
Journal of Fourier Analysis and Applications (2021) 27:31
https://doi.org/10.1007/s00041-021-09834-1

On Recovery Guarantees for Angular Synchronization

Frank Filbir1 · Felix Krahmer2 ·Oleh Melnyk1,2

Received: 30 April 2020 / Revised: 24 February 2021 / Accepted: 24 February 2021 /
Published online: 5 April 2021
© The Author(s) 2021

Abstract
The angular synchronization problem of estimating a set of unknown angles from
their known noisy pairwise differences arises in various applications. It can be refor-
mulated as an optimization problem on graphs involving the graph Laplacian matrix.
We consider a general, weighted version of this problem, where the impact of the
noise differs between different pairs of entries and some of the differences are erased
completely; this version arises for example in ptychography. We study two common
approaches for solving this problem, namely eigenvector relaxation and semidefinite
convex relaxation. Although some recovery guarantees are available for both meth-
ods, their performance is either unsatisfying or restricted to the unweighted graphs.
We close this gap, deriving recovery guarantees for the weighted problem that are
completely analogous to the unweighted version.
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1 Introduction

In this paper we consider the problem of recovering a d dimensional vector of
angles ϕ ∈ [0, 2π)d from noisy pairwise differences of its entries ϕ� − ϕ j +
η�, j mod 2π, �, j ∈ {1, . . . , d}, where η�, j denotes noise. This problem is commonly
referred to as angular synchronization or phase synchronization. It frequently arises in
various applications such as recovery from phaseless measurements [1,9,14,17,20,22–
24], ordering of data from relative ranks [7], digital communications [15], jigsaw
puzzle solving [12] and distributed systems [10]. The problem of angular synchro-
nization is also closely related to the broader problem of pose graph optimization [5],
which appears in robotics and computer vision and group synchronization problems
[19,21].

Rather than working with the angles ϕ� directly, one typically considers the asso-
ciated phase factors x� := eiϕ�, � ∈ {1, . . . , d}. Hence the vector x = (x j )dj=1 to be
recovered belongs to the d-dimensional torus

T
d := {v ∈ C

d | |v1| = . . . = |vd | = 1}.

After this transformation, the pairwise differences ϕ� − ϕ j mod 2π , �, j ∈ {1, . . . , d}
take the form of a product

ei(ϕ�−ϕ j ) = eiϕ� · e−iϕ j = x�x
∗
j ,

where z∗ stands for complex conjugate of the number z and complex conjugate trans-
pose in the case of vectors. The angular synchronization problem has clearly no unique
solution as multiplying the vector x by a factor eiθ leads to the same product x�x∗

j .
Hence we can at best recover x up to a global phase factor, that is, two solutions
x, x ′ ∈ C

d are to be considered equivalent if y = eiθ x ′ for some θ ∈ [0, 2π). A
natural distance measure between two equivalence classes is given by

d(x, x ′) = min
θ∈[0,2π)

∥
∥
∥x − eiθ x ′

∥
∥
∥
2
. (1)

A solution to the angular synchronization problem is thus any vector for which this
expression vanishes.

In many applications such as certain algorithms for ptychography [9,14,22–24],
noisy observations of only a strict subset of the set of differences are available. To
mathematically describe this restriction we will work with the quantity

E := {(�, j) ∈ {1, . . . , d} × {1, . . . , d} : noisy ϕ� − ϕ j is known and j �= �}.

In these ptychography applications, one also encounters a version of the problem
that is generalized in yet anotherway.Namely, the entries of the vector y to be recovered
are not all of modulus 1 (but still assumed to be known). The measurements are still
of the form y j y∗

k affected by noise. Clearly this generalized problem can be directly
reduced to the angular synchronization problem in its original form by just dividing
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each measurement by the product of the known magnitudes of the associated entries,
but one should note that the noise is also affected by this transformation.

We will now present a short overview of the major developments in angular syn-
chronization. The approaches to the problemmainly split into two dominant branches,
which essentially differ by the underlying noise model.

In the first branch, it is assumed that the observed pairwise products of the unknown
phase factors are affected by independent Gaussian noise. Typically these results work
with E = {(�, j)| j, �,∈ {1, . . . , d}, j �= �}, i.e., assuming control of the full set of
pairwise differences. That is, the matrix of measurements X̂ is given by

X̂ = xx∗ + σ�, (2)

where� is ad×d Hermitianmatrixwith��,� = 0 and��, j , � > j,being independent
centered complex Gaussian random variables with unit variance and σ > 0. This
noise model allows to perform maximum likelihood estimation which leads to the
least squares problem (LSP)

min
z∈Td

1

2

∑

(�, j)∈E
w�, j |z� − X̂�, j z j |2, (3)

with weights w�, j = 1/σ 2, � �= j and w�,� = 0. Due to the condition z ∈ T
d , the

LSP (3) is NP-hard [29]. Therefore, Singer [27] proposed two possible relaxations,
the eigenvector relaxation (ER) and the semidefinite convex relaxation (SDP). Both
will be discussed in Sect. 2.

By a closer inspection of the maximum likelihood approach, Bandeira, Boumal and
Singer [2] were able to establish an error bound for the solution of the LSP (3) which
holds with high probability. In addition the authors gave sufficient conditions on the
standard deviation σ under which the SDP recovers the solution of the LSP (3). As
an alternative to the relaxation approaches Boumal [4] proposed an iterative approach
called generalized power method (GPM) to solve the LSP directly. He showed that the
method converges to the minimizer of (3). Later Liu et al. [18] provided additional
details about the convergence rate of the GPM. In subsequent work [30], Zhong and
Boumal extended the admissible range of σ providing near-optimal error bounds for
solutions of the LSP, ER and the GPM and improved the sufficient conditions for the
tightness of the SDP relaxation. Another iterative approach to angular synchroniza-
tion based on cycle consistency and message passing was proposed in [16] and was
connected to the iteratively reweighted least squares algorithms in [26].

For the variant of the angular synchronization problem where the vector y to be
recovered does not only have entries of modulus one, this theory does not directly
apply, as the added Gaussian noise will encounter entrywise rescaling and hence no
longer have the same variance for all entries. The least squares approachwill, however,
have a natural generalization. In analogy to (3) where all differences are multiplied by
the inverse of the variance of the i.i.d. noise variables, oneweights each differencewith
the inverse of the variance of the corresponding rescaled noise term, which yields a
linear scaling in |y j y�|. While this method is not covered by the theory just discussed,
it serves as an important motivation for the approach of this paper.
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The second branch of development for the angular synchronization problem works
with the model that the angular differences rather than the associated phase factors are
affected by noise. This version of the problem has also been studied for more general
sets E . Consequently, the matrix of measurements X̂ in this model is given by the
entries

X̂�, j =
{

ei(ϕ�−ϕ j+η�, j ), (�, j) ∈ E,

0, (�, j) /∈ E,
(4)

where η�, j corresponds to the angular noise, or

Ŷ�, j =
{

|y�y j |ei(ϕ�−ϕ j+η�, j ), (�, j) ∈ E,

0, (�, j) /∈ E,
(5)

when the entries to be recovered are not of unit modulus.
Under this model, random noise is somewhat harder to study due to the multiplica-

tive structure. Consequently, most works employ an adversarial noise model making
no assumptions on the distribution of the noise. That is, maximum likelihood estima-
tion is no longer applicable. Nevertheless, weighted least squares minimization (3)
can still be applied without the statistical justification; and a natural choice for the
weights remains w j,k = |y j yk |. This is in line with the observation that if for two
vectors y and ỹ the modulus of each entry agrees, then smaller entries play less of a
role in determining distance in the sense of (1). Moreover, the expansion

d(y, ỹ) = min
θ∈[0,2π)

∥
∥
∥ỹ − eiθ y

∥
∥
∥

2

2
= min

θ∈[0,2π)

d
∑

�=1

|y�|2|x̃� − eiθ x�|2,

motivates to consider the recovery guarantees for the scaled norms of the form

d
∑

�=1

|S�,�|2|x̃� − eiθ x�|2 =
∥
∥
∥S(x̃ − eiθ x)

∥
∥
∥

2

2
, (6)

withd×d diagonal scalingmatrix S taking the role of the squaredmagnitudes |y�|2. For
ptychography applications, inclusion of these weights have also been shown numeri-
cally to be beneficial for the overall reconstruction (see Section 4.4 in [24]).

For the multiplicative noise model, several error bounds have been presented in the
literature. Iwen et al. [14] worked with the unweighted LSP (3) and established recov-
ery guarantees for the ER based on Cheeger’s inequality [3]. Later in [24], Preskitt
developed error bounds for the unweighted case of the LSP. He additionally devel-
oped alternative bounds for any selection of weights in the problem (3) and provided
sufficient conditions for tightness of the SDP relaxation.

In the literature, theSDP relaxation is studiedmoreoften, as under certain conditions
it recovers a true solution of the optimization problem (3). On the other hand, it is
computationally heavy and above a certain noise level the relaxation is no longer tight,
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so SDP fails to return the exact solution of the LSP. Thus beyond this threshold, no
recovery guarantees for SDPare available. ER, in contrast, ismuch faster, especially for
large dimension d, and its recovery guarantees, where available, are not restricted by
tightness assumptions. Before this paper, however, such guaranteeswere only available
for the unweighted scenarios, even though SDP and ER exhibit similar reconstruction
accuracy in numerical experiments.

In this paper, we close this gap, providing recovery guarantees for weighted angu-
lar synchronization via eigenvector relaxation from measurements of the form (4),
following the setup of [14,24]. In addition, obtained results are generalized to include
bounds for reconstruction error with scaled norms (6). We numerically demonstrate
that our guarantees even are tighter than the best known guarantees for the unrelaxed
problem LSP. Along the way, we also establish improved bounds for LSP.

2 Problem Setup and Previous Results

We study the problem of recovering a vector x = (x j )dj=1 with unimodular entries

x j = eiϕ j from partial and possibly noisy information on the pairwise differences
x�x∗

j = ei(ϕ�−ϕ j ) for all pairs (�, j) in some set E ⊂ [d] × [d]. Here we used the
notation [n] = {1, . . . , n}. As we consider angular noise, the noisy observations will
take the form ei(ϕ�−ϕ j+η�, j ), where η�, j ∈ (−π, π ] is the angular noise.

The phase factors corresponding to the true pairwise differences will be arranged
as a matrix X ∈ C

d×d , the noisy observation as a matrix X̂ ∈ C
d×d , that is, the entries

of these matrices are given by

X�, j =
{

ei(ϕ�−ϕ j ) (�, j) ∈ E,

0, (�, j) /∈ E,
, X̂�, j =

{

ei(ϕ�−ϕ j+η�, j ) (�, j) ∈ E,

0, (�, j) /∈ E .
(7)

By Hd we denote the space of all d × d Hermitian matrices. With N ∈ Hd with
entries N�, j = eiη�, j denoting the matrix rearrangement of the multiplicative noise,
one observes that these two matrix representations are related via X̂ = X ◦ N , where
for two matrices A, B ∈ C

d×d , A ◦ B denotes their Hadamard product as defined by
(A ◦ B)n,m = An,m Bn,m .
As a measure for the noise level, we will use a Frobenius norm or a spectral norm of
the difference X − X̂ or its modified versions; recall that for A ∈ C

d×d the Frobenius
norm and the spectral norm are given by

‖A‖F := tr
(

A∗A
)

and ‖A‖2→2 := max‖v‖2=1
‖Av‖2 , respectively.

The quality of reconstruction will be measured in the Euclidean norm on C
d , given

by

‖v‖2 :=
(

d
∑

i=1

|vi |2
)1/2

.
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For the proofs we will also need the supremum norm ‖v‖∞ := max1≤ j≤d |v j |.
We will write A � 0 if the matrix A is positive semidefinite, that is

v∗Av ≥ 0, for all v ∈ C
d .

The sgn operator is defined for α ∈ C as

sgn(α) :=
{

α/|α|, α �= 0,

0, otherwise.

This operator is extended to any matrix space Cd×d ′
by entrywise operation, i.e. for

any A ∈ C
d×d ′

we have

sgn(A) = (

sgn(An,m)
)d,d ′
n,m=1.

Similarly to previousworks, our analysis is based on a graph theoretic interpretation.
Namely, the matrices X and X̂ can be seen as edge weight matrix of a weighted
undirected graph G = (V , E,W ). Consequently, one has |V | = d, and we can
identify V with [d] = {1, . . . , d}. The set of edges E is naturally identified with
the index set of the observed noisy angular differences introduced above. It directly
follows from the problem setup that the weight function W : V × V → [0,∞) must
satisfy symmetry W (v, v′) ≥ 0, W (v, v′) = W (v′, v), and the graph does not allow
loops so that W (v, v) = 0.

To analyze this graph, we need some basic concepts from graph theory. The adja-
cency matrix AG of G is given by

(AG)�, j =
{

1, (�, j) ∈ E,

0, (�, j) /∈ E .

With this notation, one obtains the compact expression X = AG ◦ xx∗. In caseW ≡ 1
on its support, i.e., W = AG , we speak of G as an unweighted graph.

The degree of the vertex � is defined as

deg(�) :=
∑

( j,�)∈E
w�, j ,

and the corresponding degree matrix is the diagonal matrix

D = diag
(

deg(�)
)

.

The Laplacian of the graph G is given by

LG = D − W .
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Observe that, as the graph is undirected, the Laplacian is symmetric. Moreover, since
w�, j ≥ 0 we have

u∗LGu = 1

2

∑

�, j

w�, j |u� − u j |2 ≥ 0

for all u ∈ C
d . Hence the Laplacian is positive semidefinite and therefore has a

spectrum consisting of non-negative real numbers, whichwe denote by λ j with indices
j arranged in ascending order, i.e.,

0 = λ1 ≤ λ2 ≤ · · · ≤ λd .

Here the first equality follows from the observation that the vector 1 = (1, . . . , 1)T

satisfies LG1 = 0. The spectral gap of G is defined as τG = λ2. A graph G is
connected if and only if τG > 0, see [6]. In that case, the null space of LG is spanned
by 1.
Besides the Laplacian LG the normalized Laplacian LN ofG is often used. It is defined
as

LN = D−1/2 LG D−1/2.

Its spectrum consists of non-negative real numbers as well and we write τN for its
second smallest eigenvalue λ2(LN ).

The data dependent Laplacians associated to X and X̂ are defined as

L = D − W ◦ X , and L̂ = D − W ◦ X̂ , respectively.

Note that under themultiplicative noisemodel used in this paper, both these Laplacians
are positive semidefinite matrices by Gershgorin’s circle theorem.

The data dependent Laplacian L̂ corresponding to the noisy observations allows for
a compact representation of the least squares problem (3) at the core of our recovery
method. Indeed, observe that

min
z∈Td

1

2

∑

(�, j)∈E
w�, j |z� − X̂�, j z j |2 = min

z∈Td
z∗(D − X̂ ◦ W )z = min

z∈Td
z∗ L̂z. (8)

Due to the quadratic constraint z ∈ T
d the quadratic minimization problem (8) is

non-convex and thus NP-hard in general. One way to obtain a feasible problem is to
relax the constraint in (8) to ‖z‖22 = d and obtain

min
‖z‖22=d

z∗ L̂z. (9)

This is nothing else but the determination of the smallest eigenvalue of the matrix L̂
and can be solved efficiently. We will refer to (9) as eigenvector relaxation (ER).
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An error bound for the ER based reconstruction was given by Iwen et. al. in [14] for
the case of unweighted graphs. Their proof is based on the Cheeger inequality that is
only available for the normalized Laplacian, which is why the minimization problem
in their theorem has a different normalization than (9). In the special case that deg(�)
is a constant for all � (as in [14]), the two normalizations agree up to a constant. Using
the terminology introduced above their result reads as follows.

Theorem 1 ([[14], Theorem 3], [[24], Theorem 4]) Let X and X̂ be defined as in (7).
Suppose that G = (V , E) is an undirected connected and unweighted graph with
τN > 0. Let z̃ ∈ C

d be the minimizer of

min
‖z‖22=d

z∗D−1/2 L̂ D−1/2z

and let x̃ = sgn(z̃). Then,

min
θ∈[0,2π)

∥
∥
∥x̃ − eiθ x

∥
∥
∥
2

≤ 19

∥
∥
∥X̂ − X

∥
∥
∥
F

τN
√

min
i∈V deg(i)

.

An alternative approach is based on the idea of lifting the problem to the matrix
space. It makes use of the relation

z∗ L̂z =
∑

�, j

z∗� L̂�, j z j = tr(L̂ zz∗).

With this the minimization problem (8) transforms into

min
Z∈Hd

tr(L̂ Z)

s.t . Zii = 1,

Z � 0,

rank(Z) = 1. (10)

The class of minimization problems with explicit rank constraints is known to include
many NP-hard instances [[8], Chapter 2], so a common strategy is to perform a semi-
definite relaxation. For (10), the following relaxation has been proposed in [11].

min
Z∈Hd

tr(L̂ Z)

s.t . Zii = 1,

Z � 0. (11)

We will refer to this minimization problem as SDP. Note that if Z meets the rank
condition in (10) one obtains that Z = zz∗, where z is a solution of (8). Without
the rank condition, however, the solution to (11) may have higher rank. In this case
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the methods outputs the phase factors corresponding to the entries of the eigenvector
associated to the largest eigenvalue as an approximation for the solution of (8) [28].
As it was mentioned before, the error bound is commonly derived for the solution of
the LSP and then applied to the solution of the SDPwhen it has rank 1. For unweighted
graphs, a first result on recovery guarantees of the SDP has been established by Preskitt
[24]. Adjusted to our terminology his result reads as follows.

Theorem 2 ([[24], Theorem 9) Let X and X̂ be defined as in (7). Suppose that G =
(V , E) is an undirected and unweighted graph with τG > 0. Let x̃ ∈ T

d be the
minimizer of the LSP (8). Then,

min
θ∈[0,2π)

∥
∥
∥x̃ − eiθ x

∥
∥
∥
2

≤ 2

∥
∥
∥X̂ − X

∥
∥
∥
F√

τG
.

In general, Theorem 2 exhibits better performance than Theorem 1 and sparks a need
for an ER counterpart. For a detailed comparison of these statements, we refer reader to
Section 4.3.2 of [24]. The first results addressing a generalization to the important case
of weighted graphs have been derived by Preskitt [24]. The following formulations
have again been adjusted to our notation.

Theorem 3 [[24], Proposition 12 and Theorem 8]) Let X and X̂ be defined as in
(7). Suppose that G = (V , E,W ) weighted graph with τG > 0. Let x̃ ∈ T

d be the
minimizer of the LSP (8). Then,

min
θ∈[0,2π)

∥
∥
∥x̃ − eiθ x

∥
∥
∥
2

≤ 2

√
√
√
√d

∥
∥
∥W ◦ (X̂ − X)

∥
∥
∥
2→2

τG
, (3.A)

and

min
θ∈[0,2π)

∥
∥
∥x̃ − eiθ x

∥
∥
∥
2

≤ 4
√
d

∥
∥
∥W ◦ (X̂ − X)

∥
∥
∥
2→2

τG
. (3.B)

As the square root in (3.A) produces slow convergence as the noise diminishes, i.e.
X̂ approaches X , in the many cases bound (3.B) outperforms (3.A). For unweighted
graphs, as we numerically explore in Sect. 5, the bound of Inequality (3.B) is similar
to that of Theorem 2 and superior to the bound of Theorem 1 for ER in many cases.
They are, however, only valid for SDP when the relaxation is tight. The following
lemma provides sufficient condition for the tightness of the SDP relaxation.

Lemma 1 ([[24], Lemma 16]) Suppose x̃ ∈ T
d is a minimizer of (8) and let L̃ =

D − W ◦ x̃ x̃∗. If
∥
∥
∥L̂ − L̃

∥
∥
∥
F

<
τG

1 + √
d

,

then x̃ x̃∗ is minimizer of (11).
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As the spectral gap τG is typically rather small, as compared to the dimension d, tight-
ness is guaranteed only for very small noise levels. In fact, our numerical simulations
in Sect. 5 show that the SDP relaxation is indeed not tight in many cases. In contrast,
the recovery guarantees for ER provided by Theorem 1 are applicable independently
of the tightness of the relaxation, but restricted to the unweighted graphs.

3 Improved Error Bounds

Themain contribution of this paper concerns recovery guarantees forweighted angular
synchronization via eigenvector relaxation, which are often stronger than even the best
known bounds for the unrelaxed problem and do not require any a priori bound for
the error to ensure tightness of the relaxation. Along the way, we derive similar error
bounds for the solution of the least squares problem, which are exactly analogous to
those provided by Theorem 2 in the unweighted case. The superior scaling of our
error bounds as compared to Theorem 3 is also confirmed by numerical simulations in
Sect. 5. We first state our result in general form, before discussing three special cases
of interest.

Theorem 4 Let X and X̂ be defined as in (7). Suppose that G = (V , E,W ) is a
weighted graph with τG > 0. Let x̃ ∈ T

d be the minimizer of the LSP (8) and z be the
minimizer of the ER (9). Set R ∈ C

d×d as R�, j = W 1/2
�, j . Then,

min
θ∈[0,2π)

∥
∥
∥x̃ − eiθ x

∥
∥
∥
2

≤ 2

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥
F√

τG
, (12)

and

min
θ∈[0,2π)

∥
∥
∥sgn(z) − eiθ x

∥
∥
∥
2

≤ 2
pz

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥
F√

τG
, (13)

with tightness penalty pz :=
√

2 + 2 ‖z‖2∞.

The term
∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥
F
is presented in a form of weighted difference of the true

and measured pairwise differences. However, it also has an alternative interpretation
as a value of the empirical least squares objective evaluated at the vector x , namely

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
= 2x∗ L̂x,

which represents the gap between the value of the noise-free objective (which equals
to 0) and the noisy objective at global minimum of the former one. In addition, we

note that
∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥
F
can be estimated from above as
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∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥
F

≤
√

∥
∥
∥W ◦ (X̂ − X)

∥
∥
∥
F

∥
∥
∥X̂ − X

∥
∥
∥
F
. (14)

The tightness penalty pz in the bound varies between 2 when the relaxation is tight
and

√
2 + 2d in the worst case. In numerical experiments, however, (see Fig. 3), we do

not observe this difference, which suggests that this dimensional factor may be a proof
artefact. For the randommodel (2), this dimension independence has been established
in [30], but the proof techniques do not carry over to our setting in a straightforward
way, which is why we leave the investigation to future work. For completeness, we
note that also Inequality (3.B) carries over to ER, as stated in the following theorem.
The proof is directly analogous to the one in [24], which is why we omit the details.

Theorem 5 Let X and X̂ be defined as in (7). Suppose that G = (V , E,W ) weighted
graph with τG > 0. Let z be the minimizer of the ER (9). Then,

min
θ∈[0,2π)

∥
∥
∥sgn(z) − eiθ x

∥
∥
∥
2

≤ 8
√
d

∥
∥
∥W ◦ (X̂ − X)

∥
∥
∥
2→2

τG
. (15)

The first consequence of interest concerns the unweighted case, where the noise

norm in Theorem 4 simplifies to
∥
∥
∥X̂ − X

∥
∥
∥
F
as in Theorem 2.

For LSP, Theorems 4 and 2 yield the exact same bound, the bounds in Theorem 4
for ER only differ by tightness penalty term pz .

Corollary 1 Suppose G = (V , E) is an unweighted graph with τG > 0. Let z ∈ C
d

be the minimizer of the ER (9). Then

min
θ∈[0,2π)

∥
∥
∥sgn(z) − eiθ x

∥
∥
∥
2

≤ 2
pz

∥
∥
∥X − X̂

∥
∥
∥
F√

τG
.

Our next examples are related to the ptychography problem. We remind the reader
that the goal of ptychography is to estimate the a signal y ∈ C

d from phaseless
measurements through localized masks. A recent method for recovering the signal
y from such observation is the BlockPR algorithm by Iwen et al. [14], see [9,22–
24] for follow-up works developing this algorithm further that also rely on weighted
angular synchronization. The BlockPR algorithm proceeds by combining neighboring
masks to obtain estimates for the products of entries located close to each other. In
mathematical terms, this procedure yields an approximation of the squared absolute
values of the entries (so these can be assumed to be approximately known) and a noisy
version of Tδ(yy∗), where δ is the size of the mask and Tδ is the restriction operator
mapping a matrix to its entries indexed by the set

Eδ = {(�, j) | � �= j ∈ [d], and |� − j | < δ or |� − j | > d − δ} (16)

corresponding to the 2δ − 1 central sub- and superdiagonals, excluding the entries
on the main diagonal. Thus the resulting measurements exactly correspond to (5) for



31 Page 12 of 26 Journal of Fourier Analysis and Applications (2021) 27 :31

E = Eδ , which is why weighted angular synchronization is the natural method of
choice. The weights in this problem are given by the matrix yy∗ restricted to the index
set E , which yields the setup of the following corollary. We note that in the next two
statements Kroneker’s delta δ�, j is 1 when � = j and 0 otherwise.

Corollary 2 Consider a weighted graph G = (V , E,W ) with whose weight matrix W
is defined as follows. Let y ∈ C

d with sgn(y) = x.Definematrices Y = (I+AG)◦y y∗
and X = sgn(Y ). Let M and X̂ be the matrices containing the perturbed magnitudes
and phases of Y , respectively, so that M ≈ |Y |, N has unimodular entries and X̂ =
X ◦ N and set Ŷ = M ◦ X̂ . Consider the weight matrix W with entries given by
w�, j = |Ŷ�, j | (1 − δ�, j ) and assume that τG > 0. Let x̃ be a minimizer of (8) and let
z be the minimizer of (9). Then we have

min
θ∈[0,2π)

∥
∥
∥x̃ − eiθ x

∥
∥
∥
2

≤ 2
√
2

√∥
∥
∥Ŷ − Y

∥
∥
∥
F

∥
∥
∥X̂ − X

∥
∥
∥
F√

τG
,

and

min
θ∈[0,2π)

∥
∥
∥sgn(z) − eiθ x

∥
∥
∥
2

≤ 2
√
2
pz

√∥
∥
∥Ŷ − Y

∥
∥
∥
F

∥
∥
∥X̂ − X

∥
∥
∥
F√

τG
.

In the next statement the set-up is analogous to the previous corollary but instead of
having weights defined by |Ŷ�, j | we work with |Ŷ�, j |2.
Corollary 3 Consider a weighted graph G = (V , E,W ) whose weight matrix W is
defined as follows. Let y ∈ C

d with sgn(y) = x. Define matrices Y = (I + AG)◦ y y∗
and X = sgn(Y ). Let M and X̂ be the matrices containing the perturbed magnitudes
and phases of Y , respectively, so that M ≈ |Y |, N has unimodular entries and X̂ =
X ◦ N and set Ŷ = M ◦ X̂ . Consider the weight matrix W with entries given by
w�, j = |Ŷ�, j |2 (1− δ�, j ) and assume that τG > 0. Let x̃ be a minimizer of (8) and let
z be the minimizer of (9). Then we have

min
θ∈[0,2π)

∥
∥
∥x̃ − eiθ x

∥
∥
∥
2

≤ 4

∥
∥
∥Ŷ − Y

∥
∥
∥
F√

τG
,

and

min
θ∈[0,2π)

∥
∥
∥sgn(z) − eiθ x

∥
∥
∥
2

≤ 4
pz

∥
∥
∥Ŷ − Y

∥
∥
∥
F√

τG
.

The main benefit of Corollary 3 is the absence of the difference X̂ − X in the
bound. It is especially handy in the ptychographic setup, where estimation of the
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phase difference error is a complicated task while an upper bound for
∥
∥
∥Ŷ − Y

∥
∥
∥
F
is

available.
We note that if the entry y j is small, it will cause w�, j and w j,� to be small, as

well as deg( j). This will result into the node j of the graph G being poorly connected
to the rest of the graph and hence the spectral gap τG will be close to zero, making
our recovery guarantees useless. A possible cure for such scenarios is an additional
preprocessing step, where nodeswith small degrees are removed from the graph before
the angular synchronization is solved. It would allow to stabilize the spectral gap of the
pruned graph and recover phases of the ”strongly” connected nodes. For the discarded
nodes, the phase can either be assigned randomly or to some fixed value, as they have
small impact on the data fidelity. Unfortunately, the phase error corresponding to such
assigned entries cannot be bounded better than by the triangle inequality,

|x̃ j − eiθ x j | ≤ 2.

On the other hand, if the scaled norm error is considered, it would naturally reduce
the impact of such crude bound by incorporating the magnitude information,

|y j ||x̃ j − eiθ x j | ≤ 2|y j |.

Thus, the recovery guarantees for the scaled normswould be required for the ”strongly”
connected part of the graph, which we provide in the next statement.

Theorem 6 Let X and X̂ be defined as in (7). Suppose that G = (V , E,W ) is a
weighted graph with Laplacian LG and spectral gap τG > 0. Let S be a d × d
diagonal matrix with S�,� > 0. Let x̃ ∈ T

d be the minimizer of the LSP (8) and z be

the minimizer of the ER (9). Set R ∈ C
d×d as R�, j = W 1/2

�, j . Then,

min
θ∈[0,2π)

∥
∥
∥S(x̃ − eiθ x)

∥
∥
∥
2

≤ 2

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥
F

√

λ2(S−1LGS−1)
, (17)

and

min
θ∈[0,2π)

∥
∥
∥S(sgn(z) − eiθ x)

∥
∥
∥
2

≤ 2

√
tr S2

‖Sz‖2
pz

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥
F

√

λ2(S−1LGS−1)
. (18)

Note that in addition to the penalty pz , one encounters a normalization factor√
tr S2/ ‖Sz‖2, whichwe suggestmay be an artifact of the proof. The condition τG > 0

is required to control the nullspace of the matrix S−1LGS−1, so we can guarantee that
λ2(S−1LGS−1) > 0.
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4 Proofs

Proof of Theorem 4 We will proceed by establishing the following four inequalities.

min
θ∈[0,2π)

∥
∥
∥sgn(z) − eiθ x

∥
∥
∥

2

2
≤ 4

τG

∑

(�, j)∈E
w�, j |x∗

� z� − x∗
j z j |2, (19)

∑

(�, j)∈E
w�, j |x∗

� z� − x∗
j z j |2 ≤ c2z

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
, (20)

min
θ∈[0,2π)

∥
∥
∥x̃ − eiθ x

∥
∥
∥

2

2
≤ 1

τG

∑

(�, j)∈E
w�, j |x∗

� x̃� − x∗
� x̃ j |2, (21)

and

∑

(�, j)∈E
w�, j |x∗

� x̃� − x∗
� x̃ j |2 ≤ 4

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
, (22)

Note that Inequality (21) has been derived in [24], we will nevertheless include a proof
for completeness.

Equation (12) then follows by combining (21) and (22), Equation (13) is obtained
as a combination of (19) and (20).

It remains to prove the four inequalities. To that extent, we recall that for α, β ∈ C

with |β| = 1 we have

| sgn(α) − β| ≤ |α − β| + | sgn(α) − α| = |α − β| + |1 − |α||
= |α − β| + ||β| − |α|| ≤ 2|α − β|. (23)

With help of this inequality we obtain that

min
θ∈[0,2π ]

∥
∥
∥sgn(z) − eiθ x

∥
∥
∥

2

2
= min

θ∈[0,2π ]

d
∑

�=1

| sgn(z�) − eiθ x�|2

≤ 4 min
θ∈[0,2π ]

d
∑

�=1

|z� − eiθ x�|2

= 4 min
θ∈[0,2π ]

∥
∥
∥z − eiθ x

∥
∥
∥

2

2
. (24)

Moreover, since ‖x‖22 = d and ‖z‖22 = d we have that

∥
∥
∥z − eiθ x

∥
∥
∥

2

2
= ‖z‖22 +

∥
∥
∥eiθ x

∥
∥
∥

2

2
− 2Re

(

e−iθ x∗z
)

= 2d − 2Re
(

e−iθ x∗z
)

. (25)
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The right hand side is minimal if Re (x∗z) is maximal and equal to |x∗z|. Hence with
eiϑ := sgn(x∗z)∗ we arrive at

Re
(

e−iϑ x∗z
) = Re

(

sgn(x∗z)∗ · sgn(x∗z) · |x∗z|) = |x∗z|, (26)

and thus

min
θ∈[0,2π)

∥
∥
∥z − eiθ x

∥
∥
∥

2

2
= 2d − 2|x∗z|. (27)

The projection of eiϑ z onto the orthogonal complement of x is given by

q := e−iϑ z − 〈

e−iϑ z,
x

‖x‖2
〉 x

‖x‖2 = e−iϑ z − 1

d
|x∗z| x,

where we used that by (26), the inner product is real. Consequently, as q ⊥ x , one has
that by Pythagoras’ theorem

‖q‖22 =
∥
∥
∥e−iϑ z

∥
∥
∥

2

2
−

∥
∥
∥
∥

1

d
x |x∗z|

∥
∥
∥
∥

2

2
= ‖z‖22 − 1

d2
‖x‖22 |x∗z|2 = d − 1

d
|x∗z|2. (28)

With the Cauchy-Schwarz inequality and (27), this yields that

‖q‖22 = d − 1

d
|x∗z|2 ≥ d − |x∗z| = 1

2

∥
∥
∥z − eiϑ x

∥
∥
∥

2

2
.

Recall that q ⊥ x and let us show that x spans the nullspace of the matrix L . Define
the unitary matrix C = diag{x1, . . . , xd}, where x = (x j )dj=1. Note that

W ◦ X = W ◦ (xx∗) = CWC∗

and by unit modularity of xi

D = DCC∗ = CDC∗,

where we used commutativity of diagonal matrices. This results in

L = D − W ◦ X = CDC∗ − CWC∗ = CLGC
∗,

which shows in particular that the eigenvalues of L and LG coincide.
By assumption τG > 0 and hence the null space of LG is spanned by 1. Thus the null
space of L is spanned by x .

By definition q is orthogonal to the null space of L which implies that

q∗Lq = (e−iϑ z − 1

d
x · |x∗z|)∗L(e−iϑ z − 1

d
x · |x∗z|) = z∗Lz.
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and

z∗Lz = q∗Lq ≥ λ2(L) ‖q‖22 ≥ λ2(L)

2

∥
∥
∥z − eiϑ x

∥
∥
∥

2

2
,

Combining this with (24) and the fact that λ2(L) = τG as well as the definition of L ,
we obtain both (21) and (19) by

min
θ∈[0,2π)

∥
∥
∥sgn(z) − eiθ x

∥
∥
∥

2

2
≤ 4

∥
∥
∥z − eiϑ x

∥
∥
∥

2

2
≤ 8

τG
z∗Lz

= 8

τG

1

2

∑

(�, j)∈E
w�, j |z� − X�, j z j |2 = 4

τG

∑

(�, j)∈E
w�, j |z� − x�x

∗
j z j |2

= 4

τG

∑

(�, j)∈E
w�, j |x∗

� z� − x∗
j z j |2.

Indeed, (21) follows by comparing the second and the last item in this chain of inequal-
ities, and (19) by comparing the first and the last item.

Now we will prove inequality (20) and (22), again with largely identical proofs.
For simplicity of notation, we introduce the following auxiliary variables

g� := x∗
� x̃�, h� := x∗

� z�, and ��, j := X∗
�, j X̂�, j .

We start by using (α + β)2 ≤ 2α2 + 2β2 to get

|h� − h j |2 = |h� − ��, j h j + ��, j h j − h j |2 ≤ 2|h� − ��, j h j |2 + 2|h j |2|��, j − 1|2,

and we further estimate

∑

(�, j)∈E
w�, j |h� − h j |2 ≤ 2

∑

(�, j)∈E
w�, j |h� − ��, j h j |2 + 2

∑

(�, j)∈E
w�, j |h j |2|��, j − 1|2.

For the first sum we observe that

|h� − ��, j h j | = |x∗
� z� − X∗

�, j X̂�, j x
∗
j z j | = |x∗

� z� − x∗
� x j X̂�, j x

∗
j z j | = |z� − X̂�, j z j |,

and obtain using (8) and the fact that z minimizes (9) that

∑

(�, j)∈E
w�, j |h� − ��, j h j |2 =

∑

(�, j)∈E
w�, j |z� − X̂�, j z j |2 = 2z∗ L̂z ≤ 2x∗ L̂x

=
∑

(�, j)∈E
w�, j |x� − X̂�, j x j |2 =

∑

(�, j)∈E
w�, j |x�x

∗
j − X̂�, j |2

=
∑

(�, j)∈E
w�, j |X�, j − X̂�, j |2 =

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
. (29)



Journal of Fourier Analysis and Applications (2021) 27 :31 Page 17 of 26 31

For the second sum we use that |h j | = |x∗
j z j | = |z j | and obtain

∑

(�, j)∈E
w�, j |h j |2|��, j − 1|2 ≤ max

j∈[d] |h j |2
∑

(�, j)∈E
w�, j |��, j − 1|2

= ‖z‖2∞
∑

(�, j)∈E
w�, j |��, j − 1|2.

The last step is to notice that

∑

(�, j)∈E
w�, j |��, j − 1|2 =

∑

(�, j)∈E
w�, j |X∗

�, j X̂�, j − 1|2 =

=
∑

(�, j)∈E
w�, j |X�, j − X̂�, j |2 =

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
.

Putting everything together we arrive at

∑

(�, j)∈E
w�, j |h� − h j |2 ≤ 2

∑

(�, j)∈E
w�, j |h� − ��, j h j |2 + 2

∑

(�, j)∈E
w�, j |h j |2|��, j − 1|2

≤ 2
∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
+ 2 ‖z‖2∞

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F

= c2z

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
.

This concludes the proof of Inequality (20).
For Inequality (22) we proceed analogously, with x̃ taking the role of z; the only
difference is that in (29) we are using the fact that x̃ minimizes (8) rather than the fact
that z minimizes (9). The bound for the second sum is simplified as compared to (20),
as we replaced ‖z‖∞ by ‖x̃‖∞ = 1.

The combined bound reads as

∑

(�, j)∈E
w�, j |g� − g j |2 ≤ 2

∑

(�, j)∈E
w�, j |��, j − 1|2 + 2

∑

(�, j)∈E
w�, j |g� − ��, j g j |2

≤ 4
∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
. ��

Proof of Theorem 6 Theorem 6 has a similar proof as Theorem 4 and we will only
highlight the main differences. The next three inequalities replace Inequalities (19)
and (20).

min
θ∈[0,2π)

∥
∥
∥S(sgn(z) − eiθ x)

∥
∥
∥

2

2
≤ 4 min

θ∈[0,2π)

∥
∥
∥
∥
∥
S

(√
tr S2

‖Sz‖2 z − eiθ x

)∥
∥
∥
∥
∥

2

2

(30)

min
θ∈[0,2π)

∥
∥
∥
∥
∥
S

(√
tr S2

‖Sz‖2 z − eiθ x

)∥
∥
∥
∥
∥

2

2

≤ tr S2

‖Sz‖22
2z∗Lz

λ2(S−1LGS−1)
, (31)
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and

2z∗Lz ≤ p2z x
∗ L̂x = p2z

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
. (32)

Combined, they will grant us inequality (18). The first one is required to transit from
the signs of z back to z using Inequality (23). The scaling factor guarantees that vector√

tr S2
‖Sz‖2 Sz has same norm as ‖Sx‖2, analogously to ‖z‖2 having same norm as ‖x‖2 in
proof of Theorem 4, which is crucial for the second inequality. It allows us to transit
from reconstruction error to the true objective function. Another difference to the proof
of Theorem 4 is the appearance of the matrix S−1LGS−1 instead of LG . This change
is important, as it makes the nominator free of the scaling matrix S. The spectral gap
of the matrix S−1LS−1 is bounded from below by

λ2(S
−1LS−1) ≥ λ2(L)λ21(S

−1) = τGλ−2
n (S) = τG

(

max
�∈[d] S�,�

)−2

> 0,

which implies that the nullspace of S−1LS−1 is spanned by Sx . The last inequality
introduces a data dependent upper bound for the value of the true objective, which is
precisely Inequality (20).

For the LSP bound (17), norm of Sx̃ is already
√
tr S2 and hence, Inequality (30)

can be omitted. Moreover, since ‖x̃‖∞ = 1, the penalty factor p2z in Inequality (32)
is simplified to a constant 4. This results in

min
θ∈[0,2π)

∥
∥
∥S

(

x̃ − eiθ x
)∥
∥
∥

2

2
≤ 2

x̃∗Lx̃
λ2(S−1LGS−1)

≤ 4
x∗ L̂x

λ2(S−1LGS−1)
. (33)

��
Proof of Corollary 1 For an unweighted graph G we immediately get

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
=

∑

(�, j)∈E
1 · |X�, j − X̂�, j |2 =

∥
∥
∥X̂ − X

∥
∥
∥

2

F
. ��

Proof of Corollary 2 Define an auxiliary weight matrix W0 by (W0)�, j = |Y�, j | (1 −
δ�, j ). Using inequality (14) we obtain

∥
∥
∥W ◦ (X̂ − X)

∥
∥
∥
F

=
∥
∥
∥W ◦ X̂ − W ◦ X

∥
∥
∥
F

≤
∥
∥
∥W ◦ X̂ − W0 ◦ X

∥
∥
∥
F

+ ‖W0 ◦ X − W ◦ X‖F
≤

∥
∥
∥Ŷ − Y

∥
∥
∥
F

+ ‖(W0 − W ) ◦ X‖F
=

∥
∥
∥Ŷ − Y

∥
∥
∥
F

+ ‖W0 − W‖F
≤

∥
∥
∥Ŷ − Y

∥
∥
∥
F

+
∥
∥
∥Ŷ − Y

∥
∥
∥
F

= 2
∥
∥
∥Ŷ − Y

∥
∥
∥
F

,
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where in the third line we only increased the number of non-negative summands by
adding the diagonal elements |Ŷ�,� − Y�,�|, and in the last line we used the inequality
||α| − |β|| ≤ |α − β|. ��
Proof of Corollary 3 We rewrite the right side of the bound in Theorem 4 as

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
=

∑

(�, j)∈E
w�, j |X�, j − X̂�, j |2 =

∑

(�, j)∈E
|Ŷ�, j |2 |X�, j − X̂�, j |2

=
∑

(�, j)∈E
|Ŷ�, j |2 | sgn(Y�, j ) − X̂�, j |2

=
∑

(�, j)∈E
|Ŷ�, j |2

∣
∣
∣
∣
∣
sgn

(

Y�, j

|Ŷ�, j |

)

− X̂�, j

∣
∣
∣
∣
∣

2

,

and apply the inequality (23) to get

∥
∥
∥R ◦ (X̂ − X)

∥
∥
∥

2

F
≤

∑

(�, j)∈E
4|Ŷ�, j |2

∣
∣
∣
∣
∣

Y�, j

|Ŷ�, j |
− X̂�, j

∣
∣
∣
∣
∣

2

=
∑

(�, j)∈E
4|Ŷ�, j |2

∣
∣
∣
∣
∣

Y�, j

|Ŷ�, j |
− Ŷ�, j

|Ŷ�, j |

∣
∣
∣
∣
∣

2

=
∑

(�, j)∈E
4

∣
∣
∣Y�, j − Ŷ�, j

∣
∣
∣

2 ≤ 4
∥
∥
∥Y − Ŷ

∥
∥
∥

2

F
. ��

5 Numerical Evaluation

In this sectionwe present a numerical comparison of the error bounds discussed above.
Our goal is to illustrate that Theorem 4 indeed provides superior recovery guarantees
for an important class of weighted angular synchronization problems, namely those
appearing in the context of ptychography, as covered by Corollaries 2 and 3. In partic-
ular, we work with the edge set Eδ as in (16), for some parameter δ ∈ [�(d + 1)/2�],
which determines the neighborhood of indices forwhich the pairwise phase differences
are known.

In our numerical experiments, we considermeasurements affected by angular noise,
that is, the measurements are of the form (4), i.e.

X̂�, j =
{

ei(ϕ�−ϕ j+η�, j ), (�, j) ∈ Eδ,

0, (�, j) /∈ Eδ,

with the noise model that η�, j , (�, j) ∈ Eδ are independent random variables uni-
formly distributed on [−α, α] for some parameter α > 0 representing the noise level.
In the figures, we will denote parameter α in degrees and not radians.
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We consider signals y drawn at random with coordinates y� = a� + ib�, where a�

and b� are independent identically distributed standard Gaussian random variables.
We assume that the |y�| are known, so the phases of the y� are our unknown ground
truth entries x� = eiϕ� .

In most of the following examples, we fix the dimension to be d = 64 and the
parameter δ = 16, so that approximately half of the pairwise phase differences are
known. For each point in the figures we generated 30 test signals and plot the average
norm of the error. All experiments were performed on the laptop running Windows
10 Pro with an Intel(R) Core(TM) i7-8550U processor, with 16 GB RAM and Matlab
R2018b. Our ER implementation is based on the BlockPR software package [13]. For
the SDP, we used SeDuMi solver available at [25].

We begin with the comparison of the recovery guarantees for the different weight
matrices covered by Corollaries 1, 2, and 3 in terms of the angular noise level α

measured in degrees. To put the bounds into perspective, we include the empirical
error of both SDP and ER.

In a view of the fact that the coordinates of x̃ and x have modulus 1 and Inequality
(27), a naïve bound for the phase error is given by

min
θ∈[0,2π)

∥
∥
∥x̃ − eiθ x

∥
∥
∥

2

2
= ‖x̃‖22 + ‖x‖22 − 2|x̃∗x | ≤ 2d. (34)

Beyond this threshold, the error bounds provided by the statements are non-
informative, which is why we indicate the threshold by a dashed black line in the
plots.

Figure 1 shows the empirical performance of the SDP and the error bounds for the
LSP.While for unweightedgraphsTheorems2and Inequality (3.B) exhibit comparable
behavior, for weighted graphs established Corollaries improve on results of Inequality
(3.B). The crucial observation is that the SDP is not tight for weighted graphs even
when the noise level is as small as 10−3 degrees and only tight for unweighted when
noise level is below few degrees. This implies that the error bounds for LSP are no
longer applicable for the SDP.

Turning to the ER (Fig. 2), we observe a similar behavior. Recovery guarantees
for ER provided by Corollary 1 and Theorem 5 are close in unweighted case and
Corollaries 2 and 3 improves on bound provided by Theorem 5 for weighted graphs.
As before, for noise above few degrees the supremum norm of the ER solution deviates
from 1, what indicates that the relaxation is not tight. In contrast to the SDP, the
established recovery guarantees for the ER remain applicable for all noise levels.

Both for unweighted and weighted graphs (Fig. 3), we observe that the empiri-
cal error performs similarly for both SDP and ER; there is no significant difference
between the two methods in terms of the phase error. For the low and medium noise
levels, the phase error rises linearly with the angular noise level. Only for very high
noise it exhibits faster growth.

For all scenarios, the guarantees for ER more or less agree with the bounds for the
least squares problem. This is remarkable because ER is faster than SDP (see Fig. 5a
below). At the time, the empirical errors differ from our error bounds by a factor of
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Fig. 1 a–c Comparison of the recovery guarantees and true errors of SDP and LSP for angular synchro-
nization in the context of the ptychography problem, d = 64, δ = 16. d Rank of the SDP solution as a
measure for the tightness of the relaxation

roughly δ, which suggests that an additional tightening of the δ-dependence may be
possible using refined techniques.

In Fig. 4, we explore the recovery guarantees for scaled norms provided by The-
orem 6. In these experiments, the scaling matrix S has magnitudes |y j | on the main
diagonal. Again, the empirical errors and recovery guarantees exhibit similar behavior
to non-scaled errors as seen in Fig. 3, except that for high noise levels, recovery guar-
antees for ER variate from their LSP counterpart as a result of additional normalization
factor appearing in Inequality (18).

In terms of the runtime complexity (Fig. 5a), ER exhibits almost linear scaling in
the dimension of the problem and clearly outperforms SDP, whose runtime exhibits
quadratic scaling. This difference is to be expected as SDP lifts the problem to a d×d-
dimensional matrix space and thus estimates d2 unknowns instead of d in the case of
ER. In fact the large runtime complexity is a crucial bottleneck for SDP relaxations
in ptychography, where the dimensions are commonly high.

The last simulation (Fig. 5b) illustrates how both the empirical error and our error
bounds depend on the size of the mask in ptychography (which in turn is related to
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Fig. 2 a-c Comparison of the recovery guarantees and true errors of ER for angular synchronization in the
context of the ptychography problem, d = 64, δ = 16. d Supremum norm of the ER solution as a measure
for the tightness of the relaxation
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nization in the context of the ptychography problem, d = 64, δ = 16
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Fig. 5 Performance of the different methods and setups

the connectivity of the graph). Again, up to constants, we observe a similar decay
pattern for the error between theory and experiment with a fast decay for small δ (up
to O(log d)) and slower decay for larger values of δ.

6 Discussion and FutureWork

The main focus of this paper is the eigenvector relaxation of the angular synchroniza-
tion problem. We derived new flexible error bounds for this method. Along the way,
we established new recovery guarantees for the solution of the weighted least squares
problem (3). Our numerical evaluation shows that the recovery guarantees we obtain
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Fig. 6 Performance of the different relaxations for all weight setups. Left: Random angular noise model
used in the Sect. 5. Right: Angular synchronization as a part of the ptychographic reconstruction in [14],
noise decreases as signal to noise ratio increases

are tighter than other results in the literature. As compared to semidefinite program-
ming, eigenvector relaxation shows similar performance in the terms of empirical error
and has significantly shorter runtime; at the same time our recovery guarantees are
not subject to additional constraint corresponding to the tightness of the relaxation as
they appear for the semidefinite programming.

Our numerical experiments are based on the simple random angular noise model,
which likely does not correspond to the noise arising in applications. In Fig. 6, we
observe that while for the simplified noisemodel, unweighted angular synchronization
seems most appropriate, for Gaussian noise applied directly to the phaseless measure-
ments [14], weighted angular synchronization is the method of choice.

Another interesting direction of future work is to extend the generalized power
method developed by Boumal in [4] to arbitrary sets E . Our current results can be
considered as a first step, since the generalized power method uses the solution of
the eigenvector relaxation problem as initialization, so good bounds on the error are
crucial for estimating the quality of the initialization.
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