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Abstract
In this paper we classify isogeny classes of global G-shtukas over a smooth projective
curveC/Fq (or equivalently σ -conjugacy classes inG(F⊗Fq Fq)where F is the field of
rational functions of C) by two invariants κ̄, ν̄ extending previous works of Kottwitz.
This result can be applied to study points of moduli spaces of G-shtukas and thus is
helpful to calculate their cohomology.
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1 Introduction

Let Fq be the finite field with q elements and letC be a curve (= geometrically integral
smooth projective scheme of dimension 1) overFq .We denote by F the field of rational
functions on C . We denote by k an algebraic closure of Fq and let F̆ = F ⊗Fq k. The

Frobenius automorphism on k induces an automorphism σ on F̆.
Let G be a (connected) reductive group over F. A G-isoshtuka over k is a G-torsor

V over F̆ together with an isomorphism φ : σ ∗V ∼→ V . Such a notion naturally arises
as the ‘generic fibre’ of a G -shtuka over k where G is a smooth affine group scheme
overC with generic fibreG. The generic fibre plays the role of G -shtuka up to isogeny,
hence the terminology ‘G-isoshtuka’.
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Since F̆ has cohomological dimension one by Tsen’s theorem, any G-torsor V is
trivial by [2, § 8.6]. Choosing a trivialisation V ∼= GF̆, φ gets identified with the
automorphism b ◦ σ for some b ∈ G(F̆). Every other trivialisation of V can be
obtained by postcomposing the above isomorphism with an element g ∈ G(F̆), thus
replacing b by gbσ(g−1). Hence this construction yields a natural bijection between
the isomorphism classes of G-isoshtukas over k and the set of σ -conjugacy classes in
G(F̆).

This paper studies the pointed set B(F,G) ofσ -conjugacy classes inG(F̆). Following
the strategy of Kottwitz’ work [17,19] on σ -conjugacy classes over p-adic fields and
his construction of B(F,G) for local and global fields in terms of Galois gerbs in
[14], we describe its elements via two invariants νG and κG on B(F,G).

Let us give more details on νG and κG. For any finite field extension E/F, we denote
by Div(E) the free abelian group generated by the set of places in E and let

Div(E)0 =
{∑

ny · y ∈ Div(E) |
∑

ny = 0
}

.1

For every finite extension E′/E, we obtain a homomorphism Div(E)0 →
Div(E′)0, x 	→ ∑

x ′|x [E′
x ′ : Ex ]x ′. We denote by Div(Fs)0 = lim−→Div(E)0, where E

runs through all finite separable extensions of F and let DF be the F-protorus with
character group Div(Fs)0. In Sects. 3 and 4 we construct invariants

κ̄G : B(F,G) → (π1(G) ⊗ Div(Fs)0)Gal(Fs/F)

ν̄G : B(F,G) → (
HomF̆(DF,G)

/
G(F̆)

)σ
,

which we call the Kottwitz map and the Newton map, respectively.
The above maps can be localised to obtain the Kottwitz point and the Newton point

over a local field of F. More precisely, let x be a closed point of C and denote by Fx
the completion of F at x . We fix an embedding of separable closures Fs ↪→ Fs

x .

Proposition 1.1 Themapb 	→ b·σ(b) · · · σ deg(x)−1(b) induces amap Nx : B(F,G) →
B(Fx ,G). Moreover, there exist morphisms ιx : D ↪→ DF, locx : A(F,G) →
π1(G)Gal(Fs

x /Fx ) (see Sects. 3 and 4 for their definition) such that for every b ∈ B(F,G)

κ̄GFx
(Nx (b)) = locx (κ̄G(b))

ν̄GFx
(Nx (b)) = ν̄G(b) ◦ ιx ,

where the terms on the left hand side are the Newton and Kottwitz point for the local
field Fx as defined in [17].

Interestingly, the set B(F,G) shares a lot of properties with its analogue over local
fields. We show that ν̄G(b) is trivial if and only if b lies in the image of H1(F,G) ↪→

Note that this definition is different from the subgroup of degree zero divisors Div0(E) ={∑
ny · y ∈ Div(E) | ∑

ny · deg(y) = 0
}
. This is due to the fact that we are actually considering the

Galois coinvariants of Div0(F̆) where every place has degree one, see Sect. 2.5 for details.
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B(F,G). More generally, we call b ∈ B(F,G) basic, if ν̄G(b) factors through the center
of G. In Sect. 5 we give the following classification of basic σ -conjugacy classes. In
particular, this gives complete description of B(F,G) when G is a torus.

Theorem 1.2 The Kottwitz map induces an isomorphism B(F,G)b
∼→ (π1(G) ⊗

Div(Fs)0)Gal(Fs/F).

To obtain a description of thewhole B(F,G) by its invariants, we proceed as follows.
By giving a combinatorial description how B(F,G) behaves under ad-isomorphisms,
we may reduce to the case that G is of adjoint type. In particular,the quasi-split inner
form G∗ of G is an (extended) pure inner form. From that we deduce that B(F,G) ∼=
B(F,G∗). Thus it suffices to describe B(F,G) for quasi-split G. In this case, we can
reduce to the theorem above since every σ -conjugacy class in G is induced by a σ -
conjugacy class of an F-torus in G. More precisely, we get the following result.

Theorem 1.3 Let G be a reductive group.

(1) Every b ∈ B(F,G) is uniquely determined by its invariants κ̄G(b) and ν̄G(b).
(2) If G is quasi-split, the canonical map

⋃
T⊂G

max. F−torus

B(F, T) → B(F,G)

is surjective.

The second part of statement can be seen as an analogue for the moduli space of
global G -shtukas to the statement that every isogeny class in the special fibre of a
Shimura variety contains a point that can be lifted to a CM-point. A proof of the latter
statement for Shimura varieties of PEL-type was first sketched in a letter of Langlands
to Rapoport, and was proven in differing generality byMilne [22], Zink [28], Kottwitz
[18], Kisin [13] and most recently by Zhou [27] for Shimura varieties of Hodge type
with paraholic level structure at p given that certain group theoretic conditions are
satisfied.

The classification of B(F,G) is a generalisation of Drinfeld’s classification of ϕ-
spaces ( [9], see also [20]). A ϕ-space over k is an F̆-vector space V together with a
σ -semilinear bijection ϕ : σ ∗V ∼→ V (i.e. a GLdim V -isoshtuka). Drinfeld proved that
the category of ϕ-spaces is semi-simple and that its simple objects are parametrised

by pairs (F̃, 
̃), where F̃ is a separable finite field extension and 
̃ ∈ F̃
× ⊗ Q does

not belong to F′× ⊗ Q for any intermediate field F ⊂ F′
� F̃. In above terms this is

stated as follows. Let (V , ϕ) have simple factors which correspond to pairs (F̃i , 
̃i ).
We note that we have an isomorphism

div : (F̃
×
i ⊗ Q)

∼→ Div(F̃i )0 ⊗ Q


̃i 	→
∑

x(
̃i ) · deg(x) · x,

since the kernel and cokernel of the “usual” divisor map F̃
×
i → Div0(F̃i ) are unit roots

and points in the Jacobian, respectively, and in particular torsion. Denote by di the
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common denominator of x(
̃i ) · deg(x). By choosing a representative of the Newton
point in GLdim V which maps to the diagonal torus T , we can describe it as an element
of

HomFs (DF , T) = HomZ(X∗(T), X∗(DF)) = Div(Fs)dim V
0

unique up to action of theWeyl group, i.e. up to permutation. Then the the σ -conjugacy
class b ∈ B(F,GLdim V ) defined by (V , ϕ) is uniquely determined by its Newton point
(. . . , div(τ1(
̃i )), . . . , div(τni (
̃i ))︸ ︷︷ ︸

di times repeated

, . . . ), where τ1, . . . , τni : F̃i ↪→ Fs denote the F-

linear embeddings of F̃i .
The essential image of the Newton map is determined by Theorem 1.3 (2); any

maximal torus of GLdim V is of the form
∏

ResEi /F Gm where Ei/F are separable field
extensions of cumulative degree dim V . By Theorem 1.1 and the construction of the
Newton point given in Sect. 3, they contribute Newton points of the form

(. . . , τ1(Di ), . . . , τmi (Di ), . . . ),

where Di ∈ Div(Ei )0 and τ1, . . . , τmi : E → F denote the F-linear embeddings.
These results about B(F,G) provide useful tools to study points in the special fibre

of moduli space of G -shtukas. There is an extremely long list of previous results on
‘point-counting’ on the moduli space of G -shtukas, most of which partition points by
isogeny classes. For the most recent results applicable beyond inner forms of GLn ,
see [1,6,7,23].

Another natural question to ask is whether the pointed set of σ -conjugacy classes
B(F,G) and the pointed set of Galois gerbs constructed by Kottwitz in [14] are the
same, i.e. whether there exists a canonical isomorphism of functors. This question is
proven to have a positive answer in an upcoming work of Iakovenko [11].

Notation and conventions

For any finite extension E/Fwe denote by Ĕ = E · F̆ the maximal unramified extension.
Let σE ∈ Gal(Ĕ/E) denote the lift of the Frobenius of k over the field of constants kE of
E. Let CE denote the smooth projective curve associated to E. We denote by Div(E) the
group of divisors on CE and by PDiv(E) ⊂ Div(E) the subgroup of principal divisors.

For y ∈ |CE| we denote by Ey the y-adic completion of E, by Ĕy the completion of
its maximal unramified extension and by σy : Ĕy → Ĕy the Frobenius morphism over
Ey . For every field F , we denote by Fs the separable closure of F . For every x ∈ |C |
we fix an embedding Fs ↪→ Fx s and denote by yx the corresponding continuation of
x to Fs .
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2 Preliminaries

In this section we allow G to be a linear algebraic group over the function field F. In
the following sections, we will assume that G is reductive.

2.1 By evaluating a crossed homomorphism f ∈ Z1(σZ,G(F̆)) at σ we obtain a
natural isomorphism H1(σZ,G(F̆)) ∼= B(F,G). In particular, the canonical morphism
σZ ↪→ Gal(F̆/F) induces an embedding

H1(F̆/F,G) ↪→ B(F,G). (2.1)

Moreover, we obtain restriction morphisms

B(F,G) → B(F′,G) (2.2)

B(F,G) → B(Fx ,G) (2.3)

for any finite field extension F′/F and any place x ∈ |C |. Explicitly, these morphism
are given as follows. For g ∈ G(F̆) and d ∈ N let

N(d)(g) := g · σ(g) · · · σ d−1(g).

By a similar argument as above, we have

H1(F̆/F,G) ∼= H1(σ Ẑ,G(F̆)) = lim−→H1(σZ/dZ,G(F ⊗ Fqd )),

thus (2.1) identifies H1(F̆/F,G) with the σ -conjugacy classes b ∈ B(F,G) such that
for some (or equivalently every) b ∈ bwe have N(d)(b) = 1 for some d ∈ N divisible
enough. The morphisms (2.2) and (2.3) are induced by g 	→ N(d)(g), where d denotes
the degree of the field of constants in F′ over Fq , respectively the degree of x .

If G is abelian, we obtain in addition the corestriction morphism

B(F′,G) → B(F,G) (2.4)

for any finite field extension F′/F. Explicitly, this map is given by g 	→ ∏
τ(g) where

the product is taken over all F̆-linear embeddings F̆
′
↪→ Fs .

2.2 Assume for the moment that H1(F̆,G) = 1. This is for example the case when G
is reductive ([2, § 8.6]), split unipotent or any extension thereof. As the Weil group
WF fits inside a short exact sequence

1 Gal(Fs/F̆) WF σZ 1,

we obtain the inflation-restriction exact sequence

1 H1(σZ,G(F̆)) H1(WF,G(Fs)) H1(F̆,G).
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Since H1(F̆,G) = 1 by assumption, we thus obtain a natural isomorphism
H1(WF,G(Fs)) ∼= B(F,G). Similarly, we have H1(F,G) ∼= H1(F̆/F,G).

Let 1 → G1 → G2 → G3 → 1 be an exact sequence of linear algebraic groups
with H1(F̆,G1) = 1. Thus the sequence

1 G1(F̆) G2(F̆) G3(F̆) 1

is also exact. Taking the long exact cohomology sequence for σZ, we obtain

1 G1(F) G2(F) G3(F)

B(F,G1) B(F,G2) B(F,G3) 1,

where the surjectivity of B(F,G2) → B(F,G3) is an immediate consequence of the
surjectivity of G2(F̆) → G3(F̆).

2.3 Let F′/F be a finite field extension and G′ be a linear algebraic group over F′. We
denote by ResF′/F G

′ the F-group obtained from G′ by restriction of scalars and let

σ d := σ ′ denote the Frobenius over F′. Then (ResF′/F G
′)(F̆) is the induced σZ-group

from the σ ′Z-group G′(F̆′
). Thus Shapiro’s lemma (see e.g. [26, Prop. 8]) tells us that

we have an isomorphism

B(F,ResF′/F G
′) ∼→ B(F′,G′) (2.5)

given by g 	→ N(d)(m(g)) where m denotes the multiplication map (ResF′/F G
′)(F̆) =

G′(F′ ⊗F F̆) → G′(F̆′
). Note that we may interpret (2.2) and (2.3) as composition of

B(F,G) → B(F,ResF′/F G) ∼= B(F′,G)

B(F,G) → B(F,ResFx/Fq ((�x )) G) ∼= B(Fx ,G)

where the first morphism is induced by the canonical embedding G(F̆) ↪→ G(F̆⊗F F′)
and G(F̆) ↪→ G(F̆⊗̂Fq ((�x ))Fx ), respectively and the isomorphism is given by (2.5).

Example 2.4 Assume that G = Gm . By taking coinvariants of the short exact sequence

1 F
×
q F̆

×
PDiv(F̆) 1,div

we obtain B(F, Gm) ∼= PDiv(F̆)σ since every element of F
×
q can be written as σ(x) ·

x−1 = xq−1 and hence (F
×
q )σ = 1. By Shapiro’s lemma we obtain for any finite

separable extension E/F that B(F,ResE/F Gm) ∼= PDiv(Ĕ)σE .

2.5 To get an explicit description of PDiv(Ĕ)σE , consider the exact sequence

H1(σ
Z,Pic0(CE)(F̄q)) PDiv(Ĕ)σE Div0(Ĕ)σE Pic0(CE)(F̄q)σE ,
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where we identified Pic0(CE)(F̄q) = Pic0(CĔ)(F̄q) (see e.g. [4, Prop. 8.1.4]). Since
the the Lang isogeny is surjective, the right most term is trivial and thus PDiv(Ĕ)σE →
Div0(Ĕ)σE is surjective. As Pic0(CE)(Fq) is torsion, so is the left most term. But
PDiv(Ĕ)σE,tors ∼= B(E, Gm)tors, i.e. a torsion element corresponds to a class [x] ∈
(Ĕ

×
)σE such that there exist y ∈ Ĕ, n ∈ N such that xn = y · σE (y)−1. In particular,

if we fix a finite subextension E′ ⊂ Ĕ containing x and y, we obtain NE′/E(x)
n =

NE′/E(y · σE (y)−1) = 1. By further enlarging E′ by a degree n subextension of Ĕ, we
obtain NE′/E(x) = 1 and thus is already of the form y′ · σ(y′)−1 for some y′ ∈ E′

by Hilbert 90. In other words, [x] = [1] and hence we have PDiv(Ĕ)σE,tors = 1.
Altogether, we have shown that PDiv(Ĕ)σE ∼= Div0(Ĕ)σE , which we further identify
with

Div(E)0 :=
{∑

nx · x ∈ Div(E) |
∑

nx = 0
}

via y 	→ y|E . We denote by [div] : Ĕ → Div0(Ĕ)σE = Div(E)0 the composition of div

with the canonical projection Div(Ĕ)0 � (Div(Ĕ)0)σE .

2.6 For any finite extension E/F, we denote by fE/F : CĔ → CF̆ the morphism of
curves corresponding to Ĕ/F̆. Using the identification above, the push-forward and
pull-back of divisors on these curve induces morphisms f ∗

E/F : Div(F)0 → Div(E)0
and fE/F,∗ : Div(F)0 → Div(E)0. More explicitly, these morphisms are given by

f ∗
E/F(x) =

∑
y|x

[Ey : Fx ] · y

fE/F,∗(y) = y|F.

Note that when E/F is Galois, fE/F,∗ induces an isomorphism Div(E)0Gal(E/F) ∼=
Div(F)0.

3 Tori

Let E/F be a finite Galois extension. In order to generalise the isomorphism in Exam-
ple 2.4 to arbitrary F-tori, we rewrite it as

(X∗(ResE/F Gm) ⊗ Div(E)0)Gal(E/F) ∼= B(F,ResE/F Gm), (3.1)

via the canonical isomorphism of functors

(X∗(ResE/F Gm) ⊗ (·))Gal(E/F) ∼= (Z[Gal (E/F)] ⊗ (·))Gal(E/F) ∼= (·)
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Proposition 4.1 Let E/F be a finite Galois extension. The isomorphism (3.1) can be
extended uniquely to an isomorphism of functors

(Div(E)0 ⊗ X∗(·))Gal(E/F) ∼→ B(F, ·)

of F-tori which split over E. Moreover, for any Galois extension E ⊂ E′ the diagram of
functors on E-split F-tori

(Div(E′)0 ⊗ X∗(·))Gal(E′/F) B(F, ·)

(Div(E)0 ⊗ X∗(·))Gal(E/F) B(F, ·)
∼fE′/E,∗

∼

∼

commutes.

Proof We first show the second part of the proposition, assuming that the first part
holds. As the diagram

Div(E′)0 B(F,ResE′/F Gm)

Div(E)0 B(F,ResE/F Gm)

∼

fE′/E,∗ NmE′/E
∼

commutes, the functor homomorphism extending (3.1) for E′ also yields the isomor-
phism for E. Hence the second part of the proposition holds by uniqueness.

The functor X∗ is represented by ResE/F Gm . Thus

Hom(Div(E)0 ⊗ X∗(·),B(F, ·)) ∼= Hom(X∗(·),Hom(Div(E)0,B(F, ·)))
∼= Hom(Div(E)0,B(F,ResE/F Gm))

∼= End(Div(E)0)

Because the second isomorphism is induced by evaluating at ResE/F Gm , any such
functor homomorphism is uniquely determined by its values on the ResE/F Gm-
valued points, proving the uniqueness part of the proposition. One checks easily
that the functor homomorphism corresponding to the identity extends the map
X∗(ResE/F Gm) ⊗ Div(E)0 → B(ResE/F Gm, F) induced by (3.1). Note that every

element γ ∈ Gal(E/F) induces an endomorphism X∗(·) ∼→ X∗(·). Hence Gal(E/F)
acts on Hom(X∗(·)⊗Div(E)0,B(F, ·)) via precomposing. By tracing through the def-
initions, one checks that the action corresponds to the standard Gal(F/E)-action on
End(Div(E)0). In particular, the functor morphism corresponding to the identity is
Gal(F/E)-invariant and thus induces a functor

(Div(E)0 ⊗ X∗(·))Gal(E/F) → B(F, ·)

It remains to prove that this is an isomorphism. Fix an E-split torus T and an exact
sequence

1 U S T 1,
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where S is a product of copies of ResE/F Gm . We obtain a commutative diagram with
exact rows

(X∗(U) ⊗ Div(E)0)Gal(F/E) (X∗(S) ⊗ Div(E)0)Gal(F/E) (X∗(T) ⊗ Div(E)0)Gal(F/E) 1

B(F,U) B(F, S) B(F, T) 1.

Since the middle vertical morphism is an isomorphism the right map is surjective.
Since this must be true for any E-torus, it also holds for U. So the left vertical map is
surjective, proving that the right map is also injective by the 4-lemma. ��

To simplify notation, we define the functor from F-tori to abelian groups

A(F, ·) := lim←−
fE′/E,∗

(Div(E)0 ⊗ X∗(·))Gal(E/F).

Thus the main result of the Proposition 4.1 above is that A(F, ·) and B(F, ·) are canon-
ically isomorphic to each other.

Definition 3.2 For any F-torus T we define κ̄T : B(F, T) → A(F, T) as the inverse of
above isomorphism A(F, T) ∼= B(F, T).

3.3 Let F′/F be a finite Galois extension. We define the morphism NmF′/F : A(F, ·) →
A(F′, ·) as themorphism inducedby restrictionmorphisms (Div(E)0⊗X∗(·))Gal(E/F) →
(Div(E)0⊗X∗(·))Gal(E/F′), a 	→ ∑

γ γ ·a,whereγ runs through a set of representatives
of Gal(E/F)/Gal(E/F′). Similarly, we let corF′/F : A(F′, ·) → A(F, ·) to be induced
by the canonical projection (Div(E)0 ⊗ X∗(·))Gal(E/F′) � (Div(E)0 ⊗ X∗(·))Gal(E/F).
Moreover, for any place x ∈ |C |, we define locx : A(F, ·) → X∗(·)Gal(Fx s ,Fx ) as fol-
lows. Let T be an F-torus with splitting field E. Denoting by yx |x the place defined by
our chosen embedding Fs ↪→ Fx s , the field Eyx is a splitting field of TFx . We define
locx as the composition of

(Div(E)0 ⊗X∗(T))Gal(E/F)
locE,x ⊗ id−−−−−→ (

⊕
y|x

Z · y ⊗ X∗(T))Gal(E/F)

∼= X∗(TFx )Gal(Eyx /Fx ) = X∗(TFx )Gal(Fs
x /Fx ).

Lemma 3.4 The isomorphism A(F, ·) ∼= B(F, ·) is compatible with the morphism
defined above. More precisely, the following holds.

(1) Let F′/F be a finite field extension. Then the diagrams

B(F, ·) A(F, ·) B(F′, ·) A(F′, ·)

B(F′, ·) A(F′, ·) B(F, ·) A(F, ·)
(2.2)

∼

NmF′/F (2.4)

∼
corF′/F

∼ ∼

commute.
(2) Let x ∈ |C |. Then the diagram
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B(F, ·) A(F, ·)

B(Fx , ·) X∗(·)Gal(E/F)
(2.3)

∼

locx
∼

commutes, where the isomorphism in the bottom row is given by [17, § 2.4].

Proof It suffices to prove the claim for T = ResE/F(Gm), which we show by direct cal-
culation. Using the above identification A(F,ResE/F Gm) = Div(E)0, the isomorphism
κ̄T is induced by the composition

T(F̆) = (E ⊗ F̆)× N(d)◦m−−−−→ Ĕ
× [div]−−→ Div(E)0,

where m denotes the multiplication map and d = [kE : kF].
To prove (1), we can assume that E is big enough such that F′ ⊂ E. In particular,

we can identify E ⊗F F′ ∼= EI here I is the set of F-linear embeddings F′ ↪→ E.
This yields an isomorphism TF′ ∼= (ResE/F′ Gm)I and thus A(F′, T) = Div(E)I0. Using
these identifications, NmF′/F : Div(E)0 → Div(E)I0 is the diagonal embedding and
corF′/F : Div(E)I0 → Div(E)0 maps each I -tuple to the sum of its components. We
denote d ′ := [kF′ : kF] and d ′′ := [kE : kF′ ]. Then (1) follows from the commutativity
of

T(F̆) (E ⊗F F̆)× Ĕ
×

Div(E)0

T(F̆
′
) (E ⊗F F̆

′
)× (EI ⊗F′ F̆

′
)× (Ĕ

×
)I Div(E)I0

N(d′)

N(d)◦m

id⊗N(d′)

[div]

diag. NF′/F
∼ N(d′′)◦m [div]

and

T(F̆
′
) (E ⊗F F̆

′
)× (EI ⊗F′ F̆

′
)× (Ĕ

×
)I Div(E)I0

T(F̆) (E ⊗F F̆)× Ĕ
×

Div(E)0,

g 	→∏
τ(g)

∼

id⊗Nm
F̆′/F̆

N(d′′)◦m [div]

mult . corF′/F
N(d)◦m [div]

where in the leftmost vertical morphism the product runs over all F̆-linear embeddings
τ : F̆′

↪→ Fs .
For (2) we identify E ⊗F Fx ∼= ∏

y|x Ey , inducing TFx ∼= ∏
y|x ResEy/Fx Gm and

thus X∗(TFx )Gal(Fx s/Fx ) = ∏
y|x Z · y. Under these isomorphisms locx is identified

with locE,x . We denote d ′ = deg(x) and d ′′ = [k(y) : k(x)]. Then (2) follows from
the commutativity of

T(F̆) (E ⊗F F̆)× Ĕ
×

Div(E)0

T(F̆x ) (E ⊗F F̆x )×
∏

y|x (Ey ⊗Fx F̆x )×
∏

y|x Ĕy
× ⊕

y|x Z.

N(d′)

N(d)◦m

id⊗N(d′)

[div]

diag. locx

∼ N (d′′)◦m ⊕ valy

��
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3.5 As a consequence of previous lemma, κ̄T([b]) depends only on b ∈ T(F̆) and not
on the choice of the base field F. More precisely, by Lemma 3.4 (1), we see that for
any intermediate extension F′ ⊂ F̆ the diagram

T(F̆) B(F′, T) A(F′, T)

T(F̆) B(F, T) A(F, T)

κ̄TF′

corF′F
κ̄T

commutes. By taking the limit over all such F′ we obtain a σ -equivariant morphism

κT : T(F̆) → A(F̆, T) := lim←−
F⊂F̃⊂F̆

A(F̃, T)

such that for every b ∈ T(F̆) we obtain κ̄T([b]) by taking the image of κT(b) under the
canonical projection A(F̆, T) � A(F, T). We call κT(b) the Kottwitz point of b. Note
that the definition of A(F, T) does not change when we extend the projective system
by allowing E to be any function field of a subfield of k over F. Since projective limits
commute with each other as well as with taking coinvariants commute we may write

A(F̆, T) = lim←−
F̃/F finite

lim←−
fE′/E,∗

(Div(E)0 ⊗ X∗(T))Gal(E/F̃) = lim←−
fE′/E,∗

(Div(E)0 ⊗ X∗(T))Gal(E/F̆),

where in the rightmost limit E and E′ run over finite extensions of F̆.
We obtain the following analogue of Lemma 3.4 for A(F̆, T).

Lemma 3.6 Let T be an F-torus.

(1) Let F′/F be a finite field extension and let T′ = TF. Then the diagrams

T(F̆) A(F̆, T) T(F̆
′
) A(F̆

′
, T)

T(F̆
′
) A(F̆

′
, T) T(F̆) A(F̆, T)

κT

Nm
F̆′/F̆ (2.4)

κT′

cor
F̆′/F̆

κT′ κT

commute.
(2) Let x ∈ |C | and denote Tx = TFx . Then the diagram

T(F̆) A(F̆, T)

Tx (F̆x ) X∗(·)Gal(Fx s/F̆x )(Tx )

κT

locx
κTx

commutes, where the lower morphism is constructed in [19, § 7].

Proof The follows by taking the limit over F ⊂ F̃ ⊂ F̆ for the diagrams in Lemma 3.4,
setting F̃

′ = F̃ · F′ in the first part of the lemma. Note that for F̃ big enough the fields
F̃ and F̃

′
have the same fields of constants, thus the σ -twisted powers occurring in

Lemma 3.4 are trivial. ��
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3.7 In order to construct the Newton point, we consider the pro-tori

DE/F = Spec F[Div(E)0]
DF = lim←− DE/F,

that is DF is the protorus with character group Div(Fs)0 := lim−→ f ∗
E/F

Div(E)0. For any

place y of Fs over a place x of F the morphisms

evE,y : Div(E)0 → Q,
∑

ny′ · y′ 	→ [Ey : Fx ]−1 · ny .

are compatible with f ∗
E′/E and hence induce a morphism evy : Div(Fs)0 → Q. We

denote by ιy : D → DF the corresponding morphism of protori, where D denotes the
protorus with character group Q. Note that the morphism

ev : Div(Fs)0 →
∏
y

Q

is injective, hence any morphism ν : DF → T is uniquely determined by the family
(ν ◦ ιy)y . Recall that we fixed a place yx |x of Fs in the introduction. We denote
evx := evyx and ιx := ιyx .

We claim that for any F-torus T and any finite Galois extension of splitting fields
E′/E the diagram

(Div(E′)0 ⊗ X∗(T))Gal(E′/F) (Div(E′)0 ⊗ X∗(T))Gal(E
′/F)

(Div(E)0 ⊗ X∗(T))Gal(E/F) (Div(E)0 ⊗ X∗(T))Gal(E/F)
fE′/E,∗⊗id∼

NmE′/F

NmE/F

f ∗
E′/E⊗id

commutes, where the vertical arrows are mapping a coset to the sum of its elements.
Indeed, as the norm map for E′/F is the composition of the Norm maps for E′/E and
E/F, one can reduce to the case E = F. In particular T is split, so we may assume
T = Gm , i.e. X∗(T) = Z. The claim now follows by construction. Passing to the limit,
we obtain a morphism of functors

A(F, ·) → (Div(Fs)0 ⊗ X∗(·))Gal(Fs/F) = HomF(DF, ·). (3.2)

Note that the Norm map induces an isomorphism A(F, ·)Q ∼→ HomF(DF, ·)Q, in
particular the kernel of (3.2) equals A(F, ·)tors.
Definition 3.8 For any F-torus T and b ∈ T(F̆), we define its Newton point νT(b) as
the image of κ̄T([b]) under (3.2) above.
Lemma 3.9 Let T be an F-torus and b ∈ T(F). We fix a finite extension field F′/F and
a point x ∈ |C | and denote by T′ and Tx the respective base change of T to F′ and Fx .
Then the following holds for all b ∈ T(F̆).
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(1) νT′(N([kF′ :kF])(b)) = νT(b)

(2) νT(NmF̆
′
/F̆
b) = Nm

F̆
′
/F̆

νT′(b) and

(3) νTx (N
(deg x)b) = νT(b) ◦ ιx .

Proof We fix E/F splitting T and containing F′. The above assertions follow by
Lemma 3.4 and commutativity of the diagrams

(Div(E)0 ⊗ X∗(T))Gal(E/F) (Div(E)0 ⊗ X∗(T))Gal(E/F)

(Div(E)0 ⊗ X∗(T))Gal(E/F′) (Div(E)0 ⊗ X∗(T))Gal(E/F
′)

(Div(E)0 ⊗ X∗(T))Gal(E/F′) (Div(E)0 ⊗ X∗(T))Gal(E/F
′)

(Div(E)0 ⊗ X∗(T))Gal(E/F) (Div(E)0 ⊗ X∗(T))Gal(E/F)

(Div(E)0 ⊗ X∗(T))Gal(E/F) (Div(E)0 ⊗ X∗(T))Gal(E/F)

(X∗(T))Gal(Eyx /Fx ) X∗(T)
Gal(Eyx /Fx )
Q

.

NmE/F

NmF′/F
NmE/F′

NmE/F

corF′/F NmF′/F
NmE/F

NmE/F

locx
evE,x

[Eyx :Fx ]−1 NmEyx /Fx

The commutativity of the first two diagrams follows directly from the definition of the
norm map. Finally we evaluate the third diagram at an element [∑y′∈|CE | y ⊗ λy] ∈
(Div(E)0 ⊗ X∗(T))Gal(E/F):

[∑
y′∈|CE | y ⊗ λy

] ∑
y∈|CE | y ⊗ (

∑
τ∈Gal(E/F) τ−1(λτ(y′))

[∑
τ∈Gal(E/F)/Gal(Eyx /Fx ) τ−1(λτ(y))

] [
Eyx : Fx

]−1 · ∑
τ∈Gal(E/F) τ−1(λτ(y)),

proving the commutativity of the third diagram. ��
Remark 3.10 Since νTx (b) is independent of the choice of yx |x , one would expect
the same to be true for νT(b) ◦ ιx . However, one has to be careful with this notion.
Consider two different choices of embeddings i, i ′ : Fs ↪→ Fx s corresponding to
places yx and y′

x of F
s , respectively. Let τ ∈ Gal(Fs/F) such that i ′ = i ◦ τ and denote

by ιx , ιx ′ : D → DF the respective embeddings corresponding to yx and y′
x . Then

ι′x = τ(ιx ), thus

νT(b) ◦ ι′x = τ(νT(b) ◦ ιx ).

In particular, νT(b) ◦ ιx , as a morphism over Fs does depend on the choice of yx .
However, applying i to this equation shows that
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i ′(νT(b) ◦ ι′x ) = i(νT(b) ◦ ιx ),

i.e. νT(b) ◦ ιx is independent of choice when considered over Fx s .

4 The Kottwitz and Newton point for reductive groups

For any (connected) reductive group G over F, we denote by π1(G) Borovoi’s fun-
damental group. That is if T is a maximal torus of G and Q∨ ⊂ X∗(T) denotes the
absolute coroot lattice then π1(G) is defined as the Galois module X∗(T)/Q∨. This
construction is independent of the choice of T up to canonical isomorphism and π1(·)
is an exact functor (see [3, § 1])

Motivated by the previous chapter we define

A(F,G) := lim←−
fE′/E,∗

(Div(E)0 ⊗ π1(G))Gal(E/F),

A(F̆,G) := lim←−
fE′/E,∗

(Div(E)0 ⊗ π1(G))Gal(E/F̆),

where the limit ranges over all finite E/F (and finite E/F̆ resp.) such that GE is split.
The construction of the localisation map in (3.3) generalises to

locx : A(F̆,G) → π1(G)Gal(F̆s
x /F̆x )

.

In the following we define the Kottwitz point κG : G(F̆) → A(F̆,G) by canonically
extending the functor on tori defined in the previous chapter.

Proposition 4.1 There exists a unique family of homomorphisms κG : G(F̆) → A(F̆,G)

which is functorial in G and coincides with the definition in Sect. 3.5 when restricted
to the case that G is a torus.

Proof We follow the proof of [14, Prop. 9.1]. We first show that κG extends uniquely
to reductive groups with simply connected derived group Gder. Then the canonical
projection G � G/Gder =: D induces an isomorphism π1(G)

∼→ π1(D) = X∗(D). By
functoriality, κG has to be the unique homomorphism making the diagram

G(F̆) D(F̆)

A(F̆,G) A(F̆,D)

κG κD

∼

commute. As G → G/Gder is functorial in G, the functoriality of κG follows from its
functoriality on tori.

For general reductive G consider a z-extension

1 Z G1 G 1
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withGder
1 simply connected. Thus κGmust be the uniquemorphismmaking the diagram

1 Z(F̆) G1(F̆) G(F̆) 1

A(F̆,Z) A(F̆,G1) A(F̆,G) 1

κZ κG1 κG

commute. As any z-extension yields a short exact sequence of fundamental groups,
the rows of above diagram are exact and thus κG exists. As a consequence of [16,
Lemma 2.4.4] the morphism κG does not depend on the choice of a z-extension as
above and its functoriality follows from the functoriality of κG1 . ��
Corollary 4.2 Let b ∈ G(F).

(1) For any finite field extension F′/F we have

κGF′ (b) = Nm
F̆
′
/F̆

(κG(b))

(2) For any x ∈ |C | we have

κGFx
(b) = locx (κG(b))

Proof If G is a torus, this is Lemma 3.6. We can deduce the result for reductive G
by the proof of the previous proposition. If Gder is simply connected, the claim for G
follows by the corollary applied to the torus D := G/Gder. For general reductive G, we
consider a z-extension G1 � G with Gder

1 simply connected. Then we can conclude
by applying the corollary to G1. ��
Corollary 4.3 Let b,g ∈ G(F̆). Then

(1) κG(σ (b)) = σ(κG(b)),
(2) κG(gbσ−1(g)) and κG(b) have the same image in A(F,G).

Proof The first assertion follows from the functoriality of κG, the second assertion
follows from the first and the fact that A(F,G) = A(F̆,G)σZ . ��
4.4 We continue to consider a reductive group G over F. We first define the Newton
point νG(b) in the case that b ∈ G(F̆) is a rational semisimple element. Then there
exists a rational subtorus T ⊂ G such that b ∈ T(F̆). We define the Newton point
νG(b) : DF → G to be the composition of νT(b) with the embedding T ↪→ G. Note
that this construction does not depend on the choice of T, as ν is functorial in T. For
general b ∈ G(F) we consider N(s)(b) instead.

Lemma There exists an s ∈ N such that N(s)(b) is semisimple.

Proof Let s′ ∈ N such that σ s′(b) = b. It easily follows that N(s′t)(b) =
(
N(s′)(b)

)t

for any t ∈ N. Let N(s′)(b) = γ0 · u0 with γ0 ∈ G(F̄) semisimple, u0 ∈ G(F̄) unipotent
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the Jordan decomposition of N(s)(b). Since F is of characteristic p, there exists r ≥ 0
such that u pr

0 = 1. Thus

N(s′ pr )(b) = N(s′)(b)p
r = γ

pr

0 · u pr

0 = γ
pr

0

is semisimple. ��
Now we choose s ∈ N big enough such that the above lemma is satisfied and such

that b ∈ G(F⊗Fq Fqs ). Thus N(s)(b) is a rational element ofGF⊗Fqs and we can define

νG(b) := νGF⊗Fqs
(N(s)(b)) ∈ HomF̆(DF,G).

As the s-th power induces an automorphism of DF the fraction on the right hand side
is well-defined. Moreover, the definition does not depend on s by Lemma 3.9.

Lemma 4.5 Let b ∈ G(F̆).

(1) For any (rational) morphism of reductive groups f : G → H we have νH( f (b)) =
f ◦ νG(b).

(2) For any finite field extension F′/F, we have νGF′ (N
(d)(b)) = νG(b), where d is the

degree of the induced extension on the field of constants.
(3) For any x ∈ |C | of degree d we have

νGx (N
(d)(b)) = νG(b) ◦ ιx .

Proof By construction, it suffices to check the above statements in the case where
G = T is a torus. The first statement follows directly from its definition. The last two
statements are Lemma 3.9. ��
Lemma 4.6 Let b,g ∈ G(F̆). Then

(1) νG(gbσ(g)−1) = Int(g) ◦ νG(b) and
(2) νG(σ (b)) = σ(νG(b)) = Int(b−1) ◦ νG(b).

Proof For the first assertion, we note that we have for any d ∈ N that N(d)(gbσ−1(g))

= gN(d)(b)σ−d(g). Choosing d big enough that σ (d)(g) = g, we get by Lemma 4.5

νG(gbσ−1(g)) = νGF⊗F
qd

(gN(d)(b)g−1) = Int(g) ◦ νGF⊗F
qd

(N(d)(b)) = Int(g) ◦ νG(b).

The first equation in the second statement follows from applying Lemma 4.5 (1) to
σ : G → G. By the first part of the lemma we also have

νG(σ (b)) = νG(b−1bσ(b)) = Int(b) ◦ νG(b).

��
Lemma 4.7 Let b ∈ G(F̆). Then νG(b) is trivial if and only if [b] lies in the image of
H1(F̆/F,G) under (2.1).
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Proof We have already shown in the discussion of the morphism (2.1) that [b] lies in
the image of H1(F̆/F,G) if and only if N(s)(b) = 1 for s > 0 divisible enough (or
equivalently if this holds for any b′ ∈ [b]). Thus if [b] lies in the image of H1(F̆/F,G)

implies that

νG(b) = νG(N(s)(b)) = 0.

On the other hand, assume that νG(b) is trivial. We choose s ∈ N and T ⊂ GF⊗Fqs

such that N(s)(b) ∈ T(F̆). Since νT(N(s)(b)) = 0, κ̄T(N(s)(b)) must be torsion. Thus
by Lemma 3.4, there exists an s′ ∈ N such that κ̄T⊗F

qss
′ (N

(ss′)(b)) = 1 and hence

N(ss′)(b) = g−1σ ss′(g) for some g ∈ T(F̆). Hence N(ss′)(gbσ(g−1)) = 1. ��
4.8Even for elements in an arbitrary linear algebraic group, the construction above still
yields a well-defined Newton point, though one potentially has to enlarge s such that
N(s)(b) lies in the identity component. Moreover one checks that the above lemmata
generalise to linear algebraic groups, using the same proofs.

As application of this, let P be a connected linear algebraic group whose unipotent
radical RuP is defined over F and F-split (e.g. when P is a parabolic subgroup of a
reductive group). Then we have B(F, RuP) ∼= H1(F, RuP) = 1 by Lemma 4.6; thus
the canonical projection P � Pred onto the reductive quotient induces an isomorphism
B(F, P) ∼= B(F, Pred) by the long exact sequence in (2.2).

4.9. By Corollary 4.3 and Lemma 4.6, the Kottwitz and Newton point define invariants
for every b ∈ B(F,G):

κ̄G(b) ∈ A(F,G)

ν̄G(b) ∈ (HomF̆(DF ,G)/G(F̆))Gal(F̆/F),

which we also call the Kottwitz point and Newton point, respectively. As in (3.6.1)
we can define the norm map

A(F,G) → (Div(Fs)0 ⊗ π1(G))Gal(F
s/F).

Then the image of κ̄G(b) under the Normmap coincides with the image of ν̄G(b) under
the canonical projection.

(Hom(DF,G)/G(Fs))Gal(F
s/F) � (Div(Fs) ⊗ π1(G))Gal(F

s/F).

Indeed, it suffices to check this result for tori, where it is true by definition.

5 Basic �-conjugacy classes

As a next step, we would like to study to which extend a σ -conjugacy class is deter-
mined by its Kottwitz and Newton point. Our starting point is the following special
case.
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Definition 5.1 A σ -conjugacy class b ∈ B(F,G) is called basic, if ν̄G(b) is central.
We denote by B(F,G)b ⊂ B(F,G) the subset of basic elements. An element b ∈ G(F̆)
is called basic, if [b] is basic.
5.2 By Lemma 4.7 we get a Cartesian diagram

B(F,G)b B(F,G)

H1(F,Gad) B(F,Gad).

Hence each b ∈ B(F,G)b corresponds to a set of isomorphic inner forms {Jb}b∈b of
G, explicitly given by Jb(F̆) = G(F̆) where the Gal(F̆/F)-action is twisted by Ad(b).
More explicitly, we have for every F-algebra R

Jb(R) = {g ∈ G(R ⊗F F̆) | g−1bσ(g) = b}.

Lemma 5.3 Themap τb : Jb(F̆) 	→ G(F̆),g 	→ g·b induces a bijection τ̄b : B(F, Jb)
1:1→

B(F,G) such that for all b′ ∈ Jb(F̆) = G(F̆) we have

νG(τb(b
′)) = νJb(b

′) + νG(b)

Proof One easily checks that the bijection τb preserves and reflects σ -conjugacy. We
fix an unramified field extension F′ = F ⊗ Fqs such that there exists an isomorphism
Jb,F′ ∼= G′

F, i.e. N
(s)(b) is central in G. We denote by σb := Int(b) ◦ σ and for any

g ∈ G(F̆)

N(s)
σb

(g) := g · σb(g) · · · σ s−1
b (g) = N(s)(g · b) · N(s)(b)−1.

Now

νJb(g) = νJb,F′ (N
(s)
σb

(g)) = νGF′ (N
(s)(g · b) · N(s)(b)−1)

= νGF′ (N
(s)(g · b)) − νGF′ (N

(s)(b))

= νG(gb) − νG(b),

where the third equality follows by functoriality of ν applied to the multiplication
G × Cent(G) → G and (·)−1 : Cent(G) → Cent(G). ��
Corollary 5.4 For any b ∈ B(F,G)b we have a natural bijection

H1(F, Jb) → {b′ ∈ B(F,G) | ν̄G(b′) = ν̄G(b)}

Proof By Lemma 4.7, H1(F, Jb) can be identified with {b′ ∈ B(F, Jb) | ν̄Jb(b
′) = 0}.

By the previous lemma, there is a natural bijection

{b′ ∈ B(F, Jb) | ν̄Jb(b
′) = 0} → {b′ ∈ B(F,G) | ν̄G(b′) = ν̄G(b)},

finishing the proof. ��
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Theorem 5.5 The Kottwitz point induces a bijection κ̄G : B(F,G)b
1:1→ A(F,G).

Proof The proof in [14, Prop. 15.1] still works in our setup. However, since the proof
significantly simplifies in our situation, we give the full proof for readers’ convenience.

By construction an element b ∈ B(F,G) is basic if and only if ν̄(b) ◦ ιy is central
for all places y of Fs . Since ν̄(b) is rational, we have for all y and τ ∈ Gal(Fs/F)
that ν̄(b) ◦ ιτ (y) = τ(ν̄(b) ◦ ιy). Thus it is equivalent to check only that ν̄(b) ◦ ιx is
central for all x ∈ |C |. We conclude by Lemma 4.5 (3) that b is basic if and only
if its image bx ∈ B(Fx ,G) is basic for every x ∈ |C |. We first prove the theorem
under the assumption that Gder is simply connected. Then A(F,G) ∼= A(F,D), where
D = G/Gder. Thus the statement of the theorem is equivalent to the canonical map
B(F,G)b → B(F,D) being bijective.

To prove injectivity let b,b′ ∈ B(F,G)b with identical images in B(F,D). We
denote by Z(G) the center of G. Since the map Z(G) → D is an isogeny, the induced
morphism Hom(DF, Z(G)) → Hom(DF,D) is injective. Hence νG(b) = νG(b′). By
Corollary 5.4, we have that the difference between b and b′ is measured by an element
τ ∈ H1(F, Jb) in a natural way. By assumption

τ ∈ ker(H1(F, Jb) → H1(F,D)) = H1(F, Jderb ).

By [10] this set is trivial, hence b = b′.
To prove surjectivity, we fix b′′ ∈ B(F,D) and denote by S ⊂ |C | the (finite) set

of all places x where b′′
x is non-trivial. By [5] there exists a maximal F-torus T ⊂ G

such that T is elliptic over Fx for all x ∈ S. By Proposition 4.1, it suffices to construct
an element λ ∈ A(F, T) which maps to κ̄D(b′′). For this we fix a Galois extension E/F
splitting T and hence D. Since b′′

x is trivial outside S, κ̄(b′′) is the coinvariant of an
element of the form

∑
y∈SE

μy ⊗ y ∈ X∗(D) ⊗ Div(E)0.

By [17], there exists an element bx ∈ B(Fx , T) whose image in B(Fx ,D) equals b′′
x .

The Kottwitz point of bx is an coinvariant of an element of the form

δx =
∑
y|x

μ′
y ⊗ y ∈ X∗(T ) ⊗

⊕
y|x

Z · y.

By the combinatorial argument given in [14, p. 80], we may choose δx such that μ′
y

maps to μy for all y and such that δ := ∑
x∈S δx is an element of X∗(T) ⊗ Div(E)0.

In particular the coinvariant of δ in A(F,G) satisfies the wanted property.
For general G, we choose a z-extension

1 Z G′ G 1

such that G′der is simply connected. Hence we have a commutative diagram
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B(F,Z) B(F,G′)b B(F,G)b 1

A(F,Z) A(F,G′) A(F,G) 1

∼κ̄Z ∼κ̄G′ κ̄G

with exact rows (where the top row is in the category of pointed sets and exact by the
long exact sequence in (2.2)) and whose two left vertical arrows are isomorphisms.
Thus κ̄G is also an isomorphism. ��

As a consequence, we obtain the following statement about the Kottwitz point.

Proposition 5.6 Let H → H′ be an ad-isomorphism of reductive groups. Then the
diagram

B(F,H) B(F,H′)

A(F,H) A(F,H′)

is Cartesian.

Proof The proof is the same as for local fields ( [19, Prop. 4.10]) after one replaces
Z(H)� by A(F,H). The arguments in the proof are formal cohomological construc-
tions, which continue to hold, or statements about B(F,G), which we have proven
above. ��
Corollary 5.7 Let κ̄ ∈ A(F,G) and b ∈ B(F,G)b the corresponding element. Then the

composition B(F, Jscb ) → B(F, Jb)
τb−→ B(F,G) induces an isomorphism B(F, Jscb ) ∼=

B(F,G)κ̄ .

Proof By Lemma 5.3 reduces us to show that B(F, Jscb ) → B(F, Jb) induces an iso-
morphism B(F, Jscb ) ∼= B(F, Jb)0. This holds by the previous proposition. ��

6 Describing B(F,G) by its invariants

6.1 We start with an application to the group of self-quasi-isogenies of an isoshuka;
this construction will be helpful later. Given a G-isoshtuka (V , φ), we would like to
study the group of self-quasi-isogenies Aut(V , φ). For this we choose a trivialisation
V ∼= GF̆, which identifies φ with bσ for a b ∈ G(F̆). We now obtain

Aut(V , φ) ∼= {g ∈ G(F̆) | gb = bσ(g)} =: Jb(F).

Proposition 6.2 Let b ∈ G(F̆) and F′ field of definition of νG(b). Denote by Mb the
centraliser of νG(b) in GF′ .

(1) Jb(F) is contained in Mb(F̆).
(2) The functor Jb : R 	→ {g ∈ G(R ⊗F F̆) | gb = bσ(g)} is representable by a

reductive group over F. Moreover, Jb,F′ is an inner F̆-form of Mb.
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Proof The first assertion holds as

Int(g) ◦ νG(b) = νG(gbσ(g−1)) = νG(b).

We prove the second part of (2) first. Identifying F′ ⊗ F̆ ∼= F̆
′[F′:F]

, we obtain for any
F′-algebra R

Jb(R) = {(gi ) ∈ G(R ⊗F′ F̆
′
)[F′:F] | gib = bσ(gi−1)}

∼= {g1 ∈ G(R ⊗F′ F̆
′
) | g1N([F′:F])(b) = N([F′:F])(b)σF′(g1)}.

Thus Jb,F′ is isomorphic to JN([F′ :F])(b)
for the base field F′. Replacing b by N([F′:F])(b)

and F by F′, we thus reduce the second part of (2) to the case that νG(b) is rational.
Since

Int(b) ◦ νG(b) = νG(σ (b)) = σ(νG(b)) = νG(b),

we have that b ∈ M(F̆). Since b is a basic element of M(F̆) by construction, the claim
follows from (5.2). The first part of (2) now follows from the second as Int(b) ◦ σ

defines a Galois descent datum on Jb,F′ . ��
Note that by the proof of the previous proposition, we may identify Jb,F̆

∼= Mb,F̆ where
the Frobenius acts by Ad(b) ◦ σ . We obtain the following intermediate results in our
pursuit to classify B(F,G).

Lemma 6.3 Let b ∈ G(F̆) and denote by ν its Newton point. The map τb : Jb(F̆) →
G(F̆),g 	→ g · b induces a bijection

H1(F, Jb)
1:1→ {b′ ∈ B(F,G) | ν̄G(b′) = ν̄}.

Proof By the proof of Lemma 5.3 the map τb preserves σ -conjugacy and we get for
any j ∈ Jb(F̆) that νG(τb(j)) = νJb(j) + νG(b). Hence the above map on σ -conjugacy
classes is well-defined.

To prove injectivity, let j, j′ ∈ Jb(F̆) such that νJb(j) = νJb(j
′) = 0 and g ∈ G(F̆) such

that τb(j
′) = g−1τb(j)σ (g). By Lemma 4.6 g centralises νG(τb(j)) = νG(τb(j

′)) = ν.
Hence g ∈ Mb(F̆) = Jb(F̆) and one concludes j′ = gjbσ(g)−1b−1 = gjσb(g)−1.

For surjectivity let b′ ∈ B(F,G) with ν̄G(b) = ν̄ and choose b′ ∈ b′ with νG(b′) =
ν. Substituting g = b−1,b′−1in Lemma 4.6 (2) we obtain σ(ν) = Int(b−1) ◦ ν =
Int(b′−1) ◦ ν. In particular, we have j := b′b−1 ∈ Mb(F̆) = Jb(F̆). In particular,
νJb(j) = νG(b′) − νG(b) is trivial, proving surjectivity. ��
Remark 6.4 One checks that analogously to the result of Rapoport and Richartz [24,
Prop. 1.17], the Jb-torsor corresponding to b′ as above is given by

Jb,b′ : R 	→ {g ∈ G(R ⊗ F) | gbσ(g)−1 = b′}.



75 Page 22 of 34 P. Hamacher, W. Kim

Corollary 6.5 Let b,b′ ∈ B(F,G) such that ν̄G(b) = ν̄G(b′) and κ̄G(b) = κ̄G(b′). Then
b = b′.

Proof By the previous corollary, we may replace G by Jb′ and assume that b′ = 1.
By the Corollary 5.7, we may assume that G is simply connected. By Lemma 4.7, b
corresponds to an element in H1(F,G), which is trivial because G is simply connected
(by [10], or alternatively H1(F,G) ↪→ A(F,G) = {0})). ��
6.6 By the previous corollary, we know that the Kottwitz and Newton point uniquely
determine a σ -conjugacy class. If G is quasi-split, the possible values of (ν̄, κ̄) can
be calculated using Theorem 6.7 below; so we briefly describe how to reduce the
description of B(F,G) to the quasi-split case.

By Proposition 5.6 we can reduce to the case that G is of adjoint type. Then any
inner form of G is can be described by twisting the Frobenius action with a basic
element, thus Lemma 5.3 allows us to replace G by a quasi-split inner form in this
regard.

Theorem 6.7 Assume that G is quasi-split. Then the map

⊔
T⊂G

max .F−torus

B(F, T) → B(F,G)

is surjective.

Proof We first assume that the derived group of G is simply connected. Let b ∈ G(F̆)
be arbitrary. We fix an element z ∈ Jb(F) which is regular semisimple in G. Such an
element exists, since the set of G-regular semisimple elements in Jb(F) is open and
non-empty as Jb contains a maximal torus of G; as Jb(F) is a dense subset of Jb(F), it
must intersect this set non-emptily. Now σ(z) = b−1zb, in particular the conjugacy
class C of z in G(F̆) is rational. By Corollary A.1.3 there exists an F-rational element
z0 ∈ C . Write z = gz0g−1. Then we get

σ(g)σ (z0)σ (g)−1 = σ(z) = b−1gz0g−1b.

Hence g−1bσ(g) is an element of the centraliser of z0, which is an F-torus by assump-
tion.

To prove the remaining cases, we consider a z-extension

1 Z G1 G 1

with Gder
1 is simply connected. We obtain a commutative diagram

⊔
T1⊂G1

max .F−torus

B(F, T1) B(F,G1)

⊔
T⊂G

max .F−torus

B(F, T) B(F,G).
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Hence the lower map must also be surjective. ��
For future reference, we record the following helpful result.

Corollary 6.8 Let G be quasi-split and b ∈ B(F,G). Then there exists b ∈ b such that
νG(b) is rational.

Proof This follows from the previous theorem since the Newton point of a torus is
automatically rational. ��
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Appendix A: On rational conjugacy classes

A.1 Statement

Let F be any field. (In the intended setting, F will be a global or local function field,
which is imperfect.) Let G be a (connected) quasi-split reductive group over F , and
assume that the derived subgroup Gder of G is simply connected.

Note that any conjugacy class C ⊂ G(F) is the set of F-points of some locally
closed subvariety of GF . We say that a conjugacy class C ⊂ G(F) is defined over F
if the corresponding locally closed subvariety is defined over F .

Theorem A.1.1 Let C ⊂ G(F) be a regular semisimple conjugacy class defined over
F. Then there exists an element x ∈ G(F) ∩ C.

If F is perfect then the above theorem was obtained for any F-rational semisimple
conjugacy class C (but not necessarily regular); cf. [15, Thm. 4.1]. If F is not neces-
sarily perfect and G is semisimple, then the above theorem was proved in [2, § 8.6]
by modifying the argument for perfect base fields in [25, Thm. 1.7]. In the semisimple
case, the proof uses the regularity assumption on C if the base field is imperfect.

In short, the aboveproposition canbeobtainedbymodifying the proof of Steinberg’s
theorem [25, Thm. 1.7] in the reductive setting, using some ideas from [15, Thm. 4.1].
As we are not aware of any reference, let us provide a proof here.

We also need the following refinements of Theorem A.1.1:

http://creativecommons.org/licenses/by/4.0/
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Corollary A.1.2 We keep all the assumptions from Theorem A.1.1, and assume that
F has cohomological dimension ≤ 1. Then any regular semisimple conjugacy class
C ⊂ G(F) defined over F contains a unique G(F)-conjugacy class.

When F is perfect, this theorem was proved by Steinberg [25, Corollary 10.3] for any
semisimple conjugacy classes.

Proof We first show that C contains a unique G(Fs)-conjugacy class Cs ⊂ G(Fs),
necessarily defined over F . Existence is guaranteed by TheoremA.1.1. Now, let x, y ∈
C∩G(Fs). Since all maximal tori are conjugated to each other over Fs , we can replace
x and y by G(Fs)-conjugates so that they are contained in a given Fs-torus T . Since
x and y are conjugated under G(F), they lie in the same Weyl group orbit. Since
every Weyl group element lifts to an element of G(Fs) by [8, Exp. XXII, Cor. 3.8], it
follows that x and y are G(Fs)-conjugates of each other.

The statement now follows from the argument in [15, § 3]. Let x ∈ C ∩ G(F),
which exists by Theorem A.1.1. Using the assumption that Gder is simply connected,
it follows that the set ofG(F)-conjugacy classes contained inCs is in natural bijection
with

ker
(
H1(F,Gx ) → H1(F,G)

)
,

where Gx is the centraliser of x in G; cf. [15, § 3]. On the other hand, if F has
cohomological dimension≤ 1 then H1(F,Gx ) vanishes asGx is connected reductive;
cf. [2, §§ 8.6]. ��
Corollary A.1.3 Let G be as in TheoremA.1.1, and let E/F be a (not necessarily finite)
Galois extension. Assume that E has cohomological dimension≤ 1. Then any regular
semisimple Gal(E/F)-stable conjugacy class in G(E) contains an element in G(F).

In particular, if F is a global function field and E := F̆ then any σ -stable regular
semisimple conjugacy class in G(F̆) contains an element in G(F).

Proof This is an immediate consequence of the previous corollary. ��
It remains to prove Theorem A.1.1. Unfortunately, we cannot naively adapt the

proof of [15, Theorem 4.1]. Indeed, to reduce the proof to the semisimple simply
connected case, loc. cit. used the equality

G(F) = Z(F) · Gder(F),

where Z is the centre of G. On the other hand, we do not have such an equality over
Fs as one can see from the case when G = GLn with p|n. Therefore, we have to redo
part of proof of Steinberg’s theorem in [25, §9] in the reductive setting. Let us now
give a proof.

Notations

We choose a maximal split F-torus of G, and let T ⊂ G be its centraliser. (Then T is
a maximal F-torus because G is quasi-split.) We choose a F-rational Borel subgroup
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B ⊂ G containing T . We work with the (absolute) root datumwith respect to TFs , and
we get a natural Gal(Fs/F)-action on roots, coroots, and the (absolute) Weyl group
W . Therefore, we may view W as an finite étale group scheme over F , and its action
on T is defined over F .

We set T der := T ∩Gder and let Z denote the centre ofG. Let D := G/Gder denote
the cocentre of G. Then we have the following short exact sequence of tori:

1 T der T D 1 . (A.1.4)

Lemma A.1.5 Assume that Gder is simply connected.

(1) The torus T der is a product of ResFi /F Gm for finite separable extensions Fi/F.
(2) For any algebraic separable extension F ′/F, the short exact sequence (A.1.4)

induces a short exact sequences on F ′-points ; i.e.,

1 T der(F ′) T (F ′) D(F ′) 1 .

Proof Since Gder is simply connected, it is a product of F-simple factors. So the
argument in [15, p. 793] shows claim (1). Then claim (2) when T der splits over F ′
follows from the vanishing of H1

fl(F
′, Gm) (cf. [21, Ch. III, Proposition 4.9]), and the

general case of (2) follows from (1) via Shapiro’s lemma and Hilbert’s Theorem 90
for Galois cohomology. ��

A.2 Normal forms: Review of Steinberg’s construction

We review the work of Steinberg’s on ‘normal forms’ for regular conjugacy classes
over an algebraically closed field F . We also investigate which results hold over a
separably closed fields Fs .

In this section, let us assume that G is semi-simple, simply connected and quasi-
split over F . (Later, we will apply the constructions in this subsection to the derived
subgroup.)

Let r be the absolute rank of G, and choose (absolute) simple roots α1, . . . , αr
corresponding to our choice of (T , B). Let σi denote the reflection with respect to αi ,
which is an element of the absoluteWeyl group, and we choose a lift σ̇i ∈ NG(T )(Fs)

of σi . Let Xi denote the root subgroup of αi , which is a 1-dimensional unipotent
subgroup of G defined over Fs . Note that the absolute Galois group Gal(Fs/F) acts
on {α1, . . . , αr }, hence it permutes σi ’s and Xi ’s.

Let us consider the following subvariety of GFs (not just over F):

N :=
r∏

i=1

(Xi · σ̇i ). (A.2.1)

Steinberg [25] defined N only over F , which is one of the reasons why he needed to
assume F is perfect. Then Borel and Springer [2, §8] realised that under the stronger

Note that N is a priori a constructible subset, though it turns out to be a closed subvariety.
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foundation in algebraic groups many things in [25] can be done over separably closed
fields in place of algebraically closed fields (except Jordan decomposition). In partic-
ular, N can be defined over Fs .

Proposition A.2.2 Let G be a semi-simple, simply connected and quasi-split reductive
group over F.

(1) (Cf. [25, Theorem 7.1]) The natural map
∏r

i=1 Xi 	→ N is an isomorphism of
schemes over Fs. Furthermore, N is closed in G.

(2) (Cf. [25, Lemma 7.5]) Let us consider a different lift σ̇ ′
i of σi for each i , and set

N ′ := ∏r
i=1(Xi σ̇

′
i ). Then there exist t, t ′ ∈ T (Fs) such that

N ′ = t ′ · N = t N t−1.

(3) (Cf. [25, Proposition 7.8]) For any permutation τ of {1, . . . , r} we set

N τ :=
r∏

i=1

Xτ(i)σ̇τ (i).

Then each element of N τ (Fs) is G(Fs)-conjugate to some element in N (Fs).

Wewill shownow that ifG does not have any odd special unitary factor it is possible
to choose N so that it is defined over the same ground field F as G.

Let E be a finite Galois extension of F over which G splits. Clearly the root
subgroups Xi are defined over E . Furthermore, by a simple application of Hilbert’s
Theorem 90 for split tori it is possible to take σ̇i ∈ G(E); cf. [25, Lemma 9.3].

Now, we pick a representative αi in each Gal(E/F)-orbit of simple roots
{α1, . . . , αr } and pick σ̇i ∈ G(E). Forα j = α

γ

i for γ ∈ Gal(E/F), we pick σ j := σ
γ

i .
We also reorder (αi ) so that Gal(E/F)-conjugates have adjacent indices.We construct
N using this choice.

Theorem A.2.3 (cf. [25, Theorems 9.2, 9.4]) We maintain the assumption that G is
semi-simple, simply connected and quasi-split over F. Assume furthermore that G
does not have an odd special unitary factor. Then the closed subvariety N ⊂ GFs

constructed under the choices made as above is defined over F.

Proof The case when G is split over F , the theorem is obvious as Xi and σ̇i are all
defined over F ; cf. [25, Theorem 9.2]. If G is quasi-split over F and split over E/F ,
then clearly N (constructed under the choice made as above) is naturally defined over
E . It remains to show that N is stable under the Gal(E/F)-action.

Since Gal(E/F) permutes Xi · σ̇i , the desired Galois stability boils down to the
property that

(Xi · σ̇i ) · (Xγ

i · σ̇
γ

i ) = (Xγ

i · σ̇
γ

i ) · (Xi · σ̇i ), ∀i, ∀γ ∈ Gal(E/F)

By inspecting all the possible automorphisms of Dynkin diagrams, the above property
holds except for the non-trivial diagram automorphism of A2n , which corresponds to
odd special unitary groups; cf. proof of Theorem 9.4 in [25]. ��
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Example A.2.4 Let us give an example of quasi-split SU4. Let G := SU4 attached to a
rank-4 totally isotropic hermitian space for E/F . Then GE ∼= SL4, and we may make
a standard choice of simple roots α1, α2, α3. Let ¯(•) denote the unique non-trivial
element in Gal(E/F). Then we have ᾱ1 = α3 and ᾱ2 = α2. We choose σ̇i so that σ̇2
is defined over F and ¯̇σ1 = σ̇3.

Let us set N = (X2σ̇2)(X1σ̇1)(X3σ̇3). (Mind the order of the indices.) Then, since
α1 and α3 are orthogonal, it follows that X1σ̇1 and X3σ̇3 commute so we have N = N̄ .

Let us now explain why odd special unitary factors should be excluded in the above
theorem. For simplicity, let us consider quasi-split SU3.Over some separable quadratic
extension E/F we have two simple roots α1 and α2, which are permuted by the non-
trivial element of Gal(E/F). So from our choice of σ̇i , we have N = (X1σ̇1)(X2σ̇2)

and N̄ = (X2σ̇2)(X1σ̇1). It does not seem possible to choose σ̇1 so that N = N̄ .

A.3 Normal forms: Case without odd special unitary factor

The statements up until Proposition A.3.3 work for an arbitrary reductive group G,
and we only need the additional requirements in the last step. Assume that E is a field
extension of F over which G is split. (For example, we will later focus on the case
when E = Fs or E = F .) We denote by G � G the GIT quotient of G with respect
to the conjugation, and by T � W the GIT quotient of T modulo its Weyl group in G.

Lemma A.3.1 (cf. [25, Cor. 6.4]) The canonical morphism T � W → G � G is an
isomorphism.

Proof Since both quotients are uniform, it suffices to consider to prove the claim over
E . Here the proof is the same as Steinberg’s proof for semi-simple G if one replaces
7.15 of loc. cit. by [12, Prop. II.2.4]. ��

Thus we have the following natural maps:

χ : G (G � G)
∼=

(T � W ), (A.3.2)

Note that χ is constant on each conjugacy class, being conjugation-invariant. More
precisely, we obtain the following result

Proposition A.3.3 The fibre of χ at any point c ∈ (T �W )(F) consists of finitely many

conjugacy classes with the semisimple part determined by c. Furthermore, χ−1(c)
contains

(1) a unique regular conjugacy classes in G(F), and
(2) a unique semisimple conjugacy classes over G(F).

Furthermore, χ−1(c) consists of a single conjugacy class C if and only if it is a
regular semisimple conjugacy class. In this case we have that c is an F-rational point
of (T � W ) if and only if C is defined over F.

Proof The rationality statement follows from the rest of the proposition, as it states
that C is the preimage of c and c is the scheme-theoretic image of C , respectively.
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Since we have G(F) = Z(F) · Gder(F), any conjugacy class in G(F) is a translate
of a conjugacy class in Gder(F) by some element z ∈ Z(F). Therefore, to prove the
proposition it suffices to handle the casewhenG is semisimple (and simply connected),
which is proved in [25, Corollary 6.6]. ��

We note that the canonical projection T � D is W -invariant and thus factors
through T �W . Let (T �W )t̄ denote the preimage of t̄ ∈ D(F). The following result
is essentially due to Steinberg:

Theorem A.3.4 (Steinberg) Assume that Gder is simply connected and quasi-split over
F with no odd special unitary factor, and let N be a closed F-subvariety of G defined
as in TheoremA.2.3. Let t̄ ∈ D(F), and choose a lift t ∈ T (F) of t̄ by LemmaA.1.5(2).
Then χ induces an isomorphism

χ : t · N ∼=
(T � W )t̄ .

Proof By flat descent, it suffices to prove the claim over F . Let z ∈ Z(F) be a lift
of t̄ , so we have z−1t ∈ T der(F). By Proposition A.2.2(2), there exists s ∈ T der(F)

such that s−1NFs = (z−1t) · NF . Finally, the following isomorphism over F can be
obtained from [25, Corollary 7.16]

χ : t · NF
Int(s)

z · NF

∼=
z · (T der � W )F

∼= (T � W )t̄,F ,

which finishes the proof. ��
Proof of Theorem A.1.1 in the case that Gder has no odd special unitary factor: Let
C be a regular semisimple conjugacy class defined over F and let c ∈ (T � W )(F)

be its image under χ . Denote by t ∈ D(F) its image under the canonical projection
G � D and fix a lift t ∈ T (F), which exists by Lemma A.1.5(2). By the previous
theorem there exists a unique g ∈ t · N (F) such that χ(g) = c. By Proposition A.3.3,
this implies that g is contained in C ��

A.4 Normal forms: Odd special unitary case

In the presence of odd special unitary factor inGder, it is unclear if there exists a closed
subvariety N ⊂ Gder defined over F such that χ (A.3.2) sends N isomorphically onto
(T der �W ). Therefore, we will find another closed subvariety N ′ ⊂ Gder defined over
F such that χ restricted to N ′ induces a bijection on closed points and then repeat the
proof given in the previous section.

We choose a finite separable extension F ′/F and a separable quadratic extension
E ′/F ′. Let (•̄) ∈ Gal(E ′/F ′) denote the non-trivial element.

We choose a basis V = E ′2n+1 and the hermitian form given by the anti-diagonal
matrix with entry 1. Let w be such a matrix. By abuse of notation we let SU2n+1 /F ′
denote the special unitary group associated to this hermitian space. It is a semi-simple,
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simply connected and quasi-split group defined over F ′. More explicitly, we have

SU2n+1(R) := {
g ∈ SL2n+1(E

′ ⊗F ′ R) | t ḡwg = w
}

The defining condition can be rewritten as g = w · t ḡ−1 · w. (Note that w = w−1.)
Therefore, we can identify SU2n+1(F ′) as the Gal(E ′/F ′)-invariance of SL2n+1(E ′)
with respect to the action of σ twisted as follows:

g 	→ w · t ḡ−1 · w. (A.4.1)

It turns out that any quasi-split special unitary group can be written in this way.
(Although there is another maximally isotropic hermitian E ′-space with rank 2n + 1)
that is not isomorphic to V , the associated special unitary group is isomorphic to the
one associated to V .)

Amaximal split torus of SU2n+1 /F ′ is isomorphic toG
n
m where (t1, . . . , tn) ∈ F ′×

gets mapped to the diagonal matrix diag(t1, . . . , tn, 1, t−1
n , . . . , t−1

1 ) ∈ SU2n+1(F ′).
Its centraliser, which is a maximal torus denoted as T , is isomorphic to ResE ′/F ′ G

n
m

where (t1, . . . , tn) ∈ E ′× gets mapped to diag(t1, . . . , tn,
∏

i (t̄i/ti ), t̄
−1
n , . . . , t̄−1

1 )

∈ T (F ′). We can also fix an F-rational Borel subgroup B ⊂ SU2n+1 to be the “upper-
triangular matrices”, which contains T .

Using the above notation, letG ′ := SU2n+1 /F ′ be the special unitary group associ-
ated to a rank-(2n+1)maximally isotropic hermitian space over E ′. (So G ′ is defined
over F ′ and its adjoint quotient is absolutely simple.)

We work with the ‘standard’ root datum for G ′
E ′ ∼= SL2n+1 /E ′, and obtain

(αi )i=1,···2n and σi ∈ W . We twist the action of Gal(E ′/F ′) on SL2n+1 /E ′ as in
(A.4.1), so that the non-trivial element of Gal(E ′/F ′) acts on the absolute root datum
and the Weyl groups as follows:

αi 	−→ α2n+1−i

σi 	−→ σ2n+1−i

In particular, αn and αn+1 are Galois-conjugates and they are not orthogonal, which
is why the subvariety of rational normal forms N = ∏2n

i=1(Xi · σ̇i ) is not defined over
F ′. Indeed, the only problematic factors are (Xn σ̇n) · (Xn+1σ̇n+1), so we modify the
definition of N as follows. (We faithfully follow the proof of [25, Theorem 9.7].)

Note that (T � W )E ′s ∼= A
2n where the isomorphism is given by the coefficients

of the characteristic polynomial. We can stratify (T � W )E ′s as follows: V1,E ′ ⊂ VE ′
is an affine hyperplane defined by the condition that 1 is an eigenvalue, and V0,E ′ :=
VE ′ \ V1,E ′ . Since V0,E ′ and V1,E ′ are Gal(E ′/F ′)-equivariant, they descend to F ′-
subvariaties V0 and V1.

The strategy now is to construct disjoint closed F ′-subvarieties N ′
0, N

′
1 ⊂ G ′ :=

SU2n+1 /F ′ such that the natural map

χ : G ′ ∼= SU2n+1 /F ′ → (T � W ) (A.3.2)
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induces the following isomorphisms:

N ′
1

∼= V1 (A.4.2)

N ′
0

∼=
V0 . (A.4.3)

This was done in [25, Theorem 9.7] at least when F is perfect. Let us recall the
construction and basic properties of N ′

0 and N ′
1.

Definition A.4.4 Let us introduce some notation first.

(1) Let α := αn +αn+1, which is a Galois-invariant root. We let Xα and X−α respec-
tively denote the root subgroup of α and −α.
Let Gα be the subgroup generated by Xα and X−α , which is isomorphic to SL2.
Let Tα := T ∩ Gα denote the maximal torus of Gα .
Let σα ∈ W be the reflection with respect to α, and choose its lift σ̇α in Gα(F ′).

(2) As before, let Xi denote the root subgroupofαi . LetGi denote the “SL2-subgroup”
associated to αi . Note that Gi can only be defined over E ′.

(3) For any i = 1, · · · n − 1 we choose σ̇i in Gi (E ′) and set σ̇2n+1−i := ¯̇σi , which
clearly lifts σ2n+1−i and lies in G2n+1−i (E ′).

(4) Let us choose un ∈ Xn(E ′) \ {1} and un+1 ∈ Xn+1(E ′) \ {1}.
Under these choices, we define N ′

0 and N ′
1 as follows:

N ′
1 := (Xα · σ̇α) ·

n−1∏
i=1

(
(Xi σ̇i ) · (X2n+1−i σ̇2n+1−i )

); (A.4.5)

N ′
0 := (un+1un · Xα · σ̇α · Tα) ·

n−1∏
i=1

(
(Xi σ̇i ) · (X2n+1−i σ̇2n+1−i )

)
. (A.4.6)

Clearly, N ′
1 and N ′

0 are defined over E ′. We would like to show that N ′
1 is defined

over F ′, and it is possible to choose un and un+1 so that N ′
0 is defined over F ′.

The following proposition can be verified without difficulty:

Proposition A.4.7 (cf. [25, Lemmas 9.13, 9.14]) Set G ′ := SU2n+1 /F ′ as above.
(1) (Cf. [25, Lemma 9.13]) The natural maps Xα × ∏

i �=n,n+1 Xi → N ′
1 and Xα ×

Tα × ∏
i �=n,n+1 Xi → N ′

1 are isomorphisms of schemes over E ′. Furthermore,
both N ′

0 and N ′
1 are closed subvarieties.

(2) (Cf. [25, Lemma 9.14]) The closed subvarieties N ′
1 and N ′

0 are independent of
choices of σ̇i , σ̇α and un+1un up to conjugate.

(3) (Cf. [25, Corollary 9.19]) the natural map χ for G ′ defined in (A.3.2) induces the
following isomorphisms over F ′

N ′
1

∼−→ V1 (A.4.2) & N ′
0

∼−→ V0 (A.4.3).

Proof By flat descent it suffices to verify the claims over the perfect closure of F ′,
which is proved in the reference given. ��
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We now show that under suitable choices we can arrange so that N ′
1 and N ′

0 are
defined over F ′ (and thus the isomorphisms (A.4.2) and (A.4.3) are defined F ′, too).

Firstly, recall that G ′ := SU2n+1 /F ′ is the special unitary group associated to the
hermitian space

⊕2n+1
i=1 E ′ei with hermitian form given by antidiagonal matrixw. The

subgroup fixing en+1 is a quasi-split special unitary group

H ′ := SU2n . (A.4.8)

Using the choice of maximal torus and Borel subgroup coming from the ambient
G ′ := SU2n+1, we can embed the root datum for SU2n into SU2n+1; in fact, the
simple roots for SU2n consists of α and αi for i �= n, n + 1. Our choice of σα and σ̇i
(i �= n, n + 1) ensures that σ̇i ∈ H ′(E ′) for any i �= n, n + 1, so we have

N ′
1,E ′ ⊂ H ′

E ′ .

Clearly, N ′
1 coincides with the image of closed subvarieties of normal forms for H ′

with respect to the ordering of simple roots given by (α, α1, α2n, · · · ). Therefore, N ′
1

is defined over F ′; cf. Theorem A.2.3. Indeed, the proof shows that the factor

n−1∏
i=1

(
(Xi σ̇i ) · (X2n+1−i σ̇2n+1−i )

)
(A.4.9)

is also defined over F ′.
Now let us consider N ′

0. Since the root α is defined over F ′, it follows that Tα and
Xα are defined over F ′. We also chose σ̇α in Gα(F ′). So it remains to choose un+1, un
so that um+1um Xα is defined over F ′, which is possible as explained in [25, p 309].

The above discussion together with Proposition A.4.7 shows the following:

Proposition A.4.10 Set G ′ := SU2n+1 /F ′, H ′ ⊂ G ′, N ′
0 and N ′

1 are defined as above.

(1) N ′
0 and N ′

1 are closed subvarieties of G ′ defined over F ′.
(2) For any t ∈ T (F ′) ∩ H ′(F ′), there exists t0, t1 ∈ T (F ′) ∩ H ′(F ′) such that we

have

t · N ′
0 = t0N

′
0t

−1
0 & t · N ′

1 = t1N
′
1t

−1
1 .

Proof We have already showed the first claim, and the existence of t1 in the second
claim follows from Proposition A.2.2(2) applied to N ′

1 ⊂ H ′.
To find t0, note that

t · N ′
0 = t

(
un+1un Xα

)
t−1 · t

(
Xασ̇αTα

n−1∏
i=1

(
(Xi σ̇i ) · (X2n+1−i σ̇2n+1−i )

))

the factor t(un+1un Xα)t−1 is defined over F ′, and we can write

t(un+1un Xα)t−1 = u′
n+1u

′
n Xα,
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where u′
n+1 = tu′

n+1t
−1 ∈ Xn+1 and u′

n = tu′
nt

−1 ∈ Xn .
One can check that for any t ′0 ∈ T (F ′) ∩ H ′(F ′) we have

t ′0

(
Xασ̇αTα

n−1∏
i=1

(
(Xi σ̇i ) · (X2n+1−i σ̇2n+1−i )

)
)
t ′−1
0

= t ′0σ ′′(t ′0)−1

(
Xασ̇αTα

n−1∏
i=1

(
(Xi σ̇i ) · (X2n+1−i σ̇2n+1−i )

))
,

where σ ′′ = σα

∏n−1
i=1 (σiσ2n+1−i ) is an element in the Weyl group for H ′. Since the

homomorphism t ′0 	→ t ′0σ ′′(t ′0)−1 is surjective on T (F ′)∩H ′(F ′) (cf. [25, Lemma7.5],
or the proof of Proposition A.2.2(2)), we may find t ′0 ∈ T (F ′) ∩ H ′(F ′) such that
t = t ′0σ ′′(t ′0)−1.

Now we can write

t · N ′
0 = t

(
un+1un Xα

)
t−1 · t ′0

(
Xασ̇αTα

n−1∏
i=1

(
(Xi σ̇i ) · (X2n+1−i σ̇2n+1−i )

))
t ′−1
0

= t ′0

(
(u′

n+1u
′
n Xα) · Xασ̇αTα

n−1∏
i=1

(
(Xi σ̇i ) · (X2n+1−i σ̇2n+1−i )

))
t ′−1
0 ,

where u′
n+1 = (t ′−1

0 t)un+1(t
′−1
0 t)−1 ∈ Xn+1 and u′

n = (t ′−1
0 t)un(t

′−1
0 t)−1 ∈ Xn .

Clearly, u′
n+1u

′
n Xα is defined over F ′ (as it is F ′-rationally conjugate to un+1un Xα ,

which is defined over F ′). Since the construction of N ′
0 is independent of the choice

of un+1, un up to conjugate (cf. Proposition A.4.7(2)), we obtain t0 ∈ T (F ′)∩H ′(F ′)
such that t · N ′

0 = t0N ′
0t

−1
0 . ��

Remark A.4.11 It is too much to expect that t · N ′
0 and t · N ′

1 are conjugate to N ′
0 and

N ′
1 for any t ∈ T (F ′), respectively. Indeed, N ′

1 ⊂ H ′ but T �⊂ H ′.

A.5. Proof of Theorem A.1.1: General case

Since Gder is simply connected, we may write

Gder = G(0) ×
∏

G(m) (A.5.1)

where G(0) has no odd special unitary factor and G(m) is an F-simple odd special
unitary group for each m; therefore, we may write G(m) ∼= ResFm/F SU2nm+1 for a
finite separable extension Fm/F and an integer nm > 0.

For each G(m) we consider a closed subgroup H (m) ∼= ResFm/F SU2nm ; cf. (A.4.8).
Let H be the closed subgroup of G generated by the centre of G, G(0) and H (m) for
each m. We set

TH := T ∩ H & T der
H := T ∩ Hder. (A.5.2)
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Since H is also quasi-split and Hder is simply connected, Lemma A.1.5(2) can be
applied to TH . Furthermore, since D ∼= H/Hder, any t̄ ∈ D(F) has a lift t ∈ TH (F).

InTheoremA.2.3wedefined a closed F-subvariety of “normal forms” N (0) ⊂ G(0).
For G(m), we set N (m) := ResFm/F N ′

0 �ResFm/F N ′
1, where N

′
0, N

′
1 ⊂ SU2nm+1 /Fm

are as in Proposition A.4.10. We now set

N ′ := N (0) ×
∏
m

N (m). (A.5.3)

The following proposition concludes the proof of Theorem A.1.1.

Proposition A.5.4 Let C ⊂ G(F) be a regular semi-simple conjugacy class defined
over F, and choose t ∈ TH (F) so that its image in D(F) coincides with the image of
C. Then C contains a unique element in t · N ′(F). Hence, C contains an element in
G(F).

Proof We denote by t ∈ D(F) and c ∈ (T � W )(F) the respective images of C and
fix a lift t ∈ TH (F) of t . Repeating the proof of Theorem A.3.4 with N ′ in place of N ,
we obtain a unique element g ∈ t · N ′(F) with χ(g) = c. Hence g ∈ t · N ′(F) ∩ C
by Proposition A.3.3. ��
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