Effect of the Portland Cement Quality on the Rheology of LC³ Binders Containing Superplasticizers

Alper-Sedat Dönmez¹, Alisa Machner², Torben Gädt¹ ¹ Technical University of Munich, Department of Chemistry, Chair of the Chemistry of Construction Materials, Lichtenbergstraße 4, D-85748 Garching b. München ² Technical University of Munich, TUM School of Engineering and Design, Professorship for Mineral Construction Materials, Franz-Langinger-Str. 10, 81245 München

Due to the urgent push towards low-CO₂ binders, the development and application of limestone calcined clay cement (LC³) has received significant attention and is gaining momentum. In the early phase of LC³ development, reactivity, mechanical strength and durability issues were intensely studied.^[1] Recently, also the rheological properties of LC³ binders, especially in combination with admixtures, are receiving increasing attention.^[2,3] By addressing the rheological behavior of cementitious materials, both the fresh and hardened properties of concrete can be improved significantly. As the LC³ mixture allows a high substitution of the clinker (up to 50 wt.%), the focus is generally directed towards the impact of the calcined clays and limestone on the rheological properties of LC³ mixes.^[2-4] How the composition of the Portland cement source influences the rheology of LC³ mixes has, however, not been widely reported as of yet.

Therefore, this study investigates the reactivity and rheology of LC³-50 mixes containing various ordinary Portland cements (OPC). The reactivity of the LC³ mixes was characterized using isothermal calorimetry and the rheological properties were studied with a rotational rheometer. Additionally, the influence of a polycarboxylate ether (PCE) dispersant on the OPC pastes and LC³ pastes is evaluated and compared.

The results indicate that the chemical composition and fineness of the OPC plays an important role regarding reactivity and workability of the respective LC³-50 mix, similar as reported for plain OPC.^[4] Furthermore, while PCE-type dispersants allow to reduce the water demand for the OPC as well as the LC³ system, the required PCE dosage is significantly increased for LC³ compared to OPC systems, as highlighted in recent work.^[5]

In conclusion, the types of OPC and PCE have to be taken into account to optimize the rheology of LC³ binders.

[1] K. Scrivener, F. Martirena, S. Bishnoi, S. Maity, *Cement and Concrete Research* **2018**, 114, 49-56.

[2] T. R. Muzenda, P. Hou, S. Kawashima, T. Sui, X. Cheng, *Cement and Concrete Composites* **2020**, *107*, 103516.

[3] M. A. B. Beigh, V. N. Nerella, C. Schröfl, V. Mechtcherine, in *Calcined Clays for Sustainable Concrete* (eds.: S. Bishnoi), RILEM Bookseries, Singapore, **2020**, pp. 229-236.

[4] F. Zunino, K. Scrivener, Cement and Concrete Research 2019, 126, 105918.

[5] R. Li, L. Lei, T. Sui, J. Plank, Cement and Concrete Research 2021, 141, 106334.