5.0
PostN 96.04±0.2 96.05±0.2 98.17±0.2 98.17±0.2 *100.0±0.0 *100.0±0.0 *100.0±0.0 *100.0±0.0

Table A.6: OOD detection on MNIST with other uncertainty measures. Mutual Information [270]
and α0 (Dirichlet) / variance (Ensemble) results are highly correlated.
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Figure A.9: Accuracy and uncertainty scores of PostNet with latent dimension in [2, 6, 10, 32]
on the MNIST dataset. OOD and OODom scores are computed against scaled
and unscaled KMNIST and FashionMNIST datasets. We observed that the per-
formances remains high for medium dimensions (i.e. 6, 10) and drop for a too high
dimension (i.e. 32).

Acc. Alea. Conf. Epist. Conf. Brier OOD Alea. OOD Epist. OODom Alea. OODom Epist.

Drop Out 71.73±0.2 92.18±0.1 84.38±0.3 49.76±0.2 72.94±0.3 41.68±0.5 28.3±1.8 47.1±3.3
Ensemble *81.24±0.1 *96.61±0.0 93.25±0.1 38.88±0.1 *77.82±0.2 55.17±0.3 63.18±1.1 89.97±0.9

Distill. 72.11±0.4 91.72±0.2 90.73±0.2 88.04±0.1 75.63±0.6 52.18±2.1 17.76±0.0 17.76±0.0
KL-PN 48.84±0.5 78.01±0.6 77.99±0.7 83.11±0.6 59.32±1.1 58.03±0.8 17.79±0.0 20.25±0.2
RKL-PN 62.91±0.3 85.62±0.2 81.73±0.2 58.12±0.4 67.07±0.4 56.64±0.8 17.83±0.0 17.76±0.0
PostN Rad. (2) 76.43±0.1 94.59±0.1 94.02±0.1 37.59±0.3 72.91±0.4 69.26±1.1 99.99±0.0 *100.0±0.0
PostN Rad. (6) 76.46±0.3 94.75±0.1 *94.34±0.1 *37.39±0.4 72.83±0.6 *72.82±0.7 *100.0±0.0 *100.0±0.0
PostN Rad. (10) 75.43±0.2 94.16±0.1 93.64±0.1 39.3±0.4 71.94±0.3 70.99±0.5 *100.0±0.0 *100.0±0.0
PostN IAF (2) 76.75±0.2 94.78±0.1 92.98±0.2 37.87±0.5 73.07±0.5 65.61±1.0 *100.0±0.0 *100.0±0.0
PostN IAF (6) 76.79±0.1 94.73±0.0 93.7±0.1 37.86±0.2 73.58±0.2 69.74±0.3 *100.0±0.0 *100.0±0.0
PostN IAF (10) 75.92±0.2 94.48±0.1 93.23±0.2 39.09±0.3 72.4±0.3 69.04±0.3 *100.0±0.0 *100.0±0.0
PostN MoG (2) 44.7±5.9 54.12±7.9 52.12±7.8 68.57±5.2 48.53±3.6 47.45±4.1 99.91±0.0 99.96±0.0
PostN MoG (6) 71.05±1.6 91.21±1.0 86.91±1.2 46.37±2.0 73.49±0.6 56.04±3.8 98.04±0.7 99.62±0.1
PostN MoG (10) 71.63±1.3 91.57±0.8 88.92±0.8 46.07±1.9 72.61±0.3 56.28±1.8 99.88±0.0 *100.0±0.0

Table A.7: Results on CIFAR10 dataset with all models with convolutional architecture. It
shows results with different density types. Number into parentheses indicates flow
size (for radial flow and IAF) or number of components (for MoG).
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Acc. Alea. Conf. Epist. Conf. Brier OOD S. Alea. OOD S. Epist. OODom S. Alea. OODom S. Epist.

Ensemble *91.34±0.0 *99.1±0.0 98.77±0.0 17.69±0.1 *80.1±0.3 75.14±0.2 21.1±3.1 24.42±3.7

RKL-PN 60.05±0.7 85.63±0.8 82.11±1.3 70.84±0.9 50.97±3.9 55.37±4.3 56.16±1.4 51.33±2.4
RKL-PN w/ C100 88.18±0.1 95.44±0.3 94.15±0.3 79.99±2.0 56.67±2.1 73.37±2.3 57.06±1.7 50.31±1.4
PostNet 90.05±0.1 98.87±0.0 *98.82±0.0 *15.44±0.1 76.04±0.4 *75.57±0.4 *87.65±0.3 *92.13±0.5

Table A.8: Results with VGG16 on CIFAR10 on classic split (79%, 5%, 16%). RKL-PN w/ C100 uses
CIFAR100 as training OOD.

Figure A.10: Accuracy and uncertainty scores of PostNet with latent dimension in [2, 6, 10, 32]
on the CIFAR10 dataset. OOD and OODom scores are computed against scaled
and unscaled SVHN dataset. We observed that the performances remains high
for medium dimensions (i.e. 6, 10) and drop for a too high dimension (i.e. 32).
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B.1 Theorem 1

We prove Theorem 1 based on Lemma 5 and Lemma 6. Lemma 5 states that the input
space can be divided in a finite number of linear regions [17]. Lemma 6 states that
a probability density with bounded derivatives has to converge to 0 at infinity [108].
We additionally recall Lemma 7 which provide a similar convergence guarantee without
the bounded derivative constraint [318]. Finally, Lemma 8 particularly shows that the
guarantee of theorem 1 can be obtained with Gaussian Mixtures which are commonly
used for density estimation or radial flows which are used in the experiments.

Lemma 5. [17] Let {Ql}Rl be the set of linear regions associated to the piecewise ReLU
network fϕ(x). For any x ∈ RD, there exists δ∗ ∈ R+ and l∗ ∈ 1, ..., R such that δx ∈ Ql∗

for all δ > δ∗.

Lemma 6. [108] Let p ∈ L1(0,∞) with bounded first derivative p′, then p(δ) →
δ→∞

0.
This convergence is stronger than in Lemma 7 as the limit is not in density but with
standard limit notation.

Lemma 7. [318] Let p ∈ L1(0,∞), then p(δ) →
δ→∞

0 in density. This means that the sets

where p(t) is far from its 0 limit (i.e. {t ≥ 0 : |p(t)| ≥ ϵ} with ϵ > 0) has zero density.

Lemma 8. Let P(z |ω) be parametrized with a Gaussian Mixture Model (GMM) or a
radial flow, then P(z |ω) →

||z||→∞
0.

Proof. We prove now Lemma 8 for GMM and radial flow. The proof is straightforward
for the GMM parametrization since every Gaussian component of the mixture has 0 limit
when ||z|| → ∞.

Let denote now p1(z) = P(z |ω) be parametrized with a radial flow transformation
g(z) and a base unit Gaussian distribution p0 i.e.:

p1(z) = p0(g(z))× |det
∂g(z)

∂z
|

Further, we can express the transformation g(z) and its determinant det∂g(z)∂z as follows:

g(z) = z + βh(α, r)(z − z0)

det
∂g(z)

∂z
=

1 + βh(α, r) + βh′(α, r)r
(1 + βh(α, r))H−1
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where h(α, r) = 1
α+r and r = ||z − z0||. On one hand, we have ||g(z)|| → +∞ when

||z|| → ∞ since ||βh(α, r)(z − z0)|| < β. Thus, the base Gaussian density p0(g(z)) →
0 when ||z|| → ∞. On the other hand, we have |det∂g(z)∂z | → 1 since βh(α, r) → 0
and βh′(α, r)r → 0 when ||z|| → ∞. Therefore, the transformed density p0(g(z)) ×
|det∂g(z)∂z | → 0 when ||z|| → ∞ which ends the proof. Note that this proof can be
extended to stacked radial flows by induction.

Theorem. Let a NatPN model parametrized with a (deep) encoder fϕ with piecewise
ReLU activations, a decoder gψ and the density P(z |ω). Let fϕ(x) = V (l)x + a(l) be
the piecewise affine representation of the ReLU network fϕ on the finite number of affine
regions Q(l) [17]. Suppose that V (l) have independent rows and the density function
P(z |ω) has bounded derivatives, then for almost any x we have P(fϕ(δ · x) |ω) →

δ→∞
0.

i.e the evidence becomes small far from training data.

Proof. We prove now Theorem 1. Let x ∈ RD be a non-zero input and fϕ be a ReLU
network. Lemma 5 implies that there exists δ∗ ∈ R+ and l ∈ {1, ..., R} such that
δ · x ∈ Q(l) for all δ > δ∗. Thus, zδ = fϕ(δ · x) = δ · (V (l)x) + a(l) for all δ > δ∗. Note
that for δ ∈ [δ∗,+∞], zδ follows an affine half line Sx = {z | z = δ · (V (l)x)+a(l), δ > δ∗}
in the latent space. Further, note that V (l)x ̸= 0 and ||zδ|| →

δ→∞
+∞ since x ̸= 0 and

V (l) has independent rows.
We now define the function p(δ) = P(zδ |ω) which is the density function P(z |ω)

restricted on the affine half line Sx. Since P(z |ω) is a normalized probability density,
then the function δ 7→ p(δ − δ∗) is integrable on [0,+∞]. Indeed we have:∫ +∞

0
p(δ − δ∗)dδ =

∫ +∞

δ∗
p(δ)dδ

=

∫ +∞

δ∗
P(δ · (V (l)x) + a(l) |ω)dδ

=

∫ Sx

P(z |ω)dz < +∞

Further since the function P(z |ω) has bounded derivatives, we can apply Lemma 6 to
the function δ 7→ p(δ − δ∗) to get the expected result i.e.

P(fϕ(δ · x) |ω) = p(δ) = p((δ + δ∗)− δ∗) →
δ→∞

0

which ends the proof.
Alternatively a slightly weaker conclusion also holds if the density function does not

have bounded derivatives using Lemma 7 (instead of Lemma 6) with the notion of limit
in density. The stronger conclusion is valid if we parametrize P(z |ω) with a Gaussian
Mixture Model or a radial flow density according to Lemma 8 since ||zδ|| →

δ→∞
+∞.

Further, we provide additional comments on the assumption that a trained network
converges to linear transformation with exactly two or more dependent rows in The-
orem 1. Under this realistic condition [182], the null space is reduced to 0 according
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to the rank-nullity theorem meaning that there should be no dead input feature/pixel.
If this condition does not hold, this would mean that this specific input feature/pixel
is not informative for the prediction task. Thus it could be desired in practice that it
does not affect the uncertainty on the prediction. This latter aspect is discussed in the
“Task-Specific OOD” paragraph in Section 4.3.6.

B.2 Bayesian Loss

NatPN minimizes the following Bayesian formulation:

L(i) = −Eθ(i)∼Qpost,(i) [logP(y(i) |θ(i))]︸ ︷︷ ︸
(i)

−H[Qpost,(i)]︸ ︷︷ ︸
(ii)

(B.1)

where H[Qpost,(i)] denotes the entropy of the predicted posterior distribution Qpost,(i).
This loss is generally not equal to the ELBO loss. While the term (i) can be viewed
as an ELBO loss without KL regularization, the term (ii) is not necessarily equal to
the prior KL regularization term in the ELBO loss since a proper uniform prior might
not exist (e.g. the target y is a real number). Indeed, if the target y is a real number,
there exists no uniform prior on θ and the Bayesian loss and ELBO loss are different
i.e. KL(Q ||Qprior) =

∫
Q(θ) log( Q(θ)

Qprior(θ)
)dθ ̸=

∫
Q(θ) logQ(θ)dθ = H(Q). Nonethe-

less, when a uniform prior Qunif exists (e.g. the target y is a class), the loss optimiza-
tion can be seen as an amortized variational optimization of an ELBO loss [465] i.e.
L(i) = −EQpost,(i) [logP(y(i) |θ(i))] +KL[Qpost,(i) ∥Qunif] where the predicted distribution
Qpost,(i) is the variational distribution — which approximates the true posterior distri-
bution. Indeed, the KL regularization term is equal to the entropy regularization term
i.e. KL(Q ||Qunif) =

∫
Q(θ) log( Q(θ)

Qunif(θ)
dθ) ∝

∫
Q(θ) logQ(θ)dθ) = H(Q). Hence, the

loss name “Bayesian loss” [67] is motivated by its difference with the ELBO loss and its
Bayesian property at optimum.

B.3 Formulae for Exponential Family Distributions

B.3.1 General Case

Target Distribution. An exponential family distribution on a target variable y ∈ R
with natural parameters θ ∈ RL can be denoted as

P(y |θ) = h(y) exp
(
θTu(y)−A(θ)

)
(B.2)

where h : R → R is the carrier measure, A : RL → R the log-normalizer and u : R → RL
the sufficient statistics.

Conjugate Prior Distribution. An exponential family distribution P always admits
a conjugate prior:

Q(θ |χ, n) = η(χ, n) exp
(
nθTχ− nA(θ)

)
(B.3)
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where η : RL×R → R is a normalization factor and A the log-normalizer of the distri-
bution P as in Eq. (B.2)).

Posterior Predictive Distribution. The posterior predictive distribution is given as∫
P(y(i)|θ)Q(θ|χpost,(i), npost,(i))dθ where the parameter θ is marginalized out [140]. This

distribution can always be computed in closed form for exponential family distributions:

P(y |χ, n) = h(y)
η(χ, n)

η
(
nχ+u(y)
n+1 , n+ 1

) (B.4)

where h is the carrier measure defined in Eq. (B.2) and η is the normalization factor
defined in Eq. (B.3). In particular, the posterior predictive distributions for Categorical,
Normal and Poisson target distributions are Categorical, Student and Negative Binomial
distributions, respectively.

Likelihood. The log-likelihood of an exponential family distribution can be written
as follows:

logP(y(i) |θ) = log h(y(i)) + θTu(y(i))−A(θ) (B.5)

Expected Log-Likelihood. Given the log-likelihood of an exponential family distri-
bution, its expectation under the conjugate prior distribution Q(θ|χ, n) can be written
as

Eθ∼Q(χ,n)[logP(y(i) |θ)] = log h(y(i)) + Eθ∼Q(χ,n)[θ]
Tu(y(i))− Eθ∼Q(χ,n)[A(θ)] (B.6)

where EQ(θ|χ,n)[θ] = χ [55, 106].
Entropy. The entropy of a random variable y ∼ P(y|θ) for an exponential family

distribution P can be written as follows [319]:

H[P(y|θ)] = A(θ)− θT∇θA(θ)− Ey∼P(θ)[log h(y)] (B.7)

B.3.2 Categorical & Dirichlet Distributions

The Dirichlet distribution p ∼ Dir(α) is the conjugate prior of the categorical distribu-
tions y ∼ Cat(p).

Target Distribution. The density and the entropy of the categorical distribution
are:

Cat(y |p) =
K∑
i=1

I[yi = 1] pi (B.8)

H[Cat(p)] =
C∑
c=1

log pc (B.9)
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Conjugate Prior Distribution. The density and the entropy of the Dirichlet distri-
bution are:

Dir(p |α) =
Γ
(∑C

c=1 αc

)
∏K
c=1 Γ(αc)

C∏
c=1

pαc−1
c (B.10)

H[Dir(α)] = logB(α) + (α0 − C)ψ(α0)−
∑
c

(αc − 1)ψ(αc) (B.11)

where ψ(α) andB(α) denote Digamma and Beta functions, respectively, and α0 =
∑

c αc.
Expected Log-Likelihood. The expected likelihood of the categorical distribution

Cat(p) under the Dirichlet distribution Dir(α) is

Ep∼Dir(α)[log Cat(y |p)] = ψ(αy)− ψ(α0) (B.12)

where ψ(α) denotes Digamma function.

B.3.3 Normal & Normal-Inverse-Gamma Distributions

The Normal-Inverse-Gamma (NIG) distribution µ, σ ∼ NΓ-1(µ0, λ, α, β) is the conjugate
prior of the normal distribution y ∼ N (µ, σ). Note that as both parameters λ and α
can be viewed as pseudo-counts. However, the natural prior parametrization enforces a
single pseudo-count n corresponding to λ = 2α.

Target Distribution. The density and the entropy of the Normal distribution are:

N (y |µ, σ) = 1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
(B.13)

H[N (µ, σ)] =
1

2
log(2πσ2) (B.14)

Conjugate Prior Distribution. The density and the entropy of the NIG distribution
are:

NΓ-1(µ, σ |µ0, λ, α, β) =
βα

√
λ

Γ(α)
√
2πσ2

(
1

σ2

)α+1

exp

(
−2β + λ(µ− µ0)

2

2σ2

)
(B.15)

H[NΓ-1(µ0, λ, α, β)] =
1

2
+ log

(
(2π)

1
2β

3
2Γ(α)

)
− 1

2
log λ+ α−

(
α+

3

2

)
ψ(α) (B.16)

where Γ(α) denotes the Gamma function.
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Expected Log-Likelihood. The expected likelihood of the Normal distribution
N (µ, σ) under the NIG distribution NΓ-1(µ0, λ, α, β) is:

E(µ,σ)∼NΓ-1(µ,λ,α,β)[logN (y |µ, σ)] (B.17)

= E
[
−(y − µ)2

2σ2
− log(σ

√
2π)

]
(B.18)

=
1

2

(
−E

[
(y − µ0)

2

2σ2

]
− E

[
log σ2

]
− log 2π

)
(B.19)

=
1

2

(
−y2 E

[
1

σ2

]
+ 2y E

[ µ
σ2

]
− E

[
µ2

σ2

]
+ E

[
log

1

σ2

]
− log 2π

)
(B.20)

=
1

2

(
−α
β
(y − µ0)

2 − 1

λ
+ ψ(α)− log β − log 2π

)
(B.21)

where ψ(α) denotes the Digamma function. We used here the moments of the NIG
distribution E

[ µ
σ2

]
= αµ0

β , E
[

1
σ2

]
= α

β , E
[
µ2

σ2

]
=

αµ20
β + 1

λ , and the moment of the inverse

Gamma distribution E
[
log 1

σ2

]
= ψ(α)− log β.

B.3.4 Poisson & Gamma Distributions

The Gamma distribution λ ∼ Γ(α, β) is the conjugate prior of the Poisson distributions
y ∼ Poi(λ).

Target Distribution. The density and the entropy of the Poisson distribution are:

Poi(y |λ) = λy exp(−λ)
y!

(B.22)

H[Poi(λ)] = λ(1− log(λ))) + exp(−λ)
∞∑
k=0

λk log(k!)

k!
(B.23)

Conjugate Prior Distribution. The density and the entropy of the Gamma distri-
bution are:

Γ(λ |α, β) = βα

Γ(α)
λα−1 exp(−βλ) (B.24)

H[Γ(α, β)] = α+ log Γ(α)− log β + (1− α)ψ(α) (B.25)

where Γ(α) denotes the Gamma function.
Expected Log-Likelihood. The expected likelihood of the Poisson distribution

Poi(λ) under the Gamma distribution Γ(α, β) is

Eλ∼Γ(α,β)[log Poi(y |λ)] = E[log λ]y − E[λ]−
y∑
k=1

log k (B.26)

= (ψ(α)− log β)y − α

β
−

y∑
k=1

log k (B.27)
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where ψ(α) denotes Digamma function. We used here the moments the Gamma distri-
butions E[log λ] = ψ(α) − log β and E[λ] = α

β . Note that
∑y

k=1 log k is constant w.r.t.
parameters α, β.

B.4 Approximation of Entropies

The computation of a distribution’s entropy often requires subtracting huge numbers
from each other. While these numbers tend to be very close together, this introduces
numerical challenges. For large parameter values, we therefore approximate the entropy
by substituting numerically unstable terms and simplifying the resulting formula. For
this procedure, we make use of the following equivalences (taken from Rocktäschel [361]
and Whittaker and Watson [440], respectively):

log Γ(x) ≈ 1

2
log 2π − x+

(
x− 1

2

)
log x (B.28)

ψ(x) = log x− 1

2x
+O

(
1

x2

)
(B.29)

We note that Eq. (B.29) especially implies ψ(x) ≈ log x and xψ(x) ≈ x log x − 1
2 for

large x.

B.4.1 Dirichlet Distribution

We consider a Dirichlet distribution Dir(α) of order K with α0 =
∑K

i=1 αi. For α0 ≥ 104,
we use the following approximation:

H [Dir(α)] ≈ K − 1

2
(1 + log 2π) +

1

2

K∑
i=1

logαi −
(
K − 1

2

)
log

K∑
i=1

αi (B.30)

B.4.2 Normal-Inverse-Gamma Distribution

We consider a Normal-Inverse-Gamma distribution NΓ-1(µ, λ, α, β). For α ≥ 104, we
use the following approximation:

H
[
NΓ-1(µ, λ, α, β)

]
≈ 1 + log 2π − 2 logα+

3

2
log β − 1

2
log λ (B.31)

B.4.3 Gamma Distribution

We consider a Gamma distribution Γ(α, β). For α ≥ 104, we use the following approxi-
mation:

H [Γ(α, β)] ≈ 1

2
+

1

2
log 2π +

1

2
logα− log β (B.32)
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B.5 Formulae for Uncertainty Estimates

Aleatoric Uncertainty. The entropy of the target distribution P(y|θ) was used to esti-
mate the aleatoric uncertainty i.e. H[P(y|θ)].

Epistemic Uncertainty. The evidence parameter npost,(i) was used to estimate the epis-
temic uncertainty. Due to its interpretation as a pseudo-count of observed labels, the
posterior evidence parameter is indeed a natural indicator for the epistemic uncertainty.

Predictive Uncertainty. The entropy of the posterior distribution Q(θ|χpost,(i), npost,(i))
was used to estimate the predictive uncertainty.

B.6 Dataset Details

We use a train/validation/test split in all experiments. For datasets with a dedicated test
split, we split the rest of the data into training and validation sets of size 80%/20%. For
all other datasets, we used 70%/15%/15% for the train/validation/test sets. All inputs
are rescaled with zero mean and unit variance. Similarly, we also scale the output target
for regression. We provide the datasets at the project page 1.

Sensorless Drive [111] This is a tabular dataset where the goal is to classify extracted
motor current measurements into 11 different classes. We remove the last two classes (9
and 10) from training and use them as the OOD dataset for OOD detection experiments.
Each input is composed of 48 attributes describing motor behavior. The dataset contains
58, 509 samples in total.

MNIST [249] & Fashion-MNIST [450] These are image dataset where the goal
is to classify pictures of hand-drawn digits into 10 classes (from digit 0 to digit 9) or
classify pictures of clothers. Each input is composed of a 1×28×28 tensor. The dataset
contains 70, 000 samples. For OOD detection experiments againt MNIST data, we use
KMNIST [83] and Fashion-MNIST [450] containing images of Japanese characters and
images of clothes, respectively. For OOD detection experiments againt Fasgion-MNIST
data, we use KMNIST [83] and MNIST [249] containing images of Japanese characters
and images of digits, respectively. It uses the MIT License (MIT).

CIFAR-10 [238] This is an image dataset where the goal is to classify a picture
of objects into 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck). Each input is a 3 × 32 × 32 tensor. The dataset contains 60, 000 samples. For
OOD detection experiments, we use street view house numbers (SVHN) [313] containing
images of numbers and CelebA [262] containing images of celebrity faces. We do not use
CIFAR100 [238] or TinyImageNet [131] as OOD as they also contain images of vehicles
and animals similar to CIFAR10. This rightly questions to what extent are these datasets
really OOD for CIFAR10. Furthermore, we generate the corrupted CIFAR-10 dataset
[183] with 15 corruption types per image, each with 5 different severities. It uses the
MIT License (MIT).

1https://www.daml.in.tum.de/natpn
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Bike Sharing [126] This is a tabular dataset where the goal is to predict the total
number of rentals within an hour. Each input is composed of 15 attributes. We removed
features related to the year period (i.e. record index, date, season, months) which would
make OOD detection trivial, leading to 11 attributes. The dataset contains 17, 389
samples in total. For OOD detection, we removed the attribute season from the input
data and only trained on the summer season. The samples related to winter, spring and
autumn were used as OOD datasets.

Concrete [111] This is a tabular dataset where the goal is to predict the compressive
strength of high-performance concrete. Each input is composed of 8 attributes. The
dataset contains 1, 030 samples in total. For OOD detection, we use the Energy and
Kin8nm datasets which have the same input size.

Kin8nm [111] This is a tabular dataset where the goal is to predict the forward kine-
matics of an 8-link robot arm. Each input is composed of 8 attributes. The dataset con-
tains 8, 192 samples in total. For OOD detection, we the Concrete and Energy datasets
which have the same input size.

NYU Depth v2 [311] This is an image dataset where the goal is to predict the depth
of room images at each pixel position. All inputs are of shape 3x640x480 tensors while
we rescale outputs to be 320x240 tensors at both training and test time. This setting
is slightly different from Kendall and Gal [215] and Nathan Silberman and Fergus [311].
Indeed, [215] up-scales the model output to 640x480 at training and test time while [311]
up-scales the model output to 640x480 at test time only. The dataset contains 50, 000
samples in total available on the DenseDepth GitHub 2. For OOD detection, we use the
KITTI [151] dataset containing images of driving cars and two out of the 20 categories
from the LSUN [457] dataset.

B.7 Model Details

We train all models using 5 seeds except for the large NYU dataset where we use a single
randomly selected seed. All models are optimized with the Adam optimizer without
further learning rate scheduling. We perform early stopping by checking loss improvement
every epoch and a patience p selected per dataset (Sensorless Drive: p = 15, MNIST:
p = 15, CIFAR10: p = 20, Bike Sharing: p = 50, Concrete: p = 50, Kin8nm: p = 30,
NYU Depth v2: p = 2). We train all models on a single GPU (NVIDIA GTX 1080 Ti
or NVIDIA GTX 2080 Ti, 11 GB memory). All models are trained after a grid search
for the learning rate in [1e−2, 5e−4]. The backbone architecture is shared across models
and selected per dataset to match the task needs (Sensorless Drive: 3 lin. layers with 64
hidden dim, MNIST: 6 conv. layers with 32/32/32/64/64/64 filters + 3 lin. layers with
hidden dim 1024/128/64, CIFAR10: 8 conv. layers with 32/32/32/64/64/128/128/128
filters + 3 lin. layers with hidden dim 1024/128/64, Bike Sharing: 3 lin. layers with
16/16/16 hidden dim, Concrete: 2 lin. layers with 16/16 hidden dim, Kin8nm: 2 lin.
layers with 16/16 hidden dim, NYU Depth v2: DenseDepth + 4 upsampling layers
with convolutions and skip connections). For the NYU Depth v2 dataset, we use a

2https://github.com/ialhashim/DenseDepth
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pretrained DenseNet for initialization of the backbone architecture which was fine-tuned
during training. The remaining layers are trained from scratch. All architectures use
LeakyReLU activations. For further details, we provide the code at the project page 3.

Baselines. For the dropout models, we use the best drop out rate pdrop per dataset
after a grid search in {0.1, 0.25, 0.4} and sample 5 times for uncertainty estimation.
Similarly, we use m = 5 for the ensemble baseline and the distribution distillation. Note
that Ovadia et al. [335] found that a relative small ensemble size (e.g. m = 5) may
indeed be sufficient in practice. We also train Prior Networks where we set βin = 1e2

as suggested in the original papers [270, 273]. Prior Networks use Fashion-MNIST and
SVHN as training OOD datasets for MNIST and CIFAR-10, respectively. As there is no
available OOD dataset for the Sensorless Drive dataset, we use Gaussian noise as training
OOD data.

Natural Posterior Network. We perform a grid search for the entropy regularizer
λ in the range [1e−5, 0], for the latent dimension H in {4, 8, 16, 32}, for the certainty
budget NH in {e 1

2
H , eH , elog(

√
4π)H}, and for normalizing flow type between radial flows

[358] with 8, 16 layers and Masked Autoregressive flows [339, 154] with 4, 8, 16 lay-
ers. Further results on latent dimensions, density types, number of normalizing flow
layers and certainty budget are presented in Appendix B.9.6. We use “warm-up” training
for the normalizing flows for all datasets except for the simple Concrete and Kin8nm
datasets, and the NYU Depth v2 dataset which starts from a pretrained encoder. We
use “fine-tuning” for the normalizing flows for all datasets except for the simple Concrete
and Kin8nm datasets. As prior parameters, we set χprior = 1C/C, n

prior = C for classi-
fication, χprior = (0, 100)T , nprior = 1 for regression and χprior = 1, nprior = 1 for count
prediction. Note that the mean of these prior distributions correspond to an equiprobable
Categorical distribution Cat(1C/C), a Normal distribution with large variance N (0, 10)
and a Poisson distribution with a unitary mean Poi(1). Those prior target distributions
represent the safe default prediction when no evidence is predicted.

B.8 Experiment Details

Target Error Metric. For classification, we use the standard accuracy 1
N

∑
i I[y∗,(i) =

y(i)] where y∗,(i) is the one-hot true label and y(i) is the one-hot predicted label. For

regression, we use the standard Root Mean Square Error
√

1
N

∑N
i (y

∗,(i) − y(i))2.

Calibration Metric. For classification, we use the Brier score which is computed as
1
C

∑N
i ||p(i) − y(i)||2 where p(i) is the predicted softmax probability and y(i) is the one-

hot encoded ground-truth label. For regression and count prediction, we use the absolute
difference between the percentile p and the percentage of target lying in the confidence
interval Ip = [0, p2 ] ∪ [1 − p

2 , 1] under the predicted target distribution. Formally, we
compute ppred = 1

N

∑
i I[Fθ(i)(y∗,(i))) ∈ Ip] where Fθ(i)(y

∗,(i)) = P(y ≤ y∗,(i) |θ(i)) is the
cumulative function of the predicted target distribution evaluated at the true target. For

3https://www.daml.in.tum.de/natpn
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example, the percentile p = 0.1 would be compared to ppred = 1
N

∑
i I[Fθ(i)(y∗,(i))) ∈

[0, 0.05]∪ [0.95, 1]] which should be close to 0.10 for calibrated predictions. We compute
a single calibration score by summing the square difference for p ∈ {0.1, . . . , 0.9} i.e.√∑

p(p− ppred)2 [242].

OOD Metric. The OOD detection task can be evaluated as a binary classification.
Hence, we assign class 1 to ID data and class 0 to OOD data task and use the aleatoric
and epistemic uncertainty estimates as scores for OOD data. It enables to compute final
scores using the area under the precision-recall curve (AUC-PR) and the area under the
receiver operating characteristic curve (AUC-ROC). Both metrics have been scaled by
100. We obtain numbers in [0, 100] for all scores instead of [0, 1]. Results for AUC-ROC
are reported in Appendix B.9.7. For the aleatoric uncertainty, we use the negative entropy
of the predicted target distribution. For the epistemic uncertainty, we use the predicted
evidence for models parametrizing conjugate-prior, or the variance of the predicted win-
ning probability class for classification and the variance of the mean for regression and
class count prediction for ensemble or dropout.

Inference Time Metric. We measure inference time of models in ms and used NVIDIA
GTX 1080 Ti GPUs. We evaluate the inference for one classification dataset (CIFAR-
10) and one regression dataset (NYU Depth v2). For evaluation, we use a randomly
initialized model and simply push random data through the model with batch size of
4,096 CIFAR10 and batch size of 4 for NYU Depth v2. The final numbers are averaged
over 100 batches excluding the first batch due to GPU initialization. Compared models
shared the same backbone architecture.

B.9 Additional Experiments

B.9.1 MNIST, Fashion MNIST, CIFAR10 and Bike Sharing results

Table B.1: Results on MNIST (classification with Categorical target distribution). Best scores
among all single-pass models are in bold. Best scores among all models are starred.
Gray numbers indicate that R-PriorNet has seen samples from the FMNIST dataset
during training.
Accuracy Brier K. Alea. K. Epist. F. Alea. F. Epist. OODom Alea. OODom Epist.

Dropout 99.45 ± 0.01 1.07 ± 0.05 98.27 ± 0.05 97.82 ± 0.08 *99.40 ± 0.03 98.01 ± 0.14 43.86 ± 1.62 74.09 ± 0.92
Ensemble 99.46 ± 0.02 1.02 ± 0.02 98.39 ± 0.07 98.43 ± 0.05 99.33 ± 0.06 98.73 ± 0.08 40.98 ± 1.80 66.54 ± 0.58
NatPE *99.55 ± 0.01 *0.84 ± 0.03 96.39 ± 0.73 *99.61 ± 0.02 97.49 ± 0.85 *99.70 ± 0.04 *100.00 ± 0.00 *100.00 ± 0.00

StandardNet 98.91 ± 0.06 1.81 ± 0.14 95.81 ± 0.44 – 96.29 ± 1.04 – 47.53 ± 3.44 –
SNGP 99.34 ± 0.03 2.62 ± 0.04 98.85 ± 0.11 – 98.04 ± 0.34 – *100.00 ± 0.00 –
R-PriorNet 99.35 ± 0.04 0.97 ± 0.03 *99.33 ± 0.18 99.28 ± 0.25 100.00 ± 0.00 100.00 ± 0.00 97.48 ± 0.66 31.03 ± 0.13
EnD2 99.24 ± 0.05 6.19 ± 0.13 98.36 ± 0.15 98.76 ± 0.13 99.25 ± 0.16 99.35 ± 0.14 48.09 ± 1.38 31.60 ± 0.39
PostNet 99.36 ± 0.02 1.33 ± 0.04 98.88 ± 0.05 98.79 ± 0.07 98.89 ± 0.23 98.85 ± 0.23 *100.00 ± 0.00 *100.00 ± 0.00
NatPN 99.47 ± 0.02 1.09 ± 0.03 99.20 ± 0.20 99.39 ± 0.08 99.16 ± 0.28 99.54 ± 0.09 99.99 ± 0.01 *100.00 ± 0.00
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Table B.2: Results on FMNIST (classification with Categorical target distribution). Best scores
among all single-pass models are in bold. Best scores among all models are starred.
Gray numbers indicate that R-PriorNet has seen samples from the KMNIST dataset
during training.
Accuracy Brier M. Alea. M. Epist. K. Alea. K. Epist. OODom Alea. OODom Epist.

Dropout 92.44 ± 0.17 13.89 ± 0.31 60.75 ± 1.41 75.85 ± 1.73 76.57 ± 1.30 92.48 ± 0.46 39.97 ± 0.69 90.90 ± 1.74
Ensemble 92.64 ± 0.10 13.63 ± 0.25 77.14 ± 1.49 90.78 ± 0.75 86.20 ± 0.76 95.16 ± 0.35 37.30 ± 0.83 82.93 ± 0.96
NatPE *92.89 ± 0.06 14.44 ± 0.06 82.56 ± 0.33 96.38 ± 0.29 92.12 ± 0.17 *98.79 ± 0.09 *100.00 ± 0.00 *100.00 ± 0.00

StandardNet 90.28 ± 0.24 17.12 ± 0.53 71.81 ± 2.43 – 82.28 ± 0.97 – 32.82 ± 0.73 –
SNGP 91.38 ± 0.08 16.73 ± 0.46 89.40 ± 1.66 – 95.31 ± 0.42 – 100.00 ± 0.00 –
R-PriorNet 91.53 ± 0.10 *12.21 ± 0.20 *98.83 ± 0.49 *99.54 ± 0.18 99.96 ± 0.02 99.99 ± 0.00 72.23 ± 6.32 48.84 ± 6.09
EnD2 91.84 ± 0.03 29.23 ± 0.79 79.32 ± 1.39 91.61 ± 1.04 91.99 ± 0.06 98.36 ± 0.20 43.70 ± 3.37 36.73 ± 3.74
PostNet 91.04 ± 0.10 16.11 ± 0.30 90.56 ± 1.25 92.10 ± 1.77 *96.65 ± 0.33 97.06 ± 0.42 *100.00 ± 0.00 *100.00 ± 0.00
NatPN 91.65 ± 0.14 14.88 ± 0.30 81.12 ± 2.77 96.51 ± 0.81 93.03 ± 1.00 98.38 ± 0.23 99.99 ± 0.01 *100.00 ± 0.00

Table B.3: Classification results on CIFAR-10 with Categorical target distribution. Best scores
among all single-pass models are in bold. Best scores among all models are starred.
Gray numbers indicate that R-PriorNet has seen samples from the SVHN dataset
during training.Accuracy Brier SVHN Alea. SVHN Epist. CelebA Alea. CelebA Epist. OODom Alea. OODom Epist.

Dropout 88.15 ± 0.20 19.59 ± 0.41 80.63 ± 1.59 73.09 ± 1.51 71.84 ± 4.28 71.04 ± 3.92 18.42 ± 1.11 49.69 ± 9.10
Ensemble *89.95 ± 0.11 17.33 ± 0.17 85.26 ± 0.84 82.51 ± 0.63 76.20 ± 0.87 74.23 ± 0.78 25.30 ± 4.02 89.21 ± 7.55
NatPE 89.21 ± 0.09 17.41 ± 0.12 85.66 ± 0.34 *83.16 ± 0.67 *78.95 ± 1.15 *82.06 ± 1.30 87.27 ± 1.79 *98.88 ± 0.26

SNGP 84.06 ± 1.68 30.49 ± 2.99 79.95 ± 1.82 – 67.82 ± 3.67 – *96.00 ± 1.67 –
R-PriorNet 88.94 ± 0.23 *15.99 ± 0.32 99.87 ± 0.02 99.94 ± 0.01 67.74 ± 4.86 59.55 ± 7.90 42.21 ± 8.77 38.25 ± 9.82
EnD2 84.03 ± 0.25 40.84 ± 0.36 *86.47 ± 0.66 81.84 ± 0.92 75.54 ± 1.79 75.94 ± 1.82 42.19 ± 8.77 15.79 ± 0.27
PostNet 87.95 ± 0.20 20.19 ± 0.40 82.35 ± 0.68 79.24 ± 1.49 72.96 ± 2.33 75.84 ± 1.61 85.89 ± 4.10 92.30 ± 2.18
NatPN 87.90 ± 0.16 19.99 ± 0.46 82.29 ± 1.11 77.83 ± 1.22 76.01 ± 1.18 76.87 ± 3.38 93.67 ± 3.03 94.90 ± 3.09

B.9.2 Uncertainty Visualization on Toy Datasets

We visualize the aleatoric and the epistemic uncertainty for two toy datasets with three
classes with the same number of training examples for the three classes (see Fig. B.1)
and different number of training examples for the three classes (see Fig. B.3). The
predictions are more aleatorically certain close to training samples. The preidctions are
more epistemically uncertain close to fewer training examples and very epistemically
uncertain for region far from all training data.

Figure B.1: Visualization of the aleatoric and epistemic uncertainty on a 2D toy dataset with
3 classes with 900 training samples for each class.
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Table B.4: Results on the Bike Sharing Dataset with Normal N and Poison Poi target distri-
butions. Best scores among all single-pass models are in bold. Best scores among
all models are starred.

RMSE Calibration Winter Epist. Spring Epist. Autumn Epist. OODom Epist.

Dropout-N 70.20 ± 1.30 6.05 ± 0.77 15.26 ± 0.51 13.66 ± 0.16 15.11 ± 0.46 99.99 ± 0.01
Ensemble-N *48.02 ± 2.78 5.88 ± 1.00 42.46 ± 2.29 21.28 ± 0.38 21.97 ± 0.58 *100.00 ± 0.00

StandardNet-N 58.49 ± 4.37 2.32 ± 0.88 – – – –
EvReg-N 49.58 ± 1.51 3.77 ± 0.81 17.19 ± 0.76 15.54 ± 0.65 14.75 ± 0.29 34.99 ± 17.02
NatPN-N 49.85 ± 1.38 *1.95 ± 0.34 *55.04 ± 6.81 *23.25 ± 1.20 *27.78 ± 2.47 *100.00 ± 0.00

Figure B.3: Visualization of the aleatoric and epistemic uncertainty on a 2D toy dataset with 3
classes with 900 training samples for class 1 (green), 600 training samples for class
2 (red) and 300 training samples for class 2 (blue).

B.9.3 Latent Space Visualizations

We propose additional visualizations of the latent space for MNIST with t-SNE [65] with
different perplexities (see Fig. B.5). For all perplexities, we clearly observe ten green
clusters corresponding to the ten classes for MNIST. The KNMIST (OOD) samples in
red can easily be separated from the MNIST (ID) samples in green. As desired, NatPN
assigns higher log-probabilities used in evidence computation to ID samples from MNIST.

B.9.4 Histogram of Uncertainty Estimates

We visualize the histogram distribution of the entropy of the posterior distribution ac-
counting for predictive uncertainty for ID (MNIST/NYU) and OOD (KNMIST and
Fashion-MNIST/LSUN classroom and LSUN church + KITTI) (see Fig. B.6). We clearly
observe lower predictive entropy for ID data than for OOD data for both MNIST and
NYU datasets. On one hand, the entropy clearly differentiates between ID data (MNIST)
and any other OOD datasets (KMNIST, Fashion MNIST, OODom) for classification. We
intuitively explain this clear distinction since the samples from the OOD datasets are
irrelevant for the digit classification task. On the other hand, the entropy is still a good
indicator of ID (NYU) and OOD datasets (LSUN classroom and LSUN church + KITTI)
for regression although the distinction between ID and OOD datasets is less strong com-
pared to MNIST. We intuitively explain this behavior since the task of depth estimation
is still relevant to LSUN classroom and LSUN church + KITTI.
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Figure B.5: t-SNE visualization of the latent space of NatPN on MNIST (ID) vs KMNIST
(OOD). On the left, The ID data (MNIST in green) can easily be distinguished
from the OOD data (KMNIST in red). On the right, NatPN correctly assigns
higher likelihood to ID data.

Figure B.6: Histogram of the entropy of the posterior distribution accounting for the predic-
tive uncertainty of NatPN on MNIST (ID) vs KMNIST, Fashion-MNIST, Out-Of-
Domain (OOD) and NYU (ID) vs LSUN classroom and LSUN church + KITTI
(OOD). In both cases, low entropy is a good indicator of in-distribution data.
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B.9.5 Uncertainty Visualization on NYU Depth v2 Dataset

We visualize the prediction and the predictive uncertainty per pixel for the NYU Depth
v2 dataset (see Fig. B.8). We observe accurate target predictions compared to the ground
truth depth of the images. Further NatPN assigns higher uncertainty for pixels close to
object edges, which is reasonable since the depth abruptly change at these locations.

B.9.6 Hyper-Parameter Study

As a ablation study, we also report the results of the grid search on the latent dimension,
normalizing flow types and number of normalizing flow layers for MNIST, CIFAR-10 and
Bike Sharing datasets in Tables B.5 to B.8. While most models converge to fairly good
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Figure B.8: Visualization of the predicted depth and predictive uncertainty estimates of NatPN
per pixel on the NYU Depth v2 dataset. NatPN predicts accurate depth uncer-
tainty and reasonably assigns higher uncertainty to object edges.

Image Ground Truth Depth Predicted Depth Predictive Uncertainty Image Ground Truth Depth Predicted Depth Predictive Uncertainty

uncertainty estimates, we notice that 16 layers of simple radial flows on latent spaces of
16 dimensions were achieving very good results in practice.

Changing the flow type or the number of normalizing flow layers does not lead to strong
variations of the results except for Bike sharing with Poisson target distributions. In this
case, more complex MAF normalizing flows improve NatPN performance.

The latent dimension appears to be a more important choice for the model convergence.
As an example, a higher latent dimension of 16 or 32 leads to significantly better perfor-
mances than a latent dimension of 4 on MNIST, CIFAR10 and Bike Sharing datasets.
We hypothesize that too low latent dimensions are less able to encode the necessary
information for the prediction task, leading to worse target errors.

Further, we compare three different variants of the certainty budget NH used in the
evidence computation n(i) = NHP(z(i) |ω): a constant unit budget (i.e. NH = 1 (I))
corresponding to a fixed budget regardless of the number of training data and the latent
dimension, a budget equals to the number of training data (i.e. NH = N (II)) similarly to
Charpentier et al. [67], or a budget which scales exponentially with the number of latent
dimensions (e.g. NH equal to e

1
2
H (III), eH (IV) or elog(

√
4π)H (V)). We observe that

scaling the budget w.r.t. the latent space dimension (H-budget) is more stable in practice
than constant budget (1-budget) and budget related to the number of training data (N -
budget) (see. Tables B.5 to B.8). In aprticular, the H-budgets achieve more better
results on higher latent dimensions and performance on par with the other certainty
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budget scheme otherwise. The intuition is that due to the curse of dimensionality, the
expected value of a probability density function Ez[P(z)] tends to decrease exponentially
fast. For example, we have Ez[P(z)] = 1

(
√
4π)H

when z ∼ N (0,1) in a H-dimensional
space. Increasing the certainty budget NH exponentially w.r.t. to the dimension H
avoids numerical issues by allocating close to 0 evidence to latent representations. In our
experiments, we use a grid search in different exponential scaling NH equal to e

1
2
H (III),

eH (IV), elog(
√
4π)H (V).

B.9.7 OOD Detection with AUC-ROC Scores

In addition to the AUC-APR scores, we report the OOD detection results for MNIST,
CIFAR10 and Bike Sharing datasets in Tables B.9 to B.11 with AUC-ROC scores. Sim-
ilarly as with AUC-APR scores, NatPN and NatPE achieve very competitive perfor-
mances compare to the baselines. It particular, they outperform all baselines to detect
challenging OODom data.
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Table B.5: MNIST comparison (<latent dim> – <certainty budget> – <radial layers>/<MAF
layers>). Bold and starred number indicate best score among all models.

Accuracy Brier K. Alea. K. Epist. F. Alea. F. Epist. OODom Alea. OODom Epist.

H = 4, NH = I, Flow = 8/0 61.92 ± 3.79 64.33 ± 3.98 88.70 ± 1.65 87.66 ± 2.47 90.07 ± 3.43 89.52 ± 2.25 *100.00 ± 0.00 *100.00 ± 0.00
H = 4, NH = I, Flow = 16/0 77.46 ± 6.26 59.11 ± 1.96 91.38 ± 2.50 91.48 ± 0.85 92.46 ± 1.72 93.03 ± 1.60 99.91 ± 0.04 *100.00 ± 0.00
H = 4, NH = I, Flow = 0/4 75.04 ± 10.10 59.46 ± 9.92 92.36 ± 3.34 92.64 ± 4.06 93.28 ± 2.66 91.90 ± 4.71 99.82 ± 0.05 *100.00 ± 0.00
H = 4, NH = I, Flow = 0/8 80.97 ± 4.29 58.35 ± 1.75 91.87 ± 2.55 92.65 ± 2.52 93.58 ± 2.93 96.50 ± 1.32 99.85 ± 0.04 *100.00 ± 0.00

H = 4, NH = II, Flow = 8/0 99.33 ± 0.05 3.43 ± 0.08 92.45 ± 0.33 67.84 ± 2.95 96.55 ± 1.23 71.57 ± 4.00 *100.00 ± 0.00 *100.00 ± 0.00
H = 4, NH = II, Flow = 16/0 99.36 ± 0.03 2.72 ± 0.08 94.87 ± 0.49 86.13 ± 1.47 95.03 ± 0.44 88.62 ± 1.80 *100.00 ± 0.00 *100.00 ± 0.00
H = 4, NH = II, Flow = 0/4 98.86 ± 0.05 4.26 ± 0.90 98.93 ± 0.16 98.04 ± 0.38 99.16 ± 0.23 98.52 ± 0.52 99.71 ± 0.02 *100.00 ± 0.00
H = 4, NH = II, Flow = 0/8 98.77 ± 0.15 5.44 ± 1.57 98.43 ± 0.26 97.87 ± 0.40 98.85 ± 0.26 98.35 ± 0.44 99.76 ± 0.03 *100.00 ± 0.00

H = 4, NH = III, Flow = 8/0 78.14 ± 5.55 48.46 ± 4.78 88.79 ± 1.05 87.28 ± 1.96 90.56 ± 1.10 89.69 ± 1.88 *100.00 ± 0.00 99.99 ± 0.01
H = 4, NH = III, Flow = 16/0 79.56 ± 5.27 41.44 ± 4.86 93.92 ± 1.25 93.99 ± 0.39 95.61 ± 0.88 95.64 ± 0.58 99.92 ± 0.07 *100.00 ± 0.00
H = 4, NH = III, Flow = 0/4 76.08 ± 7.67 58.56 ± 11.60 93.72 ± 3.51 94.58 ± 2.66 94.34 ± 3.39 96.60 ± 1.86 99.86 ± 0.05 *100.00 ± 0.00
H = 4, NH = III, Flow = 0/8 79.91 ± 10.84 50.78 ± 10.99 94.91 ± 2.23 96.44 ± 1.49 95.97 ± 1.37 98.35 ± 0.54 99.78 ± 0.07 *100.00 ± 0.00

H = 4, NH = IV, Flow = 8/0 85.31 ± 3.89 34.01 ± 5.20 89.65 ± 1.24 86.81 ± 1.36 92.78 ± 0.40 86.93 ± 2.47 *100.00 ± 0.00 99.99 ± 0.00
H = 4, NH = IV, Flow = 16/0 89.36 ± 0.15 26.48 ± 2.64 94.56 ± 0.65 93.48 ± 0.88 96.03 ± 1.01 94.74 ± 1.26 99.98 ± 0.02 *100.00 ± 0.00
H = 4, NH = IV, Flow = 0/4 91.64 ± 6.70 22.61 ± 13.67 96.63 ± 1.92 93.07 ± 1.49 98.43 ± 0.52 94.55 ± 2.01 99.81 ± 0.06 *100.00 ± 0.00
H = 4, NH = IV, Flow = 0/8 98.14 ± 0.46 12.73 ± 5.11 98.68 ± 0.25 97.61 ± 0.64 98.93 ± 0.20 97.73 ± 0.63 99.78 ± 0.05 *100.00 ± 0.00

H = 4, NH = V, Flow = 8/0 93.59 ± 2.32 20.40 ± 3.68 92.06 ± 1.39 87.15 ± 2.25 93.55 ± 1.03 87.11 ± 2.97 *100.00 ± 0.00 99.99 ± 0.00
H = 4, NH = V, Flow = 16/0 97.19 ± 1.97 14.66 ± 3.13 94.67 ± 1.45 92.82 ± 1.04 95.80 ± 1.17 95.27 ± 0.70 *100.00 ± 0.00 *100.00 ± 0.00
H = 4, NH = V, Flow = 0/4 96.69 ± 1.56 16.51 ± 6.21 97.78 ± 0.63 94.58 ± 1.06 96.95 ± 1.76 92.94 ± 1.74 99.80 ± 0.03 *100.00 ± 0.00
H = 4, NH = V, Flow = 0/8 98.34 ± 0.19 6.72 ± 1.54 98.85 ± 0.15 98.02 ± 0.49 99.08 ± 0.08 98.41 ± 0.34 99.69 ± 0.04 *100.00 ± 0.00

H = 16, NH = I, Flow = 8/0 99.45 ± 0.04 1.49 ± 0.11 97.75 ± 0.32 89.16 ± 0.34 98.13 ± 0.27 89.16 ± 0.41 *100.00 ± 0.00 *100.00 ± 0.00
H = 16, NH = I, Flow = 16/0 99.48 ± 0.01 1.41 ± 0.07 *99.32 ± 0.11 99.34 ± 0.05 *99.52 ± 0.07 *99.59 ± 0.05 *100.00 ± 0.00 *100.00 ± 0.00
H = 16, NH = I, Flow = 0/4 99.18 ± 0.05 1.83 ± 0.08 98.78 ± 0.11 97.92 ± 0.15 99.39 ± 0.07 98.32 ± 0.51 99.93 ± 0.02 *100.00 ± 0.00
H = 16, NH = I, Flow = 0/8 99.13 ± 0.06 1.97 ± 0.09 98.97 ± 0.04 98.33 ± 0.07 *99.52 ± 0.04 99.28 ± 0.09 99.88 ± 0.02 *100.00 ± 0.00

H = 16, NH = II, Flow = 8/0 99.42 ± 0.02 1.42 ± 0.10 96.62 ± 0.37 82.95 ± 1.46 97.34 ± 0.59 82.85 ± 1.37 *100.00 ± 0.00 *100.00 ± 0.00
H = 16, NH = II, Flow = 16/0 99.39 ± 0.02 1.52 ± 0.23 98.19 ± 0.38 95.92 ± 1.30 98.48 ± 0.37 96.20 ± 1.30 *100.00 ± 0.00 *100.00 ± 0.00
H = 16, NH = II, Flow = 0/4 99.24 ± 0.04 1.74 ± 0.08 98.65 ± 0.12 97.49 ± 0.20 99.29 ± 0.09 98.62 ± 0.20 99.94 ± 0.02 *100.00 ± 0.00
H = 16, NH = II, Flow = 0/8 99.26 ± 0.04 1.73 ± 0.09 98.89 ± 0.06 98.09 ± 0.12 99.33 ± 0.11 98.73 ± 0.27 99.95 ± 0.01 *100.00 ± 0.00

H = 16, NH = III, Flow = 8/0 99.47 ± 0.02 1.90 ± 0.50 95.08 ± 1.14 83.27 ± 0.43 96.03 ± 1.33 82.95 ± 0.30 *100.00 ± 0.00 *100.00 ± 0.00
H = 16, NH = III, Flow = 16/0 99.47 ± 0.02 *1.09 ± 0.03 99.20 ± 0.20 *99.39 ± 0.08 99.16 ± 0.28 99.54 ± 0.09 99.99 ± 0.01 *100.00 ± 0.00
H = 16, NH = III, Flow = 0/4 99.25 ± 0.03 1.65 ± 0.07 98.72 ± 0.07 97.95 ± 0.15 99.44 ± 0.04 98.96 ± 0.17 99.95 ± 0.01 *100.00 ± 0.00
H = 16, NH = III, Flow = 0/8 99.26 ± 0.05 1.78 ± 0.07 98.89 ± 0.08 98.24 ± 0.20 99.23 ± 0.28 98.70 ± 0.37 99.95 ± 0.01 *100.00 ± 0.00

H = 16, NH = IV, Flow = 8/0 99.33 ± 0.04 1.58 ± 0.03 97.08 ± 0.35 77.40 ± 1.79 98.15 ± 0.61 77.46 ± 1.82 *100.00 ± 0.00 *100.00 ± 0.00
H = 16, NH = IV, Flow = 16/0 99.37 ± 0.03 1.47 ± 0.11 97.52 ± 0.50 93.53 ± 0.89 98.04 ± 0.55 94.28 ± 0.60 *100.00 ± 0.00 *100.00 ± 0.00
H = 16, NH = IV, Flow = 0/4 99.23 ± 0.06 1.74 ± 0.10 98.64 ± 0.06 97.00 ± 0.38 99.31 ± 0.07 98.24 ± 0.35 99.93 ± 0.02 *100.00 ± 0.00
H = 16, NH = IV, Flow = 0/8 99.17 ± 0.03 1.83 ± 0.04 98.54 ± 0.10 97.43 ± 0.23 99.15 ± 0.15 98.28 ± 0.34 99.93 ± 0.01 *100.00 ± 0.00

H = 16, NH = V, Flow = 8/0 99.36 ± 0.03 1.46 ± 0.02 97.60 ± 0.63 72.45 ± 3.67 98.25 ± 0.83 72.69 ± 3.58 *100.00 ± 0.00 *100.00 ± 0.00
H = 16, NH = V, Flow = 16/0 99.38 ± 0.02 1.58 ± 0.12 96.17 ± 0.61 90.44 ± 1.80 96.80 ± 0.33 91.12 ± 1.87 *100.00 ± 0.00 *100.00 ± 0.00
H = 16, NH = V, Flow = 0/4 99.15 ± 0.04 1.89 ± 0.08 98.57 ± 0.13 96.06 ± 0.34 99.08 ± 0.11 97.79 ± 0.42 99.91 ± 0.01 *100.00 ± 0.00
H = 16, NH = V, Flow = 0/8 99.23 ± 0.04 1.98 ± 0.08 98.53 ± 0.04 97.03 ± 0.19 98.94 ± 0.13 97.83 ± 0.20 99.90 ± 0.01 *100.00 ± 0.00

H = 32, NH = I, Flow = 8/0 *99.49 ± 0.03 2.28 ± 0.89 92.36 ± 1.75 76.18 ± 2.10 93.90 ± 1.59 76.38 ± 2.11 *100.00 ± 0.00 *100.00 ± 0.00
H = 32, NH = I, Flow = 16/0 99.47 ± 0.01 1.47 ± 0.26 96.20 ± 0.25 95.95 ± 1.21 95.96 ± 0.77 95.97 ± 1.14 *100.00 ± 0.00 *100.00 ± 0.00
H = 32, NH = I, Flow = 0/4 99.29 ± 0.02 1.42 ± 0.04 99.02 ± 0.05 98.14 ± 0.16 99.46 ± 0.02 98.57 ± 0.11 99.95 ± 0.01 *100.00 ± 0.00
H = 32, NH = I, Flow = 0/8 99.27 ± 0.04 1.45 ± 0.06 98.95 ± 0.08 98.52 ± 0.08 99.35 ± 0.06 98.80 ± 0.04 99.99 ± 0.00 *100.00 ± 0.00

H = 32, NH = II, Flow = 8/0 99.44 ± 0.05 1.29 ± 0.18 96.03 ± 1.88 73.89 ± 2.45 96.83 ± 1.13 73.98 ± 2.41 *100.00 ± 0.00 *100.00 ± 0.00
H = 32, NH = II, Flow = 16/0 99.46 ± 0.05 1.94 ± 0.79 96.57 ± 1.17 94.13 ± 1.47 97.82 ± 0.84 94.69 ± 1.39 *100.00 ± 0.00 *100.00 ± 0.00
H = 32, NH = II, Flow = 0/4 99.26 ± 0.01 1.48 ± 0.02 98.90 ± 0.05 97.98 ± 0.06 99.29 ± 0.05 98.44 ± 0.09 99.94 ± 0.01 *100.00 ± 0.00
H = 32, NH = II, Flow = 0/8 99.30 ± 0.06 1.39 ± 0.09 98.89 ± 0.07 98.14 ± 0.14 99.45 ± 0.06 98.64 ± 0.13 99.98 ± 0.01 *100.00 ± 0.00

H = 32, NH = III, Flow = 8/0 *99.49 ± 0.01 1.20 ± 0.10 97.91 ± 0.79 73.77 ± 3.06 98.73 ± 0.57 73.79 ± 2.97 *100.00 ± 0.00 *100.00 ± 0.00
H = 32, NH = III, Flow = 16/0 99.44 ± 0.02 1.90 ± 0.69 96.16 ± 1.53 90.95 ± 1.20 97.42 ± 1.12 91.46 ± 1.24 *100.00 ± 0.00 *100.00 ± 0.00
H = 32, NH = III, Flow = 0/4 99.31 ± 0.02 1.38 ± 0.03 98.89 ± 0.10 97.73 ± 0.06 99.29 ± 0.11 98.41 ± 0.08 99.97 ± 0.01 *100.00 ± 0.00
H = 32, NH = III, Flow = 0/8 99.28 ± 0.04 1.33 ± 0.05 98.80 ± 0.09 98.16 ± 0.05 99.27 ± 0.08 98.52 ± 0.13 99.98 ± 0.01 *100.00 ± 0.00

H = 32, NH = IV, Flow = 8/0 99.36 ± 0.03 1.47 ± 0.05 97.97 ± 0.39 71.87 ± 1.31 99.00 ± 0.10 72.28 ± 1.30 *100.00 ± 0.00 *100.00 ± 0.00
H = 32, NH = IV, Flow = 16/0 99.38 ± 0.02 2.41 ± 0.66 95.45 ± 1.73 83.06 ± 1.62 96.91 ± 1.24 83.48 ± 1.65 *100.00 ± 0.00 *100.00 ± 0.00
H = 32, NH = IV, Flow = 0/4 99.22 ± 0.03 1.50 ± 0.09 98.77 ± 0.08 97.49 ± 0.11 99.27 ± 0.05 98.33 ± 0.09 99.97 ± 0.01 *100.00 ± 0.00
H = 32, NH = IV, Flow = 0/8 99.25 ± 0.04 1.34 ± 0.07 98.62 ± 0.09 97.70 ± 0.15 99.24 ± 0.06 98.09 ± 0.34 99.99 ± 0.00 *100.00 ± 0.00

H = 32, NH = V, Flow = 8/0 99.35 ± 0.02 1.43 ± 0.08 98.43 ± 0.29 64.15 ± 3.79 99.22 ± 0.16 64.37 ± 3.84 *100.00 ± 0.00 *100.00 ± 0.00
H = 32, NH = V, Flow = 16/0 99.33 ± 0.03 1.76 ± 0.33 97.41 ± 0.93 84.15 ± 1.84 98.26 ± 0.60 85.01 ± 2.01 *100.00 ± 0.00 *100.00 ± 0.00
H = 32, NH = V, Flow = 0/4 99.18 ± 0.05 1.58 ± 0.08 98.61 ± 0.09 96.71 ± 0.24 99.11 ± 0.07 97.34 ± 0.17 99.94 ± 0.01 *100.00 ± 0.00
H = 32, NH = V, Flow = 0/8 99.19 ± 0.03 1.58 ± 0.06 98.58 ± 0.10 96.98 ± 0.15 99.19 ± 0.08 96.99 ± 0.28 99.99 ± 0.00 *100.00 ± 0.00
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B Uncertainty Estimation for Regression

Table B.6: CIFAR10 comparison (<latent dim> – <certainty budget> – <radial lay-
ers>/<MAF layers>). Bold and starred number indicate best score among all
models.

Accuracy Brier SVHN Alea. SVHN Epist. CelebA Alea. CelebA Epist. OODom Alea. OODom Epist.

H = 4, NH = I, Flow = 8/0 42.73 ± 6.40 81.56 ± 2.72 67.03 ± 3.15 49.84 ± 6.09 56.86 ± 2.13 39.01 ± 7.65 95.33 ± 4.48 97.68 ± 2.32
H = 4, NH = I, Flow = 16/0 46.39 ± 6.64 77.73 ± 3.57 66.43 ± 2.39 46.63 ± 5.92 68.22 ± 3.82 41.98 ± 6.52 98.93 ± 0.85 99.61 ± 0.39
H = 4, NH = I, Flow = 0/4 53.79 ± 2.51 80.83 ± 4.54 59.77 ± 5.82 35.96 ± 2.59 64.95 ± 1.92 48.27 ± 5.85 97.76 ± 1.90 99.86 ± 0.07
H = 4, NH = I, Flow = 0/8 51.11 ± 3.67 79.13 ± 2.10 58.22 ± 4.19 33.22 ± 8.03 63.97 ± 3.12 42.75 ± 9.47 84.62 ± 10.88 88.24 ± 11.76

H = 4, NH = II, Flow = 8/0 88.02 ± 0.12 22.61 ± 0.18 75.40 ± 2.82 40.98 ± 3.98 62.73 ± 6.72 35.68 ± 3.66 82.17 ± 3.49 60.66 ± 7.27
H = 4, NH = II, Flow = 16/0 87.80 ± 0.09 22.43 ± 0.33 78.00 ± 1.68 60.02 ± 2.96 63.55 ± 2.08 46.15 ± 4.20 88.55 ± 3.72 88.82 ± 2.85
H = 4, NH = II, Flow = 0/4 87.10 ± 0.10 22.42 ± 0.16 83.35 ± 0.72 67.89 ± 4.11 75.76 ± 1.33 63.04 ± 4.04 89.20 ± 3.60 91.43 ± 3.81
H = 4, NH = II, Flow = 0/8 86.28 ± 0.74 24.15 ± 1.52 83.69 ± 0.48 67.20 ± 3.22 75.30 ± 1.66 63.56 ± 5.25 80.92 ± 8.99 83.04 ± 7.45

H = 4, NH = III, Flow = 8/0 68.54 ± 4.06 64.35 ± 3.30 71.61 ± 2.06 57.05 ± 5.90 70.14 ± 2.66 51.87 ± 3.56 93.39 ± 6.00 95.61 ± 3.82
H = 4, NH = III, Flow = 16/0 69.41 ± 4.00 59.98 ± 4.79 74.52 ± 1.11 52.59 ± 6.96 73.48 ± 2.43 51.59 ± 7.09 93.43 ± 3.42 93.45 ± 4.86
H = 4, NH = III, Flow = 0/4 64.80 ± 4.59 61.82 ± 5.62 67.99 ± 3.37 37.00 ± 6.95 66.88 ± 5.61 38.00 ± 10.01 99.70 ± 0.02 99.97 ± 0.02
H = 4, NH = III, Flow = 0/8 61.49 ± 5.78 66.53 ± 6.29 57.58 ± 5.84 34.37 ± 3.79 62.22 ± 6.68 39.86 ± 9.87 94.73 ± 3.13 98.71 ± 1.02

H = 4, NH = IV, Flow = 8/0 84.45 ± 0.44 38.86 ± 1.13 73.65 ± 1.66 53.64 ± 1.71 71.68 ± 2.13 52.30 ± 1.49 69.65 ± 5.61 66.36 ± 7.76
H = 4, NH = IV, Flow = 16/0 83.16 ± 0.83 35.51 ± 1.55 80.65 ± 2.67 59.70 ± 3.43 76.69 ± 3.23 50.09 ± 2.76 80.24 ± 7.59 83.05 ± 5.77
H = 4, NH = IV, Flow = 0/4 72.13 ± 2.90 48.67 ± 3.63 72.17 ± 1.95 27.43 ± 3.60 71.77 ± 2.24 27.09 ± 2.25 99.22 ± 0.53 99.85 ± 0.09
H = 4, NH = IV, Flow = 0/8 72.34 ± 1.84 51.55 ± 3.08 68.02 ± 3.39 28.48 ± 2.16 69.02 ± 2.91 32.72 ± 4.89 99.13 ± 0.44 98.91 ± 0.68

H = 4, NH = V, Flow = 8/0 86.32 ± 0.64 32.24 ± 1.38 73.15 ± 4.29 50.79 ± 3.87 66.37 ± 6.81 47.11 ± 7.35 73.58 ± 7.20 63.29 ± 5.99
H = 4, NH = V, Flow = 16/0 86.18 ± 0.39 27.92 ± 0.56 79.67 ± 2.46 56.96 ± 4.80 74.68 ± 2.69 45.29 ± 5.32 77.59 ± 10.23 80.75 ± 8.14
H = 4, NH = V, Flow = 0/4 80.39 ± 0.94 37.33 ± 2.23 77.81 ± 2.52 31.59 ± 3.34 74.14 ± 1.57 31.93 ± 3.75 93.63 ± 5.76 93.85 ± 5.61
H = 4, NH = V, Flow = 0/8 77.84 ± 0.71 42.01 ± 1.03 75.27 ± 2.23 40.87 ± 6.42 73.46 ± 1.81 33.18 ± 5.09 98.59 ± 0.72 99.08 ± 0.61

H = 16, NH = I, Flow = 8/0 82.83 ± 0.84 30.89 ± 1.71 81.35 ± 0.60 65.51 ± 2.65 75.48 ± 1.65 61.89 ± 3.89 99.73 ± 0.24 99.82 ± 0.18
H = 16, NH = I, Flow = 16/0 84.83 ± 0.60 26.24 ± 1.06 82.39 ± 1.11 75.54 ± 2.52 75.30 ± 0.72 69.12 ± 2.15 99.90 ± 0.06 99.96 ± 0.04
H = 16, NH = I, Flow = 0/4 83.71 ± 1.37 27.35 ± 2.34 81.38 ± 0.94 56.29 ± 4.77 75.88 ± 0.51 51.73 ± 4.32 99.17 ± 0.65 99.92 ± 0.07
H = 16, NH = I, Flow = 0/8 84.13 ± 0.53 27.02 ± 1.02 80.24 ± 1.88 67.03 ± 2.59 74.59 ± 0.68 58.67 ± 8.57 99.93 ± 0.01 *100.00 ± 0.00

H = 16, NH = II, Flow = 8/0 86.82 ± 0.46 22.45 ± 0.88 83.73 ± 1.26 56.60 ± 3.15 76.98 ± 1.67 63.55 ± 2.26 85.41 ± 11.05 87.59 ± 7.40
H = 16, NH = II, Flow = 16/0 86.40 ± 0.46 23.06 ± 0.82 83.60 ± 0.96 74.04 ± 2.78 76.87 ± 0.92 74.00 ± 1.92 82.09 ± 10.05 92.84 ± 3.70
H = 16, NH = II, Flow = 0/4 88.02 ± 0.12 19.83 ± 0.21 81.19 ± 0.77 72.46 ± 1.88 74.19 ± 1.54 65.32 ± 2.02 99.14 ± 0.59 99.90 ± 0.07
H = 16, NH = II, Flow = 0/8 87.73 ± 0.11 19.97 ± 0.33 83.29 ± 0.70 71.93 ± 1.90 74.14 ± 2.13 63.20 ± 3.16 99.94 ± 0.01 *100.00 ± 0.00

H = 16, NH = III, Flow = 8/0 86.54 ± 0.55 23.44 ± 1.10 80.97 ± 1.57 59.46 ± 1.33 73.31 ± 2.36 58.10 ± 3.38 93.95 ± 2.43 91.07 ± 3.26
H = 16, NH = III, Flow = 16/0 86.89 ± 0.20 22.07 ± 0.41 83.11 ± 0.43 72.37 ± 1.29 75.52 ± 0.83 72.66 ± 3.46 96.20 ± 2.51 98.21 ± 1.06
H = 16, NH = III, Flow = 0/4 88.16 ± 0.16 19.54 ± 0.22 82.50 ± 1.29 62.54 ± 1.59 74.62 ± 0.98 57.76 ± 2.44 99.89 ± 0.01 *100.00 ± 0.00
H = 16, NH = III, Flow = 0/8 87.67 ± 0.17 20.23 ± 0.38 84.03 ± 0.93 70.91 ± 1.97 73.43 ± 1.33 61.20 ± 1.55 99.90 ± 0.03 99.99 ± 0.00

H = 16, NH = IV, Flow = 8/0 87.97 ± 0.07 19.98 ± 0.17 *84.42 ± 0.82 62.10 ± 0.56 72.25 ± 1.85 65.17 ± 5.34 90.96 ± 4.50 81.63 ± 9.18
H = 16, NH = IV, Flow = 16/0 87.90 ± 0.16 19.99 ± 0.46 82.29 ± 1.11 *77.83 ± 1.22 76.01 ± 1.18 *76.87 ± 3.38 93.67 ± 3.03 94.90 ± 3.09
H = 16, NH = IV, Flow = 0/4 87.92 ± 0.22 19.93 ± 0.38 82.26 ± 1.22 67.03 ± 2.75 73.28 ± 1.25 63.06 ± 2.78 99.91 ± 0.02 *100.00 ± 0.00
H = 16, NH = IV, Flow = 0/8 87.90 ± 0.19 19.70 ± 0.28 81.72 ± 0.44 64.76 ± 4.18 74.90 ± 0.94 66.46 ± 3.04 99.82 ± 0.12 99.99 ± 0.01

H = 16, NH = V, Flow = 8/0 88.17 ± 0.17 19.78 ± 0.29 83.67 ± 0.66 56.34 ± 0.85 74.32 ± 2.32 62.47 ± 1.08 95.06 ± 1.51 82.09 ± 6.85
H = 16, NH = V, Flow = 16/0 88.17 ± 0.16 19.81 ± 0.34 81.76 ± 1.19 68.45 ± 1.60 72.98 ± 1.93 71.08 ± 4.11 83.74 ± 6.25 86.85 ± 3.37
H = 16, NH = V, Flow = 0/4 88.24 ± 0.12 19.30 ± 0.25 83.57 ± 0.67 66.44 ± 3.12 76.16 ± 1.94 63.04 ± 2.90 99.10 ± 0.84 99.97 ± 0.02
H = 16, NH = V, Flow = 0/8 88.10 ± 0.20 19.32 ± 0.40 81.22 ± 1.29 71.88 ± 2.05 75.42 ± 0.96 66.06 ± 2.02 99.74 ± 0.18 99.99 ± 0.00

H = 32, NH = I, Flow = 8/0 10.05 ± 0.28 95.02 ± 0.03 27.35 ± 1.29 23.46 ± 1.45 35.30 ± 1.88 34.31 ± 1.47 97.06 ± 0.64 *100.00 ± 0.00
H = 32, NH = I, Flow = 16/0 83.94 ± 0.61 27.83 ± 1.22 81.71 ± 0.62 74.15 ± 2.21 75.62 ± 1.48 75.68 ± 4.15 99.94 ± 0.02 99.97 ± 0.03
H = 32, NH = I, Flow = 0/4 85.30 ± 0.86 24.67 ± 1.56 82.70 ± 1.54 66.68 ± 2.56 76.15 ± 1.88 62.01 ± 0.96 99.93 ± 0.02 *100.00 ± 0.00
H = 32, NH = I, Flow = 0/8 85.58 ± 0.32 24.04 ± 0.73 82.77 ± 1.10 57.03 ± 2.71 75.48 ± 1.25 56.44 ± 1.77 99.84 ± 0.11 *100.00 ± 0.00

H = 32, NH = II, Flow = 8/0 86.11 ± 0.41 23.61 ± 0.82 83.38 ± 0.71 52.99 ± 2.55 76.14 ± 1.43 60.70 ± 1.29 95.80 ± 2.55 95.44 ± 2.79
H = 32, NH = II, Flow = 16/0 86.28 ± 0.31 23.11 ± 0.54 83.00 ± 0.53 63.42 ± 3.35 73.87 ± 1.19 72.90 ± 3.19 97.87 ± 2.04 99.92 ± 0.05
H = 32, NH = II, Flow = 0/4 87.98 ± 0.12 19.62 ± 0.22 82.72 ± 0.77 58.53 ± 4.37 74.45 ± 1.96 57.56 ± 4.88 99.93 ± 0.04 *100.00 ± 0.00
H = 32, NH = II, Flow = 0/8 87.41 ± 0.45 20.73 ± 0.78 81.91 ± 1.56 63.56 ± 2.61 75.30 ± 0.85 58.86 ± 3.76 99.97 ± 0.01 *100.00 ± 0.00

H = 32, NH = III, Flow = 8/0 86.65 ± 0.08 22.53 ± 0.18 82.38 ± 0.45 51.04 ± 1.13 74.93 ± 0.97 62.11 ± 1.92 95.20 ± 2.24 92.17 ± 5.43
H = 32, NH = III, Flow = 16/0 85.71 ± 0.47 24.29 ± 0.88 82.65 ± 0.59 66.63 ± 3.54 76.55 ± 1.22 73.27 ± 1.09 98.27 ± 1.24 98.75 ± 1.14
H = 32, NH = III, Flow = 0/4 88.05 ± 0.17 19.54 ± 0.34 81.85 ± 0.94 63.19 ± 2.75 76.21 ± 0.84 61.44 ± 4.30 99.75 ± 0.21 *100.00 ± 0.00
H = 32, NH = III, Flow = 0/8 88.23 ± 0.37 19.48 ± 0.62 84.08 ± 1.42 64.08 ± 3.71 *78.26 ± 1.27 64.08 ± 1.55 *99.98 ± 0.01 *100.00 ± 0.00

H = 32, NH = IV, Flow = 8/0 88.02 ± 0.19 19.78 ± 0.32 83.24 ± 0.65 50.51 ± 4.65 77.52 ± 1.20 60.08 ± 2.16 95.24 ± 2.10 91.41 ± 3.61
H = 32, NH = IV, Flow = 16/0 88.29 ± 0.14 19.36 ± 0.31 82.62 ± 1.72 59.43 ± 5.41 73.52 ± 1.33 59.20 ± 5.22 97.56 ± 1.00 99.57 ± 0.39
H = 32, NH = IV, Flow = 0/4 87.83 ± 0.14 19.92 ± 0.24 83.23 ± 0.71 57.29 ± 5.16 74.99 ± 1.71 65.64 ± 3.16 99.93 ± 0.04 *100.00 ± 0.00
H = 32, NH = IV, Flow = 0/8 88.24 ± 0.28 *19.25 ± 0.44 82.82 ± 1.17 64.69 ± 2.96 73.58 ± 2.12 60.43 ± 3.12 99.27 ± 0.43 99.99 ± 0.01

H = 32, NH = V, Flow = 8/0 88.25 ± 0.11 19.43 ± 0.25 83.02 ± 0.60 48.85 ± 3.13 73.55 ± 2.21 54.24 ± 3.53 94.02 ± 2.56 83.94 ± 5.81
H = 32, NH = V, Flow = 16/0 88.30 ± 0.17 19.41 ± 0.34 83.35 ± 1.37 64.63 ± 3.58 75.89 ± 2.13 72.53 ± 3.19 95.68 ± 0.75 95.89 ± 2.84
H = 32, NH = V, Flow = 0/4 *88.41 ± 0.15 19.34 ± 0.26 84.03 ± 0.94 59.12 ± 3.95 74.31 ± 1.96 63.33 ± 1.89 99.73 ± 0.13 99.99 ± 0.00
H = 32, NH = V, Flow = 0/8 88.26 ± 0.10 19.28 ± 0.10 83.68 ± 0.69 60.66 ± 2.92 73.08 ± 1.57 61.10 ± 5.28 99.28 ± 0.28 *100.00 ± 0.00
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B.9 Additional Experiments

Table B.7: Bike Sharing (Normal N ) comparison (<latent dim> – <certainty budget> – <ra-
dial layers>/<MAF layers>). Bold and starred number indicate best score among
all models.

RMSE Calibration Winter Epist. Spring Epist. Autumn Epist. OODom Epist.

H = 4, NH = I, Flow = 8/0 60.12 ± 4.17 21.15 ± 2.06 21.11 ± 2.59 14.97 ± 0.48 17.61 ± 1.02 *100.00 ± 0.00
H = 4, NH = I, Flow = 16/0 53.68 ± 3.45 21.92 ± 1.65 26.80 ± 2.61 17.54 ± 0.87 17.96 ± 1.20 *100.00 ± 0.00
H = 4, NH = I, Flow = 0/4 83.51 ± 8.56 23.94 ± 1.94 30.25 ± 6.17 17.49 ± 1.50 18.79 ± 1.30 *100.00 ± 0.00
H = 4, NH = I, Flow = 0/8 75.16 ± 8.97 25.93 ± 1.01 29.86 ± 4.07 17.71 ± 0.78 17.98 ± 0.41 *100.00 ± 0.00

H = 4, NH = II, Flow = 8/0 53.90 ± 3.72 22.76 ± 0.93 24.59 ± 2.43 16.69 ± 0.76 18.30 ± 1.10 *100.00 ± 0.00
H = 4, NH = II, Flow = 16/0 56.08 ± 4.96 26.30 ± 1.32 26.93 ± 4.34 17.11 ± 1.06 20.41 ± 1.84 *100.00 ± 0.00
H = 4, NH = II, Flow = 0/4 65.03 ± 8.07 23.10 ± 1.68 27.99 ± 3.46 17.04 ± 1.06 22.55 ± 2.60 *100.00 ± 0.00
H = 4, NH = II, Flow = 0/8 74.25 ± 7.89 26.51 ± 1.09 31.66 ± 3.21 18.31 ± 0.90 20.35 ± 2.26 *100.00 ± 0.00

H = 4, NH = III, Flow = 8/0 51.68 ± 1.25 19.04 ± 1.75 25.06 ± 2.21 17.05 ± 0.47 17.44 ± 1.50 *100.00 ± 0.00
H = 4, NH = III, Flow = 16/0 55.23 ± 4.45 19.04 ± 1.13 27.77 ± 2.88 16.69 ± 0.60 18.74 ± 0.19 *100.00 ± 0.00
H = 4, NH = III, Flow = 0/4 79.25 ± 11.47 25.54 ± 0.94 26.66 ± 2.88 16.73 ± 0.92 19.28 ± 0.68 *100.00 ± 0.00
H = 4, NH = III, Flow = 0/8 92.99 ± 3.68 26.48 ± 0.41 28.84 ± 1.87 17.26 ± 0.43 22.35 ± 2.26 *100.00 ± 0.00

H = 4, NH = IV, Flow = 8/0 51.71 ± 1.50 18.36 ± 2.24 23.72 ± 2.95 16.19 ± 0.75 16.77 ± 0.38 *100.00 ± 0.00
H = 4, NH = IV, Flow = 16/0 60.81 ± 5.56 21.01 ± 1.35 22.02 ± 1.85 15.43 ± 0.48 17.31 ± 0.61 *100.00 ± 0.00
H = 4, NH = IV, Flow = 0/4 57.74 ± 4.29 22.78 ± 1.02 26.75 ± 1.99 17.57 ± 0.36 18.85 ± 1.22 *100.00 ± 0.00
H = 4, NH = IV, Flow = 0/8 78.64 ± 8.29 23.29 ± 1.91 34.19 ± 2.72 19.14 ± 0.86 20.46 ± 0.70 *100.00 ± 0.00

H = 4, NH = V, Flow = 8/0 53.74 ± 2.95 23.27 ± 1.51 30.83 ± 4.89 17.34 ± 0.25 20.26 ± 1.24 *100.00 ± 0.00
H = 4, NH = V, Flow = 16/0 56.01 ± 2.32 23.35 ± 0.94 27.03 ± 2.64 17.52 ± 1.04 17.07 ± 0.81 *100.00 ± 0.00
H = 4, NH = V, Flow = 0/4 83.87 ± 8.67 24.20 ± 2.03 27.64 ± 3.59 16.48 ± 0.78 21.24 ± 2.11 *100.00 ± 0.00
H = 4, NH = V, Flow = 0/8 90.87 ± 5.11 22.54 ± 0.99 30.61 ± 2.20 17.46 ± 0.72 19.84 ± 0.93 *100.00 ± 0.00

H = 16, NH = I, Flow = 8/0 58.52 ± 5.08 9.86 ± 3.10 22.85 ± 3.51 15.57 ± 1.36 19.51 ± 3.12 *100.00 ± 0.00
H = 16, NH = I, Flow = 16/0 58.33 ± 4.80 10.29 ± 4.02 38.20 ± 3.14 19.10 ± 0.91 21.55 ± 1.90 *100.00 ± 0.00
H = 16, NH = I, Flow = 0/4 52.02 ± 1.93 7.98 ± 2.43 48.51 ± 5.78 22.11 ± 1.76 31.46 ± 3.21 *100.00 ± 0.00
H = 16, NH = I, Flow = 0/8 59.43 ± 5.49 9.20 ± 3.32 55.93 ± 8.21 25.67 ± 2.12 32.76 ± 5.61 *100.00 ± 0.00

H = 16, NH = II, Flow = 8/0 58.02 ± 2.35 4.25 ± 1.32 23.71 ± 1.27 16.69 ± 0.69 17.95 ± 0.53 *100.00 ± 0.00
H = 16, NH = II, Flow = 16/0 58.92 ± 6.56 4.69 ± 1.23 33.81 ± 5.95 18.33 ± 1.66 21.59 ± 2.26 *100.00 ± 0.00
H = 16, NH = II, Flow = 0/4 51.87 ± 2.45 8.01 ± 1.89 48.39 ± 10.55 23.12 ± 3.23 25.23 ± 2.61 *100.00 ± 0.00
H = 16, NH = II, Flow = 0/8 58.00 ± 5.68 4.57 ± 1.15 51.38 ± 8.78 24.60 ± 2.22 26.31 ± 3.59 *100.00 ± 0.00

H = 16, NH = III, Flow = 8/0 60.73 ± 4.01 4.45 ± 0.89 30.21 ± 2.21 17.74 ± 0.74 20.59 ± 2.19 *100.00 ± 0.00
H = 16, NH = III, Flow = 16/0 59.87 ± 5.68 5.70 ± 1.47 36.65 ± 6.92 18.95 ± 1.61 21.12 ± 3.18 *100.00 ± 0.00
H = 16, NH = III, Flow = 0/4 58.80 ± 4.49 7.34 ± 2.08 56.72 ± 3.51 25.77 ± 1.72 27.21 ± 3.06 *100.00 ± 0.00
H = 16, NH = III, Flow = 0/8 54.08 ± 2.95 8.56 ± 2.70 55.37 ± 8.22 25.82 ± 2.32 31.20 ± 4.73 *100.00 ± 0.00

H = 16, NH = IV, Flow = 8/0 52.49 ± 1.77 5.54 ± 1.22 33.26 ± 4.84 16.93 ± 1.23 22.32 ± 1.87 *100.00 ± 0.00
H = 16, NH = IV, Flow = 16/0 53.29 ± 3.17 4.15 ± 1.67 30.48 ± 4.05 17.72 ± 1.15 20.31 ± 1.66 *100.00 ± 0.00
H = 16, NH = IV, Flow = 0/4 56.11 ± 3.47 5.48 ± 1.63 54.10 ± 10.31 23.80 ± 3.44 25.87 ± 2.60 *100.00 ± 0.00
H = 16, NH = IV, Flow = 0/8 56.03 ± 2.51 3.74 ± 1.59 55.41 ± 7.83 23.78 ± 2.41 30.82 ± 2.93 *100.00 ± 0.00

H = 16, NH = V, Flow = 8/0 55.11 ± 3.53 6.72 ± 1.17 39.26 ± 7.71 19.03 ± 1.41 23.03 ± 3.74 *100.00 ± 0.00
H = 16, NH = V, Flow = 16/0 57.19 ± 4.36 6.13 ± 1.77 30.47 ± 3.14 17.24 ± 1.30 22.40 ± 3.35 *100.00 ± 0.00
H = 16, NH = V, Flow = 0/4 54.33 ± 2.57 4.31 ± 1.03 40.28 ± 7.97 18.99 ± 1.47 24.85 ± 3.95 *100.00 ± 0.00
H = 16, NH = V, Flow = 0/8 55.97 ± 4.00 2.09 ± 0.55 57.11 ± 9.02 26.22 ± 3.44 25.91 ± 4.23 *100.00 ± 0.00

H = 32, NH = I, Flow = 8/0 55.82 ± 1.49 3.19 ± 0.78 33.14 ± 4.82 18.14 ± 1.42 19.36 ± 0.80 *100.00 ± 0.00
H = 32, NH = I, Flow = 16/0 60.20 ± 4.97 3.11 ± 0.78 40.89 ± 5.92 19.51 ± 1.50 19.08 ± 1.31 *100.00 ± 0.00
H = 32, NH = I, Flow = 0/4 59.49 ± 2.94 2.90 ± 0.54 40.57 ± 8.66 19.14 ± 2.25 26.81 ± 2.90 *100.00 ± 0.00
H = 32, NH = I, Flow = 0/8 61.86 ± 4.98 1.94 ± 0.33 *72.07 ± 8.34 *28.46 ± 1.65 32.84 ± 3.41 *100.00 ± 0.00

H = 32, NH = II, Flow = 8/0 57.46 ± 3.24 5.08 ± 1.96 30.09 ± 2.78 17.55 ± 0.67 18.25 ± 0.78 *100.00 ± 0.00
H = 32, NH = II, Flow = 16/0 55.34 ± 2.78 2.15 ± 0.41 35.14 ± 2.49 19.24 ± 1.00 20.53 ± 2.12 *100.00 ± 0.00
H = 32, NH = II, Flow = 0/4 58.50 ± 7.43 2.23 ± 0.29 57.94 ± 5.29 24.43 ± 0.60 29.14 ± 3.00 *100.00 ± 0.00
H = 32, NH = II, Flow = 0/8 54.68 ± 4.01 2.26 ± 0.60 45.24 ± 5.14 19.82 ± 1.48 29.27 ± 2.28 *100.00 ± 0.00

H = 32, NH = III, Flow = 8/0 53.35 ± 3.39 2.88 ± 0.81 32.52 ± 1.58 18.28 ± 1.29 20.08 ± 1.05 *100.00 ± 0.00
H = 32, NH = III, Flow = 16/0 54.91 ± 2.39 4.51 ± 0.92 35.21 ± 4.26 18.68 ± 1.00 19.81 ± 1.46 *100.00 ± 0.00
H = 32, NH = III, Flow = 0/4 58.84 ± 1.61 *1.49 ± 0.20 50.90 ± 11.50 21.83 ± 2.72 33.23 ± 5.33 *100.00 ± 0.00
H = 32, NH = III, Flow = 0/8 *51.12 ± 1.93 2.17 ± 0.35 55.22 ± 5.21 24.55 ± 2.43 28.35 ± 2.18 *100.00 ± 0.00

H = 32, NH = IV, Flow = 8/0 52.58 ± 2.37 6.09 ± 1.30 28.88 ± 5.31 16.77 ± 1.24 20.28 ± 2.63 *100.00 ± 0.00
H = 32, NH = IV, Flow = 16/0 58.58 ± 5.19 5.05 ± 1.43 28.78 ± 2.57 16.47 ± 0.83 21.19 ± 1.64 *100.00 ± 0.00
H = 32, NH = IV, Flow = 0/4 51.88 ± 1.57 2.72 ± 0.74 55.32 ± 7.42 24.11 ± 2.10 *35.59 ± 3.99 *100.00 ± 0.00
H = 32, NH = IV, Flow = 0/8 53.84 ± 2.82 1.85 ± 0.33 49.44 ± 3.65 21.06 ± 2.11 30.14 ± 2.12 *100.00 ± 0.00

H = 32, NH = V, Flow = 8/0 53.52 ± 1.64 8.24 ± 0.64 30.51 ± 2.22 18.50 ± 0.67 20.98 ± 2.00 *100.00 ± 0.00
H = 32, NH = V, Flow = 16/0 58.21 ± 9.11 6.91 ± 1.16 35.75 ± 3.59 18.07 ± 0.91 19.09 ± 1.29 *100.00 ± 0.00
H = 32, NH = V, Flow = 0/4 56.22 ± 4.42 1.98 ± 0.45 40.97 ± 5.06 20.21 ± 1.98 23.40 ± 1.69 *100.00 ± 0.00
H = 32, NH = V, Flow = 0/8 54.06 ± 3.18 2.09 ± 0.32 35.75 ± 7.51 18.86 ± 2.13 22.27 ± 1.83 *100.00 ± 0.00
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Table B.8: Bike Sharing (Poisson Poi) comparison (<latent dim> – <certainty budget> – <ra-
dial layers>/<MAF layers>). Bold and starred number indicate best score among
all models.

RMSE Winter Epist. Spring Epist. Autumn Epist. OODom Epist.

H = 4, NH = I, Flow = 8/0 937.56 ± 238.40 33.50 ± 4.83 18.04 ± 0.58 20.44 ± 1.53 *100.00 ± 0.00
H = 4, NH = I, Flow = 16/0 777.22 ± 328.71 22.53 ± 2.16 17.00 ± 0.74 18.30 ± 1.25 *100.00 ± 0.00
H = 4, NH = I, Flow = 0/4 33780.69 ± 19607.73 45.22 ± 7.96 21.35 ± 2.09 37.89 ± 4.13 *100.00 ± 0.00
H = 4, NH = I, Flow = 0/8 22686.67 ± 5815.18 53.51 ± 5.83 21.80 ± 1.14 39.25 ± 2.59 *100.00 ± 0.00

H = 4, NH = II, Flow = 8/0 60383.07 ± 21389.07 15.20 ± 0.57 13.50 ± 0.22 15.28 ± 0.77 *100.00 ± 0.00
H = 4, NH = II, Flow = 16/0 32982.63 ± 17819.36 33.09 ± 8.79 17.55 ± 2.25 19.17 ± 1.19 *100.00 ± 0.00
H = 4, NH = II, Flow = 0/4 21467.31 ± 17019.59 44.60 ± 8.61 20.27 ± 1.97 33.25 ± 8.69 *100.00 ± 0.00
H = 4, NH = II, Flow = 0/8 11231.30 ± 4784.62 42.64 ± 7.58 21.06 ± 2.63 23.93 ± 2.05 *100.00 ± 0.00

H = 4, NH = III, Flow = 8/0 2048.78 ± 538.12 22.84 ± 1.90 16.59 ± 0.73 17.21 ± 0.50 *100.00 ± 0.00
H = 4, NH = III, Flow = 16/0 5181.92 ± 3581.91 25.42 ± 2.91 15.24 ± 0.53 17.00 ± 1.34 *100.00 ± 0.00
H = 4, NH = III, Flow = 0/4 35092.52 ± 10813.54 47.42 ± 5.98 22.49 ± 1.88 28.50 ± 1.52 *100.00 ± 0.00
H = 4, NH = III, Flow = 0/8 86946.86 ± 42792.69 53.87 ± 7.18 22.87 ± 2.17 33.78 ± 5.12 *100.00 ± 0.00

H = 4, NH = IV, Flow = 8/0 10255.94 ± 6207.90 19.89 ± 1.82 14.93 ± 0.30 16.38 ± 0.57 *100.00 ± 0.00
H = 4, NH = IV, Flow = 16/0 6665.70 ± 3160.53 29.95 ± 6.24 17.66 ± 1.06 17.33 ± 0.46 *100.00 ± 0.00
H = 4, NH = IV, Flow = 0/4 119600.14 ± 85229.53 35.15 ± 5.20 19.58 ± 2.37 27.15 ± 2.87 *100.00 ± 0.00
H = 4, NH = IV, Flow = 0/8 132950.39 ± 98199.93 56.85 ± 8.13 24.17 ± 1.99 40.23 ± 5.69 *100.00 ± 0.00

H = 4, NH = V, Flow = 8/0 131051.70 ± 124947.53 23.89 ± 2.55 15.68 ± 0.71 17.94 ± 1.34 *100.00 ± 0.00
H = 4, NH = V, Flow = 16/0 16481.96 ± 7339.53 26.55 ± 1.59 16.40 ± 0.25 26.36 ± 5.15 *100.00 ± 0.00
H = 4, NH = V, Flow = 0/4 28238.41 ± 10202.38 39.68 ± 9.73 19.04 ± 2.13 29.09 ± 3.57 *100.00 ± 0.00
H = 4, NH = V, Flow = 0/8 27167.10 ± 9698.30 46.59 ± 6.57 23.03 ± 1.22 27.77 ± 5.03 *100.00 ± 0.00

H = 16, NH = I, Flow = 8/0 633.14 ± 237.64 35.20 ± 5.92 18.16 ± 0.91 22.16 ± 2.43 *100.00 ± 0.00
H = 16, NH = I, Flow = 16/0 408.28 ± 246.12 45.32 ± 4.53 19.96 ± 1.66 34.91 ± 6.35 *100.00 ± 0.00
H = 16, NH = I, Flow = 0/4 276.23 ± 151.72 64.86 ± 8.92 26.40 ± 3.85 37.05 ± 5.43 *100.00 ± 0.00
H = 16, NH = I, Flow = 0/8 262.91 ± 126.12 80.30 ± 4.85 32.12 ± 2.86 38.83 ± 3.14 *100.00 ± 0.00

H = 16, NH = II, Flow = 8/0 1325.94 ± 79.27 30.06 ± 3.95 18.63 ± 1.33 21.43 ± 1.82 *100.00 ± 0.00
H = 16, NH = II, Flow = 16/0 1042.48 ± 413.69 45.96 ± 5.13 20.63 ± 1.63 24.25 ± 1.57 *100.00 ± 0.00
H = 16, NH = II, Flow = 0/4 129.87 ± 79.26 71.03 ± 5.39 34.02 ± 4.65 36.16 ± 5.75 *100.00 ± 0.00
H = 16, NH = II, Flow = 0/8 182.97 ± 129.05 81.19 ± 6.60 36.17 ± 5.02 *43.97 ± 7.12 *100.00 ± 0.00

H = 16, NH = III, Flow = 8/0 1233.19 ± 76.60 34.22 ± 4.42 19.09 ± 1.47 25.34 ± 1.63 *100.00 ± 0.00
H = 16, NH = III, Flow = 16/0 881.87 ± 367.31 38.58 ± 3.13 21.66 ± 1.47 22.85 ± 1.57 *100.00 ± 0.00
H = 16, NH = III, Flow = 0/4 89.12 ± 37.11 84.06 ± 3.99 37.00 ± 3.23 36.77 ± 5.20 *100.00 ± 0.00
H = 16, NH = III, Flow = 0/8 93.06 ± 28.11 76.50 ± 6.64 30.94 ± 5.14 37.96 ± 5.69 *100.00 ± 0.00

H = 16, NH = IV, Flow = 8/0 1893.36 ± 970.62 40.06 ± 6.68 20.01 ± 1.96 25.71 ± 4.91 *100.00 ± 0.00
H = 16, NH = IV, Flow = 16/0 2212.13 ± 1084.13 41.60 ± 4.41 17.93 ± 0.92 29.77 ± 3.60 *100.00 ± 0.00
H = 16, NH = IV, Flow = 0/4 56.60 ± 2.25 72.66 ± 6.46 32.09 ± 4.74 34.56 ± 5.52 *100.00 ± 0.00
H = 16, NH = IV, Flow = 0/8 52.01 ± 2.10 79.58 ± 5.81 33.47 ± 2.84 36.19 ± 4.91 *100.00 ± 0.00

H = 16, NH = V, Flow = 8/0 4434.32 ± 3059.38 31.63 ± 4.31 17.82 ± 1.02 20.77 ± 2.04 *100.00 ± 0.00
H = 16, NH = V, Flow = 16/0 4115.67 ± 1891.56 47.58 ± 4.69 22.82 ± 2.46 26.51 ± 5.27 *100.00 ± 0.00
H = 16, NH = V, Flow = 0/4 50.47 ± 1.54 83.71 ± 5.23 *37.46 ± 5.13 42.63 ± 4.37 *100.00 ± 0.00
H = 16, NH = V, Flow = 0/8 51.79 ± 0.78 *85.15 ± 3.61 37.03 ± 2.35 42.73 ± 4.38 *100.00 ± 0.00

H = 32, NH = I, Flow = 8/0 351.49 ± 157.14 38.59 ± 5.39 21.90 ± 2.62 25.23 ± 2.66 *100.00 ± 0.00
H = 32, NH = I, Flow = 16/0 167.67 ± 116.18 45.10 ± 6.51 21.90 ± 2.76 24.84 ± 3.40 *100.00 ± 0.00
H = 32, NH = I, Flow = 0/4 50.10 ± 1.55 73.09 ± 9.70 27.10 ± 2.42 40.78 ± 8.19 *100.00 ± 0.00
H = 32, NH = I, Flow = 0/8 51.97 ± 2.57 58.80 ± 10.68 23.64 ± 2.46 30.77 ± 5.51 *100.00 ± 0.00

H = 32, NH = II, Flow = 8/0 580.40 ± 250.82 38.80 ± 5.56 20.62 ± 1.89 25.80 ± 1.92 *100.00 ± 0.00
H = 32, NH = II, Flow = 16/0 49.96 ± 1.60 46.52 ± 6.52 22.78 ± 1.69 27.16 ± 5.09 *100.00 ± 0.00
H = 32, NH = II, Flow = 0/4 *48.85 ± 0.92 60.12 ± 10.37 22.57 ± 2.44 37.51 ± 6.70 *100.00 ± 0.00
H = 32, NH = II, Flow = 0/8 50.12 ± 2.29 69.33 ± 4.57 30.96 ± 2.55 35.11 ± 6.33 *100.00 ± 0.00

H = 32, NH = III, Flow = 8/0 462.85 ± 169.59 43.86 ± 7.00 20.62 ± 2.41 30.58 ± 4.59 *100.00 ± 0.00
H = 32, NH = III, Flow = 16/0 569.28 ± 219.42 54.12 ± 8.10 22.49 ± 1.98 31.49 ± 4.90 *100.00 ± 0.00
H = 32, NH = III, Flow = 0/4 49.83 ± 1.25 67.93 ± 9.50 27.61 ± 3.98 31.87 ± 6.17 *100.00 ± 0.00
H = 32, NH = III, Flow = 0/8 51.26 ± 1.53 70.68 ± 5.97 32.89 ± 3.07 28.56 ± 5.79 *100.00 ± 0.00

H = 32, NH = IV, Flow = 8/0 50.79 ± 1.07 42.61 ± 8.46 18.84 ± 2.13 26.45 ± 3.68 *100.00 ± 0.00
H = 32, NH = IV, Flow = 16/0 49.91 ± 1.54 45.15 ± 7.53 23.00 ± 2.26 27.90 ± 3.31 *100.00 ± 0.00
H = 32, NH = IV, Flow = 0/4 49.82 ± 1.59 59.64 ± 7.63 26.64 ± 4.29 34.17 ± 7.65 *100.00 ± 0.00
H = 32, NH = IV, Flow = 0/8 51.66 ± 1.79 65.31 ± 9.06 28.34 ± 3.83 38.84 ± 6.46 *100.00 ± 0.00

H = 32, NH = V, Flow = 8/0 52.95 ± 1.36 39.37 ± 7.16 17.74 ± 1.36 28.73 ± 5.78 *100.00 ± 0.00
H = 32, NH = V, Flow = 16/0 146.99 ± 94.70 56.50 ± 3.61 24.44 ± 2.00 34.28 ± 4.16 *100.00 ± 0.00
H = 32, NH = V, Flow = 0/4 51.42 ± 1.68 74.23 ± 7.35 27.64 ± 1.85 35.90 ± 6.06 *100.00 ± 0.00
H = 32, NH = V, Flow = 0/8 49.31 ± 1.81 76.36 ± 10.30 31.86 ± 4.07 41.32 ± 4.75 *100.00 ± 0.00
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B.9 Additional Experiments

Table B.9: MNIST - OOD detection with AUC-ROC scores. Bold numbers indicate best score
among single-pass models. Starred numbers indicate best scores among all models.
Gray numbers indicate that R-PriorNet has seen samples from the Fashion-MNIST
dataset during training.

K. Alea. K. Epist. F. Alea. F. Epist. OODom Alea. OODom Epist.

Dropout 98.12 ± 0.05 97.16 ± 0.11 *99.26 ± 0.03 96.87 ± 0.25 15.19 ± 1.70 88.16 ± 0.59
Ensemble 98.17 ± 0.07 98.03 ± 0.05 99.15 ± 0.07 98.04 ± 0.11 11.83 ± 1.81 81.53 ± 0.38
NatPE 98.25 ± 0.27 99.48 ± 0.03 98.79 ± 0.33 *99.61 ± 0.07 *100.00 ± 0.00 *100.00 ± 0.00

R-PriorNet *99.44 ± 0.09 *99.59 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 99.44 ± 0.16 1.82 ± 0.67
EnD2 98.21 ± 0.16 98.65 ± 0.15 99.06 ± 0.20 99.21 ± 0.17 56.31 ± 2.78 4.60 ± 1.89
PostNet 98.73 ± 0.05 98.62 ± 0.06 98.65 ± 0.35 98.57 ± 0.34 *100.00 ± 0.00 *100.00 ± 0.00
NatPN 99.11 ± 0.17 99.25 ± 0.09 99.13 ± 0.24 99.45 ± 0.11 99.98 ± 0.01 *100.00 ± 0.00

Table B.10: CIFAR-10 - OOD detection with AUC-ROC scores. Bold numbers indicate best
score among single-pass models. Starred numbers indicate best scores among all
models. Gray numbers indicate that R-PriorNet has seen samples from the SVHN
dataset during training.
SVHN Alea. SVHN Epist. CelebA Alea. CelebA Epist. OODom Alea. OODom Epist.

Dropout 84.67 ± 1.42 75.79 ± 0.86 75.95 ± 3.61 75.00 ± 3.21 21.75 ± 6.36 78.81 ± 6.91
Ensemble 88.08 ± 0.85 85.70 ± 0.70 78.80 ± 0.82 77.63 ± 0.61 40.53 ± 9.95 96.71 ± 2.31
NatPE 88.73 ± 0.26 *86.73 ± 0.82 *80.46 ± 0.82 *85.75 ± 1.09 92.45 ± 1.37 *99.56 ± 0.11

R-PriorNet 99.94 ± 0.01 99.98 ± 0.00 74.69 ± 2.39 70.63 ± 6.14 64.45 ± 10.72 59.61 ± 13.23
EnD2 *89.56 ± 0.67 84.36 ± 0.84 77.94 ± 1.62 78.14 ± 1.66 53.05 ± 6.07 4.42 ± 2.57
PostNet 85.52 ± 0.58 84.25 ± 0.90 75.68 ± 2.05 77.96 ± 2.05 93.00 ± 2.46 97.22 ± 0.86
NatPN 85.24 ± 0.98 81.74 ± 1.05 77.98 ± 1.22 81.62 ± 3.15 *96.94 ± 1.53 97.41 ± 1.63

Table B.11: Bike Sharing - OOD detection with AUC-ROC scores. Bold numbers indicate best
score among single-pass models. Starred numbers indicate best scores among all
models. Normal and Poisson Regression are treated separately.

Winter Epist. Spring Epist. Autumn Epist. OODom Epist.

Dropout-N 53.98 ± 1.60 51.24 ± 0.96 53.89 ± 1.16 *100.00 ± 0.00
Ensemble-N 81.53 ± 1.11 67.07 ± 0.55 67.78 ± 1.31 *100.00 ± 0.00

EvReg-N 55.26 ± 2.14 53.76 ± 1.35 52.39 ± 1.31 47.68 ± 17.67
NatPN-N *87.67 ± 3.13 *68.68 ± 2.58 *71.70 ± 3.23 *100.00 ± 0.00

Dropout-Poi 55.30 ± 0.58 50.75 ± 0.56 59.05 ± 1.15 *100.00 ± 0.00
Ensemble-Poi 95.31 ± 0.41 75.62 ± 0.85 78.93 ± 1.35 *100.00 ± 0.00

NatPN-Poi *96.67 ± 1.02 *78.45 ± 2.58 *82.42 ± 1.73 *100.00 ± 0.00
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C Practicality of Uncertainty Estimation

C.0.1 Deterministic Uncertainty Methods

NatPN. The deep Bayesian uncertainty model NatPN [68] can be decomposed into
these steps: (1) a core architecture predicts one latent representation of the input x(i)

i.e. z(i) = fϕ(x
(i)) ∈ RH , (2) While a density estimator P(.|w) predicts the evidence

parameter update n(i) = NHP(z(i)|w) where the NH is a scaling factor named certainty
budget, a single linear decoder gψ outputs the parameter update χ(i) = gψ(z

(i)) ∈ RL,
which can be viewed as a softmax output prediction. (3) We perform an input-dependent
Bayesian update which can be expressed in a closed-form as:

Q(θ(i)|χpost,(i), npost,(i)) = exp(npost,(i)θ(i)Tχpost,(i) − npost,(i)A(θ(i)))

where χpost,(i) =
npriorχprior + n(i)χ(i)

nprior + n(i)
, npost,(i) = nprior + n(i)

where χprior, nprior are fixed prior parameters, and χpost,(i), npost,(i) are the input-dependent
posterior parameters. For the classification, the variable θ(i) represents the normalized
categorical vector p(i). The predictive uncertainty is computed via the entropy of the
predictive categorical distribution, and the epistemic uncertainty is computed via the
evidence parameter npost,(i). We train all the components of neural network parameters
{ϕ,w,ψ} jointly with the Bayesian loss [68]:

L(i) ∝ E[θ(i)]Tu(y(i))− E[A(θ(i))]− λH[Qpost,(i)] (C.1)

where λ is the regularization factor of the entropy term representing. We refer to [68] for
a more detailed description of the method.

DUE. The deep kernel learning method DUE [421] can be decomposed into these
steps: (1) a core architecture predicts one latent representation of the input x(i) i.e.
z(i) = fθ(x

(i)) ∈ RH , (2) a Gaussian Process defined from a fixed set of K learnable
inducing points {ϕk}Kk=1 and a predefined positive definite kernel κ(·, ·) predicts the mean
µ(x(i)) and the variance σ(x(i)) of a Gaussian distribution, and (3) we apply softmax to
the mean output µ(x(i)) for the classification prediction, i.e. p(i) = softmax(µ(x(i)). We
train the neural network parameters θ and the inducing points {ϕk}Kk=1 jointly with a
variational ELBO loss. For classification, the predictive uncertainty is computed as the
entropy of the predictive categorical distribution. We refer to [421] for a more detailed
description of the method.
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C.0.2 Dataset details

We split all the training datasets into train, validation and test sets. For all the datasets,
the test set is fixed while the training/validation sets are split in 80/20% respectively.
The random split of training/validation sets change depending on the seeds to ensure
more diversity.

MNIST [249]. Image classification dataset. Similarly as in [16], we create the CMNIST
dataset for domain generalization experiments by expanding the input’s size to 3 x 28
x 28 and zeroing one of the three channels. For OOD detection we use the test set of
MNIST as ID dataset and compare to: KMNIST [83], CIFAR10, CMNIST, and KMNIST
OODom, where we scale the input by 255. The batch size used is 512.

CIFAR [238]. Image classification dataset. We apply two data augmentations meth-
ods to the training data:the random horizontal flip and random cropping with padding
equal to 4. For domain generalization we use the corrupted version CIFAR-C [183] and
report the average metric of 15 corruptions for the level of corruption severity of 1. For
OOD detection we use the test set of CIFAR10 as ID dataset and compare to: SVHN
[313], STL10 [86], CelebA [262], Camelyon (Test OOD), and SVHN OODom. Since the
Camelyon (Test OOD) dataset is large (85k), we extract only 10k subset of images as
the OOD datasets. The batch size used is 128.

Camelyon [233]. Image classification dataset. We apply two data augmentations
emthods to the training data: random horizontal flip and random rotation of 15 degrees.
For domain generalization the dataset already provide the distribution shifted validation
and test splits. For OOD detection we use the ID validation set of Camelyon as ID dataset
(the ID test set is not available) and compare to: SVHN, STL10, CelebA, Camelyon (Test
OOD), and SVHN OODom. The batch size used is 32.

Each OOD dataset is rescaled to the same size as the ID dataset and normalized with
zero mean and unit variance based on the statistics of ID dataset (for the Camelyon
dataset we don’t apply any normalization as in [233]).

C.0.3 Metric details

Accuracy. The standard accuracy 1
N

∑
i 1[y

∗,(i) = y(i)] is used, where y∗,(i) is the true
label and y(i) is the predicted label.

Calibration. The Brier score 1
C

∑N
i ||p(i)−y∗,(i)|| is used, where p(i) is the predicted

softmax probability and y∗,(i) is the one-hot encoded true label. Lower calibration indi-
cates a better calibrated model. Note that in constrast with the Expected Calibration
Error (ECE), the Brier score is a strictly proper scoring rule which makes it a particularly
good evaluation metric for calibration [161].

OOD Generalization. We apply accuracy and calibration to the distribution shifted
OOD dataset and compare the results with the ID dataset to estimate the model’s ability
for generalization.

OOD Detection. We treat this task as a binary classification, where we assign class
1 to ID data and class 0 to OOD data using the aleatoric, epistemic, and predictive
uncertainty estimates as scores for OOD data. This allows to compute the final scores
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using the area under the receiver operating characteristic curve (AUC-ROC) to measure
the model’s ability to detect OOD data.

C.0.4 Model details

Core architecture. We use the same feature extractor for both the DUMs architecture.
The list of core architectures used across the experiments are: ResNet18 / ResNet50 /
EfficientNet / Swin [181, 405, 260] from the torchvision repository 1 and Wide-ResNet-
28-10 [460] from the original implementation of DUE. Except for the experiment on
architecture type and size where ResNet18 has output channels for the residual blocks
with size [64, 128, 256, 512], ResNet18 has output channels for the residual blocks with
size [32, 64, 128, 256] which causes small differences in final accuracy.

Uncertainty head. For DUE we use the original implementation 2 with by default
we use the RBF kernel function. For NatPN we use the original implementation 3 but
change the uncertainty head with a more expressive density estimator. As seen in Table
C.1, we found that a more expressive normalizing flow with resampled base [113, 399]
improves significantly the results over a simpler radial normalizing flow [358] across all
the metrics. For all the experiments (except toys where we use radial flow) we use NSF-R
with 16 layers.

Table C.1: Normalizing flow expressivity comparison. Using more expressive normalizing
flow significantely improves all the results for NatPN.

CIFAR100 Camelyon

Head Accuracy (↑) Brier Score (↓) OOD Pred. (↑) OOD Epis. (↑) Accuracy (↑) Brier Score (↓) OOD Pred. (↑) OOD Epis. (↑)

Radial 71.09 ± 0.21 52.27 ± 0.28 72.84 ± 1.82 50.95 ± 2.16 83.14 ± 0.93 24.55 ± 1.91 60.27 ± 5.29 69.16 ± 7.94
NSF-R 71.61 ± 0.07 43.44 ± 0.11 73.54 ± 1.69 72.85 ± 1.25 89.84 ± 7.93 12.52 ± 6.17 64.14 ± 10.42 81.33 ± 8.78

C.1 Training for DUMs Details

By default, we first start by only pretraining the core encoder architecture using the
cross-entropy loss, before attaching the DUM uncertainty head to the pretrained encoder
and continue with the joint training phase. We do not pretrain the encoder for MNIST.
we provide further details in Table C.2. Following the original method in [68], we train
the NatPN uncertainty head before (warmup) and after (finetune) the joint training. In
the warmup phase, we use the lambda scheduler increasing linearly from zero to LR head
value in Table C.2. In the finetune phase, we use a multistep scheduler that scales the
learning rate by 0.2 at 70% and 90% of the training starting from the LR head value
in Table C.2. We warmup for 0/5/0 and finetune for 60/200/5 epochs for the datasets
MNIST/CIFAR/Camelyon respectively.

Decoupling learning rate. In this experiment we use different values for the learning
rates of the core architecture and of the uncertainty head. After the decoupling learning

1https://pytorch.org/vision/stable/models.html
2https://github.com/y0ast/DUE
3https://github.com/borchero/natural-posterior-network

199

https://pytorch.org/vision/stable/models.html
https://github.com/y0ast/DUE
https://github.com/borchero/natural-posterior-network


C Practicality of Uncertainty Estimation

Table C.2: Default training hyperparameters. For CIFAR10, CIFAR100 and Camelyon
we first pretrain a core encoder architecture for the join training phase. In MNIST
we directly joint train given its lower computational cost.

Dataset Phase Encoder Epochs Optimizer
Enc. / Head

LR
Enc. / Head

LR scheduler
Enc. / Head

Weight decay
Enc. / Head

Latent
Dimension

MNIST
Pretrain - - - - - - -
Joint train (DUE) ResNet18 20 AdamW / AdamW 1e-3 / 1e-4 cosine ηmin=5e-4 / - 1e-6 / 1e-6 16
Joint train (NatPN) ResNet18 20 AdamW / AdamW 1e-3 / 5e-3 cosine ηmin=5e-4 / - 1e-6 / 1e-6 16

CIFAR10 & CIFAR100
Pretrain ResNet18 200 SGD 1e-1 cosine ηmin=5e-4 5e-4 -
Joint train (DUE) ResNet18 20 AdamW / AdamW 1e-4 / 1e-4 cosine ηmin=1e-5 / - 1e-6 / 1e-6 64
Joint train (NatPN) ResNet18 20 AdamW / AdamW 1e-5 / 5e-3 cosine ηmin=1e-5 / - 1e-6 / 1e-6 64

Camelyon
Pretrain WideResNet28-10 5 AdamW 1e-3 cosine ηmin=1e-5 1e-8 -
Joint train (DUE) WideResNet28-10 1 AdamW / AdamW 1e-5 / 5e-3 cosine ηmin=1e-6 / - 1e-6 / 1e-6 128
Joint train (NatPN) WideResNet28-10 1 AdamW / AdamW 5e-6 / 1e-5 cosine ηmin=1e-6 / - 1e-6 / 1e-6 128

rate experiment, we choose the best combination of learning rates through model selection
via the validation results and apply it to other experiments. E.g., for the joint training
schema and pretraining schema experiments, NatPN uses a learning rate of 1e-4/1e-4 for
encoder/head respectively, while for DUE it is 1e-5/5e-3.

Training schemes. In this experiment, we compare the joint training in which we
jointly train the weights of the core architecture and uncertainty head, and the sequential
training in which we only train the uncertainty head by keeping the weights of the
pretrained core architecture fixed. For each of the setting, we apply two additional
techniques to stabilize the training: adding a batch normalization to the last layer of the
encoder to enforce latent representations to locate in a normalized region [204, 68], and
resetting the last layer to retrain its weights to improve robustness to spurious correlation
[225].

Pretraining schemes. In this experiment, we do not pretrain the core encoder
architecture or pretrain it with 10% of CIFAR100, 100% of CIFAR100, and ImageNet.
For the schemes None and C100 (10%) which use no or few pretraining data, we increase
the joint training phase to 200 epochs with for the core architecture to ensure proper
convergence.

C.2 Architecture for DUMs Details

For all the architecture experiments we used the default training settings in Appendix C.1
and Table C.2.

Bi-Lipschitz training details. In the None configuration, we removed the residual
connection from the architecture for both the pretraining of the encoder and the joint
training phase. In the Residual configuration, we did not modify anything since both
ResNet and WideResNet already use the residual connection. While for the bi-Lipschitz
configuration, we added the spectral normalization during both the pretraining and also
joint training phase. Following the original method presented in [421], we used the same
implementation and applied spectral normalization to the linear, convolution, and batch
normalization layers. During the model selection, using the validation set results, we find
that the best Lipschitz constant c for DUE is 4, and for NatPN is 5. For both the models
the power iteration parameter is set to 1. For the toy dataset we use an encoder with 4
linear layers of 128 dimension each.
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Table C.3: Train schema OOD detection. Uncertainty estimation results broken down for
each OOD dataset. We observe that NatPN performs significantly better when
using joint, while DUE is insensitive to the schema used. The ID dataset used for
training is CIFAR100.

Model OOD Data Train Schema OOD Alea. (↑) OOD Epis. (↑) OOD Pred. (↑)

NatPN

SVHN

joint 80.64 ± 1.22 65.00 ± 3.18 80.64 ± 1.22
joint + bn 82.07 ± 0.62 69.98 ± 4.40 82.07 ± 0.62
joint + reset 80.77 ± 1.63 74.67 ± 2.37 80.77 ± 1.63
sequential 80.76 ± 0.95 43.99 ± 4.16 80.76 ± 0.95
sequential + bn 80.64 ± 0.83 44.46 ± 5.63 80.64 ± 0.83
sequential + reset 78.92 ± 1.06 59.54 ± 4.25 78.92 ± 1.06

STL10

joint 76.63 ± 0.20 58.79 ± 0.24 76.63 ± 0.20
joint + bn 76.53 ± 0.22 63.51 ± 0.38 76.53 ± 0.22
joint + reset 76.92 ± 0.36 64.44 ± 0.52 76.92 ± 0.36
sequential 77.57 ± 0.20 42.83 ± 0.62 77.57 ± 0.20
sequential + bn 77.64 ± 0.22 44.26 ± 0.59 77.64 ± 0.22
sequential + reset 77.35 ± 0.15 57.56 ± 0.38 77.35 ± 0.15

CelebA

joint 51.42 ± 1.29 28.90 ± 1.59 51.42 ± 1.29
joint + bn 51.45 ± 1.15 27.67 ± 2.45 51.45 ± 1.15
joint + reset 52.01 ± 0.46 32.54 ± 0.32 52.01 ± 0.46
sequential 52.58 ± 1.08 24.41 ± 1.94 52.58 ± 1.08
sequential + bn 52.44 ± 1.11 23.65 ± 1.85 52.44 ± 1.11
sequential + reset 53.12 ± 0.92 26.82 ± 1.41 53.12 ± 0.92

Camelyon

joint 67.17 ± 5.30 67.03 ± 9.00 67.17 ± 5.30
joint + bn 61.06 ± 2.70 69.69 ± 5.54 61.06 ± 2.70
joint + reset 67.07 ± 1.12 73.45 ± 4.22 67.07 ± 1.12
sequential 64.54 ± 2.08 56.23 ± 6.07 64.54 ± 2.08
sequential + bn 64.34 ± 2.12 49.31 ± 5.99 64.34 ± 2.12
sequential + reset 63.76 ± 2.13 65.59 ± 4.65 63.76 ± 2.13

SVHN OODom.

joint 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
joint + bn 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
joint + reset 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sequential 99.99 ± 0.00 100.00 ± 0.00 99.99 ± 0.00
sequential + bn 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
sequential + reset 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

DUE

SVHN

joint - - 80.75 ± 0.79
joint + bn - - 80.47 ± 1.09
joint + reset - - 80.92 ± 0.70
sequential - - 81.04 ± 0.82
sequential + bn - - 81.20 ± 0.86
sequential + reset - - 80.66 ± 1.07

STL10

joint - - 77.20 ± 0.19
joint + bn - - 77.24 ± 0.22
joint + reset - - 77.42 ± 0.25
sequential - - 77.50 ± 0.09
sequential + bn - - 77.52 ± 0.13
sequential + reset - - 77.48 ± 0.17

CelebA

joint - - 47.99 ± 1.25
joint + bn - - 47.90 ± 1.13
joint + reset - - 49.10 ± 0.86
sequential - - 48.07 ± 0.99
sequential + bn - - 48.43 ± 1.06
sequential + reset - - 49.39 ± 1.29

Camelyon

joint - - 67.76 ± 2.20
joint + bn - - 67.54 ± 2.33
joint + reset - - 67.03 ± 2.00
sequential - - 67.49 ± 2.58
sequential + bn - - 67.23 ± 2.72
sequential + reset - - 67.85 ± 2.54

SVHN OODom.

joint - - 100.00 ± 0.00
joint + bn - - 100.00 ± 0.00
joint + reset - - 100.00 ± 0.00
sequential - - 100.00 ± 0.00
sequential + bn - - 100.00 ± 0.00
sequential + reset - - 100.00 ± 0.00

Reconstruction training details. The decoder reconstructs the input extracted
from the last residual block of the encoder, before the pooling layer. During the pre-
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Table C.4: Pretrain schema OOD detection. Uncertainty estimation results broken down
for each OOD dataset. We see how ImageNet pretrained encoder consistently per-
forms better than other settings for 4/5 OOD datasets. The ID dataset used in the
joint training phase is CIFAR100.

Model OOD Data Pretrain Schema OOD Alea. (↑) OOD Epis. (↑) OOD Pred. (↑)

NatPN

SVHN

None 79.95 ± 1.18 77.87 ± 2.54 79.95 ± 1.18
C100 (10%) 71.81 ± 1.67 75.16 ± 2.20 71.81 ± 1.67
C100 (100%) + N (0.5) 80.76 ± 1.03 61.15 ± 6.04 80.76 ± 1.03
C100 (100%) + N (0.1) 79.86 ± 1.81 60.50 ± 7.54 79.86 ± 1.81
C100 (100%) 81.76 ± 1.38 65.72 ± 4.91 81.76 ± 1.38
ImageNet 89.34 ± 0.66 92.02 ± 0.49 89.34 ± 0.66

STL10

None 80.34 ± 0.77 78.05 ± 2.37 80.34 ± 0.77
C100 (10%) 74.64 ± 0.72 62.43 ± 2.92 74.64 ± 0.72
C100 (100%) + N (0.5) 79.92 ± 0.32 56.81 ± 3.69 79.92 ± 0.32
C100 (100%) + N (0.1) 80.63 ± 0.94 57.72 ± 3.93 80.63 ± 0.94
C100 (100%) 80.70 ± 1.33 66.07 ± 2.60 80.70 ± 1.33
ImageNet 85.46 ± 0.50 90.76 ± 0.31 85.46 ± 0.50

CelebA

None 73.59 ± 3.78 76.19 ± 3.32 73.59 ± 3.78
C100 (10%) 73.26 ± 1.79 63.31 ± 3.66 73.26 ± 1.79
C100 (100%) + N (0.5) 66.88 ± 2.72 49.00 ± 3.23 66.88 ± 2.72
C100 (100%) + N (0.1) 73.15 ± 0.92 46.91 ± 6.50 73.15 ± 0.92
C100 (100%) 73.61 ± 2.16 58.11 ± 2.85 73.61 ± 2.16
ImageNet 59.30 ± 3.77 64.80 ± 2.15 59.30 ± 3.77

Camelyon

None 65.37 ± 10.77 96.95 ± 2.01 65.37 ± 10.77
C100 (10%) 20.84 ± 5.27 91.58 ± 7.56 20.84 ± 5.27
C100 (100%) + N (0.5) 40.19 ± 5.07 76.33 ± 5.84 40.19 ± 5.07
C100 (100%) + N (0.1) 45.39 ± 10.58 83.79 ± 5.27 45.39 ± 10.58
C100 (100%) 58.69 ± 11.10 94.63 ± 2.85 58.69 ± 11.10
ImageNet 90.64 ± 2.47 97.82 ± 0.56 90.64 ± 2.47

SVHN OODom.

None 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
C100 (10%) 99.96 ± 0.04 100.00 ± 0.00 99.96 ± 0.04
C100 (100%) + N (0.5) 99.94 ± 0.06 100.00 ± 0.00 99.94 ± 0.06
C100 (100%) + N (0.1) 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
C100 (100%) 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
ImageNet 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

DUE

SVHN

None - - 82.66 ± 0.77
C100 (10%) - - 77.24 ± 0.53
C100 (100%) + N (0.5) - - 80.61 ± 1.01
C100 (100%) + N (0.1) - - 77.94 ± 1.18
C100 (100%) - - 78.76 ± 1.74
ImageNet - - 92.18 ± 0.11

STL10

None - - 78.91 ± 1.06
C100 (10%) - - 75.98 ± 0.87
C100 (100%) + N (0.5) - - 79.49 ± 0.33
C100 (100%) + N (0.1) - - 80.21 ± 0.83
C100 (100%) - - 79.63 ± 1.34
ImageNet - - 89.56 ± 0.53

CelebA

None - - 65.64 ± 1.77
C100 (10%) - - 74.62 ± 1.56
C100 (100%) + N (0.5) - - 66.58 ± 3.20
C100 (100%) + N (0.1) - - 75.15 ± 1.84
C100 (100%) - - 74.60 ± 1.11
ImageNet - - 72.19 ± 1.42

Camelyon

None - - 73.00 ± 2.81
C100 (10%) - - 34.84 ± 3.53
C100 (100%) + N (0.5) - - 47.78 ± 5.30
C100 (100%) + N (0.1) - - 63.88 ± 5.79
C100 (100%) - - 75.58 ± 5.17
ImageNet - - 97.28 ± 0.47

SVHN OODom.

None - - 100.00 ± 0.00
C100 (10%) - - 99.51 ± 0.12
C100 (100%) + N (0.5) - - 99.99 ± 0.00
C100 (100%) + N (0.1) - - 99.99 ± 0.00
C100 (100%) - - 99.99 ± 0.00
ImageNet - - 100.00 ± 0.00

training phase, both the encoder and decoder are trained with the cross-entropy loss
plus a MSE reconstruction term. During the joint training phase, we load the pretrained
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Figure C.1: Results OOD generalization and OOD detection results of DUMs with none, resid-
ual and bi-lipschitz architecture constraints. Bi-lipschitz and more specifically
can improve OOD detection by mitigating feature collapse (see Fig. C.3a) at the
expense of degrading OOD generalization.
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Figure C.2: Results OOD generalization and OOD detection results of DUMs with reconstruc-
tion architecture constraints. Increasing the strength of the reconstruction
factor λ improves the OOD generalization only on the simpler MNIST/CMNIST
datasets but fails for more complex datasets.

encoder and decoder, and joint train with the DUMs’ respective loss plus the MSE re-
construction term. For the toy dataset we use an encoder with 4 linear layers of 128
dimension each.

C.3 Prior for DUMs Details

For all the prior experiments we use the default training settings in Appendix C.1 and
Table C.2. In the following experiments, we vary the entropy regularization λ and the
evidence prior nprior for NatPN, and the choice of kernel for DUE.
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Table C.5: Encoder architecture OOD detection. For each training dataset we show the
uncertainty estimation results on the corresponding OOD dataset. We observe that
new architectures (EfficientNet, Swin) have consistently better results. Interestingly,
the transformer based model Swin, is not able to detect out-of-domain data, which
should be easy in principle.

Model OOD Data Architecture OOD Alea. (↑) OOD Epis. (↑) OOD Pred. (↑)

NatPN

SVHN

ResNet18 89.90 ± 1.22 78.14 ± 3.13 89.90 ± 1.22
ResNet50 89.34 ± 0.66 92.02 ± 0.49 89.34 ± 0.66
EfficientNet_V2_S 88.65 ± 0.68 92.52 ± 0.60 88.65 ± 0.68
Swin_T 87.73 ± 1.36 94.17 ± 0.74 87.73 ± 1.36

STL10

ResNet18 90.99 ± 0.37 83.90 ± 0.59 90.99 ± 0.37
ResNet50 85.46 ± 0.50 90.76 ± 0.31 85.46 ± 0.50
EfficientNet_V2_S 88.68 ± 0.62 91.11 ± 0.47 88.68 ± 0.62
Swin_T 85.44 ± 0.56 92.16 ± 0.40 85.44 ± 0.56

CelebA

ResNet18 66.46 ± 3.48 50.61 ± 2.14 66.46 ± 3.48
ResNet50 59.30 ± 3.77 64.80 ± 2.15 59.30 ± 3.77
EffNet_V2_S 67.04 ± 1.74 66.29 ± 1.45 67.04 ± 1.74
Swin_T 63.60 ± 2.16 72.80 ± 1.00 63.60 ± 2.16

Camelyon

ResNet18 90.09 ± 4.43 96.28 ± 1.06 90.09 ± 4.43
ResNet50 90.64 ± 2.47 97.82 ± 0.56 90.64 ± 2.47
EfficientNet_V2_S 94.56 ± 0.79 97.42 ± 0.44 94.56 ± 0.79
Swin_T 95.43 ± 1.47 98.71 ± 0.50 95.43 ± 1.47

SVHN OODom.

ResNet18 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
ResNet50 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
EfficientNet_V2_S 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Swin_T 97.37 ± 0.29 93.31 ± 1.42 97.37 ± 0.29

DUE

SVHN

ResNet18 - - 88.77 ± 0.28
ResNet50 - - 92.18 ± 0.11
EfficientNet_V2_S - - 90.95 ± 0.53
Swin_T - - 93.62 ± 0.39

STL10

ResNet18 - - 90.66 ± 0.48
ResNet50 - - 89.56 ± 0.53
EfficientNet_V2_S - - 89.08 ± 0.39
Swin_T - - 89.73 ± 0.36

CelebA

ResNet18 - - 64.75 ± 1.44
ResNet50 - - 72.19 ± 1.42
EffNet_V2_S - - 72.28 ± 1.76
Swin_T - - 69.37 ± 0.67

Camelyon

ResNet18 - - 96.01 ± 1.13
ResNet50 - - 97.28 ± 0.47
EfficientNet_V2_S - - 94.82 ± 0.65
Swin_T - - 99.33 ± 0.14

SVHN OODom.

ResNet18 - - 100.00 ± 0.00
ResNet50 - - 100.00 ± 0.00
EfficientNet_V2_S - - 100.00 ± 0.00
Swin_T - - 97.47 ± 0.22

Before starting the training, we inject the artificial aleatoric noise by reassigning the
target y with a randomly chosen class. Two datasets with different degree of noise are
used, where 10% and 20% of all the labels in the training dataset are reassigned.
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(a) Bi-Lipschitz

(b) Reconstruction

Figure C.3: Regularization constraint toy dataset uncertainty boundaries with
NatPN. The two black dots represent the center of two different class of Gaussian
data, sharing the same y-axis to trigger the feature collapse phenomenon. The
color represents the likelihood produced by the uncertainty head. Each row is a
different setting, e.g. bi1.0 is the bi-Lipschitz constraint with the Lipschitz con-
stant c = 1 and rec1.0 is the reconstruction term with λ = 1. Each column is a
different seed initialization. (top) Bi-Lipschitz experiment shows that the core
encoder architecture constrained with a larger Lipschitz constant in the last two
rows behaves similar to the encoder constrained with only the residual connection
(second row) showing that relaxing the spectral normalization constraint falls back
to the residual connection, preventing the feature collapse. (bottom) Reconstruc-
tion experiment shows that it does not help to prevent feature collapse by itself.
The core encoder architecture is not constrained with bi-Lipschitz.
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(a) Bi-Lipschitz

(b) Reconstruction

Figure C.4: Regularization constraint toy dataset feature collapse with NatPN. Sim-
ilarly to [421], we run the toy experiment where the first column represent two
Gaussian class of data, sharing the same y-axis center to trigger the feature col-
lapse phenomenon, and a grid of unrelated point to simulate the space distorsion
(colors are based on the Gaussian’s generating distribution). Each row is a different
setting, e.g. bi1.0 is the bi-Lipschitz constraint with the Lipschitz constant c = 1
and rec1.0 is the reconstruction term with λ = 1. Each column is a different seed
initialization. Results are the same as C.3a. Larger Lipschitz constant c reverts
back to the residual connection, and reconstruction regularization collapses the 2D
dimension into one single dimension.
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Figure C.5: Latent dimension OOD detection. For each training dataset we show the un-
certainty estimation results on the corresponding OOD dataset. NatPN encounters
numerical instabilities with high latent dimension on Camelyon dataset, while DUE
is less sensitive to the variation.
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Figure C.6: Bi-lipschitz OOD detection. For each training dataset we show the uncertainty
estimation results on the corresponding OOD dataset. Bi-Lipschitz improvements
are not consistent across different OOD datasets.
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Figure C.7: Reconstruction regularization OOD detection. Increasing the weight coef-
ficient of the reconstruction loss term improved the OOD detection of NatPN in
MNIST. However, we did not observe improvements on more complex datasets
such as CIFAR.

Figure C.8: Reconstruction regularization CIFAR samples. (left) The original input
(right) the reconstructed input after NatPN’s joint training phase. The recon-
struction discards detailed information compared to the original input.
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Figure C.9: Results of enforcing different prior in NatPN on CIFAR100 by changing the (top)
entropy regularization λ and the (bottom) evidence prior nprior. Different priors
do not lead consistent results improvements.
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D.1 Appendix

D.1.1 Closed-form computation of uncertainty measures & Uncertainty
attacks

Dirichlet-based uncertainty models allow to compute several uncertainty measures in
closed form (see [271] for a derivation). As proposed by [271], we use precision mα0 ,
differential entropy mdiffE and mutual information mMI to estimate uncertainty on pre-
dictions.

The differential entropy mdiffE of a DBU model reaches its maximum value for equally
probable categorical distributions and thus, a on flat Dirichlet distribution. It is a mea-
sure for distributional uncertainty and expected to be low on ID data, but high on OOD
data.

mdiffE =
K∑
c

ln Γ(αc)− ln Γ(α0)

−
K∑
c

(αc − 1) · (Ψ(αc)−Ψ(α0))

(D.1)

where α are the parameters of the Dirichlet-distribution, Γ is the Gamma function and
Ψ is the Digamma function.

The mutual information mMI is the difference between the total uncertainty (entropy
of the expected distribution) and the expected uncertainty on the data (expected entropy
of the distribution). This uncertainty is expected to be low on ID data and high on OOD
data.

mMI = −
K∑
c=1

αc
α0

(
ln
αc
α0

−Ψ(αc + 1) + Ψ(α0 + 1)

)
(D.2)

Furthermore, we use the precision α0 to measure uncertainty, which is expected to be
high on ID data and low on OOD data.

mα0 = α0 =

K∑
c=1

αc (D.3)

As these uncertainty measures are computed in closed form and it is possible to obtain
their gradients, we use them (i.e. mdiffE, mMI, mα0) are target function of our uncertainty
attacks. Changing the attacked target function allows us to use a wide range of gradient-
based attacks such as FGSM attacks, PGD attacks, but also more sophisticated attacks
such as Carlini-Wagner attacks.

211



D Robustness of Uncertainty Estimation

D.1.2 Details of the Experimental setup

Models. We trained all models with a similar based architecture. We used namely 3
linear layers for vector data sets, 3 convolutional layers with size of 5 + 3 linear layers for
MNIST and the VGG16 [389] architecture with batch normalization for CIFAR10. All
the implementation are performed using Pytorch [341]. We optimized all models using
Adam optimizer. We performed early stopping by checking for loss improvement every
2 epochs and a patience of 10. The models were trained on GPUs (1 TB SSD).

We performed a grid-search for hyper-parameters for all models. The learning rate
grid search was done in [1e−5, 1e−3]. For Posterior Network, we used Radial Flows with
a depth of 6 and a latent space equal to 6. Further, we performed a grid search for the
regularizing factor in [1e−7, 1e−4]. For PriorNet, we performed a grid search for the OOD
loss weight in [1, 10]. For DDNet, we distilled the knowledge of 5 neural networks after
a grid search in [2, 5, 10, 20] neural networks. Note that it already implied a significant
overhead at training compare to other models.

Metrics. For all experiments, we focused on using AUC-PR scores since it is well suited
to imbalance tasks [369] while bringing theoretically similar information than AUC-ROC
scores [98]. We scaled all scores from [0, 1] to [0, 100]. All results are average over 5
training runs using the best hyper-parameters found after the grid search.

Data sets. For vector data sets, we use 5 different random splits to train all models.
We split the data in training, validation and test sets (60%, 20%, 20%).

We use the segment vector data set [111], where the goal is to classify areas of images
into 7 classes (window, foliage, grass, brickface, path, cement, sky). We remove class
window from ID training data to provide OOD training data to PriorNet. Further, We
remove the class ’sky’ from training and instead use it as the OOD data set for OOD
detection experiments. Each input is composed of 18 attributes describing the image
area. The data set contains 2, 310 samples in total.

We further use the Sensorless Drive vector data set [111], where the goal is to classify
extracted motor current measurements into 11 different classes. We remove class 9 from
ID training data to provide OOD training data to PriorNet. We remove classes 10 and 11
from training and use them as the OOD dataset for OOD detection experiments. Each
input is composed of 49 attributes describing motor behaviour. The data set contains
58, 509 samples in total.

Additionally, we use the MNIST image data set [249] where the goal is to classify
pictures of hand-drawn digits into 10 classes (from digit 0 to digit 9). Each input is
composed of a 1 × 28 × 28 tensor. The data set contains 70, 000 samples. For OOD
detection experiments, we use FashionMNIST [450] and KMNIST [83] containing images
of Japanese characters and images of clothes, respectively. FashionMNIST was used as
training OOD for PriorNet while KMNIST is used as OOD at test time.

Finally, we use the CIFAR10 image data set [238] where the goal is to classify a picture
of objects into 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck). Each input is a 3 × 32 × 32 tensor. The data set contains 60, 000 samples.
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For OOD detection experiments, we use street view house numbers (SVHN) [313] and
CIFAR100 [238] containing images of numbers and objects respectively. CIFAR100 was
used as training OOD for PriorNet while SVHN is used as OOD at test time.

Perturbations. For all label and uncertainty attacks, we used Fast Gradient Sign Meth-
ods and Project Gradient Descent. We tried 6 different attack radii 0.0, 0.1, 0.2, 0.5,
1.0, 2.0, and 4.0. These radii operate on the input space after data normalization. We
bound perturbations by L∞-norm or by L2-norm, with

L∞(x) = max
i=1,...,D

|xi| and L2(x) = (

D∑
i=1

x2i )
0.5. (D.4)

For L∞-norm it is obvious how to relate perturbation size ε with perturbed input images,
because all inputs are standardized such that the values of their features are between 0
and 1. A perturbation of size ε = 0 corresponds to the original input, while a perturbation
of size ε = 1 corresponds to the whole input space and allows to change all features to
any value.

For L2-norm the relation between perturbation size ε and perturbed input images
is less obvious. To justify our choice for ε w.r.t. this norm, we relate perturbations
size ε2 corresponding to L2-norm with perturbations size ε∞ corresponding to L∞-norm.
First, we compute ε2, such that the L2-norm is the smallest super-set of the L∞-norm.
Let us consider a perturbation of ε∞. The largest L2-norm would be obtained if each
feature is perturbed by ε∞. Thus, perturbation ε2, such that L2 encloses L∞ is ε2 =
(
∑D

i=1 ε
2
∞)0.5 =

√
Dε∞. For the MNIST-data set, with D = 28 × 28 input features

L2-norm with ε2 = 28 encloses L∞-norm with ε∞ = 1.
Alternatively, ε2 can be computes such that the volume spanned by L2-norm is equiva-

lent to the one spanned by L∞-norm. Using that the volume spanned by L∞-norm is εD∞
and the volume spanned by L2-norm is π0.5DεD2

Γ(0.5D+1) (where Γ is the Gamma-function), we

obtain volume equivalence if ε2 = Γ(0.5D + 1)
1
D
√
πε∞. For the MNIST-data set, with

D = 28 × 28 input features L2-norm with ε2 ≈ 21.39 is volume equivalent to L∞-norm
with ε∞ = 1.
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D.1.3 Additional Experiments

Tables D.1 and D.2 illustrate that no DBU model maintains high accuracy under gradient-
based label attacks. Accuracy under PGD attacks decreases more than under FGSM at-
tacks, since PGD is stronger. Interestingly Noise attacks achieve also good performances
with increasing Noise standard deviation. Note that the attack is not constraint to be
with a given radius for Noise attacks.

Table D.1: Accuracy under PGD label attacks.
Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.4 99.2 98.8 96.8 89.6 53.8 13.0 89.5 73.5 51.7 13.2 2.2 0.8 0.3
PriorNet 99.3 99.1 98.8 97.4 93.9 75.3 4.8 88.2 77.8 68.4 54.0 37.9 17.5 5.1

DDNet 99.4 99.1 98.8 97.5 91.6 48.8 0.2 86.1 73.9 59.1 20.5 1.5 0.0 0.0
EvNet 99.2 98.9 98.4 96.8 92.4 73.1 40.9 89.8 71.7 48.8 11.5 2.7 1.5 0.4

Sensorless Segment
PostNet 98.3 13.1 6.4 4.0 7.0 9.8 11.3 98.9 82.8 50.1 19.2 8.8 5.1 8.6
PriorNet 99.3 16.5 5.6 1.2 0.4 0.2 1.6 99.5 90.7 47.6 7.8 0.2 0.0 0.4

DDNet 99.3 12.4 2.4 0.6 0.3 0.1 0.1 99.2 90.8 45.7 6.9 0.0 0.0 0.0
EvNet 99.0 35.3 22.3 11.2 7.0 5.2 4.0 99.3 91.8 54.0 10.3 0.8 0.5 0.6

Table D.2: Accuracy under FGSM label attacks.
Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.4 99.2 98.9 97.7 95.2 90.1 79.2 89.5 72.3 54.9 31.2 21.0 16.8 15.6
PriorNet 99.3 99.1 98.9 97.7 95.8 93.2 76.7 88.2 77.3 70.1 59.4 52.3 48.5 46.8

DDNet 99.4 99.2 98.9 97.8 94.7 79.2 25.2 86.1 73.0 60.2 32.5 14.6 7.1 6.0
EvNet 99.2 98.9 98.6 97.6 95.8 90.1 74.4 89.8 71.4 54.5 29.6 18.1 14.4 13.4

Sensorless Segment
PostNet 98.3 19.6 10.9 10.9 11.9 12.4 12.5 98.9 79.6 57.3 31.5 18.4 20.6 19.9
PriorNet 99.3 24.7 11.8 8.6 8.5 8.1 8.3 99.5 85.5 40.5 8.9 0.4 0.3 0.2

DDNet 99.3 18.0 8.2 6.5 5.4 6.7 7.8 99.2 86.4 36.2 11.9 0.9 0.0 0.0
EvNet 99.0 42.0 28.0 17.5 13.7 13.6 14.9 99.3 90.6 55.2 14.2 2.4 0.5 0.1

Table D.3: Accuracy under Noise label attacks.
Noise Std 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.4 98.6 91.8 14.9 1.3 0.1 0.0 91.7 21.5 10.1 0.1 1.2 0.0 1.9
PriorNet 99.3 98.5 95.7 14.4 0.0 0.0 0.0 87.7 28.1 11.2 9.7 5.0 8.5 9.0

DDNet 99.4 98.6 92.4 13.3 0.7 0.0 0.0 81.7 23.0 11.2 11.2 11.0 7.8 6.7
EvNet 99.3 96.9 81.6 11.7 0.5 0.0 0.0 89.5 20.7 11.1 5.2 0.5 2.3 3.9

Sensorless Segment
PostNet 98.1 0.1 3.7 11.7 11.7 11.7 11.7 98.5 39.4 3.9 1.8 12.1 20.3 22.1
PriorNet 99.3 0.2 0.0 0.0 0.0 0.3 2.4 99.4 47.9 8.8 0.0 0.0 0.0 0.0

DDNet 99.0 0.4 0.1 0.0 0.0 0.0 0.0 99.1 50.0 10.3 0.0 0.0 0.3 0.0
EvNet 98.6 0.2 0.0 0.1 1.4 4.6 8.8 99.1 50.3 10.3 1.2 0.3 0.0 1.5
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D.1.3.1 Uncertainty estimation under label attacks

Is low uncertainty a reliable indicator of correct predictions?
On non-perturbed data uncertainty estimates are an indicator of correctly classified

samples, but if the input data is perturbed none of the DBU models maintains its high
performance. Thus, uncertainty estimates are not a robust indicator of correctly labeled
inputs.

Table D.4: Distinguishing between correctly and wrongly predicted labels based on the differ-
ential entropy under PGD label attacks (AUC-PR).

MNIST Segment

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

PostNet 99.9 99.9 99.8 98.7 89.5 43.5 9.0 99.9 77.6 31.6 11.1 5.3 4.4 8.7
PriorNet 99.9 99.8 99.6 97.7 90.5 69.1 6.4 100.0 96.8 44.5 4.5 0.4 0.0 15.2

DDNet 100.0 100.0 99.9 99.7 97.6 50.2 0.1 100.0 96.8 54.0 4.3 0.0 0.0 0.0
EvNet 99.6 99.3 98.7 96.1 88.8 63.1 31.7 100.0 95.9 44.3 5.9 0.8 0.6 0.7

Table D.5: Distinguishing between correctly and wrongly predicted labels based on the preci-
sion α0 under PGD label attacks (AUC-PR).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 100.0 99.9 99.7 98.2 87.9 39.1 6.9 98.7 88.6 56.2 7.8 1.2 0.4 0.3
PriorNet 99.9 99.8 99.6 97.7 90.4 69.1 6.6 92.9 77.7 60.5 37.6 24.9 11.3 3.0

DDNet 100.0 100.0 100.0 99.8 98.2 51.1 0.1 97.6 91.8 78.3 18.1 0.8 0.0 0.0
EvNet 99.6 99.2 98.6 95.7 88.6 63.6 32.6 97.9 85.9 57.2 10.2 4.0 2.4 0.3

Sensorless Segment
PostNet 99.6 7.0 3.3 3.1 6.9 9.8 11.3 99.9 74.2 31.6 11.1 5.0 4.2 8.6
PriorNet 99.8 10.5 3.2 0.6 0.2 0.2 1.8 100.0 96.9 45.2 4.4 0.4 0.0 1.2

DDNet 99.8 8.7 1.3 0.3 0.2 0.1 0.2 100.0 97.1 45.0 4.1 0.0 0.0 0.0
EvNet 99.9 23.2 13.2 6.0 3.7 2.7 2.1 100.0 95.7 44.5 5.9 0.8 0.6 0.7

Table D.6: Distinguishing between correctly and wrongly predicted labels based on the mutual
information under PGD label attacks (AUC-PR).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.7 99.7 99.6 99.2 92.4 40.0 6.9 97.3 84.5 56.2 12.2 2.4 0.7 0.3
PriorNet 99.9 99.8 99.6 97.7 90.3 68.9 6.4 82.7 65.6 51.4 35.5 24.4 11.0 2.9

DDNet 100.0 99.9 99.9 99.7 97.4 50.2 0.1 96.9 90.8 77.2 18.8 0.8 0.0 0.0
EvNet 97.8 97.0 95.7 92.6 86.1 62.3 28.9 91.3 72.4 47.9 11.4 1.6 0.9 1.6

Sensorless Segment
PostNet 99.3 7.0 3.3 3.3 7.0 9.8 11.3 99.9 73.2 31.5 11.1 5.0 4.3 8.7
PriorNet 99.8 10.5 3.2 0.6 0.2 0.1 11.8 100.0 96.6 45.2 4.5 0.4 0.0 1.1

DDNet 99.6 8.6 1.3 0.3 0.2 0.1 0.1 100.0 96.5 42.4 4.1 0.0 0.0 0.0
EvNet 99.1 22.0 12.6 5.9 3.7 2.7 2.2 100.0 90.5 41.0 5.9 0.8 0.6 0.7

Tables 6.2 and D.4 to D.6 illustrate that neither differential entropy nor precision, nor
mutual information are a reliable indicator of correct predictions under PGD attacks.
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Table D.7: Distinguishing between correctly and wrongly predicted labels based on the differ-
ential entropy under FGSM label attacks (AUC-PR).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.9 99.9 99.8 99.4 97.8 92.1 83.2 98.5 88.7 68.9 31.0 18.6 15.5 16.7
PriorNet 99.9 99.9 99.7 98.3 94.1 88.5 78.6 90.1 73.6 61.6 46.1 38.5 35.6 37.3

DDNet 100.0 100.0 99.9 99.8 98.7 86.4 23.0 97.3 90.6 78.7 39.4 13.7 6.0 5.1
EvNet 99.6 99.4 99.1 97.8 95.8 90.4 76.8 98.0 86.2 67.4 32.7 19.9 18.2 19.7

Sensorless Segment
PostNet 99.7 11.7 7.3 9.3 11.8 12.5 12.5 99.9 73.6 40.6 23.7 17.2 19.8 20.2
PriorNet 99.8 21.4 10.4 8.5 9.0 9.2 10.3 100.0 93.7 37.7 5.8 1.1 0.9 0.8

DDNet 99.7 18.5 5.4 4.3 4.2 5.7 7.9 100.0 94.1 42.9 7.2 1.0 0.0 0.0
EvNet 99.9 44.8 29.2 18.2 15.1 14.9 15.5 100.0 93.7 48.7 8.7 2.4 1.6 0.5

Table D.8: Distinguishing between correctly and wrongly predicted labels based on the differ-
ential entropy under Noise label attacks (AUC-PR).

Noise Std 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 99.9 99.8 99.6 74.2 7.4 0.2 0.0 98.7 76.3 24.3 0.4 4.9 0.0 1.7
PriorNet 99.9 99.9 99.8 73.4 0.0 0.0 0.0 85.0 27.8 15.9 20.4 7.0 7.7 8.3

DDNet 100.0 99.9 99.4 51.1 0.6 0.1 0.0 96.1 61.0 39.8 14.2 11.3 6.9 6.9
EvNet 99.5 98.4 88.5 20.2 0.9 0.0 0.0 97.5 66.1 21.4 7.7 2.3 3.0 3.8

Sensorless Segment
PostNet 99.7 0.3 3.2 13.3 12.0 11.7 11.7 99.9 53.9 4.8 1.8 11.2 21.7 21.6
PriorNet 100.0 0.3 0.0 0.0 0.0 7.8 11.5 100.0 84.5 15.6 0.0 0.0 0.0 0.0

DDNet 99.7 0.9 0.6 0.0 0.0 0.0 0.0 100.0 82.7 23.9 0.0 0.0 0.6 0.0
EvNet 99.8 0.3 0.0 0.1 1.7 5.5 10.0 100.0 78.3 19.0 3.5 0.5 0.0 1.7
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DBU-models achieve significantly better results when they are attacked by FGSM-attacks
(Table D.7), but as FGSM attacks provide much weaker adversarial examples than PGD
attacks, this cannot be seen as real advantage.
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Can we use uncertainty estimates to detect attacks against the class pre-
diction?

PGD attacks do not explicitly consider uncertainty during the computation of adver-
sarial examples, but they seem to provide perturbed inputs with similar uncertainty as
the original input.

Table D.9: Attack-Detection based on differential entropy under PGD label attacks (AUC-PR).

MNIST Segment

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

PostNet 57.7 66.3 83.4 90.5 79.0 50.1 95.6 73.5 47.0 42.3 53.4 82.7
PriorNet 67.7 83.2 97.1 96.7 92.1 82.9 86.7 83.3 38.0 31.3 30.8 31.5

DDNet 53.4 57.1 68.5 83.9 96.0 86.3 76.1 83.5 45.4 32.4 30.8 30.8
EvNet 54.8 59.0 68.5 75.9 72.6 59.8 94.9 80.9 41.5 32.5 31.1 31.1

Table D.10: Attack-Detection based on precision α0 under PGD label attacks (AUC-PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 63.3 75.7 92.6 95.1 75.3 39.5 63.4 66.9 42.1 32.9 31.6 31.2
PriorNet 67.6 83.2 97.1 96.9 92.7 84.7 53.3 56.0 55.6 49.2 42.2 35.4

DDNet 52.7 55.7 64.7 78.4 91.9 80.9 55.8 60.5 57.3 38.7 32.3 31.4
EvNet 49.1 48.0 45.1 42.7 41.8 39.2 48.4 46.9 46.3 46.3 44.5 42.5

Sensorless Segment
PostNet 39.8 35.8 35.4 52.0 88.2 99.0 94.6 70.3 46.3 42.6 54.9 84.0
PriorNet 40.9 35.1 32.0 31.1 30.7 30.7 82.7 82.6 39.4 31.6 30.8 30.8

DDNet 47.7 40.3 35.3 32.8 31.3 30.8 80.0 86.0 43.3 33.6 31.0 30.8
EvNet 45.4 39.7 36.1 34.8 34.7 36.0 90.9 72.4 40.4 32.4 31.1 31.1

Table D.11: Attack-Detection based on mutual information under PGD label attacks (AUC-
PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 42.2 37.5 36.7 54.5 70.5 70.3 52.2 52.1 50.0 65.9 76.3 80.7
PriorNet 67.7 83.3 97.1 96.9 92.6 84.5 54.0 56.9 56.3 49.7 42.4 35.5

DDNet 53.1 56.3 66.5 81.0 94.0 82.9 56.0 60.8 57.4 38.2 32.1 31.3
EvNet 49.1 48.0 45.2 42.9 41.9 39.3 48.7 47.3 46.3 46.0 44.1 42.2

Sensorless Segment
PostNet 75.3 76.6 66.5 57.7 85.6 98.7 94.8 73.5 55.9 47.9 58.0 84.0
PriorNet 40.7 35.0 32.0 31.0 30.7 30.7 83.5 82.7 39.2 31.6 30.8 30.8

DDNet 48.0 40.0 35.2 32.6 31.2 30.8 82.4 88.1 43.4 33.4 30.9 30.8
EvNet 45.5 39.7 36.1 34.8 34.7 36.0 91.7 72.9 40.5 32.4 31.1 31.1
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FGSM and Noise attacks are easier to detect, but also weaker thand PGD attacks. This
suggests that DBU models are capable of detecting weak attacks by using uncertainty
estimation.

Table D.12: Attack-Detection based on differential entropy under FGSM label attacks (AUC-
PR).

Att. Rad. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 55.9 61.8 74.8 84.0 88.9 89.9 62.1 67.2 65.7 63.1 65.4 73.8
PriorNet 67.4 82.4 96.9 98.3 98.9 99.6 58.4 63.1 68.5 70.1 68.5 62.5

DDNet 53.6 57.3 68.3 82.6 95.6 98.7 57.2 62.9 69.1 68.7 69.7 76.5
EvNet 54.1 57.4 63.8 67.6 68.6 69.9 57.8 61.7 63.3 62.9 65.7 72.5

Sensorless Segment
PostNet 98.4 99.8 99.9 99.9 99.9 99.9 96.9 93.9 99.5 99.9 100.0 100.0
PriorNet 48.7 38.6 32.7 32.9 38.6 44.3 89.0 80.8 46.7 37.2 33.7 32.4

DDNet 61.5 47.8 37.1 33.1 32.4 33.2 79.6 86.2 60.2 47.5 36.6 31.6
EvNet 67.3 65.5 72.3 73.4 75.3 79.1 95.7 87.2 59.3 51.7 51.1 53.5

Table D.13: Attack-Detection based on differential entropy under Noise label attacks (AUC-
PR).

Noise Std. 0.1 0.2 0.5 1.0 2.0 4.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST CIFAR10
PostNet 51.3 65.3 93.8 95.1 95.2 95.2 80.8 84.5 97.6 99.5 99.3 98.2
PriorNet 32.5 36.8 88.9 99.6 99.7 92.7 34.7 32.3 34.3 60.3 95.5 100.0

DDNet 60.7 87.6 99.8 100.0 99.9 99.8 59.1 62.6 81.5 98.6 99.8 98.7
EvNet 51.2 55.7 66.9 70.3 68.0 67.1 75.7 78.6 88.2 97.8 96.4 95.6

Sensorless Segment
PostNet 99.8 100.0 100.0 100.0 100.0 100.0 95.6 99.4 100.0 100.0 100.0 100.0
PriorNet 42.0 33.8 31.5 34.7 43.7 47.0 56.7 56.7 39.8 33.7 31.9 33.7

DDNet 53.4 43.5 34.3 31.6 32.5 36.1 57.0 58.9 43.1 33.7 31.5 31.3
EvNet 67.1 78.8 88.3 95.4 96.9 97.8 60.8 63.5 61.2 64.8 73.7 85.2
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D.1.3.2 Attacking uncertainty estimation

Are uncertainty estimates a robust feature for OOD detection?
Using uncertainty estimation to distinguish between ID and OOD data is not robust

as shown in the following tables.

Table D.14: OOD detection based on differential entropy under PGD uncertainty attacks
against differential entropy on ID data and OOD data (AUC-PR).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 94.5 94.1 93.9 91.1 77.1 44.0 31.9 94.5 93.1 91.4 82.1 62.2 50.7 48.8
PriorNet 99.6 99.4 99.1 97.8 93.8 77.6 32.0 99.6 99.4 99.1 98.0 94.6 85.5 73.9

DDNet 99.3 99.1 98.9 97.8 93.5 63.3 30.7 99.3 99.1 99.0 98.3 96.7 91.3 73.8
EvNet 69.0 67.1 65.6 61.8 57.4 50.9 43.6 69.0 55.8 48.0 39.4 36.2 34.9 34.4

Seg. – Seg. class sky
PostNet 99.0 80.7 53.5 38.0 34.0 41.6 49.5 99.0 88.4 69.2 45.1 36.4 42.6 75.4
PriorNet 34.8 31.4 30.9 30.8 30.8 30.8 30.8 34.8 31.8 31.0 30.8 30.8 30.8 32.1

DDNet 31.5 30.9 30.8 30.8 30.8 30.8 30.8 31.5 31.0 30.8 30.8 30.8 30.8 30.8
EvNet 92.5 67.2 43.2 31.6 30.9 30.9 31.2 92.5 86.1 82.7 48.9 32.7 30.9 30.9

Table D.15: OOD detection under PGD uncertainty attacks against differential entropy on ID
data and OOD data (AUC-ROC).

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 91.6 91.3 91.9 91.5 80.2 38.8 9.2 91.6 90.4 89.0 81.6 62.6 45.0 43.1
PriorNet 99.8 99.7 99.5 99.0 97.1 81.1 8.7 99.8 99.7 99.6 99.1 97.7 93.0 84.9

DDNet 99.2 98.9 98.6 97.3 92.1 58.2 1.2 99.2 99.0 98.8 97.9 95.8 89.1 69.3
EvNet 81.2 79.6 78.2 74.6 69.5 58.7 43.0 81.2 67.2 54.8 35.4 25.5 20.7 18.5

CIFAR10 – SVHN
PostNet 87.0 71.9 56.3 30.2 20.2 15.0 9.7 87.0 71.0 54.3 33.5 30.3 26.2 19.4
PriorNet 62.4 48.2 35.9 13.8 3.6 0.9 0.3 62.4 48.0 35.6 14.8 6.6 3.4 1.6

DDNet 87.0 76.0 63.6 29.3 6.1 1.1 0.4 87.0 78.1 66.1 26.2 5.1 0.7 0.1
EvNet 88.0 69.1 51.7 24.6 15.5 9.5 4.2 88.0 72.0 60.7 47.9 42.1 33.3 24.0

Sens. – Sens. class 10, 11
PostNet 85.3 49.1 38.1 7.8 8.2 8.2 8.2 85.3 57.2 54.0 27.3 31.5 86.7 99.5
PriorNet 28.1 0.8 0.3 0.4 1.6 8.4 26.8 28.1 2.5 0.7 0.2 2.3 18.9 41.0

DDNet 21.0 3.0 0.9 0.4 0.6 2.1 7.3 21.0 4.4 2.1 1.9 2.2 2.2 4.1
EvNet 74.2 21.4 12.2 4.3 1.4 0.6 0.3 74.2 45.3 38.5 19.6 9.6 12.1 26.0

Seg. – Seg. class sky
PostNet 99.2 84.7 55.5 23.0 9.7 4.4 4.7 99.2 92.1 77.1 41.5 24.9 41.0 80.8
PriorNet 17.1 4.4 1.3 0.0 0.0 0.0 0.1 17.1 5.9 1.5 0.1 0.0 0.1 5.8

DDNet 4.1 1.1 0.0 0.0 0.0 0.0 0.0 4.1 1.8 0.4 0.0 0.0 0.0 0.0
EvNet 91.2 54.5 23.3 3.9 0.9 0.4 0.2 91.2 82.9 76.4 42.2 9.7 0.8 0.6

220



D.1 Appendix

Table D.16: OOD detection (AU-PR) under PGD uncertainty attacks against precision α0 on
ID data and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 98.4 97.4 96.0 88.8 70.9 39.3 31.3 98.4 97.2 95.2 82.8 52.6 34.3 32.1
PriorNet 99.6 99.5 99.2 98.0 94.1 76.0 31.1 99.6 99.5 99.2 98.2 95.3 87.5 75.6

DDNet 97.2 96.7 96.1 93.8 86.4 53.2 31.0 97.2 96.7 96.2 94.5 91.1 82.9 64.6
EvNet 39.8 39.2 38.8 37.9 37.1 36.3 35.4 39.8 34.5 32.5 31.2 31.0 30.9 31.0

CIFAR10 – SVHN
PostNet 82.4 63.8 46.1 22.3 17.4 16.7 16.4 82.4 61.8 41.5 21.8 19.8 17.5 15.8
PriorNet 37.9 25.0 19.2 15.8 15.4 15.4 15.4 37.9 25.9 19.4 15.6 15.4 15.4 15.4

DDNet 81.1 70.1 58.4 30.0 16.7 15.5 15.4 81.1 71.2 59.9 27.8 16.5 15.5 15.4
EvNet 34.7 27.4 25.4 22.0 19.7 18.1 17.1 34.7 19.4 18.1 17.1 16.8 16.2 15.7

Sens. – Sens. class 10, 11
PostNet 77.4 39.6 35.9 31.7 44.4 44.4 44.4 77.4 40.3 38.6 29.5 34.0 79.4 97.4
PriorNet 35.9 27.0 26.8 26.8 26.8 27.5 36.2 35.9 27.7 27.0 26.7 26.6 26.5 26.5

DDNet 55.6 34.4 31.7 30.4 29.5 30.2 33.4 55.6 40.9 34.1 28.0 26.9 26.6 26.5
EvNet 66.3 33.3 29.7 27.0 27.1 29.2 33.9 66.3 39.3 37.1 31.3 28.3 28.4 29.7

Seg. – Seg. class sky
PostNet 98.4 74.8 51.0 37.2 32.8 43.5 49.9 98.4 84.7 66.1 42.4 34.8 40.9 71.2
PriorNet 32.1 30.9 30.8 30.8 30.8 30.8 30.8 32.1 31.0 30.8 30.8 30.8 30.8 30.8

DDNet 31.0 30.8 30.8 30.8 30.8 30.8 30.8 31.0 30.8 30.8 30.8 30.8 30.8 30.8
EvNet 98.3 83.0 60.5 34.0 31.0 30.8 30.8 98.3 94.4 88.8 65.6 37.0 31.4 30.9

Table D.17: OOD detection (AUC-ROC) under PGD uncertainty attacks against precision α0

on ID data and OOD data.
ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 98.4 97.6 96.4 90.9 74.0 28.9 6.3 98.4 97.6 96.3 89.0 61.3 19.6 9.7
PriorNet 99.8 99.7 99.6 99.1 97.2 79.4 4.4 99.8 99.7 99.6 99.2 98.0 93.9 85.8

DDNet 96.5 95.9 95.1 92.0 82.6 44.3 3.5 96.5 95.9 95.2 92.9 88.6 78.7 59.4
EvNet 35.9 34.1 32.8 30.1 27.4 24.6 21.4 35.9 18.7 10.4 3.7 2.0 1.7 2.0

CIFAR10 – SVHN
PostNet 87.4 71.2 54.8 29.2 19.0 14.0 9.4 87.4 71.4 54.1 30.1 25.8 17.5 5.8
PriorNet 45.6 31.1 20.4 6.3 1.4 0.3 0.1 45.6 32.2 21.7 5.4 1.0 0.3 0.1

DDNet 84.9 73.8 61.8 30.2 9.3 3.0 0.8 84.9 76.6 66.2 34.6 10.4 2.3 0.3
EvNet 61.2 49.4 45.2 37.6 30.5 23.4 17.0 61.2 29.4 23.0 16.8 14.2 10.2 5.5

Sens. – Sens. class 10, 11
PostNet 87.2 48.8 37.3 4.1 0.7 0.7 0.7 87.2 50.0 45.4 16.5 27.6 81.9 98.0
PriorNet 37.3 3.5 2.4 2.2 2.9 6.3 19.2 37.3 8.0 3.6 1.4 0.6 0.1 0.0

DDNet 55.2 23.7 17.7 14.1 12.5 12.7 15.7 55.2 37.1 27.7 9.4 2.5 0.6 0.1
EvNet 75.5 30.8 18.2 5.8 1.6 0.6 0.2 75.5 47.8 41.9 24.1 10.2 10.2 15.6

Seg. – Seg. class sky
PostNet 98.6 77.7 50.8 20.3 8.2 1.3 0.5 98.6 88.9 73.4 36.2 19.4 36.7 75.2
PriorNet 8.5 1.3 0.2 0.0 0.0 0.0 0.1 8.5 2.0 0.4 0.0 0.0 0.0 0.0

DDNet 2.2 0.3 0.0 0.0 0.0 0.0 0.0 2.2 0.5 0.1 0.0 0.0 0.0 0.0
EvNet 97.7 78.4 47.7 9.9 1.2 0.2 0.1 97.7 93.5 86.9 62.2 21.5 3.7 1.0

221



D Robustness of Uncertainty Estimation

Table D.18: OOD detection (AU-PR) under PGD uncertainty attacks against distributional
uncertainty on ID data and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 80.5 76.2 73.4 69.1 66.6 65.4 60.2 80.5 72.1 63.9 43.9 33.0 30.9 30.8
PriorNet 99.6 99.4 99.2 98.0 94.1 76.3 31.2 99.6 99.4 99.2 98.2 95.2 87.2 75.2

DDNet 98.4 98.1 97.7 95.8 89.5 56.2 30.9 98.4 98.1 97.8 96.5 93.8 86.3 67.7
EvNet 40.1 39.5 39.1 38.2 37.3 36.5 35.6 40.1 34.6 32.6 31.3 31.0 31.0 31.1

CIFAR10 – SVHN
PostNet 64.2 44.7 37.5 31.1 28.5 25.0 19.3 64.2 31.0 19.5 16.3 16.4 16.5 16.3
PriorNet 40.8 27.4 20.4 15.9 15.4 15.4 15.4 40.8 28.3 21.1 15.9 15.4 15.4 15.4

DDNet 82.0 71.0 59.1 29.9 16.6 15.5 15.4 82.0 72.2 60.3 26.3 16.2 15.4 15.4
EvNet 36.4 28.7 26.5 22.8 20.2 18.4 17.2 36.4 19.8 18.3 17.2 16.9 16.2 15.7

Sens. – Sens. class 10, 11
PostNet 79.1 40.3 35.9 33.0 45.5 45.5 45.5 79.1 47.3 43.7 36.5 37.9 74.6 96.5
PriorNet 35.5 26.8 26.7 26.9 29.6 43.7 68.7 35.5 27.5 26.9 26.7 26.6 26.5 26.5

DDNet 52.9 31.7 29.8 29.1 28.4 30.1 37.6 52.9 38.4 31.5 27.5 26.8 26.6 26.5
EvNet 66.3 33.3 29.6 27.0 27.2 29.3 35.2 66.3 39.3 37.1 31.3 28.3 28.4 29.7

Seg. – Seg. class sky
PostNet 98.0 76.3 53.1 37.4 32.9 44.6 50.2 98.0 83.5 64.8 41.8 35.4 43.1 71.3
PriorNet 32.3 30.9 30.8 30.8 30.8 32.5 45.0 32.3 31.0 30.8 30.8 30.8 30.8 30.8

DDNet 30.9 30.8 30.8 30.8 30.8 30.8 30.8 30.9 30.8 30.8 30.8 30.8 30.8 30.8
EvNet 98.1 82.1 59.1 33.8 31.0 30.8 30.8 98.1 93.8 88.2 64.5 36.4 31.3 31.0

Table D.19: OOD detection (AUC-ROC) under PGD uncertainty attacks against distributional
uncertainty on ID data and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 90.1 88.0 86.2 82.2 79.0 77.1 66.1 90.1 84.5 77.2 46.4 12.9 2.7 2.4
PriorNet 99.8 99.7 99.6 99.1 97.2 79.7 4.7 99.8 99.7 99.6 99.2 97.9 93.7 85.6

DDNet 98.1 97.7 97.2 94.8 87.0 48.7 3.0 98.1 97.8 97.3 95.8 92.3 83.3 63.3
EvNet 36.8 35.0 33.7 30.9 28.2 25.3 22.1 36.8 19.3 10.7 3.9 2.1 1.8 2.2

CIFAR10 – SVHN
PostNet 82.9 67.7 59.2 51.3 47.7 40.1 24.2 82.9 51.9 26.2 8.9 9.5 11.1 9.9
PriorNet 48.0 33.6 22.5 7.1 1.6 0.3 0.1 48.0 34.8 24.0 6.7 1.6 0.6 0.2

DDNet 85.9 74.9 62.7 30.1 8.3 2.3 0.6 85.9 77.6 66.9 32.1 8.0 1.5 0.2
EvNet 63.3 51.4 47.1 39.3 32.1 24.9 17.9 63.3 31.1 24.4 17.7 15.0 10.7 5.7

Sens. – Sens. class 10, 11
PostNet 87.1 50.9 37.8 5.5 4.5 4.5 4.5 87.1 55.3 51.1 34.4 38.9 79.7 97.9
PriorNet 36.5 2.9 1.8 1.8 5.2 21.5 52.8 36.5 7.3 3.0 1.3 0.5 0.1 0.0

DDNet 52.3 18.7 13.1 10.3 9.3 10.8 18.4 52.3 33.1 22.0 6.7 2.2 0.6 0.1
EvNet 75.5 30.7 18.1 5.8 1.6 0.6 0.8 75.5 47.7 41.8 23.8 10.3 10.2 15.8

Seg. – Seg. class sky
PostNet 98.6 78.3 51.9 20.5 8.3 2.1 1.7 98.6 88.8 73.1 35.9 21.4 39.9 75.9
PriorNet 9.4 1.6 0.3 0.0 0.0 1.8 15.4 9.4 2.4 0.4 0.0 0.0 0.0 0.0

DDNet 1.3 0.2 0.0 0.0 0.0 0.0 0.0 1.3 0.2 0.0 0.0 0.0 0.0 0.0
EvNet 97.4 77.1 45.9 9.4 1.3 0.2 0.1 97.4 92.9 86.1 60.9 20.4 3.0 1.2
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Table D.20: OOD detection (AU-PR) under FGSM uncertainty attacks against differential en-
tropy on ID data and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 94.5 94.2 94.1 93.5 89.9 81.2 71.6 94.5 93.3 92.0 87.6 81.1 75.7 75.7
PriorNet 99.6 99.4 99.2 98.1 95.6 90.0 65.3 99.6 99.4 99.2 98.6 97.5 95.9 94.4

DDNet 99.3 99.1 98.9 98.0 95.4 80.9 48.2 99.3 99.2 99.0 98.5 97.6 95.5 92.0
EvNet 69.0 67.4 66.2 64.0 61.9 59.8 56.70 9.0 60.1 56.5 53.4 52.7 52.9 53.5

CIFAR10 – SVHN
PostNet 81.8 66.2 61.6 64.2 65.7 61.3 48.4 81.8 63.1 51.9 43.4 46.6 61.7 77.0
PriorNet 54.4 40.6 33.8 27.0 25.5 27.2 35.5 54.4 42.3 36.8 30.6 28.3 29.5 32.1

DDNet 82.8 71.9 64.6 53.8 50.2 47.8 41.0 82.8 71.5 60.5 39.1 31.4 41.2 66.6
EvNet 80.3 67.8 64.0 61.9 61.6 57.4 49.6 80.3 59.2 51.5 46.7 49.0 56.3 64.6

Sens. – Sens. class 10, 11
PostNet 74.5 40.6 37.2 31.4 38.1 44.9 45.9 74.5 99.6 99.8 99.9 99.9 99.9 99.9
PriorNet 32.3 35.7 57.6 83.1 88.8 79.7 70.0 32.3 28.3 28.1 27.6 28.0 32.7 38.5

DDNet 31.7 31.3 44.4 70.3 87.9 92.5 91.9 31.7 28.8 29.3 29.1 27.7 27.9 28.01
EvNet 66.5 45.7 46.8 42.3 42.0 41.4 41.8 66.5 54.7 66.5 76.2 71.1 75.3 75.8

Seg. – Seg. class sky
PostNet 99.0 80.8 66.4 43.6 37.0 35.5 43.0 99.0 94.8 92.0 98.5 99.7 100.0 100.0
PriorNet 34.8 31.2 31.4 46.3 74.0 88.8 94.5 34.8 31.6 31.0 31.2 30.9 30.8 30.8

DDNet 31.5 30.8 30.8 30.9 37.9 56.2 84.3 31.5 30.9 30.8 30.8 30.8 30.8 30.8
EvNet 92.5 64.9 54.6 66.6 69.5 69.6 64.6 92.5 85.9 83.0 66.3 66.1 61.1 56.8

Table D.21: OOD detection (AU-PR) under Noise uncertainty attacks against differential en-
tropy on ID data and OOD data.

ID-Attack (non-attacked OOD) OOD-Attack (non-attacked ID)

Noise Std 0.0 0.1 0.2 0.5 1.0 2.0 4.0 0.0 0.1 0.2 0.5 1.0 2.0 4.0

MNIST – KMNIST
PostNet 93.0 94.2 82.3 34.4 31.6 31.0 30.9 92.2 91.8 91.5 92.3 92.7 93.2 93.5
PriorNet 99.7 99.6 96.7 40.0 40.6 45.7 55.6 99.5 97.3 96.5 99.4 100.0 99.5 72.4

DDNet 99.1 97.5 81.2 31.3 31.0 30.9 31.2 99.0 98.8 99.2 99.8 99.9 99.8 99.1
EvNet 65.5 60.5 51.4 35.3 34.5 35.5 35.0 62.5 47.2 40.9 35.1 34.6 33.5 34.9

CIFAR10 – SVHN
PostNet 88.5 41.4 39.8 31.0 30.7 31.6 33.9 88.5 86.6 81.9 93.0 98.5 98.6 97.3
PriorNet 73.3 88.3 95.3 92.4 70.4 30.9 30.8 73.3 31.6 30.9 31.7 51.8 94.3 100.0

DDNet 87.3 69.3 78.4 55.2 31.6 30.7 31.4 87.3 55.8 57.9 73.9 97.3 99.5 97.2
EvNet 92.4 56.8 53.8 33.4 30.9 32.9 36.6 92.4 73.7 73.5 77.7 93.7 92.5 92.1

Sens. – Sens. class 10, 11
PostNet 85.3 30.8 39.4 50.0 50.0 50.0 50.0 85.3 98.9 100.0 100.0 100.0 100.0 100.0
PriorNet 32.3 30.8 34.9 83.7 77.7 49.8 80.3 32.3 30.7 30.7 32.5 40.1 49.9 47.6

DDNet 31.1 30.7 30.7 32.4 58.8 88.1 74.3 31.1 30.7 30.7 30.7 30.8 31.6 39.1
EvNet 80.3 30.8 31.2 37.9 46.3 50.0 50.0 80.3 34.6 38.4 53.9 69.3 78.8 81.5

Seg. – Seg. class sky
PostNet 99.9 41.8 30.8 34.5 49.1 50.0 50.0 99.9 97.4 96.6 99.5 100.0 100.0 100.0
PriorNet 31.0 30.8 30.8 30.8 32.7 69.0 78.3 31.0 30.8 30.8 30.8 30.9 31.1 32.4

DDNet 30.8 30.8 30.8 30.8 30.8 58.2 91.3 30.8 30.8 30.8 30.8 30.8 30.8 31.9
EvNet 99.1 38.1 32.2 30.8 30.8 32.2 37.5 99.1 95.6 87.6 58.0 44.9 46.6 53.8
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D.1.4 How to make DBU models more robust

To improve robustness of DBU models we perform median smoothing and adversarial
training. Smoothing computes the smooth median, worst case and best case performance
of DBU models for three tasks: distinguishing between correct and wrong predictions,
attack detection, distinguishing between ID data and OOD data under label attacks and
under uncertainty attacks.

Table D.22: Distinguishing between correctly and wrongly labeled inputs based on differential
entropy under PGD label attacks. Smoothed DBU models on CIFAR10. Column
format: guaranteed lowest performance · empirical performance · guaranteed high-
est performance (blue: normally/adversarially trained smooth classifier is more
robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 80.5 · 91.5 · 94.5 52.8 · 71.6 · 95.2 31.9 · 51.0 · 96.8 5.6 · 11.7 · 100.0 0.3 · 0.6 · 100.0 0.0 · 0.0 · 100.0
PriorNet 81.9 · 86.8 · 88.0 69.6 · 78.0 · 90.1 50.9 · 65.8 · 89.4 36.5 · 59.9 · 97.0 24.3 · 39.3 · 100.0 9.2 · 17.9 · 100.0
DDNet 65.9 · 81.2 · 83.0 55.8 · 70.5 · 87.2 37.8 · 56.8 · 88.1 10.1 · 21.9 · 94.3 0.9 · 1.6 · 99.6 0.0 · 0.0 · 100.0
EvNet 76.3 · 90.2 · 91.7 54.7 · 74.3 · 95.7 31.6 · 51.5 · 94.5 5.8 · 11.9 · 86.9 1.9 · 7.0 · 100.0 1.1 · 4.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 52.1 · 71.8 · 95.6 31.2 · 47.9 · 96.1 7.8 · 14.7 · 98.6 1.8 · 4.4 · 100.0 0.3 · 0.5 · 100.0
PriorNet - 57.6 · 71.7 · 88.9 46.1 · 64.5 · 90.1 38.1 · 59.3 · 99.5 32.3 · 51.7 · 100.0 22.1 · 41.6 · 97.4
DDNet - 58.6 · 78.4 · 92.2 49.4 · 66.0 · 90.5 12.0 · 21.4 · 98.1 0.8 · 1.0 · 96.6 0.0 · 0.0 · 100.0
EvNet - 24.3 · 34.2 · 51.8 32.6 · 49.5 · 95.5 5.9 · 13.0 · 100.0 2.6 · 5.2 · 99.9 2.9 · 5.9 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 52.8 · 74.2 · 94.6 33.0 · 49.4 · 87.5 7.7 · 14.2 · 99.0 0.6 · 1.2 · 100.0 0.7 · 1.1 · 100.0
PriorNet - 50.6 · 68.1 · 88.6 44.4 · 66.1 · 96.0 35.1 · 57.4 · 98.4 18.4 · 32.2 · 100.0 15.2 · 29.3 · 100.0
DDNet - 68.8 · 84.4 · 93.2 45.1 · 60.8 · 86.8 12.3 · 22.0 · 91.0 0.8 · 1.7 · 87.0 0.0 · 0.0 · 100.0
EvNet - 54.2 · 73.7 · 96.1 30.5 · 50.0 · 99.5 7.1 · 13.9 · 100.0 3.7 · 8.7 · 75.2 3.3 · 5.8 · 100.0

Table D.23: Distinguishing between correctly and wrongly labeled inputs based on differential
entropy under PGD label attacks. Smoothed DBU models on MNIST. Column for-
mat: guaranteed lowest performance · empirical performance · guaranteed highest
performance (blue: normally/adversarially trained smooth classifier is more robust
than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 97.2 · 99.4 · 100.0 95.9 · 99.1 · 99.9 94.7 · 98.9 · 99.9 89.3 · 96.8 · 99.9 75.5 · 90.2 · 100.0 35.5 · 56.7 · 100.0
PriorNet 96.8 · 99.2 · 99.3 95.5 · 99.1 · 99.7 94.6 · 98.8 · 99.7 90.2 · 97.2 · 99.9 81.1 · 93.4 · 99.9 53.9 · 75.2 · 100.0
DDNet 97.6 · 99.4 · 99.5 96.8 · 99.2 · 99.4 95.5 · 98.8 · 99.4 90.4 · 97.2 · 99.8 77.0 · 91.3 · 100.0 29.2 · 48.6 · 100.0
EvNet 97.3 · 99.4 · 99.4 95.4 · 98.8 · 99.6 93.9 · 98.7 · 99.9 89.0 · 96.5 · 100.0 78.9 · 92.9 · 100.0 52.2 · 73.2 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 94.4 · 98.6 · 99.5 90.6 · 97.9 · 99.9 83.4 · 93.1 · 99.9 72.1 · 91.2 · 100.0 41.8 · 65.0 · 100.0
PriorNet - 94.4 · 98.5 · 99.5 93.6 · 98.8 · 99.8 89.1 · 96.6 · 99.8 81.5 · 94.5 · 100.0 71.6 · 88.4 · 100.0
DDNet - 94.9 · 98.3 · 98.7 94.6 · 97.9 · 98.9 88.2 · 97.4 · 99.8 72.1 · 89.3 · 100.0 28.1 · 49.3 · 100.0
EvNet - 88.8 · 95.3 · 97.9 91.5 · 97.1 · 99.4 85.2 · 94.9 · 100.0 78.1 · 91.4 · 100.0 54.3 · 75.3 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 92.8 · 98.3 · 99.8 92.5 · 98.3 · 99.9 86.2 · 94.8 · 99.8 71.0 · 89.5 · 100.0 34.6 · 54.2 · 100.0
PriorNet - 95.1 · 98.6 · 99.6 94.1 · 98.0 · 99.4 87.7 · 97.2 · 99.9 80.2 · 93.4 · 100.0 68.5 · 87.8 · 100.0
DDNet - 96.0 · 98.4 · 98.8 95.0 · 97.6 · 98.7 87.6 · 95.3 · 99.7 73.9 · 90.2 · 100.0 32.8 · 54.4 · 100.0
EvNet - 93.3 · 98.6 · 99.5 89.8 · 97.2 · 99.2 86.2 · 95.4 · 100.0 82.1 · 93.7 · 100.0 52.4 · 73.3 · 100.0
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Table D.24: Distinguishing between correctly and wrongly labeled inputs based on differential
entropy under PGD label attacks. Smoothed DBU models on Sensorless. Column
format: guaranteed lowest performance · empirical performance · guaranteed high-
est performance (blue: normally/adversarially trained smooth classifier is more
robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 93.5 · 98.4 · 100.0 6.7 · 12.4 · 100.0 2.9 · 5.3 · 100.0 4.1 · 4.1 · 49.1 6.4 · 6.4 · 6.4 10.6 · 10.6 · 10.6
PriorNet 97.1 · 99.3 · 100.0 8.6 · 17.6 · 100.0 3.3 · 7.7 · 100.0 0.7 · 1.5 · 100.0 0.4 · 0.7 · 100.0 0.1 · 0.2 · 100.0
DDNet 95.9 · 98.9 · 99.7 7.0 · 14.0 · 100.0 0.8 · 1.3 · 100.0 0.2 · 0.4 · 100.0 0.2 · 0.2 · 100.0 0.2 · 0.4 · 100.0
EvNet 94.0 · 99.0 · 99.9 18.1 · 34.2 · 100.0 9.6 · 17.1 · 100.0 4.1 · 6.8 · 100.0 2.7 · 4.9 · 100.0 2.4 · 4.3 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 7.9 · 14.9 · 100.0 2.9 · 6.3 · 100.0 6.6 · 6.6 · 6.6 7.2 · 7.2 · 7.2 9.6 · 9.6 · 9.6
PriorNet - 18.1 · 32.1 · 100.0 8.7 · 16.7 · 100.0 0.1 · 0.2 · 100.0 0.0 · 0.0 · 100.0 0.8 · 1.0 · 100.0
DDNet - 6.9 · 13.4 · 100.0 4.3 · 9.0 · 100.0 0.2 · 0.3 · 100.0 0.2 · 0.4 · 100.0 0.2 · 0.8 · 100.0
EvNet - 19.7 · 35.7 · 100.0 9.4 · 16.2 · 100.0 1.6 · 3.0 · 100.0 2.5 · 5.6 · 100.0 1.0 · 1.8 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 7.9 · 14.4 · 100.0 4.8 · 9.3 · 100.0 6.6 · 6.6 · 6.6 6.7 · 6.7 · 6.7 10.6 · 10.6 · 10.6
PriorNet - 19.1 · 32.7 · 100.0 6.9 · 13.7 · 100.0 0.7 · 1.7 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
DDNet - 5.4 · 10.2 · 100.0 0.7 · 1.8 · 100.0 0.5 · 0.9 · 100.0 0.3 · 1.2 · 100.0 0.2 · 0.6 · 100.0
EvNet - 22.3 · 38.4 · 100.0 11.7 · 22.4 · 100.0 7.1 · 13.1 · 100.0 1.8 · 3.4 · 100.0 0.6 · 1.0 · 100.0

Table D.25: Distinguishing between correctly and wrongly labeled inputs based on differential
entropy under PGD label attacks. Smoothed DBU models on Segment. Column
format: guaranteed lowest performance · empirical performance · guaranteed high-
est performance (blue: normally/adversarially trained smooth classifier is more
robust than the base model)..

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 94.0 · 99.1 · 99.8 63.5 · 84.7 · 100.0 33.2 · 56.1 · 100.0 10.2 · 16.9 · 100.0 5.2 · 10.3 · 100.0 0.3 · 0.3 · 0.3
PriorNet 97.0 · 99.8 · 99.9 75.6 · 90.8 · 100.0 31.1 · 50.8 · 100.0 2.6 · 4.7 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
DDNet 96.2 · 99.5 · 99.7 75.7 · 89.8 · 99.9 28.5 · 51.6 · 100.0 3.7 · 8.2 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
EvNet 95.8 · 99.6 · 99.9 80.2 · 93.7 · 100.0 35.2 · 57.2 · 100.0 6.8 · 12.0 · 100.0 1.2 · 2.1 · 100.0 1.1 · 2.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 66.0 · 85.5 · 100.0 22.5 · 41.0 · 100.0 9.0 · 16.3 · 100.0 5.2 · 9.7 · 100.0 0.6 · 0.6 · 0.6
PriorNet - 79.0 · 92.4 · 100.0 45.2 · 68.8 · 100.0 9.2 · 13.9 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
DDNet - 76.2 · 91.0 · 99.6 27.2 · 45.3 · 100.0 2.3 · 4.3 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
EvNet - 82.7 · 95.2 · 100.0 34.0 · 53.8 · 100.0 10.9 · 23.2 · 100.0 0.5 · 4.2 · 100.0 2.1 · 5.1 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 71.5 · 87.6 · 100.0 33.5 · 54.5 · 100.0 12.8 · 25.6 · 100.0 6.5 · 10.3 · 87.2 0.0 · 0.0 · 100.0
PriorNet - 82.1 · 96.5 · 100.0 44.1 · 65.4 · 100.0 9.0 · 15.7 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
DDNet - 77.4 · 91.4 · 99.9 29.4 · 50.3 · 100.0 4.0 · 6.5 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
EvNet - 76.2 · 90.7 · 100.0 35.7 · 55.4 · 100.0 4.2 · 6.4 · 100.0 0.8 · 1.4 · 100.0 0.0 · 0.0 · 100.0
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Table D.26: Distinguishing between correctly and wrongly labeled inputs based on differen-
tial entropy under FGSM label attacks. Smoothed DBU models on CIFAR10.
Column format: guaranteed lowest performance · empirical performance · guaran-
teed highest performance (blue: normally/adversarially trained smooth classifier
is more robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 80.5 · 91.4 · 94.4 52.3 · 73.2 · 95.4 35.8 · 57.2 · 97.5 17.0 · 29.0 · 100.0 10.2 · 18.7 · 100.0 8.1 · 14.7 · 100.0
PriorNet 81.9 · 87.7 · 88.8 69.6 · 78.4 · 90.3 53.3 · 70.5 · 91.7 42.1 · 62.6 · 97.2 37.5 · 55.7 · 100.0 36.0 · 59.5 · 100.0
DDNet 65.9 · 84.1 · 85.6 55.3 · 69.6 · 87.0 38.6 · 55.8 · 87.2 16.3 · 28.5 · 94.6 6.4 · 12.0 · 99.9 3.6 · 7.2 · 100.0
EvNet 76.3 · 90.4 · 91.7 54.1 · 74.5 · 95.5 35.5 · 54.7 · 95.1 14.6 · 29.3 · 95.6 8.6 · 16.1 · 100.0 7.2 · 13.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 52.3 · 71.6 · 95.1 34.7 · 54.8 · 96.6 18.9 · 32.1 · 99.4 10.9 · 19.2 · 100.0 8.5 · 16.2 · 100.0
PriorNet - 58.1 · 69.6 · 87.6 47.1 · 65.7 · 90.3 40.2 · 59.5 · 99.3 36.2 · 59.5 · 100.0 25.1 · 42.1 · 97.7
DDNet - 57.1 · 75.2 · 91.0 49.3 · 65.3 · 90.5 18.4 · 33.6 · 98.5 7.6 · 13.5 · 99.9 3.3 · 9.6 · 100.0
EvNet - 24.1 · 36.5 · 54.2 37.1 · 56.7 · 96.7 16.2 · 29.9 · 100.0 11.4 · 21.8 · 100.0 13.0 · 26.1 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 52.0 · 71.8 · 94.5 35.8 · 54.6 · 89.9 18.4 · 33.6 · 99.8 10.2 · 19.1 · 100.0 12.2 · 23.0 · 100.0
PriorNet - 50.6 · 67.3 · 88.5 46.2 · 64.3 · 95.1 39.9 · 60.8 · 98.5 27.7 · 46.2 · 100.0 28.5 · 48.6 · 100.0
DDNet - 67.7 · 82.2 · 92.4 45.7 · 64.7 · 88.8 20.5 · 34.8 · 93.6 6.1 · 13.1 · 91.8 4.1 · 8.4 · 100.0
EvNet - 53.9 · 73.6 · 96.3 34.2 · 55.3 · 99.7 16.1 · 31.2 · 100.0 6.1 · 13.5 · 86.1 18.1 · 34.0 · 100.0

Table D.27: Distinguishing between correctly and wrongly labeled inputs based on differential
entropy under FGSM label attacks. Smoothed DBU models on MNIST. Column
format: guaranteed lowest performance · empirical performance · guaranteed high-
est performance (blue: normally/adversarially trained smooth classifier is more
robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 97.2 · 99.3 · 99.9 96.1 · 99.2 · 99.9 95.2 · 98.9 · 99.9 91.7 · 98.0 · 99.9 86.1 · 95.9 · 100.0 75.7 · 91.1 · 100.0
PriorNet 96.8 · 99.2 · 99.3 95.5 · 99.0 · 99.6 94.7 · 98.7 · 99.6 91.3 · 97.6 · 99.9 85.5 · 95.6 · 100.0 78.7 · 92.4 · 100.0
DDNet 97.6 · 99.3 · 99.4 96.8 · 99.2 · 99.5 95.6 · 98.7 · 99.4 91.7 · 97.7 · 99.9 83.4 · 95.2 · 100.0 58.3 · 79.6 · 100.0
EvNet 97.3 · 99.3 · 99.4 95.5 · 99.0 · 99.6 94.3 · 98.9 · 99.9 92.0 · 97.7 · 100.0 87.4 · 96.3 · 100.0 78.8 · 92.4 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 95.1 · 98.9 · 99.8 91.2 · 97.2 · 99.6 87.6 · 96.3 · 99.9 81.0 · 93.3 · 100.0 69.9 · 87.2 · 100.0
PriorNet - 94.4 · 98.7 · 99.7 93.6 · 98.2 · 99.3 89.4 · 96.3 · 99.8 84.5 · 95.1 · 100.0 81.7 · 92.5 · 100.0
DDNet - 95.5 · 98.6 · 99.0 94.6 · 98.7 · 99.4 89.7 · 97.1 · 99.8 80.0 · 93.6 · 100.0 54.4 · 74.5 · 100.0
EvNet - 88.9 · 94.8 · 98.1 91.5 · 98.4 · 99.8 89.2 · 97.0 · 100.0 83.6 · 94.7 · 100.0 72.3 · 88.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 92.8 · 98.5 · 99.9 92.8 · 98.7 · 99.9 89.0 · 96.3 · 99.8 80.8 · 93.4 · 100.0 71.6 · 86.9 · 100.0
PriorNet - 95.1 · 98.1 · 98.9 94.3 · 97.7 · 99.1 88.5 · 96.8 · 99.9 83.4 · 94.5 · 100.0 78.9 · 92.2 · 100.0
DDNet - 96.0 · 98.7 · 99.0 95.5 · 98.6 · 99.3 89.5 · 95.6 · 99.7 79.6 · 93.1 · 100.0 55.9 · 77.1 · 100.0
EvNet - 93.3 · 98.9 · 99.4 90.1 · 97.9 · 99.4 87.9 · 96.3 · 100.0 84.1 · 94.2 · 100.0 69.2 · 86.9 · 100.0
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Table D.28: Distinguishing between correctly and wrongly labeled inputs based on differen-
tial entropy under FGSM label attacks. Smoothed DBU models on Sensorless.
Column format: guaranteed lowest performance · empirical performance · guaran-
teed highest performance (blue: normally/adversarially trained smooth classifier
is more robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 94.5 · 98.1 · 100.0 10.3 · 19.6 · 100.0 5.1 · 11.0 · 100.0 6.4 · 6.4 · 6.4 10.4 · 10.4 · 10.4 11.4 · 11.4 · 11.4
PriorNet 97.1 · 99.5 · 100.0 13.6 · 27.3 · 100.0 6.3 · 12.4 · 100.0 2.6 · 6.8 · 100.0 3.1 · 7.3 · 100.0 3.2 · 6.7 · 100.0
DDNet 95.9 · 99.4 · 99.8 8.6 · 14.9 · 100.0 1.6 · 3.8 · 100.0 2.6 · 4.5 · 100.0 3.4 · 6.9 · 100.0 3.3 · 6.4 · 100.0
EvNet 94.0 · 98.5 · 99.7 26.0 · 43.2 · 100.0 15.8 · 30.8 · 100.0 11.7 · 20.2 · 100.0 8.1 · 15.0 · 100.0 7.6 · 12.7 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 13.1 · 24.3 · 100.0 5.7 · 11.9 · 100.0 9.4 · 9.4 · 9.4 11.2 · 11.2 · 11.2 11.8 · 11.8 · 11.8
PriorNet - 22.4 · 38.2 · 100.0 11.8 · 22.1 · 100.0 0.2 · 0.6 · 100.0 0.0 · 0.0 · 100.0 0.1 · 0.1 · 100.0
DDNet - 7.3 · 13.2 · 100.0 8.5 · 17.2 · 100.0 3.6 · 7.9 · 100.0 3.8 · 7.6 · 100.0 0.8 · 1.2 · 100.0
EvNet - 25.5 · 42.0 · 100.0 15.6 · 30.2 · 100.0 10.4 · 19.5 · 100.0 8.6 · 16.4 · 100.0 7.8 · 14.7 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 10.6 · 20.3 · 100.0 5.2 · 9.9 · 100.0 10.9 · 10.9 · 10.9 11.6 · 11.6 · 11.6 11.7 · 11.7 · 11.7
PriorNet - 25.7 · 45.0 · 100.0 12.0 · 20.5 · 100.0 1.1 · 3.7 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
DDNet - 7.9 · 16.4 · 100.0 1.2 · 3.8 · 100.0 3.4 · 6.3 · 100.0 3.9 · 7.9 · 100.0 3.3 · 8.0 · 100.0
EvNet - 27.9 · 49.2 · 100.0 18.4 · 32.9 · 100.0 16.4 · 29.3 · 100.0 5.9 · 10.8 · 100.0 8.5 · 16.1 · 100.0

Table D.29: Distinguishing between correctly and wrongly labeled inputs based on differential
entropy under FGSM label attacks. Smoothed DBU models on Segment. Column
format: guaranteed lowest performance · empirical performance · guaranteed high-
est performance (blue: normally/adversarially trained smooth classifier is more
robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 94.0 · 99.2 · 99.8 55.2 · 78.3 · 100.0 40.1 · 61.4 · 100.0 17.9 · 31.7 · 100.0 6.8 · 12.7 · 100.0 17.6 · 17.9 · 18.0
PriorNet 97.0 · 99.8 · 99.9 69.2 · 89.7 · 100.0 29.7 · 45.5 · 100.0 1.7 · 4.1 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
DDNet 96.2 · 99.5 · 99.6 70.6 · 86.3 · 99.8 22.3 · 38.8 · 100.0 6.3 · 13.3 · 100.0 1.1 · 3.0 · 100.0 0.0 · 0.0 · 100.0
EvNet 95.8 · 99.1 · 99.8 78.4 · 92.5 · 100.0 40.7 · 62.1 · 100.0 9.8 · 17.6 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 66.0 · 83.5 · 100.0 28.8 · 44.9 · 100.0 12.3 · 24.3 · 100.0 9.3 · 17.3 · 100.0 24.8 · 24.8 · 24.8
PriorNet - 75.1 · 91.5 · 99.9 34.0 · 60.3 · 100.0 11.1 · 24.6 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
DDNet - 65.4 · 82.8 · 99.5 23.1 · 35.3 · 100.0 4.8 · 10.4 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
EvNet - 83.4 · 95.3 · 100.0 42.1 · 63.3 · 100.0 15.0 · 33.6 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 67.8 · 86.5 · 100.0 34.0 · 52.5 · 100.0 16.2 · 32.8 · 100.0 14.4 · 25.2 · 92.2 7.3 · 7.3 · 7.3
PriorNet - 77.3 · 91.2 · 99.9 39.3 · 62.7 · 100.0 9.0 · 17.8 · 100.0 0.0 · 0.0 · 100.0 0.0 · 0.0 · 100.0
DDNet - 68.8 · 88.3 · 99.9 20.4 · 35.2 · 100.0 7.5 · 12.6 · 100.0 0.3 · 0.9 · 100.0 0.0 · 0.0 · 100.0
EvNet - 74.0 · 92.9 · 100.0 44.1 · 61.8 · 100.0 5.3 · 13.0 · 100.0 3.9 · 8.2 · 100.0 0.5 · 4.2 · 100.0
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Table D.30: Attack detection (PGD label attacks) based on differential entropy. Smoothed
DBU models on CIFAR10. Column format: guaranteed lowest performance ·
empirical performance · guaranteed highest performance (blue: normally/adver-
sarially trained smooth classifier is more robust than the base model).

Att. Rad. 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 33.1 · 50.4 · 89.9 31.0 · 50.2 · 96.9 30.7 · 50.2 · 100.0 30.7 · 50.0 · 100.0 30.7 · 50.2 · 100.0
PriorNet 35.9 · 50.6 · 74.5 33.0 · 50.3 · 82.8 31.2 · 50.0 · 95.7 30.7 · 50.4 · 99.9 30.7 · 50.4 · 100.0
DDNet 36.3 · 50.3 · 76.4 32.8 · 49.9 · 84.6 30.8 · 50.1 · 98.0 30.7 · 50.2 · 100.0 30.7 · 50.2 · 100.0
EvNet 32.9 · 50.4 · 89.8 31.4 · 50.1 · 94.0 30.8 · 50.0 · 98.0 30.7 · 50.3 · 100.0 30.7 · 49.6 · 100.0

Smoothed
+ adv.
label
attacks

PostNet 32.7 · 50.1 · 90.4 31.1 · 50.2 · 96.5 30.7 · 50.2 · 99.7 30.7 · 50.3 · 100.0 30.7 · 50.2 · 100.0
PriorNet 35.2 · 51.8 · 78.6 32.8 · 51.1 · 84.4 30.8 · 50.2 · 98.7 30.7 · 50.5 · 100.0 30.8 · 50.1 · 98.2
DDNet 35.5 · 50.6 · 79.2 33.4 · 50.3 · 84.1 30.8 · 50.1 · 99.2 30.7 · 50.0 · 100.0 30.7 · 50.5 · 100.0
EvNet 40.3 · 50.4 · 66.8 31.4 · 50.3 · 95.8 30.7 · 50.3 · 100.0 30.7 · 50.1 · 100.0 30.7 · 50.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet 33.3 · 50.6 · 88.7 32.5 · 50.1 · 87.9 30.7 · 49.9 · 99.8 30.7 · 50.1 · 100.0 30.7 · 50.0 · 100.0
PriorNet 34.5 · 51.0 · 80.1 31.4 · 50.6 · 92.8 30.9 · 50.0 · 97.7 30.7 · 50.1 · 100.0 30.7 · 50.0 · 100.0
DDNet 37.4 · 50.8 · 74.5 33.4 · 50.2 · 83.0 30.9 · 50.1 · 96.8 30.8 · 49.9 · 98.1 30.7 · 49.9 · 100.0
EvNet 32.8 · 50.1 · 92.0 30.8 · 50.0 · 99.6 30.7 · 50.1 · 100.0 31.2 · 50.2 · 96.1 31.0 · 50.0 · 100.0

Table D.31: Attack detection (PGD label attacks) based on differential entropy. Smoothed
DBU models on MNIST. Column format: guaranteed lowest performance · empir-
ical performance · guaranteed highest performance (blue: normally/adversarially
trained smooth classifier is more robust than the base model).

Att. Rad. 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 30.9 · 52.5 · 95.6 31.5 · 51.5 · 90.9 31.1 · 49.9 · 97.1 30.7 · 47.6 · 100.0 30.7 · 45.0 · 100.0
PriorNet 38.2 · 57.8 · 80.9 36.0 · 57.2 · 84.3 31.6 · 63.4 · 98.4 30.8 · 61.0 · 99.3 30.7 · 66.8 · 100.0
DDNet 44.6 · 51.9 · 60.7 39.3 · 52.7 · 72.2 31.6 · 50.9 · 95.2 30.7 · 47.3 · 100.0 30.7 · 45.9 · 100.0
EvNet 36.5 · 51.8 · 76.1 31.5 · 51.1 · 93.2 30.7 · 51.1 · 99.9 30.7 · 48.7 · 100.0 30.7 · 43.8 · 100.0

Smoothed
+ adv.
label
attacks

PostNet 33.6 · 52.8 · 82.3 31.4 · 51.2 · 91.6 30.9 · 49.4 · 99.1 30.7 · 49.3 · 100.0 30.7 · 56.0 · 100.0
PriorNet 37.3 · 60.5 · 84.3 34.3 · 59.9 · 87.9 32.1 · 61.0 · 97.0 30.7 · 69.3 · 100.0 30.7 · 68.0 · 100.0
DDNet 44.8 · 52.2 · 61.0 40.2 · 52.6 · 70.0 32.5 · 52.4 · 94.6 30.7 · 50.3 · 100.0 30.7 · 54.6 · 100.0
EvNet 35.8 · 51.2 · 76.7 32.9 · 51.0 · 88.5 30.7 · 49.5 · 100.0 30.7 · 48.5 · 100.0 30.7 · 47.7 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet 31.2 · 52.7 · 92.8 31.3 · 51.7 · 92.4 31.3 · 47.3 · 96.8 30.7 · 48.9 · 100.0 30.7 · 46.3 · 100.0
PriorNet 38.3 · 58.2 · 81.5 36.9 · 55.5 · 79.9 31.3 · 63.5 · 98.9 30.7 · 68.6 · 100.0 30.7 · 74.6 · 100.0
DDNet 44.9 · 52.2 · 60.7 39.6 · 53.3 · 72.1 31.8 · 51.7 · 95.4 30.7 · 46.1 · 100.0 30.7 · 46.0 · 100.0
EvNet 38.8 · 51.9 · 70.9 34.5 · 52.3 · 82.9 30.8 · 49.9 · 99.6 30.7 · 47.7 · 100.0 30.8 · 49.4 · 100.0
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Table D.32: Attack detection (PGD label attacks) based on differential entropy. Smoothed
DBU models on Sensorless. Column format: guaranteed lowest performance ·
empirical performance · guaranteed highest performance (blue: normally/adver-
sarially trained smooth classifier is more robust than the base model).

Att. Rad. 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 30.7 · 61.9 · 100.0 30.7 · 60.1 · 100.0 46.5 · 50.0 · 75.5 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet 30.7 · 50.1 · 100.0 30.7 · 46.5 · 100.0 30.7 · 42.3 · 100.0 30.7 · 66.7 · 100.0 30.9 · 79.2 · 100.0
DDNet 30.7 · 57.5 · 100.0 30.7 · 49.9 · 100.0 30.7 · 45.5 · 100.0 30.7 · 50.0 · 100.0 30.7 · 59.3 · 100.0
EvNet 30.7 · 62.0 · 100.0 30.7 · 59.6 · 100.0 30.7 · 55.8 · 100.0 30.7 · 48.3 · 100.0 31.8 · 50.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet 30.7 · 58.8 · 100.0 30.7 · 58.2 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet 30.7 · 60.2 · 100.0 30.7 · 54.6 · 100.0 30.7 · 45.0 · 100.0 30.7 · 38.0 · 100.0 33.9 · 49.9 · 100.0
DDNet 30.7 · 55.4 · 100.0 30.7 · 53.7 · 100.0 30.7 · 44.6 · 100.0 30.7 · 38.8 · 100.0 30.7 · 51.9 · 100.0
EvNet 30.7 · 62.1 · 100.0 30.7 · 54.3 · 100.0 30.7 · 59.9 · 100.0 30.7 · 62.1 · 100.0 30.7 · 50.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet 30.7 · 63.0 · 100.0 30.7 · 54.0 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet 30.7 · 58.0 · 100.0 30.7 · 55.6 · 100.0 30.7 · 44.2 · 100.0 30.7 · 53.5 · 100.0 30.7 · 78.5 · 100.0
DDNet 30.7 · 55.1 · 100.0 30.7 · 48.2 · 100.0 30.7 · 50.1 · 100.0 30.7 · 52.6 · 100.0 30.7 · 57.0 · 100.0
EvNet 30.7 · 63.5 · 100.0 30.7 · 54.3 · 100.0 30.7 · 54.2 · 100.0 30.7 · 45.0 · 100.0 30.7 · 50.0 · 100.0

Table D.33: Attack detection (PGD label attacks) based on differential entropy. Smoothed
DBU models on Segment. Column format: guaranteed lowest performance · em-
pirical performance · guaranteed highest performance (blue: normally/adversari-
ally trained smooth classifier is more robust than the base model).

Att. Rad. 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 30.8 · 73.5 · 100.0 30.8 · 59.9 · 100.0 30.8 · 60.3 · 100.0 30.8 · 50.2 · 100.0 49.5 · 50.0 · 50.0
PriorNet 30.9 · 77.1 · 99.9 30.8 · 78.1 · 100.0 30.8 · 39.5 · 100.0 30.8 · 35.2 · 100.0 30.8 · 41.4 · 100.0
DDNet 31.4 · 69.6 · 99.5 30.8 · 71.2 · 100.0 30.8 · 54.3 · 100.0 30.8 · 35.5 · 100.0 30.8 · 35.7 · 100.0
EvNet 30.8 · 86.2 · 100.0 30.8 · 80.3 · 100.0 30.8 · 54.0 · 100.0 30.8 · 43.3 · 100.0 30.8 · 40.5 · 100.0

Smoothed
+ adv.
label
attacks

PostNet 30.8 · 75.6 · 100.0 30.8 · 69.7 · 100.0 30.8 · 66.5 · 100.0 30.8 · 50.0 · 100.0 50.0 · 50.0 · 50.0
PriorNet 31.0 · 74.4 · 99.2 30.8 · 74.0 · 100.0 30.8 · 59.8 · 100.0 30.8 · 56.0 · 100.0 30.8 · 38.8 · 100.0
DDNet 31.6 · 68.9 · 99.0 30.8 · 72.9 · 100.0 30.8 · 47.5 · 100.0 30.8 · 32.2 · 100.0 30.8 · 31.8 · 100.0
EvNet 30.8 · 83.4 · 100.0 30.8 · 87.0 · 100.0 30.8 · 61.9 · 100.0 30.8 · 39.2 · 100.0 30.8 · 41.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet 30.8 · 73.9 · 100.0 30.8 · 64.5 · 100.0 30.8 · 68.3 · 100.0 33.0 · 50.0 · 100.0 50.0 · 50.0 · 50.0
PriorNet 31.0 · 73.7 · 99.6 30.8 · 73.1 · 100.0 30.8 · 57.8 · 100.0 30.8 · 44.8 · 100.0 30.8 · 49.1 · 100.0
DDNet 31.0 · 70.7 · 99.7 30.8 · 70.6 · 100.0 30.8 · 48.6 · 100.0 30.8 · 31.6 · 100.0 30.8 · 30.9 · 100.0
EvNet 30.8 · 85.8 · 100.0 30.8 · 86.7 · 100.0 30.8 · 54.4 · 100.0 30.8 · 45.1 · 100.0 30.8 · 34.8 · 100.0
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Table D.34: Attack detection (FGSM label attacks) based on differential entropy. Smoothed
DBU models on CIFAR10. Column format: guaranteed lowest performance ·
empirical performance · guaranteed highest performance (blue: normally/adver-
sarially trained smooth classifier is more robust than the base model).

Att. Rad. 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 33.1 · 50.3 · 89.9 31.0 · 50.2 · 96.9 30.7 · 50.1 · 100.0 30.7 · 49.5 · 100.0 30.7 · 50.2 · 100.0
PriorNet 36.0 · 50.8 · 74.6 33.0 · 50.4 · 82.8 31.2 · 50.2 · 95.6 30.7 · 50.7 · 99.9 30.7 · 51.4 · 100.0
DDNet 36.4 · 50.4 · 76.4 32.8 · 49.9 · 84.6 30.8 · 50.1 · 97.9 30.7 · 50.2 · 100.0 30.7 · 49.9 · 100.0
EvNet 32.9 · 50.3 · 89.7 31.4 · 50.2 · 94.0 30.8 · 50.1 · 98.0 30.7 · 49.7 · 100.0 30.7 · 49.7 · 100.0

Smoothed
+ adv.
label
attacks

PostNet 32.7 · 50.1 · 90.3 31.1 · 50.3 · 96.4 30.7 · 50.1 · 99.7 30.7 · 49.8 · 100.0 30.7 · 50.5 · 100.0
PriorNet 35.4 · 52.3 · 78.9 32.9 · 51.3 · 84.5 30.7 · 50.3 · 98.7 30.7 · 50.7 · 100.0 30.8 · 50.2 · 98.2
DDNet 35.5 · 50.6 · 79.3 33.4 · 50.3 · 84.2 30.8 · 50.1 · 99.2 30.7 · 49.9 · 100.0 30.7 · 50.1 · 100.0
EvNet 40.3 · 50.4 · 66.8 31.4 · 50.3 · 95.9 30.7 · 50.2 · 100.0 30.7 · 50.1 · 100.0 30.7 · 49.6 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet 33.3 · 50.7 · 88.7 32.5 · 50.1 · 87.8 30.7 · 50.1 · 99.8 30.7 · 50.5 · 100.0 30.7 · 50.2 · 100.0
PriorNet 34.6 · 51.2 · 80.3 31.4 · 50.7 · 92.8 30.9 · 50.2 · 97.7 30.7 · 50.0 · 100.0 30.7 · 50.1 · 100.0
DDNet 37.4 · 51.0 · 74.7 33.4 · 50.2 · 83.0 30.9 · 50.1 · 96.9 30.8 · 50.1 · 98.1 30.7 · 49.9 · 100.0
EvNet 32.8 · 50.1 · 92.0 30.8 · 50.2 · 99.6 30.7 · 50.4 · 100.0 31.2 · 50.2 · 96.0 31.0 · 50.0 · 100.0

Table D.35: Attack detection (FGSM label attacks) based on differential entropy. Smoothed
DBU models on MNIST. Column format: guaranteed lowest performance · empir-
ical performance · guaranteed highest performance (blue: normally/adversarially
trained smooth classifier is more robust than the base model).

Att. Rad. 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 30.9 · 52.3 · 95.6 31.5 · 51.2 · 90.8 31.1 · 49.8 · 97.0 30.7 · 48.3 · 100.0 30.7 · 46.5 · 100.0
PriorNet 38.1 · 57.7 · 80.8 35.8 · 56.6 · 84.0 31.5 · 61.7 · 98.3 30.8 · 58.9 · 99.2 30.7 · 62.3 · 100.0
DDNet 44.7 · 52.0 · 60.9 39.4 · 52.9 · 72.5 31.6 · 50.8 · 95.2 30.7 · 47.5 · 100.0 30.7 · 46.8 · 100.0
EvNet 36.5 · 51.7 · 76.0 31.5 · 51.1 · 93.2 30.7 · 50.9 · 99.9 30.7 · 48.9 · 100.0 30.7 · 46.2 · 100.0

Smoothed
+ adv.
label
attacks

PostNet 33.5 · 52.6 · 82.2 31.4 · 51.0 · 91.5 30.9 · 49.8 · 99.0 30.7 · 50.1 · 100.0 30.7 · 54.4 · 100.0
PriorNet 37.3 · 60.6 · 84.3 34.2 · 59.5 · 87.8 32.1 · 60.0 · 96.9 30.7 · 66.3 · 100.0 30.7 · 63.3 · 100.0
DDNet 44.9 · 52.3 · 61.0 40.3 · 52.8 · 70.2 32.5 · 52.4 · 94.6 30.7 · 50.0 · 100.0 30.7 · 57.1 · 100.0
EvNet 35.8 · 51.5 · 76.7 32.9 · 50.9 · 88.5 30.7 · 50.0 · 100.0 30.7 · 48.9 · 100.0 30.7 · 48.6 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet 31.2 · 52.6 · 92.9 31.3 · 51.5 · 92.3 31.3 · 48.0 · 96.9 30.7 · 49.4 · 100.0 30.7 · 48.1 · 100.0
PriorNet 38.3 · 58.3 · 81.4 36.8 · 55.2 · 79.8 31.3 · 62.5 · 98.9 30.7 · 64.5 · 100.0 30.7 · 68.7 · 100.0
DDNet 45.0 · 52.3 · 60.9 39.7 · 53.5 · 72.4 31.8 · 51.7 · 95.4 30.7 · 46.6 · 100.0 30.7 · 44.4 · 100.0
EvNet 38.8 · 51.8 · 70.8 34.5 · 52.0 · 82.7 30.8 · 50.0 · 99.6 30.7 · 49.3 · 100.0 30.8 · 50.3 · 100.0
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Table D.36: Attack detection (FGSM label attacks) based on differential entropy. Smoothed
DBU models on Sensorless. Column format: guaranteed lowest performance ·
empirical performance · guaranteed highest performance (blue: normally/adver-
sarially trained smooth classifier is more robust than the base model).

Att. Rad. 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 30.7 · 82.0 · 100.0 30.7 · 88.6 · 100.0 50.0 · 50.0 · 50.1 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet 30.7 · 51.7 · 100.0 30.7 · 48.2 · 100.0 30.7 · 48.6 · 100.0 30.7 · 68.6 · 100.0 31.4 · 63.7 · 100.0
DDNet 30.7 · 67.1 · 100.0 30.7 · 58.2 · 100.0 30.7 · 51.7 · 100.0 30.7 · 69.8 · 100.0 30.7 · 73.7 · 100.0
EvNet 30.7 · 77.9 · 100.0 30.7 · 85.3 · 100.0 30.7 · 90.5 · 100.0 30.8 · 84.3 · 100.0 34.0 · 50.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet 30.7 · 76.7 · 100.0 30.7 · 78.7 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet 30.7 · 63.9 · 100.0 30.7 · 58.4 · 100.0 30.7 · 45.2 · 100.0 30.7 · 43.3 · 100.0 32.9 · 35.5 · 100.0
DDNet 30.7 · 58.5 · 100.0 30.7 · 75.8 · 100.0 30.7 · 72.6 · 100.0 30.7 · 35.6 · 100.0 30.7 · 71.5 · 100.0
EvNet 30.7 · 80.4 · 100.0 30.7 · 71.5 · 100.0 30.7 · 75.3 · 100.0 30.7 · 78.5 · 100.0 30.7 · 50.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet 30.7 · 77.4 · 100.0 30.7 · 68.0 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet 30.7 · 63.8 · 100.0 30.7 · 64.1 · 100.0 30.7 · 46.9 · 100.0 30.7 · 48.9 · 100.0 30.7 · 78.0 · 100.0
DDNet 30.7 · 56.5 · 100.0 30.7 · 54.6 · 100.0 30.7 · 59.4 · 100.0 30.7 · 71.8 · 100.0 30.7 · 76.0 · 100.0
EvNet 30.7 · 71.5 · 100.0 30.7 · 75.7 · 100.0 30.7 · 90.5 · 100.0 30.7 · 54.7 · 100.0 30.9 · 50.2 · 100.0

Table D.37: Attack detection (FGSM label attacks) based on differential entropy. Smoothed
DBU models on Segment. Column format: guaranteed lowest performance · empir-
ical performance · guaranteed highest performance (blue: normally/adversarially
trained smooth classifier is more robust than the base model)..

Att. Rad. 0.1 0.2 0.5 1.0 2.0

Smoothed
models

PostNet 30.8 · 76.9 · 100.0 30.8 · 62.5 · 100.0 30.8 · 59.2 · 100.0 30.8 · 48.7 · 100.0 49.7 · 50.0 · 50.0
PriorNet 30.9 · 81.3 · 99.9 30.8 · 85.0 · 100.0 30.8 · 48.7 · 100.0 30.8 · 37.1 · 100.0 30.8 · 43.7 · 100.0
DDNet 31.7 · 73.8 · 99.7 30.8 · 80.5 · 100.0 30.8 · 80.4 · 100.0 30.8 · 72.7 · 100.0 30.8 · 70.6 · 100.0
EvNet 30.8 · 89.1 · 100.0 30.8 · 89.5 · 100.0 30.8 · 75.3 · 100.0 30.8 · 73.1 · 100.0 30.8 · 83.1 · 100.0

Smoothed
+ adv.
label
attacks

PostNet 30.8 · 81.0 · 100.0 30.8 · 75.6 · 100.0 30.8 · 56.3 · 100.0 30.8 · 50.0 · 100.0 50.0 · 50.0 · 50.0
PriorNet 31.1 · 77.9 · 99.4 30.8 · 76.1 · 100.0 30.8 · 62.4 · 100.0 30.8 · 65.5 · 100.0 30.8 · 53.3 · 100.0
DDNet 31.9 · 72.5 · 99.3 30.8 · 82.0 · 100.0 30.8 · 65.7 · 100.0 30.8 · 53.0 · 100.0 30.8 · 61.6 · 100.0
EvNet 30.8 · 86.4 · 100.0 30.8 · 94.1 · 100.0 30.8 · 78.6 · 100.0 30.8 · 77.7 · 100.0 30.8 · 85.5 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet 30.8 · 76.8 · 100.0 30.8 · 64.6 · 100.0 30.8 · 82.9 · 100.0 32.2 · 50.0 · 100.0 50.0 · 50.0 · 50.0
PriorNet 31.1 · 77.6 · 99.7 30.8 · 76.7 · 100.0 30.8 · 69.0 · 100.0 30.8 · 53.1 · 100.0 30.8 · 61.4 · 100.0
DDNet 31.1 · 74.3 · 99.8 30.8 · 77.1 · 100.0 30.8 · 76.0 · 100.0 30.8 · 57.0 · 100.0 30.8 · 43.5 · 100.0
EvNet 30.8 · 88.8 · 100.0 30.8 · 92.6 · 100.0 30.8 · 70.2 · 100.0 30.8 · 62.0 · 100.0 30.8 · 96.2 · 100.0
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Table D.38: OOD detection based on differential entropy under PGD uncertainty attacks
against differential entorpy on ID data and OOD data. Smoothed DBU models
on CIFAR10. Column format: guaranteed lowest performance · empirical per-
formance · guaranteed highest performance (blue: normally/adversarially trained
smooth classifier is more robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

ID-Attack

Smoothed
models

PostNet 72.1 · 82.7 · 88.0 35.0 · 56.6 · 97.4 31.9 · 65.6 · 99.8 30.7 · 50.6 · 100.0 30.7 · 46.9 · 100.0 30.7 · 51.6 · 100.0
PriorNet 50.2 · 53.1 · 55.9 33.5 · 43.3 · 65.3 31.3 · 39.7 · 69.1 31.3 · 48.3 · 98.2 30.7 · 44.4 · 99.9 30.7 · 45.4 · 100.0
DDNet 72.0 · 75.8 · 79.8 35.6 · 46.2 · 69.8 32.9 · 50.3 · 87.1 31.1 · 58.7 · 98.6 30.7 · 59.3 · 100.0 30.7 · 44.5 · 100.0
EvNet 79.5 · 87.1 · 92.8 34.1 · 58.6 · 95.1 32.5 · 61.2 · 96.9 31.7 · 60.6 · 98.7 30.7 · 62.4 · 100.0 30.7 · 57.3 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 35.0 · 58.5 · 97.7 31.2 · 46.6 · 97.4 30.8 · 57.7 · 99.7 30.7 · 49.8 · 100.0 30.7 · 50.9 · 100.0
PriorNet - 31.5 · 36.7 · 57.2 33.1 · 51.8 · 84.8 30.7 · 57.7 · 98.7 30.7 · 40.0 · 99.9 30.9 · 53.6 · 96.7
DDNet - 36.2 · 50.0 · 78.6 32.1 · 41.3 · 70.2 30.8 · 56.4 · 100.0 30.7 · 49.4 · 100.0 30.7 · 54.8 · 100.0
EvNet - 46.8 · 61.0 · 79.7 32.3 · 58.9 · 99.1 30.7 · 45.0 · 100.0 30.7 · 63.3 · 100.0 30.8 · 38.1 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 35.2 · 55.9 · 96.0 34.5 · 59.2 · 94.9 30.7 · 47.0 · 100.0 30.7 · 58.2 · 100.0 30.7 · 42.9 · 100.0
PriorNet - 31.8 · 38.9 · 64.1 31.0 · 41.8 · 87.9 30.7 · 42.9 · 99.2 30.7 · 48.6 · 100.0 30.7 · 46.6 · 100.0
DDNet - 39.7 · 52.1 · 75.7 36.4 · 56.8 · 83.8 31.0 · 51.5 · 97.4 31.0 · 56.8 · 97.8 30.7 · 49.1 · 100.0
EvNet - 34.8 · 64.9 · 99.6 30.8 · 48.9 · 99.8 30.7 · 66.8 · 100.0 30.9 · 41.5 · 93.8 31.1 · 55.1 · 100.0

OOD-Attack

Smoothed
models

PostNet 72.0 · 82.7 · 88.0 35.1 · 56.8 · 97.3 32.0 · 65.8 · 99.8 30.7 · 50.7 · 100.0 30.7 · 46.5 · 100.0 30.7 · 51.7 · 100.0
PriorNet 50.3 · 53.1 · 55.9 33.6 · 43.7 · 65.9 31.3 · 39.8 · 69.4 31.3 · 48.3 · 98.2 30.7 · 44.5 · 99.9 30.7 · 46.4 · 100.0
DDNet 72.0 · 75.8 · 79.8 35.6 · 46.2 · 70.0 32.9 · 50.1 · 86.7 31.1 · 58.8 · 98.6 30.7 · 59.3 · 100.0 30.7 · 44.6 · 100.0
EvNet 79.5 · 87.1 · 92.8 34.1 · 58.8 · 95.2 32.6 · 61.2 · 96.9 31.7 · 60.5 · 98.7 30.7 · 62.4 · 100.0 30.7 · 57.6 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 35.0 · 58.5 · 97.8 31.2 · 46.6 · 97.2 30.8 · 57.7 · 99.7 30.7 · 50.2 · 100.0 30.7 · 51.5 · 100.0
PriorNet - 31.6 · 37.3 · 59.3 33.2 · 52.7 · 85.8 30.7 · 57.8 · 98.7 30.7 · 40.1 · 99.9 30.9 · 53.8 · 96.8
DDNet - 36.4 · 50.2 · 78.9 32.1 · 41.5 · 70.4 30.9 · 56.2 · 100.0 30.7 · 49.3 · 100.0 30.7 · 55.1 · 100.0
EvNet - 47.2 · 61.1 · 80.0 32.4 · 59.1 · 99.1 30.7 · 45.0 · 100.0 30.7 · 63.2 · 100.0 30.8 · 38.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 35.3 · 56.4 · 96.1 34.5 · 59.0 · 94.9 30.7 · 46.8 · 100.0 30.7 · 57.8 · 100.0 30.7 · 43.2 · 100.0
PriorNet - 31.9 · 39.4 · 65.5 31.0 · 42.0 · 88.6 30.7 · 42.9 · 99.2 30.7 · 48.4 · 100.0 30.7 · 47.1 · 100.0
DDNet - 40.2 · 52.9 · 76.5 36.4 · 56.9 · 83.9 31.1 · 51.5 · 97.3 31.0 · 57.0 · 97.8 30.7 · 49.1 · 100.0
EvNet - 34.9 · 64.8 · 99.6 30.8 · 48.8 · 99.8 30.7 · 66.1 · 100.0 30.9 · 41.6 · 93.6 31.1 · 54.7 · 100.0
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Table D.39: OOD detection based on differential entropy under PGD uncertainty attacks
against differential entropy on ID data and OOD data. Smoothed DBU models on
MNIST. Column format: guaranteed lowest performance · empirical performance
· guaranteed highest performance (blue: normally/adversarially trained smooth
classifier is more robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

ID-Attack

Smoothed
models

PostNet 59.9 · 91.1 · 98.6 61.2 · 97.7 · 99.6 64.8 · 94.7 · 99.7 31.6 · 64.9 · 99.7 30.7 · 63.2 · 100.0 30.7 · 70.5 · 100.0
PriorNet 99.8 · 99.8 · 99.8 99.4 · 99.8 · 99.9 98.3 · 99.6 · 99.9 48.5 · 91.9 · 99.9 31.1 · 74.6 · 99.8 30.7 · 67.3 · 100.0
DDNet 98.5 · 98.6 · 98.7 95.0 · 97.6 · 98.9 74.7 · 92.0 · 98.2 31.4 · 52.0 · 98.5 30.7 · 52.0 · 100.0 30.7 · 41.1 · 100.0
EvNet 85.7 · 87.5 · 89.2 68.9 · 90.4 · 97.7 42.5 · 90.2 · 99.6 30.7 · 69.8 · 100.0 30.7 · 50.3 · 100.0 30.7 · 45.6 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 84.3 · 96.2 · 99.3 50.4 · 89.2 · 99.5 30.9 · 46.2 · 99.4 30.7 · 46.9 · 100.0 30.7 · 62.2 · 100.0
PriorNet - 99.7 · 99.9 · 100.0 98.7 · 99.8 · 100.0 83.3 · 99.1 · 100.0 30.7 · 82.6 · 100.0 30.7 · 64.8 · 100.0
DDNet - 93.6 · 96.9 · 98.5 71.2 · 89.1 · 96.9 32.3 · 50.3 · 99.0 30.7 · 50.7 · 100.0 30.7 · 55.7 · 100.0
EvNet - 58.2 · 84.4 · 94.3 40.9 · 87.4 · 99.2 30.7 · 59.4 · 100.0 30.7 · 40.3 · 100.0 30.7 · 53.2 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 58.9 · 96.1 · 99.3 59.7 · 96.1 · 99.9 31.2 · 48.2 · 95.7 30.7 · 42.0 · 100.0 30.7 · 56.9 · 100.0
PriorNet - 99.9 · 100.0 · 100.0 96.5 · 99.2 · 99.9 49.2 · 96.9 · 100.0 31.3 · 88.1 · 100.0 30.7 · 77.8 · 100.0
DDNet - 95.0 · 97.5 · 98.8 80.6 · 94.1 · 98.7 31.7 · 55.6 · 98.6 30.7 · 52.0 · 100.0 30.7 · 47.6 · 100.0
EvNet - 66.5 · 91.3 · 98.1 48.1 · 84.1 · 97.6 30.8 · 49.7 · 99.9 30.7 · 37.9 · 100.0 30.8 · 63.5 · 100.0

OOD-Attack

Smoothed
models

PostNet 59.0 · 91.2 · 97.7 57.8 · 97.2 · 99.6 61.4 · 93.8 · 99.6 31.5 · 58.9 · 99.5 30.7 · 51.5 · 100.0 30.7 · 53.5 · 100.0
PriorNet 99.7 · 99.8 · 99.8 99.4 · 99.8 · 99.9 98.4 · 99.7 · 100.0 60.7 · 96.8 · 100.0 33.0 · 88.9 · 100.0 30.7 · 87.7 · 100.0
DDNet 98.4 · 98.5 · 98.7 94.2 · 97.2 · 98.7 72.1 · 90.5 · 97.8 31.6 · 52.3 · 98.1 30.7 · 51.7 · 100.0 30.7 · 37.7 · 100.0
EvNet 83.9 · 85.7 · 88.0 63.5 · 88.6 · 97.9 40.1 · 87.7 · 99.6 30.8 · 68.9 · 100.0 30.7 · 43.3 · 100.0 30.7 · 36.8 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 84.7 · 96.1 · 99.4 49.7 · 89.1 · 99.5 30.9 · 45.6 · 99.3 30.7 · 45.8 · 100.0 30.7 · 69.1 · 100.0
PriorNet - 99.7 · 99.9 · 100.0 98.7 · 99.8 · 100.0 86.8 · 99.5 · 100.0 30.9 · 93.2 · 100.0 30.7 · 81.4 · 100.0
DDNet - 93.9 · 97.0 · 98.6 72.0 · 89.4 · 97.0 33.0 · 52.4 · 98.8 30.7 · 51.5 · 100.0 30.7 · 60.1 · 100.0
EvNet - 59.5 · 85.3 · 94.6 40.7 · 86.9 · 99.2 30.7 · 57.4 · 100.0 30.7 · 39.2 · 100.0 30.7 · 49.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 55.7 · 96.1 · 99.3 58.4 · 95.7 · 99.8 31.1 · 44.2 · 93.1 30.7 · 41.2 · 100.0 30.7 · 48.8 · 100.0
PriorNet - 99.9 · 100.0 · 100.0 97.0 · 99.3 · 99.9 61.0 · 98.4 · 100.0 33.2 · 94.4 · 100.0 30.7 · 90.2 · 100.0
DDNet - 95.3 · 97.6 · 98.9 82.2 · 94.5 · 98.7 32.1 · 56.6 · 98.5 30.7 · 48.6 · 100.0 30.7 · 42.9 · 100.0
EvNet - 65.2 · 90.4 · 98.0 46.8 · 83.4 · 97.3 30.8 · 48.8 · 99.9 30.7 · 36.3 · 100.0 30.8 · 60.1 · 100.0
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Table D.40: OOD detection based on differential entropy under PGD uncertainty attacks
against differential entropy on ID data and OOD data. Smoothed DBU models
on Sensorless. Column format: guaranteed lowest performance · empirical per-
formance · guaranteed highest performance (blue: normally/adversarially trained
smooth classifier is more robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

ID-Attack

Smoothed
models

PostNet 49.3 · 90.4 · 99.8 30.7 · 49.2 · 100.0 30.7 · 36.0 · 100.0 49.2 · 50.0 · 74.9 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet 31.2 · 39.0 · 66.9 30.7 · 35.5 · 100.0 30.7 · 38.9 · 100.0 30.7 · 46.2 · 100.0 30.7 · 62.7 · 100.0 30.7 · 51.3 · 100.0
DDNet 31.0 · 31.5 · 32.7 30.7 · 30.8 · 100.0 30.7 · 31.8 · 100.0 30.7 · 53.6 · 100.0 30.7 · 43.9 · 100.0 30.7 · 40.5 · 100.0
EvNet 33.6 · 55.2 · 91.3 30.7 · 44.2 · 100.0 30.7 · 43.8 · 100.0 30.7 · 39.3 · 100.0 30.8 · 51.6 · 100.0 32.4 · 50.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 30.7 · 62.4 · 100.0 30.7 · 39.2 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet - 30.7 · 30.9 · 100.0 30.7 · 32.4 · 100.0 30.7 · 31.0 · 100.0 30.8 · 30.7 · 100.0 38.2 · 48.9 · 100.0
DDNet - 30.7 · 32.2 · 100.0 30.7 · 30.9 · 100.0 30.7 · 37.1 · 100.0 30.7 · 42.1 · 100.0 30.7 · 37.7 · 100.0
EvNet - 30.7 · 48.9 · 100.0 30.7 · 34.0 · 100.0 30.7 · 35.6 · 100.0 30.7 · 33.6 · 100.0 30.7 · 50.0 · 100.0

Smoothed
+ adv.
w.
uncert.
attacks

PostNet - 30.7 · 46.0 · 100.0 30.7 · 46.6 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet - 30.7 · 35.8 · 100.0 30.7 · 32.1 · 100.0 30.7 · 81.6 · 100.0 30.8 · 41.7 · 100.0 30.7 · 61.9 · 100.0
DDNet - 30.7 · 32.8 · 100.0 30.7 · 31.0 · 100.0 30.7 · 31.8 · 100.0 30.7 · 43.7 · 100.0 30.7 · 34.7 · 100.0
EvNet - 30.7 · 31.0 · 100.0 30.7 · 49.6 · 100.0 30.7 · 47.7 · 100.0 30.7 · 42.6 · 100.0 30.7 · 50.0 · 100.0

OOD-Attack

Smoothed
models

PostNet 49.3 · 90.4 · 99.8 30.8 · 76.4 · 100.0 30.7 · 61.3 · 100.0 47.7 · 50.0 · 75.1 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet 31.2 · 39.0 · 66.9 30.7 · 33.9 · 100.0 30.7 · 34.3 · 100.0 30.7 · 37.0 · 100.0 30.7 · 74.0 · 100.0 30.9 · 78.1 · 100.0
DDNet 31.0 · 31.5 · 32.7 30.7 · 30.7 · 100.0 30.7 · 31.8 · 100.0 30.7 · 47.7 · 100.0 30.7 · 43.8 · 100.0 30.7 · 52.5 · 100.0
EvNet 33.6 · 55.2 · 91.2 30.7 · 54.7 · 100.0 30.7 · 54.0 · 100.0 30.7 · 51.0 · 100.0 30.7 · 45.2 · 100.0 31.7 · 50.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 30.7 · 82.2 · 100.0 30.7 · 61.4 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet - 30.7 · 31.2 · 100.0 30.7 · 31.4 · 99.9 30.7 · 30.8 · 100.0 30.8 · 30.7 · 100.0 33.8 · 34.0 · 100.0
DDNet - 30.7 · 32.2 · 100.0 30.7 · 30.8 · 100.0 30.7 · 33.6 · 100.0 30.7 · 46.9 · 100.0 30.7 · 40.3 · 100.0
EvNet - 30.8 · 75.3 · 100.0 30.7 · 31.6 · 100.0 30.7 · 42.1 · 100.0 30.7 · 38.7 · 100.0 30.7 · 50.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 30.7 · 73.7 · 100.0 30.7 · 61.6 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet - 30.7 · 35.9 · 100.0 30.7 · 30.7 · 100.0 30.7 · 39.4 · 100.0 30.7 · 36.6 · 100.0 30.7 · 97.6 · 100.0
DDNet - 30.7 · 32.1 · 100.0 30.7 · 30.8 · 100.0 30.7 · 32.2 · 100.0 30.7 · 50.7 · 100.0 30.7 · 39.8 · 100.0
EvNet - 30.7 · 31.3 · 100.0 30.8 · 39.7 · 100.0 30.7 · 52.2 · 100.0 30.7 · 42.3 · 100.0 30.7 · 50.0 · 100.0
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Table D.41: OOD detection based on differential entropy under PGD uncertainty attacks
against differential entropy on ID data and OOD data. Smoothed DBU mod-
els on Segment. Column format: guaranteed lowest performance · empirical per-
formance · guaranteed highest performance (blue: normally/adversarially trained
smooth classifier is more robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

ID-Attack

Smoothed
models

PostNet 99.6 · 99.9 · 99.9 33.0 · 83.0 · 100.0 30.8 · 43.8 · 100.0 30.8 · 31.7 · 100.0 30.8 · 40.8 · 100.0 41.4 · 50.0 · 50.2
PriorNet 30.8 · 31.0 · 31.4 30.8 · 30.8 · 42.6 30.8 · 30.8 · 95.5 30.8 · 33.1 · 100.0 30.8 · 76.4 · 100.0 30.8 · 78.7 · 100.0
DDNet 30.8 · 30.8 · 30.8 30.8 · 30.8 · 32.1 30.8 · 30.8 · 69.4 30.8 · 30.8 · 100.0 30.8 · 31.0 · 100.0 30.8 · 33.4 · 100.0
EvNet 94.9 · 97.2 · 98.3 31.1 · 75.8 · 99.9 30.8 · 74.2 · 100.0 30.8 · 62.9 · 100.0 30.8 · 58.1 · 100.0 30.8 · 43.4 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 31.0 · 70.9 · 100.0 30.8 · 47.1 · 100.0 30.8 · 85.0 · 100.0 30.8 · 50.0 · 100.0 50.0 · 50.0 · 50.0
PriorNet - 30.8 · 30.8 · 46.0 30.8 · 30.8 · 32.7 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0 30.9 · 30.8 · 100.0
DDNet - 30.8 · 30.8 · 30.8 30.8 · 30.8 · 79.5 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0 30.8 · 57.3 · 100.0
EvNet - 36.3 · 94.3 · 100.0 30.8 · 32.2 · 100.0 30.8 · 50.2 · 100.0 30.8 · 93.9 · 100.0 30.8 · 56.3 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 30.8 · 49.5 · 100.0 30.8 · 34.5 · 100.0 30.8 · 96.1 · 100.0 41.2 · 50.0 · 82.7 50.0 · 50.0 · 50.0
PriorNet - 30.8 · 31.2 · 62.6 30.8 · 30.8 · 32.9 30.8 · 30.8 · 88.9 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0
DDNet - 30.8 · 30.8 · 31.2 30.8 · 30.8 · 68.9 30.8 · 30.8 · 100.0 30.8 · 30.9 · 100.0 30.8 · 38.6 · 100.0
EvNet - 30.9 · 83.5 · 100.0 30.8 · 84.0 · 100.0 30.8 · 98.6 · 100.0 30.8 · 92.8 · 100.0 30.8 · 45.6 · 100.0

OOD-Attack

Smoothed
models

PostNet 99.6 · 99.9 · 99.9 31.3 · 95.2 · 100.0 30.8 · 48.7 · 100.0 30.8 · 34.0 · 100.0 30.8 · 41.0 · 100.0 41.8 · 50.0 · 50.2
PriorNet 30.8 · 31.0 · 31.4 30.8 · 30.8 · 44.7 30.8 · 30.8 · 86.3 30.8 · 30.9 · 100.0 30.8 · 35.7 · 100.0 30.8 · 57.4 · 100.0
DDNet 30.8 · 30.8 · 30.8 30.8 · 30.8 · 31.9 30.8 · 30.8 · 58.3 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0
EvNet 94.9 · 97.2 · 98.3 31.4 · 92.5 · 100.0 30.8 · 94.2 · 100.0 30.8 · 80.4 · 100.0 30.8 · 70.2 · 100.0 30.8 · 48.2 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 30.8 · 88.7 · 100.0 30.8 · 70.9 · 100.0 30.8 · 97.2 · 100.0 30.8 · 50.0 · 100.0 50.0 · 50.0 · 50.0
PriorNet - 30.8 · 30.9 · 47.2 30.8 · 30.8 · 32.5 30.8 · 30.8 · 96.2 30.8 · 30.8 · 100.0 30.9 · 30.8 · 100.0
DDNet - 30.8 · 30.8 · 30.8 30.8 · 30.8 · 73.5 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0 30.8 · 34.3 · 100.0
EvNet - 35.9 · 95.9 · 100.0 30.8 · 36.6 · 100.0 30.8 · 45.8 · 100.0 30.8 · 75.2 · 100.0 30.8 · 93.8 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 30.8 · 64.6 · 100.0 30.8 · 31.9 · 100.0 30.8 · 99.1 · 100.0 37.2 · 50.0 · 100.0 49.8 · 50.0 · 50.0
PriorNet - 30.8 · 31.3 · 60.6 30.8 · 30.8 · 34.8 30.8 · 30.8 · 73.8 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0
DDNet - 30.8 · 30.8 · 31.7 30.8 · 30.8 · 64.6 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0
EvNet - 31.1 · 90.7 · 100.0 30.8 · 96.6 · 100.0 30.8 · 98.9 · 100.0 30.8 · 97.5 · 100.0 30.8 · 34.2 · 100.0
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Table D.42: OOD detection based on differential entropy under FGSM uncertainty attacks
against differential entropy on ID data and OOD data. Smoothed DBU models
on CIFAR10. Column format: guaranteed lowest performance · empirical per-
formance · guaranteed highest performance (blue: normally/adversarially trained
smooth classifier is more robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

ID-Attack

Smoothed
models

PostNet 72.2 · 82.7 · 88.0 35.0 · 56.5 · 97.5 31.9 · 65.5 · 99.8 30.7 · 50.6 · 100.0 30.7 · 46.9 · 100.0 30.7 · 51.4 · 100.0
PriorNet 50.3 · 53.1 · 55.9 33.5 · 43.2 · 65.0 31.3 · 39.7 · 69.1 31.3 · 48.3 · 98.2 30.7 · 44.2 · 99.9 30.7 · 44.9 · 100.0
DDNet 72.0 · 75.8 · 79.8 35.5 · 46.2 · 69.7 32.9 · 50.3 · 87.0 31.1 · 58.6 · 98.6 30.7 · 59.4 · 100.0 30.7 · 44.5 · 100.0
EvNet 79.5 · 87.1 · 92.8 34.1 · 58.6 · 95.2 32.5 · 61.1 · 96.9 31.7 · 60.6 · 98.8 30.7 · 62.6 · 100.0 30.7 · 57.3 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 35.0 · 58.5 · 97.7 31.2 · 46.6 · 97.4 30.8 · 57.7 · 99.7 30.7 · 50.1 · 100.0 30.7 · 50.6 · 100.0
PriorNet - 31.5 · 36.6 · 56.7 33.1 · 51.7 · 84.4 30.7 · 57.5 · 98.7 30.7 · 40.1 · 99.9 30.9 · 53.5 · 96.7
DDNet - 36.2 · 50.0 · 78.5 32.1 · 41.3 · 70.1 30.9 · 56.3 · 100.0 30.7 · 49.5 · 100.0 30.7 · 54.9 · 100.0
EvNet - 46.8 · 60.9 · 79.6 32.3 · 58.9 · 99.1 30.7 · 45.1 · 100.0 30.7 · 63.1 · 100.0 30.8 · 38.1 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 35.2 · 56.0 · 95.9 34.5 · 59.0 · 94.8 30.7 · 47.0 · 100.0 30.7 · 57.2 · 100.0 30.7 · 42.7 · 100.0
PriorNet - 31.8 · 38.8 · 64.0 31.0 · 41.7 · 87.4 30.7 · 42.9 · 99.3 30.7 · 48.5 · 100.0 30.7 · 46.8 · 100.0
DDNet - 39.6 · 52.0 · 75.6 36.4 · 56.8 · 83.8 31.0 · 51.4 · 97.3 31.0 · 56.9 · 97.7 30.7 · 49.2 · 100.0
EvNet - 34.8 · 64.9 · 99.7 30.8 · 48.9 · 99.8 30.7 · 66.4 · 100.0 30.9 · 41.6 · 93.6 31.1 · 55.7 · 100.0

OOD-Attack

Smoothed
models

PostNet 72.1 · 82.7 · 88.0 35.1 · 56.8 · 97.3 31.9 · 65.8 · 99.8 30.7 · 50.8 · 100.0 30.7 · 46.5 · 100.0 30.7 · 51.5 · 100.0
PriorNet 50.3 · 53.1 · 55.9 33.6 · 43.7 · 65.9 31.3 · 39.8 · 69.4 31.3 · 48.3 · 98.2 30.7 · 44.4 · 99.9 30.7 · 45.9 · 100.0
DDNet 72.0 · 75.8 · 79.8 35.6 · 46.1 · 70.0 32.9 · 50.1 · 86.7 31.1 · 58.7 · 98.6 30.7 · 59.3 · 100.0 30.7 · 44.6 · 100.0
EvNet 79.5 · 87.1 · 92.8 34.1 · 58.8 · 95.2 32.6 · 61.3 · 96.9 31.7 · 60.5 · 98.8 30.7 · 62.2 · 100.0 30.7 · 57.7 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 35.0 · 58.4 · 97.9 31.2 · 46.6 · 97.3 30.8 · 57.7 · 99.7 30.7 · 50.1 · 100.0 30.7 · 51.4 · 100.0
PriorNet - 31.6 · 37.3 · 59.2 33.2 · 52.6 · 85.8 30.7 · 57.8 · 98.7 30.7 · 39.8 · 99.9 30.9 · 53.7 · 96.8
DDNet - 36.4 · 50.2 · 78.8 32.1 · 41.5 · 70.5 30.8 · 56.2 · 100.0 30.7 · 49.2 · 100.0 30.7 · 55.0 · 100.0
EvNet - 47.2 · 61.0 · 79.9 32.4 · 59.1 · 99.1 30.7 · 45.1 · 100.0 30.7 · 63.1 · 100.0 30.8 · 38.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 35.3 · 56.3 · 96.1 34.5 · 59.1 · 94.9 30.7 · 46.9 · 100.0 30.7 · 57.8 · 100.0 30.7 · 43.1 · 100.0
PriorNet - 31.9 · 39.4 · 65.4 31.0 · 42.0 · 88.7 30.7 · 42.9 · 99.2 30.7 · 48.3 · 100.0 30.7 · 47.2 · 100.0
DDNet - 40.1 · 52.8 · 76.5 36.5 · 56.9 · 83.9 31.1 · 51.5 · 97.3 31.0 · 57.0 · 97.8 30.7 · 48.7 · 100.0
EvNet - 34.9 · 65.0 · 99.6 30.8 · 48.8 · 99.8 30.7 · 66.6 · 100.0 30.9 · 41.1 · 93.4 31.1 · 55.3 · 100.0
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Table D.43: OOD detection based on differential entropy under FGSM uncertainty attacks
against differential entropy on ID data and OOD data. Smoothed DBU models on
MNIST. Column format: guaranteed lowest performance · empirical performance
· guaranteed highest performance (blue: normally/adversarially trained smooth
classifier is more robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

ID-Attack

Smoothed
models

PostNet 59.9 · 91.3 · 98.6 61.1 · 97.7 · 99.7 65.1 · 94.8 · 99.7 31.6 · 64.8 · 99.7 30.7 · 62.4 · 100.0 30.7 · 68.6 · 100.0
PriorNet 99.8 · 99.8 · 99.8 99.4 · 99.8 · 99.9 98.4 · 99.7 · 99.9 49.8 · 92.7 · 99.9 31.3 · 76.6 · 99.8 30.7 · 71.8 · 100.0
DDNet 98.5 · 98.6 · 98.7 95.0 · 97.6 · 98.9 74.4 · 91.9 · 98.2 31.4 · 52.0 · 98.5 30.7 · 51.8 · 100.0 30.7 · 40.2 · 100.0
EvNet 85.7 · 87.5 · 89.2 69.0 · 90.4 · 97.7 42.5 · 90.2 · 99.6 30.7 · 70.1 · 100.0 30.7 · 50.0 · 100.0 30.7 · 43.9 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 84.4 · 96.3 · 99.4 50.6 · 89.3 · 99.5 30.9 · 46.3 · 99.4 30.7 · 46.3 · 100.0 30.7 · 63.3 · 100.0
PriorNet - 99.7 · 99.9 · 100.0 98.7 · 99.8 · 100.0 84.1 · 99.2 · 100.0 30.7 · 84.6 · 100.0 30.7 · 68.1 · 100.0
DDNet - 93.6 · 96.9 · 98.5 71.0 · 89.0 · 96.9 32.3 · 50.4 · 99.0 30.7 · 51.1 · 100.0 30.7 · 54.1 · 100.0
EvNet - 58.2 · 84.5 · 94.3 40.9 · 87.2 · 99.2 30.7 · 59.3 · 100.0 30.7 · 39.7 · 100.0 30.7 · 52.7 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 58.6 · 96.1 · 99.3 59.9 · 96.2 · 99.9 31.2 · 47.6 · 95.5 30.7 · 41.8 · 100.0 30.7 · 55.4 · 100.0
PriorNet - 99.9 · 100.0 · 100.0 96.6 · 99.2 · 99.9 50.3 · 97.1 · 100.0 31.7 · 89.7 · 100.0 30.7 · 81.8 · 100.0
DDNet - 95.0 · 97.5 · 98.8 80.5 · 94.0 · 98.6 31.7 · 55.6 · 98.6 30.7 · 52.0 · 100.0 30.7 · 49.5 · 100.0
EvNet - 66.5 · 91.4 · 98.1 48.5 · 84.5 · 97.6 30.8 · 49.3 · 99.9 30.7 · 37.3 · 100.0 30.8 · 62.0 · 100.0

OOD-Attack

Smoothed
models

PostNet 59.2 · 91.3 · 97.7 57.9 · 97.2 · 99.6 61.4 · 93.8 · 99.6 31.5 · 59.1 · 99.5 30.7 · 52.4 · 100.0 30.7 · 53.9 · 100.0
PriorNet 99.7 · 99.8 · 99.8 99.4 · 99.8 · 99.9 98.3 · 99.7 · 100.0 60.4 · 96.6 · 100.0 32.8 · 88.2 · 99.9 30.7 · 86.1 · 100.0
DDNet 98.4 · 98.5 · 98.7 94.3 · 97.2 · 98.7 72.2 · 90.6 · 97.8 31.6 · 52.2 · 98.1 30.7 · 51.8 · 100.0 30.7 · 38.5 · 100.0
EvNet 83.9 · 85.7 · 88.0 63.6 · 88.6 · 97.9 40.1 · 87.6 · 99.6 30.8 · 69.2 · 100.0 30.7 · 43.5 · 100.0 30.7 · 37.4 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 84.4 · 96.2 · 99.4 49.7 · 89.1 · 99.5 30.9 · 45.6 · 99.3 30.7 · 46.2 · 100.0 30.7 · 68.1 · 100.0
PriorNet - 99.7 · 99.9 · 100.0 98.7 · 99.8 · 100.0 86.3 · 99.4 · 100.0 30.9 · 91.9 · 100.0 30.7 · 77.5 · 100.0
DDNet - 93.9 · 97.0 · 98.6 72.1 · 89.5 · 97.0 33.0 · 52.3 · 98.8 30.7 · 51.5 · 100.0 30.7 · 60.4 · 100.0
EvNet - 59.4 · 85.6 · 94.6 40.7 · 86.7 · 99.2 30.7 · 57.3 · 100.0 30.7 · 39.4 · 100.0 30.7 · 49.0 · 100.0

Smoothed
+ adv.
w.
uncert.
attacks

PostNet - 55.8 · 96.1 · 99.3 58.4 · 95.7 · 99.8 31.1 · 44.6 · 93.3 30.7 · 41.4 · 100.0 30.7 · 50.1 · 100.0
PriorNet - 99.9 · 100.0 · 100.0 96.9 · 99.3 · 99.9 60.3 · 98.2 · 100.0 33.0 · 93.5 · 100.0 30.7 · 87.8 · 100.0
DDNet - 95.3 · 97.6 · 98.9 82.3 · 94.5 · 98.7 32.1 · 56.3 · 98.5 30.7 · 48.9 · 100.0 30.7 · 43.4 · 100.0
EvNet - 65.3 · 90.3 · 97.9 46.9 · 83.1 · 97.3 30.8 · 48.8 · 99.9 30.7 · 36.6 · 100.0 30.8 · 60.7 · 100.0
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Table D.44: OOD detection based on differential entropy under FGSM uncertainty attacks
against differential entropy on ID data and OOD data. Smoothed DBU models
on Sensorless. Column format: guaranteed lowest performance · empirical per-
formance · guaranteed highest performance (blue: normally/adversarially trained
smooth classifier is more robust than the base model)..

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

ID-Attack

Smoothed
models

PostNet 49.3 · 90.4 · 99.8 30.7 · 50.3 · 100.0 30.7 · 36.6 · 100.0 49.1 · 50.0 · 74.9 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet 31.2 · 39.0 · 66.9 30.7 · 40.1 · 100.0 30.7 · 48.2 · 100.0 30.7 · 54.2 · 100.0 30.7 · 46.3 · 100.0 30.7 · 47.6 · 100.0
DDNet 31.0 · 31.5 · 32.7 30.7 · 31.2 · 100.0 30.7 · 35.3 · 100.0 30.7 · 55.7 · 100.0 30.7 · 42.4 · 100.0 30.7 · 40.4 · 100.0
EvNet 33.6 · 55.1 · 91.3 30.7 · 39.1 · 100.0 30.7 · 37.1 · 100.0 30.7 · 35.4 · 100.0 30.8 · 52.1 · 100.0 32.5 · 50.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 30.7 · 60.8 · 100.0 30.7 · 40.7 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet - 30.7 · 31.3 · 100.0 30.7 · 32.9 · 100.0 30.7 · 40.1 · 100.0 30.8 · 31.1 · 100.0 38.1 · 91.0 · 100.0
DDNet - 30.7 · 34.3 · 100.0 30.7 · 33.9 · 100.0 30.7 · 38.2 · 100.0 30.7 · 63.6 · 100.0 30.7 · 41.8 · 100.0
EvNet - 30.8 · 41.0 · 100.0 30.7 · 34.2 · 100.0 30.7 · 38.0 · 100.0 30.7 · 39.0 · 100.0 30.7 · 50.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 30.7 · 46.1 · 100.0 30.7 · 46.8 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet - 30.7 · 36.5 · 100.0 30.7 · 34.4 · 100.0 30.7 · 77.8 · 100.0 30.8 · 53.0 · 100.0 30.7 · 39.2 · 100.0
DDNet - 30.7 · 36.0 · 100.0 30.7 · 37.7 · 100.0 30.7 · 41.0 · 100.0 30.7 · 42.3 · 100.0 30.7 · 39.0 · 100.0
EvNet - 30.7 · 31.3 · 100.0 30.7 · 43.3 · 100.0 30.7 · 36.3 · 100.0 30.7 · 43.2 · 100.0 30.7 · 50.0 · 100.0

OOD-Attack

Smoothed
models

PostNet 49.3 · 90.4 · 99.8 30.8 · 75.3 · 100.0 30.7 · 68.5 · 100.0 46.1 · 50.0 · 74.8 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet 31.2 · 38.9 · 67.0 30.7 · 34.1 · 100.0 30.7 · 35.7 · 100.0 30.7 · 35.0 · 100.0 30.7 · 77.6 · 100.0 30.8 · 95.3 · 100.0
DDNet 31.0 · 31.5 · 32.7 30.7 · 30.8 · 100.0 30.7 · 33.1 · 100.0 30.7 · 65.7 · 100.0 30.7 · 71.8 · 100.0 30.7 · 71.5 · 100.0
EvNet 33.6 · 55.2 · 91.4 30.7 · 64.7 · 100.0 30.7 · 69.6 · 100.0 30.7 · 78.9 · 100.0 30.7 · 67.2 · 100.0 32.9 · 50.0 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 30.7 · 86.0 · 100.0 30.7 · 86.6 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet - 30.7 · 31.0 · 99.9 30.7 · 31.2 · 98.9 30.7 · 30.7 · 100.0 30.8 · 30.7 · 100.0 36.1 · 35.3 · 100.0
DDNet - 30.7 · 37.2 · 100.0 30.7 · 31.1 · 100.0 30.7 · 37.1 · 100.0 30.7 · 50.5 · 100.0 30.7 · 84.6 · 100.0
EvNet - 30.8 · 82.5 · 100.0 30.7 · 51.7 · 100.0 30.7 · 91.5 · 100.0 30.7 · 70.0 · 100.0 30.9 · 50.0 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 30.7 · 78.5 · 100.0 30.7 · 67.1 · 100.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0 50.0 · 50.0 · 50.0
PriorNet - 30.7 · 35.8 · 100.0 30.7 · 30.7 · 100.0 30.7 · 39.0 · 100.0 30.7 · 58.5 · 100.0 30.7 · 100.0 · 100.0
DDNet - 30.7 · 40.8 · 100.0 30.7 · 33.1 · 100.0 30.7 · 30.8 · 100.0 30.7 · 34.3 · 100.0 30.7 · 35.2 · 100.0
EvNet - 30.7 · 32.7 · 100.0 30.8 · 50.2 · 100.0 30.7 · 99.6 · 100.0 30.7 · 58.7 · 100.0 30.7 · 50.0 · 100.0
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Table D.45: OOD detection based on differential entropy under FGSM uncertainty attacks
against differential entropy on ID data and OOD data. Smoothed DBU models on
Segment. Column format: guaranteed lowest performance · empirical performance
· guaranteed highest performance (blue: normally/adversarially trained smooth
classifier is more robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0

ID-Attack

Smoothed
models

PostNet 99.6 · 99.9 · 99.9 33.1 · 78.8 · 100.0 30.8 · 46.2 · 100.0 30.8 · 34.2 · 100.0 30.8 · 41.4 · 100.0 41.5 · 50.0 · 50.2
PriorNet 30.9 · 31.0 · 31.4 30.8 · 30.8 · 39.3 30.8 · 30.8 · 94.7 30.8 · 41.2 · 100.0 30.8 · 92.7 · 100.0 30.8 · 79.9 · 100.0
DDNet 30.8 · 30.8 · 30.8 30.8 · 30.8 · 31.8 30.8 · 30.8 · 66.8 30.8 · 30.8 · 100.0 30.8 · 32.6 · 100.0 30.8 · 38.2 · 100.0
EvNet 94.9 · 97.2 · 98.2 31.0 · 73.1 · 100.0 30.8 · 72.3 · 100.0 30.8 · 57.1 · 100.0 30.8 · 63.3 · 100.0 30.8 · 49.6 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 31.0 · 62.9 · 100.0 30.8 · 47.1 · 100.0 30.8 · 90.0 · 100.0 30.8 · 50.0 · 100.0 50.0 · 50.0 · 50.0
PriorNet - 30.8 · 30.8 · 43.5 30.8 · 30.8 · 32.5 30.8 · 30.9 · 100.0 30.8 · 30.9 · 100.0 30.8 · 30.8 · 100.0
DDNet - 30.8 · 30.8 · 30.8 30.8 · 30.8 · 76.1 30.8 · 30.9 · 100.0 30.8 · 34.8 · 100.0 30.8 · 53.0 · 100.0
EvNet - 35.5 · 93.5 · 100.0 30.8 · 31.8 · 100.0 30.8 · 48.7 · 100.0 30.8 · 93.8 · 100.0 30.8 · 63.7 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 30.8 · 47.5 · 100.0 30.8 · 37.5 · 100.0 30.8 · 92.9 · 100.0 41.1 · 50.0 · 97.3 50.0 · 50.0 · 50.0
PriorNet - 30.8 · 31.1 · 60.8 30.8 · 30.8 · 32.3 30.8 · 30.8 · 90.3 30.8 · 30.8 · 100.0 30.8 · 36.3 · 100.0
DDNet - 30.8 · 30.8 · 31.0 30.8 · 30.8 · 66.8 30.8 · 30.8 · 100.0 30.8 · 31.2 · 100.0 30.8 · 57.2 · 100.0
EvNet - 30.9 · 80.3 · 100.0 30.8 · 78.1 · 100.0 30.8 · 99.4 · 100.0 30.8 · 97.7 · 100.0 30.8 · 41.5 · 100.0

OOD-Attack

Smoothed
models

PostNet 99.6 · 99.9 · 99.9 31.2 · 94.3 · 100.0 30.8 · 44.8 · 100.0 30.8 · 36.8 · 100.0 30.8 · 39.9 · 100.0 44.3 · 50.0 · 50.0
PriorNet 30.9 · 31.0 · 31.4 30.8 · 30.8 · 42.0 30.8 · 30.8 · 80.4 30.8 · 30.8 · 100.0 30.8 · 37.5 · 100.0 30.8 · 94.9 · 100.0
DDNet 30.8 · 30.8 · 30.8 30.8 · 30.8 · 31.5 30.8 · 30.8 · 48.0 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0
EvNet 94.9 · 97.2 · 98.3 31.3 · 92.1 · 100.0 30.8 · 90.8 · 100.0 30.8 · 89.6 · 100.0 30.8 · 89.8 · 100.0 30.8 · 87.3 · 100.0

Smoothed
+ adv.
label
attacks

PostNet - 30.8 · 85.3 · 100.0 30.8 · 85.9 · 100.0 30.8 · 78.8 · 100.0 30.9 · 50.0 · 100.0 50.0 · 50.0 · 50.0
PriorNet - 30.8 · 30.8 · 45.0 30.8 · 30.8 · 32.1 30.8 · 30.8 · 90.3 30.8 · 30.8 · 100.0 31.0 · 30.8 · 100.0
DDNet - 30.8 · 30.8 · 30.8 30.8 · 30.8 · 64.9 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0 30.8 · 79.4 · 100.0
EvNet - 35.4 · 95.0 · 100.0 30.8 · 35.2 · 100.0 30.8 · 51.9 · 100.0 30.8 · 80.0 · 100.0 30.8 · 99.9 · 100.0

Smoothed
+ adv.
uncert.
attacks

PostNet - 30.8 · 63.4 · 100.0 30.8 · 31.7 · 100.0 30.8 · 98.4 · 100.0 33.2 · 50.0 · 100.0 50.0 · 50.0 · 50.0
PriorNet - 30.8 · 31.1 · 58.0 30.8 · 30.8 · 34.1 30.8 · 30.8 · 66.8 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0
DDNet - 30.8 · 30.8 · 31.2 30.8 · 30.8 · 61.5 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0 30.8 · 30.8 · 100.0
EvNet - 31.0 · 89.0 · 100.0 30.8 · 96.2 · 100.0 30.8 · 99.6 · 100.0 30.8 · 99.6 · 100.0 30.8 · 69.7 · 100.0
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D.1.5 Visualization of differential entropy distributions on ID data and
OOD data

The following Figures visualize the differential entropy distribution for ID data and OOD
data for all models with standard training. We used label attacks and uncertainty attacks
for CIFAR10 and MNIST. Thus, they show how well the DBU models separate on clean
and perturbed ID data and OOD data.

Figs. D.1 and D.2 visualizes the differential entropy distribution of ID data and OOD
data under label attacks. On CIFAR10, PriorNet and DDNet can barely distinguish
between clean ID and OOD data. We observe a better ID/OOD distinction for PostNet
and EvNet for clean data. However, we do not observe for any model an increase of the
uncertainty estimates on label attacked data. Even worse, Posterior Network, PriorNet
and DDNet seem to assign higher confidence on class label attacks. On MNIST, models
show a slightly better behavior. They are capable to assign a higher uncertainty to label
attacks up to some attack radius.

Figs. D.3 to D.6 visualizes the differential entropy distribution of ID data and OOD
data under uncertainty attacks. For both CIFAR10 and MNIST data sets, we observed
that uncertainty estimations of all models can be manipulated. That is, OOD uncertainty
attacks can shift the OOD uncertainty distribution to more certain predictions, and ID
uncertainty attacks can shift the ID uncertainty distribution to less certain predictions.
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Figure D.1: Visualization of the differential entropy distribution of ID data (CIFAR10) and
OOD data (SVHN) under label attack. The first row corresponds to no attack.
The other rows correspond do increasingly stronger attack strength.
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Figure D.2: Visualization of the differential entropy distribution of ID data (MNIST) and OOD
data (KMNIST) under label attack. The first row corresponds to no attack. The
other rows correspond do increasingly stronger attack strength.
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Figure D.3: Visualization of the differential entropy distribution of ID data (CIFAR10) and
OOD data (SVHN) under OOD uncertainty attack. The first row corresponds to
no attack. The other rows correspond do increasingly stronger attack strength.
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Figure D.4: Visualization of the differential entropy distribution of ID data (CIFAR10) and
OOD data (SVHN) under ID uncertainty attack. The first row corresponds to no
attack. The other rows correspond do increasingly stronger attack strength.
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Figure D.5: Visualization of the differential entropy distribution of ID data (MNIST) and OOD
data (KMNIST) under OOD uncertainty attack. The first row corresponds to no
attack. The other rows correspond do increasingly stronger attack strength.
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Figure D.6: Visualization of the differential entropy distribution of ID data (MNIST) and OOD
data (KMNIST) under ID uncertainty attack. The first row corresponds to no
attack. The other rows correspond do increasingly stronger attack strength.
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E Uncertainty Estimation for Graph
Data

E.1 Proofs

Lemma 9. [68] Let a model be parameterized with an encoder fϕ with piecewise ReLU
activations, a decoder gψ and the density estimator P(z |ω). Let fϕ(x) = V (l)x+ a(l) be
the piecewise affine representation of the ReLU network fϕ on the finite number of affine
regions Q(l) [17]. Suppose that V (l) have independent rows and the density function
P(z |ω) has bounded derivatives, then for almost any x we have P(fϕ(δ · x) |ω) →

δ→∞
0.

i.e the evidence becomes small far from training data.

Theorem 10. Lets consider a GPN model. Let fϕ(x(v)) = V (l)x(v) + a(l) be the piece-
wise affine representation of the ReLU network fϕ on the finite number of affine regions
Q(l) [17]. Suppose that V (l) have independent rows, then for any node v and almost
any x(v) we have P(fϕ(δ · x(v)) | c;ϕ) →

δ→∞
0. Without network effects, it implies that

β
ft,(v)
c = β

agg,(v)
c →

δ→∞
0.

Proof. First, remark that each normalizing flow density in GPN fulfills the conditions
of Lemma 9. This means that P(fϕ(δ · x(v)) | c;ϕ) →

δ→∞
0 which implies βft,(v)

c →
δ→∞

0.
Further note that in the absence of network effects, the PPR diffusion has no effect on
the pseudo-counts i.e. βft,(v)

c = β
agg,(v)
c .

Theorem 11. Lets consider a GPN model. Then, given a node v, the aggregated feature
evidence αagg,(v)

0 is increasing if the feature evidence αft,(u)
0 of one of its neighbor u ∈ N (v)

is increasing.

Proof. We recall first the definition of the aggregated and feature total evidence pseudo-
count and the PPR diffusion step of GPN:

α
ft,(v)
0 =

∑
c

βft,(v)
c

α
agg,(v)
0 =

∑
c

βagg,(v)
c

βagg,(v)
c =

∑
u∈V

Πpprv,uβ
ft,(u)
c
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We combine these three equations to show a closed-form relation between the aggregated
and the feature evidence pseudo-count:

α
agg,(v)
0 =

∑
c

βagg,(v)
c

=
∑
c

∑
u∈V

Πpprv,uβ
ft,(u)
c

=
∑
u∈V

Πpprv,u

∑
c

βft,(u)
c

=
∑
u∈V

Πpprv,uα
ft,(u)
0

This shows that the aggregated evidence is the diffused feature evidence with PPR.
Hence, the aggregated evidence αagg,(v)

0 is a strictly increasing function w.r.t. to the
feature evidence of each individual neighbor αft,(u)

0 when u ∈ N (v).

Theorem 12. Lets consider a GPN model. Lets denote p̄agg, (v) = βagg,(v)/αagg,(v)
0 the dif-

fused categorical prediction for node v where c∗ is its winning class. Further, lets denote
p̄ft, (u) = βft,(v)/αft,(v)

0 the non-diffused categorical prediction for a node u ∈ V. First, there
exists normalized weights Π′

v,u such that
∑

u∈V Π
′
v,uHCat(p̄ft, (u)) ≤ HCat(p̄agg, (v)). Sec-

ond, if for any node u ∈ V the probability of p̄ft, (u)
c∗ decreases, then HCat(p̄agg, (v)) in-

creases.

Proof. We first show the first part of the theorem. To this end, we use the relation
between the aggregated and the feature evidence to derive a closed form relation between
p̄agg, (v) and p̄ft, (u).

p̄agg, (v) =
βagg,(v)

α
agg,(v)
0

=

∑
u∈V Πpprv,uβft,(u)∑
u′∈V Πpprv,u′α

ft,(u′)
0

=

∑
u∈V Πpprv,uα

ft,(u)
0 p̄ft, (u)∑

u′∈V Πpprv,u′α
ft,(u′)
0

=
∑
u∈V

Π
′
v,up̄

ft, (u)

where Π
′
v,u =

Πppr
v,uα

ft,(u)
0∑

u′∈V Πppr

v,u′α
ft,(u′)
0

. Hence, the probability vector p̄agg, (v) is a convex com-

bination of the probability vectors p̄agg, (u) of other nodes. Further, using the concavity
of the entropy function, we obtain the results:∑

u∈V
Π

′
v,uHCat(p̄ft, (u)) ≤ HCat(p̄agg, (v))

248



E.1 Proofs

Second, we show the second part of the theorem. To this end, we suppose that, for a
neighboring node u ∈ N (v), the probability of the winning class c∗ decreases and the
probability of another class c′ increases i.e. p̄

ft, (u)
c∗ − ϵ and p̄

ft, (u)
c′

+ ϵ. We define the
following univariate function:

f(ϵ) = HCat(p̄agg, (v)
ϵ )

where p̄agg, (v)
ϵ is the new aggregated probability vector of the node v after the epsilon

change of the probability vector for node u. Note that p̄agg, (v)
ϵ,c∗ =

∑
w∈V Πpprv,wp̄

ft, (w)
c∗ −

Πpprv,u ϵ and p̄agg, (v)
ϵ,c′

=
∑

w∈V Πpprv,wp̄
ft, (w)
c′

+Πpprv,u ϵ. We compute the derivative of f(ϵ):

∂f(ϵ)

∂ϵ
=
∂(p̄

agg, (v)
ϵ,c∗ log p̄

agg, (v)
ϵ,c∗ + p̄

agg, (v)
ϵ,c′

log p̄
agg, (v)
ϵ,c′

)

∂ϵ

= log

∑
w∈V Πpprv,wp̄

ft, (w)
c∗ −Πpprv,u ϵ∑

w∈V Πpprv,wp̄
ft, (w)
c′

+Πpprv,u ϵ

Hence, we note that as long as the class c∗ is winning (i.e p̄agg, (v)
ϵ,c∗ =

∑
w∈V Πpprv,wp̄

ft, (w)
c∗ −

Πpprv,u ϵ ≥
∑

w∈V Πpprv,wp̄
ft, (w)
c′

+ Πpprv,u ϵ = p̄
agg, (v)
ϵ,c′

), the function f(ϵ) is increasing. It means
that the entropy HCat(p̄agg, (v)) increases when a neighboring node disagree more with
the winning class c∗. In particular, note that the conclusion holds if the epsilon decrease
of the winning class is compensated by the probability increase of K different classes. It
would correspond to composing K decreasing functions fk(ϵk) where k ∈ {0, ...,K} and∑

k ϵk = ϵ.
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E.2 Dataset Details

We consider the citation network datasets CoraML [282, 160, 156, 373, 44], CiteSeer
[160, 156, 373], PubMed [309], CoauthorPhysics and CoauthorCS (based on the Microsoft
Academic Graph from the KDD Cup 2016 challenge) [379] as well as two co-purchase
datasets, AmazonPhotos and AmazonComputers [281, 379]. Details are presented in the
Table E.1. For all those datasets, we consider a train/val/test split of 5/15/80 using
stratified sampling. For CoraML, this corresponds to the default split of 20 training
samples per class with the difference of representing larger classes with more and smaller
ones with less. We also note that this is significantly closer to the default split than
approaches like [426, 201] introducing a 60/20/20 split. For all those datasets, we average
the results over individual predictions from 10 random splits together with 10 random
model initializations per split, i.e. 100 runs for each dataset and model. Those dataset
are part of PyTorch-Geometric and under a MIT license. Besides those datasets, we
also report results for the large dataset OGBN Arxiv dataset [196] which is based on the
Microsoft Academic Graph [427] with the public split based on publication years. Since
this makes random splits unnecessary, we report results as averages over 10 runs. This
dataset is also available under a MIT license.

CoraML CiteSeer PubMed Amazon Computers Amazon Photos Coauthor CS Coauthor Physics OGBN - Arxiv

vertices 2,995 3,327 19,717 13,752 7,650 18,333 34,493 169,343
edges 16,316 9,104 88,648 491,722 238,162 163,788 495,924 2,315,598
homophily 78.86% 73.55% 80.24% 77.22% 82.72% 80.81% 93.15% 65.42%
feature dimension 2,879 3,703 500 767 745 6,805 8,415 128
max words 176 54 122 767 745 666 335 N/A
mean words 50.47 31.61 50.11 267.24 258.81 59.57 32.97 N/A
median words 49 32 50 204 193 45 27 N/A
classes 7 6 3 10 8 15 5 40
left-out classes 3 2 1 5 3 4 2 15
fraction left-out 44.91% 33.18% 39.94% 29.52% 40.46% 40.72% 18.18% 39.11%

Table E.1: Dataset details summarizing the graph size, the homophily ratio (fraction of intra-
class edges), the number of classes, and statistics on the Bag-Of-Word features
when available. In particular, OGBN-Arxiv uses averaged skip-gram embeddings
for the nodes’ features and thus does not require bag-of-word-features. Further, we
provide the number of left-out classes and the fraction of left-out nodes for the LOC
experiments.

E.3 Metrics

ACC - Accuracy is simply the fraction of predictions ŷ(u) that correspond to the ground-
truth targets y(u) out of a set of all predictions of size N , i.e. acc = 1

N

∑
u∈V 1y(u)=ŷ(u) .

Brier - The Brier Score is computed as 1/C
∑N

v ||p(v)−y(v)||2 where y(v) represent the
one-hot encoded ground-truth label for a node v while p(v) is the predicted probability
score.

ECE - The expected calibration error on the other hand requires binning the pre-
dicted probability scores into M equally spaced bins with conf(Bm) being the average
probability score in the bin m. With acc(Bm) being the average accuracy of predictions
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in bin m, we obtain the final metric as

ECE =
M∑
m

|Bm|
n

|acc(Bm)− conf(Bm)| (E.1)

OOD - Furthermore, we use AUC-ROC and AUC-PR scores for OOD-detection
experiments. This problem is considered as a binary classification problem with the
positive targets being the OOD-nodes and the negative targets being ID-data points.
We use the same aleatoric and epistemic uncertainty measures used in [67]. For aleatoric
uncertainty measures, we use u(v)alea = −maxc p̄

(u)
c . For epistemic uncertainty, we use

u
(v)
epist = −α(v)

0 for Dirichlet-based methods and u
(v)
epist = 1∑

c Var p̄
(u)
c

for other methods.

For Dirichlet-based methods and GPs, the corresponding quantities are predicted directly.
For ensemble and dropout baselines, these quantities are computed based on the empirical
mean and empirical variance.

Note that the vacuity uncertainty measure proposed in [470] and motivated from work
on subjective logic is just the inverse transformation of α0 given by uvacuity = C

α0
. Hence,

the AUC-ROC and AUC-PR scores which evaluate the ranking of the examples lead to
the exact same final scores using uvacuity or uepist.

E.4 Model Details

We follow [379, 230, 470] and baselines from the OGBN leaderboard1 for the choice of
the architectures. By default, we use a hidden dimension of h = 64 and l = 2 layers for
parametric models on all datasets except for OGBN Arxiv. In this case, we use early
stopping with a patience of 50 and a maximum of 100, 000 epochs. For OGBN Arxiv, we
use a hidden dimension of h = 256 with l = 3 layers and use batch-norm. In this case,
we use early stopping with a patience of 200, a maximum number of 1, 000 epochs and
no weight-decay for all models. For Gaussian Processes, we implement our experiment
pipelines and models in PyTorch [341] and rely on PyTorch-Geometric [133]. For all
models, we use the Adam optimizer [219] with its default parameters and a learning rate
of 0.01. For further details, we provide the code in the supplementary material.

GPN - We use a similar backbone architecture as for APPNP [229].2 We report all
the used hyper-parameters in Table E.2. Similarly to [68], we use a certainty budget
N which scales exponentially w.r.t. the latent dimension (i.e. NH =

√
4π

H) and 5
warm-up epochs maximizing the log likelihood of the normalizing flows. Furthermore,
we use K = 10 power-iterations steps to approximate PPR scores. We do not use weight
decay for the Normalizing Flows. Those parameters have been obtained after conducting
an ablation and a hyper-parameter study on the CoraML and OGBN Arxiv datasets
(see Appendices E.5.1 and E.5.2). Finally, we recall for completeness the closed-form
of the Bayesian loss introduced in [67] when Qpost,(v) = Dir(α(v)) and P(y(v) |p(v)) =

1https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv
2Code available at https://www.daml.in.tum.de/graph-postnet
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Cat(y(v) |p(v)):

L(v) = −Ep(v)∼Qpost,(v)

[
logP(y(v) |p(v))

]
− λHQpost,(v) (E.2)

The expected likelihood term is equal to:

Ep∼Dir(α)[log Cat(y |p)] = ψ(αy)− ψ(α0) (E.3)

The entropy term is equal to:

H[Dir(α)] = logB(α) + (α0 − C)ψ(α0)−
∑
c

(αc − 1)ψ(αc) (E.4)

H L nlayers nradial ACT pdrop τ budget λ weight decay

(1) 64 10 2 10 ReLU 0.5 0.2 NH · C 1.0e− 05 0.0005
(2) 64 16 2 10 ReLU 0.5 0.1 NH 1.0e− 3 0.001
(3) 256 16 3 10 ReLU + BN 0.25 0.2 NH 1.0e− 3 0.0

Table E.2: GPN hyperparameters used in our experiments. (1) is used for Amazon Photos and
Amazon Computers datasets, (3) is used for OGBN-Arxiv dataset and (2) is used
for all other datasets. For all those settings, we furthermore use K = 10 power-
iterations steps, 5 warmup epochs for the Normalizing Flows, and no weight decay
for the normalizing flows.

GKDE - We adopt the Graph Kernel Dirichlet Estimate from [470] as a standalone
and parameterless baseline. With dv,u being the shortest path between nodes v and u
and the Gaussian transformation g(dv,u) = 1/σ

√
2π exp (−d2v,u/2σ2), a Dirichlet estimate is

obtained in the following way

α(v) = 1 + e(v)

with e(v) =
∑
u∈T

h(y(u), dv,u) and hc(y
(u), dv,u) =

{
0 y(u) ̸= c

g(dv,u) y(u) = c

Similar to [464], we use σ = 1. We would also like to point out that the computation
of this kernel requires extracting the shorted distance of each node to each labeled node
u ∈ T . Larger datasets like OGBN-Arxiv come with larger sets of labeled data with
the size |T | having a same magnitude as the number of nodes in the graph, i.e. |V|.
This approach therefore scales quadratically with the number of nodes in the graph and
therefore does not generalize well to larger datasets.

LP - Following the idea of the GKDE baseline, we propose similar Dirichlet esti-
mates by relying on Label Propagation which achieve strong results in Left-Out classes
experiments. GKDE extracts Dirichlet evidence scores by relying on node distances. We
propose taking the density of labeled nodes in neighborhoods instead. To this end, we
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define one initial conditional density per class ρ0(u | c) and diffuse them with Personalized
Page Rank i.e.

ρ0(u | c) =
{
0 u ∈ U
1

|Lc| · δy(u),c u ∈ L → ρ(v | c) =
∑
u

Πpprv,u · ρ0(u | c)

where Lc is the set of labeled nodes for class c. The diffused density ρ(v | c) is still a
valid density i.e.

∑
c

∑
u ρ(u | c) =

∑
c

∑
u ρ0(u | c) = 1. Finally, we use this diffused

conditional densities to obtain Dirichlet evidence scores in a similar fashion to the GKDE
kernel [470], i.e. α(v)

c = 1.0 + ρ(v | c). The diffusion is performed with power-iteration
similar to APPNP [229]. We use a teleport probability of τ = 0.1 and K = 10 power
iteration steps.

Gaussian Processes - We use the official implementations for MaternGGP [49]
and the re-implementation3 for GGP [315]. The re-implementation transfers the official
implementation to Tensorflow 2.0 [2] which we wrapped in our Pytorch pipeline. Since
those approaches do not scale well to large real-world datasets, we restrict to a single
random initialization. GGP only finished the experiments on CoraML and CiteSeer.
Similarly, MaternGGP did not finished the experiments on OGBN Arxiv. For recall, we
set the memory an time limits to 64 GiB and 12 hours per run. For comparison, note
that all GNN-based models require significantly less memory and finished all runs in a
couple of hours.

GKDE-SGCN - We use the hyper-parameters suggested in the original paper [470].
We set the regularization factor λ to 0.001. This factor determines the weight of the
Graph-Kernel-Dirichlet-Estimate which is key for OOD detection in graphs. Note that
we did not use different factors for OOD experiments and classification experiments
contrary to [470] since it leads to the leakage of task information. Indeed, the clean
accuracy is significantly higher for λ = 0.001 compared to λ = 0.1. For OGBN Arxiv,
we did not use teacher training as it harmed the performance. In this case, we used a
dropout probability of p = 0.5 and λ = 0.0001 after a small grid-search with the overall
architecture following the initial remarks above.

APPNP - We follow [230] and use an architecture that is comparable to other
GNN approaches. We use ReLU activations, dropout with p = 0.5, no dropout on the
adjacency matrix, a teleport probability of τ = 0.1 and K = 10 power iteration steps.
We also use a weight decay of λ = 0.0001.

VGCN - We use ReLU activations, dropout with p = 0.8, and a weight decay
of λ = 0.0001. For the larger dataset OGBN Arxiv, we use a dropout of p = 0.5.
DropEdge is similar to the Vanilla GCN model with an additional dropout on the
edges with a dropout probability of p = 0.5 on both features and edges. For evaluation
of dropout models, i.e. DropEdge and VGCN-Dropout, we use S = 10 Monte-Carlo
samples having shown a reasonable estimate with more samples not leading to a visible
improvement. For ensembles, i.e. VGCN-Ensemble, we use an ensemble of models
of 10 different random initializations. For VGCN-Energy, we follow [259] and use a
temperature of T = 1.0.

3https://github.com/FelixOpolka/GGP-TF2
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VGCN-BNN - We follow Bayes by Backprop [42] and adopt a Bayesian GNN with
uncertain weights. We use a hidden dimension of h = 32. This is equivalent to h = 64 for
other models as each weight is represented by one mean parameter µ and one variance
parameter Σ. We use 10 bayesian samples in our experiments. We follow the grid
search suggested in the original paper [42]. We finally adopt π = 0.75, σ1 = 1.0, and
σ2 = 1.0e− 6. Since this models assumes uncertain weights, we do not apply any weight
decay during training. Note that we do not report results for the larger dataset OGBN
Arxiv for this baseline.

RGCN - We follow [475] for the hyper-parameter selection. We use a hidden size of
h = 32. Again this is equivalent to h = 64 since RGCN models a mean parameter µ and
a variance parameter Σ per layer. We further use dropout p = 0.5 on the features, γ = 1,
βKL = 5.04 − 4 and βreg = 5.0e − 4. As the latter is already a weight regularization in
the loss, we do not apply weight decay.

E.5 Additional Experiments

E.5.1 Additional Experiments - Ablation Study

In this section, we evaluate the contribution of each component of GPN. To this end, we
use PostNet which first trains the feature encoder and the normalizing flows without
diffusion and PostNet-Diff which diffuses the ablation-counts only at test time. Further,
we also compare to APPNP [229] which does not model the epistemic uncertainty with
density estimation and GPN-LOG which diffuse the parameters log(β

ft,(v)
c ) instead of

β
ft,(v)
c . We observed that training with diffusion is beneficial for all metrics. Further, we

noted that diffusing log(β
ft,(v)
c ) improves accuracy and calibration to the cost of a lower

Left-Out classes detection scores. Similarly, APPNP also showed better accuracy when
diffusing logits instead of softmax outputs in the original paper [229]. Finally, APPNP
achieves significantly worse results for all OOD detection tasks showing the benefit of
modelling the epistemic uncertainty.

Model ACC ECE Ber-FT-AUC-ROC N -FT-AUC-ROC LOC-ID-ACC LOC-EPIS-AUC-ROC

APPNP 82.18± 0.08 8.46± 0.09 60.51± 0.06 16.32± 0.31 88.71± 0.03 84.75± 0.06
PostNet 52.24± 0.90 8.22± 1.39 83.09± 4.41 100.00± 0.00 69.37± 0.50 70.14± 0.93
PostNet-Diff 77.10± 0.58 30.35± 0.86 83.09± 4.41 100.00± 0.00 86.18± 0.65 78.45± 0.80
GPN 81.57± 0.18 12.77± 1.11 84.69± 4.60 100.00± 0.00 89.17± 0.39 87.34± 0.76
GPN-LOG-β 82.90± 0.26 8.77± 0.33 91.24± 2.67 100.00± 0.00 91.17± 0.59 70.88± 1.74

Table E.3: Accuracy, Calibration, and OOD-detection results for the ablation study on CoraML
for the validation split. All models use epistemic uncertainty measures except
APPNP which uses an aleatoric measure.

E.5.2 Additional Experiments - Hyper-parameter study

Besides the previously mentioned ablation study, we also performed a study on the
influences of hyperparameters. We show findings for the CoraML dataset averaging runs
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Latent Dim ACC ECE Ber-FT-AUC-ROC N -FT-AUC-ROC LOC-ID-ACC LOC-Epis-AUC-ROC

6 79.18± 0.16 10.50± 0.56 81.75± 4.74 100.00± 0.00 90.17± 0.41 88.65± 0.58
10 79.14± 0.44 10.96± 0.23 77.92± 4.44 100.00± 0.00 89.39± 0.58 87.39± 0.43
16 81.57± 0.18 12.77± 1.11 84.69± 4.60 100.00± 0.00 89.17± 0.39 87.34± 0.76

Table E.4: Accuracy, Calibration, and OOD-detection results of GPN on the CoraML dataset
with latent dimensions in [6, 10, 16].

Radial Layers ACC ECE Ber-FT-AUC-ROC N -FT-AUC-ROC LOC-ID-ACC LOC-Epis-AUC-ROC

6 80.04± 0.85 11.26± 0.48 84.26± 2.38 100.00± 0.00 90.74± 0.32 86.62± 0.25
10 81.57± 0.18 12.77± 1.11 84.69± 4.60 100.00± 0.00 89.17± 0.39 87.34± 0.76
16 75.88± 0.95 8.77± 0.32 94.06± 1.37 100.00± 0.00 89.39± 0.20 84.14± 0.12

Table E.5: Accuracy, Calibration, and OOD-detection results of GPN on the CoraML dataset
with the number of radial layers in [6, 10, 16].

with 3 different random dataset splits and 2 different random initializations. We analyzed
the influence of the latent dimension, the number of radial layers, the teleport probability,
the certainty budget, weight decay, and entropy regularization.

E.5.3 Additional Experiments - Misclassification

Work like [470] found that measures of aleatoric uncertainty are well suited for detecting
inputs which are not classified correctly. Epistemic measures of uncertainty are found
to be better suited for detecting OOD samples. Orthogonal work like [175, 335] uses
calibration to determine how reliable predictions are. We adopt this point of view while
reporting results for the task of OOD detection using epistemic measures. We also present
aleatoric measures as a reference because simple baselines without any intrinsic uncer-
tainty estimates solely can quantify uncertainty through simple aleatoric uncertainty
measures. To facilitate an easy comparison to work like [470], we also present results
for misclassification experiments in Table E.8 and in Table E.9. As in [464], we can
observe that aleatoric uncertainty mostly is better for detecting misclassified samples for
all models than epistemic uncertainty. GPN achieves a similar performance in this task
while also showing that for some datasets measures not accounting for network effects
can detect misclassified samples better than measures which account for network effects.

τteleport ACC ECE Ber-FT-AUC-ROC N -FT-AUC-ROC LOC-ID-ACC LOC-Epis-AUC-ROC

0.05 80.39± 0.33 11.98± 0.53 85.31± 2.79 100.00± 0.00 89.32± 0.41 86.63± 0.65
0.1 81.57± 0.18 12.77± 1.11 84.69± 4.60 100.00± 0.00 89.17± 0.39 87.34± 0.76
0.2 80.00± 0.30 8.27± 0.59 86.65± 1.46 100.00± 0.00 88.89± 0.31 87.30± 0.30

Table E.6: Accuracy, Calibration, and OOD-detection results of GPN on the CoraML dataset
with a teleport probability τ in [0.05, 0.1, 0.2].
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Budget ACC ECE Ber-FT-AUC-ROC N -FT-AUC-ROC LOC-ID-ACC LOC-Epis-AUC-ROC

NH 81.57± 0.18 12.77± 1.11 84.69± 4.60 100.00± 0.00 89.17± 0.39 87.34± 0.76
NH · C 79.76± 0.93 11.24± 0.89 82.82± 5.68 100.00± 0.00 88.68± 0.75 86.39± 1.27

Table E.7: Accuracy, Calibration, and OOD-detection results of GPN on the CoraML dataset
with a budget that scales exponentially w.r.t. the latent dimension and a budget
that scales exponentially w.r.t. the latent dimension and the number of classes.

E.5.4 Additional Experiments - OOD Detection

In this section, we provide additional results for the OOD detection experiments for the 8
datasets and the 13 baselines. We show the results for feature perturbations experiments
using AUC-ROC and AUC-APR scores in Table E.10 and Table E.11. We show results
for clean accuracy and calibration on the unperturbed graphs, and Left-Out classes using
AUC-ROC and AUC-APR scores in Tables E.12 and E.13. Similarly to Table 8.1, we
observe that GPN achieves the best results for the detection of feature perturbations
with uncertainty without network effects by a significant margin while still maintaining
a high accuracy. Further, GPN also performs favourably on Left-Out classes experiments
using the uncertainty measures with network effects. All these observations show that
GPN disentangles well between uncertainty without and with network effects while being
robust against feature perturbations.

E.5.5 Additional Experiments - Attributed Graph Shifts

In this section, we provide additional results for the attributed graph shifts experiments.
We show the results of the feature shifts and the results of the edge shifts in Figs. E.2
to E.9. The feature shifts include Bernoulli and Normal shifts (i.e. x(v) ∼ Ber(0.5)
and x(v) ∼ N (0,1)) with up to 99% of the nodes being perturbed. The edge shifts in-
clude randomly moved edges and DICE attacks [431] where we perturb up to 99% of the
edges in the graph. The results are consistent with the observations made in Section 8.4.
For feature shifts, we observe that GPN is more robust to feature perturbations than
competitors for accuracy and calibration similarly to results Fig. 8.3. GPN is partic-
ularly robust against unit Gaussians perturbations. Further, as desired, GPN is more
epistemically uncertain when features of a larger fraction of nodes are perturbed. For
edge shifts, all models including GPN become more aleatorically uncertain. This aligns
with des. 8.3.3. Furthermore, the average epistemic uncertainty of GPN remains con-
stant which is reasonable since the average evidence of a node’s neighborhood remains
constant. We observed that the exponential activation in the last layer of GKDE-GCN
leads to numerical instabilities under perturbations.

E.5.6 Additional Experiments - Qualitative Evaluation

In this section, we provide additional qualitative evaluations. Therefore, we present the
abstracts of the most epistemically uncertain papers and the most epistemically certain
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Dataset Model Alea w/ Net Epis w/ Net Epis w/o Net Alea w/ Net Epis w/ Net Epis w/o Net
misclassification AUC-ROC misclassification AUC-PR

CoraML

APPNP 83.64± 0.08 n.a. n.a. 48.39± 0.19 n.a. n.a.
VGCN 81.02± 0.07 n.a. n.a. 48.30± 0.23 n.a. n.a.
VGCN-Dropout 81.42± 0.06 65.52± 0.28 n.a. 49.34± 0.17 26.11± 0.21 n.a.
VGCN-Energy 81.02± 0.07 n.a. n.a. 48.30± 0.23 n.a. n.a.
VGCN-Ensemble 81.12± 0.17 72.62± 0.19 n.a. 49.16± 0.59 31.88± 0.29 n.a.
VGCN-BNN 80.64± 0.10 65.40± 0.48 n.a. 47.49± 0.26 26.70± 0.33 n.a.
GKDE-GCN 80.80± 0.14 76.83± 0.17 n.a. 49.61± 0.47 45.87± 0.48 n.a.
GPN 81.19± 0.13 78.10± 0.26 77.46± 0.24 49.51± 0.26 44.42± 0.32 43.31± 0.41

CiteSeer

APPNP 73.55± 0.08 n.a. n.a. 51.70± 0.15 n.a. n.a.
VGCN 74.64± 0.09 n.a. n.a. 54.32± 0.18 n.a. n.a.
VGCN-Dropout 74.81± 0.11 64.09± 0.16 n.a. 55.12± 0.23 39.41± 0.19 n.a.
VGCN-Energy 74.64± 0.09 n.a. n.a. 54.32± 0.18 n.a. n.a.
VGCN-Ensemble 74.42± 0.26 68.15± 0.23 n.a. 53.28± 0.33 43.30± 0.30 n.a.
VGCN-BNN 73.28± 0.11 61.68± 0.29 n.a. 54.62± 0.21 37.99± 0.24 n.a.
GKDE-GCN 75.45± 0.11 73.83± 0.12 n.a. 54.78± 0.19 53.57± 0.20 n.a.
GPN 75.89± 0.15 74.16± 0.17 72.50± 0.12 60.78± 0.32 59.32± 0.40 52.10± 0.18

PubMed

APPNP 80.98± 0.02 n.a. n.a. 37.79± 0.08 n.a. n.a.
VGCN 81.16± 0.02 n.a. n.a. 38.24± 0.08 n.a. n.a.
VGCN-Dropout 80.46± 0.04 72.69± 0.09 n.a. 38.63± 0.11 25.90± 0.09 n.a.
VGCN-Energy 81.16± 0.02 n.a. n.a. 38.24± 0.08 n.a. n.a.
VGCN-Ensemble 81.31± 0.06 79.30± 0.08 n.a. 38.06± 0.33 31.73± 0.19 n.a.
VGCN-BNN 79.96± 0.07 72.63± 0.45 n.a. 39.31± 0.08 27.59± 0.39 n.a.
GKDE-GCN 80.95± 0.09 73.99± 0.27 n.a. 39.64± 0.10 33.19± 0.14 n.a.
GPN 80.46± 0.13 75.38± 0.25 80.48± 0.13 40.74± 0.19 35.11± 0.11 51.12± 0.52

Table E.8: Misclassification Scores on the clean graphs given as AUC-ROC and AUC-PR scores.
AUC-ROC and AUC-APR scores are given as [Alea w/ Net] / [Epist w/ Net] / [Epist
w/o Net]. n.a. means either model or metric not applicable. Bold numbers indicate
the best model across all the uncertainty metrics for each dataset.

papers in CoraML in Table E.14 and Table E.15. Most epistemically certain papers
shows significantly more reasonable abstracts compared to most epistemically uncertain
papers.

Additionally, we provide visualizations of the latent space of GPN on the clean CoraML
graph in Fig. E.10, and on the CoraML graph where 10% of the nodes are perturbed
with the unit Gaussian perturbation in Fig. E.10, and on Left-Out classes experiments
in Fig. E.12. We used T-SNE projections for 2D visualizations. We observed that the
latent representations correlate with the class assignment. Further, GPN is capable to
separate nodes with perturbed features in the latent space. The nodes with perturbed
features are assigned high uncertainty without network effects but low uncertainty with
network effects. This stresses the capacity of GPN to recover from feature perturbations.

E.5.7 Additional Experiments - Inference & Training Time

We provide a comparison of inference times for most of the datasets and models under
consideration in Table E.16 and a comparison of training times in Table E.17. GPN
needs a single pass for uncertainty estimation but requires the additional evaluation
of one normalizing flow per class compared to APPNP. Hence, GPN brings a small
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computational overhead for uncertainty estimation during inference but is significantly
faster than ensemble or dropout approaches. Furthermore, GPN is usually converging
relatively fast during training and does not require a pre-computing kernel values. In
contrast, GKDE-GCN requires the computation of the underlying Graph Kernel with a
complexity of O(N2) where N is the number of nodes in the graph (see Appendix E.4).
Finally, GPN is significantly more efficient than dropout or ensemble approaches as it
does not require training or evaluation of multiple models.

E.6 Desiderata Diagram

We provide a larger version of Fig. 8.1 to visualize the distinction between aleatoric and
epistemic uncertainty and the distinction between uncertainty without and with network
effects in Fig. E.13. These two distinctions are used in the desiderata in Section 8.3.1.

258



E.6 Desiderata Diagram

10 5 10 4 10 3 10 2 10 1 100

Entropy Regularization

0.3

0.4

0.5

0.6

0.7

0.8

AC
C

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Weight Decay

0.78

0.79

0.80

0.81

AC
C

10 5 10 4 10 3 10 2 10 1 100

Entropy Regularization

0.075

0.100

0.125

0.150

0.175

0.200

EC
E

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Weight Decay

0.10

0.11

0.12

EC
E

10 5 10 4 10 3 10 2 10 1 100

Entropy Regularization
0.0

0.2

0.4

0.6

0.8

1.0

Be
r-F

T-
AU

RO
C

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Weight Decay

0.84

0.86

0.88

Be
r-F

T-
AU

RO
C

10 5 10 4 10 3 10 2 10 1 100

Entropy Regularization

0.985

0.990

0.995

1.000

N-
FT

-A
UR

OC

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Weight Decay

0.96

0.98

1.00

1.02

1.04

N-
FT

-A
UR

OC

10 5 10 4 10 3 10 2 10 1 100

Entropy Regularization

0.84

0.86

0.88

LO
C-

AC
C

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Weight Decay

0.889

0.890

0.891

0.892

0.893

LO
C-

AC
C

10 5 10 4 10 3 10 2 10 1 100

Entropy Regularization

0.85

0.86

0.87

0.88

0.89

LO
C-

Ep
is-

Au
ro

c

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Weight Decay

0.875

0.880

0.885

LO
C-

Ep
is-

Au
ro

c

Figure E.1: Accuracy, Calibration, and OOD-detection results of GPN on CoraML for the
entropy regularization factor and the weight decay.
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Dataset Model Alea w/ Net Epis w/ Net Epis w/o Net Alea w/ Net Epis w/ Net Epis w/o Net
misclassification AUC-ROC misclassification AUC-PR

Amazon
Computers

APPNP 79.75± 0.03 n.a. n.a. 45.10± 0.11 n.a. n.a.
VGCN 82.08± 0.03 n.a. n.a. 45.52± 0.12 n.a. n.a.
VGCN-Dropout 82.70± 0.04 72.02± 0.11 n.a. 47.19± 0.17 31.45± 0.14 n.a.
VGCN-Energy 82.08± 0.03 n.a. n.a. 45.52± 0.12 n.a. n.a.
VGCN-Ensemble 82.05± 0.06 67.62± 0.44 n.a. 45.40± 0.24 26.33± 0.37 n.a.
VGCN-BNN 82.15± 0.17 48.65± 0.82 n.a. 69.61± 0.42 30.87± 0.43 n.a.
GKDE-GCN 79.66± 0.19 73.66± 0.15 n.a. 63.26± 0.57 56.93± 0.54 n.a.
GPN 82.20± 0.10 77.58± 0.16 70.06± 0.19 47.93± 0.42 41.80± 0.44 28.70± 0.51

Amazon
Photos

APPNP 85.74± 0.06 n.a. n.a. 37.00± 0.20 n.a. n.a.
VGCN 87.94± 0.05 n.a. n.a. 48.35± 0.19 n.a. n.a.
VGCN-Dropout 89.52± 0.05 78.46± 0.10 n.a. 50.27± 0.19 23.08± 0.12 n.a.
VGCN-Energy 87.94± 0.05 n.a. n.a. 48.35± 0.19 n.a. n.a.
VGCN-Ensemble 88.08± 0.16 76.05± 0.54 n.a. 49.40± 0.67 24.13± 0.67 n.a.
VGCN-BNN 84.17± 0.19 51.84± 0.66 n.a. 51.05± 0.64 18.69± 0.55 n.a.
GKDE-GCN 84.11± 0.29 75.07± 0.50 n.a. 54.35± 0.58 45.43± 0.68 n.a.
GPN 87.21± 0.10 83.38± 0.30 79.93± 0.23 46.32± 0.39 37.07± 0.60 29.90± 0.71

Coauthor
CS

APPNP 89.92± 0.03 n.a. n.a. 37.98± 0.12 n.a. n.a.
VGCN 89.46± 0.03 n.a. n.a. 38.86± 0.10 n.a. n.a.
VGCN-Dropout 88.46± 0.04 79.03± 0.08 n.a. 38.06± 0.12 17.98± 0.09 n.a.
VGCN-Energy 89.46± 0.03 n.a. n.a. 38.86± 0.10 n.a. n.a.
VGCN-Ensemble 89.51± 0.08 86.61± 0.09 n.a. 38.74± 0.23 30.60± 0.38 n.a.
VGCN-BNN 89.01± 0.06 78.40± 0.23 n.a. 38.17± 0.17 19.06± 0.20 n.a.
GKDE-GCN 89.24± 0.05 80.98± 0.13 n.a. 39.30± 0.27 30.52± 0.25 n.a.
GPN 85.72± 0.15 81.56± 0.29 94.41± 0.11 46.12± 0.32 38.98± 0.28 77.26± 0.45

Coauthor
Physics

APPNP 93.27± 0.02 n.a. n.a. 38.14± 0.09 n.a. n.a.
VGCN 92.86± 0.02 n.a. n.a. 37.19± 0.10 n.a. n.a.
VGCN-Dropout 92.28± 0.03 89.85± 0.04 n.a. 35.47± 0.11 23.70± 0.08 n.a.
VGCN-Energy 92.86± 0.02 n.a. n.a. 37.19± 0.10 n.a. n.a.
VGCN-Ensemble 92.95± 0.07 91.92± 0.07 n.a. 37.96± 0.28 28.44± 0.21 n.a.
VGCN-BNN 92.44± 0.09 89.03± 0.27 n.a. 36.79± 0.21 25.11± 0.49 n.a.
GKDE-GCN 92.77± 0.02 86.12± 0.06 n.a. 37.08± 0.11 25.13± 0.10 n.a.
GPN 91.14± 0.04 89.63± 0.07 93.89± 0.05 41.43± 0.13 35.64± 0.16 59.03± 0.28

OGBN
Arxiv

APPNP 77.55± 0.05 n.a. n.a. 54.57± 0.14 n.a. n.a.
VGCN 77.89± 0.05 n.a. n.a. 54.87± 0.12 n.a. n.a.
VGCN-Dropout 78.11± 0.05 71.74± 0.14 n.a. 55.40± 0.13 43.43± 0.18 n.a.
VGCN-Energy 77.89± 0.05 n.a. n.a. 54.87± 0.12 n.a. n.a.
VGCN-Ensemble 78.14 71.48 n.a. 53.95 42.87 n.a.
GKDE-GCN 77.47± 0.33 77.55± 0.33 n.a. 61.62± 1.00 62.33± 1.00 n.a.
GPN 75.44± 0.19 72.71± 0.28 61.45± 0.49 55.64± 0.37 52.99± 0.49 39.37± 0.42

Table E.9: Misclassification Scores on the clean graphs given as AUC-ROC and AUC-PR scores.
AUC-ROC and AUC-APR scores are given as [Alea w/ Net] / [Epist w/ Net] / [Epist
w/o Net]. n.a. means either model or metric not applicable. Bold numbers indicate
the best model across all the uncertainty metrics for each dataset.
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E.6 Desiderata Diagram

x(v) ∼ Ber(0.5) x(v) ∼ N (0, 1)

Model OOD-ACC OOD-AUC-ROC OOD-ACC OOD-AUC-ROC
Alea w/ Net Epist w/ Net Epist w/o Net Alea w/ Net Epist w/ Net Epist w/o Net

CoraML

APPNP 80.85±0.09 64.41±0.02 n.a. n.a. 17.99±0.36 7.98±0.13 n.a. n.a.
VGCN 78.90±0.09 63.68±0.03 n.a. n.a. 18.37±0.31 9.34±0.13 n.a. n.a.
RGCN 79.78±0.16 70.30±0.05 n.a. n.a. 33.37±0.35 32.13±0.28 n.a. n.a.
VGCN-Dropout 77.76±0.15 62.06±0.06 50.38±0.12 n.a. 18.28±0.35 40.53±0.25 71.06±0.29 n.a.
DropEdge 77.40±0.14 63.10±0.04 52.84±0.10 n.a. 16.60±0.26 23.10±0.29 46.82±0.41 n.a.
VGCN-Energy 78.90±0.09 63.68±0.03 66.26±0.04 n.a. 18.37±0.31 9.34±0.13 0.32±0.03 n.a.
VGCN-Ensemble 78.00±0.00 63.58±0.00 56.81±0.03 n.a. 21.00±0.00 33.72±0.02 64.92±0.08 n.a.
VGCN-BNN 77.01±0.16 64.74±0.07 62.45±0.37 n.a. 18.79±0.31 34.85±0.50 67.43±0.71 n.a.
GKDE-GCN 76.40±0.33 61.74±0.05 63.15±0.10 n.a. 16.86±0.35 40.03±0.46 1.42±0.15 n.a.
GPN 80.98±0.22 57.99±0.12 55.23±0.16 89.47±0.86 81.53±0.23 55.96±0.08 56.51±0.21 100.00±0.00

CiteSeer

APPNP 73.14±0.12 65.43±0.02 n.a. n.a. 20.13±0.22 4.78±0.11 n.a. n.a.
VGCN 71.30±0.13 65.27±0.03 n.a. n.a. 17.55±0.36 5.48±0.11 n.a. n.a.
RGCN 72.29±0.09 71.99±0.04 n.a. n.a. 28.15±0.40 23.28±0.41 n.a. n.a.
VGCN-Dropout 69.80±0.19 63.47±0.09 51.82±0.12 n.a. 19.60±0.28 31.79±0.27 72.62±0.34 n.a.
DropEdge 72.00±0.23 65.00±0.05 54.71±0.16 n.a. 18.00±0.47 17.80±0.25 44.78±0.52 n.a.
VGCN-Energy 71.30±0.13 65.27±0.03 68.16±0.06 n.a. 17.55±0.36 5.48±0.11 0.03±0.01 n.a.
VGCN-Ensemble 72.00±0.00 65.20±0.00 51.81±0.01 n.a. 18.00±0.00 21.22±0.01 52.80±0.02 n.a.
VGCN-BNN 70.38±0.15 65.52±0.09 49.33±0.70 n.a. 16.27±0.33 23.24±0.86 60.07±1.69 n.a.
GKDE-GCN 72.75±0.18 66.70±0.09 67.29±0.06 n.a. 18.79±0.33 35.46±0.71 0.21±0.04 n.a.
GPN 65.00±0.43 59.47±0.16 55.95±0.18 80.06±1.18 66.70±0.23 51.65±0.16 65.58±0.26 100.00±0.00

PubMed

APPNP 82.80±0.10 62.22±0.02 n.a. n.a. 40.38±0.22 5.41±0.22 n.a. n.a.
VGCN 82.49±0.10 62.16±0.06 n.a. n.a. 37.80±0.40 6.54±0.23 n.a. n.a.
RGCN 83.75±0.12 64.87±0.05 n.a. n.a. 47.82±0.36 29.60±0.34 n.a. n.a.
VGCN-Dropout 82.26±0.06 60.39±0.10 51.80±0.14 n.a. 37.79±0.45 23.86±0.35 38.16±0.53 n.a.
DropEdge 82.70±0.12 62.21±0.10 55.48±0.18 n.a. 36.36±0.47 13.32±0.35 21.68±0.53 n.a.
VGCN-Energy 82.49±0.10 62.16±0.06 65.38±0.07 n.a. 37.80±0.40 6.54±0.23 2.97±0.10 n.a.
VGCN-Ensemble 82.00±0.00 62.42±0.00 60.34±0.10 n.a. 39.10±0.10 11.74±0.03 18.79±0.04 n.a.
VGCN-BNN 82.30±0.14 62.36±0.15 59.35±0.99 n.a. 37.56±0.54 12.74±0.34 27.56±0.64 n.a.
GKDE-GCN 82.54±0.11 60.62±0.11 63.00±0.17 n.a. 37.77±0.48 24.07±0.43 3.43±0.13 n.a.
GPN 81.54±0.39 57.05±0.08 58.87±0.14 84.07±0.55 81.73±0.34 53.43±0.04 60.94±0.13 100.00±0.00

Amazon
Computers

APPNP 75.00±0.09 67.83±0.02 n.a. n.a. 18.25±0.46 5.94±0.11 n.a. n.a.
VGCN 81.54±0.08 58.03±0.02 n.a. n.a. 20.38±0.29 24.56±0.33 n.a. n.a.
RGCN 61.39±0.39 57.92±0.04 n.a. n.a. 39.60±0.45 33.60±0.35 n.a. n.a.
VGCN-Dropout 81.79±0.10 57.15±0.04 55.52±0.08 n.a. 21.52±0.36 40.32±0.29 66.21±0.33 n.a.
DropEdge 81.20±0.08 57.88±0.02 55.51±0.07 n.a. 21.75±0.36 33.10±0.26 57.47±0.37 n.a.
VGCN-Energy 81.54±0.08 58.03±0.02 58.66±0.03 n.a. 20.38±0.29 24.56±0.33 4.82±0.09 n.a.
VGCN-Ensemble 81.00±0.00 58.22±0.01 53.24±0.12 n.a. 23.60±0.16 28.97±0.05 66.42±0.19 n.a.
VGCN-BNN 61.25±0.17 56.01±0.11 51.16±0.83 n.a. 28.54±0.47 21.72±0.19 56.41±0.60 n.a.
GKDE-GCN 59.83±0.73 56.38±0.12 55.91±0.05 n.a. 28.46±0.36 26.48±0.45 16.10±0.53 n.a.
GPN 79.70±0.46 61.21±0.11 61.07±0.11 86.15±0.28 79.87±0.46 60.42±0.12 61.56±0.12 100.00±0.00

Amazon
Photos

APPNP 88.12±0.10 65.02±0.03 n.a. n.a. 19.37±0.45 8.42±0.29 n.a. n.a.
VGCN 83.91±0.08 57.91±0.02 n.a. n.a. 21.40±0.49 31.07±0.34 n.a. n.a.
RGCN 79.50±0.72 57.22±0.04 n.a. n.a. 42.38±0.40 32.02±0.31 n.a. n.a.
VGCN-Dropout 83.86±0.18 56.85±0.04 55.04±0.08 n.a. 22.29±0.55 49.11±0.31 66.74±0.35 n.a.
DropEdge 85.69±0.15 57.32±0.04 55.31±0.07 n.a. 22.90±0.43 39.14±0.20 56.18±0.21 n.a.
VGCN-Energy 83.91±0.08 57.91±0.02 59.07±0.02 n.a. 21.40±0.49 31.07±0.34 6.42±0.07 n.a.
VGCN-Ensemble 84.40±0.16 57.86±0.01 56.01±0.19 n.a. 20.30±0.21 44.14±0.05 69.01±0.14 n.a.
VGCN-BNN 82.00±0.19 56.78±0.09 49.21±0.58 n.a. 25.84±0.46 23.16±0.37 59.31±0.73 n.a.
GKDE-GCN 73.17±0.94 57.01±0.10 58.00±0.05 n.a. 24.04±0.42 24.45±0.62 9.82±0.36 n.a.
GPN 87.47±0.20 56.25±0.16 60.52±0.18 75.24±0.63 88.29±0.20 51.89±0.09 61.89±0.18 100.00±0.00

Coauthor
CS

APPNP 89.28±0.07 72.01±0.02 n.a. n.a. 12.58±0.33 23.09±0.31 n.a. n.a.
VGCN 89.33±0.05 67.65±0.02 n.a. n.a. 13.29±0.22 30.13±0.32 n.a. n.a.
RGCN 90.50±0.06 71.13±0.02 n.a. n.a. 41.67±0.35 52.81±0.21 n.a. n.a.
VGCN-Dropout 88.96±0.09 65.91±0.05 60.56±0.07 n.a. 13.31±0.32 67.56±0.26 85.81±0.22 n.a.
DropEdge 89.44±0.07 67.94±0.01 63.68±0.06 n.a. 11.65±0.28 49.77±0.33 70.31±0.49 n.a.
VGCN-Energy 89.33±0.05 67.65±0.02 70.14±0.02 n.a. 13.29±0.22 30.13±0.32 0.89±0.06 n.a.
VGCN-Ensemble 89.00±0.00 67.64±0.01 64.41±0.08 n.a. 11.00±0.00 60.89±0.11 85.09±0.32 n.a.
VGCN-BNN 88.16±0.10 67.09±0.12 59.69±0.35 n.a. 12.48±0.25 67.00±0.54 87.27±0.47 n.a.
GKDE-GCN 88.14±0.14 67.69±0.07 70.08±0.14 n.a. 9.71±0.29 32.67±0.51 0.23±0.03 n.a.
GPN 83.99±0.31 57.66±0.10 62.08±0.18 97.84±0.23 83.96±0.31 57.04±0.09 62.39±0.18 100.00±0.00

Coauthor
Physics

APPNP 96.16±0.08 67.63±0.02 n.a. n.a. 28.71±0.40 24.97±0.20 n.a. n.a.
VGCN 96.00±0.00 60.30±0.02 n.a. n.a. 33.26±0.67 40.19±0.42 n.a. n.a.
RGCN 94.69±0.07 65.84±0.03 n.a. n.a. 58.56±0.36 52.91±0.32 n.a. n.a.
VGCN-Dropout 95.90±0.05 58.97±0.03 57.64±0.05 n.a. 32.52±0.60 55.07±0.48 61.85±0.50 n.a.
DropEdge 95.90±0.03 60.40±0.04 59.09±0.05 n.a. 30.53±0.58 43.30±0.43 51.07±0.44 n.a.
VGCN-Energy 96.00±0.00 60.30±0.02 61.59±0.02 n.a. 33.26±0.67 40.19±0.42 11.45±0.22 n.a.
VGCN-Ensemble 96.00±0.00 60.29±0.00 59.05±0.01 n.a. 31.70±0.21 52.08±0.10 68.48±0.10 n.a.
VGCN-BNN 95.65±0.07 60.99±0.19 56.95±0.35 n.a. 32.95±0.60 62.53±0.75 71.96±0.73 n.a.
GKDE-GCN 96.61±0.05 60.46±0.01 60.99±0.07 n.a. 28.84±0.31 29.12±0.33 2.46±0.10 n.a.
GPN 92.70±0.11 59.92±0.08 58.62±0.18 99.15±0.05 92.70±0.11 58.66±0.08 59.00±0.18 100.00±0.00

OGBN
Arxiv

APPNP 63.50±0.95 62.51±0.51 n.a. n.a. 51.10±1.12 59.92±0.64 n.a. n.a.
VGCN 65.70±0.47 46.16±0.13 n.a. n.a. 51.30±0.75 53.83±0.59 n.a. n.a.
VGCN-Dropout 65.30±0.70 48.11±0.23 50.64±0.20 n.a. 49.90±0.77 60.10±0.68 62.87±0.29 n.a.
VGCN-Energy 65.70±0.47 46.16±0.13 48.54±0.20 n.a. 51.30±0.75 53.83±0.59 48.53±0.48 n.a.
VGCN-Ensemble 67.00 45.99 47.41 n.a. 49.00 59.94 66.44 n.a.
GKDE-GCN 65.20±0.49 50.98±0.23 51.31±0.22 n.a. 45.40±0.62 53.94±1.41 55.28±1.69 n.a.
GPN 65.50±0.70 51.49±0.37 55.82±0.30 93.05±3.44 65.50±0.70 51.43±0.32 55.85±0.30 95.54±0.89

Table E.10: Accuracy and OOD detection scores on Bernoulli and unit Gaussian feature per-
turbations using AUC-ROC. OOD-AUC-ROC scores are given as [Alea w/ Net] /
[Epist w/ Net] / [Epist w/o Net]. n.a. means either model or metric not applicable.
Bold numbers indicate best results for Accuracy and OOD detection.
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E Uncertainty Estimation for Graph Data

x(v) ∼ Ber(0.5) x(v) ∼ N (0, 1)

Model OOD-ACC OOD-AUC-PR OOD-ACC OOD-AUC-PR
Alea w/ Net Epist w/ Net Epist w/o Net Alea w/ Net Epist w/ Net Epist w/o Net

CoraML

APPNP 80.85±0.09 11.86±0.06 n.a. n.a. 17.99±0.36 2.55±0.00 n.a. n.a.
VGCN 78.90±0.09 11.92±0.07 n.a. n.a. 18.37±0.31 2.57±0.00 n.a. n.a.
VGCN-Dropout 77.76±0.15 12.51±0.21 4.58±0.01 n.a. 18.28±0.35 3.91±0.02 62.19±0.39 n.a.
DropEdge 77.40±0.14 10.67±0.09 4.90±0.01 n.a. 16.60±0.26 2.93±0.01 42.96±0.39 n.a.
VGCN-Energy 78.90±0.09 11.92±0.07 10.43±0.08 n.a. 18.37±0.31 2.57±0.00 2.50±0.00 n.a.
VGCN-Ensemble 78.00±0.00 11.78±0.00 5.38±0.00 n.a. 21.00±0.00 3.43±0.00 60.47±0.09 n.a.
VGCN-BNN 77.01±0.16 10.94±0.09 7.75±0.15 n.a. 18.79±0.31 3.49±0.03 62.75±0.65 n.a.
RGCN 79.78±0.16 16.43±0.14 n.a. n.a. 33.37±0.35 4.82±0.14 n.a. n.a.
GKDE-GCN 76.40±0.33 9.55±0.10 9.79±0.09 n.a. 16.86±0.35 34.20±0.53 2.64±0.06 n.a.
GPN 80.98±0.22 6.96±0.07 5.63±0.03 25.80±1.43 81.53±0.23 6.63±0.07 6.21±0.08 100.00±0.00

CiteSeer

APPNP 73.14±0.12 7.49±0.01 n.a. n.a. 20.13±0.22 2.27±0.00 n.a. n.a.
VGCN 71.30±0.13 8.92±0.03 n.a. n.a. 17.55±0.36 2.28±0.00 n.a. n.a.
RGCN 72.29±0.09 14.49±0.14 n.a. n.a. 28.15±0.40 3.26±0.07 n.a. n.a.
VGCN-Dropout 69.80±0.19 8.07±0.04 4.26±0.01 n.a. 19.60±0.28 2.97±0.01 64.29±0.37 n.a.
DropEdge 72.00±0.23 9.34±0.10 4.60±0.02 n.a. 18.00±0.47 2.48±0.01 42.23±0.50 n.a.
VGCN-Energy 71.30±0.13 8.92±0.03 9.09±0.05 n.a. 17.55±0.36 2.28±0.00 2.26±0.00 n.a.
VGCN-Ensemble 72.00±0.00 8.76±0.00 4.34±0.00 n.a. 18.00±0.00 2.58±0.00 49.06±0.01 n.a.
VGCN-BNN 70.38±0.15 8.86±0.07 5.14±0.16 n.a. 16.27±0.33 2.68±0.02 57.70±1.51 n.a.
GKDE-GCN 72.75±0.18 8.57±0.06 9.82±0.11 n.a. 18.79±0.33 33.75±0.72 2.27±0.01 n.a.
GPN 65.00±0.43 6.27±0.09 5.37±0.06 14.25±1.03 66.70±0.23 4.86±0.03 29.98±0.62 100.00±0.00

PubMed

APPNP 82.80±0.10 1.08±0.00 n.a. n.a. 40.38±0.22 0.40±0.00 n.a. n.a.
VGCN 82.49±0.10 1.29±0.01 n.a. n.a. 37.80±0.40 0.40±0.00 n.a. n.a.
RGCN 83.75±0.12 1.42±0.03 n.a. n.a. 47.82±0.36 0.64±0.02 n.a. n.a.
VGCN-Dropout 82.26±0.06 1.41±0.03 0.77±0.00 n.a. 37.79±0.45 0.48±0.00 25.20±0.50 n.a.
DropEdge 82.70±0.12 1.25±0.01 0.93±0.01 n.a. 36.36±0.47 0.42±0.00 15.48±0.51 n.a.
VGCN-Energy 82.49±0.10 1.29±0.01 1.50±0.01 n.a. 37.80±0.40 0.40±0.00 0.58±0.04 n.a.
VGCN-Ensemble 82.00±0.00 1.46±0.01 1.05±0.00 n.a. 39.10±0.10 0.42±0.00 13.71±0.03 n.a.
VGCN-BNN 82.30±0.14 1.28±0.01 1.77±0.16 n.a. 37.56±0.54 0.42±0.00 15.60±0.60 n.a.
GKDE-GCN 82.54±0.11 1.31±0.03 1.31±0.01 n.a. 37.77±0.48 16.95±0.49 0.92±0.08 n.a.
GPN 81.54±0.39 0.85±0.00 1.01±0.01 3.31±0.24 81.73±0.34 0.78±0.00 1.27±0.01 99.98±0.00

Amazon
Computers

APPNP 75.00±0.09 2.18±0.01 n.a. n.a. 18.25±0.46 0.56±0.00 n.a. n.a.
VGCN 81.54±0.08 1.43±0.00 n.a. n.a. 20.38±0.29 0.67±0.00 n.a. n.a.
RGCN 61.39±0.39 1.40±0.00 n.a. n.a. 39.60±0.45 0.86±0.02 n.a. n.a.
VGCN-Dropout 81.79±0.10 1.38±0.00 1.24±0.00 n.a. 21.52±0.36 0.88±0.01 20.49±0.27 n.a.
DropEdge 81.20±0.08 1.46±0.00 1.23±0.00 n.a. 21.75±0.36 0.77±0.00 16.09±0.22 n.a.
VGCN-Energy 81.54±0.08 1.43±0.00 1.44±0.00 n.a. 20.38±0.29 0.67±0.00 0.56±0.00 n.a.
VGCN-Ensemble 81.00±0.00 1.44±0.00 1.13±0.00 n.a. 23.60±0.16 0.71±0.00 51.48±0.16 n.a.
VGCN-BNN 61.25±0.17 1.35±0.03 1.29±0.05 n.a. 28.54±0.47 0.64±0.00 21.82±0.68 n.a.
GKDE-GCN 59.83±0.73 1.35±0.01 1.32±0.00 n.a. 28.46±0.36 2.96±0.14 1.86±0.16 n.a.
GPN 79.70±0.46 1.55±0.01 1.55±0.01 4.26±0.08 79.87±0.46 2.56±0.01 2.77±0.03 100.00±0.00

Amazon
Photos

APPNP 88.12±0.10 5.44±0.05 n.a. n.a. 19.37±0.45 1.02±0.00 n.a. n.a.
VGCN 83.91±0.08 3.61±0.07 n.a. n.a. 21.40±0.49 1.39±0.01 n.a. n.a.
RGCN 79.50±0.72 3.33±0.04 n.a. n.a. 42.38±0.40 1.85±0.05 n.a. n.a.
VGCN-Dropout 83.86±0.18 3.12±0.04 2.19±0.01 n.a. 22.29±0.55 2.09±0.02 21.31±0.24 n.a.
DropEdge 85.69±0.15 3.56±0.05 2.25±0.01 n.a. 22.90±0.43 1.63±0.01 16.54±0.20 n.a.
VGCN-Energy 83.91±0.08 3.61±0.07 5.32±0.07 n.a. 21.40±0.49 1.39±0.01 1.01±0.00 n.a.
VGCN-Ensemble 84.40±0.16 3.27±0.02 2.27±0.02 n.a. 20.30±0.21 1.87±0.00 59.99±0.19 n.a.
VGCN-BNN 82.00±0.19 3.70±0.09 2.07±0.04 n.a. 25.84±0.46 1.18±0.01 28.71±0.92 n.a.
GKDE-GCN 73.17±0.94 2.72±0.04 3.13±0.04 n.a. 24.04±0.42 4.88±0.19 1.17±0.03 n.a.
GPN 87.47±0.20 2.38±0.01 2.81±0.02 4.66±0.18 88.29±0.20 2.10±0.01 3.32±0.04 100.00±0.00

Coauthor
CS

APPNP 89.28±0.07 2.32±0.01 n.a. n.a. 12.58±0.33 0.50±0.00 n.a. n.a.
VGCN 89.33±0.05 1.75±0.01 n.a. n.a. 13.29±0.22 0.57±0.00 n.a. n.a.
RGCN 90.50±0.06 1.89±0.00 n.a. n.a. 41.67±0.35 1.16±0.02 n.a. n.a.
VGCN-Dropout 88.96±0.09 1.62±0.02 1.05±0.00 n.a. 13.31±0.32 1.68±0.02 71.46±0.30 n.a.
DropEdge 89.44±0.07 1.97±0.03 1.18±0.00 n.a. 11.65±0.28 0.90±0.01 55.73±0.45 n.a.
VGCN-Energy 89.33±0.05 1.75±0.01 2.38±0.01 n.a. 13.29±0.22 0.57±0.00 0.42±0.00 n.a.
VGCN-Ensemble 89.00±0.00 1.76±0.00 1.19±0.00 n.a. 11.00±0.00 1.39±0.01 73.57±0.28 n.a.
VGCN-BNN 88.16±0.10 1.91±0.02 1.01±0.01 n.a. 12.48±0.25 1.53±0.03 73.43±0.70 n.a.
GKDE-GCN 88.14±0.14 2.00±0.02 2.70±0.02 n.a. 9.71±0.29 15.14±0.55 0.42±0.00 n.a.
GPN 83.99±0.31 1.04±0.01 1.22±0.01 29.25±1.92 83.96±0.31 1.02±0.01 1.26±0.01 100.00±0.00

Coauthor
Physics

APPNP 96.16±0.08 0.83±0.00 n.a. n.a. 28.71±0.40 0.30±0.00 n.a. n.a.
VGCN 96.00±0.00 0.62±0.00 n.a. n.a. 33.26±0.67 0.44±0.01 n.a. n.a.
RGCN 94.69±0.07 0.80±0.00 n.a. n.a. 58.56±0.36 0.75±0.02 n.a. n.a.
VGCN-Dropout 95.90±0.05 0.61±0.00 0.57±0.00 n.a. 32.52±0.60 0.75±0.01 19.76±0.41 n.a.
DropEdge 95.90±0.03 0.62±0.00 0.63±0.01 n.a. 30.53±0.58 0.53±0.01 12.71±0.29 n.a.
VGCN-Energy 96.00±0.00 0.62±0.00 0.72±0.00 n.a. 33.26±0.67 0.44±0.01 0.23±0.00 n.a.
VGCN-Ensemble 96.00±0.00 0.62±0.00 0.57±0.00 n.a. 31.70±0.21 0.71±0.01 41.30±0.30 n.a.
VGCN-BNN 95.65±0.07 0.69±0.01 0.57±0.01 n.a. 32.95±0.60 1.17±0.04 44.88±0.80 n.a.
GKDE-GCN 96.61±0.05 0.62±0.00 0.74±0.00 n.a. 28.84±0.31 6.53±0.18 0.22±0.00 n.a.
GPN 92.70±0.11 0.63±0.00 0.60±0.00 23.91±1.06 92.70±0.11 0.62±0.00 0.62±0.00 100.00±0.00

OGBN
Arxiv

APPNP 63.50±0.95 0.79±0.16 n.a. n.a. 51.10±1.12 0.42±0.10 n.a. n.a.
VGCN 65.70±0.47 0.20±0.00 n.a. n.a. 51.30±0.75 0.30±0.02 n.a. n.a.
VGCN-Dropout 65.30±0.70 0.21±0.00 0.37±0.03 n.a. 49.90±0.77 0.47±0.05 17.68±0.48 n.a.
VGCN-Energy 65.70±0.47 0.20±0.00 2.32±0.38 n.a. 51.30±0.75 0.30±0.02 0.24±0.01 n.a.
VGCN-Ensemble 67.00 0.20 0.19 n.a. 49.00 0.46 18.22 n.a.
GKDE-GCN 65.20±0.49 0.76±0.05 0.76±0.05 n.a. 45.40±0.62 4.99±0.97 5.04±0.97 n.a.
GPN 65.50±0.70 0.23±0.01 0.26±0.01 46.84±5.20 65.50±0.70 0.23±0.01 0.26±0.01 48.97±1.51

Table E.11: Accuracy and OOD detection scores on Bernoulli and unit Gaussian feature per-
turbations using AUC-APR. OOD-AUC-APR scores are given as [Alea w/ Net] /
[Epist w/ Net] / [Epist w/o Net]. n.a. means either model or metric not applicable.
Bold numbers indicate best results for Accuracy and OOD detection.
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E.6 Desiderata Diagram

Clean Graph Leave-Out Classes

Model ID-ACC ID-ECE ID-ACC OOD-AUC-ROC OOD-AUC-PR
Alea w/ Net Epist w/ Net Epist w/o Net Alea w/ Net Epist w/ Net Epist w/o Net

CoraML

LP 78.41±0.00 64.12±0.00 86.40±0.00 83.78±0.00 80.86±0.00 n.a. 74.80±0.00 71.15±0.00 n.a.
GKDE 72.88±0.00 56.46±0.00 83.02±0.00 74.46±0.00 71.86±0.00 n.a. 66.19±0.00 64.05±0.00 n.a.
Matern-GGP 79.70±0.02 9.88±0.02 87.03±0.01 83.13±0.00 82.98±0.00 n.a. 71.42±0.00 71.04±0.14 n.a.
GGP 79.04±0.01 21.67±0.01 88.65±0.00 81.49±0.00 82.03±0.00 n.a. 74.13±0.00 74.77±0.00 n.a.
APPNP 84.94±0.02 8.27±0.10 90.20±0.02 83.71±0.06 n.a. n.a. 78.77±0.07 n.a. n.a.
VGCN 83.14±0.03 7.96±0.16 89.66±0.05 81.70±0.07 n.a. n.a. 75.67±0.10 n.a. n.a.
RGCN 82.79±0.06 14.39±0.17 88.66±0.03 80.37±0.11 n.a. n.a. 76.97±0.11 n.a. n.a.
VGCN-Dropout 82.30±0.06 13.88±0.13 89.08±0.04 81.27±0.07 71.65±0.10 n.a. 75.55±0.12 60.65±0.11 n.a.
DropEdge 83.07±0.04 13.93±0.11 89.03±0.03 83.55±0.05 75.48±0.12 n.a. 78.48±0.12 65.22±0.15 n.a.
VGCN-Energy 83.14±0.03 7.96±0.16 89.66±0.05 81.70±0.07 83.15±0.07 n.a. 75.67±0.10 78.44±0.10 n.a.
VGCN-Ensemble 83.41±0.01 8.45±0.01 89.87±0.00 81.85±0.00 74.24±0.00 n.a. 75.80±0.00 64.02±0.00 n.a.
VGCN-BNN 82.83±0.06 15.66±0.13 88.49±0.04 82.18±0.23 73.18±1.10 n.a. 76.17±0.36 63.51±1.40 n.a.
GKDE-GCN 81.91±0.19 6.53±0.14 89.33±0.04 82.23±0.08 82.09±0.18 n.a. 75.88±0.12 77.03±0.39 n.a.
GPN 81.16±0.12 11.68±0.18 88.51±0.04 83.25±0.12 86.28±0.17 80.95±0.24 75.79±0.28 79.97±0.20 72.81±0.46

CiteSeer

LP 54.05±0.00 37.38±0.00 57.34±0.00 65.99±0.00 67.54±0.00 n.a. 48.12±0.00 48.59±0.00 n.a.
GKDE 53.67±0.00 36.29±0.00 49.62±0.00 63.75±0.00 63.91±0.00 n.a. 56.74±0.00 56.79±0.00 n.a.
Matern-GGP 53.25±0.03 12.76±0.03 53.83±0.06 59.57±0.00 59.56±0.05 n.a. 36.05±0.04 36.24±0.19 n.a.
GGP 68.85±0.01 20.84±0.01 69.74±0.01 74.56±0.06 74.10±0.07 n.a. 50.39±0.08 48.74±0.08 n.a.
APPNP 70.24±0.02 4.88±0.03 72.83±0.03 72.91±0.09 n.a. n.a. 56.31±0.14 n.a. n.a.
VGCN 68.98±0.02 4.33±0.05 70.79±0.02 72.16±0.08 n.a. n.a. 53.71±0.08 n.a. n.a.
RGCN 70.57±0.03 15.09±0.09 72.15±0.03 74.56±0.07 n.a. n.a. 58.63±0.07 n.a. n.a.
VGCN-Dropout 68.41±0.03 7.31±0.07 70.44±0.06 71.31±0.08 60.05±0.12 n.a. 52.05±0.14 36.95±0.10 n.a.
DropEdge 69.33±0.03 5.64±0.06 71.02±0.05 73.42±0.05 63.23±0.17 n.a. 55.70±0.10 39.38±0.14 n.a.
VGCN-Energy 68.98±0.02 4.33±0.05 70.79±0.02 72.16±0.08 76.08±0.11 n.a. 53.71±0.08 58.35±0.17 n.a.
VGCN-Ensemble 69.26±0.00 4.14±0.02 70.63±0.00 72.23±0.00 58.61±0.01 n.a. 54.04±0.00 38.93±0.01 n.a.
VGCN-BNN 68.06±0.07 8.42±0.20 69.84±0.04 71.64±0.31 64.16±1.75 n.a. 52.60±0.47 46.72±1.76 n.a.
GKDE-GCN 69.55±0.03 3.88±0.06 70.76±0.04 73.34±0.15 76.19±0.31 n.a. 54.25±0.16 59.07±0.42 n.a.
GPN 66.13±0.17 7.42±0.22 69.79±0.10 72.46±0.27 70.74±0.26 66.65±0.29 55.14±0.46 50.52±0.34 44.93±0.31

PubMed

LP 78.40±0.00 45.07±0.00 89.18±0.00 80.32±0.00 79.64±0.00 n.a. 71.01±0.00 72.98±0.00 n.a.
GKDE 77.10±0.01 40.02±0.01 88.16±0.00 69.66±0.00 68.47±0.00 n.a. 55.81±0.00 54.33±0.00 n.a.
Matern-GGP 78.77±0.00 12.37±0.00 90.33±0.01 46.69±0.00 45.75±0.00 n.a. 39.85±0.00 39.63±0.00 n.a.
GGP n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.
APPNP 86.88±0.01 2.57±0.05 94.83±0.01 74.76±0.06 n.a. n.a. 61.84±0.07 n.a. n.a.
VGCN 86.70±0.01 2.30±0.05 94.77±0.01 72.58±0.04 n.a. n.a. 60.54±0.04 n.a. n.a.
RGCN 85.87±0.01 4.86±0.05 94.73±0.01 71.49±0.14 n.a. n.a. 60.54±0.13 n.a. n.a.
VGCN-Dropout 86.49±0.01 5.53±0.06 94.72±0.01 71.10±0.04 67.27±0.06 n.a. 59.47±0.04 54.24±0.08 n.a.
DropEdge 86.57±0.01 5.11±0.04 94.72±0.01 72.09±0.02 68.57±0.04 n.a. 59.84±0.03 54.95±0.06 n.a.
VGCN-Energy 86.70±0.01 2.30±0.05 94.77±0.01 72.58±0.04 72.63±0.06 n.a. 60.54±0.04 60.63±0.10 n.a.
VGCN-Ensemble 86.64±0.00 2.29±0.01 94.88±0.00 72.71±0.00 70.99±0.00 n.a. 60.47±0.00 59.31±0.00 n.a.
VGCN-BNN 85.56±0.05 14.00±0.11 94.34±0.03 65.41±0.58 63.77±1.50 n.a. 53.23±0.40 54.36±1.54 n.a.
GKDE-GCN 86.14±0.07 1.36±0.09 94.66±0.00 73.53±0.06 74.47±0.11 n.a. 61.36±0.04 61.96±0.27 n.a.
GPN 84.10±0.26 4.31±0.09 94.08±0.02 71.84±0.08 73.91±0.20 71.20±0.15 57.92±0.10 67.19±0.25 59.72±0.18

Table E.12: Accuracy and ECE scores on the clean graphs. Accuracy and OOD detection scores
on Left-Out classes using AUC-ROC and AUC-PR scores. OOD-AUC-ROC and
OOD-AUC-APR scores are given as [Alea w/ Net] / [Epist w/ Net] / [Epist w/o
Net]. n.a. means model or metric not applicable and n.f. means not finished within
our constraints. Bold numbers indicate best results for Accuracy, ECE and OOD
detection.
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Clean Graph Leave-Out Classes

Model ID-ACC ID-ECE ID-ACC OOD-AUC-ROC OOD-AUC-PR
Alea w/ Net Epist w/ Net Epist w/o Net Alea w/ Net Epist w/ Net Epist w/o Net

Amazon
Computers

LP 79.49±0.00 69.49±0.00 83.28±0.00 86.74±0.00 83.88±0.00 n.a. 67.10±0.00 63.08±0.00 n.a.
GKDE 63.49±0.00 38.93±0.00 71.41±0.00 75.14±0.00 73.58±0.00 n.a. 49.21±0.00 47.68±0.00 n.a.
Matern-GGP 80.23±0.00 12.13±0.01 86.94±0.01 79.00±0.00 79.10±0.00 n.a. 49.57±0.00 49.91±0.04 n.a.
GGP n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.
APPNP 80.12±0.04 11.83±0.04 87.72±0.02 81.30±0.02 n.a. n.a. 53.02±0.04 n.a. n.a.
VGCN 81.66±0.04 9.90±0.03 88.95±0.02 82.76±0.03 n.a. n.a. 57.49±0.06 n.a. n.a.
RGCN 68.43±0.24 23.62±0.16 78.52±0.13 76.40±0.16 n.a. n.a. 53.16±0.20 n.a. n.a.
VGCN-Dropout 81.29±0.05 11.52±0.03 88.54±0.02 81.99±0.04 72.90±0.04 n.a. 55.66±0.08 41.38±0.04 n.a.
DropEdge 82.09±0.03 11.40±0.03 88.62±0.02 82.79±0.02 75.35±0.06 n.a. 56.77±0.02 43.94±0.07 n.a.
VGCN-Energy 81.66±0.04 9.90±0.03 88.95±0.02 82.76±0.03 83.43±0.04 n.a. 57.49±0.06 60.64±0.10 n.a.
VGCN-Ensemble 81.66±0.01 9.96±0.02 89.00±0.02 82.80±0.02 83.77±0.55 n.a. 57.46±0.04 57.62±0.84 n.a.
VGCN-BNN 68.20±0.15 20.27±0.45 79.65±0.06 82.16±0.24 69.72±2.37 n.a. 58.10±0.53 52.08±2.48 n.a.
GKDE-GCN 65.90±0.53 9.04±0.28 82.73±0.37 77.03±0.34 70.32±0.66 n.a. 49.81±0.44 45.92±0.90 n.a.
GPN 82.10±0.29 9.22±0.19 88.48±0.07 82.49±0.17 87.63±0.18 74.55±0.24 56.78±0.38 67.94±0.28 48.03±0.34

Amazon
Photos

LP 85.88±0.00 73.38±0.00 89.27±0.00 94.24±0.00 90.26±0.00 n.a. 90.24±0.00 85.55±0.00 n.a.
GKDE 75.38±0.00 52.21±0.00 85.94±0.00 76.51±0.00 60.83±0.00 n.a. 66.72±0.00 59.09±0.00 n.a.
Matern-GGP 86.10±0.01 8.54±0.02 88.65±0.00 87.26±0.00 86.75±0.00 n.a. 75.22±0.00 74.39±0.03 n.a.
GGP n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.
APPNP 92.12±0.01 13.68±0.02 95.42±0.01 77.45±0.10 n.a. n.a. 67.50±0.12 n.a. n.a.
VGCN 90.95±0.01 10.37±0.03 94.24±0.01 82.44±0.07 n.a. n.a. 72.60±0.11 n.a. n.a.
RGCN 81.00±0.42 40.20±0.25 87.59±0.69 75.25±0.23 n.a. n.a. 67.53±0.29 n.a. n.a.
VGCN-Dropout 90.42±0.01 12.76±0.05 94.04±0.01 80.90±0.08 70.11±0.14 n.a. 70.55±0.12 53.16±0.13 n.a.
DropEdge 91.03±0.01 12.25±0.02 94.22±0.01 82.48±0.09 71.67±0.11 n.a. 72.75±0.15 54.98±0.10 n.a.
VGCN-Energy 90.95±0.01 10.37±0.03 94.24±0.01 82.44±0.07 79.64±0.07 n.a. 72.60±0.11 71.71±0.14 n.a.
VGCN-Ensemble 90.94±0.01 10.38±0.02 94.28±0.01 82.72±0.03 88.53±0.39 n.a. 72.98±0.08 83.28±0.46 n.a.
VGCN-BNN 84.51±0.23 29.42±0.32 91.88±0.19 72.03±0.38 64.10±1.98 n.a. 62.85±0.49 54.09±1.76 n.a.
GKDE-GCN 79.74±0.99 12.84±0.31 89.84±0.73 73.65±1.13 69.09±0.81 n.a. 62.45±1.20 59.68±0.75 n.a.
GPN 90.44±0.07 11.95±0.12 94.01±0.07 82.72±0.24 91.98±0.22 76.57±0.49 74.55±0.39 86.29±0.35 64.00±0.68

Coauthor
CS

LP 83.34±0.00 76.67±0.00 82.89±0.00 86.64±0.00 86.40±0.00 n.a. 79.05±0.00 79.56±0.00 n.a.
GKDE 79.27±0.00 70.74±0.00 78.84±0.00 79.32±0.00 77.59±0.00 n.a. 66.30±0.00 64.69±0.00 n.a.
Matern-GGP 83.56±0.01 6.18±0.00 83.21±0.00 73.57±0.00 73.75±0.00 n.a. 62.05±0.00 61.74±0.00 n.a.
GGP n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.
APPNP 92.96±0.01 8.70±0.02 93.51±0.01 81.88±0.03 n.a. n.a. 75.85±0.06 n.a. n.a.
VGCN 92.61±0.01 7.00±0.03 93.07±0.01 85.35±0.03 n.a. n.a. 80.87±0.06 n.a. n.a.
RGCN 92.02±0.02 11.52±0.06 92.49±0.01 77.00±0.08 n.a. n.a. 71.87±0.11 n.a. n.a.
VGCN-Dropout 92.30±0.01 12.41±0.05 92.83±0.01 84.04±0.03 73.09±0.10 n.a. 78.99±0.07 55.79±0.14 n.a.
DropEdge 92.63±0.01 11.40±0.03 92.92±0.01 84.62±0.06 75.68±0.08 n.a. 79.74±0.08 58.85±0.11 n.a.
VGCN-Energy 92.61±0.01 7.00±0.03 93.07±0.01 85.35±0.03 87.33±0.04 n.a. 80.87±0.06 82.79±0.11 n.a.
VGCN-Ensemble 92.66±0.01 7.03±0.02 93.07±0.00 85.43±0.00 83.19±0.07 n.a. 80.88±0.01 72.27±0.14 n.a.
VGCN-BNN 92.21±0.04 12.15±0.10 92.54±0.04 80.48±0.25 70.75±0.65 n.a. 73.64±0.35 54.41±0.76 n.a.
GKDE-GCN 92.35±0.09 8.04±0.11 93.13±0.01 85.02±0.03 84.45±0.06 n.a. 80.15±0.07 77.90±0.12 n.a.
GPN 86.88±0.10 18.92±0.11 88.21±0.10 69.49±0.39 92.09±0.20 88.84±0.31 55.41±0.46 90.28±0.18 86.54±0.42

Coauthor
Physics

LP 90.75±0.00 70.75±0.00 95.39±0.00 91.78±0.00 90.03±0.00 n.a. 70.58±0.00 69.63±0.00 n.a.
GKDE 87.75±0.00 56.04±0.00 93.30±0.00 87.02±0.00 84.64±0.00 n.a. 57.00±0.00 52.49±0.00 n.a.
Matern-GGP n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.
GGP n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.
APPNP 95.56±0.00 1.57±0.01 97.96±0.00 90.37±0.02 n.a. n.a. 61.46±0.05 n.a. n.a.
VGCN 95.59±0.00 1.28±0.02 97.96±0.00 90.29±0.02 n.a. n.a. 63.63±0.09 n.a. n.a.
RGCN 95.33±0.00 5.11±0.07 97.92±0.00 75.62±0.13 n.a. n.a. 56.27±0.13 n.a. n.a.
VGCN-Dropout 95.51±0.00 3.07±0.02 97.92±0.00 89.63±0.03 87.10±0.04 n.a. 62.53±0.10 51.19±0.12 n.a.
DropEdge 95.59±0.00 2.81±0.01 97.92±0.00 90.56±0.02 88.76±0.04 n.a. 64.59±0.08 55.32±0.14 n.a.
VGCN-Energy 95.59±0.00 1.28±0.02 97.96±0.00 90.29±0.02 91.08±0.05 n.a. 63.63±0.09 69.41±0.11 n.a.
VGCN-Ensemble 95.58±0.00 1.29±0.01 97.96±0.00 90.35±0.00 92.39±0.00 n.a. 63.67±0.00 71.30±0.02 n.a.
VGCN-BNN 95.46±0.02 5.64±0.09 97.94±0.01 90.73±0.21 90.09±0.50 n.a. 66.98±0.32 61.27±1.47 n.a.
GKDE-GCN 95.61±0.00 1.51±0.02 97.95±0.00 87.38±0.09 84.62±0.19 n.a. 57.97±0.22 56.30±0.51 n.a.
GPN(16) 94.32±0.02 10.61±0.03 97.40±0.01 85.20±0.17 94.51±0.15 89.63±0.24 61.89±0.20 83.73±0.31 66.44±0.65

OGBN
Arxiv

LP 64.27 61.77 66.84 80.04 75.22 n.a. 65.21 67.69 n.a.
GKDE 48.87 22.59 51.51 68.12 65.80 n.a. 47.22 45.23 n.a.
Matern-GGP n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.
GGP n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f. n.f.
APPNP 71.46±0.09 3.96±0.06 75.47±0.15 65.21±0.14 n.a. n.a. 43.23±0.06 n.a. n.a.
VGCN 71.89±0.08 2.18±0.10 75.61±0.11 64.91±0.28 n.a. n.a. 42.72±0.32 n.a. n.a.
VGCN-Dropout 71.76±0.07 2.29±0.08 75.47±0.12 65.35±0.27 64.24±0.26 n.a. 43.09±0.30 41.58±0.23 n.a.
VGCN-Energy 71.89±0.08 2.18±0.10 75.61±0.11 64.91±0.28 64.50±0.38 n.a. 42.72±0.32 42.41±0.39 n.a.
VGCN-Ensemble 72.59 2.10 76.12 65.93 70.77 n.a. 43.84 50.63 n.a.
VGCN-BNN n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
GKDE-GCN 68.99±0.40 8.43±0.43 73.89±0.33 68.84±0.18 72.44±0.50 n.a. 49.71±0.59 52.23±0.66 n.a.
GPN 69.08±0.21 6.96±0.31 73.84±0.21 66.33±0.23 74.82±0.27 62.17±0.23 46.35±0.26 58.71±0.34 43.01±0.36

Table E.13: Accuracy and ECE scores on the clean graphs. Accuracy and OOD detection scores
on Left-Out classes using AUC-ROC and AUC-PR scores. OOD-AUC-ROC and
OOD-AUC-APR scores are given as [Alea w/ Net] / [Epist w/ Net] / [Epist w/o
Net]. n.a. means either model or metric not applicable and n.f. means not finished
within our constraints. Bold numbers indicate best results for Accuracy, ECE and
OOD detection.
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(d) DICE [431] Edge Shift

Figure E.2: Relative performance over different degrees of corruption of CoraML. For feature
shifts, we perturb different fractions of nodes (whose features are replaced with
either random vectors from a Bernoulli noise or a Unit Gaussian noise) and show
accuracy, ECE, and relative average epistemic confidence. For edge shifts, we
perturb different fractions of edges (by replacing them at random or using the
global and untargeted DICE [431] attack) and show accuracy, relative average
aleatoric confidence, and relative average epistemic confidence.
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Figure E.3: Relative performance over different degrees of corruption of CiteSeer. For feature
shifts, we perturb different fractions of nodes (whose features are replaced with
either random vectors from a Bernoulli noise or a Unit Gaussian noise) and show
accuracy, ECE, and relative average epistemic confidence. For edge shifts, we
perturb different fractions of edges (by replacing them at random or using the
global and untargeted DICE [431] attack) and show accuracy, relative average
aleatoric confidence, and relative average epistemic confidence.
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Figure E.4: Relative performance over different degrees of corruption of PubMed. For feature
shifts, we perturb different fractions of nodes (whose features are replaced with
either random vectors from a Bernoulli noise or a Unit Gaussian noise) and show
accuracy, ECE, and relative average epistemic confidence. For edge shifts, we
perturb different fractions of edges (by replacing them at random or using the
global and untargeted DICE [431] attack) and show accuracy, relative average
aleatoric confidence, and relative average epistemic confidence.
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(d) DICE [431] Edge Shift

Figure E.5: Relative performance over different degrees of corruption of Amazon Computers.
For feature shifts, we perturb different fractions of nodes (whose features are re-
placed with either random vectors from a Bernoulli noise or a Unit Gaussian noise)
and show accuracy, ECE, and relative average epistemic confidence. For edge
shifts, we perturb different fractions of edges (by replacing them at random or
using the global and untargeted DICE [431] attack) and show accuracy, relative
average aleatoric confidence, and relative average epistemic confidence.
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(d) DICE [431] Edge Shift

Figure E.6: Relative performance over different degrees of corruption of Amazon Photos. For
feature shifts, we perturb different fractions of nodes (whose features are replaced
with either random vectors from a Bernoulli noise or a Unit Gaussian noise) and
show accuracy, ECE, and relative average epistemic confidence. For edge shifts, we
perturb different fractions of edges (by replacing them at random or using the global
and untargeted DICE [431] attack) and show accuracy, relative average aleatoric
confidence, and relative average epistemic confidence.
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Figure E.7: Relative performance over different degrees of corruption of Coauthor CS. For fea-
ture shifts, we perturb different fractions of nodes (whose features are replaced with
either random vectors from a Bernoulli noise or a Unit Gaussian noise) and show
accuracy, ECE, and relative average epistemic confidence. For edge shifts, we per-
turb different fractions of edges (by replacing them at random or using the global
and untargeted DICE [431] attack) and show accuracy, relative average aleatoric
confidence, and relative average epistemic confidence.
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(d) DICE [431] Edge Shift

Figure E.8: Relative performance over different degrees of corruption of Coauthor Physics. For
feature shifts, we perturb different fractions of nodes (whose features are replaced
with either random vectors from a Bernoulli noise or a Unit Gaussian noise) and
show accuracy, ECE, and relative average epistemic confidence. For edge shifts, we
perturb different fractions of edges (by replacing them at random or using the global
and untargeted DICE [431] attack) and show accuracy, relative average aleatoric
confidence, and relative average epistemic confidence.
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Figure E.9: Relative performance over different degrees of corruption of OGBN Arxiv. For
feature shifts, we perturb different fractions of nodes (whose features are replaced
with either random vectors from a Bernoulli noise or a Unit Gaussian noise) and
show accuracy, ECE, and relative average epistemic confidence. For edge shifts, we
perturb different fractions of edges (by replacing them at random or using the global
and untargeted DICE [431] attack) and show accuracy, relative average aleatoric
confidence, and relative average epistemic confidence.

272



E.6 Desiderata Diagram

Node Node Representation

220 Abstract: IlliGAL Report No. 95006 July 1995
Bag-of-Word: [’1995’, ’report’, ’july’]

197 Abstract: Report of the 1996 Workshop on Reinforcement
Bag-of-Word: [’workshop’, ’reinforcement’, ’report’, ’1996’]

193 Abstract: Report of the 1996 Workshop on Reinforcement
Bag-of-Word: [’workshop’, ’reinforcement’, ’report’, ’1996’]

258 Abstract: TIK-Report Nr. 11, December 1995 Version 2 (2. Edition)
Bag-of-Word: [’version’, ’1995’, ’report’, ’11’]

2319 Abstract: We tend to think of what we really know as what we can talk about, and
disparage knowledge that we can’t verbalize. [Dowling 1989, p. 252]
Bag-of-Word: [’knowledge’, ’know’, ’1989’, ’tend’]

1945 Abstract: Reihe FABEL-Report Status: extern Dokumentbezeichner:
Org/Reports/nr-35 Erstellt am: 21.06.94 Korrigiert am: 28.05.95 ISSN 0942-413X
Bag-of-Word: [’reports’, ’94’, ’report’, ’95’]

293 Abstract: Keith Mathias and Darrell Whitley Technical Report CS-94-101 January
7, 1994
Bag-of-Word: [’technical’, ’1994’, ’94’, ’cs’, ’report’, ’january’]

99 Abstract: Multigrid Q-Learning Charles W. Anderson and Stewart G. Crawford-Hines
Technical Report CS-94-121 October 11, 1994
Bag-of-Word: [’learning’, ’technical’, ’1994’, ’94’, ’cs’, ’report’, ’11’]

766 Abstract: Internal Report 97-01
Bag-of-Word: [’internal’, ’report’, ’97’]

992 Abstract: A Learning Result for Abstract
Bag-of-Word: [’learning’, ’result’, ’abstract’]

2030 Abstract: DRAFT March 16, 1998 available via anonymous ftp: site ftp.uwasa.fi
directory cs/report94-1 file gaGPbib.ps.Z
Bag-of-Word: [’available’, ’1998’, ’cs’, ’16’, ’anonymous’, ’ftp’, ’march’,
’fi’, ’site’]

991 Abstract: In IEEE Transactions on Neural Networks, 7(1):97-106, 1996 Also
available as GMD report 794
Bag-of-Word: [’available’, ’networks’, ’neural’, ’report’, ’ieee’, ’1996’,
’97’]

74 Abstract: Empirical Comparison of Gradient Descent and Exponentiated Gradient
Descent in Supervised and Reinforcement Learning Technical Report 96-70
Bag-of-Words: [’learning’, ’technical’, ’empirical’, ’gradient’, ’comparison’,
’reinforcement’, ’supervised’, ’report’, ’descent’, ’96’]

865 Abstract: fl Partially supported by the Advanced Research Projects Agency
(AFOSR 90-0083). y Partially supported by the Air Force Office of Scientific
Research (AFOSR F49620-92-J-0499), the Advanced Research Projects Agency (ONR
N00014-92-J-4015), and the Office of Naval Research (ONR N00014-91-J-4100).
z Partially funded by the Air Force Office of Scientific Research (AFOSR
F49620-92-J-0334) and the Office of Naval Research (ONR N00014-91-J-4100 and
ONR N00014-94-1-0597).
Bag-of-Words: [’fl’, ’research’, ’90’, ’partially’, ’94’, ’advanced’,
’projects’, ’agency’, ’supported’, ’n00014’, ’office’, ’naval’, ’force’, ’air’,
’scientific’, ’afosr’, ’91’, ’92’, ’onr’, ’funded’]

858 Abstract: Technical Report UMIACS-TR-97-77 and CS-TR-3843 Abstract
Bag-of-Words: [’technical’, ’abstract’, ’cs’, ’report’, ’97’, ’tr’]

1944 Abstract: Reihe FABEL-Report Status: extern Dokumentbezeichner:
Org/Reports/nr-13 Erstellt am: 22.12.93 Korrigiert am: 02.02.94 ISSN 0942-413X
Bag-of-Words: [’reports’, ’13’, ’94’, ’report’, ’22’, ’93’, ’12’]

1710 Abstract: Knowledge Systems Laboratory March 1995 Report No. KSL 95-32
Bag-of-Words: [’systems’, ’knowledge’, ’laboratory’, ’1995’, ’report’, ’march’,
’95’]

2491 Abstract: Edward S. Orosz and Charles W. Anderson Technical Report CS-94-111
April 27, 1994
Bag-of-Words: [’technical’, ’1994’, ’94’, ’cs’, ’report’, ’april’]

221 Abstract: V. Scott Gordon and Darrell Whitley Technical Report CS-93-114
September 16, 1993
Bag-of-Words: [’technical’, ’1993’, ’cs’, ’report’, ’16’, ’93’]

1874 Abstract: COINS Technical Report 94-61 August 1994
Bag-of-Words: [’technical’, ’1994’, ’94’, ’report’, ’august’]

Table E.14: 20 abstracts and their representation from the CoraML dataset obtained after
selecting the abstracts GPN has assigned the lowest feature evidence. Abstracts
sorted in ascending order of feature evidence.
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1637 Abstract: A pervasive, yet much ignored, factor in the analysis of
processing-failures is the problem of misorganized knowledge. If a systems
knowledge is not indexed or organized correctly, it may make an error, not
because it does not have either the general capability or specific knowledge to
solve a problem, but rather because it does not have the knowledge sufficiently
organized so that the appropriate knowledge structures are brought to bear on
the problem at the appropriate time. In such cases, the system can be said
to have forgotten the knowledge, if only in this context. This is the problem
of forgetting or retrieval failure. This research presents an analysis along
with a declarative representation of a number of types of forgetting errors.
Such representations can extend the capability of introspective failure-driven
learning systems, allowing them to reduce the likelihood of repeating such
errors. Examples are presented from the Meta-AQUA program, which learns to
improve its performance on a story understanding task through an introspective
meta-analysis of its knowledge, its organization of its knowledge, and its
reasoning processes.
Bag-of-Word: [’retrieval’, ’number’, ’problem’, ’learning’, ’systems’,
’representations’, ’knowledge’, ’representation’, ’understanding’, ’program’,
’learns’, ’time’, ’make’, ’examples’, ’appropriate’, ’general’, ’error’,
’analysis’, ’presented’, ’cases’, ’performance’, ’correctly’, ’task’,
’presents’, ’improve’, ’reasoning’, ’likelihood’, ’research’, ’driven’,
’processes’, ’does’, ’reduce’, ’processing’, ’organization’, ’extend’, ’solve’,
’specific’, ’meta’, ’factor’, ’declarative’, ’failure’, ’capability’, ’context’,
’allowing’, ’structures’, ’types’, ’ignored’, ’failures’, ’story’, ’errors’,
’sufficiently’, ’brought’, ’organized’, ’introspective’, ’bear’]

1375 Abstract: This paper describes an interactive planning system that was developed
inside an Intelligent Decision Support System aimed at supporting an operator
when planning the initial attack to forest fires. The planning architecture
rests on the integration of case-based reasoning techniques with constraint
reasoning techniques exploited, mainly, for performing temporal reasoning
on temporal metric information. Temporal reasoning plays a central role in
supporting interactive functions that are provided to the user when performing
two basic steps of the planning process: plan adaptation and resource
scheduling. A first prototype was integrated with a situation assessment and
a resource allocation manager subsystem and is currently being tested.
Bag-of-Word: [’intelligent’, ’information’, ’paper’, ’planning’, ’based’,
’case’, ’integrated’, ’functions’, ’describes’, ’decision’, ’allocation’,
’architecture’, ’support’, ’reasoning’, ’mainly’, ’techniques’, ’process’,
’supporting’, ’role’, ’integration’, ’exploited’, ’currently’, ’initial’,
’user’, ’tested’, ’interactive’, ’basic’, ’developed’, ’temporal’, ’central’,
’assessment’, ’situation’, ’steps’, ’adaptation’, ’operator’, ’scheduling’,
’constraint’, ’performing’, ’plays’, ’provided’, ’resource’, ’prototype’,
’metric’, ’aimed’, ’plan’, ’inside’]

2672 Abstract: Inductive learning systems are designed to induce hypotheses, or
general descriptions of concepts, from instances of these concepts. Among
the wide variety of techniques used in inductive learning systems, algorithms
derived from nearest neighbour (NN) pattern classification have been receiving
attention lately, mainly due to their incremental nature. Nested Generalized
Exemplar (NGE) theory is an inductive learning theory which can be viewed as
descent from nearest neighbour classification. In NGE theory, the induced
concepts take the form of hyperrectangles in a n-dimensional Euclidean space.
The axes of the space are defined by the attributes used for describing
the examples. This paper proposes a fuzzified version of the original NGE
algorithm, which accepts input examples given as feature/fuzzy value pairs,
and generalizes them as fuzzy hyperrectangles. It presents and discusses a
metric for evaluating the fuzzy distance between examples, and between example
and fuzzy hyperrectangles; criteria for establishing the reliability of fuzzy
examples, by strengthening the exemplar which makes the right prediction and
weakening the exemplar which makes a wrong one and criteria for producing fuzzy
generalizations, based on the union of fuzzy sets. Keywords : exemplar-based
learning, nested generalized exemplar, nearest neighbour, fuzzy NGE.
Bag-of-Word: Bag-of-Words [’paper’, ’used’, ’learning’, ’systems’, ’feature’,
’theory’, ’based’, ’input’, ’algorithm’, ’generalizations’, ’algorithms’,
’given’, ’hypotheses’, ’form’, ’attributes’, ’examples’, ’general’, ’concepts’,
’instances’, ’evaluating’, ’prediction’, ’classification’, ’space’, ’keywords’,
’presents’, ’pattern’, ’version’, ’receiving’, ’mainly’, ’techniques’, ’nature’,
’sets’, ’wide’, ’right’, ’makes’, ’variety’, ’attention’, ’example’, ’original’,
’describing’, ’distance’, ’generalized’, ’inductive’, ’nearest’, ’dimensional’,
’descriptions’, ’value’, ’incremental’, ’designed’, ’viewed’, ’discusses’,
’derived’, ’fuzzy’, ’pairs’, ’generalizes’, ’producing’, ’defined’, ’descent’,
’induced’, ’nn’, ’wrong’, ’criteria’, ’reliability’, ’proposes’, ’metric’,
’induce’, ’euclidean’]

Table E.15: 3 abstracts and their representation from the CoraML dataset obtained after se-
lecting the abstracts GPN has assigned the highest feature evidence. Abstracts
sorted in descending order of feature evidence.
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E.6 Desiderata Diagram

(a) Ground-Truth Classes

(b) Feature Evidence

(c) Aggregated Evidence

Figure E.10: Latent space visualizations on the clean CoraML graph. The ground-truth classes
are shown in different colors. The feature and aggregated evidence are represented
in log-scale.
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(a) Ground-Truth Classes

(b) Feature Evidence

(c) Aggregated Evidence

Figure E.11: Latent space visualizations on the CoraML where 10% of the nodes are perturbed
with unit Gaussians. The ground-truth classes are shown in different colors. The
feature and aggregated evidence are represented in log-scale.
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E.6 Desiderata Diagram

(a) Ground-Truth Classes

(b) Feature Evidence

(c) Aggregated Evidence

Figure E.12: Latent space visualizations on the CoraML with Left-Out classes experiments.
The ground-truth classes are shown in different colors. Nodes of the classes Neu-
ral Networks, Rule Learning, and Reinforcement Learning have been left out for
training but are kept in the graph. The feature and aggregated evidence are rep-
resented in log-scale.
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Model CoraML CiteSeer PubMed Amazon C. Amazon Ph. Coauthor CS Coauthor Ph. OGBN Arxiv

APPNP 2.87± 0.01 2.97± 0.01 3.07± 0.02 6.53± 0.05 3.50± 0.03 6.67± 0.01 10.33± 0.04 49.50± 0.33
VGCN 2.55± 0.04 2.73± 0.02 2.70± 0.01 6.41± 0.09 3.96± 0.03 6.42± 0.02 12.27± 0.04 60.90± 0.04
VGCN-Dropout 24.40± 0.17 26.96± 0.25 30.43± 0.20 58.24± 0.20 36.56± 0.13 62.21± 0.26 120.68± 0.21 637.63± 0.43
VGCN-Energy 2.78± 0.03 2.78± 0.02 3.24± 0.03 6.03± 0.03 3.79± 0.01 6.59± 0.02 12.46± 0.03 62.45± 0.32
VGCN-Ensemble 23.18± 0.63 23.10± 0.02 27.22± 0.42 52.78± 0.65 32.81± 0.14 54.17± 0.46 108.58± 0.51 548.27
GKDE-GCN 2.61± 0.03 2.18± 0.01 2.57± 0.02 3.54± 0.04 3.00± 0.10 4.92± 0.02 8.79± 0.09 62.21± 0.34

GPN 9.35± 0.06 9.02± 0.02 14.13± 0.02 27.48± 0.09 14.52± 0.05 48.07± 0.15 35.94± 0.13 275.69± 0.91

Table E.16: Inference time (in ms) across different datasets evaluated on a single NVIDIA
GTX 1080 Ti. Bold numbers indicate the fastest algorithm during inference for
each dataset while red numbers indicate the slowest one.

Model CoraML CiteSeer PubMed Amazon C. Amazon Ph. Coauthor CS Coauthor Ph. OGBN Arxiv

APPNP 45.44 27.74 54.92 257.55 230.75 166.84 217.73 425.75
VGCN 47.28 32.98 55.77 211.79 174.00 167.77 194.53 329.43
VGCN-Dropout 47.28 32.98 55.77 211.79 174.00 167.77 194.53 329.43
VGCN-Energy 47.28 32.98 55.77 211.79 174.00 167.77 194.53 329.43
VGCN-Ensemble 472.82 329.84 557.65 2117.86 1740.00 1677.72 1945.34 3294.34
GKDE-GCN 46.48 17.77 523.41 354.66 473.71 247.01 475.40 60185.40
GKDE 5.12 5.04 54.72 61.27 21.24 103.34 320.98 59775.90

GPN 10.20 39.40 59.15 81.59 64.72 32.80 93.38 2393.03

Table E.17: Average training times (in s) for a single model and initializations across differ-
ent datasets evaluated mostly on a single NVIDIA GTX 1080 Ti. Bold numbers
indicate the fastest algorithm during training for each dataset while red numbers
indicate the slowest one. The gray line shows the GKDE component of the GKDE-
GCN approach as reference.
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Figure E.13: Illustration of aleatoric uncertainty (AU) and epistemic uncertainty (EU) without
and with network effects (i.e. i.i.d. inputs vs interdependent inputs). Each node
of one color has the same features in all four cases. Network effects are visual-
ized through edges between nodes which change the predicted distributions. The
aleatoric uncertainty is high if the categorical distribution ŷ(v) ∼ Cat(p(v)) is flat.
The epistemic uncertainty is high if the Dirichlet distribution p(v) ∼ Dir(α(v))
is spread out. Note that node with high epistemic certainty in the absence of
network effects (e.g. orange) get less certain with neighbors being epistemically
uncertain (purple). Epistemically uncertain nodes (purple) get more certain with
certain neighbors on the other hand. Similar effects are shown for aleatoric un-
certainty. For more details behind that reasoning, see our axiomatic approach in
Section 8.3.1.
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F Uncertainty Estimation for Sequential
Data

F.1 Distributions

For reference, we give here the definition of the Dirichlet and Logistic-normal distribution.

F.1.1 Dirichlet distribution

The Dirichlet distribution with concentration parameters α = (α1, . . . , αK), where αi >
0, has the probability density function:

f(x;α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

) K∏
i=1

xαi−1
i (F.1)

where Γ is a gamma function:

Γ(α) =

∫ ∞

0
αz−1e−αdz

F.1.2 Logistic-normal distribution (LN)

The logistic normal distribution is a generalization of the logit-normal distribution for
the multidimensional case. If y ∈ RC follows a normal distribution, y ∼ N (µ,Σ), then

x =

[
ey1∑C
i=1 e

yi
, . . . ,

eyC∑C
i=1 e

yi

]

follows a logistic-normal distribution.

F.2 Behavior of the min kernel

The desired behavior of the min kernel function can easily be illustrated by considering
the gram matrix K and vector k, which are required to estimate µ and σ2 for a new
time point τ . W.l.o.g. consider M pseudo points τ1, . . . , τM such that w1 < · · · < wM .
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Since the new query point is observed we assign it weight 1. It follows:

k =


w1

w2
...

wM

⊙


k(τ1, τ)
k(τ2, τ)

...
k(τM , τ)

 , K =


w1 w1 . . . w1

w1 w2 . . . w2
...

...
. . .

...
w1 w2 . . . wM

⊙


k(τ1, τ1) . . . k(τ1, τM )
k(τ2, τ1) . . . k(τ2, τM )

...
. . .

...
k(τM , τ1) . . . k(τM , τM )


(F.2)

Assuming w1 = 0 returns k without the first row and K without the first row and
column. Plugging them back into Eq. (9.1) we can see that the point τ1 is discarded, as
desired. In practice, the weights have values from interval [0, 1] which in turn gives us
the ability to softly discard points. This is shown in Fig. 9.3 we can see that the mean
line does not have to cross through the points with weights < 1 and the variance can
remain higher around them.

F.3 Computation of the approximation for the uncertainty
cross-entropy of WGP-LN

Given true categorical distribution p∗i , and predicted pi(τ), the uncertainty cross-entropy
can be calculated as in Eq. (9.4). For the WGP-LN model pi(τ) = softmax(zi(τ)), where
zi(τ) are logits that come from a Gaussian process and follow a normal distribution
N (µi(τ),Σi(τ)),. Therefore, exp(zi(τ)) follows a log-normal distribution. We will use
this to derive an approximation of the loss. From now on, we omit τ from the equations.
Mean and variance for

∑C
c exp(zci) are then:

E
[∑C

c
exp(zci)

]
=
∑C

c
exp(µci + σ

2
ci/2)

Var
[∑C

ci
exp(zci)

]
=
∑C

ci
(exp(σ2ci)− 1) exp(2µci + σ

2
ci)

(F.3)

The expectation of the cross entropy loss given that logits are following a normal distri-
bution is

LUCE
i = E[LCE

i ] = E[log(exp(zci))]− E
[
log

(∑C

c
exp(zci)

)]
(F.4)

In general, given a random variable x, we can approximate expectation of log x by per-
forming a second order Taylor expansion around the mean µ:

E[log x] ≈ E
[
logµ+

(logµ)′

1!
(x− µ)︸ ︷︷ ︸

E[x−µ]=0

+
(logµ)′′

2!
(x− µ)2

]

≈ E[logµ]− Var[x]
2µ2

(F.5)
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F.4 Non Expressiveness of RMTPP intensities

Using Eq. (F.5) together with Eq. (F.3) and plugging into Eq. (F.4) we get a closed-form
solution for the loss for event i:

LUCE
i ≈ µci(τ

∗
i )−log

( C∑
c

exp(µc(τ
∗
i )+σ

2
c (τ

∗
i )/2)

)
+

∑C
c (exp(σ

2
c (τ

∗
i ))− 1) exp(2µc(τ

∗
i ) + σ2

c (τ
∗
i ))

2
(∑C

c exp(µc(τ∗i ) + σ2
c (τ

∗
i )/2)

)2
(F.6)

F.4 Non Expressiveness of RMTPP intensities

The intensity function has the following form in the RMTPP model [109]:

log λ0(t) = v
T · hi + w(t− ti) + b (F.7)

The variables v, w and b are learned parameters and hi is given by the hidden state of
an RNN. The only dependence on t is (t − ti). RMTPP is then limited to monotonic
intensity functions with respect to time.

F.5 Dirichlet Evolution

Our goal is to model the evolution of a distribution on a probability simplex. Fig. 9.1b
shows this for two classes. In general, we can do the same for multiple classes. Fig. F.1
shows an example of the Dirichlet distribution for three classes, and how it changes
over time. This evolution is the output of the FD-Dir model trained on the 3-G dataset,
created to simulate the car example from Section 9.1 (see also Fig. F.6a in Appendix F.7).
The three classes: overtaking, breaking and collision occur independently of each other
at three different times. The represent the corners of the triangle in Fig. F.1.

We can distinguish three cases: (a) at first we are certain that the most likely class
is overtaking ; (b) as time passes, the most likely class becomes breaking, (c) and finally
collision. After that, we are in the area where we have not seen any data and do not
have a confident prediction (d).

(a) τ = 0 (b) τ = 0.5 (c) τ = 1. (d) τ = 2.

Figure F.1: Dirichlet distribution at different time for the 3-G dataset with σ = 1.
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F.6 Comparison of the classical cross-entropy and the
uncertainty cross-entropy

F.6.1 Simple classification task

In this section, we do not consider temporal data. The goal of this experiment is to show
the benefit of the uncertainty cross-entropy compare with the classical cross-entropy loss
on a simple classification task. As a consequence, we do not consider RNN in this section.
We use a simple two layers neural network to predict the concentration parameters of a
Dirichlet distribution from the input vector.

Set-up. The set-up is similar to [270] and consists of two datasets of 1500 instances
divided in three equidistant 2-D Gaussians. One dataset contains non-overlapping classes
(NOG) whereas the other contains overlapping classes (OG). Given one input xi, we
train simple two layers neural networks to predict the concentration parameters of a
Dirichlet distribution Dir(α1(xi), α2(xi), α3(xi)) which model the uncertainty on the
categorical distribution p(xi). On each dataset, we train two neural networks. One
neural network is trained with the classic cross-entropy loss LCE which uses only the
mean prediction p̄(xi). The second neural network is trained with the uncertainty cross-
entropy loss plus a simple α-regularizer:

LUCE +
∣∣α0(xi)−

∑
j

1xj∈Nw(xi)

∣∣
(F.8)

where xi is the input 2-D vector and Nw(xi) = {x′, ||x′ − xi||22 < w} is its euclidean
neighbourhood of size w. We set w = 10−5 for the non-overlapping Gaussians and
w = 10−2 for the overlapping Gaussians.

Results. The categorical entropy −∑c pc(xi) log pc(xi) is a good indicator to know
how certain is the categorical distribution p(xi) at point xi. A high entropy meaning
that the categorical distribution is uncertain. For non overlapping Gaussians (Figs. F.2a
and F.2b), we remark that both losses learn uncertain categorical distribution only on
thin borders. However, for overlapping Gaussians (See Figs. F.2c and F.2d),the uncer-
tainty cross-entropy loss learns more uncertain categorical distributions because of the
thicker borders.

Other interesting results are the concentration parameters learned by the two models
(Figs. F.3 and F.4). The classic cross-entropy loss learns very high value for α1(xi), α2(xi), α3(xi)
which does match with the true distribution of the data. In contrast, the uncertainty
cross-entropy learn meaningful alpha values for both datasets (delimiting the in-distribution
areas for α0 and centred around the classes for the others).
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(a) NOG - CE - Cat.
Ent.

(b) NOG - UCE - Cat.
Ent. (c) OG - CE - Cat. Ent. (d) OG - UCE - Cat.

Ent.

Figure F.2: The Figs. F.2a and F.2b plot the entropy of the categorical distribution learned on
a classification task with three non-overlapping Gaussians. They show categorical
entropy learned with the classic cross-entropy and learned with the uncertainty
cross-entropy. The Figs. F.2c and F.2d plot the entropy of the categorical dis-
tribution learned on a classification task with three overlapping Gaussians. They
show categorical entropy learned with the classic cross-entropy and learned with
the uncertainty cross-entropy.

(a) CE - α0 (b) CE - α1 (c) CE - α2 (d) CE - α3

(e) UCE - α0 (f) UCE - α1 (g) UCE - α2 (h) UCE - α3

Figure F.3: Concentration parameters of the Dirichlet distribution on a classification task with
three non-overlapping Gaussians. The Figs. F.3a to F.3d are α0, α1, α2, α3 learned
with the classic cross-entropy. The Figs. F.3a to F.3d are α0, α1, α2, α3 learned
with the uncertainty cross-entropy.
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(a) CE - α0 (b) CE - α1 (c) CE - α2 (d) CE - α3

(e) UCE - α0 (f) UCE - α1 (g) UCE - α2 (h) UCE - α3

Figure F.4: Concentration parameters of the Dirichlet distribution on a classification task with
three non-overlapping Gaussians. The Figs. F.3c, F.4a, F.4b and F.4d are α0, α1,
α2, α3 learned with the classic cross-entropy. The Figs. F.3c, F.4a, F.4b and F.4d
are α0, α1, α2, α3 learned with the uncertainty cross-entropy.

F.6.2 Asynchronous Event Prediction

In this section, we consider temporal data. The goal of this experiment is again to show
the benefit of the uncertainty cross-entropy compared to the classical cross-entropy in
the case of asynchronous event prediction.

Set-up. For this purpose, we use the same set-up describe in the experiment Anomaly
detection & Uncertainty. We trained the model FD-Dir with three different type of losses:
(1) The classical cross-entropy (CE), (2) The classical cross-entropy with regularization
described in Section 9.2.3 (CE + reg) and (3) The classical uncertainty cross-entropy
with regularization described in Section 9.2.3 (UCE + reg).

Figure F.5: Loss comparison in anomaly detection

Results. The results are shown in Fig. F.5. The loss UCE + reg consistently improves
the anomaly detection based on the distribution uncertainty.
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F.7 Datasets

F.7 Datasets

In this section we describe the datasets in more detail. The time gap between two
events τ∗i = ti − ti−1 is first log-transformed before applying min-max normalization:

τ̂i
∗ = τ ′i−min(τ∗

′
i )

(max(τ∗
′

i )−min(τ∗
′

i )
with τ∗′i = log(τ∗i + ϵ), ϵ > 0.

3-G. We use C = 3 and draw from a normal distribution P (τ |ci) = N (i + 1, 1.). This
dataset tries to imitate the setting from Fig. F.6a as explained in Section 9.1. We generate
1000 events. Probability density is shown in Fig. F.6b. Models that are not taking time
into account cannot solve this problem. Below is the code. We create the Multi-G
dataset similarly.
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(a) Car example explained in Section 9.1 where
probabilities of events to occur change over
time
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(b) Probability density of events in K-
Gaussians dataset. We can see that classes
are independent of history.

def generate():
data = np.zeros((1000, 2))
for i in range(1000):

i_class = np.random.choice(3, 1)[0]
time = np.random.normal(i_class + 1, 1.)
while time <= 0:

time = np.random.normal(i_class + 1, 1.)
data[i, 0] = i_class
data[i, 1] = time

return data
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Car Indicators. A sequence contains signals from a single car during one ride. We
remove signals that are perfectly correlated giving 6 unique classes in the end. Top 3
classes make up 33%, 32%, and 16% of a total respectively. From Fig. F.7 we can see
that the setting is again asynchronous.
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Car Indicators: Probability density of events
Class 1
Class 3

Figure F.7: Probability density of events in Car Indicators dataset for 2 selected classes. Time
is log-transformed.

Graph. We generate graph G with 10 nodes and 48 edges between them. We assign
variables µ and σ to each transition (edge) between events (nodes). The time it takes to
make a transition between nodes i and j is drawn from normal distribution N (µij , σ

2
ij).

By performing a random walk on the graph we create 10 thousand events. This dataset
is similar to K-Gaussians with the difference that a model needs to learn the relationship
between events together with the time dependency. Parts of the trace are shown in
Fig. F.8.

200 400 600 800 1000
t

Random Graph: Event Sequence

Figure F.8: Trace of events for random graph. Different colors represent different classes and
width of a single column represents the time that passed.

F.8 Details of experiments

We test our models (WGP-LN, FD-Dir and DPP) against neural point process models
(RMTPP and Hawkes) and simple baselines (RNN and LSTM – getting only history
as an input, F-RNN and F-LSTM – having also the real time of the next event as
an additional input; thus, they get a strong advantage!). We test on real world (Stack
Exchange, Car Indicators and Smart Home) and synthetic datasets (Graph). We
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show that our models consistently outperform all the other models when evaluated with
class prediction accuracy and Time-Error.

F.8.1 Model selection

We apply the same tuning technique to all models. We split all datasets into train–
validation–test sets (60% − 20% − 20%), use the validation set to select a model and
the test set to get final scores. For Stack Exchange dataset we split on users. In
all other datasets we split the trace based on time. We search over dimension of a
hidden state {32, 64, 128, 256}, batch size {16, 32, 64} and L2 regularization parameter
{0, 10−3, 10−2, 10−1}. We use the same learning rate 0.001 for all models and an Adam
optimizer [219], run each of them 5 times for maximum of 100 epochs with early stopping
after 5 consecutive epochs without improvement in the validation loss. For the number
of points M we pick 3 for WGP-LN and 20 for FD-Dir. WGP-LN and FD-Dir have
additional regularization (Eq. (9.7)) with hyperparameters α and β. For both models we
choose α = β = 10−3. Model with the highest mean accuracy on the validation set is
selected. We use GRU cell [80] for both of our models. We trained all models on GPUs
(1TB SSD).

F.8.2 Results

Tables F.1 and F.2, together with Fig. F.9 show test results for all models on all datasets
for Class accuracy and Time-Error.
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Figure F.9: Class accuracy (top) and Time-Error (bottom) comparison across datasets

F.8.3 Time Prediction with Point Processes

The benefit of the point process framework is the ability to get the point estimate for
the time τ̂ of the next event:

τ̂ =

∫ ∞

0
tq(τ)dt (F.9)

289



F Uncertainty Estimation for Sequential Data

Table F.1: Class accuracy comparison for all models on all datasets

Car Indicators Graph Smart Home Stack Exchange

FD-Dir 0.909 ± 0.005 0.701 ± 0.002 0.522 ± 0.013 0.522 ± 0.001
Dir-PP 0.912 ± 0.006 0.691 ± 0.006 0.415 ± 0.054 0.515 ± 0.002
WGP-LN 0.877 ± 0.010 0.685 ± 0.005 0.500 ± 0.017 0.519 ± 0.003

Hawkes 0.834 ± 0.022 0.585 ± 0.008 0.435 ± 0.017 0.513 ± 0.001
RMTPP 0.858 ± 0.004 0.257 ± 0.005 0.472 ± 0.016 0.492 ± 0.000
F-LSTM 0.855 ± 0.006 0.657 ± 0.002 0.411 ± 0.029 -
F-RNN 0.849 ± 0.013 0.615 ± 0.011 0.472 ± 0.035 -
LSTM 0.858 ± 0.010 0.251 ± 0.008 0.375 ± 0.026 -
RNN 0.838 ± 0.016 0.258 ± 0.008 0.437 ± 0.017 -

Table F.2: Time-Error comparison for all models on all datasets

Car Indicators Graph Smart Home Stack Exchange

FD-Dir 0.115 ± 0.040 0.101 ± 0.001 0.111 ± 0.011 0.289 ± 0.019
WGP-LN 0.184 ± 0.047 0.120 ± 0.008 0.127 ± 0.010 0.077 ± 0.016
FD-Dir-PP 0.132 ± 0.031 0.106 ± 0.004 0.143 ± 0.022 0.375 ± 0.007

Hawkes 0.412 ± 0.091 0.158 ± 0.005 0.170 ± 0.035 0.507 ± 0.003
RMTPP 0.860 ± 0.004 0.257 ± 0.005 0.474 ± 0.016 0.721 ± 0.001
F-LSTM 0.277 ± 0.118 0.141 ± 0.002 0.209 ± 0.023 -
F-RNN 0.516 ± 0.105 0.146 ± 0.004 0.186 ± 0.011 -
LSTM 0.860 ± 0.010 0.251 ± 0.008 0.376 ± 0.026 -
RNN 0.841 ± 0.016 0.258 ± 0.008 0.439 ± 0.017 -
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where
q(τ) = λ0(τ) exp

(
−
∫ τ

0
λ0(s)ds

)
(F.10)

The usual way to evaluate the quality of this prediction is using an MSE score. As we
have already discussed in Section 9.5, this is not optimal for our use case. Nevertheless,
we did preliminary experiments comparing our neural point process model FD-Dir-PP
to others. We use RMTPP [109] since it achieves the best results. On Car Indicators
dataset our model has mean MSE score of 0.4783 while RMTPP achieves 0.4736. At the
same time FD-Dir-PP outperforms RMTPP on other tasks (see Section 9.5).

291





G Uncertainty Estimation for
Reinforcement Learning

G.1 Proofs

In this section, we show that deep kernel learning [421] and evidential models based on
Posterior Networks [67, 69] are guaranteed to assign high epistemic uncertainty for (state)
inputs far from (state) inputs observed during training under technical assumptions. In
particular, the combination of DQN with deep kernel learning or evidential networks
presented in Section 10.4 are guaranteed to assign high epistemic uncertainty for extreme
input states. We assume that the encoder should use ReLU activations, which is common
in deep learning, and that the rows of the linear transformations are independent, which
is realistic for trained networks with no constant output [182].

Lemma 13. [17] Let {Ql}Rl be the set of linear regions associated to the piecewise ReLU
network fϕ(x). For any x ∈ RD, there exists δ∗ ∈ R+ and l∗ ∈ 1, . . . , R such that
δ · x ∈ Ql∗ for all δ > δ∗.

Lemma 14. Let a (deep) encoder fϕ with piecewise ReLU activations. Let fϕ(x) =
V (l)x + a(l) be the piecewise affine representation of the ReLU network fϕ on the finite
number of affine regions Q(l) [17]. Suppose that V (l) have independent rows, then for
almost any x we have ∥fϕ(δ · x)∥ →

δ→∞
∞, i.e the norm of the latent representations

zδ = fϕ(δ · x) associated to the input δ · x goes to infinity.

Proof. Let x ∈ RD be a non-zero input and fϕ be a ReLU network. Lemma 13 implies
that there exists δ∗ ∈ R+ and l ∈ {1, ..., R} such that δ · x ∈ Q(l) for all δ > δ∗. Thus,
zδ = fϕ(δ · x) = δ · (V (l)x) + a(l) for all δ > δ∗. Note that for δ ∈ [δ∗,+∞], zδ follows
an affine half line Sx = {z | z = δ · (V (l)x) + a(l), δ > δ∗} in the latent space. Further,
note that V (l)x ̸= 0 since x ̸= 0 and V (l) has independent rows. Therefore, we have
∥zδ∥ →

δ→∞
+∞

Theorem 15. Let a Deep Kernel Learning model parametrized with a (deep) encoder
fϕ with piecewise ReLU activations, a set of K inducing points {ϕk}Kk=1 and a RBF,
Matern or Rational Quadratic kernel κ(·, ·) [115, 356]. Let fϕ(x) = V (l)x + a(l) be the
piecewise affine representation of the ReLU network fϕ on the finite number of affine
regions Q(l) [17]. Suppose that V (l) have independent rows, then for almost any x we
have σ(fϕ(δ · x)) →

δ→∞
c where c = κ(0, 0).

Proof. Lemma 13 says that ∥zδ∥ →
δ→∞

+∞ where zδ = fϕ(δ · x). It implies that ∥zδ −
ϕk∥ →

δ→∞
∞ for all inducing point ϕk. Thus, we obtain κ(zδ,ϕk) →

δ→∞
0 where κ(·, ·) is the
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RBF, Matern or Rational Quadratic kernel [115, 356]. Since the variance of the predictive
Gaussian distribution associated with the Gaussian process is σ(fϕ(δ · x)) = c − κCκ
where c = κ(fϕ(δ · x), fϕ(δ · x)) = κ(0, 0), κk = κ(zδ,ϕk) and κk,k′ = κ(ϕk,ϕk′). This
gives the final result σ(fϕ(δ · x)) →

δ→∞
c where c = κ(0, 0).

Theorem 15 implies that deep kernel learning on a latent space parametrized with
a neural network is guaranteed to predict high uncertainty corresponding to the prior
uncertainty far from training data. This includes the uncertainty predicted by the GP as-
sociated to each action a in the combination of DQN and deep kernel learning presented in
Section 10.4. The uncertainty prediction uepist(st, at) = H(N (µ(s(t), a(t)), σ(s(t), a(t))))
becomes high for input states s(t) extremely different from the training environment, i.e.
∥s(t)∥ → ∞.

Theorem 16. [69] Let a Natural Posterior Network model parametrized with a (deep)
encoder fϕ with piecewise ReLU activations, a decoder gψ and the density P(z |ω). Let
fϕ(x) = V (l)x + a(l) be the piecewise affine representation of the ReLU network fϕ on
the finite number of affine regions Q(l) [17]. Suppose that V (l) have independent rows
and the density function P(z |ω) has bounded derivatives, then for almost any x we have
P(fϕ(δ · x) |ω) →

δ→∞
0, i.e the evidence becomes small far from training data.

The proof of Theorem 16 is already given in [69], and relies also on Lemma 14 and
the fact that a smooth density estimator should converge to 0 far from training data.
Intuitively, it implies that the epistemic associated to each possible action a by the
combination of DQN and posterior network becomes high for input states s(t) extremely
different from the training environment i.e. ∥s(t)∥ → ∞. In particular, prior parameter
takes over in the posterior update (i.e. npost(s(t), a)) → nprior, χpost(s(t), a) → χprior)

G.2 Model Details

We train all models on a single GPU (NVIDIA GTX 1080 Ti or NVIDIA GTX 2080 Ti, 11
GB memory). All models use the same core architecture. They use a 2 layers MLP with
128 hidden units for the CartPole environment, a 2 layers MLP with 64 hidden units for
the Acrobot environment and a 3 layers MLP with 128 hidden units for the LunarLander
environment. All models are trained using 5 random seeds with the Adam optimizer [219].
For fair comparison, we use the same hyperparameters for the DQN architecture in all un-
certainty models: the target network parameters are completely updated (i.e. τ = 1) ev-
ery 10 training iterations. The epsilon-greedy strategy start with ϵ = 1 and decay till ϵ =
0.01 after 1000 iteration steps. The discount factor is set to 0.99. Further, we use a batch
size of 16, a replay size of 1000 and a maximum number of training iterations of 13000 for
Cartpole, a batch size of 64, a replay size of 10000 and a maximum number of training
iterations of 120000 for Acrobot, and a batch size of 128, a replay size of 10000 and a
maximum number of training iterations of 300000 for LunarLander. For each type of un-
certainty model, we performed a grid search for the learning rate in the range [10−1, 10−4].

Each uncertainty method has also its own hyperparameters. We show an hyperpa-
rameter study in Appendix G.5.4 for the main hyper-parameters of each uncertainty
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method. For the MC dropout model, we make a grid-search over the number of samples
n ∈ {10, 20, 40, 80} and the drop probability p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. In the main
experiments, we use n = 80 and p = .2. For the ensemble model, we make a grid-
search over the number of networks n ∈ {10, 20, 40, 80}. In the main experiments, we
use n = 80. For the deep kernel learning model, we make a grid-search over the number
of inducing points n ∈ {10, 20, 40, 80}, the latent dimension H ∈ {16, 32, 64}, the kernel
type in RBF, RQ and Matern-32 Kernel, and an ELBO regularization factor in λ ∈ [0, 1]
. In the main experiments, we use n = 80 inducing points, a latent dimension of H = 64,
the RQ kernel, and a regularization factor of λ = 0.1. Further, we observed that adding
a batch normalization layer right after the encoder fθ was stabilizing the training sim-
ilarly to Charpentier et al. [67]. For the evidential network model based on posterior
networks, we make a grid-search over the flow depth d ∈ {8, 16, 32}, the latent dimension
H ∈ {8, 16, 32}. In the main experiments, we use a radial flow with depth d = 8 and a la-
tent dimension of H = 16. Further, we observed that adding a batch normalization layer
right after the encoder fθ was stabilizing the training similar to Charpentier et al. [67].

We provide the code at the anonymous link 1. To conduct the experiments, we used
Pytorch [341] with BSD license, Pytorch Lightning [125] with Apache 2.0 license and
Weight&Biases [35]. Further, we also use GPytorch for to implement the deep kernel
model [147].

G.3 Environment Details

We use OpenAI gym environments [54] with MIT license. We design the OOD environ-
ments such that they should not be relevant to the original training environment task,
and thus being a reasonable failure mode. Further, we design a continuum of perturbed
environments going from tasks very similar to the training environment to the tasks very
different from the original environment. We distinguish between perturbations on the
state space, the action space, and the transition dynamics to follow the MDP structure
of the original environment. In contrast, [336, 295] mostly focus on perturbations on the
environment parameters. We provide the code for the OOD and perturbed environment
at the following anonymous link Footnote 1.

Cartpole [25] In this environment, the goal of the agent is to maintain a pole on a
cart straight up. This environment has a discrete action space with 2 possible actions
corresponding to apply the a force to the left or the right of the cart. This environment
has a continuous state space with dimension 4 corresponds to. The episode ends when
the pole is more than 15 degrees from vertical, or the cart moves more than 2.4 units
from the center. The reward is +1 at every time step that the pole stays up. The
maximum length of an episode is 200 steps. For the OOD environment, the input states
are drawn from a Gaussian distribution with unit variance i.e. s(t),pert ∼ N (0, 1). For
the perturbed environments with perturbation strength ϵ, the action space is perturbed
by randomly adding Gaussian noise to the scale of the force applied to the cart (i.e.
fpert = (1 + x)f where f ∈ {−10, 10} is default action force and x ∼ N (0, ϵ) is the

1https://anonymous.4open.science/r/Aleatoric-Epistemic-Uncertainty-RL-DDB5/README.md
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perturbation), the state space is perturbed by adding Gaussian noise to the observation
scale (i.e. s(t),pert = (1 + x)s(t) where x ∼ N (0, ϵ) is the perturbation), and the transi-
tion dynamic is perturbed by adding a uniform noise centered around the true dynamic
parameters (i.e. νpert = (1+x)ν where x ∼ U(−ϵ, ϵ) where ν is the original environment
parameters) such as the gravity, pole length, pole weight.

Acrobot [402, 153] In this environment, the agent control a robot arm with two links
and its goal is to move the end of the lower link up to a given height. This environment
has a discrete action space with 3 possible actions corresponding to apply a positive
torque, a negative torque or nothing. This environment has a continuous state space
with dimension 6 corresponding to the 4 joint angles and the 2 angular velocities. The
episode ends when the lower link of the robot arm is above a given height. The reward is
−1 at every time step that the pole does not reach the expected height. The maximum
length of an episode is 500 steps at most. For the OOD environment, the input states are
drawn from a Gaussian distribution with unit variance (i.e. s(t),pert ∼ N (0, 1)). For the
perturbed environments with perturbation strength ϵ, the action space is perturbed by
randomly sampling actions with probability p = ϵ

2 , the state space is perturbed by adding
Gaussian noise to the observation scale (i.e. s(t),pert = (1 + x)s(t) where x ∼ N (0, ϵ)),
and the transition dynamic is perturbed by adding a uniform noise centered around the
true dynamic parameters (i.e. νpert = (1+x)ν where x ∼ U(−ϵ, ϵ) where ν is the original
environment parameters) such as the lengths of the links, the masses of the links.

LunarLander [52] In this environment, the agent control a space ship and its goal is
to land it on the surface of the moon. This environment has a discrete action space with
4 possible actions corresponding to apply a torque to the left, to the right, downward or
nothing. This environment has a continuous state space with dimension 8 corresponding
to the space ship coordinates. The reward is correlated with fast landing in the correct
area without crashes. The episode ends when the spaceship is landed or crashed. For the
OOD environment, the input states are drawn from a Gaussian distribution with unit
variance (i.e. s(t),pert ∼ N (0, 1)). For the perturbed environments with perturbation
strength ϵ, the action space is perturbed by randomly sampling actions with probabil-
ity p = ϵ

2 , the state space is perturbed by adding Gaussian noise to the observation
scale (i.e. s(t),pert = (1 + x)s(t) where x ∼ N (0, ϵ)), and the transition dynamic is per-
turbed by adding a uniform noise centered around the true dynamic parameters (i.e.
νpert = (1 + x)ν where x ∼ U(−ϵ, ϵ) where ν is the original environment parameters)
such as the lengths of the links, the masses of the links.

G.4 Metric Details

G.4.1 Training Time

We track the current reward, the epistemic uncertainty and the aleatoric uncertainty at
every training step. The epistemic and aleatoric uncertainty are defined by the variance
or the entropy of the epistemic and the aleatoric distributions (see Section 10.4). The
two uncertainty types are then normalized between [0, 1] with min-max normalization to
compute the relative epistemic and aleatoric uncertainty on the plots. The normalization
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enable an easier comparison of the trend of the uncertainty estimates across methods.
For all these experiments, we compute the mean and the standard error of the mean
across 5 seeds for all results.

G.4.2 Testing Time

We save 20 model checkpoints at regular interval during the whole training. We evaluate
then the 20 checkpointed models at testing time. First, we compute the in-distribution
(ID) reward average over 10 episodes on the original training environment. Second, we
compute the OOD detection scores by comparing the epistemic uncertainty of the ID and
the OOD environment over 10 episodes each with the area under the receiver operating
characteristic curve (AUC-ROC) and the area under the precision-recall curve (AUC-
PR). Higher scores indicate better OOD detection performances. Third, we compute
the averaged reward and epistemic uncertainty on the perturbed environment over 10
episodes. For all these experiments, we compute the mean and the standard error of the
mean across 5 seeds for all results. Further, we also sampled 5 random perturbations for
each perturbation strength.

G.5 Additional Experiments

G.5.1 Training Time

We show additional results on CartPole, Acrobot and LunarLander in Fig. G.1 to compare
the performance of the uncertainty estimates of the four uncertainty methods at training
time. The epistemic uncertainty estimates of PostNet decrease during training. Thus,
PostNet empirically validate des. 10.3.1. Further, Ensembles and PostNet require a low
number of finished episodes on CartPole and LunarLander. This translates for these two
envionments into a safer learning with a lower number of restart of the systems.

We show additional results in Fig. G.2 to compare the performance of the sampling-
epistemic and the sampling-aleatoric strategies at training time. The sampling-epistemic
strategy consistently achieve a better sample efficiency. Thus, Ensemble, DropOut and
PostNet empirically satisfy des. 10.3.2. Hence, disentangling aleatoric and epistemic
uncertainty can speed learning in a training environment.

G.5.2 Testing Time

We show additional results in Fig. G.3 to compare the generalization and OOD detection
performance of the uncertainty estimates of the four uncertainty methods at testing
time. The models use the sampling-epistemic or the sampling-aleatoric strategy at both
training and testing time. Further, we show other additional results for OOD detection
by using the area under the precision-recall (AUC-PR) scores instead of the area under
the receiver operating characteristic curve (AUC-ROC) in Fig. G.8. We observe that
DKL and PostNet achieve very high OOD detection scores in most settings compared to
DropOut and Ensemble. These empirical results align with the theoretical results stating
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Acrobot

CartPole

LunarLander

Figure G.1: Comparison of the training performance of the four uncertainty methods using
epsilon-greedy strategies. Ideally, an uncertainty aware model should achieve high
reward with few samples and with a decreasing epistemic uncertainty.
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CartPole

Acrobot

LunarLander

Figure G.2: Comparison of the training performance. The four uncertainty methods use the
sampling-aleatoric or the sampling-epistemic at training time. Ideally, an uncer-
tainty aware-model should high reward with few samples.
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that DKL and PostNet should assign high uncertainty to states very different from states
observed during training. Thus, DKL and PostNet validate des. 10.3.3. In particular,
DKL and PostNet can reliably equip DQN with epistemic uncertainty estimates which
can be used to flag anomalous OOD states.

We show additional results in Fig. G.4 to compare the performance of the sampling-
epistemic and sampling-aleatoric strategies for each uncertainty model. All models use
the same epsilon-greedy strategy at training time. We observe that the sampling-
epistemic strategy is consistently better than sampling-aleatoric at testing time. The
higher generalization capacity of the sampling-epistemic strategy aligns with [159] which
recasts the problem of generalization in RL as solving an epistemic POMDP. These em-
pirical results underline the need to disentangle both aleatoric and epistemic uncertainty
for high reward performance at testing time.

We show additional results in Figs. G.5 to G.7 to compare the generalization and uncer-
tainty performances of the sampling-epistemic and sampling-aleatoric strategies of each
method on perturbed environments with state, action and transition dynamic perturba-
tions. All methods achieve lower reward on environment with stronger perturbations.
This is expected since a model cannot generalize to all new environments. The sampling-
epistemic strategy achieves significantly better that the sampling-aleatoric strategy. The
generalization capacity of the sampling-epistemic strategy aligns again with [159]. Thus,
differentiating between aleatoric and epistemic uncertainty can improve generalization.
Finally, only DKL and PostNet reliably assign higher epistemic uncertainty to most of
the perturbation types. Therefore, DKL and PostNet have a good trade-off between
generalization and detection of new perturbed environments.

Video: For a better visualization, we attach supplementary videos showing the landing
performance, the reward performance, and the relatice epistemic uncertainty prediction
of the PostNet model in the original LunarLander environments and two environments
with perturbed states with perturbation strengths equal to 0.5 and 2.0. On the original
environment, we observe that the space ship lands correctly with lower epistemic uncer-
tainty after landing. On the perturbed environment with strength 0.5, we observe that
the space ship avoids crashing but assigns higher epistemic uncertainty when moving fur-
ther from the landing zone. Finally, on the perturbed environment with strength 2.0, we
observe that the space ship assigns significantly higher epistemic uncertainty especially
when approaching the floor before the crash.

G.5.3 Comparison with Vanilla DQN

We show additional results in Fig. G.9 to compare the sample efficiency and the gen-
eralization capacity of the uncertainty models with the vanilla DQN. The vanilla DQN
is not eqquiped by default with uncertainty estimates. Therefore, it cannot be used for
uncertainty tasks like OOD detection. For the sake of comparison, all models use the
epsilon-greedy strategy. We observe that the vanilla DQN achieve significantly lower
sample efficiency on CartPole. Further, it achieves less stable generalization performance
on LunarLander. In contrast, the four uncertainty methods achieve higher generaliza-
tion performance especially when using the sampling epistemic strategy (see Fig. G.4).
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Acrobot

CartPole

LunarLander

Figure G.3: Comparison of the testing performance of the four uncertainty methods using
epsilon-greedy strategies at training and testing time. Ideally, an uncertainty aware
model should achieve high reward and high OOD detection scores.

301



G Uncertainty Estimation for Reinforcement Learning

Acrobot

CartPole

LunarLander

Figure G.4: Comparison of the testing reward and OOD performance. The four uncertainty
methods use the sampling-aleatoric or sampling-epistemic strategies at both train-
ing and testing time. Ideally, an uncertainty aware model should achieve high
testing reward and high OOD AUC-ROC detection score.
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Action shifts

State shifts

Transition shifts

Figure G.5: Comparison of the testing performance and the epistemic uncertainty predictions
on CartPole with perturbed actions, states, and transitions. The four uncertainty
methods use the epsilon-greedy strategy at training time and the sampling-aleatoric
or sampling-epistemic strategy at testing time. Ideally, an uncertainty aware model
should maintain high reward while assigning higher epistemic uncertainty on more
severe perturbations.
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Action shifts

State shifts

Transition shifts

Figure G.6: Comparison of the testing performance and the epistemic uncertainty predictions
on Acrobot with perturbed actions, states, and transitions. The four uncertainty
methods use the epsilon-greedy strategy at training time and the sampling-aleatoric
or sampling-epistemic strategy at testing time. Ideally, an uncertainty aware model
should maintain high reward while assigning higher epistemic uncertainty on more
severe perturbations.
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Action shifts

State shifts

Transition shifts

Figure G.7: Comparison of the testing performance and the epistemic uncertainty predictions
on LunarLander with perturbed actions, states, and transitions. The four uncer-
tainty methods use the epsilon-greedy strategy at training time and the sampling-
aleatoric or sampling-epistemic strategy at testing time. Ideally, an uncertainty
aware model should maintain high reward while assigning higher epistemic uncer-
tainty on more severe perturbations.
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Acrobot

CartPole

LunarLander

Figure G.8: Comparison of the OOD performance. The four uncertainty methods use the
sampling-aleatoric or sampling-epistemic strategies at both training and testing
time. Ideally, an uncertainty aware model should achieve high testing reward and
high OOD AUC-PR detection score.
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Acrobot

CartPole

LunarLander

Figure G.9: Comparison of the vanilla DQN with the four uncertainty methods performance.
All methods use the epsilon-greedy strategy. The vanilla DQN cannot be evaluated
on uncertainty tasks.

These results underline the benefit of predicting and disentangling the aleatoric and the
epistemic uncertainty for better sample efficiency and generalization performance.

G.5.4 Hyperparameter Selection

In this section, we present a hyperparameter study for each uncertainty method on the
CartPole environment To this end, plot the testing reward and the OOD scores when
varying the most important hyper-parameters. we at testing time. We show the hyper-
parameter study for dropout when varying the number of samples n and the dropout
probability p in Fig. G.10. We observe that a higher number of samples achieves a slightly
better OOD detection score. Dropout is pretty insensitive to the dropout probability.
We show the hyper-parameter study for ensemble when varying the number of networks
n in Fig. G.11. While a higher number of networks is supposed to give higher prediction
quality [246], Ensemble looks to give similar results for all number of networks. We
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Figure G.10: Hyper-parameter study for DropOut w.r.t. the number of samples n and the
dropout probability p. Ideally, an uncertainty aware-model should achieve high
reward and high OOD detection scores.

show the hyper-parameter study for DKL when varying the number of inducing points
n, the latent dimension H, the kernel type and the batch norm layer in Fig. G.12. The
batch norm layer appears to improve the results similarly to [67]. It facilitates the match
between the latent positions output by the encoder and the inducing points. The other
hyperparameters consistently show good performances. We show the hyperparameter
study for PostNet in Fig. G.13. Again, the batch norm layer appears to improve the
result stability as observed in [67]. It facilitates the match between the latent positions
output by the encoder and non-zero density regions learned by the normalizing flows.
The other hyperparameters consistently show good performances.
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Figure G.11: Hyper-parameter study for Ensemble w.r.t. the number of networks n. Ideally,
an uncertainty aware-model should achieve high reward and high OOD detection
scores.

Figure G.12: Hyper-parameter study for DKL w.r.t. the number of inducing points n, the
latent dimension H, the kernel type and the batch norm layer. Ideally, an uncer-
tainty aware-model should achieve high reward and high OOD detection scores.

Figure G.13: Hyper-parameter study for PostNet w.r.t. the flow depth d, the latent dimension
H and the the batch norm layer. Ideally, an uncertainty aware-model should
achieve high reward and high OOD detection scores.
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