
TUM SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation in Informatik

Integrating System and Process
Characteristics into Regression

Test Optimization

Daniel Valentin Elsner

Technische Universität München
TUM School of Computation, Information and Technology

Integrating System and Process
Characteristics into Regression Test

Optimization

Daniel Valentin Elsner

Vollständiger Abdruck der von der TUM School of Computation, Information

and Technology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Thomas Neumann

Prüfer*innen der Dissertation:

1. Prof. Dr. Alexander Pretschner

2. Prof. Darko Marinov, Ph.D.,

University of Illinois at Urbana-Champaign, USA

3. Prof. Dr. Yves Le Traon,

Université du Luxembourg, Luxembourg

Die Dissertation wurde am 24.04.2023 bei der Technischen Universität München

eingereicht und durch die TUM School of Computation, Information and

Technology am 27.09.2023 angenommen.

Acknowledgments

First of all, I would like to thank my supervisor Alexander Pretschner. He taught me to
think more critically and played a major role in shaping this work through valuable dis-
cussions. He also always encouraged my independence and showed me how to handle
difficult situations with confidence and humor. Lastly, thanks to his persistent feedback,
I will hopefully always remember to keep the big picture in mind and not (often) bore
people with core dumps on technical details.

I would further like to thank Darko Marinov and Yves Le Traon for agreeing to be part
of my thesis committee and especially thank Darko for the feedback and guidance on
some of my work.

The choice of problems addressed by thesis has largely been influenced by industrial
cooperations. My greatest thanks here go to the colleagues from CQSE and IVU who have
helped me understand context-specific challenges in an always constructive exchange.

I am also grateful for the working environment at the chair with great students and
colleagues that I have enjoyed working with and learning from. A special shout-out to
my office mate Markus, it was my pleasure!

Finally, my utmost gratitude goes to my family and especially my wife, Lorena. I am
not sure if I could have completed the doctorate without your unconditional support and
encouragement.

v

Zusammenfassung

Problemdomäne Um sicherzustellen, dass Änderungen während der Entwicklung von
Software nicht unbeabsichtigt Fehler in das bestehende Systemverhalten eingeführt ha-
ben, werden Regressionstests in Software durchgeführt. Die einfachste Strategie für das
Regressionstesten besteht darin, nach jeder Änderung jeden Testfall in der Testsuite aus-
zuführen. Bei großen Testsuiten, begrenzten Ressourcen oder kurzen Iterationsschleifen
kann diese Strategie jedoch zu kostspielig werden. Obwohl im Rahmen zahlreicher For-
schungsarbeiten Optimierungstechniken zur Verbesserung der Kosteneffektivität des Re-
gressionstestens entwickelt wurden, kann moderne Software nur teilweise von diesen
Fortschritten profitieren. Denn industrielle Softwaresysteme sind in der Regel in mehre-
ren Programmiersprachen geschrieben, hochgradig konfigurierbar und verteilt auf meh-
rere Maschinen. Außerdem umfassen die Test-Prozesse sowohl automatisierte Tests, die
kontinuierlich ausgeführt werden, als auch aufwändige manuelle Tests.

Forschungslücke Die meisten bestehenden Optimierungsverfahren sind angesichts die-
ser herausfordernden System- und Prozesseigenschaften oft nur eingeschränkt einsetz-
bar. Denn die traditionellen Verfahren konzentrieren sich auf kleine, einsprachige und
monolithische Systeme, die in erster Linie mit automatisierten Unittests getestet wer-
den. Deshalb ist es bisher unklar, wie Verfahren gestaltet sein müssen, um diese Ein-
schränkungen zu überwinden. Dies erschwert den Einsatz und die Verbreitung der Ver-
fahren in der Praxis.

Lösungsansatz Um diese Lücke zu schließen und Forschung und Praxis zusammen-
zuführen, integriert die vorliegende Dissertation Optimierungsverfahren mit System-
und Prozesseigenschaften, die sich in der Praxis für verschiedene Industriepartner als re-
levant erwiesen haben. Insbesondere werden dafür bestehende und neue Priorisierungs-
und Selektionsansätze für Regressionstests angepasst und entwickelt, um Herausforde-
rungen im Zusammenhang mit diesen Eigenschaften adäquat zu adressieren. Dafür kom-
men sowohl Ansätze der Programmanalyse zum Einsatz, als auch Methoden, die Infor-
mationen nutzen, welche ohnehin im Test-Prozess anfallen und somit direkt verfügbar
sind. Die Kosteneffektivität der entwickelten Techniken wird in groß angelegten empiri-
schen Studien in Open-Source und industriellen Softwareprojekten evaluiert.

Beitrag Die Ergebnisse der Dissertation zeigen, dass die vorgestellten Techniken und
Methoden den Aufwand für Regressionstests und die Feedbackzeit signifikant reduzie-
ren und gleichzeitig das Risiko von nicht erkannten Fehlern minimieren. Je nach kon-
textspezifischen Anforderungen an die Fehlererkennung, können Techniken, die rele-
vante System- und Prozesseigenschaften berücksichtigen, mittels leichtgewichtigen Heu-
ristiken oder tiefgreifenderer dynamischer Programmanalyse erfolgreich implementiert
werden. Aufgrund dieser ermutigenden Ergebnisse werden bereits einige der in dieser
Arbeit entwickelten Techniken erfolgreich in einem industriellen Kontext eingesetzt.

vii

Abstract

Problem Domain Regression testing is regularly performed on software systems to en-
sure that changes have not inadvertently affected existing system behavior. The simplest
regression testing strategy is to execute every test case in the test suite after each change.
However, with large test suites, limited testing resources, and short software delivery
life-cycles this strategy may become too costly to realize. Although significant research
on Regression Test Optimization (RTO) has proposed numerous techniques to improve
the cost-effectiveness of regression testing, modern software can only partially benefit
from these advances: Industrial software systems are commonly written in multiple pro-
gramming languages, highly configurable and distributed, and require testing processes
that involve both continuous automated and effort-intense manual testing.

Research Gap However, most traditional RTO techniques are limited in presence of
these challenging system and process characteristics. These techniques focus on small,
monolingual, and monolithic systems that are primarily tested with automated unit level
tests. It is unclear how RTO techniques can overcome these limitations which hinders the
adoption of RTO in practice.

Solution To fill this gap and bring research closer to practice, this doctoral thesis in-
tegrates industry-relevant system and process characteristics that affect regression test-
ing into RTO techniques. Particularly, we adapt existing and present novel Regression
Test Prioritization (RTP) and Regression Test Selection (RTS) approaches to adequately
address challenges related to these characteristics by harnessing program analysis ap-
proaches or utilizing information that is readily available from testing processes. We
evaluate the cost-effectiveness of the developed techniques in large-scale empirical stud-
ies across years of development history in open-source and industrial software projects.

Contribution We find that the presented techniques and methods significantly reduce
regression testing effort and developer feedback time while minimizing the risk of miss-
ing bugs. Our results show that, depending on context-specific requirements for failure
detection, cost-effective RTO techniques that are aware of relevant system and process
characteristics can be successfully implemented using either lightweight heuristics or so-
phisticated dynamic program analysis. Due to these encouraging results, some of the
techniques developed in this thesis are used by developers on a daily basis in an indus-
trial context.

ix

Contents

Acknowledgments v

Zusammenfassung vii

Abstract ix

I. Introduction and Background 1

1. Introduction 3
1.1. Industry-Relevant Context Factors Affecting Regression Testing 4

1.1.1. System Characteristics Affecting Regression Testing 5
1.1.2. Process Characteristics Affecting Regression Testing 6

1.2. Problem Statement and Research Gaps . 7
1.3. Solution . 8
1.4. Contributions . 9
1.5. Outline . 12

2. Background 13
2.1. Foundations and Definitions . 13

2.1.1. Software Testing . 13
2.1.2. Defects, Faults, Errors, and Failures 13
2.1.3. Regression Testing . 14
2.1.4. Regression Test Selection . 14
2.1.5. Regression Test Prioritization . 14

2.2. Quality Criteria . 15
2.2.1. Regression Test Selection . 15
2.2.2. Regression Test Prioritization . 16

2.3. Overview of Existing Techniques . 17
2.3.1. Regression Test Selection . 17
2.3.2. Regression Test Prioritization . 20

II. Methodological and Technical Solutions 23

3. Build System Aware Multi-language Regression Test Selection in CI 25

4. BinaryRTS: Cross-language Regression Test Selection for C++ Binaries in CI 27

5. Empirically Evaluating Readily Available Information for RTO in CI 29

6. Challenges in RTS for E2E Testing of Microservice-based Software Systems 31

xi

Contents

7. How Can Manual Testing Processes Be Optimized? 33

III. Related Work and Conclusion 35

8. Related Work 37
8.1. System Characteristics Affecting Regression Testing 37

8.1.1. Multilingual Software . 37
8.1.2. Configurable Software . 39
8.1.3. Distributed Systems . 40

8.2. Process Characteristics Affecting Regression Testing 41
8.2.1. Continuous Integration Testing . 41
8.2.2. Manual Testing . 42

9. Conclusion 45
9.1. Summary . 45
9.2. Limitations . 46
9.3. Outlook and Future Work . 48

A. Appendix 51
A.1. Overview . 51
A.2. Copyright Policies by Publishers . 52
A.3. Publications . 58

A.3.1. Build System Aware Multi-language Regression Test Selection in CI 58
A.3.2. BinaryRTS: Cross-language Regression Test Selection for C++ Bina-

ries in CI . 69
A.3.3. Empirically Evaluating Readily Available Information for RTO in CI 82
A.3.4. Challenges in RTS for E2E Testing of Microservice-based Software

Systems . 97
A.3.5. How Can Manual Testing Processes Be Optimized? 103

Bibliography 115

List of Acronyms 131

List of Figures 133

xii

Part I.

Introduction and Background

1

1. Introduction
This chapter motivates the topic of the doctoral thesis, outlines gaps in the
literature, and lists the contributions this thesis makes to address the gaps.
Parts of this chapter have appeared in peer-reviewed publications [33–37, 48,
58, 169], co-authored by the author of this thesis.

Software vastly influences wide areas of public and private life: Industry, governments,
and entertainment equally rely on a continuously growing body of software products. In
light of the immense importance of software, assessing the risk of software failures and
thus the quality of software becomes inevitable. According to a recent report by the
Consortium for Information & Software Quality, the cost of poor software quality in the US
was estimated at 2.41 trillion USD in 2022 [76, p. 3]. The largest fraction of costs stems
from operational software failures (1.81 trillion USD). Infamous examples from the past
decades include the crash of the Ariane 5 rocket [98], deadly accidents in the medical radi-
ation therapy machine Therac-25 [92], defective smart Nest thermostats [11], and leaking
sensitive information due to the widespread Heartbleed vulnerability [26]. Since such
operational failures can have severe consequences, detecting and fixing them is approx-
imately ten times more expensive than catching them during software development [75,
p. 25]. Therefore, early and comprehensive software testing is essential to reduce the risk
of critical failures and ultimately enable confident delivery of software.

Software testing is performed to assess the quality of a piece of software and to verify
the correctness of its implementation. Finding potential bugs using testing techniques is
costly because test cases must be designed, executed, and maintained, and yet no testing
technique can give any guarantees that the software is bug-free [136]. The World Quality
Report 2020-21 estimates costs for testing and quality assurance at 22% of the total IT
budget in 2020 [126, p. 40].

Regression testing depicts an aspect of testing concerned with revealing bugs in evolv-
ing software systems. Specifically, when changes such as source code modifications are
introduced to an existing System Under Test (SUT), regression testing is performed to
ascertain that these changes did not inadvertently break existing system behavior [91].
These regular checks for software regressions, i.e., bugs affecting existing functionality,
can help in detecting declining quality early and reacting accordingly [79]. Regression
tests that are run against the SUT are typically collected in test suites, which co-evolve
with the code base [144].

When performing regression testing, one simple strategy, namely retest-all, is to exe-
cute every test case in the test suite after each change. However, with large test suites,
limited infrastructure or human resources, and shorter software (delivery) life-cycles as
proposed by agile software development methodologies, retest-all may become too costly
and thus difficult if not impossible to realize [172]. For instance, if retest-all takes hours
or even days to complete, this can substantially slow down development and incur high
costs for running potentially irrelevant tests. Since the late 1970s, these outlined chal-
lenges have been subject to research on Regression Test Optimization (RTO) [42]. Particu-

3

1. Introduction

larly, techniques have been proposed for Test Suite Minimization (TSM), Regression Test
Selection (RTS), and Regression Test Prioritization (RTP) which all aim to improve the
cost-effectiveness of regression testing. The shared motivation behind these techniques
is to optimally harness an existing pool of test cases with respect to certain cost-critical
properties, e.g., early fault detection or low testing effort [172].

1.1. Industry-Relevant Context Factors Affecting Regression
Testing

To support the adoption of RTO in practice, the consideration of industry-relevant con-
text factors in the design of RTO techniques is becoming ever more important [1, 23]. On
the one hand, testing processes have changed in recent years as the extent and frequency
of regression testing has increased significantly due to rapidly evolving code bases and
continuous testing using Continuous Integration (CI) practices [32]. Google reported on
average one code commit to their code base per second, triggering more than 150 million
test executions every day in 2019 [89]. On the other hand, modern software systems are
becoming more complex as they are developed using multiple programming languages
with cross-language links, are to a large degree configurable, and are often highly dis-
tributed [14, 107, 135, 178]. These system characteristics require elaborate and costly
integration or (manual) system testing across language or system boundaries, which, in
combination with the highly iterative development and testing processes, increases the
relevance of cost-effective regression testing.

However, existing traditional RTO techniques are unsuitable for the described modern
software systems and testing processes as they are often limited to small, monolingual,
and monolithic systems tested primarily with automated unit tests [14]. As Ali et al. [1]
point out in their 2019 study on the search for industry-relevant regression testing research,
several context factors affect regression testing that are critical to the applicability and rel-
evance of RTO techniques. Specifically, the authors group “characteristics of an industrial
environment that make regression testing challenging” [1, p. 2036] into system-, process-
and people-related context factors. Following their work, this doctoral thesis addresses
system- and process-related context factors by integrating system and process characteris-
tics into regression testing research. By embedding these characteristics into cost-effective
RTO techniques, the goal of this thesis is to advance the state-of-the-art, facilitate applica-
bility, and ultimately bring RTO research closer to practice. People-related context factors
include organizational and cognitive factors which have rarely been studied in RTO re-
search [1]. As we focus on technical aspects around system and process characteristics,
we do not explicitly study people-related context factors in this thesis, but still report
on experiences we made when adopting RTO in practice and developer feedback we
received from industry partners.

To structure system and process characteristics that affect and challenge regression test-
ing, we provide a conceptual framework in Figure 1.1. Therein, we group system and
process characteristics by the system- and process-related context factors provided in the
taxonomy developed by Ali et al. [1]. To pick an example, the system characteristic mul-
tilingual belongs to the system-related context factor complexity. The framework does not
aim to be exhaustive and can easily be extended by further characteristics that affect re-
gression testing, which we show with several examples (some taken from Ali et al. [1]).

4

1.1. Industry-Relevant Context Factors Affecting Regression Testing

Context factors identified by Ali et al.

Characteristics addressed by this thesis

Further example characteristics

Characteristics not mentioned in the work of
Ali et al. are written in italics

Integrating System and Process
Characteristics into RTO

System Process

Size Complexity Type Testing Process Test Technique

Large-scale Multilingual

Configurable

Distributed CI Testing Manual Testing

EmbeddedMedium-scale CombinatorialRelease

HeterogeneousSmall-scale

Product Line

Real-time

Database-driven

Model-based

Scenario-based

Waterfall

Pre-submit

Figure 1.1.: Conceptual framework of system and process characteristics affecting regres-
sion testing. We structure the characteristics by the context factors identified
by Ali et al. [1].

Within this thesis, we address system and process characteristics that have emerged as
especially relevant from the close cooperation and discussion with our industry partners
IVU Traffic Technologies1 and CQSE2. In the following, we describe the characteristics
tackled by this thesis in more detail. In Section 9.3, we discuss future work with regard
to other characteristics.

1.1.1. System Characteristics Affecting Regression Testing

System characteristics concern the nature of the SUT. In alignment with Ali et al. [1],
we group the system characteristics studied in this thesis into the three system-related
context factors size, complexity, and type.

Size The main industry-relevant concern regarding the size of a system is that RTO
techniques need to be applicable in large-scale software systems with millions of lines
of code [1]. Although RTO is especially relevant in large-scale systems, practitioners
report that existing RTO techniques may be prohibitively expensive to apply in these
contexts [107, 118].

Complexity Various system characteristics contribute to the complexity of a system,
with multilingual (or multi-language) and configurable software being subject of this thesis.
Studies published in 2015 and 2017 [115, 116] found that software projects are on average

1IVU Traffic Technologies is one of the world’s leading providers of public transport software solutions.
2CQSE develops a continuous software analysis platform and offers software quality consulting.

5

1. Introduction

written in five to seven General-Purpose Languages (GPLs) and Domain-Specific Lan-
guages (DSLs). While cross-language links are useful to develop performance-critical
components in native code (C or C++) or domain-specific tasks using DSLs such as
SQL, they are reported to increase complexity as program comprehension and analysis
in multi-language software is more difficult [97, 115, 117]. Higher complexity increases
the risk of bugs, which in turn makes (regression) testing particularly important [73, 93,
94, 116]. Unfortunately, traditional RTO techniques typically rely on language-specific
program analysis and are therefore incapable of collecting relevant information across
language boundaries, which makes them impractical for multilingual software [16, 36,
107].

Furthermore, modern software is often configurable through non-code artifacts which
can impact regression testing [157, 179]. These non-code artifacts may be used for con-
figuration of the system or the test environment, or to define test input and expected
output. The impact can be significant, given that, on average, up to 50% of files in open-
source software are non-code artifacts and one third of all commits in the Version Con-
trol System (VCS) includes changes to these artifacts [10]. Existing RTO techniques often
rely on the assumption that testing conditions remain the same except for source code
changes [142, 144, 145, 147]. However, this assumption does not hold in the presence of
non-code changes [16, 125, 179].

Type The type of the system may limit the applicability of RTO approaches. One type
of system that challenges RTO are distributed systems, where multiple processes may run
on different physical machines [14, 178]. Corresponding regression test suites will typi-
cally include integration- or system-level tests to check for more complex interaction and
integration bugs between processes or machines [14, 90]. As most RTO techniques focus
on single-process, monolithic systems, they are limited in distributed systems [101, 124,
178].

1.1.2. Process Characteristics Affecting Regression Testing

Process characteristics that affect regression testing include aspects of the testing or de-
velopment process [1]. Ali et al. [1] identify testing process and test technique as process-
related context factors.

Testing Process For the testing process, this thesis addresses continuous regression test-
ing through CI practices as one industry-relevant process characteristic [1]. CI processes
have been popularized by agile development methodologies such as Extreme Program-
ming [6] to differentiate from traditional testing processes (e.g., Waterfall) that test se-
quentially at different levels and thus have a long feedback cycle and risk late integration
problems [65]. According to various studies on RTO in CI testing, with large code bases
and test suites, CI pipeline execution time is driven by compilation, (static) analysis, and
testing efforts, which can slow down iterative development [32, 37, 107, 157]. Therefore, it
is essential for adequate RTO techniques to consider how regression testing is embedded
into the CI process.

6

1.2. Problem Statement and Research Gaps

Test Technique Regarding the applied test technique, one widely used technique is
manual testing which is particularly costly and involves significant human effort [48].
Reasons why test automation is undesired, non-trivial, or impossible are manifold: hu-
man testers may detect other software faults than automated tests [21], test automation
might be too costly [166] or too complex [13], or manual testing may be required due to
legal regulations [48]. Despite the fact that manual testing is widespread and is unlikely
to be entirely replaced in near future, regression testing research focuses on automated
unit-level testing while fewer works exist for manual (system) testing [14, 48]. Hence,
regression test suites largely consisting of such manual (system) tests cannot yet fully
benefit from RTO advancements. Paradoxically, due to involved high manual testing ef-
fort, it is precisely these tests that impede the development process and must therefore
be optimized [48].

1.2. Problem Statement and Research Gaps

The applicability and adoption of RTO is challenged by system and process characteris-
tics in industrial software systems. Related to this practical problem, this thesis addresses
the following research gaps (denoted by G):

• System Characteristics

– G1: Multi-language RTO. Modern software is multilingual and regression
testing is performed across language boundaries. However, most existing RTO
techniques employ language-specific program analysis which restricts them to
a single language. This is especially relevant for RTS, if no failures should be
missed by the test selection algorithm. Yet, with incomplete information on
which test depends on what parts of the multilingual code base, RTS safety
guarantees are limited [37]. To our knowledge, there exists one RTS technique
that goes beyond language boundaries [16], but is limited to Linux systems.

– G2: Language-agnostic RTO. An alternative RTO approach for multi-language
software is to rely on purely language-agnostic information. Various studies
demonstrate the effectiveness of respective RTP and unsafe RTS techniques
that rely on rule-based heuristics or Machine Learning (ML). However, these
existing techniques often include project- or organization-specific information
that is not available in other contexts, making them difficult to transfer and
compare. In addition, results in the literature are equivocal about the cost-
effectiveness trade-offs and their sensitivity, and lack empirical guidance on
how practitioners should calibrate these techniques [34].

– G3: Non-code Artifacts. Non-source-code files are commonly used to con-
figure systems or to reflect test input, expected test output, or test configura-
tion and may thus affect test results [36, 157, 179]. Existing RTS techniques
that track non-code changes are yet limited to projects running on the Java
Virtual Machine (JVM) [46, 125] or on Linux [16], while approaches for other
environments (e.g., for closed-source operating systems or native binaries) are
missing.

7

1. Introduction

– G4: End-to-End Testing Microservices. In distributed systems, e.g., soft-
ware with microservice architectures, consideration of interface and interac-
tion bugs is essential. Hence, regression testing requires system or end-to-end
tests that operate across service boundaries. However, the few existing RTS
techniques for web applications or services are limited [101, 124, 178], as they
(1) instrument server code, which is incomplete for end-to-end testing of mi-
croservices where clients may contain extensive business logic and orchestrate
requests to multiple services, (2) target one specific network communication
protocol, and (3) lack analysis of instrumentation overhead and effectiveness
of collection strategies for per-test dependencies.

• Process Characteristics

– G5: Build System Integration. Through CI practices, regression testing is
tightly coupled to building the software, as CI pipelines typically first compile
and link the code before executing tests. Therefore, RTO techniques ought to
consider that (1) the configuration of the build system may impact the test
results (e.g., replacing run-time dependencies), and (2) if only parts of the test
suite need to be executed, valuable time can be saved by instructing the build
system to only build relevant code parts [37]. One existing RTS technique by
Shi et al. [157] considers these two aspects, but is rather imprecise in the case
of build system configuration changes (1).

– G6: Transfer to Manual Testing. Manual regression testing is widely used and
because of the costly human effort involved, there is a great need and potential
for optimization. However, unlike automated regression testing, the process
for manual testing is often decoupled from the VCS or CI system and per-
formed on production builds without instrumentation [48]. It is unclear how
available data can be leveraged to transfer and implement RTO techniques and
how to integrate them into manual testing processes.

1.3. Solution

This thesis aims to bring state-of-the-art research closer to practice by integrating system
and process characteristics that affect regression testing into RTO approaches. The goal
is to develop suitable, cost-effective RTO techniques that reduce developer feedback time
and testing effort while still reliably detecting bugs.

The solution proposed in this thesis consists of methodological and technical parts that
tackle the shortcomings of contemporary RTO techniques identified in the research gaps.
Our solution comprises methodological guidance on how to (1) harness readily available
VCS and CI metadata to construct language-agnostic RTP and unsafe RTS approaches [34],
(2) transfer RTO from automated to manual regression testing [48], and (3) overcome
challenges when implementing RTS for end-to-end testing in distributed microservice
systems [33]. From a technical perspective, this thesis presents novel RTS techniques
which rely on static and dynamic program analysis [33, 35, 37]. These techniques advance
the state-of-the-art by providing practical approaches to consider (1) multi-language soft-
ware and non-code artifacts using dynamic binary instrumentation [35] and probe-based

8

1.4. Contributions

system call tracing [37], and (2) build system configuration through module-level static
dependency analysis [37].

To ensure industry-relevance and applicability of the developed solution, we evaluate
its cost-effectiveness in large-scale empirical studies and case studies on years of version
control history in open-source and industrial projects. Throughout the course of this
thesis, we have been involved with engineers, testers, and managers from 18 companies
to discuss the research ideas embodied in this thesis [33, 48, 169]. As of today, some of the
developed RTS techniques have been deployed in a CI context where they are used by
developers on a day-to-day basis for more than a year at IVU, one of our closest industry
collaborators [35, 37].

1.4. Contributions

The contributions of this dissertation are constituted by the extent to which the research
gaps are filled. Below, we describe the contributions this dissertation makes to fill the
gaps in detail, whereas the limitations and threats to validity of the achieved results of
this thesis are discussed in Section 9.2:

• To fill G1, we contribute two RTS techniques that are aware of cross-language links
and thereby suitable for multi-language software. These techniques harness dy-
namic program analysis to collect per-test execution traces across language bound-
aries at file or function granularity, depending on the required selection precision.
The underlying analysis supports various operating systems which eases transfer-
ability. Using these techniques, we were able to effectively reduce the test duration
on average by 42%–72% compared to retest-all for pull requests in CI environments
at IVU without failing to select any real test failures [35, 37].

• To fill G2, we contribute a methodology to build and evaluate language-agnostic
approaches for RTP and unsafe RTS exclusively using readily available CI and VCS
metadata. We empirically evaluate these approaches’ cost-effectiveness sensitivity
across 23 open-source and industrial software projects and find that (1) sometimes
limiting training data is beneficial, (2) test history is a particularly good predic-
tor for future test failures, and (3) complex ML models are often outperformed by
simple and inexpensive heuristics. Across all studied software projects, the best
approaches found using our methodology significantly outperform RTP baselines
and save on average 84% of testing time whilst detecting 90% of test failures for
unsafe RTS [34].

• To fill G3, we contribute two RTS techniques that use dynamic program analy-
sis to track which test accesses which non-code file. In particular, we harness (1)
lightweight probe-based system call tracing and (2) binary instrumentation to mon-
itor which files are opened by processes executing test cases. Again the techniques
support various operating systems and we can use the resulting file-level per-test
execution traces to select tests in case a non-code file is modified [35, 37].

• To fill G4, we contribute a dynamic RTS technique targeting end-to-end testing in
distributed microservice-based software systems. Therefore, we combine code in-
strumentation with polyglot distributed tracing frameworks for protocol-agnostic

9

1. Introduction

tracing of test execution across microservices and clients. We evaluate the instru-
mentation overhead on a microservice benchmark and find that most overhead oc-
curs at service startup and is mainly caused by the distributed tracing framework.
We further describe challenges in applying our technique in an initial case study
on an open-source microservice system. The results show that in contrast with au-
tomated unit tests, class-level granularity of test traces is too coarse grained for
RTS of end-to-end tests. Across 12 studied software versions, method-level RTS
can exclude 10%–50% of the end-to-end tests, but only if test cases are not under-
specified [33].

• To fill G5, we contribute a build system aware RTS technique. Contrary to existing
RTS techniques, our technique does not assume a fully compiled workspace to be
readily available for test selection. Instead, it operates directly on the source code
and determines a minimum set of code modules that are (transitively) affected by
changes or contain affected regression tests and must therefore be compiled for test-
ing. Additionally, in the case of build system configuration changes, e.g., changes to
run-time dependencies, our technique selects test cases affected by these changes.
We were able to reduce end-to-end execution time for Java CI pipelines (including
building, analyzing, and testing pull requests) on average by 50%–63% at IVU [37].

• To fill G6, we conduct a developer survey among 38 testing professionals from 16
companies and derive methodological guidelines on how to transfer optimization
techniques from automated testing to manual testing [48]. We further demonstrate
the usefulness of these optimization guidelines in two industrial case studies where
we identify levers to reduce test feedback time and test creation efforts. Addition-
ally, we perform a small case study on RTS for manual end-to-end tests (see con-
tribution for G4), where we find that if manual tests are imprecisely specified, this
effectively leads to all tests being selected even for unrelated changes [33].

The contributions made by this publication-based dissertation have previously ap-
peared in peer-reviewed publications. These are listed below and visualized in Figure 1.2,
where we associate each publication to the research gaps it addresses, again grouped into
system and process characteristics:

P1 Daniel Elsner, Roland Wuersching, Markus Schnappinger, Alexander Pretschner,
Maria Graber, René Dammer, and Silke Reimer. Build System Aware Multi-language
Regression Test Selection in Continuous Integration. Proceedings of the International
Conference on Software Engineering: Software Engineering in Practice, pages 87–
96, 2022

P2 Daniel Elsner, Severin Kacianka, Stephan Lipp, Alexander Pretschner, Axel Haber-
mann, Maria Graber, and Silke Reimer. BinaryRTS: Cross-language Regression Test
Selection for C++ Binaries in CI. Proceedings of the International Conference on Soft-
ware Testing, Verification and Validation, pages 327–338, 2023

P3 Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. Empirically
Evaluating Readily Available Information for Regression Test Optimization in Continuous
Integration. Proceedings of the International Symposium on Software Testing and
Analysis, pages 491–504, 2021

10

1.4. Contributions

Integrating System and Process
Characteristics into RTO

System Process

G2: Language-
agnostic RTO

P3

G4: E2E Testing
Microservices

P4

G1: Multi-
language RTO

P1 P2
G5: Build System

Integration

P1

G3: Non-code
Artifacts

P1 P2

G6: Transfer to
Manual Testing

P4 P5

Figure 1.2.: Research gaps and associated publications that constitute the contributions
of this doctoral dissertation

P4 Daniel Elsner, Daniel Bertagnolli, Alexander Pretschner, and Rudi Klaus. Chal-
lenges in Regression Test Selection for End-to-End Testing of Microservice-based Software
Systems. Proceedings of the International Conference on Automation of Software
Test, pages 1–5, 2022‡

P5 Roman Haas*, Daniel Elsner*, Elmar Juergens, Alexander Pretschner, and Sven
Apel. How Can Manual Testing Processes Be Optimized? Developer Survey, Optimization
Guidelines, and Case Studies. Proceedings of the Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pages 1281–1291, 2021

In addition to these publications, the author of this thesis has co-authored further pa-
pers which tackle related problems and have thus contributed to the idea of this thesis,
but are not explicitly included:

• Daniel Elsner, Roland Wuersching, Markus Schnappinger, Alexander Pretschner.
Probe-based Syscall Tracing for Efficient and Practical File-level Test Traces. Proceedings
of the International Conference on Automation of Software Test, pages 126–137,
2022

• Roland Wuersching*, Daniel Elsner*, Fabian Leinen, Alexander Pretschner, Georg
Grueneissl, Thomas Neumeyr, and Tobias Vosseler. Severity-Aware Prioritization of
System-Level Regression Tests in Automotive Software. Proceedings of the International
Conference on Software Testing, Verification and Validation, pages 398–409, 2023

‡Note that publication P4 is not a core publication in this publication-based thesis.
*Both authors contributed equally

11

1. Introduction

• Simon Hundsdorfer*, Daniel Elsner*, Alexander Pretschner. DIRTS: Dependency
Injection Aware Regression Test Selection. Proceedings of the International Conference
on Software Testing, Verification and Validation, pages 422–432, 2023

1.5. Outline

The outline for the remainder of this thesis is as follows: Chapter 2 provides relevant
definitions and background on regression testing research and describes state-of-the-art
RTO techniques. Chapters 3–7 present the methodological and technical solutions to fill
the aforementioned research gaps. Existing work that is related to the contributions made
by this thesis is discussed in Chapter 8. Finally, in Chapter 9, limitations of this thesis and
future directions of research are discussed, and conclusions are drawn.

12

2. Background

This chapter establishes an understanding of the background of this thesis. It
introduces fundamentals, definitions, and quality criteria related to regression
testing and provides an overview over relevant techniques for optimizing re-
gression testing from the literature. Parts of this chapter have appeared in
peer-reviewed publications [33–37, 48, 58, 169], co-authored by the author of
this thesis.

2.1. Foundations and Definitions

2.1.1. Software Testing

Software testing is a software development activity that intends to assess the quality of
a SUT by checking if the code correctly “does what it was designed to do” [122, p. 2]
and to detect failures4. Therefore, test cases are run against the SUT, where a set of test
cases is called a test suite. Abstractly, a test case consists of a set of program inputs, certain
execution conditions, and expected program outputs [59, 65]. After the test is executed,
a test report is typically created that contains the test verdicts which reflects if a test case
failed or passed [57, 59].

Software testing can be done at different levels of abstraction, namely the unit, inte-
gration, and system level [65]. In the thesis, we stick to the IEEE definitions [59], but
definition boundaries between testing levels are not unequivocal and sometimes blurry
in the literature [162]: Unit testing refers to testing of “software units or groups of related
units” [59, p. 79]. Depending on the context of the system, a unit could be a function,
class, component, or subsystem. Integration testing refers to testing combinations of units
or components “to evaluate the interaction between them” [59, p. 41]. Testing at the in-
tegration level helps detecting defects in interfaces between potentially independently
developed components. System testing refers to testing a “complete, integrated system to
evaluate the system’s compliance with its specified requirements” [59, p. 74]. Sometimes
system testing is also referred to as end-to-end testing, as entire user scenarios can be tested
in an end-to-end manner.

2.1.2. Defects, Faults, Errors, and Failures

Following Pretschner’s [136] and Holling’s [57] terminology, we use software defect as an
umbrella term for faults, errors, or failures in this thesis. Accordingly, a fault is a seman-
tically incorrect piece of code (commonly also referred to as bug). An error is provoked
by a fault and depicts an incorrect internal program state. An error may in turn lead to a
failure which reflects an observable difference between the expected and actual program

4While this description applies to dynamic, functional software testing, which is the subject of this thesis,
there are other forms of testing that statically or dynamically examine (non-)functional quality aspects.

13

2. Background

behavior (cf. [85]). A failing test case reveals a failure, hence, we will refer to them as test
failures.

2.1.3. Regression Testing

In evolving software systems, regression testing involves testing the program after it has
been modified to “re-establish our confidence that the program will perform according to
the (possibly modified) specification” [91, p. 60]. The simplest regression testing strategy
is to execute every test case in the regression test suite after each change, commonly
referred to as retest-all. However, with large test suites, high testing frequency, or limited
testing resources, retest-all is often too costly [172].

These outlined challenges have been subject to research on RTO at least since the late
1970s [42]. RTO can be categorized into three major research branches: TSM, RTS, and
RTP. These share not only the objective to optimize the cost-effectiveness of regression
testing, but also the proposed solution approaches exhibit overlap [172]. As this thesis
contributes to RTS and RTP (and not TSM) research, we provide definitions of the un-
derlying problems for RTS and RTP in the next two subsections. Within this document,
we collectively refer to techniques addressing the defined problems as RTO techniques
or regression testing techniques, which aligns with the terminology used by Yoo and Har-
man [172].

2.1.4. Regression Test Selection

The goal of RTS is to reduce testing effort by executing only a subset of the regression test
suite during software evolution, while still selecting (ideally) all fault-exposing tests (see
Section 2.2.1 for background on RTS quality criteria). More formally, given a program P ,
the modified version of P , P ′, and a test suite T , the test case selection problem is defined
as follows [146, 172]:

Definition 2.1.1 (Test Case Selection Problem). Select a subset of tests T ′ ⊆ T to ex-
ecute on P ′.

T can be a test suite consisting of (1) existing test cases developed for testing P (cor-
rective regression testing), as well as (2) new test cases to check the correctness of P ′

(progressive regression testing) [91, 172].

2.1.5. Regression Test Prioritization

The goal of RTP is to find the best permutation of the execution order of a test suite with
respect to relevant properties, e.g., earliness of fault detection [172]. This way, RTP can
increase the testing effectiveness, if regression testing is prematurely halted [148]. More
formally, given a test suite T , the set of all permutations of T , PT , and a function f
from PT to real numbers, f : PT → R, the test case prioritization problem is defined as
follows [105, 148, 172]:

Definition 2.1.2 (Test Case Prioritization Problem). Find a test suite ordering T ′ ∈
PT such that (∀T ′′)(T ′′ ∈ PT ∧ T ′′ 6= T ′)⇒ f(T ′) ≥ f(T ′′).

14

2.2. Quality Criteria

The definition of f depends on context-specific goals of prioritization, such as early
fault detection or meeting some code coverage criterion earlier [148]. In contrast with
RTS, RTP is not necessarily performed after modifications have been introduced between
two program versions, but can be performed at arbitrary points in time.

2.2. Quality Criteria

To assess the quality of an RTO technique, different criteria and evaluation metrics are
used across research. We introduce the most relevant ones for RTS and RTP in the fol-
lowing.

2.2.1. Regression Test Selection

Rothermel and Harrold [143] propose a framework to evaluate RTS techniques consisting
of inclusiveness, precision, efficiency, generality, and accountability [143]:

• Inclusiveness measures to what degree modification-revealing test cases, i.e., tests
which produce a different output on the modified program, have been selected by
the RTS technique. If all modification-revealing tests are selected, the technique is
considered to be safe, as it implies that all tests that potentially expose a regression
fault are safely selected.

• Precision measures how well a technique manages to exclude irrelevant test cases
from the set of selected tests. If an RTS technique does not select any non-modification-
revealing test cases, it is considered to be precise.

• Efficiency measures the involved space and time for applying the RTS technique.
Thus, efficiency depends on the computational (analysis) effort required to calculate
the test selection for the changes introduced between two program versions.

• Generality measures how well an RTS technique works on arbitrarily complex pro-
gramming language constructs (e.g., procedures, object-oriented structures), and in
different modification scenarios (e.g., change, deletion, addition).

• Accountability measures to what degree an RTS technique helps to maximize struc-
tural coverage5 with selective testing, which “can aid in the evaluation of test suite
adequacy” [143, p. 201].

RTS techniques typically consist of three phases: (1) the analysis phase, where the tests
are selected, (2) the execution phase, which executes the selected tests, and (3) the collec-
tion phase, where relevant information for the next analysis phase is collected [46]. Since
all phases may impact the efficiency of an RTS technique, Gligoric et al. [46] suggest to
measure the end-to-end time comprising the execution time for all three phases. Since this
reflects developers’ perceived feedback time more realistically, several studies have re-
ported end-to-end time [43, 45, 46, 87, 88, 179]. Notably, if RTS is used for pull requests6

5Structural (code) coverage refers to the percentage of the program’s statements or expressions, i.e., struc-
tural elements, that were executed by a test suite [5].

6A pull request (or merge request) is a term often used in source code version control that refers to a set of
changes that a developer requests to integrate or merge into the code base [37].

15

2. Background

in a distributed VCS setting, the collection phase is sometimes excluded from the end-
to-end time, as information for RTS is independently collected (i.e., off-line [46, 174], for
example every night) and centrally provided to all pull requests, and thus does not affect
feedback time [35, 37].

2.2.2. Regression Test Prioritization

The most common way to assess the quality of RTP techniques is the Average Percentage
of Faults Detected (APFD) metric, where Rothermel et al. [149] and Elbaum et al. [30]
were among the first to use it. Intuitively, the APFD metric measures how early in the
testing process faults are detected by a prioritized test suite. Early detection of faults
leads to shorter feedback time for developers who can then start fixing problems earlier.
More formally, for a prioritized test suite T ′ of n test cases that reveals m faults, the APFD
is defined as

APFD = 1− TF1 + TF2 + ...+ TFm

nm
+

1

2n
(2.1)

where TFi denotes the priority rank of the first test case that reveals the i-th fault [31,
149]. An APFD value close to 1 means that T ′ detects most faults rather early, whereas a
value close to 0 means that T ′ detects most faults rather late. One caveat when applying
the APFD metric is that information about detected faults is required. This is trivial if
faults are seeded. However, in practice often only observed test failures are reported and
a mapping from failures to faults is missing. Therefore, prior RTP research commonly
assumes a one-to-one failure-to-fault mapping which essentially translates the APFD to
the average percentage of detected failures [34, 112, 134, 155]. As the same fault can trigger
multiple failures, this assumption can potentially distort evaluation results [134].

Since the severity of faults and test execution costs may significantly differ, Elbaum
et al. [29] extended the APFD metric to incorporate varying test case and fault severity
costs. The resulting Average Percentage of Faults Detected per Cost (APFDC) metric is
defined as

APFDC =

∑m
i=1(fi × (

∑n
j=TFi

tj − 1
2 tTFi))∑n

i=1 ti ×
∑m

i=1 fi
(2.2)

where t1, t2, ..., tn reflect the test execution costs and f1, f2, ..., fm the fault severities [29].
In general, the cost-aware APFDC metric is considered to be more realistic than the cost-
unaware APFD metric and thus preferred in more recent research, albeit often with equal
fault severities [18, 134]. The intuition behind the APFD and APFDC metric is best il-
lustrated by drawing the gain curve as shown in Figure 2.1, where the APFD represents
the area under the gain curve. Consequently, for the APFDC , the x-axis would be the
percentage of total test cost, whereas the y-axis would be the percentage of total fault severity.

Notably, in capacity-constrained scenarios, where not all n test cases can be executed, a
variant of the APFD called Normalized APFD can be used [9, 139, 158]. Furthermore, in
addition to the APFD and APFDC metric, prior research has assessed the quality of RTP
techniques by the time required until detecting the first or last regression fault [18].

16

2.3. Overview of Existing Techniques

20 40 60 80 100

20

40

60

80

100

% test suite

% detected faults

T ′

T

Figure 2.1.: Illustration of the intuition underlying the APFD evaluation metric; it reflects
the area under the gain curve

2.3. Overview of Existing Techniques

Since the 1970s, RTO has been the subject of a large body of literature. Several literature
reviews on RTO research exist, providing comprehensive and detailed overviews [1, 38,
68, 70, 102, 132, 141, 172]. The goal of this section is to establish an understanding of
existing RTS and RTP techniques with a focus on more recent approaches, whereas we
discuss work that is directly related to this thesis in Chapter 8.

2.3.1. Regression Test Selection

The rough intuition behind most RTS techniques is that for each test case a set of (code)
entities is collected and if any of these has changed, all tests depending on the modified
entity are selected [174]. These per-test dependencies can either be collected through dy-
namic or static program analysis at different levels of granularity (e.g., basic blocks [52,
131, 147], functions [43, 175, 178], classes or files [16, 45, 46, 87, 88, 163], modules [156,
157, 163], or combinations thereof). In the case of dynamic program analysis, the per-
test dependencies reflect the per-test execution trace, whereas static analysis can only
approximate the run-time behavior of a test by considering all potentially executed en-
tities [174]. As described in Section 2.2.1, if no test that can potentially expose a fault is
excluded, the RTS technique is considered to be safe. RTS techniques that target safe se-
lection require comprehensive program analysis information. Unsafe RTS techniques that
rely on other types of information, such as test failure history, can be cheaper to apply in
practice (e.g., no instrumentation overhead), but may potentially miss failures (and thus
faults) as these techniques only approximate the set of relevant test cases [107]. In the
following, we group existing RTS techniques into approaches that use (1) dynamic and
(2) static program (or code) analysis, as well as (3) other information sources for test se-
lection. For each group, we explain one representative RTS technique in more detail and
list similar techniques and studies.

17

2. Background

Dynamic Program Analysis

To collect per-test dependencies at run-time, the execution of the SUT needs to be mon-
itored. Therefore, dynamic RTS techniques harness various dynamic program analysis
techniques. These instrument the SUT by adding analysis code that is executed as part
of the normal test execution [12, 127]. For instance, by instrumenting each function, a
per-test execution trace can be obtained, which contains all the functions executed by a
test. Dynamic program analysis techniques add instrumentation code at the source code,
intermediate, binary, or system level with different trade-offs regarding performance and
transferability between platforms, programming languages, and compilers [127].

In the following, we explain EKSTAZI, a dynamic RTS technique for the JVM proposed
by Gligoric et al. [45, 46] in 2015. The reason why we pick EKSTAZI is that it is one of
the few RTS techniques adopted in practice [45, 46] and because the underlying concepts
have influenced the development of a build system aware multi-language RTS technique
as part of this thesis [37] (see Chapter 3). EKSTAZI operates at the granularity level of
files, meaning that it identifies all files a test depends on during execution. Therefore,
EKSTAZI employs lightweight instrumentation of Java bytecode to track (1) implicitly ac-
cessed files (.class files containing executed Java bytecode) and (2) explicitly accessed
files (through Java standard library methods) for each test [45]. For each test, the set of
accessed files is stored together with each file’s checksum, where EKSTAZI optimizes the
checksum computation by ignoring debug information from Java bytecode. After a de-
veloper introduces a change, EKSTAZI compares all previously collected file checksums
to the current checksums and selects those tests that depend on a changed file. EKSTAZI is
thereby safe for changes to code files and, conceptually, also for external (non-code) files.
Yet, safety violations were found for EKSTAZI in case of non-code changes by RTSCHECK,
a framework for checking the correctness of RTS tools [179]. In an empirical study on 32
open-source projects, Gligoric et al. [46] show that EKSTAZI’s file-level dependency gran-
ularity is more efficient than method-level RTS for the studied Java projects.

EKSTAZI has further been transferred to .NET projects, where the resulting technique
EKSTAZI# has been shown to significantly reduce testing effort compared to module-level
RTS [163]. The idea of dynamic, file-level RTS was also adapted by RTSLINUX [16], which
goes beyond JVM boundaries by capturing files opened through system calls on Linux.
Unlike EKSTAZI, RTSLINUX instruments the system call interface and thus implements
dynamic analysis at the operating system level rather than the Java bytecode level.

Regarding more fine-grained dynamic RTS, FAULTTRACER was proposed as a method-
level technique for Java in 2013, albeit primarily focusing on fault localization for affected
failing tests [175]. A more recent dynamic technique for function-level RTS is TESTSAGE

presented in 2019, which instruments functions at the intermediate code representation
of the LLVM compiler infrastructure [99] and has been deployed at Google for testing
large-scale C++ web services [178].

Finally, Zhang [174] has proposed HYRTS, a dynamic RTS technique for the JVM that
combines file- and method-level analysis. Thereby, HYRTS achieves better precision
when only parts of a file are changed (i.e., for method-level changes), whereas analysis
overhead is still low in all other cases, e.g., file additions or deletions.

To our knowledge, open-source tools implementing dynamic RTS techniques from re-
search are EKSTAZI [45], HYRTS [174], and FAULTTRACER [175] for Java, as well as EK-
STAZI# [163] for .NET, and PYTEST-RTS [67] for Python.

18

2.3. Overview of Existing Techniques

Static Program Analysis

Static RTS techniques collect per-test dependencies by analyzing source code [130], in-
termediate representations such as Java bytecode or LLVM bitcode [43, 87, 88], or binary
code [15] without executing the tests.

In the following, we explain RTS++, a static RTS technique for C++ proposed by Fu
et al. [43] in 2019. RTS++ follows the concept of a (class) firewall [77, 90] which has in-
fluenced several static RTS techniques [60, 87, 88, 131, 165], and—as it also targets C++
software—is related to BINARYRTS, a hybrid function- and file-level dynamic RTS tech-
nique for C++ binaries developed as part of this thesis [35] (see Chapter 4). RTS++ op-
erates at the function level and collects the set of functions that each test depends on by
traversing the call graph of an LLVM bitcode file. For each function, RTS++ stores a
checksum of its body into a so-called annotated dependency graph [43]. After a developer
makes a change, RTS++ constructs the dependency graph on the new program version
and compares all checksums to the graph of the previous version to find changed func-
tions (this is slightly simplified, RTS++ also considers virtual functions) [43]. RTS++
then selects all potentially affected tests that transitively depend on any changed func-
tion. This transitive closure of affected functions can also be considered as the firewall [77].
According to Fu et al. [43], RTS++ is safe for changes in C++ code except for changes to
non-primitive global variables, function pointers, or setjump/longjump.

Also building on the idea of the (class) firewall, Legunsen et al. [87] proposed two RTS
techniques for method- and class-level test selection in Java programs. As the class-level
approach performed better in empirical studies, the authors later adapted the approach
and embodied it in the RTS tool STARTS [88]. While naturally being less precise due to
the employed static analysis, STARTS achieved comparable performance to EKSTAZI in 22
open-source projects [87].

To our knowledge, open-source tools implementing static RTS techniques from re-
search are STARTS [88], AUTORTS [130], and DIRTS [58] for Java, and SELFECTION for C
projects that compile to ARM ELF binaries [15].

Other Information Sources

Several unsafe RTS techniques exist that embed information from other sources than pro-
gram analysis into rule-based heuristics or machine-learned models to approximate the
set of relevant test cases [107]. Despite the lack of deterministic safety guarantees, un-
safe RTS techniques have been widely applied in industry [2, 4, 28, 32, 72, 89, 107, 123,
135, 158]. Notably, these techniques typically rank tests by their likelihood to fail and
then select only a subset of the test suite based on some cut-off criterion (e.g., time con-
straints) [34, 158]. In this section, we only discuss techniques that have explicitly been
used for test selection, but—since any RTP technique represents a test ranking model—
the RTP approaches discussed in the next section (see Section 2.3.2) naturally exhibit
overlap.

Here, we describe the predictive test selection approach presented by Machalica et al. [107]
in 2019. We pick this RTS technique as it has actually been deployed at industry-scale in
Facebook’s CI infrastructure, uses a variety of information sources other than program
analysis, and incorporates several ideas from other prior RTS and RTP approaches as
well as defect prediction research [14, 28, 32, 56, 158, 182]. To predict the failure of a test

19

2. Background

suite for a given changeset, the authors train an ML model on features from CI and VCS
metadata and static build dependencies. Their best-performing model uses a feature set
containing information about (1) the file extensions inside the changeset, (2) the change
history for the files in the changeset, (3) historical failure rates of the test suite, (4) the
project name (could point to project breakage patterns), (5) the number of tests in the
test suite, and (6) the minimal distance in the build dependency graph between any of
the files in the changeset and the test suite [107]. Machalica et al. [107] further report that
flaky tests, i.e., tests that non-deterministically pass and fail on the same code, can impact
the training and evaluation of unsafe RTS. We briefly discuss the impact of flaky tests on
RTO in Section 9.2.

Notably, the idea to use information about failure history to rank tests, as opposed
to only relying on program analysis, was first proposed by Kim and Porter in 2002 [71]
and was later studied for unsafe RTS in an industry-scale CI environment at Google by
Elbaum et al. [32] and Spieker et al. [158].

To our knowledge, there are no open-source tools implementing any of the unsafe RTS
techniques from research yet.

2.3.2. Regression Test Prioritization

In 1999, Rothermel et al. [149] formally defined and first studied the problem of RTP in
isolation [149], whereas Wong et al. [168] had previously experimented with prioritizing
test cases after applying RTS. The intuition behind most RTP techniques is that tests are
ranked based on some surrogate property in order to detect faults earlier in the testing
process [172]. If the test ordering achieves this goal of earlier fault detection, developers
receive feedback faster and can start debugging failures earlier. A commonly applied
baseline strategy for RTP is random ordering of tests [171]. As with the RTS techniques
described before, we group the RTP approaches by the type of information they require,
namely (1) dynamic, (2) static, or (3) other types of information.

To our knowledge, there are no open-source and ready-to-use RTP tools that imple-
ment the proposed RTP approaches at the time of writing; however, some studies have
published supplemental material and artifacts that could serve as a starting point for
implementing RTP tools.

Dynamic Program Analysis

Early RTP techniques greedily prioritize test cases based on total or additional code cov-
erage at different granularity levels (e.g., statement, branch, function) [30, 31]. The as-
sumption behind these coverage-based surrogates is that early maximization of struc-
tural coverage correlates with early maximization of fault detection, the objective of
RTP [172]. On top of coverage-based RTP approaches, Rothermel et al. [148] propose
to use mutation analysis [22, 49] to evaluate each test’s fault-exposing potential and pri-
oritize tests according to this potential [25].

Besides greedy prioritization algorithms, several search-based algorithms have been
used to implement dynamic RTP approaches [39, 95, 164]. These techniques formulate
the RTP problem as a multi-objective optimization problem, which they solve using meta-
heuristic search algorithms (e.g., genetic algorithms). Examples for competing objective

20

2.3. Overview of Existing Techniques

functions are the minimization of test execution time or test resource costs, and the maxi-
mization of code coverage or non-code (e.g., requirements) coverage, whereas optimiza-
tion constraints can be test precedence or dependence [51]. Notably, even though most
existing studies on search-based RTP use coverage information, dynamic program anal-
ysis is not required per se.

Another RTP technique utilizing dynamic program information is adaptive random
test case prioritization [61], which transfers the idea of adaptive random testing [19] to
RTP. Hereby, test cases are iteratively selected until the final test order is created. More
specifically, a test is selected from the set of available test cases based on its distance to the
set of already selected test cases. For instance, the next selected test can have the largest
minimum pair-wise distance to the already selected tests [103]. To compute the pair-wise
distance between two tests, the Jaccard distance7 between the sets of statements covered
by each test has been used in prior studies [61, 103–105].

Static Program Analysis

Since the involved dynamic program analysis to collect coverage information for RTP
can be expensive, several more lightweight RTP techniques have been proposed that use
statically obtained information [86, 112, 113, 119, 134, 152, 176].

Zhang et al. [176] and Mei et al. [119] utilize Control-Flow Graph (CFG) information
of test cases to implement method- and statement-level RTP approaches, respectively.
The idea behind using CFGs is that a test which statically depends on more statements
or methods than another test has a higher testing ability (i.e., can cover more code) and
should thus be prioritized [176]. Analogous to the greedy dynamic RTP techniques, a
total and an additional approach exist, where the former simply prioritizes tests by their
testing ability and the latter prioritizes tests by testing ability, but excluding methods (or
statements) already covered by prior tests [105].

Ledru et al. [86] propose to use string edit distances to estimate test case similarity and
prioritize tests that are most dissimilar first. Hereby, the underlying hypothesis is that
textually different test cases also execute different parts of the code and therefore can re-
veal different failures [105]. To compute the pair-wise string-distance between two tests,
prior work shows that the Manhattan (L1) distance function8 works especially well [86].

More recently, Peng et al. [134] and Mattis et al. [112, 113] have studied RTP using
Information Retrieval (IR) approaches, which was originally proposed by Saha et al. [152]
in 2015. IR-based RTP techniques rank tests according to their textual similarity to the
code diff, i.e., the modified code parts in evolving software [134]. To compute the textual
similarity between the code diff and the tests, various text vectorization algorithms from
natural language processing have been applied [134]. Although IR-based RTP techniques
can only approximate (run-time) relationships between tests and code under test—which
ideally resembles the per-test coverage information used by dynamic RTP techniques—,
IR-based techniques have been shown to outperform both, RTP approaches using dy-
namic and static program analysis [134, 152]. Notably, IR-based RTP techniques are prac-
tical and efficient: while they do need source code access, they can be designed to be
(mostly) language-agnostic and do not require any program instrumentation [152].

7The Jaccard distance between two sets A and B is defined as 1− |A∩B|
|A∪B| [61].

8The Manhattan or L1 distance between two strings x and y of length n is defined as
∑n

i=1 |xi − yi| (if
strings have different lengths, the shorter string is zero-padded) [86].

21

2. Background

Other Information Sources

The often high cost of RTP approaches based on dynamic analysis and the imprecision
of those techniques using static analysis has inspired several RTP techniques that utilize
other types of information [9, 14, 32, 71, 109, 118, 123, 158, 170].

Kim and Porter [71] were among the first to propose RTP (and unsafe RTS) based
on test failure history in resource constrained environments. They rank tests using ex-
ponential smoothing of historical failure frequency, where more recent test failures are
weighted higher than older failures [71]. The idea of using test failure history to rank
tests has inspired the development of several other surrogates or heuristics for RTP. El-
baum et al. [32] first applied history-based RTP at industry-scale in Google’s CI environ-
ment. They prioritize tests by the last time they have failed, thus favoring more recently
failed tests. The underlying hypothesis is that tests which have previously failed are
“proven performers” [51, p. 3] and execute error-prone code. Several studies have re-
ported successful results when using history-based RTP techniques based on test failure
history [109, 123, 158]. Notably, more recent research has found that the presence of flaky
tests might impede history-based RTP approaches [40, 89].

In addition to test failure history, various other information sources have been em-
ployed, e.g., VCS metadata such as the number of distinct authors [89, 118]. More recent
RTP techniques incorporate multiple information sources (e.g., dynamic or static pro-
gram information, test history, VCS metadata) and train machine-learned test ranking
models on these data [9, 14, 170]. While these ML models are reportedly accurate, they
are more expensive to develop and maintain than the rather simple rule-based heuristics,
and naturally harder to interpret by developers.

22

Part II.

Methodological and Technical
Solutions

23

3. Build System Aware Multi-language
Regression Test Selection in Continuous
Integration

Integrating System and Process
Characteristics into RTO

System Process

G2: Language-
agnostic RTO

P3

G4: E2E Testing
Microservices

P4

G1: Multi-
language RTO

P2P1
G5: Build System

Integration

P1

G3: Non-code
Artifacts

P2P1

G6: Transfer to
Manual Testing

P4 P5

Figure 3.1.: Big picture of research gaps addressed by this publication (P1)

N.B.: Parts of the following summarizing paragraphs have been adopted from [37]. Due
to the obvious content overlapping, quotes are not marked explicitly.

Summary This paper presents a novel RTS technique for the large-scale multi-language
code base and CI environment of our industry partner IVU. In contrast with existing RTS
approaches, the proposed technique is aware of changes to the build system configura-
tion and to source code files in different languages. The RTS technique selectively (1)
compiles code modules and (2) executes regression tests for pull requests in CI pipelines
and has been deployed for all release branches at IVU since September 2021.

• Problem: At IVU, compiling the entire code base and running thousands of regres-
sion tests for each pull request results in intolerable CI feedback times of up to sev-
eral hours and is therefore not economically feasible. However, unsafe RTS is not
appropriate in this context, since pull requests to release branches may be part of
support patches that are built directly from those branches every day; this implies
that as few regressions as possible should slip into release branches.

25

3. Build System Aware Multi-language Regression Test Selection in CI

• Gap: Existing RTS techniques (1) require a fully built workspace or are unsafe in
case of changes to the build system configuration, and (2) are impractical if regres-
sion testing is performed across multiple languages and makes use of non-code
artifacts.

• Solution: We present a build system aware RTS technique which harnesses probe-
based system call tracing (using DTrace [47]), Java class loader instrumentation,
and static analysis to collect file-level per-test dependencies across language bound-
aries. Using this dependency information, our technique presents a novel algorithm
for selectively building code modules and running tests to verify the correctness of
pull requests in CI pipelines.

• Contribution: Our empirical study across 397 pull requests including roughly 2,700
commits shows that our technique safely excludes up to 75% of tests on average (no
undetected real failures slip into the target branches). End-to-end CI pipeline time,
including stages for building, analyzing, and testing a pull request, is reduced by
up to 63% on average. We further show that RTS performs significantly better in
pull requests on a maintenance release branch than one with active development.

• Limitations: In case of changes to (binary-compiled) Dynamic-link Libraries (DLLs),
our RTS technique is imprecise, as it selects all tests that open the DLL, even if the
change does not affect the C/C++ code the test actually covers. Another limitation
is that there can be safety violations if the used per-test traces are outdated (cur-
rently collected once per day) or in case of changes related to dependency injection
mechanisms.

Author Contributions D. Elsner and his supervisor A. Pretschner conceived and de-
fined the initial problem statement. The idea of the paper was then discussed with IVU
engineers M. Graber, R. Dammer, and S. Reimer. The theoretical solution was developed
by D. Elsner, who discussed the transfer into a technical solution with R. Wuersching
and M. Schnappinger. During the implementation D. Elsner was assisted by R. Wuer-
sching. The empirical study and the corresponding data analyses were carried out by D.
Elsner and the results were discussed with M. Graber, R. Dammer, and S. Reimer. The
manuscript was drafted primarily by D. Elsner in consultation with M. Schnappinger
and A. Pretschner. All authors reviewed later drafts of the paper.

Copyright Note © 2022 IEEE. Reprinted, with permission, from Daniel Elsner, Roland
Wuersching, Markus Schnappinger, Alexander Pretschner, Maria Graber, René Dammer,
Silke Reimer, Build System Aware Multi-language Regression Test Selection in Contin-
uous Integration, 2022 IEEE/ACM 44th International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP), June 2022.

© 2022 ACM. Included here by permission from ACM. Daniel Elsner, Roland Wuer-
sching, Markus Schnappinger, Alexander Pretschner, Maria Graber, René Dammer, Silke
Reimer, Build System Aware Multi-language Regression Test Selection in Continuous In-
tegration, 2022 IEEE/ACM 44th International Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP), pages 87–96, June 2022.

In Appendix A.3.1, the accepted version of the paper is included in accordance with
the IEEE author rights; ACM Digital Library DOI: 10.1145/3510457.3513078.

26

https://dl.acm.org/doi/10.1145/3510457.3513078

4. BinaryRTS: Cross-language Regression
Test Selection for C++ Binaries in CI

Integrating System and Process
Characteristics into RTO

System Process

G2: Language-
agnostic RTO

P3

G4: E2E Testing
Microservices

P4

G1: Multi-
language RTO

P1 P2
G5: Build System

Integration

P1

G3: Non-code
Artifacts

P1 P2

G6: Transfer to
Manual Testing

P4 P5

Figure 4.1.: Big picture of research gaps addressed by this publication (P2)

N.B.: Parts of the following summarizing paragraphs have been adopted from [35]. Due
to the obvious content overlapping, quotes are not marked explicitly.

Summary This paper presents BINARYRTS, a novel RTS technique for software which
makes use of (1) cross-language links to compiled C++ binaries and (2) non-code arti-
facts during regression testing. In order to be transferable to both, binary executables and
DLLs, BINARYRTS is the first RTS technique that employs dynamic binary instrumenta-
tion to collect covered functions and accessed files for each test. We release BINARYRTS
as a publicly available RTS tool for software involving C++ code; it has been deployed at
IVU since November 2022.

• Problem: From our previous work on RTS at IVU [37] (see Chapter 3), we find that
the problem of imprecise file-level test selection in case of changes to binary DLLs
remains unsolved both for Java and C++ tests. Contemporary work on safe RTS for
C++ software is sparse, though, and unsafe RTS is unsuitable for pull requests to
release branches at IVU.

• Gap: Existing safe RTS techniques for modern C++ software (1) target LLVM-based
C++ projects, (2) do not cope with cross-language links to C++ binaries, (3) ignore

27

4. BinaryRTS: Cross-language Regression Test Selection for C++ Binaries in CI

changes to non-code artifacts, and (4) either do not support dynamic linking of
libraries or operating systems other than Linux [43, 178].

• Solution: We present BINARYRTS, a novel RTS technique and tool which uses dy-
namic binary instrumentation to collect per-test information in the form of covered
functions and accessed files. This way, tests from any language with interoperabil-
ity to C++ binaries can be analyzed, e.g., Java via Java Native Interface (JNI).

• Contribution: Our empirical study in IVU’s CI infrastructure across 385 pull requests
indicates that BINARYRTS safely selects on average 26%–37% of C++ tests com-
pared to retest-all (and roughly 50% of the tests selected by module-level C++ RTS),
and 57%–64% of Java tests compared to our file-level RTS technique from [37]. The
test duration for C++ is thereby on average reduced by up to 68% compared to
retest-all and up to 45% compared to module-level RTS (the previous strategy at
IVU). BINARYRTS is compiler-agnostic, supports C and C++ binaries on Windows
and Linux out-of-the-box, integrates well with established Java and C++ testing
infrastructure, and can be transferred to other compiled languages.

• Limitations: When collecting per-test traces using dynamic binary instrumentation,
the run time overhead can be substantial. While this does not influence the per-
ceived developer feedback time in pull request CI pipelines, as traces for release
branches are obtained during off-peak hours (currently every night), it can poten-
tially cause safety violations if the used per-test traces are outdated. Another po-
tential source of unsafe RTS behavior is the analysis of changes to non-functional
entities (e.g., macros, global variables), as we limit the analysis scope since it may be
impractical to always scan the entire—potentially immense—code base for changed
entities.

Author Contributions D. Elsner and his supervisor A. Pretschner conceived and de-
fined the initial problem statement. The idea of the paper was then discussed with IVU
engineers A. Habermann, M. Graber, and S. Reimer. The theoretical solution was devel-
oped by D. Elsner, who discussed the transfer into a technical solution with S. Kacianka
and S. Lipp. D. Elsner implemented the tool BINARYRTS with minor assistance by S.
Kacianka and A. Habermann. The empirical study and the corresponding data analyses
were carried out by D. Elsner and the results were discussed with A. Habermann, M.
Graber, and S. Reimer. The manuscript was drafted primarily by D. Elsner in consulta-
tion with S. Kacianka, S. Lipp, and A. Pretschner. All authors reviewed later drafts of the
paper.

Copyright Note © 2023 IEEE. Reprinted, with permission, from Daniel Elsner, Severin
Kacianka, Stephan Lipp, Alexander Pretschner, Axel Habermann, Maria Graber, Silke
Reimer, BinaryRTS: Cross-language Regression Test Selection for C++ Binaries in CI, 2023
IEEE Conference on Software Testing, Verification and Validation (ICST), April 2023.

In Appendix A.3.2, the accepted version of the paper is included in accordance with
the IEEE author rights.

28

5. Empirically Evaluating Readily Available
Information for Regression Test
Optimization in Continuous Integration

Integrating System and Process
Characteristics into RTO

System Process

G2: Language-
agnostic RTO

P3

G4: E2E Testing
Microservices

P4

G1: Multi-
language RTO

P1 P2
G5: Build System

Integration

P1

G3: Non-code
Artifacts

P1 P2

G6: Transfer to
Manual Testing

P4 P5

Figure 5.1.: Big picture of research gaps addressed by this publication (P3)

N.B.: Parts of the following summarizing paragraphs have been adopted from [34]. Due
to the obvious content overlapping, quotes are not marked explicitly.

Summary This paper presents a methodology and a large-scale empirical study to com-
paratively evaluate the cost-effectiveness of RTO approaches from prior research that rely
exclusively on readily available information from CI and VCSs. Because these language-
and platform-agnostic metadata are typically collected in CI environments, such RTO
approaches are easily applicable and transferable. By applying the developed methodol-
ogy and insights from this study, practitioners will be able to build cost-effective RTP or
unsafe RTS approaches suitable to their context.

• Problem: Effective traditional RTP and safe RTS techniques typically rely on language-
specific dynamic or static program analysis which is often too costly in large-scale
CI testing environments. Besides, these techniques are impractical if regression
tests operate across language boundaries.

29

5. Empirically Evaluating Readily Available Information for RTO in CI

• Gap: Existing works have developed lightweight, less intrusive RTP and unsafe
RTS techniques. However, they often include context-specific information, mak-
ing them difficult to transfer and compare. In addition, results in the literature are
equivocal about cost-effectiveness trade-offs and their sensitivity, and lack empiri-
cal guidance on how practitioners should calibrate these techniques.

• Solution: We propose a methodology that provides a generic process for exploiting
readily available CI and VCS metadata to (1) build RTP and unsafe RTS approaches
from prior research and (2) evaluate their cost-effectiveness sensitivity.

• Contribution: We conduct a large-scale empirical study on 23 open-source and in-
dustrial projects and find that approaches from our methodology save on average
84% of test time while detecting 90% of the failures for unsafe RTS and significantly
outperform RTP baselines. We also apply our methodology at IVU, where it saves
20% of testing time while detecting 93% of failures. In addition, we derive prac-
tical guidelines: (1) it can be beneficial to limit training data, (2) features on test
history work particularly well (but might be biased by flaky tests depending on the
project [40, 89]), and (3) simple heuristics often outperform ML models.

• Limitations: By nature of empirical studies, we cannot easily generalize our find-
ings beyond the studied projects, yet, the methodology is expected to work in most
CI environments. The methodology does, however, neither include IR-based or
Reinforcement Learning (RL) ranking models, nor do we perform hyperparameter
optimization, which could lead to better test prioritization [9, 134, 170]. Our empiri-
cal results are further limited by the fact that we assume a one-to-one failure-to-fault
mapping and do not explicitly consider flaky tests.

Author Contributions D. Elsner conceived and defined the initial problem statement.
The idea of the paper was then discussed with F. Hauer and A. Pretschner, and later
also with IVU engineer S. Reimer. The methodology and empirical analyses were devel-
oped and implemented by D. Elsner, who then discussed the results with F. Hauer and S.
Reimer. The manuscript was drafted primarily by D. Elsner in consultation with F. Hauer
and A. Pretschner. All authors reviewed later drafts of the paper.

Copyright Note © 2021 ACM. Included here by permission from ACM. Daniel Elsner,
Florian Hauer, Alexander Pretschner, Silke Reimer, Empirically Evaluating Readily Avail-
able Information for Regression Test Optimization in Continuous Integration, Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis, pages 491–504, July 2021.

In Appendix A.3.3, the complete paper is included in its published form in accordance
with the ACM author rights, DOI: 10.1145/3460319.3464834.

30

https://dl.acm.org/doi/10.1145/3460319.3464834

6. Challenges in Regression Test Selection
for End-to-End Testing of
Microservice-based Software Systems

Integrating System and Process
Characteristics into RTO

System Process

G2: Language-
agnostic RTO

P3

G4: E2E Testing
Microservices

P4

G1: Multi-
language RTO

P1 P2
G5: Build System

Integration

P1

G3: Non-code
Artifacts

P1 P2

G6: Transfer to
Manual Testing

P5P4

Figure 6.1.: Big picture of research gaps addressed by this publication (P4)

N.B.: Parts of the following summarizing paragraphs have been adopted from [33]. Due
to the obvious content overlapping, quotes are not marked explicitly.

Summary This paper presents the dynamic RTS technique MICRORTS which targets
microservice-based systems. We describe challenges in designing it and applying it to
(manual) end-to-end testing in a case study on the German COVID-19 contact tracing
application, a microservice system. MICRORTS uses the polyglot observability and dis-
tributed tracing infrastructure OpenTelemetry9 to collect end-to-end traces; hence, the
concept underlying MICRORTS can be used to implement RTS in distributed systems
with different communication protocols and programming languages.

• Problem: Although distributed systems are particularly costly and time-intensive
to test at the integration and system level, most RTS techniques focus on single-
process systems and are thus not suitable for these systems as their analysis is lim-
ited to a single process.

9OpenTelemetry: https://opentelemetry.io

31

https://opentelemetry.io

6. Challenges in RTS for E2E Testing of Microservice-based Software Systems

• Gap: There are a few RTS studies on web applications and services, but they (1)
instrument server code, which is incomplete for end-to-end testing of microser-
vices where clients may contain extensive business logic and orchestrate requests
to multiple services, (2) are limited to a single language and network communica-
tion protocol, (3) lack analysis of the instrumentation overhead and the impact of
the collection granularity for per-test dependencies, and (4) do not investigate the
context of (manual) end-to-end tests in microservice-based systems.

• Solution: We present MICRORTS, a dynamic RTS technique that combines distributed
tracing infrastructure and custom Java bytecode instrumentation to address end-to-
end testing in microservice-based systems.

• Contribution: We highlight challenges related to instrumentation granularity and
overhead by conducting experiments on a microservice benchmark and find that
most overhead occurs at service startup and is mainly caused by the distributed
tracing framework. Furthermore, we elaborate on experiences when applying MI-
CRORTS in a case study on a (manual) end-to-end test suite in a real-world context.
The results of the case study indicate that, in line with previous findings [66], if
manual tests are under-specified, MICRORTS cannot provide benefits over retest-
all. However, through semi-automated filtering of test traces, we can reduce the
number of selected tests by 10%–50%, albeit only when using method-level traces.

• Limitations: MICRORTS is currently limited to Java microservices and Android clients,
as these were the subjects that the case study was conducted on. In addition, the
size of the case study on the COVID-19 application is relatively small, covering only
20 manual end-to-end tests and 12 software versions.

Author Contributions D. Elsner and his supervisor A. Pretschner conceived and de-
fined the initial problem statement. The idea and theoretical solution was then further
developed by D. Bertagnolli and D. Elsner and later discussed with R. Klaus from T-
Systems. During the implementation of the technical solution, D. Bertagnolli was sup-
ported by D. Elsner. The case study and the corresponding data analyses were carried out
by D. Bertagnolli, again with support by D. Elsner, and the results were discussed with D.
Elsner and R. Klaus. The manuscript was drafted primarily by D. Elsner in consultation
with A. Pretschner. All authors reviewed later drafts of the paper.

Copyright Note © 2022 ACM. Included here by permission from ACM. Daniel Elsner,
Daniel Bertagnolli, Alexander Pretschner, Rudi Klaus, Challenges in Regression Test Se-
lection for End-to-End Testing of Microservice-Based Software Systems, AST ’22: Pro-
ceedings of the 3rd ACM/IEEE International Conference on Automation of Software Test,
pages 1–5, July 2022.

In Appendix A.3.4, the complete paper is included in its published form in accordance
with the ACM author rights, DOI: 10.1145/3524481.3527217.

32

https://doi.org/10.1145/3524481.3527217

7. How Can Manual Testing Processes Be
Optimized? Developer Survey,
Optimization Guidelines, and Case
Studies

Integrating System and Process
Characteristics into RTO

System Process

G2: Language-
agnostic RTO

P3

G4: E2E Testing
Microservices

P4

G1: Multi-
language RTO

P1 P2
G5: Build System

Integration

P1

G3: Non-code
Artifacts

P1 P2

G6: Transfer to
Manual Testing

P4 P5

Figure 7.1.: Big picture of research gaps addressed by this publication (P5)

N.B.: Parts of the following summarizing paragraphs have been adopted from [48]. Due
to the obvious content overlapping, quotes are not marked explicitly.

Summary Although manual (regression) testing is widely applied in industry, research
for optimizing testing mainly focuses on techniques for automated tests without trans-
ferring them to manual testing. This paper presents a developer survey on the state-of-
practice in manual testing and derives optimization guidelines for respective processes.
Using these guidelines, practitioners are able to identify and exploit optimization poten-
tial in their manual testing processes. The study was conducted in cooperation with our
industry partner CQSE.

• Problem: To improve (regression) testing cost-effectiveness, there has been signifi-
cant research effort, yet mainly focusing on automated tests. However, transfer of
these techniques to manual testing is often difficult as required data from program
analysis or version control and CI systems are missing for manual testing processes.

33

7. How Can Manual Testing Processes Be Optimized?

• Gap: It is unclear how readily available data can be leveraged to transfer and im-
plement test optimization techniques, such as RTO approaches, for manual testing,
and how to integrate them into respective test processes.

• Solution: We survey 38 test practitioners from 16 companies to capture the state-of-
practice in manual testing including its prevalence, characteristics, problems, and
optimization potential. By combining the findings from the survey with optimiza-
tion techniques from the literature, we synthesize optimization guidelines into an
annotated manual software testing process model. This model summarizes the pre-
requisites and caveats of optimization techniques and highlights potential integra-
tion points.

• Contribution: We provide evidence that manual testing is widely employed and will
be in foreseeable future, which stresses the importance of transferring optimization
techniques. The optimization guidelines derived from our survey and the literature
can help practitioners to optimize their manual testing processes. Particularly rele-
vant for this thesis, we conduct a case study at IVU to demonstrate the applicability
of the optimization guidelines. In the case study, optimization potential related to
RTP could be identified resulting in a reduction of feedback time.

• Limitations: The responses received in the survey might not be representative, as
many context-specific factors influence manual testing processes. The scope of the
case study is limited to a single industrial project but, by nature of case study re-
search, is not meant to generalize. We have recently evaluated several black-box
RTP techniques for manual system testing in another industry study co-authored
by the author of this thesis [169].

Author Contributions D. Elsner and R. Haas conceived and defined the initial prob-
lem. The idea was then discussed with E. Juergens, A. Pretschner, and S. Apel. The
survey was prepared and conducted by D. Elsner and R. Haas, who then derived the
guidelines from the responses and incorporated them into the manual software testing
process model. The process model was then improved in discussion with E. Juergens, A.
Pretschner, and S. Apel. R. Haas conducted the first (acceptance testing) and D. Elsner the
second (regression testing) case study. The results of the case studies were discussed by
all authors. The manuscript was primarily drafted by D. Elsner and R. Haas. All authors
reviewed subsequent drafts of the paper.

Copyright Note © 2021 ACM. Included here by permission from ACM. Roman Haas,
Daniel Elsner, Elmar Juergens, Alexander Pretschner, Sven Apel, How Can Manual Test-
ing Processes Be Optimized? Developer Survey, Optimization Guidelines, and Case
Studies, Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 1281–
1291, August 2021.

In Appendix A.3.5, the complete paper is included in its published form in accordance
with the ACM author rights, DOI: 10.1145/3468264.3473922.

34

https://dl.acm.org/doi/10.1145/3468264.3473922

Part III.

Related Work and Conclusion

35

8. Related Work

This chapter discusses related work and highlights the research gaps addressed
by this thesis. Parts of this chapter have appeared in peer-reviewed publica-
tions [33–37, 48, 58, 169], co-authored by the author of this thesis.

In the following, we discuss related works by structuring them according to the sys-
tem and process characteristics addressed by this thesis (see Section 1.1 and Figure 1.1).
Alongside, we describe the research gaps introduced in Section 1.2 and visualized in Fig-
ure 1.2.

8.1. System Characteristics Affecting Regression Testing

This thesis addresses system characteristics that we group into the system-related con-
text factors size, complexity, and type in line with prior regression testing research [1] (see
Section 1.1).

Regarding size, there has been notable research progress in developing RTO techniques
for large, industrial software systems in the past two decades. While this thesis evaluates
the developed techniques in large-scale software, we do not address a specific research
gap related to the size of a system, but merely contribute to the existing body of literature
on applying RTO in large-scale systems (e.g., [14, 32, 89, 107, 123, 135, 178, 181]).

8.1.1. Multilingual Software

There are two lines of work that investigate RTO solutions for multilingual software: (1)
techniques that use program analysis approaches which work across language bound-
aries and (2) techniques that use entirely language- and platform-agnostic information.

For (1), we identify the following relevant studies (all targeting RTS): Celik et al. [16]
propose RTSLINUX, an RTS technique for Linux systems that uses system call intercep-
tion to trace the files that are accessed by a test running in a JVM. Since the system call
interception code runs at the level of the operating system process, their analysis natu-
rally goes beyond JVM boundaries: RTSLINUX can also observe calls to native code via
the JNI and accesses to other non-Java files, even from transitive child processes. Be-
sides, RTSLINUX is generally applicable to non-JVM projects, albeit with low precision
for interpreted or binary-compiled languages [16]. Similar to EKSTAZI (see Section 2.3.1),
RTSLINUX uses file checksums for selecting tests. In a study on 21 open-source Java
projects, RTSLINUX skipped 74% of tests and saved 53% of test execution time com-
pared to retest-all. Despite these results, RTSLINUX has a few limitations in practice:
RTSLINUX relies on a modification of the Linux kernel which is hardly transferable to
closed-source operating systems such as Windows [37], and may raise maintainability
(e.g., kernel releases may break it) or security (e.g., risk of corrupting the kernel) con-
cerns [36]. Since RTSLINUX is not publicly available, transferability is further limited. In

37

8. Related Work

addition, RTSLINUX is imprecise for changes in Java Archives (JARs) or DLLs, since a
change in any parts of those archives and binaries will lead to a selection of all tests that
depend on the JAR or DLL. Other RTS techniques that potentially suit multi-language
software use program analysis approaches that operate on intermediate code representa-
tions such as Java bytecode [45, 46, 88] or LLVM bitcode [43, 178]. These RTS techniques
are (possibly) applicable to multi-language code bases with various source languages that
compile to the same intermediate representation, e.g., Java and Scala to Java bytecode or
Rust and C++ to LLVM bitcode [43, 45]. Yet, except for EKSTAZI which has been applied
to Scala and Java code bases [45], to our knowledge none of these RTS techniques has
been applied to multi-language software.

In the second line of work (2), a much larger set of RTP and RTS techniques has been
studied in the literature. These techniques use easily accessible information, such as test
failure history from CI systems or VCS metadata (e.g., [2, 28, 32, 72, 78, 89, 96, 153, 158,
180]), as well as additional information, such as static or dynamic code or dependency
analysis (e.g., [3, 4, 9, 14, 18, 55, 56, 71, 86, 107–110, 113, 120, 123, 128, 129, 134, 135,
150–152]). We deem the following works to be most relevant for this thesis: Elbaum et
al. [32] are the first to apply RTP and unsafe RTS in large-scale CI environments at Google.
Therefore, they use simple heuristics which prioritize tests that have recently failed. From
their empirical study on a dataset of Google CI failures, they conclude that their heuristics
are cost-effective for both, RTP and unsafe RTS. Notably, subsequent research [40, 89] has
shown that flaky tests may have biased these empirical results, as the exclusive use of test
failure history to prioritize tests can lead to an over-ranking of flaky tests that arbitrarily
and frequently fail. Spieker et al. [158] are the first to apply RL to RTP and unsafe RTS to
automatically learn to rank tests according to their failure likelihood. They also use the
dataset of Google CI failures from Elbaum et al. [32] and enrich it with test histories from
CI systems at ABB. Their RL-based technique operates on test failure history and achieves
competitive performance to the simple RTP heuristics by Elbaum et al. [32]. More recent
work by Bertolino et al. [9] has further underlined the effectiveness of RL-based RTP us-
ing additional information such as code complexity metrics on open-source Java projects.
In an industrial study from 2016, Busjaeger and Xie [14] train an ML-based test ranking
model on black- and white-box features obtained from Salesforce’s VCS and CI system.
The empirical results on three months of development history at Salesforce indicate that
by executing only 3% of all ranked tests they still detect 75% of the test failures for unsafe
RTS. While the analyzed code base is multilingual, some of the used information (e.g.,
code coverage) may not be available in other contexts and for different programming
languages. Machalica et al. [107] develop an ML model to rank test targets at Facebook
according to their likelihood to fail and use it for unsafe RTS. Feature are extracted from
CI and VCS metadata as well as static build dependencies and project identifiers (see
Section 2.3.1). The authors report a reduction of testing infrastructure cost by 50% and
test executions by more than 66% while still detecting 95% of test failures in Facebook’s
multilingual code base. While the proposed RTS technique itself is language-agnostic,
access to project- or organization-specific information (e.g., static build dependencies) is
not guaranteed in arbitrary CI environments and may limit the technique’s transferabil-
ity. Leong et al. [89] propose an evaluation framework to evaluate RTS techniques in CI
systems with respect to on test transitions rather than failures and incorporate test flak-
iness signals into the analysis. Using the framework, they simulate the performance of
five lightweight heuristics for unsafe RTS at Google. These heuristics leverage metadata

38

8.1. System Characteristics Affecting Regression Testing

from the version control and CI system on recent commits that impact tests (based on a
test’s transitive build dependencies), test execution history, and directory overlap of tests
with changed files. The results show that flaky test failures can significantly impact the
evaluation results of RTS techniques. Furthermore, heuristics using the number of recent
commits that impact a test and the number of distinct commit authors give the best cost-
effectiveness. To conclude, several studies have shown that language-agnostic RTP and
(unsafe) RTS techniques based on various ML models or heuristics using various sources
of information can be beneficial in different contexts. Thus, it is important to understand
how sensitive the cost-effectiveness of these techniques is to the size, timeliness, and vari-
ety of data. Prior research investigates how much historical data is beneficial for RTO [2,
9, 158]. In a study conducted at Microsoft, cost-effectiveness of RTS was fluctuating over
time [56]. Several other studies have investigated the influence of data variety by mea-
suring the effectiveness of individual predictive features [3, 9, 14, 107]. However, these
studies either focus on specific industrial contexts or use context-dependent information
beyond widely available data such as test failure history.

Summary To summarize, we identify two research gaps (G1 and G2) in the two lines
of work on multilingual software.

For (1), we identify that most existing RTO techniques rely on language-specific infor-
mation which is limited for multilingual software. The few existing RTS techniques that
use program analysis which captures behavior beyond language boundaries are limited
to projects running in the JVM or Linux systems and have not been applied to industry-
scale multilingual software systems (⇒ G1: Multi-language RTO).

For (2), we identify that existing language-agnostic RTO techniques often include project-
or organization-specific information that is not available in other CI contexts, making
the techniques difficult to transfer and compare. We are not aware of prior work that
uses only readily available information in CI environments to build RTP and unsafe
RTS techniques, studies how sensitive their cost-effectiveness is to associated parameters,
performs cost-aware evaluation on real-world failures from industrial and open-source
projects, and derives empirical guidelines for calibrating the techniques in practice (⇒
G2: Language-agnostic RTO).

8.1.2. Configurable Software

Most traditional RTO techniques primarily focus on code changes, while non-code changes
are largely ignored [125]. However, these changes can affect test outcomes as non-code
artifacts are commonly used to configure the SUT, the test suite, or the test environ-
ment [125] and it has been shown that one third of commits in open-source software
includes changes to non-code artifacts [10]. Therefore, previous research has developed
various approaches to make RTO techniques aware of configuration-related changes to
non-code artifacts in configurable software systems (e.g., [16, 20, 46, 50, 111, 125, 137, 138,
167]). From this line of research, we consider the following studies to be most relevant
for this thesis.

Qu et al. [138] were the first to study configuration-aware regression testing in 2008.
They study six releases of the vim program (from the Software Infrastructure Reposi-
tory [24]) and find that the applied configuration strongly impacts the outcome of re-
gression testing and that reordering configurations can improve the rate of fault detec-

39

8. Related Work

tion. In a follow-up study from 2012, Qu et al. [137] developed a configuration selection
approach, which selects configurations for regression testing a modified program ver-
sion using change impact analysis. On two open-source and one industrial system, they
demonstrate that their configuration selection approach identifies 15%–60% of configura-
tions as redundant and saves 20%–55% of testing time compared to retest-all, while fault
detection capability and code coverage are retained [137].

Cheng et al. [20] have recently studied RTP for configuration testing. Configuration
testing depicts a testing technique for detecting misconfigurations before deploying a
configuration in a production environment [160]. A configuration test (ctest [160]) veri-
fies that the SUT behaves according to some desired behavior given a set of configuration
parameters [20]. The authors evaluate their ctest-specific RTP approaches against tradi-
tional RTP techniques on five Java-based open-source projects and 66 real-world config-
uration change files. The empirical results indicate that their novel RTP techniques can
significantly accelerate misconfiguration detection.

In 2011, Nanda et al. [125] presented the first RTS technique that is partially aware
of non-code changes. More particularly, their approach tracks per-test dependencies to
databases and configuration files to determine the set of affected tests in the presence of
configuration- and database-related changes. Therefore, they instrument the Java prop-
erty and the Java database Application Programming Interface (API). Their preliminary
empirical results on 5 and 7 versions of two software systems indicate that their RTS tech-
nique is more precise and safe for changes to .properties files than a traditional Java
RTS technique by Harrold et al. [52].

Most relevant to this thesis, Celik et al. [16] develop RTSLINUX a file-level RTS tech-
nique for software on Linux systems. RTSLINUX is conceptually akin to EKSTAZI by Glig-
oric et al. [46], but wraps the Linux kernel’s system call interface instead of instrumenting
the Java standard library to track accesses to non-code files. We have already alluded to
why maintaintability and security concerns remain in practice, even if RTSLINUX was
publicly available and the kernel modification could be applied to closed-source operat-
ing systems (see Section 8.1.1).

Summary Existing RTO techniques that are aware of changes to non-code artifacts tar-
get JVM-based software or are limited to Linux systems and ignore compile-time config-
uration, which may also affect test outcomes (⇒ G3: Non-code Artifacts).

8.1.3. Distributed Systems

In distributed software systems, adequate regression testing often involves end-to-end
tests that operate across system or—in the context of web services—service boundaries.
Consequently, RTO techniques relying on program analysis need to collect relevant in-
formation, even if a test involves a chain of requests invoking code on various services
and physical machines. There are a few existing RTS techniques [101, 124, 178] for web
applications and services that acknowledge these system boundaries, where we deem
the following to be most relevant to this thesis.

Nakagawa et al. [124] develop a dynamic, method-level RTS technique for manual
end-to-end tests in legacy Java web applications. If testers execute a manual test case in
their browser, each HTTP request that is sent to the Java web server receives a custom

40

8.2. Process Characteristics Affecting Regression Testing

header. The additional header information is then associated with covered Java meth-
ods in the corresponding JVM thread of the server. From a case study on two industrial
applications, the authors conclude that for large modifications most tests need to be exe-
cuted, but for small changes only roughly 25% of the test cases were selected compared to
the manual selection by developers. Moreover, the performance overhead from the code
instrumentation was reported to be non-negligible and concerning to developers. The
proposed RTS technique traces a single web server and is thus unsuitable for contexts
with interaction of multiple web services.

Another RTS tool for web applications, WEBRTS, is proposed by Long et al. [101].
Similar to EKSTAZI [45], WEBRTS collects and stores per-test information at the class/file
level using Java byte code instrumentation and can also instrument multiple instances
of a Java web server. WEBRTS targets web applications that rely on server-side page
rendering and use the HTTP protocol for communication. This restricts the applicability
of WEBRTS, as modern (micro-)services often use more efficient remote procedure call
mechanisms such as gRPC [178]. In case of changes to client code, such as JavaScript
files, WEBRTS falls back to a retest-all strategy. The authors evaluate WEBRTS on up
to eight versions of two small example projects and two industry projects and find that
WEBRTS can in the best case reduce testing time by up to 75% compared to retest-all.

Zhong et al. [178] develop TESTSAGE, a dynamic, function-level RTS technique for test-
ing large-scale C++ web services at Google. To collect the functions covered by each test
across different services, TESTSAGE relies on LLVM XRay [100], a lightweight function
tracing component. TESTSAGE is thereby limited to C++ web services and does not sup-
port parallel test tracing. The authors report that TESTSAGE reduces the required testing
time by up to 50% compared to retest-all.

Summary There are a few existing RTS techniques targeting distributed systems. How-
ever, they (1) instrument server code, which is incomplete for end-to-end testing of mi-
croservices where rich web or mobile clients may contain significant business logic and
orchestrate requests to multiple services, (2) are limited to specific communication proto-
cols, or (3) lack analysis of the instrumentation overhead during service startup and test
execution and the impact of the collection granularity for per-test dependencies. We are
not aware of any prior work that targets program analysis based RTS, evaluates instru-
mentation overhead and per-test dependency granularity, and applies RTS in the context
of end-to-end testing for microservice-based systems (⇒ G4: End-to-End Testing Mi-
croservices).

8.2. Process Characteristics Affecting Regression Testing

8.2.1. Continuous Integration Testing

In recent years, automated regression testing is largely done in CI environments, as CI in-
frastructure facilitates the provision of isolated (ephemeral) build and test environments
and relieves developers of complex local test configuration or setup. This has led to ex-
tensive research efforts on RTO for CI environments (e.g., [9, 14, 17, 32, 62, 63, 72, 96, 107,
118, 135, 157, 158, 173]). Since CI pipeline execution time is driven by compilation, (static)
analysis, and testing efforts [32, 37, 107, 157], it is essential for the design of adequate RTO

41

8. Related Work

techniques to consider how regression testing is embedded into the CI process. There-
fore, we consider the following studies most relevant to this work, as they incorporate
surrounding factors in CI processes that may affect CI pipeline time.

Shi et al. [157] propose GIBSTAZI, an RTS technique built on top of EKSTAZI [45] and
the module-level static incremental build tool GIB [44]. GIBSTAZI aims to not only re-
duce testing time, but also the required build time by selecting Maven modules and tests
for compilation and execution in CI pipelines, respectively. In case of changes to non-
code files, GIBSTAZI falls back to retest-all. When evaluated on 22 open-source projects,
GIBSTAZI thereby achieves better safety than EKSTAZI (which does not consider non-
code changes) and reduces end-to-end build and test time by 23% in a cloud-based CI
environment. The authors further report that RTS saves time and resources and can also
help developers avoid wasting time debugging flaky failures that are unrelated to their
changes.

Jin and Servant [63] evaluate ten techniques from prior research that aim to improve CI
testing by reducing the feedback time or computational cost for CI pipelines (including
RTP [32, 109, 161] and RTS [46, 56, 107] techniques). The studied techniques therefore ei-
ther (1) skip entire CI builds or tests from the test suite or (2) prioritize potentially failing
builds or tests to execute them first. The authors conduct empirical analysis on 100 open-
source projects from the TRAVISTORRENT dataset [8] and, among many other things, find
that RTS techniques could skip full test suites or even builds, in order to save test and
build preparation time. They also report that skipping builds with changes to non-code
files is unsafe, as this way configuration or compilation problems can be missed which
account for 35% of the failing builds. Furthermore, the authors argue that future CI opti-
mization techniques should combine RTS with RTP and apply build selection techniques,
to reduce the effort for uncritical builds. Overall, the results indicate that RTO techniques
used in CI pipelines should be carefully integrated with build and test infrastructure for
maximum cost-effectiveness.

Summary Through CI practices, regression testing is tightly coupled to building the
software, as CI pipelines typically first compile and link the code before executing tests.
Adequate RTO techniques should integrate with the build system as (1) changes to the
build system configuration may impact the test results and simply running a full build
and retest-all for non-code changes is imprecise, and (2) selectively compiling only the
code relevant for the changes and affected tests can save valuable time inside CI pipelines.
To our knowledge, no existing techniques address both issues (⇒ G5: Build System In-
tegration).

8.2.2. Manual Testing

Manual regression testing is widespread and because of the costly human effort involved,
there is a great need and potential for optimization. Existing research on RTO primarily
considers automated unit-level testing [14]. These techniques are often difficult to trans-
fer to manual regression testing as required data may not be available (e.g., code coverage
or static call graphs) [53, 54] or techniques cannot be easily integrated into manual test-
ing processes (e.g., manual testers might perform system-level black-box testing) [53].
Despite these difficulties, the following works have applied RTO techniques to manual
regression testing [27, 53, 66, 80, 124].

42

8.2. Process Characteristics Affecting Regression Testing

Hemmati et al. [53] were the first to investigate RTP for manual black-box system test-
ing on Mozilla Firefox in 2015. Their results indicate that using test failure history is
an effective RTP surrogate in agile development environments compared to prioritizing
tests by test diversity based on the textual test case descriptions.

Lachmann et al. [80] propose an ML-based RTP technique for manual system tests
that incorporates test execution history (i.e., test failures and their priority as well as test
execution cost), requirements coverage, and textual test case descriptions. Their RTP
approach performs favorably compared to random ordering in a case study on two in-
dustrial projects. The results further indicate that RTP performance can be improved by
extracting features from test case descriptions in addition to only using test history and
test execution cost.

Juergens et al. [66] conduct an industrial case study to demonstrate challenges in ap-
plying RTS to manual system tests using method-level per-test traces obtained via dy-
namic analysis. They find that the common under-specification of manual tests can lead
to unstable traces, which limits effectiveness for dynamic RTS techniques. Therefore, the
authors suggest a semi-automated process, where testers inspect the results of RTS and
then, based on domain knowledge, manually decide which tests to execute.

Eder et al. [27] propose an RTS technique that tries to recover trace links between source
code and manual system tests written in natural language using static analysis. In their
case study using four test cases on a single system, their technique is more effective than a
random selection baseline strategy and correctly links 90% of the source code methods to
tests. However, the calibration and evaluation of the RTS technique still requires dynamic
program analysis, which limits its transferability [54].

Finally, we have already described the work of Nakagawa et al. [124] on RTS for man-
ual end-to-end testing of legacy Web applications (see Section 8.1.3), which showed that
large code changes lead to effectively selecting all tests and the performance penalty im-
posed by program instrumentation was concerning to developers.

Summary The few existing studies on manual regression testing indicate that, unlike
automated testing, manual testing is often decoupled from VCS or CI systems and per-
formed at the system level in a black-box manner without access to program analysis
information. Yet, we are unaware of any work that (1) investigates which prerequisites
and caveats practitioners have to expect when transferring RTO techniques to their man-
ual testing process and (2) provides guidelines on how RTO techniques can be integrated
into these manual testing processes (⇒ G6: Transfer to Manual Testing).

43

9. Conclusion

This chapter concludes the doctoral thesis, summarizes the results, discusses
implications and limitations, and provides an outlook and ideas for future
work. Parts of this chapter have appeared in peer-reviewed publications [33–
37, 48, 58, 169], co-authored by the author of this thesis.

9.1. Summary

RTO aims to improve the cost-effectiveness of regression testing. Although significant
research has proposed numerous techniques, modern software systems can only par-
tially benefit from these advances: Industrial software systems are commonly written in
multiple programming languages, are highly configurable and distributed, and require
testing processes that involve both continuous automated and effort-intense manual test-
ing. Most traditional RTO techniques are unsuitable if the outlined challenging system
and process characteristics are present; these techniques are often limited to small, mono-
lingual, and monolithic systems tested primarily through automated unit tests [14]. This
thesis aims to bring state-of-the-art research closer to practice by integrating system and
process characteristics that affect regression testing into RTO techniques. Therefore, we
adapt existing and present novel RTO techniques to address challenges related to these
characteristics by harnessing program analysis approaches or utilizing information that
is readily available from testing processes. The main results of this thesis emerge from
empirical studies conducted on open-source and industrial projects, where we show that
these RTO techniques effectively reduce developer feedback time and testing efforts,
while still reliably detecting bugs: For instance, we were able to effectively reduce the
test duration on average by 42%–72% compared to retest-all for pull requests in CI envi-
ronments at our industry partner IVU without failing to select any real test failures [35,
37]. Some of the techniques developed as part of this thesis are currently used on a daily
basis at IVU. We have also publicly released tools and supplemental material to foster
future research and improve practical tool support [34–36, 48, 58].

The practical implications from this thesis are the following: First, if RTO is imple-
mented for systems that exhibit characteristics such as multi-language programming and
high configurability, it is crucial to go beyond language-specific analysis and consider
changes to non-code artifacts as well in order to maximize the fault detection capability.
Depending on the information collected during the testing process, different techniques
can be used. We find that techniques using (1) dynamic program analysis as well as
(2) development metadata can be cost-effective in software with challenging system or
process characteristics. Second, dynamic program analysis techniques that are agnos-
tic to the programming language of the SUT can be effectively applied for RTS in CI
processes of large-scale multilingual software. In two industrial RTS studies [35, 37],
we have successfully used (1) system call instrumentation as an effective extension to
language-specific analysis to account for changes to non-code artifacts or code in multi-

45

9. Conclusion

ple programming languages and (2) dynamic binary instrumentation which allows fine-
grained run-time analysis of binaries compiled from binary-compiled languages (e.g., C
or C++), even if these binaries are accessed through cross-language links. If the SUT is
a distributed system, existing polyglot observability and distributed tracing frameworks
provide a solid backbone for efficiently implementing dynamic RTO techniques that reli-
ably capture the end-to-end behavior of multiple (micro-)services [33]. Third, if dynamic
program analysis is infeasible or prohibitively expensive, one can still exploit the variety
of metadata for effective RTO that are readily created during testing. We have demon-
strated that (1) by only relying on readily available information from VCS and CI systems,
we can significantly reduce test feedback time and effort [34] and (2) if the availability of
data is limited, as it is often the case for manual testing processes, various simple RTO
approaches can reduce the time to find failures [48]. It is worth noting that sometimes
simple, well-understood heuristics (primarily using test failure history) seem to work
equally well than more complex ML-based techniques for prioritizing tests—without the
complex intricacies of deploying and maintaining an ML model.

9.2. Limitations

This thesis is subject to several limitations. We have already shortly discussed limitations
and threats to validity for each included publication in the respective chapters, whereas
more detailed discussions are part of the publications themselves. Therefore, in the fol-
lowing, we summarize the most important overarching limitations.

Scope and Generalization This thesis presents RTO techniques that incorporate several
system and process characteristics which can affect regression testing. The implication is
that there might be other relevant context-specific characteristics (see Section 9.3 for fu-
ture work) and that our results cannot easily generalize beyond the studied (open-source
and industrial) software projects. Nevertheless, many of our results are consistent with
related RTO research and we have based the implementation of our solutions on estab-
lished technology stacks to facilitate use and portability. The techniques developed and
evaluated in this thesis are limited by some design decisions that were necessary to re-
duce the large space of implementation parameters. We took these decisions according to
the findings from prior research or by discussing them with developers and testers from
an industrial context. Particularly, this concerns the granularity of a test, which could be
a test suite, a test case, or a test module; the applied type and granularity of program
analysis (static vs. dynamic; file- vs. function- vs. module-level); or the compared ML
approaches (supervised vs. reinforcement learning). Furthermore, the scope of this the-
sis is limited to functional regression testing, whereas there are other types of regression
testing for non-functional quality aspects, such as performance [121] or security [41].

Industry-Relevance of Problems The research conducted as part of this thesis was car-
ried out in publicly-funded and bilateral projects with two industrial companies, IVU and
CQSE. Naturally, the insights gained from discussions with these industry partners have
highly influenced the understanding of the problems addressed by this thesis, includ-
ing the discussed challenges and their relevance. While these problems have also been
reported to be industry-relevant by other researchers and practitioners [1], our work is

46

9.2. Limitations

thus limited by the choice of studied problems, whereas other problems might be more
relevant elsewhere due to the context-specific nature of software engineering.

Measuring Testing Cost Testing costs are manifold and may involve the required run
time, expenses for dedicated testing hardware, setup efforts, or involved human expert
effort (e.g., salary for senior testers or developers for manual testing). Similar to prior
studies [114, 134, 158], we partially rely on the measured test execution time reported
by testing frameworks in test reports to approximate costs for a test case. This way, we
can conduct empirical studies across large time ranges (months, years) of CI testing ac-
tivity [34, 35, 37]. These measured test durations in CI environments may, however, be
affected by fluctuations due to other pipelines running in parallel on the same CI ma-
chines. For our case studies on manual testing [33, 48], we do not have accurate test
duration measurements as they are often not tracked for manual tests [48, 169] and thus
report the test selection ratio or assume equal test costs, which could lead to biased re-
sults [18, 46].

Cost of Information Collecting the required information for different RTO techniques
involves costs, where typically collecting information from dynamic program analysis is
the most expensive and readily available metadata is the cheapest. In this thesis, we have
used probe-based system call instrumentation, which itself introduces relatively small
overhead [16, 36], but has the limitation that each test should run in its own forked pro-
cess. Nevertheless, the presented system call instrumentation can also be used as an ex-
tension to language-specific instrumentation (i.e., without process forking) for collecting
more complete test traces including external accessed files. For our RTS technique target-
ing C++ binaries, BINARYRTS, we find that the applied dynamic binary instrumentation
introduces substantial overhead—partially due to the framework used to implement BI-
NARYRTS [35]. While the overhead does not directly impact developers’ perceived feed-
back time in the studied context, as the test traces are generated in off-peak hours, less
costly instrumentation approaches are still desirable and have been proposed for x86-64
ELF binaries [69]. Finally, in our study on readily available information from CI or VCS
metadata, we have only measured the training cost of test ranking models without con-
sidering the feature computation costs [34]. Notably, recent work has found that most of
the features we have used are relatively inexpensive to collect, whereas coverage-related
features are the most expensive [170].

Fault Detection Capability RTO techniques share the goal to ideally retain fault de-
tection (e.g., by safely selecting tests) and, in the case of RTP, further optimize for earlier
fault detection. In practice, information about observed test failures (e.g., in a CI pipeline)
is usually stored, whereas information about faults is often not available [134]. Similarly,
the severity of faults (or failures) is commonly unknown [134]. For our work on RTP,
we lack this information as well and thus, similar to prior research [113, 134, 155], we
assume an one-to-one failure-to-fault mapping and equal fault severity [34, 48]. For the
developed RTS techniques, we find that the fault detection capability (i.e., RTS safety) is
mainly limited by outdated test traces and Dependency Injection (DI) mechanisms [35,
37]. However, we recently developed a tool for DI-aware RTS in Java projects [58].

47

9. Conclusion

Intermittent Test Failures There are various reasons for intermittent test failures, such
as non-determinism in the tests, the code under test, the infrastructure, or the test envi-
ronment [84]. Tests that non-deterministically pass and fail on the same version of the
code are also referred to as flaky tests [7]. Prior research has shown that the prevalence
of intermittent failures or flaky tests can impact the evaluation results for RTP and RTS
techniques [40, 83, 89, 107, 134, 157]. Some of the empirical results reported as part of
this thesis (mainly Chapter 5 [34]) may also be impacted by intermittent test failures. To
minimize this threat to validity, we have invested significant manual effort to inspect the
root causes for test failures in more recent studies [35, 37]. Notably, the automatic detec-
tion, root causing, and repair of flaky tests has become an active area of research itself in
the past decade [7, 74, 79, 81, 82, 106, 133, 140, 154, 177].

9.3. Outlook and Future Work

Further System and Process Characteristics There are further system and process char-
acteristics that affect regression testing beyond those addressed by this thesis. Recall our
conceptual framework from Chapter 1 (see Figure 1.1) where we have listed examples
for further characteristics, partly reported by practitioners in the study from Ali et al. [1].
These include, for instance, embedded systems, where unreliable Hardware-in-the-Loop
test environments can sometimes substantially impact test results [64]. Furthermore, also
if testing processes imply less frequent testing than with CI processes, RTO may provide
significant benefits as, for example, early fault detection is also crucial if regression testing
is only performed before releases (e.g., yearly or quarterly) [169]. Similarly, there are still
open challenges concerning the system and process characteristics which this thesis ad-
dresses, such as recent approaches for configuration testing in configurable systems [20]
or highly distributed serverless cloud software without direct control of the execution
environment.

Manual Regression Testing We have shown that techniques and case studies on man-
ual regression testing are underrepresented in academic and industrial research, despite
the high involved testing effort and its persistent spread in practice [48]. As the few ex-
isting techniques are not unequivocal in their results on what works well and what does
not, further research is needed to investigate RTO for manual testing and its trade-offs
in practice. That includes, for instance, studying IR-based RTP, which shows promising
results in automated testing [134], as well as developing adequately efficient dynamic
program analysis techniques since their overhead has been concerning to developers in
manual regression testing [124].

Effect of Outdated Test Traces When deploying some of the developed RTS techniques
in practice, we collect per-test execution traces off-line, i.e., in off-peak hours in decoupled
CI pipelines [35, 37]. Depending on the frequency of these tracing pipelines, RTS can
become unsafe due to outdated test traces (see discussed limitations above in Section 9.2).
This raises the questions of how quickly the (costly to obtain) test traces become outdated
and at what point this can lead to safety violations. Future research should therefore
study how to systematically determine a cost-effective strategy (i.e., frequency) for re-
collecting test traces, as running instrumented tests for each commit is usually infeasible

48

9.3. Outlook and Future Work

in large-scale CI environments [32, 35, 37, 89, 107]. Potentially, the durability of per-
test execution traces could be prolonged by statically analyzing (and approximating) the
impact of changes introduced since the traces were collected.

Further Programming Languages In this thesis, we focus on software systems that—
while making use of non-code artifacts or cross-language links to other programming
languages—predominantly use Java and C++ as their main GPL. This is in line with
the majority of RTO research which also targets C, C++, or Java systems. However,
with the rise of serverless cloud software and ML-based systems, interpreted languages
such as Java-/TypeScript and Python are commonly used as the primary GPL10. Hence,
future research should investigate how RTO techniques can be successfully applied in
these language environments as they might challenge some dynamic program analysis
approaches such as system call analysis [16].

New Approaches for Program Analysis We have investigated different dynamic pro-
gram analysis approaches for RTO in this thesis and have pinpointed potential for novel,
non-intrusive ways of analyzing systems at run-time using probe-based dynamic instru-
mentation in another work [36]. Several research works have also demonstrated the ef-
fectiveness of IR-based RTP techniques [134], which extract test code using static analysis
and then rank tests by their similarity to introduced changes. While these relatively inex-
pensive approaches for static program analysis are promising, experiences on large-scale
industrial deployment of these techniques is yet missing. Since the wide applicability
of program analysis techniques also enables wider support of RTO techniques, future
research should explore novel ways for dynamic and static program analysis that are
applicable to different languages and to large code bases with frequent changes.

10According to the Stack Overflow Developer Survey 2022, JavaScript has been the most commonly used
language for the past ten years, while Python was the second most used GPL [159].

49

A. Appendix

This chapter lists and includes the peer-reviewed publications included in this
publication-based doctoral thesis.

A.1. Overview

The contributions made by this publication-based dissertation have previously appeared
in the following peer-reviewed publications:

P1 Daniel Elsner, Roland Wuersching, Markus Schnappinger, Alexander Pretschner,
Maria Graber, René Dammer, and Silke Reimer. Build System Aware Multi-language
Regression Test Selection in Continuous Integration. Proceedings of the International
Conference on Software Engineering: Software Engineering in Practice, pages 87–
96, 2022 (core publication 100%)

P2 Daniel Elsner, Severin Kacianka, Stephan Lipp, Alexander Pretschner, Axel Haber-
mann, Maria Graber, and Silke Reimer. BinaryRTS: Cross-language Regression Test
Selection for C++ Binaries in CI. Proceedings of the International Conference on Soft-
ware Testing, Verification and Validation, pages 327–338, 2023 (core publication
100%)

P3 Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. Empirically
Evaluating Readily Available Information for Regression Test Optimization in Continuous
Integration. Proceedings of the International Symposium on Software Testing and
Analysis, pages 491–504, 2021 (core publication 100%)

P4 Daniel Elsner, Daniel Bertagnolli, Alexander Pretschner, and Rudi Klaus. Chal-
lenges in Regression Test Selection for End-to-End Testing of Microservice-based Software
Systems. Proceedings of the International Conference on Automation of Software
Test, pages 1–5, 2022

P5 Roman Haas*, Daniel Elsner*, Elmar Juergens, Alexander Pretschner, and Sven
Apel. How Can Manual Testing Processes Be Optimized? Developer Survey, Optimization
Guidelines, and Case Studies. Proceedings of the Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pages 1281–1291, 2021 (core publication 50%)

According to the regulations for publication-based doctoral theses of the Technical Uni-
versity of Munich, the publications P1 to P3 are core publications (100%) and P5 is a

50% core publication (because of the shared first authorship). Publication P4 is no core
publication because it is a short paper (5 pages).

*Both authors contributed equally

51

A. Appendix

A.2. Copyright Policies by Publishers

The publications have been published in conference proceedings by IEEE and ACM. In
the following, we include the copyright policies by the publishers which allow us to
include the full articles in Section A.3.

52

23.01.23, 10:43 Rightslink® by Copyright Clearance Center

https://s100.copyright.com/AppDispatchServlet#formTop 1/1

Home > Author Resources > Author Rights & Responsibilities

ACM Author Gateway

Author Resources

ACM Author Rights
ACM exists to support the needs of the computing community. For over sixty
years ACM has developed publications and publication policies to maximize the
visibility, impact, and reach of the research it publishes to a global community of
researchers, educators, students, and practitioners. ACM has achieved its high
impact, high quality, widely-read portfolio of publications with:

Affordably priced publications

Liberal Author rights policies

Wide-spread, perpetual access to ACM publications via a leading-edge
technology platform

Sustainability of the good work of ACM that benefits the profession

Choose
ACM gives authors the opportunity to choose between two levels of rights
management for their work. Note that both options obligate ACM to defend the
work against improper use by third parties:

Exclusive Licensing Agreement: Authors choosing this option will retain
copyright of their work while providing ACM with exclusive publishing rights.

Non-exclusive Permission Release: Authors who wish to retain all rights to
their work must choose ACM's author-pays option, which allows for perpetual
open access to their work through ACM's digital library. Choosing this option
enables authors to display a Creative Commons License on their works.

Post
Otherwise known as "Self-Archiving" or "Posting Rights", all ACM published
authors of magazine articles, journal articles, and conference papers retain the
right to post the pre-submitted (also known as "pre-prints"), submitted,
accepted, and peer-reviewed versions of their work in any and all of the following
sites:

Author's Homepage

Author's Institutional Repository

Any Repository legally mandated by the agency or funder funding the research
on which the work is based

Any Non-Commercial Repository or Aggregation that does not duplicate ACM
tables of contents. Non-Commercial Repositories are defined as Repositories
owned by non-profit organizations that do not charge a fee to access
deposited articles and that do not sell advertising or otherwise profit from
serving scholarly articles.

For the avoidance of doubt, an example of a site ACM authors may post all
versions of their work to, with the exception of the final published "Version of
Record", is ArXiv. ACM does request authors, who post to ArXiv or other
permitted sites, to also post the published version's Digital Object Identifier
(DOI) alongside the pre-published version on these sites, so that easy access
may be facilitated to the published "Version of Record" upon publication in the
ACM Digital Library.

Examples of sites ACM authors may not post their work to are ResearchGate,
Academia.edu, Mendeley, or Sci-Hub, as these sites are all either commercial or
in some instances utilize predatory practices that violate copyright, which
negatively impacts both ACM and ACM authors.

Distribute
Authors can post an Author-Izer link enabling free downloads of the Definitive
Version of the work permanently maintained in the ACM Digital Library.

On the Author's own Home Page or

In the Author's Institutional Repository.

Reuse
Authors can reuse any portion of their own work in a new work of their own (and
no fee is expected) as long as a citation and DOI pointer to the Version of Record
in the ACM Digital Library are included.

Contributing complete papers to any edited collection of reprints for which the
author is notthe editor, requires permission and usually a republication fee.

Authors can include partial or complete papers of their own (and no fee is
expected) in a dissertation as long as citations and DOI pointers to the
Versions of Record in the ACM Digital Library are included. Authors can use
any portion of their own work in presentations and in the classroom (and no
fee is expected).

Commercially produced course-packs that are sold to students require
permission and possibly a fee.

Create
ACM's copyright and publishing license include the right to make Derivative
Works or new versions. For example, translations are "Derivative Works." By
copyright or license, ACM may have its publications translated. However, ACM

Copyright © 2023, ACM, Inc

Authors continue to hold perpetual rights to revise their own works without
seeking permission from ACM.

Minor Revisions and Updates to works already published in the ACM Digital
Library are welcomed with the approval of the appropriate Editor-in-Chief or
Program Chair.

If the revision is minor, i.e., less than 25% of new substantive material, then
the work should still have ACM's publishing notice, DOI pointer to the
Definitive Version, and be labeled a "Minor Revision of"

If the revision is major, i.e., 25% or more of new substantive material, then
ACM considers this a new work in which the author retains full copyright
ownership (despite ACM's copyright or license in the original published article)
and the author need only cite the work from which this new one is derived.

Retain
Authors retain all perpetual rights laid out in the ACM Author Rights and
Publishing Policy, including, but not limited to:

Sole ownership and control of third-party permissions to use for artistic
images intended for exploitation in other contexts

All patent and moral rights

Ownership and control of third-party permissions to use of software published
by ACM

A. Appendix

A.3. Publications

A.3.1. Build System Aware Multi-language Regression Test Selection in
Continuous Integration

© 2022 IEEE. Reprinted, with permission, from Daniel Elsner, Roland Wuersching, Markus
Schnappinger, Alexander Pretschner, Maria Graber, René Dammer, Silke Reimer, Build
System Aware Multi-language Regression Test Selection in Continuous Integration, 2022
IEEE/ACM 44th International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP), June 2022.

© 2022 ACM. Included here by permission from ACM. Daniel Elsner, Roland Wuer-
sching, Markus Schnappinger, Alexander Pretschner, Maria Graber, René Dammer, Silke
Reimer, Build System Aware Multi-language Regression Test Selection in Continuous In-
tegration, 2022 IEEE/ACM 44th International Conference on Software Engineering: Soft-
ware Engineering in Practice (ICSE-SEIP), pages 87–96, June 2022.

In the following, the accepted version of the paper is included in accordance with the
IEEE author rights; ACM Digital Library DOI: 10.1145/3510457.3513078.

58

https://dl.acm.org/doi/10.1145/3510457.3513078

Build System Aware Multi-language Regression Test Selection in
Continuous Integration

Daniel Elsner
Roland Wuersching

Markus Schnappinger
Alexander Pretschner

firstname.lastname@tum.de
Technical University of Munich

Munich, Germany

Maria Graber
René Dammer
Silke Reimer

{grm,rda,sre}@ivu.de
IVU Traffic Technologies

Berlin, Germany

ABSTRACT
At IVU Traffic Technologies, continuous integration (CI) pipelines
build, analyze, and test the code for inadvertent effects before pull
requests are merged. However, compiling the entire code base and
executing all regression tests for each pull request is infeasible due
to prohibitively long feedback times. Regression test selection (RTS)
aims to reduce the testing effort. Yet, existing safe RTS techniques
are not suitable, as they largely rely on language-specific program
analysis. The IVU code base consists of more than 13 million lines of
code in Java or C/C++ and contains thousands of non-code artifacts.
Regression tests commonly operate across languages, using cross-
language links, or read from non-code artifacts. In this paper, we
describe our build system aware multi-language RTS approach,
which selectively compiles and executes affected code modules
and regression tests, respectively, for a pull request. We evaluate
our RTS technique on 397 pull requests, covering roughly 2,700
commits. The results show that we are able to safely exclude up
to 75% of tests on average (no undetected real failures slip into
the target branches) and thereby save 72% of testing time, whereas
end-to-end CI pipeline time is reduced by up to 63% on average.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging.

KEYWORDS
Software testing, regression test selection, continuous integration

ACM Reference Format:
Daniel Elsner, Roland Wuersching, Markus Schnappinger, Alexander Pretschner,
Maria Graber, René Dammer, and Silke Reimer. 2022. Build System Aware
Multi-language Regression Test Selection in Continuous Integration . In
44nd International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3510457.3513078

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513078

1 INTRODUCTION
Regression testing is regularly performed on software systems to
ensure changes did not inadvertently affect existing system behav-
ior [23]. The simplest, yet expensive strategy to perform regression
testing, retest-all, is to execute every test case after each change.
However, with increasingly large test suites and limited physical
resources this approach is often too costly, especially in continuous
integration (CI) testing [11, 13, 24, 37]. To reduce the costs of regres-
sion testing, regression test selection (RTS) [15, 22, 29, 31, 32, 34, 38]
has been extensively studied since the 1970s [14].

RTS techniques are considered safe, if they select all tests that are
affected by the changes to the code base, such as the changeset of a
pull request. Therefore, they collect dependencies for each test. This
is implemented either through static (e.g., class dependency graph)
or dynamic (e.g., code instrumentation) program analysis [15, 16,
21, 22, 34, 38, 39]. These per-test dependencies are then used to
determine the relevant test cases. However, the involved language-
specific program analysis can be expensive, which is why existing
safe RTS techniques often bear (prohibitively) extensive costs [11,
24, 30]. Lightweight, less intrusive yet unsafe RTS techniques use
CI or version control system (VCS) metadata to select tests, but
the underlying statistical models can only provide project-specific
empirical safety trade-offs [7, 8, 11, 12, 20, 24, 30, 35].

IVU Traffic Technologies is one of the world’s leading providers
of public transport software solutions. The software system consid-
ered in this study accounts for approx. 13.5M Java and C/C++ lines
of code (LOC). A large variety of domain specific language (DSL)
source files and non-code artifacts including build and other config-
uration files, expected test results, and resources complement the
code base. IVU maintains the ten most recent releases of the system
on dedicated release branches. Before pull requests are merged into
any of these release branches, they are thoroughly tested for re-
gressions. However, compiling the entire code base and running all
of the thousands of regression tests for each pull request can take
up to several hours despite a high degree of parallelization within
the CI pipelines. This results in intolerable feedback time and is
economically infeasible: When the number of queued pull requests
increases, developers often need to wait until the next day for test
feedback. Consequently, reducing the overall testing efforts in pull
requests through selective compilation and testing is required.

Probabilistic RTS techniques have already been successfully em-
ployed at IVU in CI pipelines for the main development branch [12].
However, applying these unsafe techniques to pull requests on

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elsner, et al.

release branches bears fundamental risks: Support patches are di-
rectly built from these release branches every day, hence, code from
those branches is potentially deployed into customer’s infrastruc-
ture. Therefore, when testing pull requests for release branches, we
aim for test selection that is as safe as reasonably achievable.

Yet, existing safe RTS techniques are not applicable in the given
industrial context: The complexity of the software requires test
scenarios at integration and system level, where tests commonly
operate across languages and intensively use non-code resources.
To the best of our knowledge, there is no RTS technique that ad-
dresses this problem for Windows environments, as opposed to
Linux-only approaches [10]. Furthermore, prior RTS approaches
select a test case if the checksum of any per-test dependency has
changed. There are two shortcomings to this approach: First, these
RTS techniques might miss tests in case of changes made to the
build system. For instance, adding a new runtime dependency in a
configuration file might completely change a test’s behavior, even
though checksums of previously recorded per-test code dependen-
cies are unchanged. Second, these techniques assume that a fully
compiled workspace is readily available. At IVU, compiling the Java
code base already takes roughly half an hour on average. Building
only the relevant modules that are affected by changes or contain se-
lected tests can have a significant impact on end-to-end CI pipeline
execution time—especially for small changesets.

In this paper, we propose a build system aware RTS technique
which harnesses dynamic and static program analysis to collect
file-level per-test dependencies across language boundaries: We
combine language-agnostic system call tracing, Java class loader
instrumentation, as well as static code and build dependency anal-
ysis. This yields more complete per-test dependencies than pure
language-specific approaches, thus leading to safer module and test
selection for compilation and test execution, respectively.

We evaluate our RTS technique on 397 pull requests and measure
the time savings in the CI pipelines across five weeks, covering
roughly 2,700 commits. In addition to traditional measures, such
as the ratio of selected tests, we also consider the observed real-
life end-to-end time saving, i.e., compilation plus test execution
time. The results on two evaluation branches show our approach
can select tests safely (no undetected failures slip into target re-
lease branches) and thereby saves on average 42% and 72% of test
execution time, depending on how recent the release branch is.
End-to-end CI pipeline time is further reduced by up to 63% on av-
erage, when compared to pull requests with full build and retest-all
strategy. Although we evaluate our RTS technique in just one indus-
trial context, we expect it to be applicable to other multi-language
software systems. Due to the resulting shorter feedback cycles, our
RTS approach is now deployed to all release branches at IVU.

2 CONTINUOUS INTEGRATION TESTING AT
IVU TRAFFIC TECHNOLOGIES

This paper describes the optimization of the CI testing process
for pull requests at IVU using a novel build system aware multi-
language RTS approach. To better understand the context of this
study, we first explain the system under test and the testing pro-
cess for pull requests at IVU. Second, we elaborate on established

state-of-practice RTS techniques and their drawbacks in the given
context.

2.1 System Description
At IVU, source code of the main software products is stored in a
monolithic code repository. The code repository is split into two
subtrees, one containing mainly C/C++ source code (approx. 9.5M
LOC) and one with mainly Java source code (approx. 4M LOC).
Additionally, both subtrees contain, amongst others, hundreds of
thousands LOC written in Java-/TypeScript, C#, Perl, Python, SQL,
and Assembly, as well as millions of lines in non-code artifacts such
as XML, CSV, YAML, Java Properties, and plain text files.

The code repository is structured through >4,000 Maven1 mod-
ules, yet Maven is only used as the build system for the Java subtree.
For the C/C++ subtree, a self-maintained build tool is employed,
which wraps Microsoft’s Visual C++ compiler, as most software
products primarily target Microsoft Windows.

The regression test suite is composed of unit, integration, and
system level test cases. Tests written in Java are naturally located
in the Java subtree, whereas C/C++ tests reside in the C/C++ sub-
tree. In this study, we focus on the Java tests. These are further
separated into so-called short-running and long-running test cases.
Both types of test cases frequently interact with databases, which
makes them inherently costly to run. Opposed to short-running
tests, long-running tests operate on real databases instead of in-
memory databases and use the Java Native Interface (JNI) to interact
with dynamic-link libraries (DLLs) built from the C/C++ subtree.
Executing the entire suite (∼10,000 test cases) yields unbearable
feedback times of around 2 hours (excluding compilation and code
analysis; see next section). Motivated by this high potential for
improvement, this paper describes how we reduce the effort for
building and testing Java code in pull request CI pipelines.

2.2 Pull Request CI Testing
To continuously integrate code changes, IVU uses a Jenkins2 CI
system. Respective CI pipelines (1) build, (2) analyze, and (3) test the
code base. These pipelines are continuously running for the main
development branch and release branches, which contain currently
supported and already released versions of the software.

Figure 1: Pull request CI pipeline as executed after every
change to a pull request branch

Before developers integrate changes into one of these branches,
they have to create a pull request. These pull requests contain
changesets which typically implement one feature, bug fix, or other
enhancement. When a pull request is opened, a new CI pipeline
is created for it. This pipeline will rebase the pull request branch
(source) onto the target branch (e.g., the release branch) and execute
1Maven: https://maven.apache.org
2Jenkins: https://www.jenkins.io/

Build System Aware Multi-language Regression Test Selection in Continuous Integration ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

the above mentioned steps. Every new commit to the source branch
triggers a new run of the pipeline. Since there exists only a lim-
ited amount of build machines for these pull request CI pipelines,
a pipeline run is typically queued before being executed. Once a
machine is available, the CI pipeline for the pull request runs as
depicted in Fig. 1. First, in case there are any changes related to
the C/C++ subtree, the C/C++ code is built, analyzed, and tested.
Second, the Java code is built, analyzed, and tested. Notably, ex-
clusively changing the C/C++ subtree nevertheless triggers the
Java build and the Java long-running tests, as these tests operate
across language boundaries and potentially use C/C++ DLLs3. If
no changes to the C/C++ code were made, the necessary DLLs are
loaded from a central artifact repository.

Before the improvements we describe in this study, the Java-
related pipeline steps took around 170 minutes on highly paral-
lelized build machines (64–96 cores): Building took on average 28
minutes, static code analysis 24 minutes, short-running tests 38
minutes, and long-running tests 80 minutes.

2.3 Alternative Test Selection Approaches and
State-of-Practice

The state-of-practice knows several safe RTS techniques and associ-
ated tools, specifically for Java projects [2, 4, 10, 15, 16, 19, 21, 22, 27,
29, 33, 34, 38, 39]. Existing techniques statically [2, 21, 22, 33] or dy-
namically [4, 10, 15, 16, 27, 34, 38, 39] collect per-test dependencies
at the level of basic-blocks [19, 29], methods [4, 39], classes/files [15,
16, 21, 22], modules [2, 33], or combinations thereof [34, 38] to se-
lect tests. These techniques have been shown to effectively reduce
the testing effort in various studies—especially on open-source soft-
ware projects, yet particularly not at the scale of the industrial
code base of IVU. However, existing techniques and tools suffer the
following limitations that are crucial in the context of IVU.

2.3.1 Build System Awareness. We identify two requirements re-
lated to the build system.

First, the majority of more recent RTS techniques use file or
method checksums of per-test dependencies to identify those de-
pendencies that have changed since the last test execution [10, 15,
16, 21, 22, 38]. While this approach is easily transferable and does
not require integration with the VCS, it is based on the assumption
that a fully built workspace is readily available. At IVU, compiling
the code of all >2,000 Java Maven modules already requires a sig-
nificant time effort, on average roughly half an hour despite high
parallelization. However, selecting only relevant modules for com-
pilation provides a great time-saving potential. Thus, an adequate
RTS technique in this context needs to select tests without having
compiled sources available.

Second, existing RTS techniques are unsafe considering the build
system configuration. This is because they either use language-
specific analysis or collect per-test dependencies during test exe-
cution. Yet, build configuration files such as Maven pom.xml files,
are not part of per-test dependencies since these files define the
compile and runtime dependencies before the test is executed. To

3Although C/C++-only changesets are supposed to trigger the Java build and Java
long-running tests since they might break tests, this has been partially deactivated
throughout the course of our study, due to the significant overhead caused for small
C/C++ changesets.

mitigate this threat, Shi et al. [34] recommend to use hybrid tech-
niques, which combine static module and dynamic file-level analy-
sis. However, their proposed technique, GIBstazi, selects all tests,
if any changes to non-code files occur. Due to the large amount of
non-code artifacts in our system, this does not provide significant
advantages over retest-all. At IVU, we require a more precise ap-
proach that actively checks for build system changes and prunes
the set of selected tests and modules to be compiled to a minimum.

2.3.2 Multi-language Test Traces. Since most existing RTS tech-
niques for Java software rely on language-specific static analysis
or code instrumentation, their collected per-test dependencies are
impracticable for software that operates across language bound-
aries [10, 40]. At IVU, we intensively use cross-language links to
implement Java tests that cover code from the Java and C/C++ code
base, and code written in other programming languages. Moreover,
our code base includes millions of lines in non-code artifacts, which
are used for configuration purposes at run-time or serve as test
resources (e.g., expected test results). Consequently, a safe RTS tech-
nique in our context needs to rely on test traces that cover multiple
languages and non-code artifacts, e.g., by tracing calls issued to
native DLLs during test execution.

To address this problem, Celik et al. [10] propose RTSLinux, an
RTS technique that modifies the Linux kernel to intercept operat-
ing system calls related to file accesses and process management.
This way, RTSLinux collects all file dependencies of a Java virtual
machine (JVM) process executing a test and is thereby also aware
of calls made from the JVM to native libraries via the JNI. However,
even if RTSLinux was publicly available, it would not be applicable
in our case: First, perhaps trivially, our software targets Windows
environments and therefore—at least the C/C++ parts—cannot be
executed on Linux. Since Windows is a closed-source operating
system, directly modifying the kernel and system call application
programming interfaces (APIs) is not easily possible. Second, assum-
ing said kernel modification was technically feasible, IVU would
most probably decide against using modified operating systems on
their CI machines, as this would imply maintaining that extension
for future versions of the kernel with utmost care to avoid kernel
panics. Third and yet more importantly, RTSLinux also relies on file
checksums to compute the set of changed files and thus requires
a compiled workspace. Hence, RTSLinux does neither provide an
applicable approach for multi-language software on Windows, nor
does it address the need to reduce compile time.

2.3.3 Tool Support. Beyond the conceptual limitations of existing
RTS techniques, we did not find a single RTS tool for JVM projects
that was publicly available (released on Maven Central) and worked
out-of-the-box in the given context. The main reasons are that
existing tools do not support JUnit 5 (Ekstazi [15], HyRTS [38]), or
fail with Java Development Kit (JDK) versions newer than 9 (we
use 11) or specific language features such as Java type annotations4

(Clover [4], STARTS [22]).
In summary, we need an RTS solution that is (1) build system aware,
i.e., it is safe concerning changes to the build system configuration
and can selectively build only those modules relevant for testing

4Clover GitHub Issue on Java Type Annotations: https://github.com/openclover/clover/
issues/20

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elsner, et al.

introduced changes; (2) capable of collecting per-test dependencies
to non-code artifacts and across programming languages.

Similar to prior RTS research [12, 15, 16, 21, 22], we target class-
rather than method-level test selection. Therefore, unless otherwise
stated, we refer to a Java test class (i.e., JUnit test suite) in the rest
of the paper when we talk about a test.

3 BUILD SYSTEM AWARE MULTI-LANGUAGE
TEST SELECTION

Existing RTS techniques are either unsafe or unapplicable at IVU.
This motivates a novel approach, which is build system aware and
capable of multi-language RTS. In this section, we first explain how
to collect multi-language test traces as input for the test selection.
Second, we show how to integrate the test selection with the build
system to selectively compile modules for safe and cost-efficient
testing. Last, we elaborate on integration details of our RTS tech-
nique into the pull request CI at IVU.

3.1 Collecting Multi-language Test Traces
To address the requirement of multi-language support for our RTS
technique, we need to collect per-test dependencies to non-code
artifacts and across language boundaries. Therefore, we harness
and combine practical approaches for system call tracing and JVM
class loader monitoring. By integrating these approaches with the
JUnit testing framework [5] and the Maven Surefire Plugin [3], we
can collect the required test traces at file-level granularity.

3.1.1 Probe-based System Call Tracing. System calls represent the
interface to the operating system kernel that is visible to application
programmers [36]. During a test’s execution, its low-level behavior
can be analyzed by tracing the invoked system calls. Thereby, we
can collect the set of all accessed files, even if they are accessed by
loaded DLLs or transitive child processes. The most straightforward
way to trace all system calls issued by a test is to execute each test
in isolation in its own forked JVM process which is supported by
standard test execution frameworks [3, 10]. This further increases
the reliability of test results as it prevents shared test state pollution
or test-order dependencies [6, 28]. We can thus obtain stable file-
level test traces by tracing all process- and file-related system calls
for each JVM, i.e., for each test.

A similar approach is employed by RTSLinux [10]. However,
none of the techniques for tracing system calls evaluated by Celik et
al. [10] is available for the Windows operating system. As motivated
in Sec. 2.3.2, even if RTSLinuxwas available for Windows, we would
prefer a less intrusive, more maintainable approach. Yet, from the
results reported by Celik et al., we learn that an efficient system
call tracing approach has to operate in kernel mode, since tracing
all system calls and filtering in user mode is prohibitively expensive
(approx. four times the overhead of kernel mode tracing) [10].

In order to implement practical and efficient system call tracing,
we use DTrace [9]5. DTrace provides capabilities to dynamically
instrument so-called probes. These are static or dynamic instrumen-
tation points for which one can specify instructions to be executed
if the probe fires (e.g., when entering a system call). Because this

5DTrace stands for Oracle Solaris Dynamic Tracing Facility

selective probe-based instrumentation is highly efficient and guar-
anteed to run safely inside the kernel [18], it has been deployed in
production environments at Netflix, amongst others [17].

Our DTrace script takes a process identifier (PID) as input and
instruments relevant system calls related to accessing files or spawn-
ing new processes. This way, we capture complete traces and fi-
nally store all relevant information (e.g., timestamps, PIDs, accessed
filepaths) in a tracing log.

3.1.2 JVM Class Loader Monitoring. There are two drawbacks to
relying solely on tracing system calls for Java tests:

First, in case a test loads a Java .class file that is located inside
a Java archive (JAR), that JAR file will be part of the test trace, but
not the actually used .class file. This could lead to imprecision
in the test selection, as it stipulates to select that test if any of the
files inside that JAR has changed [15]. Since many of our tests use
classes from other Maven modules which are typically packaged
as JARs, addressing this potential imprecision is crucial. Therefore,
we attach a Java agent6 to each JVM executing a test. The agent
monitors whenever a new class is loaded by the class loader. If the
corresponding .class file is located inside a JAR, it is added to the
tracing log. If it is not located inside a JAR, we can safely ignore it,
as we already cover it with our system call instrumentation. Note
that we are only interested if a .class file was ever loaded during
the execution of a test. Hence, as every test is running in its own
forked JVM, we do not need to instrument the loaded file itself.

Second, similarly, in case a resource, such as an XML file, is loaded
that is located inside a JAR, no separate system call to open that
resource is invoked by the JVM. Instead, it is read from the already
loaded JAR. Therefore, we instrument the getResource(String)
method in the java.lang.ClassLoader class, as it is used for load-
ing resources from JARs.

3.1.3 Integration with Testing Infrastructure. At IVU, we rely on
JUnit 5 as our testing framework for Java. To execute each test in
isolation in its own JVM process, we use Maven Surefire’s forking
mechanism7. This creates a new JVM per JUnit test class and we
parallelize testing across Maven modules on all available CPU cores.
To link the individual tests to the accessed files and spawned pro-
cesses from our tracing log, we further need to obtain information
about when a test started and terminated. Therefore, we register a
custom JUnit test execution listener and subscribe to a test’s start
and end event [5]. The listener creates a testing log which contains
start and end timestamps, the identifier of the test, as well as the
JVM PID. We cannot only use the PID of the test to find its file
accesses, as Windows may reuse PIDs after a process has been
terminated.

Eventually, the tracing and testing logs are combined and we are
able to compute a file-level test trace for each test8 after all tests
have been executed. We store the test traces in a CSV file, where
each row contains a test name and a filepath accessed by that test.

6Java Agent API for run-time code instrumentation on the JVM [1]
7mvn surefire:test -DforkCount=1 -DreuseForks=false -T1.0C
8Recall that we refer to a Java test class (i.e., JUnit test suite) when we talk about a test

Build System Aware Multi-language Regression Test Selection in Continuous Integration ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

3.2 Build System Aware Test and Module
Selection

Our proposed RTS technique acknowledges changes to non-code
artifacts and to the build system, e.g., changed dependencies. Al-
gorithm 1 contains the pseudo-code of our build system aware
test and module selection. Our algorithm has three inputs: (1) the
changeset from the VCS, (2) the multi-language file-level test traces
described in Sec. 3.1, and (3) DLL-to-source mappings for target and
pull request branch. The latter are retrieved by analyzing the C/C++
compiler output which contains static compile dependencies for
each DLL. More specifically, we parse .tlog files that are emitted
by the Microsoft C++ compiler toolchain9 and extract which source
files each DLL depends on. The resulting mapping is stored in a
CSV file, where one row has two columns; one contains the DLL
file name and one a source filepath this DLL depends on. We need
the information contained in this mapping since our test traces
only include accesses to DLL files, not to actual C/C++ source files.

Changeset Analysis. Our algorithm analyzes the changeset by
iterating over all changed files. For each Java source file, we search
the Java source file for all class, enum, and interface definitions.
From those definitions we create corresponding .class filepaths
that match .class files generated by the Java compiler. For instance,
if a Java source file that is part of the package a.b.c contains two
classes X and Y, the two generated class filepaths are a/b/c/X and
a/b/c/Y. These will also match accessed .class filepaths of nested
or anonymous classes, e.g., if X contained one anonymous class,
the Java compiler would output a file a/b/c/X$1.class, which
can also be matched by a/b/c/X. Then, we check for presence of
JUnit test method annotations. If the file does indeed contain test
methods, it is considered a test suite and thus added to the set of
tests to be executed. This way we safely select all newly created
or updated test classes. For each C/C++ source file, we retrieve all
affected DLLs from the DLL-to-source mappings and add the DLL
paths to the set of affected filepaths. For changed Maven pom.xml
files or files that can affect the build results (e.g., .wsdl or .xsd files),
we select all tests from the changed module and all downstream
modules, by retrieving them from the Maven reactor. The filepaths
of all other changed files (e.g., .xml or .csv files) are also added to
the set of affected filepaths.

While our approach intuitively works for additive and modifying
changes, it is not immediately clear, how deletions have to be treated
for each file type: We address deletions of and inside of .java files
by parsing both, the old and the new revision (if existing) of the
file. This way, we can also find all affected tests that covered any
.class filepaths of the old revision. Deletions related to C/C++ are
already covered, since we use the DLL-to-source mappings from
both, the target branch and the pull request branch. Hence, if the
pull request contains a C/C++ deletion, the deleted filepath will
still be part of the DLL-to-source mapping of the target branch. For
deletions of other file types, we simply search for the old filepath
inside the test traces.

Test Selection. We iterate over all test traces and select those tests
that have accessed files that match any of the affected filepaths.

9.tlog files in Microsoft Visual C++ [26]

Algorithm 1: Build System Aware Test and Module Selection
Input: changeset, test traces, DLL-to-source mappings
Output: selected tests, selected modules

1 selectedTests← {}
2 selectedModules← {}
3 affectedFilePaths← {}
4 foreach change in changeset do
5 if isJavaFile(change) then

/* get .class filepaths from .java file (before/after) */

6 affectedFilePaths +← getClassFilePaths(change)
/* if @Test annotation is present, select test suite */

7 if containsTests(change) then
8 selectedTests +← getTestSuiteIdentifier(change)

9 else if isCppFile(change) then
/* look up affected DLLs in DLL-to-source mappings */

10 affectedFilePaths +← getDLLFilePaths(change)
11 else if isRelevantForBuild(change) then

/* select all tests of changed Maven module and from all

transitive downstream modules */

12 selectedTests +← getTestsForModule(change)
13 else
14 affectedFilePaths +← change

/* select modules for changes in pom.xml, .java, .xsd, and

.wsdl files */

15 if isRelevantForBuild(change) then
/* get enclosing Maven module for compilation */

16 parentModule← getParentMavenModule(change)
17 selectedModules +← parentModule

/* include upstream modules (transitive) */

18 selectedModules +←
getUpstreamModules(parentModule)

/* include direct downstream modules with their

transtive upstream modules */

19 selectedModules +←
getDownstreamModules(parentModule)

/* compute affected tests from test traces */

20 selectedTests +← getAffectedTests(affectedFilePaths)
/* search affected parent Maven modules for selected tests */

21 testModules← getAffectedModules(selectedTests)
22 selectedModules +← getUpstreamModules(testModules)
23 return selectedTests, selectedModules

Module Selection. We select all Maven modules for compilation
that either (1) are directly impacted by the changeset or (2) enclose
any of the selected tests. For (1) we further need to add all upstream
modules to the set of selected modules, as they are required to com-
pile the changed modules. Additionally, since changes in modules
from (1) could break direct downstream modules, these also need
to be selected including their transitive upstream modules, in order
to be buildable. For (2) we need to add upstream modules as well,
since they are required to build the tests’ modules.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elsner, et al.

Figure 2: Pull request CI pipeline extended by our RTS technique

In the next section, we describe how we use these two results—
the sets of selected tests and modules—inside the pull request CI
to instruct Maven and Maven Surefire to selectively compile and
execute modules and tests, respectively.

3.3 Integration into Pull Request CI
We integrated our RTS technique into the pull request CI, as il-
lustrated in Fig. 2. Therefore, we added an additional step to the
pipeline that calls our RTS algorithm, which we implemented as a
simple command line interface (CLI) tool.

To provide the test traces to our tool, we created a separate
tracing CI pipeline, that continuously runs for the target branches
chosen in this study (see Sec. 4.1 for our evaluation setup). Cur-
rently, we update the test traces approx. once per day for each
release branch, which provides good trade-offs regarding effort and
effectiveness in our context (see our results in Sec. 4.2). We only
update test traces for passing tests, since failing tests might yield
incomplete traces (e.g., if the test terminated early).

Our tool receives the following inputs: First, the changeset of
that pull request; second, the most recent test traces collected with
our separate tracing CI pipeline; third, the DLL-to-source mapping
from the most recent C/C++ build of the target branch. If changes
were made to the C/C++ subtree within the pull request, we also
provide the DLL-to-source mapping from the C/C++ build step.
With these inputs, our tool computes the set of selected tests and
modules and stores them in text files for subsequent pipeline steps.

To build and analyze only the selected Java modules, we extend
the Maven reactor mechanism [25] to read the modules from that
text file. We need this extension as the reactor API currently does
not offer an option to specify the list of modules as a file10. To
execute only the selected short- and long-running tests, we make
use of Maven Surefire’s test inclusion mechanism.

4 EVALUATION
The effectiveness of safe RTS techniques is typically evaluated
by comparing the number of selected tests to the retest-all strat-
egy and by measuring the overall test duration of the selected

10Due to command line length limitations on Windows, we cannot use the --projects
option.

tests [10, 16, 21]. Regarding the evaluation of a technique’s safety,
prior work often semi-formally proves safety under certain assump-
tions [10, 16, 21], such as safety for code changes [16]. However,
prior research on checking RTS tools has shown that these assump-
tions cannot be guaranteed to hold in practice [40]. We have already
explained in Sec. 2.3 why non-code artifacts, cross-language links,
and build system changes pose particular threats to the safety of
existing RTS techniques. Thus, we need to empirically determine
how safe our proposed RTS approach is for changesets of pull re-
quests and discuss scenarios where our approach can be unsafe
(see Sec. 4.3.2). Since no existing RTS technique is considered uni-
versally safe and could therefore serve as a reference, the only way
to empirically check for safety violations is to find real (non-flaky)
failures that were not selected by the RTS technique [34]. We per-
form an empirical study on five weeks of real development activity
to answer the following research questions (RQs):

• RQ1: How much testing effort reduction can we achieve by
selecting tests using our RTS technique?
• RQ2: How safe is our RTS technique for changesets of pull

requests in terms of real missed failures?
• RQ3: How much end-to-end CI pipeline execution time does

our RTS technique save per pull request CI pipeline run?

4.1 Experimental Setup
In order to be able to answer RQ1−3, we need to measure (1) testing
effort reduction, (2) missed failures, and (3) end-to-end CI pipeline
execution time savings for pull requests. We therefore added an
invocation of our RTS CLI tool before the Java pipeline steps on
the previous two release branches, RV1 and RV2 , and in the current
release branch, RV3 . Additionally, for all three branches we log the
start and end timestamp for each Java pipeline step and the newly
added RTS pipeline step. The build machines used for executing
pull request pipelines are drawn from a fixed set of machines (64–96
cores), independent of the target branch of the pull request. Table 1
provides a summary of relevant descriptive statistics for the three
release branches considered in this evaluation.

To answer RQ1 and RQ2 and measure (1) and (2), we only con-
sider pull requests to RV1 and RV3 . On these branches, we still
execute all tests and only store the set of selected tests for later

Build System Aware Multi-language Regression Test Selection in Continuous Integration ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Relevant statistics for 3 considered release branches

Branch RV1 RV2 RV3

Dataset
Statistics

PRs 88 58 251
PR pipeline runs 157 73 356
Commits 896 120 1,681
Median changeset size (# files) 5 4 9

analyses (i.e., retest-all with simulated RTS). This way, we get a
retest-all test report for each pull request CI pipeline run on these
branches. From this report and the set of selected tests, we can com-
pute the fraction of selected tests and test duration, and count the
missed failures that occurred during retest-all. The rationale behind
the choice of release branches is that at IVU release branches follow
a specific lifecycle: On the current release branch, RV3 , the most
development activity is expected, as small features and bug fixes
are still added. The less recent release branch, RV1 , receives fewer
development activity, which primarily concerns maintenance tasks,
where pull requests with smaller changesets are expected. By using
both RV1 and RV3 to answer RQ1, we can also investigate to what
extent RTS on pull requests to older release branches can achieve
higher savings due to the smaller changesets.

To answer RQ3 and measure (3), we need to compare end-to-
end pipeline durations with RTS against retest-all. However, using
both, RTS and retest-all on the same pull requests introduces large
overhead—in the worst case a factor of 2, if all tests and modules
are selected. In our industrial setting, this evaluation approach is
rendered too expensive. From previous experience and analyses
we know that CI pipeline runs take approx. the same time for pull
requests to RV2 and RV3 , although they can be subject to natural
variations due to infrastructure side-effects [12]. Hence, we can
compare the time distribution for each pipeline step in RV2 , where
RTS is actually used, againstRV3 , where retest-all is used. In addition
to this inter-branch evaluation approach, we validate our results by
also using RTS on RV3 for the final week of our experiments. This
allows to investigate the pipeline runtimes before and after RTS
activation in an intra-branch evaluation.

Figure 3: Evaluation approach for different release branches

The evaluation approach is illustrated in Fig. 3. Overall, our ap-
proach captures two aspects that have not been considered in prior
research: First, we investigate the impact of the current lifecycle
phase of a target release branch on RTS effectiveness. Second, we
analyze how savings in each pipeline step contribute to the achieved
end-to-end time savings for pull request CI pipeline runs.

4.2 Results
RQ1: Testing Effort Reduction. Fig. 4 depicts the testing effort reduc-
tion we achieve, by comparing our RTS technique to a retest-all
strategy. As described in the previous section, we compute the
fraction of selected tests and test duration by combining retest-all
test reports from pull requests on RV1 and RV3 with the respective
sets of selected tests. The results indicate that our RTS technique
selects on average 25% of tests for pull requests on RV1 and 52%
for RV3 . The selected tests further take on average 28% and 58% of
test duration for RV1 and RV3 , respectively. Hence, RTS was partic-
ularly effective for the maintenance branch RV1 , which had smaller
changesets (median changeset size is only roughly half of RV3).

Figure 4: Comparison of our RTS technique to retest-all
strategy regarding ratio of selected tests and test duration

RQ1: We find that on two evaluation branches our RTS tech-
nique selects on average 25% and 52% of tests per pull request CI
pipeline run realizing a test duration reduction by 72% and 42%,
respectively. RTS performs significantly better in pull requests
on a maintenance release branch (RV1) compared to a release
branch with active development (RV3).

RQ2: Safety. To find real failures which would not have been se-
lected by our RTS technique, we first create the set difference of all
failed tests in the retest-all test report and the selected tests. This
yields a total of 305 pull request CI pipeline runs with missed fail-
ures across pull requests to RV3 and RV1 . To filter out failures that
are not introduced by the changeset of the pull request itself, we
need to re-run the failing tests at the revision of the target branch
which the pull request was rebased on. If a test also fails on the
target branch, it is probably not related to the pull request (e.g., a
won’t fix) and can be discarded. If a test does not fail on the target
branch, we need to manually check if it is a failure introduced by
the pull request and was therefore missed by the RTS technique. To
keep the tedious manual effort at a reasonable level, we randomly
sampled 50 from the 305 runs and manually inspected 2,176 missed
test failures. Most of the missed failures stem from a database tech-
nology switch that was made on the build machines during the
considered time period. This switch caused many long-running
tests to fail due to memory leaks or failing schema updates during
the first days of operation. We further observe a few flaky tests
that failed due to non-deterministic test behavior that is partially
known to the developers. However, none of the inspected missed
test failures are actually related to the changes introduced in the
pull requests. We can therefore conclude that our RTS technique

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elsner, et al.

is empirically safe regarding failures that were introduced by the
considered pull requests. Yet, we discuss potential reasons for safety
violations in Sec. 4.3.2. We can further confirm previous findings
that RTS techniques can be helpful in avoiding flaky test failures
and thereby reduce associated debugging costs [34].

RQ2: We find that our RTS technique does not miss any real
failures that are introduced in the considered pull requests.

Figure 5: Inter- and intra-branch comparison of our RTS
technique to full build and retest-all strategy

RQ3: End-to-End Savings in Pull Requests. Fig. 5 shows the distri-
butions of the duration for each Java pipeline step and the Java
end-to-end runtime for RV2 and RV3 . As described in our experi-
mental setup, we perform two kinds of comparisons, inter-branch
and intra-branch. Regardless of the applied evaluation, we observe
significant savings: In the inter-branch comparison, the results in-
dicate that we can save on average 50% (71 minutes) of end-to-end
pipeline runtime with RTS on RV2 . In the intra-branch comparison,
when comparing RV3 (retest-all) against RV3 (RTS), which was used
in the final week of our experiments, we achieve even better results:
On average, 63% (89 minutes) of end-to-end pipeline runtime is
saved. Despite small discrepancies in the achieved time savings,
our results show similar trends using either of the two evaluation
techniques and thus confirm each other. Comparing the median
time savings, there is only a discrepancy of 6 minutes between the
evaluation methods.

Regarding the individual contributions to this overall end-to-end
time, we report the following average savings for the individual
pipeline steps for RV2 : 53% for Build, 80% for Analysis, 79% for
Test (short), and 42% for Test (long). We discuss the reasons for the
comparatively smaller savings in long-running tests in Sec. 4.3.1.

We further find that computing the selected modules and tests
is inexpensive: The mean and median of the RTS pipeline step was
roughly 3 minutes across all three branches. Since we generate test
traces and DLL-to-source mappings in separate CI pipelines every
day, the end-to-end pipeline time for pull requests is unaffected.

RQ3: We find that our RTS technique helps save on average 50%
and 63% end-to-end pipeline execution time for pull requests on
two release branches.

4.3 Discussion
In the following, we discuss weaknesses related to the precision
and safety of our RTS approach and share feedback we received
from developers working on the system.

4.3.1 Imprecision of DLL-to-source Mappings. Our results for RQ3
indicate that time savings achieved for the long-running Java test
step are lower than those for the short-running test step. The reason
is that if there are changes in core modules of the C/C++ subtree,
commonly the majority of long-running tests is selected. This im-
plies that these changes affect any DLL used by many long-running
tests. We do not have any runtime information about which C/C++
source files that are part of a DLL are actually covered by each
test. Hence, our selection in such cases is rather coarse-grained and
imprecise. To address this problem and obtain more fine-grained
runtime information, we are currently investigating extensions
to our approach such as instrumenting the DLLs, intercepting na-
tive function invocations from the JNI, or using DTrace for tracing
additional relevant system events.

4.3.2 Potential Reasons for Safety Violations. Test traces and DLL-
to-source mappings are created in separate CI pipelines continu-
ously running on the target release branches. Depending on the
frequency of these pipelines (we run them once per day), test traces
and DLL-to-source mappings might be outdated, which in turn may
lead to unsafe test selection. Similarly, if a test fails over multiple
runs in the separate tracing CI pipeline, that test’s trace will not get
updated until it passes again, also leading to outdated test traces.

In case of changes related to dependency injection mechanisms,
affected tests might be missed: For instance, if a new default Java
EE bean implementation is added inside a pull request, all tests
that use the default bean will change their behavior. Yet, none of
the files inside the test trace is directly affected by the addition.
However, in such cases, typically another change that affects the
test trace is part of the pull request, such as adjusting any other file
that uses the newly added bean implementation—hence, odds are
low that we effectively miss any affected tests.

Eventually, our RTS technique might be unsafe, if new non-code
artifacts are added to the code base that are implicitly used by tests,
while tests are not changed themselves; for instance, if a test walks
the file tree and opens all files with a certain file extension, rather
than explicitly opening a file through its filepath.

Finally, we found that external configuration changes, e.g., to
the database environment, can cause tests to fail. However, our
RTS technique only considers artifacts tracked by the VCS and
therefore did not select these tests. We believe this to be expected
RTS behavior, since these failures are not related to the changeset
of a pull request.

4.3.3 Developer Feedback. Since IVU engineers, architects, and
testers are directly impacted by our changes to the pull request
pipelines, we regularly asked them for feedback on our work. Over-
all, our RTS approach has wide support among developers as it
significantly reduces feedback times in their daily work; they are
convinced that the RTS approach adds great value. Therefore, we
deploy it to all other release branches as well. Furthermore, as
requested by developers, we are working on extending the test

Build System Aware Multi-language Regression Test Selection in Continuous Integration ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

selection to C/C++ tests. While the system call tracing is language-
agnostic and the integration with the testing framework is straight-
forward, we require further language-specific instrumentation, as
DLL test trace granularity is too coarse (see our discussion on im-
precise DLL-to-source mappings above).

4.4 Threats to Validity
4.4.1 External Validity. As for most industrial case studies, the
main threat to validity concerns the generality of our results: We
have specifically designed our RTS approach to address the short-
comings of existing techniques in the context of IVU. Nonethe-
less, our results show similar trends as prior RTS research done
on open-source software and we can confirm empirical findings
that dynamic file-level RTS can indeed significantly reduce regres-
sion testing efforts [10, 16, 34]. Furthermore, the technology we
use to implement our RTS tool is publicly available and we rely
on standard frameworks and tools, such as JUnit and Maven, that
are frequently used across research [10, 16, 21, 38]. This eases a
replication of our study in other software projects.

Furthermore, similar to previous studies [12, 34], the measured
times in the CI pipelines can contain irregular fluctuations stem-
ming from infrastructure or environment issues. While this could
affect our evaluation results, we address this threat by reporting
not only (potentially biased) average values, but the distributions
for time savings across analyzed pull request pipeline runs.

Finally, to assess the safety our RTS approach, we manually
checked if there were any real missed failures, but limited the
inspection to 50 randomly sampled pull requests, which might not
be representative. However, as opposed to most prior studies on
safe RTS, we discuss potential safety violations and perform an
empirical study to find any occurrences. We do this even though
we rely on concepts that have been shown to work in other safe
RTS approaches. Furthermore, to the best of our knowledge, we
have still re-run and inspected the largest number of missed test
failures in any existing RTS study to date.

4.4.2 Internal Validity. The main internal threats emerge from
the implementation of our RTS tool and the proper functioning of
Maven Surefire, JUnit, DTrace, and the ByteBuddy library11, which
we use to instrument the Java class loader. To address these threats,
we wrote unit and integration tests for our RTS tool and manually
checked selection results of pull requests for their validity.

5 RELATED WORK
Throughout this paper, we have referenced RTS techniques that
have been proposed to effectively reduce regression testing efforts
(see Sec. 2.3). Among the many existing studies, we consider the
following to be most relevant for our work:

Gligoric et al. [15, 16] propose Ekstazi, a dynamic file-level RTS
technique for the JVM that relies on file checksums for computing
the set of selected tests. In Sec. 2.3, we describe why Ekstazi is
unsafe in our context, as it uses file checksums and is neither aware
of cross-language links, nor does it consider non-code artifacts12.

11ByteBuddy: https://bytebuddy.net
12Ekstazi has a hidden Linux-only option to collect files loaded by the JVM, which is
untested and disabled by default. Nonetheless, even when collecting files loaded by
the JVM, file accesses made from native DLLs or transitive processes are missed [10].

Ekstazi reduces the end-to-end testing time on average by 32%
across 32 open-source projects. Furthermore, Gligoric et al. [16] find
that selecting tests at the class level (i.e., JUnit test suites) achieves
better results than selecting tests at method level (i.e., JUnit test
methods). We acknowledge these results as our RTS technique also
collects file dependencies per test class, rather than test method.

Shi et al. [34] extend Ekstazi by complementing it with the
static incremental build tool GIB [2]. The resulting tool, GIBstazi,
is thus the most similar existing approach to our hybrid approach
of selecting modules and regression tests for compilation and test
execution, respectively. However, GIBstazi selects all tests, if any
changes to non-code files occur. Due to the large number of non-
code artifacts in our system, this is too imprecise. Additionally,
similar to Ekstazi, it is unsafe for changes to multi-language source
or binary files, such as DLLs, and files accessed by those. Overall,
GIBstazi achieves higher safety than Ekstazi and the empirical
results on 22 open-source projects show that GIBstazi reduces
end-to-end build and testing time in CI environments by 23%.

Celik et al. [10] propose RTSLinux, the first and only RTS tech-
nique that uses system call analysis to track accesses to files across
JVM boundaries during testing. Similar to Ekstazi, RTSLinux uses
file checksums for selecting tests, when a compiled workspace al-
ready exists. We have alluded to why RTSLinux is not applicable
in Windows environments and why our lightweight, safe kernel
instrumentation through DTrace is a more practical approach in
an industrial setting than modifying the operating system kernel.
RTSLinux saves 53% of test execution time compared to retest-all.

In a previous study at IVU, we evaluated the cost-effectiveness of
unsafe RTS techniques that solely rely on readily available CI and
VCS metadata [12]. When applied to the main development branch
at IVU for six weeks, the best performing unsafe RTS technique
achieved test time savings of on average 19.8% with 93.4% of failures
being detected. Though, we have motivated before that for pull
requests to release branches safe RTS is required.

In summary, we are not aware of any prior work that investigates
safe RTS that is build system aware and operates across language
boundaries. Moreover, neither do any of the previous studies evalu-
ate safe RTS in a large-scale industrial CI setting, nor do they study
how end-to-end time for pull request CI pipelines can be reduced.

6 CONCLUSION
At IVU, compiling, analyzing, and testing pull requests within CI
pipelines has prohibitively long feedback times. To reduce testing
effort for pull requests on release branches, safe RTS is required,
since support patches for customers are directly built from release
branches. However, existing safe RTS techniques are inapplicable,
as tests at IVU commonly operate across languages and intensively
make use of non-code artifacts. Moreover, prior RTS approaches are
unsafe for changes to the build system configuration and require
an already fully compiled workspace.

In this paper, we introduce a build system aware multi-language
RTS technique that safely selects modules and tests for compilation
and execution. We deploy our novel RTS technique in IVU’s large-
scale, multi-language code base and perform an extensive empirical
study to evaluate its effectiveness. The results indicate that our
RTS technique saves on average 42% and 72% of testing time on

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Elsner, et al.

two evaluation release branches. We thereby reduce end-to-end CI
pipeline runtime for pull requests by up to 63% on average. Since
this greatly reduces feedback time for developers while retaining
failure detection, our introduced RTS technique is now deployed
company-wide to all release branches. While our industrial case
study provides insights for one specific context, we expect our
RTS technique to be applicable to other multi-language software
projects, as it is based on well-known concepts and widely used
tools for dynamic and static program analysis.

ACKNOWLEDGMENTS
We thank Dennis Bracklow, Stefan Golas, Maximilian Pohl, and
Stefan Sieber for their support while integrating our technique into
IVU infrastructure. This work was partially funded by the German
Federal Ministry of Education and Research (BMBF).

REFERENCES
[1] 2017. Java Agent API. https://docs.oracle.com/javase/9/docs/api/java/lang/

instrument/package-summary.html
[2] 2021. gitflow-incremental-builder (GIB). https://github.com/gitflow-incremental-

builder/gitflow-incremental-builder
[3] Apache Maven. 2021. Maven Surefire Plugin – surefire:test. https://maven.

apache.org/surefire/maven-surefire-plugin/test-mojo.html
[4] Atlassian. 2017. About test optimization. https://confluence.atlassian.com/

clover/about-test-optimization-169119919.html
[5] Stefan Bechtold, Sam Brannen, Johannes Link, Matthias Merdes, Marc Philipp,

Juliette de Rancourt, and Christian Stein. 2021. JUnit 5 User Guide: Advanced Top-
ics. https://junit.org/junit5/docs/current/user-guide/{#}launcher-api-listeners-
custom

[6] Jonathan Bell and Gail Kaiser. 2014. Unit test virtualization with VMVM. In
Proceedings of the International Conference on Software Engineering. 550–561.
https://doi.org/10.1145/2568225.2568248

[7] Antonia Bertolino, Antonio Guerriero, Roberto Pietrantuono, Stefano Russo,
Breno Miranda, and Roberto Pietran-Tuono. 2020. Learning-to-Rank vs Ranking-
to-Learn: Strategies for Regression Testing in Continuous Integration. In Pro-
ceedings of the International Conference on Software Engineering. 1–12. https:
//doi.org/10.1145/3377811.3380369

[8] Benjamin Busjaeger and Tao Xie. 2016. Learning for test prioritization: An indus-
trial case study. In Proceedings of the International Symposium on the Foundations
of Software Engineering. 975–980. https://doi.org/10.1145/2950290.2983954

[9] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. 2004. Dynamic
Instrumentation of Production Systems. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference. https://doi.org/10.5555/1247415.1247417

[10] Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. 2017. Re-
gression test selection across JVM boundaries. In Proceedings of the Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 809–820. https://doi.org/10.1145/3106237.3106297

[11] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.
In Proceedings of the International Symposium on the Foundations of Software
Engineering. 235–245. https://doi.org/10.1145/2635868.2635910

[12] Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021. Empir-
ically Evaluating Readily Available Information for Regression Test Optimization
in Continuous Integration. In Proceedings of the International Symposium on
Software Testing and Analysis. 491–504. https://doi.org/10.1145/3460319.3464834

[13] Kurt Fischer, Farzad Raji, and Andrew Chruscicki. 1981. A Methodology for
Retesting Modified Software. In Proceedings of the National Telecommunications
Conference. 1–6.

[14] Kurt F. Fischer. 1977. A test case selection method for the validation of software
maintenance modifications. In Proceedings of International Computer Software
and Applications Conference. 421–426.

[15] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In Proceedings of the International Conference on Software Engi-
neering. 713–716. https://doi.org/10.1109/icse.2015.230

[16] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In Proceedings of the International
Symposium on Software Testing and Analysis. 211–222. https://doi.org/10.1145/
2771783.2771784

[17] Brendan Gregg. 2016. DTrace for Linux. http://www.brendangregg.com/blog/
2016-10-27/dtrace-for-linux-2016.html

[18] Brendan Gregg and Jim Mauro. 2011. DTrace: Dynamic Tracing in Oracle Solaris,
Mac OS X, and FreeBSD. Prentice Hall Professional.

[19] Mary Jean Harrold, Alessandro Orso, James A. Jones, Tongyu Li, Maikel Pennings,
Saurabh Sinha, Ashish Gujarathi, Donglin Liang, and S. Alexander Spoon. 2001.
Regression test selection for Java software. ACM SIGPLAN Notices 36, 11 (2001),
312–326. https://doi.org/10.1145/504311.504305

[20] Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Soder, Agneta Nilsson, and
Magnus Castell. 2015. Supporting Continuous Integration by Code-Churn Based
Test Selection. In Proceedings of the International Workshop on Rapid Continuous
Software Engineering. 19–25. https://doi.org/10.1109/rcose.2015.11

[21] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In Proceedings of the International Symposium on
Foundations of Software Engineering. 583–594. https://doi.org/10.1145/2950290.
2950361

[22] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic regres-
sion test selection. In Proceedings of the International Conference on Automated
Software Engineering. 949–954. https://doi.org/10.1109/ase.2017.8115710

[23] Hareton K.N. Leung and Lee White. 1989. Insights into regression testing. In
Proceedings of the International Conference on Software Maintenance. 60–69.

[24] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice. 91–100. https://doi.org/10.1109/
ICSE-SEIP.2019.00018

[25] Apache Maven. 2021. Maven Multi-Module Projects. https://maven.apache.org/
guides/mini/guide-multiple-modules.html

[26] Microsoft. 2019. Visual Studio C++ Project system extensibility and toolset inte-
gration – .tlog files. https://docs.microsoft.com/en-us/visualstudio/extensibility/
visual-cpp-project-extensibility?view=vs-2019{#}tlog-files

[27] Agastya Nanda, Senthil Mani, Saurabh Sinha, Mary Jean Harrold, and Alessandro
Orso. 2011. Regression testing in the presence of non-code changes. In Proceedings
of the International Conference on Software Testing, Verification, and Validation.
21–30. https://doi.org/10.1109/icst.2011.60

[28] Pengyu Nie, Ahmet Celik, Matthew Coley, Aleksandar Milicevic, Jonathan Bell,
and Milos Gligoric. 2020. Debugging the Performance of Maven’s Test Isolation:
Experience Report. In Proceedings of the International Symposium on Software
Testing and Analysis. 249–259. https://doi.org/10.1145/3395363.3397381

[29] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In Proceedings of the International Symposium
on Foundations of Software Engineering. 241–251. https://doi.org/10.1145/1029894.
1029928

[30] Adithya Abraham Philip, Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Mad-
dila, and Nachiappan Nagppan. 2019. FastLane: Test Minimization for Rapidly
Deployed Large-Scale Online Services. In Proceedings of the International Confer-
ence on Software Engineering. 408–418. https://doi.org/10.1109/icse.2019.00054

[31] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and Methodology
6, 2 (1997), 173–210. https://doi.org/10.1145/248233.248262

[32] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. 2000. Regression
test selection for C++ software. Software Testing, Verification and Reliability
10, 2 (2000), 77–109. https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-
STVR197>3.0.CO;2-E

[33] August Shi, Suresh Thummalapenta, Shuvendu K. Lahiri, Nikolaj Bjorner, and
Jacek Czerwonka. 2017. Optimizing Test Placement for Module-Level Regression
Testing. In Proceedings of the International Conference on Software Engineering.
689–699. https://doi.org/10.1109/ICSE.2017.69

[34] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In Proceedings
of the International Symposium on Software Reliability Engineering. 228–238.
https://doi.org/10.1109/issre.2019.00031

[35] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement learning for automatic test case prioritization and selection in con-
tinuous integration. In Proceedings of the International Symposium on Software
Testing and Analysis. 12–22. https://doi.org/10.1145/3092703.3092709

[36] Andrew S. Tanenbaum and Herbert Bos. 2015. Modern operating systems. Pearson.
[37] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection

and prioritization: A survey. Software Testing Verification and Reliability 22, 2
(2012), 67–120. https://doi.org/10.1002/stv.430

[38] Lingming Zhang. 2018. Hybrid regression test selection. In Proceedings of the
International Conference on Software Engineering. 199–209. https://doi.org/10.
1145/3180155.3180198

[39] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2013. FaultTracer: A
spectrum-based approach to localizing failure-inducing program edits. Journal
of Software: Evolution and Process 25, 12 (2013), 1357–1383. https://doi.org/10.
1002/smr.1634

[40] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. 2019. A
framework for checking regression test selection tools. In Proceedings of the
International Conference on Software Engineering. 430–441.

A.3. Publications

A.3.2. BinaryRTS: Cross-language Regression Test Selection for C++ Binaries
in CI

© 2023 IEEE. Reprinted, with permission, from Daniel Elsner, Severin Kacianka, Stephan
Lipp, Alexander Pretschner, Axel Habermann, Maria Graber, Silke Reimer, BinaryRTS:
Cross-language Regression Test Selection for C++ Binaries in CI, 2023 IEEE Conference
on Software Testing, Verification and Validation (ICST), April 2023.

In the following, the accepted version of the paper is included in accordance with the
IEEE author rights.

69

BinaryRTS: Cross-language Regression Test
Selection for C++ Binaries in CI

Daniel Elsner
Technical University of Munich

Munich, Germany

Severin Kacianka
Technical University of Munich

Munich, Germany

Stephan Lipp
Technical University of Munich

Munich, Germany

Alexander Pretschner
Technical University of Munich

Munich, Germany

Axel Habermann
IVU Traffic Technologies

Berlin, Germany

Maria Graber
IVU Traffic Technologies

Berlin, Germany

Silke Reimer
IVU Traffic Technologies

Berlin, Germany

Abstract—Continuous integration (CI) pipelines are commonly
used to execute regression tests before pull requests are merged.
Regression test selection (RTS) aims to reduce the required
testing effort and feedback time for developers. However, existing
RTS techniques are imprecise for tests with cross-language links
to compiled C++ binaries or unsafe if tests use external files.
This is problematic because modern software in fact involves
several programming languages and (non-)code artifacts such as
configuration files. In this paper, we present BINARYRTS, a novel
RTS technique that leverages dynamic binary instrumentation to
collect the covered functions and accessed external files for each
test. BINARYRTS then selects tests depending on changes issued
to C++ binaries or external (non-)code artifacts. When evaluating
BINARYRTS in our large-scale industrial context, we are able
to exclude on average up to 74% of tests without missing real
failures. We release BINARYRTS as the first publicly available
RTS tool for software involving C++ code.

Index Terms—Software testing, regression test selection, C++,
cross-language links, multi-language software, non-code artifacts

I. INTRODUCTION

Regression testing is a software testing activity that checks if
changes have negatively impacted existing system behavior [1].
In modern development practices, continuous integration (CI)
pipelines are commonly used to regularly build the software and
run its regression test suite [2]–[4]. The most straightforward
testing strategy is retest-all, which executes every test case
after each change. However, if fast feedback for developers
is crucial or testing resources are limited, executing all tests
from a large test suite is often prohibitively costly [5], [6].
To address this problem, regression test selection (RTS) has
been studied since the 1970s [7] to reduce the testing effort
by only running a subset of test cases [2]–[4], [8]–[17]. An
RTS technique is considered safe, if this subset of test cases
contains all tests that potentially expose a fault [18].

At IVU Traffic Technologies1, CI pipelines execute a
regression test suite consisting of more than 25,000 unit,
integration, and system tests written in C++ and Java before pull
requests are merged into release branches. However, running

1IVU Traffic Technologies is one of the world’s leading providers of public
transport software solutions.

the full test suite for each pull request yields intolerable
feedback times of several hours, despite a high degree of test
parallelization. Therefore, we have developed and successfully
deployed a file-level RTS technique for Java tests at IVU in
prior work [19]. Yet, due to the complex nature of the multi-
language code base at IVU, two problems remained unsolved:
first, the majority of the 13.5 million lines of code (LOC) and
the test suite is written in C++. These C++ regression tests
are not supported by our current RTS solution, as file-level
techniques are impractical for languages that compile to large
binary files [20]. Second, there exist several thousand Java
tests that use the Java Native Interface (JNI) to interact with
dynamic-link libraries (DLLs) built from the C++ code. Hence,
if any C++ source file that is part of a DLL changes, every
test accessing this binary file is selected. In short, file-level
per-test execution traces are too imprecise when Java tests use
cross-language links to C++ binaries [19].

Although several language-agnostic, yet inherently unsafe
RTS approaches are reportedly used in industry [2], [4], [17],
[21], research on safe RTS for C++ software is relatively sparse:
while most early RTS research considered (binary) compiled
languages such as C or C++ [8], [9], [18], [22]–[25], recently
proposed RTS techniques focus on Java [11]–[13], [20], [26]–
[28]. Since C++ itself, the size and frequency of regression
testing, as well as development tool chains have significantly
evolved, insights on the design and benefit of RTS in modern,
large-scale industrial C++ software are largely missing [29]. To
our knowledge, in the past decade, only two published studies
proposed RTS techniques for C++ software [29], [30]. However,
these techniques (1) are only suitable for C++ projects using
the LLVM [31] compiler infrastructure, (2) do not cope with
cross-language links to C++ binaries, (3) ignore changes to
external files, e.g., non-code artifacts, and (4) either do not
support dynamic linking of libraries or operating systems other
than Linux [29], [30]. New approaches for RTS in modern
C++ software and their industry-scale evaluation are therefore
essential to address these gaps in research and practice [32].

In this paper, we present BINARYRTS, a novel RTS tech-
nique for software using C++ binaries throughout the testing
process. The analyzed tests can be written in C++ or any other

language with interoperability to native binaries, e.g., Java tests
with cross-language links using the JNI. BINARYRTS leverages
dynamic binary instrumentation to collect (1) covered functions
and (2) accessed external files for each test. This allows more
accurate and reliable test selection, as changes to C++ binaries,
non-code artifacts, or source files in other (domain specific)
languages, can be properly attributed to affected tests. The
instrumentation and analysis within BINARYRTS is compiler-
agnostic, supports C and C++ binaries out-of-the-box, and
can be transferred to different platforms as well as operating
systems, and other compiled languages.

We evaluate BINARYRTS in IVU’s large-scale CI infrastruc-
ture by analyzing 385 pull requests across two release branches
covering more than 1,000 commits. To investigate saved testing
effort with BINARYRTS, we measure the test selection ratio for
the C++ test suite and the cross-language Java test suite. Our
results show that BINARYRTS selects on average 26%–37%
of C++ tests and 57%–64% of Java tests. BINARYRTS never
fails to select tests that reveal actual regressions in the studied
pull requests. Due to these promising results, IVU is currently
deploying BINARYRTS to all release branches. We provide
BINARYRTS as the first publicly available C++ RTS tool to
foster regression testing research on C++2.

II. TESTING C++ PULL REQUESTS AT IVU

In the following, we explain the system under test and the
testing process for C++ pull requests at IVU. We also elaborate
on the few existing solutions for RTS in C++ software and
their drawbacks in the given context.

A. System Description

The source code for the main IVU software resides in a
monolithic repository. There are two major subtrees in the
repository, one with mainly C++ (and some C) sources (9.5M
LOC) and one with mainly Java code (4M LOC). Besides these
two main general purpose programming languages (GPLs), IVU
makes significant use of non-code artifacts, such as CSV or
plain text files, as well as other GPLs and domain specific
languages (DSLs), e.g., TypeScript or XML.

While the Java source code is generally structured and built
using Maven [33], the C++ sources are compiled through a
self-maintained meta build tool (called BT hereafter). BT wraps
Microsoft’s C++ compiler toolchain [34], as most IVU software
products target Microsoft Windows.

The C++ subtree contains code that compiles into 300+
executable binaries, including 200+ test executables and various
applications. Alongside, 700+ binary DLLs are built from
the subtree, which are linked against test executables and
applications, both, at load-time and run-time3.

For regression testing, unit, integration, and system tests
are written in C++ or in Java. C++ tests are written using
GoogleTest [35] and reside in the C++ subtree, whereas Java
tests use JUnit [36] and reside in the Java subtree. However,

2BINARYRTS on GitHub: https://github.com/tum-i4/binary-rts
3We distinguish between run-time (during execution), run time (timespan

taken by a run), and runtime (program execution environment) in this paper.

since parts of the persistence logic are only implemented in
C++, many Java tests heavily use the JNI to call C++ code
for populating the database. In production, Java and C++
runtimes are usually separated. They are intertwined via JNI
only to achieve two goals: (1) synchronization between the
data generating parts in C++ and the data consuming parts
in Java by using a single thread, and (2) allowing the test
to run on an open database transaction which can easily be
rolled back instead of having to commit and remove test data.
For instance, a Java test might initiate a database session from
within the Java virtual machine (JVM) process, hand the pointer
to the session over to native code via JNI, load a few dozens
DLLs at run-time and use them to generate test scenarios in
the database, return control to the JVM to continue test case
execution; then, update the test scenario by invoking native
code again, return to the test case in the JVM, and finally
clean up the database session from native code. This way,
even complex test scenarios can be tested in a close-to-reality
environment, which reduces the risk of late integration issues
during release testing. However, these complex tests come at
considerable costs: running the C++ and Java test suite takes
up to 3 hours, despite high parallelization. This suggests to
use RTS for more cost-effective, change-oriented testing.

In previous work, we discussed our build system aware
multi-language RTS approach which we successfully deployed
at IVU [19]. It uses system call analysis to trace file accesses
and already takes into account that a test’s outcome can be
affected by changes to source code of multiple programming
languages, non-code artifacts, and build system configuration
files. However, the approach is limited to Java tests and
imprecise in the case of C++ changes due to the analysis
at file-level granularity: in case a DLL is changed, all Java
tests that access the DLL during testing are selected, even if
they do not execute the changed C++ code. At IVU, more than
16,000 regression tests are either part of binary executables or
use DLLs at run-time. Hence, this paper focuses on precise RTS
for C++ and Java tests that use C++ binaries, i.e., executables
or DLLs.

B. C++ Pull Request CI Pipeline

IVU usually provides support for the last ten released
versions of their software products. Therefore, release branches
are maintained next to the main development branch. Whenever
developers want to integrate changes into any of these branches,
they create a pull request. For each pull request, a CI pipeline is
created that builds, analyzes, and tests the introduced changes.

If a pull request comprises changes related to the C++
subtree, the C++ code is analyzed, built, and tested through BT.
Since a full C++ build, even with high parallelization, takes
roughly an hour, BT uses a shared remote compile cache and
only compiles binaries depending on changed sources. BT also
steers the C++ test execution and only runs those C++ test
executables that are either directly or transitively affected by
the changes. Yet, this module-level test selection is too coarse-
granular: even very small changesets often require running
thousands of tests.

Since many Java tests also make use of C++ binaries built
from the C++ subtree, more precisely DLLs, these tests should
also be executed for changes to the C++ subtree. In the case
of changes to the C++ and Java subtree, the Java tests are
currently selected by the established file-level RTS approach
for Java tests [19]. However, for C++-only changesets, running
selected Java tests has recently been deactivated due to the
significant time overhead even for small changesets, since the
selection is too imprecise (see Sec. II-A). Although developers
are encouraged to check the main CI pipelines of the target
branch within the next day after their pull request has been
merged, this imposes the risk of missing failures and, even
worse, bugs slipping into release branches.

Fig. 1 summarizes how both Java and C++ tests can be
affected by changes to binaries built from the C++ code base.

Fig. 1. C++ pull requests affecting Java and C++ tests

C. Existing C++ Test Selection Approaches

Over the past roughly 45 years, numerous RTS techniques
have been proposed that harness static or dynamic program anal-
ysis at the level of basic blocks [9], [10], [37], functions [13],
[26], [29], [30], classes or files [11]–[13], [19], [20], [27], [28],
[38], or modules [14], [38], [39]. In the following, we iterate
over RTS approaches for C++ software and outline why they
are not applicable at IVU.

Early RTS research targeted compiled languages such as
C [8], [22], [40] or C++ [9], [23]–[25], [41]. However, the de-
scribed approaches were either never actually implemented [9],
[41] or evaluated on small programs with a few unit tests rather
than industrial-scale C++ projects [22], [24], [25]. Furthermore,
most of the used analysis tools are not available today or
cannot analyze modern C++ code bases, since the language
and compilers have significantly evolved [29].

To our knowledge, in the past decade only two RTS
approaches targeting C++ software have been presented, which
have the following limitations in the given context: Fu et al. [29]
propose RTS++, a static, function-level RTS technique. RTS++
relies on function call graphs constructed from LLVM bitcode
and therefore can only analyze C++ projects targeting LLVM.
Thus, RTS++ is not applicable to IVU’s C++ code base, where
compiling with clang [42] is possible, but linking can only
be done using Microsoft’s C++ compiler toolchain4. Yet, more

4There is an ongoing effort to improve clang’s compatibility with MSVC
projects: https://clang.llvm.org/docs/MSVCCompatibility.html

importantly, RTS++ requires linking all libraries statically into
a single binary test executable. While this may not be an issue
in the comparatively small open-source projects which RTS++
has been evaluated on, it is infeasible at the scale of IVU, where
many test executables and Java tests use the same hundreds of
dynamically linked libraries.

To perform RTS for integration testing of distributed, large-
scale C++ web services at Google, Zhong et al. [30] develop
TESTSAGE, a dynamic, function-level RTS technique. Similar
to RTS++, TESTSAGE is limited to LLVM-based projects that
run on Linux or a few BSD descendants [43], whereas IVU
targets the Windows operating system. TESTSAGE is further
built on top of Google-internal infrastructure and code analysis
tooling (e.g., PIPER), which arguably limits transferability.

Besides, none of the proposed RTS techniques for C++
software has considered changes to non-code artifacts or source
code of languages other than C or C++, even though they might
affect test behavior [19], [20], [44]. Next to these conceptual
and technical limitations, we did not find any publicly available
tools that implement these RTS techniques.

In summary, we require an RTS technique that is (1) capable
of analyzing tests which use arbitrary binaries at run-time,
with the flexibility to support different compilers and operating
systems; (2) aware of changes to non-code artifacts or source
code of programming languages other than C or C++ that
may affect test behavior. This motivates BINARYRTS, a novel
dynamic RTS technique, which we describe in the next section.

III. BINARYRTS TECHNIQUE

This paper introduces BINARYRTS, the first RTS technique
that harnesses dynamic binary instrumentation to reliably select
affected regression tests that use C++ binaries or access external
files, e.g., source files from other languages or non-code
artifacts. In the following, we first explain how BINARYRTS
dynamically analyzes and instruments C++ and system binaries
to generate per-test execution traces (i.e., test traces), that
include covered functions as well as accessed files. Second,
we elaborate on the change-based test selection performed for
C++ pull requests. Last, we explain how BINARYRTS has
been integrated into IVU’s CI test infrastructure.

A. Dynamic Binary Analysis

In order to implement any dynamic RTS technique, run-
time information about tests is required, i.e., per-test execution
traces. To analyze the run-time behavior of a program, the
target program needs to be instrumented or run in a monitored
environment. Instrumentation refers to analysis code added to
the program, which is executed as part of the normal program
execution [45], [46]. Programs can either be instrumented
statically, before the program runs, or dynamically, at program
run-time. Instrumentation code can further be added through
source code analysis or binary analysis. While the former
is typically specific to the language and compiler, the latter
is language- and compiler-agnostic but often more difficult
to implement and more expensive in terms of run time
overhead [45]. Yet, over the past two decades, instrumentation

frameworks such as DynamoRIO [46], Intel PIN [47], or
Valgrind [45] have evolved that ease the implementation of
more efficient dynamic binary analysis (DBA) tools.

Nonetheless, existing dynamic RTS solutions rely on static
source code analysis [30]. BINARYRTS is thus the first
proposed RTS technique that leverages DBA to obtain per-test
execution traces. In its current implementation, BINARYRTS
relies on DynamoRIO [46], a popular and mature DBA
framework [48], which supports a variety of operating systems
and processor architectures, including Windows and x86-64,
the primary target at IVU. DynamoRIO provides powerful
application programming interfaces (APIs) to analyze and
instrument basic blocks and to trace system call invocations.
Therefore, DynamoRIO acts as a process virtual machine, by
taking over control of the process executing the binary; it then
creates and maintains a so-called code cache which contains
a copy of the original code from the binary augmented by
any added instrumentation code. Furthermore, DynamoRIO
allows defining callback functions that are called whenever a
new binary module5 is pulled into the process [46]. This way,
BINARYRTS can also analyze and instrument basic blocks
from all DLLs that are dynamically loaded during execution.
Since this flexibility naturally introduces run time overhead,
we discuss performance considerations and implementation
issues in Sec. IV-C.

Fig. 2. Process for BINARYRTS instrumentation and test trace collection with
exemplary covered basic block (BB) and accessed file

Fig. 2 illustrates how BINARYRTS obtains per-test ex-
ecution traces using DBA: first, during test execution 1 ,
when a basic block is loaded into the code cache, BINA-
RYRTS instruments it by (1) calculating its relative offset to
the enclosing module’s start address, (2) storing the triple
(module id , offset , hit count) in a table-like data structure,
which keeps track of covered basic blocks, and (3) adding
a single instruction at the beginning of the basic block to
increment the hit count. Since DynamoRIO only loads basic
blocks into the code cache when they are first executed or after

5We stick to the DBA terminology, by collectively referring to binaries such
as executables or DLLs as modules.

cache invalidation, no irrelevant basic blocks are instrumented.
Furthermore, BINARYRTS registers a dump event listener to
write the basic block table to an output file (see Covered BB
offsets in Fig. 2), either upon receiving the process exit event
or a custom dump event. This can be triggered from the target
program, e.g., after each test case (see Sec. III-C). Alongside,
BINARYRTS sets up interceptor functions that are called before
system calls related to file accesses are invoked. BINARYRTS
then extracts the requested file path from the provided system
call arguments and stores it in a vector which is also written to
a file by the dump event listener (see Accessed files in Fig. 2).

Second, in the post-processing stage 2 , all covered basic
block offsets are resolved by querying the debug symbols using
DynamoRIO’s symbol access library. Note that BINARYRTS
does not require debug builds, but merely debug symbols
generated during compilation. These allow determining the
source line a basic block offset corresponds to. Nevertheless,
coverage will be more precise with debug builds. At IVU, we
use release builds with function inlining disabled, to reliably
detect all covered functions. Once the source line information
has been obtained, source lines need to be mapped to C++
functions, both member or non-member functions. BINARYRTS
currently uses the popular utility program ctags [49] to
efficiently obtain C++ function declarations and definitions
without the need for a preprocessor or compiler. We discuss
extensions for compiler-specific function parsing in Sec. IV-C.
BINARYRTS also supports resolving symbols during test
execution, but shifting the work to a post-processing stage
has been significantly more efficient at IVU.

Last, once each covered basic block has been resolved to
its enclosing function, we generate per-test execution traces
in a third step 3 . These traces contain the functions and
external files a single test is associated with. Hereby, a
function is stored with the attributes file, signature (name and
parameters), class (optional), namespace (optional), and meta-
data (e.g., start/end line, virtual, static). A function’s
identifier is constructed by concatenating the optional scope
attributes, namespace and class, and the function signature,
e.g., ivu::Foo::bar(int x). These test traces can then
be used to select tests in pull requests, as we describe next.

B. Changed-based Test Selection

Fig. 3. BINARYRTS change impact analysis and test selection

Each pull request contains a set of changes, including
additions, deletions, or modifications of files. Fig. 3 depicts that

the analysis of a pull request changeset triggers the computation
of affected functions and files. By combining these affected
entities with the provisioned test traces, BINARYRTS can select
the set of affected test cases.

The way BINARYRTS analyzes changesets is loosely in-
spired by Rothermel et al. [9] and Vokolos and Frankl [50], who
use the Unix diff utility to locate differences between two
program versions: we use git diff [51] to determine added,
deleted, or modified files between the pull request branch (new
revision) and the target release branch (old revision). Then,
we run the change impact analysis shown in Algorithm 1
(simplified for presentation purposes) to compute affected
functions and files, and finally derive the selected tests.

Algorithm 1: Change Impact Analysis and Test Selection
Input: Changeset, Test Traces
Output: Selected Tests

1 functions ← {}
2 files ← {}
3 foreach file ∈ changeset do
4 if isCppFile(file) then
5 if isAdded(file) then
6 newFunctions ← getFunctions(file.newRev)

/* account for build system changes */

7 functions +← stripFile(newFunctions)

8 else if isDeleted(file) then
9 functions +← getFunctions(file.oldRev)

10 else
11 functions +← findAffectedFunctions(file.oldRev,

file.newRev)

12 else
/* add external files, e.g., XML or SQL */

13 files +← file

/* query test traces for affected tests */

14 tests ← findAffectedTests(files, traces)
15 tests +← findAffectedTests(functions, traces)
16 return tests

The algorithm iterates over each file in the changeset and
checks if the file has a C++ file extension (e.g., .h or .cpp).
If not, the file is added to the set of affected files, since every
test accessing this external file should be selected. If yes, the
algorithm distinguishes between added, deleted, or modified
files in the git repository. For added and deleted files, all
functions in the file are added to the set of affected functions.
Yet, for added files, these functions cannot exist in the test traces.
Therefore, we strip the file attribute of the added functions
to mark all functions with similar signature as affected. The
rationale behind this over-approximation is that BINARYRTS
aims to be agnostic about the build system. If a new source file
Fnew is added, which contains an implementation of function
f , f could already be implemented in an existing source file
Fold. Based on its configuration, the build system decides

which source files to compile. Hence, if the configuration was
changed to compile Fnew instead of Fold, tests covering f will
use the new implementation and are thus affected.

Algorithm 2: Finding Affected Functions
Input: Old (oldRev) and New (newRev) File Revision
Output: Affected Functions

1 Function findAffectedFunctions(oldRev, newRev):
2 affected ← {}

/* find modified or newly added functions */

3 foreach fnew ∈ getFunctions(newRev) do
4 isAddedFunction ← true
5 foreach fold ∈ getFunctions(oldRev) do
6 if fold.identifier = fnew.identifier then

/* functions with changed body */

7 if hasBodyChanged(fold, fnew) then
8 affected +← fnew

9 isAddedFunction ← false
10 break

11 if isAddedFunction then
/* new overloading function */

12 if hasParameters(fnew) then
13 affected +← stripParameters(fnew)

/* new virtual overriding function */

14 if isVirtualOverride(fnew) then
15 affected +← replaceClass(fnew, ∗)

/* new scope overriding function */

16 else if ¬ hasGlobalScope(fnew) then
17 affected +← stripScope(fnew)

/* find deleted functions */

18 foreach fold ∈ getFunctions(oldRev) do
19 isDeletedFunction ← true
20 foreach fnew ∈ getFunctions(newRev) do
21 if fold.identifier = fnew.identifier then
22 isDeletedFunction ← false
23 break

24 if isDeletedFunction then
25 affected +← fold

26 return affected

For modified files, more elaborate change impact analysis
is required as depicted in Algorithm 2: first, we iterate over
all functions from the new and old revision of the modified
file to determine all modified functions. Therefore, we check
whether the function body has changed by comparing the code
inside the body for textual equivalence, excluding comments
and whitespaces. Due to static and dynamic dispatch in C++, a
newly added function can affect the run-time program behavior,
even in the absence of other changes, such as a modification
of an existing function:

• Function Overloading: If a new function is added that
has the same name as an existing function, but different
parameters (e.g., foo(int) and foo(short)), the
compiler determines and uses the most suitable function
at each call site. BINARYRTS therefore marks functions
with the same name as the added one as affected. We limit
ourselves to functions in the same file, since marking all
functions with the same name can lead to high imprecision.

• Virtual Function Overriding: If a new member function
is added to class B that overrides a virtual member
function in B’s parent class A, due to dynamic dispatch,
all uses of the parent’s member function need to be marked
as affected. BINARYRTS thus marks all member functions
with similar signature of any class (or struct) as affected.

• (Scope) Function Overriding: C++ allows defining
functions in global, class, namespace, or local scopes
and if multiple functions with similar signature exist in
different scopes, it is up to the compiler to decide at each
call site which function to call. Thus, if a new non-global
function is added, BINARYRTS will by default mark all
functions with similar signature as affected.

We also mark all deleted functions as affected to select all
tests that previously executed the deleted function.

By handling the scenarios for static and dynamic dispatch as
described, we deliberately design BINARYRTS to prefer safety
over precision. We still remain flexible by not requiring more
elaborate (and costly) compiler-specific static analysis which
might be more accurate [9]. However, BINARYRTS provides
run-time options to skip these over-approximations to trade
increased RTS precision for reduced safety.

In addition, BINARYRTS has a run-time option to han-
dle changes to non-functional code entities (e.g., macros,
global/member variables) [22]: we use ctags to locate all
non-functional entities inside a C or C++ file, determine if
they have changed, and then, similar to White et al. [25],
perform a text-based lookup for (calling) functions that use
the changed entity. These functions are then added to the set
of affected functions. We further discuss this run-time option
in Sec. IV-C1.

We list all run-time options in Sec. IV-A3 and evaluate them
regarding their impact on safety and precision in our empirical
study at IVU (see Sec. IV).

Finally, the affected tests are computed by querying the test
traces with the affected functions and files. BINARYRTS uses
efficient hash tables to minimize the time for finding tests that
use affected functions or files. We provide measurements for
the run time of the change impact analysis and test selection
in Sec. IV-C3.

C. Integration into Pull Request CI at IVU

We integrated BINARYRTS into IVU’s infrastructure as
follows: to obtain test traces, we created new test tracing
pipelines for each release branch considered in our evaluation
(see Sec. IV). These tracing pipelines run all C++ and Java
tests during off-peak hours (at night or on the weekend) with
BINARYRTS’s instrumentation enabled. For C++ tests, we add

a GoogleTest test listener to BINARYRTS, which triggers a
dump event after test setup and for every test case. BINARYRTS
supports all GoogleTest test case types, including value- or
type-parameterized tests [29], accounts for changes to (global)
test setup code, and always selects newly added test cases. For
Java tests, we use a Java agent [52] to attach BINARYRTS to
the JVM process before the JUnit test suite starts. Similar to
prior research [19], [20], [53], [54], we run each JUnit test suite
in a forked JVM process for better test isolation and reliability.
As the covered basic blocks will be dumped upon receiving
the JVM process exit event, we do not need to trigger custom
dump events for Java tests.

Once the test traces have been created for a release branch,
they are serialized and stored on a network drive and can then
be used inside pull requests for this release branch.

IV. EVALUATION

To evaluate BINARYRTS in a real-world industrial context,
we perform a large-scale study in IVU’s CI infrastructure.
Our goal is to empirically determine the cost-effectiveness of
BINARYRTS in terms of saved testing effort and how many
real test failures BINARYRTS fails to select. In addition to the
commonly used retest-all baseline, we compare BINARYRTS
to IVU’s internal module-level C++ test selection (BT) and our
DLL-level Java test selection from prior work [19]. We further
aim to understand precision and safety trade-offs for different
run-time options of BINARYRTS (see Sec. III-B). Overall, we
seek to answer the following research questions (RQs):

• RQ1: How much testing effort can BINARYRTS save for
C++ tests compared to retest-all and module-level RTS?

• RQ2: How much testing effort can BINARYRTS save for
cross-language Java tests compared to DLL-level RTS?

• RQ3: How safe is BINARYRTS for changesets of pull
requests in terms of real missed test failures?

A. Experimental Setup

1) Evaluation Branches: To conduct our experiments, we
first pick two release branches, one rather old release branch
receiving mainly maintenance changes (RM) and one recent
release branch with ongoing feature development (RD). As
shown in prior work, there can be significant differences in RTS
effectiveness depending on the type of the release branch [19].
For both branches, we set up separate test tracing CI pipelines
which run in off-peak hours, as described in Sec. III-C. Then,
we modify the pull request pipelines for RM and RD : inside
each pull request run6 we invoke BINARYRTS to compute
selected C++ and Java tests using the most recent test traces
for the respective target release branch.

2) Evaluation Metrics: For each pull request run, we
measure the reduction in testing effort by comparing (1) the
number of selected tests and (2) their cumulative duration
against the set of tests selected by a baseline regression testing
strategy. Related research usually compares RTS techniques

6Recall that a new CI pipeline run is triggered whenever the pull request is
updated, i.e., if one or more commits are added.

against a retest-all testing strategy [19], [29], [30], [55], which
we adopt for RQ1. However, since the state-of-practice at IVU
is better reflected by BT’s module-level RTS strategy for C++
tests (RQ1) and our DLL-level RTS strategy for Java tests
(RQ2), we add these as more realistic baseline strategies.

For RQ1, we also report how often BINARYRTS excludes
entire test executables. IVU’s integration tests require a costly
(global) database setup, which is performed when the process is
started. Thus, skipping an entire test executable can significantly
reduce overall test time.

Regarding RQ2, recall that for C++-only pull requests,
executing Java tests has currently been deactivated in the pull
request CI pipelines, due to high execution times even with
DLL-level RTS (see Sec. II-B). Yet, to perform our evaluation,
we require the actual test verdicts and run time of Java tests.
Therefore, we run the missing Java tests for C++-only pull
requests in off-peak hours (at night and on the weekend) as
selected by our DLL-level RTS strategy.

An RTS technique is considered safe, if it selects all tests
that potentially expose a fault [18]. While safety for existing
RTS techniques has been (semi-)formally proven under the
assumption of code changes [9], [20], [27]–[29], prior research
has shown that outdated test traces [19], [30] or changes related
to non-code artifacts or cross-language links [14], [20], [44],
[56] can compromise RTS safety. Hence, to perform a fair
evaluation of RTS safety, we need to inspect all test failures
that were not selected by BINARYRTS to understand if they
actually reflect real regressions introduced in the respective
pull requests. We discuss practical challenges in distinguishing
between real regressions and flaky failures in Sec. IV-B.

3) BINARYRTS Configuration: Prior research has not yet
investigated how testing effort and safety are affected by
different levels of change impact analysis depth (see our
discussion on static and dynamic dispatch in Sec. III-B). We
are particularly interested in these trade-offs, as they provide
practical guidelines on how to calibrate BINARYRTS during
operation. Therefore, we run and compare BINARYRTS with
the following run-time option configurations:

• Bslim : Disables all run-time options
• Boverload : Bslim + function overloading analysis
• Boverride : Bslim + function overriding analysis
• Bvirtual : Bslim + virtual function overriding analysis
• Bnon-functional : Bslim + non-functional entity analysis
• Bfull : BINARYRTS default; enables all run-time options

B. Results

We collect the dataset for evaluating BINARYRTS across
four weeks of development, covering a total of 385 pull requests
with 587 CI pipeline runs and more than 1,000 commits. Pull
requests for RD are more common (288) and have a larger
median changeset size of 9 files than pull requests on RM (97)
with a median of 2 changed files.

RQ1: C++ Testing Effort: Fig. 4 shows the distribution of
the ratio of selected C++ tests compared to retest-all across all
pull request runs on the two branches RM and RD for different
BINARYRTS configurations as well as BT. Note that while

bt Bfull Boverload Boverride Bvirtual Bnon-functional Bslim

0

20

40

60

80

100

C
+
+

te
st

ra
ti

o
vs

.
re

te
st

-a
ll

[%
]

RM

RD

Fig. 4. Distribution of selected C++ test ratio of BINARYRTS configurations
and BT compared to retest-all across all pull request runs

pull request CI pipelines only execute C++ tests selected by
the static module-level RTS strategy of BT, BT still outputs a
retest-all test report after execution. It can do so since it caches
test results from unaffected test cases and can thereby report
test verdicts from all executed plus cached tests. We compute
the distribution plots for BT and all BINARYRTS configurations
from these retest-all reports and the selected tests from BT
and BINARYRTS, respectively. The results indicate that BT
selects on average 51% (RM) and 63% (RD) of tests, whereas
BINARYRTS selects on average 26% and 37% of tests with
Bfull configuration and 21% and 30% with Bslim . Moreover,
the median selection ratios are 84% and 84% (BT), 0.5% and
6.5% (Bfull), and 0.5% and 1.5% (Bslim).

In addition to the ratio of selected C++ tests, we compare
the relative test duration for the different strategies against
retest-all: the average relative test durations are 58% and 70%
(BT), 32% and 44% (Bfull), and 26% and 36% (Bslim).

bt Bfull Boverload Boverride Bvirtual Bnon-functional Bslim

0

20

40

60

80

100

E
xe

cu
ta

bl
es

ra
ti

o
vs

.
re

te
st

-a
ll

[%
]

RM

RD

Fig. 5. Distribution of selected test executables ratio of BINARYRTS
configurations and BT compared to retest-all across all pull request runs

The test execution costs are not only driven by the test
duration, but also by the time required for process initialization
and global (database) test setup for each test executable. Hence,
if C++ test executables are skipped because no tests inside have
been selected, end-to-end execution time for testing decreases.
Therefore, we report the distribution of the ratio of selected
test executables across all pull requests in Fig. 5.

Overall, we find that BINARYRTS saves considerably more
testing effort than BT for both branches. Similar to our previous
observations [19], the achieved savings for the maintenance
branch (RM) are higher than for the development branch (RD).
The difference between BINARYRTS configurations is small
regarding the average test selection ratio (≤7 pp), but becomes

more visible when looking at the median test selection ratio
where Bfull selects more than four times as many tests as Bslim

for RD . We discuss the impact on safety in RQ3. BINARYRTS
further selects on average only 20% (RM) and 30% (RD) of
C++ test executables with Bfull , whereas BT selects 40% and
52% test executables, respectively.

SUMMARY RQ1. We find that BINARYRTS selects on
average 26% (RM) and 37% (RD) of all C++ tests with
Bfull on two release branches, whereas BT selects 51% and
63%, respectively. In 50% of the pull request runs on RD ,
Bfull selected more than four times as many test cases as
Bslim . BINARYRTS further reduces the number of C++
test executables by 80% (RM) and 70% (RD).

RQ2: Java Testing Effort: In our prior study [19], we were
able to save on average 42% of execution time for cross-
language Java tests compared to retest-all using a file-level RTS
strategy. However, in case of C++ changes, we encountered
problems of imprecise test selection, since a test that uses
a DLL is selected whenever changes are made to that DLL,
regardless of whether the test covers the changed code or not.

To investigate the effectiveness of BINARYRTS for cross-
language Java tests at IVU, we compare BINARYRTS against
our file-level—or rather, DLL-level—RTS strategy. Similar to
this pre-existing strategy, BINARYRTS selects Java tests at the
level of JUnit test suites [19].

Bfull Boverload Boverride Bvirtual Bnon-functional Bslim

0

20

40

60

80

100

Ja
va

te
st

ra
ti

o
vs

.
D

L
L

-l
ev

el
[%

]

RM

RD

Fig. 6. Distribution of selected Java test ratio of BINARYRTS configurations
compared to DLL-level RTS across all pull request runs

Fig. 6 depicts the test selection ratios for the different config-
urations of BINARYRTS. The results show that BINARYRTS
with Bfull selects on average 57% (RM) and 64% (RD) of the
Java tests selected by the pre-existing DLL-level RTS strategy.
The median selection ratios are higher at 89% and 99% (Bfull),
and 18% and 80% (Bslim).

In summary, we find that while BINARYRTS can be much
more effective than DLL-level RTS for Java tests, DLL-level
RTS selects almost the same number of tests in roughly 50%
of pull request runs as Bfull for RD . We expect the reason to
be that Java tests often use largely similar parts of the C++
code for their test setup and, therefore, are selected altogether
for changes to core C++ components.

SUMMARY RQ2 . We find that BINARYRTS (Bfull) selects
on average 57% (RM) and 64% (RD) of the Java tests
selected by DLL-level RTS on two release branches. DLL-
level RTS still performs comparatively well in roughly 50%
of pull request runs for RD .

RQ3: Safety: To assess the safety of BINARYRTS for
different configurations, we compare the failed tests in a pull
request run to the tests that BINARYRTS would have selected.
If a test has failed in a pull request run and has not been
selected by BINARYRTS, we need to check if this missed
failure represents a real regression introduced in the pull request.
Therefore, we check in the following order if the test (1)
already failed on the target release branch, (2) failed due to
infrastructure issues, (3) is a known flaky test, i.e., a test with
non-deterministic result, or (4) a newly detected flaky test which
both, fails and passes within 100 reruns. We manually validate
all missed failures, since especially test failures of categories (2)
and (3) are sometimes difficult to automatically recognize from
stack traces and often require discussion with IVU developers.
If steps (1)–(3) do not provide a clear indication, we rely on
rerunning tests (4) to detect flakiness, as is common practice
in industry [57]–[59].

In total, we manually checked 179 pull request runs with
missed C++ and Java test failures. The majority of missed
failures either have already existed on the target branch or can
be attributed to infrastructure issues, mainly database access
problems. Most flaky tests we encounter are already known,
but we still find a handful of new flaky tests that we reported to
the responsible developers. Interestingly, we almost exclusively
find flaky tests on RD , indicating that flaky tests seem to get
fixed eventually before a software version release.

Overall, we do not find any missed failures that are related
to the changes introduced in the corresponding pull request for
Bfull . For Bslim , we also do not find any real missed failures.
Despite these results, there are several sources for potential
unsafe RTS behavior which we discuss in Sec. IV-C1.

SUMMARY RQ3. We find that BINARYRTS detects all
real regressions in the considered pull requests with all
configurations.

C. Discussion

Next, we discuss weaknesses and possible improvements
regarding safety, precision, and efficiency of BINARYRTS, and
share feedback from IVU developers.

1) Safety: We expect BINARYRTS to be safe for changes
to C++ functions if all run-time options are enabled (Bfull),
as BINARYRTS was designed following the example of
safe function-level RTS techniques for C++ [29], [30]. In
contrast with BT, which is only safe for changes to C++ files,
BINARYRTS is further aware of changes to external files, thus
ruling out a common source of unsafe RTS behavior [20], [56].

Yet, similar to existing techniques [19], [30], BINARYRTS
can be unsafe if test traces are outdated. At IVU, we run the

tracing CI pipelines to update test traces for release branches in
off-peak hours, but at least once per week. Another source for
potential safety violations is that BINARYRTS (Boverload) only
marks overloaded functions within the same file as affected by
static dispatch (see Sec. III-B). Moreover, since BINARYRTS
operates at run-time, expressions evaluated at compile-time,
e.g., macros or constexpr, are only considered if analysis for
non-functional changes is enabled (Bnon-functional). However,
the text-based search to find usages of non-functional entities
can become expensive for large C++ code bases if all parent
directories of the changed source file are recursively searched.
Therefore, BINARYRTS provides a parameter to control how
many levels of parent directories to visit during the search.
Safety violations can possibly occur if this parameter is set
too low and thus functions making use of the changed non-
functional entity are not marked as affected. Based on IVU
conventions for the use of non-functional entities, we set the
parameter to 2. Additionally, BINARYRTS allows defining a
regular expression to match files that should trigger a retest-all
strategy to anticipate context-specific safety challenges.

Due to these limitations and because prior research has
revealed safety violations of supposedly safe RTS solutions [56],
we conduct the safety trade-off experiments for RQ3.

2) Precision: Since prior RTS research has studied more
coarse-grained and less precise RTS at the level of files for Java
and C# projects [11], [19], [20], [27], [38], we also investigate
how our results from RQ1 change if we aggregate our function-
level test traces to file-level test traces. The results show that
BINARYRTS with file-level analysis selected on average 41%
(RM) and 49% (RD) of C++ tests. Hence, function-level gives
better precision than file-level analysis.

We further see potential for improvement in how BINA-
RYRTS deals with static and dynamic dispatch (see Sec. III-B).
Currently, we resort to over-approximation approaches as we
rely on the compiler-agnostic, yet simple analysis tool ctags
to locate and parse functions. However, with more elaborate
static analysis from C++ compilers, we could reduce the set
of affected functions due to static and dynamic dispatch.

3) Efficiency: BINARYRTS is specifically designed to have
low overhead inside CI pipelines of pull requests to compute
the set of selected tests, commonly called the analysis phase of
RTS systems [13], [29]. The time for selecting tests with Bfull ,
the configuration with maximum overhead, was on average
roughly 30 seconds, where reading and deserializing test traces
from disk took most of the time. This could be further improved
by using a database to minimize involved I/O.

For the so-called collection phase, i.e., when collecting per-
test execution traces in dedicated CI pipelines, we observe
relatively high instrumentation overhead of roughly a factor of
2–3. While allowing compiler-agnostic code and system call
instrumentation, the overhead introduced by dynamic binary
instrumentation is generally expected to be higher than for
static source code instrumentation (often several times slower
than the original program) [45], [60], [61]. Other instrumen-
tation tools for C or C++, such as OpenCppCoverage or
CodeCoverage.exe by Microsoft, exhibit similarly high

overhead [62]. Moreover, DynamoRIO has been shown to
have significant performance impact in other contexts as
well [47], [63]. It also lacks support for efficiently instrumenting
dynamically generated code [64]. Therefore, we need to disable
the JVM’s just-in-time compiler when tracing Java tests which
further increases instrumentation overhead. However, since
the CI pipelines that collect the per-test execution traces are
executed offline [13], meaning in off-peak hours independently
of any pull requests, the instrumentation overhead does not
impact the development process. To further increase the tracing
frequency, we envision improvements related to using more
lightweight binary instrumentation solutions (BINARYRTS
has experimental support for the DBA tool Frida [65]) or
implementing source code instrumentation through source-to-
source transformation using clang. If the latter is properly
implemented, compiling and linking the transformed source
code would still be possible with any compiler and linker.

4) Developer Feedback: We have continuously discussed the
design of BINARYRTS and its evaluation with IVU engineers to
establish broad support among developers and testers. As they
see great value in the proposed RTS solution, we are currently
integrating BINARYRTS into all release branches. Moreover,
developers have suggested to implement further developer-
aiding tools for test coverage visualization and test gap analysis
based on the test traces collected with BINARYRTS.

D. Threats to Validity
1) External Validity: BINARYRTS has been designed to

suit the context-specific challenges at IVU and, therefore,
our findings do not necessarily generalize to other software
projects inside and outside of IVU. Moreover, even though
BINARYRTS also supports Linux and multiple platforms, our
evaluation at IVU was performed on C++ software built with
Microsoft’s compiler toolchain to x86-64 binaries on Windows.
Nevertheless, our results confirm prior RTS research on C++
software that reported significant savings in testing effort [29],
[30]. We publish the source code of BINARYRTS to ease
transferability to other projects beyond the context of IVU.

Another threat to validity emerges from the fact that, similar
to previous studies [14], [19], [55], we use test durations
from test reports to measure test execution time. GoogleTest
measures test durations only in millisecond resolution, which
may distort results as some fast-running unit tests sometimes
take less than one millisecond to execute. To address this threat,
we also report the ratio of selected tests and test executables.
The latter provides an indication regarding savings in (global)
test setup costs, which can be substantial at IVU.

2) Internal Validity: Internal threats stem from the imple-
mentation of BINARYRTS, mainly related to using DynamoRIO
for analyzing and instrumenting C++ binaries, and ctags
for parsing C++ source files. To address these threats, we
manually validated selection results with IVU engineers and
wrote automated unit and integration tests for BINARYRTS.

V. RELATED WORK

We have referenced several RTS techniques throughout this
paper that have motivated and partly inspired BINARYRTS (see

Sec. II-C). Below, we list studies targeting C or C++ software
that we consider to be most relevant for this work.

Early related RTS research was primarily on C software. In
1994, Chen et al. [22] presented TESTTUBE, an RTS technique
for C programs. Similar to BINARYRTS, it tracks covered
functions and non-functional entities per test case. TESTTUBE
employs source code instrumentation and static analysis, and
selects a test if any of its covered entities has changed.
Rothermel and Harrold [8], [40] proposed DEJAVU, an RTS
technique for C which uses static control flow graphs and edge-
level test traces obtained through source code instrumentation
to compute affected tests. Using this fine-grained analysis,
DEJAVU is safe for C code modifications [66], [67].

Later, Rothermel et al. [9] extended DEJAVU to object-
oriented C++ software. Therefore, they combine interprocedural
and class control flow graphs with edge-level test traces. Their
proposed RTS technique also accounts for dynamic dispatch
and polymorphism, but, due to the lack of adequate C++
analysis and instrumentation tools at the time, it was not
actually implemented. In 1995, Kung et al. [23] presented an
RTS technique for C++ based on static class dependency graphs.
Using these graphs they compute a class firewall (see also
Leung et al. [68]), that is the set of classes affected by changes,
and derive which tests need to be selected to retest affected
classes. Jang et al. [24] and White et al. [25] extended the class
firewall approach for C++ software to improve precision and
safety by adding fine-grained change impact analysis and data
flow analysis, respectively. The class firewall approach has also
inspired the development of DEJAVOO [10] and STARTS [12],
[28], two class-level static RTS techniques for Java.

In the past decade, only two studies on RTS in C++ software
were published, which we deem as most related to this work:
Fu et al. [29] presented RTS++, a static RTS technique
operating on function call graphs. RTS++ targets modern
C++ programs that compile to LLVM bitcode and use the
GoogleTest testing framework. Fu et al. evaluated RTS++ on
11 open-source projects and find that the number of selected
tests is on average reduced by 61% compared to retest-all.
RTS++ is not applicable at IVU, as it requires all libraries to
be statically linked into a single executable binary.

To address integration and system testing in large-scale
C++ web services at Google, Zhong et al. [30] developed
TESTSAGE, a dynamic RTS technique for distributed systems.
When deploying TESTSAGE to Google testing infrastructure,
they achieved up to 50% reduction in testing time. TESTSAGE
also targets LLVM-based projects, as it relies on a customized
version of XRAY, a function instrumentation tool for LLVM.
TESTSAGE further uses Google’s internal version control
system and code analysis tool PIPER to perform change
impact analysis for test selection. In contrast, BINARYRTS is
based on publicly available tools and frameworks, and, due
to the employed binary instrumentation, works with different
compilers, operating systems, and binary formats.

In two previous studies, we have studied unsafe and safe
RTS techniques to implement RTS for the multi-language code
base at IVU [19], [55]. Unsafe RTS is typically language-

agnostic, as it relies only on readily available CI and version
control system (VCS) metadata [55]. We found that the best
performing unsafe RTS technique saved on average 19.8% of
testing time while 93.4% of failures were still detected on the
main development branch. Since unsafe RTS is not suitable
for pull requests to release branches, we developed a safer
RTS approach for Java [19]. This new approach is akin to
EKSTAZI [11], [27] and RTSLINUX [20], two file-level RTS
techniques for Java, and tracks opened files for each test through
system call analysis. Similar to BINARYRTS, this makes it
safe for changes to external files, such as configuration files,
as well as source files in other programming languages, such
as SQL or XML. Furthermore, the approach is build system
aware, meaning it accounts for changes to the build system
configuration, and selectively builds only those Java modules
required for testing; this resulted in a an end-to-end CI pipeline
time reduction for Java by 50%–63% on average. However,
we also found that the file-level analysis granularity was too
coarse grained when Java tests accessed DLLs, as it results in
most tests being selected upon any C++ changes. BINARYRTS
is built on top of these insights and provides a practical RTS
solution for tests that use C++ binaries either directly (C++
tests) or through cross-language links (Java tests).

To summarize, no prior RTS research analyzes regression
tests which use arbitrary C++ binaries, accounts for multi-
language source files and non-code artifacts, or performs
dynamic binary instrumentation for RTS. We are the first to
evaluate C++ RTS for pull requests in industry-scale CI.

VI. CONCLUSION

In this paper, we present BINARYRTS, a dynamic RTS
technique for reliably selecting tests that use C++ binaries
during execution. It harnesses dynamic binary instrumentation
to monitor covered functions and accessed files for each
test at run-time. This way, BINARYRTS is also aware of
cross-language links to source files in other programming
languages and non-code artifacts used during testing. We
evaluate BINARYRTS in IVU’s large-scale CI infrastructure
on roughly 16,000 C++ and Java tests, some of which cover
code from hundreds of C++ binaries. Our results indicate that
BINARYRTS excludes on average 63%–74% of C++ tests and
36%–43% of Java tests, thereby reducing test duration by on
average up to 68% against a naive retest-all baseline. The
improved testing time directly translates to faster feedback
in CI testing, boosting developer efficiency and satisfaction,
which is why IVU is currently deploying BINARYRTS to all
release branches. To foster RTS research on languages other
than Java, we publish BINARYRTS and its source code as the
first publicly available RTS tool for C++ software.

ACKNOWLEDGMENTS

We thank Dennis Bracklow, René Dammer, Stefan Golas,
Maximilian Pohl, and Stefan Sieber for their support. This
work was partially funded by the German Federal Ministry of
Education and Research (BMBF), grant Q-Soft 01IS22001B.
The responsibility for this article lies with the authors.

REFERENCES

[1] H. K. Leung and L. White, “Insights into regression testing,” in
Proceedings of the International Conference on Software Maintenance,
1989, pp. 60–69.

[2] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the International Symposium on the Foundations of
Software Engineering, 2014, pp. 235–245.

[3] A. A. Philip, R. Bhagwan, R. Kumar, C. S. Maddila, and N. Nagppan,
“Fastlane: Test minimization for rapidly deployed large-scale online
services,” in Proceedings of the International Conference on Software
Engineering, 2019, pp. 408–418.

[4] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive test
selection,” in Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice, 2019, pp. 91–100.

[5] K. Fischer, F. Raji, and A. Chruscicki, “A methodology for retesting
modified software,” in Proceedings of the National Telecommunications
Conference, 1981, pp. 1–6.

[6] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing Verification and Reliability,
vol. 22, pp. 67–120, 2012.

[7] K. F. Fischer, “A test case selection method for the validation of software
maintenance modifications,” in Proceedings of International Computer
Software and Applications Conference, 1977, pp. 421–426.

[8] G. Rothermel and M. J. Harrold, “A safe, efficient regression test selection
technique,” ACM Transactions on Software Engineering and Methodology,
vol. 6, pp. 173–210, 1997.

[9] G. Rothermel, M. J. Harrold, and J. Dedhia, “Regression test selection
for c++ software,” Software Testing, Verification and Reliability, vol. 10,
pp. 77–109, 2000.

[10] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large
software systems,” in Proceedings of the International Symposium on
Foundations of Software Engineering, 2004, pp. 241–251.

[11] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight test
selection,” in Proceedings of the International Conference on Software
Engineering, 2015, pp. 713–716.

[12] O. Legunsen, A. Shi, and D. Marinov, “Starts: Static regression test
selection,” in Proceedings of the International Conference on Automated
Software Engineering, 2017, pp. 949–954.

[13] L. Zhang, “Hybrid regression test selection,” in Proceedings of the
International Conference on Software Engineering, 2018, pp. 199–209.

[14] A. Shi, P. Zhao, and D. Marinov, “Understanding and improving
regression test selection in continuous integration,” in Proceedings of
the International Symposium on Software Reliability Engineering, 2019,
pp. 228–238.

[15] E. Knauss, M. Staron, W. Meding, O. Soder, A. Nilsson, and M. Castell,
“Supporting continuous integration by code-churn based test selection,” in
Proceedings of the International Workshop on Rapid Continuous Software
Engineering, 2015, pp. 19–25.

[16] B. Busjaeger and T. Xie, “Learning for test prioritization: An industrial
case study,” in Proceedings of the International Symposium on the
Foundations of Software Engineering, 2016, pp. 975–980.

[17] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proceedings of the International Symposium on Software
Testing and Analysis, 2017, pp. 12–22.

[18] G. Rothermel and M. J. Harrold, “A framework for evaluating regression
test selection techniques,” in Proceedings of the International Conference
on Software Engineering, 1994, pp. 201–210.

[19] D. Elsner, R. Wuersching, M. Schnappinger, A. Pretschner, M. Graber,
R. Dammer, and S. Reimer, “Build system aware multi-language
regression test selection in continuous integration,” in Proceedings of the
International Conference on Software Engineering: Software Engineering
in Practice, 2022, pp. 87–96.

[20] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression test
selection across jvm boundaries,” in Proceedings of the Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2017, pp. 809–820.

[21] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case selection
and prioritization using machine learning: a systematic literature review,”
Empirical Software Engineering, vol. 27, pp. 1–34, 2022.

[22] Y. F. Chen, D. S. Rosenblum, and K. phong Vo, “Test tube: a system
for selective regression testing,” in Proceedings of the International
Conference on Software Engineering, 1994, pp. 211–220.

[23] D. C. Kung, J. Gao, P. Hsia, J. Lin, and Y. Toyoshima, “Class firewall,
test order, and regression testing of object-oriented programs,” Journal
of Object-Oriented Programming, vol. 8, pp. 51–65, 1995.

[24] Y. K. Jang, M. Munro, and Y. R. Kwon, “An improved method of selecting
regression tests for c++ programs,” Journal of Software Maintenance
and Evolution, vol. 13, pp. 331–350, 2001.

[25] L. White, K. Jaber, B. Robinson, and V. Rajlich, “Extended firewall
for regression testing: An experience report,” Journal of Software
Maintenance and Evolution, vol. 20, pp. 419–433, 2008.

[26] L. Zhang, M. Kim, and S. Khurshid, “Faulttracer: A spectrum-based
approach to localizing failure-inducing program edits,” Journal of
Software: Evolution and Process, vol. 25, pp. 1357–1383, 2013.

[27] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in Proceedings of the
International Symposium on Software Testing and Analysis, 2015, pp.
211–222.

[28] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in Proceedings of the International Symposium on Foundations
of Software Engineering, 2016, pp. 583–594.

[29] B. Fu, S. Misailovic, and M. Gligoric, “Resurgence of regression test
selection for c++,” in Proceedings of the International Conference on
Software Testing, Verification and Validation, 2019, pp. 323–334.

[30] H. Zhong, L. Zhang, and S. Khurshid, “Testsage: Regression test selection
for large-scale web service testing,” in Proceedings of the International
Conference on Software Testing, Verification and Validation, 2019, pp.
430–440.

[31] LLVM, “Llvm compiler infrastructure.” [Online]. Available: https:
//llvm.org/

[32] M. Harman and P. O’Hearn, “From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis,” in
Proceedings of the International Working Conference on Source Code
Analysis and Manipulation, 2018, pp. 1–23.

[33] A. Maven, “Maven.” [Online]. Available: https://maven.apache.org
[34] Microsoft, “Msvc c++ toolset.” [Online]. Available: https://docs.

microsoft.com/en-us/cpp/build/projects-and-build-systems-cpp
[35] Google, “Googletest.” [Online]. Available: https://google.github.io/

googletest/
[36] JUnit, “Junit 5,” 2021. [Online]. Available: https://junit.org/junit5
[37] M. J. Harrold, A. Orso, J. A. Jones, T. Li, M. Pennings, S. Sinha,

A. Gujarathi, D. Liang, and S. A. Spoon, “Regression test selection for
java software,” ACM SIGPLAN Notices, vol. 36, pp. 312–326, 2001.

[38] M. Vasic, Z. Parvez, A. Milicevic, and M. Gligoric, “File-level vs. module-
level regression test selection for .net,” in Proceedings of the Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2017, pp. 848–853.

[39] A. Shi, S. Thummalapenta, S. K. Lahiri, N. Bjorner, and J. Czerwonka,
“Optimizing test placement for module-level regression testing,” in
Proceedings of the International Conference on Software Engineering,
2017, pp. 689–699.

[40] G. Rothermel and M. J. Harrold, “A safe, efficient algorithm for regression
test selection,” in Proceedings of the International Conference on Software
Maintenance. IEEE, 1993, pp. 358–367.

[41] ——, “Selecting regression tests for object-oriented software,” in
Proceedings of the International Conference on Software Maintenance,
1994, pp. 14–25.

[42] Clang, “Clang compiler.” [Online]. Available: https://clang.llvm.org/
[43] LLVM, “Llvm xray function call tracing.” [Online]. Available:

https://llvm.org/docs/XRay.htm
[44] D. Elsner, R. Wuersching, M. Schnappinger, and A. Pretschner, “Probe-

based syscall tracing for efficient and practical file-level test traces,” in
Proceedings of the International Conference on Automation of Software
Test, 2022, pp. 126–137.

[45] N. Nethercote, “Dynamic binary analysis and instrumentation or building
tools is easy,” Ph.D. dissertation, University of Cambridge, 11 2004.

[46] D. Bruening, “Efficient, transparent, and comprehensive runtime code
manipulation,” Ph.D. dissertation, MIT, 9 2004.

[47] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” in Proceedings of the

Conference on Programming Language Design and Implementation,
2005, pp. 190–200.

[48] DynamoRIO, “Dynamorio.” [Online]. Available: https://dynamorio.org
[49] ctags, “Universal ctags.” [Online]. Available: https://ctags.io
[50] F. I. Vokolos and P. G. Frankl, Pythia: A regression test selection tool

based on textual differencing. Springer, 1997.
[51] git, “git.” [Online]. Available: https://git-scm.com
[52] “Java agent api,” 2017. [Online]. Available: https://docs.oracle.com/

javase/9/docs/api/java/lang/instrument/package-summary.html
[53] J. Bell and G. Kaiser, “Unit test virtualization with vmvm,” in Proceedings

of the International Conference on Software Engineering, 2014, pp. 550–
561.

[54] P. Nie, A. Celik, M. Coley, A. Milicevic, J. Bell, and M. Gligoric,
“Debugging the performance of maven’s test isolation: Experience report,”
in Proceedings of the International Symposium on Software Testing and
Analysis, 2020, pp. 249–259.

[55] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically
evaluating readily available information for regression test optimization in
continuous integration,” in Proceedings of the International Symposium
on Software Testing and Analysis, 2021, pp. 491–504.

[56] C. Zhu, O. Legunsen, A. Shi, and M. Gligoric, “A framework for checking
regression test selection tools,” in Proceedings of the International
Conference on Software Engineering, 2019, pp. 430–441.

[57] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” Proceedings of the
International Conference on Software Engineering, pp. 433–444, 2018.

[58] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: The developers perspective,” in Proceedings of the ACM Joint
Meeting European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. Association for Computing
Machinery, Inc, 8 2019, pp. 830–840.

[59] W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta, “A
study on the lifecycle of flaky tests,” in Proceedings of the
International Conference of Software Engineering, 2020, pp. 1471–
1482. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/a-study-on-the-lifecycle-of-flaky-tests/

[60] V. J. M. Mans, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, 2019.

[61] A. Engelke and M. Schulz, “Instrew: Leveraging llvm for high
performance dynamic binary instrumentation,” in Proceedings of the
International Conference on Virtual Execution Environments, 2020, pp.
172–184.

[62] CQSE, “Performance impact of c++ profilers.” [Online].
Available: https://docs.teamscale.com/howto/setting-up-profiler-tga/cpp/
#performance-impact

[63] M. A. B. Khadra, D. Stoffel, and W. Kunz, “Efficient binary-level
coverage analysis,” in Proceedings of the Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, pp. 1153–1164.

[64] B. Hawkins, B. Demsky, D. Bruening, and Q. Zhao, “Optimizing
binary translation of dynamically generated code,” in Proceedings of the
International Symposium on Code Generation and Optimization, 2015,
pp. 68–78.

[65] Frida, “Frida.” [Online]. Available: https://frida.re/
[66] G. Rothermel and M. J. Harrold, “Analyzing regression test selection

techniques,” IEEE Transactions on Software Engineering, vol. 22, pp.
529–551, 1996.

[67] G. Rothermel, “Efficient, effective regression testing using safe test
selection techniques,” Ph.D. dissertation, Clemson University, 5 1996.

[68] H. K. Leung and L. White, “A study of integration testing and software
regression at the integration level,” in Proceedings of the International
Conference on Software Maintenance. IEEE Computer Press, 1990, pp.
290–301.

A. Appendix

A.3.3. Empirically Evaluating Readily Available Information for Regression
Test Optimization in Continuous Integration

© 2021 ACM. Included here by permission from ACM. Daniel Elsner, Florian Hauer,
Alexander Pretschner, Silke Reimer, Empirically Evaluating Readily Available Informa-
tion for Regression Test Optimization in Continuous Integration, Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 491–
504, July 2021.

In the following, the complete paper is included in its published form in accordance
with the ACM author rights, DOI: 10.1145/3460319.3464834.

82

https://dl.acm.org/doi/10.1145/3460319.3464834

Empirically Evaluating Readily Available Information for
Regression Test Optimization in Continuous Integration

Daniel Elsner
Florian Hauer

Alexander Pretschner
daniel.elsner@tum.de
florian.hauer@tum.de

alexander.pretschner@tum.de
Technical University of Munich

Munich, Germany

Silke Reimer
sre@ivu.de

IVU Traffic Technologies
Berlin, Germany

ABSTRACT
Regression test selection (RTS) and prioritization (RTP) techniques
aim to reduce testing efforts and developer feedback time after a
change to the code base. Using various information sources, includ-
ing test traces, build dependencies, version control data, and test
histories, they have been shown to be effective. However, not all
of these sources are guaranteed to be available and accessible for
arbitrary continuous integration (CI) environments. In contrast,
metadata from version control systems (VCSs) and CI systems are
readily available and inexpensive. Yet, corresponding RTP and RTS
techniques are scattered across research and often only evaluated
on synthetic faults or in a specific industrial context. It is cum-
bersome for practitioners to identify insights that apply to their
context, let alone to calibrate associated parameters for maximum
cost-effectiveness. This paper consolidates existing work on RTP
and unsafe RTS into an actionable methodology to build and evalu-
ate such approaches that exclusively rely on CI and VCS metadata.
To investigate how these approaches from prior research compare in
heterogeneous settings, we apply the methodology in a large-scale
empirical study on a set of 23 projects covering 37,000 CI logs and
76,000 VCS commits. We find that these approaches significantly
outperform established RTP baselines and, while still triggering
90% of the failures, we show that practitioners can expect to save
on average 84% of test execution time for unsafe RTS. We also find
that it can be beneficial to limit training data, features from test
history work better than change-based features, and, somewhat
surprisingly, simple and well-known heuristics often outperform
complex machine-learned models.

CCS CONCEPTS
· Software and its engineering → Software testing and debug-
ging.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’21, July 11ś17, 2021, Virtual, Denmark
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464834

KEYWORDS
software testing, regression test optimization, machine learning

ACM Reference Format:
Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021.
Empirically Evaluating Readily Available Information for Regression Test
Optimization in Continuous Integration. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’21), July 11ś17, 2021, Virtual, Denmark. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3460319.3464834

1 INTRODUCTION
Regression test selection (RTS) aims at identifying tests that are
affected by a change to the code base, when executing every test in
the test suite is prohibitively expensive [25, 76]. Effective traditional
RTS techniques safely exclude those tests that cannot fail by relying
on language-specific white-box program analyses, e.g., recording
test-specific execution traces through code instrumentation [26, 42,
58, 65, 66, 70, 79]. However, they are often too costly in large-scale
code bases with rapid continuous integration (CI) testing [21, 45,
62], not capable of collecting test dependencies across language
boundaries in multi-language software [12, 45, 55], and cannot trace
third-party libraries [41]. Regression test prioritization (RTP) aims
to detect faults earlier by reordering tests through łsurrogatesž [76].
However, traditional RTP techniques that rely on code coverage
surrogates suffer similar limitations [21, 71].

To address these limitations specifically in CI environments,
researchers have proposed numerous lightweight, less intrusive
RTP and unsafe RTS techniques: They use different surrogates and
machine learning (ML) models to rank tests by their likelihood
to fail and, in the case of RTS, select a subset based on some cut-
off criterion [8, 11, 45, 60, 71]. The underlying ranking models ex-
ploit different information sources. These include CI test execution
logs [3, 11, 21, 71], version control system (VCS) metadata (e.g.,
number of changed files in commit) [37, 62], (textual) differences
in code churn [8, 49, 60, 67], and project- or organization-specific
information such as static build dependencies [45], flaky test de-
tection signals [45, 60, 62], or a black-box model of the program
inputs [29]. Arguably, access to the latter types of information can-
not be guaranteed for arbitrary CI environments. Since CI and VCS
metadata are automatically generated throughout the development
process, they are generally available and inexpensive. Unsafe RTS

491

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

and RTP techniques that solely use this information are language-
agnostic, easy to transfer and to evaluate, and do not require pro-
gram or code access. Methodologically, they both rely on ranking
tests [8, 11]. Hence, in the following, we collectively refer to tech-
niques as CI-RTP/S, if their ranking models only use CI and VCS
metadata.

Even though the effectiveness of CI-RTP/S is demonstrated in
various studies, they have the following limitations: First, while
studies show the effectiveness on single projects [3, 16, 21, 38, 43, 68]
and variations across projects [37, 44, 71, 81], we find sensitivity
to be another important attribute after consulting with our indus-
try partner IVU Traffic Technologies1: How sensitive is the cost-
effectiveness of CI-RTP/S to size, timeliness, and variety of data
they were calibrated on? Or, since calibration can be challenging,
how much cost-effectiveness is sacrificed when using a ranking
model that is only semi-optimally calibrated? Existing studies that
discuss related issues were carried out in a specific industrial con-
text and it is thus unclear, if the measured sensitivity carries over
to other industrial and open-source projects. Second, empirical re-
sults of CI-RTP/S cost-effectiveness are often obtained on datasets
with seeded faults instead of real-world failures [8, 13] or drawn
from inaccessible industrial contexts which impedes reproducibil-
ity [11, 45, 62]. A recently published dataset, RTPTorrent [50, 51],
closely resembles real-world development activity. Though it has
not yet been used in related studies, this dataset bears the potential
to improve transparency and thus transferability of results from
CI-RTP/S studies. Last, in pursuit of ever more effective CI-RTP/S,
aspects of the design and evaluation of techniques are scattered
across existing work. Overall, findings in the literature are neither
unequivocal, nor directly comparable. It is a cumbersome task for
practitioners to identify insights that apply to their context, let alone
to calibrate associated parameters for maximum cost-effectiveness.

Addressing these limitations, we consolidate existing ideas from
prior research into a methodology to build and evaluate approaches
for RTP and unsafe RTS that exclusively rely on CI and VCS meta-
data. We identify an approach by three parameters, namely (i) how
much (i.e., amount of training data) of (ii) which information (i.e.,
choice of features) is used to (iii) rank tests (i.e., choice of rank-
ing model). Our methodology does not propose new techniques,
but provides a clear, generic process that first guides practition-
ers from exploiting their readily available CI and VCS metadata
to building candidate CI-RTP/S approaches (from prior research)
for their project. Then, the subsequent comparative evaluation of
candidates yields not only the most cost-effective approaches, but
also gives insights on how an approach’s performance changes if
any of the three parameters is varied, i.e., on its cost-effectiveness
sensitivity. From a practitioners view, this methodology enables
simple adoption of RTP and unsafe RTS without having to man-
ually investigate existing techniques and their applicability. We
thus address the practical questions of which data to gather, how
to perform feature engineering and predictive modeling, how to
comparatively evaluate different candidate approaches, and how to
choose the project-specific best approach.

1IVU Traffic Technologies is one of the world’s leading providers of public transport
software solutions: https://www.ivu.com/

To estimate performance trade-offs, we apply our methodology
in a large-scale empirical study on real test failures from CI and
VCS histories of 23 industrial and open-source projects. We then
conduct rigorous statistical analyses, yielding guidelines on which
candidate approaches are, empirically, the most promising ones.

In summary, our contributions are as follows:
• Methodology. We consolidate existing research into an ac-

tionable methodology to build and evaluate approaches for
RTP and unsafe RTS exclusively using CI and VCS metadata.

• Empirical Study. First, we analyze the sensitivity of cost-
effectiveness to the parameters (i) training data amount, (ii)
choice of features, and (iii) choice of ranking model. Second,
we estimate performance trade-offs in RTP and unsafe RTS:
Cost-effectiveness fluctuates across projects underlining the
need for project-specific assessment using our methodology.
In the studied projects, approaches chosen by our methodol-
ogy help to save on average 84% of test execution time while
detecting 90% of the failures for unsafe RTS and significantly
outperform established RTP baselines.

• Guidelines. (1) It can be beneficial to limit training data, (2)
features on test history work particularly well compared to
change-based features, and (3) inexpensive simple heuristics
of the kind łskip test if not failed in the last ten runsž often
outperform complex ML models from prior work.

• Dataset. To foster comparable and evidence-based studies
on CI-RTP/S, we publish our dataset consisting of 23 hetero-
geneous software projects from industry (3) and open-source
development (20)2. It covers more than 37,000 CI test logs
with real failures and 76,000 VCS commits. The open-source
projects are drawn from the recently published RTPTorrent
dataset [50, 51] which embodies CI test logs that we further
enrich and process for CI-RTP/S.

2 METHODOLOGY
We have motivated our goal to build approaches useful for both,
unsafe RTS and RTP, that solely rely on CI and VCS metadata
(CI-RTP/S). Before providing details about the methodology, we
describe the problem more formally and introduce notations used
throughout this paper: Let 𝑃 be a program, Δ be a modification
introduced to 𝑃 to create 𝑃 ′, and T be a test suite. For each test
𝑇 ∈ T , the ranking model, 𝑀 , first predicts 𝑇 ’s failure score by
using a set of features, 𝐹 . Second, these scores are used to rank tests
in T , yielding an intermediary T ∗, i.e., a test order as aimed at by
RTP. Then, based on a cut-off criterion only a subset T ′ ⊆ T ∗ is
selected as part of RTS. Depending on the desired strategy (RTP or
RTS), T ∗ or T ′ can be used to test 𝑃 ′ [11, 18, 45, 65].

We identify four consecutive process steps when creating and
evaluating CI-RTP/S approaches which are shown in Fig. 1: Exploit-
ing available data sources, engineering features from the collected
data, building predictive ranking models, and evaluating CI-RTP/S.
Since each of these steps involves methodological subgoals, we
address them in the following subsections. Notably, this schematic
process is inspired by the Cross-Industry Standard Process for Data
Mining (CRISP-DM) [73].

2Dataset, source code, and detailed evaluation results are part of the supplemental
material available at [22].

492

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Figure 1: Schematic process of the methodology to build and
evaluate CI-RTP/S approaches.

2.1 Data Source Exploitation
Goal: Exploit generally available data sources to collect raw data
useful for failure prediction.
Modern software projects are developed in code repositories that
use some sort of VCS. While there are various flavors of VCS, such as
distributed (e.g., Git) or centralized (e.g., Apache Subversion), they
share the notion of a commit, i.e., a code revision made by a single
author. It will contain at least the following information: Identifier,
author, commit timestamp, commit message, and a changeset. The
changeset in turn includes all the added, modified, or deleted files.

Meanwhile, regression testing is typically performed in CI en-
vironments. CI tools, such as Jenkins or Travis CI, allow users to
configure CI pipelines, which are regularly executed. We refer to a
CI run at timestamp 𝑡 as 𝑅𝑡 . Most pipelines contain multiple stages,
including a build stage, where artifacts necessary to run the tests
are generated (e.g., compilation), a test stage, where (regression)
tests are executed, and a deploy stage, which comprises of scripts
to publish and deploy tested artifacts. After the test stage in 𝑅𝑡 , a
test log (also called test report) is typically generated from which
the following information can be extracted per test 𝑇𝑡,𝑖 in the exe-
cuted test suite T𝑡 = {𝑇𝑡,1, . . . ,𝑇𝑡,𝑛}: Test identifier (e.g., test class
name3), result (e.g., passed or failed), and duration. It is thus a
requirement to derive test result and duration information from
the CI environment. However, most testing frameworks and CI
systems (or plugins) already provide structured test logs in sev-
eral output formats, but they can also be parsed from raw textual
CI logs, e.g., by using regular expressions [50]. Depending on the
configuration, a CI run 𝑅𝑡 may be triggered to start either after
each commit, after the previous run 𝑅𝑡−1 has finished, or whenever
required (hardware) resources are available. The set of introduced
commits between two CI runs, 𝑅𝑡 and 𝑅𝑡−1, Δ𝑡 , will at least contain
one commit, as it would be pointless to trigger a CI run without
any modification except to detect flaky tests (see Sec. 3.6.1).

Fig. 2 shows how the outlined entities commit and test log are part
of the software development process. The union of all available 𝑅s
with their T and Δ constitutes the input for the feature engineering
process described in the next section.

2.2 Feature Engineering
Goal: Craft features for failure prediction from collected raw data
that capture specific defect hypotheses.
For a given test 𝑇 , ranking models use features to predict a failure
score. These features are numerical representations of characteris-
tics of 𝑇 . For example, considering 𝑇 ’s failure behavior, if 𝑇 failed
ten times in previous test runs, the feature failure count will have
the value 10. A good feature is one that improves the model’s predic-
tive performance, hence, one that captures a valid defect hypothesis.

3We follow prior RTS research by analyzing tests at class (or file) rather than module
or method granularity level [27, 70, 78].

Figure 2: Exploiting VCS history and CI test logs used as in-
put for feature engineering.

Note that we use defect as an umbrella term for failures, faults, or
errors.

Feature engineering is concerned with deriving these defect
hypotheses and computing respective features through a feature
function 𝜙 . If applied to the collected raw data, i.e., to each test in all
T s with their respective Δ, we can construct a dataset, 𝐷 , suitable
for building and evaluating ranking models. More formally, for a
given test𝑇𝑡,𝑖 in the test suite T𝑡 available for 𝑅𝑡 , we can calculate a
vector of𝑚 features, 𝑥𝑡,𝑖 = (𝑥𝑡,𝑖,1, . . . , 𝑥𝑡,𝑖,𝑚), from raw data using
the feature function 𝜙 (𝑇𝑡,𝑖 , {T1, . . . ,T𝑡−1}, {Δ1, . . . ,Δ𝑡 }). Note that
this captures reality, where at timestamp 𝑡 before regression testing,
there are only historical test logs and commits available as well as
the newly introduced set of commits Δ𝑡 . To create 𝐷 , this is done
for every test suite T of the collected CI runs.

Hereafter, we describe 16 features for CI-RTP/S from existing
work. For each feature, we state the underlying defect hypothesis,
briefly explain how it is computed from outlined raw CI test logs
and VCS commits, and reference prior research which already used
it. Aligned with prior work, we semantically group them into four
feature sets, 𝐹 = {𝐹1, . . . , 𝐹4}, to increase comprehensiveness [4, 62].
The 𝑘-th feature in feature set 𝑗 is denoted by 𝑓𝑗,𝑘 .

Figure 3: Structure of a dataset 𝐷 for CI-RTP/S. Rows are
chronologically ordered, i.e., from test executions of the ear-
liest to the most recent CI run.

Fig. 3 illustrates how we derive 𝐷 by computing 𝐹 for all test exe-
cutions in the test logs, e.g., test𝑇𝑡,1 in CI run 𝑅𝑡 , and labeling them
with their respective test results as the ground truth, 𝑌 , e.g., 1 for
failed. Based on the total amount of collected CI runs with test logs,
𝑟 = |𝑅 |,𝐷 will have 𝑁 rows, with 𝑁 = |⋃𝑟

𝑡=1 T𝑡 |, and𝑀+1 columns,
with 𝑀 = |⋃4

𝑗=1 𝐹 𝑗 |, including one column for 𝑌 ∈ {0, 1}𝑁×1. The

493

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

feature matrix, denoted by 𝑋 ∈ R𝑁×𝑀 , stacks all computed feature
values for each test execution 𝑇𝑡,𝑖 , 𝑥𝑡,𝑖 = (𝑥𝑡,𝑖,1, . . . , 𝑥𝑡,𝑖,𝑀).

Test History Features (𝐹1): This feature set contains features
computed only from CI test logs, i.e., for a test 𝑇 in T𝑡 we consider
its individual execution history from {𝑅1, . . . , 𝑅𝑡−1}.

The first hypothesis is: Tests that previously failed will test error-
prone code and are therefore likely to fail again [28, 74, 76].

• Failure count (𝑓1,1) [4, 45, 54, 56, 57, 60]: Total number of
times 𝑇 failed.

• Last failure (𝑓1,2) [4, 21, 34, 47]: Amount of CI runs since last
failure, i.e., for 𝑅𝑡 , if 𝑇 last failed in 𝑅𝜏 , the value of 𝑓1,2 will
be 𝑡 − 𝜏 .

A test transition occurs if a test changes its test result between
two CI runs. For instance, if a test failed in 𝑅𝑡−1 and passed in the
subsequent run 𝑅𝑡 (or vice versa), the test transitioned in 𝑅𝑡 .

The second hypothesis is: Tests that previously transitioned will
test critical code and are therefore likely to fail.

• Transition count (𝑓1,3) [43]: Total number of times 𝑇 transi-
tioned.

• Last transition (𝑓1,4) [43]: Amount of CI runs since last tran-
sition, analogous to the feature 𝑓1,2.

The third hypothesis is: Tests with high execution duration in-
volve complex, time-consuming tasks (e.g., networking, file access)
which are prone to fail (e.g., timeout) [62]. Additionally, on the one
hand, longer running tests might cover larger parts of the program
which simultaneously increases the chance of covering a fault. On
the other hand, fast-running tests might reveal faults more quickly,
making test execution time a potentially useful feature [13, 60].

• Average test duration (𝑓1,5) [13, 60]: Average test execution
duration of 𝑇 across previous CI runs.

(Test, File)-History Features (𝐹2): The idea of this feature set
is to identify associations between tests and files, often referred
to as test-to-code traceability links [72]. Therefore, we record his-
torical co-occurrences of test failures or transitions with changed
files in a contingency table [37]. For example re-consider Fig. 2,
if test 𝑇𝑡,3 failed in 𝑅𝑡 where the combined changeset {foo/FileA.h,
foo/ClassA.cpp, bar/ClassC.h} was introduced, we increment the co-
occurrence frequencies of (𝑇𝑡,3, foo/FileA.h), (𝑇𝑡,3, foo/ClassA.cpp),
and (𝑇𝑡,3, bar/ClassC.h). These co-occurrences are referred to as
(test, file)-failures, the same applies to (test, file)-transitions.

The first hypothesis is: Files that were in the changeset when
a test failed, are related to this test’s outcome. More precisely, if
certain files are in the changeset of a commit, they might imply
higher failure likelihood for specific tests.

• Maximum (test, file)-failure frequency (𝑓2,1) [3, 37, 54, 62, 68]:
Given a test 𝑇 in 𝑅𝑡 , for each file in the combined change-
set, we first obtain the total (𝑇 , file)-failure frequency from
{T1, . . . ,T𝑡−1}. Then, we determine the maximum across all
files, as the combined changeset is as risky for𝑇 as its riskiest
file.

• Maximum (test, file)-failure frequency (relative) (𝑓2,2) [3, 37,
54, 62, 68]: The relative frequency is calculated by dividing
the (𝑇 , file)-failure frequencies by the number of times𝑇 has
failed so far. For example, if test 𝑇 failed a hundred times

before 𝑅𝑡 , and a file was part of the combined changeset
half of the times, the relative frequency will be 0.5. Again,
we determine the maximum across all files. This feature
allows to discriminate between systematic and arbitrary co-
occurrence of a changed file and a test failure.

The second hypothesis is: Files that were in the changeset when
a test transitioned, are related to this test’s outcome.

• Maximum (test, file)-transition frequency (𝑓2,3): Given a test
𝑇 in 𝑅𝑡 , we take the maximum (𝑇 , file)-transition frequency
across all files in the combined changeset.

• Maximum (test, file)-transition frequency (relative) (𝑓2,4):
We take the maximum relative (𝑇 , file)-transition frequency
across all files in the combined changeset.

Even though we are not aware of prior work that proposes
features 𝑓2,3−4, they build on the existing understanding of test
transitions [43] and failure-based features 𝑓2,1−2.

(Test, File)-Similarity Features (𝐹3): These features embody
lexical similarities between names and paths of a test and files in
the changeset. This similarity proxies human perceived affiliation
between a file and a test [45]. The hypothesis is: Conventions lead
to tests and tested files with similar names and paths [72].

• Minimum file path distance (𝑓3,1) [11, 72]: We use the Lev-
enshtein distance as proposed by White et al. [72] for test-
to-code traceability links. Then, we determine the minimum
distance, i.e., maximum similarity, across all files in the com-
bined changeset.

• Maximum file path token similarity (𝑓3,2) [43, 45]: Based on
the intuition of shared directories [43], we split file paths
into tokens and count common tokens among test and file
path. We determine the maximum similarity across all files
in the combined changeset.

• Minimum file name distance (𝑓3,3) [72]: Similar to 𝑓3,1, we
use the minimum Levenshtein distance between a test name
and each file name in the combined changeset.

Change Features (𝐹4): While the features described so far di-
rectly concern predicting the outcome of a specific test in a CI run
𝑅𝑡 , there are also features that express how the introduced commits
(i.e., changes), Δ𝑡 , affect the failure likelihood level of all tests.

The first hypothesis is: Changes involving a larger number of
distinct authors are more likely to cause failures [43, 52].

• Distinct authors (𝑓4,1) [43, 45]: Number of distinct authors
within Δ𝑡 , i.e., across all commits.

The second hypothesis is: Large changes are more difficult to
review and therefore more error-prone [45].

• Changeset cardinality (𝑓4,2) [4, 45, 62]: Number of files in the
combined changeset.

• Amount of commits (𝑓4,3) [4, 34]: Amount of commits in Δ𝑡 ,
i.e., since last CI run.

The third hypothesis is: Certain file types are more likely to cause
failures than others. As we want to provide a general methodology,
we rather consider the variety of file extensions in a change, than
specific file types [45, 62].

• Distinct file extensions (𝑓4,4) [45, 62]: Number of distinct file
extensions in the combined changeset.

494

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration ISSTA ’21, July 11–17, 2021, Virtual, Denmark

2.3 Predictive Modeling
Goal: Select and build effective and efficient ranking models.
In the following, we explain how we use a constructed dataset 𝐷
to build ranking models for CI-RTP/S. Similar to related work, we
target point-wise ranking models [11, 45]: Given a vector of feature
values, i.e., one row in𝑋 , 𝑥𝑡,𝑖 , the model outputs a score,𝑦, between 0
and 1.𝑦 can be interpreted as a test’s estimated likelihood to fail [45]
and should be close to 1 for tests which are likely to fail. 𝑦 is used
to relatively rank tests yielding a test order as needed for RTP. For
unsafe RTS, we can derive a cut-off value, 𝜃 ∈ R[0,1] , based on some
cut-off criterion (see Sec. 2.4.2). It defines the decision boundary to
select the test for execution, if 𝑦 > 𝜃 , or skip it otherwise. As any
modeling technique that learns an accurate mapping from 𝑋 to 𝑌
is suitable, we apply the following set of heuristic ranking models,
𝑀ℎ,𝑓𝑗,𝑘 , and supervised ML classification algorithms, 𝑀1−5.

2.3.1 Heuristic Ranking Models (𝑀ℎ,𝑓𝑗,𝑘). Heuristic ranking models
are widely applied across RTP and unsafe RTS research (e.g., [11,
13, 21, 60]; partly only used as baselines). The intuition is that these
models, 𝑀ℎ,𝑓𝑗,𝑘 , predict a failure likelihood solely by considering
a single feature 𝑓𝑗,𝑘 . For example, a heuristic could select only
those tests that have failed within the previous 𝑛 CI runs [21].
The underlying ranking model orders tests only by the last failure
feature, 𝑓1,2, and selects tests based on a cut-off value 𝑛.

As the ranking model ultimately has to output a score 𝑦 ∈ R[0,1] ,
each value 𝑥 ∈ R of the selected 𝑓𝑗,𝑘 needs to be transformed. This
is done by using a min-max-scaler: 𝑦 =

𝑥−𝑚𝑖𝑛 (𝑓𝑗,𝑘)
𝑚𝑎𝑥 (𝑓𝑗,𝑘)−𝑚𝑖𝑛 (𝑓𝑗,𝑘) . Since

this inexpensive mathematical transformation requires close to
no training effort, heuristic ranking models are naturally efficient.
Consequently, in the given example, 𝑛 must also be transformed by
the scaler for 𝑓1,2 to obtain 𝜃 .

2.3.2 Supervised Machine Learning (𝑀1−5). We draw the following
five supervised ML classification algorithms from existing work on
RTP and unsafe RTS based on how frequently they were used before
(at least from two distinct authors): Logistic regression [57, 62]
(𝑀1), Multi-layer perceptron [1, 46, 62] (𝑀2), Linear support vector
machine (SVM) [11, 62]4 (𝑀3), Random decision forest [2, 8] (𝑀4),
Gradient boosted trees [45, 62] (𝑀5).

These models’ optimal performance will most likely depend on
project-specific hyper-parameter tuning. There are manual, sys-
tematic, and random search techniques for finding the best set of
hyper-parameters [7]. We show a straight-forward approach with-
out hyper-parameter tuning in our empirical study (see Sec. 3.2).

2.4 Evaluation
Goal: Measure the cost-effectiveness of CI-RTP/S approaches for a
given dataset 𝐷 .

2.4.1 Cost-Effectiveness. Early RTS research classifies techniques
among other attributes as safe and precise, if they select all poten-
tially fault-revealing test cases in a modified program (i.e., effective-
ness) by ignoring unnecessary test cases (i.e., cost) [64]. Similarly,
the average percentage of faults detected per cost (APFD𝑐) metric is

4Note that SVMs are non-probabilistic since they separate points into classes through
hyperplanes. Yet, probability estimates, i.e., scores between 0 and 1, can be derived,
e.g., by performing internal cross-validation [63].

usually used to evaluate the fault detection capability (i.e., effective-
ness) of RTP techniques with respect to test execution cost [17, 23].
More recent studies additionally employ traditional classification
performance metrics, such as accuracy, 𝐹1 score, or Area-Under-the-
ROC-Curve (i.e., effectiveness) [4, 46, 62] and measure end-to-end
test run-time including analysis overhead (i.e., cost) [26, 42, 79].
Furthermore, research on Pareto efficient multi-objective regres-
sion test optimization aims to find the optimal trade-off between
multiple objectives, e.g., code coverage, historical fault detection
capability, or execution cost [28, 74, 76, 77].

In line with these insights from research and discussions with
practitioners from IVU Traffic Technologies, we conclude: Evalua-
tion of CI-RTP/S cost-effectiveness requires considering the trade-
off between the time (i.e., cost) invested in testing and the thereby
achieved level of fault detection safety (i.e., effectiveness).

There is one caveat to this understanding which is the missing
fault-to-failure mapping as we do not seed faults into programs,
but use observed real-world failures, i.e., failing tests. We therefore
rely entirely on detecting failures rather than faults, assuming a
one-to-one mapping as proposed by previous research [50, 60, 69].

Figure 4: Process to derive the used evaluation metrics for
a set of 𝑛 tests with predicted failure scores (𝑦 ∈ R1×𝑛

[0,1]) by
using the gain curve.

2.4.2 Evaluation Metrics. Fig. 4 illustrates how evaluation metrics
from prior research can be derived that reflect the cost-effectiveness
trade-offs for CI-RTP/S: First, for a test suite scheduled for a CI run
at timestamp 𝑡 , T𝑡 , we obtain the failure scores, 𝑦, predicted by
the ranking model that is under evaluation. Second, these scores
are ranked in descending order, creating a prioritized test suite
T ∗
𝑡 . Third, for each possible cut-off value 𝜃 we draw a point into a

coordinate system where the 𝑥-axis is the percentage of test run-
time and the 𝑦-axis is the percentage of detected failures, both
compared to retest-all, i.e., executing all tests. From these points,
we can derive the following two commonly used metrics, (a) one
for evaluating the total ranking as used for RTP and (b) one for
unsafe RTS via some cut-off value 𝜃 :

(a) APFD𝑐 . Connecting the points yields the so-called (cumula-
tive) gain curve which can be further reduced to the area under the
gain curve, a single aggregation measure between 0 and 1. This area
is referred to as the APFD𝑐 where test costs, meaning the subscript
c, are solely reflected by the test run-time [17]. Since the APFD𝑐 is
an established cost-aware evaluation metric for RTP, we use it to
assess the quality of the overall ranking model [13, 23, 60].

495

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

(b) Cut-off Trade-offs. Yet, in the case of unsafe RTS, as opposed
to RTP, reporting only the APFD𝑐 metric is insufficient, as we must
ultimately select a subset of tests, T ′ ⊆ T ∗. Setting the cut-off
value 𝜃 depends on the acceptance criteria of a project’s developers:
For higher empirical safety5, they will set the value of 𝜃 close to
0, whereas for low safety, but high time savings, it should be near
1. Therefore, to derive expected RTS cost-effectiveness trade-offs,
we further measure the test run-time savings for three different
empirical failure detection safety levels (90, 95, and 100%), i.e., three
different cut-off values (𝜃90%, 𝜃95%, and 𝜃100%). These levels are
chosen based on the idea of empirical safety (100%), following
Facebook’s example (95%) [45], and using safety acceptance criteria
expressed by our industry partner IVU (90%). Notably, this cut-off
criterion is based on the idea of empirical safety levels [45] rather
than cutting off tests based on time constraints [8, 71].

2.4.3 Model Training and Testing. The proposed ranking models
need to be trained on a subset of 𝐷 before evaluating the trained
model on a different hold-out subset of 𝐷 . We delineate this process
of model training and testing in the following four steps: Defining
training and test splits, model training, model testing, and ran-
domness. Note that testing in this context means that the model
is examined for its performance on a hold-out test dataset, i.e., on
data that was not available during model training.

Training and Test Splits. There is a myriad of ways to split a
dataset into training and test set. For instance, for unsafe RTS,
Machalica et al. [45] use the most recent week of their three months
dataset for testing. Philip et al. [62] train on one year and test on
two months of data. There is no general rule, neither about how
much data should be used for training and testing, nor about the
ratio. Yet, in practice, we need to decide whether to use all available
historical data for training or stick to more recent data, which might
resemble the current failure behavior more accurately [3].

Fig. 5 shows the training-test-splits which we use to measure
these possible influences: We divide a time-ordered dataset, 𝐷 , into
5 equal-sized folds by CI runs. This is based on the widespread 5 fold
split in ML research (e.g., [9]). One could also use absolute amounts
of data for splitting, e.g., always test on one month of data, but there
is no argumentation to pick one over another. Notably, we cannot
perform cross-validation since there are temporal dependencies
between results of CI runs: Training models on past data and testing
on more recent data is realistic and most suitable in practice [62].

We obtain different training-test-splits as follows: First, to inves-
tigate the best ratio of training to test folds, we vary the amount of
training folds while keeping the test set at the most up-to-date fold.
The derived splits (𝑆1−3) with different ratios use 100, 75, and 50% of
historical data for training. Recall that we regard the training-test-
ratio, i.e., amount of training data, as the first (i) of three parameters
of any CI-RTP/S approach that needs to be calibrated.

Second, to examine the sensitivity of a CI-RTP/S approach to
data timeliness, we extend 𝑆1−3 by three additional training-test-
splits. The intuition is that the up-to-date fold, which we use as
a test set, might not be representative. However, if the CI-RTP/S
approach works well across test sets with different timeliness, we

5Due to the lack of deterministic test execution traces or static dependencies, CI-RTP/S
can only give empirical, i.e., statistical evidence-based, safety guarantees.

Figure 5: Splitting 𝐷 into different training and test sets.

can provide better predictability of CI-RTP/S to practitioners, due
to stable performance over time. Alternative test sets, i.e., with
timeliness recent and aged (see Fig. 5), may also allow to derive a
performance estimation in case there are no failures in the up-to-
date fold, which disallows constructing the gain curve.

In total, this leaves us with 6 different training-test-splits which
we need to evaluate. We refer to a training set as 𝐷𝑡𝑟𝑎𝑖𝑛 and to a
test set as 𝐷𝑡𝑒𝑠𝑡 in the following.

Model Training. The heuristic ranking models, 𝑀ℎ,𝑓𝑗,𝑘 , are cre-
ated by fitting min-max-scalers on each of the 16 features in 𝐷𝑡𝑟𝑎𝑖𝑛

as described in Sec. 2.3.1. These scalers are then used to predict the
failure score for each test 𝑇𝑡,𝑖 in 𝐷𝑡𝑒𝑠𝑡 solely based on 𝑓𝑗,𝑘 in 𝐷𝑡𝑒𝑠𝑡 .
All scores are clipped to be between 0 and 1 resulting in a score
𝑦 ∈ R[0,1] for each test. Since a feature might follow an inverse
scoring order, where a high feature value indicates a low failure
score, we calculate APFD𝑐 values for 𝑦 and 1 − 𝑦 on the training
set and only use the better performing one for model testing.

Additionally, for each project, we train a ranking model for each
ML algorithm and feature set as well as on the composition of
all four feature sets. This results in (4 + 1) ∗ 5 = 25 (feature set,
model)-combinations to be evaluated per training-test-split.

Model Testing. Each created ranking model is used to predict
the failure score of each test 𝑇𝑡,𝑖 , i.e., each row, in 𝐷𝑡𝑒𝑠𝑡 . If the
predicted failure scores of two tests are equal, the test with the
shorter last execution duration is executed first, since the last test
duration has proven to be a reasonable baseline [13, 60]. Thereby,
we obtain a test ranking for each CI run in 𝐷𝑡𝑒𝑠𝑡 . We follow prior
research [11, 50, 60] by reporting our evaluation metrics averaged
across all CI runs in 𝐷𝑡𝑒𝑠𝑡 that contained failures: Avg. APFD𝑐 (RTP)
and avg. test time savings (RTS).

Randomness. Several ML algorithms involve randomization. We
repeat the experiments with 30 different random seeds to reduce
the impact of randomness [23, 71]. Results in our empirical study
(see Sec. 3.3) report the mean of evaluation metrics.

3 EMPIRICAL STUDY
We perform an empirical study to evaluate CI-RTP/S approaches
built and calibrated using our methodology; and to derive evidence-
based guidelines and cost-effectiveness expectations for practition-
ers. Therefore, we strive to answer the following research ques-
tions (RQs):

496

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration ISSTA ’21, July 11–17, 2021, Virtual, Denmark

• RQ1: How sensitive is the cost-effectiveness of CI-RTP/S to
different parameterizations regarding amount of training
data, choice of features, and ranking model?

• RQ2: How do CI-RTP/S approaches built with our method-
ology compare against baseline RTP and RTS techniques in
terms of cost-effectiveness?

3.1 Study Subjects
Table 1 lists the selected 23 software projects from industry (3) and
open-source development (20).

3.1.1 Industrial Projects. These are provided by our industry part-
ner IVU Traffic Technologies, each counting several millions of
source lines of code (SLOC). One project is primarily written in
C/C++ (𝑃1), two in Java (𝑃2−3). Additionally, web-based and na-
tive graphical user interface (GUI) clients are part of these code
bases which are programmed in different domain specific languages
(DSLs) or other general purpose programming languages (GPLs)
such as JavaScript. Their test suites, besides unit testing, involve
integration- as well as system-level testing often performed across
project boundaries. Developers commit their changes directly to the
main VCS development line, where the company-internal Jenkins
CI system collects commits and triggers a new retest-all CI run once
the previous run has finished. Once a test run is finished, a Jenkins
plugin aggregates all XUnit test results into a structured test report
in XML or JSON format6.

3.1.2 Open-source Projects. These are part of a recently published
dataset for RTP, RTPTorrent (Mattis et al., Zenodo, CC BY 4.07),
that aims to deliver a representative sample of all Java projects on
GitHub [50, 51]. We discovered that most of them (14/20) addition-
ally use more GPLs other than Java (e.g., C++, Python) or DSLs (e.g.,
SQL, YAML). As RTPTorrent is yet missing some required links be-
tween CI runs and respective VCS commits, we used the underlying
massive TravisTorrent [6] CI dataset to extend RTPTorrent. If there
are multiple VCS branches that are tested in the CI system, we use
historical data from all of these branches. The same applies for mul-
tiple sub-stages in a test stage, where different sub-stages, e.g., for
different compiler versions, might report the same failures. In the
worst case, this leads to an over- or undersampling of failures. We
still keep these data to not waste potentially valuable information.

3.1.3 Datasets. We argue that this set of projects resembles reality,
where RTP and RTS techniques have to cope with multi-language
software of varying size as well as test-levels, i.e., unit-, integration,
or system-level [12, 80]. More than 37,000 CI test logs and 76,000
VCS commits were analyzed. We publish the resulting 23 datasets,
𝐷𝑃1−23 , as part of our supplemental material.

3.2 Experimental Setup
Recall that we identify CI-RTP/S approaches as triples of the param-
eters (i) training data amount (i.e., training-test-ratio), (ii) features,
and (iii) ranking model. All studied settings for these parameters de-
scribed in Sec. 2 are summarized in Table 2. Due to the combinatorial

6Jenkins JUnit Plugin: https://plugins.jenkins.io/junit/
7CC Attribution 4.0 International: https://creativecommons.org/licenses/by/4.0/

explosion of assessed study subjects, random seeds, training-test-
splits, features (or feature sets), and ranking models, the experi-
ments were run on a highly parallelized cluster infrastructure. The
measured total CPU time was more than 50,000 hours.

Since we aim to constitute a generic example of applying our
methodology, we do not perform elaborate hyper-parameter grid
search for ML algorithms. Instead, we follow Chen et al. [13] and
stick to the default model hyper-parameters provided in the scikit-
learn package [59], but use the LightGBM package for a more light-
weight implementation of gradient boosting [35]. Notably, before
model training each feature is normalized.

In our supplemental material, we provide the source code neces-
sary to reproduce our results from the created 23 datasets, 𝐷𝑃1−23 .

3.3 Results
In the following, we discuss the empirical results and address the
RQs. Detailed results are provided with the supplemental material.

3.3.1 RQ1: Cost-Effectiveness Sensitivity Analysis. We aim to ana-
lyze how sensitive the cost-effectiveness of the CI-RTP/S approaches,
built with our methodology, is to the parameters (i)-(iii) and find
calibrations that are empirically superior to others (see Table 2).
When comparing different parameter settings, we use the APFD𝑐

as calculated for each CI run in a project’s test dataset 𝐷𝑡𝑒𝑠𝑡 and
average it over these runs to obtain the avg. APFD𝑐 . This metric
is then considered across projects for sensitivity analysis. We run
a one-way analysis of variance (ANOVA) for each parameter to
investigate its individual influence on the avg. APFD𝑐 . Therefore,
we vary its value, while having the other two parameters at their
project-specific best setting. Our approach for sensitivity analysis
of parameterization follows related work on RTS and RTP [8, 60].

(i) Training Data Amount. To check how much training data
is beneficial for CI-RTP/S, we study whether there are significant
differences in the means of the avg. APFD𝑐 across projects for 𝑆1−3.
To choose the appropriate statistical test for the ANOVA, we first
perform the Shapiro-Wilk test with Bonferroni correction to check
for normality which cannot be rejected with a minimal 𝑝-value of
0.045 (significance level 𝛼 = 0.05 corrected by |𝑆 | = 3 is 𝛼𝑛𝑜𝑟𝑚 =
0.017). We then use Bartlett’s test for homoscedasticity, which is
also not rejected at a 𝑝-value of 0.977. Hence, with normal and
homoscedastic data we can perform a repeated measures ANOVA.
We fail to reject the null hypothesis (𝑝-value = 0.717), indicating
no significant difference between the mean values of 𝑆1, 𝑆2, and 𝑆3.
Among them, 𝑆2 shows the highest mean avg. APFD𝑐 of 0.896.

Prior research has trained ranking models only on faulty CI
runs [11], that is runs that contain at least one test failure, or by
using all available CI runs [45]. To check if there are any significant
differences, we repeated all experiments a second time, but this time
we only trained on those CI runs in the training set that contained
failures. Using the same procedure as before, we find that differences
in means are insignificant (𝑝-value = 0.284) by using a paired t-test,
which is suitable as data is normally distributed (𝑝-value = 0.059)
and we have two populations, that is only faulty and all CI runs.

Overall, we can summarize that using less training data does
not harm cost-effectiveness of CI-RTP/S. Even limiting ourselves to
only using faulty CI runs did not negatively impact the avg. APFD𝑐 .

497

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

Table 1: Study subject statistics

𝑷𝑰𝑫 Project # SLOC Time
period [days] # Commits # CI runs # Failing CI runs # Test runs # Tests # Failures Avg. test stage

duration [sec]
Avg./median # failures
per failing test stage

𝑃1 IVU_Cpp ≫ 1M 267 8,632 3,996 2,841 3,608.4K 1,240 25,973 5,454 9.1/3.0
𝑃2 IVU_Java_1 ≫ 1M 313 7,747 943 876 178.7K 279 14,568 65,557 16.6/6.0
𝑃3 IVU_Java_2 ≫ 1M 699 7,965 3,209 1,521 3,526.3K 1,278 7,603 5,330 5.0/2.0
𝑃4 jcabi-github 64K 872 1,050 809 205 398.1K 201 740 778 2.2/2.0
𝑃5 jade4j 10K 1,539 400 358 59 35.9K 46 1,323 4 13.8/19.0
𝑃6 optiq 243K 395 560 458 38 55.3K 63 110 2,168 1.6/1.0
𝑃7 buck 562K 307 2,517 846 339 586.1K 864 1,511 1,650 4.5/1.0
𝑃8 jetty.project 346K 63 237 192 174 63.9K 787 415 508 1.3/1.0
𝑃9 jsprit 59K 368 326 267 14 91.8K 107 123 23 2.4/1.0
𝑃10 LittleProxy 13K 1,580 353 271 62 11.0K 50 172 134 2.8/2.0
𝑃11 dynjs 57K 1,163 517 385 25 68.5K 83 496 15 12.1/1.0
𝑃12 sling 673K 213 13,376 1,403 812 268.1K 304 1,158 420 1.4/1.0
𝑃13 HikariCP 13K 661 1,787 1,575 125 44.0K 23 383 58 3.1/1.0
𝑃14 wicket-bootstrap 42K 1,245 1,150 904 342 41.4K 91 9,007 8 26.3/29.0
𝑃15 okhttp 69K 1,423 3,518 3,412 744 236.5K 266 939 108 1.2/1.0
𝑃16 titan 59K 747 621 384 157 43.3K 107 551 2,366 2.2/2.0
𝑃17 deeplearning4j 138K 727 1,071 982 566 14.6K 174 908 477 1.6/1.0
𝑃18 cloudify 132K 909 6,048 4,973 496 283.6K 116 602 92 1.2/1.0
𝑃19 graylog2-server 127K 1,381 5,414 3,891 165 798.5K 250 403 792 1.6/1.0
𝑃20 Achilles 54K 1,114 904 642 23 139.9K 627 162 139 6.0/2.0
𝑃21 DSpace 384K 1,043 2,489 1,929 82 122.1K 83 1,697 130 20.7/35.0
𝑃22 sonarqube 661K 532 7,899 4,286 488 6,696.0K 3,122 2,156 334 3.5/1.0
𝑃23 jOOQ 351K 961 1,525 1,318 403 81.5K 51 573 13 1.1/1.0

Table 2: Parameters of CI-RTP/S approaches: (i) Training
data amount 𝑆 , (ii) features 𝐹 , (iii) ranking models 𝑀

𝑺1 100% of available historical data
𝑺2 75% of available historical data
𝑺3 50% of available historical data
𝑭1 Failure count (𝑓1,1), Last failure (𝑓1,2), Transition count (𝑓1,3)

Last transition (𝑓1,4), Avg. test duration (𝑓1,5)
𝑭2 Max. (test, file)-failure freq. (𝑓2,1), Max. (test, file)-failure freq. (rel.) (𝑓2,2),

Max. (test, file)-transition freq. (𝑓2,3), Max. (test, file)-transition freq. (rel.) (𝑓2,4),
𝑭3 Min. file path distance (𝑓3,1), Max. file path token similarity (𝑓3,2),

Min. file name distance (𝑓3,3)
𝑭4 Distinct authors (𝑓4,1), Changeset cardinality (𝑓4,2),

Amount of commits (𝑓4,3), Distinct file extensions (𝑓4,4)
𝑴1 Logistic regression
𝑴2 Multi-layer perceptron
𝑴3 Linear SVM
𝑴4 Random decision forest
𝑴5 Gradient boosted trees
𝑴𝒉,𝒇𝒋,𝒌

Heuristic ranking models

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Avg. APFDc

F1
F2
F3
F4
Fall

mean
median

(a) Avg. APFD𝑐 across projects

12345

F4
F3
F2

F1
Fall

CD

(b) Pairwise comparison

Figure 6: Sensitivity analysis of features 𝐹 (ii)

(ii) Features. In Sec. 2.2 we described how features are grouped
into feature sets 𝐹1−4 to increase comprehensiveness. This allows us
to study their individual cost-effectiveness and empirical differences
among them. Fig. 6a shows the distribution of the avg. APFD𝑐

for each feature set 𝐹1−4 and 𝐹𝑎𝑙𝑙 . Again, we assume normality
after conducting a Shapiro-Wilk test with Bonferroni correction
which yields a minimal observed 𝑝-value of 0.023 (𝛼𝑛𝑜𝑟𝑚 = 0.01).
Bartlett’s test for homoscedasticity is further rejected at 𝑝-value
0.02, assuming heteroscedasticity. Thus, we use the non-parametric
ANOVA Friedman test to check for differences in the means of
avg. APFD𝑐 . It is rejected at 𝑝-value 0.002 indicating that there

are significant differences which we further explore with the post
hoc Nemenyi test as proposed by Demšar [14]: It compares all
feature sets pairwise based on the absolute differences of their avg.
rankings. For 𝛼 a critical difference (CD) is determined; if the avg.
ranking difference is greater than CD, the null hypothesis that
they have equal performance is rejected. Fig. 6b visualizes these
pairwise differences in the avg. ranks through a CD diagram: If
two feature sets are connected by a horizontal bar, they are not
significantly different to each other [32]. The diagram indicates that
𝐹4 is significantly worse than 𝐹𝑎𝑙𝑙 (best in pairwise comparison)
and 𝐹1 (best among 𝐹1−4), questioning the usefulness of features
in 𝐹4. Further, we find that even though differences in avg. ranks
are not significant, 𝐹1 and 𝐹𝑎𝑙𝑙 have higher mean avg. APFD𝑐 than
other feature sets by at least 0.05. This emphasizes the usefulness
of features from test history (𝐹1).

As heuristic ranking models do not rely on entire feature sets
but only on single features, we conduct the sensitivity analysis
for all single features 𝑓𝑗,𝑘 as well, i.e., their respective heuristic
ranking models 𝑀ℎ,𝑓𝑗,𝑘 . The ANOVA shows that there are no sig-
nificant differences between features (Shapiro-Wilk test rejected at
𝑝-value 0.001; Friedman test not rejected at 𝑝-value 0.063). How-
ever, from the five features with highest mean rank and median avg.
APFD𝑐 , three are from feature set 𝐹1 (𝑓1,4, 𝑓1,1, 𝑓1,5), and two from
𝐹2 (𝑓2,1, 𝑓2,2), with the best one being 𝑓2,1, i.e., max. (test,file)-failure
frequency. Again, this emphasizes that features using test history
correlate with better cost-effectiveness. There seems to be some
combination of features that leads to superiority of 𝐹1 over 𝐹4. This
observation motivates the use of more elaborate statistical feature
selection techniques in the future (see Sec. 3.6).

(iii) Ranking Model. To investigate the cost-effectiveness of each
ranking model 𝑀 , we perform ANOVA twice, with the response
variables avg. APFD𝑐 and training time, respectively. We consider
the latter as a reasonable proxy for model efficiency as our experi-
mental results show that model inference time is negligibly small
(see experiment results in supplemental material). Fig. 7 shows the
distributions of the avg. APFD𝑐 and the training times of ranking

498

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration ISSTA ’21, July 11–17, 2021, Virtual, Denmark

0.6 0.7 0.8 0.9 1.0
Avg. APFDc

M1

M2

M3

M4

M5

Mh mean
median

(a) Avg. APFD𝑐 across projects

10−3 10−2 10−1 100 101 102 103

Training time [s]

M1

M2

M3

M4

M5

Mh

mean
median

(b) Training time across projects

Figure 7: Sensitivity analysis of ranking models 𝑀 (iii)

models across all projects. For the first ANOVA, we perform a re-
peated measures ANOVA, as the data is normal (𝑝-value = 0.087)
and homoscedastic (𝑝-value = 0.953). Since the null hypothesis
is not rejected at 𝑝-value 0.066, we assume that there are no sta-
tistically significant differences in the mean avg. APFD𝑐 . 𝑀5 (gra-
dient boosted trees) and 𝑀ℎ have the highest mean avg. APFD𝑐

(both 0.874). The second ANOVA shows significant differences
in training time: We reject the Friedman test at 𝑝-value <0.001
(non-parametric ANOVA due to non-normality at 𝑝-value <0.001).
Without further inspection, it is obvious that 𝑀ℎ (as expected) is
far more efficient than the ML algorithms as its training procedure
is simply a mathematical transformation. Yet, despite its simplicity,
the cost-effectiveness of 𝑀ℎ is still comparable.

While prior research also finds𝑀5 to be particularly effective [45],
interestingly, these findings rather suggest focusing on existing sim-
ple heuristic ranking models (𝑀ℎ) instead of investing the effort in
training complex ML models from prior research.

RQ1: We find that CI-RTP/S cost-effectiveness is sensitive to
the choice of features, but is not significantly impacted by the
amount of training data or the ranking model. We empirically
determine that the best approaches contain features from test
history and use heuristic ranking models.

3.3.2 RQ2: Comparative RTP and RTS Performance. We aim to pro-
vide estimations on the cost-effectiveness of CI-RTP/S approaches
for RTP and unsafe RTS. We have motivated in Sec. 1 that it is
of particular interest for practitioners to know how much cost-
effectiveness is sacrificed if using only a semi-optimally calibrated
approach. Thus, we compare the following CI-RTP/S approaches
including four baselines for RTP and unsafe RTS.

• 𝑴𝑳: Empirically best ML ranking model from RQ1, i.e., 𝑀5
(gradient boosted trees) with 𝐹𝑎𝑙𝑙 on 𝑆2 (75% training data)

• �̂� : Empirically best heuristic ranking model from RQ1, i.e.,
𝑀ℎ,𝑓2,1 (max. (test,file)-failure freq.) on 𝑆2 (75% training data)

• Opt: Always uses optimally calibrated approach from our
methodology for each project; implies high effort in practice,
as all combinations of parameter settings are computed.

• 𝑩𝒓𝒂𝒏𝒅𝒐𝒎 : Baseline ranking tests in random order [11, 17, 20]
• 𝑩𝒍𝒂𝒔𝒕 : Baseline ranking tests in ascending order by the time

since the last failure (i.e., 𝑓1,2) [21, 71]
• 𝑩𝒉𝒊𝒔𝒕𝒐𝒓𝒚 : Baseline ranking tests in descending order by the

amount of historical failures (i.e., 𝑓1,1) [3, 60]
• 𝑩𝒄𝒐𝒔𝒕 : Cost-only baseline ranking tests in ascending order

by their last execution time [13, 60]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Avg. APFDc

Bcost

Bhistory

Blast

Brandom

Opt
Ĥ

̂ML mean
median

(a) Avg. APFD𝑐 across projects

1234567

Brandom

Blast

Bhistory

Bcost

̂ML
Ĥ
Opt

CD

(b) Pairwise comparison

Figure 8: Comparison of RTP cost-effectiveness

The distribution of their avg. APFD𝑐 across projects is shown in
Fig. 8a, reflecting the cost-effectiveness for RTP. To compare the
median values, we perform the non-parametric ANOVA Fried-
man test assuming non-normality at minimal 𝑝-value of 0.001
(𝛼𝑛𝑜𝑟𝑚 = 0.007). It is rejected at 𝑝-value <0.001 indicating that
there are significant differences. Again, we use the post hoc Ne-
menyi test for pairwise comparison of avg. ranks and report the
results in Fig. 8b. We can see that Opt significantly outperforms
all other approaches, which is also reflected by the highest median
avg. APFD𝑐 of 0.919 with the lowest median absolute deviation of
0.1. Although not statistically significant, the medians of the semi-
optimally calibrated approaches 𝑀𝐿 (0.855) and �̂� (0.787) are also
better than all baselines. Notably, the spread of the avg. APFD𝑐 for
�̂� with respect to median absolute deviation is considerably smaller
(0.177) than the one for 𝑀𝐿 (0.239). Similar to prior research [60],
𝐵𝑐𝑜𝑠𝑡 seems to be the best performing baseline (median: 0.757), yet
not statistically significant across studied projects. Moreover, all
approaches and baselines (partly significantly) outperform random
ordering (𝐵𝑟𝑎𝑛𝑑𝑜𝑚), which is also in line with previous results (see
Fig. 8b) [11, 18, 19, 71]. Interestingly, we found that for 5 and 11
projects, respectively, the baselines 𝐵ℎ𝑖𝑠𝑡𝑜𝑟𝑦 and 𝐵𝑙𝑎𝑠𝑡 performed
worse than 𝑀ℎ,𝑓1,1 and 𝑀ℎ,𝑓1,2 which use the same features, but
followed an inverse scoring order in these projects.

Regarding RTS, Fig. 9a shows the distribution of the avg. time
savings for RTS across projects when setting the cut-off value to
𝜃90%, i.e., 90% empirical failure detection safety. The ANOVA, re-
ported in Fig. 9b, has similar results (Shapiro-Wilk: 𝑝-value 0.029;
Bartlett: 𝑝-value <0.001; Friedman: 𝑝-value <0.001), which is not
surprising, as we generally expect good RTP to correlate with good
RTS approaches. Though the project-specific best approach used
for Opt is not necessarily the same for RTS and RTP: For 𝜃90%, 19
out of 23 projects have the same best project-specific approach.

Overall, using Opt we are able to save 84% of testing time on
average across projects. However, even with the semi-optimally
calibrated approaches, �̂� and 𝑀𝐿, savings of on average >70% are
achieved. While the baselines have relatively high average savings
as well (up to 61.7%), they suffer a large spread across projects.
For 𝜃95% and 𝜃100%, we find 83.1 ± 13.8% and 82.8 ± 14.4% average
test time savings with Opt, respectively. �̂� and 𝑀𝐿 achieve average
savings of 69.8±10.2% and 69.7±14.2% for 𝜃95% and 69.4±10.5% and
69.4 ± 14.3% for 𝜃100%. The overall conclusions regarding relative
performance of the seven compared approaches (including four
baselines) remain similar. All numbers and figures for 𝜃95% and
𝜃100% are part of the provided supplemental material.

Finally, we investigate to what extent the ranking performance
of Opt, �̂� , and 𝑀𝐿 (as they have been calibrated on the up-to-date

499

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

0 10 20 30 40 50 60 70 80 90 100
Time savings [%]

Bcost

Bhistory

Blast

Brandom

Opt
Ĥ

̂ML mean
median

(a) Avg. savings across projects

1234567

Brandom

Blast

Bhistory

Bcost

̂ML
Ĥ
Opt

CD

(b) Pairwise comparison

Figure 9: Comparison of RTS cost-effectiveness for 𝜃90%

Table 3: Time stability measured by avg. APFD𝑐 across 6 dif-
ferent training-test-splits (𝜇 ± 𝜎)

𝑷𝑰𝑫 𝑶𝒑𝒕 �̂� 𝑴𝑳
𝑃1 (𝐹𝑎𝑙𝑙 , 𝑀4) 0.97 ± 0.00 0.74 ± 0.02 0.94 ± 0.02
𝑃2 (𝑓1,2 , 𝑀ℎ) 0.90 ± 0.03 0.80 ± 0.02 0.88 ± 0.03
𝑃3 (𝐹𝑎𝑙𝑙 , 𝑀4) 0.95 ± 0.01 0.77 ± 0.03 0.81 ± 0.06
𝑃4 (𝐹1 , 𝑀1) 0.84 ± 0.07 0.81 ± 0.08 0.64 ± 0.15
𝑃5 (𝑓3,3 , 𝑀ℎ) 0.87 ± 0.16 0.72 ± 0.07 0.65 ± 0.22
𝑃6 (𝑓1,4 , 𝑀ℎ) 0.64 ± 0.11 0.70 ± 0.11 0.65 ± 0.23
𝑃7 (𝑓1,5 , 𝑀ℎ) 0.98 ± 0.01 0.91 ± 0.02 0.87 ± 0.10
𝑃8 (𝐹𝑎𝑙𝑙 , 𝑀1) 0.86 ± 0.10 0.75 ± 0.12 0.81 ± 0.08
𝑃9 (𝐹𝑎𝑙𝑙 , 𝑀1) 0.70 ± 0.30 0.81 ± 0.09 0.72 ± 0.25
𝑃10 (𝐹2 , 𝑀4) 0.63 ± 0.10 0.63 ± 0.10 0.42 ± 0.10
𝑃11 (𝑓3,3 , 𝑀ℎ) 0.80 ± 0.21 0.83 ± 0.17 0.46 ± 0.30
𝑃12 (𝐹𝑎𝑙𝑙 , 𝑀5) 0.86 ± 0.09 0.76 ± 0.12 0.86 ± 0.09
𝑃13 (𝐹4 , 𝑀5) 0.79 ± 0.05 0.69 ± 0.06 0.56 ± 0.08
𝑃14 (𝑓1,2 , 𝑀ℎ) 0.79 ± 0.04 0.80 ± 0.02 0.72 ± 0.08
𝑃15 (𝐹1 , 𝑀2) 0.82 ± 0.05 0.81 ± 0.02 0.77 ± 0.09
𝑃16 (𝐹1 , 𝑀1) 0.69 ± 0.09 0.70 ± 0.06 0.68 ± 0.04
𝑃17 (𝑓1,1 , 𝑀ℎ) 0.79 ± 0.11 0.80 ± 0.07 0.76 ± 0.10
𝑃18 (𝐹𝑎𝑙𝑙 , 𝑀5) 0.85 ± 0.10 0.61 ± 0.10 0.85 ± 0.10
𝑃19 (𝑓3,3 , 𝑀ℎ) 0.90 ± 0.17 0.90 ± 0.18 0.81 ± 0.15
𝑃20 (𝑓3,1 , 𝑀ℎ) 0.90 ± 0.07 0.84 ± 0.08 0.67 ± 0.30
𝑃21 (𝐹1 , 𝑀5) 0.70 ± 0.14 0.75 ± 0.04 0.56 ± 0.14
𝑃22 (𝐹2 , 𝑀1) 0.67 ± 0.06 0.72 ± 0.03 0.53 ± 0.06
𝑃23 (𝐹𝑎𝑙𝑙 , 𝑀4) 0.96 ± 0.00 0.86 ± 0.03 0.92 ± 0.00
Avg. 0.82 ± 0.07 0.77 ± 0.04 0.72 ± 0.08

test set) is stable over different test sets in time (see Fig. 5). Table 3
lists the mean and standard deviation of their avg. APFD𝑐 for each
project, if applied across all 6 available training-test-splits. While
Opt is always the best approach on the up-to-date test set, it is not
necessarily the best one averaged across all training-test-splits. If
there were two approaches performing equally well on the up-to-
date test set in terms of their avg. APFD𝑐 , hence being candidates for
Opt, we decide in favor of the one with smaller standard deviation
of the APFD𝑐 . The cost-effectiveness oscillates considerably over
time with an average 𝜎 of 0.07 for Opt, 𝜎 of 0.08 𝑀𝐿, and 0.04 for
�̂� . Hence, we conclude that re-adaptation intervals should be kept
short, as optimal calibration of CI-RTP/S fluctuates over time.

RQ2: We find that CI-RTP/S approaches outperform established
baselines and save on average 84% of test run-time while retain-
ing 90% of empirical failure detection safety. However, CI-RTP/S
is unstable over time, thus requiring regular adaptation.

3.4 Guidelines and Expectations for Practice
In summary, we derive the following practical implications from
the findings of our empirical study:
(1) CI-RTP/S does not need large amounts of training data per se.

It suffices to use the most recent or even only faulty CI runs.
This speeds up re-adaptation and decreases required storage.

(2) Features from test history are frequently performing well, yet,
in our experiments, adding VCS metadata can increase cost-
effectiveness: 𝐹𝑎𝑙𝑙 has been the best feature set.

(3) Rather naïve, inexpensive heuristic ranking models often out-
perform sophisticated ML algorithms.

(4) Calibrating the project-specific optimal (Opt) CI-RTP/S approach
gives significant cost-effectiveness benefits over semi-optimally
calibrated approaches or baseline models.

(5) CI-RTP/S approaches are not stable over time. Frequently re-
adapting CI-RTP/S to more recent development is advisable.

(6) Unsafe RTS, even if solely based on metadata from CI and VCS,
can achieve considerable test run-time savings (on average 84%
while detecting 90% of failures across projects from our study).

3.5 Application in Industry
Besides the empirical results on the performance expectations of
CI-RTP/S reported above, we share some initial experiences and
challenges from deploying our methodology at IVU Traffic Tech-
nologies who supported and partially sponsored this research.

We implemented our methodology as a web service that is de-
ployed in the company’s infrastructure and integrated with their
Jenkins CI system. As described in Sec. 3.1.1, the existing main Jenk-
ins pipelines continuously execute all regression tests. Depending
on the project this is either done in random order, to detect and
prevent test order dependencies (see [39]), or by the alphabetical
naming order of tests. In addition to the existing pipeline, we created
a parallel RTS pipeline for project 𝑃2 from our empirical study: This
pipeline first queries the web service with the introduced changeset
since the last CI run and a desired empirical safety level (the default
is 90%) and then only executes the subset of tests retrieved from
the web service. The reason why we choose this parallel setup for
now, is to build up trust in the RTS mechanism among developers.
They can directly compare results from the existing (safe) retest-all
to the RTS pipeline, which makes test time savings transparent.

In this industry setting, we decided to only include heuristic
ranking models (𝑀ℎ,𝑓𝑗,𝑘) for the following reasons: First, as we have
shown empirically, these heuristics often outperform complex ML
algorithms and require low training effort in both time and compu-
tation resources. They are also non-randomized, which eliminates
the need for costly repeated experiments. Second, they are easily
interpreted by developers, who are not necessarily experts in pre-
dictive modeling, which might increase overall acceptance of the
used models. As our guidelines from the empirical study suggest,
the web service re-adapts all ranking models every night including
the new data from the last day which are fetched from Jenkins.
For the subsequent day, the web service will then only use the
best performing model to rank tests. We follow the assumption by
Facebook [45] that model performance on our test dataset is a good
approximation of the model’s general performance on unseen data.
Still, to regularly check this assumption, we store trained models
and inspect in hindsight how they performed on the following day,
i.e., if the empirical safety level carried over from the test set.

Our parallel RTS pipeline has been in use in project 𝑃2 for six
weeks. This project contains a large fraction of relatively long run-
ning Java tests that operate across language boundaries (Java and
C++) and often have long test setup times for database schemas.

500

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration ISSTA ’21, July 11–17, 2021, Virtual, Denmark

During the considered time period, the RTS pipeline executed 366
CI runs, where 176 included at least one failure. Across those fail-
ing CI runs, the realized test time savings were on average 19.8%
with 93.4% of failures being detected. We observe that the empirical
safety level was only notably violated (below 90%) when the code
base underwent major refactorings which were accompanied by
a sudden increase in failures. However, the test time savings are
considerably smaller than what we achieved for 𝑃2 during the em-
pirical study and for the open-source projects. There are (at least)
two possible reasons for this observation: First, we found that the
setup times often significantly impact the test execution time and
created database schemas are cached and re-used for subsequent
tests. Hence, even if certain tests are excluded, the considerable
impact of the test setup time will still be prevalent if any of the tests
requiring that setup is executed. Second, if multiple tests failed
in a CI run, we observed an increase in the number of selected
tests on the following days. We expect this to be a consequence of
our decision to rely on heuristic ranking models only: 𝑀ℎ,𝑓1,2 has
been the best for 𝑃2 and thus, if multiple tests fail once, they will
be selected for execution throughout the subsequent days which
negatively affects the test time savings.

Even though these initially realized time savings are smaller
than in the empirical study, IVU engineers are positive about the
achieved results and will deploy parallel RTS pipelines for more
projects. They expect test setup times to have significantly less
impact in their other projects. In fact, the test setup caching mech-
anism is very project-specific and little prior research exists on test
dependency aware RTP and RTS [39]. Thus, while our empirical
study of open-source projects establishes comparability, context-
specific practical challenges can impact CI-RTP/S cost-effectiveness
and we will further investigate how to address them at IVU.

In the next step, we aim to reduce the frequency of retest-all
cycles. Instead of parallel execution, the RTS pipeline will be the
default CI pipeline. Re-executing all tests in certain intervals will
still be required as the thereby obtained test outcome data are
necessary for re-adapting ranking models.

3.6 Threats to Validity
3.6.1 External Validity. The main threats to external validity con-
cern the representativeness of results. We address them by studying
a heterogeneous set of real-world projects, but cannot, by nature of
empirical studies, easily generalize our findings beyond our dataset.
Since this is a known limitation of ML models as they always depend
on the dataset quality, we followed established data mining and ML
practices for splitting data, repeating randomized experiments, and
training and testing models to mitigate these threats.

The investigated time periods of CI and VCS history might con-
tain irregular development behavior, e.g., unusual maintenance
activities. Therefore, we create multiple training-test-splits and
investigate time stability of performances.

Since we rely on test execution time as reported in the CI logs,
there is a threat from fluctuations within one CI test run due to
irregular workload on the build machine. Tests are usually run in
isolation inside CI environments to reduce such side-effects, but it
might still affect the concrete values of reported evaluation metrics.
Similar to prior work [60], we address this threat by our large

dataset of CI runs and by conducting rigorous statistical analyses
to ensure that findings are significant across projects.

Furthermore, we deliberately exclude an automated feature se-
lection process or model hyper-parameter tuning. While this might
limit the performance of ML algorithms compared to more sensible
tuning, it enables us to perform fine-grained sensitivity analyses.
We deem the investigation of automated feature selection tech-
niques as an important future task to prune our current feature
sets. In addition, while we focus on point-wise ranking models,
there are recent studies on other approaches such as reinforcement
learning (RL), which are beyond the scope of this work [8, 71].

As described in Sec. 2.4.1, we rely on a one-to-one failure-to-
fault mapping similar to previous research [50, 60, 69]. While this
assumption might distort results since faults often cause multiple
failures, prior research on RTP shows that different mappings still
lead to similar overall conclusions [60].

Finally, the presence of flaky tests may impact the effectiveness
of CI-RTP/S. Existing research is not unequivocal regarding the ex-
pected effect of flaky tests: While at Facebook [45], the presence of
flaky tests does not preclude the applicability of CI-RTP/S, Peng et
al. [60] see substantial impact for some RTP techniques. We argue
that flaky test detection requires special efforts and can be per-
formed on top of our methodology. Due to resource constraints, we
cannot re-run more than 37,000 CI test histories multiple times to de-
flake each dataset as proposed by prior work [45]. At IVU, flaky tests
are currently not documented, yet developers are encouraged to fix
such tests immediately when they behave non-deterministically.

3.6.2 Internal Validity. We identify the integrity of exploited data
sources as well as the correctness of the implemented feature en-
gineering and evaluation analysis as the main internal threat. To
address this, we wrote run-time assertions and unit tests that dis-
cover invalid data and check feature computations. Furthermore,
we manually checked results for their validity with IVU engineers.

4 RELATED WORK
Several RTP and unsafe RTS techniques have been proposed which
incorporate other information than traditional white-box program
analyses to predict test failures and rank tests. Throughout this
paper, we have referenced existing research that we have consol-
idated into our methodology. While we focus on techniques that
solely rely on CI and VCS metadata (CI-RTP/S), there is also signif-
icant related work which uses other additional information that is
non-guaranteed in CI settings.

Studies on techniques that use such additional information be-
yond CI and VCS metadata have shown their effectiveness in spe-
cific contexts (i.e., single projects or organizations) [1, 2, 4, 11, 45,
47, 48, 54, 57, 62] as well as across multiple projects [5, 8, 13, 29, 33,
36, 40, 46, 49, 53, 56, 57, 60, 67]. We consider the following to be
most relevant for our work: Machalica et al. [45] report a reduction
of testing infrastructure cost by 50% and test executions by >66%
at Facebook while retaining 95% empirical failure detection safety.
They train a failure prediction ML model on features from CI and
VCS metadata as well as static build dependencies and project iden-
tifiers. Busjaeger and Xie [11] train a linear SVM on black- and
white-box (i.e., code coverage) features obtained from Salesforce’s
code repository and CI system. By ranking and selecting tests, they

501

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

achieve a trade-off of executing 3% of all tests to detect 75% of the
failures. Chen et al. [13] train ML models to predict the effectiveness
of RTP techniques by using features from test coverage and testing
time. They find that there are no universally optimal RTP tech-
niques across projects which supports findings in the related field
of defect prediction [82]. Bertolino et al. [8] compare ten ML algo-
rithms for ranking tests to provide guidelines on when to choose RL
over supervised ML or vice versa. They use features from white-box
code and dependency analysis as well as test history, and evaluate
algorithms’ performance on six open-source subjects with artificial
faults. Henard et al. [29] provide an experimental comparison of 10
white-box and 10 black-box RTP techniques from prior research.
In their study on five C programs from the software infrastructure
repository [15] with seeded faults, they find that black-box tech-
niques based on combinatorial interaction testing [10, 61] and test
input diversity [24, 30, 31] perform comparably well to white-box
approaches. While these black-box techniques are also applicable if
there is no source code access, they require either a program’s test
inputs or a model thereof, which goes beyond CI and VCS meta-
data. Yoo and Harman [74, 75, 77] introduce the concept of Pareto
efficient multi-objective regression test optimization to account for
trade-offs between test criteria for different types of testing (e.g.,
structural and functional). Defect hypotheses and associated fea-
tures in our methodology are drawn from their work (see Sec. 2.2),
but we cannot directly apply their techniques due to the lack of
required coverage information. Similarly, we cannot directly ap-
ply the unsafe RTS approach by Kim and Porter [36], who were
among the first to create statistical ranking models for tests based
on past-fault coverage, i.e., tests’ history, and function coverage.
Peng et al. [60] empirically study information retrieval (IR) tech-
niques for RTP as first proposed by Saha et al. [67]. Their hybrid
technique combines features from textual program changes and,
similar to our work, test execution time and test failure history.
It outperforms coverage-based RTP techniques and the baselines
𝐵𝑐𝑜𝑠𝑡 and 𝐵ℎ𝑖𝑠𝑡𝑜𝑟𝑦 (see Sec. 3.3.2) on a real-world dataset, and they
argue for the łnecessity [...] to better balance textual, cost, and
historical information for more powerful test prioritizationž [60].
We deem our approach with advanced feature engineering and pre-
dictive modeling to be one step in that direction, albeit excluding
white-box textual analysis. Notably, analyzing textual code changes
is possible, if CI and VCS metadata contain code diffs and tests’
source code is accessible. However, going beyond the scope of our
methodology, effective IR techniques further employ programming
language-specific analysis (e.g., building an abstract syntax tree) or
computationally expensive topic modeling [49, 60, 67].

Similarly, effectiveness for specific contexts [3, 16, 21, 38, 43, 68]
and across projects [37, 44, 71, 81] has been studied for CI-RTP/S.
However, none of the studies that investigate multiple projects uses
VCS metadata; they exclusively rely on historical test execution
information (i.e., CI logs). Using both kinds of data, as done in our
study, indicates that features from CI logs alone are indeed powerful,
but including VCS features can further increase cost-effectiveness.
We are not aware of related work that uses both kinds of data and
individually measures associated features’ cost-effectiveness across
projects. We consider the following papers to be most relevant for
our work: Elbaum et al. [21] were the first to apply CI-RTP/S at

industry scale: They used the simple heuristic 𝐵𝑙𝑎𝑠𝑡 (see Sec. 3.3.2)
to cost-effectively prioritize and select tests in Google’s pre- and
post-submit testing process. Spieker et al. [71] use RL for CI-RTP/S.
On ABB’s and Google’s CI test history, their approach achieves
competitive performance to simple RTP heuristics (e.g., 𝐵𝑙𝑎𝑠𝑡 from
Sec. 3.3.2). They formulate unsafe RTS as a time-constrained RTP
problem, where the cut-off value is determined by the available
test time. In contrast, we define cut-off values by empirical failure
detection safety levels.

Finally, we have alluded to why sensitivity of cost-effectiveness
to size, timeliness, and variety of data is important for CI-RTP/S.
Prior work has investigated how much historical data can be ben-
eficial [3, 8, 71]. Research conducted at Microsoft further showed
fluctuating cost-effectiveness over time [33]. The impact of data
variety has been studied by analyzing performance of predictive
features [4, 8, 11, 45]. However, these studies either focus on specific
industrial contexts or use more information than only CI and VCS
metadata. In summary, we are not aware of prior work on CI-RTP/S
approaches that studies how sensitive their cost-effectiveness is
to associated parameters, performs cost-aware evaluation on real-
world failures from industrial and open-source projects, and derives
empirical guidelines for calibrating CI-RTP/S in practice.

5 CONCLUSION
Unsafe RTS and RTP techniques that exclusively rely on CI and VCS
metadata (CI-RTP/S) are attractive alternatives to traditional, more
intrusive techniques: They are inexpensive, language-agnostic, easy
to transferÐno program or code access is necessaryÐ, and have
been shown to work well in different contexts. However, aspects of
their design and evaluation are scattered across research, leaving
practitioners to identify insights that apply to their context. Besides,
adequately calibrating these techniques often requires high effort
and experience with predictive modeling. Still, empirical calibration
guidelines are not available. Instead of proposing new techniques,
we consolidate existing RTP and unsafe RTS research into a method-
ology for building and evaluating CI-RTP/S approaches.

In our empirical study, we show that (1) limiting the training
data to the most recent or even only faulty CI test runs often suf-
fices, (2) features on test history work particularly well, and (3)
naïve heuristics often outperform complex ML models from prior
work. Practitioners can use these empirical guidelines to reduce the
amount of effort for selecting and calibrating the best CI-RTP/S ap-
proaches for their project. Across studied projects, the approaches
chosen by our methodology significantly outperform established
RTP baselines. On average, practitioners can thereby expect to save
84% of the testing time while still detecting 90% of the failures when
selecting tests. If CI and VCS metadata are available, the methodol-
ogy is universally applicable, allowing practitioners to comfortably
build and calibrate cost-effective RTP and RTS approaches.

ACKNOWLEDGMENTS
We thank Maria Graber, René Dammer, Markus Schnappinger, and
the anonymous reviewers who provided helpful feedback to im-
prove this paper. This work was partially funded by IVU Traffic
Technologies and the German Federal Ministry of Education and
Research (BMBF), grant łSOFIE, 01IS18012Až.

502

Empirically Evaluating Readily Available Information for Regression Test Optimization in Continuous Integration ISSTA ’21, July 11–17, 2021, Virtual, Denmark

REFERENCES
[1] Khaled Walid Al-Sabbagh, Miroslaw Staron, Regina Hebig, and Wilhelm Med-

ing. 2019. Predicting Test Case Verdicts Using Textual Analysis of Committed
Code Churns. In Joint Proceedings of the International Workshop on Software
Measurement and the International Conference on Software Process and Product
Measurement, Vol. 2476. 138ś153.

[2] Khaled Walid Al-Sabbagh, Miroslaw Staron, Miroslaw Ochodek, Regina Hebig,
and Wilhelm Meding. 2020. Selective Regression Testing based on Big Data:
Comparing Feature Extraction Techniques. In Proceedings of the International
Conference on Software Testing, Verification and Validation Workshops. 322ś329.
https://doi.org/10.1109/ICSTW50294.2020.00058

[3] Jeff Anderson, Saeed Salem, and Hyunsook Do. 2014. Improving the effective-
ness of test suite through mining historical data. In Processings of the Working
Conference on Mining Software Repositories. 142ś151. https://doi.org/10.1145/
2597073.2597084

[4] Jeff Anderson, Saeed Salem, and Hyunsook Do. 2015. Striving for Failure: An
Industrial Case Study about Test Failure Prediction. In Proceedings of the Interna-
tional Conference on Software Engineering. 49ś58. https://doi.org/10.1109/ICSE.
2015.134

[5] Maral Azizi and Hyunsook Do. 2018. ReTEST: A Cost Effective Test Case Selection
Technique for Modern Software Development. In Proceedings of the International
Symposium on Software Reliability Engineering. 144ś154. https://doi.org/10.1109/
issre.2018.00025

[6] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In Proceedings of the International Conference on Mining Software Repositories.
447ś450. https://doi.org/10.1109/msr.2017.24

[7] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, 1 (2012), 281ś305.

[8] Antonia Bertolino, Antonio Guerriero, Roberto Pietrantuono, Stefano Russo,
Breno Miranda, and Roberto Pietran-Tuono. 2020. Learning-to-Rank vs Ranking-
to-Learn: Strategies for Regression Testing in Continuous Integration. In Pro-
ceedings of the International Conference on Software Engineering. 1ś12. https:
//doi.org/10.1145/3377811.3380369

[9] Leo Breiman and Philip Spector. 1992. Submodel Selection and Evaluation in
Regression. The X-Random Case. International Statistical Review / Revue Interna-
tionale de Statistique 60, 3 (1992), 291ś319. https://doi.org/10.2307/1403680

[10] Renée C. Bryce and Charles J. Colbourn. 2006. Prioritized interaction testing
for pair-wise coverage with seeding and constraints. Information and Software
Technology 48, 10 (2006), 960ś970. https://doi.org/10.1016/j.infsof.2006.03.004

[11] Benjamin Busjaeger and Tao Xie. 2016. Learning for test prioritization: An indus-
trial case study. In Proceedings of the International Symposium on the Foundations
of Software Engineering. 975ś980. https://doi.org/10.1145/2950290.2983954

[12] Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. 2017. Re-
gression test selection across JVM boundaries. In Proceedings of the Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 809ś820. https://doi.org/10.1145/3106237.3106297

[13] Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan
Hao, and Lu Zhang. 2018. Optimizing test prioritization via test distribution
analysis. In Proceedings of the Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 656ś667.
https://doi.org/10.1145/3236024.3236053

[14] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research 7 (2006), 1ś30.

[15] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting
controlled experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Engineering 10, 4 (2005), 405ś435.
https://doi.org/10.1007/s10664-005-3861-2

[16] Edward Dunn Ekelund and Emelie Engstrom. 2015. Efficient regression testing
based on test history: An industrial evaluation. In Proceedings of the International
Conference on Software Maintenance and Evolution. 449ś457. https://doi.org/10.
1109/icsm.2015.7332496

[17] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. 2001. Incorporating
varying test costs and fault severities into test case prioritization. In Proceedings
of the International Conference on Software Engineering. 329ś338. https://doi.org/
10.1109/icse.2001.919106

[18] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Prioritiz-
ing test cases for regression testing. In Proceedings of the International Symposium
on Software Testing and Analysis. 101ś112. https://doi.org/10.1145/347324.348910

[19] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2002. Test
case prioritization: A family of empirical studies. IEEE Transactions on Software
Engineering 28, 2 (2002), 159ś182. https://doi.org/10.1109/32.988497

[20] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G. Malishevsky.
2004. Selecting a cost-effective test case prioritization technique. Software Quality
Journal 12, 3 (2004), 185ś210. https://doi.org/10.1023/b:sqjo.0000034708.84524.22

[21] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-
proving regression testing in continuous integration development environments.

In Proceedings of the International Symposium on the Foundations of Software
Engineering. 235ś245. https://doi.org/10.1145/2635868.2635910

[22] Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021.
Supplemental Material for: "Empirically Evaluating Readily Available Infor-
mation for Regression Test Optimization in Continuous Integration". https:
//doi.org/10.6084/m9.figshare.13656443

[23] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. 2015.
Empirical evaluation of Pareto efficient multi-objective regression test case pri-
oritisation. In Proceedings of the International Symposium on Software Testing and
Analysis. 234ś245. https://doi.org/10.1145/2771783.2771788

[24] Robert Feldt, Simon Poulding, David Clark, and Shin Yoo. 2016. Test Set Diameter:
Quantifying the Diversity of Sets of Test Cases. In Proceedings of the International
Conference on Software Testing, Verification and Validation. 223ś233. https:
//doi.org/10.1109/ICST.2016.33

[25] Kurt F. Fischer. 1977. A test case selection method for the validation of software
maintenance modifications. In Proceedings of International Computer Software
and Applications Conference. 421ś426.

[26] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In Proceedings of the International Conference on Software Engi-
neering. 713ś716. https://doi.org/10.1109/icse.2015.230

[27] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In Proceedings of the International
Symposium on Software Testing and Analysis. 211ś222. https://doi.org/10.1145/
2771783.2771784

[28] Mark Harman. 2011. Making the case for MORTO: Multi objective regression test
optimization. In Proceedings of the International Conference on Software Testing,
Verification, and Validation Workshops. 111ś114.

[29] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing white-box and black-box test prioritization. In Proceedings of
the International Conference on Software Engineering. 523ś534. https://doi.org/
10.1145/2884781.2884791

[30] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick
Heymans, and Yves Le Traon. 2014. Bypassing the combinatorial explosion:
Using similarity to generate and prioritize t-wise test configurations for software
product lines. IEEE Transactions on Software Engineering 40, 7 (2014), 650ś670.
https://doi.org/10.1109/TSE.2014.2327020

[31] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le
Traon. 2013. Assessing software product line testing via model-based mutation:
An application to similarity testing. In Proceedings of the International Conference
on Software Testing, Verification and Validation Workshops. 188ś197. https://doi.
org/10.1109/ICSTW.2013.30

[32] Steffen Herbold. 2020. Autorank: A Python package for automated ranking
of classifiers. Journal of Open Source Software 5, 48 (2020), 2173ś2173. https:
//doi.org/10.21105/joss.02173

[33] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The
art of testing less without sacrificing quality. In Proceedings of the International
Conference on Software Engineering. 483ś493. https://doi.org/10.1109/icse.2015.66

[34] Xianhao Jin and Francisco Servant. 2020. A cost-efficient approach to building in
continuous integration. In Proceedings of the International Conference on Software
Engineering. 13ś25. https://doi.org/10.1145/3377811.3380437

[35] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie Yan Liu. 2017. LightGBM: A highly efficient gradient boosting
decision tree. In Proceedings of the International Conference on Neural Information
Processing Systems. 3149ś3157.

[36] Jung Min Kim and Adam Porter. 2002. A history-based test prioritization tech-
nique for regression testing in resource constrained environments. In Proceed-
ings of the International Conference on Software Engineering. 119ś129. https:
//doi.org/10.1145/581339.581357

[37] Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Soder, Agneta Nilsson, and
Magnus Castell. 2015. Supporting Continuous Integration by Code-Churn Based
Test Selection. In Proceedings of the International Workshop on Rapid Continuous
Software Engineering. 19ś25. https://doi.org/10.1109/rcose.2015.11

[38] Jung Hyun Kwon and In Young Ko. 2018. Cost-Effective Regression Testing
Using Bloom Filters in Continuous Integration Development Environments. In
Proceedings of the Asia-Pacific Software Engineering Conference. 160ś168. https:
//doi.org/10.1109/apsec.2017.22

[39] Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie.
2020. Dependent-Test-Aware Regression Testing Techniques. In Proceedings of
the International Symposium on Software Testing and Analysis. 298ś311. https:
//doi.org/10.1145/3395363.3397364

[40] Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and Nadine Mandran. 2012.
Prioritizing test cases with string distances. In Automated Software Engineering,
Vol. 19. 65ś95. https://doi.org/10.1007/s10515-011-0093-0

[41] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In Proceedings of the International Symposium on
Foundations of Software Engineering. 583ś594. https://doi.org/10.1145/2950290.
2950361

503

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer

[42] Owolabi Legunsen, August Shi, and Darko Marinov. 2017. STARTS: STAtic regres-
sion test selection. In Proceedings of the International Conference on Automated
Software Engineering. 949ś954. https://doi.org/10.1109/ase.2017.8115710

[43] Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John
Micco. 2019. Assessing Transition-Based Test Selection Algorithms at Google.
In Proceedings of the International Conference on Software Engineering: Software
Engineering in Practice. 101ś110. https://doi.org/10.1109/icse-seip.2019.00019

[44] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining pri-
oritization: Continuous prioritization for continuous integration. In Proceed-
ings of the International Conference on Software Engineering. 688ś698. https:
//doi.org/10.1145/3180155.3180213

[45] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice. 91ś100. https://doi.org/10.1109/
ICSE-SEIP.2019.00018

[46] Dusica Marijan, Arnaud Gotlieb, and Abhijeet Sapkota. 2020. Neural Network
Classification for Improving Continuous Regression Testing. In Proceedings of
the International Conference On Artificial Intelligence Testing. 123ś124. https:
//doi.org/10.1109/AITEST49225.2020.00025

[47] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test case prioritization
for continuous regression testing: An industrial case study. In Proceedings of the
International Conference on Software Maintenance. 540ś543. https://doi.org/10.
1109/icsm.2013.91

[48] Dusica Marijan and Marius Liaaen. 2018. Practical selective regression testing
with effective redundancy in interleaved tests. In Proceedings of the International
Conference on Software Engineering. 153ś162. https://doi.org/10.1145/3183519.
3183532

[49] Toni Mattis and Robert Hirschfeld. 2020. Lightweight Lexical Test Prioritization
for Immediate Feedback. The Art, Science, and Engineering of Programming 4, 3
(2020), 12:1ś12:32. https://doi.org/10.22152/programming-journal.org/2020/4/12

[50] Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld. 2020. RTP-
Torrent: An Open-source Dataset for Evaluating Regression Test Prioritiza-
tion. In Proceedings of the Conference on Mining Software Repositories. 385ś396.
https://doi.org/10.1145/3379597.3387458

[51] Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld. 2020. RTPTorrent:
An Open-source Dataset for Evaluating Regression Test Prioritization. https:
//doi.org/10.5281/zenodo.3610998

[52] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale continuous testing. In Proceed-
ings of the International Conference on Software Engineering: Software Engineering
in Practice. 233ś242. https://doi.org/10.1109/icse-seip.2017.16

[53] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino.
2018. FAST approaches to scalable similarity-based test case prioritization. In
Proceedings of the International Conference on Software Engineering. 222ś232.
https://doi.org/10.1145/3180155.3180210

[54] Armin Najafi, Weiyi Shang, and Peter C. Rigby. 2019. Improving Test Effectiveness
Using Test Executions History: An Industrial Experience Report. In Proceedings
of the International Conference on Software Engineering: Software Engineering in
Practice. 213ś222. https://doi.org/10.1109/icse-seip.2019.00031

[55] Agastya Nanda, Senthil Mani, Saurabh Sinha, Mary Jean Harrold, and Alessandro
Orso. 2011. Regression testing in the presence of non-code changes. In Proceedings
of the International Conference on Software Testing, Verification, and Validation.
21ś30. https://doi.org/10.1109/icst.2011.60

[56] Tanzeem Bin Noor and Hadi Hemmati. 2016. A similarity-based approach for test
case prioritization using historical failure data. In Proceedings of the International
Symposium on Software Reliability Engineering. 58ś68. https://doi.org/10.1109/
issre.2015.7381799

[57] Tanzeem Bin Noor and Hadi Hemmati. 2017. Studying test case failure prediction
for test case prioritization. In Proceedings of the International Conference on
Predictive Models and Data Analytics in Software Engineering. 2ś11. https://doi.
org/10.1145/3127005.3127006

[58] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In Proceedings of the International Symposium
on Foundations of Software Engineering. 241ś251. https://doi.org/10.1145/1029894.
1029928

[59] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825ś2830.

[60] Qianyang Peng, August Shi, and Lingming Zhang. 2020. Empirically Revis-
iting and Enhancing IR-Based Test-Case Prioritization. In Proceedings of the
International Symposium on Software Testing and Analysis. 324ś336. https:
//doi.org/10.1145/3395363.3397383

[61] Justyna Petke, Shin Yoo, Myra B. Cohen, and Mark Harman. 2013. Efficiency and
early fault detection with lower and higher strength combinatorial interaction

testing. In Proceedings of the Joint Meeting on Foundations of Software Engineering.
26ś36. https://doi.org/10.1145/2491411.2491436

[62] Adithya Abraham Philip, Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Mad-
dila, and Nachiappan Nagppan. 2019. FastLane: Test Minimization for Rapidly
Deployed Large-Scale Online Services. In Proceedings of the International Confer-
ence on Software Engineering. 408ś418. https://doi.org/10.1109/icse.2019.00054

[63] John Platt. 1999. Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods. Advances in large margin classifiers 10,
3 (1999), 61ś74.

[64] Gregg Rothermel and Mary Jean Harrold. 1994. A Framework for Evaluating Re-
gression Test Selection Techniques. In Proceedings of the International Conference
on Software Engineering. 201ś210. https://doi.org/10.1109/ICSE.1994.296779

[65] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and Methodology
6, 2 (1997), 173ś210. https://doi.org/10.1145/248233.248262

[66] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. 2000. Regression test
selection for C++ software. Software Testing, Verification and Reliability 10, 2
(2000), 77ś109.

[67] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.
An information retrieval approach for regression test prioritization based on
program changes. In Proceedings of the International Conference on Software
Engineering. 268ś279. https://doi.org/10.1109/icse.2015.47

[68] Mark Sherriff, Mike Lake, and Laurie Williams. 2007. Prioritization of regression
tests using singular value decomposition with empirical change records. In
Proceedings of the International Symposium on Software Reliability Engineering.
81ś90. https://doi.org/10.1109/issre.2007.25

[69] August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.
2018. Evaluating Test-Suite Reduction in Real Software Evolution. In Proceedings
of the International Symposium on Software Testing and Analysis. 84ś94. https:
//doi.org/10.1145/3213846.3213875

[70] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In Proceedings
of the International Symposium on Software Reliability Engineering. 228ś238.
https://doi.org/10.1109/issre.2019.00031

[71] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Rein-
forcement learning for automatic test case prioritization and selection in con-
tinuous integration. In Proceedings of the International Symposium on Software
Testing and Analysis. 12ś22. https://doi.org/10.1145/3092703.3092709

[72] Robert White, Jens Krinke, and Raymond Tan. 2020. Establishing Multilevel
Test-to-Code Traceability Links. In Proceedings of the International Conference on
Software Engineering. 861ś872. https://doi.org/10.1145/3377811.3380921

[73] Rüdiger Wirth and Jochen Hipp. 2000. CRISP-DM : Towards a Standard Process
Model for Data Mining. In Proceedings of the International Conference on the
Practical Application of Knowledge Discovery and Data Mining. 29ś39.

[74] Shin Yoo and Mark Harman. 2007. Pareto efficient multi-objective test case
selection. In Proceedings of the International Symposium on Software Testing and
Analysis. ACM Press, 140ś150. https://doi.org/10.1145/1273463.1273483

[75] Shin Yoo and Mark Harman. 2010. Using hybrid algorithm for Pareto efficient
multi-objective test suite minimisation. Journal of Systems and Software 83, 4
(2010), 689ś701. https://doi.org/10.1016/j.jss.2009.11.706

[76] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: A survey. Software Testing Verification and Reliability 22, 2
(2012), 67ś120. https://doi.org/10.1002/stv.430

[77] Shin Yoo, Robert Nilsson, and Mark Harman. 2011. Faster Fault Finding at
Google Using Multi Objective Regression Test Optimisation. In Proceedings of
the International Symposium on the Foundations of Software Engineering.

[78] Tingting Yu and Ting Wang. 2018. A Study of Regression Test Selection in Con-
tinuous Integration Environments. In Proceedings of the International Symposium
on Software Reliability Engineering. 135ś143. https://doi.org/10.1109/ISSRE.2018.
00024

[79] Lingming Zhang. 2018. Hybrid regression test selection. In Proceedings of the
International Conference on Software Engineering. 199ś209. https://doi.org/10.
1145/3180155.3180198

[80] Hua Zhong, Lingming Zhang, and Sarfraz Khurshid. 2019. TestSage: Regression
test selection for large-scale web service testing. In Proceedings of the International
Conference on Software Testing, Verification and Validation. 430ś440. https:
//doi.org/10.1109/icst.2019.00052

[81] Yuecai Zhu, Emad Shihab, and Peter C. Rigby. 2018. Test re-prioritization in
continuous testing environments. In Proceedings of the International Conference
on Software Maintenance and Evolution. 69ś79. https://doi.org/10.1109/icsme.
2018.00016

[82] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and
Brendan Murphy. 2009. Cross-project defect prediction: A large scale experiment
on data vs. domain vs. process. In Proceedings of the Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
91ś100. https://doi.org/10.1145/1595696.1595713

504

A.3. Publications

A.3.4. Challenges in Regression Test Selection for End-to-End Testing of
Microservice-based Software Systems

© 2022 ACM. Included here by permission from ACM. Daniel Elsner, Daniel Bertagnolli,
Alexander Pretschner, Rudi Klaus, Challenges in Regression Test Selection for End-to-
End Testing of Microservice-Based Software Systems, AST ’22: Proceedings of the 3rd
ACM/IEEE International Conference on Automation of Software Test, pages 1–5, July
2022.

In the following, the complete paper is included in its published form in accordance
with the ACM author rights, DOI: 10.1145/3524481.3527217.

97

https://doi.org/10.1145/3524481.3527217

Challenges in Regression Test Selection for End-to-End Testing
of Microservice-based Software Systems
Daniel Elsner

Daniel Bertagnolli
Alexander Pretschner
firstname.lastname@tum.de

Technical University of Munich
Munich, Germany

Rudi Klaus
rudi.klaus@t-systems.com
T-Systems International

Munich, Germany

ABSTRACT
Dynamic regression test selection (RTS) techniques aim to min-
imize testing efforts by selecting tests using per-test execution
traces. However, most existing RTS techniques are not applica-
ble to microservice-based, or, more generally, distributed systems,
as the dynamic program analysis is typically limited to a single
system. In this paper, we describe our distributed RTS approach,
microRTS, which targets automated and manual end-to-end testing
in microservice-based software systems. We employ microRTS in
a case study on a set of 20 manual end-to-end test cases across 12
versions of the German COVID-19 contact tracing application, a
modern microservice-based software system. The results indicate
that initially microRTS selects all manual test cases for each ver-
sion. Yet, through semi-automated filtering of test traces, we are
able to effectively reduce the testing effort by 10–50%. In contrast
with prior results on automated unit tests, we find method-level
granularity of per-test execution traces to be more suitable than
class-level for manual end-to-end testing.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging.

KEYWORDS
Software testing, regression test selection, microservice architec-
tures, end-to-end testing, manual testing

ACM Reference Format:
Daniel Elsner, Daniel Bertagnolli, Alexander Pretschner, and Rudi Klaus.
2022. Challenges in Regression Test Selection for End-to-End Testing of
Microservice-based Software Systems. In IEEE/ACM 3rd International Con-
ference on Automation of Software Test (AST ’22), May 17–18, 2022, Pittsburgh,
PA, USA.ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3524481.
3527217

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AST ’22, May 17–18, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9286-0/22/05. . . $15.00
https://doi.org/10.1145/3524481.3527217

1 INTRODUCTION
Regression testing is a software testing activity that is regularly
performed to ascertain that changes have not inadvertently altered
previous system behavior [15]. Yet, with increasingly large test
suites and shorter software (delivery) life-cycles, running all tests
after each change is often too costly [4, 30]. To reduce the costs of
regression testing, regression test selection (RTS) [7, 13, 21–23, 31,
33] techniques have been extensively studied since the 1970s [5].
Traditional RTS techniques identify a subset of tests by compar-

ing new code changes with per-test code dependencies. Collecting
these per-test code dependencies can either be achieved through
static or dynamic program analysis at the level of basic-blocks [11,
21], functions/methods [6, 17, 32, 33], classes/files [7, 8, 12, 13],
modules [24], or combinations thereof [25, 28, 31]. In dynamic
RTS techniques, these per-test code dependencies can also be in-
terpreted as per-test execution traces. Since most techniques are
incapable of collecting dependencies across system boundaries, they
mainly target unit testing. Yet, in microservice-based systems, or,
more generally, highly distributed systems, checking for functional
correctness is no longer limited to individual units or modules,
but especially requires anticipation of interface and interaction
bugs [16, 33]. Hence, existing RTS techniques are not directly ap-
plicable, as these systems need to be tested through integration or
end-to-end tests that operate across service or system boundaries.
While there are a few studies on RTS for web applications and

services [17, 19, 33], they have several limitations in the context of
microservices: First, existing RTS techniques targeting web applica-
tions only instrument server code for tracing tests [17, 19]. However,
excluding client code is problematic in microservice-based systems,
where (rich) web or mobile client applications often contain large
parts of the business logic and orchestrate calls to different mi-
croservices. Second, even though protocol- and language-agnostic
distributed tracing approaches are provided by observability frame-
works such as OpenTelemetry1, existing RTS techniques are imple-
mented for monolingual systems [33] and specific communication
protocols, such as Hypertext Transfer Protocol (HTTP) [17, 19].
Third, high instrumentation overhead of RTS techniques may pre-
clude their applicability in practice [2, 3, 18], but existing studies
lack analyses on the introduced instrumentation overhead during
service startup and test execution. Finally, due to the complexity of
automating end-to-end tests, these tests are often performed manu-
ally [10, 19]. Yet, no prior RTS study investigates RTS for manual
end-to-end tests in microservice-based systems.

1OpenTelemetry: https://opentelemetry.io/

1

3rd ACM/IEEE International Conference on Automation of Software Test

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Elsner, et al.

In this paper, we propose microRTS, a distributed RTS technique
suitable formanual or automated end-to-end testing inmicroservice-
based software systems. microRTS is implemented on top of well-
established distributed tracing infrastructure and Java bytecode
manipulation libraries, to enable automated instrumentation of ar-
bitrary Java microservices at runtime. We evaluate the influence of
several implementation aspects on the instrumentation overhead in
the open-source microservice benchmark application TeaStore [29].
We further present a case study that was conducted together

with our industry partner T-Systems2 on a subset of the manual
end-to-end test suite on 12 software versions of the German COVID-
19 contact tracing application, Corona-Warn-App (CWA), a mod-
ern microservice-based software system. Since the CWA accesses
backend microservices through a rich mobile client (we only con-
sider Android), we design microRTS to collect per-test execution
traces from mobile clients as well as microservices, leading to more
complete traces. In contrast with prior results on automated unit
tests [7, 12], we find class-level granularity of test traces to be too
coarse grained for RTS of manual end-to-end tests in this context,
essentially leading to retest-all. With traces at method-level gran-
ularity, microRTS initially still selects all test cases across the 12
studied versions. However, after closer inspection of the reasons
behind a test being selected, we find that the manual tests are com-
monly imprecisely specified. For instance, while all manual tests
cover the CWA start screen, most of them do not test any start
screen functionality. Consequently, by semi-automatically filtering
out irrelevant parts of the test traces, microRTS can exclude 10–50%
of tests.
To foster more research on RTS for integration or end-to-end test-

ing in microservice-based systems, we discuss challenges and elab-
orate on experiences when implementing and applying microRTS
in a real-world context.

2 RELATED WORK & STATE-OF-PRACTICE
Among the many existing RTS studies already referenced, we con-
sider the following to be most relevant for the context of this work:
Nakagawa et al. [19] propose a method-level RTS technique for

manual end-to-end tests for Java web applications. By sending
a custom header with each HTTP request to the server, a tester’s
browser can bemapped to accessedmethods, assuming a one-to-one
mapping of HTTP requests and Java Virtual Machine (JVM) threads.
The results of the industrial case study on two web applications
indicate that it is likely that all tests need to be executed for large
modifications or changes to common code parts. As the proposed
RTS technique is not able to trace more than one web server, it is
yet unsuitable in a microservice context.
Long et al. [17] propose the RTS tool WebRTS, which supports col-

lecting file-level per-test execution traces across multiple instances
of a web server. It is designed for Java web applications with server-
side page rendering and is limited to communication using the
HTTP protocol which confines the applicability to a small subset
of microservice-based systems. Unfortunately, although publicly
available, WebRTS lacks an adequate user documentation and further
relies on JVM bytecode instrumentation from an external library

2T-Systems is one of the largest European information technology service providers:
https://www.t-systems.com/

that lacks English documentation3. For this reason, we were neither
able to fully comprehend, nor to apply their tool in preliminary
experiments on Java microservices.
Zhong et al. [33] propose the RTS technique TestSage that tar-

gets web service testing at Google. TestSage supports C++ services
and performs function-level instrumentation using XRay4. While
TestSage reduces the testing time by 34%, it does not support par-
allel test tracing and is limited to homogeneous C++ web services.
In summary, we are not aware of any prior work that investigates
the potential and challenges of RTS in the context of manual end-
to-end testing for microservice-based systems.

3 DISTRIBUTED TEST SELECTION
When a microservice-based software system is tested in an end-to-
end fashion, restarting the system under test (SUT) between each
test case is not always feasible. This is because such systems often
involve tens or even hundreds of services. Hence the startup process
is expensive and time-consuming [33]. Consequently, when col-
lecting per-test execution traces, we need to take into account that
multiple tests are executed on the same deployed service instance,
either sequentially or in parallel. We thus require segmentation
of collected traces according to the tests’ execution time frame
and link covered code parts to the test that executed them [17].
In the following, we describe how microRTS collects precise dis-
tributed per-test execution traces for end-to-end tests and performs
change-based test selection.
While microRTS currently supports microservices written in lan-

guages that target the JVM (e.g., Java, Kotlin) and instrumentation
of Android mobile clients, the concepts are agnostic to the actually
used programming language or platform. We chose Java as our case
study subject is written in Java and Kotlin (see Sec. 5).

3.1 Distributed Tracing
The core principle behind distributed tracing is context propagation:
A context contains (at least) a unique identifier that identifies a trace
and is transferred in and across services in a distributed system [27].
The trace thereby encapsulates all requests related to an individual
transaction. To enable context propagation, clients and services
are instrumented to be able to create, transfer, and access context
information embedded into requests. Consider Fig. 1 that depicts an
instrumented service, where context information is extracted from
inbound requests and injected into outbound requests. Furthermore,
trace points can be inserted into the instrumented service that define
actions such as attaching metadata to the context.
The implementation of the required code instrumentation for

the middleware (e.g., HTTP client libraries) can be performed us-
ing well-established, polyglot distributed tracing and observability
frameworks, such as OpenTracing5 or OpenTelemetry. microRTS
uses OpenTelemetry to automatically instrument Java microser-
vices by attaching a Java Agent [1] that performs Java bytecode
instrumentation at runtime. Thereby, the instrumented microser-
vice will extract the context from inbound requests and we can link
the context with custom code instrumentation as described next.
3JVM-SANDBOX: https://github.com/alibaba/jvm-sandbox
4LLVM XRay: https://llvm.org/docs/XRay.html
5OpenTracing: https://opentracing.io/

2

Challenges in Regression Test Selection for End-to-End Testing of Microservice-based Software Systems AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

Figure 1: Context propagation in an instrumented service
(inspired by Shkuro [26])

3.2 Code Instrumentation
We have described why the SUT typically cannot be restarted after
each test in microservice-based systems. Therefore, if several tests
are executed one after another, we need a code instrumentation
that also takes into account already created objects from previ-
ously executed tests [17]. Thus, similar to pre-existing RTS tech-
niques [19, 33], microRTS instruments microservices (and clients)
at method-level granularity rather than class-level, as only instru-
menting JVM class loading or object creation would miss if tests
call methods of already existing objects. However, since we aim
to investigate benefits of test trace granularity more closely (see
Sec. 5), microRTS offers to control if test traces are stored (and aggre-
gated) at method- or class-level granularity. Furthermore, existing
approaches for collecting test traces differ regarding the strategy
to export information about covered methods (i.e., coverage probes)
during runtime [14, 20]. microRTS offers to export coverage probes
directly after they fire or in batches, and supports writing cover-
age probes into a file or sending them via Transmission Control
Protocol (TCP) sockets to a central trace collector.
We implement the method-level code instrumentation using

a Java Agent and the ByteBuddy bytecode manipulation library6.
Thereby, whenever a method is entered, the instrumentation stores
a coverage probe in the coverage tracer. A coverage probe contains
the method’s signature, the name of the surrounding class, and the
current context’s trace identifier. Depending on how microRTS is
configured, the coverage probes are written into a file or sent via
TCP to the trace collector, either one-by-one or in batches. Fig. 2
illustrates how coverage information is collected from instrumented
microservices. Additionally, the client is connected to a test listener
that is responsible for maintaining the context for test cases in
test logs, to later on link coverage probes to test cases. In Sec. 5,
we describe how we implemented a test listener for the Android
client of the CWA. microRTS further implements compile-time
instrumentation of Android mobile clients using the AndroidBuddy
library7, as in contrast to the JVM, Android does not allow runtime
instrumentation.

3.3 Test Selection
For change-based test selection, microRTS uses the changeset since
the last time a test suite was executed from the version control sys-
tem (VCS), together with the collected method-level test traces from
the last test execution. microRTS then parses the .java and .kt
files from the changeset and computes (1) the set of changed classes
and (2) the set of changed methods by comparing checksums of
6ByteBuddy: https://bytebuddy.net/
7AndroidBuddy: https://github.com/LikeTheSalad/android-buddy

Figure 2: Overview of the microRTS test tracing architecture

each method’s source code, similar to existing RTS techniques [31].
Using these two sets and the test traces, microRTS then determines
affected tests through class- or method-level selection. In Sec. 5, we
describe the effects of using class- and method-level selection in a
manual end-to-end testing context.

4 EFFICIENCY EVALUATION
In order to analyze the efficiency of microRTS’s instrumentation,
we conduct experiments on the TeaStore microservice benchmark
application. We thereby strive to answer the following research
questions (RQs):

• RQ1: How much instrumentation overhead does microRTS
introduce at system startup and during testing?

• RQ2: How does the granularity of coverage probes and their
export strategy affect instrumentation overhead?

4.1 Experimental Setup
TeaStore is an open-source microservice reference application used
by researchers to analyze and test novel techniques formicroservice-
based systems [9, 29]. We conduct our experiments on version
v1.4.0 of the TeaStore, consisting of 6 Java microservices that we
orchestrate using Docker-Compose. Since TeaStore currently only
contains unit tests, we implemented a set of 23 automated end-
to-end tests using the testing framework Cypress. Our test suite
covers each feature of the application by at least one test case and
was merged by the project’s maintainers into the main code base8.
To execute our experiments, we instrument each microservice

and the Cypress test runner with microRTS and run all 23 test cases
with different (1) coverage probe collection granularity (method- or
class-level) and (2) coverage probe export strategies (in-memory, file,
or socket export). We repeat the experiments 30 times to account
for variations in the runtimes and measure the average system
startup and testing runtime for all configurations of microRTS and
compare them to executions without any instrumentation (NoInst).

4.2 Discussion of Results
RQ1: Startup and Runtime Instrumentation Overhead. The results of
the comparative analysis between microRTS and NoInst show that
the performance impact of microRTS is more significant during
services’ startup (+67.5%) than during testing (+18%). By re-running
the tests using only OpenTelemetry’s instrumentation, we see that
most of the overhead stems from OpenTelemetry, which already
adds 40% to the startup and 10.5% to the testing runtime.

8TeaStore Pull Request: https://github.com/DescartesResearch/TeaStore/pull/203

3

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Elsner, et al.

We further observe that the overhead caused by microRTS is
significantly higher during the first test compared to the mean over-
head. The reason is inherent to dynamic bytecode instrumentation,
which transforms Java bytecode files on the fly when they are first
loaded by the JVM ClassLoader.

RQ2: Granularity and Export Strategies of Coverage Probes. The
granularity at which microRTS is configured to export coverage
probes does not significantly affect the instrumentation overhead:
method-level granularity adds roughly 1.2% overhead compared
to class-level granularity in total test suite execution time. The
reason why storing and exporting coarser-grained class-level cov-
erage probes is not far more efficient is that microRTS still needs
to instrument all methods as explained in Sec. 3.2.
Regarding the chosen coverage probe export strategy, we find

that in-memory is the fastest strategy because it does not export
probes until service shutdown. Perhaps surprisingly, the file export
strategy only adds around 1% of runtime overhead when compared
to in-memory, despite the I/O overhead. Finally, although used in
prior studies [20, 33], the socket strategy has a comparatively high
runtime overhead of 6.7% compared to in-memory.

5 CASE STUDY: CORONA-WARN-APP
To evaluate microRTS in a real-world microservice-based system,
we conduct a case study on the manual end-to-end test suite of the
Corona-Warn-App (CWA) to answer RQ3: How much manual end-
to-end testing effort reduction can be achieved using microRTS?

5.1 Experimental Setup
The CWA is the official German Covid-19 contact tracing appli-
cation, based on a decentralized, microservices architecture. The
source code of the microservices and mobile clients is open-sourced
and available on Github9, easing reproducibility and extension of
our case study. Service providers such as our industry partner T-
Systems are responsible for end-to-end regression testing of new
versions and releases of the CWA. Therefore, they use a manual
regression test suite that is not publicly available. As currently the
test cases for release testing are selected manually, automated and
systematic tool-support through microRTS can be beneficial.
For our experiments with microRTS, we prepare a suitable test-

ing environment: We (1) instrument seven CWA microservices, (2)
instrument the mobile client (only Android), (3) patch or mock
requests to external services such as Google’s Exposure Notifica-
tion System, as they can exclusively be used by authorized official
health agencies, and (4) orchestrate all instrumented services with
Docker-Compose, as neither the staging, nor the production envi-
ronment configuration are publicly available. We then execute 20
manual end-to-end test cases provided by T-Systems for version
2.5.1 of the CWA. These tests are still executable without limita-
tions in our experimental setup and we only instrument the seven
services required for the provided test cases. We implement a small
Android sidecar application, where we can start and stop a manual
test case, which internally initializes and closes a tracing context.
To evaluate the potential of microRTS, we determine the set of

selected tests on all (12) CWA release candidate versions between

9Corona-Warn-App (CWA): https://github.com/corona-warn-app

2.5.1 and 2.6.1. We include these release candidates to gain insights
on how shorter testing cycles affect RTS results. Furthermore, we
compare class- and method-level RTS as their effectiveness is not
unequivocal in existing RTS literature [7, 17, 19].

5.2 Discussion of Results
RQ3: Test Effort Reduction. The initial results show that RTS at
method- and class-level already selects all 20 tests for the first ver-
sion, namely between 2.5.1 and 2.6.0-RC0. As a result, RTS between
2.5.1 and all other subsequent versions has the same outcome.
To understand the underlying reasons, we investigate the causes

for selection: First, 100% of the test selections for all versions have
been caused by changes in the Android client, both using class- and
method-level RTS. This highlights the importance of instrumenting
client code as well. Second, all test cases include various shared
covered methods, which originate primarily from the home screen
where all tests start or end according to the test case specifications.
Yet, surprisingly, only 9 out of the 20 test cases effectively verify
functionality of the home screen. To determine if the other 11
test cases would have been selected even if their traces started on
their respective sub-page, we proceed by refining the test traces.
During this refinement step, we remove all coveredmethods that are
associated to the home screen for the 11 test cases. Using class-level
RTS nothing changes: all tests are selected. However, when using
method-level RTS the selected tests for 2.6.0-RC0 are reduced by
50%, only 10 out of 20 tests are selected; for the subsequent versions
and the next release 2.6.1, up to 18 out of 20 tests are selected (90%).
Hence, we can conclude that the effectiveness of our RTS ap-

proach for manual end-to-end testing is highly dependent on the
precision of test specifications. Through semi-automated pruning
of test traces using domain knowledge, we are able to exclude up to
50% of tests, but only when using fine-grained method-level RTS.
Our results confirm findings from prior RTS research on manual
testing, where RTS effectiveness was limited with shared covered
code parts in test traces or with large changesets [19].

6 CONCLUSION
In this paper, we introduce microRTS, a dynamic RTS technique for
microservice-based systems. By combining established distributed
tracing infrastructure with code instrumentation, microRTS collects
per-test execution traces at method- or class-level across services
and clients, thereby enabling test selection for automated or manual
end-to-end tests. We further present a case study on RTS for man-
ual end-to-end tests in the CWA, a real-world microservice-based
system. Our initial results show that if manual tests are specified
rather coarse-grained, microRTS can not provide any benefits over
retest-all. However, when pruning per-test execution traces us-
ing domain knowledge, we are able to exclude up to 50% of tests.
These findings confirm prior research on manual testing and show
that manual end-to-end testing of microservice-based systems is
particularly intricate to optimize.

ACKNOWLEDGMENTS
This work was funded by the German Federal Ministry of Education
and Research (BMBF), grant SOFIE 01IS18012B. The responsibility
for this article lies with the authors.

4

Challenges in Regression Test Selection for End-to-End Testing of Microservice-based Software Systems AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

REFERENCES
[1] 2017. Java Agent API. https://docs.oracle.com/javase/9/docs/api/java/lang/

instrument/package-summary.html
[2] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-

proving regression testing in continuous integration development environments.
In Proceedings of the International Symposium on the Foundations of Software
Engineering. 235–245. https://doi.org/10.1145/2635868.2635910

[3] Daniel Elsner, FlorianHauer, Alexander Pretschner, and Silke Reimer. 2021. Empir-
ically Evaluating Readily Available Information for Regression Test Optimization
in Continuous Integration. In Proceedings of the International Symposium on
Software Testing and Analysis. 491–504. https://doi.org/10.1145/3460319.3464834

[4] Kurt Fischer, Farzad Raji, and Andrew Chruscicki. 1981. A Methodology for
Retesting Modified Software. In Proceedings of the National Telecommunications
Conference. 1–6.

[5] Kurt F. Fischer. 1977. A test case selection method for the validation of software
maintenance modifications. In Proceedings of International Computer Software
and Applications Conference. 421–426.

[6] Ben Fu, Sasa Misailovic, and Milos Gligoric. 2019. Resurgence of Regression
Test Selection for C++. In Proceedings of the International Conference on Software
Testing, Verification and Validation. 323–334. https://doi.org/10.1109/ICST.2019.
00039

[7] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In Proceedings of the International Conference on Software Engi-
neering. 713–716. https://doi.org/10.1109/icse.2015.230

[8] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In Proceedings of the International
Symposium on Software Testing and Analysis. 211–222. https://doi.org/10.1145/
2771783.2771784

[9] Johannes Grohmann, Martin Straesser, Avi Chalbani, Simon Eismann, Yair Arian,
Nikolas Herbst, Noam Peretz, and Samuel Kounev. 2021. SuanMing: Explain-
able Prediction of Performance Degradations in Microservice Applications. In
Proceedings of the International Conference on Performance Engineering. 165–176.
https://doi.org/10.1145/3427921.3450248

[10] Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven
Apel. 2021. How can manual testing processes be optimized? Developer survey,
optimization guidelines, and case studies. In Proceedings of the Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1281–1291. https://doi.org/10.1145/3468264.3473922

[11] Mary Jean Harrold, Alessandro Orso, James A. Jones, Tongyu Li, Maikel Pennings,
Saurabh Sinha, Ashish Gujarathi, Donglin Liang, and S. Alexander Spoon. 2001.
Regression test selection for Java software. ACM SIGPLAN Notices 36, 11 (2001),
312–326. https://doi.org/10.1145/504311.504305

[12] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In Proceedings of the International Symposium on
Foundations of Software Engineering. 583–594. https://doi.org/10.1145/2950290.
2950361

[13] Owolabi Legunsen, August Shi, and DarkoMarinov. 2017. STARTS: STAtic regres-
sion test selection. In Proceedings of the International Conference on Automated
Software Engineering. 949–954. https://doi.org/10.1109/ase.2017.8115710

[14] Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John
Micco. 2019. Assessing Transition-Based Test Selection Algorithms at Google.
In Proceedings of the International Conference on Software Engineering: Software
Engineering in Practice. 101–110. https://doi.org/10.1109/icse-seip.2019.00019

[15] Hareton K.N. Leung and Lee White. 1989. Insights into regression testing. In
Proceedings of the International Conference on Software Maintenance. 60–69.

[16] Hareton K.N. Leung and Lee White. 1990. A study of integration testing and
software regression at the integration level. In Proceedings of the International
Conference on Software Maintenance. IEEE Computer Press, Silver Spring, MD,
290–301. https://doi.org/10.1109/icsm.1990.131377

[17] Zhenyue Long, Zeliu Ao, GuoquanWu, Wei Chen, and JunWei. 2020. WebRTS: A
Dynamic Regression Test Selection Tool for JavaWeb Applications. In Proceedings
of the International Conference on Software Maintenance and Evolution. 822–825.
https://doi.org/10.1109/ICSME46990.2020.00102

[18] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice. 91–100. https://doi.org/10.1109/
ICSE-SEIP.2019.00018

[19] Takao Nakagawa, Kazuki Munakata, and Koji Yamamoto. 2019. Applying modi-
fied code entity-based regression test selection for manual end-To-end testing of
commercial web applications. In Proceedings of the International Symposium on
Software Reliability Engineering Workshops. 1–6. https://doi.org/10.1109/ISSREW.
2019.00033

[20] Raphael Noemmer and Roman Haas. 2020. An Evaluation of Test Suite Minimiza-
tion Techniques. In Software Quality: Quality Intelligence in Software and Systems
Engineering, D Winkler, S Biffl, D Mendez, and J Bergsmann (Eds.). Vol. 371.
Springer„ 51–66. https://doi.org/10.1007/978-3-030-35510-4_4

[21] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In Proceedings of the International Symposium
on Foundations of Software Engineering. 241–251. https://doi.org/10.1145/1029894.
1029928

[22] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and Methodology
6, 2 (1997), 173–210. https://doi.org/10.1145/248233.248262

[23] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. 2000. Regression
test selection for C++ software. Software Testing, Verification and Reliability
10, 2 (2000), 77–109. https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-
STVR197>3.0.CO;2-E

[24] August Shi, Suresh Thummalapenta, Shuvendu K. Lahiri, Nikolaj Bjorner, and
Jacek Czerwonka. 2017. Optimizing Test Placement for Module-Level Regression
Testing. In Proceedings of the International Conference on Software Engineering.
689–699. https://doi.org/10.1109/ICSE.2017.69

[25] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In Proceedings
of the International Symposium on Software Reliability Engineering. 228–238.
https://doi.org/10.1109/issre.2019.00031

[26] Yuri Shkuro. 2019. Mastering Distributed Tracing: Analyzing performance in
microservices and complex systems. Packt Publishing Ltd.

[27] Benjamin H Sigelman, Luiz Andr, Mike Burrows, Pat Stephenson, Manoj Plakal,
Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a Large-Scale
Distributed Systems Tracing Infrastructure. Technical Report. https://doi.org/
dapper-2010-1

[28] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017.
File-level vs. module-level regression test selection for .NET. In Proceedings of
the Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 848–853. https://doi.org/10.1145/
3106237.3117763

[29] Joakim Von Kistowski, Simon Eismann, Norbert Schmitt, Andre Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A micro-service reference
application for benchmarking, modeling and resource management research. In
Proceedings of the International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems. 223–236. https://doi.org/10.1109/
MASCOTS.2018.00030

[30] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: A survey. Software Testing Verification and Reliability 22, 2
(2012), 67–120. https://doi.org/10.1002/stv.430

[31] Lingming Zhang. 2018. Hybrid regression test selection. In Proceedings of the
International Conference on Software Engineering. 199–209. https://doi.org/10.
1145/3180155.3180198

[32] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2013. FaultTracer: A
spectrum-based approach to localizing failure-inducing program edits. Journal
of Software: Evolution and Process 25, 12 (2013), 1357–1383. https://doi.org/10.
1002/smr.1634

[33] Hua Zhong, Lingming Zhang, and Sarfraz Khurshid. 2019. TestSage: Regression
test selection for large-scale web service testing. In Proceedings of the International
Conference on Software Testing, Verification and Validation. 430–440. https:
//doi.org/10.1109/icst.2019.00052

5

A.3. Publications

A.3.5. How Can Manual Testing Processes Be Optimized? Developer Survey,
Optimization Guidelines, and Case Studies

© 2021 ACM. Included here by permission from ACM. Roman Haas, Daniel Elsner, El-
mar Juergens, Alexander Pretschner, Sven Apel, How Can Manual Testing Processes Be
Optimized? Developer Survey, Optimization Guidelines, and Case Studies, Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, pages 1281–1291, August 2021.

In the following, the complete paper is included in its published form in accordance
with the ACM author rights, DOI: 10.1145/3468264.3473922.

103

https://dl.acm.org/doi/10.1145/3468264.3473922

How Can Manual Testing Processes Be Optimized?
Developer Survey, Optimization Guidelines, and Case Studies

Roman Haas∗

Saarbrücken Graduate School of
Computer Science, CQSE

Saarland, Munich, Germany

Daniel Elsner∗

Technical University of Munich
Munich, Germany

Elmar Juergens
CQSE

Munich, Germany

Alexander Pretschner
Technical University of Munich

Munich, Germany

Sven Apel
Saarland University,

Saarland Informatics Campus
Saarland, Germany

ABSTRACT
Manual software testing is tedious and costly as it involves signif-
icant human effort. Yet, it is still widely applied in industry and
will be in the foreseeable future. Although there is arguably a great
need for optimization of manual testing processes, research focuses
mostly on optimization techniques for automated tests. Accordingly,
there is no precise understanding of the practices and processes of
manual testing in industry nor about pitfalls and optimization po-
tential that is untapped. To shed light on this issue, we conducted
a survey among 38 testing professionals from 16 companies, to
investigate their manual testing processes and to identify poten-
tial for optimization. We synthesize guidelines when optimization
techniques from automated testing can be implemented for manual
testing. By means of case studies on two industrial software projects,
we show that fault detection likelihood, test feedback time and test
creation efforts can be improved when following our guidelines.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Software testing, manual testing, test optimization
ACM Reference Format:
Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven
Apel. 2021. How Can Manual Testing Processes Be Optimized? Developer
Survey, Optimization Guidelines, and Case Studies. In Proceedings of the
29th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’21), August 23–28,
2021, Athens, Greece. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3468264.3473922

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3473922

1 INTRODUCTION
Manual software testing is tedious, costly, and involves significant
human effort. Yet, according to a recent survey, it is still widely
applied in industry [1]. Despite the availability of advanced test
automation techniques, previous research reports that manual soft-
ware testing often complements automated testing [10, 26]. In fact,
manual testing strategies can arguably detect other software faults
than automated strategies [4]. Depending on the project’s context,
automation might be too costly [37], too complex [36], or even
impossible [35], so there is no way around manual testing in the
foreseeable future.

With an increasing number of test cases and execution frequency,
due to shortening release cycles, long-running test suites impede the
software development process [18, 38]. There has been significant
research effort on optimizing automated testing, for example, on re-
gression test optimization [6–8, 12, 14, 15, 25, 28, 31]. Still, only few
research efforts attempt to transfer techniques such as regression
test selection [5, 30], regression test prioritization [17, 22], or failure
prediction [18] to manual software testing. Transfer is hindered,
among other things, by missing required data (e.g., unavailability
of code coverage information [17]): In contrast to automated test-
ing, manual testing processes are not necessarily integrated with
version control or continuous integration systems, test (reporting)
frameworks, and build or code instrumentation tools. In fact, it is
often precisely manual tests that hamper the rapid development of
systems, so optimizing them is even more important [17, 18].
Research Gap. While the few existing studies on optimizing man-
ual testing investigate the design and evaluation of specific tech-
niques in specific contexts, it is unclear for which automated tech-
nique(s) an existing manual testing process is an eligible target:
What data are available, easily producible, and can be leveraged
in which ways? Consequently, to foster adoption of manual test
optimization, practitioners need to understand what techniques are
applicable and how to integrate them in their existing processes
and infrastructure.
Solution. To address this gap, we qualitatively analyze the preva-
lence, characteristics, and problems of manual testing activities and
processes by surveying 38 test practitioners from 16 companies
and different project contexts. The goal is to discover and system-
atize characteristics of manual testing that deviate from automated
testing and that hinder or enable optimization of manual testing.

1281

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven Apel

We aim at deriving an actionable set of guidelines that empowers
practitioners to quickly identify potential for optimization in their
own context and reveal what researchers shall address. For this pur-
pose, we investigate the transferability of optimization techniques
from the literature and further derive techniques based on levers
identified in our survey. We synthesize our findings as guidelines
in the form of an annotated manual software testing process model,
which highlights integration points for optimization techniques
and summarizes associated prerequisites and caveats. By means
of case studies on two industrial software projects from different
domains we show that, using our guidelines, test feedback time and
test suite maintainability can be improved.
Contributions. Our contributions are the following:
• Developer Survey. Evidence that manual testing is deliber-

ately employed without the intention of full automation,
underlining the need for optimizing manual testing. We pro-
vide quantitative and qualitative insights on how software
is tested manually in practice.
• Optimization Guidelines. A set of guidelines rooted in an

annotated process model and derived from our developer
survey to implement 9 optimization techniques for manual
testing. We explain how to leverage existing processes and
highlight integration points.
• Industrial Case Studies. Demonstration of the guidelines’ use-

fulness in two industrial case studies. We pinpoint levers
that can reduce test feedback time and test creation efforts.

The survey results, analyses, and the optimization guidelines are
publicly available in our supplemental repository1.

2 RELATED WORK
Studies from 2011 and 2013 on the state of software testing practice
report that more than 90% of survey participants test their software
manually [9, 11]. While participants of these studies see room for
improvement with regard to their testing strategy (e.g., through
better automation), they lack the resources to implement these. We
have argued that optimization of manual software testing processes
requires attention, as it addresses such scenarios where manual
testing is inevitable [35, 36] or deliberately employed [10, 26].

Test optimization is widespread in automated testing [6–8, 12, 14,
15, 25, 28, 31], but techniques are often not transferable to manual
testing due to missing data (e.g., code coverage information) [18]
or unsuitable testing processes (e.g., only black-box access during
testing) [17]. Despite these difficulties, several researchers have
applied techniques to optimize different aspects of manual test-
ing [2, 5, 17, 18, 21, 22, 30]. For example, Hemmati et al. [17] stud-
ied prioritization for manual regression tests on releases of Mozilla
Firefox. In general, these techniques are often tightly coupled to
specific testing processes or rely on specific data whose availability
depends on the context.

We aim at guidelines for developers and testers that identify
where existing optimization techniques can be used in practice
based on their associated prerequisites. In addition, we pinpoint the
challenges that arise in manual testing guiding further research in
this area. Therefore, in what follows, we thoroughly review existing
work and collect prerequisites and caveats for common optimization
1https://github.com/manual-testing-study/manual-testing-esec-fse-21/

techniques, as shown in Table 1. The optimization techniques are
later consolidated with findings from our empirical study in Sec. 3.4
to provide a holistic view on manual test optimization.

Table 1: Prerequisites and caveats of existing techniques to
optimize manual testing

Ref. Prerequisites Caveats

1. Test Prioritization
[17] Textual test descriptions,

test failure history
Less effective in traditional
development approaches

[22] Textual test descriptions, test failure
and execution history, expert labels
to prioritize tests, test–requirement links

Labels and links are hard to obtain
in retrospective and, if available,
maintenance requires discipline

2. Test Selection
[21] Test traces, familiarity of testers

with code base
Under-specification of tests
leads to unstable traces

[5] Textual test descriptions, static code
analysis tool, program profiler

Accuracy of static analysis low (90%)

[30] Test traces, adjustment of system to
separate traces for parallel testing

Unsuitable in the case of large
or frequent changes

3. Test Gap Analysis
[3] Test traces, version control data Up-to-date test traces are costly,

data granularity is critical
4. Test Case Reduction

[18] Textual test descriptions,
test failure history

Test cases need to have similar
textual descriptions and there must not
exist flaky tests to enable reduction

5. Refactoring
[2] Textual test descriptions, individual test

steps, expert labels for test suites
Varying effectiveness
depending on the test suite

6. Test Quality Monitoring
[16] Textual test descriptions Parameterization requires experience

Test Prioritization. Hemmati et al. [17] were the first to study
regression test prioritization for manual black-box system testing
on releases of Mozilla Firefox. They found that in agile development
environments, historical riskiness (i.e., how often test cases have
detected faults before) is an effective surrogate for prioritizing
tests when compared to approaches based on text mining test-case
descriptions. Lachmann et al. [22] proposed to use machine learning
to learn from test execution history (i.e., failures and execution
time), requirements coverage, and test case descriptions to prioritize
manual system tests. Their approach is more effective than random
ordering, but requires labels, reflecting how important a test case
is, which are obtained from test experts.
Test Selection. Juergens et al. [21] report on an industrial case
study that demonstrates challenges of applying test selection to
manual system tests based on method-level test traces. They suggest
to use a semi-automated process in practice, where testers could re-
duce the set of tests with domain knowledge. However, one caveat
of this strategy is that testers need to know how to map code modi-
fications to test cases, which, in general, is not the case. In addition,
the common under-specification of manual tests leads to unstable
test traces, which reduces the effectiveness of the technique. Eder
et al. [5] propose an approach for regression test selection that
harnesses static analyses of the tested system’s source code and
manual system tests written in natural language to recover trace
links between the two. Their evaluation, performed on one system
and four test cases, indicates that their technique outperforms ran-
dom selection of test cases, but even 90% correctly linked source
code methods may be insufficient in practice. However, calibrating
and evaluating the approach still involves a program profiler, which

1282

How Can Manual Testing Processes Be Optimized? ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

limits its transferability. In a case study on manual end-to-end test-
ing of legacy Web applications, Nakagawa et al. [30] show that
their simple test selection approach based on method-level test
traces yields test effort reductions compared to manual selection.
However, it is not suitable in the presence of frequent or large code
changes due to the performance penalty of dynamic analysis.
Test Gap Analysis. Buchgeher et al. [3] describe a semi-automated
approach for manual regression test selection. Although their se-
lection technique reveals deficiencies in effectiveness, it provides
practical benefits for test gap analysis, that is, finding modifications
not covered by tests. Alongside, Buchgeher et al. state that selecting
tests solely by code coverage leads to unnecessarily large sets of test
cases, version control data is too coarse grained for their purposes,
and keeping up-to-date coverage data for manual tests is costly.
Test Case Reduction. Hemmati et al. [18] investigate text mining-
techniques coupled with failure history-based analysis for failure
prediction of system-level manual acceptance tests. Their technique
can be used for test case reduction, that is, for test suite maintenance
by minimizing the test suite permanently, but also for selection and
prioritization. Accordingly, their technique outperforms a naïve
history-based model. It is the only work we found that explicitly
states applicability for test case reduction, although such techniques
are often overlapping with prioritization and selection [38].
Refactoring. Bernard et al. [2] aim at improving tool support for
refactoring manual tests to increase test suite maintainability, (e.g.,
through guided test suite minimization). For this purpose, they
employ various text mining and machine learning algorithms on
test steps in test case descriptions and report time reductions for
refactoring and for execution of the refactored test suite. To apply
the technique to a test suite, testers have to supply complexity
estimates of the test suite and refactoring objectives; results vary
depending on these objectives and the maturity of the test suite.
Test Quality Monitoring. Hauptmann et al. [16] study how man-
ual tests written in natural language often suffer from quality
deficits leading to decreased maintenance and comprehension. Their
case study results show that their language models are able to de-
tect test smells, yet require parameterization based on experience
with the maintenance of natural language tests.
In summary, we are unaware of any previous work that investigates
which optimization techniques (see Table 1) are applicable in prac-
tice, given an arbitrary existing manual testing process. Moreover,
empirical studies on the state-of-practice in manual testing are
relatively outdated with the most recent one being from 2013 [11].

3 DEVELOPER SURVEY AND GUIDELINES
In this section, we provide details of our semi-structured online
interview, following the suggestions of Jedlitschka et al. [20], and
we derive a set of guidelines for optimization of manual testing
processes that synthesize our findings.

3.1 Research Areas and Questions
With our interviews, we target several research questions (RQs)
from three research areas (RAs): We are interested in the reasons

for the implementation of manual testing processes, outline their
characteristics, and derive viable optimization techniques.
RA1: Rationale behind Manual Testing. First, we need to un-
derstand what kind of manual testing processes are implemented in
practice, why practice relies on this resource-intense way of testing,
and what hinders test automation.
RQ1.1: Why is software tested manually and what technological and
organizational challenges hinder test automation? To be able to iden-
tify suitable optimization potential, we need to summarize why
practitioners rely on manual testing. Additionally, there might be
technological and organizational reasons for why test automation—
as one of the more obvious optimization approaches—is not used.
RQ1.2: Which testing activities are carried out manually in practice?
There are many different kinds of testing which can be performed
manually. We survey what testing activities (e.g., exploratory and
regression testing) are carried out manually to be able to tailor
optimization approaches to different needs.

RA2: Characteristics of Manual Testing. Second, we investi-
gate characteristics of manual software testing, how much effort
is actually invested into manual testing, and which optimization
techniques are already applied in practice.
RQ2.1: How much effort is invested into manual software testing? This
research question aims at determining the optimization potential
with respect to testing accuracy and costs.
RQ2.2: How does manual software testing integrate with the develop-
ment process? We want to shed light on the interfaces and inter-
dependencies of manual testing with the development process to
uncover related optimization potentials.
RQ2.3: How are test cases selected for execution and how are tests
assigned to testers? Test case selection is a well-known optimiza-
tion technique for automated tests, and we investigate in which
circumstances it can be used in practice. The assignment of tests to
testers needs to be understood because this reveals optimization
constraints that might not be relevant for automated tests.
RQ2.4: What are technical and organizational characteristics of (sub-)
systems that are tested manually? We would like to understand
patterns that encourage or hinder manual testing.
RQ2.5: Do flaky tests exist in manual test suites and, if so, how do testers
handle them? Flaky tests are a well-known problem for automated
tests [27]. If flaky tests are also an issue for manual testing, an
optimization goal would be to reduce the test flakiness, possibly
with techniques different from automated testing.

RA3: Optimization Techniques in Manual Testing. Finally, we
aim at summarizing optimization techniques for manual testing.
RQ3.1: Do manual test teams aim at test automation? How much time
do they plan to invest? We investigate whether test practitioners
strive for automation of their test suite and how much effort is
expected and invested for it.
RQ3.2: What potential for optimization of manual software testing
exists and what are its prerequisites? This is our core research ques-
tion. In Section 2, we summarize existing optimization techniques
and their prerequisites. With this research question, we enrich

1283

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven Apel

our research-oriented perspective by collecting actively used opti-
mization techniques reported by our participants. Following our
previous discussion on the eligibility of optimization techniques,
we also summarize associated prerequisites and caveats in practice.

3.2 Participants
In August 2020, we contacted 115 test engineers, testers, devel-
opers, test architects, test leads, and test managers of industry
partners. N = 38 responded to our survey within two months. The
response rate of 32.5% is relatively high, and we lead this back to our
close partnership with our research partners. Most of our partici-
pants work in Germany, but there are also several participants from
Canada (1), Italy (1), Romania (1), Switzerland (1), and the US (2).
The participants work for organizations of different sizes, including
medium-sized companies with a few dozen employees, as well as
large organizations with tens of thousands employees. Their busi-
ness domains include communication, network security, finance,
health technology, public transportation, information technology,
manufacturing, and hardware development.

3.3 Questionnaire and Conduct
We designed a questionnaire to address the above research ques-
tions. In Table 2, we list all survey questions, map them to our
research questions, and mark open () and closed (✓) questions.
Most of our survey questions were open so that the participants
could explain their context. We used SoSci Survey to host our ques-
tionnaire and provided it in English and German (the native lan-
guages of most of our participants). All questions were optional.

Table 2: Survey questions to answer the research questions

RQ Survey question Type

1.1 What advantages do you see in manual compared to automated software tests?
1.1 What factors force you to test manually?
1.1 What conditions and obstacles make test automation difficult or impossible?
1.2 Which test activities are performed manually?
2.1 How large is the manual test suite overall?
2.1 How many testers are there in your project?
2.1 How many test cycles take place per year?
2.1 How many test cases are executed per cycle?
2.1 How long does it take on average to run a test case?
2.1 How long does it take to execute the entire test suite?
2.2 Which events trigger the execution of a test case?
2.2 Is a successful test execution an acceptance criterion for change requests? ✓
2.2 How do developers find out about test failures?
2.2 When is a failed test case retested?
2.3 Is the entire test suite executed in every test phase? ✓
2.3 If not, how are test cases selected and prioritized for a test plan?
2.3 How are test cases assigned to individual testers?
2.4 Which interfaces are used to test the system under test technically?
2.4 Which technology-related challenges exist?
2.4 How is the System Under Test organizationally tested?
2.4 What organizational challenges are there?
2.5 Are there flaky manual test cases? ✓
2.5 How do you deal with flaky tests?
3.1 How should your testing process develop in the coming years?
3.1 Are there considerations or specific plans to carry out tests more automatically? ✓
3.1 By when should the automation be completed?
3.1 How much time is currently invested in the automation of manual test cases?
3.2 Which steps need to be taken for each test case?
3.2 Is the execution time recorded for each test case? If yes how?

3.4 Results
To analyze the answers of the survey, we used an open card-sorting
technique [19]. To this end, we looked iteratively for higher-order
patterns in the open answers of participants for each question.

Overall, we spent 25 × 2 hours (per open question) = 50 hours
on categorizing 633 answers.

We structure our discussion along our research areas and ques-
tions. For each research question, we present descriptive statistics of
our closed survey questions (if applicable), followed by a summary
of the identified categories and how often these were mentioned
by participants. To enrich our discussion, we weave in quotations
of responses where appropriate. We conclude this section with
interpretations and insights we gained.
RA1: Rationale behind Manual Testing In the following, we
delineate why manual testing is still applied in industry and what
prevents practitioners from automating tests.
RQ1.1: Why is software tested manually and what technological and
organizational challenges hinder test automation? Fig. 1.1 and 1.2
summarize the frequencies of given answers about reasons for why
software is tested manually. They are grouped into advantages of
manual testing and disadvantages of automated testing. We found
that manual testing is deliberately employed not only because of
comparatively low ramp-up costs and high flexibility, but also due to
its broader scope: its exploratory character and the often associated
intentional under-specification of tests. Accordingly, practitioners
deem manual testing to be “closer to reality, more context-specific,
and up-to-date” and more suitable when “complexity is high and
requirements are blurry.” Moreover, certain industries, such as the
medical technology sector, prescribe manual testing.

Regarding technological and organizational challenges that hin-
der test automation, we find the following obstacles to be prevalent
(number of mentions in parentheses): Lack of time (8), lack of bud-
get (6), limited know-how (6), limited technology (6), for example
unstable testing tools or tedious creation of test data in SAP systems,
interfaces to external systems (4), and high change frequency (4).
One participant stated that the evolution of the software forced
them to return to manual regression testing “because the [technical]
environment of test automation is outdated.”
RQ1.2: Which testing activities are carried out manually in practice?
Fig. 1.3 shows the frequencies of different testing activities that are
carried out manually. Except for exploratory testing (e.g., including
test-as-you-code), manual tests are specified in natural language.
Manual testing seems to take place at higher levels of abstraction
(integration- or system level); only two participants report conduct-
ing manual tests on the unit level.

Summary RA1. According to our participants, manual tests are
more flexible than automated tests in what is tested and easier to
set up. They are mostly used for regression and acceptance testing.

RA2: Characteristics of Manual Testing Next, we explore the
characteristics of manual testing processes of our participants.
RQ2.1: How much effort is invested into manual software testing?
Fig. 2 shows the distribution of manual test suite sizes and test team
sizes, number of test cycles per year, number of tests per cycle, and
duration of a single manual test and the entire manual test suite.
The test suite sizes show a large bandwidth, between 5 and 30,000
(sic!) test cases. Interestingly, the company with the largest test
suite builds software for medical devices and does not follow agile

1284

How Can Manual Testing Processes Be Optimized? ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Br
oa

de
r s

co
pe

 o
f

te
st

Hi
gh

 c
os

t-
ef

fic
ie

nc
y

Hi
gh

 fl
ex

ib
ilit

y

In
te

llig
en

t t
es

t
or

ac
le

0
2
4
6
8

10
12
14

M
en

tio
ns

1.1: Advantages
of manual testing

Hi
gh

 m
ai

nt
en

an
ce

ef
fo

rt
Te

ch
no

lo
gi

ca
l

ch
al

le
ng

es
M

iss
in

g
au

to
m

at
io

n
in

fra
st

ru
ct

ur
e

Hi
gh

 se
tu

p
co

st
s0

2
4
6
8

10
12

M
en

tio
ns

1.2: Drawbacks of
automated tests

Re
gr
es
sio

n

Ac
ce
pt
an

ce

Sm
ok
e

Ex
pl
or
at
or
y

Pe
rfo

rm
an

ce

Ro
bu

st
ne

ss

In
te
ro
pe

ra
bi
lit
y0

4
8

12
16
20
24
28
32

M
en

tio
ns

1.3: Test activities

Ex
pe

rt
kn

ow
le

dg
e

Ar
ea

 o
f

re
sp

on
sib

ilit
y

Ti
m

e
ca

pa
cit

y

Se
lf-

as
sig

nm
en

t

Le
ad

-a
ss

ig
nm

en
t

No
 a

ss
ig

nm
en

t

Pr
ef

er
en

ce
s

Ra
nd

om

Al
te

rn
at

io
n0

2
4
6
8

10
12
14
16
18

M
en

tio
ns

1.4: Assignment criteria for test cases

De
ve

lo
pe

rs
 te

st

Te
st

er
s a

re
 p

ar
t

of
 d

ev
 te

am

De
di

ca
te

d
te

st
in

g
te

am
Sp

ec
ia

lis
t

de
pa

rtm
en

t o
r

cu
st

om
er

Ex
te

rn
al

 te
st

er
s0

2
4
6
8

10
12
14

M
en

tio
ns

1.5: Manual testing or-
ganization

Hi
gh

er
 d

eg
re

e
of

au
to

m
at

io
n

Lo
we

r m
an

ua
l

te
st

 e
ffo

rt
M

or
e

ta
rg

et
ed

te
st

in
g

wi
th

 th
e

sa
m

e
ef

fo
rt

No
 c

ha
ng

e

Hi
gh

er
 m

an
ua

l
te

st
 e

ffo
rt

Se
le

ct
io

n
st

ra
te

gy

Ch
an

ge
 o

f
re

sp
on

sib
ilit

y0
2
4
6
8

10
12

M
en

tio
ns

1.6: Expected evolution of the
manual testing process

Figure 1: Charts for survey answers

development practices. A test manager with a small test suite stated
that “this is much too little. Since the construction as well as the
recording of the test results costs a lot of time, some things are [...]
tested quickly and only bugs are reported to DEV accordingly.”

Also, the testing teams are of different sizes, with a median of
6 testers. The teams run from 1 to up to 40 test cycles per year,
with a median of 4.5 cycles. Still, some testers indicate that these
numbers may vary because “we claim to be an agile company, so
it’s difficult to give a number of times this process happens. ” Each
cycle contains, at least, 2 and up to 4,500 manual test cases, with
a median of 300 test cases per cycle, sometimes this “depends on
the number of change requests—for each cycle, the number of test
cases differs.” The median for the duration of executing a single test
case is 20 minutes, and the median for running the whole test suite
is 235 person hours, with a maximum of 992 man hours.

Overall, the survey responses reveal that our participants invest
a lot of resources into manual testing.

101

102

103

104

Nu
m

be
r o

f t
es

t c
as

es

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f t
es

te
rs

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f t
es

t c
yc

le
s

0

1000

2000

3000

4000

Nu
m

be
r o

f t
es

ts
 p

er
 c

yc
le

0

100

200

300

400

500

600

700

Ex
ec

ut
io

n
tim

e
pe

r t
es

t [
m

in
]

0

200

400

600

800

1000

Ex
ec

ut
io

n
tim

e
pe

r c
yc

le
 [h

]

Figure 2: Distributions of manual test process characteristics

RQ2.2: How does manual software testing integrate with the devel-
opment process? Triggers for test execution are: scheduled test
phases (17), finished feature tickets (16), and deployments to test en-
vironments (14). Surprisingly, more than 25% of the participants (8
out of 31 answers) state that successful test executions are not al-
ways a necessary acceptance criterion for change requests. That is,
in some cases, change requests are closed even though tests failed,
which might render test execution useless.

If a test has failed, 27 teams re-test directly after the code fix,
while 10 teams re-test in the next test phase.
RQ2.3: How are test cases selected for execution and how are tests
assigned to testers? While 15 participants always execute the whole
test suite, for example, because “from a customer point of view,
we MUST run the 52 validation tests (which are appropriate to
them), otherwise our software is potentially not valid for their use,”
some teams clean up their test suite before running it to avoid
executing outdated tests, as one participant proposes: “all test cases

that are not obsolete are performed in the annual test. This se-
lection is performed every year.” 20 other participants manually
select particular test cases for execution. Their selection is based
on code changes (6), tester experience (6), feature criticality (6),
requirements (4), time constraints (4), or test failure history (3).
Only 3 participants prioritize their selection explicitly, based on
experience (2), or based on licensing or hazard relevance (1).

Fig. 1.4 shows how test cases are assigned to testers, where tester
experience (18) and areas of responsibility (17) dominate other
assignment criteria.
RQ2.4: What are technical and organizational characteristics of (sub-)
systems that are tested manually? Most of our participants run
their manual tests using the system under test’s GUI (28). There
are also other testing environments, for example, a browser (14),
hardware in the loop (HIL) (3), external systems (2), and simula-
tors (1). Regarding tooling for running manual tests, participants
adopt network communication tools (6), for example, curl, SoapUI,
and Postman. Other tools mentioned by our participants are Load-
Runner (1), Tosca (1), scripts (1), and Excel (2), which might also be
used to manage their manual test cases.

According to our participants, the largest technology-related
challenge is interference with other test environments (17), for
example, because of non-isolated test systems concurrently are
used by multiple testers. Frequently, there are issues because of
interactions of the system under test (SUT) with other systems or
applications (15), and remote test environments (12). Furthermore,
different hardware combinations (4), legacy technologies (2), several
test environments (2), HIL tests (1) and network latency (1) were
highlighted as technology-related challenges.

Fig. 1.5 shows how manual software testing is organizationally
arranged. In many cases, several groups are responsible for manual
tests, for example, developers test their changes in a first stage
locally on their machine before a dedicated test team verifies the
changes in a later stage. Some participants report that, during a test
phase, people from business departments take part in testing, still,
“they all come with different enthusiasm for testing”, which makes
it harder for test managers to plan test activities thoroughly.

Our participants highlight many organizational challenges. One
major issue is lack of time in business departments for running
tests (10). Furthermore, participants point out that there is a lack of
domain knowledge or testing skills (7). Additional challenges are dif-
ferent time zones between test and development teams (6), as well as
communication and documentation challenges due to different na-
tive languages (6). For some participants, the organizational spread
between test and development over different organizations (2) is
another challenge. In the case of fixed release cycles, a participant
complains that there is lack of time for testing (3) “because we are

1285

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven Apel

the last but the release schedule is fix.” That is, if anything delays the
test execution, less time can be invested into solid validation. An-
other participant claims that—because different organizations are
responsible for test and production environments—“the test envi-
ronments do not match production environment enough, meaning
it’s possible that tests are passing but failing in production.”

Other organizational challenges include different languages in
specification, code and test cases (2), lack of time for training (1),
coordination of testing (1), long time-to-fix (1), restricted testing
environment (1), varying service providers over time (1), and, trans-
forming development processes (1). Moreover, the domain can also
pose challenges, for example, “medical technology is a strictly regu-
lated domain”, or might require special testing approaches “if I need
a parallel test, there is a team session and everyone clicks on “1-2-3”
at the same time.” Perhaps interestingly, in the context of regulated
medical technology, “agile development teams test on lower test
levels”, whereas manual testing is performed afterwards by the
“test center for system test”, implying a rather rigid (non-agile)
development process such as the V-Model.
RQ2.5: Do flaky tests exist in manual test suites and, if so, how do testers
handle them? Flaky tests—tests that may non-deterministically fail
and pass with the same program version—are a well-known prob-
lem for automated tests [23, 27]. They are commonly first detected
if a previously passing test, that is clearly unrelated to code changes
introduced to the system, suddenly fails [23, 24]. Most of our par-
ticipants report that they do not encounter flaky tests (20), while
others report that flaky results appear from time to time (11)—5
participants are not sure whether there are flaky tests in their test
suite. Only 5 participants answered the question about how they
deal with flaky tests: 2 participants re-run tests that are deemed
flaky. 3 do nothing, because deviating results are “explained away”,
another participant puts this more diplomatically, “most of the time,
the deviation turns out to be an unnoticed difference in the proce-
dure or in the data. The tests are intentionally described vaguely
in the procedure in order to cover different procedures that are
supposed to produce the same result.”

Summary RA2. Our participants use manual tests extensively.
More than half of the participants manually select only subsets
of tests for execution. Tests are often assigned on the basis of
experience of testers and areas of responsibility. There are many
technological challenges including non-isolated test environments
and the interaction of the system under test with other systems.
Moreover, there are organizational challenges including lack of
domain knowledge in testing teams and lack of testing skills in
business departments.

RA3: Optimization Techniques in Manual Testing
RQ3.1: Do manual test teams aim at test automation? How much
time do they plan to invest? Finally, we report on automation and
optimization potentials identified in our survey. Fig. 1.6 shows how
our participants expect their manual testing process to evolve. Most
frequently, a higher degree of automation is desired (12) and lower
manual test efforts are expected (8). One of our participants ap-
pears to be quite frustrated about low investments into software
testing, because she feels that “testing is somehow out. Nowadays,

everyone tells us that a bug will simply be fixed when it appears in
production.” But there are also many participants who expect more
targeted testing with the same effort (6) or even higher manual test
efforts (2). The participants mentioned two process optimizations:
implementation of a selection strategy (2) and a change of responsi-
bility for testing (1), that is, a “shift left of our automated test cases
from downstream quality assurance to development.” Only a few
participants (3) expect no change.

In our survey, we explicitly asked whether our participants aim
at automation of their manual tests so that it becomes clear whether
the implementation of additional optimization techniques can pay
off in the long run. Only very few aim at automation of the entire
manual test suite (2). Most participants aim at automation of some
manual tests only (20). One participant points out that their goal
is the “optimization of test efforts—this can mean automation, but
does not have to be.” Some participants also aim at no automation
at all (9). Contrary to our intuition, even though most of our par-
ticipants are repeatedly testing their SUT via its GUI, there are
technical and organizational reasons for not automating manual
tests: For instance, “frequent changes on the GUI” that disallow
maintaining automated GUI tests and, according to a participant,
it is “difficult to predict how much effort automation will cause
because sometimes a small thing only works with extreme effort
and therefore makes it difficult to plan.”

For those who aim at (partial) automation of their test suite, we
asked two additional questions to learn about their automation
schedule and investments into test automation. 21 participants
answered the question on when the automation is planned to be
finished, but most of them have no specific plan when automation
will be finished (18). The 3 participants who have a schedule plan to
finish the automation of their test suite within the next 1–3 years.

Regarding the resources that are currently invested into test
automation, only few invest, at least, one full-time equivalent (4).
The other participants claim that, at least, one person works one day
per week (5) or, at least, one day per month (5) on test automation. A
handful of participants is investing no effort into test automation (5),
even though they plan to automate tests in the future.
RQ3.2: What potential for optimization of manual software testing ex-
ists and what are its prerequisites? In Section 2, we have approached
this question from a scientific perspective by reviewing existing work
on manual testing. This way, we have identified six techniques listed
with their associated prerequisites and caveats in Table 1.

From our empirical study—taking a practical perspective—we
identify further levers for optimization and derive respective op-
timization techniques: First, several participants report that there
are test steps that need to be taken for each test case. Among these
login to the SUT (14), creating and loading test data (10), and setting
up the SUT (5) are the most common. However, only a single par-
ticipant noted that they have “tests for which recurring activities
are modeled with shared steps.” Hence, we identify an optimization
lever as the prevalence of repeated, similar test steps, which could
be tackled by re-using test steps, (e.g., by means of shared test steps).
This can reduce duplication and increase test suite maintainability.

Second, we found that 9 participants track the test duration ei-
ther manually (2) or automatically (7). It would not make sense
to track it if it did not vary among test cases and test runs. RQ2.1

1286

How Can Manual Testing Processes Be Optimized? ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

suggests that there is, in general, a large spread in test duration. At
the same time, in RQ2.3, we found that time capacity is among the
three most common test case assignment criteria. Consequently,
we deem the prevalence of varying test duration between tests to
be an optimization potential that can be exploited by test schedule
optimization: If test duration is recorded and varies, a test sched-
ule can be generated that meets time capacity, resource, or test
precedence constraints, while minimizing total testing time. Since
test execution scheduling has been studied for automated testing
already [29], the most straight-forward approach is to transfer these
techniques to manual testing and to study their effectiveness.

Third, throughout our survey and specifically in RQ1.1, we ob-
served that non-exploratory manual tests are often deliberately
under-specified to nudge exploratory testing. This sounds contra-
dictory at first, because it potentially leads to non-determinism and
false-negative or false-positive test results; but it seems to be one
of the most popular features in manual testing, as one test case can
express an entire equivalence class. Thus, one optimization lever
would be to implement flexible execution paths and test oracles that
allow the design of under-specified test cases which are still useful.

Table 3 lists the optimization levers that we identify, 3 derived
optimization techniques with associated prerequisites and caveats.
Together with Table 1, these make up the set of techniques that we
integrate in a manual testing process model in the next section.

Summary RA3. The overwhelming majority of our participants
does not plan to automate their entire manual test suite; GUI test
automation is often no option for technical and organizational
reasons. Therefore, optimizing their manual testing processes is
advisable. From our study, we identify 3 optimization levers.

3.5 Guidelines for Optimization
We aim at a set of actionable guidelines that empowers practitioners
to quickly identify optimization potential in their context. Therefore,
we have collected characteristics of manual testing processes in
our survey. In addition, we have collected and derived optimization
techniques for manual testing with associated prerequisites and
caveats from related work and practice (see Tables 1 and 3).

To embed these findings into an actionable set of guidelines,
we devise an annotated empirical process model for manual test-
ing. We modelled the testing processes described in the survey
answers and merged them into one general manual testing pro-
cess model. Although based on the empirical findings from our
study, we deliberately keep the process model generic to allow
practitioners to easily adopt it to their needs. We use a standard

Table 3: Prerequisites and caveats of derived optimization
techniques based on identified existing levers in practice (ex-
tension of Table 1)

Levers Prerequisites Caveats

7. Re-use Test Steps
Repeated, similar
test steps

Possibility to identify
and manage test steps

Over-use of shared
test steps

8. Test Schedule Optimization
Varying test
duration

Measuring and docu-
menting of test duration

Time constraints, expert
knowledge constraints

9. Intentional Under-specification
Flexible execution
paths and test oracles

Deterministic test oracles
per execution path

False positive or negative
test results, flaky tests

business process modelling notation (BPMN) to model the specifics
and variety of manual testing processes that were described by
our participants. Practitioners can instantiate the process model by
identifying events, actions, message flows, and artifacts of their test-
ing process. Based on this instantiation, practitioners are guided in
the selection of the optimization techniques that are most relevant
to them, for example, because they address current bottlenecks
in their process. Using Tables 1 and 3, specific optimization ap-
proaches can be selected, based on prerequisites and acceptable
caveats, and implemented in their process. For example, in the case
of manual regression testing, the trigger of the manual software
testing process might be an approaching release. In Fig. 3.1, this trig-
gers the sub-process Create Test Plan, which is unrolled in Fig. 3.3,
and its first activity is the identification of relevant test cases. The
annotation shows that test case selection techniques can be used
to optimize this activity. Table 1 collects prerequisites and caveats
of three test selection strategies, and it guides practitioners in their
assessment of the applicability of the strategies in their context.
Manual Testing Process. Depending on the specific test process,
there are different start events (A) that trigger the manual test-
ing process (i.e., acceptance criteria or a scheduled regression test
phase—other manual testing activities can also be covered by our
model). Activities in Fig. 3.1 labelled with ⊞ are sub-processes,
which are explained in more detail in the following paragraphs
and figures. The optimization techniques Refactoring and Test Case
Reduction can be applied most easily during test suite maintenance.
Test Case Creation. Fig. 3.2 depicts the Test Creation sub-process.
Test steps can be Re-Used when tests are specified and require the
same steps that are already documented for an existing test. When
new test steps are defined, Intentional Under-Specification can be

3.1: Manual software test process 3.2: Test case creation 3.3: Test plan creation 3.4: Test plan execution

Figure 3: Optimization potentials (green) in the empirical manual testing process

1287

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven Apel

applied. That is, the test can be defined generically such that several
cases are covered. For example, if there are mutliple ways to trigger
a functionality, the test can deliberately not specify which way to
use in the test. When the test case is stored in the test management
system, the Test Quality Monitoring can be triggered.
Test Plan Creation. Fig. 3.3 shows the Test Plan Creation sub-process.
Initially, the set of relevant test cases that should be executed needs
to be identified, optionally using Test Case Selection. Next, a prior-
itization of test cases needs to be done (which can be optimized
using Test Case Prioritization). Finally, tests need to be assigned to
testers where Test Schedule Optimization techniques can optimize
matching testers and tests while considering relevant constraints.
Test Plan Execution. Fig. 3.4 shows the Test Plan Execution sub-
process. The Test Gap Analysis can be used to determine whether
test end criteria have been fulfilled. For example, it may reveal
additional test opportunities from untested code changes.

4 TWO INDUSTRIAL CASE STUDIES
To demonstrate the applicability and usefulness of our guidelines,
we conducted two industrial case studies with testing teams from
different contexts (i.e., domain, company size, test process, and
technologies). We instantiated the process models of Section 3.5 to
identify applicable optimization guidelines. Together with the test
leads, we then validated the suggested optimization techniques, and
they decided which of these to implement. In the following, for each
case study, we first introduce the study subjects to provide necessary
background information. Then, we document the instantiation of
the process model and, finally, we summarize the feedback of the
test teams when we presented our results to them in Table 4.

4.1 Case Study 1: User Acceptance Testing
Background Information. Our first study subject is owned by
Munich Re2, an international company in the finance and insurance
domain with approximately 40 thousand employees. The business
information system is customized in ABAP, the custom code base
counts 2.1 million source lines of code. At the time the interviews
were conducted, a team of 5 testers did manual user acceptance
testing (UAT). There are approximately 7 releases per year, each
release has a pre-defined duration of 6–8 weeks. For each release
phase, the set of change requests (product backlog items), which
the product owner committed on and which were prioritized by
the users for the current release, needs to be tested. That is, the
manual software test process is triggered by new change requests,
for example, by product management or users. The software life
cycle management platform Azure DevOps with the plugin Azure
Test Plans3 is used to manage test cases and results.
Applicability of Optimization Techniques Following our pro-
cess model in Fig. 3.1, we were able to suggest 5 optimization tech-
niques for our first study subject, which we discuss next.
Test Case Creation. Test steps are not re-used, but structurally iden-
tical test cases are typically filed as parameterized tests for which
different input and expected output values are given. This uncov-
ers the first optimization potential: re-use of existing test cases and
2CQSE is a contracting partner of Munich Re
3Azure Test Plans: https://azure.microsoft.com/de-de/services/devops/test-plans/

steps from former releases that have checked change requests in
the same code methods. The idea is that test cases can be re-used
entirely or with small modifications (e.g., new input values) if they
test changes in a method that a previous test already verified. This
requires that testers know which code is expected to be changed for
the current change request, and testers need to be able to identify
former tests that have executed this code.

The second and third optimization technique during test case
creation (see Fig. 3.2) offer no additional optimization potential:
intentional under-specification of tests is not applicable for user
acceptance tests in this case study, as user acceptance tests are not
meant to be re-executed in future release phases per se. Test cases
are already automatically checked for documentation quality issues,
for example, ambiguous formulations or redundancies4.
Test Plan Creation. In the current testing process of the study sub-
ject, test cases are never re-used, which prevents optimization tech-
niques such as test case selection, test case prioritization, and test
schedule optimization. Yet, test case selection would help to identify
relevant test cases if test cases or, at least, test steps are re-used. To
benefit from test case prioritization and better scheduling opportuni-
ties, a proxy for the costs of test executions needs to be monitored,
for example, the duration of test runs which is already tracked in
the study subject’s test management system.
Test Plan Execution. The optimization technique during test plan
execution, a test gap analysis, is already used by the team5 to reveal
untested changes that should not be deployed to the production
environment before a test happened.
Test Suite Maintenance. Tests are currently not re-used, so, we see
no benefit of refactoring for this study subject. Some tests appear
to be partially redundant, so test case reduction is promising.
Developer Feedback. Based on our recommendations, the test
lead decided to implement the re-use of test steps in their manual
testing process. Regarding the previously mentioned prerequisites,
the development process has been changed as follows. First, the
development team passes information on which code is planned to
be changed to the test team. Second, the authors implemented test-
wise coverage recording for the team, so that similar former test
cases can be identified. For this purpose, the non-isolated testing
environment is profiled in a user-specific way, which helps identify
re-use opportunities. The testers highlighted that they like the
newly created “transparency regarding which code is being exe-
cuted by their manual tests.” The test lead pointed out that “it would
have been great to have this tool from the very beginning of the
project, where even more tests were run.” Now, the SUT is so large
that many test runs (and thus, code changes) are needed until all
actively maintained code regions are profiled. The team has started
to re-use test cases where possible, even though, typically, not the
entire test case can be re-used.

According to the test lead, at the end of a test phase, she again
runs the test case selection on changes of the current release. This
outputs a set of test cases that contains usage scenarios for the
changed code, and thus, additional testing opportunities. Hence,
she is not only using the selection as originally intended, but uses

4Scout: https://www.qualicen.de/scout/
5Teamscale: https://teamscale.com/, see also Haas et al. [13]

1288

How Can Manual Testing Processes Be Optimized? ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 4: Developer feedback: ✓ has been implemented,
� can be implemented in the future, and × will not be im-
plemented

Study Subject 1

User acceptance tests 5 testers 6–8 week cycle 2.1 M SLOC ABAP

Applicable Optimization Techniques Feedback

Re-use of existing test cases and steps ✓
Test case selection ✓
Test case prioritization ×
Test scheduling optimization ×
Test case reduction �

Study Subject 2

Manual regression tests 1+13 testers 12–16 week cycle 700 K SLOC C++

Applicable Optimization Techniques Feedback

Test case prioritization ✓
Test case selection ×
Test case reduction ×
Refactoring �
Test quality monitoring �
Test plan optimization �

it as inspiration for additional testing activities. She considers this
helpful because it “lowers the risk of missing relevant test cases”
and increases the likelihood of detecting faults before deploying
the SUT to production. As far as test case prioritization is concerned,
the test lead stated that “the order of the selected tests does not
matter that much” because she “checks all selected tests to see if
the team missed testing opportunities.” She thinks that test schedule
optimization “might be helpful for manual testing in general”, but
for her project, she doubts that “the input data is accurate enough.”
In contrast, she liked the idea of test case reduction because they
often have to test similar functionality via different interfaces, and
she would like to “reduce [...] redundancies.”

4.2 Case Study 2: Regression Testing
Background Information. Our second study subject is an appli-
cation from IVU Traffic Technologies, one of the world’s leading
providers of public transport software solutions. The company em-
ploys more than 700 people worldwide. We focus on the manual
regression testing process for one software product (primarily writ-
ten in C++, with more than 700 thousand source lines of code)
that is concerned with duty planning. At the time the interviews
were conducted, one tester was manually testing the product full
time and 13 additional testers provided targeted testing support
for releases. The test management software in use is TestLink6, an
open-source tool that is modified to suit the company’s needs.
Applicability of Optimization Techniques. Again, following
our process model of Section 3.5, we were able to suggest 6 opti-
mization techniques that are applicable for the second study subject.
Test Case Creation. The test management software does not support
the management of individual test steps, which prevents a re-use
of similar test steps. Furthermore, existing tests are already delib-
erately under-specified to enable more exploratory testing. The
first applicable optimization technique is test quality monitoring:
6TestLink: http://testlink.org/

Test cases of the subject are constructed using natural language
descriptions, which can easily be checked by automated monitoring
tools for textual quality analysis.
Test Plan Creation. Minor releases are tested only with a set of
manual smoke regression tests (~30 test cases). For major releases, a
larger test suite (~360 manual test cases) is executed, in addition. In
general, there is no individual prioritization or selection of test cases.
However, a subset of test cases called “developer tests”, which cover
substantial functionality, are first executed, to prevent blocking
other test cases. As the name suggests, these tests are executed by
developers during development before the testing phase begins.

Testers implicitly create a test history by marking tests as “pass-
ing” or “failing” during their execution. These test reports form
a valuable artifact for optimization of the test plan. Both test case
selection and test case prioritization can benefit from failure pre-
diction models that solely rely on such information as shown by
prior research on automated [8] and manual testing [17, 18, 22]. In
addition, the textual descriptions could further be leveraged using
natural language analyses [18, 22].

Test schedule optimization is not directly applicable, as the re-
quirement of measuring test duration is not fulfilled, yet. However,
we still assume that there are two other levers for optimized test
scheduling: First, test assignments can be easily automated as they
are currently manually derived from prior test plans. Second, test
cases in the test management software may contain links, which de-
fine precedence or resource constraints. We propose to use existing
automated techniques for generating an optimized test schedule
that satisfies these constraints [29].
Test Plan Execution. Test gap analysis is infeasible, as there are no
test traces recorded during testing.
Test Suite Maintenance. Since textual test descriptions and test fail-
ure history are available, the optimization techniques refactoring
and test case reduction are applicable. They can be applied to create
a reduced test suite that is easier to maintain, query, and extend [2].
Developer Feedback. Together with the test lead, we identified
test case prioritization to be the most promising of the proposed
optimization techniques: Accordingly, it makes sense to execute
those tests first that found bugs before, “in the expectation that
they will be more likely to find bugs again and thus start fixing
them sooner”. Therefore, we implemented a simple prioritization
strategy, where tests that have failed before are executed first. This
proof-of-concept already reduced the feedback time compared to
the current random ordering of tests.

We decided to discard test case selection and test case reduction, as
the test lead pointed out that existing test cases “in principle already
represent a rather coarse-meshed coverage of the most important
features”, making further selection or reduction unnecessary.

Closer consideration of test quality monitoring and refactoring
is generally of interest, as it is already known by the developers
of the subject project that the “nature of test case descriptions
has evolved over time, test cases vary widely in the quality and
scope of the descriptions”. However, implementing such techniques
has lower priority than test prioritization inside the testing team.
Finally, test schedule optimization is already informally done in the
subject project by manually keeping track of which test cases were

1289

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven Apel

executed by which tester before. Yet, automated assistance in the
test assignment could still be helpful: “It would be conceivable to
provide guidance to testers in selecting unknown test cases through
tags on the test cases (e.g., required specialized knowledge).”

5 DISCUSSION
5.1 Case Studies
Both test leads find the recommendations of our guidelines useful.
For our first study subject, the test process and environments were
changed on our recommendation derived from our optimization
guidelines, so that test steps can be re-used, which saves test cre-
ation efforts. Another optimization is employing more in-depth
testing because selection of former test cases is used as inspiration
for additional tests. In the second case study, using our guidelines,
we were able to identify and exploit the potential of reducing test
feedback times by test prioritization based on test failure history.

Overall, during the case studies, our guidelines provided a goal-
oriented structure for the discussion of bottlenecks in manual test-
ing and helped the developers to focus on most relevant optimiza-
tion techniques. Thus, they are well suited for discussions with
testing practitioners to understand their process and tools, and
helps to communicate levers of optimization techniques.

Our guidelines summarize optimization techniques that are suit-
able to address bottlenecks in manual testing. From our case studies,
we learned that the evaluation of techniques for their practical ap-
plicability is guided well by the presented prerequisites and caveats.
In both case studies, the guidelines have shown to be effective: For
the first study subject, re-use of existing user acceptance tests has
been improved, and a variety of tests has been increased by test
case selection. In the second case study, feedback time could be
reduced by prioritizing tests based on failure history.

Nevertheless, further research on optimization approaches for
manual testing is necessary. Our guidelines can be extended to-
wards this goal, and we are happy to receive merge requests in our
supplementary repository.

5.2 Threats to Validity
Internal Validity. A threat to internal validity arises from the
Rosenthal effect [32]: The framing of our survey questions could
have influenced our participants, for example, by stating unbal-
anced advantages and disadvantages of manual testing. We chose
the formulations of our survey neutrally, and we did several rounds
of pretests with academic experts as well as testing professionals
from our target group to reveal potential misleading formulations
and misunderstandings. We refer the interested reader to our sup-
plementary repository for more information and replication.

The set of guidelines presented in Section 3.1 is not meant to be
complete. We focus on optimization techniques and levers that we
have identified in our survey.
External Validity. We selected the participants of our survey from
a small target group. We deliberately chose this group because, this
way, we could validate answers and clarify open questions with
participants to get a better and clearer understanding of manual
testing processes in industry. Nonetheless, manual testing might
be used in other ways, which limits the generalizability of our

results—a common issue in empirical software engineering [34]. In
particular, answers given in the survey indicate context-specific
challenges, such as regulations for the development of medical
technology or complexity of GUI testing, which need to be further
investigated. Still, the different project backgrounds and processes
provide deep insights into the variety of manual testing.

From the survey answers, we derived an empirical process model,
which might not be applicable to every testing process. Yet, our two
case studies show that the optimization levers and techniques, as
well as their prerequisites and caveats are helpful for practitioners
to identify optimization potentials in their testing processes.

In general, case study research [33] is not meant to generalize, but
our two case studies nonetheless demonstrate the potential of our
guidelines to assist developers and test professionals in identifying
useful optimization techniques for their manual testing process.

6 CONCLUSION
Manual testing is widely used in industry, despite the high cost of
the human effort required. With increasingly short software release
cycles while operating large manual test suites, there is a growing
need for optimization of manual test processes. Yet, existing opti-
mization techniques from automated testing are often not directly
transferable, because it is unclear how to integrate them into man-
ual testing processes and required data are often missing. Since
there is no precise understanding of the practices and processes of
manual testing across industry, pitfalls and optimization potential
are generally unknown.

We have surveyed 38 testing professionals from 16 companies
and different project contexts to qualitatively analyze the preva-
lence, characteristics, and problems of manual testing activities
that enable or hinder optimization. The result of this empirical
study is a set of guidelines embodied in an annotated process model
that implements 9 optimization techniques for manual testing. We
discuss prerequisites and caveats for each technique, as they have
been described in the literature or reported by practitioners during
our study. We further demonstrate by means of two large-scale
industrial case studies that our guidelines are useful and actionable
to identify untapped optimization potential. Our two case study
subjects implemented the re-use of tests, test case selection, and
test case prioritization techniques. According to the test leads of
our study subjects, their teams benefit from a higher likelihood
of detecting faults, a reduced test feedback time, and an increased
re-use of manual test cases.

As manual testing will be applied in industry in the foreseeable
future without the intention of full automation, as is confirmed by
our developer survey, we deem optimization of manual testing to
be of significant relevance in practice. Hence, future work shall
investigate the identified and proposed optimization techniques in
varying settings, especially since existing studies on manual testing
are still rare and not unequivocal in their results.

ACKNOWLEDGMENTS
This work was partially funded by the German Federal Ministry of
Education and Research (BMBF), grant “SOFIE, 01IS18012A”, and
the German Research Foundation (DFG), grant “AP 206/14-1”. The
responsibility for this article lies with the authors.

1290

How Can Manual Testing Processes Be Optimized? ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

REFERENCES
[1] Y. Baron and K. Yitmen. 2018. ISTQB® Worldwide Software Testing Practices. ISTQB.

Retrieved July 8, 2021 from https://www.istqb.org/documents/ISTQB2017-18_
Revised.pdf

[2] E. Bernard, J. Botella, F. Ambert, B. Legeard, and M. Utting. 2020. Tool Support
for Refactoring Manual Tests. In Proceedings of the International Conference on
Software Testing, Verification and Validation. IEEE, 332–342. https://doi.org/10.
1109/icst46399.2020.00041

[3] G. Buchgeher, C. Ernstbrunner, R. Ramler, and M. Lusser. 2013. Towards Tool-
Support for Test Case Selection in Manual Regression Testing. In Proceedings
of the International Conference on Software Testing, Verification and Validation
Workshops. IEEE, 74–79. https://doi.org/10.1109/ICSTW.2013.16

[4] I. Ciupa, B. Meyer, M. Oriol, and A. Pretschner. 2008. Finding Faults: Manual
Testing vs. Random+ Testing vs. User Reports. In Proceedings of the International
Symposium on Software Reliability Engineering. IEEE, 157–166. https://doi.org/
10.1109/ISSRE.2008.18

[5] S. Eder, B. Hauptmann, M. Junker, R. Vaas, and K.-H. Prommer. 2014. Selecting
Manual Regression Test Cases Automatically using Trace Link Recovery and
Change Coverage. In Proceedings of the International Workshop on Automation of
Software Test. ACM, 29–35. https://doi.org/10.1145/2593501.2593506

[6] S. Elbaum, A. Malishevsky, and G. Rothermel. 2000. Prioritizing Test Cases for
Regression Testing. In Proceedings of the International Symposium on Software
Testing and Analysis. IEEE, 101–112. https://doi.org/10.1145/347324.348910

[7] S. Elbaum, A. Malishevsky, and G. Rothermel. 2001. Incorporating Varying
Test Costs and Fault Severities into Test Case Prioritization. In Proceedings of
the International Conference on Software Engineering. IEEE, 329–338. https:
//doi.org/10.1109/icse.2001.919106

[8] S. Elbaum, G. Rothermel, and J. Penix. 2014. Techniques for Improving Regression
Testing in Continuous Integration Development Environments. In Proceedings of
the International Symposium on the Foundations of Software Engineering. ACM,
235–245. https://doi.org/10.1145/2635868.2635910

[9] E. Engström, P. Runeson, and A. Ljung. 2011. Improving Regression Testing
Transparency and Efficiency with History-Based Prioritization—An Industrial
Case Study. In Proceedings of the International Conference on Software Testing,
Verification, and Validation. IEEE, 367–376. https://doi.org/10.1109/ICST.2011.27

[10] E. Engström, P. Runeson, and M. Skoglund. 2010. A Systematic Review on
Regression Test Selection Techniques. Information and Software Technology 52, 1
(2010), 14–30. https://doi.org/10.1016/j.infsof.2009.07.001

[11] V. Garousi and J. Zhi. 2013. A Survey of Software Testing Practices in Canada.
Journal of Systems and Software 86, 5 (2013), 1354–1376. https://doi.org/10.1016/
j.jss.2012.12.051

[12] M. Gligoric, L. Eloussi, and D. Marinov. 2015. Ekstazi: Lightweight Test Selection.
In Proceedings of the International Conference on Software Engineering. IEEE,
713–716. https://doi.org/10.1109/icse.2015.230

[13] R. Haas, R. Niedermayr, and E. Juergens. 2019. Teamscale: Tackle Technical Debt
and Control the Quality of Your Software. In International Conference on Technical
Debt. IEEE, 55–56. https://doi.org/10.1109/TechDebt.2019.00016

[14] M. Harrold, R. Gupta, and M. Soffa. 1993. A Methodology for Controlling the
Size of a Test Suite. Transactions on Software Engineering and Methodology 2, 3
(1993), 270–285. https://doi.org/10.1145/152388.152391

[15] M. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuker. 2001. Empirical Studies
of a Prediction Model for Regression Test Selection. Transactions on Software
Engineering 27, 3 (2001), 248–263. https://doi.org/10.1109/32.910860

[16] B. Hauptmann, L. Heinemann, R. Vaas, and P. Braun. 2013. Hunting for Smells in
Natural Language Tests. In Proceedings of the International Conference on Software
Engineering. IEEE, 1217–1220. https://doi.org/10.1109/ICSE.2013.6606682

[17] H. Hemmati, Z. Fang, and M. Mäntylä. 2015. Prioritizing Manual Test Cases in
Traditional and Rapid Release Environments. In Proceedings of the International
Conference on Software Testing, Verification and Validation. IEEE, 1–10. https:
//doi.org/10.1109/ICST.2015.7102602

[18] H. Hemmati and F. Sharifi. 2018. Investigating NLP-Based Approaches for
Predicting Manual Test Case Failure. In Proceedings of the International Con-
ference on Software Testing, Verification and Validation. IEEE, 309–319. https:
//doi.org/10.1109/ICST.2018.00038

[19] W. Hudson. 2012. Card Sorting. In Encyclopedia of Human-Computer Interaction.
Interaction Design Foundation.

[20] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. 2008. Reporting Experiments in
Software Engineering. In Guide to Advanced Empirical Software Engineering.

Springer, 201–228. https://doi.org/10.1007/978-1-84800-044-5_8
[21] E. Juergens, B. Hummel, F. Deissenboeck, M. Feilkas, C. Schlögel, and A. Wübbeke.

2011. Regression Test Selection of Manual System Tests in Practice. In Proceedings
of the European Conference on Software Maintenance and Reengineering. IEEE,
309–312. https://doi.org/10.1109/CSMR.2011.44

[22] R. Lachmann, M. Nieke, C. Seidl, I. Schaefer, and S. Schulze. 2016. System-
Level Test Case Prioritization using Machine Learning. In Proceedings of the
International Conference on Machine Learning and Applications. IEEE, 361–368.
https://doi.org/10.1109/ICMLA.2016.0065

[23] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta. 2019. Root
Causing Flaky Tests in a Large-Scale Industrial Setting. In Proceedings of the
International Symposium on Software Testing and Analysis. ACM, 101–111. https:
//doi.org/10.1145/3293882.3330570

[24] W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta. 2020. A Study on the
Lifecycle of Flaky Tests. In Proceedings of the International Conference of Software
Engineering. ACM, 1471–1482. https://doi.org/10.1145/3377811.3381749

[25] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. 2016. An Extensive
Study of Static Regression Test Selection in Modern Software Evolution. In
Proceedings of the International Symposium on Foundations of Software Engineering.
ACM, 583–594. https://doi.org/10.1145/2950290.2950361

[26] A. Leitner, H. Ciupa, B. Meyer, and M. Howard. 2007. Reconciling Manual
and Automated Testing: The AutoTest Experience. In Proceedings of the Annual
Hawaii International Conference on System Sciences. IEEE, 261a–261a. https:
//doi.org/10.1109/HICSS.2007.462

[27] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. 2014. An Empirical Analysis of Flaky
Tests. In Proceedings of the Symposium on the Foundations of Software Engineering.
ACM, 643–653. https://doi.org/10.1145/2635868.2635920

[28] M. Machalica, A. Samylkin, M. Porth, and S. Chandra. 2019. Predictive Test
Selection. In Proceedings of the International Conference on Software Engineering:
Software Engineering in Practice. IEEE, 91–100. https://doi.org/10.1109/ICSE-
SEIP.2019.00018

[29] M. Mossige, A. Gotlieb, H. Spieker, H. Meling, and M. Carlsson. 2017. Time-Aware
Test Case Execution Scheduling for Cyber-Physical Systems. In Proceedings of
the International Conference on Principles and Practice of Constraint Programming.
Springer, 387–404. https://doi.org/10.1007/978-3-319-66158-2_25

[30] T. Nakagawa, K. Munakata, and K. Yamamoto. 2019. Applying Modified Code
Entity-Based Regression Test Selection for Manual End-To-End Testing of Com-
mercial Web Applications. In Proceedings of the International Symposium on
Software Reliability Engineering Workshops. IEEE, 1–6. https://doi.org/10.1109/
ISSREW.2019.00033

[31] A. Philip, R. Bhagwan, R. Kumar, C. Maddila, and N. Nagppan. 2019. FastLane: Test
Minimization for Rapidly Deployed Large-Scale Online Services. In Proceedings
of the International Conference on Software Engineering. IEEE, 408–418. https:
//doi.org/10.1109/icse.2019.00054

[32] R. Rosenthal and K. Fode. 1963. The Effect of Experimenter Bias on the Per-
formance of the Albino Rat. Behavioral Science 8, 3 (1963), 183–189. https:
//doi.org/10.1002/bs.3830080302

[33] P. Runeson, M. Host, A. Rainer, and B. Regnell. 2012. Case Study Research in
Software Engineering: Guidelines and Examples (1st ed.). Wiley. https://doi.org/
10.5555/2361717

[34] J. Siegmund, N. Siegmund, and S. Apel. 2015. Views on Internal and External
Validity in Empirical Software Engineering. In Proceedings of the International
Conference on Software Engineering. IEEE, 9–19. https://doi.org/10.5555/2818754.
2818759

[35] O. Taipale, J. Kasurinen, K. Karhu, and K. Smolander. 2011. Trade-Off Between Au-
tomated and Manual Software Testing. International Journal of Systems Assurance
Engineering and Management 2, 2 (2011), 114–125. https://doi.org/10.1007/s13198-
011-0065-6

[36] S. van der Burg and E. Dolstra. 2010. Automating System Tests using Declarative
Virtual Machines. In Proceedings of the International Symposium on Software
Reliability Engineering. IEEE, 181–190. https://doi.org/10.1109/ISSRE.2010.34

[37] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist. 2017. Impediments for
Software Test Automation: A Systematic Literature Review. Software Testing
Verification and Reliability 27, 8 (2017), e1639. https://doi.org/10.1002/stvr.1639

[38] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. Software Testing Verification and Reliability 22, 2 (2012),
67–120. https://doi.org/10.1002/stv.430

1291

Bibliography

[1] Nauman bin Ali, Emelie Engström, Masoumeh Taromirad, Mohammad Reza
Mousavi, Nasir Mehmood Minhas, Daniel Helgesson, Sebastian Kunze, and
Mahsa Varshosaz. “On the search for industry-relevant regression testing re-
search”. In: Empirical Software Engineering 24.4 (2019), pp. 2020–2055.

[2] Jeff Anderson, Saeed Salem, and Hyunsook Do. “Improving the Effectiveness of
Test Suite through Mining Historical Data”. In: Proceedings of the Working Confer-
ence on Mining Software Repositories. 2014, pp. 142–151.

[3] Jeff Anderson, Saeed Salem, and Hyunsook Do. “Striving for Failure: An Indus-
trial Case Study about Test Failure Prediction”. In: Proceedings of the International
Conference on Software Engineering. 2015, pp. 49–58.

[4] Maral Azizi and Hyunsook Do. “ReTEST: A Cost Effective Test Case Selection
Technique for Modern Software Development”. In: Proceedings of the International
Symposium on Software Reliability Engineering. 2018, pp. 144–154.

[5] Victor R. Basili and Richard W. Selby. “Comparing the Effectiveness of Software
Testing Strategies”. In: IEEE Transactions on Software Engineering SE-13.12 (1987),
pp. 1278–1296.

[6] Kent Beck. “Embracing Change with Extreme Programming”. In: Computer 32.10
(1999), pp. 70–77.

[7] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. “DeFlaker: Automatically Detecting Flaky Tests”. In: Proceed-
ings of the International Conference on Software Engineering (2018), pp. 433–444.

[8] Moritz Beller, Georgios Gousios, and Andy Zaidman. “TravisTorrent: Synthesiz-
ing Travis CI and GitHub for Full-Stack Research on Continuous Integration”.
In: Proceedings of the International Conference on Mining Software Repositories. 2017,
pp. 447–450.

[9] Antonia Bertolino, Antonio Guerriero, Roberto Pietrantuono, Stefano Russo,
Breno Miranda, and Roberto Pietran-Tuono. “Learning-to-Rank vs Ranking-to-
Learn: Strategies for Regression Testing in Continuous Integration”. In: Proceed-
ings of the International Conference on Software Engineering. 2020, pp. 1–12.

[10] Luca Bigliardi, Michele Lanza, Alberto Bacchelli, Marco Dambros, and Andrea
Mocci. “Quantitatively Exploring Non-code Software Artifacts”. In: Proceedings of
the International Conference on Quality Software. 2014, pp. 286–295.

[11] Nick Bilton. Nest Thermostat Glitch Leaves Users in the Cold. The New York Times.
2016. URL: https://www.nytimes.com/2016/01/14/fashion/nest-
thermostat-glitch-battery-dies-software-freeze.html (visited on
2023-04-20).

115

https://www.nytimes.com/2016/01/14/fashion/nest-thermostat-glitch-battery-dies-software-freeze.html
https://www.nytimes.com/2016/01/14/fashion/nest-thermostat-glitch-battery-dies-software-freeze.html

Bibliography

[12] Derek Bruening. “Efficient, Transparent, and Comprehensive Runtime Code Ma-
nipulation”. PhD thesis. MIT, Sept. 2004.

[13] Sander Van Der Burg and Eelco Dolstra. “Automating System Tests Using Declar-
ative Virtual Machines”. In: Proceedings of the International Symposium on Software
Reliability Engineering. 2010, pp. 181–190.

[14] Benjamin Busjaeger and Tao Xie. “Learning for Test Prioritization: An Industrial
Case Study”. In: Proceedings of the International Symposium on Foundations of Soft-
ware Engineering. 2016, pp. 975–980.

[15] Ahmet Celik, Young Chul Lee, and Milos Gligoric. “Regression Test Selection for
TizenRT”. In: Proceedings of the Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 2018, pp. 845–850.

[16] Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric. “Regression
Test Selection Across JVM Boundaries”. In: Proceedings of the Joint Meeting on Foun-
dations of Software Engineering. 2017, pp. 809–820.

[17] Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng. “BUILDFAST: History-
Aware Build Outcome Prediction for Fast Feedback and Reduced Cost in Con-
tinuous Integration”. In: Proceedings of the International Conference on Automated
Software Engineering. 2020, pp. 42–53.

[18] Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan Hao,
and Lu Zhang. “Optimizing Test Prioritization via Test Distribution Analysis”.
In: Proceedings of the Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 2018, pp. 656–667.

[19] T. Y. Chen, H. Leung, and I. K. Mak. “Adaptive Random Testing”. In: Advances
in Computer Science - ASIAN 2004. Higher-Level Decision Making. Ed. by Michael J.
Maher. Springer Berlin Heidelberg, 2005, pp. 320–329.

[20] Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. “Test-Case
Prioritization for Configuration Testing”. In: Proceedings of the International Sympo-
sium on Software Testing and Analysis. 2021, pp. 452–465.

[21] Ilinca Ciupa, Bertrand Meyer, Manuel Oriol, and Alexander Pretschner. “Finding
Faults: Manual Testing vs. Random Testing+ vs. User Reports”. In: Proceedings of
the International Symposium on Software Reliability Engineering. 2008, pp. 157–166.

[22] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. “Hints on Test
Data Selection: Help for the Practicing Programmer”. In: Computer 11.4 (1978),
pp. 34–41.

[23] Hyunsook Do. “Recent Advances in Regression Testing Techniques”. In: Advances
in Computers 103 (2016), pp. 53–77.

[24] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and its Potential Im-
pact”. In: Empirical Software Engineering 10.4 (2005), pp. 405–435.

[25] Hyunsook Do and Gregg Rothermel. “A Controlled Experiment Assessing Test
Case Prioritization Techniques via Mutation Faults”. In: Proceedings of the Interna-
tional Conference on Software Maintenance. 2005, pp. 411–420.

116

Bibliography

[26] Zakir Durumeric et al. “The Matter of Heartbleed”. In: Proceedings of the Internet
Measurement Conference. 2014, pp. 475–488.

[27] Sebastian Eder, Benedikt Hauptmann, Maximilian Junker, Rudolf Vaas, and Karl
Heinz Prommer. “Selecting Manual Regression Test Cases Automatically using
Trace Link Recovery and Change Coverage”. In: Proceedings of the International
Workshop on Automation of Software Test. 2014, pp. 29–35.

[28] Edward Dunn Ekelund and Emelie Engstrom. “Efficient Regression Testing Based
on Test History: An Industrial Evaluation”. In: Proceedings of the International Con-
ference on Software Maintenance and Evolution. 2015, pp. 449–457.

[29] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. “Incorporating
Varying Test Costs and Fault Severities into Test Case Prioritization”. In: Proceed-
ings of the International Conference on Software Engineering. 2001, pp. 329–338.

[30] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. “Prioritizing
Test Cases for Regression Testing”. In: Proceedings of the International Symposium on
Software Testing and Analysis. 2000, pp. 101–112.

[31] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. “Test Case Pri-
oritization: A Family of Empirical Studies”. In: IEEE Transactions on Software Engi-
neering 28.2 (2002), pp. 159–182.

[32] Sebastian Elbaum, Gregg Rothermel, and John Penix. “Techniques for Improving
Regression Testing in Continuous Integration Development Environments”. In:
Proceedings of the International Symposium on Foundations of Software Engineering.
2014, pp. 235–245.

[33] Daniel Elsner, Daniel Bertagnolli, Alexander Pretschner, and Rudi Klaus. “Chal-
lenges in Regression Test Selection for End-to-End Testing of Microservice-based
Software Systems”. In: Proceedings of the International Conference on Automation of
Software Test. 2022, pp. 1–5.

[34] Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. “Empiri-
cally Evaluating Readily Available Information for Regression Test Optimization
in Continuous Integration”. In: Proceedings of the International Symposium on Soft-
ware Testing and Analysis. 2021, pp. 491–504.

[35] Daniel Elsner, Severin Kacianka, Stephan Lipp, Alexander Pretschner, Axel
Habermann, Maria Graber, and Silke Reimer. “BinaryRTS: Cross-language Re-
gression Test Selection for C++ Binaries in CI”. In: Proceedings of the International
Conference on Software Testing, Verification and Validation. 2023, pp. 327–338.

[36] Daniel Elsner, Roland Wuersching, Markus Schnappinger, and Alexander
Pretschner. “Probe-based Syscall Tracing for Efficient and Practical File-level Test
Traces”. In: Proceedings of the International Conference on Automation of Software Test.
2022, pp. 126–137.

[37] Daniel Elsner, Roland Wuersching, Markus Schnappinger, Alexander Pretschner,
Maria Graber, René Dammer, and Silke Reimer. “Build System Aware Multi-
language Regression Test Selection in Continuous Integration”. In: Proceedings of
the International Conference on Software Engineering: Software Engineering in Practice.
2022, pp. 87–96.

117

Bibliography

[38] Emelie Engström, Per Runeson, and Mats Skoglund. “A Systematic Review on
Regression Test Selection Techniques”. In: Information and Software Technology 52.1
(2010), pp. 14–30.

[39] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K. Burke. “Empir-
ical Evaluation of Pareto Efficient Multi-objective Regression Test Case Prioritisa-
tion”. In: Proceedings of the International Symposium on Software Testing and Analysis.
2015, pp. 234–245.

[40] Emad Fallahzadeh and Peter C. Rigby. “The Impact of Flaky Tests on Historical
Test Prioritization on Chrome”. In: Proceedings of the International Conference on
Software Engineering: Software Engineering in Practice. 2022, pp. 273–282.

[41] Michael Felderer and Elizabeta Fourneret. “A systematic classification of security
regression testing approaches”. In: International Journal on Software Tools for Tech-
nology Transfer 17.3 (2015), pp. 305–319.

[42] Kurt F. Fischer. “A test case selection method for the validation of software main-
tenance modifications”. In: Proceedings of International Computer Software and Ap-
plications Conference. 1977, pp. 421–426.

[43] Ben Fu, Sasa Misailovic, and Milos Gligoric. “Resurgence of Regression Test Se-
lection for C++”. In: Proceedings of the International Conference on Software Testing,
Verification and Validation. 2019, pp. 323–334.

[44] gitflow-incremental-builder (GIB). URL: https : / / github . com / gitflow -
incremental-builder/gitflow-incremental-builder (visited on 2023-
04-16).

[45] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. “Ekstazi: Lightweight Test
Selection”. In: Proceedings of the International Conference on Software Engineering.
2015, pp. 713–716.

[46] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. “Practical Regression Test
Selection with Dynamic File Dependencies”. In: Proceedings of the International
Symposium on Software Testing and Analysis. 2015, pp. 211–222.

[47] Brendan Gregg and Jim Mauro. DTrace: Dynamic Tracing in Oracle Solaris, Mac OS
X, and FreeBSD. Prentice Hall Professional, 2011.

[48] Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven
Apel. “How Can Manual Testing Processes Be Optimized? Developer Survey, Op-
timization Guidelines, and Case Studies”. In: Proceedings of the Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering. 2021, pp. 1281–1291.

[49] Richard G. Hamlet. “Testing Programs with the Aid of a Compiler”. In: IEEE
Transactions on Software Engineering SE-3.4 (1977), pp. 279–290.

[50] Ramzi A. Haraty, Nashat Mansour, and Bassel A. Daou. “Regression Testing of
Database Applications”. In: Journal of Database Management 13.2 (2002), pp. 31–43.

[51] Mark Harman. “Making the Case for MORTO: Multi Objective Regression Test
Optimization”. In: Proceedings of the International Conference on Software Testing, Ver-
ification, and Validation Workshops. 2011, pp. 111–114.

118

https://github.com/gitflow-incremental-builder/gitflow-incremental-builder
https://github.com/gitflow-incremental-builder/gitflow-incremental-builder

Bibliography

[52] Mary Jean Harrold, Alessandro Orso, James A. Jones, Tongyu Li, Maikel Pen-
nings, Saurabh Sinha, Ashish Gujarathi, Donglin Liang, and S. Alexander Spoon.
“Regression Test Selection for Java Software”. In: Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and Applications. Vol. 36. 11. 2001,
pp. 312–326.

[53] Hadi Hemmati, Zhihan Fang, and Mika V. Mäntylä. “Prioritizing Manual Test
Cases in Traditional and Rapid Release Environments”. In: Proceedings of the Inter-
national Conference on Software Testing, Verification and Validation. 2015, pp. 1–10.

[54] Hadi Hemmati and Fatemeh Sharifi. “Investigating NLP-Based Approaches for
Predicting Manual Test Case Failure”. In: Proceedings of the International Conference
on Software Testing, Verification and Validation. 2018, pp. 309–319.

[55] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
“Comparing White-box and Black-box Test Prioritization”. In: Proceedings of the
International Conference on Software Engineering. 2016, pp. 523–534.

[56] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. “The Art
of Testing Less without Sacrificing Quality”. In: Proceedings of the International Con-
ference on Software Engineering. 2015, pp. 483–493.

[57] Dominik Holling. “Defect-based Quality Assurance with Defect Models”. PhD
thesis. Technical University of Munich, 2016.

[58] Simon Hundsdorfer, Daniel Elsner, and Alexander Pretschner. “DIRTS: Depen-
dency Injection Aware Regression Test Selection”. In: Proceedings of the Interna-
tional Conference on Software Testing, Verification and Validation. 2023, pp. 422–432.

[59] “IEEE Standard Glossary of Software Engineering Terminology”. In: IEEE Std
610.12-1990 (1990), pp. 1–84.

[60] Y. K. Jang, M. Munro, and Y. R. Kwon. “An improved method of selecting re-
gression tests for C++ programs”. In: Journal of Software Maintenance and Evolution:
Research and Practice 13 (2001), pp. 331–350.

[61] Bo Jiang, Zhenyu Zhang, W. K. Chan, and T. H. Tse. “Adaptive Random Test Case
Prioritization”. In: Proceedings of the International Conference on Automated Software
Engineering. 2009, pp. 233–244.

[62] Xianhao Jin and Francisco Servant. “HybridCISave: A Combined Build and
Test Selection Approach in Continuous Integration”. In: ACM Trans. Softw. Eng.
Methodol. (2022). Just Accepted.

[63] Xianhao Jin and Francisco Servant. “What Helped, and What Did Not? An Eval-
uation of the Strategies to Improve Continuous Integration”. In: Proceedings of the
International Conference on Software Engineering. 2021, pp. 213–225.

[64] Claudius Jordan, Philipp Foth, Alexander Pretschner, and Matthias Fruth. “Unre-
liable Test Infrastructures in Automotive Testing Setups”. In: Proceedings of the In-
ternational Conference on Software Engineering: Software Engineering in Practice. 2022,
pp. 307–308.

[65] Paul C. Jorgensen. Software Testing: A Craftsman’s Approach. 4th ed. Auerbach Pub-
lications, Oct. 2013.

119

Bibliography

[66] Elmar Juergens, Benjamin Hummel, Florian Deissenboeck, Martin Feilkas, Chris-
tian Schlögel, and Andreas Wübbeke. “Regression Test Selection of Manual Sys-
tem Tests in Practice”. In: Proceedings of the European Conference on Software Main-
tenance and Reengineering. 2011, pp. 309–312.

[67] Eero Kauhanen, Jukka K. Nurminen, Tommi Mikkonen, and Matvei Pashkovskiy.
“Regression Test Selection Tool for Python in Continuous Integration Process”. In:
Proceedings of the International Conference on Software Analysis, Evolution and Reengi-
neering. 2021, pp. 618–621.

[68] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani. “Ef-
fective Regression Test Case Selection: A Systematic Literature Review”. In: ACM
Computing Surveys 50.2 (June 2017), pp. 1–32.

[69] M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. “Efficient Binary-
Level Coverage Analysis”. In: Proceedings of the Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
2020, pp. 1153–1164.

[70] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang N. A. Jawawi, and
Rooster Tumeng. “Test case prioritization approaches in regression testing: A sys-
tematic literature review”. In: Information and Software Technology 93 (2018), pp. 74–
93.

[71] Jung Min Kim and Adam Porter. “A History-Based Test Prioritization Technique
for Regression Testing in Resource Constrained Environments”. In: Proceedings of
the International Conference on Software Engineering. 2002, pp. 119–129.

[72] Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Soder, Agneta Nilsson, and
Magnus Castell. “Supporting Continuous Integration by Code-Churn Based Test
Selection”. In: Proceedings of the International Workshop on Rapid Continuous Software
Engineering. 2015, pp. 19–25.

[73] Pavneet Singh Kochhar, Dinusha Wijedasa, and David Lo. “A Large Scale Study of
Multiple Programming Languages and Code Quality”. In: Proceedings of the Inter-
national Conference on Software Analysis, Evolution, and Reengineering. 2016, pp. 563–
573.

[74] Emily Kowalczyk, Karan Nair, Zebao Gao, Leo Silberstein, Teng Long, and Atif
Memon. “Modeling and Ranking Flaky Tests at Apple”. In: Proceedings of the In-
ternational Conference on Software Engineering: Software Engineering in Practice. 2020,
pp. 110–119.

[75] Herb Krasner. The Cost of Poor Software Quality in the US: A 2020 Report. Consor-
tium for IT Software Quality (CISQ), 2021.

[76] Herb Krasner. The Cost of Poor Software Quality in the US: A 2022 Report. Consor-
tium for IT Software Quality (CISQ), 2022.

[77] David C. Kung, Jerry Gao, Pei Hsia, Jeremy Lin, and Yasufumi Toyoshima. “Class
Firewall, Test Order, and Regression Testing of Object-Oriented Programs”. In:
Journal of Object-Oriented Programming 8.2 (1995), pp. 51–65.

120

Bibliography

[78] Jung Hyun Kwon and In Young Ko. “Cost-Effective Regression Testing Using
Bloom Filters in Continuous Integration Development Environments”. In: Proceed-
ings of the Asia-Pacific Software Engineering Conference. 2018, pp. 160–168.

[79] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. “Measuring the
Cost of Regression Testing in Practice: A Study of Java Projects using Continuous
Integration”. In: Proceedings of the Joint Meeting on Foundations of Software Engineer-
ing. 2017, pp. 821–830.

[80] Remo Lachmann, Manuel Nieke, Christoph Seidl, Ina Schaefer, and Sandro
Schulze. “System-Level Test Case Prioritization Using Machine Learning”. In: Pro-
ceedings of the International Conference on Machine Learning and Applications. 2016,
pp. 361–368.

[81] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. “Root Causing Flaky Tests in a Large-Scale Industrial Setting”. In:
Proceedings of the International Symposium on Software Testing and Analysis. 2019,
pp. 101–111.

[82] Wing Lam, Kivanc Muslu, Hitesh Sajnani, and Suresh Thummalapenta. “A Study
on the Lifecycle of Flaky Tests”. In: Proceedings of the International Conference of
Software Engineering. 2020, pp. 1471–1482.

[83] Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D. Ernst, and Tao Xie.
“Dependent-Test-Aware Regression Testing Techniques”. In: Proceedings of the In-
ternational Symposium on Software Testing and Analysis. 2020, pp. 298–311.

[84] Johannes Lampel, Sascha Just, Sven Apel, and Andreas Zeller. “When Life Gives
You Oranges:Detecting and Diagnosing Intermittent Job Failures at Mozilla”. In:
Proceedings of the Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. 2021, pp. 1381–1392.

[85] J. C. Laprie. “Dependability: Basic Concepts and Terminology”. In: Dependable
Computing and Fault-Tolerant Systems. Ed. by J. C. Laprie. Vol. 5. Springer Vienna,
1992.

[86] Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and Nadine Mandran. “Prior-
itizing test cases with string distances”. In: Automated Software Engineering 19.1
(2012), pp. 65–95.

[87] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. “An Extensive Study of Static Regression Test Selection in Mod-
ern Software Evolution”. In: Proceedings of the International Symposium on Founda-
tions of Software Engineering. 2016, pp. 583–594.

[88] Owolabi Legunsen, August Shi, and Darko Marinov. “STARTS: STAtic Regression
Test Selection”. In: Proceedings of the International Conference on Automated Software
Engineering. 2017, pp. 949–954.

[89] Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John Micco.
“Assessing Transition-Based Test Selection Algorithms at Google”. In: Proceedings
of the International Conference on Software Engineering: Software Engineering in Prac-
tice. 2019, pp. 101–110.

121

Bibliography

[90] Hareton K. N. Leung and Lee White. “A Study of Integration Testing and Software
Regression at the Integration Level”. In: Proceedings of the International Conference
on Software Maintenance. IEEE Computer Press, 1990, pp. 290–301.

[91] Hareton K. N. Leung and Lee White. “Insights into Regression Testing”. In: Pro-
ceedings of the International Conference on Software Maintenance. 1989, pp. 60–69.

[92] Nancy G. Leveson and Clark S. Turner. “An Investigation of the Therac-25 Acci-
dents”. In: Computer 26.7 (1993), pp. 18–41.

[93] Wen Li, Li Li, and Haipeng Cai. “On the Vulnerability Proneness of Multilingual
Code”. In: Proceedings of the Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. 2022, pp. 847–859.

[94] Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo, and Haipeng
Cai. “PolyFuzz: Holistic Greybox Fuzzing of Multi-Language Systems”. In: 32nd
USENIX Security Symposium (USENIX Security 23). 2023.

[95] Zheng Li, Mark Harman, and Robert M. Hierons. “Search Algorithms for Regres-
sion Test Case Prioritization”. In: IEEE Transactions on Software Engineering 33.4
(2007), pp. 225–237.

[96] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. “Redefining Prioritiza-
tion: Continuous Prioritization for Continuous Integration”. In: Proceedings of the
International Conference on Software Engineering. 2018, pp. 688–698.

[97] Panagiotis K. Linos. “PolyCARE: A Tool for Re-engineering Multi-language Pro-
gram Integrations”. In: Proceedings of the International Conference on Engineering of
Complex Computer Systems. 1995, pp. 338–341.

[98] Jacques-Louis Lions. Ariane 5 Flight 501 Failure. European Space Agency, The In-
quiry Board, 1996.

[99] LLVM. LLVM Compiler Infrastructure. URL: https://llvm.org (visited on 2023-
04-20).

[100] LLVM. LLVM XRay Function Call Tracing. URL: https://llvm.org/docs/
XRay.html (visited on 2023-04-20).

[101] Zhenyue Long, Zeliu Ao, Guoquan Wu, Wei Chen, and Jun Wei. “WebRTS: A Dy-
namic Regression Test Selection Tool for Java Web Applications”. In: Proceedings
of the International Conference on Software Maintenance and Evolution. 2020, pp. 822–
825.

[102] Yiling Lou, Junjie Chen, Lingming Zhang, and Dan Hao. “A Survey on Regression
Test-Case Prioritization”. In: Advances in Computers 113.1 (2019), pp. 1–46.

[103] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou,
and Lu Zhang. “How Does Regression Test Prioritization Perform in Real-World
Software Evolution?” In: Proceedings of the International Conference on Software En-
gineering. 2016, pp. 535–546.

[104] Qi Luo, Kevin Moran, and Denys Poshyvanyk. “A Large-Scale Empirical Compar-
ison of Static and Dynamic Test Case Prioritization Techniques”. In: Proceedings of
the International Symposium on Foundations of Software Engineering. 2016, pp. 559–
570.

122

https://llvm.org
https://llvm.org/docs/XRay.html
https://llvm.org/docs/XRay.html

Bibliography

[105] Qi Luo, Kevin Moran, Lingming Zhang, and Denys Poshyvanyk. “How Do Static
and Dynamic Test Case Prioritization Techniques Perform on Modern Software
Systems? An Extensive Study on GitHub Projects”. In: IEEE Transactions on Soft-
ware Engineering 45.11 (2019), pp. 1054–1080.

[106] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. “An Empirical
Analysis of Flaky Tests”. In: Proceedings of the International Symposium on Founda-
tions of Software Engineering. 2014, pp. 643–653.

[107] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. “Predic-
tive Test Selection”. In: Proceedings of the International Conference on Software Engi-
neering: Software Engineering in Practice. 2019, pp. 91–100.

[108] Dusica Marijan, Arnaud Gotlieb, and Abhijeet Sapkota. “Neural Network Classi-
fication for Improving Continuous Regression Testing”. In: Proceedings of the Inter-
national Conference On Artificial Intelligence Testing. 2020, pp. 123–124.

[109] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. “Test Case Prioritization for Con-
tinuous Regression Testing: An Industrial Case Study”. In: Proceedings of the Inter-
national Conference on Software Maintenance. 2013, pp. 540–543.

[110] Dusica Marijan and Marius Liaaen. “Practical Selective Regression Testing with
Effective Redundancy in Interleaved Tests”. In: Proceedings of the International Con-
ference on Software Engineering: Software Engineering in Practice. 2018, pp. 153–162.

[111] Dusica Marijan, Marius Liaaen, Arnaud Gotlieb, Sagar Sen, and Carlo Ieva. “TI-
TAN: Test Suite Optimization for Highly Configurable Software”. In: Proceedings
of the International Conference on Software Testing, Verification and Validation. 2017,
pp. 524–531.

[112] Toni Mattis, Falco Dürsch, and Robert Hirschfeld. “Faster Feedback Through Lex-
ical Test Prioritization”. In: Companion of the International Conference on Art, Science,
and Engineering of Programming. 2019, pp. 1–10.

[113] Toni Mattis and Robert Hirschfeld. “Lightweight Lexical Test Prioritization for Im-
mediate Feedback”. In: The Art, Science, and Engineering of Programming 4.3 (2020),
pp. 1–32.

[114] Toni Mattis, Patrick Rein, Falco Dürsch, and Robert Hirschfeld. “RTPTorrent: An
Open-source Dataset for Evaluating Regression Test Prioritization”. In: Proceed-
ings of the Conference on Mining Software Repositories. 2020, pp. 385–396.

[115] Philip Mayer and Alexander Bauer. “An Empirical Analysis of the Utilization of
Multiple Programming Languages in Open Source Projects”. In: Proceedings of the
International Conference on Evaluation and Assessment in Software Engineering. 2015,
pp. 1–10.

[116] Philip Mayer, Michael Kirsch, and Minh Anh Le. “On multi-language software
development, cross-language links and accompanying tools: a survey of profes-
sional software developers”. In: Journal of Software Engineering Research and Devel-
opment 5.1 (2017).

123

Bibliography

[117] Philip Mayer and Andreas Schroeder. “Automated Multi-Language Artifact Bind-
ing and Rename Refactoring between Java and DSLs Used by Java Frameworks”.
In: Proceedings of the European Conference on Object-Oriented Programming. 2014,
pp. 437–462.

[118] Sonu Mehta, Farima Farmahinifarahani, Ranjita Bhagwan, Suraj Guptha, Sina Ja-
fari, Rahul Kumar, Vaibhav Saini, and Anirudh Santhiar. “Data-driven Test Selec-
tion at Scale”. In: Proceedings of the Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 2021, pp. 1225–
1235.

[119] Hong Mei, Dan Hao, Lingming Zhang, Lu Zhang, Ji Zhou, and Gregg Rother-
mel. “A Static Approach to Prioritizing JUnit Test Cases”. In: IEEE Transactions on
Software Engineering 38.6 (2012), pp. 1258–1275.

[120] Breno Miranda, Emilio Cruciani, Roberto Verdecchia, and Antonia Bertolino.
“FAST Approaches to Scalable Similarity-based Test Case Prioritization”. In: Pro-
ceedings of the International Conference on Software Engineering. 2018, pp. 222–232.

[121] Shaikh Mostafa, Xiaoyin Wang, and Tao Xie. “PerfRanker: Prioritization of Perfor-
mance Regression Tests for Collection-Intensive Software”. In: Proceedings of the
International Symposium on Software Testing and Analysis. 2017, pp. 23–34.

[122] Glenford J. Myers, Tom Badgett, and Corey Sandler. The Art of Software Testing.
John Wiley and Sons, Inc., Jan. 2012.

[123] Armin Najafi, Weiyi Shang, and Peter C. Rigby. “Improving Test Effectiveness Us-
ing Test Executions History: An Industrial Experience Report”. In: Proceedings of
the International Conference on Software Engineering: Software Engineering in Practice.
2019, pp. 213–222.

[124] Takao Nakagawa, Kazuki Munakata, and Koji Yamamoto. “Applying Modified
Code Entity-Based Regression Test Selection for Manual End-to-End Testing of
Commercial Web Applications”. In: Proceedings of the International Symposium on
Software Reliability Engineering Workshops. 2019, pp. 1–6.

[125] Agastya Nanda, Senthil Mani, Saurabh Sinha, Mary Jean Harrold, and Alessandro
Orso. “Regression Testing in the Presence of Non-code Changes”. In: Proceedings
of the International Conference on Software Testing, Verification, and Validation. 2011,
pp. 21–30.

[126] Sathish Natarajan and Dhiraj Sinha. World Quality Report 2020-21. Capgemini,
2020.

[127] Nicholas Nethercote. “Dynamic Binary Analysis and Instrumentation or Building
Tools is Easy”. PhD thesis. University of Cambridge, Nov. 2004.

[128] Tanzeem Bin Noor and Hadi Hemmati. “A similarity-based approach for test case
prioritization using historical failure data”. In: Proceedings of the International Sym-
posium on Software Reliability Engineering. 2016, pp. 58–68.

[129] Tanzeem Bin Noor and Hadi Hemmati. “Studying Test Case Failure Prediction for
Test Case Prioritization”. In: Proceedings of the International Conference on Predictive
Models and Data Analytics in Software Engineering. 2017, pp. 2–11.

124

Bibliography

[130] Jesper Öqvist, Görel Hedin, and Boris Magnusson. “Extraction-Based Regression
Test Selection”. In: Proceedings of the International Conference on Principles and Prac-
tices of Programming on the Java Platform: Virtual Machines, Languages, and Tools.
2016, pp. 1–10.

[131] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. “Scaling Regression Test-
ing to Large Software Systems”. In: Proceedings of the International Symposium on
Foundations of Software Engineering. 2004, pp. 241–251.

[132] Rongqi Pan, Mojtaba Bagherzadeh, Taher A. Ghaleb, and Lionel Briand. “Test
Case Selection and Prioritization Using Machine Learning: A Systematic Litera-
ture Review”. In: Empirical Software Engineering 27.2 (2022), pp. 1–34.

[133] Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. “A
Survey of Flaky Tests”. In: ACM Trans. Softw. Eng. Methodol. 31.1 (Oct. 2021).

[134] Qianyang Peng, August Shi, and Lingming Zhang. “Empirically Revisiting and
Enhancing IR-Based Test-Case Prioritization”. In: Proceedings of the International
Symposium on Software Testing and Analysis. 2020, pp. 324–336.

[135] Adithya Abraham Philip, Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Mad-
dila, and Nachiappan Nagppan. “FastLane: Test Minimization for Rapidly De-
ployed Large-Scale Online Services”. In: Proceedings of the International Conference
on Software Engineering. 2019, pp. 408–418.

[136] Alexander Pretschner. “Defect-Based Testing”. In: Dependable Software Systems En-
gineering. Ed. by Maximilian Irlbeck, Doron Peled, and Alexander Pretschner.
Vol. 40. NATO Science for Peace and Security Series, D: Information and Com-
munication Security. IOS Press, 2015, pp. 224–245.

[137] Xiao Qu, Mithun Acharya, and Brian Robinson. “Configuration Selection Using
Code Change Impact Analysis for Regression Testing”. In: Proceedings of the Inter-
national Conference on Software Maintenance. 2012, pp. 129–138.

[138] Xiao Qu, Myra B. Cohen, and Gregg Rothermel. “Configuration-Aware Regres-
sion Testing: An Empirical Study of Sampling and Prioritization”. In: Proceedings
of the International Symposium on Software Testing and Analysis. 2008, pp. 75–86.

[139] Xiao Qu, Myra B. Cohen, and Katherine M. Woolf. “Combinatorial Interaction
Regression Testing: A Study of Test Case Generation and Prioritization”. In: Pro-
ceedings of the International Conference on Software Maintenance. 2007, pp. 255–264.

[140] Maaz Hafeez Ur Rehman and Peter C. Rigby. “Quantifying No-Fault-Found Test
Failures to Prioritize Inspection of Flaky Tests at Ericsson”. In: Proceedings of the
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 2021, pp. 1371–1380.

[141] Raúl H. Rosero, Omar S. Gómez, and Glen Rodrı́guez. “15 Years of Software Re-
gression Testing Techniques - A Survey”. In: International Journal of Software Engi-
neering and Knowledge Engineering 26.5 (2016), pp. 675–689.

[142] Gregg Rothermel. “Efficient, Effective Regression Testing Using Safe Test Selection
Techniques”. PhD thesis. Clemson University, May 1996.

125

Bibliography

[143] Gregg Rothermel and Mary Jean Harrold. “A Framework for Evaluating Regres-
sion Test Selection Techniques”. In: Proceedings of the International Conference on
Software Engineering. 1994, pp. 201–210.

[144] Gregg Rothermel and Mary Jean Harrold. “A Safe, Efficient Regression Test Selec-
tion Technique”. In: ACM Transactions on Software Engineering and Methodology 6.2
(1997), pp. 173–210.

[145] Gregg Rothermel and Mary Jean Harrold. “Analyzing Regression Test Selection
Techniques”. In: IEEE Transactions on Software Engineering 22.8 (1996), pp. 529–551.

[146] Gregg Rothermel and Mary Jean Harrold. “Empirical Studies of a Safe Regression
Test Selection Technique”. In: IEEE Transactions on Software Engineering 24.6 (1998),
pp. 401–419.

[147] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. “Regression Test Selec-
tion for C++ Software”. In: Software Testing, Verification and Reliability 10.2 (2000),
pp. 77–109.

[148] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. “Pri-
oritizing Test Cases for Regression Testing”. In: IEEE Transactions on Software En-
gineering 27.10 (2001), pp. 929–948.

[149] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. “Test
Case Prioritization: An Empirical Study”. In: Proceedings of the International Con-
ference on Software Maintenance. 1999, pp. 179–188.

[150] Khaled Walid Al-Sabbagh, Miroslaw Staron, Regina Hebig, and Wilhelm Med-
ing. “Predicting Test Case Verdicts Using Textual Analysis of Committed Code
Churns”. In: Joint Proceedings of the International Workshop on Software Measure-
ment and the International Conference on Software Process and Product Measurement.
Vol. 2476. 2019, pp. 138–153.

[151] Khaled Walid Al-Sabbagh, Miroslaw Staron, Miroslaw Ochodek, Regina Hebig,
and Wilhelm Meding. “Selective Regression Testing based on Big Data: Compar-
ing Feature Extraction Techniques”. In: Proceedings of the International Conference
on Software Testing, Verification and Validation Workshops. 2020, pp. 322–329.

[152] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. “An
Information Retrieval Approach for Regression Test Prioritization Based on Pro-
gram Changes”. In: Proceedings of the International Conference on Software Engineer-
ing. 2015, pp. 268–279.

[153] Mark Sherriff, Mike Lake, and Laurie Williams. “Prioritization of Regression Tests
using Singular Value Decomposition with Empirical Change Records”. In: Proceed-
ings of the International Symposium on Software Reliability Engineering. 2007, pp. 81–
90.

[154] August Shi, Jonathan Bell, and Darko Marinov. “Mitigating the Effects of Flaky
Tests on Mutation Testing”. In: Proceedings of the International Symposium on Soft-
ware Testing and Analysis. 2019, pp. 112–122.

[155] August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.
“Evaluating Test-Suite Reduction in Real Software Evolution”. In: Proceedings of
the International Symposium on Software Testing and Analysis. 2018, pp. 84–94.

126

Bibliography

[156] August Shi, Suresh Thummalapenta, Shuvendu K. Lahiri, Nikolaj Bjorner, and
Jacek Czerwonka. “Optimizing Test Placement for Module-Level Regression Test-
ing”. In: Proceedings of the International Conference on Software Engineering. 2017,
pp. 689–699.

[157] August Shi, Peiyuan Zhao, and Darko Marinov. “Understanding and Improving
Regression Test Selection in Continuous Integration”. In: Proceedings of the Interna-
tional Symposium on Software Reliability Engineering. 2019, pp. 228–238.

[158] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. “Reinforce-
ment Learning for Automatic Test Case Prioritization and Selection in Continuous
Integration”. In: Proceedings of the International Symposium on Software Testing and
Analysis. 2017, pp. 12–22.

[159] Stack Overflow Annual Developer Survey 2022. URL: https : / / survey .
stackoverflow.co/2022/#technology-most-popular-technologies
(visited on 2023-04-20).

[160] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Legunsen,
and Tianyin Xu. “Testing Configuration Changes in Context to Prevent Production
Failures”. In: Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation. 2020, pp. 735–751.

[161] Stephen W. Thomas, Hadi Hemmati, Ahmed E. Hassan, and Dorothea Blostein.
“Static test case prioritization using topic models”. In: Empirical Software Engineer-
ing 19.1 (2014), pp. 182–212.

[162] Fabian Trautsch, Steffen Herbold, and Jens Grabowski. “Are Unit and Integration
Test Definitions Still Valid for Modern Java Projects? An Empirical Study on Open-
Source Projects”. In: Journal of Systems and Software 159:110421 (2020).

[163] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. “File-
Level vs. Module-Level Regression Test Selection for .NET”. In: Proceedings of the
Joint Meeting on Foundations of Software Engineering. 2017, pp. 848–853.

[164] Shuai Wang, Shaukat Ali, Tao Yue, Oyvind Bakkeli, and Marius Liaaen. “Enhanc-
ing Test Case Prioritization in an Industrial Setting with Resource Awareness and
Multi-objective Search”. In: Proceedings of the International Conference on Software
Engineering Companion. 2016, pp. 182–191.

[165] Lee White, Khaled Jaber, Brian Robinson, and Václav Rajlich. “Extended firewall
for regression testing: An experience report”. In: Journal of Software Maintenance
and Evolution 20.6 (2008), pp. 419–433.

[166] Kristian Wiklund, Sigrid Eldh, Daniel Sundmark, and Kristina Lundqvist. “Im-
pediments for software test automation: A systematic literature review”. In: Soft-
ware Testing Verification and Reliability 27.8 (2017), e1639.

[167] David Willmor and Suzanne M. Embury. “A safe regression test selection tech-
nique for database-driven applications”. In: Proceedings of the International Confer-
ence on Software Maintenance. 2005, pp. 421–430.

[168] W. Eric Wong, J. R. Horgan, Saul London, and Hira Agrawal. “A Study of Effective
Regression Testing in Practice”. In: Proceedings of the International Symposium on
Software Reliability Engineering. 1997, pp. 264–274.

127

https://survey.stackoverflow.co/2022/#technology-most-popular-technologies
https://survey.stackoverflow.co/2022/#technology-most-popular-technologies

Bibliography

[169] Roland Wuersching, Daniel Elsner, Fabian Leinen, Alexander Pretschner, Georg
Grueneissl, Thomas Neumeyr, and Tobias Vosseler. “Severity-Aware Prioritiza-
tion of System-Level Regression Tests in Automotive Software”. In: Proceedings
of the International Conference on Software Testing, Verification and Validation. 2023,
pp. 398–409.

[170] Ahmadreza Saboor Yaraghi, Mojtaba Bagherzadeh, Nafiseh Kahani, and Lionel
Briand. “Scalable and Accurate Test Case Prioritization in Continuous Integra-
tion Contexts”. In: IEEE Transactions on Software Engineering 49.4 (Apr. 1, 2023),
pp. 1615–1639.

[171] Pu Yi, Hao Wang, Tao Xie, Darko Marinov, and Wing Lam. “A Theoretical Analy-
sis of Random Regression Test Prioritization”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems. Ed. by Dana Fisman and Grigore Rosu. Vol. 13244
LNCS. Springer International Publishing, 2022, pp. 217–235.

[172] Shin Yoo and Mark Harman. “Regression testing minimization, selection and pri-
oritization: A survey”. In: Software Testing Verification and Reliability 22.2 (2012),
pp. 67–120.

[173] Tingting Yu and Ting Wang. “A Study of Regression Test Selection in Continu-
ous Integration Environments”. In: Proceedings of the International Symposium on
Software Reliability Engineering. 2018, pp. 135–143.

[174] Lingming Zhang. “Hybrid Regression Test Selection”. In: Proceedings of the Inter-
national Conference on Software Engineering. 2018, pp. 199–209.

[175] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. “FaultTracer: A spectrum-
based approach to localizing failure-inducing program edits”. In: Journal of Soft-
ware: Evolution and Process 25.12 (2013), pp. 1357–1383.

[176] Lingming Zhang, Ji Zhou, Dan Hao, Lu Zhang, and Hong Mei. “Prioritizing JUnit
Test Cases in Absence of Coverage Information”. In: Proceedings of the International
Conference on Software Maintenance. 2009, pp. 19–28.

[177] Wei Zheng, Guoliang Liu, Manqing Zhang, Xiang Chen, and Wenqiao Zhao. “Re-
search Progress of Flaky Tests”. In: Proceedings of the International Conference on
Software Analysis, Evolution and Reengineering. 2021, pp. 639–646.

[178] Hua Zhong, Lingming Zhang, and Sarfraz Khurshid. “TestSage: Regression Test
Selection for Large-scale Web Service Testing”. In: Proceedings of the International
Conference on Software Testing, Verification and Validation. 2019, pp. 430–440.

[179] Chenguang Zhu, Owolabi Legunsen, August Shi, and Milos Gligoric. “A Frame-
work for Checking Regression Test Selection Tools”. In: Proceedings of the Interna-
tional Conference on Software Engineering. 2019, pp. 430–441.

[180] Yuecai Zhu, Emad Shihab, and Peter C. Rigby. “Test Re-prioritization in Contin-
uous Testing Environments”. In: Proceedings of the International Conference on Soft-
ware Maintenance and Evolution. 2018, pp. 69–79.

[181] Celal Ziftci and Jim Reardon. “Who Broke the Build? Automatically Identifying
Changes That Induce Test Failures In Continuous Integration at Google Scale”.
In: Proceedings of the International Conference on Software Engineering: Software Engi-
neering in Practice. 2017, pp. 113–122.

128

Bibliography

[182] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and
Brendan Murphy. “Cross-Project Defect Prediction: A Large Scale Experiment on
Data vs. Domain vs. Process”. In: Proceedings of the Joint Meeting of the European
Software Engineering Conference and the Symposium on the Foundations of Software
Engineering. 2009, pp. 91–100.

129

List of Acronyms

APFD Average Percentage of Faults Detected

APFDC Average Percentage of Faults Detected per Cost

API Application Programming Interface

CFG Control-Flow Graph

CI Continuous Integration

DI Dependency Injection

DSL Domain-Specific Language

DLL Dynamic-link Library

GPL General-Purpose Language

IR Information Retrieval

JAR Java Archive

JNI Java Native Interface

JVM Java Virtual Machine

ML Machine Learning

RL Reinforcement Learning

131

Bibliography

RTO Regression Test Optimization

RTP Regression Test Prioritization

RTS Regression Test Selection

SUT System Under Test

TSM Test Suite Minimization

VCS Version Control System

132

List of Figures

1.1. Conceptual framework of system and process characteristics affecting re-
gression testing. We structure the characteristics by the context factors
identified by Ali et al. [1]. 5

1.2. Research gaps and associated publications that constitute the contributions
of this doctoral dissertation . 11

2.1. Illustration of the intuition underlying the APFD evaluation metric; it re-
flects the area under the gain curve . 17

3.1. Big picture of research gaps addressed by this publication (P1) 25

4.1. Big picture of research gaps addressed by this publication (P2) 27

5.1. Big picture of research gaps addressed by this publication (P3) 29

6.1. Big picture of research gaps addressed by this publication (P4) 31

7.1. Big picture of research gaps addressed by this publication (P5) 33

133

	Acknowledgments
	Zusammenfassung
	Abstract
	Contents
	Introduction and Background
	Introduction
	Industry-Relevant Context Factors Affecting Regression Testing
	System Characteristics Affecting Regression Testing
	Process Characteristics Affecting Regression Testing

	Problem Statement and Research Gaps
	Solution
	Contributions
	Outline

	Background
	Foundations and Definitions
	Software Testing
	Defects, Faults, Errors, and Failures
	Regression Testing
	Regression Test Selection
	Regression Test Prioritization

	Quality Criteria
	Regression Test Selection
	Regression Test Prioritization

	Overview of Existing Techniques
	Regression Test Selection
	Regression Test Prioritization

	Methodological and Technical Solutions
	Build System Aware Multi-language Regression Test Selection in CI
	BinaryRTS: Cross-language Regression Test Selection for C++ Binaries in CI
	Empirically Evaluating Readily Available Information for RTO in CI
	Challenges in RTS for E2E Testing of Microservice-based Software Systems
	How Can Manual Testing Processes Be Optimized?

	Related Work and Conclusion
	Related Work
	System Characteristics Affecting Regression Testing
	Multilingual Software
	Configurable Software
	Distributed Systems

	Process Characteristics Affecting Regression Testing
	Continuous Integration Testing
	Manual Testing

	Conclusion
	Summary
	Limitations
	Outlook and Future Work

	Appendix
	Overview
	Copyright Policies by Publishers
	Publications
	Build System Aware Multi-language Regression Test Selection in CI
	BinaryRTS: Cross-language Regression Test Selection for C++ Binaries in CI
	Empirically Evaluating Readily Available Information for RTO in CI
	Challenges in RTS for E2E Testing of Microservice-based Software Systems
	How Can Manual Testing Processes Be Optimized?

	Bibliography
	List of Acronyms
	List of Figures

