

Technische Universität München
TUM School of Computation, Information and Technology

Finite sample identification of artificial neural networks

Michael Rauchensteiner

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology

der Technischen Universität München zur Erlangung eines

 Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Daniel Matthes

Prüfer*innen der Dissertation:

1. Prof. Dr. Massimo Fornasier

2. Prof. Dr. Jan Vybíral

3. Prof. Dr. Radu V. Balan

Die Dissertation wurde am 24.04.2023 bei der Technischen Universität München eingereicht

und durch die TUM School of Computation, Information and Technology am 17.11.2023

angenommen.

Abstract

This dissertation considers the problem of neural network identifiability (i.e., the retrieval of
network weights and shifts) by constructive and efficient methods. We establish how the linear
span of network derivatives with respect to the network input encodes the weight information
of shallow neural networks and suitable deep neural networks. More precisely, for suitable
inputs, the corresponding Hessian matrices give rise to a matrix space that admits a basis
consisting of rank-one matrices given by outer products of the original first-layer weights and
suitable linear combinations of weights associated with deeper layers.

We discuss the characterization of rank-one matrices within symmetric matrix spaces as
local maximizers of suitable non-linear programs in the overcomplete regime, where the number
of spanning rank-one matrices exceeds the ambient dimension of the matrices. Additionally,
it is shown how these local maximizers can be computed efficiently and robustly by simple
iterative methods similar to projected gradient ascent algorithms.

We leverage this technique to reconstruct the weights of wide shallow neural networks with
sufficiently non-polynomial activations, where the number of neurons scales (up to log-factors)
quadratic with the input dimension of the network. We present how the recovery of the shifts
of wide shallow networks with weights known up to sign can be tackled by empirical risk
minimization via gradient descent paired with an initialization strategy. For the shift recovery,
we provide a local convergence analysis that borrows techniques from the neural tangent
kernel community. Combining the steps above, we attain an end-to-end recovery pipeline of
wide shallow neural networks that provably recovers all underlying network parameters up to
numerical accuracy.

Furthermore, we extend this parameter recovery to networks with multiple hidden non-
linear layers of pyramidal shape. This approach is based on the so-called entangled weights,
which are defined as the gradients of the network’s pre-activations. Entangled weights serve as
a generalization of ordinary weights, enabling us to decouple weight information accessible
via network differentiation. We provide proof and empirical evidence that entangled weights
can be recovered from network Hessians and show heuristically that suitable deep neural
networks can be identified based on the entangled weights by learning all remaining unknown
parameters by empirical risk minimization. As a complement, all theoretical analysis of the
network identification is corroborated by extensive numerical experiments.

Zusammenfassung

Diese Dissertation befasst sich mit der effizienten und konstruktiven Parameteridentifizierung
von künstlichen neuronalen Netzwerken. Genauer, beschäftigen wir uns mit der Frage, unter
welchen Umständen sich die Parameter eines neuronalen Netzwerkes ausgehend von Netzw-
erkauswertungen rekonstruieren lassen. Wir zeigen - für unterschiedliche Netzwerkarchitek-
turen - dass die lineare Hülle von Hesse-Matrizen eines neuronalen Netzes dessen Gewichte
kodiert. Hierbei lassen sich die Netzwerkgewichte aus einer Basis der linearen Hülle ableiten.
Diese Matrixbasis lässt sich dadurch charakterisieren, dass alle ihre Elemente nahe an einer
Rang-1 Matrix liegen.

Wir beschreiben, wie eine ausreichend inkohärente Matrixbasis, bestehend aus Rang-1
Matrizen, als Menge der lokalen Maxima eines nichtlinearen Programms über einem sym-
metrischen Matrixraum identifiziert werden kann. Weiterhin werden effiziente Algorithmen
zur Bestimmung dieser lokalen Maxima anhand projizierender Gradientenverfahren behandelt.

Wir zeigen, wie sich mit Hilfe dieser Herangehensweise die Parameter von zweischichtigen
neuronalen Netzwerken mit hinreichend nicht-polynomiellen Aktivierungsfunktionen bes-
timmen lassen. Mittels einer lokalen Konvergenzanalyse wird gezeigt, wie sich alle übrigen
unbekannten Netzwerkparameter mittels empirischer Risikominimierung approximieren lassen.
Der Fokus der theoretischen Analyse liegt hierbei auf Netzwerken, bei denen die Anzahl der
nichtlinearen Neuronen quadratisch mit der Eingabedimension skaliert (abgesehen von loga-
rithmischen Faktoren). Insgesamt wird somit ein Verfahren präsentiert welches alle Parameter
eines weiten zweischitigen neuronalen Netzwerkes bis auf numerische Approximationsfehler
anhand von Netzwerkauswertungen bestimmt.

Anschließend wird gezeigt wie sich dieser Ansatz auf mehrschichtige neuronale Netzwerke
mit einer pyramidischen Architektur anwenden lässt. Hierzu wird eine Generalisierung
von herkömmlichen Netzwerkgewichten eingeführt, welche sich aus den Gradienten der
Voraktivierungen ableiten lassen. Es wird bewiesen wie sich diese Gewichte mittels eines
ähnlichen Verfahrens aus Netzwerk-Hesse-Matrizen bestimmen lassen. Weiterhin zeigen wir
anhand heuristischer Methoden, wie sich die übrigen Netzwerkparameter in einem zweiten
Schritt isoliert bestimmen lassen. Zusätzlich zu den theoretischen Ergebnissen demonstrieren
wir die Auswertungen numerischer Studien, welche die erfolgreiche Parameteridentifikation
von zwei- und mehrschichtigen neuronalen Netzwerken zeigen.

Acknowledgements

This dissertation and the positive experience during my doctoral studies were made possible
by all the great people and collaborators I met along the way, to whom I would like to express
my gratitude: First and foremost, I want to thank my supervisor Massimo Fornasier for being
a great teacher and for his guidance throughout this journey. His encouragement and trust not
only shaped my academic path but also taught me many valuable lessons about myself. I want
to thank all my collaborators, in particular Timo Klock for the great collaboration on many
projects and the fruitful discussions over the last few years, which deeply impacted my work,
and Marco Mondelli, from whom I gained many insights into the connection of my studies to
neural tangent kernel methods.

I am grateful to all my friends and colleagues at M15 for their insight and help on
mathematical problems, for the fun we had during coffee breaks, board game nights, barbeques,
and beyond.

My deepest gratitude goes to my family and friends for their tremendous support. I want
to thank my mother, Hanne, for always having my back throughout all these years and my
father, Hans, who is a great inspiration and friend whom I miss dearly. Furthermore, I want
to thank my uncle Jakob for his great support. Last but not least, I want to thank my partner
Andreea for being there every step of the way, for kindly pushing me when needed, and for
always bringing joy into my life.

Contents

Introduction 7

1 Recovering Neural Networks 11
1.1 Preliminaries . 11

1.1.1 Notation and singular subspaces . 11
1.1.2 Introduction to neural networks . 15
1.1.3 Training neural networks . 18

1.2 Identifiability of fully connected Neural Networks 19
1.2.1 Identifiability vs. identification of network parameters 20

1.3 Teacher-student models . 21
1.3.1 Identifying a shallow neural network by empirical risk minimization . . 23
1.3.2 Exploring depth in the teacher-student setting 26

1.4 Reduction of weight identification to tensor decompositions 28
1.5 Reconstruction of shallow neural networks from Hessian information 31

2 Recovery of a rank-one basis from its perturbed span 35
2.1 Introduction and preliminaries . 35

2.1.1 Problem setting . 38
2.1.2 Deterministic frame bounds: Measuring incoherence in the linear regime 40

2.2 Near rank-one matrices approximate spanning elements 43
2.3 Selection of near-rank-one matrices based on the spectral norm 46

2.3.1 Characterization of local maximizers . 46
2.3.2 Optimality Conditions . 47
2.3.3 Characterization of local maximizers based on their optimality conditions 52
2.3.4 Computation of local maximizers via projected gradient ascent 53
2.3.5 Discussion of open problems . 58

2.4 Subspace power method . 58
2.5 Perturbation analysis of the SPM objective under deterministic frame bounds . . 60

2.5.1 Optimality conditions . 61
2.5.2 Describing the optimization landscape . 63
2.5.3 Proof of the Theorem 2.6 . 65
2.5.4 Intermediate Discussion . 68

2.6 Extension of SPM to the overcomplete regime . 69
2.6.1 Incoherence in the overcomplete setting . 69
2.6.2 Average case guarantees for SPM in the overcomplete regime. 72

2.7 Conclusion . 74

5

3 Efficient reconstruction of wide shallow networks 77
3.1 Introduction and preliminaries . 78

3.1.1 Problem setting: Shallow neural network model 79
3.1.2 Summary: Overview and main result . 82

3.2 Weight identification . 86
3.2.1 Reduction to the rank-one basis recovery problem 86
3.2.2 Recovery guarantees . 89

3.3 Recovery of the correct signs and initialization of the shifts 93
3.3.1 Parameter initialization: Strategy . 94
3.3.2 Parameter initialization: Guarantees . 95

3.4 Refining the approximated shifts using empirical risk minimization 99
3.4.1 Formulation of a simplified teacher-student problem 100
3.4.2 Local convergence guarantees . 100
3.4.3 Proof strategy for Theorem 3.4. 103
3.4.4 Preliminaries: Hermitian expansions . 105
3.4.5 Strict convexity of the idealized objective in expectation 108
3.4.6 Controlling the difference between the gradient upgrades 112
3.4.7 A lower bound for the drift from the idealized GD iteration 124
3.4.8 Concluding the proof of Theorem 3.4 . 127

3.5 Proof of the Theorem 3.2 . 128
3.6 Experiments: Reconstruction of shallow neural networks 130

4 Entangled weights: Moving beyond shallow network architectures 135
4.1 Introduction and preliminaries . 135

4.1.1 Problem setting: Deep neural network model 136
4.1.2 Preliminaries: Entangled weights . 139
4.1.3 Summary: Main results . 145

4.2 Entangled weight identification . 147
4.2.1 Stabilizing the Hessian subspace . 150
4.2.2 Proof of Theorem 4.1 . 154
4.2.3 Empirical analysis of entangled weight recovery 159

4.3 Network completion . 164
4.3.1 Layer Assignment . 165
4.3.2 Loss-free reparametrization . 168
4.3.3 Learning the parameters of the reparametrized network 171

4.4 Experiments: Reconstruction of deep neural networks 176

Bibliography 185

Introduction

Over the last two decades, we have witnessed incredible breakthroughs in machine learning and
modern deep learning algorithms have crept into many domains of our daily lives. For instance,
an average off-the-shelf phone already comes with several pre-installed machine learning
algorithms to support face recognition, voice interpretation, and various other applications. At
the core of this development stand deep learning architectures such as artificial deep neural
networks [81], which can learn representations of complex data by the composition of multiple
simple non-linearities and have become state-of-the-art in various data-intensive fields such
as computer vision [78], natural language problems [7], playing Go [1], or genomics [47]. The
continuous rise of deep learning is fueled by the increasing amount of computational resources
and data that have become available over the recent years [81]. Another reason for its success is
the large amount of scientific and engineering work invested in optimizing learning algorithms
and developing new neural network architectures. The theoretical research on neural networks
in their current form dates back to the late 80s and the early 90s, with famous early results
such as the universal approximation theorem [67, 34, 57, 82] or back-propagation [109].

Despite the prevalence and great success of deep learning models in a wide range of data-
driven applications, many underlying theoretical phenomena are still not fully understood. In
supervised learning, deep neural networks are typically trained by empirical risk minimization
via stochastic gradient descent. It is common practice that the number of trainable network
parameters far exceeds the number of training data points, which is also referred to as over-
parameterization. One remarkable observation is that over-parameterization empirically aids
both the optimization of the empirical loss and the generalization of the learned network (i.e.,
how well the network performs on unseen data) [136]. Traditional statistical learning theory
fails to explain why these networks manage to generalize well on unseen data. One approach to
better understand the generalization capabilities of neural networks is to assume the underlying
training data is realizable by a neural network. In this so-called teacher-student framework,
we can measure how well a trained neural network generalizes by directly comparing the
trained student network to the teacher network that gave rise to the training data. Perfect
generalization is guaranteed whenever a training algorithm learns the exact parameters of
the teacher network. This promotes the fundamental question of whether there exist efficient
algorithms that can infer the teacher network parameters from realizations. A series of works in
the early 90s show that under fairly mild conditions, the parameters of a network remain fully
determined up to natural symmetries by the input-output map of a neural network [121, 5, 48].
However, these works on the identifiability of neural networks do not provide constructive
methods for parameter retrieval and require that the input-output map of the neural network
is known on its full domain. A question remains open: How much information is required to
reconstruct the network parameters?

In this dissertation, we present the results from the joint works [52, 50, 51], which provide
efficient algorithms that provably recover the parameters of suitable neural networks from a
finite amount of input-output samples. Moreover, our methods are tractable, i.e., we only require
a number of network evaluations that depend polynomially on the complexity of the network

7

Introduction 8

(here, complexity refers to the number of neurons and input dimension of the network), and
we demonstrate successful recovery by empirical experiments.

Structure of the dissertation

The main part of this dissertation is divided into four chapters. Ideally, these chapters are read
in chronological order since the individual chapters are not entirely self-contained and will
regularly use concepts and results from preceding chapters.

• In Chapter 1, we introduce artificial feed-forward neural networks and motivate the prob-
lem of neural network identification. Artificial neural networks are functions composed
of several non-linearities and can be expressed as functions depending on a finite set
of parameters, typically encoded as network weights and shifts. The neural network
identifiability problem seeks answers to the question under which circumstances these
parameters are uniquely defined (up to natural symmetries) by the input-output map of
the network. The recovery of network parameters can be linked to other active research
questions which study the generalization capabilities of neural networks (e.g., by analyz-
ing the behavior of supervised learning algorithms in a teacher-student model). We will
discuss related literature in this domain. We corroborate the discussion with numerical
experiments to better understand under which constraints parameter identification of
neural networks can be attained by classical approaches, such as empirical risk minimiza-
tion via stochastic gradient descent, and introduce an alternative approach that identifies
the parameters by using network evaluations to approximate higher-order derivatives of
the network.

• In Chapter 2, we study the recovery of a rank-one basis of a symmetric matrix space
known only up to perturbations. This problem arises, for instance, during the recovery
of weights from network Hessians or approximations thereof. This chapter provides
characterizations of near-rank-one matrices within a symmetric matrix space in the form
of non-linear programs. We show that, provided sufficient incoherence of the basis
matrices, the near-rank-one basis elements can be identified as the second-order critical
points of these non-linear programs. Furthermore, we show how the computation of these
second-order critical points can be tackled by suitable algorithms inspired by projected
gradient ascent methods.

• In Chapter 3, we provide an end-to-end theoretical analysis of the identification of wide
shallow neural networks with bounded shifts and suitable smooth activation functions
(such as sigmoidal functions) that is based on the work [51]. We show that, under
sufficient incoherence of the network weights, we can fully identify all network parameters
up to numerical errors originating from the approximation of network derivatives. Our
results hold with high probability up to a regime where the number of network neurons m
scales quadratic with the input dimension D up to logarithmic factors, i.e., O(m log2 m) =
D2. The main novelty of the presented pipeline is that it comes with guarantees for
wide networks and can recover the network shifts while only relying on O(Dm2 log2 m)
evaluations of the teacher network.

• In Chapter 4, we demonstrate how the recovery strategy presented in Chapter 3 can be
extended from shallow networks to deep neural networks with a pyramidal architecture
and cover the results from [52, 50]. To enable this extension, we introduce entangled
weights, which are defined as the gradients of the pre-activations of individual neurons of
a network. As in Chapter 3, we prove that entangled weights are computable as the near-
rank-one matrix basis within a subspace of the span of network Hessian approximations.

9 Introduction

We show heuristically how access to entangled weight matrices can promote the full
identification of all network parameters for pyramidal networks with up to three layers
and corroborate our results with extensive numerical experiments.

The theoretical results presented in Chapter 2 - 4 are based on the joint work published in
[52, 50, 51]. The related works and collaborators are mentioned explicitly at the beginning of
each chapter.

Introduction 10

Chapter 1

Recovering Neural Networks

The problem of neural network identifiability can be shortly described as follows: Consider
a neural network as a black-box with unknown parameters but assume knowledge of its
input-output map. Is it possible to infer the network’s internal structure and parameters
(weights and biases) based on this information? Existing results dating back to the early 90s
[48] prove that this is, in fact, true for generic neural networks with sigmoidal activations, i.e.,
the network parameters are uniquely determined by the input-output map up of the network
to natural symmetries. However, assuming a realizable setting where such an identification
is possible, one question that remains unanswered by these early results is how much input-
output information is required to constructively recover the network parameters. This question
can be answered by studying the sample complexity of constructive reconstruction algorithms.
In this chapter, we provide a formal introduction to relevant results and terminology from the
theory of neural networks and lay the groundwork for the remaining chapters. We review
existing approaches to the network reconstruction problem. More specifically, we will connect
this problem to a line of results that studies the generalization capabilities of neural networks
learned by classical methods in a so-called teacher-student framework. Finally, we corroborate
the review of existing literature with numerical experiments exploring the limitations of
classical methods in terms of parameter identification when different network architectures are
considered.

1.1 Preliminaries

The following section introduces the necessary notation, provides a short introduction to neural
networks, and a short discussion that motivates the problem of neural network identification.

1.1.1 Notation and singular subspaces

Functions and derivatives. Given any n ∈N, let [n] denote the index set [n] = {1, . . . , n}. We
denote by Cn(R) the space of functions in R with n continuous derivatives. Given a scalar func-
tion g ∈ Cn(R) and k ∈ [n], we denote by g(k) the k-th derivative of g. To simplify expressions
involving neural networks, we follow the convention that vector-valued inputs x ∈ RD applied
to scalar functions are evaluated component-wise, i.e., g(x) = [g(x1), g(x2), . . . , g(xD)]

⊤. For
multivariate functions f : RD → R, the n-th derivative w.r.t. to the input x ∈ RD is denoted by
∇n f (x) and defines a tensor, i.e., ∇n f (x) ∈ (RD)⊗n (see below), with entries given by

(
∇n f (x) ∈ (RD)⊗n

)
i1,...,in

=
∂ f (x)

∂xi1 ∂xi2 . . . ∂xin

, for i1, . . . , in ∈ [D].

11

1.1. Preliminaries 12

To compare the limiting behavior of functions and the complexity of algorithms, we write
f (x) = O(g(x)) if there exists a constant C > 0 and x0 ∈ R, such that | f (x)| ≤ Cg(x) for all
x ≥ 0. Equivalently, we say f (x) ≲ g(x) whenever f remains bounded by g up to a constant.
Similarly, we say f (x) = o(g(x)) whenever limx→∞

f (x)
g(x) = 0.

Probability distributions. We denote by Unif(SD−1) the uniform distribution on the unit
sphere and by N (µ, Σ) the multivariate Gaussian distribution with mean µ ∈ RD and covari-
ance Σ ∈ RD×D. Consider a random variable X. We say X is sub-Gaussian (cf. [127, Section
2.5.1]) if there exists a constant C > 0 s.t.

P(|X| > t) ≤ 2 exp(−t2/C) for all t ≥ 0,

and denote by ∥X∥ψ2 the so-called sub-Gaussian norm (cf. [127, Definition 2.5.6]) given by

∥X∥ψ2 = inf
{

t > 0 : E exp(X2/t2) ≥ 2
}

.

A random vector X in RD is called sub-Gaussian if all its marginals are sub-Gaussian and

∥X∥ψ2 := sup
x∈SD−1

∥⟨x, X⟩∥ψ2 .

A random vector X in RD is called isotropic if E[XX⊤] = IdD, where IdD denotes the identity
matrix in RD×D.

Vectors, matrices, and tensors. In the following, consider positive integers D1, . . . , Dn ∈N.
Given two vectors x ∈ RD1 and y ∈ RD2 , then x ⊗ y ∈ RD1×D2 denotes their Kronecker
product (also referred to as outer product) defined as xy⊤ and ⟨u, v⟩ denotes the inner product
(assuming D1 = D2). We use the conventional vector norms

∥x∥p :=

(
D1

∑
i=1

xp
i

)1/p

, for p ∈ [1, ∞),

and ∥x∥∞ := maxi∈[D1] |xi|. We denote the unit sphere in RD by SD−1 :=
{

v ∈ RD
∣∣∥v∥2 = 1

}
.

Tensors are generalizations of vectors and matrices that can be expressed as multi-arrays with
multiple indices. Tensors of order n ∈ N (also called n-tensor) are regarded as elements of⊗n

k=1 RDk = RD1×D2×···×Dn . Hence, vectors and matrices can be seen as first- and second-
order tensors. Given two tensors T1, T2 ∈ RD1×D2×···×Dn of order n ≥ 2, let ⟨T1, T2⟩ denote its
Frobenius inner product given by

⟨T1, T2⟩ =
D1

∑
i1=1

D2

∑
i2=1
· · ·

Dn

∑
in=1

(T1)i1,i2,...,in(T2)i1,i2,...,in ,

and denote by ∥T1∥F the Frobenius norm ∥T1∥F := ⟨T1, T1⟩1/2. Additionally, we denote by
T1 ⊙ T2 the Hadamard product defined as the element-wise product

(T1 ⊙ T2)i1,...,in
:= (T1)i1,...,in

· (T2)i1,...,in
for k ∈ [m], ik ∈ [Dk].

Let SD1×···×Dn−1 denote the Frobenius unit sphere, which is defined as the matrix/tensor
equivalent of SD:

SD1×···×Dn−1 :=
{

T ∈ RD1×···×Dn
∣∣∣∥T∥F = 1

}
.

13 Chapter 1. Recovering Neural Networks

Whenever the underlying dimensions of the sphere are clear from context, we might also
abbreviate the notation by simply denoting the respective unit sphere as S. Given a matrix
T ∈ RD1×D2 , let ∥X∥ denote its spectral norm, which is defined as

∥X∥ = sup
u∈RD2

∥Xu∥2

∥u∥2
.

We say a matrix or tensor T ∈ RD1×D2×···×Dn is rank-one if it can be expressed by outer products
of suitable vectors,

T = v1 ⊗ v2 ⊗ · · · ⊗ vn for vk ∈ RDk , k ∈ [n].

Let u ∈ RD, then the n-th fold outer product w.r.t. u will be denoted as u⊗n, and similarly
(RD)⊗n :=

⊗n RD.

Vectorization and linear subspaces. Given a tensor T ∈ RD1×D2×···×Dn we denote by vec(T) ∈
RD1D2 ...Dn its vectorization, which equates to the vector that stores all elements of T sorted w.r.t.
its indices in increasing numerical order starting from the rightmost axis. For instance, let
X ∈ RD1×D2 be a matrix with columns x1, . . . , xD2 , then the vectorization of X is defined as the
vector

vec

... . . .
...

x1 . . . xD2
... . . .

...

 =

 x1
...

xD2

 ∈ RD1D2 .

For fixed finite dimensions, the vec(·)-operator acts as an isomorphism between linear tensor
spaces and ordinary vector spaces. Given a tensor space W ⊂ RD1×···×Dn , we refer to the
vectorization of W as the space {vec(T)|T ∈ W} ⊂ RD1D2 ...Dn . By identifying tensors with
vectors in RD, we can apply a matrix factorization such as the singular value decomposition to
ensembles of vectorized tensors, providing us with a simple dimensionality reduction technique
that applies to tensor spaces.

Definition 1.1 (Singular subspace). Let x1, . . . , xN ∈ RD and denote X = [x1, . . . , xN] ∈ RD×N

with singular value decomposition X = UΣV⊤ such that U ∈ RD×D, Σ ∈ RD×N , V ∈ RN×N . For
any m ≤ D, denote by u1, . . . , um ∈ RD the first m columns of U (i.e., the first m left singular vectors
of X). We define the m-th singular subspace associated with the vectors x1, . . . , xN as

spanm({x1, . . . , xN}) := span({u1, . . . , um}) ⊂ RD.

Furthermore, for any set of tensors T1, . . . , TN ∈ RD1×···×Dn and m ∈ N such that the space
spanm ({vec(T1), . . . , vec(TN)}) is well-defined, we denote by

spanm ({T1, . . . , TN}) ⊂ RD1×···×Dn

the linear tensor space such that its vectorization is given by spanm ({vec(T1), . . . , vec(TN)}).

Singular subspaces, as defined above, can be seen as a technique of dimensionality reduction.
From this point of view, the construction above is identical to what is commonly known as
(non-centered) principal component analysis (PCA, see also [103, 68]). The extension of singular
subspaces to tensors follows by simply regarding tensors as elements of a linear vector space
and using the fact that the vectorization operator is invertible for fixed dimensions. Notably,
a matrix’s singular vectors are in general not uniquely determined. Take for instance the
identity matrix IdD, then IdD = U IdD UT for any unitary matrix U ∈ RD×D. However, the
m-th singular subspace associated with a set of vectors is uniquely determined whenever the
first m singular values of X are separated from the remaining ones by a spectral gap:

1.1. Preliminaries 14

Lemma 1.1. Let x1, . . . , xN ∈ RD and denote X = [x1, . . . , xm] ∈ RD×N with singular values given
by σ1(X) ≥ σ2(X) · · · ≥ σmin{D,N}. Consider m ≤ rank(X) such that either m = rank(X) or
σm(X) > σm+1(X) > 0, then the m-th singular subspace spanm({x1, . . . , xN}) in Definition 1.1 is
unique.

Proof. If m = rank(X), then the singular subspace is well-defined due to spanm({x1, . . . , xN}) =
span({x1, . . . , xN}). Assume now that σm(X) > σm+1(X) > 0, then, by the Eckart-Young-
Mirsky theorem (cf. [44]), the closest rank-m approximation Xm of X is uniquely determined
and the image of Xm is given by the span of its first left singular vectors, i.e., range(Xm) =
span({u1, . . . , um}). Since Xm (and its image) is uniquely determined, the same must be true
for the space spanned by the left singular vectors.

It should be noted that m is typically chosen such that the statement in Lemma 1.1 holds
whenever singular subspaces are used throughout the upcoming chapters. A common ap-
plication of singular subspaces in this work is the following: Consider a set of n-tensors
T1, . . . , TN ∈ RD1×···×Dn for positive integers n, D1, . . . , Dn ∈ N. We seek to approximate the
linear span

W := span({T1, . . . , TN})

under the assumption that we are only given perturbed measurements T̂1, . . . , T̂N ∈ RD1×···×Dn ,
where T̂i ≈ Ti. Let m = dim(W), then an m-th singular subspace Ŵ := spanm({T̂1, . . . , T̂N})
of the perturbed tensors is a suitable candidate for the approximation of W . Since singular
subspaces are defined via singular value decomposition, the resulting distance betweenW , Ŵ
can then be measured by classical perturbation bounds associated with the singular value
decomposition such as Wedin’s bound [130]. Throughout the following chapters, the distance
between subspaces will typically be measured by

∥PW − PŴ∥F→F := sup
T∈RD1×···×Dn

∥PW (T)− PŴ (T)∥F

∥T∥F
, (1.1)

where PW , PŴ denotes the orthogonal projection onto W , Ŵ , respectively. The following
proposition provides a bound on ∥PW − PŴ∥F→F based on Wedin’s bound that bound in terms
of the individual tensor perturbations and the singular values associated with the data matrix
of the vectorized tensors vec(T̂i).

Proposition 1.1. Consider n-tensors T1, . . . , TN , T̂1, . . . , T̂N ∈ RD1×···×Dn and denote by W =
span{T1, . . . , TN} the linear span with dimension m = dim(W). Let the matrices M, M̂ ∈ RD1D2 ...Dn×N

be given by

M = [vec(T1)| . . . | vec(TN)], M̂ = [vec(T̂1)| . . . | vec(T̂N)]. (1.2)

If σm(M̂) > 0, then the distance between Ŵ := spanm({T̂1, . . . , T̂N}) andW satisfies

∥PW − PŴ∥F→F ≤
2∥M− M̂∥F

σm(M̂)
.

Remark: In the special case of 1-tensors (i.e., vectors), we can simply redefine ∥PW − PŴ∥F→F by
replacing the Frobenius norm with the Euclidean norm ∥ · ∥2.

Proof. Let UΣVT = M, ÛΣ̂V̂T = M̂ be the singular value decompositions of M, M̂, and denote
by Um, Ûm the matrix build from the first m columns of U, Û, respectively. Notably, the columns
of Um, Ûm span the vectorized equivalents of the tensor spacesW , Ŵ , respectively. For Ŵ this

15 Chapter 1. Recovering Neural Networks

follows by the construction of singular subspaces in Definition 1.1, whereas forW this follows
from m = dim(W) = dim(range Um) and the fact that the span of singular vectors must be a
subspace of span{vec(T1), . . . , vec(TN)}. Additionally, singular vectors are orthonormal and
therefore UmU⊤m , ÛmÛ⊤m are orthogonal projection matrices onto the vectorizations of W , Ŵ .
This now implies

∥PW − PŴ∥F→F = ∥UmU⊤m − ÛmÛ⊤m∥ ≤ ∥UmU⊤m − ÛmÛ⊤m∥F,

which relies on the fact that ∥T∥F = ∥ vec(T)∥2, which justifies the exchange of the distance
measure in (1.1) with the spectral norm of the difference between the orthogonal projection
matrices UmU⊤m − ÛmÛ⊤m . Now

∥UmU⊤m − ÛmÛ⊤m∥F ≤
2∥M− M̂∥F

σm(M̂)

can be derived from classical results that study the effect of perturbations on the singular vectors
such as Wedins bound ([130] and [120, Theorem 4]) or eigenvectors such as the Davis-Kahan
theorem ([36] and [20, Theorem 7.3.1]).

1.1.2 Introduction to neural networks

As neural network models became more popular in solving data-driven problems in many
fields, many different network architectures were invented, which were designed with specific
problem settings in mind. Consequently, "neural network" refers to various parametric models
that share certain design principles. For this work, we focus exclusively on what is known
as fully connected feed-forward artificial neural networks (FFNN). Whenever we refer to
neural networks without specifying a particular architecture, we refer to the kind of models
introduced within this section for simplicity. Neural networks can be broken down into smaller
computational units, the so-called neurons. Neurons are functions represented by an affine
transformation composed of a univariate function that is typically non-linear and referred to
as its activation (function). More precisely, a neuron with activation g : R → R is a function
parameterized by a weight vector w ∈ RD and a scalar shift τ ∈ R which computes its output
according to

x 7→ g(w⊤x + τ).

Classical feed-forward neural networks are then constructed by stacking and composing
individual neurons. In fact, one single neuron already constitutes a neural network. Slightly
more complex neural networks can be constructed by considering finite linear combinations of
different neurons giving rise to the function class

SN (g, RD) := span{g(w⊤x + τ) |w ∈ RD, τ ∈ R}. (1.3)

We refer to members of SN (g, RD) as shallow neural networks with activation g.

Expressivity of neural networks. A natural question one may ask is what type of functions
can be represented or sufficiently well approximated by these shallow neural networks. The
richness of SN (g, RD) is strongly influenced by the choice of activation function g: If we were
to choose an affine function for g, for instance, the activation g(x) = x, then any network
in SN (g, RD) simply collapses into a linear function. The expressivity of SN (g, RD) was
addressed by a series of fundamental publications studying neural networks in the setting of
approximation theory in the late 80s and early 90s [67, 34, 57, 82]. The synthesis of these results

1.1. Preliminaries 16

Figure 1.1: Examples of common activation functions.

is nowadays often referred to as the universal approximation theorem. These works establish
sufficient conditions under which any continuous function on a bounded domain can be
approximated by a (sufficiently) wide shallow neural network in the sense that SN (g, RD)
is dense in the space of continuous functions (on a bounded domain). Here, the width of
a shallow neural network refers to the number of neurons. As shown in [82], if we assume
that g is continuous, then shallow neural networks are universal approximators (i.e., they
can approximate any continuous function on a bounded domain) if and only if g is not a
polynomial. Two aspects make this statement particularly interesting: First, the requirements
on the activation g are relatively mild. Second, it is clearly necessary that g is not polynomial
since otherwise any element within SN (g, RD) would be a multivariate polynomial with a
degree less or equal to the degree of g, which means SN (g, RD) cannot be dense in C(RD).
For more details on these results, we refer the interested reader to the survey [106]. To clarify,
let us give some examples of common activation functions. One class of activation functions
widely used in the early days of neural networks and highly relevant to our work is the class
of sigmoidal functions. This class includes the hyperbolic tangent g(t) = tanh(t) or the logistic
function g(t) = (1+ exp(−t))−1. Sigmoidal functions are typically smooth monotone functions
with bounded horizontal asymptotes characterized by their "S"-shaped curve. Other examples
of activation functions are piecewise linear functions, for instance, the rectifier linear unit (ReLU
cf. [96, 88]) given by g(t) = max{t, 0}. There is evidence (cf. [60]) that the ReLU-activation is
better suited for deep neural network architectures (see below), which makes piecewise linear
activations the preferred choice amongst practitioners.

Deep neural networks. Deep feed-forward neural networks extend the class of shallow
neural networks by composing several layers of neurons into a single network architecture.
In part, this extension is motivated by the fact that there exist functions f : RD → R which
require exponentially many neurons (w.r.t. D) to be sufficiently well approximated by shallow
neural networks [46, 106, 107]. Examples are given in [92, 107], where it is shown that there
exist certain compositional functions (i.e., functions that a recursive function composition
can represent) that require exponentially fewer neurons when approximated by deep neural
networks. Recent works [18, 32, 35, 38, 45, 91, 104, 112], add further support that suggests that
deep network architectures help to avoid the curse of dimensionality when approximating
high-dimensional functions. Let us now define deep feed-forward neural networks. First, note
that any shallow network f ∈ SN (g, RD) with m neurons can be written as

f (x) =
m

∑
k=1

vkg(w⊤k x + τk), where vk ∈ R for all k ∈ [m]. (1.4)

17 Chapter 1. Recovering Neural Networks

By adopting the convention that scalar functions applied to vectors are computed component-
wise, f is expressed more compactly as

f (x) = v⊤g(W⊤x + τ),

with W ∈ RD×m and v, τ ∈ Rm. This outlines a straightforward way how to extend the
function class in (1.4), which only contains shallow networks with a single output, to vector-
valued shallow networks: A shallow feed-forward neural network with input-size D, activation
function g on m1 neurons with m2 outputs can be written in the form

f (x) = V⊤g(W⊤x + τ), (1.5)

with W ∈ RD×m1 , τ ∈ Rm1 , and V ∈ Rm1×m2 . Hence, networks as in (1.5) are multivariate
functions RD → Rm2 uniquely determined by a set of weight matrices W, V, a shift vector τ, and
an activation function g : R→ R. Based on this construction, the class SN (g, RD) can easily
be extended to networks with vector-valued outputs. Note that the universal approximation
theorem referenced above does also apply to shallow neural networks with multiple outputs by
the fact that any output component of such a network lies within SN (g, RD). The evaluation
of a shallow network as in (1.5) can be broken down as follows: first, compute y = g(W⊤x + τ);
second, set f (x) = V⊤y. These blocks are referred to as the layers of the network, which makes
shallow neural networks two-layer neural networks. This can easily be generalized to the
following class of parametric models:

Definition 1.2 (Fully connected feed-forward neural network). Let L, mL ∈N and consider scalar
(activation) functions (g)ℓ∈[L]. A fully connected feed-forward neural network with L layers on RD

with mL outputs is a map f : RD → RmL parameterized by a set of weight matrices W [1], . . . , W [L] and
shift vectors τ[1], . . . , τ[L], which given an input x ∈ RD computes an output according to the iterative
scheme

y[0](x) := x,

y[ℓ](x) := gℓ
(
(W [ℓ])⊤y[ℓ−1](x) + τ[ℓ]

)
, for all ℓ ∈ [L],

f (x) = y[L](x).

Every network of this form with L = 2 is considered to be a shallow network, and networks
with L ≥ 3 are called deep neural networks. A layer can be understood as the parametric
function gℓ((W [ℓ])⊤ ·+τ[ℓ]). Notably, the number of neurons per layer, which is denoted by mℓ,
is determined by the dimensions of the weight matrices and shifts vectors, i.e., we have

W [ℓ] =
[
w[ℓ]

1 . . . w[ℓ]
mℓ

]
∈ Rmℓ−1×mℓ and τ[ℓ] ∈ Rmℓ for all ℓ ∈ [L], (1.6)

where m0 := D. Therefore, each individual neuron inside a network is uniquely determined by
its corresponding layer ℓ ∈ [L] and its index within that layer kℓ ∈ [mℓ]. We distinguish between
hidden layers/neurons (ℓ = 1, . . . , L− 1) and the output layer/neurons (ℓ = L). Every neuron is
equipped with an activation function, and we allow different activation functions g1, . . . , gL for
each individual layer. It should be noted that this is mainly done for the sake of generality and
that typically all hidden layers share the same activation function g1 = g2 = · · · = gL−1. It is,
however, common to consider different functions at the output neurons. A good example is the
linear output function, which already appeared in the definition of shallow neural networks
above.

Remark 1.1. When we refer to the architecture of a network, we refer to the size (number of neurons) of
each individual layer. Hence, the architecture is uniquely determined by m1, . . . , mL, or, equivalently, by
the dimensions of the parameters (W [ℓ])ℓ∈[L], (τ[ℓ])ℓ∈[L].

1.1. Preliminaries 18

1.1.3 Training neural networks

Let us now describe the training of a neural network in the context of supervised learning.
In supervised learning problems, we are given labeled training data (xi, yi)i∈[N], (xi, yi) ∈
RD × RmL , which are regarded as samples of an unknown distribution µX,Y. Supervised
learning algorithms seek to infer a function (from the training data) that realizes the underlying
phenomenon inherent to µX,Y. The space of the learned functions is typically constrained by
some structural assumptions. For instance, in deep learning, we are given a class of neural
network functions that is characterized by activation functions and a fixed architecture (both of
which are typically fixed a priori and determined heuristically). Since neural networks with
fixed activation are entirely parameterized by their weight matrices and shift vectors, selecting
a candidate network is equivalent to selecting those parameters. Most deep learning algorithms
rely on empirical risk minimization to find a candidate network. More precisely, they seek
solutions to the minimization problem

argminθ∈Θ J(θ) := argminθ∈Θ
1
N

N

∑
i=1

ℓ(f (xi, θ), yi), (1.7)

where Θ denotes the set of all weights and shifts and ℓ is the so-called loss function. A common
example of loss functions is the quadratic loss ℓ(x, y) = C(x− y)2, in which case J in (1.7) is a
least-squares objective. Clearly, the objective of any learning algorithm is to find a network that
performs well on the entirety of µX,Y, i.e., we are interested in finding network parameters that
generalize to unseen data which is not included in the training examples. The generalization
capabilities are captured in the population risk

E(X,Y)∼µX,Y
[J(θ)] = E(X,Y)∼µX,Y

[ℓ (f (X, θ), Y)] . (1.8)

Classical statistical learning theory studies how the parameter estimation based on the empirical
risk relates to the minimizer of the population risk argminθ∈ΘE(X,Y)∼µX,Y

[J(θ)]. A fundamental
principle in statistical learning is the so-called bias-variance tradeoff [113], which describes the
inherent conflict between the simultaneous minimization of the population risk and empirical
risk. This principle can be described somewhat informally as follows: One way to aid the
minimization in (1.7) is to widen the parameter search space Θ since increasingly complex
models have more of free parameters to fit the training data. However, this increases the
variance of the parameter estimation because the learning algorithm might overfit onto the
training data. On the other hand, decreasing the complexity of the function space induced
by Θ too much creates a bias such that the learning algorithm is unable to fully capture the
underlying phenomena present in µX,Y (one also refers to this as underfitting).

A very successful approach to the minimization of the objective in (1.7) is the minimization
via (stochastic1) gradient descent (and its variations). These gradient-based algorithms benefit
from an efficient method to compute the gradients ∇θ J, called back-propagation [109], which
morally is a clever application of the chain-rule to the structure of neural networks. The
success of gradient-based methods is somewhat surprising since, for neural networks, the
objective (1.7) is generally highly non-convex and admits spurious and disconnected local
minima [12, 110, 135]. The optimization landscape of gradient descent methods applied to
(1.7) is dependent on the richness of the function space induced by Θ, i.e., the complexity of
the network class under consideration. With increasingly complex network architectures, it
becomes easier to fit the training data and thereby decrease argminθ∈Θ J(θ).

1Different from ordinary gradient descent, which computes the gradients of ∇θ J on the entire training set,
stochastic gradient descent only considers J on a subset of the training data, also called (mini-)batch that is randomly
selected at each gradient step (cf. [23]).

19 Chapter 1. Recovering Neural Networks

However, the bias-variance tradeoff suggests that increasing the model complexity beyond
a certain point will lead to worse performance on unseen data. Nevertheless, practitioners
regularly train highly over-parameterized neural networks (i.e., more network parameters than
training samples) to zero empirical loss using stochastic gradient descent while still generalizing
well on unseen data. Several lines of work have studied the effects of over-parameterization.
Many authors consider the evolution of the network parameters learned by gradient descent
via the so-called neural tangent kernel (NTK). This line of work originates from [73], where it
was shown that the network parameters evolve along the kernel gradient of the empirical loss
(which is convex). Furthermore, it was shown that the NTK becomes deterministic in the limit
case where the widths of the network layers approach infinity (cf. [73]). In this setting, the
global convergence of gradient descent can therefore be related to the minimal eigenvalue of the
NTK, which lead to several global convergence guarantees (w.r.t. the empirical loss) for shallow
neural networks [43, 102, 117, 134, 94, 116] and deep neural networks [6, 40, 140, 141, 99, 98, 22].
The spectrum of the NTK has also been related to the generalization of networks trained by
gradient descent [11, 94, 28].

The study [136] shows that state-of-the-art image classification networks (which fall into
the over-parameterized regime) can still easily be trained to zero empirical loss when the
training labels are randomly permuted or if the training images are replaced by random
noise. In the same line of work, further results on memorization capacity show that mildly
over-parameterized networks are capable of realizing generic data [22, 26, 70, 94, 106, 128].
As argued in [136], this shows that the deep neural networks considered in modern machine
learning problems are complex enough to memorize the entire training data set. This creates
a contradiction that classical statistical learning theory fails to explain: if the network class
is complex enough to allow for perfect memorization, then the learning algorithm should
suffer from overfitting. Notably, modern learning algorithms additionally make use of explicit
regularization (e.g., data augmentation, weight decay, dropout cf. [136]). However, the
results in [136] suggest that these methods can not fully explain the discrepancy of why
highly over-parameterized models are able to generalize well on unseen data. Since the
selection of the network architecture and explicit forms of regularization do not seem to
explain the generalization capabilities of over-parameterized neural networks, a line of work
has explored the implicit regularization mechanisms of training algorithms based on gradient
descent methods [136, 9, 10, 13, 95, 97, 118, 133]. These results prove for simple models of
neural networks (over-parameterized shallow neural networks and deep networks with linear
activations) that gradient descent has an intrinsic bias to converge to networks with low
intrinsic complexity. This poses an interesting question that leads us to the main topic of
this thesis. If low-complexity neural networks exist that realize arbitrary data, under what
circumstances can these networks be uniquely identified from a finite amount of samples?

1.2 Identifiability of fully connected Neural Networks

The universal approximation theorem and the preceding discussion suggest that sufficiently
rich neural networks can realize complex phenomena. Assume now that a function is exactly
realizable by a neural network. We can then ask the question of whether this network is
uniquely determined. More precisely, do different network architectures and parameters exist
that give rise to the same function? This question motivates the problem of neural network
identifiability. To understand the problem of neural network identifiability, we first need to
address a few inherent symmetries of neural networks: If two neural networks produce the
same output for every possible input, we can consider them equal. Note that functional
equivalence should not be mistaken for parametric equivalence. Two networks with different
parameters can compute the same mapping, and it is not hard to find examples illustrating

1.2. Identifiability of fully connected Neural Networks 20

this ambiguity between realization and neural network parameters. A trivial cause for this
discrepancy is redundancy in the network. Practically speaking, redundancy can be introduced
into any network by adding or concatenating the network with other subnetworks that compute
the zero function or the identity. Other reasons are the inherent symmetries of the activation
function. Take, for instance, the hyperbolic tangent as a representative of sigmoidal activation
functions. This function is odd, i.e., tanh(x) = − tanh(−x) for all x ∈ R, and this leads to the
identity

f (x) =
m

∑
k=1

tanh(w⊤k x + τk) =
m

∑
k=1
− tanh(−w⊤k x− τk) = f̂ (x).

The two hypothetical networks f , f̂ are functionally equivalent, but their underlying parameters
differ. Symmetries are not limited to sigmoidal functions. For instance, the ReLU function is
invariant to certain rescaling operations since

max{a · x, 0} = a ·max{x, 0} for all a > 0,

which leads to other parameter transformations that do not affect the realization of ReLU
networks. Lastly, there are many possible permutations of neurons in deep networks. Any
notion of identifiability has to account for these symmetries and identification is generally only
possible up to equivalence classes formed by the inherent symmetries of the activation and
affine transformations.

1.2.1 Identifiability vs. identification of network parameters

We say a neural network is identifiable if the network realizations determine its parameters
up to natural symmetries. A line of works starting in the early 90s’ managed to answer the
question of network identifiability positively for shallow networks that fulfill certain genericity
conditions [121, 5]. In the same period, Fefferman found conditions under which deep neural
networks with sigmoidal activation functions are fully identifiable [48]. Just recently, the
results from [48] have been generalized to deep neural networks without clone nodes and
piecewise C1 activations with bounded-variation derivative in [129]. The results presented
above show that, aside from technicalities, the identification of the network parameters from
its mapping is possible up to natural symmetries, and this problem of network identifiability
is, in principle, quite well understood for certain activations like the sigmoidal tanh function.
However, the characterization of uniqueness as it is analyzed above relies on knowing the
input-output map of a network on its entire domain, and they are not constructive. If we were
to introduce a budget on how many evaluations of the network can be used to recover the
original architecture and parameters, then the results mentioned before represent the limit
case where the budget of network evaluations is large enough. However, these results do not
address the amount of information necessary to recover a network of a certain complexity.
Additionally, the identifiability results [48, 129] do not explain how network parameters may be
recovered algorithmically. Since neural networks depend on a finite number of parameters, we
would expect that the parameters of an identifiable neural network are determined by a finite
amount of network evaluations as well. The uniqueness results above suggest that there exists
a large class of neural networks where the parameters are uniquely defined (up to symmetries)
by the output map of the network. The theoretical part of this thesis is concerned with the
following question: What neural networks can be reconstructed efficiently from a finite amount
of samples? The emphasis here lies on efficient reconstruction algorithms. Notably, there exist
results dating back to the late 80s’ that show that learning one hidden layer neural networks is,
in general, NP-complete [75, 21]. Even identifying a single neuron can suffer from the so-called
"curse of dimensionality" if we do not include regularity conditions on the activation function

21 Chapter 1. Recovering Neural Networks

and parameters [53, 90]. Hence, a study of tractable network reconstruction is closely tied
to the formulation of regularity conditions that exclude these hard cases (cf. Section 3.1.1,
Section 4.1.1). To frame the theory presented within this thesis in the context of neural network
identification, let us briefly summarize some of our findings. Chapter 3 covers the results from
[51], where we address the recovery of a shallow neural network

f : RD → R, f (x) :=
m

∑
k=1

g(⟨wk, x⟩+ τk), (1.9)

with smooth activations, bounded shifts, and incoherent weights w1, . . . , wm ∈ SD−1 (cf. Section
2.6.1) in the overcomplete regime where m log2 m = O(D2) (i.e., considerably more hidden
neurons than input neurons). We give guarantees for the recovery of the weights and shifts
that can be informally summarized as follows:

Theorem 1.1 (Informal, cf. Theorem 3.1 and [51]). Let f be the shallow network as in (1.9)
with D inputs and m neurons such that m log2 m = O(D2). Then, for sufficiently large D, a
constructive algorithm exists recovering all weights and shifts of the network with high probability from
O(Dm2 log2 m) network queries.

For a precise formulation of this statement, we refer to Theorem 3.2 and the related proofs.
Notably, this result allows us to infer an upper bound to the sample complexity for the
identification of networks as in (1.9). In Chapter 4, parts of this result will be extended to deep
neural networks. We will resume the discussion of the techniques used throughout Chapter
3& 4. Let us first mention the relationship between neural network identification and another
relevant line of research that is considering so-called teacher-student models.

1.3 Teacher-student models

Identifying a network from a finite amount of samples can be phrased as a supervised learning
problem (see Section 1.1.3) by assuming the training data is realizable by a neural network.
Notably, this setting is supported by various results that show that generic data can be realized
by neural network architectures (cf. Section 1.1.3). This setting is also referred to as the
teacher-student model and is considered to provide insights into the optimization landscape
of empirical risk minimization in deep learning as well as the generalization capabilities of
neural networks learned via gradient-based methods [25, 124, 111, 85, 41, 42, 114, 115, 137, 56,
54, 52, 53, 74, 86, 93, 138]. In this model, the teacher network is assumed to be an unknown
neural network that gives rise to the training data. Then, a student network is fit onto the
realizations of the teacher by a supervised learning algorithm (e.g., empirical risk minimization
via gradient descent methods). Let us also mention that this setup finds various applications
outside the theoretical literature. For instance, in a mainly applied context, it can be used for
model compression, commonly referred to as knowledge distillation [64]. Here, one learns a small
(student) network based on the input-output information of a much larger teacher network. The
hypothesis behind this setup is that the teacher architecture can be compressed without losing
much of its expressive properties due to over-parameterization. Such a reduction in network
complexity is, for instance, necessary to deploy large neural network models on devices with
limited resources (e.g., mobile devices). For more details, we refer to the survey [61]. From a
theoretical viewpoint, the teacher-student model represents a fitting environment to study the
generalization capabilities of networks learned via supervised learning algorithms since the
underlying phenomenon (i.e., the teacher network) is structurally very similar to the learned
network itself. More precisely, the student architecture can be chosen so that it, given the correct
configuration of parameters, can fully reproduce the input-output map of the teacher network.

1.3. Teacher-student models 22

Assume, for instance, that the teacher and student networks have identical architectures. Then,
the aforementioned connection can be established by analyzing under which circumstances
(empirical) risk minimization via SGD (i.e., training of the student network) identifies the
parameters of the teacher network (which then guarantees a generalization to unseen data).
Let us mention here that most theoretical results build upon distributional assumptions on
the network weights, which are typically assumed to follow a standard Gaussian or drawn
uniformly at random from the sphere. Implicitly, these assumptions help to exclude degenerate
networks where the training is provable hard (cf. Section 1.2 and [75, 21, 53, 90]).

Remark 1.2. The discussion below is focused on results related to classical feed-forward network
architectures due to their relevance to the topics discussed in this thesis. Notably, there exist works
studying a theoretical teacher-student model for convolutional neural networks (e.g., [41, 25, 56, 42]) or
residual networks (e.g., [85]).

The works [115, 102] consider a teacher-student setup with shallow neural networks in the
moderately over-parameterized regime, where the number of training samples N is dominated
by the network width m. The work [115] provides a global2 landscape analysis for shallow
neural networks with quadratic activation functions and a local convergence result for certain
smooth activations. Their results require N ≤ 2m. Similarly, [102] proves global convergence
of gradient descent applied to the empirical risk with square loss in the over-parameterized
regime where N ≲

√
mD and the activation functions are sufficiently smooth. It should be

noted that these results show that gradient descent, under suitable conditions, manages to
converge to a network that perfectly interpolates the teacher realization, which does, however,
not imply the identification of the teacher parameters (i.e., the generalization of the student
network).

Another line of work [138, 137, 56] achieves global guarantees for network identification
(hence without over-parameterization) by combining a local convergence analysis of gradient-
based methods with an initialization strategy based on tensor decomposition in [138] that
applies for m = O(D). The works [138, 137] consider shallow neural networks without shifts.
The work [138] provides global guarantees for the identification of linearly independent weights
(i.e., m ≤ D) under mild regularity conditions w.r.t. the activation (which includes smooth
functions such as sigmoidals) with polynomial sample complexity. In [137], a local convergence
result for gradient-based methods from noisy teacher samples is proven for the ReLU activation,
which achieves global guarantees by applying a similar tensor initialization as in [138]. Hence,
their results are limited to m = O(D). Let us note that the local convergence analysis [137]
assumes, to the best of our understanding, that the number of neurons is a small constant and
independent of the dimension D.

The publications [124, 139] also consider the identification of the teacher weights. However,
their results are based on the minimization of the population risk (cf. Section 1.1.3). In [124], a
single ReLU unit is considered, while [139] shows that a shallow teacher network with absolute
value activation and incoherent weights can be identified by a larger student network locally
(i.e., whenever the student network is initialized close to the teacher network).

The results described above mainly consider relatively small shallow neural networks.
Notably, most works do not regard the recovery of networks with shifts. In the upcoming
section, we corroborate the theoretical discussion of the teacher-student model with an empirical
study that focuses on more complex network architectures.

2Here, global refers to a setting where the learning algorithm starts from a randomly initialized student network,
whereas local results typically assume that the student network is already close to the teacher network in some
sense.

23 Chapter 1. Recovering Neural Networks

1.3.1 Identifying a shallow neural network by empirical risk minimization

This section empirically investigates whether gradient-based methods can achieve global
identification of (shallow) neural networks. The following experiments, which have partially
been published in [51], are designed to get an intuition as to what degree the network
complexity (i.e., the width of the network and the input dimension) influences the recovery
of the network parameters and to explore the behavior of gradient-based empirical risk
minimization in theoretically unexplained regimes. The experimental setting can be described
as follows. In every instance of our experiment, we consider a planted shallow teacher network
of the type

f (x) =
m

∑
k=1

tanh(w⊤k x + τk),

where the network weights are drawn uniformly at random from the unit sphere, i.e.,
w1, . . . , wm ∈ SD−1, and the network shifts are sampled according to τ1, . . . , τm ∼i.i.d. N (0, 0.05).
In every instance, a randomly initialized3 student network f̂ (·, (ŵk)k∈[m], (τ̂k)k∈[m]) of identical
architecture with parameters ŵ1, . . . , ŵm ∈ RD, τ̂1, . . . , τ̂m ∈ R is fit by minimizing the least-
squares error (cf. Section 1.1.3) over N teacher evaluations for inputs x1, . . . , xN ∈ RD that are
drawn independently from a standard Gaussian distribution. More precisely, consider the mean
squared error (MSE) given by

J((ŵk)k∈[m], (τ̂k)k∈[m]) =
1
N

N

∑
i=1

(
f̂
(

xi, (ŵk)k∈[m], (τ̂k)k∈[m]

)
− yi

)2
, (1.10)

where yi = f (xi) for i = 1, . . . , N. The MSE objective is minimized via stochastic gradient
descent (SGD) (w.r.t. (ŵk)k∈[m], (τ̂k)k∈[m]) with batch size 64 and learning rate γ and the training
is stopped if (1.10) falls below 10−8. Empirically, we observe that stochastic gradient descent
with mini-batches does perform better than ordinary gradient descent in the present teacher-
student setting. We also favor SGD over ordinary GD as it helps to prevent stagnation of
the optimization in a local minimum (cf. [23]), which makes it the more popular choice in
practical applications. We track three additional metrics to assess whether the final student
network has identified the teacher network. Firstly, to measure the generalization error,
we rely on the uniform error E∞ := maxx∈Xtest | f̂ (x) − f (x)|, which is computed over a set
of |Xtest| = 106 unseen inputs sampled from a standard Gaussian distribution. Secondly,
we track the uniform error of the network weights (while accounting for permutations),
i.e., maxk∈[m] mink′∈[m] ∥wk − ŵk′∥2. Lastly, we track the ℓ2 distance between the shifts while
accounting for potential permutations of the student neurons.

Remark 1.3. All experiments below were performed using one NVIDIA Tesla® P100 16GB/GPU in
an NVIDIA DGX-1 architecture. Our experiments were implemented in TensorFlow [2], which offers
efficient implementations of classical deep learning algorithms such as stochastic gradient descent and
backpropagation. This setup is suitable for large-scale machine learning problems that significantly
exceed the complexity of the problem setting we study below. Hence, we do expect that the results below
are not strongly influenced by hardware/implementation bottlenecks.

In the first experiment (cf. Figure 1.2), we fix D = 25 and explore in what regimes of N, m
the student successfully learned the teacher parameters. To be more precise, the number of
training points N, and the number of hidden neurons m will be set to

N = ⌈Dα⌉ , and m = ⌈2
5

Dβ⌉, (1.11)

3The student parameters are initialized randomly using the same distributions that are used to instantiate the
teacher networks.

1.3. Teacher-student models 24

Figure 1.2: Performance of empirical risk minimization for the teacher-student
environment where D = 25.

for varying exponents α ∈ {1.5, 2, 2.5, . . . , 5}, and β ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 1.875, 2}.
Stochastic gradient descent is run with step-size γ = 0.005 and is stopped after ten minutes of
training. We average all metrics over five independent runs for each pair of (m, N). The results
are shown in Figure 1.2 and show a clear phase transition that can be categorized into three
different regimes.

Interpretation of the results. Firstly, the area starting in the bottom-left corner in light colors
corresponds to cases where α > 2β. Here, SGD converged to student configurations that
generalize well to unseen data (i.e., we observe a low uniform error). We observe that cases
with a low generalization error also exhibit an identification of the actual network parameters
(error on the shifts and the uniform error show the same behavior as E∞). This is aligned
with theoretical results that show, under suitable conditions, that small generalization errors
require identification of the network parameters [93]. Notably, parameter identification and
low generalization errors were only observed in the under-parameterized regime, where the
number of training data exceeds the total amount of network parameters given by m + Dm.

The second area, corresponding to the top-right corner, shows a discrepancy between the
training error and the other metrics. Here, we exhibit a well-known phenomenon similar to
what is known as overfitting (cf. Section 1.1.3). A network with m = O(Dβ) neurons has
O(Dβ+1) parameters. In other words, if α ≤ β + 1, then the number of samples is very close
to the number of parameters or less. This rule of thumb explains the behavior we observe
quite well. In all cases with α ≤ β + 1, SGD managed to fit the student network perfectly
to the training data, but the resulting student configurations do not generalize well. In the
context of the related discussion in the preceding section, we would like to remark that the
student network here is not over-parameterized with respect to the teacher network, in which
case we clearly observe overfitting if too few training examples are provided. Finally, let us
consider the experiments where the number of neurons scales like O(D2). Here, the learning
algorithm was not able to converge consistently to a low generalization error or training
error. The fact that we observe perfect identification for β = 15/8, while stochastic gradient

25 Chapter 1. Recovering Neural Networks

Figure 1.3: Running SGD with fixed learning rate γ = 0.005 for increasingly bigger
networks and for a fixed training time of 10 minutes shows that the observations
in Figure 1.2 cannot be easily extrapolated to higher dimensions.

Figure 1.4: Searching for better hyperparameters and running SGD for 50 minutes
in the case where D = 50 suggests that parameter identification via empirical
risk minimization in higher dimensions might be possible. Dots indicate data
points averaged over three independent runs, whereas the lines in between are
linearly interpolated. Notably, smaller learning rates combined with longer training
time have positive effects, but we did not manage to identify the network in the
quadratic regime where β = 2.

descent does not reach a meaningful consensus for β = 2 (even after a significant increase in
training samples), could indicate an inherent hardness of the recovery of very wide networks.
Due to the low dimension considered in this experiment, the results in Figure 1.2 are not
fully representative since the results might depend additionally on the considered constants.
Hence, from Figure 1.2, assessing whether the phenomenon can be extrapolated to the general
problem remains challenging. However, we can observe that for increasing D empirical risk
minimization only manages to fit relatively small neural networks. This can be seen from Figure
1.3, where the previous experiment is repeated for different dimensions D = 15, 20, . . . , 50
and with N = 5/2mD2 training samples over four repetitions. The reason for this drop-off in
performance in higher dimensions might lie in the choice of the hyperparameters (in particular,
the learning rate) or simply the training time. To test this hypothesis, we tried different learning
rates with a much longer training time of 50 minutes per run for the dimension D = 50 and
report the results in Figure 1.4. This shows that SGD could potentially be tuned to recover
these simple networks in the regime where m outgrows D. However, it seems that this can
only be achieved through very long computations. Note that m = 1000 = 2/5 · 502, so SGD
could not recover the regime β = 2 with a reasonable amount of effort and tuning. We observe
that learning shallow neural networks becomes harder as the number of neurons increases.
This has also been observed for polynomial activation functions in [93] where a hardness result
is provided (see the related discussion in Section 1.4). This observation will be important in the

1.3. Teacher-student models 26

context of Chapter 3, where we present a reconstruction pipeline that can recover networks in
this regime which also comes with theoretical guarantees (see also the numerical experiments
in Section 3.6).

1.3.2 Exploring depth in the teacher-student setting

The previous section provides a numerical analysis of empirical risk minimization for shallow
neural networks that shows that suitable shallow neural networks up to a certain width can
be identified by minimization of the empirical risk via stochastic gradient descent. Another
class of networks that is mainly disregarded by the previously discussed theoretical results is
the class of deep feed-forward neural networks (cf. Section 1.1.2). The following numerical
experiments have partially been published in the joint work [50]. In the following, we consider
two different types of teacher architectures: firstly, three-layer neural networks f : RD → Rm3

with D = 50, m1 = 50, m2 = 25, m3 = 10 (abbreviated by [50,25,10]); secondly, four-layer neural
networks f : RD → Rm4 with D = 50, m1 = 50, m2 = 35, m3 = 25, m4 = 10 ([50,35,25,10]). For
each neuron, a weight vector is drawn independently from the respective unit sphere, and a
shift is sampled randomly from N (0, 0.005). Similarly to the previous section, we minimize
the empirical risk w.r.t. to the network parameters of the student network f̂ , i.e., we minimize

J((Ŵ [ℓ])ℓ∈[L], (τ̂)ℓ∈[L]) =
1
N

N

∑
i=1

(
f̂
(

xi, (Ŵ [ℓ])ℓ∈[L], (τ̂)ℓ∈[L]
)
− f (xi)

)2
(1.12)

via stochastic gradient descent. Throughout the experiments, the batch size remains fixed at
32, and the learning rate of SGD is varied (γ ∈ {2−1, 2−2, 2−3, 2−4, 2−6, 2−8}), and the number
of samples training (N = D2m and N = D3m), which are sampled from a standard Gaussian
distribution. All experiments are repeated five times, and we report the relative uniform error

E∞ :=
maxx∈Xtest ∥ f̂ (x)− f (x)∥2

maxx∈Xtest ∥ f (x)∥2

computed on unseen inputs Xtest sampled from a standard Gaussian distribution, where
|Xtest| = 106. SGD is run for at least two hours for each experiment instance, and E∞ is recorded
after every epoch (i.e., one pass over the training data set). The results are summarized in
Figure 1.5 and show the development of the relative uniform error over time. Solid lines
indicate the average relative uniform error, whereas the colored regions contain all individual
runs similar to confidence intervals. The upcoming results have partially been published in
[50].

Interpretation of the results. We can detect several trends. Firstly, higher learning rates
generally perform better (cf. brown plots corresponding to γ = 0.5), and we can see a consistent
increase in the averaged relative uniform error for decreasing learning rates. The most plausible
explanation for this behavior is that higher learning rates simply converge quicker and manage
to reach a better student network configuration within the time limit of two hours. Another
reason for this behavior could be that larger learning rates help to avoid spurious local minima
in the initial training phase and prevent SGD from getting stuck. There is evidence that
large initial learning rates can aid generalization (cf. [84]), but we can not directly assess
whether this is the case in our experiments. Notably, however, we do observe a significant
improvement for smaller learning rates when learning shallow neural networks in an almost
identical setup (cf. Figure 1.4 and Section 1.3.1). Secondly, the results do not exhibit any
significant improvement when more training samples are provided to SGD. This follows by
comparing the plots in the top row with the bottom row. Hence, N = D2m samples seem

27 Chapter 1. Recovering Neural Networks

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [h]

10 5

10 4

10 3

10 2

10 1

100

Re
l.

un
ifo

rm
 e

rro
r o

n
un

se
en

 d
at

a
E

3 layer network [50,25,10], D2m training samples

Learning rate
2 8

2 6

2 4

2 3

2 2

2 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [h]

10 5

10 4

10 3

10 2

10 1

100

Re
l.

un
ifo

rm
 e

rro
r o

n
un

se
en

 d
at

a
E

3 layer network [50,25,10], D3m training samples

Learning rate
2 8

2 6

2 4

2 3

2 2

2 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time [h]

10 1

100

Re
l.

un
ifo

rm
 e

rro
r o

n
un

se
en

 d
at

a
E

4 layer network [50,35,25,10], D2m training samples

Learning rate
2 8

2 6

2 4

2 3

2 2

2 1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time [h]

10 1

100

Re
l.

un
ifo

rm
 e

rro
r o

n
un

se
en

 d
at

a
E

4 layer network [50,35,25,10], D3m training samples

Learning rate
2 8

2 6

2 4

2 3

2 2

2 1

Figure 1.5: Learning the networks [50,25,10], [50,35,25,10] in a teacher-student
setting from a random initialization via SGD (cf. [50]). For each learning rate, SGD
was run five times with batch size 32 for two hours. The dark lines represent the
average trajectories, whereas the light regions contain all individual repetitions.
The y-axis depicts the relative uniform error on 106 unseen samples.

to provide sufficient information for the identification of the three-layer neural network with
architecture [50, 25, 10]. This suggests that once sufficiently many samples are provided, the
configuration of the supervised training algorithm determines whether a suitable network
configuration is attained. Lastly, learning in the four-layer case seems to stagnate (around
E∞ = 0.1) after a short initial improvement and generally performs quite poorly compared to
the three-layer scenarios (by several orders of magnitude in some cases).

1.4. Reduction of weight identification to tensor decompositions 28

Comparison with the shallow case. If we compare4 these results with our discussion from
the preceding section, then it seems that empirical risk minimization via SGD for deep neural
networks is much harder than identifying shallow neural networks of similar size. The deep
networks considered here only have slightly more neurons than inputs (m < 2D in the three-
layer case and m < 3D in the four-layer case). Shallow networks of similar size were recovered
consistently by an identical approach (cf. Section 1.3.1). Furthermore, there seems to be a
significant increase in the required number of gradient steps (i.e., computational time) from
shallow architectures (two-layer) to three-layer networks. Ultimately, these experiments cannot
answer whether neural networks with a high number of layers can be completely identified by
empirical risk minimization. The configuration of the training algorithm (in this case, stochastic
gradient descent with a fixed learning rate) seems to play a significant role. However, it can be
observed that the results for small-sized shallow neural networks from Section 1.3.1 can not be
easily extrapolated to deep neural networks.

1.4 Reduction of weight identification to tensor decompositions

Certain small-sized feed-forward neural networks are identifiable via empirical risk minimiza-
tion (cf. Section 1.1.3 and Section 1.3). However, theoretical guarantees discussed previously
either do not extend to more complex network architectures (i.e., networks with wide or
multiple hidden layers), or they do not consider a suitable setting for parameter identification
(e.g., works that consider over-parameterization). In numerical experiments, stochastic gradient
descent does manage to go beyond the aforementioned theoretical guarantees but becomes less
consistent with higher network complexity. We did not manage to identify a shallow teacher
network where m = O(D2) (cf. Section 1.3.1), and we could not consistently train a four-layer
student network that generalizes well on unseen data of the teacher network (cf. Section 1.3.2).
Therefore, it remains unclear whether empirical risk minimization admits global guarantees
for the identification of complex neural networks. This creates a discrepancy since these types
of networks should be uniquely determined by their input-output information (cf. Section
1.2 and [48, 129]). This section presents another line of work that approaches the identifica-
tion of shallow neural networks without empirical risk minimization but, differently from
before, leverages higher-order network differentiation and symmetric tensor decompositions
[111, 54, 53, 74, 86, 93, 138].

Tensor methods were already briefly mentioned as an initialization strategy for some of
the previously discussed works in Section 1.3 that provide a local convergence analysis of
gradient-based methods. The work [93] shows that under a suitable setting, the learning
of shallow neural networks with polynomial activations can be reduced to the problem of
decomposing a n-tensor

Tn =
m

∑
k=1

w⊗n
k ∈ (RD)⊗n (1.13)

into its rank-one components w⊗n
1 , . . . , w⊗n

m , where (wk)k∈[m] are the weights of the shallow
network and n is the degree of the activation function. Reductions of this type provide valuable
insights since the hardness of overcomplete tensors (i.e., tensor with m ≥ D components) is an
active area of research. Many tensor problems are known to be intractable [37, 62, 63]. In the
regime where m ≤ D, the factorization in (1.13) for third-order tensors is known to be unique
under fairly mild conditions [79, 19] and admits tractable computation [24]. The factorization
of a third-order symmetric tensor T3 into its components w⊗3

1 , . . . , w⊗3
m in the overcomplete

4The fact that multiple output neurons are considered should not negatively skew this comparison. We observe
that multiple output neurons aid the identification of network parameters (cf. Chapter 4).

29 Chapter 1. Recovering Neural Networks

regime, where m ≥ D, is considered in a wide range of recent literature (e.g., [15, 87, 66, 8, 93]).
For instance, the best currently known polynomial-time algorithms for the decomposition of
symmetric 3-tensors with components w1, . . . , wm ∼i.i.d. Unif(SD−1) only offer guarantees up to
the regime where m ≤ D3/2 (up to poly-logarithmic factors) [87]. The rank-one factorization of
symmetric 3-tensors beyond the regime m > D3/2 is currently considered to be computationally
hard [93]. Hence, under suitable conditions, [93] shows that learning very wide shallow neural
networks is provable hard when the activations are given by low-degree polynomials. This also
suggests that methods that explicitly consider weight retrieval by decomposition of 3-tensors,
such as the initialization of student networks by tensor methods (e.g., [138, 137, 56], which
require decomposition of 3-tensors and were mentioned within Section 1.3), as well as other
tensor-based approaches (see [74] below) might be challenging to extend to the recovery of
very wide shallow networks in the regime m > D3/2.

Remark 1.4. Our review of the literature surrounding tensor decompositions is necessarily incomplete.
The aforementioned limitation on the number of components could potentially be circumvented by
considering higher-order tensors, such as fourth-order tensors, which do admit efficient decompositions
beyond D3/2 components (see for example [65]). Since our results discussed in the main theoretical
chapters of this thesis (Chapter 2-4) do not directly rely on the theory surrounding higher-order tensor
decompositions, a more detailed discussion of tensor methods would go beyond the relevant scope. For
more details, we refer to the cited literature and references therein.

Exposing weights by adaptive sampling strategies. One aspect typically not considered
in the study of supervised learning algorithms is the use of controlled sampling strategies.
Intuitively, it should be easier to identify the network parameters from input-output pairs when
the network inputs can be actively chosen. We refer to this setting as active sampling or querying.
As a matter of fact, adoptive sampling schemes have been considered in a similar context for
the uniform approximation of ridge functions [33]. A ridge function can be described by the
composition of a univariate function with an affine function, i.e., functions x 7→ g(w⊤x), where
w ∈ RD, g : R→ R. This gives rise to a neuron, and by considering sums of ridge functions

f (x) =
m

∑
k=1

gk(w⊤k x), (1.14)

one can represent any type of shallow neural network. We can view shallow neural networks
as a special case of sums of ridge functions since neural networks generally assume that
gk(·) = bkg(·+ τk). Models of the type (1.14) and their approximation have been considered
in mathematical statistics under the terminology projection pursuit or projection pursuit
regression, cf. [71, 55, 39, 83], as well as single index models [72, 69]. One line of research
addressed the uniform approximation of (sums of) ridge functions by leveraging adaptive
sampling schemes and queries [33, 53, 90]. Here, the authors consider the approximation of
ridge functions g(w⊤x) in a setting where w and g ∈ C[0, 1] are both unknown. The authors
also allow for queries and study how to organize the queries to achieve the best uniform
approximation.

Assuming sufficient smoothness, then a simple but effective way of active sampling is to
design query strategies that allow for the approximation of derivatives with respect to the
input. In non-technical terms, this requires local information of the network or ridge function,
where several clusters of concentrated inputs contain sufficient information to approximate the
desired derivative. Note that differentiation of functions of the type (1.14) exposes the interior
parameters since

∇n f (x) =
m

∑
k=1

g(n)k (w⊤k x)w⊗n
k . (1.15)

1.4. Reduction of weight identification to tensor decompositions 30

The resulting connection between the weights of a shallow neural network (with sufficiently
smooth activations) and symmetric tensors based on network differentiation has been explored
in [27, 105, 31] and more recently in [111, 54, 53, 74, 86, 93, 138, 54] and our own work
[52, 50, 51], which will be discussed in the upcoming chapters. These approaches leverage the
structure of (1.15) to decouple the weight recovery of shallow networks from the remaining
network parameters. The weights can then be learned in the first phase, which leaves only a
few unknown scaling and shift parameters. The remaining unknowns can be estimated by
various methods such as Fourier methods (cf. [74]), direct estimation (cf. [54]), or by empirical
risk minimization (cf. [51] and Chapter 3). A simple decoupling algorithm for a single neuron
is sketched in the following example.

Example 1.1. Let f (x) = g(wTx + τ) be a neural network with weight w ∈ RD, shift τ ∈ R, and
known differentiable activation g. The goal is the recovery of the weight vector w and shifts τ from
queries of f . To compute (1.15) for n = 1 we can now leverage the active sampling. In a certain sense,
derivatives represent local information, which is hard to attain from separated samples. However, by
probing, we can compute the change of f along any given direction v and, therefore, approximate network
derivatives via finite difference schemes such as

f (x + ϵv)− f (x)
ϵ

≈ lim
ϵ→0

f (x + ϵv)− f (x)
ϵ

= ∇ f (x)Tv.

If we were able to find an approximation ∆ f (x) ≈ ∇ f (x) to a non-zero gradient, we could use it to
estimate the weight up to scaling with

ŵ :=
∆ f (x)
∥∆ f (x)∥2

≈ αw for α ∈ R \ {0}. (1.16)

The remaining part of the initial reconstruction can then be framed as a recovery of the parameters α, τ
from a scalar reparametrization f̂ (t) := f (tŵ) ≈ g(∥w∥2αt + τ) of the original network f . Different
approaches can be taken to solve the recovery of the scaling parameters and the shift from the function f̂ ,
which already leads to one of the main topics discussed in Chapter 3.

Estimating network derivatives from data. Admittedly, having full control over the input,
as assumed in an active sampling setting, is not fulfilled when a neural network is trained on
data. Therefore, understanding to what degree the derivatives of networks can be computed
from input-output data that is fixed a priori potentially makes derivative-based network
reconstruction algorithms applicable to the learning problem. In [54, 74], the authors show that
the active sampling assumption can be relaxed and that knowledge of the input distribution
can suffice. This approach is primarily based on Stein’s lemma [119, 8] or simply differentiation
by parts [54]: Assume we are given access to N inputs x1, . . . , xN drawn independently from a
distribution µ with known density p(x) w.r.t. the Lebesgue measure dµ(x) = p(x)dx and support
Ω = supp(µ). If we assume that p is sufficiently smooth, then we estimate Ex∼µ[∇n f (x)]
without querying the network explicitly. This follows from

1
N

N

∑
i=1

f (xi)(−1)n∇n p(xi)

p(xi)
≈
∫

Ω
f (x)(−1)n∇n p(x)

p(x)
p(x)dx (1.17)

=
∫

Ω
∇n f (x)dµX(x) = Ex∼µ[∇n f (x)]

=
m

∑
k=1

(∫
Ω

g(n)(wT
k x)dµ(x)

)
w⊗n

k .

One potential benefit associated with this construction is that it might help to avoid potential
numerical instabilities that would be caused by derivative approximation [54] in the active

31 Chapter 1. Recovering Neural Networks

sampling case since the approximation error in (1.17) scales with the number of samples N. It
should be noted, however, that any errors in the approximation of derivatives via numerical
differentiation will ultimately be caused by inaccuracies of the network evaluations (e.g.,
machine precision) and should also be present in the left-hand side of (1.17). We will refer to
this construction as passive sampling (cf. [54]). These ideas have gotten more attention recently
(see [74, 93], as well as [53, 54]). What makes this type of sampling appealing is that without
explicit probing of the network, it can be applied to the classical learning problem. For instance,
if we were given training data (xi, yi)i∈[N] where yi = f (xi) is known to be exactly realizable
by a shallow neural network, then Ex∼µ[∇n f (x)] can be approximated as long as we assume
the inputs come from an at least approximately known distribution µ. The last part is critical
since the estimation of a density becomes increasingly more difficult for higher dimensions.

1.5 Reconstruction of shallow neural networks from Hessian infor-
mation

The decomposition of network derivatives into sums of outer-weight-products as shown in
(1.15) suggests a clear path for the (partial) identification of (smooth) shallow neural networks.
In Example 1.1, the identification of a single neuron was connected to its gradient. For general
shallow networks f (x) = ∑m

k=1 g(w⊤k τk), however, network gradients will not suffice because
the gradient takes the form

∇ f (x) =
m

∑
k=1

g(1)(x⊤wk + τk)wk ∈ span{w1, . . . , wm}.

Since identifying individual weights from their linear combination is not possible, higher-order
differentiation has been considered (cf. [31, 27, 54]), which gives rise to a symmetrical tensor
as in (1.15). Notably, the identification of the individual weights still remains challenging (see
also Section 1.4) after its reduction to the problem of decomposing a tensor

Tn =
m

∑
k=1

λk,nw⊗n
k , for n ≥ 2, (1.18)

with unknown coefficients λ1,n, . . . , λm,n ∈ R. First of all, regardless of whether passive or
active sampling is considered (see above), the tensor Tn can only be estimated up to some
accuracy. Hence, one requires a robust method to decompose Tn. Decompositions of symmetric
tensors (n ≥ 3) or matrices (n = 2) are known to be unstable without the separation of the
individual components. Additionally, the coefficients λk,n can not be allowed to become arbi-
trarily small (compared to the error caused either by approximations of network derivatives or
the approximation of the input distributions whose higher-order moments are used in passive
sampling).

Let us now address one particular line of work that is inspired by [54] and considers the
identification of shallow neural networks with linear outputs and sufficiently smooth activa-
tions [54, 51] (cf. Chapter 3). Notably, these ideas have been extended in parts to deep neural
network architectures [52, 50] (cf. Chapter 4). The authors in [54] approach the stability issues
mentioned above by using multiple network derivatives, and their reconstruction algorithm
relies exclusively on Hessian matrices (i.e., second-order derivatives) of the network. By
remaining in the realm of matrices, their approach avoids most computational intractability
issues associated with tensors since matrix decompositions are generally well-understood and
computable in polynomial time. However, matrix decompositions, such as the spectral- or
singular value decomposition, are generally only unique up to unitary transformations and less

1.5. Reconstruction of shallow neural networks from Hessian information 32

suited for the overcomplete regime m ≥ D. Therefore, [54] considers instead the approximation
of the symmetric matrix space spanned by the outer products of the network weights. To be
more precise, assume f : RD → R is a shallow neural network on m ≤ D hidden neurons with
sufficiently smooth scalar activations g1, . . . , gm, linearly independent weights w1, . . . , wm ∈ RD,
and one linear output unit, such that

f (x) =
m

∑
k=1

gk(x⊤wk). (1.19)

Note that this definition is equivalent to the sum of ridge functions in (1.14) and that network
shifts can easily be incorporated by setting gk(t) = g(t + τk) for an arbitrary activation g. The
goal is the retrieval of (wk)k∈[m], (gk)k∈[m] from network queries. In the first step, the problem
is reduced from m ≤ D to the setting where m = D by a network transformation that projects
network inputs onto the active subspace, i.e., the space span{w1, . . . , wm} (see Remark 1.5
below). The recovery algorithm of [54] computes an approximation Ŵ to the symmetric matrix
space

W = span{w1 ⊗ w1, . . . , wm ⊗ wm} ⊂ Sym(RD×D), (1.20)

from the m-th left singular subspace5 of N Hessian approximations ∆2 f (x1), . . . , ∆2 f (xN),
i.e., Ŵ = spanm{∆2 f (x1), . . . , ∆2 f (xN)}. Here, (xi)i∈[N] are considered to be random vectors
sampled uniformly at random from the unit-sphere, and ∆2 f (xi) ≈ ∇2 f (xi) are Hessian ap-
proximations (e.g., constructed via finite differences as described in Section 1.4). By assuming
that combining sufficiently many Hessians matrices at inputs drawn from Unif(SD−1) provides
sufficient information to constructW , [54] then show that, with high probability, the construc-
tion of Ŵ serves as a good approximation provided that N ≳ m2 (see also Section 3.2 and
Algorithm 3.2). More precisely, the key assumption in [54] that enables this statement is that
the second moment of Hessians in expectation, i.e., the matrix

H[f] := EX∼Unif(SD−1)

[
vec(∇2 f (X))⊗2] , (1.21)

has rank m. Similar assumptions are encountered in the theory presented in Chapter 3 and
Chapter 4 (cf. (SNM3), (DNM3) defined in Section 3.1.1, Section 4.1.1, respectively). It is worth
mentioning that we prove with Theorem 3.5 in Section 3.4.5 that this condition holds for incoher-
ent weights6 and sufficiently non-polynomial activations. More precisely, we show that the m-th
singular value of the second moment matrix satisfies σm(EX∼N (0,Id)

[
vec(∇2 f (X))⊗2]) > α for

a constant α > 0 that is independent of m, D (which implies the rank condition). Assuming access
to Ŵ ≈ W , the recovery of individual weights can then be achieved robustly by selecting ma-
trices within Ŵ that are close to one of the rank-one spanning matrices w1 ⊗ w1, . . . , wm ⊗ wm

up to sign. These so-called near-rank-one matrices in Ŵ are characterized by a significant
spectral gap at the leading singular value under fairly mild conditions, which guarantees
the stability of the associated eigenvector (this follows from classical perturbation analysis of
matrix decompositions [108, 20]). The selection of the near-rank-one matrices from the space
Ŵ is formulated as the nonlinear program

argmax ∥M∥ s.t. M ∈ Ŵ , ∥M∥F ≤ 1. (1.22)

[54] show that for nearly orthonormal weights w1, . . . , wm the local maximizers of (1.22) are
close to the original spanning elements up to sign (assuming sufficiently accurate derivative

5See Section 1.1.1 for a definition of singular subspaces.
6Our incoherence assumptions hold with high probability for weights drawn from isotropic random distributions

such as the uniform distribution on the unit-sphere for up to m = o(D2) neurons (cf. Section 2.6.1).

33 Chapter 1. Recovering Neural Networks

approximations) and that their computation can be achieved by a projected gradient ascent (cf.
Section 2.3.4). For more details, we refer to Chapter 2, where the results in [54] are extended to
the overcomplete regime m = O(D) under deterministic frame bounds and additionally discuss
further extensions to m = o(D2) for isotropic random weights based on the recent results [76].
To make this approach applicable to shallow networks with linearly independent weights, which
are not necessarily orthogonal, [54] propose an optional whitening step that serves as a reduction
of the problem to the orthonormal case: Assume access to Ŵ ≈ W and that w1, . . . , wm are
linearly independent. Select any positive definite matrix G ∈ Ŵ ⊂ Sym(RD×D) and denote
by G = VΣV⊤ its spectral decomposition. The transformation f̃ (x) := f (Σ−1/2VTx) then
gives rise to a shallow neural network f̃ (of the form (1.19)) with nearly orthonormal weights
given by w̃k := Σ−1/2VTwk/∥Σ−1/2VTwk∥2, k ∈ [m] (cf. [54, Theorem 8.3]). After finding
weight approximations ŵ1, . . . , ŵm, the remaining identification of the activation functions gk is
then tackled by an adoptive sampling schema that considers the network along the directions
t 7→ f (tbk), where b1, . . . , bm is the dual basis to ŵ1, . . . , ŵm (cf. [54, Algorithm 7.1]).

Remark 1.5. Note that any component of an input vector x that does not lie in the span of the first
layer weights span{w1,⊗wm} will be ignored by the network since

wk
⊤x = wk

⊤Pspan{w1,...,wm}(x),

where Pspan{w1,...,wm} is the orthogonal projection onto the span of the weights. The linear span of
the weigths w1, . . . , wm is called the active subspace (cf. [54]) and has dimension m due to the
linear independence of the weight vectors. The active subspace can be identified by gradient approx-
imations similar to the approach that was used to identify the space (1.20) under the assumption
that EX∼Unif(SD−1)

[
(∇ f (X))⊗2] has full rank. This yields a transformation of the network that only

considers inputs in the active subspace, and thereby reduces the problem to the setting where m = D.

1.5. Reconstruction of shallow neural networks from Hessian information 34

Chapter 2

Recovery of a rank-one basis from its
perturbed span

This chapter is concerned with the following problem: Consider a set of m rank-one symmetric
matrices w1 ⊗ w1, . . . , wm ⊗ wm ∈ Sym(RD×D). Assume that the linear span of these elements
is known approximately, i.e., we are given access to a symmetric matrix space Ŵ that ap-
proximates the span Ŵ ≈ span {w1 ⊗ w1, . . . , wm ⊗ wm}. In this setting, the problem we study
is the (approximative) recovery of the original spanning elements w1 ⊗ w1, . . . , wm ⊗ wm ∈
Sym(RD×D) from the perturbed matrix space Ŵ (up to natural symmetries). We will refer to
this problem as the rank-one basis recovery (problem). Let us mention that the rank-one basis
recovery problem occurs, for instance, during the identification of shallow neural networks (cf.
Section 1.5 and Chapter 3), as well as during the reconstruction of deep neural networks in
Chapter 4. A detailed summary of the upcoming theory is provided as part of the next section.

Section 2.3 of the present chapter covers parts of the joint work with Massimo Fornasier,
Timo Klock published in [52], which extends the theory of [54] (cf. Section 1.5) to the over-
complete regime m < 2D. Section 2.4 and Section 2.5 extend the analysis of the subspace
power method in [77] to the perturbed case for matrix and is based on the joint work [50] with
Massimo Fornasier, Timo Klock and Christian Fiedler. Lastly, Section 2.6 is concerned with the
overcomplete regime where D < m < D2, where we present a result from [76] and introduce
concepts of incoherence that will be highly relevant in Chapter 3. The included discussion
addresses similar points that have been part of the joint work [51] with Massimo Fornasier,
Timo Klock and Marco Mondelli. Several of the theoretical proofs within this chapter, which
originate from these joint works, are stated verbatim as in their underlying references, indicated
within the definition of the statement.

2.1 Introduction and preliminaries

We study the approximation of the elements w1 ⊗ w1, . . . , wm ⊗ wm ⊂ Sym(RD×D) under the
assumption that their span is known to us up to small perturbations, i.e., we assume knowledge
of a symmetric matrix space Ŵ ≈ W where

W = span {w1 ⊗ w1, . . . , wm ⊗ wm} ⊆ RD×D. (2.1)

To understand our approach to this problem, let us first note that this problem is related to the
spectral decomposition: Consider, for instance, the unperturbed problem, i.e., we are given
direct access toW . Assume further that m = D and that w1, . . . , wm ∈ RD form an orthonormal
basis. Then, for any non-singular matrix M ∈ W with distinct eigenvalues, we can compute

35

2.1. Introduction and preliminaries 36

all spanning elements using the spectral decomposition, which reads M = ∑D
k=1 λkuk ⊗ uk for

eigenvalues λ1, . . . , λD ∈ R \ {0} and eigenvectors u1, . . . , uD. Due to the uniqueness of the
spectral decomposition, in the case described above, we have

M =
D

∑
k=1

λkuk ⊗ uk =
m

∑
k=1

λkwk ⊗ wk.

Unfortunately, this approach comes with several limitations: Firstly, it is well known that even
for distinct eigenvalues the spectral decomposition is in general not stable, which means this
approach can not be directly applied to the perturbed rank-one recovery problem. The stability
of the spectral decomposition can only be guaranteed under the presence of sufficient spectral
gaps (i.e., separation of the eigenvalues). Secondly, the number of components is limited by
the dimension of the matrix, i.e., the spectral decomposition of any matrix M ∈ W can only
be decomposed into D spanning elements. Notably, we can have up to m = O(D2) linearly
independent rank-one spanning matrices (limited only by the dimension of Sym(RD×D)).
Therefore, we are naturally interested in an approach that also applies to the overcomplete regime,
where the number of spanning elements m is greater than the ambient dimension D. Lastly,
assuming that the vectors w1, . . . , wm form an orthonormal basis is overly restrictive and does
not apply in many relevant settings (cf. Chapter 3-4).

The present chapter addresses the limitations above and is largely based on the theory pre-
sented in the publications [52, 50]. More precisely, we provide a perturbation analysis as well
as an extension to the overcomplete regime m > D. Before we move to the technical results, let
us summarize some of the fundamental ideas that address the problems mentioned above and,
at the same time, give an overview of the structure of the chapter.

Near rank-one matrices approximate spanning elements (Sec. 2.2). Our first goal is to
select matrices within the perturbed space Ŵ such that their eigenvectors are close to a subset
of the vectors {w1, . . . , wm}. To achieve such a selection while maintaining stability, we select
only those matrices in Ŵ that are near-rank-one, i.e., matrices with one dominant eigenvalue,
which guarantees a large spectral gap. One immediate consequence of this approach is that
aside from the first eigenvalue, the remaining eigenvalues of the selected matrix cannot have
significant spectral gaps. Therefore, we can only rely on the eigenvector corresponding to the
largest eigenvalue, which in turn implies that we cannot expect to recover more than one out
of the m rank-one spanning matrices w1 ⊗ w1, . . . , wm ⊗ wm from each selected matrix. Hence,
our approach requires at least m different matrices M1, . . . , Mm ∈ Ŵ to recover all spanning
elements. In Section 2.2, we prove (cf. Theorem 2.1) that near-rank-one matrices are close to
one of the spanning elements w1 ⊗ w1, . . . , wm ⊗ wm under mild conditions.

Characterization of near-rank-one matrices (Sec. 2.3.1, Sec. 2.5). To select such near-rank-one
matrices in Ŵ , we provide two different characterizations that select near-rank-one matrices as
maximizers of a non-linear program. Depending on the characterization, we end up with one
of two different recovery algorithms. In Section 2.3, we present a characterization based on the
program that selects the maximizers of the spectral norm constrained on the Frobenius unit
ball, i.e., maximizers of the non-linear program

argmax ∥M∥ s.t. ∥M∥F ≤ 1, M ∈ Ŵ . (2.2)

The characterization in (2.2) originates from [54], where it was used as a characterization of the
near-rank-one matrices in the case m = D. Section 2.3 covers the theory within [52], that extends
the characterization in (2.2) to the overcomplete linear regime where the vectors w1, . . . , wm form

37 Chapter 2. Recovery of a rank-one basis from its perturbed span

a frame. More precisely, in Section 2.3.1, we show that for small perturbations and separated
spanning elements, the local maximizers of (2.2) are either near-rank-one matrices which by
Theorem 2.1 implies that they are close to one of the matrices {w1 ⊗ w1, . . . , wm ⊗ wm}, or they
have a uniform spectrum. Starting from Section 2.5, we study a different characterization based
on the nonlinear program

max
∥u∥=1

∥∥PŴ (u⊗ u)
∥∥2

F , (2.3)

where PŴ represents the orthogonal projection onto the matrix space Ŵ . Note that any
maximizer û in (2.3) can directly be associated with the rank-one matrix û⊗ û. The problem in
(2.3) has been first analyzed in [77] in a more general context of tensor decomposition, and
their results apply directly to the unperturbed rank-one recovery problem. It is evident that
global maximizers of (2.2) and (2.3) must closely resemble rank-one matrices as long as the
space Ŵ is sufficiently close to span {w1 ⊗ w1, . . . , wm ⊗ wm}. However, to allow a sufficient
computation of these maximizers by first-order methods (e.g., projected gradient ascent), we
need to provide a perturbation analysis of the local maximizers of these programs. The primary
technical challenge then becomes the formulation of conditions derived from the first-order and
second-order optimality conditions that guarantee that the local maximizers of either program
are close to ±wk ⊗ wk for some k ∈ [m]. Our main focus in Section 2.5 is the perturbation
analysis contained in [50], which extends the results in [77] to our scenario for m < 2D. Finally,
the recent work [76] provides an analysis of the perturbed objective (2.3) up to m = o(D2) for
vectors w1, . . . , wm ∈ SD that can be modeled by isotropic random vectors. Their work presents
an improvement over [50] and the main result applied to our case will be discussed in Section
2.6, which will find application in Chapter 3. However, we will not discuss the technical details
of [76], as their theory is focused on tensor decompositions.

Remark 2.1. In both linear programs ((2.3) and (2.2)), we encounter spurious local maximizers that
fulfill the first-order and second-order optimality conditions but have a uniform spectrum (i.e., all
eigenvalues have similar size). This problem is addressed by showing that the spurious local maximizers
can be filtered under fairly mild conditions based on their objective value associated with the non-linear
program. For more details, we refer to the respective sections.

Computing local maximizers (Sec. 2.3.4 and Section 2.5). For both characterizations men-
tioned above, the computation of the local maximizers of the non-linear programs (2.2) and
(2.3) is solved via a variant of projected gradient ascent. For the objective (2.2) we rely on the
iteration

Mj+1 = Fγ(Mj), where Fγ(X) =
PŴ (X + γu1(X)⊗ u1(X))∥∥PŴ (X + γu1(X)⊗ u1(X))

∥∥
F

, (2.4)

proposed in [54, 52] where γ is a step-size parameter that is up to the algorithms designer and
the procedure has been summarized in Algorithm 2.1. This iteration is composed of a gradient
ascent step that exalts the first eigenvalue of a matrix by adding γu1(Mj) ⊗ u1(Mj) and a
projection back onto Ŵ intersected with the Frobenius unit-sphere. Here, u1(Mj) denotes the
first eigenvectors of the j-th iterate Mj. We prove that this sequence produces a sequence of
matrices with increasing spectral norms. For more details, we refer to Section 2.3.4.

The local maximizers of the objective (2.3) are computed via a projected gradient ascent
algorithm that iterates

uj+1 = PSD−1(uj + 2γPŴ (uj ⊗ uj)uj), (2.5)

2.1. Introduction and preliminaries 38

with fixed step-size γ > 0. The iteration in (2.5) was introduced in [77] as subspace power
method (SPM). It has been shown in [77] that the SPM iteration converges to local maximizers
of (2.3) under fairly mild conditions for any symmetric matrix space Ŵ . Hence, the results in
[77] do apply to the perturbed objective. We refer to the respective discussion in Section 2.5
for more details. Before we conclude the summary of this chapter and move to the technical
problem setting, let us make the following remark regarding the computational complexity of
the recovery of all local maximizers.

Remark 2.2. Both iterations introduced above can only return up to one spanning matrix at a time.
Due to the nature of gradient-based methods, the initialization of the iteration will strongly influence
which near-rank-one matrix is recovered from the perturbed space. Both approaches start their iteration
from a random initialization on the respective unit-sphere. Algorithm 2.1, which iterates (2.4), selects
randomly a matrix M0 in Ŵ ∩ SD×D−1, whereas Algorithm 2.2 picks the starting point u0 uniformly
at random from the unit-sphere SD−1. We then seek to recover all local maximizers by repeatedly
sampling independent starting points. As long as the retrieval of every local maximizer is equally likely,
the average number of repetitions needed to recover all local maximizers can be derived from the analysis
of a classical problem of combinatorial probability. Namely, the coupon collection problem, according
to which we expect an average number of Θ(m log m) repetitions until we have recovered all local
maximizers (see also [53])

2.1.1 Problem setting

Let us now introduce some technical aspects and assumptions that play a fundamental role
throughout the following section.

Scaling ambiguity of the spanning elements. Consider a symmetric matrix space spanned
by rank-one matricesW = span {w1 ⊗ w1, . . . , wm ⊗ wm}, where w1, . . . wm ∈ RD. Without any
additional information, we can only recover the basis matrices wk ⊗ wk up to non-negative
scaling factors since for any σ > 0, k ∈ [m] the matrix σkwk ⊗ wk ∈ W is a positive definite
rank-one matrix. Therefore, moving forward, we will constrain the spanning matrices on the
Frobenius unit-sphere, which is equivalent to w1, . . . , wm ∈ SD−1.

Linear independence and rank-one ambiguity. According to the recovery problem we stated
at the beginning, we consider a symmetric matrix spaceW , and our goal is the recovery of a
specific set of rank-one matrices w1 ⊗ w1, . . . , wm ⊗ wm such that

W = span {w1 ⊗ w1, . . . , wm ⊗ wm} .

The unique characteristic of the spanning elements is the fact that they are rank-one. Differently
put, if there exists a matrix M ∈ W such that rank(M) = 1 and M ̸∈ span{wk ⊗ wk} for any
k ∈ [m], the unique identification of the matrices w1 ⊗ w1, . . . , wm ⊗ wm fromW based on the
rank criteria becomes ill-posed. This is related to another aspect of the rank-one basis recovery
problem that we have neglected until now, which is the fact that the matrices w1⊗w1, . . . , wm⊗
wm need to form a basis. Again, without such an assumption, the unique recovery of all
spanning elements becomes ill-posed or requires additional information. Assume, for instance,
that w1 ⊗ w1 is redundant due to linear dependencies, and we are given the space

W = span {w1 ⊗ w1, . . . , wm ⊗ wm} = span {w2 ⊗ w2, . . . , wm ⊗ wm} .

Hence, without linear independence, the set of rank-one spanning elements becomes ambigu-
ous. Note that if the matrices w1⊗w1, . . . , wm ⊗wm are linearly independent, then we can infer

39 Chapter 2. Recovery of a rank-one basis from its perturbed span

the number of spanning elements m directly from the matrix space since dim(W) = m. This
implies that there is a theoretical limit on the maximal number of spanning elements that can be
recovered, due to the fact thatW ⫋ Sym(RD×D). If we were to assume m = D(D + 1)/2, then
by the basis property we get that

dim(W) = |B| = D(D + 1)/2 = dim(Sym(DD×D−1))

implying that W = Sym(RD×D). In this scenario, w ⊗ w ∈ W for all w ∈ RD, and there
remains no hope to uniquely identify a rank-one basis of size m. Therefore, the condition
m < D(D + 1)/2 is necessary. Once we approach the regimes of m whereW starts to resemble
the space of all symmetric matrices, the rank-one characteristic becomes less specific to the
basis elements. In Section 2.1.2, we will introduce assumptions on the incoherence of the
vectors w1, . . . , wm from which we can derive linear independence of the spanning matrices.
This is followed by Section 2.2, where we show sufficient conditions under which near-rank-one
matrices within the perturbed space Ŵ ≈ W are close to the original spanning elements.

Structure of the perturbed space. The last point we want to address is what kind of pertur-
bations we can allow while still being able to develop an analysis of the approximate recovery
of all the rank-one spanning elements from the perturbed space Ŵ ≈ W . To guarantee that
the approximating space Ŵ ∈ Sym(RD×D) exhibits a similar structure asW , we will typically
assume that

δ :=
∥∥PW − PŴ

∥∥
F→F = sup

Z∈RD×D

∥Z∥F=1

∥∥PWZ− PŴZ
∥∥

F < 1, (2.6)

where PW , PŴ are the orthogonal projections ontoW , Ŵ , respectively. Without an assumption
like ∥PW − PŴ∥F→F < 1, we would run into degenerate cases like the following: Assume
Ŵ =W ∩ span {wm ⊗ wm}⊥, then δ =

∥∥PW − PŴ
∥∥

F→F = 1, but wm⊗wm can not be recovered
from Ŵ . Additionally,(2.6) has several useful implications that allow us to map elements
betweenW , Ŵ using their orthogonal projections.

Lemma 2.1. Let W , Ŵ ⊂ RD×D be matrix subspaces with corresponding orthogonal projections
PW , PŴ and assume that δ := ∥PW − PŴ∥F→F < 1. Then the following holds:

(i) Both matrix spaces have the same dimension, i.e., we have dim(W) = dim(Ŵ).

(ii) For any matrix W ∈ W we have

(1− δ)−1 ∥∥PŴ (W)
∥∥

F ≤
∥∥PŴ (W)

∥∥
F ≤ ∥W∥F ,

and the same statement holds withW , Ŵ reversed.

(iii) The constrained orthogonal projections PW : Ŵ → W , PŴ :W → Ŵ are bijective.

Proof. For (i), we start by assuming the contrary. If dim(W) > dim(Ŵ), then dim(W) > 0 and
there exists an element X ∈ W s.t. X − PŴX ̸= 0. Denote Y = X − PŴX, then Y ∈ W ∩ Ŵ⊥
and we have

sup
Z∈RD×D

∥Z∥F=1

∥∥PWZ− PŴZ
∥∥ ≥ ∥∥∥∥PW

Y
∥Y∥F

− PŴ
Y
∥Y∥F

∥∥∥∥ =

∥∥∥∥ Y
∥Y∥F

∥∥∥∥
F
= 1

2.1. Introduction and preliminaries 40

which contradicts our initial assumption. The same argument can be repeated if dim(W) <

dim(Ŵ), hence dim(W) = dim(Ŵ). The left inequality in (ii) is trivial, and the right inequality
follows by∥∥PŴ (W)

∥∥
F =

∥∥W + PŴ (W)− PW (W)
∥∥

F ≥
∣∣∣∥W∥F −

∥∥PŴ (W)− PW (W)
∥∥

F

∣∣∣
≥
(

1− sup
Z∈RD×D

∥Z∥F=1

∥∥PWZ− PŴZ
∥∥) ∥W∥F ≥ (1− δ) ∥W∥F .

The same statement holds with W , Ŵ reversed by relabeling. For (iii), denote by ψ the
constrained projection PŴ : W → Ŵ . Since ψ is an orthogonal projection, it is a linear map.
SinceW , Ŵ are both finite-dimensional we have

dimW = dim range ψ + dim ker ψ.

By (ii) we have ψ(W) ≥ 1
1−δ ∥W∥F implying ker ψ = {0} and therefore the injectivity of

ψ. Plugging this into the relation above, we have dim range ψ = dimW = dim Ŵ , where
we used (i) for the last identity. This implies surjectivity. Again, the same proof works for
ψ = PW : Ŵ → W by reversing the role of both spaces throughout the arguments.

Lemma 2.1 establishes the important observation that we can identify each element inW with
a unique element in Ŵ by the bijection PŴ : W → Ŵ , as long as δ < 1. In particular, if we
pair this statement with the assumption that w1⊗w1, . . . , wm ⊗wm form a basis ofW , then PŴ
gives rise to a basis of Ŵ that is derived from the original spanning elements: Denote

Wk = wk ⊗ wk, and Ŵk = PŴ (Wk) for all k ∈ [m], (2.7)

then for δ < 1, the matrices Ŵk form a basis of Ŵ which follows from the fact that PŴ
constrained ontoW is a bijection by Lemma 2.1. A common construction that will find many
applications throughout this chapter is the representation of a matrix M ∈ Ŵ in terms of the
basis Ŵ1, . . . , Ŵm derived from the projections of the linearly independent rank-one spanning
elements.

2.1.2 Deterministic frame bounds: Measuring incoherence in the linear regime

The last section hinted at the fact that the spanning elements w1 ⊗ w1, . . . , wm ⊗ wm need
to form a basis to allow their unique identification from their span. One way this could
be guaranteed is to assume the vectors w1, . . . , wm are linearly independent. This follows,
for instance, by Lemma 2.22 and the following discussion. However, requiring that vectors
w1, . . . , wm form a basis is too restrictive as such a requirement imposes m ≤ D. In this
small interlude, we introduce sufficient conditions that imply linear independence of the
outer products w1 ⊗ w1, . . . , wm ⊗ wm that apply to the overcomplete regime m > D. The
following theory characterizes the vectors w1, . . . , wm based on their incoherence. We can define
the (mutual) incoherence of a set of vectors w1, . . . , wm ∈ SD−1 as based on their maximal
cross-correlation

ϵ = max
k ̸=ℓ
|⟨wk, wℓ⟩|,

and we say the vectors are incoherent if ϵ is sufficiently small. For m ≤ D, all vectors could be
orthogonal, in which case we have ϵ = 0. For the case m > D, a lower bound on ϵ is provided

41 Chapter 2. Recovery of a rank-one basis from its perturbed span

by the so-called Welch bounds [131], which state that

ϵ ≥
√

m− D
D(m− 1)

. (2.8)

This implies a lower bound ϵ = O(D−1/2) on the correlation of m ≥ D unit vectors. It is
interesting to compare this bound to the correlation of generic vectors in high dimensions.
Let us, for instance, consider random vectors X, Y drawn uniformly from the unit sphere
X, Y ∼i.i.d Unif(SD−1). It is well known that high-dimensional isotropic random vectors can be
regarded as nearly orthogonal (cf. [127, Remark 3.2.5]), i.e., we have

|⟨X, Y⟩| ∼ D−1/2,

with high probability. In Section 2.6.1, more precisely Proposition 2.2, we will see that this also
holds uniformly over a set of m = o(D2) isotropic random vectors up to logarithmic factors
in m. This shows that we can expect a set of generic vectors in high dimensions to exhibit a
significant amount of incoherence and that isotropic random distributions are a suitable model
for well-separated vectors in high dimensions.

Remark 2.3. The remaining theory within this section does only apply to the mildly overcomplete
regime where m < 2D (cf. Lemma 2.3 below) since this will be our setting in Section 2.2 - 2.4. We will
resume the discussion of more general concepts of incoherence in Section 2.6, where we will discuss the
scenario D < m < D2 and extend our concepts to higher-order tensors.

Let us mention that any type of incoherence of vectors w1, . . . , wm ∈ SD−1 trivially extends to
their outer products since

⟨w⊗n
k , w⊗n

ℓ ⟩ = ⟨wk, wℓ⟩n, for all n ∈N, k, ℓ ∈ [m].

Hence, incoherent vectors will lead to incoherent spanning matrices. Notably, separation
between the matrices w1 ⊗ w1, . . . , wm ⊗ wm is crucial. If two spanning elements in W were
allowed to become arbitrarily close, then even small perturbations could make these elements
indistinguishable in Ŵ .

Remark 2.4. Notably, for the special case m = D, it has recently been shown that a recovery of the
spanning elements is in principle possible as long as {w1, . . . , wm} (and therefore also {wk ⊗ wk| k ∈
[m]}) are linearly independent [54], without relying on strong incoherence. This is achieved by an
orthogonalization procedure, called whitening (cf. Section 1.5 and [54, Section 8]), which allows the
authors to artificially put the spanning matrices in a well-separated position. The whitening procedure
requires high accuracy of the approximation Ŵ ≈ W . To the best of our knowledge, this method
has not been extended to the case m > D. Even if the whitening procedure could be extended to the
overcomplete regime m > D, gaining a highly accurate approximation ofW might not be feasible when
the approximation error is not controlled as part of the recovery algorithm. We will encounter such a
case in Chapter 4, where ∥PŴ − PW∥F→F is a constant error that cannot be made arbitrarily small.

To make the incoherence assumptions more precise, we will borrow an elementary concept
from frame theory (see [30]) that leads to a generalization of orthonormal bases.

Definition 2.1. A set of vectors w1, . . . , wm ∈ RD is called a frame if there exist constants A, B > 0,
such that

A∥x∥2
2 ≤

m

∑
k=1
⟨x, wk⟩2 ≤ B∥x∥2 for all x ∈ RD. (2.9)

2.1. Introduction and preliminaries 42

Figure 2.1: The Mercedes-Benz frame. A classical example for a finite normalized
tight frame with three elements in R2

The constants A, B are typically referred to as frame bounds. It is clear that the frame condition
in (2.9) is fulfilled for A = B = 1 when {w1, . . . , wm} forms an orthonormal basis since then

m

∑
k=1
⟨x, wk⟩2 = ∥x∥2

2 for all x ∈ RD.

The latter inequality is commonly known as Parseval’s identity. In the literature, frames
described in Definition 2.1 are also referred to as finite frames [30, 17]. Frames for which the
frame bounds coincide, i.e., A = B are also called tight frames, and if the vectors w1, . . . , wm all
have unit norm, then we refer to them normalized frames. A finite normalized tight frame is a
system of vectors {w1, . . . , wm} ⊂ SD−1 which is in the optimal position to achieve the lowest
frame constants (i.e., maximal incoherence cf. passages above) that is attainable for m unit
vectors in RD (see [17, 29]). A popular example of a tight frame is the so-called Mercedes-Benz
frame (see Figure 2.1), which consists of three unit vectors in R2 at maximal separation.

In the following sections, we will primarily rely on the following adaption of the frame
conditions, which unites both frame bounds into one constant: Consider a set of unit vectors
w1, . . . , wm ∈ SD−1 and assume that there exists a constant ν ≥ 0 such that

(1− ν) ∥x∥2
2 ≤

m

∑
k=1
⟨wk, x⟩2 ≤ (1 + ν) ∥x∥2

2 for all x ∈ RD. (2.10)

If (2.10) holds for some ν ∈ [0, 1), then the vectors form a frame according to Definition 2.1.
One can interpret the constant ν in 2.10 as the degree to which {w1, . . . , wm} deviates from
an orthonormal basis. We often assume that the vectors fulfill this condition for some ν < 1,
which implies the necessary linear independence of the matrices {wk ⊗ wk | k ∈ [m]}.

Lemma 2.2 (cf. [52, Lemma 29]). Let {w1, . . . , wm} ⊂ RD have unit norm and satisfy

m

∑
k=1
⟨wk, wℓ⟩2 ≤ 1 + ν,

for all ℓ = 1, . . . , m. If 0 ≤ ν < 1, then the system {w1 ⊗ w1, . . . , wm ⊗ wm} is linearly independent.

43 Chapter 2. Recovery of a rank-one basis from its perturbed span

Proof. If we assume on the contrary that w1 ⊗ w1, . . . , wm ⊗ wm are not linearly independent,
then we can find coefficients σ ̸= 0 ∈ Rm such that

0 =
m

∑
k=1

σkwk ⊗ wk ⇔
m

∑
k=1

σk⟨x, wk⟩2 = 0 for all x ∈ RD.

Let us denote by k∗ the first index such that ∥σ∥∞ = |σk∗ |. We can assume σk∗ > 0 without loss
of generality since we could simply flip the signs of the coefficients otherwise. Then we have

0 =
m

∑
k=1

σk ⟨wk, wk∗⟩2 = σk∗ + ∑
k ̸=k∗

σk ⟨wk, wk∗⟩2 ≥ σk∗ + min
k

σk ∑
k ̸=k∗
⟨wk, wk∗⟩2,

where the second identity follows from ∥wk∗∥ = 1. We can exclude the case mink σk ≥ 0, which
immediately yields a contradiction. Now if mink σk < 0, then

0 ≥ σk∗ + min
k

σk ∑
k ̸=k∗
⟨wk, wk∗⟩2 ≥ σk∗ + min

k
σkν∥wk∗∥2 = σk∗ + min

k
σkν.

By division through ν, and then subtracting mink σk, we obtain |mink σk| ≥ σk∗ν
−1. According

to our outgoing assumption we have ν < 1, which yields a contradiction since the latter would
imply that ∥σ∥∞ ≥ |mink σk| > σk∗ = ∥σ∥∞.

Thus, whenever we constructW from vectors that fulfill (2.10) with ν < 1, it implicitly follows
that {w1 ⊗w1, . . . , wm ⊗wm} forms a basis. This raises another question: To what degree is the
constant ν in condition (2.10) determined by the dimension D and cardinality m of the system
{w1, . . . , wm}.

Lemma 2.3 (cf. [17, Theorem 3.1]). Consider a set of unit vectors {w1, . . . , wm} ⊂ SD−1 that fulfill
condition (2.10). Then

1− ν ≤ m
D
≤ 1 + ν. (2.11)

Proof. Denote by ei the i-th canonical basis vector in RD, then we have

D =
D

∑
i=1
∥ei∥2

2 ≤ (1 + ν)
D

∑
i=1

m

∑
k=1
⟨ei, wk⟩2 = (1 + ν)

m

∑
k=1
∥wk∥2

2 = (1 + ν)m,

which confirms the right bound in (2.11). The left bound follows from an identical chain of
arguments relying on ∥ei∥2

2 ≥ (1− ν)∑m
k=1⟨ei, wk⟩2.

According to the last statement, the frame condition (2.10) requires m ≤ (1+ ν)D and, therefore
at best, allows for a linear dependency of m on D. Let us note that suitable frames which
adhere to the equality (ν = m

D − 1) are so-called finite normalized tight frames.

2.2 Near rank-one matrices approximate spanning elements

As was already mentioned in the introduction of this chapter and Section 2.1.1, the natural se-
lection criteria for the matrices w1 ⊗w1, . . . , wm ⊗wm ∈ Sym(RD×D) ∩ SD×D−1 from their span
W is their rank-one property. We begin this section by discussing conditions that guarantee
the spanning elements are the only matrices within W with rank-one. This is followed by a
key result, namely Theorem 2.1, that shows under which conditions near-rank-one matrices in
a perturbed space Ŵ ≈ W are close to the rank-one one basis matrices.
The following statement shows that up to a certain number of spanning elements, a character-
istic of the linear independence between the matrices {wk ⊗ wk|k ∈ [m]} will be sufficient to
guarantee rank-one matrices as long as the number of spanning elements is not too large.

2.2. Near rank-one matrices approximate spanning elements 44

Lemma 2.4 ([52, Lemma 30]). Consider W = span{w1 ⊗ w1, . . . , wm ⊗ wm} with m < 2D − 1
and unit vectors w1, . . . , wm ∈ SD−1. Furthermore, assume that any subset of ⌈m/2⌉ + 1 vectors
{wk j : k ∈ [⌈m/2⌉+ 1]} is linearly independent. Then, for any X ∈ W ∩ S with rank(X) = 1, there
exists k∗ ∈ [m] such that X = ±wk∗ ⊗ wk∗ .

Proof. Take any X = ∑m
k=1 αkwk ⊗ wk ∈ W ∩ S, and denote the set of non-zero indices by

I = {k ∈ [m] : αk ̸= 0}. We can exclude the trivial cases |I| = 0, |I| = 1. Now, if
1 < |I| ≤ ⌈m/2⌉+ 1, the vectors {wk| k ∈ I} are linearly independent, and thus rank(X) =
|I| > 1. In the remaining case, where |I| > ⌈m/2⌉ + 1, we can split I = I1 ∪ I2 with
|I1| = ⌈m/2⌉ + 1 and |I2| ≤ m − ⌈m/2⌉ − 1 ≤ m/2 − 1. If we accordingly split X =
X1 + X2 with Xj := ∑k∈Ij

αkwk ⊗ wk, the assumption implies rank(X1) = ⌈m/2⌉ + 1 and
rank(X2) ≤ m/2 − 1. Since furthermore rank(X) ≥ rank(X1) − rank(X2), it follows that
rank(X) ≥ ⌈m/2⌉+ 1− (m/2− 1) ≥ 2.

In the setting of the lemma above, the elements in {±wk ⊗ wk|k ∈ [m]} are the only rank-one
matrices inW . However, the conditions of Lemma 2.4 are not directly related to the incoherence
of the vectors w1, . . . , wm. The next statement addresses this issue and proves an identical
statement implied by the incoherence assumption in (2.10).

Corollary 2.1 ([52, Corollary 31]). Assume that m < 2D− 1 and that {wk| k ∈ [m]} satisfies the
upper frame bound (2.10) with ν < ⌈m

2 ⌉−1. Let X ∈ W ∩ S of rank(X) = 1, then there exists k∗ such
that X = ±wk∗ ⊗ wk∗ .

Proof. To apply Lemma 2.4, we establish a lower bound for the size of the smallest linearly
dependent subset of {wk : ℓ ∈ [m]}, denoted commonly also by spark({wℓ : ℓ ∈ [m]}), see
[125]. Following [125], it is bounded from below by

spark({wℓ : ℓ ∈ [m]}) ≥ min{k : µ1(k− 1) ≥ 1},
where µ1(k− 1) := max

I⊂[m]
|I|=k−1

max
j ̸∈I ∑

i∈I

∣∣〈wi, wj
〉∣∣ .

By applying (2.10), we can bound

µ1(k− 1) = max
I⊂[m]
|I|=k−1

max
j ̸∈I ∑

i∈I

∣∣〈wi, wj
〉∣∣

≤
√

k− 1 max
I⊂[m]
|I|=k−1

max
j ̸∈I

√
∑
i∈I

〈
wi, wj

〉2 ≤
√
(k− 1)ν.

Taking additionally into account ν < ⌈m
2 ⌉−1, it follows that

spark({wℓ : ℓ ∈ [m]}) ≥ min{k : µ1(k− 1) ≥ 1}

≥ min{k :
√
(k− 1)ν ≥ 1}

= min
{

k : k ≥ 1 +
1
ν

}
> 1 +

⌈m
2

⌉
.

The result follows by applying Lemma 2.4.

Unfortunately, requesting Equation (2.10) to hold with ν < ⌈m
2 ⌉−1 is very restrictive and

does not cover certain scenarios that are studied in the broader context of neural network
reconstruction (cf. Chapter 3). Instead, we will rely on the following statement, which shows
that if the space W = span{w1 ⊗ w1, . . . , wm ⊗ wm} is constructed from incoherent vectors

45 Chapter 2. Recovery of a rank-one basis from its perturbed span

w1, . . . , wm ∈ SD−1, then any near-rank-one matrix within a close approximation Ŵ ofW will
be close to one of the original spanning elements. This statement is crucial since we will later
characterize local maximizers of the non-linear programs, which are used as selection criteria,
into two categories. One of those categories is formed by matrices with a dominant leading
eigenvalue, which falls into the setting of the following theorem.

Theorem 2.1 (cf. [50, Theorem 14]). Let {w1, . . . , wm} ⊂ SD−1 satisfy frame condition (2.10) with
ν < 1. Consider the matrix space W = span{w1 ⊗ w1, . . . , wm ⊗ wm} and let Ŵ ⊆ Sym(RD×D)

satisfy
∥∥PŴ − PW

∥∥
F→F ≤ δ < 1

2 and consider a basis {Ŵk := PŴ (wk ⊗ wk)| k ∈ [m]}. For M ∈ Ŵ ,
∥M∥F ≤ 1 consider the representation M = ∑m

k=1 σkŴπ(k) = ∑D
j=1 λjuj ⊗ uj, where (λj, uj) are

eigenpairs, with both σk’s and λj’s sorted in descending order and π is a permutation on [m]. If
λ1 > λ2−2δ

1−ν , then

min
s∈{−1,1}

∥∥∥u1 − swπ(1)

∥∥∥
2
≤
√

2
∥σ2...m∥2

√
ν + 2δ

(1− ν)λ1 − λ2 − 2δ
, (2.12)

where σ2...m := (0, σ2, . . . , σm) ∈ Rm.

Proof of Theorem 2.1. Let Z := ∑m
k=1 σkwk ⊗ wk ∈ W be the unique element in W such that

M = PŴ (Z). First notice that ∥Z∥ ≤
∥∥PW (Z)− PŴ (Z)

∥∥ + ∥∥PŴ (Z)
∥∥ ≤ δ ∥Z∥ + 1 implies

∥Z∥ ≤ (1− δ)−1. Therefore, we have

λ1 = ⟨M, u1 ⊗ u1⟩ = ⟨Z, u1 ⊗ u1⟩+ ⟨M− Z, u1 ⊗ u1⟩

≤ ⟨Z, u1 ⊗ u1⟩+
∥∥PŴ (Z)− PW (Z)

∥∥ ≤ m

∑
k=1

σk⟨wk, u1⟩2 +
δ

1− δ
≤ σ1(1 + ν) + 2δ,

which implies σ1 ≥ λ1−2δ
1+ν ≥ λ1 − νλ1 − 2δ. Define now Q = IdD−u1 ⊗ u1. Choosing

s ∈ {−1, 1} such that s⟨w1, u1⟩ ≥ 0 we can bound the squared left-hand side of (2.12) by

∥u1 − sw1∥2
2 = 2 (1− s⟨w1, u⟩) ≤ 2(1− ⟨w1, u⟩2) = 2 ∥Qw1∥2

2 = 2 ∥Q(w1 ⊗ w1)∥2
F

Denote W1 := w1 ⊗ w1 and consider the auxiliary matrix σ1W1. We can view W1 as the
orthogonal projection onto the space spanned by eigenvectors of σ1W1 associated to eigenvalues
in (∞, σ1]. Therefore, using the Davis-Kahan theorem in the form of [20, Theorem 7.3.1], we
obtain

∥u1 − sw1∥2 ≤
√

2 ∥QW1∥F ≤
√

2
∥(σ1W1 −M)W1∥F

σ1 − λ2

To further bound the numerator, we first use the decomposition

∥(σ1W1 −M)W1∥F ≤ ∥(σ1W1 − Z)W1∥F +
∥∥(Z− PŴ (Z))W1

∥∥
F

≤ ∥(σ1W1 − Z)W1∥F +
∥∥Z− PŴ (Z)

∥∥
2 ∥W1∥F

≤ ∥(σ1W1 − Z)W1∥F +
δ

1− δ
≤ ∥(σ1W1 − Z)W1∥F + 2δ,

and then bound the first term by using the frame property (2.10)

∥(σ1W1 − Z)W1∥F =

∥∥∥∥∥ K

∑
i=2

σk⟨wk, w1⟩wi ⊗ w1

∥∥∥∥∥
F

≤
m

∑
k=2
|σk| |⟨wk, w1⟩| ≤ ∥σ2...m∥2

√
ν.

Combining the previous three estimates with σ1 ≥ λ1 − νλ1 − 2δ, we obtain

∥sw1 − u1∥2 ≤
√

2
∥(σ1W1 −M)W1∥F

σ1 − λ2
≤
√

2
∥σ2...m∥2

√
ν + 2δ

(1− ν)λ1 − λ2 − 2δ
.

2.3. Selection of near-rank-one matrices based on the spectral norm 46

2.3 Selection of near-rank-one matrices based on the spectral norm

Consider again a set of rank-one matrices {w1 ⊗ w1, . . . , wm ⊗ wm} constructed from a set of
unit vectors w1, . . . , wm ∈ SD−1 that give rise to a symmetric matrix space W = span{w1 ⊗
w1, . . . , wm ⊗wm}. Given an approximation Ŵ of the spaceW , we now discuss the selection of
matrices within Ŵ that approximate the rank-one spanning elements ofW . As mentioned at
the beginning of this chapter, a retrieval of rank-one matrices fromW can be described by the
non-linear program

argmin rank M s.t. M ∈ W ∩ S. (2.13)

However, this characterization does not extend to the perturbed matrix space Ŵ for obvious
reasons. In Section 2.2, more precisely Theorem 2.1, we stated sufficient conditions that
motivate a similar approach based on a relaxation of the rank maximization in (2.13) to the
spectral norm. Therefore, in this section, we consider a natural relaxation of the rank-one
criteria based on the non-convex program

argmax ∥M∥ s.t. M ∈ Ŵ , ∥M∥F ≤ 1, (2.14)

which has been considered before in [54, 52]. This program selects those matrices whose
spectrum is dominated by one eigenvalue. Clearly, for the unperturbed program associated
with Ŵ =W , all elements within {w1 ⊗ w1, . . . , wm ⊗ wm} are still global maximizers due to
∥M∥ ≤ ∥M∥F and ∥u⊗ u∥ = 1 for any u ∈ SD−1. Additionally, when considering this program
in the general case Ŵ ≈ W , we have∥∥PŴ (wk ⊗ wk)

∥∥ ≥ 1−
∥∥PW − PŴ

∥∥
2→2 .

Hence, provided thatW and Ŵ are sufficiently close, there exist global maximizers of (2.14) in
Ŵ that have spectral norms close to one. Therefore, the perturbation analysis in the remaining
part of this section focuses exclusively on local maximizers of (2.14), whose computation can
be solved by a projected gradient ascent variant (see Section 2.3.4). From a mathematical
standpoint, the prime challenge is the formulation of conditions derived from the first-order
and second-order optimality conditions of (2.14) that guarantee that local maximizers have a
dominant eigenvalue (and therefore fall into the setting of Theorem 2.1).

2.3.1 Characterization of local maximizers

We begin by categorizing the local maximizers of the perturbed objective (2.14) into two
categories. More precisely, we show that for any local maximizer M ∈ Ŵ there exists
absolute constants c, c′ such that M satisfies ∥M∥2 ≥ 1− cδ− c′ν, or ∥M∥2 ≤ cδ + c′ν, where
δ = ∥PW − PŴ∥F→F and ν originates from (2.10). Hence, for δ, ν sufficiently small, M will either
have one dominant eigenvalue or a uniform spectrum, where all eigenvalues have roughly the
same magnitude. This result is proven in Theorem 2.2, which constitutes the main result of this
section. Note that local maximizers with one dominant eigenvalue fall in the setting considered
in Theorem 2.1, so these will naturally provide good approximations of the spanning matrices
{w1 ⊗ w1, . . . , wm ⊗ wm}. The same can not be said for the other class of local maximizers.
However, for reasonable small δ and ν, there is no overlap between those two classes of local
maximizers, and therefore we can distinguish between good and spurious local maximizers
by considering only those who lie in a certain superlevel set of ∥ · ∥. For the remainder of
this section, and whenever the context allows, we denote ui := ui(M) and λi = λi(M), with

47 Chapter 2. Recovery of a rank-one basis from its perturbed span

i ∈ [D], for the eigenvectors and eigenvalues of the matrix M. Furthermore, we assume that
eigenvalues are sorted in descending order such that

λ1 ≤ λ2 ≤ · · · ≤ λD.

Moreover, the following two assumptions will sometimes be used to shorten technical results
further.

(A3.1) We have λ1 = ∥M∥. Note that this is without loss of generality because −M and M
may be both local maximizers,

(A3.2) λ1 > λ2 (this is primarily a useful technical condition in order to use the second-order
optimality condition introduced below).

The characterization of local maxima of (2.14) into two types depending on their spectra is
summarized in the following result.

Theorem 2.2 ([52, Theorem 16]). Consider W , Ŵ as before with ∥PW − PŴ∥F→F ≤ δ and that
w1, . . . , wm ∈ SD−1 fulfill condition (2.10) with ν < 1. Assume that M is a local maximizer of (2.14)
satisfying (A3.1) and (A3.2), and assume 38δ + 13ν < 1/4. Then we have

λ1(M)2 ≥ 1− 38δ− 13ν or λ1(M)2 ≤ 38δ + 13ν.

The proof has been deferred to the end of Section 2.3.3, which follows directly after a short
discussion of the optimality conditions of (2.14).

2.3.2 Optimality Conditions

One fundamental aspect that we still need to explain is the characterization of the local
maximizers by first-order and second-order optimality conditions of (2.14). The statement
closely follows the ideas in [54, Section 3, Theorem 3.4], which were in turn influenced by
[122, 123].

Theorem 2.3 ([52, Theorem 13]). Let M ∈ Ŵ ∩ S and assume there exists a unique i∗ ∈ [D]
satisfying |λi∗(M)| = ∥M∥. If M is a local maximizer of (2.14), then M fulfills the stationary
(first-order) optimality condition

ui∗(M)TXui∗(M) = λi∗(M) ⟨X, M⟩ (2.15)

for all X ∈ Ŵ . A stationary point M (in the sense that M fulfills (2.15)) is a local maximizer of (2.14)
if and only if for all X ∈ Ŵ

2 ∑
k ̸=i∗

(ui∗(M)TXuk(M))2

|λi∗(M)− λk(M)| ≤ |λi∗(M)| ∥X− ⟨X, M⟩M∥2
F . (2.16)

Proof. The statement requires minor modification of [54, Theorem 3.4] and the proof follows
along analogous lines. For the reader’s convenience, we give self-contained proof of the
statement below, with some key computations borrowed from [54]. For simplicity, we drop
the argument M in λi, ui, and without loss of generality we assume λi∗ = ∥M∥, otherwise we
consider −M. Following the analysis in [54], for X ∈ Ŵ ∩ S we can consider the function

fX(α) =
∥M + αX∥
∥M + αX∥F

,

2.3. Selection of near-rank-one matrices based on the spectral norm 48

because M is a local maximizer if and only if α = 0 is a local maximizer of fX for all X ∈ Ŵ ∩ S.
First, let us consider X ∈ Ŵ ∩ S with X ⊥ M. We note that the simplicity of λi∗ implies that
there exist analytic functions λi∗(α) and ui∗(α) with (M + αX)ui∗(α) = λi∗(α)ui∗(α) for all α in
a neighborhood around 0 [89, 108]. Therefore we can use a Taylor expansion ∥M + αX∥ = λi∗ +
λ′i∗(0)α + λ′′i∗(0)α

2/2 +O(α3) and combine it with ∥M + αX∥F =
√

1 + α2 = 1− α2/2 +O(α4)
to get

fX(α) =
(
1− α2/2

) (
λi∗ + λ′i∗(0)α + λ′′i∗(0)α

2/2
)
+O(α3) as α→ 0.

Differentiating once we get f ′X(0) = λ′i∗(0), hence α = 0 is a stationary point if and only if
λ′i∗(0) vanishes. Following the computations in [54], we find that λ′i∗(0) = ui∗(0)TXui∗(0) = 0,
and thus (2.15) follows for any X ⊥ M. For general X, we split X = ⟨X, M⟩M + X⊥, and get
ui∗(0)TXui∗(0) = ⟨X, M⟩ ui∗(0)T Mui∗(0) = λi∗(0) ⟨X, M⟩.
For (2.16), we have to check additionally f ′′X(α) ≤ 0. The second derivative of fX(α) at zero
is given by f ′′X(0) = λ′′i∗(0) − λi∗(0), hence the condition for attaining a local maximum is
λ′′i∗(0) ≤ λi∗(0). Again, we can follow the computations in [54] to obtain

λ′′i∗(0) = 2 ∑
k ̸=i∗

(uT
i∗(0)Xuk(0))2

|λi∗(0)− λk(0)|
,

and (2.16) follows immediately for any X ⊥ M, ∥X∥F = 1. For general X we decompose it into
X = ⟨X, M⟩M + X⊥. Since uT

i∗(0)Muk(0) = 0 for all k ̸= i∗, we get

2 ∑
k ̸=i∗

(uT
i∗(0) (⟨X, M⟩M + X⊥) uk(0))2

|λi∗(0)− λk(0)|
=2 ∥X⊥∥2

F ∑
k ̸=i∗

(
uT

i∗(0)
(

X⊥
∥X⊥∥F

)
uk(0)

)2

|λi∗(0)− λk(0)|

≤ λi∗(0) ∥X⊥∥2
F ,

and the result follows from ∥X⊥∥F = ∥X− ⟨X, M⟩M∥F.

Let us provide some context on these optimality conditions. The first-order optimality condition
can be understood as follows: Any stationary point M of (2.14), with unique leading eigenvector
λi∗ , can be expressed as the image of the outer-product of the respective eigenvector under
PŴ such that M = λ−1

i∗ PŴ (ui∗ ⊗ ui∗). This follows by simple properties of the Frobenius inner
product.

Lemma 2.5 ([52, Lemma 18]). For M ∈ Ŵ and c ̸= 0 we have

vTXv = c ⟨X, M⟩ for all X ∈ Ŵ if and only if M = c−1PŴ (v⊗ v).

Proof. Assume that vTXv = c ⟨X, M⟩ for all X. We notice that the assumption is equivalent
to ⟨X, v⊗ v− cM⟩ = 0 for all X ∈ Ŵ . Therefore, we have PŴ (v ⊗ v − cM) = 0, and the
result follows from M ∈ Ŵ . In the case where M = c−1PŴ (v⊗ v), we compute c ⟨X, M⟩ =〈

X, PŴ (v⊗ v)
〉
= vTXv since X ∈ Ŵ .

From the preceding result, one can directly derive a relationship between the projection of
the leading eigenvector component and the associated eigenvalue for local maximizers as in
Theorem 2.3. If M is a stationary point of (2.14) with unique leading eigenvalue λi∗ , then, by
Lemma 2.5, λi∗M = PŴ (ui∗ ⊗ ui∗) and therefore, by taking the Frobenius norm on both sides,
we have |λi∗ | = ∥PŴ (ui∗ ⊗ ui∗)∥F. This characterization is unique to stationary points following
the result below.

49 Chapter 2. Recovery of a rank-one basis from its perturbed span

Lemma 2.6 ([52, Lemma 19]). Let X ∈ Ŵ ∩ S. We have
∥∥PŴ (uj(X)⊗ uj(X))

∥∥
F ≥

∣∣λj(X)
∣∣ with

equality if and only if X = λj(X)−1PŴ (uj(X)⊗ uj(X)).

Proof. We drop the argument X for λj(X) and uj(X) for simplicity. First, calculate∥∥PŴ (uj ⊗ uj)
∥∥

F =
∥∥PŴ (uj ⊗ uj)

∥∥
F ∥X∥F ≥

∣∣〈PŴ (uj ⊗ uj), X
〉∣∣ = ∣∣〈uj ⊗ uj, X

〉∣∣ = ∣∣λj
∣∣ . (2.17)

Moreover, we have equality if and only if
∥∥PŴ (uj ⊗ uj)

∥∥
F =

∣∣λj
∣∣, hence (2.17) is a chain of

equalities. Specifically, ∥∥PŴ (uj ⊗ uj)
∥∥

F ∥X∥F =
∣∣〈PŴ (uj ⊗ uj), X

〉∣∣ ,

which implies X = cPŴ (uj ⊗ uj) for some scalar c. Since ∥X∥F = 1, c = λ−1
j follows from

1 =
〈
cPŴ (uj ⊗ uj), X

〉
= c

〈
uj ⊗ uj, X

〉
= cλj.

In the form discussed above, the optimality conditions do not leverage the fact that we generally
assume that Ŵ exhibits a specific structure, i.e., it is a close approximation of a space spanned
by symmetric rank-one matrices. Incorporating this underlying structure (i.e., that Ŵ is close
to a space spanned by incoherent rank-one matrices) yields the following additional properties
derived from first- and second-order optimality conditions.

Lemma 2.7 ([52, Lemma 14-15]). Consider W , Ŵ as before with ∥PW − PŴ∥F→F ≤ δ and that
w1, . . . , wm ∈ SD−1 fulfill condition (2.10) with ν > 0. If max{δ, ν} < 1/4 and assuming that
M ∈ Ŵ is a stationary point of (2.14) satisfying (A3.1)-(A3.2), then

λD ≥ −2δλ−1
1 − 8δ− 4ν. (2.18)

Additionally, if M is a local maximizer of (2.14), then for any X ∈ Ŵ with ∥X∥F ≤ 1 we have

∥Xu1∥2
2 ≤

λ2
1

2

(
1 + ⟨X, M⟩2

)
+ 5δ + 2ν. (2.19)

The proof of Lemma 2.7 requires one additional auxiliary statement:

Lemma 2.8 ([52, Lemma 33]). Let {wk| k ∈ [m]} ⊂ RD be a set of unit-norm vectors satisfying
the incoherence condition (2.10) with ν < 1 and δ = ∥PW − PŴ∥F→F < 1. Then, for any M =

∑m
k=1 σkPW (wk ⊗ wk) = ∑m

k=1 σkŴk ∈ Ŵ ∩ S, we have

∥σ∥∞ ≤
1

(1− δ)(1− ν)
, (2.20)∣∣∣σk∥Ŵk∥2

F − ⟨Ŵk, M⟩
∣∣∣ ≤ δ

1− δ
+ (δ + ν) ∥σ∥∞ (2.21)

for all k ∈ [m]. Moreover, for any unit norm vector v, we have∣∣∣∥Ŵkv∥2
2 − vTŴkv

∣∣∣ ≤ 2δ. (2.22)

Proof of Lemma 2.8. Denote by Z ∈ W the unique element such that M = PŴ (Z). We first note
that 1 = ∥M∥F =

∥∥PŴ (Z)
∥∥

F ≥ (1− δ) ∥Z∥F implies ∥Z∥F ≤ (1− δ)−1 by Lemma 2.1. For

2.3. Selection of near-rank-one matrices based on the spectral norm 50

(2.20), we assume without loss of generality max σk = ∥σ∥∞ (otherwise we perform the proof
for −M), and denote k∗ = argmaxk σk. Then we have

(1− δ)−1 ≥ ∥Z∥F ≥ ∥Z∥ ≥ w⊤k∗Zwk∗ =
m

∑
k=1

σk ⟨wk∗ , wk⟩2 = ∥σ∥∞ + ∑
k ̸=k∗

σk ⟨wk∗ , wk⟩2

≥ ∥σ∥∞

(
1− ∑

k ̸=k∗
⟨wk∗ , wk⟩2

)
≥ ∥σ∥∞ (1− ν).

For (2.21) we first notice that〈
Ŵk∗ , M

〉
=

m

∑
k=1

〈
Ŵk∗ , σkŴk

〉
= σk∗

∥∥∥Ŵk∗
∥∥∥2

F
+ ∑

k ̸=k∗

〈
Ŵk∗ , σkŴk

〉
= σk∗

∥∥∥Ŵk∗
∥∥∥2

F
+ ∑

k ̸=k∗

〈
Ŵk∗ , σkWk

〉
= σk∗

∥∥∥Ŵk∗
∥∥∥2

F
+ ∑

k ̸=k∗

〈
Ŵk∗ −Wk∗ , σkWk

〉
+ ∑

k ̸=k∗
σk ⟨Wk∗ , Wk⟩ ,

and thus, it suffices to bound the last two terms. In the third line, we make use of the fact that
⟨Ŵk∗ , Ŵk⟩ = ⟨Ŵk∗ , PŴ (Wk) + PŴ⊥(Wk)⟩ = ⟨Ŵk∗ , Wk⟩. For the first term, we get∣∣∣∣∣ ∑

k ̸=k∗

〈
Ŵk∗ −Wk∗ , σkWk

〉∣∣∣∣∣ ≤ δ

∥∥∥∥∥ ∑
k ̸=k∗

σkWk

∥∥∥∥∥
F

= δ ∥Z− σk∗Wk∗∥F ≤
δ

1− δ
+ ∥σ∥∞ δ,

by Cauchy-Schwarz, and for the second term we get∣∣∣∣∣ ∑
k ̸=k∗

σk ⟨Wk∗ , Wk⟩
∣∣∣∣∣ ≤ ∥σ∥∞ ∑

k ̸=k∗
⟨wk∗ , wk⟩2 ≤ ∥σ∥∞ ν.

For (2.22), we first rewrite∣∣∣∣∥∥∥Ŵk∗u
∥∥∥2

2
− uTŴk∗u

∣∣∣∣ = ∣∣∣〈Ŵ2
k∗ , u⊗ u

〉
−
〈

Ŵk∗ , u⊗ u
〉∣∣∣ ≤ ∥∥∥Ŵ2

k∗ − Ŵk∗
∥∥∥ .

Now denote ∆ := Ŵk∗ −Wk∗ . Since W2
k∗ = Wk∗ we have∥∥∥Ŵ2

k∗ − Ŵk∗
∥∥∥ =

∥∥(∆ + Wk∗)
2 −Wk∗ − ∆

∥∥ =
∥∥∆2 + Wk∗∆ + ∆Wk∗ − ∆

∥∥
=
∥∥∥Ŵk∗∆− ∆(Id−Wk∗)

∥∥∥ ≤ ∥∆∥ (∥∥∥Ŵk∗
∥∥∥+ ∥Id−Wk∗∥

)
≤ 2δ,

since Id−Wk∗ is a projection matrix onto span{wk∗}⊥.

Proof of Lemma 2.7. As before we have M = ∑m
k=1 σkŴk, and further denote by Z = ∑m

k=1 σkWk
the unique element withinW such that M = PŴ (Z). We start by showing (2.18). Note that

λD = ⟨uD ⊗ uD, M⟩ = ⟨uD ⊗ uD, Z⟩+ ⟨uD ⊗ uD, M− Z⟩

≥ ⟨uD ⊗ uD, Z⟩ − ∥M− Z∥ ≥
m

∑
k=1

σk⟨wk, uD⟩2 −
δ

1− δ
.

51 Chapter 2. Recovery of a rank-one basis from its perturbed span

Denote k∗ = argmink∈[m] σk. Clearly, if σk∗ ≥ 0 then this implies λD ≥ − δ
1−δ confirming (2.18)

for δ < 1/4. Assuming σk∗ < 0, we continue by applying the frame condition which yields

λD ≥ σk∗
m

∑
k=1
⟨wk, uD⟩2 −

δ

1− δ
≥ σk∗(1 + ν)− δ

1− δ
.

To further bound σk∗(1 + ν) from below, note that the first-order optimality condition (2.15)
implies

λ1

〈
Ŵk∗ , M

〉
=
〈

Ŵk∗ , u1 ⊗ u1

〉
= ⟨Wk∗ , u1 ⊗ u1⟩+

〈
Ŵk∗ −Wk∗ , u1 ⊗ u1

〉
≥ ⟨wk∗ , u1⟩2 −

∥∥∥Ŵk∗ −Wk∗
∥∥∥ ≥ −δ.

Applying the auxiliary bound in Lemma 2.8 in combination with ∥Ŵk∗∥F ≥ 1− δ, we obtain
from the previous inequality

− δ

λ1
≤
〈

Ŵk∗ , M
〉
≤ σk∗

∥∥∥Ŵk∗
∥∥∥2

F
+

∣∣∣∣σk∗
∥∥∥Ŵk∗

∥∥∥2

F
−
〈

Ŵk∗ , M
〉∣∣∣∣

≤ σk∗(1− δ)2 +
δ

1− δ
+ (δ + ν) ∥σ∥∞ .

In summary, we established the lower bound on σk∗ given by

σj∗ ≥ −
δ

λ1(1− δ)2 −
δ

(1− δ)3 −
(δ + ν)

(1− δ)2 ∥σ∥∞ .

Hence, we can continue from the previously derived bound for λD with

λD ≥ σk∗(1 + ν)− δ

1− δ

≥ −(1 + ν)

(
δ

λ1(1− δ)2 +
δ

(1− δ)3 +
(δ + ν)

(1− δ)2 ∥σ∥∞

)
− δ

1− δ
.

Since δ, ν < 1/4 we obtain from (2.20) that ∥σ∥∞ ≤ 2, and

λD ≥ −2δλ−1
1 − 3δ− 2(δ + ν) ∥σ∥∞ ≥ −2δλ−1

1 − 8δ− 4ν. (2.23)

Assume now M is a local maximizer. To show (2.19), note that the first-order optimality
condition (2.15) implies

2
λ1 − λD

(
∥Xu1∥2

2 − λ2
1 ⟨X, M⟩2

)
=

2
λ1 − λD

(
∥Xu1∥2

2 − ⟨Xu1, u1⟩2
)

=
2

λ1 − λD

D

∑
i=2
⟨Xu1, ui⟩2 ,

where the second identity follows by the fact that u1, . . . , uD are orthonormal since M is
symmetric. Furthermore, we can bound the right-hand side of the last equality by invoking the
second-order optimality conditions (2.16) to get

2
λ1 − λD

D

∑
i=2
⟨Xu1, ui⟩2 ≤ 2

D

∑
i=2

(uT
1 Xui)

2

λ1 − λi
≤ λ1 ∥X− ⟨X, M⟩M∥2

F .

Hence, we have

2
λ1 − λD

(
∥Xu1∥2

2 − λ2
1 ⟨X, M⟩2

)
≤ λ1 ∥X− ⟨X, M⟩M∥2

F ,

2.3. Selection of near-rank-one matrices based on the spectral norm 52

and by rearranging the inequality, we obtain

∥Xu1∥2
2 ≤

λ1(λ1 − λD)

2

(
∥X∥2

F − ⟨X, M⟩2
)
+ λ2

1 ⟨X, M⟩2

≤ λ1(λ1 − λD)

2
+

λ1(λ1 + λD)

2
⟨X, M⟩2

= λ2
1

1 + ⟨X, M⟩2

2
− λ1λD

1− ⟨X, M⟩2

2
.

Using the lower bound for λD in (2.23), and λ1 ≤ 1, we get

∥Xu1∥2
2 ≤ λ2

1
1 + ⟨X, M⟩2

2
+ λ1

(
2δλ−1

1 + 8δ + 4ν
) 1− ⟨X, M⟩2

2

≤ λ2
1

1 + ⟨X, M⟩2

2
+ (10δ + 4ν)

1− ⟨X, M⟩2

2

≤ λ2
1

1 + ⟨X, M⟩2

2
+ 5δ + 2ν.

Equipped with a better understanding of local maximizers of (2.14), we can now tackle the
proof of Theorem 2.2.

2.3.3 Characterization of local maximizers based on their optimality conditions

This section gives the proof of Theorem 2.2 based on the optimality conditions we derived in
Lemma 2.7. Before stating the main proof, we require one more auxiliary result related to the
decomposition of matrices within Ŵ in terms of the basis {w1 ⊗ w1, . . . , wm ⊗ wm} ⊂ W .

Lemma 2.9 ([52, Lemma 12]). Consider the setting of Theorem 2.2. For any M = ∑m
k=1 σkPŴ (wk ⊗

wk) = ∑m
k=1 σkŴk ∈ Ŵ ∩ S with λ1(M) ≥ δ/(1− δ) we have maxk σk ≥ 0.

Proof. Assume on the contrary that maxk σk < 0, and denote Z = ∑m
k=1 σkWk with M = PŴ (Z).

Then Z is negative semidefinite, since vTZv = ∑m
k=1 σk ⟨wk, v⟩2, and σk < 0 for all k = 1, . . . , m.

Moreover, we have ∥Z∥F ≤ (1− δ)−1 by Lemma 2.1, and thus we get a contradiction since

δ

1− δ
≤ λ1(M) ≤ λ1(Z) + ∥M− Z∥F < ∥M− Z∥F ≤

δ

1− δ
.

We are now able to prove the section’s main result by leveraging the optimality conditions of
local maximizers.

Proof of Theorem 2.2. As before we have M = ∑m
k=1 σkŴk, and let k∗ = argmaxk σk. We first note

that we can assume σk∗ ≥ 0 without loss of generality by Lemma 2.9, since there is nothing to
show if λ1 ≤ 2δ. By (2.19) for X = Ŵk∗ we get the inequality

2∥Ŵk∗u1∥2
2 ≤ λ2

1(1 + ⟨Ŵk∗ , M⟩2) + 10δ + 4ν.

We can further bound the left side using Lemma 2.8 followed by the first-order optimality
condition to obtain

∥Ŵk∗u1∥2
2 ≥ u⊤1 Ŵk∗u1 − 2δ = λ1⟨Ŵk∗ , M⟩ − 2δ.

53 Chapter 2. Recovery of a rank-one basis from its perturbed span

By rearranging both inequalities, we get

0 ≤ λ2
1 − 1 +

(
1− λ1⟨Ŵk∗ , M⟩

)2
+ 14δ + 4ν,

or equivalently

0 ≤ λ2
1 − 1 +

(
1− λ1σk∗∥Ŵk∗∥2

F + λ1

(
σk∗∥Ŵk∗∥2

F − ⟨Ŵk∗ , M⟩
))2

+ 14δ + 4ν. (2.24)

We separate two cases. In the first case we have σk∗ > 1, which implies ⟨Ŵk∗ , M⟩ > 1− 5δ− 2ν
and thus ⟨Wk∗ , M⟩ > 1− 6δ − 2ν by Lemma 2.8 and max{δ, ν} < 1/4. Since ⟨Wk∗ , M⟩ =
w⊤k∗Mwk∗ , this implies λ1 > 1− 6δ− 2ν, i.e., the result is proven. We continue with the case
σk∗ ≤ 1, which implies λ1σk∗∥Ŵk∗∥2

F ≤ 1. Using Lemma 2.8 to bound σk∗∥Ŵk∗∥2
F − ⟨Ŵk∗ , M⟩,

λ1 < 1 and ∥Ŵk∗∥2
F ≥ 1− 2δ, the inequality (2.24) implies

0 ≤ λ2
1 − 1 + (1− λ1σk∗ + 6δ + 2ν)2 + 14δ + 4ν. (2.25)

Furthermore, by following the computation we performed for the first part in the proof of
Theorem 2.1, we get σk∗ ≥ λ1 − ν− 2δ, and inserting it in (2.25) we obtain

0 ≤ λ2
1 − 1 +

(
1− λ2

1 + 8δ + 3ν
)2

+ 14δ + 4ν, implying 0 ≤ λ2
1
(
λ2

1 − 1
)
+ 38δ + 13ν.

Provided that 38δ + 13ν < 1/4, this quadratic inequality (in the unknown λ2
1) has solutions

λ2
1 ≥ 1− 38δ− 13ν, or λ2

1 ≤ 38δ + 13ν.

2.3.4 Computation of local maximizers via projected gradient ascent

Theorem 2.2 confirms, that for sufficiently small δ, ν, the local maximizers of (2.14) are either
near-rank-one matrices, which, by Theorem 2.1, implies that they are close to one of the matrices
{w1 ⊗ w1, . . . , wm ⊗ wm}, or they satisfy λ1(M)2 ≤ 38δ + 13ν. Based on these criteria, spurious
local maximizers (local maximizers of the second kind) can be discarded based on their spectral
norm. Hence, to find candidates within Ŵ which closely approximate the spanning elements of
W it suffices to find all local maximizers of (2.14). What is left open is the actual computation
of the local maximizers (or approximations thereof), which will be discussed in the following.

Inspired by [54], we propose tackling this problem by a simple iterative procedure closely
related to projected gradient ascent and designed to create a sequence of matrices within Ŵ
with increasing spectral norm. More precisely, we will study the following approach: Given
a fixed γ > 0 and M0 ∈ Ŵ ∩ S, we can generate a sequence of matrices Mj ∈ Ŵ ∩ S, j ∈ N

based on the iterative application of the operator

Mj+1 = Fγ(Mj), where Fγ(X) =
PŴ (X + γu1(X)⊗ u1(X))∥∥PŴ (X + γu1(X)⊗ u1(X))

∥∥
F

, (2.26)

see also Algorithm 2.1. Starting from a point M0 ∈ Ŵ , the next iterate is computed by exalting
the first eigenvalue and then projecting back onto the intersection of the space Ŵ with the
Frobenius unit-sphere. Exalting the first eigenvalue refers to the operation where the matrix
γu1(Mj) ⊗ u1(Mj) is added to the current iterate Mj, with γ > 0 being a hyperparameter
chosen appropriately.

In the upcoming theoretical part, we prove the following result regarding the matrix iter-
ation produced by Algorithm 2.1.

2.3. Selection of near-rank-one matrices based on the spectral norm 54

Algorithm 2.1: Projected gradient ascent
Input: PŴ with arbitrary basis {bi}i=1,...,m, step-size γ > 0, number of iterations J

1 begin
2 Sample g ∼ N (0, Idm), and let M0 ← PS(∑m

i=1 gibi).
3 If ∥M0∥ is not an eigenvalue, do M0 ← −M0 .
4 for j = 1,. . . ,J do
5 Mj+1 ← PS(PŴ (Mj + γu1(Mj)⊗ u1(Mj))).
6 end
7 end

Output: u1(MJ)

Theorem 2.4 ([52, Theorem 23]). Let ϵ > 0, γ > 0, M0 ∈ Ŵ ∩ S with λ(M0) ≥ 1/
√

2 + ε and let
Mj+1 := Fγ(Mj) as generated by Algorithm 2.1. Then (Mj+1)j∈N has a convergent subsequence, and
any such subsequence converges to a fixed point of Fγ, respectively a stationary point of (2.14).

The preceding statement shows that, in the setting above, there are convergent subsequences
of the iteration (2.26) which converge to stationary points. Furthermore, it will be shown
that the iteration induced by Fγ produces a sequence of matrices with increasing eigenvalues
when started from matrices with a sufficiently large spectral norm. The proof of Theorem 2.4
is broken down into several individual statements and is given at this section’s end. More
precisely, in Lemma 2.11-2.11 we show that for starting matrices M0 with positive leading
eigenvalue the iteration (λ1(Mj))j∈N is strictly increasing, converges to a well-defined limit λ∞,
and that the size of the update ∥Mk −Mj+1∥F decays. According to Lemma 2.13, convergent
subsequences converge to fixpoints of Fγ, which we can prove to be stationary points of (2.14).
Let us remark that the operator Fγ is well-defined, i.e., the denominator is non-zero, as can be
seen from the following result.

Lemma 2.10 ([52, Lemma 17]). Let X ∈ Ŵ ∩ S with λ1(X) > 0 and γ > 0. Then∥∥PŴ (X + γu1(X)⊗ u1(X))
∥∥2

F = 1 + 2γλ1(X) + γ2 ∥∥PŴ (u1(X)⊗ u1(X))
∥∥2

F .

In particular, Fγ(X) is well-defined.

Proof. The result follows from
〈

X, PŴ (u1(X)⊗ u1(X))
〉
= λ1(X) and computing explicitly the

squared norm
∥∥PŴ (X + γu1(X)⊗ u1(X))

∥∥2
F.

Our convergence analysis of the sequence (Mj)j∈N induced by Fγ first establishes that the
sequence (λ1(Mj))j∈N is a strictly increasing sequence as long as the iteration is started from a
matrix with a positive eigenvalue.

Lemma 2.11 ([52, Lemma 20]). Let γ > 0 and X ∈ Ŵ ∩ S with λ1(X) > 0. Then we have

0 < λ1(X) <
∥∥PŴ (u1(X)⊗ u1(X))

∥∥
F if and only if λ1(F(X)) > λ1(X), (2.27)

λ1(X) =
∥∥PŴ (u1(X)⊗ u1(X))

∥∥
F if and only if Fγ(X) = X. (2.28)

In particular, if λ1(M0) > 0, then the sequence (λ1(Mj))j∈N is strictly increasing and converges to a
well-defined limit λ∞.

Lemma 2.11 shows that Algorithm 2.1 will produce an iteration with converging eigenvalues
(λ1(Mj))j∈N by monotonicity.

55 Chapter 2. Recovery of a rank-one basis from its perturbed span

Proof of Lemma 2.11. For simplicity we denote u := u1(X) and λ = λ1(X) in this proof. We first
prove that 0 < λ <

∥∥PŴ (u⊗ u)
∥∥

F implies λ1(F(X)) > λ. It suffices to show that there exists
any unit vector v such that vT Fγ(X)v > λ. In particular, we can test Fγ(X) with v = u, which
yields the identity

uT Fγ(X)u− λ =
∥∥PŴ (X + γu⊗ u)

∥∥−1
F

〈
PŴ (X + γu⊗ u), u⊗ u

〉
− λ

=
∥∥PŴ (X + γu⊗ u)

∥∥−1
F

(
⟨X, u⊗ u⟩+ γ

〈
PŴ (u⊗ u), u⊗ u

〉)
− λ

=
∥∥PŴ (X + γu⊗ u)

∥∥−1
F

(
λ + γ

∥∥PŴ (u⊗ u)
∥∥2

F

)
− λ

=
λ
(

1−
∥∥PŴ (X + γu⊗ u)

∥∥
F

)
+ γ

∥∥PŴ (u⊗ u)
∥∥2

F∥∥PŴ (X + γu⊗ u)
∥∥

F

.

By using now λ <
∥∥PŴ (u⊗ u)

∥∥
F, we can bound

1−
∥∥PŴ (X + γu⊗ u)

∥∥
F = 1−

√∥∥PŴ (X + γu⊗ u)
∥∥2

F = 1−
√∥∥X + γPŴ (u⊗ u)

∥∥2
F

= 1−
√

1 + γ2
∥∥PŴ (u⊗ u)

∥∥2
F + 2γ

〈
X, PŴ (u⊗ u)

〉
= 1−

√
1 + γ2

∥∥PŴ (u⊗ u)
∥∥2

F + 2γλ

> 1−
√

1 + γ2
∥∥PŴ (u⊗ u)

∥∥2
F + 2γ

∥∥PŴ (u⊗ u)
∥∥

F = 1−
√(

1 + γ
∥∥PŴ (u⊗ u)

∥∥
F

)2

= −γ
∥∥PŴ (u⊗ u)

∥∥
F .

Inserting this inequality in the previous identity, we obtain the wished result by

uFγ(X)u− λ =
λ
(

1−
∥∥PŴ (X + γu⊗ u)

∥∥
F

)
+ γ

∥∥PŴ (u⊗ u)
∥∥2

F∥∥PŴ (X + γu⊗ u)
∥∥

F

>
−λγ

∥∥PŴ (u⊗ u)
∥∥

F + γ
∥∥PŴ (u⊗ u)

∥∥2
F∥∥PŴ (X + γu⊗ u)

∥∥
F

> 0.

(2.29)

We show now that Fγ(X) = X implies λ =
∥∥PŴ (u1(X)⊗ u1(X))

∥∥
F. We notice that Fγ(X) = X

implies λ(Fγ(X)) = λ, and thus λ ≥ ∥PŴ (u ⊗ u)∥F according to (2.27). Since generally
λ ≤ ∥PŴ (u ⊗ u)∥F by Lemma 2.6, equality follows. We address now the converse, i.e.,
λ =

∥∥PŴ (u⊗ u)
∥∥

F implies Fγ(X) = X, and we note that λ = ∥PŴ (u ⊗ u)∥F implies X =

λ−1PŴ (u⊗ u) by Lemma 2.6. Using this and the definition of Fγ(X), we get

Fγ(X) =
PŴ (X + γu⊗ u)∥∥PŴ (X + γu⊗ u)

∥∥
F

=
(λ−1 + γ)PŴ (u⊗ u)

(λ−1 + γ)
∥∥PŴ (u⊗ u)

∥∥
F

=
PŴ (u⊗ u)∥∥PŴ (u⊗ u)

∥∥
F

= X.

To conclude the proof it remains to show λ1(F(X)) > λ implies 0 < λ <
∥∥PŴ (u⊗ u)

∥∥
F. As

λ ≤ ∥PŴ (u⊗ u)∥F and λ1(F(X)) > λ implies Fγ(X) ̸= X and therefore λ ̸= ∥PŴ (u⊗ u)∥F,
then necessarily λ < ∥PŴ (u⊗ u)∥F. We just established that the sequence (λj)j∈N is monotone
in the bounded domain [0, 1] and therefore converges to a limit λ∞.

Next, we will extend the result from Lemma 2.11, which only relates to the eigenvalues of the
iteration (Mj)j∈N, to the iterates themselves.

Lemma 2.12 ([52, Lemma 21]). Let γ > 0, M0 ∈ Ŵ ∩ S with λ1(M0) > 0, and let Mj := Fγ(Mj−1).
Then we have

lim
j→∞
∥Mj+1 −Mj∥F = 0.

2.3. Selection of near-rank-one matrices based on the spectral norm 56

Proof of Lemma 2.12. For simplicity, we denote Uj := PŴ (u1(Mj)⊗ u1(Mj)), λj = λ1(Mj). To
prove ∥Mj+1 −Mj∥F → 0, we will exploit (λj+1 − λj) → 0. We first have (

∥∥Uj
∥∥

F − λj) → 0
since (2.29) yields

λj+1 − λj ≥
γ
∥∥Uj

∥∥
F∥∥Mj + γUj
∥∥ (∥∥Uj

∥∥
F − λj

)
≥ γ

1 + γ

∥∥Uj
∥∥

F

(∥∥Uj
∥∥

F − λj

)
,

and
∥∥Uj

∥∥
F ≥ λj ≥ λ0 for all j. Define the shorthand ∆j :=

∥∥Uj
∥∥

F − λj. We will now show that∥∥Mj+1 −Mj
∥∥

F ≤ C∆j for some constant C. First, notice that

∥∥∥Mj − λ−1
j Uj

∥∥∥
F
=

√√√√1 +

∥∥Uj
∥∥2

F
(λj)2 − 2λ−1

j

〈
Mj, Uj

〉
=

√√√√∥∥Uj
∥∥2

F
(λj)2 − 1

=

√√√√∥∥Uj
∥∥2

F − (λj)2

(λj)2 ≤ λ−1
0

√
2∆j.

Therefore, there exists a matrix Ej with Mj = λ−1
j Uj + Ej and

∥∥Ej
∥∥ ≤ λ−1

0
√

2∆j. Furthermore,
by the triangle inequality we have∥∥Mj+1 −Mj

∥∥
F ≤

∥∥∥Mj+1 − λ−1
j Uj

∥∥∥
F
+ λ−1

0

√
2∆j,

hence it remains to bound the first term. Using Mj = λ−1
j Uj + Ej and

Mj+1 =
∥∥Mj + γUj

∥∥−1
F (Mj + γUj),

we have
∥∥Mj + γUj

∥∥
F Mj+1 = (λ−1

j + γ)Uj + Ej and thus∥∥∥∥∥Mj + γUj
∥∥

F (Mj+1 − λ−1
j Uj)

∥∥∥
F
=
∥∥∥(λ−1

j + γ)Uj + Ej −
∥∥∥(λ−1

j + γ)Uj + Ej

∥∥∥
F

λ−1
j Uj

∥∥∥
F

≤
∣∣∣λ−1

j + γ−
∥∥∥(λ−1

j + γ)Uj + Ej

∥∥∥
F

λ−1
∣∣∣ ∥∥Uj

∥∥
F +

∥∥Ej
∥∥

F

≤
(
(λ−1

j + γ)
∥∥Uj

∥∥
F λ−1

j − (λ−1
j + γ) + 2

∥∥Ej
∥∥

F λ−1
j

) ∥∥Uj
∥∥

F +
∥∥Ej
∥∥

F

≤ (λ−1
j + γ)

(∥∥Uj
∥∥

F λ−1
j − 1

) ∥∥Uj
∥∥

F + (1 + 2λ−1
0)

∥∥Ej
∥∥

F

≤ (λ−1
0 + γ)λ−1

0 ∆j + (1 + 2λ−1
0)
√

∆j.

Since
∥∥Mj + γUj

∥∥
F ≥ 1 according to Lemma 2.10,

∥∥Mj+1 −Mj
∥∥→ 0 follows.

The statement above shows that the updates of the iteration will decay for increasing j, i.e.,∥∥Mj+1 −Mj
∥∥

F → 0 for j→ ∞. What is left is to make a connection between any potential limit
of the sequence (Mj)j∈N and the local maximizers of (2.14). The following Lemma shows that
every convergent subsequence converges to a fixpoint of Fγ. Through (2.28) Lemma 2.5 and
Lemma 2.6 it is known that these fixpoints are stationary points of (2.14), thereby Lemma 2.13
establishes the desired connection. However, note that this statement relies on the continuity of
Fγ, which we will address soon.

Lemma 2.13 ([52, Lemma 34]). Let (A, d) be a metric space and F : A→ A be a continuous function.
Let (Xj)j∈N be a sequence generated by Xj = Fj(X0) for some X0 ∈ A, and assume d(Xj+1, Xj)→ 0.
Then any convergent subsequence of (Xj)j∈N converges to a fixed point of F.

57 Chapter 2. Recovery of a rank-one basis from its perturbed span

Proof. Let (Xjk)k∈N be a convergent subsequence of (Xj)j∈N with limit X̄ = limk→∞ Xjk . Then
the subsequence Xjk+1 satisfies d(Xjk+1, X̄) ≤ d(Xjk+1, Xjk) + d(Xjk , X̄)→ 0 as k→ ∞, and thus
also (Xjk+1)k∈N converges to X̄. By construction Xjk+1 = F(Xjk). Taking the limit k → ∞ on
both sides and using the continuity of F, we get

X̄ = lim
k→∞

Xjk+1 = lim
k→∞

F(Xjk) = F
(

lim
k→∞

Xjk

)
= F(X̄).

The following statement proves the continuity of Fγ for arbitrary γ > 0 if we further constrain
the input domain Ŵ ∩ S to those matrices which also have an isolated first eigenvalue and
thereby makes Lemma 2.13 applicable to Fγ.

Lemma 2.14 ([52, Lemma 22]). Let γ > 0, ϵ > 0 arbitrary, and define Mϵ := {M ∈ Ŵ ∩ S :
λ(M) ≥ (1

2 + ϵ)1/2}. Then Fγ(X) ∈ Mϵ for all X ∈ Mϵ, and Fγ is ∥·∥F-Lipschitz continuous, with
Lipschitz constant (1 + γ/ϵ).

Proof. Fγ(X) ∈ Mϵ follows directly from Lemma 2.11, i.e., from the fact that the largest
eigenvalue is only increased by applying Fγ. For the continuity, consider X, Y ∈ Mϵ. We first
note that by using [20, Theorem 7.3.1] and λi(Y) ≤

√
1/2− ε for i = 2, . . . , m0 we get∥∥X + γPŴ (u1(X)⊗ u1(X))−Y− γPŴ (u1(Y)⊗ u1(Y))

∥∥
F

≤ ∥X−Y∥F + γ ∥u1(X)⊗ u1(X)− u1(Y)⊗ u1(Y)∥F

≤ ∥X−Y∥F + γ
∥X−Y∥F√

1
2 + ε−

√
1
2 − ϵ

≤
(

1 +
γ

ϵ

)
∥X−Y∥F .

Furthermore, we have
∥∥X + γPŴ (u1(X)⊗ u1(X))

∥∥2
F ≥ 1 according to Lemma 2.10, and there-

fore PS acts on X + γPŴ (u1(X)⊗ u1(X)) and Y + γPŴ (u1(Y)⊗ u1(Y)) as a projection onto the
convex set {X : ∥X∥F ≤ 1}. Therefore, it acts as a contraction, and the result follows from

∥Fγ(X)− Fγ(Y)∥F ≤
∥∥X + γPŴ (u1(X)⊗ u1(X))−Y− γPŴ (u1(Y)⊗ u1(Y))

∥∥
F .

Started from an initial matrix with isolated eigenvalue, as described in the setting of Lemma
2.14, we can now apply Lemma 2.13 to prove that any convergent subsequence converges to a
stationary point of (2.14).

Proof of Theorem 2.4. By Lemma 2.14 the operator Fγ is continuous on Mϵ := {M ∈ Ŵ ∩ S :
λ1(M) ≥ (1

2 + ϵ)−1/2} for any ϵ > 0. Moreover, by Lemma 2.11 we have (Mj+1)j∈N ⊂ Mϵ, and
by Lemma 2.12 we have

∥∥Mj+1 −Mj
∥∥

F → 0. Therefore, we can apply Lemma 2.13 to see that
any convergent subsequence converges to a fixed point of Fγ. Moreover, since (Mj+1)j∈N is
bounded, there exists at least one convergent subsequence by Bolzano-Weierstrass. Finally,
any fixed point M̄ of Fγ can be written as M̄ = λ1(M̄)PŴ (u1(M̄)⊗ u1(M̄)) by Lemma 2.6 and
Lemma 2.11. Since λ1(M̄) > 1/

√
2, it is an isolated eigenvalue satisfying λ1(M̄) = ∥M̄∥, and

thus M̄ satisfies the first-order optimality condition (2.15) of (2.14) by Theorem 2.3.

2.4. Subspace power method 58

2.3.5 Discussion of open problems

We developed an analysis of the local maximizers of the perturbed non-linear program (2.14)
that is designed to select near-rank-one matrices from a symmetric matrix space Ŵ that
approximates the span of rank-one matrices. It was shown that local maximizers satisfy
∥M∥2 ≥ 1− cδ− c′ν, or ∥M∥2 ≤ cδ + c′ν, where δ = ∥PW − PŴ∥F→F and ν originates from
(2.10). Therefore, local maximizers of the first kind are close to the spanning elements for ν, δ
sufficiently small by Theorem 2.1. We have reason to believe (cf. Section 2.5), that the spurious
local maxima of the second kind cannot be avoided for our setting. In the upcoming sections,
we provide a counterexample for a similar problem (cf. Lemma 2.19). The convergence analysis
of Section 2.3.4 gives guarantees under which subsequences of the iteration (2.26) converge
to stationary points and that the iteration produces a sequence of matrices with increasing
spectral norm under appropriate starting conditions. As it has been pointed out in [52], the gap
between our theoretical guarantees and empirical results suggests that the analysis in Section
2.3.4 is not optimal and that issues could potentially be closed. Three critical open problems
are stated below.

Local maximizers near each spanning element. Our characterization of local maximizers
establishes conditions under which each local maximizer of (2.14) must be close to one of
the spanning elements w1 ⊗ w1, . . . , wm ⊗ wm. However, we do not prove that all spanning
elements can be associated with one local maximum. A statement of this kind could be
proven by showing that for each k ∈ [m], the objective (2.14) constrained on the compactum
Uk ⊂ W ∩ S surrounding PŴ (wk ⊗ wk)/∥PŴ (wk ⊗ wk)∥F has at least one global maximum
within its interior Uk \ ∂Uk. Let us mention that we provide such a statement as part of the next
sections, which studies a different characterization of the near-rank-one matrices. We believe
that a similar statement could be shown for (2.14), but its proof seems non-trivial due to the
more complicated geometry of the compactum Uk.

Computation of near-rank-one matrices. We did not show that Algorithm 2.1 will always
converge to near-rank-one matrices in the perturbed space. Since this is what is numerically
observed (cf. [52]), we believe such a statement could be achieved by better leveraging the
structure ofW in our convergence analysis of Section 2.3.4.

Computational complexity: Practical considerations. One issue with Algorithm 2.1 is that
the iteration

Mj+1 = PS(PŴ (Mj + γu1(Mj)⊗ u1(Mj)))

requires the computation of the eigendecomposition at every iteration. This poses a compu-
tational challenge because the computation of the eigendecomposition in higher dimensions
is costly and hard to parallelize. This plays a role since we need to restart Algorithm 2.1 on
average Θ(m log m) times (see Remark 2.2) to be able to compute all near-rank-one matrices.

2.4 Subspace power method

Consider again a set of unit-vectors {w1, . . . , wm} ⊂ SD−1 for m < 2D and a symmetric matrix
space Ŵ that approximates the span

W = span{w1 ⊗ w1, . . . , wm ⊗ wm}.

59 Chapter 2. Recovery of a rank-one basis from its perturbed span

The computation of near-rank-one matrices within Ŵ based on the spectral norm, as presented
previously, comes with some issues discussed in the preceding section. We will now focus
a different approach to the rank-one basis recovery problem. The upcoming results address
many of the issues we mentioned beforehand, and we include an in-depth discussion of these
points which is deferred to Section 2.5.4. The approach that we want to discuss within this
section is based on the characterization of near-rank-one matrices as the maximizers of the
program

max
∥u∥=1

ΦŴ (u) = max
∥u∥=1

∥∥PŴ (u⊗ u)
∥∥2

F . (2.30)

To the best of our knowledge, using this non-convex program to recover spanning elements in
the context of neural network reconstruction has first been suggested in [49]. Independently,
a more general version of (2.30) has been studied in the broader context of symmetric tensor
decompositions in [77]. Similar to our previous approach, the authors of [77] propose to
compute local maximizers of (2.30) using a projected gradient descent iteration which is called
subspace power method (SPM) and given by

uj = PSD−1(uj−1 + 2γPŴ (uj−1 ⊗ uj−1)uj−1), j ∈N>0, (2.31)

where γ > 0 is a fixed step-size parameter. The primary result of [77] adapted to our problem
setting comes with strong guarantees and can be summarized as the following statement (see
also [50, Theorem 9]).

Theorem 2.5 ([77, Theorem 4.1]). Let Ŵ ⊆ Sym(RD×D). Let γ > 0 be a fixed parameter such that
ΦŴ (u) + γ

4 ∥u∥
2
2 is strictly convex on RD (e.g., γ ≥ 1

2 works) and consider the iteration

uj = PSD−1(uj−1 + 2γPŴ (uj−1 ⊗ uj−1)uj−1), j ∈N>0. (2.32)

Then the following points hold:

(SPM1) For any u0 ∈ SD−1 the iteration (2.32) is well-defined and converges monotonically to a
constrained stationary point of ΦŴ at a power rate.

(SPM2) For a full Lebesgue measure subset of initializations u0 ∈ SD−1, (2.32) converges to a con-
strained local maximizer of ΦŴ .

(SPM3) If Ŵ = W = span{wk ⊗ wk : k ∈ [m]} for m < 1
2 (D− 1)D and w1, . . . , wm are sampled

from any absolutely continuous probability distribution on SD−1, constrained global maximiz-
ers of ΦŴ are precisely ±wk. Moreover, each ±wk is exponentially attractive, which means
that initializations u0 ∈ SD−1 sufficiently close to ±wk converge to ±wk with an exponential
rate.

Proof. Note that ΦŴ (u) = ∑K
i=1(u

⊤Wku)2 for a basis {Wk : k ∈ [dim(Ŵ)]} of Ŵ , which implies
that ΦŴ (u) is a homogeneous polynomial of degree 4. Hence, [77, Section 5] applies.

Let us provide some context on this statement. By (SPM2), iteration (2.32) started from u0
drawn uniformly from the unit sphere will converge to a local maximizer of the perturbed
objective ΦŴ . Since (SPM2) holds for all symmetric matrix spaces, it suits our problem setting
and provides us with a statement similar to Theorem 2.4. What remains to show is that we
can extend (SPM3) to the perturbed setting where Ŵ resembles only approximately a space
spanned by rank-one matrices. This means we need to show that the local maximizers of ΦŴ
are in some sense close to the local maximizers of ΦW which are given by ±wk. Note that
this implies that there is a local maximizer near every spanning element, and thereby directly
addresses one of the open problems stated in Section 2.3.5. The extension of (SPM3) will be

2.5. Perturbation analysis of the SPM objective under deterministic frame bounds 60

Algorithm 2.2: Iterating SPM to find all near-rank-one basis approximations.

Input: PŴ orthogonal projection onto matrix space Ŵ , threshold β > 0
1 Set U ← ∅ and m← dim Ŵ
2 while |U | < m do
3 Sample u0 ∼ Unif(SD−1)
4 Iterate projected gradient ascent

u← PSD−1(u + 2γPŴ ((u)⊗2)u)

until convergence, and denote the vector of the final iteration by û.
5 if

∥∥PŴ (û⊗2)
∥∥2

F > β then
6 if û ̸∈ U and −û ̸∈ U then
7 U ← U ∪ {û}
8 end
9 end

10 end
Output: U

the central topic of the upcoming section. The combination of all the guarantees then allows us
to formulate Algorithm 2.2 that repeatedly draws random initializations from the unit sphere
and, under the right conditions, will return all near-rank-one matrices in the perturbed matrix
space (cf. Remark 2.2). This algorithm will play a fundamental role in the identification of neural
network weights discussed in Chapter 3 and Chapter 4. Lastly, let us mention that the results
of [77] have recently been extended in [76] to include the perturbed case in the tensor setting.
We will separately state relevant parts of their results in Section 2.6.

2.5 Perturbation analysis of the SPM objective under deterministic
frame bounds

In this section, we prove an extension of (SPM3) to the perturbed case. We will assume the
same incoherence assumptions as before. Consider unit-norm vectors w1, . . . , wm ∈ SD−1 that
satisfy the deterministic frame condition (2.10) for some ν < 1 (implying m < 2D). Under this
setting, and assuming the approximation Ŵ ≈ W = {w1 ⊗ w1, . . . , wm ⊗ wm} is sufficiently
accurate, we prove the following main result.

Theorem 2.6 ([50, Theorem 10]). Let span{w1, . . . , wm} ⊂ SD−1 satisfy (2.10) with ν < 1 and
denote W := {w1 ⊗ w1, . . . , wm ⊗ wm}. Let Ŵ ⊆ Sym(RD×D) satisfy

∥∥PŴ − PW
∥∥

2→2 < δ and
assume that ν and δ are small enough to satisfy

4ν + ν2 + 11δ < 1 and δ <
1
22

(
1− 3ν

1 + ν

)2

.

For each k ∈ [m] there exists a local maximizer u∗k of ΦŴ with ΦŴ (u∗k) ≥ 1− δ within the cap

Uk :=

{
u ∈ SD−1 : ⟨u, wk⟩ ≥

√
(1− 3δ)

1− ν

1 + ν

}
.

61 Chapter 2. Recovery of a rank-one basis from its perturbed span

Furthermore, for any constrained local maximizer u ∈ SD−1 of ΦŴ with ΦŴ (u) > 7 1+ν
1−ν δ and basis

expansion PŴ (u⊗ u) = ∑m
k=1 σkPŴ (wk ⊗ wk) ordered according to σ1 ≥ . . . ≥ σm, we have

min
s∈{−1,1}

∥u− sw1∥2 ≤

√
2ν ∑m

k=2 σ2
k + 2δ

(1− ν)(1− 6 ν
1+ν − 18δ)−

√
6 ν

1+ν + 18δ− 2δ
. (2.33)

The proof is broken down into several components and given at the end of Section 2.5.3. This
result shows that there will be a local maximizer in the vicinity of ±wk whenever δ, ν are
sufficiently small. More precisely, we provide an error bound between the leading eigenvector
of the matrix induced by PŴ (u ⊗ u) (where u is such a local maximizer) and ±wk. Like
Theorem 2.2, Theorem 2.6 does not exclude the presence of spurious local maximizers.

2.5.1 Optimality conditions

First, constrained stationary points and local maximizers in Theorem 2.5 are derived from the
Riemannian gradient and Hessian with respect to SD−1. More precisely, consider any smooth
function f : RD → R, then u ∈ SD−1 is a constrained stationary point of f w.r.t. SD−1 if and
only if

∇SD−1 f (u) := (IdD−uu⊤)∇ f (u) = 0. (2.34)

Furthermore, u is a constrained local maximizer of f w.r.t. SD−1 if and only if it is a constrained
stationary point and the Riemannian Hessian given by

∇2
SD−1 f (u) := (IdD−uu⊤)

(
∇2 f (u)− ⟨u,∇ f (u)⟩ IdD

)
(IdD−uu⊤) ≼ 0, (2.35)

is negative semidefinite. For our context, it will be enough to compute (2.34) and (2.35) for
ΦŴ (see Lemma 2.16 and the corresponding proof) and for further details on Riemannian
optimization we refer to [4].

Our first step in proving Theorem 2.6 is to reformulate the general optimality conditions
we stated in (2.34) and (2.35) in such a way that we can leverage them in our analysis. We start
by computing the first- and second-order derivative of ΦŴ .

Lemma 2.15 ([50, Lemma 11]). Let Ŵ ⊆ Sym(RD×D) and take u ∈ SD−1. The gradient and Hessian
of ΦŴ : RD → R satisfy

∇ΦŴ (u) = 4PŴ (u⊗ u)u,

v⊤∇2ΦŴ (u)v = 8
∥∥PŴ (u⊗ v)

∥∥2
F + 4v⊤PŴ (u⊗ u)v for all v ∈ SD−1. (2.36)

Proof of Lemma 2.15. To compute the gradient, we first note that

∂uj ΦŴ (u) = 2⟨PŴ (u⊗ u), ∂uj PŴ (u⊗ u)⟩ = 2⟨PŴ (u⊗ u), ∂uj(u⊗ u)⟩

Furthermore, we have ∂uj(u⊗ u) = ej ⊗ u + u⊗ ej, where ej is the j-th standard basis vector.
This implies the result by

∂uj ΦŴ (u) = 2⟨PŴ (u⊗ u), ej ⊗ u + u⊗ ej⟩ = 4e⊤j PŴ (u⊗ u)u.

For (2.36) we use an arbitrary orthonormal basis {B1, . . . , Bm} of Ŵ and write ∇ΦŴ (u) =
4 ∑m

k=1⟨u⊗ u, Bk⟩Bku. Differentiating again with respect to uj, we obtain the rows of the Hessian

2.5. Perturbation analysis of the SPM objective under deterministic frame bounds 62

as

∂uj

(
m

∑
k=1
⟨u⊗ u, Bk⟩Bk

)
u =

(
m

∑
k=1
⟨u⊗ u, Bk⟩Bk

)
ej +

(
N

∑
k=1
⟨(u⊗ ej + ej ⊗ u), Bk⟩Bk

)
u

= PŴ (u⊗ u)ej + 2
m

∑
k=1

(Bku)jBku,

which implies ∇2ΦŴ (u) = 4PŴ (u⊗ u) + 8 ∑m
k=1 Bku⊗ (Bku). Multiplying with v from the left

and the right, it follows that

v⊤∇2ΦŴ (u)v = 4v⊤PŴ (u⊗ u)v + 8
m

∑
k=1
⟨u⊗ v, Bk⟩2 = 4v⊤PŴ (u⊗ u)v + 8

∥∥PŴ (u⊗ v)
∥∥2

F .

The constrained optimality conditions follow now from a straightforward computation by
plugging in ∇ΦŴ ,∇2ΦŴ into (2.34) and (2.35):

Lemma 2.16 ([50, Lemma 12]). Let Ŵ ⊆ Sym(RD×D). A vector u ∈ SD−1 is a constrained
stationary point of ΦŴ if and only if

PŴ (u⊗ u)u =
∥∥PŴ (u⊗ u)

∥∥2
F u. (2.37)

Furthermore, u ∈ SD−1 is a constrained local maximum of ΦŴ if and only if∥∥PŴ (u⊗ u)
∥∥2

F ≥ 2
∥∥PŴ (u⊗ v)

∥∥2
F + v⊤PŴ (u⊗ u)v for all v ∈ SD−1 with v ⊥ u. (2.38)

Proof of Lemma 2.16. According to the last result we have ∇ΦW̃ (u) = 4PW̃ (u⊗ u)u. Following
the definition of constrained stationary points in (2.34), u ∈ SD−1 is a constrained stationary
point if and only if

(IdD−u⊗ u)∇ΦW̃ (u) = 0 or 4PW̃ (u⊗ u)u− 4
∥∥PW̃ (u⊗ u)

∥∥2
F u = 0.

Similarly, u ∈ SD−1 is a constrained local maximum if and only if for any v ∈ SD−1 we have

v⊤(IdD−u⊗ u)
(
∇2ΦW̃ (u)− ⟨u,∇ΦW̃ (u)⟩ IdD

)
(IdD−u⊗ u)v ≤ 0. (2.39)

Since IdD−u⊗ u is the orthogonal projection onto span u⊥ (2.39) is actually equivalent to

v⊤
(
∇2ΦW̃ (u)− ⟨u,∇ΦW̃ (u)⟩ IdD

)
v ≤ 0 for any v ∈ SD−1 with v ⊥ u.

Using ⟨u,∇ΦW̃ (u)⟩ = 4
∥∥PW̃ (u⊗ u)

∥∥2
F, this is equivalent to

v⊤∇2ΦW̃ (u)v− 4
∥∥PW̃ (u⊗ u)

∥∥2
F ≤ 0

or by the Hessian formula (2.36) in Lemma 2.15,

4
∥∥PW̃ (u⊗ u)

∥∥2
F ≥ 8

∥∥PW̃ (u⊗ v)
∥∥2

F + 4v⊤PW̃ (u⊗ u)v.

63 Chapter 2. Recovery of a rank-one basis from its perturbed span

Lemma 2.16 provides a very useful characterization of the spectral decomposition of PŴ (u⊗ u)
whenever u is a stationary point or local maximizer. For any stationary point u∗ ∈ SD−1 of ΦŴ
we have according to (2.37)

PŴ (u∗ ⊗ u∗)u∗ =
∥∥PŴ (u∗ ⊗ u∗)

∥∥2
F u∗.

Hence, u∗ is an eigenvector of PŴ (u∗ ⊗ u∗) with eigenvalue given by
∥∥PŴ (u∗ ⊗ u∗)

∥∥2
F. Addi-

tionally, if u∗ is a local maximizer, then it is the eigenvector corresponding to the maximal
eigenvalue of PŴ (u∗ ⊗ u∗). This follows from the argument: Assume v is another eigenvector
of PŴ (u∗ ⊗ u∗) corresponding to a different eigenvalue, then v will be orthogonal to u∗ since
PŴ (u∗ ⊗ u∗) is symmetric. Then (2.38) yields to the inequality

v⊤PŴ (u∗ ⊗ u∗)v ≤
∥∥PŴ (u∗ ⊗ u∗)

∥∥2
F .

2.5.2 Describing the optimization landscape

Next, we will prove the presence of one local maximizer near each of the spanning components
{w1, . . . , wm} provided δ, ν is sufficiently small. This follows by considering ΦŴ constrained
onto a compact set surrounding wk and then showing that the global maximizer of the
constrained functional is not attained on the boundary of the compact set.

Proposition 2.1 ([50, Proposition 16]). Let {w1, . . . , wm} ⊂ SD−1 satisfy (2.10) and denoteW :=
{wk ⊗ wk|k ∈ [m]}. Let Ŵ ⊆ Sym(RD×D) be a subspace with

∥∥PŴ − PW
∥∥

2→2 ≤ δ, and assume ν
and δ satisfy

4ν + ν2 + 6δ ≤ 1.

For each k ∈ [m] there exists a local maximizer u∗k of ΦŴ with ΦŴ (u∗k) ≥ 1− δ within the cap

Uk :=

{
u ∈ SD−1 : ⟨u, wk⟩ ≥

√
(1− 3δ)

1− ν

1 + ν

}
.

The proof follows below and can be summarized as follows: First, note that due to the
compactness Uk, the constrained objective u 7→ ∥PŴ (u ⊗ u)2

F over Uk must have a global
maximum within Uk. We show that ∥PŴ (u⊗ u)∥2

F < ∥PŴ (wk ⊗ wk)∥2
F for all u ∈ ∂Uk, where

∂Uk denotes the closure of the compactum Uk. This implies that the constrained global
maximizer is not attained on the boundary ∂Uk and, therefore, must be contained in Uk \ ∂Uk.
This implies that the unconstrained objective u 7→ ∥PŴ (u⊗ u)2

F over SD−1 must have a local
maximizer in Uk. This proof for Proposition 2.1 benefits from the following auxiliary result,
which expresses the objective value ΦW (u) in terms of the Gramian matrix of the elements
w⊗2

1 , . . . , w⊗2
m . The proofs use some concepts of Gramian matrices and the Gershgorin circle

theorem, which will be discussed in more detail in Section 2.6.1.

Lemma 2.17 ([50, Lemma 13]). Let {wk : k ∈ [m]} ⊂ SD−1, assume {wk ⊗ wk : k ∈ [m]} are
linearly independent, and denote W := span{wk ⊗ wk : k ∈ [m]}. Denote Gkℓ := ⟨wk, wℓ⟩2 as the
Gramian matrix of {wk ⊗ wk|k ∈ [m]}. Then we have

ΦW (u) = βuG−1βu for (βu)k := ⟨u, wk⟩2. (2.40)

Proof. We first write the Frobenius norm as an optimal program

∥PW (u⊗ u)∥F = max
Z∈W
∥Z∥2

F=1

⟨Z, PW (u⊗ u)⟩ = max
Z∈W
∥Z∥2

F=1

u⊤Zu

2.5. Perturbation analysis of the SPM objective under deterministic frame bounds 64

and express Z = ∑m
k=1 σkwk ⊗ wk in terms of the basis coefficients σk. Then using

∥Z∥2
F = tr

(
m

∑
k=1

σkwk ⊗ wk

m

∑
ℓ=1

τℓwℓ ⊗ wℓ

)
=

m

∑
k=1

m

∑
ℓ=1

σkσℓGkℓ = σ⊤Gσ,

we can formulate the initial program as an optimal program over coefficients σk by

∥PW (u⊗ u)∥F = max
σ⊤Gσ≤1

m

∑
k=1

σk⟨u, wk⟩2 = max
σ⊤Gσ≤1

⟨σ, β⟩.

This is a linear program with quadratic constraints. The Karush–Kuhn–Tucker (KKT) conditions
imply (2.40), see also [80].

Proof of Proposition 2.1. Let k ∈ [m] arbitrary. We can prove the statement essentially by showing
the inequality ∥PŴ (u⊗ u)∥2

F < ∥PŴ (wk ⊗wk)∥2
F for all u ∈ ∂Uk because the compactness of Uk

implies the existence of a global maximizer on Uk, and with ∥PŴ (u⊗ u)∥2
F < ∥PW (wk ⊗ wk)∥2

F
for all u ∈ ∂Uk, the global maximizer is contained in Uk \ ∂Uk. Hence, it must be a local
maximizer of u 7→ ∥PŴ (u⊗ u)∥2

F over SD−1. First, note that the perturbed objective at wk is
bounded from below by∥∥PŴ (wk ⊗ wk)

∥∥2
F = ∥PW (wk ⊗ wk)∥2

F − ∥PW (wk ⊗ wk)∥2
F −

∥∥PŴ (wk ⊗ wk)
∥∥2

F

= 1−
∣∣∣∥PW (wk ⊗ wk)∥2

F +
∥∥PŴ (wk ⊗ wk)

∥∥2
F

∣∣∣
= 1−

∣∣⟨wk ⊗ wk, (PW − PŴ)(wk ⊗ wk)⟩
∣∣ ≥ 1− δ.

In the last equation, we used the self-adjointness of the ortho-projector and in the inequality, we
applied the Cauchy-Schwarz inequality. Next we establish an upper bound for ∥PŴ (u⊗ u)∥2

F
for u ∈ Uk. We note that with the Gramian matrix Gkℓ := ⟨wk, wℓ⟩2 of {wk⊗wk|k ∈ [m]} and the
vectors βk := ⟨u, wk⟩2, the unperturbed objective can be written as ∥PW (u⊗ u)∥2

F = β⊤G−1β
according to Lemma 2.17. Furthermore, Gershgorin’s circle Theorem (cf. Section 2.6.1, Theorem
2.9) implies for any eigenvalue λ of G that there exists k ∈ [m] such that

|1− λ| = |Gkk − λ| ≤
m

∑
ℓ ̸=k
⟨wℓ, wk⟩2 ≤ ν.

Therefore,
∥∥G−1

∥∥
2 ≤ (1− ν)−1 and the noise-free objective can be bounded by

∥PW (u⊗ u)∥2
F = β⊤G−1β ≤

∥∥∥G−1
∥∥∥

2
∥β∥2

2

≤ 1
1− ν

∥β∥2
2 ≤

1
1− ν

∥β∥∞ ∥β∥1 ≤
1 + ν

1− ν
∥β∥∞ .

In the last inequality we used frame condition (2.10), which implies ∥β∥1 = ∑m
k=1⟨u, wk⟩2 ≤

1 + ν. To bound ∥β∥∞ note first that

max
ℓ ̸=k

βℓ ≤ ∑
ℓ ̸=k

βℓ =
m

∑
ℓ=1
⟨u, wℓ⟩2 − ⟨u, wk⟩2 ≤ 1 + ν− (1− 3δ)

1− ν

1 + ν
≤ 3ν + ν2 + 3δ

1 + ν
,

which implies with the assumption 4ν + ν2 + 6δ ≤ 1

βk = ⟨u, wk⟩2 ≥ (1− 3δ)
1− ν

1 + ν
≥ 1− 3δ− ν

1 + ν
≥ 1− 6δ− ν + 3δ

1 + ν
≥ max

ℓ ̸=k
βℓ.

65 Chapter 2. Recovery of a rank-one basis from its perturbed span

Hence, ∥β∥∞ = ⟨u, wk⟩2. It follows that for any u ∈ Uk, we get∥∥PŴ (u⊗ u)
∥∥2

F ≤ ∥PW (u⊗ u)∥2
F +

∣∣∣∥∥PŴ (u⊗ u)
∥∥2

F − ∥PW (u⊗ u)∥2
F

∣∣∣
≤ 1 + ν

1− ν
∥β∥∞ + δ ≤ 1 + ν

1− ν
⟨u, wk⟩2 + δ.

Comparing
∥∥PŴ (wk ⊗ wk)

∥∥2
F and

∥∥PŴ (u⊗ u)
∥∥2

F for u ∈ ∂Uk, where ⟨u, wk⟩2 = 1−ν
1+ν (1− 3δ),

yields

∥∥PŴ (u⊗ u)
∥∥2

F ≤
1 + ν

1− ν
⟨u, wk⟩2 + δ = 1− 2δ < 1− δ ≤

∥∥PŴ (wk ⊗ wk)
∥∥2

F .

2.5.3 Proof of the Theorem 2.6

To proof Theorem 2.6, we first show a result similar to Theorem 2.2, where it was shown that
the local maximizer of argmaxM∈Ŵ∩S

∥M∥ have either a dominant eigenvalue or a uniform
spectrum. The theorem below essentially establishes the same type of characterization. How-
ever, it further relies on the fact that the leading eigenvalue of any local maximizer of (2.30)
can be expressed in terms of the objective value according to Lemma 2.16.

Theorem 2.7 ([50, Theorem 15]). Let {w1, . . . , wm} ⊂ SD−1 satisfy (2.10) and denoteW = {wk ⊗
wk|k ∈ [m]}. Let Ŵ ⊆ Sym(RD×D) satisfy ∥PŴ − PW∥F→F ≤ δ and assume that ν and δ are small
enough to satisfy

3ν

1 + ν
+ 11δ < 1 and δ <

1
22

(
1− 3ν

1 + ν

)2

(2.41)

For any constrained local maximizer u ∈ SD−1 of ΦŴ we have

ΦŴ (u) ≤ 9
1 + ν

1− ν
δ or ΦŴ (u) ≥ 1− 6

ν

1 + ν
− 18δ.

Before stating the proof, we introduce the following auxiliary result.

Lemma 2.18 ([50, Lemma 18]). Assume the settings of Theorem 2.1 and Theorem 2.7. Let PŴ (u⊗
u) = ∑m

k=1 σkŴk for some u ∈ SD−1 and denote λ1 := λ1(PŴ (u ⊗ u)). Furthermore, assume
1− δ > λ1 > 3 1+ν

1−ν δ. For any index k∗ with |σk∗ | = ∥σ∥∞ we have σk∗ ≥ 0 and

σk∗ ≤
1

1− ν
⟨u, wk∗⟩2 +

2
1− ν

δ. (2.42)

Proof of Lemma 2.18. Denote M = PŴ (u⊗ u) = ∑m
k=1 σkŴk and define Z = ∑m

k=1 σkwk ⊗ wk as
the unique matrix inW with PŴ (Z) = M. We first note that the statement is trivial if ∥σ∥∞ = 0
since this implies σk = 0 for all k ∈ [m] and thus M = 0. So without loss of generality, we
may assume ∥σ∥∞ ̸= 0 in the following. We will first show σk∗ > 0 by contradiction, so let
us assume σℓ < 0. Using the frame condition (2.10) and {w1, . . . , wm} ⊂ SD−1 to show the
estimate

|⟨Z, wk∗ ⊗ wk∗⟩ − σk∗ | =
∣∣∣∣∣ ∑
k ̸=k∗

σk⟨wk, wk∗⟩2
∣∣∣∣∣ ≤ ∥σ∥∞ ∑

k ̸=k∗
⟨wk, wk∗⟩2 ≤ ∥σ∥∞ ν, (2.43)

2.5. Perturbation analysis of the SPM objective under deterministic frame bounds 66

and combining this with ∥Z∥ ≤ (1− δ)−1λ1(M) < 1, we can bound ∥σ∥∞ by

∥σ∥∞ = |σk∗ | ≤
∣∣σk∗ − ⟨u, wk∗⟩2

∣∣
≤ |σk∗ − ⟨Z, wk∗ ⊗ wk∗⟩|+

∣∣⟨Z, wk∗ ⊗ wk∗⟩ − ⟨PŴ (Z), wk∗ ⊗ wk∗⟩
∣∣

+
∣∣⟨PŴ (u⊗ u), wk∗ ⊗ wk∗⟩ − ⟨PW (u⊗ u), wk∗ ⊗ wk∗⟩

∣∣
≤ ν ∥σ∥∞ + ∥Z∥ δ + δ ≤ ν ∥σ∥∞ + 2δ.

(2.44)

Hence, ∥σ∥∞ ≤ 2
1−ν δ, which further implies a bound on λ1 by

λ1 = max
∥v∥2=1

v⊤PŴ (u⊗ u)v = max
∥v∥2=1

m

∑
k=1

σk⟨Ŵk, v⊗ v⟩

≤ max
∥v∥2=1

m

∑
k=1

σk⟨wk, v⟩2 + max
∥v∥2=1

m

∑
k=1

σk⟨Ŵk − wk ⊗ wk, v⊗ v⟩

≤ ∥σ∥∞ (1 + ν) + max
∥v∥2=1

⟨PŴ (Z)− Z, v⊗ v⟩ ≤ 2
1 + ν

1− ν
δ + δ ≤ 3

1 + ν

1− ν
δ.

This contradicts the assumption of the statement and, therefore, we must have σk∗ > 0. For the
estimate (2.42) we can reuse parts of (2.44) to obtain∣∣∣σk∗ − ⟨u, wk∗⟩2

∣∣∣ ≤ ∥σ∥∞ ν + 2δ = σk∗ν + 2δ,

which implies

(1− ν)σk∗ ≤ ⟨u, wk∗⟩2 + 2δ.

Proof of Theorem 2.7. Consider a constrained local maximizer u ∈ SD−1 of (2.30) and the repre-
sentation of PŴ (u⊗ u) = ∑m

k=1 σkŴk given by the basis expansion induced by PŴ and assume
w.l.o.g. the coefficients are ordered according to σ1 ≥ . . . ≥ σm. Furthermore, denote by
Z = ∑m

k=1 σkwk⊗wk the unique element inW with PŴ (Z) = PŴ (u⊗ u). The proof of Theorem
2.7 leverages the second-order optimality condition (2.39) for v = wk∗ , where k∗ is any index
with ∥σ∥∞ = |σk∗ |, to construct a quadratic inequality for ⟨wk∗ , u⟩2, which can only be satisfied
by ⟨wk∗ , u⟩2 ≈ 1 or ⟨wk∗ , u⟩2 ≈ 0. These inequalities, combined with the fact that ∥σ∥∞ = |σk∗ |,
imply λ1 := λ1(PŴ (u⊗ u)) ≈ 1 or λ1 ≈ 0. By the optimality conditions in Lemma 2.16, we
have ΦŴ (u) = λ1 and thus the same bounds are transferred to the objective value. Let k∗ be
any index with ∥σ∥∞ = |σk∗ |. We first notice that the statement is trivially true whenever

λ1 ≤ 3
1 + ν

1− ν
δ or λ1 ≥ 1− δ,

which implies we can concentrate on the cases 1− δ > λ1 ≥ 3 1+ν
1−ν δ in the following. Under this

condition, Lemma 2.18 implies |σk∗ | = σk∗ = maxk∈[m] σk = σ1 (note the ordering σ1 ≥ . . . ≥ σK).
Furthermore, using Lemma 2.18 and additionally the frame condition (2.10), we can estimate
λ1 in terms of ⟨u, w1⟩2 according to

λ1 = u⊤PŴ (u⊗ u)u = ⟨Z, u⊗ u⟩+ ⟨PŴ (Z)− Z, u⊗ u⟩ ≤
m

∑
k=1

σk⟨wk, u⟩2 +
∥∥PŴ (Z)− Z

∥∥
≤ σ1(1 + ν) + ∥Z∥2 δ ≤ 1 + ν

1− ν
⟨u, w1⟩2 + 3

1 + ν

1− ν
δ,

(2.45)

67 Chapter 2. Recovery of a rank-one basis from its perturbed span

where we used ∥Z∥2 ≤ (1 − δ)−1λ1 < 1 and 1 ≤ 1+ν
1−ν in the last inequality. Using the

perturbation estimates∣∣∣∥∥PŴ (u⊗ wℓ)
∥∥2

F − ∥PW (u⊗ wℓ)∥2
F

∣∣∣ = ∣∣⟨PŴ (u⊗ wℓ)− PW (u⊗ wℓ), u⊗ wℓ⟩
∣∣ ≤ δ, (2.46)∣∣∣w⊤ℓ PŴ (u⊗ u)wℓ − ⟨wℓ, u⟩2

∣∣∣ = ∣∣⟨PŴ (u⊗ u)− PW (u⊗ u), wℓ ⊗ wℓ⟩
∣∣ ≤ δ, (2.47)

which hold for any ℓ ∈ [m], the optimality condition (2.39) with v = w1 implies

λ1 ≥ 2
∥∥PŴ (u⊗ w1)

∥∥2
F − 2λ1⟨w1, u⟩2 + w⊤1 PŴ (u⊗ u)w1

≥ 2 ∥PW (u⊗ w1)∥2
F − 2λ1⟨w1, u⟩2 + ⟨w1, u⟩2 − 2δ.

Furthermore, by ∥PW (u⊗ w1)∥2
F ≥ ∥PW (u⊗ w1)∥2 ≥ ⟨u, w1⟩2 and the bound (2.45) for λ1, this

becomes

1 + ν

1− ν
⟨u, w1⟩2 ≥ 3⟨u, w1⟩2 − 2

1 + ν

1− ν
⟨u, w1⟩4 − 6

1 + ν

1− ν
⟨u, w1⟩2δ− 3

1 + ν

1− ν
δ− 2δ.

After dividing by 1+ν
1−ν and simplifying the terms we obtain

⟨u, w1⟩2 ≥ 3
1− ν

1 + ν
⟨u, w1⟩2 − 2⟨u, w1⟩4 − 11δ,

hence 0 ≥
(

1− 3ν

1 + ν

)
⟨u, w1⟩2 − ⟨u, w1⟩4 − 11/2δ

= (1− c1)⟨u, w1⟩2 − ⟨u, w1⟩4 − c2,

with constants c1 := 3ν
1+ν and c2 := 11/2δ. This quadratic inequality for ⟨u, w1⟩2 has the

solutions

⟨u, w1⟩2 ≤ c2 = 11/2δ, and ⟨u, w1⟩2 ≥ 1− c1 − c2 − (c1 + 2c2)
2 ≥ 1− 2c1 − 3c2,

provided that δ < 1
22 (1 − c1)

2 and c1 + 2c2 < 1 as implied by the condition (2.41) in the
statement. In the first case, where ⟨u, w1⟩2 ≤ 11/2δ, the estimate for λ1 in (2.45) gives

λ1 ≤
1 + ν

1− ν
⟨u, w1⟩2 + 3

1 + ν

1− ν
δ ≤ 11/2

1 + ν

1− ν
δ + 3

1 + ν

1− ν
δ ≤ 9

1 + ν

1− ν
δ.

On the other hand, the second case implies ⟨u, w1⟩2 ≥ 1− 2c1 − 3c2 and therefore

λ1 ≥ w⊤1 PŴ (u⊗ u)w1 = w⊤1 PW (u⊗ u)w1 + w⊤1
(

PŴ (u⊗ u)− PW (u⊗ u)
)

w1

≥ ⟨u, w1⟩2 − δ ≥ 1− 2c1 − 3c2 − δ ≥ 1− 6
ν

1 + ν
− 35/2δ.

In Theorem 2.1, the distance of any X ∈ Ŵ to ±wk ⊗wk gets quantified in terms of the spectral
gap λ1 − λ2. We can directly utilize the characterization of the spectrum in Lemma 2.16 in the
form of the following corollary.

Corollary 2.2 ([50, Corollary 1]). Assume the setting of Theorem 2.1 and let u ∈ SD−1 be a constrained
local maximum of ΦŴ . We have

min
s∈{−1,1}

∥u− sw1∥2 ≤
√

2
∥σ2...m∥2

√
ν + 2δ

(1− ν)ΦŴ (u)−
√

ΦŴ (u)(1−ΦŴ (u))− 2δ

whenever the denominator is positive.

2.5. Perturbation analysis of the SPM objective under deterministic frame bounds 68

Proof. Recall from Lemma 2.16 that the optimality conditions of ΦŴ (u) imply u is the most
dominant eigenvector of PŴ (u⊗ u) corresponding to eigenvalue λ1 = ∥PŴ (u⊗ u)∥2

F = ΦŴ (u).
Furthermore, the second-largest eigenvalue is bounded by

λ2 ≤

√√√√ D

∑
i=2

λ2
i =

√∥∥PŴ (u⊗ u)
∥∥2

F − λ2
1 =

√
ΦŴ (u)(1−ΦŴ (u)).

The remaining part of the statement follows from Theorem 2.1 with X = PŴ (u⊗ u).

Proof of Theorem 2.6. The theorem is a straightforward consequence of Corollary 2.2, Theorem
2.7, and Proposition 2.1 below. Namely, Proposition 2.1 implies the existence of a local
maximizer u∗i in Ui and thus the first part of the statement. By Theorem 2.7, we have
ΦŴ (u) ≥ 1− 6 ν

1+ν − 18δ, and inserting this into Corollary 2.2 yields the second part.

2.5.4 Intermediate Discussion

Let us summarize the findings above and how they relate to Algorithm 2.2. Consider the
setting of Theorem 2.6. We know that for δ, ν small enough, there will always be a local
maximizer of (2.30) close to one of the original spanning elements with an objective value close
to one. This addresses one of the open issues mentioned in Section 2.3.5. Furthermore, by
combining (SPM1) and (SPM2) from Theorem 2.5, we know that by for any starting point
u0 ∈ SD−1 the SPM iteration (2.32) will converge to a stationary point. Additionally, for a full
Lebesgue measure of initializations, the iteration will converge to a local maximizer of (2.32).
This guarantees that repeatedly starting the SPM will compute certain local maximizers. The
fact that spurious local maximizers cannot be avoided as part of the perturbed setting can be
seen in the following example.

Lemma 2.19 (cf. [50, Lemma 17]). Let w ∈ SD−1 andW = span{w⊗ w}. There exists a subspace
Ŵ ⊂ Sym(RD×D) with

∥∥PW − PŴ
∥∥

2→2 ≤ 2
√

δ so that ΦŴ has a constrained local maximizer with
objective value δ.

Proof. Choose u ∈ SD−1 with u ⊥ w and define M =
√

1− δw ⊗ w −
√

δu ⊗ u with the
corresponding subspace Ŵ := span M. Taking arbitrary A ∈ RD×D with ∥A∥2 = 1, the
subspace perturbation betweenW and Ŵ can be upper bounded by∥∥PW (A)− PŴ (A)

∥∥ =
∥∥∥(1−√1− δ)⟨w⊗ w, A⟩w⊗ w−

√
δ⟨u⊗ u, A⟩u⊗ u

∥∥∥
≤ 1−

√
1− δ +

√
δ ≤ 2

√
δ.

We now check that u is a local maximizer of ΦŴ . The corresponding matrix appearing in
ΦŴ (u) is

PŴ (u⊗ u) = ⟨M, u⊗ u⟩M = −
√

δM = −
√

δ
√

1− δw⊗ w + δu⊗ u,

which shows that u is an eigenvector of PŴ (u⊗ u) to eigenvalue δ = ∥PŴ (u⊗ u)∥2
F. In other

words, u satisfies (2.37) and is thus a stationary point. Taking now any q ⊥ u, we have

2
∥∥PŴ (u⊗ q)

∥∥2
F + q⊤PŴ (u⊗ u)q = 2⟨M, u⊗ q⟩2 −

√
δ
√

1− δ⟨w, q⟩2

= −
√

δ
√

1− δ⟨w, q⟩2 < δ,

which shows that u also satisfies constrained second-order optimality as in (2.16). Hence, u is a
local maximizer with ΦŴ (u) =

∥∥PŴ (u⊗ u)
∥∥2

F = δ.

69 Chapter 2. Recovery of a rank-one basis from its perturbed span

To filter spurious local maxima, Algorithm 2.2 filters out all vectors which do not belong to a
certain level set {u ∈ SD−1|

∥∥PŴ (u⊗ u)
∥∥2

F ≥ β} of the underlying objective. The recent result
in [76], extending upon the result in Theorem 2.6, does provide a threshold on the objective
value, which makes this selection precise.

Theorem 2.8 (cf. [76, Theorem 7]). Let w1, . . . , wm ∈ SD−1 and W = span{w1 ⊗ w1, . . . , wm ⊗
wm}. Consider Ŵ ⊂ Sym(RD×D) with δ = ∥PW − PŴ∥F→F. If the vectors w1, . . . , wm fulfill the
incoherence condition (2.10), such that 44δ + 60ν− 120δν < 1, then (2.30) has exactly 2m second-order
critical points in the super-level set where

ΦŴ (u) ≥ 43− 60ν

1− 60ν
δ. (2.48)

Each of these critical points is a local maximizer of (2.30). Furthermore, for each such point u∗ ∈ SD−1,
there exists one k ∈ [m] such that

min
s∈{−1,+1}

∥u∗ − swk∥ ≤
√

δ.

Proof. The statement follows from [76, Theorem 7] by setting n = 2, ρ2 = ν.

Hence, by the statement above, there exists a constant C(ν) > 0 depending only on ν, such that
all local maximizers with objective values ΦŴ (u) > C(ν)δ are O(δ) close to the components
±wk, k ∈ [m] of the original spanning elements (cf. [76, Remark 8]). This implies that for
sufficiently small ν, δ, the threshold β in Algorithm 2.2 can typically be chosen as constant
(for instance, β = 1/2). Finally, let us note that Chapter 4 will include two numerical sections
where Algorithm 2.2 is applied successfully in the regime m < 2D.

2.6 Extension of SPM to the overcomplete regime

The analysis of Algorithm 2.2 in the preceding sections only applies to the case m < 2D. One
reason for that is that the incoherence condition (2.10) in Section 2.1.1 is not applicable once
the number of spanning elements w1 ⊗ w1, . . . , wm ⊗ wm exceeds O(D). To address the regime
m = o(D2), we will now introduce a different set of incoherence conditions, which are inspired
by properties of isotropic random vectors [76]. Under these assumptions, we state an additional
result form [76], which gives average-case guarantees for Algorithm 2.2 that hold for the highly
overcomplete regime D < m < o(D2) (see Theorem 2.10). The extension to the overcomplete
regime was fundamental for the work [51], which will be discussed in Chapter 3.

2.6.1 Incoherence in the overcomplete setting

In this section, we present a way to quantify the incoherence of a set of unit vectors w1, . . . , wm
and their outer products (this includes the rank-one matrices wk ⊗ wk but also more general
rank-one tensors w⊗n

k) by entries and the spectrum of the associated Gramian matrix. The
Gramian matrix G associated with a set of vectors w1, . . . , wm ∈ RD is a symmetric matrix with
entries given by the inner products Gij = ⟨wi, wj⟩, i.e., we have

G =

 ⟨w1, w1⟩ . . . ⟨w1, wm⟩
...

. . .
...

⟨wm, w1⟩ . . . ⟨wm, wm⟩

 ∈ Rm×m.

2.6. Extension of SPM to the overcomplete regime 70

This can easily be extended to matrices or higher-order tensors of the form w⊗n
1 , . . . , w⊗n

m which
are associated with the Gramian matrix Gn given by the entries

(Gn)ij = ⟨w⊗n
i , w⊗n

j ⟩ = ⟨wi, wj⟩n, n ∈N, i, j ∈ [m].

The spectrum of the Gramian G is connected to the frame bound (2.10) of Section 2.1.2: Recall
that the condition in (2.10) is a bound on the sum of the squared inner products ⟨x, wk⟩2. Let
us denote by W the matrix with columns given by w1, . . . , wm, i.e., W = (w1| . . . |wm) ∈ RD×m.
For any x ∈ RD, we can then write

m

∑
k=1
⟨x, wk⟩2 =

m

∑
k=1
⟨x⊗ x, wk ⊗ wk⟩ = x⊤

(
m

∑
k=1

wk ⊗ wk

)
x = x⊤WW⊤x.

As seen directly from the identity above, the matrix WW⊤ ∈ RD×D is symmetric and positive
semidefinite since x⊤WW⊤x ≥ 0 for all x ∈ RD. Therefore, WW⊤ has a spectral decomposition
with non-negative eigenvalues, which can be arranged in descending order

λmax(WW⊤) = λ1(WW⊤) ≥ · · · ≥ λD(WW⊤) = λmin(WW⊤) ≥ 0.

Elementary linear algebra yields the bound

0 ≤ λD(WW⊤)∥x∥2
2 ≤

m

∑
k=1
⟨x, wk⟩2 ≤ λ1(WW⊤)∥x∥2

2. (2.49)

Let us now assume an overcomplete setting with m > D. Due to G1 = W⊤W, we can rewrite
(2.49) using the Gramian matrix such that

0 ≤ λD(G1)∥x∥2
2 ≤

m

∑
k=1
⟨x, wk⟩2 ≤ λ1(G1)∥x∥2

2,

which closely resembles the expression in (2.10). If (2.10) holds for ν < 1, then

λD(G1)∥x∥2
2 ≤ (1− ν) ≤ (1 + ν) ≤ λ1(G1).

The right-hand side of the last equation is what controls the overall separation of the vectors
w1, . . . , wm since ν ≤ λ1(G1) − 1, and in that sense, we can interpret λ1(G1) = ∥G1∥ as
a measure of the incoherence of the vectors w1, . . . , wm. Note that we have λ1(G1) = ∥G1∥
because the Gramian matrix is always positive semidefinite. The characterization of incoherence
can be generalized to higher-order outer products (tensors) (w⊗n

k)k∈[m].

Lemma 2.20 (cf. [51, Lemma 16]). Let wk ∈ RD for k = 1, . . . , m, and denote by Gn ∈ Rm×m the
Gramian matrix associated with (w⊗n

k)k∈[m], which is given by (Gn)kℓ = ⟨wk, wℓ⟩n. Then, for any
n-mode tensor T ∈ ⊗n

k=1 RD, we have

m

∑
k=1
⟨T, w⊗n

k ⟩
2 ≤ λ1(Gn)∥T∥2

F, (2.50)

where λ1(Gn) denotes the largest eigenvalue of Gn.

Proof. First, note that we can express the Frobenius inner product as an ordinary inner product
over RDn

with the help of the vec(·) operator, since ⟨T, w⊗n
k ⟩ = ⟨vec(T), vec(w⊗n

k)⟩. Let us
denote

Wn :=
(

vec(w⊗n
1)
∣∣∣ . . .

∣∣∣ vec(w⊗n
m)
)
∈ RDn×m. (2.51)

71 Chapter 2. Recovery of a rank-one basis from its perturbed span

Then, the following chain of inequalities holds

m

∑
k=1
⟨T, w⊗n

k ⟩
2 =

m

∑
k=1
⟨vec(T), vec(w⊗n

k)⟩2

=
m

∑
k=1

vec(T)⊤ vec(w⊗n
k) vec(w⊗n

k)⊤ vec(T)

= vec(T)⊤WnW⊤n vec(T)

≤ ∥W⊤n Wn∥ · ∥ vec(T)∥2
2 = ∥W⊤n Wn∥∥T∥2

F.

Since ∥W⊤n Wn∥ = ∥Gn∥ = λ1(Gn), this finishes the proof.

Hence, the spectral norm of the Gramian provides a bound on sup∥T∥F=1 ∑m
k=1⟨T, w⊗n

k ⟩2 that
is similar to our frame bound in (2.10). We already mentioned, that the incoherence between
w⊗n

1 , . . . , w⊗n
m increases with n when the components (wk)k∈[m] have unit norm. This can be

seen from the Gramian matrix since the off-diagonal values Gn will vanish for increasing n
assuming |⟨wk, wℓ⟩| ̸= 1 for all k ̸= ℓ. Furthermore, the characterization of incoherence by
Gramian matrices encodes another important property of the ensemble w⊗n

1 , . . . , w⊗n
m . More

precisely, it is easy to prove that the elements w⊗n
1 , . . . , w⊗n

m are independent if and only if their
Gramian matrix is positive definite. This relates to our prior result Lemma 2.2.

Lemma 2.21. Let w1, . . . , wm ∈ SD−1 and n ∈ N, then the tensors w⊗n
1 , . . . , w⊗n

m are linearly
independent if and only if their Gramian matrix Gn is positive definite.

Proof. Denote by Wn the matrix in (2.51). First, note that w⊗n
1 , . . . , w⊗n

m are independent if and
only if vec(w⊗n

1), . . . , vec(w⊗n
m) are independent. Consider any vector σ ∈ Rm \ {0}, then

m

∑
k=1

σk vec(w⊗n
k) = Wnσ.

Now we can write (Wnσ)⊤(Wnσ) = σ⊤Gnσ. If Gn is positive definite, then Wnσ ̸= 0 for all
σ ∈ Rm \ {0}. Thus, w⊗n

1 , . . . , w⊗n
m must be linearly independent. Likewise, if w⊗n

1 , . . . , w⊗n
m are

linearly independent, then Wnσ ̸= 0, and therefore σ⊤Gnσ = ∥Wnσ∥2
2 > 0 for all σ ∈ Rm \ {0}.

The last part implies λmin(Gn) > 0.

Building upon this result, we can prove that linear independence will always persist when we
consider higher-order tensors.

Lemma 2.22 (cf. [51, Lemma 2]). Consider tensors w⊗n
1 , . . . , w⊗n

m , where wk ∈ SD−1 for all k ∈ [m]

and n ∈ N. If w⊗n
1 , . . . , w⊗n

m is linearly independent, then w⊗n′
1 , . . . , w⊗n′

m are linearly independent
for all n′ > n. In particular, the minimal eigenvalues of the respective Gramian matrices fulfill the
inequality

λmin(Gn′) ≥ λmin(Gn) > 0.

Proof. By Lemma 2.21, the Gramian Gn of the tensors {w⊗n
1 , . . . , w⊗n

m } is a positive definite
matrix. Our proof relies on the fact that higher-order Gramian matrices can be decomposed
using the Hadamard product. In particular, we have Gn′ = Gn ⊙ Gn−n′ . Since λmin(A⊙ B) ≥
mini aiiλmin(B) for any pair of positive semidefinite matrices A, B, see [14, Theorem 3], we thus
have

λmin(Gn′) = λmin(Gn ⊙ Gn′−n) ≥ λmin(Gn) min
k∈[m]
⟨wk, wk⟩n

′−n = λmin(Gn) > 0.

2.6. Extension of SPM to the overcomplete regime 72

For unit-norm vectors w1, . . . , wm the Gramian matrices Gn will always have ones on the
diagonal. This allows us to bound the spectrum of the Gramian matrices based on the mutual
incoherence maxk ̸=ℓ ∥⟨wk, wℓ⟩∥ by using Gershgorins circle theorem [58]. This classical result
states that every eigenvalue of a complex square matrix must lie in a disk centered at one of
the diagonal elements with a radius given by the L1-norm of the off-diagonal elements within
the respective row.

Theorem 2.9 (cf. [16, Theorem 0]). Let G be a complex m×m matrix with entries Gkℓ. For k ∈ [m],
let Rk be the sum of the moduli of the non-diagonal entries, i.e., let

Rk = ∑
ℓ ̸=k
|Gkℓ|.

Then each eigenvalue z of G lies in union of circles

|z− gkk| ≤ Rk,

for all k ∈ [m].

2.6.2 Average case guarantees for SPM in the overcomplete regime.

To be able to extend their SPM analysis to the overcomplete regime m = o(D2), the authors
of [76] rely on the strong incoherence present in an ensemble of vectors that can be modeled
by isotropic random distributions. In Section 2.1.2, we already mentioned that isotropic
random vectors in high dimension can be regarded as nearly orthogonal. For instance, two
independent vectors x, y drawn independently uniformly at random from the unit sphere will
fulfill |⟨x, y⟩| = O(D−1/2) with high probability. Definition 2.3 below states three properties
regarding the mutual incoherence and the Gramian matrix, which hold for up to o(D2)
independent realizations of a uniform distribution on the unit sphere with high probability (cf.
Proposition 2.2). Aside from enabling the main statement in this section (Theorem 2.10), the
properties in Definition 2.3 will play a central role in Chapter 3. Let us first introduce a variant
of the restricted isometry property (RIP) for matrices.

Definition 2.2 (RIP). Let W ∈ RD×m, 1 ≤ p ≤ m be an integer, and δ ∈ (0, 1). We say that W is
(p, δ)-RIP if every D× p submatrix Wp of W satisfies ∥W⊤p Wp − Idp ∥ ≤ δ.

Definition 2.3 (Properties of isotropic random weights). Let W := [w1| . . . |wm] and (Gn)kℓ :=
⟨wk, wℓ⟩n. We define the following incoherence properties:

(Inc1) There exists c1 > 0, depending only on δ, such that W is (⌈c1D/ log(m)⌉, δ)-RIP.

(Inc2) There exists c2 > 0, independent of m, D, so that maxk ̸=ℓ⟨wk, wℓ⟩2 ≤ c2 log(m)/D.

(Inc3) There exists c3 > 0, independent of m, D, so that
∥∥G−1

n
∥∥ ≤ c3, for all n ≥ 2.

Let us consider unit-norm vectors w1, . . . , wm ∈ SD−1 that fulfill (Inc1) - (Inc3). The vectors are
almost maximally separated by (Inc1) and (Inc2). This can be seen by comparing the bound
on the mutual incoherence (Inc2), which states maxk ̸=ℓ⟨wk, wℓ⟩2 ≤ c2 log(m)/D, to the Welch
bound (2.8) we presented in Section 2.1.2. Plugging in m = D2 into (2.8) yields a maximal
mutual incoherence bound given by

max
k ̸=ℓ
|⟨wk, wℓ⟩| ≤

√
m− D

D(m− 1)
=

√
D− 1
D2 − 1

≈ D−1/2, (2.52)

73 Chapter 2. Recovery of a rank-one basis from its perturbed span

which only differs from (Inc2) by a constant and log-factors. The bound on the spectral norm of∥∥G−1
n
∥∥ in (Inc3) does imply that the Gramian matrix G2 of the matrices w1 ⊗ w1, . . . , wm ⊗ wm

is positive definite due to ∥G−1
2 ∥ = λmin(G2)−1, which implies λmin(G2) > c−1

3 . Thus, by
Lemma 2.21 of the last section, the matrices w1 ⊗ w1, . . . , wm ⊗ wm are linearly independent.
The mutual incoherence can directly be translated to an upper bound on the spectrum of the
Gramian matrices, as the following application of Gershgorins circle theorem (Theorem 2.9)
shows:

Lemma 2.23 (cf. [51, Lemma 17]). Let wk ∈ SD−1 for k = 1, . . . , m be unit vectors, and denote by
Gn ∈ Rm×m the Gramian matrix associated with (w⊗n

k)k∈[m], which is given by (Gn)kℓ = ⟨wk, wℓ⟩n.
Assume that the vectors w1, . . . , wm fulfill (Inc2) of Definition 2.3, then there exists an absolute constant
C > 0 only depending on c2 in (Inc2) such that

∥Gn∥ ≤ C

(
1 + m

(
log m

D

)n/2
)

.

Proof. The result follows directly by Theorem 2.9 since the diagonal elements must be 1 and

the off-diagonal elements are bounded in absolute value by
(

c2
log m

D

)n/2
.

This shows that Definition 2.3 covers all necessary conditions on which we relied throughout
Section 2.5. The following statement due to [76] establishes all three properties (Inc1) - (Inc3)
for vectors drawn independently from the unit-sphere as long as m = o(D2).

Proposition 2.2 ([76, Proposition 13]). Let w1, . . . , wm be drawn independently from Unif(SD−1).
If m = o(D2), then, for any arbitrary constant δ ∈ (0, 1), there exist constants C > 0 and D0 ∈ N

depending only on δ such that for all D ≥ D0, and with probability at least

1−m−1 − 2 exp(−Cδ2D)− C
(

e · D√
m

)−C
√

m

(2.53)

conditions (Inc1) - (Inc3) hold with constants c2, c3 < C.

Let us conclude this chapter with one of the main results from [76], which extends the
guarantees for SPM and Algorithm 2.2 to the overcomplete regime.

Theorem 2.10 ([76, Theorem 16]). Let m, D ∈N such that m log2(m) ≤ D2. Assume w1, . . . , wm
satisfy (Inc1) - (Inc3) of Definition 2.3 for some δ, c1, c2, c3 > 0. Then there exists δ0, depending
only on c2, c3 and D0, ∆0, C which depend additionally on c1, such that if δ < δ0, D > D0 and∥∥PW − PŴ

∥∥
F→F ≤ ∆0, the program (2.30) has exactly 2m second-order critical points in the superlevel

set {
u ∈ SD−1

∣∣∣ ∥∥PŴ (u⊗ u)
∥∥2

F ≥ Cm log2(m)/D2 + 5
∥∥PW − PŴ

∥∥
F→F

}
. (2.54)

Each of these critical points is a strict local maximizer for argmaxu∈SD−1

∥∥PŴ (u⊗ u)
∥∥2

F. Furthermore,
for each such point u∗, there exists a unique k ∈ [m] such that

min
s∈{−1,1}

∥u∗ − swk∥2 ≤
√∥∥PW − PŴ

∥∥
F→F. (2.55)

A detailed discussion of the proof is beyond the scope of this work since their proof is stated in
a more general setting that has tensor decompositions in mind. For details, we refer to [76].
We defer the discussion concerning this result to the next section, where we summarize the
findings of this chapter.

2.7. Conclusion 74

2.7 Conclusion

Let us now summarize our results on the recovery of a rank-one basis from a perturbed matrix
space. The present chapter covers two algorithms (Algorithm 2.1 and Algorithm 2.2) to tackle
the recovery of the spanning elements w1 ⊗ w1, . . . , wm ⊗ wm, or equivalently ±w1, . . . ,±wm
from a matrix space

Ŵ ≈ W = span{w1 ⊗ w1, . . . , wm ⊗ wm}.

The first approach, is centered around the characterization of near-rank-one matrices within Ŵ
given by

argmax ∥M∥ s.t. ∥M∥F ≤ 1, M ∈ Ŵ . (2.56)

Our characterization in Theorem 2.2 of local maximizers of (2.56) establishes conditions
under which each local maximizer of (2.14) must be close to one of the spanning elements
w1 ⊗ w1, . . . , wm ⊗ wm. However, there are still some open questions (discussed as part of
Section 2.3.5) within our theory regarding the computations of the local maximizers. As a
reminder, our guarantees for Algorithm 2.1 in Theorem 2.4 only show that the iteration

Mj+1 = Fγ(Mj), where Fγ(X) =
PŴ (X + γu1(X)⊗ u1(X))∥∥PŴ (X + γu1(X)⊗ u1(X))

∥∥
F

, (2.57)

has increasing spectral norm and converging subsequences that converge to stationary points
of (2.56). Strictly speaking, Theorem 2.4 does not guarantee convergence to local maximizers.
Additionally, iteration (2.57) is expensive to compute since (i) optimization is done in matrix
space and (ii) we need to compute a SVD at every iteration.

The second approach (Algorithm 2.2) we presented is based on the non-linear program

max
∥u∥=1

∥∥PŴ (u⊗ u)
∥∥2

F , (2.58)

and seeks to find the components ±w1, . . . ,±wm ∈ SD−1 by iterating

uj+1 = PSD−1(uj + 2γPŴ (uj ⊗ uj)uj), (2.59)

from random initializations u0 ∈ SD−1, which is referred to as the subspace power method
(SPM) [77, 76, 50]. This approach is favorable in terms of computational complexity since
every iteration only relies on linear operations and a projection on the respective unit-sphere.
This makes Algorithm 2.2 applicable to relatively high dimensional problems. For extensive
numerical experiments with SPM, we refer to Section 3.6, Section 4.2.3, and Section 4.4. Another
benefit of SPM over the method discussed in Section 2.3 is stronger theoretical guarantees
associated with SPM. In particular, by [77] (see Theorem 2.5), iteration (2.59) will converge to a
local maximizer of (2.58) for almost all random initializations u0 ∈ SD−1 (cf. (SPM2)).

SPM under deterministic frame conditions. Throughout Section 2.5, we provide an extension
to the original results of [77] with Theorem 2.6, proving that, under the deterministic frame
condition (2.10) (implying m = O(D), cf. Lemma 2.3) and for sufficiently small perturbations
δ = ∥PW − PŴ∥F→F, the local maximizers of (2.58) within a superlevel set of the objective (2.58)
will be close to the spanning components ±w1, . . . ,±wm. Spurious local maximizers (i.e., local
maximizers not belonging to said superlevel set) can be filtered via thresholding (cf. parameters
β in Algorithm 2.2). The fact that spurious local maximizers are not a theoretical artifact and

75 Chapter 2. Recovery of a rank-one basis from its perturbed span

can generally not be avoided was shown in Lemma 2.19. Theorem 2.8 from [76] provide a
slightly better lower bound on the superlevel set, which shows that, for δ, ν sufficiently small,
setting β = 43−60ν

1−60ν δ will filter all spurious local maximizers in Algorithm 2.2. Note that SPM
will monotonically converge according to (SPM1). Hence, for δ sufficiently small, most random
starting points u0 ∈ SD−1 will lead to a SPM iteration that stays within the superlevel set that
does not include spurious local maxima.

Average case guarantees for SPM for random isotropic components up to m = o(D2).
Within the framework where the components w1, . . . , wm ∈ SD−1 satisfy the deterministic frame
condition (2.10), the number of components is limited to the linear regime, more precisely,
(2.10) requires m < 2D. Recently, in [76], the perturbation analysis of SPM has been extended
to the overcomplete regime where the number of components is allowed to scale up to
m log2 m = O(D2). We stated this result in Theorem 2.10. This statement relies on several
incoherence conditions (cf. Definition 2.3) that, by Proposition 2.2, provably hold for isotropic
random vectors in high dimensions such as w1, . . . , wm ∼i.i.d. Unif(SD−1) with high probability.
The subspace power method, in the overcomplete regime, benefits from the same theoretical
guarantees (SPM1)-(SPM2) that were given in Theorem 2.5. However, one notable difference is
that the cut-off point of the superlevel set, which allows us to distinguish between spurious
and non-spurious local maximizers, now depends on m, D. In particular, according to (2.54) in
Theorem 2.10, non-spurious maximizers are contained in the set{

u ∈ SD−1
∣∣∣ ∥∥PŴ (u⊗ u)

∥∥2
F ≥ Cm log2(m)/D2 + 5δ

}
,

for some constant C > 0 depending on the incoherence of the components w1, . . . , wm. Clearly,
as m log2 m approaches D2, the size of the superlevel set quickly shrinks. Consequently, random
starting points of SPM u0 ∼ Unif(SD−1) do not lie within such a superset with high probability.
This affects the choice of the threshold parameter β in Algorithm 2.2. Let us mention, however,
that such an effect is partially expected due to the fact that for m = D(D− 1)/2, the rank-one
basis recovery problem becomes ill-posed since dim(Sym(RD×D)) = D(D− 1)/2 (see the
related discussion in Section 2.1.1). Hence, for m = D(D− 1)/2, every vector u ∈ SD−1 would
be a global maximizer of (2.58) since u⊗ u is rank-one and contained inW . Let us note that we
manage empirically (see Figure 3.3 in Section 3.6) to recover all components w1, . . . , wm up to
the regime where m = 2/5D2 for sufficiently high dimensions (e.g., D = 50) with a threshold
of β = 0.99. This shows that, for sufficiently small δ, the filtering of spurious local maximizers
is still possible close to the information theoretical limit m = D(D− 1)/2.

Computational complexity of SPM. Assuming δ is sufficiently small and D is sufficiently
large, then all repetitions of SPM where m log2(m) = o(D2) will compute a non-spurious local
maximizer for almost every starting point u0 ∈ SD−1. Every individual repetition of SPM
runs in polynomial time. If w1, . . . , wm are well separated, then we can assume that retrieving
every local maximizer is almost equally likely. Hence, based on our argumentation in Remark
2.2, we expect to find all components after Θ(m log m) repetitions of the SPM iteration. This
makes the overall runtime of Algorithm 2.2 polynomial in this regime. For the regime where
m log2(m) = Θ(D2), there are cases where random initializations u0 ∈ SD−1 lie outside the
superlevel set mentioned above with high probability. In principle, this could imply that one
needs an exponential number of restarts of SPM to compute non-spurious local maximizers,
which would result in a non-polynomial runtime. Let us mention that we do not encounter
such cases in our experiments in Section 3.6. In fact, we observe that SPM does manage to
compute all m = 2/5D2 components (drawn uniformly at random from the unit sphere) in
dimensions D = 35, 40, 45, 50 in the order of seconds from 5m log m repetitions. One additional

2.7. Conclusion 76

benefit of SPM is that the iteration (2.59) can easily be run in parallel and leverage computing
on graphic cards: Each step of SPM performs the operation uj + 2γPŴ (uj ⊗ uj)uj followed
by a projection onto the unit sphere. Note that the projection PŴ (uj ⊗ uj) can be written as
a matrix-vector product by considering the vectorized orthogonal projection instead. This
requires only minor modifications of Algorithm 2.2 and will be discussed in Section 4.3.1.

Chapter 3

Efficient reconstruction of wide shallow
networks

In this chapter, we consider the identification of shallow neural networks of the type

f : RD → R, f (x) :=
m

∑
k=1

g(⟨wk, x⟩+ τk), (3.1)

where w1, . . . , wm ∈ SD−1 are unit-norm weights and τ1, . . . , τm ∈ R are bounded shifts. We
study the regime where the number of neurons m scales like m log2 m = O(D2). As the main
result of this chapter, we present a end-to-end recovery pipeline that comes with theoretical
guarantees for smooth activations of sigmoidal type and sufficiently incoherent weights. More
precisely, we assume a setting where the weights are drawn uniformly from the unit sphere
and therefore fulfill the incoherence properties that were previously discussed in Section 2.6.1
with high probability. Our recovery pipeline relies on active sampling to approximate network
derivatives (cf. Section 1.4) and is based on a decoupling of the network parameters that can be
broken down into three consecutive phases: In the first phase, we recover the network weights
by reducing their identification to the rank-one basis recovery problem that was studied in Chapter
2. This reduction was already introduced in Section 1.5. More precisely, we rely on Hessian
approximations of the network to construct a matrix space

Ŵ ≈ span{w1 ⊗ w1, . . . , wm ⊗ wm}. (3.2)

The weights can then be recovered up to sign by iterating SPM (cf. Algorithm 2.2 and Chapter
2). In the second phase, the signs of the weights and initial estimates for the shift parameters
are computed using algebraic evaluations leveraging certain properties of the activation func-
tion (we assume g satisfies properties commonly found in sigmoidal activation functions) and
higher-order directional derivatives of the network. In the last phase, the shifts are computed by
empirical risk minimization via gradient descent. We present a local convergence analysis that
guarantees convergence to the ground-truth biases when combined with the shift initializations
of the second phase. The convergence analysis is based on a linearization argument which
relies on techniques common in the neural tangent kernel (NTK) approach.

This chapter is based on joint work with Massimo Fornasier, Timo Klock, and Marco Mondelli
that appeared as a preprint in [51]. Several of the theoretical proofs within this chapter, which
originate from this work, are stated verbatim as in their underlying reference, indicated within
the definition of the statement. We provide several discussions that add context to the technical
statements. Notably, we also address one open problem stated in [51] and related literature
[52, 54, 50]. More precisely, we prove that for non-polynomial activation functions, the Hessians

77

3.1. Introduction and preliminaries 78

of the network do provide sufficient information for the approximation in (3.2) whenever the
weights are sufficiently incoherent.

3.1 Introduction and preliminaries

Chapter 1 includes a discussion that outlines how the identification of neural networks and the
analysis of the teacher-student model provide insight into the generalization capabilities of
neural networks. However, most known results in the teacher-student setting are limited to
shallow neural networks where the number of neurons m does not exceed the number of inputs
D or depends at most linearly on D, i.e., we have m = O(D). Hence, a natural next step is an
extension to the overcomplete regime where D < m < D2. Recall that most existing approaches
to the teacher-student problem mentioned in Chapter 1 rely on tensor decompositions. Tensor
decompositions are either used to compute the network weights directly [8], or to find suitable
initialization for SGD. Tensor decomposition in the regime D3/2 < m < D2 is known to be
computationally hard [93]. Hence, it remains unclear whether existing results based on tensor
decompositions can be applied to efficiently recover networks in the regime D3/2 < m < D2.
Additionally, the numerical experiments in Section 1.3.1 give evidence that the recovery of all
network parameters via SGD is not straightforward whenever D3/2 < m < D2.
Another unexplored area is the identification of networks with shifts. What makes neural
networks theoretically interesting is that they act as universal approximators (cf. Section 1.1.2).
However, to the best of our knowledge, the universal approximation theorem does only hold
for networks with shifts. A common technique is integrating shifts into the network weights by
adding an additional constant input. For example, consider a neuron with activation g, weight
w and shift τ, then

g(⟨x, w⟩+ τ) = g
(
⟨
(

x
1

)
,
(

w
τ

)
⟩
)

.

At first, this suggests that the recovery of shifts is a by-product of weight recovery. How-
ever, note that proving recovery guarantees for the network weights typically build upon
distributional assumptions on the network weights. A widely used assumption is that the
network weights can be modeled as independent samples of an isotropic random distribution.
Absorbing the shifts into the weights will break many of the desirable properties connected with
those distributional assumptions (e.g., a loss of mutual incoherence).

In this chapter, we will address the recovery of a shallow neural network

f : RD → R, f (x) :=
m

∑
k=1

g(⟨wk, x⟩+ τk), (3.3)

with sufficiently smooth non-polynomial activations, bounded shifts, and incoherent weights
w1, . . . , wm ∈ SD−1 in the overcomplete regime. Under the setting introduced in the next
section, we give guarantees for the recovery of the weights and shifts that can be informally
summarized as follows:

Theorem 3.1 (Informal). Let f be the shallow network as in (3.3) with D inputs and m neurons such
that m log2 m = O(D2). Then, for sufficiently large D, a constructive algorithm exists recovering all
weights and shifts of the network with high probability from O(Dm2 log2 m) network queries.

Following the steps discussed in Section 1.5, our recovery pipeline finds weight approximations
by solving the problem studied throughout Chapter 2 via SPM (cf. Algorithm 2.2). The
weight recovery is the determining factor for the computational complexity of the pipeline

79 Chapter 3. Efficient reconstruction of wide shallow networks

that will be presented. For reasons discussed in Section 2.7, that makes the computational
complexity of our overall pipeline polynomial in m and D in the regime m = O(D). In the
highly overcomplete regime, where m log2 m ≲ D2, then global convergence of Algorithm 2.2 is
guaranteed by Theorem 2.10 assuming that spurious local maximizers are filtered (this relates
to β in Algorithm 2.2) as in (2.54). Let us mention that we empirically observe an efficient
recovery of networks close up to the information-theoretic limit m = 1/2(D− 1)D (see Section
3.6). This suggests that the analysis of Algorithm 2.2 might not be optimal. For more details
on the computational complexity of the SPM approach, we refer to Chapter 2 (in particular
Section 2.7). Before we describe our recovery pipeline and state our main theoretical result
(Theorem 3.2), we will first introduce our problem setting throughout the upcoming section.

3.1.1 Problem setting: Shallow neural network model

Let us start by formally introducing our problem setting. The upcoming conditions are
separated into two categories. First, we describe the class of networks considered in the technical
sections. This includes assumptions about the network parameters as well as conditions
concerning the activation function. Second, we state which information is accessible to recover
the network parameters.

Network model. We consider planted shallow neural networks f (x) = ∑m
k=1 g(⟨wk, x⟩+ τk)

with bounded shifts τ1, . . . τm ∈ [−τ∞,+τ∞] for some known τ∞ > 0 and assume, that the
network weights are drawn uniformly at random from the unit-sphere

w1, . . . , wm ∼i.i.d. Unif(SD−1).

Let us note that the size of the interval [−τ∞,+τ∞] only depends on the activation function g
but not on m, D. Assuming that the weights can be modeled by isotropic random vectors of
fixed size simulated generic unit-vectors for which we can expect strong mutual incoherence:
Recall that by Proposition 2.2 in Section 2.6.1, ensembles of isotropic random vectors fulfill
(Inc1) - (Inc3) of Definition 2.3 with high probability. In particular, (Inc2) implies the existence
of a constant C > 0 such that the mutual incoherence of w1, . . . , wm is bound by

max
k ̸=ℓ
⟨wk, wℓ⟩2 ≤ C log(m)/D.

This allows us to regard the weights as almost orthogonal for sufficiently high dimensions.
Additionally, by Lemma 2.21 the property (Inc3) implies the linear independence of the systems
{w⊗n

k |k ∈ [m]} for all n ≥ 2. We refer to Section 2.6.1 for more details. Aside from these
assumptions, we also require that the shallow neural network f satisfies the following points:

Assumption 3.1 (Shallow network model (cf. [51])).

(SNM1) The activation function satisfies g ∈ C3(R) and its first three derivatives are bounded. We
denote

κ := max
n∈[3]

∥∥∥g(n)
∥∥∥

∞
< ∞. (3.4)

Furthermore, the second derivative g(2) is strictly monotonic on the open interval (−τ∞,+τ∞),
g(1) is strictly positive or negative on (−τ∞,+τ∞) and there exists a sign s ∈ {−1,+1} such
that for all τ ∈ [−τ∞,+τ∞] we have

s = sgn
(∫

R
g(1)(t + τ) exp(−t2/2)dt

)
.

3.1. Introduction and preliminaries 80

Figure 3.1: Interval of recoverable shifts visualized for the tanh(·)-activation.

(SNM2) Denote by Pn the set of polynomials of degree n or less. We assume that g, g(1), g(2) ̸∈ P3.
Furthermore, we assume that gτ(·) := g(·+ τ) ∈ L2(R, wG) for all τ ∈ [−τ∞,+τ∞], where
wG(t) := exp(−t2/2), i.e., we have∫

R
g(t)2 exp(−t2/2)dt < ∞ for all τ ∈ [−τ∞,+τ∞].

(SNM3) The Hessians of f have sufficient information for weight recovery, i.e., there exists an α > 0
such that

λm

(
EX∼N (0,Id)[vec(∇2 f (X))⊗2]

)
≥ α > 0. (3.5)

Note: This assumption is directly implied by (SNM1)-(SNM2) under sufficiently incoherent
weights (cf. Remark 3.1 and Theorem 3.5.)

Let us first discuss the type of activation functions that satisfy (SNM1) and (SNM2). Condition
(SNM1) unites several properties that are fulfilled by activations of sigmoidal type (see Example
3.1 below): A certain degree of smoothness is necessary for our approach, as we will consider
higher-order derivatives of the network. The upper bound on the derivatives in (3.4) allows us
to rely on the Lipschitz continuity of g and its derivatives to simplify many of the technical
statements. We require the strict monotonicity of g(2) on the interval (−τ∞,+τ∞) to be able to
infer the shifts τ ∈ (−τ∞,+τ∞) from the value g(2)(τ). Empirically, we do not observe that this
assumption is necessary. However, this assumption allows us to compute an accurate initial
estimate of the shifts, which is necessary as our local convergence analysis of GD comes with a
small convergence radius. Therefore, it remains necessary as part of our theoretical analysis.
The two assumptions on g(1) in (SNM1) allow us to simplify several technical statements
involving Hermite coefficients (cf. proofs throughout Section 3.4.6 and Section 3.4.4 for a
definition of Hermite coefficients) and could potentially be dropped at the price of more
complicated expressions in our guarantees. Lastly, condition (SNM2) implies several properties
which characterize the Hermite expansion (see Definition 3.2) of the activation function and its
derivatives. More precisely, we require that g belongs to the L2 space weighted by the Gaussian
kernel wG(t) := exp(− t2

2) and therefore admits a Hermite expansion. Furthermore, assuming
that g(1), g(2) cannot be represented by polynomials of degree three or less implies that the
Hermite coefficients do not vanish too fast, which we exploit to prove lower bounds on the
second moment matrices EX∼N (0,Id)[vec(∇n f (X))⊗2], where n = 1, 2 (cf. Section 3.4.5).

Example 3.1. Classical examples of activation functions that fulfill (SNM1)-(SNM2) are sigmoidal
functions. These functions are generally smooth and bounded functions with bounded derivatives. In
most cases, these functions are also strictly monotonic, implying that there is no sign-change of g(1).

81 Chapter 3. Efficient reconstruction of wide shallow networks

For typical representatives of this class, such as the hyperbolic tangent g(x) = tanh(x) or the sigmoid
function g(x) = 1/(1 + exp(−x)), one can also check that the remaining conditions are satisfied for
a suitable choice of τ∞. More precisely, for the invertibility of g(2) we need to choose τ∞ ≈ 0.6 for
g(x) = tanh(x) and τ∞ ≈ 1.5 for the sigmoidal function g(x) = 1/(1 + exp(−x)).

To provide more context on (SNM3), let us consider a network of the form (3.1). Then the
Hessian takes the form

∇2 f (x) =
m

∑
k=1

g(2)(⟨x, wk⟩+ τk)wk ⊗ wk.

Condition (SNM3) guarantees that sampling sufficiently many Hessians of the network at
random inputs provides enough information to approximate the space

W = span{w1 ⊗ w1, . . . , wm ⊗ wm} ⊂ Sym(RD×D).

This reduces the weight recovery to the rank-one basis recovery problem studied throughout
Chapter 2. Condition (SNM3) is common in the related literature [52, 54, 50, 8].

Remark 3.1. Assumption (SNM3) is, in fact, a direct consequence of (SNM1)-(SNM2) under fairly
mild conditions. This implication is proven in Theorem 3.5 and addresses one open problem stated in
[54] and related literature [52, 50]. Notably, Theorem 3.5 provides a lower bound α that does not
depend negatively on D, m.

Accessible information. The next assumption summarizes what information about the
network can be accessed and reflects the points discussed previously in Section 1.4.

Assumption 3.2 (Network queries allow derivative approxiamtion).

(G4.1) We can query the network f and the activation g at any point without noise, and the number of
neurons m is known.

(G4.2) We assume access to a numerical differentiation method, denoted by ∆n[·], that computes the
derivatives for n = 1, 2, 3 up to accuracy ϵ > 0. To be more precise, we require that the
derivatives of g with respect to a vector input x ∈ RD fulfill∥∥∥∇ng(w⊤x)− ∆n[g(w⊤x)]

∥∥∥
F
≤ C∆

∥∥w⊗n∥∥
F ϵ, (3.6)

where C∆ is a universal constant only depending on the activation through κ (see (3.4)).
Furthermore, for any b, t0 ∈ R the derivatives of t 7→ g(b t) can be approximated as∣∣∣∣∣ dn

dtn g(b · t)
∣∣∣∣
t=t0

− ∆n[g(b·)](t0)

∣∣∣∣∣ ≤ C∆bn+2ϵ. (3.7)

We also assume that the numerical differentiation method is linear, i.e., it satisfies

∆n[a · g + h] = a · ∆n[g] + ∆n[h], (3.8)

for any functions g, h and scalar a ∈ R. Finally, the numerical differentiation algorithm requires
a number of queries proportional to the dimension of the approximated derivative, i.e., O(1) for
partial derivatives and O(Dn) for n-th order derivative tensors.

In summary, the preceding conditions guarantee that we can approximate network derivatives
up to an error that scales like ϵ times a factor depending on the dimension of the derivative.
We will not further specify the numerical differentiation method. All the properties in (G4.2)
are fulfilled by a standard central finite difference scheme.

3.1. Introduction and preliminaries 82

3.1.2 Summary: Overview and main result

Consider a shallow network f satisfying the conditions of the preceding section. The recovery
of the weights w1, . . . , wm ∈ SD−1 and shifts τ1, . . . , τm is tackled in a three-step procedure.

Weight recovery (Section 3.2). As already outlined in the introduction, the first step of our
network identification is the recovery of the weights. Following ideas from [54, 52, 50] (cf.
Section 1.5), we tackle this problem by reducing it to the rank-one basis recovery problem of
Chapter 2: Here, the approximation

Ŵ ≈ W := span{w1 ⊗ w1, . . . , wm ⊗ wm},

is computed by selecting the m-th singular subspace of the space spanned by approximations
of network Hessians, i.e., we have

Ŵ = spanm
{

∆2 f (x1), . . . , ∆2 f (xNh)
}

.

In Section 3.2, we show that, for Nh sufficiently large and x1, . . . , xNh ∼i.i.d. N (0, IdD), this leads
to an approximating space Ŵ such that∥∥PW − PŴ

∥∥
F→F ≲

√
m/α · ϵ w.h.p.

Notably, as the parameter ϵ is under our control, the approximation error can be made
sufficiently small. We then recover the individual weights from W by using Algorithm 2.2,
which repeatedly samples independent starting points u0 ∈ SD−1 and iterates the SPM iteration

uj = PSD−1(uj−1 + 2γPŴ (uj−1 ⊗ uj−1)uj−1), j ∈N>0,

to compute local maximizers of the objective u 7→ ∥PŴ (u⊗ u)∥2
F. Algorithm 2.2 comes with

guarantees up to the regime m log2 m = O(D), more precisely, Theorem 2.10. We combine these
results in Theorem 3.3, which states that, under suitable conditions, this approach eventually
leads to weight approximations ŵ1, . . . , ŵm ∈ SD−1 such that

min
s∈{−1,+1}

∥wk − sŵk∥2 ≲ (m/α)1/4ϵ1/2 for all k ∈ [m],

where α > 0 is taken from the lower bound in (SNM3) and can be regarded as a constant
independent of m, D (cf. Theorem 3.5). The overall weight recovery is summarized in Algorithm
3.2 and constitutes the first step in Algorithm 3.1.

Recovery of the signs and initial estimation of the shifts (Section 3.3). The second step
assumes that we are given weight approximations ŵ1 ≈ s1w1, . . . , ŵm ≈ smw1 where s1, . . . , sm ∈
{−1,+1} are unknown signs. These weight approximations can be interpreted as downstream
results of the weight recovery. Furthermore, we assume that the original weights, as well as
the approximated network weights, are incoherent according to (Inc2)-(Inc3) of Definition 2.3.
This assumption is justified because the incoherence of (wk)k∈[m] is needed for the guarantees
concerning the weight recovery (and therefore, it is already incorporated in Theorem 3.3),
whereas the incoherence of the ensemble (ŵk)k∈[m] can be enforced by choosing ϵ sufficiently
small (cf. Lemma 3.2). Based on these assumptions, we recover the original signs s1, . . . , sm and
an initial estimate of the shifts τ1, . . . , τm ∈ [−τ∞,+τ∞] exploiting a linearization argument and
the (local) invertibility of g(2) (cf. (SNM1)): We start by retrieving an estimate to the vectors
C2, C3, which are defined as

Cn,k := sn
k g(n)(τk), for k ∈ [m], n ∈ {2, 3}.

83 Chapter 3. Efficient reconstruction of wide shallow networks

We show that C2, C3 reveal the signs and shifts assuming condition (SNM1) holds. This can be
seen quite easily: Assume we are given s2

1g(2)(τ1), s3
1g(3)(τ1). Then s2

1g(2)(τ1) = g(2)(τ1) due to
(±1)2 = 1 and inferring τ1 from g(2)(τ1) is possible whenever g(2) is locally invertible. Once
τ1 is known, we can solve s1g(3)(τ1) for s1. For n ∈ {2, 3}, we recover Cn approximately by
solving two linear systems involving the Gramian matrices Ĝn of the ensembles (w⊗n

k)k∈[m].
More precisely, we show that

ĜnCn ≈ T̃n,

where T̃n denotes the vector storing the n-th directional derivative approximation of the network
at the input x = 0 along the directions ŵ1, . . . , ŵm. The initialization step is summarized in
Algorithm 3.3. The perturbation analysis provided in Section 3.3 shows that, for suitable
conditions, Algorithm 3.3 leads to correct recovery of the original signs s1, . . . , sm and provides
us with shift initializations τ̂ = [τ̂1, . . . , τ̂m]⊤ of the ground truth shifts with an approximation
error that scales like

∥τ̂ − τ∥2 ≲
ϵ1/2

α1/4
m7/4

D3/4 ,

up to poly-logarithmic factors.

Refining the shift via empirical risk minimization (Section 3.4). Based on the weight
recovery and initialization step, we now assume we are given weight approximations ŵ1 ≈
w1, . . . , ŵm ≈ wm since the ambiguity of the signs has been resolved in the initialization step.
During the last step, the weight approximations will remain fixed, and the objective is to further
improve upon the shift estimation. The shifts are then refined by empirical risk minimization
in a teacher-student setup: We define the parametrization

f̂ (x, τ̂) :=
m

∑
k=1

g(sk⟨ŵk, x⟩+ τ̂k), (3.9)

representing the student network. This model is then fit against the teacher network f by
minimizing the least-squares objective

J(τ̂) =
1

2Ntrain

Ntrain

∑
i=1

(
f (Xi)− f̂ (Xi, τ̂)

)2
, where X1, . . . , XNtrain ∼i.i.d. N (0, IdD), (3.10)

via gradient descent. In Section 3.4, we provide a local convergence analysis of the associated
gradient descent iteration

τ̂(n+1) = τ̂(n) − γ∇τ̂ J(τ̂(n)), (3.11)

where γ > 0 denotes a step-size parameter. Assuming the setting discussed in Section 3.1.1,
we then prove the following result (cf. Theorem 3.4): For the unperturbed case, where teacher
and student weights are identical, we prove that (3.11) converges to the original shifts τ at a
linear rate when started from an initialization τ̂(0) given by our initialization step. For the
perturbed case, we prove that (3.11) started from our initialization will remain within distance
∆W of the original shifts τ, where ∆W is an error term depending on the accuracy of the weight
approximation. A discussion of the term ∆W is included at the end of this section and in
Section 3.4.2. The proof of local convergence relies on a linearization argument of the objective
J around the true shifts τ, which allows us to relate the behavior of (3.11) to the spectrum of
the matrix

EX∼N (0,Id)[∇τ̂ f̂ (X, τ)⊗2]. (3.12)

In Section 3.4.5, we rely on tools appearing in the neural tangent kernel (NTK) theory [73] to
prove a lower bound on the minimal eigenvalue of (3.12).

3.1. Introduction and preliminaries 84

Algorithm 3.1: Network reconstruction
Input: Shallow neural network f defined in (3.1), numerical differentiation method

∆n[·] with accuracy ϵ, number of Hessian locations Nh and gradient descent
samples Ntrain, number of steps for refinement via gradient descent NGD.

1 Compute weights Ŵ = [ŵ1| . . . |ŵm] using Algorithm 3.2;
2 Find signs ŝ and initial shifts τ̂ ∈ Rm by linearization through Algorithm 3.3;
3 Set Ŵ ← Ŵ diag(ŝ) and construct a student network f̂ as in (3.9) with parameters Ŵ, τ̂;
4 Draw samples x1, . . . , xNtrain ∼ N (0, IdD) and refine the shifts of f̂ by minimizing J(τ̂)

(cf. (3.10)) via gradient descent for NGD steps (cf. Section 3.4). Denote by τ̂[NGD] the
final iterate.

Output: Weights Ŵ and final shifts τ̂[NGD] of f̂ .

Main result Let us now state our main result, which is achieved by combining all three steps
discussed above in Algorithm 3.1.

Theorem 3.2 (cf. [51, Theorem 2]). Consider the teacher network f defined in (3.1), where
w1, . . . , wm ∼ Unif(SD−1) and τ1, . . . , τm ∈ [−τ∞, τ∞]. Assume g satisfies (SNM1) - (SNM2)
and f satisfies the learnability condition (SNM3) for some α > 0. Assume we run Algorithm 3.1 with
Nh > t(m + m2 log(m)/D) for some t ≥ 1 and Ntrain > m

√
D. Then, there exists D0 ∈ N and a

constant C > 0 only depending on g and τ∞ such that the following holds with probability at least
1− m−1 − 2D2 exp (−min{α, 1}t/C)− Cm2 exp(−

√
D/C): If m ≥ D ≥ D0, Cm log2 m ≤ D2,

and the numerical differentiation accuracy ϵ satisfies

ϵ ≤ D1/2 min{1, α1/2}
Cm9/2 log(m)3/2 , (3.13)

then Algorithm 3.1 returns weights and shifts (Ŵ = [ŵ1| . . . |ŵm], τ̂(NGD)) that fulfill

max
k∈[m]

∥ŵπ(k) − wk∥2 ≤ C(m/α)1/4ϵ1/2, (3.14)

∥τ̂(NGD)
π − τ∥2 ≤ C

(
m7/4D1/4ϵ1/2

α1/4N1/2
train

+
ξNGD

m1/2 + ∆W,1

)
, (3.15)

for some permutation π and some constant ξ ∈ [0, 1) where

∆W,1 :=
m1/2 log(m)3/4

D1/4 ·
(
∥Ŵ −W∥F +

∆1/2
W,O

D1/2 +

∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

)
, (3.16)

∆W,O :=
m

∑
k ̸=k′
|⟨wk − ŵk, wk′ − ŵk′⟩| . (3.17)

The statement of Theorem 3.2 combines the results from Theorem 3.3, Proposition 3.1 and
Theorem 3.4. The proof has been deferred to Section 3.5. Before continuing with the theoretical
discussion of each pipeline step, let us provide some context on Theorem 3.2. The output
of Algorithm 3.1 is a set of weight approximations ŵ1 ≈ w1, . . . , ŵm ≈ wm ∈ SD−1 and shift
approximations τ̂

(NGD)
1 ≈ τ1, . . . , τ̂

(NGD)
m ≈ τm, where NGD ∈N denotes the number of gradient

descent iterations computed in the third step of the pipeline. Since the numerical accuracy ϵ > 0
is up to our choosing, the condition in (3.13) can be satisfied, and the weight approximations

85 Chapter 3. Efficient reconstruction of wide shallow networks

can be made arbitrarily accurate. What remains is the final error bound in the shifts. According
to (3.15), we have

∥τ̂(NGD)
π − τ∥2 ≲

(
m7/4D1/4ϵ1/2

α1/4N1/2
train

+
ξNGD

m1/2 + ∆W,1

)
.

Due to the dependency on ϵ1/2/N1/2
train, the first term can be made suitably small. Similarly,

the second term will vanish at an exponential rate after sufficiently many gradient descent
iterations (ξ < 1). Hence, we can assume that the dominant factor in this bound is ∆W,1.

Discussion of ∆W,1. The factor ∆W,1 originates from the perturbation analysis of the gradient
descent iteration (3.11) in Section 3.4. For simplicity, let us assume the permutation in Theorem
3.2 is such that π(k) = k for all k ∈ [m], which can be achieved by relabeling the parameters
accordingly. First, note that the term ∆W,1 can be bounded in terms of the uniform weight
approximation error δmax = maxk∈[m] ∥ŵk − wk∥. Clearly, if δmax = 0, then ∆W,1 = 0. If we
assume that δmax scales like (3.14), then one can compute (cf. Section 3.4.2) a crude upper
bound that scales like

∆W,1 ≲
ϵ1/2

α1/4
m7/4

D1/4 (3.18)

up to poly-logarithmic factors. This shows that ∆W,1 can be made arbitrarily small for a suitable
numerical accuracy ϵ > 0. However, the bound on ∆W,1 in (3.18) is generally not optimal, as it
assumes the worst-case where the weight approximation errors can align perfectly. In this case,
expressions like ∥∑m

k wk − ŵk∥2 suffer from error accumulation.

Remark 3.2. The scaling of ∆W,1 plays an important role when comparing the error of the shifts after the
initialization step to the error bound after running gradient descent. We discuss this dynamic in greater
detail in Section 3.4.2, where it is shown that gradient descent does lead to a guaranteed improvement
whenever we assume randomness of the weight errors.

The underlying results on which our weight recovery is based (cf. Theorem 2.10 and [76]) do
not specify the distribution of the errors induced by SPM. However, empirically we do not
observe error accumulations (see Figure 3.5 and Section 3.6 and the related discussion). An
appropriate random model for the residual weight errors based on the scaling in (3.14) would
be

ŵπ(1) − w1, . . . , ŵπ(m) − wm ∼i.i.d. N (0, (m/α)(1/2)ϵ/D · IdD).

Since these random variables satisfy

E
[
∥ŵπ(k) − wk∥2

]
=

m(1/4)ϵ1/2

D1/2α(1/4)
EX∼N (0,IdD) [∥X∥2] =

ϵ1/2m(1/4)

α(1/4)
,

which reflects the upper bound in (3.14). Under these assumptions, the factor ∆W,1 scales like

∆W,1 ≲
ϵ1/2 log3/4(m)

α1/4

(
m5/4

D1/4 +
m7/4

D

)
, (3.19)

which is an improvement of a factor of O(D−3/4) over (3.18). We refer to the discussion in
Section 3.4.2 for more details.

3.2. Weight identification 86

3.2 Weight identification

Consider a shallow neural network f : RD → R of the form

f (x) =
m

∑
k=1

g(⟨x, wk⟩+ τk)

that satisfies the conditions stated throughout Section 3.1.1. This section addresses the recovery
of the weight vectors w1, . . . , wm ∈ SD−1 up to sign for sufficiently high dimensions, and our
results apply to the regime where the number of neurons m scales up to m log2 m = O(D).
We show that for our setting, the recovery of the weights w1, . . . , wm (up to sign) based on
network queries can be reduced to the rank-one basis recovery problem, which was studied in
Chapter 2. This reduction has already been discussed in Section 1.5 and relies on the fact that
the Hessians expose the weights as

∇2 f (x) =
m

∑
k=1

g(2)(⟨wk, x⟩+ τk)wk ⊗ wk.

In Lemma 3.1 below, we prove that this can be leveraged to construct an approximation
Ŵ ⊂ Sym(RD×D) to the space spanned by the rank-one matrices {wk ⊗ wk|k ∈ [m]}. The
recovery of ±wk from Ŵ is then tackled by Algorithm 2.2. This approach is covered by
the recent results from [77] that extend the analysis of SPM to the overcomplete regime
m = o(D2) (cf. Section 2.6 and Theorem 2.10). More precisely, in Theorem 3.3, we prove that
our recovery strategy (which is summarized in Algorithm 3.2) computes weight approximations
ŵ1, . . . , ŵm ∈ SD−1 such that

min
s∈{−1,+1}

∥wk − sŵk∥2 ≲ (m/α)1/4ϵ1/2 for all k ∈ [m],

where α, ϵ are defined in Section 3.1.1. Our result holds with high probability for isotropic
random vectors in high dimensions and relies on the mutual incoherence of the system
{wk ⊗ wk|k ∈ [m]} that has previously been covered in Section 2.6.1.

3.2.1 Reduction to the rank-one basis recovery problem

This section is concerned with quantifying the approximation error ∥PW − PŴ∥F→F (defined in
(2.6)), whereW denotes the symmetric matrix space

W := span {w1 ⊗ w1, . . . , wm ⊗ wm} , (3.20)

and Ŵ ⊂ Sym(RD×D) is its approximating space constructed as the m-th singular subspace
of independently sampled Hessian matrices. For a definition of singular subspaces, we refer
to Section 1.1.1. Consider Hessian locations x1, . . . , xNh ∼i.i.d N (0, IdD) drawn independently
as standard Gaussians. Then, in the setting of Lemma 3.1, we prove that the m-th singular
subspace Ŵ = spanm{∇2 f (x1), . . . ,∇2 f (xNh)} satisfies∥∥PW − PŴ

∥∥
F→F ≲

√
m/α · ϵ,

w.h.p. for Nh sufficiently large. The important aspect here is that the approximation error scales
directly with the numerical accuracy parameter ϵ, which we can, in theory, make arbitrarily
small.

87 Chapter 3. Efficient reconstruction of wide shallow networks

Lemma 3.1 ([51, Lemma 1]). Consider the teacher network f defined in (3.1). Assume the activation
g satisfies (SNM1) - (SNM2) and f satisfies the learnability condition (SNM3) for some α > 0.
Furthermore, assume that the network weights w1, . . . , wm ∈ SD−1 fulfill (Inc2) of Definition 2.3 with
constant c2. Let PW be the orthogonal approximation ontoW = span{w1 ⊗ w1, . . . wm ⊗ wm} and let
PŴ be constructed as described in Algorithm 3.2. Then there exists a constant C > 0 depending only on

g and c2, such that for numerical differentiation accuracy ϵ <
√

α
C
√

m and Nh > t(m + m2 log(m)/D)

for some t ≥ 1 we have ∥∥PW − PŴ
∥∥

F→F ≤ C
√

m/α · ϵ, (3.21)

with probability at least 1− D2 exp
(
− tα

C

)
.

Proof of Lemma 3.1. Consider X1, . . . , XNh independent copies of a standard Gaussian, i.e.,
Xi ∼ N (0, IdD). Denote by PW ∈ RD2×D2

the orthogonal projection matrix onto the vec-
tor space span {vec(wk ⊗ wk) | i = 1, . . . , m} and by M the matrix with columns given by the
exact vectorized Hessians at the inputs X1, . . . , XNh , i.e.,

M :=
[
vec(∇2 f (X1)) . . . vec(∇2 f (XNh))

]
∈ RD2×Nh . (3.22)

We associate the matrix subspacesW and Ŵ with their corresponding D2-dimensional vector
subspaces described by the orthogonal projection matrices PW ,PŴ , respectively (cf. Section
1.1.1). Note that∥∥PW − PŴ

∥∥
F→F = sup

∥M∥F=1

∥∥PW (M)− PŴ (M)
∥∥

F =
∥∥PW −PŴ∥∥

with ∥ · ∥ describing the ordinary spectral normal in RD2
. Hence, to prove the result, we can

rely on the well-known Wedin bound, see for instance [54, 52, 50, 76], giving∥∥PW − PŴ
∥∥

F→F =
∥∥PW −PŴ∥∥ ≤ ∥M− M̂∥F

σm(M̂)
, (3.23)

for as long as σm(M̂) > 0. We continue to provide separate bounds for the numerator and
denominator of (3.23). For the numerator, we obtain

∥M− M̂∥F ≤
√

Nh max
i∈[Nh]

∥∥∇2 f (Xi)− ∆2 f (Xi)
∥∥

F

≤
√

Nhm max
i∈[Nh]
k∈[m]

∥∥∥∇2g(w⊤k Xi + τk)− ∆2g(w⊤k Xi + τk)
∥∥∥

F

≤ max
k∈[m]

C∆
√

Nhm ∥wk ⊗ wk∥F ϵ = C∆
√

Nhmϵ,

where we used the linearity of ∆2,∇2 in the second step and our assumptions on the numerical
differentiation method (G4.2) in the last line, which gives rise to the constant C∆ that only
depends on g. For the denominator in (3.23) we use Weyl’s inequality [132] which leads to the
lower bound

σm(M̂) ≥ σm(M)− ∥M− M̂∥ ≥ σm(M)− ∥M− M̂∥F ≥ σm(M)− C∆
√

Nhmϵ. (3.24)

Lastly, we need to control σm(M) by a concentration argument in combination with the
learnability assumption (SNM3) of Section 3.1.1. We first express σm(M) as sum of independent
matrices:

σm(M)2 = σm(MM⊤) = σm

(
Nh

∑
i=1

vec(∇2 f (Xi))⊗ vec(∇2 f (Xi))

)
. (3.25)

3.2. Weight identification 88

Denote Ai = vec(∇2 f (Xi))⊗ vec(∇2 f (Xi)). By (SNM3) we know that

σm

(
Nh

∑
i=1

EAi

)
= Nhα > 0.

We will make use of the matrix Chernoff (see [126] Corollary 5.2 and the following remark),
which states that

P

(
σm

(
Nh

∑
i=1

Ai

)
≤ (1− s)σm

(
Nh

∑
i=1

EAi

))
≤ D2 exp

(
−(1− s)2σm

(
Nh

∑
i=1

EAi

)
/2K

)
(3.26)

for s ∈ [0, 1] and K = maxi∈[Nh] ∥Ai∥2. The norm of Ai can be bound uniformly over all x ∈ RD

by

∥∥vec(∇2 f (Xi))⊗ vec(∇2 f (Xi))
∥∥

2 ≤ sup
x∈RD

∥∥vec(∇2 f (x))
∥∥2

2 = sup
x∈RD

∥∥∇2 f (x)
∥∥2

F

= sup
x∈RD

∥∥∥∥∥ m

∑
k=1

g(2)(w⊤k x + τk)wk ⊗ wk

∥∥∥∥∥
2

F

= sup
x∈RD

m

∑
k,ℓ=1

g(2)(w⊤k x + τk)g(2)(w⊤ℓ x + τℓ)⟨wk, wℓ⟩2

≤ κ2
m

∑
k,ℓ=1
⟨wk, wℓ⟩2 ≤ κ2(m + c2m(m− 1) log m/D).

The last inequality follows by the incoherence assumption (Inc2) from the initial statement.
Combining this with (3.26) for s = 1/2 together with the bound on the spectrum of the
expectation yields

P

(
σm

(
Nh

∑
i=1

Ai

)
≥ 1

2
Nhα

)
≥ 1− D2 exp

(
− NhDα

8κ2(Dm + c2m2 log m)

)
. (3.27)

Conditioning on this event, and assuming ϵ <
√

α/8C2
∆m the initial subspace bound now

holds as

∥∥PW − PŴ
∥∥

F→F ≤

∥∥∥M− M̂
∥∥∥

2

σm(M̂)
≤ C∆

√
Nhmϵ√

1
2 Nhα− C∆

√
Nhmϵ

=
C∆
√

m · ϵ√
α
2 − C∆

√
m · ϵ

(3.28)

≤
√

2C∆
√

m · ϵ√
α

(3.29)

with said probability. The final result follows by applying the bound on ϵ onto the denominator.
More precisely, we need that C > 2C∆ to fulfill (3.28) and C > 8κ2 max{1, c2} which implies

1− D2 exp
(
− NhDα

8κ2(Dm + c2m2 log m)

)
≤ 1− D2 exp (−tα/C) ,

due to our assumption that Nh > t(m + m2 log(m)/D).

89 Chapter 3. Efficient reconstruction of wide shallow networks

Algorithm 3.2: Weight recovery
Input: Shallow neural network f , number of neurons m, number of Hessian locations

Nh, β threshold for rejection of spurious local maximizers
1 Draw independent samples x1, . . . , xNh ∼ N (0, Id);
2 Compute Hessian approximations ∆2 f (x1), . . . , ∆2 f (xNh);
3 Compute the m-th left singular subspace of the Hessian approximations

Ŵ ← spanm
{

∆2 f (x1), . . . , ∆2 f (xNh)
}

,

and denote by PŴ the orthogonal projection onto Ŵ (see Section 1.1.1);
4 Compute the set of approximated weights U using Algorithm 2.2 with input (PŴ , β);

Output: U

3.2.2 Recovery guarantees

By Lemma 3.1, we can compute an approximation Ŵ to the matrix space W in (3.20) with
accuracy controlled by the numerical accuracy. This result requires that the network weights
w1, . . . , wm satisfy condition (Inc2) of Definition 2.3. The following theorem combines two
results. First, we show that Lemma 3.1 can be extended to the case where w1, . . . , wm are drawn
uniformly at random from the unit-sphere, which is a trivial consequence of Proposition 2.2.
Second, applying the results from Theorem 2.8 (based on [76] from Section 2.6 to the resulting
matrix space approximation Ŵ guarantees the recovery of all weights leaving only uncertainty
of the signs and an approximation error that scales like

min
s∈{−1,+1}

∥wk − sŵk∥2 ≲ (m/α)1/4ϵ1/2 for all k ∈ [m].

For more details on SPM and Algorithm 2.2, we refer to Chapter 2.

Theorem 3.3 (Weight recovery, [51, Theorem 3]). Consider the teacher network f defined in (3.1),
where w1, . . . , wm ∼ Unif(SD−1) and τ1, . . . , τm ∈ [−τ∞, τ∞]. Assume g satisfies (SNM1) - (SNM2)
and f satisfies the learnability condition (SNM3) for some α > 0. Then, there exists D0 ∈ N and a
constant C > 0 depending only on g, τ∞, such that, for all D ≥ D0 and Cm log2 m ≤ D2, the following
holds with probability at least 1−m−1 − D2 exp (−min{α, 1}t/C)− C exp(−

√
m/C):

(i) The weights w1, . . . , wm fulfill properties (Inc1) - (Inc3) of Definition 2.3.

(ii) The output of Algorithm 3.2 with numerical differentiation accuracy ϵ ≤
√

α
C
√

m and using
Nh > t(m + m2 log(m)/D) Hessian locations for some t ≥ 1 is a set of approximated weights
U ⊂ SD−1 such that, for all ŵ ∈ U , there exists a k ∈ [m] and a sign s ∈ {−1,+1} for which

∥wk − sŵk∥2 ≤ C(m/α)1/4ϵ1/2. (3.30)

Proof of Theorem 3.3. The weights w1, . . . , wm of f are drawn uniformly from the unit sphere.
By Proposition 2.2, and for any δ0 ∈ (0, 1), there exists D1 ∈N, C1 > 0 depending only on δ0
such that for all D ≥ D1 this set of weights fulfills conditions (Inc1) - (Inc3) of Definition 2.3
with constants c2, c3 < C1 and with probability at least

1−m−1 − 2 exp(−C1δ2
0 D)− C1

(
e · D√

m

)−C1
√

m

.

3.2. Weight identification 90

We condition on this event and denote it by E1 for the remaining part of the proof. Now, due
to the incoherence of the weights and according to our initial assumption, which includes
Nh > t(m + m2 log(m)/D), the conditions of Lemma 3.1 are met. This provides an error bound
for the subspace, which is constructed in the first part of Algorithm 3.2, such that∥∥PW − PŴ

∥∥
F→F ≤ C2

√
m/α · ϵ, (3.31)

with probability at least 1−D2 exp (−tα/C2) for a constant C2 only depending on g. Denote the
event that this subspace bound holds by E2 and assume it occurs, which only depends on the
number of Hessians Nh in relationship to D, m. Note that δ0 can be freely chosen in (0, 1). By
Theorem 2.10 there exist constants D2, ∆0, C3, such that for D ≥ D2 and

∥∥PW − PŴ
∥∥

F→F ≤ ∆0,

the local maximizers of the program argmaxu∈SD−1

∥∥PŴ (u⊗ u)
∥∥2

F fulfill

min
s∈{−1,1}

∥x∗ − swk∥2 ≤
√∥∥PW − PŴ

∥∥
F→F ≤

√
C2
√

m/α · ϵ, (3.32)

as long as they belong to the level set{
x ∈ SD−1

∣∣∣ ∥∥PŴ (x⊗ x)
∥∥2

F ≥ C3m log2(m)/D2 + 5C2
√

m/α · ϵ
}

.

By iterating projected gradient ascent until convergence, every vector û will be one of these
local maximizers. Also note that by construction, all vectors returned by Algorithm 3.2 must
have unit norm, hence U ⊂ SD−1. We need to make sure that the level set is not empty, which
is guaranteed for C3m log2(m)/D2 ≤ 1

4 and ϵ ≤ α1/2

20C2
√

m which leads to the threshold

C3m log2(m)/D2 + 5C2
√

m/α · ϵ ≤ 1
4
+

1
4
=

1
2

. (3.33)

Therefore, only considering local maximizers that fulfill
∥∥PŴ (x⊗ x)

∥∥2
F ≥ 1/2 will guarantee

that all local maximizers are of the kind which satisfies (3.32). Before we conclude, some points
still need to be addressed. To achieve the bound (3.32) we had to assume that

∥∥PW − PŴ
∥∥

F→F ≤
∆0. This is true due to (3.31) given the accuracy satisfies ϵ ≤ ∆0α1/2

C3m1/2 which is clearly realizable
by our initial assumptions on ϵ, since ∆0 is independent of m, D. Hence, by further unifying
also the constants C1, C2, C3, D1, D2, we showed that there exists constants C > 0, D0 ∈N such
that for D ≥ D0 and Cm log2 m ≤ D2 all vectors u ∈ U returned by Algorithm 3.2 ran with
numerical accuracy ϵ ≤

√
α

C
√

m will fulfill the uniform error bound,

min
s∈{−1,1}

∥x∗ − sw̄k∥2 ≤ C(m/α)1/4ϵ1/2, (3.34)

and this result holds with the combined probability

1− D2 exp (−tα/C)−m−1 − 2 exp(−D/C)− C
(

e · D√
m

)−√m/C

. (3.35)

Assuming the weight approximations are sufficiently close to the true weights, we would expect
that the system of approximations exhibits similar incoherence properties. The last result of
this section combines several auxiliary statements that make this rigorous. In particular, we
prove that approximations that match a certain level of accuracy will inherit properties (Inc2) -
(Inc3) from the ground truth weights.

91 Chapter 3. Efficient reconstruction of wide shallow networks

Lemma 3.2 ([51, Lemma 3]). Assume the ground truth weights {wk ∈ SD−1|k ∈ [m]} fulfill (Inc1) -
(Inc3) of Definition 2.3 with constants c2, c3 and that D ≤ m. Then there exists a constant C > 0 only
depending on c2, c3 such that for approximations {ŵk ∈ SD−1|k ∈ [m]} which satisfy the error bound

max
k∈[m]

min
s∈{−1,1}

∥sŵk − wk∥2 = δmax ≤
1
C

D1/2

m
√

log m
(3.36)

condition (Inc2) - (Inc3) of Definition 2.3 holds with constants 2c2, 2c3. Furthermore, denote G̃n ∈
Rm×m the matrix with entries G̃n,ℓk = ⟨ŵℓ, skwk⟩n, where sk are the ground truth signs. Then there
exists D0 such that for m ≥ D ≥ D0, n = 2, 3 the following holds true:

(i) For all k ̸= ℓ we have ⟨ŵk, sℓwℓ⟩2 ≤ 2c2 log(m)/D

(ii) G̃n is invertible and ∥G̃−1
n ∥ ≤ 3c2

(iii) Denote by G̃n ∈ Rm×m the matrix with entries G̃n,ℓk = ⟨ŵℓ, skwk⟩n, then

∥∥∥G̃n − Ĝn

∥∥∥ ≤ Cm
(

log m
D

)(2n−1)/4

δmax. (3.37)

Proof of Lemma 3.2. W.l.o.g. we can assume that C is chosen such that

max
k∈[m]

min
s∈{−1,1}

∥sŵk − wk∥2 = δmax ≤ min

{
1
8

(
c2 log m

D

)1/2

,
D1/2

8c3m
√

2c2 log m

}
(3.38)

holds. We start by showing (Inc2) for the approximated weights. Pick any k, ℓ ∈ [m], k ̸= ℓ.
A first observation is that we can disregard the sign that appears in (3.36) since ⟨ŵk, ŵℓ⟩2 =
⟨−ŵk, ŵℓ⟩2. So w.l.o.g. assume that both signs are correct and therefore ∥ŵk − wk∥2 ≤ δmax and
∥ŵℓ − wℓ∥2 ≤ δmax. Then

⟨ŵk, ŵℓ⟩2 ≤ (|⟨wk, wℓ⟩|+ |⟨ŵk − wk, wℓ⟩|+ |⟨wk, ŵℓ − wℓ⟩|+ |⟨ŵk − wk, ŵℓ − wℓ⟩|)2 (3.39)

≤
(
|⟨wk, wℓ⟩|+ 2δmax + δ2

max
)2 ≤ |⟨wk, wℓ⟩|2 + 6δmax |⟨wk, wℓ⟩|+ 9δ2

max

≤ c2 log m
D

+ 6
(

c2 log m
D

)1/2

δmax + 9δ2
max

≤ c2 log m
D

+
48 + 9

64
c2 log m

D
≤ 2c2 log m

D
,

which proves that (Inc2) is fulfilled by the approximated weights for a constant 2c2. Moving on
to (Inc3), we need to bound the minimal eigenvalue of Ĝn = (Ŵ⊤Ŵ)⊙n from below. Assuming
Ĝ2 is invertible, we know by Lemma 2.22 that

∥Ĝ−1
n ∥ ≤ ∥Ĝ−1

2 ∥ for all n ≥ 2.

Thus, it is sufficient to show that (Inc3) holds for the approximated weights for n = 2.
Denote G2 = (W⊤W)⊙2. Clearly G2, Ĝ2 are symmetric, and since (Inc3) holds for the ground
truth weights, we know that the minimal eigenvalue of G2 can be bounded by a constant
|σm(G2)| ≥ c−1

3 . Hence, by Weyl’s inequality (cf. [132]), we have∣∣∣σm(Ĝ2)
∣∣∣ ≥ c−1

3 −
∥∥∥Ĝ2 − G2

∥∥∥ . (3.40)

3.2. Weight identification 92

Our goal is to find an upper bound for the spectral norm on the right-hand side. Note that the
diagonals of both matrices are identical since all columns of Ŵ and W have unit norm, so we
focus on the off-diagonal exclusively. Via Gershgorin’s circle theorem we attain∥∥∥Ĝn − Gn

∥∥∥ ≤ max
k∈[m]

m

∑
ℓ=1
ℓ ̸=k

∣∣⟨ŵk, ŵℓ⟩2 − ⟨wk, wℓ⟩2
∣∣

= max
k∈[m]

m

∑
ℓ=1
ℓ ̸=k

∣∣⟨skŵk, sℓŵℓ⟩2 − ⟨wk, wℓ⟩2
∣∣

≤ max
k∈[m]

m

∑
ℓ=1
ℓ ̸=k

|⟨skŵk, sℓŵℓ⟩+ ⟨wk, wℓ⟩| |⟨skŵk, sℓŵℓ⟩ − ⟨wk, wℓ⟩|

≤ 2
(

2c2 log m
D

)1/2

max
k∈[m]

m

∑
ℓ=1
ℓ ̸=k

|⟨skŵk − wk, sℓŵℓ⟩ − ⟨wk, sℓŵℓ − wℓ⟩|

≤ 4
(

2c2 log m
D

)1/2

m · δmax ≤
1

2c3
,

where we used the fact that (Inc2) holds for the ground truth weights and approximated
weights in the penultimate inequality followed by the uniform bound in (3.36) at the end. We
conclude with Weyl’s inequality (cf. [132]) which yields∣∣∣σm(Ĝ−1

2)
∣∣∣ ≤ ∣∣∣σ1(Ĝ2)

∣∣∣−1
≤ 2c3. (3.41)

Hence, the approximated weights fulfill (Inc3) with constant 2c3 for n = 2, which extends to
n ≥ 2 by Lemma 2.22. Let us now proof (i)− (iii). The first statement follows directly from
our proof of (Inc2) for the approximated weights since for any k ̸= ℓ we have

⟨ŵk, sℓwℓ⟩2 ≤ (|⟨wℓ, wk⟩|+ |⟨ŵℓ − wℓ, wk⟩|)2 ≤ (|⟨wℓ, wk⟩|+ δmax)
2 ≤ 2c2 log m

D
,

follows by the chain of inequalities started in (3.39). To show (iii), we first split the difference
G̃n− Ĝn = Dn +On into a diagonal part Dn and an off-diagonal part On. We have ∥G̃n− Ĝn∥ ≤
∥Dn∥+ ∥On∥ and start by controlling ∥On∥ via Gershgorin’s circle theorem:

∥On∥ ≤ max
ℓ∈[m]

m

∑
k=1
k ̸=ℓ

|⟨ŵk, ŵℓ⟩n − ⟨ŵk, sℓwℓ⟩n|

≤ max
ℓ∈[m]

m

∑
k=1
k ̸=ℓ

|⟨ŵk, ŵℓ⟩ − ⟨ŵk, sℓwℓ⟩|
∣∣∣∣∣ n

∑
i=1
⟨ŵk, ŵℓ⟩n−i⟨ŵk, sℓwℓ⟩i−1

∣∣∣∣∣
≤ n

(
2c2 log m

D

)(n−1)/2

max
ℓ∈[m]

m

∑
k=1
k ̸=ℓ

|⟨ŵk, ŵℓ − sℓwℓ⟩| .

From here, we can slightly improve over Cauchy-Schwarz, and, instead, use that

m

∑
k=1
k ̸=ℓ

|⟨ŵk, ŵℓ − sℓwℓ⟩| ≤
√

m− 1

√√√√√ m

∑
k=1
k ̸=ℓ

⟨ŵk, ŵℓ − sℓwℓ⟩2 ≤
√

m
∥∥∥Ŵ
∥∥∥ δmax.

93 Chapter 3. Efficient reconstruction of wide shallow networks

Using ∥Ŵ∥ = ∥Ŵ⊤Ŵ∥1/2 ≤
(

1 + m
(

2c2 log m
D

)1/2
)1/2

we arrive at the following bound for the

off-diagonal terms:

∥On∥ ≤ n
(

2c2 log m
D

)(n−1)/2√
m

(
1 + m

(
2c2 log m

D

)1/2
)1/2

δmax

≤ Cnm
(

log m
D

)(n−1)/2 (log m
D

)1/4

δmax ≤ Cnm
(

log m
D

)(2n−1)/4

δmax,

where C > 0 is an absolute constant only depending on c2 and m ≥ D was used in the second
inequality. For the diagonal part, we receive

∥Dn∥ =
∣∣∣∣1−max

ℓ∈[m]
|⟨ŵℓ, wℓ⟩|n

∣∣∣∣ ≤ ∣∣1− (1− δ2
max/2)n∣∣ .

Hence, we attain overall∥∥∥G̃n − Ĝn

∥∥∥ ≤ ∣∣1− (1− δ2
max/2)n∣∣+ Cnm

(
log m

D

)(2n−1)/4

δmax.

For n = 2, 3 and some constant C1 > 0 depending only on c2 this can be further simplified
using the bound on δmax as∥∥∥G̃n − Ĝn

∥∥∥ ≤ δ2
max + Cnm

(
log m

D

)(2n−1)/4

δmax

≤ C1m
(

log m
D

)(2n−1)/4

δmax,

which confirms (iii). To prove (ii), we need to show that
∥∥∥G̃n − Ĝn

∥∥∥ ≤ c4/2 from which the rest
follows as before by Weyl’s inequality. We can reuse (iii) in combination with 3.36 obtaining∥∥∥G̃n − Ĝn

∥∥∥ ≤ C1m
(

log m
D

)(2n−1)/4

δmax ≤ C2

(
log m

D

)1/4

for some constant C2. Hence, the statement in (ii) is true for D ≥ D0 sufficiently large.

3.3 Recovery of the correct signs and initialization of the shifts

Consider a shallow neural network that satisfies the assumptions within Section 3.1.1. By
the machinery of Section 3.2 we expect to find weight approximations such that ŵk ≈ skwk
for some sign sk ∈ {−1,+1} for all k ∈ [m]. We can regard this approximation as arbitrarily
accurate since the approximation error stated in Theorem 3.3 scales linearly with the numerical
accuracy, which we assume to be sufficiently small. This section addresses the recovery of the
signs s = (s1, . . . , sm) ∈ {−1,+1}×m. Additionally, our procedure will provide us with initial
estimates of the shift parameters τ = (τ1, . . . , τm) ∈ Rm, which is required due to the nature of
our local convergence analysis in Section 3.4. Throughout this section, we will assume that the
network weights fulfill (Inc2)-(Inc3) of Definition 2.3 and that the same conditions extend to
the weight approximations ŵ1, . . . , ŵm. It follows by Lemma 3.2 that the second part of our
assumption can be fulfilled by choosing ϵ > 0 in Theorem 3.3 to be sufficiently small such that
(3.36) holds.

3.3. Recovery of the correct signs and initialization of the shifts 94

3.3.1 Parameter initialization: Strategy

We begin with a motivation behind the parameter initialization described in Algorithm 3.3
below.

Isolating signs and shifts. First, note that the n-th derivative of the neural network at input
x = 0 is given by

∇n f (0) =
m

∑
k=1

g(n)(τk)w⊗n
k =

m

∑
k=1

sn
k g(n)(τk)(skwk)

⊗n, (3.42)

which for n ≤ 3 is well-defined under condition (SNM1). By Lemma 2.21, (Inc3) implies
linear independence of the system {w⊗n

k |k ∈ [m]} for n ≥ 2, which in turn implies linear
independence of the system {skw⊗n

k |k ∈ [m]}. This means sn
1 g(n)(τ1), . . . , sn

1 g(n)(τm) are the
unique coefficients for the decomposition in (3.42) that give rise to ∇n f (0). Our initialization
strategy is based on the formulation of two linear systems with unique solutions given by the
vectors C2 = (C2,1, . . . , C2,m) and C3 = (C3,1, . . . , C3,m), which are defined as

Cn,k := sn
k g(n)(τk), for k ∈ [m], n ∈ {2, 3}. (3.43)

If g satisfies (SNM1), then g(2) is monotonic and therefore admits an inverse (g(2))−1 on
(−τ∞,+τ∞). Hence, C2 provides access to τ due to s2

k = 1, which can be seen from

(g(2))−1(C2,k) = (g(2))−1(s2
k g(2)(τk)) = (g(2))−1(g(2)(τk)) = τk for all k ∈ [m].

The signs can then be inferred from C3, either by using the shifts via

sk = sign(C3,k) · sign(g(3)(τk)), (3.44)

or equivalently by sk = sign(C3,k) · sign(g(3)(0)) since g(3) does not change sign on the interval
(−τ∞, τ∞) due to the monotonicity of g(2). This clarifies how C2, C3 are linked to the recovery
of the signs and shifts. However, there remain several problems. We need to account for the
presence of perturbations caused by the weight approximation as well as approximation errors
of the derivative (∇n f (0) is not directly accessible).

Recovering of C2, C3 from (3.42). Assume for now that the approximations are exact up to a
sign, i.e., ŵk = skwk for all k ∈ [m]. Then solving (3.42) for Cn is equivalent to solving the linear
system

ŴnCn = vec(∇n f (0)), (3.45)

where Ŵn = (vec(ŵ⊗n
1)| . . . | vec(ŵ⊗n

m)) ∈ RDn×m. Since our setting implies n ≥ 2, m = o(D2)

(i.e., Ŵn is a tall matrix), we might want to consider instead the linear system

Ŵ⊤n ŴnCn = Ŵ⊤n vec(∇n f (0)).

Notably, the matrix Ŵ⊤n Ŵn is equivalent to the Gramian matrix Ĝn associated with the system
{ŵ⊗n

k |k ∈ [m]} (cf. Section 2.6.1). In the setting of Lemma 3.2, the Gramian Ĝn is positive
definite for all n ≥ 2. Therefore, we obtain

Cn = Ĝ−1
n Ŵ⊤n vec(∇n f (0)). (3.46)

95 Chapter 3. Efficient reconstruction of wide shallow networks

Furthermore, we can apply an additional simplification to (3.45) by leveraging the structure of
the vector Ŵ⊤n vec(∇n f (0)) ∈ Rm: Note that for each k ∈ [m]

(Ŵ⊤n vec(∇n f (0)))k = ⟨∇n f (0), ŵ⊗n
k ⟩ =

m

∑
ℓ=1

g(n)(τℓ)⟨wℓ, ŵk⟩n,

which is equivalent to the n-th directional derivative of f along ŵk in zero. Consequently,
we do not need to compute the full derivative ∇n f (0), and can only rely on m directional
derivatives, which are much cheaper to compute for large n. We will denote the vector storing
all n-th order directional derivatives as

Tn :=

⟨∇
n f (0), ŵ⊗n

1 ⟩
...

⟨∇n f (0), ŵ⊗n
m ⟩

 . (3.47)

In summary, we showed that for the unperturbed case where ŵk = skwk for all k ∈ [m], we can
recover C2, C3 via

Cn = Ĝ−1
n Tn.

Let us now discuss the general case where ŵk ≈ skwk. Then (3.45) does hold only approximately
and instead of the Gramian matrix Ĝn we need to rephrase (3.46) in terms of the matrix G̃n
with entries (G̃n)ℓ,k = ⟨ŵℓ, skwk⟩n. More precisely G̃nCn = Tn, which can be written as

Ĝ−1
n G̃nCn = Ĝ−1

n Tn.

Additionally, we need to account for the fact that the directional derivatives in Tn are not
directly accessible and need to be approximated as T̃n ≈ Tn via numerical differentiation (cf.
(G4.2)). Based on the preceding section, we assume that G̃n is sufficiently close to Ĝn (cf.
Lemma 3.2 (iii)), and our recovery strategy computes approximations C̃n ≈ Cn for n ∈ {2, 3}
where

C̃n := Ĝ−1
n T̃n ≈ Ĝ−1

n Tn = Ĝ−1
n G̃nCn ≈ Cn.

The overall recovery strategy has been summarized in Algorithm 3.3.

3.3.2 Parameter initialization: Guarantees

The last section motivated the individual steps of Algorithm 3.3, and we saw that the recovery of
the signs and shifts ultimately depends on the accuracy of the approximations C̃2 ≈ C2, C̃3 ≈ C3.
To make the resulting approximation error on C2, C3 precise, we need to control two error
terms. Firstly, the error caused by the approximation of directional derivatives ∥Tn − T̃n∥2 and
secondly, the error ∥Ĝ−1

n G̃n − Idm ∥. This perturbation analysis is carried out in the following
statement.

Lemma 3.3 (cf. [51, Lemma 4]). Denote by C̃n = Ĝ−1
n T̃n the coefficient vectors computed by Algorithm

3.3 for an input network f with ground truth weights {wk ∈ SD−1|k ∈ [m]} which fulfill (Inc2) -
(Inc3) of Definition 2.3 with constants c2, c3 and activation g that fulfills (SNM1). Then there exist
constants C > 0 only depending on g, c2, c3 and D0 ∈N, such that for m ≥ D ≥ D0, m log2 m ≤ D2,
n = 2, 3 and provided approximations {ŵk ∈ SD−1|k ∈ [m]} to the ground truth weights such that

max
k∈[m]

min
s∈{−1,1}

∥sŵk − wk∥2 = δmax ≤
1
C

D1/2

m
√

log m
, (3.50)

3.3. Recovery of the correct signs and initialization of the shifts 96

Algorithm 3.3: Parameter Initialization

Input: Approximated weights Ŵ, numerical differentiation schema ∆n[·] with accuracy
ϵ > 0, interval on which g(2) is monotonic [−τ∞,+τ∞]

1 Set Ĝ2 ← (Ŵ⊤Ŵ)⊙2,Ĝ3 ← (Ŵ⊤Ŵ)⊙3

2 for k = 1, . . . , m do
3 Compute directional derivative approximations

T̃2,k ← ∆2[f (·ŵk)](0), T̃3,k ← ∆3[f (·ŵk)](0)
4 end
5 Set C̃2 ← Ĝ−1

2 T̃2, C̃3 ← Ĝ−1
3 T̃3

6 for k = 1, . . . , m do
7

τ̃k ←

(g(2))
−1
(C̃2,k), if (g(2))

−1
is defined for C̃2,k,

argmint∈[−τ∞,τ∞]

∣∣∣g(2)(t)− C̃2,k

∣∣∣ else,
(3.48)

s̃k ← sign(C̃3,k) · sign(g(3)(0)), (3.49)

8 end
Output: τ̃, s̃

we have

∥∥∥C̃n − sn ⊙ g(n)(τ)
∥∥∥

2
≤ C
√

mϵ + Cm3/2
(

log m
D

)(2n−1)/4

δmax, (3.51)

where s is the vector storing the true signs that are implied by (3.50).

Proof of Lemma 3.3. Denote as in Algorithm 3.3 T̃n,k = ∆n[f (·ŵk)](0) and Tn,k = ⟨∇n f (0), ŵ⊗n
k ⟩.

By their definition and the linearity of ∇n, ∆n we have

∥∥Tn − T̃n
∥∥

∞ = sup
k∈[m]

∣∣⟨∇n f (0), ŵ⊗n
k ⟩ − ∆n

ϵ [f (ŵk·)](0)
∣∣ (3.52)

≤ sup
k∈[m]

m

∑
ℓ=1

∣∣∣∣ ∂n

∂tn g(⟨ŵk, wℓ⟩t + τℓ)

∣∣∣∣
t=0
− ∆n[g(⟨ŵk, wℓ⟩ ·+τℓ)](0)

∣∣∣∣ (3.53)

≤ C∆ϵ sup
k∈[m]

m

∑
ℓ=1
|⟨ŵk, wℓ⟩|n+2 ≤ C∆ϵ

(
1 + m

(
2c2 log m

D

) n+2
2
)

, (3.54)

where we used the second point of (G4.2) in the last line followed by the incoherence of the
approximated weights (Inc2) established in Lemma 3.2. Making use of D2 ≥ m log2 m, this
simplifies to

∥∥Tn − T̃n
∥∥

∞ ≤ C1 · ϵ

with constant C1 = (1 + 4c2
2)C∆ for n = 2, 3. Coming back to our initial objective, we can

express sn ⊙ g(n)(τ) as the product sn ⊙ g(n)(τ) = TnG̃n where G̃n describes the matrix with
entries given by (G̃n)kℓ = ⟨ŵk, sℓwℓ⟩n. Note that Algorithm 3.3 constructs C̃n = Ĝ−1

n T̃n, where

97 Chapter 3. Efficient reconstruction of wide shallow networks

(Ĝn)kℓ = ⟨ŵk, ŵℓ⟩n. We can reduce our main statement (3.51) into separate bounds∥∥∥C̃n − sn ⊙ g(n)(τ)
∥∥∥

2
=
∥∥∥Ĝ−1

n T̃n − G̃−1
n Tn

∥∥∥
2

(3.55)

≤
∥∥∥Ĝ−1

n (Tn − T̃n)
∥∥∥

2
+
∥∥∥(Ĝ−1

n − G̃−1
n)Tn

∥∥∥
2

(3.56)

≤
√

m
∥∥∥Ĝ−1

n

∥∥∥ ∥∥Tn − T̃n
∥∥

∞ +
∥∥∥(Ĝ−1

n − G̃−1
n)Tn

∥∥∥
2

(3.57)

≤ C1
√

m · ϵ +
∥∥∥(Ĝ−1

n − G̃−1
n)Tn

∥∥∥
2

(3.58)

To bound
∥∥∥(Ĝ−1

n − G̃−1
n)Tn

∥∥∥
2

we first decompose according to∥∥∥(Ĝ−1
n − G̃−1

n)Tn

∥∥∥
2
=
∥∥∥Ĝ−1

n (Ĝn − G̃n)G̃−1
n Tn

∥∥∥
2
=
∥∥∥Ĝ−1

n (Ĝn − G̃n)(sn ⊙ g(n)(τ))
∥∥∥

2
. (3.59)

By invoking Definition (Inc3) again, we continue with∥∥∥Ĝ−1
n (Ĝn − G̃n)(sn ⊙ g(n)(τ))

∥∥∥
2
≤ 2c3

∥∥∥Ĝn − G̃n

∥∥∥ ∥∥∥sn ⊙ g(n)(τ)
∥∥∥

2
≤ 2c3κ

√
m
∥∥∥Ĝn − G̃n

∥∥∥ ,

(3.60)

where we used
∥∥∥g(n)

∥∥∥
∞
≤ κ. The statement then follows by using inequality (iii) of Lemma 3.2

onto
∥∥∥Ĝn − G̃n

∥∥∥ and unifying the involved constants.

The statement above quantifies the recovery error of C2, C3. As explained at the beginning of
Section 3.3.1, these coefficients encode the unknown signs and shift parameters of a shallow
network. Our main result of this section now estimates the quality of the estimated shift vectors
and provides sufficient conditions under which the signs are recovered correctly.

Proposition 3.1 (Parameter initialization, [51, Proposition 1]). Consider the teacher network f
defined in (3.1), where the weights {wk ∈ SD−1, k ∈ [m]} satisfy (Inc2) - (Inc3) with constants
c2, c3 and the activation g satisfies (SNM1). Then, there exist constants C > 0 only depending on
g, c2, c3, τ∞ and D0 ∈ N, such that, for m ≥ D ≥ D0, m log2 m ≤ D2, the following holds. Given
ŵ1, . . . , ŵm ∈ SD−1 such that

δmax := max
k∈[m]

min
s∈{−1,1}

∥wk − sŵk∥2 ≤
D1/2

Cm
√

log m
, (3.61)

Algorithm 3.3 returns a set of shifts τ̂ such that

∥τ̂ − τ∥2 ≤ C
√

mϵ + Cm3/2
(

log m
D

)3/4

δmax, (3.62)

where ϵ > 0 is the accuracy of the numerical differentiation method and τ ∈ Rm denotes the ground
truth shifts of the network. Furthermore, once the RHS of (3.62) is smaller than 1 and ϵ ≤ (Cm)−1,
the signs returned by Algorithm 3.3 are identical to the ground truth signs.

The proof of Proposition 3.1 builds upon the results in Lemma 3.3 and quantifies the propaga-
tion of the approximation error of ∥Cn − C̃n∥2 through the remaining steps of Algorithm 3.3.
Before the proof is stated, we provide some context on the result. According to the preceding
Proposition, the shifts estimated by Algorithm 3.3 satisfy

∥τ̂ − τ∥2 ≲
√

mϵ + m3/2
(

log m
D

)3/4

δmax,

3.3. Recovery of the correct signs and initialization of the shifts 98

whenever δmax adheres to the bound in (3.61). If the approximated weights are computed
by Algorithm 3.2, we can fulfill condition (3.61) by choosing ϵ sufficiently small. Then, after
replacing δmax with the bound δmax ≲ (m/α)1/4ϵ1/2 from Theorem 3.3, we receive

∥τ̂ − τ∥2 ≲
√

mϵ +
ϵ1/2

α1/4
m7/4 log3/4 m

D3/4 . (3.63)

Considering a suitably small ϵ and omitting poly-logarithmic factors, the dominant term in
(3.63) scales as

∥τ̂ − τ∥2 ≲
ϵ1/2

α1/4
m7/4

D3/4 . (3.64)

Hence, we can generally expect that the right-hand side of (3.62) is smaller than 1 and therefore,
the signs returned by Algorithm 3.3 are identical to the ground truth signs.

Remark 3.3. Let us mention one final comment about the error in (3.63). If the numerical accuracy
ϵ can be made arbitrarily small, then Algorithm 3.3 recovers the shifts exactly under the setting of
Proposition 3.1. In the context of our overall recovery pipeline outlined in Algorithm 3.1, this begs the
question: Why do we need to further refine the shifts (cf. Section 3.4)? A preliminary answer to this
question is that any further refinement of the initial shifts computed by Algorithm 3.3 is justified as long
as the refinement can potentially improve over the error bound (3.63). We address this aspect in a more
detailed discussion as part of Section 3.4.2.

Proof of Proposition 3.1. First, note that due to the assumptions made, we can freely apply the
results of Lemma 3.2 and Lemma 3.3. As a consequence, the approximated weights considered
in the statement of Proposition 3.1 fulfill (Inc2)-(Inc3) of Definition 2.3 with constants derived
from the ground truth weights as described in Lemma 3.2. We continue with the remark that

(SNM1) guarantees the existence of the inverse function g(2)
−1

on [−τ∞, τ∞] and here we can
disregard the signs such that

g(2)
−1
(s2 ⊙ g(2)(τ)) = g(2)

−1 (
1⊙ g(2)(τ)

)
= τ (3.65)

While s2⊙ g(2)(τ) is not directly available, C̃2 serves as an approximation C̃2 ≈ s2⊙ g(2)(τ). Fix
any k ∈ [m], and assume that

C̃2,k ∈
[

min
t∈[−τ∞,+τ∞]

g(2)(t), max
t∈[−τ∞,+τ∞]

g(2)(t)
]

, (3.66)

then by the mean value theorem

τ̂k = g(2)
−1
(C̃2,k) = g(2)

−1 (
g(2)(τk) + C̃2,k − g(2)(τk)

)
= g(2)

−1 (
g(2)(τk)

)
+
(
C̃2,k − g(2)(τk)

)
(g(2)

−1
)′(ξk)

= τk +
(
C̃2,k − g(2)(τk)

) 1

g(3)
(

g(2)−1
(ξk)

)
for some ξk ∈

[
mint∈[−τ∞,+τ∞] g(2)(t), maxt∈[−τ∞,+τ∞] g(2)(t)

]
. Since g(2) is strictly monotonic on

[−τ∞, τ∞] and differentiable we have

θ := max
t∈[−τ∞,τ∞]

∣∣∣g(3)(t)∣∣∣ > 0.

99 Chapter 3. Efficient reconstruction of wide shallow networks

Hence, we can bound

∣∣∣∣∣ 1
g(3)

(
g(2)−1

(ξk)
)
∣∣∣∣∣ ≤ θ−1 from the outgoing assumption (SNM1). Applying

Lemma 3.3 to bound
∥∥∥g(2)(τ)− C̃2

∥∥∥
2

therefore yields

∥τ̂ − τ∥2 ≤ θ−1

(
C
√

mϵ + Cm3/2
(

log m
D

)3/4

δmax

)
(3.67)

Now assume there is a k ∈ [m] such that C̃2,k does not satisfy (3.66). By the monotonicity, we
also know that the maximal and minimal value of g(2) are found exactly on ±τ∞. If C̃2,k does
not lie in the image of g(2) on [−τ∞,+τ∞] it has to exceed one of those. We can assume w.l.o.g.
that C̃2,k > maxt∈[−τ∞,+τ∞] g(2)(t) = g(2)(τ∞). Then∣∣∣g(2)(τ∞)− g(2)(τk)

∣∣∣ < ∣∣∣C̃2,k − g(2)(τk)
∣∣∣ ,

which shows that g(2)(τ∞) is simply a better estimate of g(2)(τk) than C̃2,k, and g(2)
−1

is
also defined for g(2)(τ∞). Hence, the same error bound as above holds for all k ∈ [m].
The expression in (3.49) yields the correct sign if sign(C̃3,k) = sign(s(3)k) · sign(g(3)(τk)) =

sign(sk) · sign(g(3)(τk)). This is the case if∣∣∣s(3)k · g
(3)(τk)

∣∣∣ > ∣∣∣s(3)k · g
(3)(τk)− C̃3,k

∣∣∣ . (3.68)

By our outgoing assumption
∣∣∣s(3)k · g(3)(τk)

∣∣∣ ≥ θ and together with Lemma 3.3 applied to the
right-hand side of the inequality above we get that the signs are correct as long as

θ >

(
C
√

mϵ + Cm3/2
(

log m
D

)5/4

δmax

)
. (3.69)

Assume now that the RHS of (3.62) is smaller than 1 and ϵ ≤ (Cm)−1, this implies in particular

Cm3/2
(

log m
D

)3/4

δmax < 1.

We can estimate the right-hand side of (3.69) from above by

C
√

mϵ + Cm3/2
(

log m
D

)5/4

δmax ≤
1

m1/2 +

(
log m

D

)2/4

,

which clearly is smaller than any constant for D large enough, and therefore the signs will be
correct for D0 chosen accordingly since (3.68) is fulfilled.

3.4 Refining the approximated shifts using empirical risk minimiza-
tion

Let us shortly recall the previous results and discuss a suitable setting for the remaining parts
of the network recovery. Consider a shallow network f : RD → R of the form

f (x) =
m

∑
k=1

g(⟨x, wk⟩+ τk)

3.4. Refining the approximated shifts using empirical risk minimization 100

adhering to the conditions made in Section 3.1.1. Furthermore, consider the setting after
successfully running the weight recovery (Algorithm 3.2) and parameter initialization (Algorithm
3.3). Hence, we are given access to approximations ŵk ≈ wk, τ̂k ≈ τk for all k ∈ [m]. According to
Theorem 3.3 and Proposition 3.1, we can estimate the approximation error of these parameters
by

max
k∈[m]

∥wk − ŵk∥2 ≲ (m/α)1/4ϵ1/2 and ∥τ̂ − τ∥2 ≲
ϵ1/2

α1/4
m7/4

D3/4 . (3.70)

As the weight approximations are a downstream result of Algorithm 3.2, which leverages
the incoherence conditions (Inc1) - (Inc3) in Definition 2.3, we can furthermore assume that
the weights w1, . . . , wm ∈ SD−1 and the approximations ŵ1, . . . , ŵm ∈ SD−1 satisfy incoherence
conditions (Inc1) - (Inc3) (cf. Lemma 3.2). Given this setting, we now study the refinement of
the shifts (i.e., improving over the bound above) by empirical risk minimization.

3.4.1 Formulation of a simplified teacher-student problem

Consider the setting above. The parameter approximations ŵ1, . . . , ŵm ∈ SD−1, τ̂ ∈ Rm give
rise to a neural network f̂ defined as

f̂ (x, τ̂) =
m

∑
k=1

g(⟨x, ŵk⟩+ τ̂k).

For suitable small ϵ, the bounds in (3.70) suggest that f̂ closely resembles the original network
f , i.e., f̂ ≈ f for all x ∈ RD. By fixing the weights of f̂ , we can regard it as a parametric function
f̂ = f̂ (·, τ̂) w.r.t. the shifts τ̂. We now consider the further improvement of the estimates τ̂
based on empirical risk minimization of the least-squares objective

J(τ̂) =
1

2Ntrain

Ntrain

∑
i=1

(
f̂ (xi, τ̂)− yi

)2
, (3.71)

where y1 = f (x1), . . . , yNtrain = f (xNtrain) are real network evaluations of the original network.
This closely represents the setting of the teacher-student problem. Due to the assumption
(G4.1), the network f can be queried at every input, and f̂ (·, τ̂) is fully known. Hence, we
can in principle sample arbitrary inputs. However, to keep our setting more general, we will
assume that we are given generic inputs X1, . . . , XNtrain ∼i.i.d. N (0, IdD), which is common in
the literature related to the teacher-student problem (cf. [25, 124, 111, 85, 41, 42, 114, 115, 137,
56, 54, 52, 53, 74, 86, 93, 138]). In the following, we analyze the minimization of (3.71) via a
gradient descent iteration given by

τ̂(n+1) = τ̂(n) − γ∇τ̂ J(τ̂(n)). (3.72)

Here, γ > 0 represents the step-size of the gradient updates and ∇τ̂ J denotes the derivative of
J w.r.t. τ̂. As part of the next section, we provide a local convergence analysis of (3.72).

3.4.2 Local convergence guarantees

Throughout this section we denote by W, Ŵ ∈ RD×m the matrices with columns given by the
weights w1, . . . , wm and approximated weights ŵ1, . . . , ŵm, respectively. As before, the uniform
approximation error of the weights will be denoted as

δmax := max
k∈[m]

∥wk − ŵk∥2 .

101 Chapter 3. Efficient reconstruction of wide shallow networks

Additionally, let us recall the definition of ∆W,1, which will appear in the statement below. In
(3.16), ∆W,1 was defined as

∆W,1 :=
m1/2 log(m)3/4

D1/4 ·
(
∥Ŵ −W∥F +

∆1/2
W,O

D1/2 +

∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

)
,

where ∆W,O takes the form

∆W,O =
m

∑
k ̸=k′
|⟨wk − ŵk, wk′ − ŵk′⟩| .

We provide the following main result on the shifts produced by iteration (3.72).

Theorem 3.4 (Local convergence, [51, Theorem 4]). Consider the teacher network f defined in
(3.1), with shifts τ1, . . . , τm ∈ [−τ∞,+τ∞] and weights w1, . . . , wm ∼ Unif(SD−1) that are incoherent
according to Definition 2.3. Assume g satisfies (SNM1)-(SNM2), and consider the least-squares objective
J in (3.10) constructed with Ntrain ≥ m network evaluations y1, . . . , yNtrain of f , where yi = f (Xi) and
X1, . . . , XNtrain ∼ N (0, IdD). Let f̂ be parameterized by Ŵ and τ̂, as in (3.9). Then, there exists a
constant C > 0 depending only on g, τ∞ and D0 > 0 such that the following holds with probability at
least 1−m exp(−Ntrain/Cm)− 2m2 exp (−t/C) for t > 0: Assume Cm log2 m ≤ D2, m ≥ D ≥ D0
and

∥τ − τ̂∥2 + ∆W ≤
1

C
√

m
, (3.73)

where ∆W = ∆W,1 +
(

m3δ2
maxt

Ntrain

)1/2
and ∆W,1 is given by (3.16). Then, the gradient descent iteration

(3.72) with sufficiently small step-size γ > 0 started from τ̂(0) = τ̂ satisfies

∥τ̂(n) − τ∥2 ≤ 2ξn∥τ̂(0) − τ∥2 + C(1− ξn)∆W . (3.74)

The proof (see Section 3.4.8) has been broken down into several individual results, which are
compartmentalized into individual sections. Before giving any further technical results, let us
provide some insight into the local convergence result stated above.

Interpretation of Theorem 3.4. Under suitable conditions, the main statement of Theorem 3.4
guarantees that the gradient descent iteration in (3.72) after n ∈N steps τ̂(n) approximates the
ground truth shifts τ at least with

∥τ̂(n) − τ∥2 ≲ ξn∥τ̂(0) − τ∥2 + (1− ξn)∆W for some ξ ∈ [0, 1). (3.75)

with high probability provided that ∥τ̂(0) − τ∥2, ∆W ≲ m−1/2. The term ∆W , appearing on the
right-hand side, scales with the error of the weight approximation. In particular, in the case
Ŵ = W we have ∆W = 0, such that (3.75) implies linear convergence τ̂(n) → τ for n→ ∞. In the
perturbed case Ŵ ≈W, the teacher-student problem based on the objective (3.71) is generally
not able to recover the shifts exactly since the difference between the weights w1, . . . , wm and
ŵ1, . . . , ŵm introduce an irreversible difference between the networks f , f̂ . The bound (3.75)
suggests a dynamic, where gradient descent will eventually forget about its initialization, i.e.,
ξn∥τ̂(0) − τ∥2 → 0, and then remain within distance (1− ξn)∆W → ∆W of the ground truth
shifts τ. We have

∆W = ∆W,1 +

(
m3δ2

maxt
Ntrain

)1/2

. (3.76)

3.4. Refining the approximated shifts using empirical risk minimization 102

The factor ∆W,1 (stated at the beginning of the section and in (3.16)) depends on the alignment
of the weight errors (wk − ŵk)k∈[m]. As discussed in Section 3.1.2, our weight recovery does not
characterize the distribution of individual errors. Therefore, we can not theoretically exclude
that the errors align (which leads to accumulation in the theoretical proofs). If the residual
weight errors behave randomly, then according to Section 3.1.2, up to poly-logarithmic factors,
∆W,1 scales as

∆W,1 ≲
ϵ1/2

α1/4

(
m5/4

D1/4 +
m7/4

D

)
. (3.77)

We can regard ∆W,1 as the dominant factor in ∆W : Plugging the bound δmax ≲ (m/α)1/4ϵ1/2

from (3.70) into the right-hand term from (3.76) yields(
m3δ2

maxt
Ntrain

)1/2

≲
(

m7/2ϵt
α1/2Ntrain

)1/2

=
ϵ1/2

α1/4

(
m7/4t1/2

Ntrain
1/2

)
.

Hence, ∆W,1 is the dominant factor whenever t1/2D < N1/2
train, which can easily be fulfilled by

suitable Ntrain, t. The error term ∆W,1, on the other hand, does not decrease for larger amounts
of training samples.

Improvement over Algorithm 3.3. When gradient descent is used as part of our pipeline, it
will be after initialization of the shifts (Algorithm 3.3). This is due to the fact that our analysis
only admits local guarantees of GD, and therefore we need to rely on a good prior estimation
of the shifts that fall into the convergence radius of our analysis. More precisely, Theorem
3.4 requires ∥τ̂(0) − τ∥2 ≲ m−1/2. This introduces a question that has already been brought
up in Remark 3.3: Does gradient descent improve over its initialization? At first glance, this
question is easy to answer. Theorem 3.4 requires ∥τ̂(0) − τ∥2 ≲ m−1/2 and the final error term
in the perturbed case (cf. (3.76)) scales with ϵ. Thus, for sufficiently small ϵ, gradient descent
will improve upon its initialization. However, whenever the starting point τ̂(0) is computed by
Algorithm (3.3), then ∥τ̂(0) − τ∥2 will also decrease for smaller ϵ. To fully answer this question,
we need to compare the guarantees in Proposition 3.1 with the dominant error term of gradient
descent, which is ∆W,1 (see above). Recall that in Section 3.3.2, more precisely in (3.64), we
derived the error term of Algorithm 3.3 up to poly-logarithmic factors as∥∥∥τ̂(0) − τ

∥∥∥
2
≲

ϵ1/2

α1/4
m7/4

D3/4 . (3.78)

If we assume randomness of the weight errors, then (3.78) needs to be compared to the bound
in 3.77. Again, we can neglect the factor ϵ1/2

α1/4 . Clearly, we have m7/4/D < m7/4/D3/4, and
therefore gradient descent improves upon the initialization once

m5/4

D1/4 <
m7/4

D3/4 ⇔ D < m, (3.79)

which corresponds to the overcomplete regime and is exactly the setting we are addressing.
Hence, for D ≪ m = o(D2), we get a provable improvement by gradient descent of order
D−1/4. However, this relies on the randomness of the errors in Algorithm 3.2. Without such an
assumption, we suffer from error accumulation that occurs in the decomposition (3.16) of ∆W,1,
which up to poly-logarithmic factors scales as

m1/2

D1/4 ·
(
∥Ŵ −W∥F +

∆1/2
W,O

D1/2 +

∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

)
.

103 Chapter 3. Efficient reconstruction of wide shallow networks

If we assume perfectly aligned errors, i.e., that ŵ1 − w1 = ŵ2 − w2 = · · · = ŵm − wm, then we
receive the individual bounds

m1/2

D1/4 ∥Ŵ −W∥F =
m

D1/4 δmax ≲
ϵ1/2

α1/4
m5/4

D1/4 , (3.80)

m1/2

D1/4

∆1/2
W,O

D1/2 ≤
m3/2

D3/4 δmax ≲
ϵ1/2

α1/4
m7/4

D3/4 (3.81)

m1/2

D1/4

∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

=
m3/2

D1/4 δmax ≲
ϵ1/2

α1/4
m7/4

D1/4 . (3.82)

Comparison with 3.78 reveals that the first two bounds are smaller or identical to the initial-
ization error. However, the error accumulation in ∥∑m

k=1 wk − ŵk∥2 only leads to a provable
guarantee ∆W,1 ≲ ϵ1/2

α1/4
m7/4

D1/4 , which is slightly worse (by a factor D1/2) than the error (3.78)
at initialization time. Arguably, the term ∥∑m

k=1 wk − ŵk∥2 is also the term that benefits the
most from random errors since the sum leads to an error cancelation whenever errors are not
positively aligned. Let us mention that empirically we do not observe error alignments (cf.
numerical Section 3.6). In particular, we show in Figure 3.5, that, in an empirical setting, the
term corresponding to ∥∑m

k=1 wk − ŵk∥2 has the smallest contribution to ∆W,1. Lastly, before
we discuss the proof of Theorem 3.4, let us mention that this discussion highlights the need
for a tight analysis of the impact of the perturbation errors on the gradient descent iteration.
Substantial technical effort was invested to isolate error terms that suffer from error accumulations
in the following proofs. Based on these results, the issues mentioned in this discussion could
then be avoided by simply assuming a random model for the errors introduced by Algorithm
3.2 (which aligns with our experiments).

3.4.3 Proof strategy for Theorem 3.4.

Let us now discuss our proof strategy and simultaneously provide an outline for the upcoming
Sections 3.4.4-3.4.8. The proof of convergence of the gradient descent iteration 3.72 given by

τ̂(n+1) = τ̂(n) − γ∇τ̂ J(τ̂(n))

is based on a linearization argument. Instead of directly analyzing the optimization landscape of
the least-squares objective J(τ̂) = 1

2Ntrain
∑Ntrain

i=1 (f̂ (xi, τ̂)− yi)
2 in (3.71), we analyze an idealized

objective function, which we define as the quadratic function

J∗(τ̂) = (τ̂ − τ)⊤A(τ̂ − τ), (3.83)

where

A :=
1

2Ntrain

Ntrain

∑
i=1
∇τ̂ f̂ (xi, τ)∇τ̂ f̂ (xi, τ)⊤. (3.84)

We then prove two results. First, the objective J∗ is strictly convex with high probability. Note
that this implies the linear convergence of gradient descent schemes applied to J∗ to the global
minimum, which is attained at τ since J∗(τ) = (τ− τ)⊤A(τ− τ) = 0. Second, in the vicinity of
the true shifts τ, the gradient descent iteration (τ̂(n+1))n∈N remains close to a gradient descent
iteration associated with the idealized objective J∗.

3.4. Refining the approximated shifts using empirical risk minimization 104

Figure 3.2: The idealized objective J∗ is strictly convex around the true shifts τ.
Hence, the associated GD iteration converges, i.e., τ̂

(n)
∗ → τ. We control the drift of

the GD iteration τ̂(n) from the idealized iteration by carrying out a perturbation
analysis estimating the deviation of the descent directions (i.e., ∥∇J(τ̂)−∇J∗(τ̂)∥2)
close to the true solution τ̂ ≈ τ.

Strict convexity of J∗. To guarantee the strict convexity of J∗, we prove, by applying techniques
from the NTK literature adapted to our setting, that the matrix A in (3.84) is positive definite
with high probability. This relates to the results within Section 3.4.5, where we provide a lower
bound on the spectrum of the expectation

E := EX1,...,XNtrain∼N (0,IdD)[A].

More precisely, in Lemma 3.9, it is shown that

λm(E) ≥ ω− C(m− 1)
(

log m
D

)2

,

where ω and C are constants depending only on g and τ∞. The proof uses condition (SNM2)
to characterize the mean E in terms of the Hermite coefficients of the shifted functions
(g(·+ τk))k∈[m] and the Gramian matrices Ĝn for n ≥ 4. This allows us to exploit the incoherence
of the weight approximations ŵ1, . . . , ŵm. Hermite decompositions will be introduced in Section
3.4.4. Lemma 3.9 implies the positive definiteness of E, which in turn implies the positive
definiteness of A w.h.p., which we prove by applying a classical matrix Chernoff bound (cf.
Lemma 3.15). The positive definiteness of A implies that minimizing J∗ via the gradient descent
iteration given by

τ̂
(n+1)
∗ = τ̂

(n)
∗ − γ∇τ̂ J∗(τ̂

(n)
∗) = τ̂

(n)
∗ − γA(τ̂

(n)
∗ − τ) (3.85)

with step-sizes γ ≤ 1/∥A∥ will converge to the global minimum attained at τ̂∗ = τ.

Controlling the deviation between the two GD iterations. The second part of proving
Theorem 3.4 is concerned with controlling the deviation of τ̂(n) from the idealized objective τ̂

(n)
∗ .

Both iterations are started from the same initialization τ̂(0) = τ̂
(0)
∗ , and will use the same step-

size γ > 0. Any deviation will originate from the gradient updates. In Section 3.4.6, we prove
Lemma 3.10, which states that the difference between the gradients of ∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)∥2
obeys

∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)∥2 ≲
√

m ∥τ̂ − τ∥2
2 + ∆W w.h.p.,

105 Chapter 3. Efficient reconstruction of wide shallow networks

where τ denotes the ground truth shifts of f . Hence, whenever the gradient descent iteration
τ̂(n) is already close to the true shifts, i.e., ∥τ̂(n) − τ∥2

2 suitably small, then the gradients of J are
close to the gradients of the idealized objective (which is converging linearly) up to an error
term ∆W caused by the weight errors. Building upon this result, Lemma 3.14 in Section 3.4.7
then shows that the deviation ∥τ̂(n) − τ̂

(n)
∗ ∥2 between both GD iterations adheres to

∥τ̂(n) − τ̂
(n)
∗ ∥2 ≲ ξn∥τ̂(0) − τ∥2 + (1− ξn)∆W for some ξ ∈ [0, 1), (3.86)

as long as ∥τ̂(n) − τ∥2
2 ≤ Cm−1/2 for an appropriate constant C > 0. One notable aspect of

Lemma 3.14 is that we manage to prevent any significant drift between the iterations (despite the
constant error ∆W appearing in ∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)∥2). The proof of Theorem 3.4 is then given
in Section 3.4.8. It combines the preceding statements and then, by using the triangle inequality.
To be more precise, based on (3.86), we can upper bound the distance of the original gradient
descent iteration (3.72) to τ via

∥τ̂(n) − τ∥2 ≤ ∥τ̂(n) − τ̂
(n)
∗ ∥2 + ∥τ̂(n)

∗ − τ∥2

≤ ξn∥τ̂(0) − τ∥2 + (1− ξn)∆W + (1− γλm(A))n∥τ̂(0)
∗ − τ∥2 → ∆W ,

for n→ ∞.

3.4.4 Preliminaries: Hermitian expansions

This section introduces Hermite polynomials [3, 100] which form a set of orthogonal functions
over R when weighted by the Gaussian kernel wG(t) := exp(−t2/2).

Definition 3.1 (Hermite polynomials (cf. [3, p. 778])). Let r ∈N, then the r-th Hermite polynomial
is defined as the function

hr(t) :=
1√
r!
(−1)r exp

(t2

2

) dr

dtr exp
(−t2

2

)
.

This definition of Hermite polynomials is also referred to as the “probabilist’s Hermite polynomials".

A computation reveals the first few Hermite polynomials: h0(t) = 1, h1(t) = t, h2(t) =
t2 − 1, h3(t) = t3 − 3t. The fact that Hermite polynomials are an orthogonal basis with respect
to the Gaussian kernel wG (cf. [3]), i.e., they satisfy∫

R
hr(t)hs(t)wG(t)dt =

√
2πs!δrs for all r, s ∈N,

where δrs denotes the Kronecker delta, combined with the basis property allows us to decom-
pose any function in f ∈ L2(R, wG) in terms of the Hermite polynomials:

Definition 3.2 (Hermite expansion). Consider any function f ∈ L2(R, wG), i.e., f satisfies∫
R
| f (t)|2wG(t)dt < ∞. (3.87)

Then the Hermite expansion of the function f is given by f (t) = ∑∞
r=0 µr(f)hr(t), where µr(f) is called

the r-th Hermite coefficient of f and defined as

µr(f) :=
∫

R
f (t)hr(t)wG(t)dt.

One particularly useful property of Hermite polynomials is the following relationship with
Gaussian random variables:

3.4. Refining the approximated shifts using empirical risk minimization 106

Lemma 3.4 ([99, Lemma D.2]). For two unit norm vectors u, v ∈ RD and every r, s ≥ 0 we have

EX∼N (0,IdD)

[
hr(u⊤X)hs(v⊤X)

]
= δrs⟨u, v⟩r,

where hr, hs denotes the r-th, s-th Hermite polynomial, respectively.

Inspired by the NTK literature, we can apply Lemma 3.4 to analyze expressions of the kind
EX∼N (0,IdD)[∇τ̂ f̂ (Xi, τ)∇τ̂ f̂ (Xi, τ)⊤], which occur for instance in the definition of the idealized
objective J∗ in (3.83). Each element of this expectation can be written as

EX∼N (0,IdD)

[
g(1)τk (ŵ⊤k X)g(1)τℓ (ŵ

⊤
ℓ X)

]
for a suitable k, ℓ ∈ [m], where we make use of the shorthand g(1)τk (·) := g(1)(·+ τk). Assuming
that g(1)τk and g(1)τℓ admit a Hermite expansion, we can use the statement in Lemma 3.4 which
yields

E

[(
∞

∑
r=0

µr(g(1)τk)hr(ŵ⊤k X)

)(
∞

∑
r=0

µr(g(1)τℓ)hr(ŵ⊤ℓ X)

)]
=

∞

∑
r=0

µr(g(1)τk)µr(g(1)τℓ)⟨ŵk, ŵℓ⟩r.

Notably, the series on the right-hand side exposes the term ⟨ŵk, ŵℓ⟩r which enables us to
leverage the incoherence conditions (Inc1)-(Inc3) associated with the vectors ŵ1, . . . , ŵm. Con-
structions of this type will play a fundamental role in the upcoming proofs in Section 3.4.5 -
3.4.6. Let us mention that the Hermite expansion of g and its shifted derivatives is well-defined
under the conditions (SNM1) and (SNM2). For the activation g, this follows directly from
(SNM2). We must check that the derivatives belong to L2(R, wG). Now, as per Assumption
(SNM1), the first three derivatives of g are bounded. Hence, also the shifted derivatives are
bounded. It is easy to check that this implies that these functions lie within L2(R, wG):

Lemma 3.5 ([51, Lemma 5]). Assume h is bounded, then h ∈ L2(R, ωG) and the sum of squared
Hermite coefficients of h is finite, i.e., we have

∑
r≥0

µr(h)2 ≤
√

2π∥h∥2
∞.

Proof. ∫
R

h(t)2 exp(−t2/2)dt ≤
√

2π∥h∥2
∞ < ∞.

The second statement follows from the fact that L2(R, ωG) is a Hilbert space and the Hermite
polynomials form an orthogonal system within that space.

Due to their definition, we can relate the Hermite coefficients of the activation function g with
the Hermite coefficients of its derivatives. This applies to the case where derivatives have
non-exponential tails.

Lemma 3.6. Let g ∈ L2(R, wH) be K-times continuously differentiable and assume

lim
t→∞

g(k)(t)hr(t)wH(t) = lim
t→−∞

g(k)(t)hr(t)wH(t) = 0 (3.88)

for all 0 ≤ k ≤ K. For any r ∈N∪ {0} and k ∈ [0, . . . , K] we have

µr(g(n)) =

√(
n + r

r

)
n!µr+n(g).

107 Chapter 3. Efficient reconstruction of wide shallow networks

Proof of Lemma 3.6. The Hermite polynomials, weighted by exp(−t2/2), satisfy the relation

d
dt

(
hr(t) exp

(
− t2

2

))
=

d
dt

(√
1
r!
(−1)r dr

dtr exp
(
− t2

2

))
=

√
1
r!
(−1)r dr+1

dtr+1 exp
(
− t2

2

)

= −
√

r + 1

√
1

(r + 1)!
(−1)r+1 dr+1

dtr+1 exp
(
− t2

2

)
= −
√

r + 1hr+1(t) exp
(
− t2

2

)
.

Therefore, by applying integration by parts, we obtain

µr(g(n)) =
∫

g(n)(t)hr(t)wH(t)dt =
[

g(n−1)(t)hr(t)wH(t)
]∞

−∞
−
∫

g(n−1)(t)
d
dt

(hr(t)wH(t)) dt

= 0 +
√

r + 1
∫

g(n−1)(t)hr+1(t)wH(t)dt =
√

r + 1µr+1(g(n−1)),

where the boundary terms vanish due to (3.88). Applying the same computation n-times, we
obtain

µr(g(n)) =

√
n

∏
ℓ=1

(r + ℓ)µr+n(f) =

√
(r + n)!

r!
µr+n(g).

We conclude the introduction to Hermite expansion by proving a direct implication of the two
preceding statements, which will find application in the proofs of Lemma 3.12-3.13.

Lemma 3.7 ([51, Lemma 5]). Assume that g fulfills the assumption (SNM1)-(SNM2) and that the
shifts (τk)k∈[m], (τ̂k)k∈[m] are within [−τ∞, τ∞]. Then, for R ≥ 4, we have

∑
r≥R

r| max
k,ℓ∈[m]

µr(gτk)µr(g(1)τ̂ℓ
)| < ∞. (3.89)

Proof of Lemma 3.7. By applying Lemma 3.6 (whose condition is met due to (SNM1) - (SNM2)),
we immediately get that, for all r ≥ R,

µr(gτk)µr(g(1)τ̂ℓ
) =

(
3!
(

r
r− 3

))−1/2

µr−3(g(3)τk) ·
(

2!
(

r
r− 2

))−1/2

µr−2(g(3)τ̂ℓ
)

=
(
(r− 2)(r− 1)2r2)−1/2

µr−3(g(3)τk)µr−2(g(3)τ̂ℓ
).

Plugging this into (3.89) yields

∑
r≥R

r| max
k,ℓ∈[m]

µr(gτk)µr(g(1)τ̂ℓ
)| ≤ ∑

r≥R

1√
r− 2(r− 1)

max
k,ℓ∈[m]

µr−3(g(3)τk)µr−2(g(3)τ̂ℓ
)

≤ ∑
r≥R−3

max
k∈[m]

1
r3/2 µr(g(3)τk)2 + ∑

r≥R−2
max
ℓ∈[m]

1
r3/2 µr(g(3)τ̂ℓ

)2,

where the second line follows by applying Cauchy-Schwarz. Using assumption (SNM1),
according to Lemma 3.5, then gives maxτ∈[−τ∞,τ∞] µr(g(3)τ)2 ≤ C for all r ≥ 0 and some constant
C > 0. Therefore, we can conclude with

∑
r≥R

r| max
k,ℓ∈[m]

µr(gτk)µr(g(1)τ̂ℓ
)| ≤ 2C ∑

r≥1

1
r3/2 ≤ 6C < ∞.

3.4. Refining the approximated shifts using empirical risk minimization 108

3.4.5 Strict convexity of the idealized objective in expectation

In this section, we apply Hermite decompositions, in particular, the statement in Lemma 3.4, to
prove the strict convexity of J∗ (cf. (3.83)) in expectation. As outlined above, this will be done
by lower bounding the spectrum of the matrix

E := EX1,...,XNtrain∼N (0,IdD)[A], (3.90)

where

A :=
1

2Ntrain

Ntrain

∑
i=1
∇τ̂ f̂ (Xi, τ)∇τ̂ f̂ (Xi, τ)⊤.

We begin with a decomposition of E into a series of positive semidefinite Gramian matrices as
shown in Lemma 3.8.

Lemma 3.8 ([51, Lemma 7]). Assume that (SNM1) holds, and let E be defined as in (3.90). Then, we
have

E =
1
2

∞

∑
r=0

TrT⊤r , where Tr :=

µr(g(1)τ1) vec(ŵ⊗r

1)
...

µr(g(1)τm) vec(ŵ⊗r
m)

 ∈ Rm×Dr
.

In particular, we have E ≽ 1
2 ∑r∈R TrT⊤r for any subset R ⊆ N≥1, where A ≽ B means A− B is

positive semidefinite.

Proof. The matrix A can be written as

Akℓ =
1

2Ntrain

Ntrain

∑
i=1

g(1)(ŵ⊤k Xi + τk)g(1)(ŵ⊤ℓ Xi + τℓ)

and the corresponding expectation reads

Ekℓ =
1
2

EX∼N (0,IdD)

[
g(1)τk (ŵ⊤k X)g(1)τℓ (ŵ

⊤
ℓ X)

]
.

Now, note that g(1)τ = g(1)(· + τ) ∈ L2(R, wH) for any τ ∈ R by (SNM1) and Lemma 3.5.
Hence, g(1)τ has a Hermitian expansion, and we can write

Ekℓ =
1
2

EX∼N (0,IdD)

[(
∞

∑
r=0

µr(g(1)τk)hr(ŵ⊤k X)

)(
∞

∑
r=0

µr(g(1)τℓ)hr(ŵ⊤ℓ X)

)]
.

Using now Lemma 3.4 to express expectations of scalar products of Hermite polynomials, we
obtain

Ekℓ =
1
2

∞

∑
r=0

µr(g(1)τk)µr(g(1)τℓ)⟨ŵk, ŵℓ⟩r,

which can equivalently be written as 1
2 ∑∞

r=0 TrT⊤r . The second part of the statement follows
from the fact that each individual matrix TrT⊤r is a positive semidefinite Gramian matrix.

109 Chapter 3. Efficient reconstruction of wide shallow networks

Remark 3.4. Note that an identical statement can be proven for the matrix E2 with entries given by

(E2)kℓ = EX∼N (0,IdD)

[
g(2)τk (w⊤k X)g(2)τℓ (w

⊤
ℓ X)

]
,

yielding a decomposition with

E2 =
1
2

∞

∑
r=0

TrT⊤r , where T′r :=

µr(g(2)τ1) vec(w⊗r

1)
...

µr(g(2)τm) vec(w⊗r
m)

 ∈ Rm×Dr
.

This follows from the fact that g(2) is bounded and, therefore, also admits a Hermite expansion. This will
play a role in the proof of Theorem 3.5. Let us remark that the following discussion also applies when we
replace E with E2 and rename the variables accordingly.

Let us provide some interpretation of the preceding result. Denote by Hn
r the matrix whose

entries are defined as

(Hn
r)kℓ := µr(g(n)τk)µr(g(n)τℓ) for n ∈ {1, 2}. (3.91)

Lemma 3.8 shows that the expectation E can be written as the matrix series

E =
1
2

∞

∑
r=0

H1
r ⊙ Ĝr,

where Ĝr denotes the Gramian matrix of the system {ŵ⊗r
k |k ∈ [m]} (cf. Section 2.6.1) if r > 0

and otherwise Ĝ0 = 1⊗ 1. Due to the incoherence of the approximated weights, the off-
diagonal entries of higher-order Gramian matrices will vanish at an exponential rate in r, i.e.,
we have Ĝr ≈ Idm for r sufficiently large. Hence, the tail of the matrices series is close to a sum
of diagonal matrices. Notably, by the remark in the preceding statement, it is sufficient to prove
positive definiteness for a tail series. Assuming the diagonal elements of a tail series remain
positive and the off-diagonal elements become sufficiently small, the positive definiteness can
be proven by combining Weyl’s inequality (cf. [132]) with Theorem 2.9. The diagonal elements
of any tail series have the form(

1
2

∞

∑
r=R

Hr ⊙ Ĝr

)
kk

=

(
1
2

∞

∑
r=R

Hr

)
kk

=
1
2

∞

∑
r=R

µr(g(1)τk)2, for all k ∈ [m].

The assumption (SNM2) states that g(1) is not a polynomial of degree three or less. Therefore,
g(1)τk can not be represented entirely by the first three Hermite polynomials. The following
statement leverages this assumption to show that 1

2 ∑∞
r=4 Hr ⊙ Ĝr is positive definite.

Lemma 3.9 ([51, Lemma 8]). Let E be defined as in (3.90) and assume that the approximated weights
satisfy ∥ŵk∥2 = 1 and (Inc2) for some universal constant c2. Furthermore, assume the activation
function adheres to (SNM1) and (SNM2). Then, we have

λm(E) ≥ ω− C(m− 1)
(

log m
D

)2

, (3.92)

where ω and C are constants depending only on g and τ∞. Specifically, we have

ω =
1
2

min
τ∈[−τ̄∞,τ̄∞]

∑
r≥4

(
µr(g(1)(·+ τ))

)2
,

C =
1
2

c2
2 max

τ,τ̃∈[−τ∞,τ∞]
∑
r≥4

∣∣∣µr(g(1)τ)µr(g(1)τ̃)
∣∣∣ .

3.4. Refining the approximated shifts using empirical risk minimization 110

Proof of Lemma 3.9. To simplify the notation, we introduce the shorthand µr,k := µr(g(1)τk). By
Lemma 3.8 we have E ≽ 1

2 ∑r≥4 TrT⊤r , so we concentrate on the expression on the right-
hand side. As ∥ŵk∥2 = 1 for all k ∈ [m], we first note that we can rewrite 1

2 ∑r≥4 TrT⊤r as
1
2 ∑r≥4 TrT⊤r = D4 + O4, where the matrix D4 is given by

D4 :=
1
2

Diag
(

∑
r≥4

µ2
r,1, . . . , ∑

r≥4
µ2

r,m

)
and the remainder O4 equals 1

2 ∑r∈4 TrT⊤r with its diagonal set to 0. To show (3.92), we compute
a lower eigenvalue bound for D4 and an upper eigenvalue bound for O4 independently, and
then complete the argument with Weyl’s eigenvalue perturbation bound [132]. The smallest
eigenvalue of D4 can be read from the diagonal and is given by

λmin(D4) =
1
2

min
k∈[m]

∑
r≥4

µ2
r,k ≥ ω > 0,

where the last inequality, stating ω > 0, follows from (SNM2). For the spectral norm of O4
we use L1/L∞-Cauchy-Schwarz inequalities and ∥ŵk∥2 = 1 for all k ∈ [m]. Specifically, for any
unit norm vector u, we have

u⊤O4u =
1
2

m

∑
k=1

∑
ℓ ̸=k

ukuℓ ∑
r≥4

µr,kµr,ℓ⟨ŵk, ŵℓ⟩r

≤ 1
2

m

∑
k=1

∑
ℓ ̸=k
|uk| |uℓ|∑

r≥4
|µr,kµr,ℓ| |⟨ŵk, ŵℓ⟩|r .

By dragging out the maximum of the sums over Hermitian coefficients, we further bound

u⊤O4u ≤
(1

2
max

τ,τ̃∈[−τ∞,τ∞]
∑
r≥4

∣∣∣µr(g(1)τ)µr(g(1)τ̃)
∣∣∣) m

∑
k=1

∑
ℓ ̸=k
|uk| |uℓ| |⟨ŵk, ŵℓ⟩|4 .

The trailing factor is, for all unit norm u, bounded by the spectral norm of the matrix

(Ô4)ij :=

{
0, if i = j,∣∣⟨ŵi, ŵj⟩

∣∣4 , else .
(3.93)

Therefore, we have u⊤O4u ≤ Cg,τ∞∥Ô4∥ for all unit norm u, and with the constant Cg,τ∞ given
as

Cg,τ∞ =
1
2

max
τ,τ̃∈[−τ∞,τ∞]

∑
r≥4

∣∣∣µr(g(1)τ)µr(g(1)τ̃)
∣∣∣ ,

and only dependent on g and the shift bound τ∞. By Gershgorin’s circle theorem, we further
have

∥Ô4∥ ≤ max
k∈[m]

m

∑
ℓ ̸=k
|(Ô4)kℓ| ≤ (m− 1)

(
c2 log m

D

)2

,

where we used the fact that ŵ1, . . . , ŵm satisfy (Inc2).

Remark 3.5. Let us mention that the lower bound (3.92) can be improved by minor adaptions of the
proof to

λm(E) ≥ 1
2

min
τ∈[−τ̄∞,τ̄∞]

∑
r≥R

(
µr(g(1)(·+ τ))

)2
− C(m− 1)

(
log m

D

)(R+1)/2

, (3.94)

for a suitable constant C > 0, assuming g(1) is not a polynomial of degree R ≥ 3 or less. Differently
put, as long as we can guarantee that the Hermite coefficients do not vanish too quickly, we can further
benefit from the incoherence of the weights w1, . . . , wm.

111 Chapter 3. Efficient reconstruction of wide shallow networks

Discussion of assumption (SNM3). As already prefaced in Remark 3.4, the proof technique
used to lower bound the spectrum of E can also be applied to find a lower bound to the
spectrum of the second moment matrix E2. This enables us to provide a lower bound on the
m-th singular value of the matrix λm

(
EX∼N (0,Id)[vec(∇2 f (X))⊗2]

)
which equates to condition

(SNM3). Notably, assumptions similar to (SNM3) are integral in other related works such as
[54].

Theorem 3.5. Consider a shallow neural network f as described in Section 3.1.1. Assume the activation
g satisfies (SNM1)-(SNM2), and that the network weights w1, . . . , wm ∈ SD−1 fulfill conditions (Inc1)-
(Inc2) of Definition 2.3 with constants c2, c3. Then, there exists a constant C > 0 depending only on
c2, g(2), such that for m log2 m ≤ CD2 we have

λm

(
EX∼N (0,Id)[vec(∇2 f (X))⊗2]

)
≥ c−1

3 λm(E2) > 0,

where E2 is a positive definite matrix with entries (E2)kℓ = EX∼N (0,IdD)

[
g(2)τk (w⊤k X)g(2)τℓ (w

⊤
ℓ X)

]
. In

particular, under these assumptions, the condition (SNM3) is fulfilled for a constant α > 0 independent
of m, D.

Proof. Throughout the proof we denote E[·] = EX∼N (0,Id)[·] and µr,k = µr(g(2)τk) for all k ∈ [m].
We begin by expanding the outer product, which yields

E
[
vec(∇2 f (X))⊗2] = E

(m

∑
k=1

g(2)(⟨w⊤k X + τk⟩) vec(w⊗2
k)

)⊗2

=
m

∑
k,ℓ=1

E
[

g(2)(⟨w⊤k X + τk⟩)g(2)(⟨w⊤ℓ X + τℓ⟩)
]

vec(w⊗2
k)⊗ vec(w⊗2

ℓ).

(3.95)

Due to Lemma 3.5 and ((SNM1)), the shifted second derivative of the activation admits a
Hermite expansion such that

g(2)(⟨w⊤ℓ X + τℓ⟩) =
∞

∑
r=0

µk,rhr(w⊤k X),

where hr denotes the r-th Hermite polynomial. Plugging this expansion into (3.95) gives

E
[
vec(∇2 f (X))⊗2] = m

∑
k,ℓ=1

E

[
∞

∑
r,s=0

µk,rhr(w⊤k X)µℓ,shs(w⊤ℓ X)

]
vec(w⊗2

k)⊗ vec(w⊗2
ℓ)

=
∞

∑
r=0

m

∑
k,ℓ=1

µr,kµr,ℓ · (Gr)kℓ vec(w⊗2
k)⊗ vec(w⊗2

ℓ), (3.96)

where the last step follows from Lemma 3.4. Here, G0 = 1⃗⊗ 1⃗ and Gr denotes the Gramian
matrix of the system {w⊗r

k |k ∈ [m]}. Denote now W2 =
[
vec(w⊗2

1) . . . vec(w⊗2
m)
]
∈ RD2×m, then

(3.96) can be rephrased as the matrix product

∞

∑
r=0

m

∑
k,ℓ=1

µr,kµr,ℓ(Gr)kℓ vec(w⊗2
k)⊗ vec(w⊗2

ℓ) = W2

(
∞

∑
r=0

H2
r ⊙ Gr

)
W⊤2 , (3.97)

where H2
r is the matrix storing the Hermite coefficients, i.e., (Hn

r)kℓ := µr(g(n)τk)µr(g(n)τℓ) (cf.
Definition (3.91)). Note that the matrix E2 :=

(
∑∞

r=0 H2
r ⊙ Gr

)
is positive definite, with a lower

3.4. Refining the approximated shifts using empirical risk minimization 112

bound on the smallest singular value that obeys

λm(E2) ≥
1
2

min
τ∈[−τ̄∞,τ̄∞]

∑
r≥R

(
µr(g(2)(·+ τ))

)2
− C̃(m− 1)

(
log m

D

)(R+1)/2

, (3.98)

where R ∈N is the maximal number such that g(2) is not a polynomial of degree R or less and

C̃ =
1
2

c2
2 max

τ,τ̃∈[−τ∞,τ∞]
∑
r≥4

∣∣∣µr(g(2)τ)µr(g(2)τ̃)
∣∣∣ . (3.99)

This follows directly from the proof of Lemma 3.9, Remark 3.4, and Remark 3.5 since g(2)

satisfies the same relevant conditions as g(1) and the weights w1, . . . , wm are satisfying the
incoherence condition (Inc2). In particular, since g(2) is not a polynomial of degree three or
less, the bound (3.98) is fulfilled for R = 3. Hence, similarly to Lemma 3.9, we get

λm(E2) ≥
1
2

min
τ∈[−τ̄∞,τ̄∞]

∑
r≥4

(
µr(g(2)(·+ τ))

)2
− C̃(m− 1)

(
log m

D

)2

.

The term 1
2 minτ∈[−τ̄∞,τ̄∞] ∑r≥4 is constant, only depending on g(2), whereas the right-hand side(

µr(g(2)(·+ τ))
)2
− C̃(m − 1)

(
log m

D

)2
is arbitrarily small whenever m ≤ CD2 log2 m holds

for a suitable constant C, which reflects our initial setting. Thus, E2 is positive definite with
smallest eigenvalue denoted by λm(E2) that only depends on c2, g(2). Denote now by VΣV⊤

the eigendecomposition of E2, then we can continue from (3.96) with

E
[
vec(∇2 f (X))⊗2] = W2E2W⊤2 = W2VΣV⊤W⊤2 .

We can now provide a lower bound on the minimal eigenvalue of the expectation in terms of
λm(E2) and c−1

3 = ∥G−1
2 ∥. Denote by Σ1/2 the diagonal matrix such that Σ1/2Σ1/2 = Σ, then

λm
(
E
[
vec(∇2 f (X))⊗2]) = λm

(
W2VΣV⊤W⊤2

)
= λm

(
(W2VΣ1/2)(W2VΣ1/2)⊤

)
= λm

(
(W2VΣ1/2)⊤(W2VΣ1/2)

)
= λm

(
Σ1/2V⊤G2VΣ1/2

)
,

where the second inequality follows from the identity λm(XXT) = λm(XTX) and the last step
uses the fact that W⊤2 W2 = G2. Since w1, . . . , wm satisfy (Inc3), the spectrum of the Gramian
matrix G2 is bounded by c−1

3 , such that

λm

(
Σ1/2V⊤G2VΣ1/2

)
≥ λm(Σ1/2Σ1/2) · λm(V⊤G2V) = λm(E2)λm(G2) ≥ c−1

3 λm(E2).

Here, the first inequality follows from a generalization of Sylvester’s law of inertia [101,
Theorem 1].

3.4.6 Controlling the difference between the gradient upgrades

In this section, we derive an upper bound on the difference ∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)∥2 between the
gradients of the original objective J in (3.71) and the idealized objective J∗ in (3.83). This will
allow us to characterize the divergence between the two associated gradient descent iterations,
which previously defined (3.72) and (3.85). For more details, we refer to the discussion in
Section 3.4.2. Our main result in this section is stated below.

113 Chapter 3. Efficient reconstruction of wide shallow networks

Lemma 3.10 (cf. [51, Lemma 13]). Consider a shallow neural network f with unit norm weights
described by the matrix W = [w1| . . . |wm], shifts τ1, . . . , τm ∈ [−τ∞, τ∞] stored in τ and an activation
function g that adheres to (SNM1)-(SNM2) with D ≤ m. Furthermore, consider J, J∗ given by
(3.71), (3.83) constructed with Ntrain ≥ m network evaluations y1, . . . , yNtrain of f where yi = f (Xi)

and X1, . . . , XN ∼ N (0, IdD). Denote by f̂ an approximation to f constructed from parameters
Ŵ = [ŵ1| . . . |ŵm], τ̂ as described above with ∥ŵk∥ = 1 for all k ∈ [m]. Then, there exists an absolute
constant C > 0 and D0 such that, for dimension D ≥ D0, the difference between the gradients of J and
of the idealized objective J∗ obeys

∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)∥2 ≤ 2κ2√m ∥τ̂ − τ∥2
2 + C∆W,1 +

(
m3δ2

maxt
Ntrain

)1/2

(3.100)

for t > 0 with probability at least 1− 2m2 exp
(
− t

Cκ4

)
and where

∆W,1 ≤
m1/2 log(m)3/4

D1/4

[
∥Ŵ −W∥F +

∆1/2
W,O

D1/2 +

∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

]
. (3.101)

The proof relies on several auxiliary statements and has been deferred to the end of the section.
Due to the technical nature of the results within this section, we start with a short sketch of the
proof of Lemma 3.10, which helps to motivate the auxiliary statements.

Proof sketch of Lemma 3.10. In the first step, we separate the bound on ∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)∥2
into two terms ∆τ, ∆W , such that

∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)∥2 ≤ ∆τ + ∆W .

Here, the error ∆τ is caused by our linearization argument and only scales with the deviation
of τ̂ from the true shifts τ, whereas ∆W represents the error due to the weight approximation.
Using a chain of elementary algebraic arguments that follow from (SNM1), we can estimate
∆τ ≤ 2κ2√m∥τ̂ − τ∥2

2. The more challenging part is the bound ∆W , which needs to control the
term ∥∥∥ 1

Ntrain

Ntrain

∑
i=1

(
f̂ (Xi, τ)− f (Xi, τ)

)
∇τ̂ f̂ (Xi, τ̂)

∥∥∥
2
≤ ∆W .

Assuming equality, we express ∆2
W as sum of random variables

∆2
W =

m

∑
ℓ=1

[
1

Ntrain

Ntrain

∑
i=1

m

∑
k=1

Zikℓ

]2

,

where Zikℓ := φk,ℓ(Xi) and

φk,ℓ(x) =
(

g(x⊤ŵk + τk)− g(x⊤wk + τk)
)

g(1)(x⊤ŵℓ + τ̂ℓ).

To control ∆2
W , we first make separate the means E[Zikℓ] = EX∼N (0,IdD)[φkℓ(X)] of the sum

according to

∆2
W =

m

∑
ℓ=1

[
1

Ntrain

Ntrain

∑
i=1

m

∑
k=1

Zikℓ

]2

≤ 2∆2
W,1 + 2∆2

W,2,

3.4. Refining the approximated shifts using empirical risk minimization 114

where

∆2
W,1 :=

m

∑
ℓ=1

[
1

Ntrain

Ntrain

∑
i=1

m

∑
k=1

E[Zikℓ]

]2

, ∆2
W,2 :=

m

∑
ℓ=1

[
1

Ntrain

Ntrain

∑
i=1

m

∑
k=1

(Zikℓ −E[Zikℓ])

]2

.

Establishing that Zikℓ − E[Zikℓ] is sub-Gaussian for all k, ℓ ∈ [m] then enables us to use a
concentration argument showing that, for suitable C > 0, t ≥ 0, we have

P

(
∆2

W,2 ≤
m3δ2

maxt
Ntrain

)
≥ 1− 2m2 exp

(
− t

Cκ4

)
.

To bound ∆2
W,1, we make use of the Hermite expansion of the function φ(x), which allows us

once again to exploit the incoherence of the weights (wk)k∈[m], (ŵk)k∈[m]. More precisely, we

receive the identity ∆2
W,1 = ∑m

ℓ=1
(
∑r≥1 Sr,ℓ

)2, where Sr,ℓ is defined as

Sr,ℓ :=
m

∑
k=1

µr(gτk)µr(g(1)τ̂ℓ
) (⟨ŵk, ŵℓ⟩r − ⟨wk, ŵℓ⟩r) for all k, ℓ ∈ [m] (3.102)

where µr(gτk), µr(g(1)τ̂ℓ
) denotes the k-th and ℓ-th Hermite coefficient of the function gτk , g(1)τ̂ℓ

,

respectively. We split the series ∑m
ℓ=1
(
∑r≥1 Sr,ℓ

)2 into three parts using the inequality

m

∑
ℓ=1

(
∑
r≥1

Sr,ℓ

)2

≤ 2
m

∑
ℓ=1

S2
1,ℓ +

R−1

∑
r=2

2r
m

∑
ℓ=1

S2
r,ℓ + 2R

m

∑
ℓ=1

(
∑
r≥R

Sr,ℓ

)2

for R ≥ 2. (3.103)

Based on this representation, we prove three individual statements, each of which targets
an individual term in the inequality above. In Lemma 3.13, we show that the tail series
2R ∑m

ℓ=1
(
∑r≥R Sr,ℓ

)2 is neglectable for R ≥ 9 when compared to the first two sums. The two
dominant terms are then bounded as

R

∑
r=2

2r
m

∑
ℓ=1

S2
r,ℓ ≲

m log m
D

(
∥W − Ŵ∥2

F +

(
log m

D

)1/2

∆W,O

)
,

by Lemma 3.11 (see (3.104) for a definition of ∆W,O), and

m

∑
ℓ=1

S2
1,ℓ ≲ m

(
log m

D

)1/2
∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

2

,

by Lemma 3.12. In combination, these bounds give rise to the result in (3.101).

Finding an upper bound for the series in (3.103). In the upcoming results, we will reuse the
shorthand ∆W,O from (3.17) (cf. Theorem 3.2), which was defined as

∆W,O =
m

∑
k ̸=k′

∣∣⟨ŵk − wk, ŵk′ − w′k⟩
∣∣ . (3.104)

We start with a bound on the inner sum in (3.103):

Lemma 3.11 (cf. [51, Lemma 9]). Consider weights and approximated weights (wk)k∈[m], (ŵk)k∈[m]

of unit norm as before that both fulfill (Inc2) and (i) in Lemma 3.2, as well shifts (τk)k∈[m], (τ̂k)k∈[m]

115 Chapter 3. Efficient reconstruction of wide shallow networks

within [−τ∞, τ∞] for some τ∞ < ∞. Let Sr,ℓ be defined as in (3.102) and assume that g fulfills the
assumption (SNM1) - (SNM2). Then, there exists a constant C > 0 such that, for m ≥ D,

m

∑
ℓ=1

S2
r,ℓ ≤ Cr2 max

k,ℓ∈[m]
µr(g(1)τ̂ℓ

)2µr(gτk)
2

(
1 + m

(
log m

D

)r/2
)

·
[
∥W − Ŵ∥2

F +

(
log m

D

)(r−1)/2

∆W,O

]
.

Furthermore, for any fixed R ≥ 2, we have

R

∑
r=2

2r
m

∑
ℓ=1

S2
r,ℓ ≤

Cm log m
D

(
∥W − Ŵ∥2

F +

(
log m

D

)1/2

∆W,O

)
,

where the constant C > 0 additionally depends on R.

Proof of Lemma 3.11. Throughout this proof, we use the convention that, for any vector, we have
v⊗0 = 1, 1⊗ 1 = 1, and v⊗ 1 = 1⊗ v = v, which will be relevant for the case r = 1. We start
with a chain of equalities that uses elementary properties of the Frobenius inner product:

m

∑
ℓ=1

S2
r,ℓ =

m

∑
ℓ=1

[
m

∑
k=1

µr(gτk)µr(g(1)τ̂ℓ
) (⟨ŵk, ŵℓ⟩r − ⟨wk, ŵℓ⟩r)

]2

=
m

∑
ℓ=1

[
m

∑
k=1

µr(gτk)µr(g(1)τ̂ℓ
)⟨ŵk − wk, ŵℓ⟩

(
r

∑
i=1
⟨ŵk, ŵℓ⟩r−i⟨wk, ŵℓ⟩i−1

)]2

=
m

∑
ℓ=1

[
m

∑
k=1

µr(gτk)µr(g(1)τ̂ℓ
)⟨ŵk − wk, ŵℓ⟩

〈
r

∑
i=1

ŵ⊗(r−i)
k ⊗ w⊗(i−1)

k , ŵ⊗r−1
ℓ

〉]2

=
m

∑
ℓ=1

[
m

∑
k=1

µr(gτk)µr(g(1)τ̂ℓ
)

〈
(ŵk − wk)⊗

r

∑
i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)
, ŵ⊗r

ℓ

〉]2

=
m

∑
ℓ=1

[
µr(g(1)τ̂ℓ

)

〈
m

∑
k=1

µr(gτk)(ŵk − wk)⊗
r

∑
i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)
, ŵ⊗r

ℓ

〉]2

=
m

∑
ℓ=1

µr(g(1)τ̂ℓ
)2

〈
m

∑
k=1

µr(gτk)(ŵk − wk)⊗
r

∑
i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)
, ŵ⊗r

ℓ

〉2

.

At this stage, we separate the coefficients depending on ℓ such that

m

∑
ℓ=1

[
m

∑
k=1

µr(gτk)µr(g(1)τ̂ℓ
) (⟨ŵk, ŵℓ⟩r − ⟨wk, ŵℓ⟩r)

]2

≤max
ℓ∈[m]

µr(g(1)τ̂ℓ
)2

m

∑
ℓ=1

〈
m

∑
k=1

µr(gτk)(ŵk − wk)⊗
r

∑
i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)
, ŵ⊗r

ℓ

〉2

.

Now, note that the set of tensors (ŵ⊗r
ℓ)ℓ∈[m] forms a frame whose upper frame constant is

bounded by the upper spectrum of the Gramian (Ĝr)ij = ⟨ŵi, ŵj⟩r, see also Lemma 2.20. Due
to Lemma 2.23, which relies on Gershgorin’s circle theorem, we know there exists an absolute
constant C > 0 such that for D sufficiently large the operator norm of Ĝr obeys

∥Ĝr∥ ≤ C

(
1 + m

(
log m

D

)r/2
)

.

3.4. Refining the approximated shifts using empirical risk minimization 116

As a consequence, we get

max
ℓ∈[m]

µr(g(1)τ̂ℓ
)2

m

∑
ℓ=1

〈
m

∑
k=1

µr(gτk)(ŵk − wk)⊗
r

∑
i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)
, ŵ⊗r

ℓ

〉2

≤ max
ℓ∈[m]

µr(g(1)τ̂ℓ
)2∥Ĝr∥

∥∥∥∥∥ m

∑
k=1

µr(gτk)(ŵk − wk)⊗
r

∑
i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)∥∥∥∥∥
2

F

≤C max
ℓ∈[m]

µr(g(1)τ̂ℓ
)2

(
1 + m

(
log m

D

)r/2
)∥∥∥∥∥ m

∑
k=1

µr(gτk)(ŵk − wk)⊗
r

∑
i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)∥∥∥∥∥
2

F

.

(3.105)

Denote now ∆k,r := µr(gτk)(ŵk − wk) and Tk,r := ∑r
i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)
, then

∥∥∥∥∥ m

∑
k=1

µr(gτk)(ŵk − wk)⊗
r

∑
i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)∥∥∥∥∥
2

F

=
m

∑
k,k′=1
⟨∆k,r ⊗ Tk,r, ∆k′,r ⊗ Tk′,r⟩ =

m

∑
k,k′=1
⟨∆k,r, ∆k′,r⟩⟨Tk,r, Tk′,r⟩

=
m

∑
k=1
∥∆k,r∥2

2∥Tk,r∥2
F +

m

∑
k ̸=k′
⟨∆k,r, ∆k′,r⟩⟨Tk,r, Tk′,r⟩. (3.106)

Using ∥wk∥2 = ∥ŵk∥2 = 1 we get

∥Tk,r∥F ≤
r

∑
i=1
∥ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k ∥F ≤

r

∑
i=1
∥ŵk∥r−i

2 ∥wk∥i−1
2 = r,

such that the left part of (3.106) can be estimated by

m

∑
k=1
∥∆k,r∥2

2∥Tk,r∥2
F ≤ r2 max

k∈[m]
µr(gτk)

2
m

∑
k=1
∥ŵk − wk∥2

2

= r2 max
k∈[m]

µr(gτk)
2∥Ŵ −W∥2

F.
(3.107)

To bound the right part of (3.106) first note that, for k ̸= k′,

⟨Tk,r, Tk′,r⟩ =
r

∑
i,i′=1

〈
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k , ŵ⊗(r−i′)

k′ ⊗ w⊗(i
′−1)

k′

〉
≤ C

r

∑
i,i′=1

(
log m

D

)(r−1)/2

= Cr2
(

log m
D

)(r−1)/2

,

for some absolute constant C, which follows from the pairwise incoherence (Inc2) as well as
point (i) of Lemma 3.2. Therefore, the right part of (3.106) is bounded by

m

∑
k ̸=k′
⟨∆k,r, ∆k′,r⟩⟨Tk,r, Tk′,r⟩ ≤ Cr2

(
log m

D

)(r−1)/2 m

∑
k ̸=k′
|⟨∆k,r, ∆k′,r⟩|

≤ Cr2
(

log m
D

)(r−1)/2

max
k∈[m]

µr(gτk)
2

m

∑
k ̸=k′

∣∣⟨ŵk − wk, ŵk′ − w′k⟩
∣∣ .

(3.108)

117 Chapter 3. Efficient reconstruction of wide shallow networks

Plugging in (3.107) and (3.108) into (3.106) yields∥∥∥∥∥ m

∑
k=1

µr(gτk)(ŵk − wk)⊗
r

∑
i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)∥∥∥∥∥
2

F

(3.109)

≤Cr2 max
k∈[m]

µr(gτk)
2

[
∥Ŵ −W∥2

F +

(
log m

D

)(r−1)/2 m

∑
k ̸=k′

∣∣⟨ŵk − wk, ŵk′ − w′k⟩
∣∣] . (3.110)

Combining this with (3.105) yields the desired first statement

m

∑
ℓ=1

S2
r,ℓ ≤ Cr2 max

k,ℓ∈[m]
µr(g(1)τ̂ℓ

)2µr(gτk)
2

(
1 + m

(
log m

D

)r/2
)

·
[
∥W − Ŵ∥2

F +

(
log m

D

)(r−1)/2

∆W,O

]
.

For the second statement, note that maxk∈[m] µr(gτk)
2 is bounded due to (SNM2) and that

maxℓ∈[m] µr(g(1)τ̂ℓ
)2 is bounded according to Lemma 3.5. Hence, it follows that

R

∑
r=2

2r
m

∑
ℓ=1

S2
r,ℓ ≤

R

∑
r=2

2rCr2

(
1 + m

(
log m

D

)r/2
)[
∥W − Ŵ∥2

F +

(
log m

D

)(r−1)/2

∆W,O

]

≤
(

1 + m
(

log m
D

))(
∥W − Ŵ∥2

F +

(
log m

D

)1/2

∆W,O

)
R

∑
r=1

2rCr2.

The second statement follows from the upper bound above by adjusting the constant C due to
∑R

r=1 2rCr2 < ∞ for fixed R and using (m log m)/D > 1.

The next statement builds upon Lemma 3.11, in particular (3.105), to control the first sum in
(3.103). Notably, we use (SNM1) to eliminate all Hermite coefficients in our expressions.

Lemma 3.12 (cf. [51, Lemma 10]). Consider weights and approximated weights (wk)k∈[m], (ŵk)k∈[m]

of unit norm as before that both fulfill (Inc2) and (i) in Lemma 3.2, as well shifts (τk)k∈[m], (τ̂k)k∈[m]

within [−τ∞, τ∞] for some τ∞ < ∞. Let Sr,ℓ be defined as in (3.102) and assume that g fulfills the
assumption (SNM1) - (SNM2). Then, there exists a constant C > 0 such that for m ≥ D

m

∑
ℓ=1

S2
1,ℓ ≤ Cm

(
log m

D

)1/2
∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

2

.

Proof of Lemma 3.12. According to the proof of Lemma 3.11, in particular (3.105), we can bound

m

∑
ℓ=1

S2
1,ℓ ≤ Cm

(
log m

D

)1/2
∥∥∥∥∥ m

∑
k=1

µ1(gτk)(wk − ŵk)

∥∥∥∥∥
2

2

,

for some constant C > 0. Since µ1(gτk) is bounded for all k ∈ [m], what remains to be shown is
that the Hermite coefficients do not change signs. Note that the first Hermite polynomial is
given by h1(u) = u. According to the definition of the Hermite coefficients, we have

µ1(gτk) =
∫

R
ug(u + τk)e−u2/2du =

[
−g(u + τk)e−u2/2

]∞

−∞
+
∫

R
g(1)(u + τk)e−u2/2du

=
∫

R
g(1)(u + τk)e−u2/2du.

Now note that g(1)(u + τk) will always have the same sign since g(2) is monotonic due to
(SNM1). Therefore, µ1(gτ1), . . . , µ1(gτm) must all be either positive or negative, from which the
proof follows directly.

3.4. Refining the approximated shifts using empirical risk minimization 118

The last auxiliary statement provides an upper bound for the tail series appearing in (3.103) for
R ≥ 9. The proof directly bounds the Cauchy product ∑m

ℓ=1
(
∑r≥R Sr,ℓ

)2, and leverages that the
Gramian matrix ĜR of the system {ŵ⊗R

k |k ∈ [m]} has a spectral norm bounded by a constant
(independent of m, D), which follows from Lemma 2.23 in Section 2.6.1. Additionally, mixed
terms giving rise to the factor ∆W,O, which appeared in the previous two statements, can be
simplified using(

log m
D

)(R−1)/2

∆W,O ≤
(

log m
D

)4

m2δ2
max ≤ δ2

max ≤ ∥W − Ŵ∥2
F,

for m log2 m ≤ D2, R ≥ 9. By these arguments, we can reduce the problem to

m

∑
ℓ=1

(
∑
r≥R

Sr,ℓ

)2

≤ C∥W − Ŵ∥2
F
√

m

(
∑
r≥R

r|max
k,ℓ

µr(gτk)µr(g(1)τ̂ℓ
)|
)2

.

The statement then follows by applying Lemma 3.7 to show ∑r≥R r|maxk,ℓ µr(gτk)µr(g(1)τ̂ℓ
)| < ∞.

Lemma 3.13 (cf. [51, Lemma 12]). Consider weights and approximated weights (wk)k∈[m], (ŵk)k∈[m]

of unit norm as before that both fulfill (Inc2) and (i) in Lemma 3.2, as well as shifts (τk)k∈[m], (τ̂k)k∈[m]

within [−τ∞, τ∞] for some τ∞ < ∞. Let Sr,ℓ be defined as in (3.102), and assume that g fulfills the
assumption (SNM1). Then, there exists a constant C > 0 such that for R ≥ 9 we have

m

∑
ℓ=1

(
∑
r≥R

Sr,ℓ

)2

≤ C
√

m∥W − Ŵ∥2
F.

Proof of Lemma 3.13. We start by applying the Cauchy product to the squared series

m

∑
ℓ=1

(
∑
r≥R

Sr,ℓ

)2

=
m

∑
ℓ=1

(
∑
r≥0

r

∑
s=0

Sr+R−s,ℓSs+R,ℓ

)

= ∑
r≥0

r

∑
s=0

m

∑
ℓ=1

Sr+R−s,ℓSs+R,ℓ

≤
√

m ∑
r≥0

r

∑
s=0

(
m

∑
ℓ=1

S2
r+R−s,ℓS

2
s+R,ℓ

)1/2

.

The inner sum is now controlled by a sequence of inequalities similar to Lemma 3.11. Again
we denote ∆k,r := µr(gτk)(ŵk − wk) and Tk,r := ∑r

i=1

(
ŵ⊗(r−i)

k ⊗ w⊗(i−1)
k

)
, then by applying the

same chain of inequality as at the beginning of the proof of Lemma 3.11 we receive

m

∑
ℓ=1

S2
r+R−s,ℓS

2
s+R,ℓ =

m

∑
ℓ=1

µr+R−s(g(1)τ̂ℓ
)2µs+R(g(1)τ̂ℓ

)2

·
〈

m

∑
k=1

∆k,r+R−s ⊗ Tk,r+R−s, ŵ⊗r+R−s
ℓ

〉2〈 m

∑
k=1

∆k,s+R ⊗ Tk,s+R, ŵ⊗s+R
ℓ

〉2

=
m

∑
ℓ=1

µr+R−s(g(1)τ̂ℓ
)2µs+R(g(1)τ̂ℓ

)2

·
〈(

m

∑
k=1

∆k,r+R−s ⊗ Tk,r+R−s

)
⊗
(

m

∑
k=1

∆k,s+R ⊗ Tk,s+R

)
, ŵ⊗r+2R

ℓ

〉2

.

119 Chapter 3. Efficient reconstruction of wide shallow networks

As before, we now invoke the frame-like condition described in Lemma 2.20 to attain a bound
depending on the upper spectrum of the Gramian (Ĝr+2R)ij = ⟨ŵi, ŵj⟩r+2R. More precisely, by
using the shorthand

µ′r,s := max
ℓ∈[m]

µr+R−s(g(1)τ̂ℓ
)2µs+R(g(1)τ̂ℓ

)2 (3.111)

we then have

m

∑
ℓ=1

S2
r+R−s,ℓS

2
s+R,ℓ ≤ µ′r,s∥Ĝr+2R∥

∥∥∥∥∥
(

m

∑
k=1

∆k,r+R−s ⊗ Tk,r+R−s

)
⊗
(

m

∑
k=1

∆k,s+R ⊗ Tk,s+R

)∥∥∥∥∥
2

F
(3.112)

≤ µ′r,s∥Ĝr+2R∥
∥∥∥∥∥ m

∑
k=1

∆k,r+R−s ⊗ Tk,r+R−s

∥∥∥∥∥
2

F

∥∥∥∥∥ m

∑
k=1

∆k,s+R ⊗ Tk,s+R

∥∥∥∥∥
2

F

. (3.113)

The two Frobenius norms can now be estimated as in Lemma 3.11, more precisely (3.110),
where we also use the shorthand ∆W,O defined in (3.104) as well as

µr,s := max
k∈[m]

µr+R−s(gτk)
2 max

k∈[m]
µs+R(gτk)

2.

This gives for some absolute constant C > 0

µ′r,s∥Ĝr+2R∥
∥∥∥∥∥ m

∑
k=1

∆k,r+R−s ⊗ Tk,r+R−s

∥∥∥∥∥
2

F

∥∥∥∥∥ m

∑
k=1

∆k,s+R ⊗ Tk,s+R

∥∥∥∥∥
2

F

≤ Cµ′r,sµr,s∥Ĝr+2R∥(r + R− s)2(s + R)2

·
(
∥W − Ŵ∥2

F +

(
log m

D

)(r+R−s−1)/2

∆W,O

)(
∥W − Ŵ∥2

F +

(
log m

D

)(s+R−1)/2

∆W,O

)

≤ Cµ′r,sµr,s∥Ĝr+2R∥(r + R− s)2(s + R)2

(
∥W − Ŵ∥2

F +

(
log m

D

)(R−1)/2

∆W,O

)2

.

Next, we identify the dominant factors and simplify the last expression accordingly. Due to
Lemma 2.23 we have for some constant C > 0 that

∥Ĝr+2R∥ ≤ C

(
1 + m

(
log m

D

)(r+2R)/2
)
≤ C

(
1 + m

(
log m

D

)9
)

,

where the last stop follows since R ≥ 9 and due to m(log m)2 ≤ D2 this can be further
simplified to ∥Ĝr+2R∥ ≤ C. Similarly, we have(

log m
D

)(R−1)/2

∆W,O =

(
log m

D

)(R−1)/2 m

∑
k ̸=k′

∣∣⟨ŵk − wk, ŵk′ − w′k⟩
∣∣

≤
(

log m
D

)4

m2δ2
max ≤ δ2

max ≤ ∥W − Ŵ∥2
F,

and therefore, we get

∥Ĝr+2R∥
(
∥W − Ŵ∥2

F +

(
log m

D

)(R−1)/2

∆W,O

)2

≤ C∥W − Ŵ∥4
F

3.4. Refining the approximated shifts using empirical risk minimization 120

for some absolute constant C > 0. Plugging these into (3.113) results in

m

∑
ℓ=1

S2
r+R−s,ℓS

2
s+R,ℓ ≤ Cµ′r,sµr,s(r + R− s)2(s + R)2∥W − Ŵ∥4

F.

Hence, we have

m

∑
ℓ=1

(
∑
r≥R

Sr,ℓ

)2

≤
√

m ∑
r≥0

r

∑
s=0

(
m

∑
ℓ=1

S2
r+R−s,ℓS

2
s+R,ℓ

)1/2

≤ C∥W − Ŵ∥2
F
√

m ∑
r≥0

r

∑
s=0

√
|µ′r,sµr,s|(r + R− s)(s + R)

≤ C∥W − Ŵ∥2
F
√

m

(
∑
r≥R

r|max
k,ℓ

µr(gτk)µr(g(1)τ̂ℓ
)|
)2

.

The result then follows by applying Lemma 3.7 onto the series in the last line followed by a
unification of the constants.

With Lemma 3.11-3.13, we can now prove the main lemma of this section. The proof has
already been outlined at the beginning of the section.

Proof of Lemma 3.10. Recall that

J(τ̂) =
1

2Ntrain

Ntrain

∑
i=1

(
f̂ (Xi, τ̂)− f (Xi, τ)

)2
.

By the chain rule, we compute the gradient of J w.r.t. τ̂ as

∇τ̂ J(τ̂) =
1

Ntrain

Ntrain

∑
i=1

(
f̂ (Xi, τ̂)− f (Xi, τ)

)
∇τ̂ f̂ (Xi, τ̂).

Adding 0 = (f̂ (Xi, τ)− f̂ (Xi, τ))∇τ̂ f̂ (Xi, τ̂) to J(τ̂) and applying the triangle inequality to
∇τ̂ J −∇τ̂ J∗ allows us to separate the error caused by the weight approximation

∥∥∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)
∥∥∥

2

≤
∥∥∥ 1

Ntrain

(Ntrain

∑
i=1

(f̂ (Xi, τ̂)− f̂ (Xi, τ))∇τ̂ f̂ (Xi, τ̂)−∇τ̂ f̂ (Xi, τ)∇τ̂ f̂ (Xi, τ)⊤(τ̂ − τ)
)∥∥∥

2

(3.114)

+
∥∥∥ 1

Ntrain

Ntrain

∑
i=1

(
f̂ (Xi, τ)− f (Xi, τ)

)
∇τ̂ f̂ (Xi, τ̂)

∥∥∥
2
. (3.115)

121 Chapter 3. Efficient reconstruction of wide shallow networks

To bound the first term in (3.114) denote h(λ) = (1− λ)τ̂ + λτ, then we have

f̂ (Xi, τ̂)− f̂ (Xi, τ) =
m

∑
k=1

g(ŵ⊤k Xi + τk)− g(ŵ⊤k Xi + τ̂k)

=
m

∑
k=1

g(ŵ⊤k Xi + h(1)k)− g(ŵ⊤k Xi + h(0)k)

=
m

∑
k=1

∫ h(1)k

h(0)k

g(1)(ŵ⊤k Xi + u)du

=
m

∑
k=1

∫ 1

0
g(1)(ŵ⊤k Xi + h(λ)k)h′(λ)kdλ

=
m

∑
k=1

∫ 1

0
g(1)(ŵ⊤k Xi + h(λ)k)dλ(τk − τ̂k).

Therefore, we can bound (3.114) as follows:∥∥∥ 1
Ntrain

(Ntrain

∑
i=1

(f̂ (Xi, τ̂)− f̂ (Xi, τ))∇τ̂ f̂ (Xi, τ̂)−∇τ̂ f̂ (Xi, τ)∇τ̂ f̂ (Xi, τ)⊤(τ̂ − τ)
)∥∥∥

2

≤
∥∥∥ 1

Ntrain

(Ntrain

∑
i=1
∇τ̂ f̂ (Xi, τ̂)

(∫ 1

0
∇τ̂ f̂ (Xi, h(λ))dλ

)⊤
−∇τ̂ f̂ (Xi, τ)∇τ̂ f̂ (Xi, τ)⊤

)∥∥∥ ∥(τ̂ − τ)∥2 .

Let us fix τ̂, τ for now and write the last line in terms of matrices F̂, F, F∗ ∈ RNtrain×m, where
the i-th row of these matrices is given by ∇τ̂ f̂ (Xi, τ̂),∇τ̂ f̂ (Xi, τ) and

∫ 1
0 ∇τ̂ f̂ (Xi, h(λ))dλ,

respectively. We obtain

∥∥∥ 1
Ntrain

(Ntrain

∑
i=1
∇τ̂ f̂ (Xi, τ̂)

(∫ 1

0
∇τ̂ f̂ (Xi, h(λ))dλ

)⊤
−∇τ̂ f̂ (Xi, τ)∇τ̂ f̂ (Xi, τ)⊤

)∥∥∥ ∥(τ̂ − τ)∥2

≤ 1
Ntrain

∥F̂⊤F∗ − F⊤F∥ ∥τ̂ − τ∥2

≤ 1
Ntrain

(
∥F̂− F∥∥F∗∥+ ∥F∥∥F− F∗∥

)
∥τ̂ − τ∥2 . (3.116)

A simultaneous upper bound for ∥F̂− F∥ and ∥F− F∗∥ can be established with elementary
matrix arithmetic and the Lipschitz continuity of g(1):

∥F̂− F∥ ≤ ∥F̂− F∥F =
[Ntrain

∑
i=1

m

∑
k=1

(g(1)(⟨ŵk, Xi⟩+ τ̂k)− g(1)(⟨ŵk, Xi⟩+ τk))
2
] 1

2

≤
∥∥∥g(2)

∥∥∥
∞

[Ntrain

∑
i=1

m

∑
k=1

(
τ̂k − τk

)2] 1
2
= κ

√
Ntrain ∥τ̂ − τ∥2 ,

the same bound follows for ∥F− F∗∥. A crude bound for ∥F∥ is given by

∥F∥ ≤
√

Ntrainm max
ik
|Fik| ≤

√
Ntrainm

∥∥∥g(1)
∥∥∥

∞
≤ κ

√
Ntrainm,

the same bound follows for ∥F∗∥. Hence, we can continue from (3.116) with

1
Ntrain

(
∥F̂− F∥∥F∗∥+ ∥F∥∥F− F∗∥

)
∥τ̂ − τ∥2 ≤ 2κ2√m∥τ̂ − τ∥2

2.

3.4. Refining the approximated shifts using empirical risk minimization 122

The error (3.115) caused by the difference between Ŵ and the original weights W has the
form

∥∥∥ 1
Ntrain

Ntrain

∑
i=1

(
f̂ (Xi, τ)− f (Xi, τ)

)
∇τ̂ f̂ (Xi, τ̂)

∥∥∥
2

=
∥∥∥ 1

Ntrain

Ntrain

∑
i=1

(m

∑
k=1

g(X⊤i ŵk + τk)− g(X⊤i wk + τk)
)
∇τ̂ f̂ (Xi, τ̂)

∥∥∥
2
.

Let us define

∆2
W :=

∥∥∥ 1
Ntrain

Ntrain

∑
i=1

(m

∑
k=1

g(X⊤i ŵk + τk)− g(X⊤i wk + τk)
)
∇τ̂ f̂ (Xi, τ̂)

∥∥∥2

2

=
m

∑
ℓ=1

[
1

Ntrain

Ntrain

∑
i=1

(m

∑
k=1

g(X⊤i ŵk + τk)− g(X⊤i wk + τk)
)

g(1)(⟨Xi, ŵℓ⟩+ τ̂ℓ)

]2

To keep the expressions more compact, we define Zikℓ := φk,ℓ(Xi) and

φk,ℓ(x) :=
(

g(x⊤ŵk + τk)− g(x⊤wk + τk)
)

g(1)(x⊤ŵℓ + τ̂ℓ).

Let us also define

∆2
W,1 :=

m

∑
ℓ=1

[
1

Ntrain

Ntrain

∑
i=1

m

∑
k=1

E[Zikℓ]

]2

,

∆2
W,2 :=

m

∑
ℓ=1

[
1

Ntrain

Ntrain

∑
i=1

m

∑
k=1

(Zikℓ −E[Zikℓ])

]2

.

Then,

∆2
W =

m

∑
ℓ=1

[
1

Ntrain

Ntrain

∑
i=1

m

∑
k=1

Zikℓ

]2

≤ 2∆2
W,1 + 2∆2

W,2. (3.117)

In what follows, we will control ∆2
W,1, ∆2

W,2 by using Hermite expansions and a concentration
argument, respectively.

We begin with ∆2
W,2: The first step is to establish that Zikℓ −E[Zikℓ] is sub-Gaussian and to

compute its sub-Gaussian norm. We remark that all expectations for the remainder of this proof
are w.r.t. the inputs X1, . . . , XNtrain ∼ N (0, IdD). First note that by the mean value theorem,
there exist values ξi,k such that

Zikℓ = ⟨ŵk − wk, Xi⟩g(1)(x⊤ŵℓ + τ̂ℓ)g(1)(ξi,k),

where g(1) is a bounded function according to (SNM1). We can combine this with the well-
known property of the sub-Gaussian norm, which states that ∥Zikℓ −E[Zikℓ]∥ψ2 ≤ C∥Zikℓ∥ψ2

for some absolute constant C > 0. This leads to

∥Zikℓ −E[Zikℓ]∥ψ2 ≤ C∥Zikℓ∥ψ2 ≤ Cκ2∥⟨ŵk − wk, Xi⟩∥ψ2 ≤ Cκ2δmax

123 Chapter 3. Efficient reconstruction of wide shallow networks

for all i ∈ [Ntrain], k, ℓ ∈ [m] and some absolute constant C > 0. As a consequence, we can
apply the general Hoeffding inequality (cf. [127, Theorem 2.6.2]), which yields the estimate

∆2
W,2 =

1
N2

train

m

∑
ℓ=1

(
m

∑
k=1

Ntrain

∑
i=1

Zikℓ −E[Zikℓ]

)2

≤ 1
N2

train

m

∑
ℓ=1

(
m

∑
k=1

∣∣∣∣∣Ntrain

∑
i=1

Zikℓ −E[Zikℓ]

∣∣∣∣∣
)2

≤ 1
N2

train

m

∑
ℓ=1

m2t2 =
m3t2

N2
train

,

which holds using a union bound with probability at least

1−
(

m

∑
k,ℓ=1

2 exp

(
− ct2

∑Ntrain
i=1 ∥Zikℓ −E[Zikℓ]∥2

ψ2

))
≥ 1− 2m2 exp

(
− t2

CNtrainδ2
maxκ4

)
,

for all t ≥ 0, where c, C > 0 are absolute constants. This implies that there exists an absolute
constant C > 0 such that for all t ≥ 0

P

(
∆2

W,2 ≤
m3δ2

maxt
Ntrain

)
≥ 1− 2m2 exp

(
− t

Cκ4

)
. (3.118)

What remains is to control the means contained in ∆2
W,1. Using the shorthand gτ(·) = g(·+ τ)

and the Hermite expansion we get

E[Zikℓ] = E
[
(gτk(ŵ

⊤
k Xi)− gτk(w

⊤
k Xi))g(1)τ̂ℓ

(ŵ⊤ℓ Xi)
]

= E

[(
∑
r≥0

µr(gτk)(hr(ŵ⊤k Xi)− hr(w⊤k Xi))

)
∑
t≥0

µt(g(1)τ̂ℓ
)ht(ŵ⊤ℓ Xi)

]
= ∑

r≥0
µr(gτk)µr(g(1)τ̂ℓ

) (⟨ŵk, ŵℓ⟩r − ⟨wk, ŵℓ⟩r) ,

where the last two steps rely on the same properties of the Hermite expansion already used
in the previous section. The summand corresponding to r = 0 in the last line above vanishes,
thus we have

∆2
W,1 =

m

∑
ℓ=1

[
m

∑
k=1

∑
r≥1

µr(gτk)µr(g(1)τ̂ℓ
) (⟨ŵk, ŵℓ⟩r − ⟨wk, ŵℓ⟩r)

]2

.

Denote now

Sr,ℓ :=
m

∑
k=1

µr(gτk)µr(g(1)τ̂ℓ
) (⟨ŵk, ŵℓ⟩r − ⟨wk, ŵℓ⟩r) ,

then, for any R ≥ 2, we have

∆2
W,1 =

m

∑
ℓ=1

(
∑
r≥1

Sr,ℓ

)2

≤ 2
m

∑
ℓ=1

S2
1,ℓ +

R−1

∑
r=2

2r
m

∑
ℓ=1

S2
r,ℓ + 2R

m

∑
ℓ=1

(
∑
r≥R

Sr,ℓ

)2

. (3.119)

Choose now R = 9 and plug in the result from Lemma 3.11, Lemma 3.12 and Lemma 3.13,
which yields for an appropriate constant C > 0 the bound

∆2
W,1 ≤ Cm

(
log m

D

)1/2
∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

2

+
Cm log m

D

(
∥W − Ŵ∥2

F +

(
log m

D

)1/2

∆W,O

)
(3.120)

+ C
√

m∥W − Ŵ∥2
F. (3.121)

3.4. Refining the approximated shifts using empirical risk minimization 124

Reordering the terms and taking the square root we receive

∆W,1 ≤ C

(
m1/4 + m1/2

(
log m

D

)1/2
)
∥W − Ŵ∥F + Cm1/2

(
log m

D

)3/4

∆1/2
W,O

+Cm1/2
(

log m
D

)1/4
∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

≤ C log(m)3/4

[(
m1/4 +

m1/2

D1/2

)
∥W − Ŵ∥F +

m1/2

D3/4 ∆1/2
W,O +

m1/2

D1/4

∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

]
.

Lastly, we can use

m1/4 +
m1/2

D1/2 ≤ m1/4 +
m1/2

D1/4 ≤
2m1/2

D1/4

since m ≥ D followed by ∆W ≤ C(∆W,1 + ∆W,2) to conclude the proof. Note that we can simply
separate the constant that appears in the definition of ∆W,1 to appear outside of the term ∆W,1,
such that we arrive at the formulation appearing in the original statement.

3.4.7 A lower bound for the drift from the idealized GD iteration

The last statement needed for the proof of Theorem 3.4 is concerned with the drift between
the idealized gradient descent iteration (τ̂

(n)
∗)n∈N and the gradient decent iteration (τ̂(n))n∈N.

This will be done under the assumption that (τ̂
(n)
∗)n∈N converges to the true shifts τ at a

linear rate, which is guaranteed whenever the objective J∗(τ̂) = (τ̂ − τ)⊤A(τ̂ − τ) is strictly
convex. In Section 3.4.5, more precisely Lemma 3.9, we saw that this assumption holds with
high probability as long as the number of training samples Ntrain is sufficiently large. By
applying the perturbation result from the last section, which states that the gradient updates of
(τ̂(n))n∈N, (τ̂(n)

∗)n∈N satisfy

∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)∥2 ≤ κ2√m ∥τ̂ − τ∥2
2 + ∆W ,

in a vicinity around the true shifts τ, we will now control the drift ∥τ̂(n) − τ̂
(n)
∗ ∥2. The next

statement gives sufficient conditions on ∆W and the starting point τ̂(0), under which the drift
∥τ̂(n) − τ̂

(n)
∗ ∥2 remains uniformly bounded by 2∆W

λmin(A)
. Consequently, since (τ̂

(n)
∗)n∈N does

converge to τ, the gradient iteration (τ̂(n))n∈N must remain within distance 2∆W
λmin(A)

of the
ground truth shifts.

Lemma 3.14 ([51, Lemma 14]). Denote by τ̂(n), τ̂
(n)
∗ the gradient descent iterations given by (3.72)

and (3.85), respectively. Assume that the objective functions J, J∗ defined above fulfill

∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)∥2 ≤ L ∥τ̂ − τ∥2
2 + ∆W , (3.122)

for some L, ∆W ≥ 0 and any τ̂ ∈ Rm. Furthermore, assume that the matrix A in (3.84) fulfills
λmin := λmin(A) > 0. If ∆W ≤

λ2
min

16L and both gradient descent iterations are started with the same
step size γ ≤ ∥A∥−1 and from the same initialization τ̂(0) = τ̂

(0)
∗ , adhering to the bound

∥τ̂(0) − τ∥2 ≤
λmin

4
√

2L
, (3.123)

125 Chapter 3. Efficient reconstruction of wide shallow networks

then the distance between both iterations at gradient step n ∈N satisfies

∥τ̂(n) − τ̂
(n)
∗ ∥2 ≤ ξn∥τ̂(0) − τ∥2 +

2∆W

λmin
(1− ξn) ,

for ξ = 1− γλmin
2 ∈ [0, 1).

Proof of Lemma 3.14. Plugging in the gradient descent iteration with a simple expansion yields∥∥∥τ̂(n+1) − τ̂
(n+1)
∗

∥∥∥
2

=
∥∥∥τ̂(n) − τ̂

(n)
∗ − γ

(
∇τ̂ J(τ̂(n))−∇τ̂ J∗(τ̂

(n)
∗)

)∥∥∥
2

=
∥∥∥τ̂(n) − τ̂

(n)
∗ − γ

(
∇τ̂ J(τ̂(n))−∇τ̂ J∗(τ̂(n))

)
− γ

(
∇τ̂ J∗(τ̂(n))−∇τ̂ J∗(τ̂

(n)
∗)

)∥∥∥
2

=
∥∥∥(Idm−γA

)
(τ̂(n) − τ̂

(n)
∗)− γ

(
∇τ̂ J(τ̂(n))−∇τ̂ J∗(τ̂(n))

)∥∥∥
2

≤
∥∥∥(Idm−γA

)
(τ̂(n) − τ̂

(n)
∗)

∥∥∥
2
+ γ

∥∥∥∇τ̂ J(τ̂(n))−∇τ̂ J∗(τ̂(n))
∥∥∥

2
,

where we used the definition of the iterations in the first line followed by a simple expansion
and the triangle inequality in the last line. The left term of the last line can be bounded with
the spectral norm of Idm−γA and the right term according to our initial assumption (3.122):

∥τ̂(n+1) − τ̂
(n+1)
∗ ∥2 ≤ ∥ Idm−γA∥ ∥τ̂(n) − τ̂

(n)
∗ ∥2 + γL∥τ̂(n) − τ∥2

2 + γ∆W

≤ (1− γλmin)∥τ̂(n) − τ̂
(n)
∗ ∥2 + γL∥τ̂(n) − τ∥2

2 + γ∆W ,

where the second inequality follows from the bound on the minimal eigenvalue of A. Expand-
ing the right term of the last line with τ̂

(n)
∗ yields

∥τ̂(n+1) − τ̂
(n+1)
∗ ∥2

≤(1− γλmin)∥τ̂(n) − τ̂
(n)
∗ ∥2 + γL∥τ̂(n) − τ̂

(n)
∗ + τ̂

(n)
∗ − τ∥2

2 + γ∆W

≤(1− γλmin)∥τ̂(n) − τ̂
(n)
∗ ∥2 + 2γL∥τ̂(n) − τ̂

(n)
∗ ∥2

2 + 2γL∥τ̂(n)
∗ − τ∥2

2 + γ∆W . (3.124)

We can now use the fact that the gradient descent iteration (3.85) in combination with the
convexity of the idealized objective J∗ (λmin(A) > 0) allows for the recursive bound

∥τ̂(n)
∗ − τ∥2 = ∥τ̂(n−1)

∗ − γ∇τ̂ J∗(τ̂
(n−1)
∗)− τ∥2 = ∥τ̂(n−1)

∗ − γA(τ̂
(n−1)
∗ − τ)− τ∥2

= ∥(Idm−γA)(τ̂
(n−1)
∗ − τ)∥2 ≤ ∥ Idm−γA∥∥τ̂(n−1)

∗ − τ∥2

≤ ∥ Idm−γA∥n∥τ̂(0)
∗ − τ∥2 ≤ (1− γλmin)

nδ0,

where we have denoted by δ0 = ∥τ̂(0) − τ∥2 the initial error. Plugging this into (3.124) results
in

∥τ̂(n+1)−τ̂
(n+1)
∗ ∥2

≤(1− γλmin)∥τ̂(n) − τ̂
(n)
∗ ∥2 + 2γL∥τ̂(n) − τ̂

(n)
∗ ∥2

2 + 2γL(1− γλmin)
2nδ2

0 + γ∆W . (3.125)

Define ∆n := maxk≤n ∥τ̂(k) − τ̂
(k)
∗ ∥2. We first show by induction that ∆n ≤ λmin/4L provided

that δ0 and ∆W are sufficiently small. For step n = 0, we have ∥τ̂(0) − τ̂
(0)
∗ ∥2 = 0, so the

statement is clearly true. Assume now it holds for n. We have to show the induction step. In

3.4. Refining the approximated shifts using empirical risk minimization 126

other words we have to show ∥τ̂(n+1) − τ̂
(n+1)
∗ ∥2 ≤ λmin/4L, so the same bound would hold

for ∆n+1. We continue from (3.125), and get

∥τ̂(n+1) − τ̂
(n+1)
∗ ∥2 ≤ (1− γλmin + 2γL∆n)∥τ̂(n) − τ̂

(n)
∗ ∥2 + 2γL(1− γλmin)

2nδ2
0 + γ∆W .

Using the induction hypothesis ∆n ≤ λmin/4L, this simplifies to

∥τ̂(n+1) − τ̂
(n+1)
∗ ∥2 ≤ (1− γλmin/2) ∥(τ̂(n) − τ̂

(n)
∗)∥2 + 2γL(1− γλmin)

2nδ2
0 + γ∆W .

To keep the computation more compact, we will denote

ξ := 1− γλmin

2
.

Now we can repeat the same computations for ∥τ̂(k) − τ̂
(k)
∗ ∥2, k ≤ n as well. This leads to

∥τ̂(n+1) − τ̂
(n+1)
∗ ∥2 ≤ 2γLδ2

0

n

∑
k=0

ξk(1− γλmin)
2(n−k) + γ∆W

n

∑
k=0

ξk,

where we used
∥∥∥τ̂(0) − τ̂

(0)
∗

∥∥∥
2
= 0. Both sums are uniformly bounded in n, as can be seen by

∥τ̂(n+1) − τ̂
(n+1)
∗ ∥2 ≤ 2γLδ2

0
ξn+1 − (1− γλmin)

2(n+1)

ξ − (1− γλmin)2 + γ∆W
1− ξn+1

1− ξ
(3.126)

≤ 2γLδ2
0

ξn+1 − (1− γλmin)
2(n+1)

3
2 γλmin − γ2λ2

min
+

2∆W

λmin

≤ 2Lδ2
0

ξn+1

3
2 λmin − γλ2

min
+

2∆W

λmin
≤ 4Lδ2

0
ξn+1

λmin
+

2∆W

λmin
.

Now we have 4Lδ2
0ξn+1λ−1

min ≤ 4Lδ2
0λ−1

min. Furthermore, 4Lδ2
0λ−1

min ≤
λmin
8L as long as

δ2
0 ≤

λ2
min

32L2 ,

which holds according to our initial assumption (3.123). Similarly, as ∆W ≤
λ2

min
16L by assumption,

we get 2∆W
λmin
≤ λmin

8L This means we now have

∆n+1 ≤
λmin

8L
+

λmin

8L
≤ λmin

4L
,

which concludes the proof of the induction establishing that the two iterations remain close
to each other so that maxk≤n ∥τ̂(k) − τ̂

(k)
∗ ∥2 ≤ λmin/4L for all n ∈ N. To arrive at the final

statement, we can continue from (3.126)

∥τ̂(n) − τ̂
(n)
∗ ∥2 ≤ 2γLδ2

0
ξn − (1− γλmin)

2n

ξ − (1− γλmin)2 + γ∆W
1− ξn

1− ξ

≤ 4Lδ2
0

λmin
ξn +

2∆W

λmin
(1− ξn) .

127 Chapter 3. Efficient reconstruction of wide shallow networks

3.4.8 Concluding the proof of Theorem 3.4

Combining all results proven throughout the preceding sections is all that remains to proof
Theorem 3.4. For an explanation of how all intermediate results connect, we refer to the proof
sketch given in Section 3.4.3. The proof only relies on one additional concentration argument
given by the following Chernoff bound.

Lemma 3.15. Let Z ∈ Rm be a random vector and assume ∥Z∥2
2 ≤ R almost surely. For N independent

copies Z1, . . . , ZN of Z, define the random matrix

G :=
N

∑
i=1

ZiZ⊤i .

Then, we have

P

(
λm(G) ≥ λm(EG)

4

)
≥ 1−m0.7

λm(EG)
R .

Proof. The result follows directly from the standard matrix Chernoff bound [126, Theorem
1.1].

Proof of Theorem 3.4. Denote E = EX1,...,XNtrain∼N (0,IdD)[A] with A as in (3.84), and constructed
from inputs X1, . . . , XNtrain ∼ N (0, IdD). According to Lemma 3.9, there exist constants ω, C1 >
0, which only depend on g and τ∞, with

λm(E) ≥ ω− C1
(m− 1) log2 m

D2 ≥ ω

2
,

provided (2C1/ω)m log2 m ≤ D2, as assumed in Theorem 3.4. Note now that A is a sum of
positive semidefinite rank-one matrices. Thus, we can apply the Matrix Chernoff bound in
Lemma 3.15 to get the concentration bound

P

(
λm(A) ≥ λm(E)

4

)
≥ 1−m · 0.7

Ntrainλm(E)
R , (3.127)

where R = supx∈RD ∥∇τ̂ f̂ (τ, x)∥2
2 ≤ m

∥∥∥g(1)
∥∥∥2

∞
≤ mκ2. From 0.7 < exp(−1/3) now follows

that

P
(

λm(A) ≥ ω

8

)
≥ 1−m · exp

(
−Ntrainω

6mκ2

)
. (3.128)

For the remainder of the proof, we will condition on the event that the bound in (3.128) holds.
By the result of Lemma 3.10, the difference between the gradients ∇τ̂ J,∇τ̂ J∗ satisfies

∥∇τ̂ J(τ̂)−∇τ̂ J∗(τ̂)∥2 ≤ 2κ2√m ∥τ̂ − τ∥2
2 + ∆W (3.129)

∆W = C∆W,1 +

(
m3δ2

maxt
Ntrain

)1/2

, (3.130)

for a constant C > 0 and t > 0 with probability at least 1− 2m2 exp
(
− t

Cκ4

)
where

∆W,1 ≤
m1/2 log(m)3/4

D1/4

[
∥Ŵ −W∥F +

∆1/2
W,O

D1/2 +

∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

]
.

3.5. Proof of the Theorem 3.2 128

Assuming the event associated with (3.129) occurs, we can invoke Lemma 3.14 with L = 2κ2√m
meeting its condition by choosing an appropriate constant C in (3.73). Then, for a step-size
γ ≤ 1/∥A∥, λmin = λm(A) and ξ = 1− γλmin/2, Lemma 3.14 yields

∥τ̂(n) − τ̂
(n)
∗ ∥2 ≤ ξn∥τ̂(0) − τ∥2 + C (1− ξn)∆W . (3.131)

The bound in (3.131) controls the deviation of the gradient descent iteration (3.72) from the
idealized gradient descent iteration (3.85). What remains to be shown is that the idealized
iteration converges to the correct parameter τ, which follows directly by the lower bound on
the minimal eigenvalue λmin. In fact, we have J∗(τ̂) = (τ̂ − τ)⊤A(τ̂ − τ) and

∥τ̂(n)
∗ − τ∥2 = ∥τ̂(n−1)

∗ − γ∇τ̂ J∗(τ̂
(n−1)
∗)− τ∥2 = ∥(IdD−γA)(τ̂

(n−1)
∗ − τ)∥2

≤ ∥ IdD−γA∥n∥τ̂(0)
∗ − τ∥2 ≤ (1− γλmin)

n∥τ̂(0) − τ∥2.

Applying the triangle inequality to (3.131) therefore yields

∥τ̂(n) − τ∥2 ≤ ∥τ̂(n)
∗ − τ∥2 + ∥τ̂(n) − τ̂

(n)
∗ ∥2

≤
(
(1− γλmin)

n + ξn) ∥τ(0) − τ∥2 + C (1− ξn)∆W

≤ 2ξn∥τ̂(0) − τ∥2 + C (1− ξn)∆W .

The main statement follows by a union bound over the events described above and by unifying
the involved constants.

3.5 Proof of the Theorem 3.2

We are now in a position to prove the main theorem of this chapter which combines all
individual pipeline steps.

Proof of Theorem 3.2. According to our assumptions, there exist C, D0 such that the conditions
of Theorem 3.3 are fulfilled, and therefore we conclude that the ground truth weights obey
(Inc1) - (Inc3) of Definition 2.3 and that the weight recovery (Algorithm 3.2) returns vectors U
such that for all ŵ ∈ U we have

max
k∈[m]

min
s∈{−1,+1}

∥ŵ− swk∥2 ≤ C1(m/α)1/4ϵ1/2, (3.132)

with probability at least

1− 1
m
− D2 exp (−min{α, 1}t/C1)− C1 exp(−

√
m/C1).

Denote the weight approximations obtained in the last step by {ŵ1, . . . , ŵm} ⊂ SD−1. There
exists a permutation π of these vectors such that wk ≈ ±ŵπ(k) for all k ∈ [m]. To invoke
Proposition 3.1, we now need to make sure that

max
k∈[m]

min
s∈{−1,+1}

∥∥∥ŵπ(k) − swk

∥∥∥
2
≤ 1

C2

D1/2

m
√

log m
. (3.133)

By applying the uniform error bound (3.132) above, we have

C1(m/α)1/4ϵ1/2 ≤ 1
C2

D1/2

m
√

log m
⇔ ϵ ≤

√
α

C2
1C2

D
m5/2 log m

,

129 Chapter 3. Efficient reconstruction of wide shallow networks

which is guaranteed by our upper bound (3.13) on ϵ for an appropriate constant. This, in turn,
shows that (3.133) is met. Hence, by Proposition 3.1, Algorithm 3.3 returns initial shifts τ̂ such
that there exists a α′ ≤ α such that

∥τ − τ̂∥2 ≤ C2
√

mϵ + C2m3/2
(

log m
D

)3/4

max
k∈[m]

min
s∈{−1,+1}

∥∥∥ŵπ(k) − swk

∥∥∥
2

≤ C2
√

mϵ + C2m3/2
(

log m
D

)3/4

C1(m/α)1/4ϵ1/2 ≤ 1
Cm1/2 ,

where the last line follows from (3.13) chosen with an appropriate constant C > 0. First, note
that this implies that the signs learned by the parameter initialization will be correct. We
denote this set of signs as s̄1, . . . , s̄m. Additionally, the last inequality implies that, for the given
step-size, the condition of Theorem 3.4 (see (3.73)) w.r.t. the error in the initial shift is met.
Another criterion that has to be met for Theorem 3.4 is that

Cm1/2 log(m)3/4

D1/4

(
∥Ŵ −W∥F +

∆1/2
W,O

D1/2 +

∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

)
≤ 1

C
√

m
, (3.134)

(
m3δ2

maxt
Ntrain

)1/2

≤ 1
C
√

m
, (3.135)

where ∆W,O = ∑m
k ̸=k′ |⟨wk − ŵk, wk′ − ŵk′⟩|. We begin with the upper term and rely on worst-

case bounds which express the different quantities in terms of the uniform error δmax =

maxk∈[m] mins∈{−1,+1}

∥∥∥ŵπ(k) − swk

∥∥∥
2
.

∥W − Ŵ∥F ≤ m1/2δmax, (3.136)

∆1/2
W,O

D1/2 ≤
mδmax

D1/2 , (3.137)∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

≤ mδmax. (3.138)

Based on these bounds and after adjusting the constants, we can simplify (3.134) to

δmax ≤
D1/4

Cm2 log(m)3/4 ⇔ ϵ ≤ D1/2α1/2

Cm9/2 log(m)3/2 ,

which is covered by our initial assumptions on the accuracy. Note that this implies for (3.135)
by plugging in the bound for δmax that

(
m3δ2

maxt
Ntrain

)1/2

≤
(

tD1/2

Ntrainm log(m)3/2

)1/2

.

Using Ntrain ≥ m and t = D1/2 this implies

(
m3δ2

maxt
Ntrain

)1/2

≤ 1
N1/2

train log(m)3/4
≤ 1

Cm1/2 ,

for D, m sufficiently large. Therefore, all conditions of Theorem 3.4 are satisfied. Hence, there
exists a constant C4 such that the gradient descent iteration (3.72) started from initial shifts

3.6. Experiments: Reconstruction of shallow neural networks 130

τ̂[0] = τ̂ will produce iterates τ̂[0], . . . , τ̂[NGD] such that

∥∥∥τ − τ̂
[n]
π

∥∥∥
2
≤ C4m1/2 log(m)3/4

D1/4

(
∥Ŵ −W∥F +

∆1/2
W,O

D1/2 +

∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

)
(3.139)

+

(
m3δ2

maxt
Ntrain

)1/2

+ C4
1√
m

ξn, (3.140)

for all n ∈ [NGD], some permutation π and some constant ξ ∈ [0, 1) with probability at least

1−m exp(−Ntrain/C4m)− 2m2 exp
(
−D1/2/C4

)
.

After unifying the constants and using the bound on δmax, the statement of Theorem 3.2
follows.

3.6 Experiments: Reconstruction of shallow neural networks

We corroborate our theoretical end-to-end results with an empirical study. The following
experiments are performed using a very similar setting that was used to test parameter
identification by empirical risk minimization with stochastic gradient descent in Section 1.3.1.
In every instance of our experiment, the recovery pipeline (cf. Algorithm 3.1) is run against a
planted shallow teacher network of the type

f (x) =
m

∑
k=1

tanh(w⊤k x + τk), (3.141)

where the network weights are drawn uniformly at random from the unit sphere, i.e.,
w1, . . . , wm ∈ SD−1, and the network shifts are sampled according to

τ1, . . . , τm ∼i.i.d. Unif([−0.5, 0.5]).

As in Section 3.6, we compare different network widths m = 2/5Dβ, where the parameter
β ∈ { 1

2 , 3
4 , 1, 5

4 , 3
2 , 7

4 , 15
8 , 31

16 , 2} will be referred to as the order of neurons. Aside from the order
of neurons, we also vary the input dimension of the network D ∈ {20, 25, . . . , 50}. All
remaining parameters either depend on m, D or remain fixed throughout the experiments and
are summarized for the reader’s convenience in Table 3.1.

Weight recovery (Algorithm 3.2). The weight recovery uses Nh = ⌈log(D)m⌉ Hessian approx-
imations, which were computed via central finite differences of second order with step-size
ϵFD = 10−2. As evaluation points of the Hessians (x1, . . . , xNh in Algorithm 3.2) we chose
standard Gaussians. SPM (cf. Algorithm 2.2) is run with step-size γ = 2. Each SPM iteration
performs 103 steps of projected gradient ascent, and we run R = 5 log(D) ·m independent SPM
iterations in parallel to decrease recovery time. Note that this is a slight deviation from the
definition of Algorithm 2.2 since we start multiple SPM iterations in parallel (for more details
on this setup, we refer to Section 4.3.1). We fix the thresholding parameter as β = 0.9 within
Algorithm 2.2 except for the runs with m = 2/5D2, where we set β = 0.99.

Parameter initialization (Algorithm 3.3). To compute the directional derivatives in Algorithm
3.3, we rely on a central finite-difference schema with step-size ϵFD = 10−2. The interval from
which shifts are recovered is set to [−τ∞,+τ∞] is set to [−0.6,+0.6] throughout all experiments.

131 Chapter 3. Efficient reconstruction of wide shallow networks

Network Model Weight recovery (see Alg. 3.2)

Architectures: Shallow networks f : RD → R as in (3.141) µX : distribution for Hessians N (0, Id)
(wk)k∈[m] : random weights w1, . . . , wm ∼i.i.d. Unif(SD−1) Nh: nr. of sampled Hessians (Nh = ⌈log(D)m⌉)
τ: random shifts τ1, . . . , τm ∼i.i.d. Unif([−0.5, 0.5]) NSPM : restarts of SPM (≤ 5m log m)
D: input dimension D ∈ {20, 25, . . . , 50} NPGA : number of SPM steps (103)
m: number of hidden neurons m = 2/5Dβ ϵFD : step-size for finite differences (ϵFD = 10−2)

with β = 1
2 , 3

4 , 1, 5
4 , 3

2 , 7
4 , 15

8 , 31
16 , 2 β: threshold to discard spurious loc. max (0.9, 0.99)

Parameter initialization (see Alg. 3.3) Network completion (see Section 3.4)

[−τ∞, τ∞]: interval on which tanh(2) is invertible (τ∞ = 0.6) γ: learning rate of SGD (γ = 10−3)
ϵFD : step-size for finite-differences (ϵFD = 10−2) batch size (64)

NSGD : number of training points (D2m)
training time (180 seconds)

Table 3.1: Summary of all hyperparameters for the numerical experiments. A single
value in (·)-brackets is the default hyperparameter that is used in all experiments.
Otherwise, we list ranges that are tested in experiments.

Figure 3.3: Performance of parameter identification via Algorithm 3.1 of shallow
networks with tanh activations, m = 2/5Dβ neurons, and input size D. We
observe a consistent identification throughout and increasing performance for
higher dimensions (cf. Figure 3.4). Notably, the signs (cf. Algorithm 3.3) were
identified correctly in all cases.

Network completion (Section 3.4). For the refinement of the shifts, we run stochastic gradient
descent on NGD = m ·D2 samples, learning rate γ = 10−3, and batchsize 64. The training input
points are drawn from a standard Gaussian distribution, also used to compute the 106 samples
for the test data. We stop the refinement by stochastic gradient descent after 180 seconds or
once we reach an MSE on the training set below 10−8 (which is checked after every epoch).

Evaluation metrics. We track three metrics to assess whether the final network approximation
f̂ computed by Algorithm 3.1 has identified the teacher network. Firstly, to measure the
generalization error, we rely on the uniform error E∞ := maxx∈Xtest | f̂ (x) − f (x)|, which
is computed over a set of |Xtest| = 106 unseen inputs sampled from a standard Gaussian
distribution. Secondly, we track the uniform error of the network weights (while accounting
for permutations), i.e., maxk∈[m] mink′∈[m] ∥wk − ŵk′∥2. Lastly, we track the ℓ2 distance between
the shifts, i.e., ∥τ − τ̂∥2, while accounting for potential permutations of the student neurons.
All experiments were performed on the hardware described in Section 3.6 (cf. Remark 1.3),
and all reported metrics are averaged over ten independent runs.

3.6. Experiments: Reconstruction of shallow neural networks 132

Figure 3.4: Isolated error metrics in the quadratic case β = 2 as shown in Figure
3.3 for the recovery of shallow networks with m = 2/5Dβ = 2/5D2 neurons.
All metrics were averaged over 10 independent runs. We observe an increase in
performance for higher dimensions D.

β 0.5 0.75 1 1.25 1.5 1.75 1.88 1.94 2
D

20 4.58 4.53 4.75 4.76 5.25 5.89 6.33 6.6 7.63
25 5.7 5.67 5.75 6.19 7.02 8.38 9.52 10.3 11.4
30 6.77 6.87 6.93 7.44 8.53 10.6 12.6 14.7 17.4
35 8.35 8.41 8.49 9.3 10.6 13.8 18.3 22.1 27.5
40 9.89 9.95 10.3 11.1 12.8 18.2 26.5 33 43.1
45 12.3 12.4 12.9 13.6 16 25.1 38.4 50.7 70.8
50 15 15.2 15.7 16.7 19.9 34.1 57.2 79.8 113

Table 3.2: Elapsed time in seconds after completing weight recovery (Algorithm
3.2) and parameter initialization (Algorithm 3.3).

133 Chapter 3. Efficient reconstruction of wide shallow networks

Figure 3.5: Comparison between the guaranteed accuracy of the shift initialization
(i.e., before running gradient descent) based on Proposition 3.1 (red) and the
residual upper bound ∆W,1 that persists after running the whole pipeline including
the refinement via empirical risk minimization (dashed red). The shown results
are computed for D = 50 and averaged over 10 independent repetitions. Notably,
the sum of residual errors ∥∑m

k=1 wk − ŵk∥2 (blue) does not exhibit any error
accumulation for our network model. For further details on this discussion we
refer to the related comparison in Section 3.4.2.

Interpretation of the results. An overview of the overall performance is given in Figure 3.3.
Aside from the quadratic regime β = 2, these results show a consistent uniform approximation
of the original shallow neural network as well as an identification of the true underlying
parameters. In the special case where β = 2 (i.e., the neurons scale like m = 2/5D2), we see
slightly worse results for lower dimensions. The fact that the uniform error and the shift error
do slightly increase with m is to be expected since the network is a function f ∈ [−m, m] and
∥τ∥2 = O(m1/2). By looking at the runs with β = 2 individually (cf. Figure 3.4) one can
clearly see that all relevant error metrics continuously decrease with the ambient dimension D.
Hence, the performance for lower dimensions is not representative of the average behavior in
higher dimensions. The computation time of the weight recovery and parameter initialization
throughout all runs is of the order of seconds (see Table 3.2) reaching a maximum of 112s
for D = 50, m = 2/5D2 = 103 (this includes the time necessary to approximate Hessian
matrices and directional derivatives). Therefore, the time necessary for weight identification
and parameter initialization (including identification of the signs) remains well below the time
budget given to gradient descent, and the overall pipeline finished the network identification in
under 5 minutes in all cases. Let us shortly compare these results to the experiments of Section
1.3.1, where we aimed to identify the entire shallow network by empirical risk minimization
with stochastic gradient descent. The most notable differences are that our pipeline managed
to identify networks in the quadratic case (cf. Figure 3.3) whereas empirical risk minimization
struggled for wider shallow networks (cf. Figure 1.3 - 1.4). Additionally, our pipeline managed
to reach a good uniform approximation within a much shorter time (< 5 minutes) than what
was given to stochastic gradient descent in Section 1.3.1 (50 minutes).

Improvement of the shifts by GD. Corroborating to the discussion in Section 3.4.2, we
compare the individual error components that occur in the guarantees for the approximated
shifts before gradient descent (i.e., the bound state in Proposition 3.1), which scales with

m3/2
(

log m
D

)3/4

max
k
∥wk − ŵk∥2 (3.142)

3.6. Experiments: Reconstruction of shallow neural networks 134

and after running gradient descent (cf. Theorem 3.2), which scales with

∆W,1 =
m1/2 log(m)3/4

D1/4 ·
(
∥Ŵ −W∥F +

∆1/2
W,O

D1/2 +

∥∥∥∥∥ m

∑
k=1

wk − ŵk

∥∥∥∥∥
2

)
. (3.143)

In the same setup as before with D = 50 we compute the terms (3.142) and (3.143) on real
weight approximations over 10 independent runs and for increasing number of neurons
m = 50, 80, 110, . . . , 620. The results are shown in Figure 3.5. This shows empirically that within
the setting of described in Section 3.1.1 gradient descent is expected to improve upon the shifts
computed by Algorithm 3.3. For more details see Section 3.4.2.

Chapter 4

Entangled weights: Moving beyond
shallow network architectures

This chapter considers the identification of classical deep artificial neural networks with smooth
activations and a pyramidal shape from network queries. More preciously, we provide an
extension of the ideas in Chapter 3 to deep neural networks of pyramidal shape with multiple
non-linear hidden layers and an arbitrary number of outputs. This extension is based on the
so-called entangled weights, which are defined as the gradients of the network’s pre-activations.
Entangled weights serve as a generalization of ordinary weights, enabling us to decouple
weight information that is accessible via network differentiation. Entangled weights uniquely
identify suitable deep networks up to a few scaling and shift parameters. We provide proofs, as
well as empirical evidence, that entangled weights can be recovered from O(D2 ×m) network
probes under suitable conditions, where D is the input dimension and m the number of overall
neurons of the network. We then show, heuristically, that the remaining parameters of deep
neural networks can be identified based on the entangled weights by a reparametrization
approach as in Chapter 3 (cf. Section 3.4). These heuristics are complemented by theoretical
discussions as well as extensive numerical experiments.

The content of this chapter combines the results within the joint work [52] with Massimo
Fornasier, Timo Klock as well as the work [50] with Massimo Fornasier, Timo Klock and
Christian Fiedler. We provide a novel characterization of entangled weights and extend these
underlying publications with further discussions and numerical experiments. Several of the the-
oretical proofs within this chapter, which originate from these joint works, are stated verbatim
as in their underlying references, indicated within the definition of the statement.

4.1 Introduction and preliminaries

In the previous chapter, we demonstrated the reconstruction of smooth shallow neural networks
with input dimension D from point queries, where the number of neurons m scales up to
m log2 m = O(D2). The reconstruction pipeline outlined in Chapter 3 relies on decoupling net-
work weights from the remaining network parameters. The weights (or approximations thereof)
are learned in the first step by considering the space spanned by second-order derivatives of the
network function, which is then decomposed into individual rank-one tensors by the subspace
power method (cf. Algorithm 3.2 in Chapter 2). The second step of this approach then learns
the remaining parameters (shifts and signs of the weights) via gradient descent, and a local
convergence analysis was provided together with an initialization strategy. Nowadays, most
artificial neural networks deployed in practice consist of compositions of multiple non-linear
layers, so-called deep neural networks (cf. Definition 1.2 in Section 1.1.2). A natural question is

135

4.1. Introduction and preliminaries 136

whether the reconstruction method of Chapter 3, in particular the decoupling of the weights,
applies to deep neural networks.

In this chapter, we show that the Hessians of certain deep neural networks can be decomposed
into rank-one matrices that carry sufficient information to recover all individual weights. Our
theory relies on a generalization of ordinary weights, so-called entangled weights, defined as the
gradients of the pre-activations. Replacing fixed weight vectors with gradients that depend on
the network input presents one of the challenges we face with deep architectures. This requires
the stabilization of the Hessian span that we realize by a concentration argument for which
we provide a theoretical analysis of the induced subspace approximation error. Individual
entangled weights can then be learned from this subspace as the unique near-rank-one ele-
ments, covered by the theory in Chapter 2. We provide empirical evidence that the recovery
of a fixed set of entangled weights is possible for deep pyramidal architectures when the
number of neurons m does not exceed a certain threshold that depends on the input dimension
and the number of output neurons (m ≲ D ·mL). As a side result, we implicitly extend the
reconstruction pipeline from the previous chapter, where shallow neural networks with one
output were considered, to several output neurons.
Once the entangled weights have been recovered, we need to infer the remaining unknowns
of the network. By constructing the Hessian span and applying SPM to find the rank-one
components, we can attain the right set of entangled weights, but we lose any structural
information (i.e., which entangled weight corresponds to which neuron/layer). We provide
heuristics that consistently detect the weights of the outer layers (first layer and last layer) but
currently can not reliably assign the entangled weight vectors of the inner hidden layers. This
limits the full reconstruction pipeline to networks with L ≤ 3 layers. Note, however, that all
remaining algorithmic steps do apply to deeper architectures. After a correct assignment of
the entangled weights, the remaining part of the reconstruction is to learn the scale and shift
parameters of the network. This closely resembles the state in Chapter 3, which is reached
after the weights have been learned. The reconstruction of the network from entangled weights
requires a pyramidal architecture up to the penultimate layer and that the number of neurons
in the first layer does not exceed the input dimension (the last layer can have arbitrarily many
neurons). As before, the remaining parameters of the network can be learned by minimizing a
suitable least squares objective.

Section 4.1.3 will include a detailed summary of our reconstruction pipeline. Lastly, let
us mention that the results contained in this chapter differ from the theory in Chapter 3. We
can not offer the same end-to-end theoretical analysis that covers all pipeline steps as it has been
provided in Chapter 3. The main theoretical guarantees will be centered around the recovery
of entangled weights. However, we provide theoretical discussions of all remaining pipeline
steps complemented with extensive numerical results.

4.1.1 Problem setting: Deep neural network model

Let us first formally introduce our network model alongside some notation. Then, throughout
this chapter, we consider the identification of fully connected feed-forward artificial neural
networks from point queries.

Notation for deep networks. According to our Definition 1.2, feed-forward deep neural
networks are functions parameterized by a set of weight matrices W [1], . . . , W [L] and shift
vectors τ[1], . . . , τ[L]. Here, L ∈ N equals the number of network layers. We often rely on
the exponent with the layer index in square brackets as in W [ℓ] to indicate association to

137 Chapter 4. Entangled weights: Moving beyond shallow network architectures

the ℓ-th layer. Since we are only considering fully connected networks, the architecture of a
network is determined by the number of neurons in each layer. We distinguish between hidden
layers/neurons (ℓ = 1, . . . , L − 1) and the output layer/neurons (ℓ = L). Similarly to the
previous chapter, we denote the input dimension to a network by either D ∈N or m0 ∈N, the
numbers of neurons in layer ℓ ∈ [L] by mℓ and the overall number of neurons by m = ∑L

ℓ=1 mℓ.
Notably, the dimensions of the weight matrices and shifts are given by the number of neurons
in the form

W [ℓ] =
[
w[ℓ]

1 . . . w[ℓ]
mℓ

]
∈ Rmℓ−1×mℓ and τ[ℓ] ∈ Rmℓ for all ℓ ∈ [L]. (4.1)

Hence, for a given set of parameters (W [ℓ])ℓ∈[L], (τ[ℓ])ℓ∈[L] the number of neurons and therefore
the overall architecture can be derived from the dimensions of the parameters. Every neuron
is equipped with an activation function, which typically refers to a non-linear scalar function
g : R→ R. We allow different activation functions g1, . . . , gL for each individual layer. Let us
note here that this is mainly done for the sake of generality and that, typically, all hidden layers
share the same activation function g1 = g2 = . . . , gL−1. However, it is common to consider
different functions at the output neurons to not limit the network to the image of the activation
function. A common example is the linear output function (gL = Id). For an L-layer neural
network f with parameters (W [ℓ])ℓ∈[L], (τ[ℓ])ℓ∈[L] and activation functions (gℓ)ℓ∈[L], its output
for some input x ∈ RD is then computed by the iteration

y[0](x) := x, (4.2)

y[ℓ](x) := gℓ
(
(W [ℓ])⊤y[ℓ−1](x) + τ[ℓ]

)
, for all ℓ ∈ [L], (4.3)

f (x) := y[L](x), (4.4)

such that f is a mapping from RD to RmL . The output function of layer ℓ w.r.t. some input,
defined as y[ℓ](·) : RD → Rmℓ , is typically called the post-activation of layer ℓ. Similarly, we
define the pre-activations of f , as the set of functions w.r.t. the input that is given by

z[ℓ](x) := (W [ℓ])⊤y[ℓ−1](x) + τ[ℓ], for all ℓ ∈ [L], (4.5)

which can be seen as the state of the neurons in the ℓ-th layer before any activation function is
applied. For the sake of simplicity, throughout this chapter, we will introduce the following
notation.

Definition 4.1. Consider natural numbers L, D, m1, . . . , mL ∈ N and scalar functions g1, . . . , gL.
Based on the definition of neural networks in Definition 1.2, we define the class of neural networks with
L layers, D inputs, mℓ neurons in the ℓ-th layer, and activation functions g1, . . . , gL as

NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) := { f : RD → RmL | f is constructed as in (4.1)− (4.4)}. (4.6)

Assumptions on the network model Notably, we do not make any general distributional
assumptions about the network weights or shifts. All statements that rely on specific properties
associated with these parameters will state these explicitly. However, let us mention that
most of our theory builds upon the assumption that weights within each layer are mutually
incoherent. Furthermore, in our numerics we construct the weights and shifts as in Chapter 3,
i.e., we typically sample random weights uniformly from the unit-sphere. Similar to Section
3.1.1, we also rely on certain properties of the activation function and the network itself. These
conditions will be summarized in the following:

Assumption 4.1 (Deep network model).

4.1. Introduction and preliminaries 138

(DNM1) We assume that the activation functions are sufficiently smooth with bounded derivatives such
that gℓ ∈ C3(R) for all ℓ ∈ [L] and that

κ := max
ℓ∈[L],n∈[3]

∥∥∥g(n)ℓ

∥∥∥
L∞(R)

< ∞, (4.7)

for some constant κ > 0.

(DNM2) We assume that all hidden layers are equipped with non-linear activation functions with
sufficiently rich second-order information (∥g(2)ℓ ∥L∞(R) > 0 for all ℓ < L). Hence, the overall
number of non-linear neurons m∗ with sufficiently rich second-order information is at least

m∗ =
L

∑
ℓ=1

mℓ · 1∥g(2)ℓ ∥L∞(R)>0
≥ m1 + · · ·+ mL−1. (4.8)

(DNM3) Consider a neural network f : RD → RmL on m∗ non-linear neurons (cf. (DNM2)) and
a sub-Gaussian distribution µX with supp(µX) ⊆ RD. We say f fulfills the learnability
condition on µX if

α := σm∗

(
1

mL

mL

∑
kL=1

EX∼µX

[
vec(∇2 fkL(X))⊗ vec(∇2 fkL(X))

])
> 0, (4.9)

where σm∗ denotes the m∗-th singular value and fkL denotes the subnetwork of f when only
the kL-th output neuron is considered.

(DNM4) The hidden layers have a pyramidal structure, i.e., the number of neurons in the hidden layers
is non-increasing and bounded by the input size

D ≥ m1 ≥ m2 ≥ · · · ≥ mL−1. (4.10)

The first condition (DNM1) guarantees that we can rely on third-order derivatives of the
network. The derivatives’ boundedness implies the Lipschitz continuity of the network and its
first two derivatives. Clearly, a linear function would satisfy ((DNM1)), but its higher-order
derivatives do not carry any information. Condition (DNM2) guarantees that all hidden
neurons have sufficient Hessian information by ensuring that the derivative of their activation
is non-affine while still allowing us to consider networks with linear output neurons (e.g.,
gL = Id). Condition (DNM3) closely resembles the learnability condition made in the shallow
network reconstruction of Chapter 3 (cf. Assumption 4.1, (SNM3)) and other comparable
works [54, 52, 50]. For µX = N (0, IdD) and shallow neural networks with a single output of
the type

f (x) =
m

∑
k=1

g(w⊤k x + τk),

it was shown in Theorem 3.5 (see Section 3.4.5) that, under suitable incoherence of the involved
weights and for sufficiently non-polynomial activations, the condition (DNM3) fulfilled for
a constant α independent of D, m (see the related discussion in Section 3.1.1). For deep
neural networks, the assumption (DNM3) is motivated identically to (SNM3): To enable the
reconstruction of deep networks via second-order information, we need to ensure that, for
inputs taken from a reasonable distribution, the corresponding span of Hessians matrices is
sufficiently rich in that it contains one rank-one component for every (non-linear) neuron. For
further details, we refer to Section 4.2. The reason why a pyramidal structure of the hidden
layers as in (DNM4) is required (cf. condition (DNM4)) for a full reconstruction of the network
will be made clear in the next section.

139 Chapter 4. Entangled weights: Moving beyond shallow network architectures

Assumptions on the general setting. Aside from the conditions (DNM1) - (DNM4), which
characterize properties of the network itself, we do assume that the network can be probed,
which gives (approximate) access to its first- and second-order derivatives by numerical
differentiation.

Assumption 4.2 (Algorithmic assumptions).

(G5.1) We assume that the network can be queried without noise

(G5.2) Furthermore, we assume the setting where the architecture of f (i.e., the number of neurons per
layer) is given.

(G5.3) We assume access to a numerical differentiation method for the gradients and Hessians of the
network outputs. These approximations are denoted by ∆ fkL ≈ ∇ fkL , ∆2 fkL ≈ ∇2 fkL for the
gradients and Hessians, respectively. For a given network, we denote by Ĉϵ the uniform bound
of either two numerical approximation methods, i.e., Ĉϵ is such that

sup
x∈RD

max
kL∈[mL]

max
{
∥∇ fkL(x)− ∆ fkL(x)∥2 ,

∥∥∇2 fkL(x)− ∆2 fkL(x)
∥∥

F

}
≤ Ĉϵ.

Since (G5.1) - (G5.3) are morally identical to the conditions (G4.1)-(G4.2), we refer to the related
discussion in Section 3.1.1.

4.1.2 Preliminaries: Entangled weights

The recovery of the parameters of shallow networks in Chapter 3 is based around a decoupling
strategy that relies on the simple principle that differentiation of a function of the type

f (x) =
m

∑
k=1

g(w⊤k x + τk)

will expose the weight vectors. More precisely, in Section 3.2, we have relied on the fact that
for sufficiently smooth activation functions, the Hessians of shallow networks read as

∇2 f (x) =
m

∑
k=1

g(2)(w⊤k x + τk)wk ⊗ wk. (4.11)

This allows a reduction of the weight recovery to the recovery of a rank-one basis from the
span of randomly sampled Hessian matrices using the theory from Chapter 2. Unfortunately,
one can easily confirm that such a direct relationship between the weights and higher-order
derivatives, as in (4.11), does not exist for networks with multiple hidden layers. In this section,
we will introduce a new concept of weight vectors, so-called entangled weights (cf. [52, 50]).
We will see that these objects serve as a generalization of ordinary network weights that can
be accessed through Hessian information. Let us begin by formally introducing entangled
weights:

Definition 4.2 (Entangled Weights). Consider a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L])
as defined in Definition 4.1 with activations (gℓ)ℓ∈[L] that are differentiable. For each neuron, specified

by ℓ ∈ [L] and kℓ ∈ [mℓ], we define the entangled weight (function) v[ℓ]kℓ
(x) at input x as the gradient of

its pre-activation:

v[ℓ]kℓ
(x) := ∇z[ℓ]kℓ

(x), (4.12)

4.1. Introduction and preliminaries 140

where z[ℓ]kℓ
(x) is the pre-activation of the kℓ-th neuron in layer ℓ. Furthermore, for any x ∈ RD we

denote by V(f , x) the set of all entangled weights fixed at input x, i.e., we have

V(f , x) :=
{

v[ℓ]kℓ
(x)
∣∣∣ℓ ∈ [L], kℓ ∈ [mℓ]

}
⊂ RD, (4.13)

and for any ℓ ∈ [L] we denote by Vℓ(f , x) the set of entangled weights

Vℓ(f , x) :=
{

v[ℓ]kℓ
(x)
∣∣∣kℓ ∈ [mℓ]

}
(4.14)

corresponding to layer ℓ and by V[ℓ](x) the entangled weight matrices

V [ℓ](x) =
[
v[ℓ]1 (x) . . . v[ℓ]mℓ

(x)
]
∈ RD×mℓ . (4.15)

Remark 4.1. By the preceding definition, entangled weights are vector-valued functions depending on
the network input. However, in some cases, we might neglect the dependency of v[ℓ]kℓ

(x) on the input
x and regard entangled weights as fixed vectors. In this case, we implicitly assume that the input x
remains fixed and can be inferred from the context.

One way to interpret Definition 4.2 is to understand entangled weights as a generalization
of normal weights. Clearly, by the definition above, there is no difference between ordinary
weights and entangled weights for the neurons of the first hidden layer since the entangled
weight functions corresponding to the first layer are constant:

v[1]k1
(x) = ∇

(
⟨w[1]

k1
, x⟩+ τ

[1]
k1

)
= w[1]

k1
, for all x ∈ RD, k1 ∈ [m1]. (4.16)

Ordinary weights encode the direction of the greatest increase of a neuron w.r.t. its input.
However, in the identification problem, we regard deep neural networks as black-box models,
which makes it impossible to directly observe how information is passed between hidden
layers. Hence, we can not observe the input to individual hidden neurons, but we can observe
and control the input to the network itself (G5.1). With the interpretation that ordinary weights
encode the direction of the greatest increase of individual neurons, Definition 4.2 becomes
a natural extension of this concept to a setting where only the input of the network can be
observed. This definition of weights has to factor in the state of the preceding network layers
since the output of a neuron generally depends on the value of all preceding neurons. This
results in the dependency of the entangled weights (4.12) on the input x for all but the first
layer.
Let us note that in [52, 50] the authors have introduced entangled weights as the product of
weight matrices intertwined with diagonal matrices (cf. statement below). This difference is
just a matter of presentation and, in fact, both definitions are equivalent, which can be seen
from the following identities.

Lemma 4.1. Consider a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) as defined in Definition 4.1
with activations (gℓ)ℓ∈[L] that are differentiable. Then, the entangled weights in Definition 4.2 admit
the following decompositions:

v[ℓ]kℓ
(x) =

(
ℓ−1

∏
j=1

W [j] diag
(

g(1)j (z[j](x))
))

w[ℓ]
kℓ

, (4.17)

V [ℓ](x) =

(
ℓ−1

∏
j=1

W [j] diag
(

g(1)j (z[j](x))
))

W [ℓ], (4.18)

where W [1], . . . , W [L] are the weight matrices of the network f .

141 Chapter 4. Entangled weights: Moving beyond shallow network architectures

Proof. Note that the second statement (4.18) is a trivial consequence of (4.17) since (4.18)
follows by applying the first identity column-wise. We follow an induction-type argument. For
ℓ = 1, we have equivalence between weights and the entangled weights (cf. (4.16)), so both
statements hold for ℓ = 1 since Π0

j=1 = 1. Assume (4.18) holds up to some ℓ < L, then, for any
kℓ+1 ∈ [mℓ+1], we have

v[ℓ+1]
kℓ+1

(x) = ∇z[ℓ+1]
kℓ+1

(x) = ∇
(
⟨w[ℓ+1]

kℓ+1
, y[ℓ](x)⟩+ τ

[ℓ+1]
kℓ+1

)
= ∇⟨w[ℓ+1]

kℓ+1
, y[ℓ](x)⟩ for all x ∈ RD.

Expanding the inner product yields ∇⟨w[ℓ+1]
kℓ+1

, y[ℓ](x)⟩ = ∑mℓ
kℓ=1 w[ℓ+1]

kℓ,kℓ+1
∇y[ℓ]kℓ

(x). Now, by the
chain rule, we have

mℓ

∑
kℓ=1

w[ℓ+1]
kℓ,kℓ+1

∇y[ℓ]kℓ
(x) =

mℓ

∑
kℓ=1

w[ℓ+1]
kℓ,kℓ+1

g(1)ℓ

(
z[ℓ]kℓ

(x)
)
∇z[ℓ]kℓ

(x) = V [ℓ](x)diag(g(1)ℓ (z[ℓ](x)))w[ℓ+1]
kℓ+1

.

Since (4.18) holds for all ℓ′ ≤ ℓ, we can conclude the induction step with

v[ℓ+1]
kℓ+1

(x) = V [ℓ](x)diag(g(1)ℓ (z[ℓ](x)))w[ℓ+1]
kℓ+1

=

(
ℓ−1

∏
j=1

W [j] diag
(

g′j(z
[j](x))

))
W [ℓ] diag(g(1)ℓ (z[ℓ](x)))w[ℓ+1]

kℓ+1
,

which establishes the identity for ℓ+ 1. The proof then follows by induction.

For a fixed input x ∈ RD, every neuron is associated with exactly one entangled weight
vector. A trivial consequence of Definition 4.2 is that the entangled weights corresponding
to the output neurons can directly be exposed via their gradient: Consider a network f ∈
NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]). If we take the gradient of the output neurons f1, . . . , fmL at input x,

then this yields the entangled weights v[L]1 (x), . . . , v[L]mL(x) up to a scaling factor. More precisely,
for any kL ∈ [mL], we have

∇ fkL(x) = ∇y[L]kL
(x) = ∇g(z[L]kL

(x)) = g(1)(z[L]kL
(x))∇z[L]kL

(x) = g(1)(z[L]kL
(x))v[L]kL

(x). (4.19)

This still leaves the question of how we can access the entangled weights of the hidden neurons.
However, the following statement shows that we can expose the entangled weights of all
hidden neurons by the same principle used in Chapter 3, namely considering the Hessians of
the output neurons.

Proposition 4.1. Let f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) be a neural network as in Definition 4.1 with
activations (gℓ)ℓ∈[L] that are twice differentiable. The Hessian of any output neuron fkL , where kL ∈ [L],
has the following decomposition into entangled weights:

∇2 fkL(x) = g(2)L (z[L]kL
(x))v[L]kL

(x)⊗2 +
L−1

∑
ℓ=1

mℓ

∑
kℓ=1

∂ fkL(x)

∂y[ℓ]kℓ
(x)

g(2)ℓ (z[ℓ]kℓ
(x))v[ℓ]kℓ

(x)⊗2. (4.20)

Proof. An output neuron is simply the post-activation of the corresponding neuron fkL(x) =
y[L]kL

(x) in the last layer. We begin by deriving an iterative formula for Hessians of post-

activations. Note that the gradient of any post-activation is ∇y[ℓ]kℓ
(x) = g(1)(z[ℓ]kℓ

(x)) · v[ℓ]kℓ
(x).

For the first layer, where ℓ = 1, and any k1 ∈ [m1] we have

∇2y[1]k1
(x) = g(2)1 (z[1]k1

(x))v[1]k1
(x)⊗2 + g(1)1 (z[1]k1

(x))∇2z[1]k1
(x)

= g(2)1 (z[1]k1
(x))v[1]k1

(x)⊗2 + g(1)1 (z[1]k1
(x))∇2⟨w[1]

k1
, x⟩ = g(2)1 (z[1]k1

(x))v[1]k1
(x)⊗2. (4.21)

4.1. Introduction and preliminaries 142

Now let ℓ ≥ 2 and kℓ ∈ [mℓ], then

∇2y[ℓ]kℓ
(x) = g(2)ℓ (z[ℓ]kℓ

(x))v[ℓ]kℓ
(x)⊗2 + g(1)ℓ (z[ℓ]kℓ

(x))∇2z[ℓ]kℓ
(x)

= g(2)ℓ (z[ℓ]kℓ
(x))v[ℓ]kℓ

(x)⊗2 + g(1)ℓ (z[ℓ]kℓ
(x))

mℓ−1

∑
kℓ−1=1

w[ℓ]
kℓ−1,kℓ

∇2y[ℓ−1]
kℓ−1

(x)

= g(2)ℓ (z[ℓ]kℓ
(x))v[ℓ]kℓ

(x)⊗2 +
mℓ−1

∑
kℓ−1=1

∂y[ℓ]kℓ
(x)

∂y[ℓ−1]
kℓ−1

(x)
∇2y[ℓ−1]

kℓ−1
(x). (4.22)

Consider now the decomposition (4.22) for ℓ = L and any kL ∈ [mL], we can keep expanding
the term ∇2y[ℓ−1]

kℓ−1
(x) appearing in the sum on the right-hand side as follows

mL−1

∑
kL−1=1

∂y[L]kL
(x)

∂y[L−1]
kL−1

(x)
∇2y[L−1]

kL−1
(x) =

mL−1

∑
kL−1=1

∂y[L]kL
(x)

∂y[L−1]
kL−1

(x)
g(2)L−1(z

[L−1]
kL−1

(x))v[L−1]
kL−1

(x)⊗2

+
mL−2

∑
kL−2=1

mL−1

∑
kL−1=1

∂y[L]kL
(x)

∂y[L−1]
kL−1

(x)

∂y[L−1]
kL−1

(x)

∂y[L−2]
kL−2

(x)
∇2yL−2

kL−2
(x)

=
mL−1

∑
kL−1=1

∂y[L]kL
(x)

∂y[L−1]
kL−1

(x)
g(2)L−1(z

[L−1]
kL−1

(x))v[L−1]
kL−1

(x)⊗2 +
mL−2

∑
kL−2=1

∂y[L]kL
(x)

∂y[L−2]
kL−2

(x)
∇2y[L−2]

kL−2
(x). (4.23)

Plugging the expression in (4.23) into (4.22) for ℓ = L yields

∇2y[L]kL
(x) = g(2)L (z[L]kL

(x))v[L]kL
(x)⊗2 +

mL−1

∑
kL−1=1

∂y[L]kL
(x)

∂y[L−1]
kL−1

(x)
g(2)L−1(z

[L−1]
kL−1

(x))v[L−1]
kL−1

(x)⊗2

+
mL−2

∑
kL−2=1

∂y[L]kL
(x)

∂y[L−2]
k[L−2]

(x)
∇2yL−2

kL−2
(x). (4.24)

We can now reapply the expansion in (4.23) to the sum appearing in the last line of (4.24)
iteratively up to the first layer at which the iteration will eventually terminate since for ℓ = 1
the pre-activation z[1]k1

(x) is linear in x and so the second derivative ∇2z[1]k1
(x) vanishes (cf.

(4.21)). By this argument, we will end up exactly with the decomposition in (4.20).

The preceding proposition allows us to relate the Hessians of deep neural networks to the
outer products of the entangled weights. For a fixed input x ∈ RD, the decomposition in
(4.20) has a strong resemblance with the decomposition (4.11) used in Chapter 3. For every
entangled weight, the corresponding matrix v[ℓ]kℓ

(x)⊗2 is weighted by the second derivative of

the pre-activation multiplied by the partial derivative ∂ fkL(x)/∂y[ℓ]kℓ
(x) which can be interpreted

as the influence of the neuron on the output fkL at x. Note that different output neurons do not
directly depend on each other, i.e., we have

∂ fkL(x)

∂y[L]k′L
(x)

=
∂ fkL(x)
∂ fk′L

(x)
= δkL,k′L

for all kL, k′L ∈ [mL],

where δkL,k′L
denotes the Kronecker delta. Hence, the decomposition in (4.20) admits a slightly

more compact form: Let kL ∈ [L], then

143 Chapter 4. Entangled weights: Moving beyond shallow network architectures

∇2 fkL(x) =
L

∑
ℓ=1

mℓ

∑
kℓ=1

∂ fkL(x)

∂y[ℓ]kℓ
(x)

g(2)ℓ (z[ℓ]kℓ
(x))v[ℓ]kℓ

(x)⊗2 (4.25)

=
L

∑
ℓ=1

V [ℓ](x)S[ℓ]
kL
(x)V [ℓ](x)⊤, (4.26)

for diagonal matrices S[ℓ]
kL
(x) ∈ Rmℓ×mℓ with entries given by

(S[ℓ]
kL
)kℓ =

∂ fkL(x)

∂y[ℓ]kℓ
(x)

g(2)ℓ (z[ℓ]kℓ
(x)). (4.27)

For the special case of networks where gL is a linear function (cf. network model in [52]), the
Hessians at some input will only be decomposable into outer products of entangled weights
V(f , x) \ VL(f , x). Thus, the decomposition above will not contain the entangled weights of the
last layer. This can be seen directly from (4.20), where for gL = Id the coefficients g(2)L (z[L]kL

(x))
will always be zero. It was already mentioned at the beginning of the section that the entangled
weights corresponding to the last layer can be simply computed separately as the gradients of
the output neurons. Therefore, it is unproblematic that the Hessians of networks with linear
outputs do not contain the entangled weights of the last layer.

Motivating entangled weights. So far, we have defined entangled weights and established
their connection to the first- and second-order derivatives of certain deep neural networks.
However, we have not yet fully explained how entangled weights serve in the identification
of such networks. To a certain degree, (4.16) already reveals a connection between entangled
weights and ordinary network weights of the first layer. Let us now describe how entangled
weights encode the remaining weight information for suitable network architectures: The proof of
Lemma 4.1, in particular, the identity

V [ℓ] = V [ℓ−1](x)diag(z[ℓ−1](x))W [ℓ],

already outlines a path how entangled weights can be used for the recovery of the network
weights (W [ℓ])ℓ∈[L]. Assuming that the left-inverse of an entangled weight matrix V [ℓ−1](x)†

exists, then the weight matrices can be computed up to diagonal matrices D1, . . . , DL by

V [ℓ−1](x)†V [ℓ](x) = diag
(

g(1)(z[ℓ−1](x))
)

W [ℓ].

Hence, if we were given the exact entangled weight matrices V [1](x∗), . . . V [L](x∗) for a fixed
input x∗, we could infer the original weights up to a transformation with diagonal matrices,
i.e., attain the matrices

D1W [1], D2W [2], . . . DLW [L],

as long as the first L− 1 entangled weight matrices are left invertible. This is equivalent to the
condition that V [1](x∗), . . . V [L−1](x∗) all have full column rank and, due to their dimensions,
this implies that the hidden layers of the network need to have a pyramidal structure, such that

D ≥ m1 ≥ m2 ≥ · · · ≥ mL−1,

which relates to our assumption (DNM4). Therefore, to infer the weights (up to a rescaling of
the rows) from the entangled weight matrices, the number of neurons up to the penultimate

4.1. Introduction and preliminaries 144

layer has to be non-increasing, but the number of output neurons can be arbitrarily large. The
connection between entangled weights and ordinary network weights is made precise in Section
4.3. More precisely, we show in Proposition 4.3 that the entangled weights of a neural network,
as described in Section 4.1.1, give rise to a loss-free reparametrization of the network. The
network’s reparametrization only depends on the unknown shifts and diagonal matrices. This
approach is closely related to the reparametrization used for the shift recovery in Section 3.4.
Similarly to Chapter 3, we then fit the reparametrization via entangled weights by relying on
empirical risk minimization. For more details, we refer to the related discussion in Section 4.3.2.

Let us now conclude the introduction to entangled weights with a few auxiliary results
derived from (DNM1), which establish that the entangled weight functions are bounded and
Lipschitz continuous w.r.t. network complexity and κ from (DNM1).

Lemma 4.2 (cf. [50, Lemma 6]). Consider a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L])
satisfying (DNM1) with κ > 0. Then, for any x, x′ ∈ RD, the following bounds are satisfied:

∥V [ℓ](x)∥ ≤ κℓ−1
ℓ

∏
k=1
∥W [k]∥, (4.28)

∥V [ℓ](x)−V [ℓ](x′)∥ ≤
(

ℓ

∏
k=1
∥W [k]∥

)
ℓ−1

∑
k=1

κℓ+k−2
∥∥∥W [k]

∥∥∥
2→∞

(
k−1

∏
j=1
∥W [j]∥

)∥∥x− x′
∥∥

2 , (4.29)

∥S[ℓ]
kL
(x)∥F ≤

∥∥∥g(1)L

∥∥∥
L∞(R)

κL−ℓ
∥∥∥w[L]

kL

∥∥∥
2

L−1

∏
k=ℓ+1

∥W [k]∥. (4.30)

Remark: Here, the norm ∥ · ∥2→∞ appearing in (4.29) refers to ∥W [k]∥2→∞ := sup∥x∥2=1 ∥(W [k])⊤x∥∞.

Proof of Lemma 4.2. For the statement (4.28) note that ∥V [1](x)∥ = ∥W [1]∥ by definition. For
ℓ ≥ 2, by matrix norm submultiplicativity applied to (4.18), we have

∥V [ℓ](x)∥ =
∥∥∥∥∥W [1]

ℓ

∏
k=2

diag(g′k−1(z
[k−1](x))W [k]

∥∥∥∥∥
≤ ∥W [1]∥

(
ℓ−1

∏
k=1
∥diag(g′k(z

[k](x))∥
)(

ℓ

∏
k=2
∥W [k]∥

)
≤ κℓ−1

ℓ

∏
k=1
∥W [k]∥.

A consequence of the Lipschitz continuity (cf. (DNM1)) of gℓ, g(1)ℓ is that∥∥∥y[ℓ](x)− y[ℓ](x′)
∥∥∥

2
≤ κ

∥∥∥z[ℓ](x)− z[ℓ](x′)
∥∥∥

2
.

Notably, the Lipschitz continuity of the activation can be transferred to all pre-activations of
the network:

∥gℓ(z[ℓ](x))− gℓ(z[ℓ](x′))∥2 ≤ κ
∥∥∥W [ℓ]

∥∥∥ ∥y[ℓ−1](x)− y[ℓ−1](x′)∥ ≤ κℓ−1

(
ℓ

∏
k=1
∥W [k]∥

)∥∥x− x′
∥∥

2 ,

where the last inequality follows from an iterative application of the Lipschitz continuity. By
our assumption, g(1) is also Lipschitz continuous with Lipschitz constant κ. Hence, by the
same iterative argument, we have

∥diag(g(1)ℓ (z[ℓ](x)))− diag(g(1)ℓ (z[ℓ](x′)))∥ = ∥g′ℓ(z[ℓ](x))− g′ℓ(z
[ℓ](x))∥∞

≤ κ
∥∥∥W [ℓ]

∥∥∥
2→∞
∥y[ℓ−1](x)− y[ℓ−1](x′)∥2 ≤ κℓ

∥∥∥W [ℓ]
∥∥∥

2→∞

(
ℓ−1

∏
k=1
∥W [k]∥

)∥∥x− x′
∥∥

2 .
(4.31)

145 Chapter 4. Entangled weights: Moving beyond shallow network architectures

The Lipschitz continuity of entangled weights V [ℓ](x) as a function of x for ℓ = 1 is clear, since
∥V [1](x)− V [1](x′)∥ = ∥W1 −W1∥ = 0. For ℓ ≥ 2, we first use the triangle inequality, norm
submultiplicativity, and the relation V [ℓ](x) = V [ℓ−1](x)diag(g(1)ℓ (z[ℓ−1](x)))Wℓ to get

∥V [ℓ](x)−V [ℓ](x′)∥ =
∥∥∥V [ℓ−1](x)diag(g(1)ℓ (z[ℓ−1](x)))W [ℓ] −V [ℓ−1](x′)diag(g(1)ℓ (z[ℓ−1](x′)))W [ℓ]

∥∥∥
≤
∥∥∥W [ℓ]

∥∥∥ ∥∥∥V [ℓ−1](x)−V [ℓ−1](x′)
∥∥∥ ∥∥∥g(1)ℓ (z[ℓ−1](x))

∥∥∥
∞

+
∥∥∥W [ℓ]

∥∥∥ ∥∥∥V [ℓ−1](x′)
∥∥∥ ∥∥∥g(1)ℓ (z[ℓ−1](x))− g(1)ℓ (z[ℓ−1](x′))

∥∥∥
∞

≤ κ∥W [ℓ]∥
(
∥V [ℓ−1](x)−V [ℓ−1](x′)∥+ κℓ−3

(
ℓ−1

∏
k=1
∥W [k]∥

)
∥g(1)ℓ (z[ℓ−1](x))− g(1)ℓ (z[ℓ−1](x′))∥∞

)
,

where we used (4.28) to bound ∥Vℓ−1(x′)∥ in the last step. By repeating the expansion for
∥V [ℓ−1](x)−V [ℓ−1](x′)∥ until we reach the last layer where ∥V [1](x)−V [1](x′)∥ = 0. Gathering
all terms we obtain

∥V [ℓ](x)−V [ℓ](x′)∥ ≤ κℓ−2

(
ℓ

∏
k=1
∥W [k]∥

)
ℓ−1

∑
k=1
∥diag(g′k(z

[k](x)))− diag(g(1)k (z[k](x′)))∥,

and the result (4.29) follows by using (4.31). What remains is the bound on the Frobenius
norm of the diagonal matrix S[ℓ]

kL
(x) with diagonal elements given by the partial derivatives

(S[ℓ]
kL
)kℓ =

∂ fkL (x)

∂y[ℓ]kℓ
(x)

g(2)(z[ℓ]kℓ
(x)) (cf. (4.27)). Using norm submultiplicativity we get

∥∥∥S[ℓ]
kL
(x)
∥∥∥

F
≤
∥∥∥diag(g′′ℓ (z

[ℓ](x))
∥∥∥ ∥∥∥∥diag

(
d fkL(x)
dy[ℓ](x)

)∥∥∥∥
F
= κ

∥∥∥∥ d fkL(x)
dy[ℓ](x)

∥∥∥∥
2

.

Now note that ∥∥∥∥ d fkL(x)
dy[ℓ](x)

∥∥∥∥
2
=

∥∥∥∥∥∥g(1)L (z[L]kL
(x))

dz[L]kL
(x)

dy[ℓ](x)

∥∥∥∥∥∥
2

≤ κ

∥∥∥∥∥∥dz[L]kL
(x)

dy[ℓ](x)

∥∥∥∥∥∥
2

.

We can interpret y[ℓ](x) as the input to the subnetwork of the remaining L− ℓ layers, such
that the gradient of z[L]kL

w.r.t. the post-activation of an inner layer is essentially the same as an
entangled weight of a slightly smaller network. This allows us to reuse the computations of

the proof of Lemma 4.1, in particular (4.17), to find the following expression for
dz[L]kL

(x)

dy[ℓ](x)

dz[L]kL
(x)

dy[ℓ](x)
=

(
L

∏
j=ℓ+1

W [j] diag
(

g′j(z
[j](x))

))
w[L]

kL
≤ κL−ℓ

L−1

∏
j=ℓ+1

∥W [j]∥. (4.32)

Combining it with the previous bound yields the desired result.

4.1.3 Summary: Main results

The present chapter considers the identification of deep neural networks from Hessian informa-
tion inspired by [54] (see also Section 1.5). Our recovery pipeline covers the results of [52, 50],
and we follow the same decoupling strategy that was used throughout Chapter 3 and [54].
This decoupling can be broken down into two high-level stages:

4.1. Introduction and preliminaries 146

Stage 1: Construct a matrix space from network Hessians approximating a space spanned by
rank-one matrices which encode weight information. Assuming the Hessians allow
for such a construction (cf. (DNM3) and (SNM3)), this essentially reduces the weight
recovery to the problem studied in Chapter 2, i.e., the recovery of individual rank-one
matrices using methods such as Algorithm 2.2 (SPM) or Algorithm 2.1.

Stage 2: Formulate a loss-free reparametrization of the original network depending only on the
remaining unknown parameters which could not be recovered during the first stage.
Learn the unknown parameters of the reparametrization by fitting the reparametrized
model onto the neural network via empirical risk minimization.

The recovery of shallow neural networks in Chapter 3 followed this procedure. Additionally, we
employed further heuristics to compute the signs of the weights and to gain a first estimate of
the shifts between the two stages (cf. Section 3.3). In the following sections, we will essentially
follow the same recipe. However, the first stage is concerned with recovering the entangled
weights (for one fixed input cf. Definition 4.2) instead of the exact network weights.

Stage 1: Entangled weight identification. Consider a network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]).
First, in Section 4.2.1, we rely on Hessian matrices sampled from random inputs to construct
an approximation

Ŵ ≈ W := span{v⊗ v|v ∈ V(f , x∗)}, (4.33)

where x∗ ∈ RD is a fixed input vector that depends on the distribution of the Hessian locations.
This construction’s primary technical challenge is caused by the fact that entangled weights in
(4.20) vary for different Hessian locations. To compensate, we sample Hessian locations from
a sub-Gaussian distribution which concentrates around x∗. This leads to a delicate tradeoff,
where concentrated Hessians lead to improved stability of the entangled weights but reduce
the coverage of the space span{v⊗ v|v ∈ V(f , x∗)}. This dynamic is discussed in detail within
Section 4.2. Our main result regarding the approximation in (4.33) is Theorem 4.1, which states
that the approximation error adheres to the upper bound

∥∥PW − PŴ
∥∥

F→F ≤ 2
Ĉϵ + C̄

√
D ∥X− x∗∥ψ2√
α
2 − Ĉ2

ϵ

w.h.p., (4.34)

for networks satisfying the conditions summarized in Section 4.1.1 and sufficiently many
Hessian locations. Here, Ĉϵ is a factor depending on the accuracy of the numerical differenti-
ation, which relates to (G5.3). The factor C̄ represents the complexity of the network, α > 0
corresponds to (DNM3) and ∥X− x∗∥ψ2

is the sub-Gaussian norm associated with the Hessian
locations. We generally assume that Ĉϵ can be made arbitrarily small using a suitable numerical
differentiation method. In this case, the bound (4.34) scales like∥∥PW − PŴ

∥∥
F→F ≲ C̄

√
D/α ∥X− x∗∥ψ2

w.h.p. (4.35)

Note that this bound will not further improve with higher numerical accuracy since it is
independent of Ĉϵ. The bound (4.35) suggests that the subspace approximation error can only
be controlled by reducing the variance of the Hessian locations, which leads to a decrease of
the sub-Gaussian norm ∥X− x∗∥ψ2

. This is the main difference to our results in Chapter 3,
where the subspace approximation error depended exclusively on the numerical accuracy ϵ.
More precisely, in Lemma 3.1 we had∥∥PW − PŴ

∥∥
F→F ≲

√
m/α · ϵ w.h.p.,

147 Chapter 4. Entangled weights: Moving beyond shallow network architectures

which can be made arbitrarily small by decreasing ϵ. Let us mention that the dynamics of
(4.35) are further complicated by the fact that one has to assume that α > 0 also depends on the
distribution of the Hessian locations in a non-trivial way. This relates to the abovementioned
tradeoff and is further discussed in Section 4.2.1.

Once the space W , spanned by outer products of entangled weights, is identified (approxi-
mately), the recovery of individual entangled weights is then tackled by Algorithm 2.2. The
overall recovery of entangled weights is summarized in Algorithm 4.1. Assuming suitable
incoherence of the entangled weights, the recovery of individual entangled weights is then
justified by the theory developed throughout Section 2.4. Furthermore, we provide extensive
numerical analysis of Algorithm 4.1 in Section 4.2.3 and Section 4.4.

Stage 2: Network completion This second part of the chapter explains how to leverage the
information contained in the entangled weights as part of the overall reconstruction pipeline,
which is done in two steps. First, we need to order the output of the weight recovery to
reconstruct the entangled weight matrices. This requires an assignment of the vectors in USPM
(cf. Algorithm 4.1) to their corresponding layers. In Section 4.3.1, we provide heuristics that
are designed to distinguish entangled weight approximations between the first layer, the inner
hidden layers, and the last layer (see Algorithm 4.2). Currently, this layer assignment is limited
to networks with three layers (L ≤ 3). We provide an extensive numerical analysis of Algorithm
4.2 in Section 4.4.

In Section 4.3.2, we assume that access to all entangled weight matrices up to a rescaling
and permutation of the columns (originating from Algorithm 4.1), i.e., we have access to

Ṽ [ℓ] := Ṽ [ℓ](x∗) = V [ℓ](x∗)πℓSℓ, for all ℓ ∈ [L],

where π1, . . . , πL are permutation matrices. Based on these matrices, a network reparametriza-
tion (cf. Definition 4.4) is constructed from the weights W̃ [ℓ] = (Ṽ [ℓ−1])†Ṽ [ℓ] that only depends
on the unknown shifts and diagonal matrices which model the unknown scales. We prove
in Proposition 4.3 that, under suitable conditions, this reparametrization is equivalent to the
original network f for the right set of shifts and diagonal matrices. Similar to Section 3.4
in Chapter 3, we formulate an approach applying empirical risk minimization to find these
scaling and shift parameters via gradient-based methods. Furthermore, we show in Proposition
4.4 that antisymmetric activation functions (e.g., sigmoidal activations) give rise to multiple
global minima. While we do not conduct a rigorous convergence analysis as in Chapter 3, we
expect similar performance as in the reparametrization applied to shallow neural networks.
We support this claim with numerical evidence in Section 4.4.

4.2 Entangled weight identification

By the theory of Section 4.1.2, the Hessians of twice differentiable networks can be decomposed
into symmetric rank-one tensors given by the entangled weight functions. We briefly sketched
how for a wide range of pyramidal-shaped networks, entangled weights encode large parts
of the network parameters, which only leaves a few unknowns to fully recover this kind
of network. This will be made precise in Section 4.3. In this section, we describe how the
exposure of the entangled weights via differentiating the network makes them recoverable by
following similar steps already successfully applied in our reconstruction pipeline of Chapter 3.
More precisely, we aim to reduce the recovery of entangled weights to the problem studied in
Chapter 2, which is concerned with identifying rank-one basis matrices within their span under

4.2. Entangled weight identification 148

Algorithm 4.1: Entangled weight recovery
Input: Deep neural network f with m∗ non-linear neurons and mL outputs, input

distribution µX with mean x∗, number of Hessians Nh
1 Draw Nh random samples x1, . . . , xNh ∼i.i.d. µX;
2 Compute Hessian approximations ∆2 fkL(xi) for all i ∈ [Nh], kL ∈ [mL];
3 Compute the m∗-th left singular subspace of the Hessian approximations

Ŵ = spanm∗
{

∆2 f1(x1), . . . , ∆2 f1(xNh), . . . , ∆2 fL(x1), . . . ∆2 fL(xNh)
}

,

and denote by PŴ the orthogonal projection onto Ŵ (see Section 1.1.1);
4 Compute the set of approximated entangled weights USPM using Algorithm 2.2 (SPM)

with input (PŴ , m∗, β = 0.5);
5 Set UL = ∅
6 for kL = 1, . . . , mL do
7 Compute ∆[fkL](x∗)
8 UL ← UL ∪ {∆[fkL](x∗)/ ∥∆[fkL](x∗)∥2}
9 end

Output: U = USPM ∪ UL

perturbations. The recovery procedure has been summarized in Algorithm 4.1, which we will
discuss in the following. The main theoretical result is centered around the approximation of
the matrix space defined as follows:

Definition 4.3. Consider a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) adhering to (DNM2)
with activations (gℓ)ℓ∈[L] that are differentiable and a fixed input x∗ ∈ RD. We denote by W(f , x∗)
the space of symmetric matrices spanned by all entangled weights of f w.r.t. x∗, which appear in the
Hessian decomposition, more precisely

W(f , x∗) := span{v[ℓ]kℓ
(x∗)⊗ v[ℓ]kℓ

(x∗) | ℓ ∈ [L∗] , kℓ ∈ [mℓ]},

where L∗ = L if the output neurons are sufficiently non-linear, or L∗ = L− 1 when the entangled
weights of the outputs do not occur in the Hessian decomposition (cf. last section).

Consider a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) with entangled weights V(f , x∗)
for some fixed input x∗ ∈ RD. The first part of Algorithm 4.1 computes an approximation
to the space W(f , x∗) from Hessian approximations. As in Chapter 3, we consider Hessian
approximations that are anchored at locations x1, . . . , xNh ∈ RD drawn randomly from a
distribution µX with mean x∗. From these inputs we compute Hessian approximations

∆2 f1(x1), . . . , ∆2 f1(xNh), . . . , ∆2 fL(x1), . . . ∆2 fL(xNh), (4.36)

of every output neuron.

Remark 4.2. Notably, in the theoretical part, we do not specify the exact numerical scheme used and
only rely on the assumption (G5.3). An explicit example of such an approximation scheme is given
in the numerical analysis of Section 4.4, where we use a simple central finite difference scheme. For
sigmoidal networks considered in our experiments, the error caused by the numerical approximation of
Hessians has only a very marginal effect on our overall reconstruction pipeline.

Given the matrices in (4.36), an approximation toW(f , x∗) is computed as the m∗-th singular
subspace (cf. Definition 1.1) of the Hessian approximations, where m∗ is the number of

149 Chapter 4. Entangled weights: Moving beyond shallow network architectures

non-linear neurons (cf. (DNM2)). More precisely, we consider

Ŵ := spanm∗
{

∆2 f1(x1), . . . , ∆2 f1(xNh), . . . , ∆2 fL(x1), . . . ∆2 fL(xNh)
}
≈ W(f , x∗),

and we denote by PW , PŴ the orthogonal projection ontoW , Ŵ , respectively. Under condition
(DNM2), m∗ either coincides with the overall number of neurons m = ∑L

ℓ=1 mℓ or the number
of hidden neurons m−mL. Aside from the presence of several output neurons, this approach
is indeed identical to the subspace approximation in Chapter 3 and mirrors the ideas outlined
in Section 1.5.

Comparison to Section 3.2. For shallow neural networks with a single output and µX =
N (0, IdD), the subspace approximation error was estimated by∥∥PW − PŴ

∥∥
F→F = O(ϵ

√
m/α) w.h.p.,

where ϵ represents the accuracy of the numerical approximation and α > 0 is given by
(SNM3) (cf. Lemma 3.1). Hence, for shallow neural networks, the accuracy of the subspace
approximation could largely be controlled via the accuracy of the numerical differentiation.
In the present case of more general deep neural networks, the subspace error is influenced
by an additional factor caused by the dependency of the entangled weights on the input. For
instance, consider the Hessian approximation ∆2 f1(x1) of the first output neuron in x1 ∈ RD.
If we neglect any errors caused by numerical approximations, i.e., ∆2 f1(x1) = ∇2 f1(x1),
then, by Proposition 4.1, we know that ∆2 f1(x1) ∈ W(f , x1). However, that does not imply
∆2 f1(x1) ∈ W(f , x∗) since in general W(f , x1) ̸= W(f , x∗) for x1 ̸= x∗. We address this
problem by sampling the inputs x1, . . . , xNh ∼i.i.d. µX in a concentrated manner around the
mean x∗ = E[µX], which is modeled by considering only sub-Gaussian distributions µX with
small variance. Theorem 4.1 provides a bound on the resulting approximation error for deep
neural networks and makes the argument above rigorous by showing that

∥∥PW − PŴ
∥∥

F→F
scales with the sub-Gaussian norm of µX.

Remark 4.3. To prevent all inputs sampled from µX from collapsing into one point, we need to limit the
degree to which the variance of µX can be restricted. Therefore, a residual error will be caused by the
mismatch of the spaceW(f , x∗) and the spacesW(f , xi), which remains independent of the numerical
differentiation accuracy. We observe numerically that this error is the most dominant factor in the
subspace approximation. The exact error bound on ∥W(f , x∗)− Ŵ∥F→F will be provided together with
a more detailed discussion separately in Section 4.2.1.

Retrieval of individual entangled weights. Assuming that the approximation Ŵ ≈ W(f , x∗)
is sufficiently accurate, let W = W(f , x∗). Borrowing from the results in Chapter 2, which
closely follows the analysis within [50] and covers parts of the results contained in [77, 76], we
know that the rank-one spanning elements ofW are identifiable as global maximizers of the
non-convex program

max
∥u∥2=1

ΦW (u) := ∥PW (u⊗ u)∥2
F . (4.37)

In Chapter 2, we saw that under fairly general incoherence conditions on the vectors v[ℓ]kℓ
(x∗),

the matrices v[ℓ]kℓ
(x∗)⊗ v[ℓ]kℓ

(x∗) are the only rank-one matrices within W . Furthermore, we
saw that this uniqueness is maintained even under slight perturbations of W , such that an

4.2. Entangled weight identification 150

approximate recovery of the entangled weight outer products remains possible from local
maximizers of the perturbed objective

max
∥u∥2=1

ΦŴ (u) :=
∥∥PŴ (u⊗ u)

∥∥2
F (4.38)

that belong to a certain level-set of ΦŴ (·). As pointed out in Chapter 2, a simple projected
gradient ascent algorithm introduced as subspace power method (SPM) by [77], which is
started from a random initialization u0 ∼ Unif(SD−1) and iterates

uj = PSD−1(uj−1 + 2γPŴ ((uj−1)
⊗2)uj−1) (4.39)

until convergence, can be used to find the local maximizers of the program (4.38) (see also
Algorithm 2.2 and the related discussion). Assuming the entangled weights V(f , x∗) are
sufficiently incoherent, then based on our prior analysis and the results referenced in Chapter 2,
we would expect that Algorithm 2.2 finds all non-spurious local maximizers of (4.38) yielding
approximations to all entangled weights in V(f , x∗) up to sign with an accuracy that scales
like O(∥PW − PŴ∥

1/2
F→F). See, for instance, Theorem 2.8 and Theorem 2.6. As this problem

has been discussed extensively, we do not provide any further details on the recovery of the
near-rank-one spanning elements from Ŵ and refer instead to Chapter 2.

4.2.1 Stabilizing the Hessian subspace

In this section, we discuss the approximation of the matrix spaceW(f , x∗) spanned by entan-
gled weights of a network f at one specific point x∗ ∈ RD (cf. Definition 4.3). The method
applied in [54] and Chapter 3 to recover weights of shallow networks was to combine Hessians
∇2 f (x) sampled at different input locations x1, . . . , xNh to reach a stable recovery of the space
spanned by symmetric rank-one matrices

span{∇2 f (x1), . . . ,∇2 f (xNh)} ≈ span{w1 ⊗ w1, . . . , wm ⊗ wm}. (4.40)

We already hinted at the fact that combining Hessians at different inputs seems problematic
for deep networks since the underlying decomposition into entangled weights additionally
depends on the Hessian location, i.e., for a network input x ∈ RD we have

∇2 fkL(x) =
L

∑
ℓ=1

mℓ

∑
kℓ=1

s[ℓ]kℓ
(x) · v[ℓ]kℓ

(x)⊗ v[ℓ]kℓ
(x) ∈ W(f , x),

with coefficients

s[ℓ]kL,kℓ
(x) =

∂ fkL(x)

∂y[ℓ]kℓ
(x)

g(2)ℓ (z[ℓ]kℓ
(x)).

As mentioned previously, for inputs x, x′ ∈ RD we have to assume that W(f , x) ̸= W(f , x′)
since we can not exclude the case v[ℓ]kℓ

(x)⊗ v[ℓ]kℓ
(x) ̸= v[ℓ]kℓ

(x′)⊗ v[ℓ]kℓ
(x′). The dependency of the

entangled weights in one particular Hessian decomposition on the Hessian location poses
the primary challenge in our analysis. As the main result of this section, we show that this
deviation can be kept under control by sampling the Hessians in a concentrated manner.
This stabilizes the entangled weight functions and therefore justifies reapplying the subspace
approximation via singular subspaces to approximate a matrix space that is spanned by the
symmetric rank-one tensors of a fixed set of entangled weights.

151 Chapter 4. Entangled weights: Moving beyond shallow network architectures

Theorem 4.1 (cf. [50, Theorem 4]). Consider a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L])
with activations (gℓ)ℓ∈[L] that fulfill (DNM1) with κ > 0 and (DNM2) with m∗ non-linear neurons. Let
µX be a sub-Gaussian distribution with mean x∗ = EX∼µX [X] such that the pair (f , µX) together fulfill
(DNM3) with α > 0. Furthermore, assume access to a numerical differentiation scheme as in (G5.3)
with accuracy Ĉϵ. Let X ∼ µX and X1, . . . , XNh be independent copies of X. DenoteW = W(f , x∗)
and

Ŵ = spanm∗
{

∆2 f1(X1), . . . , ∆2 f1(XNh), . . . , ∆2 fmL(X1), . . . , ∆2 fmL(XNh)
}

. (4.41)

If α > max{2C̄2D∥X− x∗∥2
ψ2

, 2Ĉ2
ϵ}, then there exists a universal constant C > 0 such that

∥∥PW − PŴ
∥∥

F→F ≤ 2
Ĉϵ + C̄

√
D ∥X− x∗∥ψ2√
α
2 − Ĉ2

ϵ

(4.42)

with probability at least

1− 2 exp (−CNh)−m exp

−C
Nhα

κ2L
(

∏L
ℓ=1 ∥W [ℓ]∥

)2 (
∑L

ℓ=1 κℓ−1 ∏ℓ
k=1 ∥W [k]∥

)2

 ,

where C̄ encodes the network complexity in terms of
(
∥W [ℓ]∥

)
ℓ∈[L]

and takes the form

C̄ := CκL

(
L

∏
k=1
∥W [k]∥

)
L

∑
ℓ=2

(
ℓ

∏
k=1
∥W [k]∥

)
ℓ−1

∑
k=1

κℓ+k−2
∥∥∥W [k]

∥∥∥
2→∞

(
k−1

∏
j=1
∥W [k]∥

)
. (4.43)

The proof of this statement is postponed to the end of this section. First, we want to provide
some intuition about this result. Aside from α, the bound achieved in (4.42) can be decomposed
into three components. First, an error Ĉϵ due to the numerical differentiation, which relates
to (G5.3) and depends on the underlying numerical differentiation method. We assume this
error can be made sufficiently small, which has already been discussed previously. Second,
the factor C̄ represents the complexity of the network in terms of the spectral norm of the
weight matrices and Lipschitz constants of the activation. Note that ∥W∥[ℓ]2→∞ = 1 for unit
norm vectors, and ∥W [ℓ]∥ ≈ 1 for sufficiently incoherent weights. Therefore, for sufficiently
incoherent weights of unit-norm, we can consider C̄ to be a constant that only depends on L
and the activation functions.

Geometric interpretation of the bound (4.42). Let us provide some more context on the term
∥X− x∗∥ψ2

, which scales with the sub-Gaussian norm of the input distribution µX. Hence,
assuming Ĉϵ is sufficiently small, the subspace error scales with the variance (i.e., sub-Gaussian
norm) of the input distribution, and, consequently, the error can not be controlled solely by
increasing the number of sampled Hessians. This can be explained as follows (cf. Figure 4.1):
For any x ̸= x∗, there is a mismatch of the Hessians ∇2 fkL(x) ∈ W(f , x), kL ∈ [mL] and the
space W = W(f , x∗) ̸= W(f , x) when x is drawn from µX (see also Lemma 4.3). As long
as x remains close to x∗, this deviation can be controlled by the Lipschitz continuity of the
networks’ Hessian. For increasing ∥x− x∗∥2, the Hessians ∇2 fkL(x) will fan out away from
the ideal spaceW . One can think of Ŵ as the center of mass of the Hessian approximations
∆2 f1(X1), . . . , ∆2 fmL(XNh) (cf. (4.41)). Since we have no reason to believe that these Hessian
approximations concentrate symmetrically around W , the estimated space Ŵ can only be
guaranteed to lie within a cone around the original space W . The only way to control the

4.2. Entangled weight identification 152

Figure 4.1: Geometric interpretation of the mismatch betweenW and Ŵ caused by
the differences in the Hessian decompositions. The solid black line depicts the ideal
spaceW , the light blue region indicates the area in which Hessian approximations
can lie when they are sampled at random, and the dashed line, symbolizing Ŵ ,
indicates the center of mass of the sampled Hessian approximations.

impact of this phenomenon on the subspace approximation is to decrease the variance of the
input distribution.

Let us stress that there is a limitation on how small we can make ∥X− x∗∥ψ2
since α might

additionally depend on the input distribution in a highly non-trivial way. Leaving other factors
aside, the bound on the subspace error (4.42) scales with O(∥X− x∗∥ψ2

/
√

α) where α comes
from the learnability condition (DNM3), more precisely, α is defined via the spectrum of the
second moments of Hessians:

α := σm∗

(
1

mL

mL

∑
kL=1

EX∼µX

[
vec(∇2 fkL(X))⊗ vec(∇2 fkL(X))

])
> 0.

It is clear that the quantity α is affected by the choice of distribution µX. This relationship
between α and µX was already discussed in Section 4.1.1 and Chapter 3. For shallow neural
networks, we proved in Theorem 3.5 that under fairly mild conditions and for µX = N (0, IdD),
the factor α can be regarded as a constant independent of m, D (see the related discussion in
Section 3.1.1 and Theorem 3.5). For deep neural networks, however, one would expect that
α scales with the sub-Gaussian norm of µX. This, in turn, implies that the right-hand side of
(4.42) cannot be made arbitrarily small within the framework of our analysis, regardless of the
numerical accuracy Ĉϵ or the number of Hessians used. Our numerical experiments do support
this argument, i.e., we observe that we do indeed need a strong concentration of µX to reach
a stable approximation of the subspaceW , but the quantity ∥X− x∗∥ψ2

cannot be decreased
without limits (cf. Section 4.2.3). However, we also observe (empirically) a certain stabilization
of α due to the presence of multiple output neurons. We will describe this dynamic in the
following.

Stabilizing effect of multiple output neurons on the Hessian span. The preceding discussion
revealed how the dependence between α, µX makes the bound (4.42) delicate to interpret since
α cannot be regarded as a constant independent of µX. Nevertheless, empirically we do observe
a consistent approximation of the spaceW by Algorithm 4.1 (cf. Section 4.2.3 and Section 4.4).
The overall good performance of the recovery begs the question of whether the discussion

153 Chapter 4. Entangled weights: Moving beyond shallow network architectures

above is too pessimistic or if there are other factors at play. Notably, we observe a strong
positive correlation between the accuracy of the subspace identification and the number of
output neurons (see, for instance, Figure 4.4 or Table 4.2). Intuitively, this can be explained as
follows: As long as every output neuron

fkL(·) = y[L]kL
(·) for kL ∈ [mL],

computes a different function (i.e., the columns of W [L] are sufficiently incoherent), we get
mL different measurements of the subnetwork constructed by the L− 1 first layers. One can
directly see this by considering the decomposition of the Hessians into entangled weights. We
learned in Proposition 4.1 that the decomposition per output is given by

∇2 fkL(x) = g′′L(z
[L]
kL
(x))v[L]kL

(x)⊗2 +
L−1

∑
ℓ=1

mℓ

∑
kℓ=1

∂ fkL(x)

∂y[ℓ]kℓ
(x)

g(2)ℓ (z[ℓ]kℓ
(x))v[ℓ]kℓ

(x)⊗2,

where kL is the index of the respective output neuron. Now, assume we draw the input x
from a distribution that highly concentrates around its mean x∗, then the part of the Hessian
decomposition corresponding to the last L− 1 layers would reflect that concentration and

L−1

∑
ℓ=1

mℓ

∑
kℓ=1

∂ fkL(x)

∂y[ℓ]kℓ
(x)

g(2)ℓ (z[ℓ]kℓ
(x))v[ℓ]kℓ

(x)⊗2 ≈
L−1

∑
ℓ=1

mℓ

∑
kℓ=1

∂ fkL(x∗)

∂y[ℓ]kℓ
(x∗)

g(2)ℓ (z[ℓ]kℓ
(x∗))v[ℓ]kℓ

(x∗)⊗2.

We observe the tradeoff described above, where high concentration leads to a stabilization of
v[ℓ]kℓ

(x∗)⊗2 but decreases the overall variability represented by the coefficients

s[ℓ]kL,kℓ
(x) =

∂ fkL(x)

∂y[ℓ]kℓ
(x)

g(2)ℓ (z[ℓ]kℓ
(x)) ≈ ∂ fkL(x∗)

∂y[ℓ]kℓ
(x∗)

g(2)ℓ (z[ℓ]kℓ
(x∗)) = s[ℓ]kL,kℓ

(x∗).

The key observation is that the influence of a particular neuron on any particular output
neuron, i.e., the factor ∂ fkL(x∗)/∂y[ℓ]kℓ

(x∗), can still cause a significant change in the coefficients

s[ℓ]kL,kℓ
(x∗) w.r.t. kL, kℓ. This means one can expect at least mL different linear combinations

of the entangled weight matrices v[ℓ]kℓ
(x∗)⊗2, for ℓ ∈ [L − 1], kℓ ∈ [mℓ]. This effect seems to

compensate for many of the negative effects caused by considering high concentrating input
distributions for the subspace approximations for generic networks. In fact, we can see this
numerically when measuring ∥PW − PŴ∥F→F in Figure 4.4. To clarify this effect, we can
consider another hypothetical border case. Assume f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) with linear
output activation gL. If the number of output neurons exceeds the number of remaining neurons
mL ≥ m1 + · · ·+ mL−1 and there exists a Hessian location x∗ such that

{
∇2 fkL(x∗)|kL ∈ [mL]

}
contains at least m1 + · · ·+mL−1 independent matrices, then, using the notation from Definition
4.2, we have

W(f , x∗) = span{v⊗ v|v ∈ V(f , x∗) \ VL(f , x∗)} = span
{
∇2 fkL(x∗)|kL ∈ [mL]

}
, (4.44)

i.e., the span of the Hessians w.r.t. all output neurons for one single input contains all entangled
weight matrices corresponding to the first L − 1 layers. The statement follows by the fact
that ∇2 fkL(x∗) must lie within span{v ⊗ v|v ∈ V(f , x∗) \ VL(f , x∗)} due to Proposition 4.1
which implies (4.44) by a dimensionality argument. Of course, it might not be realistic to
have that many output neurons, and further conditions would need to be required to fully
develop a rigorous theoretical statement. But it underlines that more outputs potentially make
the subspace stabilization more robust. Also, note that this does not go against the type of

4.2. Entangled weight identification 154

network models we consider. As pointed out in Section 4.1.2, we require a pyramidal network
architecture only up to the last layer to recover the original weights from the entangled weights,
but we allow an arbitrary number of output neurons. Networks with a pyramidal shape are
often used in practice for classification tasks. In these models, it is common to have one output
neuron per class, and in many classification tasks, the number of classes is large. In summary,
we believe that a large number of output neurons benefits us as long as the output weights
exhibit some incoherence. This phenomenon is not directly visible from Theorem 4.1 because
it’s most likely already incorporated in our assumptions (by an increase of α).

Sample complexity Let us conclude the discussion of Theorem 4.1 by stating the expected
sample complexity. Algorithm 4.1 only relies on network evaluation for the subspace approx-
imation step since Algorithm 2.2 does not require any further evaluations of the network.
If we assume that finite difference schemas approximate Hessians sufficiently well, then we
need O(D2) network evaluations to compute the Hessian at one output neuron. However,
note that the same set of network inputs will simultaneously compute the Hessians of all
remaining output neurons. If we assume that the network complexity C̄ is bounded by a
constant depending only on L, κ, then the overall number of Hessians needed in Theorem 4.1
is Nh = O(m/α), where m = m1, . . . , mL. Therefore, we expect an average sample complexity
that scales like O(mD2/(mLα)).

4.2.2 Proof of Theorem 4.1

Before proving Theorem 4.1, we establish an intermediate result. Note that by constructing Ŵ
as the singular subspace associated with approximations of the Hessians

Ŵ = spanm∗
{

∆2 f1(X1), . . . , ∆2 f1(XNh), . . . , ∆2 fmL(X1), . . . , ∆2 fmL(XNh)
}

,

we can in general only hope to recover a part W̄ ⊂ W =W(f , x∗) of the target space where

W̄ = span
{

PW∇2 f1(x1), . . . , PW∇2 f1(xNh), . . . , PW∇2 fL(x1), . . . PW∇2 fL(xNh)
}

. (4.45)

The following proposition establishes to what degree W̄ can be approximated by a singular
subspace of approximated Hessians from which the statement in Theorem 4.1 is merely an
extension that follows by using the additional lower bound on α provided in Theorem 4.1 since
α > 0 guarantees W̄ =W for sufficiently many Hessians.

Proposition 4.2 (cf. [50, Proposition 5]). Consider a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L])
with activations (gℓ)ℓ∈[L] that fulfill (DNM1)-(DNM2) with κ > 0 and m∗ non-linear neurons. Let
X ∼ µX with mean E[X] = x∗ be sub-Gaussian and let X1, . . . , XNh be independent copies of
X. Furthermore, assume access to a numerical differentiation scheme as in (G5.3) with accuracy
Ĉϵ. Let W̄ ⊆ W(f , x∗) be the space described above constructed from the inputs X1, . . . , XNh with
m̄ := dim(W̄) being its dimension. Assume

ᾱ := σm̄

(
1

mL

mL

∑
kL=1

∫
vec(∇2 fkL(X))⊗ vec(∇2 fkL(X))dµX

)
> 2Ĉ2

ϵ . (4.46)

Then the subspace

Ŵm̄ = spanm̄
{

∆2 f1(X1), . . . , ∆2 f1(XNh), . . . , ∆2 fmL(X1), . . . , ∆2 fmL(XNh)
}

satisfies

∥PW̄ − PŴm̄
∥F→F ≤ 2

Ĉϵ + C̄
√

D ∥X− x∗∥ψ2√
ᾱ
2 − Ĉ2

ϵ

155 Chapter 4. Entangled weights: Moving beyond shallow network architectures

with probability at least

1− 2 exp (−CNh)− m̄ exp

−C
Nhᾱ

mLκ2L
(

∏L
ℓ=1 ∥W [ℓ]∥

)2 (
∑L

ℓ=1 κℓ−1 ∏ℓ
k=1 ∥W [k]∥

)2

 .

The constants C, Ĉϵ, C̄ are as in Theorem 4.1.

The proof of Proposition 4.2 relies on two auxiliary statements and is postponed to the end
of the section. Recall that in Section 1.1.1, we generalize the concept of singular subspaces to
matrices by considering their vectorizations. The error induced into these singular subspaces
by perturbing the underlying elements can be bound by a Wedin bound previously stated in
Proposition 1.1. Let us first introduce the auxiliary random matrices

M := (M1| . . . |MmL) ∈ RD2×NhmL , (4.47)

M̂ :=
(

M̂1| . . . |M̂mL

)
∈ RD2×NhmL , (4.48)

M̄ := (M̄1| . . . |M̄mL) , (4.49)

where

MkL := (vec(∇2 fkL(X1))| . . . | vec(∇2 fkL(XNh))) ∈ RD2×Nh , (4.50)

M̂kL := (vec(∆2 fkL(X1))| . . . | vec(∆2 fkL(XNh))) ∈ RD2×Nh , (4.51)

M̄kL := (vec(PW∆2 fkL(X1))| . . . |PW vec(∆2 fkL(XNh))) ∈ RD2×Nh (4.52)

for all kL ∈ [mL] and where PW is the orthogonal projection ontoW =W(f , x∗). The proof of
Proposition 4.2 is centered around the fact that

∥PW̄ − PŴm̄
∥F→F ≤

2∥M̄− M̂∥F

σm̄(M̂)

as a consequence of Proposition 1.1. We begin by establishing an upper bound on the difference
between the matrices in M̂, M̄ in (4.48), 4.49.

Lemma 4.3 (cf. [50, Lemma 7]). Consider a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) with
activations (gℓ)ℓ∈[L] that fulfill (DNM1) with κ > 0. Let µX be a sub-Gaussian distribution with mean
x∗ = EX∼µX (X). Furthermore, assume access to a numerical differentiation scheme as in (G5.3) with
accuracy Ĉϵ. Let X ∼ µX and X1, . . . , XNh be independent copies of X ∼ µX. There exists a uniform
constant C, such that with probability at least 1− exp(−CNh) the matrices M̄, M̂ given by (4.48),
(4.49) satisfy

∥M̂− M̄∥F ≤
√

NhmL

(
Ĉϵ + C̄

√
D ∥X− x∗∥ψ2

)
,

with C̄ as in Theorem 4.1.

Proof of Lemma 4.3. First, we separate the error caused by numerical differentiation by using
the triangle inequality applied to the auxiliary matrix M̄ defined in (4.49), which yields

∥M̂− M̄∥F ≤ ∥M̂−M∥F + ∥M− M̄∥F.

We start by estimating ∥M̂−M∥F. From the definition of the Frobenius norm, we immediately
get

∥M̂−M∥F ≤
√

mLNh max
i∈[Nh],kL∈[mL]

∥∇2 fkL(Xi)− ∆2 fkL(Xi)∥F

≤
√

mLNhĈϵ,

4.2. Entangled weight identification 156

according to (G5.3). This allows us to focus on the part ∥M− M̄∥F from here on. By Proposition
4.1, in particular (4.26), we obtain

∥M− M̄∥2
F =

mL

∑
kL=1

Nh

∑
i=1
∥∇2 fkL(Xi)− PW∇2 fkL(Xi)∥2

F

≤
mL

∑
kL=1

Nh

∑
i=1

(
L

∑
ℓ=2

∥∥∥V [ℓ](Xi)S
[ℓ]
kL
(Xi)V [ℓ](Xi)

⊤ − PW
(

V [ℓ](Xi)S
[ℓ]
kL
(Xi)V [ℓ](Xi)

⊤
)∥∥∥

F

)2

,

where the term inside the sum corresponding to ℓ = 1 vanishes due to PW⊥(V
[1](Xi)) =

PW⊥(W
[1]) = 0. Utilizing the properties of orthogonal projections, we can replace the matrix

PW (V [ℓ](Xi)S
[ℓ]
kL
(Xi)V [ℓ](Xi)

⊤) by an arbitrary matrix in W as the distance can only increase.

In particular, we can replace it with V [ℓ](x∗)S[ℓ]
kL
(Xi)V [ℓ](x∗)⊤ ∈ W , such that∥∥∥V [ℓ](Xi)S

[ℓ]
kL
(Xi)V [ℓ](Xi)

⊤ − PW
(

V [ℓ](Xi)S
[ℓ]
kL
(Xi)V [ℓ](Xi)

⊤
)∥∥∥

F

≤
∥∥∥V [ℓ](Xi)S

[ℓ]
kL
(Xi)V [ℓ](Xi)

⊤ −V [ℓ](x∗)S[ℓ]
kL
(Xi)V [ℓ](x∗)⊤

∥∥∥
F

,

and then decompose the error utilizing the submultiplicativity of the Frobenius norm to get for
all i ∈ [Nh]∥∥∥V [ℓ](Xi)S

[ℓ]
kL
(Xi)V [ℓ](Xi)

⊤ −V [ℓ](x∗)S[ℓ]
kL
(Xi)V [ℓ](x∗)⊤

∥∥∥
F

≤
∥∥∥V [ℓ](Xi)−V [ℓ](x∗)

∥∥∥ ∥S[ℓ]
kL
(Xi)∥F(∥V [ℓ](Xi)∥+ ∥V [ℓ](x∗)∥)

≤ 2κL

(
L

∏
k=1
∥W [k]∥

)(
ℓ

∏
k=1
∥W [k]∥

)
ℓ−1

∑
k=1

κℓ+k−2
∥∥∥W [k]

∥∥∥
2→∞

(
k−1

∏
j=1
∥W [k]∥

)
∥Xi − x∗∥2 .

The last line follows from the bounds derived in Lemma 4.2. Summing up the leading factor
from ℓ = 2 to L gives precisely C̄ up to a universal constant. In total, we obtain

∥M− M̄∥2
F ≤ C̄2mL

Nh

∑
i=1
∥Xi − x∗∥2

2 .

By our assumptions the random variable Xi − x∗ is sub-Gaussian, hence it is straightfor-
ward to deduce that ∥Xi − x∗∥2 is sub-Gaussian as well with sub-Gaussian norm given by
∥∥Xi − x∗∥2∥ψ2

=
√

D∥Xi − x∗∥ψ2 . By using elementary properties of the sub-exponential
norm (cf. [127, Lemma 2.7.6]), this implies that Yi = ∥Xi − x∗∥2

2 is sub-exponential with sub-
exponential norm given by ∥Yi∥ψ1

= D∥Xi − x∗∥2
ψ2

. Notably, the sum ∑Nh
i=1 Yi can be controlled

by a concentration inequality. In particular, by Bernstein’s inequality [127, Theorem 2.8.1] we
get

P

(∣∣∣∣∣ Nh

∑
i=1

Yi −EYi

∣∣∣∣∣ > t

)
≤ 2 exp

(
−c min

(
t2

∑Nh
i=1 ∥Yi −EYi∥2

ψ1

,
t

maxi∈[Nh] ∥Yi −EYi∥ψ1

))
,

for any t ≥ 0 and an absolute constant c > 0. We can bound the mean by the subexponential
norm ∥·∥ψ1

up to some constant factor (cf. [127, Proposition 2.7.1 (ii)]), hence

EYi = C ∥Yi∥ψ1
= CD∥Xi − x∗∥2

ψ2

157 Chapter 4. Entangled weights: Moving beyond shallow network architectures

for some absolute constant C. Using Bernstein’s inequality with t = NhCD∥Xi − x∗∥2
ψ2

now
yields ∣∣∣∣∣ Nh

∑
i=1

Y2
i

∣∣∣∣∣ ≤ NhEY1 + t ≤ 2NhCD∥Xi − x∗∥2
ψ2

with probability at least 1− 2 exp(−C2NH) for some universal constant C2 > 0. Conditioning
on this event, the bound on ∥M− PWM∥2

F now reads

∥M− PWM∥2
F ≤ C̄2mLNhD∥Xi − x∗∥2

ψ2
,

where we absorbed all absolute constants in C̄. In summary, we have

∥M̂−PWM∥F ≤ ∥M̂−M∥F + ∥M−PWM∥F ≤
√

mLNH

(
Ĉϵ + C̄

√
D∥Xi − x∗∥ψ2

)
with probability at least 1− 2 exp(−C2Nh). The result follows after relabeling the constants.

As a next step, we provide a bound for the spectrum of the matrices M, M̂ given by (4.47),
(4.48), respectively.

Lemma 4.4 (cf. [50, Lemma 8]). Consider a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) with
activations (gℓ)ℓ∈[L] that fulfill (DNM1) with κ > 0. Let X ∼ µX with mean E[X] = x∗ be sub-
Gaussian and let X1, . . . , XNh be independent copies of X. Furthermore, assume access to a numerical
differentiation scheme as in (G5.3) with accuracy Ĉϵ. Let W̄ ⊆ W(f , x∗) be the space described in
(4.45) constructed from the inputs X1, . . . , XNh with m̄ := dim(W̄) being its dimension. Assume

ᾱ := σm̄

(
1

mL

mL

∑
kL=1

∫
vec(∇2 fkL(X))⊗ vec(∇2 fkL(X))dµX

)
> 2Ĉ2

ϵ . (4.53)

Then there exists a universal constant C > 0 so that the matrices M and M̂ as defined in (4.47), (4.48)
satisfy

σm̄(M) ≥
√

ᾱNhmL

2
and σm̄(M̂) ≥

√
NhmL

(√
ᾱ

2
− Ĉ2

ϵ

)
with probability at least

1− m̄ exp

−C
Nhᾱ

κ2L
(

∏L
ℓ=1 ∥W [ℓ]∥

)2 (
∑L

ℓ=1 κℓ−1 ∏ℓ
k=1 ∥W [k]∥

)2

 .

Proof. First note σm̄(M̂) =
√

σm̄(M̂M̂⊤) and that Weyl’s inequality (cf. [132]) implies

σm̄(M̂M̂⊤) ≥ σm̄(MM⊤)− ∥MM⊤ − M̂M̂⊤∥ ≥ σm̄(MM⊤)−mLNhĈ2
ϵ ,

where we used ∥MM⊤ − M̂M̂⊤∥ ≤ ∥M− M̂∥2
F. By the definition of M, we can continue with

σm̄(MM⊤) = σm̄

(
Nh

∑
i=1

mL

∑
kL=1

vec(∇2 fkL(Xi))⊗ vec(∇2 fkL(Xi))

)
.

4.2. Entangled weight identification 158

This shows that σm̄(MM⊤) is the m̄-th eigenvalue of a sum of Nh independent and identically
distributed random matrices. Additionally, by our initial assumption, we have σm̄(EMM⊤) =
NhmLᾱ. Applying the matrix Chernoff bound [59, Theorem 4.1] yields

P
(

σm̄(MM⊤) ≥ tNhmLᾱ
)
≥ 1− m̄ exp

 −(1− t)2NhmLᾱ

2 max
x∈supp(µX)

∥∑mL
kL=1 vec(∇2 fkL(x))⊗ vec(∇2 fkL(x))∥

for all t ∈ [0, 1]. We can leverage Proposition 4.1 and Lemma 4.2 to further bound the Hessian
∇2 fkL(x) by

∥∇2 fkL(x)∥F ≤
L

∑
ℓ=1
∥V [ℓ](x)S[ℓ]

kL
(x)V [ℓ](x)⊤∥F ≤

L

∑
ℓ=1
∥V [ℓ](x)∥2∥S[ℓ]

kL
(x)∥F

≤
L

∑
ℓ=1

(
κℓ−1

ℓ

∏
k=1
∥W [k]∥

)2

κL−ℓ+1
L

∏
k=ℓ+1

∥W [k]∥ ≤ κL
L

∏
k=1
∥W [k]∥

L

∑
ℓ=1

κℓ−1
ℓ

∏
k=1
∥W [k]∥,

universally for all kL ∈ [mL] and for inputs x ∈ supp(µX). Note that

max
x∈supp(µX)

∥
mL

∑
kL=1

vec(∇2 fkL(x))⊗ vec(∇2 fkL(x))∥ ≤ mL∥∇2 fkL(x)∥2
F

and t = 1
2 , concluding the proof.

We can now complete the proof of Proposition 4.2 and Theorem 4.1.

Proof of Proposition 4.2. Combining the bounds in Lemma 4.3 and Lemma 4.4, this statement
follows directly from Proposition 1.1 and the union bound of the involved probabilities.

Proof of Theorem 4.1. The statement of Theorem 4.1 is closely related to Proposition 4.2. The
additional assumptions made in the Theorem that

α > 2C̄2D∥X− x∗∥2
ψ2

implies m̄ = dim(range(M̄)) = m, or equivalently W = W̄ and Ŵm̄ = Ŵ . By the proof of
Lemma 4.3 we have derived the bound ∥M− M̄∥F ≤ C̄

√
NhmLD∥X − x∗∥ψ2 for the distance

between M and the projected columns of M. This bound holds with probability 1− exp(−CNh).
Additionally, repeating the proof of Lemma 4.4, where now

ᾱ = α =
1

mL
σm(EMM⊤),

we get σm(M) ≥
√

αNhmL/2 with the probability described in Lemma 4.4. Invoking again
Weyl’s eigenvalue bound (cf. [132]), we can lower bound the extreme eigenvalue as

σm(PWMM⊤P⊤W) ≥ σm(MM⊤)−
∥∥∥PWMM⊤P⊤W −MM⊤

∥∥∥
2
≥ Nh

α

2
− ∥PWM−M∥2

F

≥ NHmL

(α

2
− C̄2D∥X− x∗∥2

ψ2

)
.

Since α > 2C̄2D∥X − x∗∥2
ψ2

, the right-hand side is strictly positive and thus σm(PWM) > 0,
respectively, m∗ = m. Lastly, note that the events required for the bound above as well as
∥M− PWM∥F ≤ C̄

√
NhmLD∥X− x∗∥2

ψ2
are equivalent to the events in the proof of Proposition

4.2. Therefore, Theorem 4.1 holds with the same probability as Proposition 4.2.

159 Chapter 4. Entangled weights: Moving beyond shallow network architectures

4.2.3 Empirical analysis of entangled weight recovery

Our primary goal in this section is to support the theory of Section 4.2-4.2.1 by demonstrating
the recovery of entangled weights for randomly constructed networks via Algorithm 4.1.

Network Model We consider neural networks with tanh activation functions at all neurons
(including the output neurons). Every weight will be drawn as w[ℓ]

kℓ
∼ Unif(Smℓ−1−1) for all

kℓ ∈ [mℓ], ℓ ∈ [L]. Every neuron will be equipped with a small shift τ
[ℓ]
kℓ
∼ N (0, 0.05). This

reflects the setting of previous experiments for stochastic gradient descent in Section 1.3.2 and
wide shallow neural networks in Section 3.6. However, this time, we also explore different
network depths. The primary factors that influence the difficulty of our recovery experiment
will be the network depth L, for which we chose values L = 2, . . . , 5, and the overall number of
neurons m = m1 + · · ·+ mL for which we choose values m = 200, 300, . . . , 1500. Throughout
most experiments, the input dimension of the network will be fixed as D = 100. This value
seems large enough to guarantee sufficient incoherence of random weights while still being
low enough to run numerous configurations of the recovery. The number of output neurons
is usually a small integer mL ∈ [10]. Once the number of layers exceeds L = 2, the number
of neurons, together with the input and output dimension of the network, does not uniquely
determine the architecture since the neurons can be distributed differently over the inner hidden
layers. Therefore, we also introduce a shape parameter called contraction factor c ∈ (0, 1],
which determines the decrease of the number of neurons from one layer to the next. For
example, let us assume we have input dimension D = 100, L = 3 layers, and m3 = 10 output
neurons in a network with m = 200 overall neurons. To fix the shape, we need to distribute the
m−m3 = 190 neurons over layers one and two. For a given contraction factor c, the number
of neurons is then split between the first two layers such that m1 + m2 = 190 and m2 = ⌊cm1⌋.
So for c = 1, we would have 95 neurons in each layer whereas for c = 0.5 we would have
m1 = 127, m2 = 63. Practically speaking, due to c ∈ (0, 1], we only consider networks with a
pyramidal shape, and c controls how tapered the pyramid is. As seen from this example, we
consider networks where the number of hidden neurons in the first layer exceeds the input
dimension, but we do not consider networks where the number of neurons increases from one
hidden layer to the next. Additionally, note that the number of output neurons mL is unaffected
by this shape parameter. In summary, the network architectures are uniquely determined
by the quintuple (D, L, mL, m, c), and the weights are drawn uniformly at random from the
unit-sphere, whereas the shifts are initialized by small Gaussians.

Entangled weight recovery For networks constructed as described above, the entangled
weights are then recovered by Algorithm 4.1. The entangled weight recovery can be broken
down into two steps: first, a subspace approximation, followed by the second, performing SPM
(Algorithm 2.2) until we recover all entangled weights.
The subspace approximation depends on the neural network function f , Nh Hessians locations
x1, . . . , xNh sampled independently from a distribution µX and a number of components m∗.
Since all neurons are assumed to be non-linear, we always choose m∗ = m = m1 + · · ·+ mL.
For a given network architecture we sample Nh = 20⌈m/mL⌉ Hessian locations uniformly from
the sphere with radius R around the origin, i.e., x1, . . . , xN ∼ R ·Unif(SD−1). Different radii
R = 10−3, 10−2, 10−1, 1, 10 are used to simulate different levels of concentrations.
Notably, we run a slightly adapted version of Algorithm 2.2, where the number of SPM iter-
ations (denoted by NPGD) and repetitions (denoted by NSPM) is fixed. The subspace power
method is always run with a step-size γ = 1.5 and performs NPGD = 15000 steps of projected
gradient ascent. SPM is restarted NSPM = 104 times for random initializations drawn uniformly
at random from the unit sphere. This way, we maintain a high likelihood of finding all entan-

4.2. Entangled weight identification 160

gled weights (cf. Remark 2.2). Let us note here that we commonly do not observe any spurious
local maximizers for the network models considered above. To see examples of regimes in
which SPM actually benefits from the filtering for spurious local maximizers, we refer to the
numerical section of Chapter 3.

Evaluation metrics To measure the accuracy of the subspace approximation, we simply
consider the Frobenius distance between the orthogonal projection matrices PW ,PŴ associated
with the vectorizations of the subspacesW , Ŵ (cf. Definition 1.1 and the preceding remark)
normalized by the number of components m, given by∥∥PW −PŴ∥∥F√

m
where PW ,PŴ ∈ RD2×D2

,

which relates to the error estimated in Theorem 4.1. Every repetition of SPM computes a new
potential entangled weight direction which is added to USPM as long as it does not fail the check
for spurious local maximizers. By running SPM, we lose scale and sign information about
the entangled weights since all returned vectors are normalized, and SPM cannot distinguish
u ∈ RD from −u ∈ RD because of∥∥PŴ (u⊗2)

∥∥2
F =

∥∥PŴ (−u⊗2)
∥∥2

F .

We exclusively track the accuracy of entangled weight approximations within USPM. The
entangled weights corresponding to output neurons (UL in Algorithm 4.1) will be considered
in the experiments of Section 4.4. We check the set USPM for two qualities. First, the number of
entangled weights that were recovered. An entangled weight

v ∈
{

v[ℓ]kℓ
(0)
∣∣∣ ℓ ∈ [L], kℓ ∈ [mℓ]

}
counts as recovered as long as there exists an u ∈ USPM such that

min
s∈{−1,+1}

∥∥∥∥u− s
v
∥v∥2

∥∥∥∥
2
≤ 0.05. (4.54)

Additionally, we want to check if there were any vectors returned in USPM that are not close
(in the sense of (4.54)) to any entangled weight. We count these vectors as false positives and
measure the overall rate of false positives contained in USPM.

Recovery of entangled weights for different network configurations and varying levels of
concentration of the Hessian locations. Note that all upcoming numerical results are taken
from the joint work [50]. The first experiment we want to discuss is designed to test the influence
of distribution µX = R ·Unif(SD−1) by comparing different radii R = 10−3, 10−2, 10−1, 1, 10,
which models the degree of concentration. The input and output dimensions remain fixed
D = 100, mL = 10, and we vary the number of neurons, the number of layers L = 2, 3, 4
and the network shape modeled with the contraction factor c = 0.25, 0.5, 0.7, 1. We report
the subspace approximation error in Figure 4.2, the ratio of recovered entangled weights and
false positives in Figure 4.3. We can see that the subspace error is strongly influenced by the
overall number of neurons. All plots exhibit a sort of phase transition. For a certain number of
neurons (the first few hundred), the overall recovery works well and we recover all entangled
weights and encounter no false positives. Ultimately, we know from the previous chapter that
SPM does successfully recover the target weights in regimes up to m log m = O(D2)(as long

161 Chapter 4. Entangled weights: Moving beyond shallow network architectures

250 500 750 1000 1250 1500
0.0

0.2

0.4

0.6

0.8
||P

P
|| F

m

Input sampled with R = 0.001

250 500 750 1000 1250 1500

Input sampled with R = 0.01

250 500 750 1000 1250 1500
Number of neurons m

Input sampled with R = 0.1

250 500 750 1000 1250 1500
Number of neurons m

0.0

0.2

0.4

0.6

0.8

||P
P

|| F
m

Input sampled with R = 1.0

250 500 750 1000 1250 1500
Number of neurons m

Input sampled with R = 10.0

of layers
2
3
4

Contr. factor c
0.25
0.5
0.75
1.0

Figure 4.2: Sensitivity of the subspace error w.r.t. the concentration of the input
distribution [52]. As long as a sufficient degree of concentration is maintained
(top row), the recorded subspace error remains stable for the first few hundred
neurons.

as certain incoherence conditions are met). Therefore, the crucial factor is the accuracy of the
subspace approximation. In terms of R, the experimental results suggest that our theoretical
intuition was correct. Concentration is necessary since for R = 10 we see a significant increase
in the subspace approximation error. As long as a certain level of concentration is maintained
(R = 0.001, 0.01, 0.1) the subspace is approximated sufficiently well. We can only observe
marginal changes between small radii. Eventually, when a critical number of neurons is
reached, the subspace error increases drastically (between 900 and 1000 neurons), even for
small R. At this stage, the recovery rate for L = 2, 3 remains stable, but we can observe a
steady decrease in the recovered entangled weights of the four-layer networks. The fact that the
breakdown of the recovery rate lags behind the phase transition of the subspace approximation
error suggests that SPM exhibits a certain robustness w.r.t. the difference between the matrix
spaces. After m = 1100, the error in the approximated subspace seems to be too high, and the
ratio of detected entangled weights drops off significantly. At the same time, we also observe a
rapid increase in false positives.
We can also observe that the recovery performed worse for a higher number of layers. However,
this quantity only influences the overall recovery by a small shift along the y-axis. The contrac-
tion factor does not significantly influence two-layer and three-layer networks. Furthermore,
we can not see significant differences between the network shapes. For four-layer networks, the
results suggest that having almost no reduction from layer to layer (i.e., a rectangular-shaped
network) performs slightly worse than the networks with a tapered architecture. However, the
overall impact of the contraction factor seems negligible.
Let us put some perspective on these results. The fact that for this type of pyramidal artificial
neural network, the number of layers and the shape does not have a significant effect on the
recovery of entangled weights suggests that this method scales to deep architectures. We can

4.2. Entangled weight identification 162

250 500 750 1000 1250 1500
0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f r

ec
ov

. e
nt

. w
ei

gt
hs

Input sampled with R = 0.001

250 500 750 1000 1250 1500

Input sampled with R = 0.01

250 500 750 1000 1250 1500
Number of neurons m

Input sampled with R = 0.1

250 500 750 1000 1250 1500
Number of neurons m

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f r

ec
ov

. e
nt

. w
ei

gt
hs

Input sampled with R = 1.0

250 500 750 1000 1250 1500
Number of neurons m

Input sampled with R = 10.0

of layers
2
3
4

Contr. factor c
0.25
0.5
0.75
1.0

250 500 750 1000 1250 1500
0.0

0.2

0.4

0.6

0.8

Ra
tio

 o
f f

al
se

 p
os

iti
ve

s

Input sampled with R = 0.001

250 500 750 1000 1250 1500

Input sampled with R = 0.01

250 500 750 1000 1250 1500
Number of neurons m

Input sampled with R = 0.1

250 500 750 1000 1250 1500
Number of neurons m

0.0

0.2

0.4

0.6

0.8

Ra
tio

 o
f f

al
se

 p
os

iti
ve

s

Input sampled with R = 1.0

250 500 750 1000 1250 1500
Number of neurons m

Input sampled with R = 10.0

of layers
2
3
4

Contr. factor c
0.25
0.5
0.75
1.0

Figure 4.3: Ratio of recovered entangled weights and detection rate of false positives
in the set of vectors returned by SPM [52]. In general, we can detect a critical mass
of neurons at which the recovery rate decreases significantly. Provided the correct
input distribution (top row), we observe a detection of all entangled weights. Only
in the runs with 4-layer networks and for contraction c = 0.75, 1 there is a slight
drop-off in the recovery ratio after roughly 500 neurons.

163 Chapter 4. Entangled weights: Moving beyond shallow network architectures

250 500 750 1000 1250 1500
0.0

0.2

0.4

0.6

0.8

1.0

||P
P

|| F
m

Input dim. din = 50

250 500 750 1000 1250 1500

Input dim. din = 75

250 500 750 1000 1250 1500
Number of neurons m

Input dim. din = 100

250 500 750 1000 1250 1500
Number of neurons m

0.0

0.2

0.4

0.6

0.8

1.0

||P
P

|| F
m

Input dim. din = 125

250 500 750 1000 1250 1500
Number of neurons m

Input dim. din = 150

Output dim. dout
4
5
6
7
8
9
10

of layers
2
3
4

250 500 750 1000 1250 1500
0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f r

ec
ov

. e
nt

. w
ei

gt
hs

Input dim. din = 50

250 500 750 1000 1250 1500

Input dim. din = 75

250 500 750 1000 1250 1500
Number of neurons m

Input dim. din = 100

250 500 750 1000 1250 1500
Number of neurons m

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f r

ec
ov

. e
nt

. w
ei

gt
hs

Input dim. din = 125

250 500 750 1000 1250 1500
Number of neurons m

Input dim. din = 150

Output dim. dout
4
5
6
7
8
9
10

of layers
2
3
4

Figure 4.4: Varying the input dimension D and number of output neurons mL
for sigmoidal networks with c = 0.5. We observe a strong correlation between
those two factors and the number of neurons for which the subspace W can be
sufficiently well approximated.

4.3. Network completion 164

also derive an interesting question from these results: What is causing the phase-transition at a
specific number of neurons which occurs for all different network types considered in Figure
4.3? Based on empirical tests, we believe that this critical transition point is connected to the
input dimension D and the number of output neurons mL. At the end of Section 4.2.1, we
already elaborated on why having more output neurons can be beneficial. To provide further
evidence for this claim, we repeat the experiments, but now we fix all parameters which had
no significant impact on the overall recovery and vary the input dimension D and the number
of output neurons mL.

Investigating the phase-transition We reuse the setup from the last experiments. This time,
we let R = 0.01, c = 0.5 be fixed and vary the input dimension D = 50, 75, 100, 125, 150 and
the number of output neurons mL = 4, 5, 6, . . . , 10. We use the same set of hyperparameters as
before, and the evaluation metrics remain unchanged as well. The results are reported in Figure
4.4. Not only do the results align with our hypothesis that input dimension and the number of
output neurons are the determining factors that determine the number of recoverable neurons,
but they also suggest that the tipping point w.r.t. the number of recoverable neurons is roughly
located at D ·mL. There are various potential reasons why increasing D and mL can benefit
the overall recovery. Increasing the input dimension D while maintaining a constant number
of neurons will increase the incoherence of the weights in layer one and therefore increase
the overall incoherence of the entangled weights. It should be clear by now that increased
incoherence aids the performance of the subspace approximation and SPM. Additionally, we
have already stressed numerous times the strong influence of the number of outputs mL on the
stabilization of the singular subspace. However, these effects should only lead to a gradual
improvement. For instance, it is questionable whether the marginal gain of incoherence caused
by increasing D from D = 100 to D = 150 fully explains the strong correlation between the
point of phase transition and D ·mL.

4.3 Network completion

Entangled weights serve as a generalization of ordinary weights, enabling us to decouple weight
information accessible via network differentiation. We established a theoretical framework for
the recovery of individual entangled weight vectors and provided empirical evidence that this
recovery is possible for deep neural networks with sigmoidal activations. In Section 4.1.2, we
briefly motivated the entangled weights by the fact that the weights can be reconstructed up to
a diagonal matrix according to

V [ℓ−1](x)†V [ℓ](x) = diag
(

g(1)(z[j](x))
)

W [ℓ], (4.55)

as long as the left-inverse V [ℓ−1](x)† exists. With our ultimate objective of network reconstruc-
tion in mind, this motivates the concept of entangled weights. However, as it became clear
in Section 4.2.1, our approximation of entangled weights suffers from the same ambiguity
as the weight recovery in Chapter 3. Namely, by translating their retrieval to the rank-one
matrix basis recovery problem of Chapter 2, we lose information about their scale and sign.
Furthermore, the entangled weight recovery does not reconstruct entangled weight matrices but
only individual entangled weights. To reconstruct weights from entangled weights as in (4.55),
we need to know the corresponding layer for each entangled weight computed by Algorithm
4.1. Algorithm 4.1 computes the entangled weights of the last layer individually. Hence, for the
last layer, such an assignment is already inherent to Algorithm 4.1. However, we do not know
the corresponding neuron in the network for all remaining entangled weight approximations
v ∈ USPM. In summary, we end up with the following problem: Consider any v ∈ USPM after

165 Chapter 4. Entangled weights: Moving beyond shallow network architectures

successfully running Algorithm 4.1 against a network f with inputs concentrating around x∗,
then we expect that there is an unknown scale s > 0 and a layer ℓ∗ ∈ [L] such that

v ≈ s · v[ℓ∗] for some v[ℓ
∗] ∈ V∗ℓ (f , x∗),

where Vℓ(x∗) is defined in Definition 4.2. However, based on the output of Algorithm 4.1,
we have no information about the value of ℓ∗. Solving this layer assignment is essential
for reconstructing the entangled weight matrices, which will be tackled heuristically in the
following for networks with up to L = 3 layers.

4.3.1 Layer Assignment

This section explains how we need to order the output of the weight recovery to reconstruct the
entangled weight matrices. More precisely, we study a slightly more general problem. Note
that the entangled weight recovery (Algorithm 4.1) invokes Algorithm 2.2 as a subroutine that
iterates SPM (cf. Section 2.4). Algorithm 2.2 repeats SPM, where each repetition is run until
convergence. Then, the final result is filtered for spurious local maximizers and compared to
previous approximations to avoid duplicate computations of local maximizers. The certainty
that USPM will only contain each entangled weight approximation once is desirable in our
theoretical analysis. However, it enforces a sequential setup, where only one SPM iteration
can be run at a time (otherwise, duplicates can not be avoided). In practice, it is much more
efficient to run a large number of SPM iterations in parallel since most operations in Algorithm
2.2 can be written as matrix-vector products. In fact, in our numerical experiments, we run
several thousand (NSPM = 5m log m, see also Remark 2.2) independent iterations of SPM
simultaneously (cf. Section 4.4) for a fixed number of steps. Even on consumer hardware, this
leads to an immense speed-up of the entangled weight recovery. However, as a tradeoff, the
computed set of entangled weight approximations USPM will contain multiple approximations
for each individual entangled weight. Therefore, to be more aligned with our experimental
setting, we will consider the case where USPM can contain duplicate approximations. Notably,
filtering out duplicate detections can be regarded as redundant from a theoretical point of view.

Problem setting. More precisely, we consider the following problem setting. Let f ∈
NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) be a (deep) neural network with entangled weights given by V(f , x)
and assume a setting that is reached after successfully applying the entangled weight recovery
(Algorithm 4.1) to f . Based on the discussion above, we assume that there exists x∗ ∈ RD, ϵ ≥ 0
and that we are given access to a set U = USPM ∪ UL that fulfills the following two conditions:
Firstly, every vector in U approximates a member of V(f , x∗) such that

∀u ∈ U∃v ∈ V(f , x∗) such that min
s∈{−1,+1}

∥∥∥∥u− s
v
∥v∥2

∥∥∥∥
2
≤ ϵ, (4.56)

and secondly, every entangled weight is approximated by at least one vector in U , i.e., we have

∀v ∈ V(f , x∗)∃u ∈ U such that min
s∈{−1,+1}

∥∥∥∥u− s
v
∥v∥2

∥∥∥∥
2
≤ ϵ. (4.57)

As long as ϵ can be picked sufficiently small, this makes sure that all entangled weights are
sufficiently well approximated up to sign and scale. Additionally, the first condition prevents
the presence of false positives (spurious local maximizers) within U . Throughout this section,
we assume that these conditions are met for an ϵ that is suitably small.

4.3. Network completion 166

Algorithm 4.2: Constructing entangled weight matrices
Input: Output of entangled weight recovery U = USPM ∪ UL, input distribution for the

detection of first layer weights µX = Unif(R · SD−1).
1 U ∗SPM ←

{
u ∈ USPM

∣∣ ∀uL ∈ UL : mins∈{−1,+1} ∥u− suL∥2 > δ
}

2 U ∗SPM+ ← {sign(u1)u | u ∈ USPM}
3 Run kMeans on U ∗SPM+ with m−mL cluster centers
4 Denote the set of normalized cluster centers by V̂1:L−1
5 Draw Nh random samples x1, . . . , xNh from µX
6 Compute Hessian approximations ∆2 fkL(xi) for all i ∈ [Nh], kL ∈ [mL]
7 Compute the m1-th left singular subspace of the Hessian approximations

Ŵ1 = spanm1

{
∆2 f1(x1), . . . , ∆2 f1(xNh), . . . , ∆2 fL(x1), . . . ∆2 fL(xNh)

}
,

and denote by PŴ1
the orth. projection onto Ŵ1

8 for v ∈ V̂1:L−1 do
9 Compute the score Sv ←

∥∥∥PŴ1
(v⊗ v)

∥∥∥
F

10 end
11 Sort the vectors in V̂1:L−1 according to their score Sv in descending order
12 Build the matrix V̂ [1] ∈ RD×m1 from the m1 vectors in V̂1:L−1 with the highest score
13 Build the matrix V̂ [2:L−1] ∈ RD×m2+···+mL−1 from all remaining vectors in V̂1:L−1.
14 Build the matrix V̂ [L] ∈ RD×mL with columns taken from the set UL

Output: V̂ [1], V̂ [2:L−1], V̂ [L]

Step 1: Filtering the potential candidates returned by Algorithm 4.1. Under the assumptions
above, we first face two main challenges. The condition in (4.57) only guarantees that for every
entangled weight vector v ∈ V(f , x∗) there exists a set of vectors Uv ⊂ U that approximates v
up to a sign and scale. Therefore, in the first step, we need to find exactly one representative per
entangled weight. Assuming the entangled weights are sufficiently incoherent, most clustering
methods can be used. It should be noted that there is one special case corresponding to the
entangled weights of the last layer. Their approximations were computed in a separate step of
Algorithm 4.1 since the gradient of the output neurons in x∗ can be directly accessed. In practice,
it makes sense to rely solely on the approximations within UL as potential candidates for the
last layer. As long as the output neurons were equipped with non-linear activations, there
can still be vectors in USPM corresponding to these output neurons. To remove all duplicate
approximations of the last layer’s entangled weights, the set USPM is filtered according to the
criteria

U ∗SPM :=
{

u ∈ USPM

∣∣∣∣ ∀uL ∈ UL : min
s∈{−1,+1}

∥u− suL∥2 > δ

}
, (4.58)

for some small δ > 0 which has to be chosen according to the separation between the entangled
weights and approximation error. To avoid two clusters per entangled weight due to the
ambiguity of the sign (one for −v/∥v∥2 and one for v/∥v∥2), all vectors in the set U ∗SPM are
then projected onto one half of the half sphere. We denote these projected approximations as

U ∗SPM+ := {sign(u1)u | u ∈ U−L} .

At this point, a clustering method like the kmean++ algorithm is applied to U ∗SPM+ to detect
m − mL clusters, each of which corresponds to approximations of one entangled weight

167 Chapter 4. Entangled weights: Moving beyond shallow network architectures

attributed to the hidden layers of f . Each cluster center will be used as a representative
approximation of one entangled weight vector, and we denote the ensemble of cluster centers
as V̂1:L−1.

Step 2: Layer assignment. We assume now that the filtering in Step 1 was successful. Then,
the set UL contains the approximations of all entangled weights in the output layer with the
correct order up to sign and scale. Furthermore, there exists exactly one approximation in
V̂1:L−1 for each entangled weight corresponding to a hidden neuron. Each element in V̂1:L−1
now needs to be assigned to the right layer, i.e., we need to solve the problem described by

ϕ : V̂1:L−1 → [L− 1], ϕ(v) = argminℓ∈[L−1] min
kℓ∈[mℓ]

min
s∈{−1,+1}

∥∥∥v− sv[ℓ]kℓ
/∥v[ℓ]kℓ

∥2

∥∥∥
2

,

without having access to any of the true entangled weights v[ℓ]kℓ
. There have been two approaches

to detect the first layer weights within V̂1:L−1. We only briefly sketch the first approach, which
requires that the activation function saturates for large inputs (which is the case for sigmoidals)
and is used in [52]. The layer assignment in [52] considers the network along the entangled
weight directions, given by the set of functions

fv(t) := f (t · v) for v ∈ V̂1:L−1, t ∈ R.

If v is one of the first layer weights, for instance v = ±w[1]
1 /∥w[1]

1 ∥2, then the output of the first
layer evaluated at t · v reads

y[1](t · v) = g

(
± t

∥w[1]
1 2

∥ ·W [1]⊤w[1]
1 + τ[1]

)
.

As long as the columns of W [1] are sufficiently incoherent, the first component of the vector

W [1]⊤w[1]
1 will dominate the rest. For example, if the columns of W [1] were orthogonal then

t/∥w[1]
1 ∥2W [1]⊤w[1]

1 = t∥w[1]
1 ∥2e1. Clearly, under the orthogonality assumption, we can only

manipulate the function value of the first neuron if we evaluate f along w[1]
1 , such that even

for very large t, only one neuron can get saturated (i.e., approach the regime of the activation
function which is almost constant). However, if v is not one of the first layer weights, then

tW [1]⊤v will not exhibit the same sparsity because all deeper entangled weights are a linear
combination of the first layer weights. Hence, by increasing t, we can saturate more (or even
all) neurons in the first layer. As argued in [52], once a high number of neurons in the first
is saturated, it becomes hard to change the output of the network. This implies that the
magnitude of the gradient ∥∇ fv(t)∥2 decreases faster if v does not belong to the first layer
weights. This idea was used successfully in [52] for sigmoidal three-layer networks to detect
the first layer weights. Unfortunately, this idea relies heavily on the strong incoherence in the
first layer. If the weights do not closely resemble an orthogonal system, it does not provide
enough robustness to scale to deeper architectures with several outputs.
Therefore, we decide to rely on another method to detect first-layer weights. This approach has
been slightly adopted but is based on our main reference [50]. The unique quality of first-layer
entangled weights is that they are identical to the original weights and do not depend on the
input (cf. Section 4.1.2). For the recovery of all remaining entangled weights, we had to rely
on a stabilization argument which required sampling the Hessian locations close around the
point x∗. The most significant part of the subspace error bound in Theorem 4.1 scales with
the sub-Gaussian norm of the input distribution, i.e.,

√
D ∥X− x∗∥ψ2

. Additionally, we saw in

4.3. Network completion 168

the numerical experiment of Section 4.2.3 that without concentration (e.g., R = 10 in Figure
4.2), the entangled weight recovery breaks down. While we can not precisely quantify what
subspace is spanned by the Hessians if we drastically increase the variance of the Hessian
locations, it seems plausible that the subspace spanned by the symmetric tensors of the first
layer weights will still be contained in it: According to (4.20), the decomposition of any Hessian
at output kL is given by

∇2 fkL(x) =
m1

∑
k1=1

∂ fkL(x)

∂y[1]k1
(x)

g(2)1 (z[1]k1
(x))w[1]

k1
⊗ w[1]

k1
+

L

∑
ℓ=2

mℓ

∑
kℓ=1

∂ fkL(x)

∂y[ℓ]kℓ
(x)

g(2)ℓ (z[ℓ]kℓ
(x))v[ℓ]kℓ

(x)⊗2.

The left part of this expression will always be contained in the space

W1 := span
{

w[1]
1 ⊗ w[1]

1 , . . . , w[1]
m1 ⊗ w[1]

m1

}
. (4.59)

Now our goal is to construct a set of Hessians such that the subspace approximation Algorithm
returns a space Ŵ1 such that contains the first layer tensors W1 ⊂ Ŵ1 and at the same
time does not contain the remaining entangled weights, i.e., it satisfies v[ℓ]kℓ

(x∗)⊗2 ̸∈ Ŵ1 for
ℓ > 1, kℓ ∈ [mℓ]. The subspace does not need to perfectly fulfill these conditions since we
already obtained all entangled weights. It is sufficient that∥∥∥PŴ1

(w[1]
k1
⊗ w[1]

k1
)
∥∥∥

F
≫
∥∥∥PŴ1

(v[ℓ]kℓ
(x∗)⊗2)

∥∥∥
F
∀k1 ∈ [m1], ℓ > 1, kℓ ∈ [mℓ]. (4.60)

The construction of the subspace Ŵ1 depends on the distribution µX of the Hessian locations
and the number of components. For the distribution µX we now increase the variance and could
also consider a distribution with a mean different than x∗. The magnitude of the projection∥∥PŴ (·)

∥∥
F is now used as a score to detect the first layer weights. Combining this with the

fact that we already know the entangled weights of the last layer, this leaves only entangled
weights in V̂1:L−1 which belong to the inner hidden layers (ℓ = 2, . . . , L− 1). Currently, we
do not dispose of a method that distinguishes the inner entangled weights, which ultimately
limits us to networks with L = 3 layers. We provide numerical evidence in Section 4.4 that
this method yields the correct layer assignment for three-layer sigmoidal neural networks. The
overall layer assignment has been summarized in Algorithm 4.2.

4.3.2 Loss-free reparametrization

The last section presents heuristics that cluster the entangled weight approximations w.r.t. their
corresponding layers (for L ≤ 3). Notably, this assignment does not recover the original order
within one particular layer. Only for the last layer were we able to recover the order based on
the order of computation of the elements within UL. Note, however, the fact that the order of
the hidden neurons within one layer is not recoverable is inherent to the network identification
problem as it represents one of the natural symmetries (permutations of the neurons) under
which the network mapping is invariant (see discussion about natural symmetries within
Chapter 1).

The main result of this section provides a reparametrization f̃ of a deep pyramidal neu-
ral network f incorporating the information provided by the entangled weights. Our approach
is similar to the refinement step for the reconstruction of shallow neural networks (cf. Section
3.4.1). In particular, we construct a parametric function f̃ that only depends on the remaining
unknown parameters, which are the shifts of the original network, as well as the signs and
scaling of the entangled weights. This reparametrization is loss-free because there is functional

169 Chapter 4. Entangled weights: Moving beyond shallow network architectures

equivalence between f and f̃ for the correct set of signs, scales, and shifts. Based on our
previous results, we assume the setting where we have access to V [1](x∗), . . . , V [L](x∗) up to
signs, scales, and permutations of the columns. To be precise, we assume we are given access
to matrices

Ṽ [ℓ] := Ṽ [ℓ](x∗) = V [ℓ](x∗)πℓSℓ, for all ℓ ∈ [L],

where S1, . . . , SL are invertible diagonal matrices and π1, . . . , πL are permutation matrices. One
important remark we need to make concerns the special case of the last layer. For this special
case, we can infer the original order of the entangled weights by computing the gradient of the
output neurons (see, for instance, Algorithm 4.1), such that πL is simply the identity matrix.
Below, for simplicity, the dependency of the entangled weights on the input will often be
neglected, i.e., we simply write V [ℓ] instead of V [ℓ](x∗), as the entangled weights themselves
and therefore x∗ will not be manipulated and remain fixed throughout this section. We also
extend this simplification to the representation of the entangled weight matrices in terms of
the ground truth weights such that

Ṽ [ℓ] =
(

Πℓ−1
k=1W [k]Dk

)
W [ℓ]πℓSℓ ∈ Rmℓ−1×mℓ , for all ℓ ∈ [L], (4.61)

where Dk ∈ Rmk×mk are diagonal matrices and m0 = D. This representation follows by setting
Dk = diag(g(1)(z[k](x∗)). Before stating the main results of this section, let us give a few
auxiliary identities.

Lemma 4.5. Let S ∈ RD×D be any diagonal matrix and π ∈ RD×D a permutation matrix.

(i) The inverse of π is given by its transpose π⊤.

(ii) Denote by diag(S) the vector storing the diagonal elements of S, then

π⊤Sπ = diag(π⊤ diag(S)), (4.62)

in particular, π⊤Sπ is also diagonal, and its diagonal elements are given by π⊤ diag(S).

Proof. The first point follows from the fact that permutation matrices are, by definition, orthog-
onal. For statement (ii), note that π⊤Sπ must be a diagonal matrix. This follows from the fact
that for S = Id we have π⊤Sπ = π⊤π = Id. Since changing the values of S does not affect how
elements are permuted, the matrix π⊤Sπ must also be diagonal for any arbitrary diagonal
matrix S. Now consider the k-th standard vector ek, then

π⊤Sπek = π⊤Seπ(k) = Sπ(k),π(k) · π⊤eπ(k) = Sπ(k),π(k)ek.

Let us formally introduce a class of parametric functions, which represents neural networks
that are attained by scaling the columns and rows of weight matrices.

Definition 4.4 (Deep neural network reparametrization using fixed weights). Assume we are
given access to matrices W̃ [1], . . . , W̃ [L] where W̃ [ℓ] ∈ Rmℓ−1×mℓ and activation functions (gℓ)ℓ∈[L]. We
define the neural network reparametrization w.r.t. these matrices as the parametric function

f̃ (·, (L̃ℓ, R̃ℓ, Ñℓ, τ̃ℓ)ℓ∈[L]) : Rm0 → RmL ,

which for given L quadruplets (L̃ℓ, R̃ℓ, Ñℓ, τ̃ℓ)ℓ∈[L] consisting of diagonal matrices

L̃ℓ ∈ Rmℓ−1×mℓ−1 , R̃ℓ, Ñℓ ∈ Rmℓ×mℓ

4.3. Network completion 170

and shift vectors τ̃ℓ ∈ Rmℓ , produces its output according to the iteration

ỹ[0](x) := x

ỹ[ℓ](x) := Ñℓ gℓ
(
(L̃ℓW̃ [ℓ]R̃ℓ)

⊤ỹ[ℓ−1](x) + τ̃ℓ

)
, for ℓ = 1, . . . , L,

f̃ (x) := ỹ[L](x).

The first observation is that this reparametrization covers all classical feed-forward neural
networks with weights given by (L̃ℓW̃ [ℓ]R̃ℓ)ℓ∈[L]. This follows by simply setting all the outer
diagonal matrices Ñℓ to the identity matrix in the corresponding dimension. Notably, this
reparametrization model covers all classical feed-forward neural networks that can be obtained
by rescaling the columns and rows fixed set of weights. The reason why we include the outer
diagonal matrices Ñℓ in this definition is merely technical since these matrices will be used
during optimization. Note, however, even if (Ñℓ)ℓ∈[L] were not equal to the identity, then, due
to

ỹ[ℓ](x) = Ñℓ gℓ
(
(L̃ℓW̃ [ℓ]R̃ℓ)

⊤ỹ[ℓ−1](x) + τ̃ℓ

)
= Ñℓ gℓ

(
(Ñℓ−1 L̃ℓW̃ [ℓ]R̃ℓ)

⊤gℓ−1

(
(L̃ℓ−1W̃ [ℓ−1]R̃ℓ−1)

⊤ỹ[ℓ−2](x) + τ̃ℓ−1

)
+ τ̃ℓ

)
,

we could simply absorb Ñℓ−1 into the parameter L̃ℓ for all ℓ ∈ 2, . . . , L. This excludes only the
rescaling of the outputs with ÑL. Hence, for any parameter combination (L̃ℓ, R̃ℓ, Ñℓ, τ̃ℓ)ℓ∈[L]
the reparametrization above is identical to feed-forward neural networks and by including the
matrices (Ñℓ)ℓ∈[L] only extends this by a rescaling of the output neurons. The exact role of the
matrices (Ñℓ)ℓ∈[L] will be more clear once we provide further context. The primary behind this
reparametrization is stated in the following result.

Proposition 4.3 (Loss-free reparametrization of a network (cf. [50, Proposition 3])). Consider
a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) with weight matrices W [1], . . . , W [L], and shifts
τ1, . . . , τL. Assume access to Ṽ [1], . . . , Ṽ [L] as in (4.61). Furthermore, assume rank(Ṽ [ℓ]) = mℓ for all
ℓ ∈ [L− 1]. Consider the neural network reparametrization f̃ as in Definition 4.4 w.r.t. the weights
given by

W̃ [1] = Ṽ [1], W̃ [ℓ+1] = (Ṽ [ℓ])†Ṽ [ℓ+1], (4.63)

and activations (gℓ)ℓ∈[L]. Then, the following two sets of parameters (L̃ℓ, R̃ℓ, Ñℓ, τ̃ℓ)ℓ∈[L] are well-defined
and imply functional equivalence f̃ (·, (L̃ℓ, R̃ℓ, Ñℓ, τ̃ℓ)ℓ∈[L]) ≡ π⊤L f between the network reparametriza-
tion f̃ and the original network with permuted output π⊤L f :

(Opt1) L̃1 = Idm0 , Ñℓ = Idmℓ
, L̃ℓ+1 = πT

ℓ D−1
ℓ πℓSℓ, R̃ℓ = S−1

ℓ , τ̃ℓ = π⊤ℓ τℓ

(Opt2) L̃1 = Idm0 , ÑL = IdmL , L̃ℓ+1 = πT
ℓ D−1

ℓ πℓ, R̃ℓ = S−1
ℓ , Ñℓ = R̃−1

ℓ = Sℓ, τ̃ℓ = π⊤ℓ τℓ

Since the permutation π⊤L is generally known for the above reasons, one can assume πL = IdmL .

Proof of Proposition 4.3. We show the functional equivalence of f̃ (·, (L̃ℓ, R̃ℓ, Ñℓ, τ̃ℓ)ℓ∈[L]) as de-
fined in Definition 4.4 for the given sets of parameters via an induction over the post activations
of f and f̃ . We start with the first set of parameters in (Opt1) and show that ỹ[ℓ](x) = π⊤ℓ y[ℓ](x)
for all ℓ ∈ [L]. Since Ñℓ = Idmℓ

for all ℓ ∈ [L], we can neglect the parameters (Ñℓ)ℓ∈[L]. For
ℓ = 1, we have W̃ [1] = W [1]π1S1 and therefore

ỹ[1](x) = g1

(
(L̃1W̃ [1]R̃1)

⊤x + τ̃1

)
= g1

(
(W [1]π1S1S−1

1)⊤x + π⊤1 τ1

)
= π⊤1 g1

(
W [1]⊤x + τ1

)
= π⊤1 y[1](x).

171 Chapter 4. Entangled weights: Moving beyond shallow network architectures

Assume now that ỹ[ℓ](x) = π⊤ℓ y[ℓ](x) is true up to some ℓ < L. Then

ỹ[ℓ+1](x) = gℓ+1

(
(L̃ℓ+1W̃ [ℓ+1]R̃ℓ+1)

⊤ỹ[ℓ](x) + τ̃ℓ+1

)
= gℓ+1

(
(πT

ℓ D−1
ℓ πℓSℓ(Ṽ [ℓ])†Ṽ [ℓ+1]S−1

ℓ+1)
⊤π⊤ℓ y[ℓ](x) + π⊤ℓ+1τℓ+1

)
.

Note that, by (4.61), we have (Ṽ [ℓ])†Ṽ [ℓ+1] = S−1
ℓ πT

ℓ DℓW [ℓ+1]πℓ+1Sℓ+1. Plugging this into the
expression above yields

ỹ[ℓ+1](x) = gℓ+1

(
(πT

ℓ D−1
ℓ πℓSℓS−1

ℓ πT
ℓ DℓW [ℓ+1]πℓ+1Sℓ+1S−1

ℓ+1)
⊤π⊤ℓ y[ℓ](x) + π⊤ℓ+1τℓ+1

)
= gℓ+1

(
(πT

ℓ W [ℓ+1]πℓ+1)
⊤π⊤ℓ y[ℓ](x) + π⊤ℓ+1τℓ+1

)
= gℓ+1

(
π⊤ℓ+1W [ℓ+1]⊤y[ℓ](x) + π⊤ℓ+1τℓ+1

)
= π⊤ℓ+1y[ℓ+1](x),

and therefore f̃ (x) = ỹ[L](x) = π⊤L y[L](x) = π⊤L f (x). This shows the equivalence for the
parameter set in (Opt1). The second case follows by reusing the same argumentation. Assume
the set of parameters given in (Opt2). We show by induction that ỹ[ℓ](x) = Ñℓπ

⊤
ℓ y[ℓ](x) for all

ℓ ∈ [L]. Again, for ℓ = 1 we have W̃ [1] = W [1]π1S1 and therefore

ỹ[1](x) = Ñ1g1

(
(L̃1W̃ [1]R̃1)

⊤x + τ̃1

)
= Ñ1g1

(
(W [1]π1S1S−1)⊤x + π⊤1 τ1

)
= Ñ1π⊤1 g1

(
W [1]⊤x + τ1

)
= Ñ1π⊤1 y[1](x).

Assuming the statement is true up to some ℓ < L, we now receive

ỹ[ℓ+1](x) = Ñℓ+1gℓ+1

(
(L̃ℓ+1W̃ [ℓ+1]R̃ℓ+1)

⊤Ñℓπ
⊤
ℓ y[ℓ](x) + τ̃ℓ+1

)
= Ñℓ+1gℓ+1

(
(L̃ℓ+1W̃ [ℓ+1]R̃ℓ+1)

⊤Sℓπ
⊤
ℓ y[ℓ](x) + τ̃ℓ+1

)
= Ñℓ+1πℓ+1y[ℓ+1](x).

The last step follows from the previous induction for the parameters in (Opt1) since now

(L̃ℓ+1W̃ [ℓ+1]R̃ℓ+1)
⊤Sℓ = R̃⊤ℓ+1(W̃

[ℓ+1])⊤πT
ℓ D−1

ℓ πℓSℓ = R̃⊤ℓ+1(W̃
[ℓ+1])⊤Sℓπ

T
ℓ D−1

ℓ πℓ,

where the last step used that πT
ℓ D−1

ℓ πℓ is diagonal and therefore commutes with Sℓ (cf. Lemma
4.5). Since Sℓπ

T
ℓ D−1

ℓ πℓ is identical to L̃⊤ℓ+1 from (Opt1), the statement in the induction step
is justified. Since we assumed ÑL = IdmL , this equates to f̃ (x) = ỹ[L](x) = ÑLπ⊤L y[L](x) =
π⊤L f (x).

4.3.3 Learning the parameters of the reparametrized network

Let us now return to our original objective and how the reparametrization is used in the overall
reconstruction procedure. Provided access to entangled weights matrices of the type (4.61)
with full column rank, we consider the network reparametrization f̃ as defined in Definition
4.4 with weights

W̃ [1] = Ṽ [1], W̃ [ℓ+1] = (Ṽ [ℓ])†Ṽ [ℓ+1].

One approach to finding the right set of parameters for f̃ is to fit the reparametrization to
samples of the target network f . Assume we are given N training pairs (xi, f (xi))i∈[N], then

4.3. Network completion 172

Proposition 4.3 shows that there exist parameter combinations such that f̃ is identical to f on
these data points. Hence, the least squares problem

argmin(L̃ℓ,R̃ℓ,Ñℓ,τ̃ℓ)ℓ∈[L]

N

∑
i=1

(
f (xi)− f̃ (xi, (L̃ℓ, R̃ℓ, Ñℓ, τ̃ℓ)ℓ∈[L])

)2
(4.64)

can be realized with global minimum 0 for the parameter combination given in Proposition 4.3.
Furthermore, as became clear in Proposition 4.3, optimizing over the parameters (Ñℓ)ℓ∈[L] is
not necessary because we can consider one of the slightly simplified versions given either by

argmin(L̃ℓ,R̃ℓ,τ̃ℓ)ℓ∈[L]

N

∑
i=1

(
f (xi)− f̃ (xi, (L̃ℓ, R̃ℓ, Idmℓ

, τ̃ℓ)ℓ∈[L])
)2

, (4.65)

which corresponds to the ideal solution (Opt1), or in line with the parameter combination
described in (Opt2) by

argmin(L̃ℓ,R̃ℓ,τ̃ℓ)ℓ∈[L]

N

∑
i=1

(
f (xi)− f̃ (xi, (L̃ℓ, R̃ℓ, hℓ(R̃ℓ), τ̃ℓ)ℓ∈[L])

)2
, (4.66)

with hℓ(R̃ℓ) = R̃−1
ℓ for ℓ < L and hL(R̃ℓ) = IdmL . Similar to the approach in Chapter 3 (cf.

Section 3.4.1), this closely resembles the teacher-student scenario, where f being regarded as
the teacher network and f̃ corresponds to the student network. In both minimization programs
above, the student has considerably fewer degrees of freedom than we had parameters in the
network f . The parameters that have to be tuned in either (4.65) or (4.66) are the diagonal
matrices and shifts (L̃ℓ, R̃ℓ, τ̃ℓ)ℓ∈[L], such that the overall degrees of freedom are at most O(m),
where m = m1 + · · ·+ mL. This follows from

L

∑
ℓ=1

dim(diag(L̃ℓ) + dim(diag(R̃ℓ)) + dim(τ̃ℓ) =
L

∑
ℓ=1

mℓ−1 + mℓ + mℓ = 3m−mL + D,

where we used m0 = D. This has to be put in contrast to the number of parameters in the
original network f , which is given by

L

∑
ℓ=1

dim(W [ℓ]) + dim(τℓ) =
L

∑
ℓ=1

mℓ−1 ·mℓ + mℓ.

Fitting the reparametrization by empirical risk minimization. Let us now discuss some
practical aspects of an optimization strategy based on gradient ascent. Assume again that we are
given NGD random network evaluations (xi, f (xi))i∈[NGD] where x1, . . . , xNGD ∼i.i.d. N (0, IdD).
We construct f̃ as the reparametrization of this network w.r.t. the entangled weights up to
permutation and scales, i.e., we have

W̃ [1] = Ṽ [1], W̃ [ℓ+1] = (Ṽ [ℓ])†Ṽ [ℓ+1].

We assume the rank assumption on the entangled weights is met (see the discussion above).
Since the right set of parameters (e.g., the parameters in (Opt2) of Proposition 4.3) for f̃ is
not known, we initialize f̃ with initial parameters (L̃[0]

ℓ , R̃[0]
ℓ , hℓ(R̃[0]

ℓ), τ̃
[0]
ℓ)ℓ∈[L], where hℓ(R̃[0]

ℓ) =(
R̃[0]
ℓ

)−1
for ℓ < L and hL(R̃[0]

ℓ) = IdmL . We consider the objective inherent to (4.66), which is

L((L̃ℓ, R̃ℓ, τ̃ℓ)ℓ∈[L]) :=
N

∑
i=1

(
f (xi)− f̃ (xi, (L̃ℓ, R̃ℓ, hℓ(R̃ℓ), τ̃ℓ)ℓ∈[L])

)2
. (4.67)

173 Chapter 4. Entangled weights: Moving beyond shallow network architectures

A classical gradient descent method ran with a step-size γ > 0 then produces an iteration
((L̃[j]

ℓ , R̃[j]
ℓ , τ̃

[j]
ℓ)ℓ∈[L])j∈N described by

L̃[j+1]
ℓ = L̃[j]

ℓ − γ diag
(
∇

diag L̃[j]
ℓ

L
(
(L̃[j]

ℓ , R̃[j]
ℓ , τ̃

[j]
ℓ)ℓ∈[L]

))
,

R̃[j+1]
ℓ = R̃[j]

ℓ − γ diag
(
∇

diag R̃[j]
ℓ

L
(
(L̃[j]

ℓ , R̃[j]
ℓ , τ̃

[j]
ℓ)ℓ∈[L]

))
,

τ̃
[j+1]
ℓ = τ̃

[j]
ℓ − γ∇

τ̃
[j]
ℓ

L
(
(L̃[j]

ℓ , R̃[j]
ℓ , τ̃

[j]
ℓ)ℓ∈[L]

)
,

for all ℓ ∈ [L]. Notably, we only need to run gradient descent over the diagonal elements
of the involved matrices. Therefore, in the iteration above, we consider only the gradients
corresponding to the diagonal and then map the gradient updates back to the matrix form.
This way, it is guaranteed that all matrices remain diagonal. Proposition 4.3 shows that the
objective (4.67) has a global minimum for shifts τ̃ℓ = π⊤ℓ τℓ and diagonal matrices

L̃1 = Idm0 , R̃L = S−1
L , L̃ℓ = πT

ℓ D−1
ℓ−1πℓ, R̃ℓ−1 = S−1

ℓ−1 for ℓ = 2, . . . , L (4.68)

where Dℓ, Sℓ are non-zero diagonal matrices, and πℓ are unknown permutations, all of which
originate from the unknown parameters in the entangled weight matrices described in (4.61) as

Ṽ [ℓ] =
(

Πℓ−1
k=1W [k]Dk

)
W [ℓ]πℓSℓ ∈ Rm0×mℓ , for all ℓ ∈ [L].

To reach this global minimum, we rely on gradient descent started from (L̃[0]
ℓ , R̃[0]

ℓ , τ̃
[0]
ℓ)ℓ∈[L].

Without any prior information or initialization strategy, we will generally initialize these
parameters by identity matrices and zero vectors in case of shifts, i.e., we set

(L̃[0]
ℓ , R̃[0]

ℓ , τ̃
[0]
ℓ)ℓ∈[L] = (Idmℓ−1 , Idmℓ

, 0mℓ
)ℓ∈[L]. (4.69)

Now, can gradient descent or any of its variants reach the global minima started from these
initial values when granted sufficiently many training points? Empirically, we observe that
minimizing (4.67) via gradient descent yields good results for sigmoidal neural networks,
approximated entangled weights, and a moderate number of training samples (cf. Section
4.4). Admittedly, we do not offer any theoretical convergence analysis of the gradient descent
iteration defined above. The significant reduction of the degrees of freedom should, in principle,
lead to an improved algorithmic complexity when compared to learning the full network via
empirical risk minimization. A theoretical analysis of the optimization landscape suffers from
similar problems present when learning ordinary deep neural networks in a teacher-student
setting. In Chapter 3, we provide a rigorous local convergence analysis for a similar type of
problem for shallow neural networks. Clearly, an extension of the results in Section 3.4 to
the present case is non-trivial. One crucial aspect in Section 3.4 was the initialization of the
gradient descent iteration. Proposition 4.3 guarantees the existence of global minima, however,
the initialization in (4.69) will generally not lie in the vicinity of these global optima. This raises
the question of why the naive initialization in (4.69) still yields a consistent recovery of the
original network. In the following, we will give one potential explanation for this phenomenon.

Inherent symmetries of sigmoidals lead to multiple global minima. Let us now discuss
one crucial point related to the distance of the initialization (4.69) from the global minima
(Opt2) in Proposition 4.3. The first quantity in (Opt2) we need to discuss concerns the non-zero
diagonal matrices (Sℓ)ℓ∈[L], which model the unknown sign and scale information. We can
assume that the diagonal elements of the matrices are equally distributed over the positive

4.3. Network completion 174

and negative parts of the real numbers due to the equal probability of guessing the sign
wrong as a consequence of the SPM (Algorithm 2.2). This implies, that there will be indices
ℓ ∈ [L], k ∈ [mℓ] such that Sk,ℓ < 0. For the sake of simplicity, assume that S1,1 = −1, which
also implies that S−1

1,1 = −1. On the other hand, we initialized the corresponding diagonal

matrix by the identity, such that R̃[0]
1,1 = 1. Hence, to reach the optimal solution (4.68), the

gradient descent scheme described above needs to produce an iteration R̃[j]
1,1 → S−1

1,1 = −1.
Regardless of the trajectory, if we want to reach this point and assume a realistically small
step size γ, there needs to be a number j′ of gradient steps such that R̃[j′]

1,1 ≈ 0. Notably, this

implies that h1(R̃[j′]
1,1) = (R̃[j′]

1,1)
−1 is large. This behavior can have negative consequences on the

reparametrization since its pre-activations at this iteration read as

ỹ[ℓ](x) = Ñ[j′]
ℓ gℓ

(
(L̃[j′]

ℓ W̃ [ℓ]R̃[j′]
ℓ)⊤ỹ[ℓ−1](x) + τ̃

[j′]
ℓ

)
= hℓ(R̃[j′]

ℓ) gℓ
(
(L̃[j′]

ℓ W̃ [ℓ]R̃[j′]
ℓ)⊤ỹ[ℓ−1](x) + τ̃

[j′]
ℓ

)
= (R̃[j′]

ℓ)−1 gℓ
(
(L̃[j′]

ℓ W̃ [ℓ]R̃[j′]
ℓ)⊤ỹ[ℓ−1](x) + τ̃

[j′]
ℓ

)
for all ℓ = 1, . . . , L− 1. Therefore, the components of the inner pre-activations get amplified by
the factor (R̃[j′]

1,1)
−1, which would likely increase the mismatch between f and the reparametriza-

tion f̃ . Fully addressing this dynamic goes beyond the scope of this discussion, but a point can
be made that the adjustments of the signs might act as a barrier for gradient descent because it
needs to pass through a domain where the least squares error L in (4.67) is most likely large.
Hence, a natural question is why we do not experience this problem during our empirical
study on deep sigmoidal neural networks. The answer to this question is that the inherent
symmetries of classical sigmoidal functions (e.g., tanh) give rise to multiple global minima,
which we will prove in the following. First, note that according to Proposition 4.3, one global
minimum of the minimization program (4.66) is given by the set of parameters in (Opt2). More
precisely, by the set of shifts τ̃ℓ = π⊤ℓ τℓ and diagonal matrices

L̃1 = Idm0 , R̃L = S−1
L , L̃ℓ = πT

ℓ D−1
ℓ−1πℓ, R̃ℓ−1 = S−1

ℓ−1 for ℓ = 2, . . . , L

where Dℓ, Sℓ are non-zero diagonal matrices and πℓ are unknown permutations, all of which
originate from the unknown parameters in the entangled weight matrices described in (4.61) as

Ṽ [ℓ] =
(

Πℓ−1
k=1W [k]Dk

)
W [ℓ]πℓSℓ ∈ Rm0×mℓ , for all ℓ ∈ [L].

Let us assume that the underlying network uses tanh activations at all hidden neurons and has
either linear output neurons or gL = tanh. At the beginning of this work, namely Section 1.2, it
was already mentioned that tanh is antisymmetric; thereby, the network remains functionally
invariant under certain sign-flip operations of the parameters. The example given above for a
shallow neural network was

m

∑
k=1

tanh(wkx + τk) =
m

∑
k=1
− tanh(−wkx− τk).

This symmetry gives rise to multiple global minima for the objective in (4.67) and allows us
to extend the result of Proposition 4.3 in the sense that it can be shown that we can morally
neglect the signs of the diagonal matrices (R̃ℓ)ℓ∈L in the optimal solution (Opt2) except for
the signs corresponding to the last layer. Before we state the result, let us note that any linear
function can be composed of an antisymmetric function and a constant shift. Hence, the theory
below does cover networks with linear outputs. Additionally, we introduce the following
notation. For any matrix M with entries given by mij, we denote by sign(M) the matrix with
entries given by sign(mij), and by |M| the matrix with entries given by

∣∣mij
∣∣.

175 Chapter 4. Entangled weights: Moving beyond shallow network architectures

Proposition 4.4. Consider a neural network f ∈ NN (D, (mℓ)ℓ∈[L], (gℓ)ℓ∈[L]) with weight ma-
trices W [1], . . . , W [L], shifts τ1, . . . , τL and antisymmetric activations (gℓ)ℓ∈[L]. Assume access to
Ṽ [1], . . . , Ṽ [L] as in (4.61). Furthermore, assume rank(Ṽ [ℓ]) = mℓ for all ℓ ∈ [L− 1]. Consider the
neural network reparametrization f̃ as in Definition 4.4 w.r.t. the weights given by

W̃ [1] = Ṽ [1], W̃ [ℓ+1] = (Ṽ [ℓ])†Ṽ [ℓ+1], (4.70)

and parameters (L̃ℓ, R̃ℓ, hℓ(R̃ℓ), τ̃ℓ)ℓ∈[L]) where hℓ(R̃ℓ) = R̃−1
ℓ for ℓ < L and hL(R̃ℓ) = IdmL . If

L̃1 = Idm0 , L̃ℓ+1 = πT
ℓ D−1

ℓ πℓ, τ̃ℓ = sign(R̃ℓS−1
ℓ)π⊤ℓ τℓ and diagonal matrices (R̃ℓ)ℓ∈[L] are such that∣∣R̃ℓ

∣∣ = ∣∣∣S−1
ℓ

∣∣∣ , (4.71)

then the reparametrization is functionally equivalent to the permuted network up to a sign-flip of the
output f̃ ≡ sign(R̃LSL)π

⊤
L f . Note: Since the permutation π⊤L is generally known for the above reasons,

one can generally assume πL = IdmL w.o.l.g.

Proof. Since R̃ℓ, Sℓ are non-zero diagonal matrices for all ℓ ∈ [L], we have∣∣R̃ℓ

∣∣ = ∣∣∣S−1
ℓ

∣∣∣⇔ sign(R̃ℓ)R̃ℓ = sign(S−1
ℓ)S−1

ℓ ⇔ R̃ℓ = sign(R̃ℓS−1
ℓ)S−1

ℓ , (4.72)

and also sign(R̃ℓS−1
ℓ)R̃−1

ℓ = Sℓ. Recall that the pre-activations of the reparametrization given
by

ỹ[ℓ](x) = hℓ(R̃ℓ) gℓ
(
(L̃ℓW̃ [ℓ]R̃ℓ)

⊤ỹ[ℓ−1](x) + τ̃ℓ

)
for all ℓ ∈ [L] where ỹ[0](x) = x. As before, we prove by induction that

ỹ[ℓ](x) = hℓ(R̃ℓ) sign(R̃ℓS−1
ℓ)π⊤ℓ y[ℓ](x). (4.73)

Assume ℓ = 1: We have W̃ [1] = W [1]π1S1 and therefore

ỹ[1](x) = h1(R̃1) g1

(
(L̃1W̃ [1]R̃1)

⊤x + τ̃1

)
= h1(R̃1) g1

(
(W [1]π1S1S−1

1 sign(R̃1S−1
1))⊤x + τ̃1

)
= h1(R̃1) sign(R̃1S−1

1)π⊤1 g1

(
(W [1])⊤x + τ1

)
= h1(R̃1) sign(R̃1S−1

1)π⊤1 y[1](x).

Assume now (4.73) holds up to some ℓ ≤ L − 1. Since hℓ(R̃ℓ) = R̃−1
ℓ for all ℓ < L, this is

equivalent to

ỹ[ℓ](x) = R̃−1
ℓ sign(R̃ℓS−1

ℓ)π⊤ℓ y[ℓ](x) = Sℓπ
⊤
ℓ y[ℓ](x), (4.74)

which follows directly from (4.72) together with the fact that the sign matrices of diagonal
matrices are invariant under inversion. Note that, by (4.61), we have

W̃ [ℓ+1] = (Ṽ [ℓ])†Ṽ [ℓ+1] = S−1
ℓ πT

ℓ DℓW [ℓ+1]πℓ+1Sℓ+1.

The induction steps follows from

ỹ[ℓ+1](x) = hℓ+1(R̃ℓ+1) gℓ+1

(
(L̃ℓ+1W̃ [ℓ+1]R̃ℓ+1)

⊤ỹ[ℓ](x) + τ̃ℓ+1

)
= hℓ+1(R̃ℓ+1) gℓ+1

(
(L̃ℓ+1W̃ [ℓ+1]R̃ℓ+1)

⊤Sℓπ
⊤
ℓ y[ℓ](x) + τ̃ℓ+1

)
= hℓ+1(R̃ℓ+1) gℓ+1

(
(L̃ℓ+1S−1

ℓ πT
ℓ DℓW [ℓ+1]πℓ+1Sℓ+1R̃ℓ+1)

⊤Sℓπ
⊤
ℓ y[ℓ](x) + τ̃ℓ+1

)
= hℓ+1(R̃ℓ+1) gℓ+1

(
(L̃ℓ+1S−1

ℓ πT
ℓ DℓW [ℓ+1]πℓ+1 sign(Sℓ+1R̃ℓ+1))

⊤Sℓπ
⊤
ℓ y[ℓ](x) + τ̃ℓ+1

)
= sign(Sℓ+1R̃ℓ+1)hℓ+1(R̃ℓ+1) gℓ+1

(
(L̃ℓ+1S−1

ℓ πT
ℓ DℓW [ℓ+1]πℓ+1)

⊤Sℓπ
⊤
ℓ y[ℓ](x) + π⊤ℓ+1τℓ+1

)
.

4.4. Experiments: Reconstruction of deep neural networks 176

The inner term can be simplified with

(L̃ℓ+1S−1
ℓ π⊤ℓ DℓW [ℓ+1]πℓ+1)

⊤Sℓ = (L̃ℓ+1SℓS−1
ℓ π⊤ℓ DℓW [ℓ+1]πℓ+1)

⊤

= (π⊤ℓ D−1
ℓ πℓπ

⊤
ℓ DℓW [ℓ+1]πℓ+1)

⊤ = (π⊤ℓ W [ℓ+1]πℓ+1)
⊤.

Therefore, we get

ỹ[ℓ+1](x) = sign(Sℓ+1R̃ℓ+1)hℓ+1(R̃ℓ+1)gℓ+1

(
(π⊤ℓ W [ℓ+1]πℓ+1)

⊤π⊤ℓ y[ℓ](x) + π⊤ℓ+1τℓ+1

)
= sign(Sℓ+1R̃ℓ+1)hℓ+1(R̃ℓ+1)π

⊤
ℓ+1gℓ+1

(
(W [ℓ+1])⊤y[ℓ](x) + τℓ+1

)
= sign(R̃ℓ+1S−1

ℓ+1)π
⊤
ℓ+1y[ℓ+1](x).

This concludes the induction and therefore implies

f̃ (x) = ỹ[ℓ+1](x) = sign(R̃ℓ+1S−1
ℓ+1)π

⊤
ℓ+1 f (x)

for any input x ∈ RD.

Remark 4.4. Note that a similar statement can be proven for other common activation functions of
sigmoidal type, even if they are not entirely antisymmetric. Take for instance the sigmoid (or logistic)
function sigmoid(x) = 1

1+e−x . Then sigmoid(x) fulfills the identity

sigmoid(x) =
1

1 + e−x =
ex

1 + ex = 1− sigmoid(−x), (4.75)

and therefore sigmoid(·)− 0.5 is antisymmetric. The constant offset can always be absorbed in the shift
parameters.

4.4 Experiments: Reconstruction of deep neural networks

In this final numerical section, we apply our complete reconstruction pipeline to sigmoidal
neural networks of different architectures. We provide an analysis of each individual algo-
rithmic step. Additionally, we compare the performance to our empirical analysis of the
teacher-student problem, where the reconstruction problem is tackled by ordinary SGD (cf.
Section 1.3.2).

Experimental setup. The pipeline first recovers approximations to the entangled weights via
Algorithm 4.1. Notably, we slightly deviate from Algorithm 4.1 and run several independent
repetitions of SPM simultaneously for a fixed number of steps (see the related discussion at the
beginning of Section 4.3.1). In the second step, the entangled weight matrices are built by the
post-processing and layer assignment in Algorithm 4.2. As the last step, a reparametrization f̃
as in Definition 4.4 is then built from these entangled matrices and initialized as in (4.69). The
reparametrization f̃ is then fit onto the original network using stochastic gradient descent with
step size γ > 0 as described in Section 4.3.3. Every metric reported below is averaged over
ten independent runs for the given parameter combination. We benchmark our algorithmic
pipeline on three different network architectures with ambient dimension D = 50: two three-
layer networks with neurons given by [50, 25, 10], [50, 25, 50], and one four-layer network with
architecture [50, 35, 25, 10]. For the four-layer networks, we need to rely on an oracle assignment
of the entangled weights to their corresponding layers, as this step has not been extended to
L > 3 yet. This setup demonstrates that the procedure works for deeper (L > 3) architectures
provided the correct layer assignment. All networks use tanh-activations at all hidden neurons,

177 Chapter 4. Entangled weights: Moving beyond shallow network architectures

and we consider two types of output activations given by gL = tanh and gL = Id. Sigmoidal
output neurons are common for networks used in classification problems, whereas linear
output neurons correspond to regression problems, making the distinction between the two
output activations interesting. Every weight will be drawn uniformly from the unit sphere, i.e.,
w[ℓ]

kℓ
∼ Unif(Smℓ−1−1) for all kℓ ∈ [mℓ], ℓ ∈ [L], and all neurons will be equipped with a small

shift τ
[ℓ]
kℓ
∼ N (0, 0.05). Additionally, for every problem instance, the pipeline is run once with

exact derivatives (gradients and Hessians) and once with numerical approximations. Whenever
numerical gradients or numerical Hessians are used (this affects Algorithm 4.1 and Algorithm
4.2), we rely on a simple schema given by central finite differences (which adheres to the general
assumptions that were made in (G5.3)). More precisely, for any vector-valued input x ∈ RD

and output index kL ∈ [mL], the approximations ∆ fkL(x) ≈ ∇ fkL(x), ∆2 fkL(x) ≈ ∇2 fkL(x) are
computed component-wise via

∆ fkL(x)i =
fkL(x + ϵei)− fkL(x + ϵe−i)

2ϵ
(4.76)

∆2 fkL(x)ij =
fkL(x + ϵei,j)− fkL(x + ϵe−i,j)− fkL(x + ϵei,−j) + fkL(x− ϵe−i,−j)

4ϵ2 (4.77)

for all i, j ∈ [D], respectively. Here, ϵ is the step-size parameter that is set to 0.005, ei denotes
i-th the canonical basis vector and ei,j = ei + ej, e−i,j = −ei + ej, ei,−j = ei − ej, e−i,−j = −ei − ej.
For the reader’s convenience, we summarized all hyperparameters and the network model
in Table 4.1. We will only address our choice for the hyperparameters shortly. For a detailed
discussion of these parameters, we refer to the respective sections where the Algorithm was
introduced.

Discussion of relevant hyperparameters. For the entangled weight recovery, we choose
the mean-zero distribution µX = 1

10
√

D
· N (0, Id), such that every input vector is a standard

Gaussian scaled by the factor 1
10
√

D
. Our previous results in Section 4.2.3 motivate this scaling,

where the subspace was best recovered for inputs drawn uniformly from the sphere with radius
0.1. Hence, while µX is chosen as a normal distribution, its sub-Gaussian norm is equivalent
to before (0.1). We sample 4m Hessian locations from this distribution, such that the overall
number of network queries needed to approximate the space, when numerical Hessians are
used, is 4m · 2D(D + 1) = O(mD2). Note that 2D(D + 1) is the number of samples necessary
to compute one Hessian matrix via (4.77). Then, we repeat SPM for NSPM = 5m log m random
initializations performing NPGA = 104 projected gradient ascent steps each time (i.e., steps of
SPM). This is a slight deviation from Algorithm 4.1. We refer to the related discussion at the
beginning of Section 4.3.1 for our motivation behind this decision. For the second step, the
reconstruction of the entangled weight matrices performed by Algorithm 4.2, we choose large
inputs to detect the first layer. The inputs are drawn independently from µX = Unif(103 · SD−1).
Again, we rely on 4m Hessians to compute the space spanned by the outer-product of the first
layer entangled weights. Lastly, using empirical risk minimization, we fit the reparametrization
described in Section 4.3.2 onto the target network. Here, we construct the reparametrization f̃
of f using the approximating entangled weight matrices. We minimize the objective (4.67) via
SGD with a learning rate of γ = 0.005 and batch size 64. We provide SGD with NSGD = mD2

training samples in the form of input-output pairs of the network we seek to reconstruct and
stop the training after 20 minutes. All experiments are repeated 10 times for each combination
of the network architecture, method of differentiation (exact or by a numerical approximation),
and output activation gL. During each execution of our pipeline, we record the outputs of the
involved algorithms and will evaluate their performance separately.

4.4. Experiments: Reconstruction of deep neural networks 178

Network Model Entangled weight recovery (see Alg. 4.1)

Architectures: [50, 25, 10], [50, 25, 50], [50, 35, 25, 10] µX : distribution for Hessians N (0, 1
102D Id)

W [ℓ] : random weights w[ℓ]
kℓ
∼ Unif(Smℓ−1−1) Nh: nr. of sampled Hessians (max. 4m)

τ[ℓ] : Gaussian shifts τℓ
kℓ ∼ N (0, 0.05) NSPM : restarts of SPM (≤ 5m log m)

gℓ: hidden layer activation gℓ = tanh for ℓ < L NPGA : number of projected GA steps (104)
gL : output activation gL ∈ {Id, tanh} ϵ : step-size for finite differences (0.005)

Constructing ent. weight matrices (see Alg. 4.2) Network completion (see Section 4.3.2)

Nh: Hessians used to detect 1st layer (max. 4m) γ: learning rate of SGD (0.05)
R : radius used to detect 1st layer (103) batch size (64)
ϵ : step-size for finite differences (0.005) NSGD : number of training points (D2m)

training time (20 minutes)

Table 4.1: Summary of all hyperparameters for the numerical experiments. A
single value in (·)-brackets is the default hyperparameter used in all experiments.
Otherwise, we list ranges that are tested in experiments.

Step 1: Analysis of Algorithm 4.1 To evaluate the output of Algorithm 4.1, we will rely
on slightly different metrics than before (cf. Section 4.2.3): The accuracy of the subspace
approximation is measured by the Frobenius distance between the orthogonal projections of
the vectorized subspaces denoted by ∆Ŵ := ∥PW −PŴ∥F, which serves as an upper bound to
the error estimated in Theorem 4.1. For a given output U = USPM ∪ UL of Algorithm 4.1, we
track three metrics: First, the worst-case L2-error (up to sign) of the approximations within U
to any (normalized) entangled weight corresponding to the ℓ-th layer defined by

Eℓ(U) = max
kℓ∈[mℓ]

min
s∈{−1,+1},u∈U

∥u− sv[ℓ]kℓ
/∥v[ℓ]kℓ

∥2∥2. (4.78)

At this stage, we exclusively focus on the error of the vectors that were computed directly via
SPM (Eℓ(USPM))and exclude the set UL that contains the entangled weights of the last layer
which were computed via gradients. Hence, Eℓ(USPM) provides an upper bound to how well
the entirety of the entangled weights in layer ℓ was approximated by SPM. Second, we calculate
the ratio of false positives within USPM defined by the number of its elements that are not
within L2-distance 0.1 of any true entangled weight (again disregarding the sign) to make
sure no spurious local maximizers were included. Lastly, we track the computational time
necessary for the space approximation (line 1 in Algorithm 4.1) and consecutively the run time
of SPM (line 2-16 in Algorithm 4.1) in seconds (rounded) denoted by TŴ , TSPM, respectively.
The average results of ten repetitions with numerical derivatives are reported in Table 4.2, and
the results averaged over ten runs with exact Hessians are reported in Table 4.3.
The first noteworthy insight from these results is that the overall difference between running
the recovery with numerical approximations or exact Hessians only leads to a very marginal
improvement in the latter case. This supports our assumption that the numerical error can
be neglected for the most part and that the subspace approximation error is, in fact, mainly
caused by the variation of the entangled weights w.r.t. the input (cf. Section 4.2.1). Overall, the
recorded subspace error ∆Ŵ lies in the interval [0, 1] and therefore is quite accurate. Note that
in Chapter 2 all results were stated in terms of the error δ = ∥PW − PŴ∥F→F, and therefore the
Frobenius distance ∆Ŵ will in general only be a crude upper bound for δ. However, by relying
on ∆Ŵ as a relative measure, we can observe that the subspace approximation becomes less
accurate for the 4-layer architecture and that, in general, linear outputs yield slightly better
results. On average all detectable entangled weights were found up to an error of 3.1 · 10−2

in the worst case. Since these metrics were averaged over ten runs, let us mention that we
found no run which significantly deviated from these mean values. The fact that the entangled

179 Chapter 4. Entangled weights: Moving beyond shallow network architectures

Architecture gL ∆Ŵ E1(USPM) E2(USPM) E3(USPM) E4(USPM) f p TŴ TSPM

[50, 25, 10] tanh 0.31 2.1e-02 1.5e-02 8.6e-03 - 0.0 17s 12s
[50, 25, 10] Id 0.08 9.3e-03 3.1e-03 - - 0.0 17s 12s
[50, 25, 50] tanh 0.11 7.8e-03 3.9e-03 3.3e-03 - 0.0 25s 12s
[50, 25, 50] Id 0.04 3.2e-03 1.4e-03 - - 0.0 25s 12s
[50, 35, 25, 10] tanh 1.00 2.8e-02 3.1e-02 3.1e-02 2.1e-02 0.0 21s 12s
[50, 35, 25, 10] Id 0.57 1.9e-02 1.9e-02 1.5e-02 - 0.0 20s 12s

Table 4.2: Performance metrics of the subspace approximation and SPM averaged
over ten separate runs based on numerical Hessian approximations.

Architecture gL ∆Ŵ E1(USPM) E2(USPM) E3(USPM) E4(USPM) f p TŴ TSPM

[50, 25, 10] tanh 0.24 1.7e-02 1.4e-02 7.7e-03 - 0.0 13s 11s
[50, 25, 10] Id 0.08 7.4e-03 3.2e-03 - - 0.0 12s 12s
[50, 25, 50] tanh 0.09 6.6e-03 2.9e-03 2.9e-03 - 0.0 188s 12s
[50, 25, 50] Id 0.04 3.4e-03 1.4e-03 - - 0.0 153s 12s
[50, 35, 25, 10] tanh 0.93 2.6e-02 3.2e-02 2.8e-02 1.8e-02 0.0 16s 12s
[50, 35, 25, 10] Id 0.31 1.7e-02 1.4e-02 9.1e-03 - 0.0 14s 12s

Table 4.3: Performance metrics of the subspace approximation and SPM averaged
over ten separate runs based on exact Hessian matrices.

weights of the last layer can not be detected for linear outputs is expected and was discussed
in Section 4.1.2. We can always rely on the approximations via the gradients of the outputs to
make up for this fact (see next paragraph). Another noteworthy point is that we did not observe
any false positives in any of the runs, which clearly shows the robustness of our approach to
small disturbances in the space Ŵ ≈ W . The computational time for either step generally was
in a range of a few seconds, such that the overall time necessary to find all entangled weights
was under one minute in most cases. The time necessary to run SPM, given by TSPM, remains
constant over all different architectures because it only depends on the ambient dimension
of the matrix space (Ŵ ∈ RD×D) and possibly the number of neurons m which did not vary
significantly. While the number of random initializations for SPM (5m log m) did depend on
m, we do not observe any increase in the computational time due to parallelization within
our code. The most computationally expensive part of the subspace approximation is the
computation of the derivatives (via finite differences). Again, we see that TŴ < 30s except for
the runs with exact Hessians corresponding to the architecture [50, 35, 50]. This outlier is caused
by the high number of output neurons and, ultimately, by our sequential implementation for
the computation of the exact Hessians (i.e., compute the Hessian of all output neurons one by
one). Since the runs with exact Hessians were only included as a baseline reference, we can
ignore these outliers such that the total runtime to recover the entangled weight was less than
one minute.

Step 2: Analysis of Algorithm 4.2. Algorithm 4.2 computes the estimated entangled weight
matrices denoted by Ṽ [1], . . . , Ṽ [L] from the set of vectors U = USPM ∪ UL (we use U from the
previous step). We are interested in the accuracy of the layer assignment. In this paragraph,
we exclude the network architecture [50, 35, 25, 10] where an oracle was used for the layer
assignment. As a first measure, we consider the approximated entangled weights, i.e., the
columns of the matrices Ṽ [1], . . . , Ṽ [L], and we compute the ratio how many columns were
properly assigned. This needs to be checked column-wise since the entangled weight matrices
can only be known up to permutations of the columns. A column ṽ[ℓ]kℓ

of Ṽ [ℓ] is counted as

4.4. Experiments: Reconstruction of deep neural networks 180

Architecture gL rasgn(Ṽ[1) rasgn(Ṽ[2]) rasgn(Ṽ[3]) Full detection Tasg

[50, 25, 10] tanh 0.998 0.996 1.000 0.9 17s
[50, 25, 10] Id 0.998 0.996 1.000 0.9 17s
[50, 25, 50] tanh 1.000 1.000 1.000 1.0 24s
[50, 25, 50] Id 1.000 1.000 1.000 1.0 24s

Table 4.4: Summary of the entangled weight assignment step (Algorithm 4.2) based
on numerical approximations of the Hessian matrices.

Architecture gL rasgn(Ṽ[1) rasgn(Ṽ[2]) rasgn(Ṽ[3]) Full detection Tasg

[50, 25, 10] tanh 0.998 0.996 1.000 0.9 13s
[50, 25, 10] Id 0.996 0.992 1.000 0.8 11s
[50, 25, 50] tanh 1.000 1.000 1.000 1.0 191s
[50, 25, 50] Id 1.000 1.000 1.000 1.0 155s

Table 4.5: Summary of the entangled weight assignment step (Algorithm 4.2) based
on exact Hessian matrices.

properly assigned when there exists a column v[ℓ]k′ℓ
in the true entangled weight matrix of the

ℓ-th layer such that

min
s∈{−1,+1}

∥∥∥ṽ[ℓ]kℓ
− sv[ℓ]k′ℓ

/
∥∥∥v[ℓ]k′ℓ

∥∥∥
2

∥∥∥
2
< 0.1. (4.79)

We denote the ratio of correct assigned entangled weights per layer by rasgn(Ṽ [ℓ]). Furthermore,
we measure the number of repetitions (out of the ten runs) where all approximate entangled
weights have been assigned to the correct layer denoted by "Full detection". Lastly, we also
measure the computational time of Algorithm 4.2 in seconds denoted Tasg. The results corre-
sponding to the runs with numerical differentiation are reported in Table 4.4, and the results
for runs with exact Hessians are reported in Table 4.5.

Due to the strong similarity between both tables, we will only discuss the result where
numerical differentiation was used. For the architecture [50, 25, 50], we find a perfect assign-
ment in all cases. For the networks of the type [50, 25, 10], we see that there was one out of ten
runs for both types of outputs, where the assignment made a mistake. In those faulty runs,
the individual assignment ratios were rasgn(Ṽ [1]) = 0.98 and rasgn(Ṽ [1]) = 0.96. Hence, the
assignment misjudged exactly one second-layer entangled weight for a first-layer entangled
weight. Let us mention that this type of error typically occurs because the input distribution
µX in the Algorithm 4.2 was not optimal. Therefore, the resulting subspace used to distin-
guish first-layer weights does not include all the first-layer entangled weights. This could
be prevented heuristically by first checking how many entangled weight approximations are
included in the matrix subspace and if this number does not match the number of neurons
in the first layer, then the input distribution can be adjusted appropriately. The experiments
show that by only considering µX = Unif(103 · SD−1), we already reach a reasonable precise
assignment. It has to be stressed, however, that any mistake in the layer assignment is critical
since it introduces irreversible error into the network reparametrization used in the next step
of our pipeline This makes the entire reconstruction very sensitive to errors in the assignment.
In Table 4.6 (numerical differentiation) and Table 4.7 (exact Hessians) we report the final
errors of the constructed entangled weight matrices. This error is computed column-wise by
comparing Ṽ [ℓ] = [ṽ[ℓ]1 . . . ṽ[ℓ]mℓ

] to the normalized columns of the ground truth entangled weight
matrices V [ℓ] = [v[ℓ]1 . . . v[ℓ]mℓ

] while accounting for any possible permutation of the columns.

181 Chapter 4. Entangled weights: Moving beyond shallow network architectures

Architecture gL E(Ṽ[1]) E(Ṽ[2]) E(Ṽ[3]) E(Ṽ[4])

[50, 25, 10] tanh 2.1e-02 1.5e-02 2.5e-07 -
[50, 25, 10] Id 9.6e-03 3.1e-03 1.9e-07 -
[50, 25, 50] tanh 7.8e-03 3.9e-03 2.7e-07 -
[50, 25, 50] Id 3.2e-03 1.4e-03 2.1e-07 -
[50, 35, 25, 10] tanh 2.8e-02 3.1e-02 3.1e-02 2.9e-07
[50, 35, 25, 10] Id 1.9e-02 1.9e-02 1.5e-02 2.4e-07

Table 4.6: Comparing (column-wise) the entangled weight matrices constructed
via Algorithm 4.2 for runs which achieved a full detection of all entangled weights
and were using numerical approximations of the Hessian matrices.

Architecture gL E(Ṽ[1]) E(Ṽ[2]) E(Ṽ[3]) E1(Ṽ[4])

[50, 25, 10] tanh 1.7e-02 1.4e-02 2.1e-08 -
[50, 25, 10] Id 8.0e-03 3.3e-03 2.1e-08 -
[50, 25, 50] tanh 6.6e-03 2.9e-03 2.8e-08 -
[50, 25, 50] Id 3.4e-03 1.4e-03 2.7e-08 -
[50, 35, 25, 10] tanh 2.6e-02 3.2e-02 2.8e-02 2.0e-08
[50, 35, 25, 10] Id 1.7e-02 1.3e-02 8.7e-03 2.2e-08

Table 4.7: Comparing (column-wise) the entangled weight matrices constructed
via Algorithm 4.2 for runs which achieved a full detection of all entangled weights
and were using exact Hessian matrices

More precisely,

E(Ṽ [ℓ]) = max
kℓ∈[mℓ]

min
s∈{−1,+1},k′ℓ∈[mℓ]

∥∥∥ṽ[ℓ]kℓ
− sv[ℓ]k′ℓ

/
∥∥∥v[ℓ]k′ℓ

∥∥∥
2

∥∥∥
2

. (4.80)

For both tables, we exclude the runs where the assignment was incorrect to not negatively
skew the results. This affects the two runs mentioned before and three runs in the experiments
with exact Hessians. We can see that for all hidden layers ℓ < L, these errors reflect the errors
in Tables 4.2-4.3. This shows that Algorithm 4.2 did generally detect the best vectors within
the set U as representative of each entangled weight. Furthermore, the errors corresponding
to the approximations of the last layer have improved significantly, which shows that the
approximations via the gradient contained in the set UL provide a better estimate than running
SPM on the matrix subspace Ŵ .

Step 3: Analysis of network completion via empirical risk minimization. For any network
f , considered in our setup above, the two previous steps in combination compute a set of
approximated entangled weight matrices Ṽ1, . . . , ṼL. A network reparametrization f̃ from these
matrices is then constructed as described in Section 4.3.2. The parametric function f̃ only
depends on the unknown shifts and a set of diagonal matrices. These learn-able parameters
are initialized according to (4.69) by zero vectors and identity matrices and then learned by
minimizing the objective 4.67 via SGD.

Remark 4.5. The tuning of the reparametrization is done via SGD. Let us note that empirically we
observe the same results when we instead use ordinary GD. As a reference, we can point to the numerical
experiments performed [50] where this step was run with ordinary GD.

After tuning, the function f̃ and its parameters represent our final reconstruction of f . Func-
tional equivalence between f , f̃ was proven in Section 4.3.2 for the right set of parameters. Note
that the permutation of the output layer can be ignored as the correct order of these neurons

4.4. Experiments: Reconstruction of deep neural networks 182

can be recovered by the approximations in UL. However, these results (Proposition 4.3 and
Proposition 4.4) assumed f̃ was built from the ground truth entangled weight matrices up
to permutation and re-scaling of the columns. In our setting, we can only provide disturbed
matrices Ṽ1, . . . , ṼL computed in the previous steps to build the reparametrization f̃ . Therefore,
we can only expect f̃ to match f up to some error induced by these irreversible errors. We
track the following metrics:

1. Average L2-error on the training inputs Xtrain = {x1, . . . , xNSGD} (drawn from N (0, IdD)):

MAE =
1

NSGD
∑

x∈Xtrain

∥ f (x)− f̃ (x)∥2. (4.81)

2. The relative uniform error E∞,rel on a test set Xtest of Ntest = 106 unseen inputs drawn as
standard Gaussians:

E∞,rel =
maxx∈Xtest

∥∥ f (x)− f̃ (x)
∥∥

2
maxx∈Xtest ∥ f (x)∥2

(4.82)

3. To demonstrate the convergence in parameter space, we also measure the L2-error between
the ground truth shifts τ[ℓ] and the approximated shifts τ̃[ℓ] while accounting for any
possible permutation and neglecting the sign due to symmetries (cf. Section 4.3.3). More
precisely, we compute

E(τ̃[ℓ]) =

∥∥∥∣∣∣τ[ℓ]
∣∣∣− ∣∣∣π⊤ℓ τ̃[ℓ]

∣∣∣∥∥∥
2∥∥τ[ℓ]

∥∥
2

for all ℓ ∈ [L], (4.83)

where the permutation πℓ can be inferred from the column order of the entangled weight
matrices.

All metrics are tracked during the training whenever an epoch finishes. The results only
include those runs that achieved a full detection & assignment of the entangled weights (cf. last
section). Additionally, for each architecture and output activation considered, we introduce a
new set of 10 independent runs where the exact entangled weight matrices were given instead
of the approximations Ṽ [1], . . . , Ṽ [L]. This allows us to verify whether the reparametrization
can exactly recover the original network provided that the entangled weight matrices have
been fully reconstructed without any errors. Figures 4.5-4.7 display the average performance
metrics.
In all cases, we observe a constant decrease of the MAE, relative uniform error, and distance of
the approximated shifts in the first few minutes of running gradient descent. For entangled
weights reconstructed via our pipeline, this decrease eventually plateaus at an order of magni-
tude which is similar to the error present in the approximated entangled weight matrices (see
Table 4.6- 4.7). This is expected, as the parameters tuned for the reparametrized network cannot
undo any errors made in reconstructing the entangled weight matrices. Hence, irreversible
errors will accumulate during the first two steps of our pipeline. At the same time, one can see
from the right column of each individual plot that provided exact entangled weight matrices
all performance metrics keep steadily decreasing. This further supports the argument that
entangled weights in themselves uniquely determine the network up to scales and shifts, and
that these remaining parameters are learnable by simple first-order methods like SGD or GD.
Networks with linear output neurons perform slightly better than networks with non-linear
outputs (gL = tanh). Overall, the network with the most output neurons [50, 25, 50] achieved
the lowest errors in all considered settings (output type, Hessian computation, baseline with

183 Chapter 4. Entangled weights: Moving beyond shallow network architectures

0 5 10 15 20

Training time [m]

10−4

10−3

10−2

10−1

100
Num. Hessians

0 5 10 15 20

Training time [m]

Exact Hessians

0 5 10 15 20

Training time [m]

Exact ent. weights

avg. error MAE

E∞,rel
gL = tanh

gL = Id

0 5 10 15 20

Training time [m]

10−4

10−3

10−2

10−1

100
Num. Hessians

0 5 10 15 20

Training time [m]

Exact Hessians

0 5 10 15 20

Training time [m]

Exact ent. weights

E(τ̃ [1])

E(τ̃ [2])

E(τ̃ [3])

Figure 4.5: Measuring the distance of the network approximation f̃ and its param-
eters computed via our pipeline to the original network for the architectures with
neurons [50, 25, 10]. Entangled weights are approximated via numerical differentia-
tion (left column) or exact Hessians (middle column). The right columns show a
baseline result where exact entangled weight matrices were provided and therefore
only measure the performance of the empirical risk minimization in Section 4.3.2.

4.4. Experiments: Reconstruction of deep neural networks 184

0 5 10 15 20

Training time [m]

10−5

10−3

10−1

Num. Hessians

0 5 10 15 20

Training time [m]

Exact Hessians

0 5 10 15 20

Training time [m]

Exact ent. weights

avg. error MAE

E∞,rel
gL = tanh

gL = Id

0 5 10 15 20

Training time [m]

10−5

10−3

10−1

Num. Hessians

0 5 10 15 20

Training time [m]

Exact Hessians

0 5 10 15 20

Training time [m]

Exact ent. weights

E(τ̃ [1])

E(τ̃ [2])

E(τ̃ [3])

Figure 4.6: Measuring the distance of the network approximation f̃ and its pa-
rameters computed via our pipeline to the original network for the architectures
with neurons [50, 25, 50] when entangled weights are approximated via numerical
differentiation (left column) or exact Hessians (middle column). The right column
shows a baseline result where exact entangled weight matrices were provided and
therefore only measures the performance of the empirical risk minimization in
Section 4.3.2.

185 Chapter 4. Entangled weights: Moving beyond shallow network architectures

exact Hessians). There is a notable decrease in performance caused by increasing the depth if
we compare the 3-layer network [50, 25, 10] with the [50, 35, 25, 10].

We want to conclude this section by comparing our results to the performance of SGD when
applied in a teacher-student setting, which has been studied previously in Section 1.3.2. First,
let us point out that we do not want to assess which method is superior since we operate in a
highly artificial setting. We expect that our reconstruction pipeline, and stochastic gradient
descent applied to the teacher-student problem in Section 1.3.2 can both be improved by hyper-
parameter tuning, more training data, and longer computations. Additionally, our pipeline
explicitly made use of network queries to approximate Hessian matrices, whereas SGD is not
designed to leverage such a setting and relies entirely on random input-output samples. We
saw in Section 1.3.2 that with proper parameter tuning, SGD could uniquely identify 3-layer
networks with architecture [50, 25, 10] from D2m samples. More precisely, the best-performing
setup in Figure 1.5 in the three-layer case [50, 25, 10] reached an accuracy of E∞ ≈ 10−6 after
roughly 45 minutes of training. Judging by the results in Figure 4.5, our pipeline can only
achieve similar levels of accuracy when the entangled weights were exactly computed. Note,
however, that in Figure 4.5 we see a consistent convergence in parameter space (based on the
trajectory of E(τ̃[1]), E(τ̃[2]), E(τ̃[3])) up to a level where irreparable errors in the entangled
weight matrices prevent any further improvement. Ultimately, both methods found the correct
network; however, gradient descent attained a slightly better fit. Additionally, SGD in Figure
1.5 was running for two hours, whereas the reparametrized model was only trained for 20
minutes, and the reconstruction of entangled weights generally has a computational time in the
order of seconds. Something worth mentioning is that in Section 1.3.2, we could not translate
the successful identification of three-layer networks to the four-layer network [50, 35, 25, 10].
Our interpretation was that identifying a network in a teacher-student model via SGD becomes
significantly harder when the number of layers increases. Whether the identification of general
deep neural networks in this setting is consistently possible via SGD is a question we can not
fully answer empirically. In particular, due to the lack of guiding principles for hyperparameter
selection. Aside from the layer assignment, which is currently still limited to L ≤ 3, we do not
observe such a drastic difference between the recovery of [50, 25, 10] and [50, 35, 25, 10] via our
pipeline as can be seen in Figure 4.5 & 4.7.

4.4. Experiments: Reconstruction of deep neural networks 186

0 5 10 15 20

Training time [m]

10−3

10−2

10−1

100
Num. Hessians

0 5 10 15 20

Training time [m]

Exact Hessians

0 5 10 15 20

Training time [m]

Exact ent. weights

avg. error MAE

E∞,rel
gL = tanh

gL = Id

0 5 10 15 20

Training time [m]

10−3

10−2

10−1

100
Num. Hessians

0 5 10 15 20

Training time [m]

Exact Hessians

0 5 10 15 20

Training time [m]

Exact ent. weights

E(τ̃ [1])

E(τ̃ [2])

E(τ̃ [3])

E(τ̃ [4])

Figure 4.7: Measuring the distance of the network approximation f̃ and its param-
eters computed via our pipeline to the original network for the architectures with
neurons [50, 35, 25, 10] when entangled weights are approximated via numerical
differentiation (left column) or exact Hessians (middle column). The right column
shows a baseline result where exact entangled weight matrices were provided and
therefore only measures the performance of the empirical risk minimization in
Section 4.3.2.

Bibliography

[1] Mastering the game of Go with deep neural networks and tree search | Nature.
https://www.nature.com/articles/nature16961.

[2] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems.

[3] Milton Abramowitz, Irene A. Stegun, and Robert H. Romer. Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. American Journal of Physics,
56(10):958–958, October 1988.

[4] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, Princeton, NJ, 2008.

[5] Francesca Albertini, Eduardo D Sontag, and Vincent Maillot. Uniqueness of weights for
neural networks. Artificial Neural Networks for Speech and Vision, pages 115–125, 1993.

[6] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In International Conference on Machine Learning (ICML), 2019.

[7] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Bat-
tenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, Jie
Chen, Jingdong Chen, Zhijie Chen, Mike Chrzanowski, Adam Coates, Greg Diamos,
Ke Ding, Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang, Linxi Fan, Christopher
Fougner, Liang Gao, Caixia Gong, Awni Hannun, Tony Han, Lappi Johannes, Bing Jiang,
Cai Ju, Billy Jun, Patrick LeGresley, Libby Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang
Li, Dongpeng Ma, Sharan Narang, Andrew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger,
Sheng Qian, Zongfeng Quan, Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David
Seetapun, Shubho Sengupta, Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang,
Chong Wang, Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang, Zhiqian Wang, Shuang
Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan, and
Zhenyao Zhu. Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin.
In Proceedings of The 33rd International Conference on Machine Learning, pages 173–182.
PMLR, June 2016.

[8] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed Non-Orthogonal
Tensor Decomposition via Alternating Rank-1 Updates. March 2015. arXiv:1402.5180.

187

Bibliography 188

[9] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of
gradient descent for deep linear neural networks. In International Conference on Learning
Representations (ICLR), 2018.

[10] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep
matrix factorization. In Neural Information Processing Systems (NeurIPS), 2019.

[11] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. In
International Conference on Machine Learning (ICML), 2019.

[12] Peter Auer, Mark Herbster, and Manfred Warmuth. Exponentially many local minima
for single neurons. In Neural Information Processing Systems (NIPS), 1996.

[13] Bubacarr Bah, Holger Rauhut, Ulrich Terstiege, and Michael Westdickenberg. Learning
deep linear neural networks: Riemannian gradient flows and convergence to global
minimizers. Information and Inference: A Journal of the IMA, February 2021.

[14] Ravindra B. Bapat and Vaikalathur S. Sunder. On majorization and Schur products.
Linear algebra and its applications, 72:107–117, 1985.

[15] B. Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal
algorithms. Electron. Colloquium Comput. Complex., April 2014.

[16] Howard E. Bell. Gershgorin’s Theorem and the Zeros of Polynomials. The American
Mathematical Monthly, 72(3):292–295, 1965.

[17] John J. Benedetto and Matthew Fickus. Finite Normalized Tight Frames. Advances in
Computational Mathematics, 18(2):357–385, February 2003.

[18] Julius Berner, Philipp Grohs, and Arnulf Jentzen. Analysis of the generalization error:
Empirical risk minimization over deep artificial neural networks overcomes the curse
of dimensionality in the numerical approximation of Black–Scholes partial differential
equations. SIAM Journal on Mathematics of Data Science, 2(3):631–657, January 2020.

[19] Aditya Bhaskara, Moses Charikar, and Aravindan Vijayaraghavan. Uniqueness of Tensor
Decompositions with Applications to Polynomial Identifiability. In Proceedings of The
27th Conference on Learning Theory, pages 742–778. PMLR, May 2014.

[20] Rajendra Bhatia. Matrix Analysis. Springer Science & Business Media, November 1996.

[21] Avrim Blum and Ronald Rivest. Training a 3-Node neural network is NP-Complete.
In D. Touretzky, editor, Advances in Neural Information Processing Systems, volume 1.
Morgan-Kaufmann, 1989.

[22] Simone Bombari, Mohammad Hossein Amani, and Marco Mondelli. Memorization and
optimization in deep neural networks with minimum over-parameterization. In Advances
in Neural Information Processing Systems, 2022.

[23] Léon Bottou. Stochastic Gradient Descent Tricks. In Grégoire Montavon, Geneviève B.
Orr, and Klaus-Robert Müller, editors, Neural Networks: Tricks of the Trade: Second Edition,
Lecture Notes in Computer Science, pages 421–436. Springer, Berlin, Heidelberg, 2012.

[24] Jerome Brachat, Pierre Comon, Bernard Mourrain, and Elias Tsigaridas. Symmetric tensor
decomposition. Linear Algebra and its Applications, 433(11-12):1851–1872, December 2010.

189 Bibliography

[25] Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet
with gaussian inputs. In International Conference on Machine Learning, pages 605–614.
PMLR, 2017.

[26] Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size and
weights size for memorization with two-layers neural networks. In Neural Information
Processing Systems (NeurIPS), 2020.

[27] Martin D Buhmann and Allan Pinkus. Identifying Linear Combinations of Ridge Func-
tions. Advances in Applied Mathematics, 22(1):103–118, January 1999.

[28] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent
for wide and deep neural networks. Advances in Neural Information Processing Systems,
32:10836–10846, 2019.

[29] Peter G. Casazza and Nicole Leonhard. Classes of finite equal norm Parseval frames.
In David R. Larson, Peter Massopust, Zuhair Nashed, Minh Chuong Nguyen, Manos
Papadakis, and Ahmed Zayed, editors, Contemporary Mathematics, volume 451, pages
11–31. American Mathematical Society, Providence, Rhode Island, 2008.

[30] Ole Christensen. An Introduction to Frames and Riesz Bases. Applied and Numerical
Harmonic Analysis. Springer International Publishing, Cham, 2016.

[31] Charles K. Chui and Xin Li. Approximation by ridge functions and neural networks with
one hidden layer. Journal of Approximation Theory, 70(2):131–141, August 1992.

[32] Alexander Cloninger and Timo Klock. A deep network construction that adapts to
intrinsic dimensionality beyond the domain. Neural Networks, 141:404–419, 2021.

[33] Albert Cohen, Ingrid Daubechies, Ronald DeVore, Gerard Kerkyacharian, and Dominique
Picard. Capturing Ridge Functions in High Dimensions from Point Queries. Constructive
Approximation, 35(2):225–243, April 2012.

[34] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4):303–314, December 1989.

[35] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova. Nonlinear approximation
and (deep) ReLU networks. Constructive Approximation, April 2021.

[36] Chandler Davis and W. M. Kahan. The Rotation of Eigenvectors by a Perturbation. III.
SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

[37] Vin de Silva and Lek-Heng Lim. Tensor Rank and the Ill-Posedness of the Best Low-Rank
Approximation Problem. SIAM Journal on Matrix Analysis and Applications, 30(3):1084–
1127, January 2008.

[38] Ronald DeVore, Boris Hanin, and Guergana Petrova. Neural network approximation.
Acta Numerica, 30:327–444, 2021.

[39] David L. Donoho and Iain M. Johnstone. Projection-Based Approximation and a Duality
with Kernel Methods. The Annals of Statistics, 17(1):58–106, 1989.

[40] Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent
finds global minima of deep neural networks. In International Conference on Machine
Learning (ICML), 2019.

Bibliography 190

[41] Simon S. Du, Jason D. Lee, and Yuandong Tian. When is a convolutional filter easy to
learn? In International Conference on Learning Representations (ICLR), 2018.

[42] Simon S. Du, Jason D. Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient
descent learns one-hidden-layer CNN: Don’t be afraid of spurious local minima. In
International Conference on Machine Learning (ICML), 2018.

[43] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations (ICLR), 2019.

[44] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, September 1936.

[45] Dennis Elbrächter, Dmytro Perekrestenko, Philipp Grohs, and Helmut Bölcskei. Deep
Neural Network Approximation Theory. IEEE Transactions on Information Theory,
67(5):2581–2623, May 2021.

[46] Ronen Eldan and Ohad Shamir. The Power of Depth for Feedforward Neural Networks.
In Conference on Learning Theory, pages 907–940. PMLR, June 2016.

[47] Gökcen Eraslan, Žiga Avsec, Julien Gagneur, and Fabian J. Theis. Deep learning: New
computational modelling techniques for genomics. Nature Reviews Genetics, 20(7):389–403,
July 2019.

[48] Charles Fefferman. Reconstructing a neural net from its output. Revista Matemática
Iberoamericana, 10(3):507–555, 1994.

[49] Christian Fiedler. Learning deep neural networks with very few samples. Master’s thesis,
Technical University Munich, 2019.

[50] Christian Fiedler, Massimo Fornasier, Timo Klock, and Michael Rauchensteiner. Stable
recovery of entangled weights: Towards robust identification of deep neural networks
from minimal samples. Applied and Computational Harmonic Analysis, 62:123–172, January
2023.

[51] Massimo Fornasier, Timo Klock, Marco Mondelli, and Michael Rauchensteiner. Finite
Sample Identification of Wide Shallow Neural Networks with Biases. November 2022.
arXiv:2211.04589.

[52] Massimo Fornasier, Timo Klock, and Michael Rauchensteiner. Robust and Resource-
Efficient Identification of Two Hidden Layer Neural Networks. Constructive Approximation,
June 2021.

[53] Massimo Fornasier, Karin Schnass, and Jan Vybiral. Learning Functions of Few Arbi-
trary Linear Parameters in High Dimensions. Foundations of Computational Mathematics,
12(2):229–262, April 2012.

[54] Massimo Fornasier, Jan Vybíral, and Ingrid Daubechies. Robust and resource efficient
identification of shallow neural networks by fewest samples. Information and Inference: A
Journal of the IMA, 10(2):625–695, June 2021.

[55] Jerome H. Friedman, Mark Jacobson, and Werner Stuetzle. PROJECTION PURSUIT
REGRESSION. J. Am. Statist. Assoc., 76:817, 1981.

191 Bibliography

[56] Haoyu Fu, Yuejie Chi, and Yingbin Liang. Guaranteed Recovery of One-Hidden-Layer
Neural Networks via Cross Entropy. IEEE Transactions on Signal Processing, 68:3225–3235,
2020.

[57] Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural
networks. Neural Networks, 2(3):183–192, January 1989.

[58] Semen Geršgorin. über die Abgrenzung der Eigenwerte einer Matrix. Dokl. Akad. Nauk
(A), Otd. Fiz.-Mat. Nauk (1931), pages 749–754.

[59] Alex Gittens and Joel A. Tropp. Tail bounds for all eigenvalues of a sum of random
matrices. July 2011. arXiv:1104.4513.

[60] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier Neural
Networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pages 315–323. JMLR Workshop and Conference Proceedings, June 2011.

[61] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge Distilla-
tion: A Survey. International Journal of Computer Vision, 129(6):1789–1819, June 2021.

[62] Johan Håstad. Tensor rank is NP-complete. Journal of Algorithms, 11(4):644–654, December
1990.

[63] Christopher J. Hillar and Lek-Heng Lim. Most Tensor Problems Are NP-Hard. Journal of
the ACM, 60(6):45:1–45:39, November 2013.

[64] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural
Network. March 2015. arXiv:1503.02531.

[65] Samuel B. Hopkins, Tselil Schramm, and Jonathan Shi. A Robust Spectral Algorithm for
Overcomplete Tensor Decomposition. In Proceedings of the Thirty-Second Conference on
Learning Theory, pages 1683–1722. PMLR, June 2019.

[66] Samuel B. Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral
algorithms from sum-of-squares proofs: Tensor decomposition and planted sparse
vectors. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing,
STOC ’16, pages 178–191, New York, NY, USA, June 2016. Association for Computing
Machinery.

[67] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366, January 1989.

[68] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24:417–441, 1933.

[69] Marian HRISTACHE, Anatoli JUDITSKY, and Vladimir SPOKOINY. Direct estimation of
the index coefficient in a single-index model. The Annals of statistics, 29(3):595–623, 2001.

[70] Guang-Bin Huang. Learning capability and storage capacity of two-hidden-layer feedfor-
ward networks. IEEE Transactions on Neural Networks, 14(2):274–281, 2003.

[71] Peter J. Huber. Projection Pursuit. The Annals of Statistics, 13(2):435–475, June 1985.

[72] Hidehiko Ichimura. Semiparametric least squares (SLS) and weighted SLS estimation of
single-index models. Journal of Econometrics, 58(1):71–120, July 1993.

Bibliography 192

[73] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Neural Information Processing Systems (NeurIPS),
2018.

[74] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the Perils of Non-
Convexity: Guaranteed Training of Neural Networks using Tensor Methods. January
2016. arXiv:1506.08473.

[75] Stephen Judd. On the complexity of loading shallow neural networks. Journal of
Complexity, 4(3):177–192, September 1988.

[76] Joe Kileel, Timo Klock, and João Pereira. Landscape analysis of an improved power
method for tensor decomposition. In Neural Information Processing Systems (NeurIPS),
2021.

[77] Joe Kileel and João M. Pereira. Subspace power method for symmetric tensor decomposi-
tion and generalized PCA. June 2021. arXiv:1912.04007.

[78] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In F. Pereira, C. J. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25. Curran
Associates, Inc., 2012.

[79] Joseph B. Kruskal. Three-way arrays: Rank and uniqueness of trilinear decompositions,
with application to arithmetic complexity and statistics. Linear Algebra and its Applications,
18(2):95–138, January 1977.

[80] H. W. Kuhn and A. W. Tucker. Nonlinear Programming. Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability, 2:481–493, January 1951.

[81] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, May 2015.

[82] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer
feedforward networks with a nonpolynomial activation function can approximate any
function. Neural Networks, 6(6):861–867, January 1993.

[83] Ker-Chau Li. On Principal Hessian Directions for Data Visualization and Dimension
Reduction: Another Application of Stein’s Lemma. Journal of the American Statistical
Association, 87(420):1025–1039, 1992.

[84] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards Explaining the Regularization Effect of
Initial Large Learning Rate in Training Neural Networks. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[85] Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with
ReLU activation. In Neural Information Processing Systems (NeurIPS), 2017.

[86] Kung-Ching Lin. Nonlinear Sampling Theory and Efficient Signal Recovery. PhD thesis,
University of Maryland, 2020.

[87] Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-Time Tensor Decompositions
with Sum-of-Squares. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 438–446, New Brunswick, NJ, USA, October 2016. IEEE.

193 Bibliography

[88] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve
neural network acoustic models. In In ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013.

[89] Jan R. Magnus. On Differentiating Eigenvalues and Eigenvectors. Econometric Theory,
1(2):179–191, 1985.

[90] Sebastian Mayer, Tino Ullrich, and Jan Vybíral. Entropy and Sampling Numbers of
Classes of Ridge Functions. Constructive Approximation, 42(2):231–264, October 2015.

[91] HN Mhaskar and T Poggio. Function approximation by deep networks. Communications
on Pure & Applied Analysis, 19(8), 2020.

[92] Hrushikesh N Mhaskar and Tomaso Poggio. Deep vs. shallow networks: An approxima-
tion theory perspective. Analysis and Applications, 14(06):829–848, 2016.

[93] Marco Mondelli and Andrea Montanari. On the Connection Between Learning Two-
Layer Neural Networks and Tensor Decomposition. In Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and Statistics, pages 1051–1060. PMLR,
April 2019.

[94] Andrea Montanari and Yiqiao Zhong. The interpolation phase transition in neural net-
works: Memorization and generalization under lazy training, 2020. arXiv:2007.12826.

[95] Edward Moroshko, Blake E. Woodworth, Suriya Gunasekar, Jason D. Lee, Nati Srebro,
and Daniel Soudry. Implicit bias in deep linear classification: Initialization scale vs
training accuracy. In Neural Information Processing Systems (NeurIPS), 2020.

[96] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on International Conference on
Machine Learning, ICML’10, pages 807–814, Madison, WI, USA, June 2010. Omnipress.

[97] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive
bias: On the role of implicit regularization in deep learning. In International Conference on
Learning Representations (ICLR), 2015.

[98] Quynh Nguyen. On the proof of global convergence of gradient descent for deep relu
networks with linear widths. In International Conference on Machine Learning (ICML), 2021.

[99] Quynh Nguyen and Marco Mondelli. Global convergence of deep networks with one
wide layer followed by pyramidal topology. In Neural Information Processing Systems
(NeurIPS), 2020.

[100] Keit Oldham, Jan Myland, and Jerome Spanier. An Atlas of Functions. Springer US, New
York, NY, 2009.

[101] A. M. Ostrowski. A Quantitative Formulation of Sylvester’s Law of Inertia. Proceedings of
the National Academy of Sciences of the United States of America, 45(5):740–744, 1959.

[102] Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global
convergence guarantees for training shallow neural networks. IEEE Journal on Selected
Areas in Information Theory, 1(1):84–105, 2020.

[103] Karl Pearson. LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572,
November 1901.

Bibliography 194

[104] Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth
functions using deep ReLU neural networks. Neural Networks, 108:296–330, 2018.

[105] Pencho P. Petrushev. Approximation by ridge functions and neural networks. SIAM
Journal on Mathematical Analysis, 30(1):155–189, 1998.

[106] Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta
Numerica, 8:143–195, January 1999.

[107] Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao.
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A
review. International Journal of Automation and Computing, 14(5):503–519, October 2017.

[108] Franz Rellich and Joan Berkowitz. Perturbation Theory of Eigenvalue Problems. CRC Press,
1969.

[109] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 323(6088):533–536, October 1986.

[110] Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer ReLU
neural networks. In International Conference on Machine Learning (ICML), 2018.

[111] Hanie Sedghi and Anima Anandkumar. Provable methods for training neural networks
with sparse connectivity. 2014. arXiv:1412.2693.

[112] Uri Shaham, Alexander Cloninger, and Ronald R Coifman. Provable approximation prop-
erties for deep neural networks. Applied and Computational Harmonic Analysis, 44(3):537–
557, 2018.

[113] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - from Theory to
Algorithms. Cambridge University Press, 2014.

[114] Mahdi Soltanolkotabi. Learning ReLUs via gradient descent. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, pages 2004–2014, 2017.

[115] Mahdi Soltanolkotabi, Adel Javanmard, and Jason D. Lee. Theoretical insights into the
optimization landscape of over-parameterized shallow neural networks. IEEE Transactions
on Information Theory, 65(2):742–769, 2018.

[116] Chaehwan Song, Ali Ramezani-Kebrya, Thomas Pethick, Armin Eftekhari, and Volkan
Cevher. Subquadratic overparameterization for shallow neural networks. Advances in
Neural Information Processing Systems, 34, 2021.

[117] Zhao Song and Xin Yang. Quadratic Suffices for Over-parametrization via Matrix
Chernoff Bound, February 2020. arXiv:1906.03593.

[118] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro.
The implicit bias of gradient descent on separable data. The Journal of Machine Learning
Research, 19(1):2822–2878, 2018.

[119] Charles M. Stein. Estimation of the Mean of a Multivariate Normal Distribution. The
Annals of Statistics, 9(6):1135–1151, 1981.

[120] Gilbert W. Stewart. Perturbation Theory for the Singular Value Decomposition. UMIACS-
TR-90-124, 1998.

195 Bibliography

[121] Héctor J. Sussmann. Uniqueness of the weights for minimal feedforward nets with a
given input-output map. Neural Networks, 5(4):589–593, 1992.

[122] Terence Tao. When are eigenvalues stable? Available: https://terrytao.wordpress.
com/2008/10/28/when-are-eigenvalues-stable/, October 2008. (Last accessed: April
6th 2023).

[123] Terence Tao. Topics in Random Matrix Theory. American Mathematical Soc., March 2012.

[124] Yuandong Tian. An analytical formula of population gradient for two-layered relu
network and its applications in convergence and critical point analysis. In International
Conference on Machine Learning, pages 3404–3413. PMLR, 2017.

[125] J.A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions
on Information Theory, 50(10):2231–2242, October 2004.

[126] Joel A. Tropp. User-Friendly Tail Bounds for Sums of Random Matrices. Foundations of
Computational Mathematics, 12(4):389–434, August 2012.

[127] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge University Press, September 2018.

[128] Roman Vershynin. Memory capacity of neural networks with threshold and rectified
linear unit activations. SIAM Journal on Mathematics of Data Science, 2(4):1004–1033, 2020.

[129] Verner Vlačić and Helmut Bölcskei. Affine symmetries and neural network identifiability.
Advances in Mathematics, 376:107485, January 2021.

[130] Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition.
BIT Numerical Mathematics, 12(1):99–111, March 1972.

[131] L. Welch. Lower bounds on the maximum cross correlation of signals (Corresp.). IEEE
Transactions on Information Theory, 20(3):397–399, May 1974.

[132] Hermann Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller
Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung).
Mathematische Annalen, 71(4):441–479, December 1912.

[133] Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese,
Itay Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in over-
parametrized models. In Conference on Learning Theory (COLT), 2020.

[134] Xiaoxia Wu, Simon S. Du, and Rachel Ward. Global convergence of adaptive gradient
methods for an over-parameterized neural network, 2019. arXiv:1902.07111.

[135] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small nonlinearities in activation functions
create bad local minima in neural networks. In International Conference on Learning
Representations (ICLR), 2019.

[136] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. In International Conference on
Learning Representations (ICLR), 2017.

[137] Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer
ReLU networks via gradient descent. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2019.

https://terrytao.wordpress.com/2008/10/28/when-are-eigenvalues-stable/
https://terrytao.wordpress.com/2008/10/28/when-are-eigenvalues-stable/

Bibliography 196

[138] Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, and Inderjit S. Dhillon. Recovery
guarantees for one-hidden-layer neural networks. In International Conference on Machine
Learning (ICML), 2017.

[139] Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-
parameterized two-layer neural network. In Conference on Learning Theory (COLT), 2021.

[140] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes
over-parameterized deep ReLU networks. Machine Learning, 109(3):467–492, 2020.

[141] Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized
deep neural networks. In Neural Information Processing Systems (NeurIPS), 2019.

	Introduction
	Recovering Neural Networks
	Preliminaries
	Notation and singular subspaces
	Introduction to neural networks
	Training neural networks

	Identifiability of fully connected Neural Networks
	Identifiability vs. identification of network parameters

	Teacher-student models
	Identifying a shallow neural network by empirical risk minimization
	Exploring depth in the teacher-student setting

	Reduction of weight identification to tensor decompositions
	Reconstruction of shallow neural networks from Hessian information

	Recovery of a rank-one basis from its perturbed span
	Introduction and preliminaries
	Problem setting
	Deterministic frame bounds: Measuring incoherence in the linear regime

	Near rank-one matrices approximate spanning elements
	Selection of near-rank-one matrices based on the spectral norm
	Characterization of local maximizers
	Optimality Conditions
	Characterization of local maximizers based on their optimality conditions
	Computation of local maximizers via projected gradient ascent
	Discussion of open problems

	Subspace power method
	Perturbation analysis of the SPM objective under deterministic frame bounds
	Optimality conditions
	Describing the optimization landscape
	Proof of the Theorem 2.6
	Intermediate Discussion

	Extension of SPM to the overcomplete regime
	Incoherence in the overcomplete setting
	Average case guarantees for SPM in the overcomplete regime.

	Conclusion

	Efficient reconstruction of wide shallow networks
	Introduction and preliminaries
	Problem setting: Shallow neural network model
	Summary: Overview and main result

	Weight identification
	Reduction to the rank-one basis recovery problem
	Recovery guarantees

	Recovery of the correct signs and initialization of the shifts
	Parameter initialization: Strategy
	Parameter initialization: Guarantees

	Refining the approximated shifts using empirical risk minimization
	Formulation of a simplified teacher-student problem
	Local convergence guarantees
	Proof strategy for Theorem 3.4.
	Preliminaries: Hermitian expansions
	Strict convexity of the idealized objective in expectation
	Controlling the difference between the gradient upgrades
	A lower bound for the drift from the idealized GD iteration
	Concluding the proof of Theorem 3.4

	Proof of the Theorem 3.2
	Experiments: Reconstruction of shallow neural networks

	Entangled weights: Moving beyond shallow network architectures
	Introduction and preliminaries
	Problem setting: Deep neural network model
	Preliminaries: Entangled weights
	Summary: Main results

	Entangled weight identification
	Stabilizing the Hessian subspace
	Proof of Theorem 4.1
	Empirical analysis of entangled weight recovery

	Network completion
	Layer Assignment
	Loss-free reparametrization
	Learning the parameters of the reparametrized network

	Experiments: Reconstruction of deep neural networks

	Bibliography

