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Abstract
In this paper, we present a new perspective on cut generation in the context of Benders
decomposition. The approach, which is based on the relation between the alternative
polyhedron and the reverse polar set, helps us to improve established cut selection pro-
cedures for Benders cuts, like the one suggested by Fischetti et al. (Math ProgramSerB
124(1–2):175–182, 2010). Our modified version of that criterion produces cuts which
are always supporting and, unless in rare special cases, facet-defining. We discuss our
approach in relation to the state of the art in cut generation for Benders decomposition.
In particular, we refer to Pareto-optimality and facet-defining cuts and observe that
each of these criteria can be matched to a particular subset of parametrizations for
our cut generation framework. As a consequence, our framework covers the method
to generate facet-defining cuts proposed by Conforti and Wolsey (Math Program Ser
A 178:1–20, 2018) as a special case. We conclude the paper with a computational
evaluation of the proposed cut selection method. For this, we use different instances
of a capacity expansion problem for the european power system.

Keywords Benders decomposition · Decomposition methods · Cutting planes ·
Reverse polar set · Alternative polyhedron · Pareto optimal cuts · Facet defining cuts

1 Introduction

Consider a generic optimization problem with two subsets of variables x and y where
x is restricted to lie in some set S ⊆ R

n and x and y are jointly constrained by a set

B René Brandenberg
rene.brandenberg@tum.de

Paul Stursberg
paul.stursberg@tum.de

1 Technical University of Munich, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-021-00756-8&domain=pdf
http://orcid.org/0000-0002-2985-0549


384 R. Brandenberg, P. Stursberg

of m linear inequalities. Such a problem can be written in the following form:

min c�x + d�y

s.t. Hx + Ay ≤ b

x ∈ S

y ∈ R
k

(1.1)

The interaction matrix H ∈ R
m×n captures the influence of the x-variables on the

y-subproblem: For fixed x∗ ∈ R
n , (1.1) reduces to an ordinary linear program with

constraints Ay ≤ b − Hx∗, where A ∈ R
m×k, y ∈ R

k , and b − Hx∗ ∈ R
m .

We are interested in cases where the size of the complete problem (1.1) leads to
infeasibly high computation times (or memory demands), but both the problem over S
and the problem resulting fromfixing x can separately be solvedmuchmore efficiently
due to their special structures. To deal with such problems, Benders (1962) introduced
a method that works by iterating between these two “easier” problems:

For a problem of the form (1.1), let the function z : Rn → R∪{±∞} represent the
value of the optimal y-part of the objective function for a fixed vector x :

z(x) := min
y∈Rk

{
d�y

∣∣∣∣Ay ≤ b − Hx

}
(1.2)

The corresponding epigraph of z is

epi(z) =
{

(x, η) ∈ R
n × R

∣∣∣∣∃y ∈ R
k : Ay ≤ b − Hx

d�y ≤ η

}
. (1.3)

Writing epiS(z) := epi(z) ∩ (S ×R), this provides us with an alternative represen-
tation of the optimization problem (1.1):

min

{
c�x + η

∣∣∣∣(x, η) ∈ epiS(z)

}

This representation suggests the following iterative algorithm: Start by finding a
solution (x∗, η∗) ∈ S ×R that minimizes c�x + η without any additional constraints
(adding a generous lower bound for η to make the problem bounded). If (x∗, η∗) ∈
epi(z), then (x∗, η∗) ∈ epiS(z) (since x

∗ ∈ S) and the solution is optimal. Otherwise,
we add constraints violated by (x∗, η∗) but satisfied by all (x ′, η′) ∈ epi(z) and iterate.
This is of course just an ordinary cutting plane algorithm and the crucial question is
how to select a separating inequality in each iteration.

The original Benders algorithm uses feasibility cuts (cuts with coefficient 0 for
the variable η) and optimality cuts (cuts with non-zero coefficient for the variable η),
depending on whether or not the subproblem that results from fixing the x-variables is
feasible (see, e. g., Vanderbeck and Wolsey 2010). Fischetti et al. (2010), on the other
hand, present a unified perspective that covers both cases: They begin by observing
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that the subproblem can be seen as a pure feasibility problem, represented by the set

{
y ∈ R

k
∣∣∣∣
Ay ≤ b − Hx∗

d�y ≤ η∗

}
. (1.4)

This polyhedron will be empty if and only if (x∗, η∗) /∈ epi(z) and any Farkas
certificate for emptiness of (1.4) can be used to derive an additional valid inequality.
The set of such certificates (up to positive scaling)

P(x∗, η∗) :=
{

(γ, γ0) ≥ 0

∣∣∣∣ γ �A + γ0d
� = 0

γ �(b − Hx∗) + γ0η
∗ = −1

}
(1.5)

is called alternative polyhedron.1 Thus P(x∗, η∗) = ∅ if and only if (x∗, η∗) ∈ epi(z)
and every point (γ, γ0) ∈ P(x∗, η∗) induces an inequality γ �(b − Hx) + γ0η ≥ 0
that is valid for epi(z) but violated by (x∗, η∗).

This characterization is very useful and has been demonstrated empirically to work
well in Fischetti et al. (2010). However, it exposes some fundamental issues, which
are demonstrated by the following example (cf. Fig. 1).

Example 1.1 Consider the following optimization problem:

min x + y

−2x − y ≤ −5

−1

2
x − y ≤ −3

−4x − 4y ≤ −14

x ∈ S := R≥0

y ∈ R

(1.6)

Note that the constraint −4x − 4y ≤ −14 is redundant and does not support the
feasible region. Suppose that we want to decompose the problem into its x-part and
its y-part.

Writing the components of (γ, γ0) in order (γ1, γ2, γ3, γ0), we obtain

P(x∗, η∗) :=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

γ1
γ2
γ3
γ0

⎞
⎟⎟⎠ ≥ 0

∣∣∣∣
γ0 − γ1 − γ2 − 4γ3 = 0

γ0η
∗ + γ1(−5 + 2x∗) + γ2(−3 + 1

2
x∗) + γ3(−14 + 4x∗) = −1

⎫⎪⎪⎬
⎪⎪⎭

.

1 Note that the specific form of the alternative polyhedron depends on the formulation of the basic opti-
mization problem (1.1). In our case, a point P(x∗, η∗) certifies infeasibility of (1.4) by the following
observation: Let y be any vector contained in the set from (1.4). Then, for any (γ, γ0) ≥ 0 it holds
that γ �Ay + γ0d

�y ≤ γ �(b − Hx∗) + γ0η
∗. On the other hand, any (γ, γ0) ∈ P(x∗, η∗) implies

γ �Ay + γ0d
�y = 0 > −1 = γ �(b − Hx∗) + γ0η

∗, independently of the choice of y.
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Fig. 1 Constraints and feasible
region for the optimization
problem (1.6)

The three vertices of P(0, 0) are

P1 =
(
1

5
, 0, 0,

1

5

)

P2 =
(
0,

1

3
, 0,

1

3

)

P3 =
(
0, 0,

1

14
,
2

7

)
.

AsGleeson and Ryan (1990) showed, each of these points corresponds to aminimal
infeasible subsystem of (1.6) with the objective function written in inequality form
x + y ≤ 0. Consequently, each vertex yields one of the original inequalities as a
cut. This notably includes the redundant inequality −4x − 4y ≤ −14, which does
not support the feasible region but is derived from the vertex P3 in the alternative
polyhedron (and furthermore minimizes the linear objective 1).

A cut generated from a point in the alternative polyhedron may thus be very weak,
not even supporting the set epi(z). This is true even if we use a vertex of the alternative
polyhedron and even if that vertexminimizes a given linear objective such as the vector
1 as suggested in Fischetti et al. (2010).

In the following, we present an improved approach for cut generation in the context
of Benders decomposition. Our method can be parametrized by the selection of an
objective vector in primal space and produces facet cuts without any additional com-
putational effort for all but a sub-dimensional set of parametrizations. In addition, our
method is more robust with respect to the formulation of the problem than the original
approach from Fischetti et al. (2010). In particular it always generates supporting cuts,
avoiding the problem pointed out in the context of Example 1.1.

Our method is based on the relation between the alternative polyhedron as intro-
duced above, which is commonly used in the context of Benders cut generation, and
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the reverse polar set, originally introduced by Balas and Ivanescu (1964) in the context
of transportation problems.

We show that the alternative polyhedron can be viewed as an extended formulation
of the reverse polar set, providing us with a parametrizable method to generate cuts
with different well-known desirable properties, most notably facet-defining cuts. As
a special case, we obtain an (arguably simpler) alternative proof for the method to
generate facet-defining cuts proposed by Conforti and Wolsey (2018), if applied to
Benders decomposition. Our work links their approach more directly to previous work
on cut selection, within the context of Benders decomposition (e. g., Fischetti et al.
(2010)) as well as more generally for separation of convex sets (e. g., Cornuéjols and
Lemaréchal (2006)).

Before we proceed by investigating different representations of the set of possible
Benders cuts, it is useful to record a general characterization of the set of normal
vectors for cuts separating a point from epi(z) as defined in (1.3). In the following, we

say that a halfspace H≤
(π,α) :=

{
x ∈ R

n

∣∣∣∣π�x ≤ α

}
is x-separating for a convex set

C ⊂ R
n and a point x ∈ R

n \ C if x /∈ H≤
(π,α) ⊃ C .

Theorem 1.2 Let z be defined as in (1.2) such that epi(z) �=∅ and let (x∗, η∗), (π, π0)∈
R
n×R. Then (π, π0) is the normal vector of a (x∗, η∗)-separating halfspace for epi(z)

if and only if there exists a vector γ ∈ R
m≥0 satisfying

(π�, π0)

(
x∗
η∗

)
− γ �b > 0 (1.7)

γ �A − π0d
� = 0 (1.8)

γ �H = π� (1.9)

π0 ≤ 0. (1.10)

Proof Let hepi(z)(π, π0) := sup

{
π�x + π0η

∣∣∣∣(x, η) ∈ epi(z)

}
be the support func-

tion of epi(z) evaluated at (π, π0). The vector (π, π0) is the normal vector of a
(x∗, η∗)-separating halfspace for epi(z) if and only if

0 < (π�, π0)

(
x∗
η∗

)
− hepi(z)(π, π0). (1.11)

By the definition of epi(z) (which is closed and polyhedral) and then by strong LP
duality, we obtain

hepi(z)(π, π0) = max
x∈Rn ,y∈Rk

η∈R

{
(π�, π0)

(
x
η

) ∣∣∣∣ Ay ≤ b − Hx

d�y ≤ η

}
(1.12)
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= min
γ0∈R≥0
γ∈Rm≥0

⎧⎪⎨
⎪⎩γ �b

∣∣∣∣
γ �A + γ0d

� = 0

γ �H = π�

−γ0 = π0

⎫⎪⎬
⎪⎭ . (1.13)

Note that in order for the equality −γ0 = π0 to hold and (1.13) to be feasible (and
hence (1.12) to be bounded), we need that π0 ≤ 0. Thus the optimality of any pair
(γ, γ0) for (1.13) is equivalent to to the fulfillment of conditions (1.7) to (1.10). ��

As one can see from the proof above, any γ satisfying (1.8) to (1.10) is an upper
bound for hepi(z). This means that given a certificate γ to prove that (π, π0) is a
normal vector of an (x∗, η∗)-separating halfspace H≤

((π,π0),α), we immediately obtain

a corresponding right hand side α := γ �b. Furthermore, the definition of the support
function hepi(z) immediately tells us when this right-hand side is actually optimal and
the resulting halfspace supports epi(z):

Remark 1.1 Let (x∗, η∗) ∈ R
n ×R and let (π, π0) be the normal vector of an (x∗, η∗)-

separating halfspace for epi(z). If γ minimizes γ �b among all possible certificates in
Theorem 1.2, then the halfspace H≤

((π,π0),γ �b) supports the set epi(z).

2 Benders cuts from the reverse polar set

While it would be sufficient in the context of Benders decomposition to obtain an arbi-
trary (x∗, η∗)-separating halfspace whenever the set in (1.4) is empty, the alternative
polyhedron P(x∗, η∗) actually completely characterizes the set of all possible normal
vectors of such halfspaces:

Corollary 2.1 The alternative polyhedron (1.5) completely characterizes all normal
vectors of (x∗, η∗)-separating halfspaces for epi(z). In particular:

(a) Let (γ, γ0) ∈ P(x∗, η∗). Then γ �Hx − γ0η ≤ γ �b is violated by (x∗, η∗), but
satisfied by all (x, η) ∈ epi(z).

(b) Let (π, π0) be the normal vector of a (x∗, η∗)-separating halfspace for epi(z). Then
there exist (γ, γ0) ∈ P(x∗, η∗) and λ ≥ 0 such that (γ �H ,−γ0) = λ · (π�, π0).

Observe, however, that in contrast to Remark 1.1, Corollary 2.1 does not guarantee
that the cut generated from a point in the alternative polyhedron is supporting (as seen
in Example 1.1 not even if that point is a vertex): A given vector (γ, γ0) ∈ P(x∗, η∗)
might not minimize γ �b among all points in P(x∗, η∗) which lead to the same cut
normal.

Alternatively, as argued by Cornuéjols and Lemaréchal (2006), the reverse polar
of a convex set characterizes the set of normals of cuts that separate the origin from
the set. The reverse polar was originally introduced in Balas and Ivanescu (1964) and
can be defined as follows:
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Fig. 2 The reverse polar set (epi(z) − (x∗, η∗))− and the corresponding polar cone (drawn in a coordinate
system with (x∗, η∗) as the origin). It can be seen that (epi(z) − (x∗, η∗))− is contained in the polar cone
pos(epi(z) − (x∗, η∗))◦ (indicated by the black solid lines) but offers a “richer” boundary from which we
can choose cut normals. Specifically, for each vertex v of (epi(z)− (x∗, η∗))− there exists a facet of epi(z)
with normal vector v and vice versa (see Theorem 3.2)

Definition 2.1 Let C ⊆ R
n be a convex set. Then the reverse polar set C− of C is

defined as

C− :=
{
c ∈ R

n
∣∣∣∣c�x ≤ −1 forall x ∈ C

}
.

It is thus a subset of the polar cone

pos(C)◦ :=
{
c ∈ R

n
∣∣∣∣c�x ≤ 0 forall x ∈ C

}
.

Wecan use Theorem1.2 and an appropriate positive scaling2 to obtain the following
description of the reverse polar set.3 Keeping inmind that wewant to separate the point
(x∗, η∗) rather than the origin, we must translate the set such that (x∗, η∗) becomes
the origin (cf. Fig. 2).

(epi(z) − (x∗, η∗))− =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(π, π0) ∈ R
n × R

∣∣∣∣∃γ ≥ 0 :

(π�, π0)

(
x∗
η∗

)
− γ �b ≥ 1

A�γ − π0d = 0

H�γ = π

π0 ≤ 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(2.1)

Note furthermore that, as a consequence of Remark 1.1, we can compute for any
given normal vector (π, π0) a supporting inequality (if one exists) by solving problems
(1.12) or (1.13).

2 The set defined by the inequalities (1.7) to (1.10) is homogenous.
3 Since we use additional γ variables for the description, it is essentially an extended formulation.
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We thus have at our disposal two alternative characterizations of the set of possi-
ble normal vectors of (x∗, η∗)-separating halfspaces: The alternative polyhedron and
the reverse polar set. Despite their similarity, subtle differences exist between both
representations that affect their usefulness for the generation of Benders cuts.

It should be noted at this point that we are not the first ones to notice the similarity
between the approaches of Cornuéjols and Lemaréchal (2006) and Fischetti et al.
(2010). Indeed, the work of Cornuéjols and Lemaréchal (2006) is explicitly cited
in Fischetti et al. (2010), albeit only in a remark about the possibility to exchange
normalization and objective function in optimization problems over the alternative
polyhedron (see Corollary 2.4 below).

Before we proceed, we introduce a variant of the alternative polyhedron, the relaxed
alternative polyhedron, which is also used in Gleeson and Ryan (1990). We will see
that it is equivalent to the original alternative polyhedron for almost all purposes, but
can more easily be connected to the reverse polar set:

Definition 2.2 Let a problem of the form (1.1) and a point (x∗, η∗) ∈ R
n ×R be given.

The relaxed alternative polyhedron P≤(x∗, η∗) is defined as

P≤(x∗, η∗) :=
{

(γ, γ0) ≥ 0

∣∣∣∣ γ �A + γ0d
� = 0

γ �(b − Hx∗) + γ0η
∗ ≤ −1

}
.

To motivate the above definition, observe that optimization problems over the
original and the relaxed alternative polyhedron are equivalent, provided that the
optimization problem over the relaxed alternative polyhedron has a finite non-zero
optimum:

Remark 2.1 Let z bedefined as in (1.2) and let (x∗, η∗) ∈ R
n×R. Let (ω̃, ω̃0) ∈ R

m×R

be such that max

{
ω̃�γ + ω̃0γ0

∣∣∣∣γ, γ0 ∈ P≤(x∗, η∗)
}

< 0. Then the sets of optimal

solutions for ω̃�γ + ω̃0γ0 over P≤(x∗, η∗) and P(x∗, η∗) are identical. Furthermore,
every vertex of P≤(x∗, η∗) is also a vertex of P(x∗, η∗).

The following key theorem now almost becomes a trivial observation. However,
to our knowledge, the relation between the alternative polyhedron and the reverse
polar set has not been made explicit in a similar fashion before (for a set S, we write

AS :=
{
Ax

∣∣∣∣x ∈ S

}
).

Theorem 2.1 Let z be defined as in (1.2) and (x∗, η∗) ∈ R
n × R. Then

(epi(z) − (x∗, η∗))− =
(
H� 0
0 −1

)
· P≤(x∗, η∗).

Proof

(
H� 0
0 −1

)
· P≤(x∗, η∗) =

⎧⎪⎨
⎪⎩(H�γ,−γ0)

∣∣∣∣
γ, γ0 ≥ 0

γ �A + γ0d
� = 0

γ �(b − Hx∗) + γ0η
∗ ≤ −1

⎫⎪⎬
⎪⎭
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=

⎧⎪⎨
⎪⎩(π, π0) ∈ R

n × R≥0

∣∣∣∣∃γ ≥ 0 :
H�γ = π

γ �A − π0d
� = 0

γ �b − π�x∗ − π0η
∗ ≤ −1

⎫⎪⎬
⎪⎭

= (epi(z) − (x∗, η∗))−

��

One common scenario for Benders decomposition is where the master problem is
significantly smaller than the subproblem. In this case Theorem 2.1 implies that the
relaxed alternative polyhedron is an extended formulation for the reverse polar set,
which in particular is always polynomial in size.

We revisit Example 1.1 to illustrate this observation.

Example 1.1 (continuing from p. 3) In the situation of the optimization problem (1.6),
observe that the relaxed alternative polyhedron is

P≤(x∗, η∗) :=⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

γ1
γ2
γ3
γ0

⎞
⎟⎟⎠ ≥ 0

∣∣∣∣
γ0 − γ1 − γ2 − 4γ3 = 0

γ0η
∗ + γ1(−5 + 2x∗) + γ2(−3 + 1

2
x∗) + γ3(−14 + 4x∗) ≤ −1

⎫⎪⎪⎬
⎪⎪⎭

It can be verified that P≤(0, 0) is hence a 3-dimensional unbounded polyhedron
in R

4 with extremal rays pos(0, 1, 0, 1), pos(1, 0, 0, 1), pos(0, 0, 1/4, 1) and with the
original alternative polyhedron P(0, 0) as the only bounded facet. We can now use
Theorem 2.1 to derive the reverse polar set:

epi(z)− = (epi(z) − (0, 0))− =
(
H� 0
0 −1

)
P≤(0, 0)

= conv

((
−2

5
,−1

5

)
,

(
−1

6
,−1

3

)
,

(
−2

7
,−2

7

))

+ pos

((
−1

2
,−1

)
,
(

− 2,−1
)
,
(

− 1,−1
))

.

The set epi(z)− is visualized in Fig. 3.

2.1 Cut-generating linear programs

One way to select a particular cut normal from the reverse polar set or the alternative
polyhedron is by maximizing a linear objective function over these sets. Using The-
orem 2.1, we can derive the precise relation between optimization problems over the
reverse polar set and the alternative polyhedron.
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Fig. 3 The set epi(z)− from
Example 1.1. We can see that the
point P3, which lead to the
non-supporting cut above, is
mapped to the interior of the
reverse polar set and will hence
not appear as an extremal
solution

Corollary 2.2 Let z be defined as in (1.2), (x∗, η∗), (ω, ω0) ∈ R
n × R and

(ω̃, ω̃0) := (Hω,−ω0). (2.2)

Then (π, π0) is an optimal solution to the problem

max

{
ω�π + ω0π0

∣∣∣∣(π, π0) ∈ (epi(z) − (x∗, η∗))−
}

(2.3)

if and only if there exists γ such that H�γ = π and (γ,−π0) is an optimal solution
to the problem

max

{
ω̃�γ + ω̃0γ0

∣∣∣∣(γ, γ0) ∈ P≤(x∗, η∗)
}

. (2.4)

Furthermore, the objective values of both optimization problems are identical.

Proof Let (π, π0) be an optimal solution to (2.3). By Theorem 2.1, there exists a vector
γ with H�γ = π such that (γ,−π0) ∈ P≤(x∗, η∗). Now, let (γ ′, γ ′

0) be an arbitrary
point in P≤(x∗, η∗). By Theorem 2.1, (H�γ ′,−γ ′

0) ∈ (epi(z) − (x∗, η∗))− and thus
from the optimality of (π, π0) for (2.3) we obtain

ω̃�γ ′ + ω̃0γ
′
0 = (Hω)�γ ′ − ω0γ

′
0 = ω�(H�γ ′) + ω0(−γ ′

0)

≤ ω�π + ω0π0 = (Hω)�γ − ω0(−π0) = ω̃�γ + ω̃0(−π0),

which proves the optimality of (γ,−π0) for (2.4).
Similarly, let (γ, γ0) be an optimal solution to (2.4), π := H�γ , and π0 := −γ0,

which means by Theorem 2.1, (π, π0) ∈ (epi(z) − (x∗, η∗))−.
Now, let (π ′, π ′

0) be an arbitrary point in (epi(z)−(x∗, η∗))−. ByTheorem2.1, there
exists γ ′ with H�γ ′ = π ′ such that (γ ′,−π ′

0) ∈ P≤(x∗, η∗). Using the optimality of
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(γ, γ0) for (2.4), we obtain

ω�π ′ + ω0π
′
0 = (Hω)�γ ′ − ω0(−π ′

0) = ω̃�γ ′ + ω̃0(−π ′
0)

≤ ω̃�γ + ω̃0γ0 = ω�H�γ − ω0γ0 = ω�π + ω0π0,

which proves the optimality of (π, π0) for (2.3). ��

Note that the optimization problem stated in (2.4) is technically more general, since
there is no reason to limit ourselves to objective functions of the form (2.2) a priori.
If we choose a different objective function, we still obtain a valid cut. However, since
theremay be no objective function (ω, ω0) such that the resulting cut normal is optimal
for (2.3), we lose some of the properties associated with optimal solutions from the
reverse polar set.

Indeed, this is the approach that Fischetti et al. (2010) take: They use the problem
in (2.4) with ω̃m = 0 for all m which correspond to rows of zeros in the interaction
matrix H and ω̃m = 1 for all other m, as well as ω̃0 = 1 (or ω̃0 = κ for some scaling
factor κ > 0). In general, there exists no vector (ω, ω0) such that this choice can be
obtained by (2.2).

We now take a closer look at the role of objective functions in the context of
Example 1.1:

Example 1.1 (continuing from p. 3) In the situation of the optimization problem (1.6),
remember that the point P3 actually minimizes the 1-norm over P(0, 0) and is hence
the unique result of the (unscaled) selection procedure from Fischetti et al. (2010). On
the other hand the transformation from Theorem 2.1 actually maps this point, which
lead to a non-supporting cut, to the interior of the reverse polar set. It will therefore
never appear as an optimal solution of any linear optimization problem.

In order to obtain a supporting cut, we only have tomake sure that the used objective
can be written in the form (Hω,−ω0). In our example, if we choose the objective
function over the alternative polyhedron from the set

⎧⎨
⎩

⎛
⎝

⎛
⎝ −2

−1/2

−4

⎞
⎠ · ω,−ω0

⎞
⎠

∣∣∣∣ω,ω0 ∈ R

⎫⎬
⎭ ,

then the point P3 ∈ P(0, 0) is never optimal.
To illustrate this further, we solve the optimization problem using (ω, ω0) := (1, 1)

as an example, which implies that

(ω̃, ω̃0) = (Hω,−ω0)� =
⎛
⎝

⎛
⎝ −2

−1/2

−4

⎞
⎠ · 1,−1

⎞
⎠ .

Assuming that we begin with 0 as an initial lower bound for both x and η to make
the problem bounded, we thus obtain (x1, η1) := (0, 0) as an initial tentative solution.
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The cut-generating problem is

max

{
−2γ1 − 1/2γ2 − 4γ3 − γ0

∣∣∣∣(γ, γ0) ∈ P(0, 0)

}

with optimal solution P1 = (1/5, 0, 0, 1/5). The resulting cut is γ �Hx − γ0η ≤ γ �b,
which resolves to

−2

5
x − 1

5
y ≤ −1,

the (linearly scaled) first inequality from (1.6).
Adding this inequality to the master problem, we obtain (x2, η2) := (5/2, 0) as the

next tentative solution. Now,

P(5/2, 0) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

γ1
γ2
γ3
γ0

⎞
⎟⎟⎠ ≥ 0

∣∣∣∣
γ0 − γ1 − γ2 − 4γ3 = 0

−7

4
γ2 − 4γ3 = −1

⎫⎪⎪⎬
⎪⎪⎭

which leads to the cut-generating problem

max

{
−2γ1 − 1/2γ2 − 4γ3 − γ0

∣∣∣∣(γ, γ0) ∈ P(5/2, 0)

}
= (0, 4/7, 0, 4/7)

from which we obtain the next cut:

− 4

14
x − 4

7
y ≤ −12

7
,

the (linearly scaled) second inequality from (1.6).
In the next iteration, we obtain (x∗, η∗) = (4/3, 7/3), the optimal solution. Corre-

spondingly,

P(4/3, 7/3) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

γ1
γ2
γ3
γ0

⎞
⎟⎟⎠ ≥ 0

∣∣∣∣ γ0 − γ1 − γ2 − 4γ3 = 0
7/3γ0 − 7/3γ1 − 7/3γ2 − 26/3γ3 = −1

⎫⎪⎪⎬
⎪⎪⎭

= ∅,

which certifies optimality of the solution (x, y) = (4/3, 7/3).
We have thus solved the optimization problem in two iterations, whereas the selec-

tion procedure from Fischetti et al. (2010) would have selected the point P3 in the
first iteration, leading to a cut that corresponds to the the redundant inequality in the
original problem. It would thus require at least one additional iteration to solve the
problem.

On the other hand, we will see that the fact that our approach yields two facet-
defining cuts is not a coincidence: The following corollary shows that the generated
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cuts are always at least supporting and we will see in Sect. 3.2 that the generated cuts
are actually almost always facet-defining.

One interesting difference between the alternative polyhedron and the reverse polar
set, which can be verified using the above example, is their different behavior with
respect to algebraic operations on the set of inequalities: If, for instance, we scale
one of the inequalities by a positive factor, the reverse polar set remains unchanged
(just as the feasible region defined by the set of inequalities). On the other hand,
the alternative polyhedron does change and, as a consequence, might yield a different
optimal solution with respect to a given objective. In fact, by scaling the inequalities of
(1.6) appropriately, we can actually avoid that the point P3 is optimal for the approach
from Fischetti et al. (2010). If an objective function is used which does not take this
scaling into account, such as the vector of zeros and ones proposed by Fischetti et al.
(2010), then the selected cut might change depending on the scaling factor. Even
selecting a suitable manual scaling factor κ as mentioned above cannot fix this, since
it cannot scale individual constraints against each other.

Combining our results from this section, we obtain the following statement:

Corollary 2.3 Let z be defined as in (1.2) and (x∗, η∗), (ω, ω0) ∈ R
n ×R, (ω̃, ω̃0) :=

(Hω,−ω0), and (γ, γ0) ∈ P(x∗, η∗) be maximal with respect to the objective (ω̃, ω̃0)

such that ω̃�γ + ω̃0γ0 < 0. Then the inequality γ �Hx −γ0η ≤ γ �b supports epi(z).

Proof Let (π, π0) := (H�γ,−γ0). Then, by Remark 1.1, the statement is true if γ

minimizes γ �b among all possible certificates for the vector (π, π0) in Theorem 1.2.
It is easy to verify that γ is indeed a valid certificate for (π, π0) in Theorem 1.2. For
a contradiction, we hence assume that it does not minimize γ �b. Let thus γ ′ ≥ 0
be an alternative certificate for (π, π0) with γ ′�b < γ �b. Then from (1.7) to (1.10)
we obtain that γ ′�A − π0d� = 0 and γ ′�H = π�. Furthermore, since (γ, γ0) ∈
P≤(x∗, η∗),

γ ′�(b − Hx∗) + γ0η
∗ = γ ′�b − π�x∗ + γ0η

∗ < γ �b − π�x∗ + γ0η
∗ ≤ −1.

We can thus scale (γ ′, γ0) by an appropriate factor λ ∈ (0, 1) to obtain that λ ·
(γ ′, γ0) ∈ P≤(x∗, η∗) and

ω̃�(λγ ′) + ω̃0 · (λγ0) = λ · (ω̃�γ ′ + ω̃0γ0) = λ · (ω̃�γ + ω̃0γ0) > ω̃�γ + ω̃0γ0.

On the other hand, by Remark 2.1, if (γ, γ0) maximizes the objective (ω̃, ω̃0) over
P(x∗, η∗), then it is also maximal within P≤(x∗, η∗), a contradiction. By Remark 1.1,
this implies that the inequality γ �Hx − γ0η ≤ γ �b does indeed support epi(z). ��

A critical requirement for Corollary 2.3 is that ω̃�γ + ω̃0γ0 < 0. Cornuéjols and
Lemaréchal (2006, Theorem 2.3) establish some criteria on the objective function
for which optimization problems over the reverse polar set are bounded. We have
simplified the notation for our purposes and rephrased the relevant parts of the theorem
according to our terminology.
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Theorem 2.2 (Cornuéjols and Lemaréchal (2006)) Let (x∗, η∗) /∈ epi(z), (ω, ω0) ∈
R
n × R, and

z∗ := max

{
ω�π + ω0π0

∣∣∣∣(π, π0) ∈ (epi(z) − (x∗, η∗))−
}

.

Then

z∗
{

≤ 0 if (ω, ω0) ∈ cl(pos(epi(z) − (x∗, η∗)))
= ∞ otherwise.

Furthermore, if (ω, ω0) ∈ (epi(z) − (x∗, η∗)), then z∗ ≤ −1.

Note in particular that the last part of the above statement implies z∗ < 0 whenever
(ω, ω0) ∈ pos(epi(z) − (x∗, η∗)) \ {0}, which provides us with a large variety of
objective functions for which ω�γ + ω0γ0 < 0 holds in the optimal solution. By
Corollaries 2.2 and 2.3, this means that the cut which results from maximizing these
objectives over the reverse polar set is guaranteed to be supporting.

2.2 Alternative representations

We now derive an alternative representation of the optimization problem in (2.4),
which will turn out to be much more useful in practice. For instance, the structure of
the resulting problem will be very similar to the original subproblem, which makes
it easy to use existing solution algorithms for the subproblem in a cut-generating
program.

Cornuéjols and Lemaréchal (2006, Theorem 4.2) prove that linear optimization
problems over the reverse polar set can be evaluated in terms of the support function
of the original set (in our case epi(z) − (x∗, η∗)). This can also be applied to the
alternative polyhedron, as mentioned (without proof) by Fischetti et al. (2010). The
following lemma makes a statement similar to Cornuéjols and Lemaréchal (2006,
Theorem 4.2), which is applicable to a wider range of settings. For the proof, we refer
to Stursberg (2019, Theorem 3.20).

Lemma 2.1 (Cornuéjols and Lemaréchal (2006)) Let K ⊆ R
n be a cone and c1, c2 ∈

R
n. Consider the optimization problems

max

{
c�
1 x

∣∣∣∣x ∈ K , c�
2 x = −1

}
(2.5)

and

max

{
c�
2 x

∣∣∣∣x ∈ K , c�
1 x ≥ 1

}
. (2.6)

Then the following hold:
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(a) If x∗ is an optimal solution for (2.5) with objective value ξ > 0, then 1
ξ

· x∗ is an

optimal solution for (2.6) with objective value − 1
ξ
.

(b) Conversely, if x∗ is an optimal solution for (2.6) with objective value ξ < 0, then
− 1

ξ
· x∗ is an optimal solution for (2.6) with objective value − 1

ξ
.

This lemma allows us to solve optimization problems of the form (2.4) by instead
resorting to the optimization problem

max
γ,γ0≥0

γ �(Hx∗ − b) − γ0η
∗ (2.7)

γ �A + γ0d
� = 0 (2.8)

ω̃�γ + ω̃0γ0 = −1. (2.9)

Let (ω̃, ω̃0) ∈ R
m ×R and let (γ ∗, γ ∗

0 ) denote an optimal solution with value ξ > 0
for (2.7) to (2.9). Applying Lemma 2.1 with c1 := (Hx∗ − b,−η∗), c2 := (ω̃, ω̃0)

and K :=
{
(γ, γ0) ≥ 0

∣∣∣∣γ �A + γ0d� = 0

}
, we obtain that 1

ξ
· (γ ∗, γ ∗

0 ) is an optimal

solution with value − 1
ξ
for (2.4).

The structural similarity of (2.7) to (2.9) and the original problem becomes more
apparent when we consider the dual problem:

Corollary 2.4 Let (ω̃, ω̃0) ∈ R
m × R and (λ, x, y) be an optimal solution for the

problem

min λ (2.10)

Ay ≤ b − Hx∗ − λ ω̃ (2.11)

d�y ≤ η∗ − λ ω̃0 (2.12)

with λ > 0. Denote the corresponding dual solution by (γ, γ0). Then
1
λ
(γ, γ0) is an

optimal solution for

max

{
ω̃�γ + ω̃0γ0

∣∣∣∣(γ, γ0) ∈ P≤(x∗, η∗)
}

with objective value − 1
λ
.

Note that, together with our observations in the context of the definition of the
alternative polyhedron (1.5), this means in particular that

(a) Whenever (2.10) to (2.12) has objective value 0, then the alternative polyhedron
is empty and (x∗, η∗) ∈ epi(z), and

(b) Whenever (2.10) to (2.12) is feasible with (finite) objective value greater than 0,
then (2.3) and (2.4) have objective values strictly less than 0, which means that the
requirements for Remark 2.1 and Corollary 2.3 are satisfied.

123



398 R. Brandenberg, P. Stursberg

Remark 2.2 If (ω̃, ω̃0) := (Hω,−ω0), then the optimization problem (2.10) to (2.12)
becomes

min λ (2.13)

Ay ≤ b − H(x∗ + λ · ω) (2.14)

d�y ≤ η∗ + ω0λ (2.15)

The difference between the formulations from Corollary 2.4 and Remark 2.2 lies
in how they relax the original problem: In (2.10) to (2.12), the relaxation works on the
level of individual inequalities by relaxing their right-hand sides, whereas in (2.13) to
(2.15) it works on the level of the master solution (x∗, η∗), allowing us to choose a
possibly more advantageous value for the vector x itself.

3 Cut selection

As we have seen in the previous section, Benders decomposition can be viewed as
an instance of a classical cutting plane algorithm (Theorem 1.2). The Benders sub-
problem takes the role of the separation problem and the alternative polyhedron that
is commonly used to select a Benders cut is a higher-dimensional representation of
the reverse polar set, which characterizes all possible cut normals (Theorem 2.1).

Finally, Corollary 2.4 and Remark 2.2 show that selecting a cut normal by a linear
objective over the reverse polar set or the alternative polyhedron can be interpreted
as two different relaxations (2.10) to (2.12) and (2.13) to (2.15) of the original Ben-
ders feasibility subproblem (1.4). The former relaxation provides more flexibility with
respect to the choice of parameters and coincides with the latter for a particular selec-
tion of the objective function.

Cut selection is one of four major areas of algorithmic improvements for Benders
decomposition that recent work has focused on [see, e. g., the very extensive literature
review by Rahmaniani et al. (2017)]. As a consequence, a number of selection criteria
for Benders cuts have previously been explicitly proposed in the literature. Many of
them also arise naturally from our discussion and analysis of the Benders decompo-
sition algorithm above. We will first present these criteria in the way they typically
appear in the literature and then link them to the reverse polar set and/or the alternative
polyhedron.

3.1 Minimal infeasible subsystems

The work of Fischetti et al. (2010) is based on the premise that “one is interested
in detecting a ‘minimal source of infeasibility’” whenever the feasibility subproblem
(1.4) is empty. They hence suggest to generate Benders cuts based on Farkas certifi-
cates that correspond to minimal infeasible subsystems (MIS) of (1.4). Fischetti et al.
(2010) empirically study the performance of MIS-cuts on a set of multi-commodity
network design instances. Their results suggest that MIS-based cut selection outper-
forms the standard implementation of Benders decomposition by a factor of at least
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2–3. Furthermore, this advantage increases substantially when focusing on harder
instances (e.g. those which could not be solved by the standard implementation within
10 hours).

We define this criterion as follows:

Definition 3.1 Let z be defined as in (1.2) and let (π, π0) ∈ R
n × R. We say that

(π, π0) satisfies the MIS criterion if there exists (γ, γ0) ≥ 0 such that

(a) π = H�γ, π0 = −γ0
(b) The inequalities of (1.4) corresponding to the rows of H which are multiplied by

the non-zero components of (γ, γ0) in the equations in a) form aminimal infeasible
subsystem of (1.4).

Note that we have defined theMIS criterion as a property of a normal vector, rather
than a property of a cut. The reason for this is that the cut normal is the only relevant
choice to make, given that an optimal right-hand side for each cut normal is provided
by Corollary 2.3. Accordingly, we will call any cut with a normal vector that satisfies
the MIS criterion a MIS-cut.

Gleeson and Ryan (1990) show that the set of (γ, γ0) that appear in the above defi-
nition is exactly (up to homogeneity) the set of vertices of the alternative polyhedron:

Theorem 3.1 (Gleeson and Ryan (1990)) Let (x∗, η∗) ∈ R
n ×R. For each vertex v of

the (relaxed) alternative polyhedron (1.5), the set of constraints corresponding to the
non-zero entries of v forms a minimal infeasible subsystem of (1.4). Conversely, for
every minimal infeasible subsystem, there exists a vertex of the alternative polyhedron.

This theorem immediately provides a characterization of cut normals which satisfy
MIS in terms of the alternative polyhedron, which is also used in Fischetti et al.
(2010). However, we can furthermore use Theorem 2.1, to transfer one direction of
the characterization to the reverse polar set:

Corollary 3.1 Let z be defined as in (1.2) and (x∗, η∗) ∈ R
n × R. If there is a vertex

(γ, γ0) of P(x∗, η∗) such that (π, π0) = (H�γ,−γ0), then the vector (π, π0) satisfies
the MIS criterion. Furthermore, if (π, π0) is a vertex of (epi(z) − (x∗, η∗))−, then it
satisfies the MIS criterion.

Note that the reverse direction of the last sentence is generally not true, i.e. there
might be minimal infeasible subsystems that do not correspond to vertices of the
reverse polar set. As an example to illustrate this, aswell as the above definition overall,
consider Example 1.1 and specifically Fig. 3: Each of the vectors P̃1, P̃2, P̃3 satisfies
theMIS criterion, since they can be related by the equations π = H�γ, π0 = −γ0 to
vertices of the alternative polyhedron, which can be identified with minimal infeasible
subsystems of (1.4).

3.2 Facet-defining cuts

In cuttingplane algorithms for polyhedra, facet-defining cuts are commonly considered
to be very useful since they form the smallest family of inequalities which completely
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describe (the convex hull of) the feasible solutions. A cutting-plane algorithm that can
separate (distinct) facet inequalities in each iteration is not necessarily computationally
efficient, but at least it is automatically guaranteed to terminate after a finite number
of iterations. Also in practical applications, facet cuts have turned out to be extremely
useful, e.g. in the context of branch-and-cut algorithms for integer programs such
as the Traveling Salesman Problem. This is why the description of facet-defining
inequalities has been a large and very active area of research for decades (see Balas
1975; Nemhauser and Wolsey 1988; Cook et al. 1998; Korte and Vygen 2008 and, as
mentioned before, Conforti and Wolsey 2018).

Remember that a halfspace H≤
(π,α) is facet-defining for a set C if C ⊆ H≤

(π,α) and
H(π,α) ∩ C contains dim(C) many affinely independent points. Analogously to the
MIS criterion above, we define the Facet criterion for a normal vector in the context
of Benders decomposition as follows:

Definition 3.2 Let z be defined as in (1.2) and (π, π0) ∈ R
n × R \ {0}. We say that

(π, π0) satisfies the Facet criterion if there exists α ∈ R such that H≤
((π,π0),α) is either

facet-defining for epi(z) or the corresponding hyperplane H((π,π0),α) contains epi(z).

Note that, in deviation from the common definition of a facet-defining cut, the above
definition requires that the halfspace supports at least dim(C) affinely independent
points. In other words, in the case where epi(z) is not full-dimensional, we also allow
that epi(z) is entirely contained in the hyperplane which represents the boundary of
H≤

((π,π0),α). In this situation, the comparison of different cut normals is inherently
difficult: Since there is no clear way to tell if a cut supporting a facet of epi(z) or one
fully containing the set is the stronger cut, the Facet criterion captures arguably the
strongest statement about a cut in relation to epi(z) that we can make in general: In
no case would we want to select a cut that supports neither a facet nor fully contains
the set epi(z).

On the other hand, by this definition, the “trivial” cut normal (0, 0) would be facet-
defining (since the hyperplane H((0,0),0) contains all of Rn ×R and thus also epi(z)).
Since this is not very useful, we have to exclude this choice explicitly and thus choose
(π, π0) ∈ R

n × R \ {0} in Definition 3.2.
For an example to illustrate the above definition, we refer to Fig. 4 where it is

discussed together with the property of Pareto-optimality, which will be defined later.
The following result was proven by Cornuéjols and Lemaréchal (2006, Theorem

6.2), containing a minor error in the case where the set P is subdimensional.4 We
therefore re-state a corrected version of the important parts below, a corresponding
proof can be found in Stursberg (2019, Theorem 3.30).

Theorem 3.2 (Cornuéjols and Lemaréchal (2006)) Let P ⊆ R
n be a polyhedron,

x∗ /∈ P and

r :=
{
dim(P) − 1, x∗ ∈ aff(P)

dim(P), x∗ /∈ aff(P).
(3.1)

4 The result can also be derived from Balas (1998, Theorem 4.5) in the context of disjunctive cuts.
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Then, there exists an x∗-separating halfspace with normal vector π �= 0 supporting
an r-dimensional face of P if and only if there exists a vertex π∗ of lin(P − x∗) ∩
(P − x∗)− and some λ > 0 such that λπ ∈ π∗ + lin(P − x∗)⊥.

Most notably, for the case where P is full-dimensional (i. e., dim(P) = n) the
above theorem implies that there exists an x∗-separating halfspace with normal vector
π supporting a facet of P if and only if there exists a vertex π∗ of (P − x∗)− and
λ ≥ 0 such that λπ = π∗.

In this case, every cut generated from a vertex of the reverse polar set defines a
facet of epi(z). If an explicitH-representation of the reverse polar set is available, we
can thus easily obtain a facet-defining cut, e. g., by linear programming.

Note that since P≤(x∗, η∗) is line-free (i. e. its lineality space, the maximal linear
subspace it contains, is {0}), Theorem 2.1 implies that for every vertex of the reverse
polar set there exists a vertex of the relaxed alternative polyhedron (and hence of the
original alternative polyhedron) that leads to the same cut normal. In other words,
if the normal of an x∗-separating halfspace satisfies the Facet criterion, then it also
satisfies the MIS criterion.

On the other hand, Theorem 2.1 is not sufficient to guarantee that selecting a vertex
of the alternative polyhedron yields a facet-defining cut: As Example 1.1 shows, a
vertex of P≤(x∗, η∗), is not necessarily mapped to a vertex of the reverse polar set
under the transformation fromTheorem 2.1. This exposes a useful hierarchy of subsets
of the alternative polyhedron according to the properties of the cut normals which
they yield: Selecting a vertex of the alternative polyhedron already guarantees that the
resulting cut normal satisfies theMIS criterion and the points that lead to cut normals
satisfying the Facet criterion constitute a subset of these vertices. The approach of
selecting MIS-cuts may thus be viewed as a heuristic method to find Facet-cuts.

Although cuts satisfying the MIS criterion in general do not satisfy the Facet
criterion, we can obtain some information on when this is the case in the situation of
Corollary 2.2, i. e. if the objective function (ω̃, ω̃0) used to select the cut via problem
(2.4) satisfies (ω̃, ω̃0) = (Hω,−ω0) for some valid objective (ω, ω0) for problem
(2.3).

In this case it turns out that we actually obtain a Facet-cut for all objectives
(ω, ω0) except those froma lower-dimensional subspace.More precisely,we can prove
the following characterization of the relationship between vertices of the alternative
polyhedron and cut normals satisfying the Facet criterion. Like Conforti and Wolsey
(2018, Proposition 6), the following theorem provides a method to generate facet-
defining cuts using a single linear program. In contrast to Conforti andWolsey (2018),
however, our theorem uses a linear program over the (relaxed) alternative polyhedron
and thus creates a link to well-established cut selection methods in the context of
Benders decomposition, such as that proposed by Fischetti et al. (2010):

Theorem 3.3 Let z be defined as in (1.2), (x∗, η∗) ∈ (Rn ×R)\ epi(z), and (ω, ω0) ∈
cl(pos(epi(z)−(x∗, η∗))). Then, there exists an optimal vertex (γ ∗, γ ∗

0 ) ∈ P≤(x∗, η∗)
with respect to the objective function (Hω,−ω0) such that the resulting cut normal
(H�γ ∗,−γ ∗

0 ) is (x∗, η∗)-separating and satisfies the Facet criterion.
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Proof Let L := lin(epi(z)− (x∗, η∗)) and observe that L is orthogonal to the lineality
space of (epi(z) − (x∗, η∗))−. From Theorem 2.2, the reverse polar set (epi(z) −
(x∗, η∗))− is bounded in the direction of (ω, ω0). Wemay therefore choose an optimal
solution (π, π0) from the intersection (epi(z)−(x∗, η∗))−∩L .While the reverse polar
need not be line-free, note that (epi(z)− (x∗, η∗))− ∩ L is indeed line-free and we can
therefore choose (π, π0) to be extremal in (epi(z)− (x∗, η∗))− ∩ L . By Corollary 2.2,
there exists γ ′ with H�γ ′ = π such that (γ ′,−π0) is an optimal solution to the
problem

max

{
(Hω)�γ − ω0γ0

∣∣∣∣(γ, γ0) ∈ P≤(x∗, η∗)
}

. (3.2)

Denote by P∗ the face of optimal solutions of (3.2) and observe that

(γ ′,−π0) ∈ P∗ ∩
{
(γ, γ0)

∣∣∣∣(H�γ,−γ0) − (π, π0) = 0

}

⊆ P∗ ∩
{
(γ, γ0)

∣∣∣∣(H�γ,−γ0) − (π, π0) ∈ L⊥
}

.

Let (γ ∗, γ ∗
0 ) be a vertex of P∗ ∩

{
(γ, γ0)

∣∣∣∣(H�γ,−γ0) − (π, π0) ∈ L⊥
}

(which

exists, since P≤(x∗, η∗) is line-free). Then (γ ∗, γ ∗
0 ) is obviously optimal for (3.2).

Since furthermore (H�γ ∗,−γ ∗
0 ) = (π, π0) + v for some v ∈ L⊥, this means by

Theorem 3.2 that it satisfies the Facet criterion.
It remains to show that (γ ∗, γ ∗

0 ) is a vertex of P∗, thus showing that it is also a
vertex of P≤(x∗, η∗). To see this, let (γ 1, γ 1

0 ), (γ 2, γ 2
0 ) ∈ P∗ such that (γ ∗, γ ∗

0 ) ∈
relint([(γ 1, γ 1

0 ), (γ 2, γ 2
0 )])5 However, it follows that

(π, π0) + v = (H�γ ∗,−γ ∗
0 ) ∈ relint([(H�γ 1,−γ 1

0 ), (H�γ 2,−γ 2
0 )])

and by Theorem 2.1, [(H�γ 1,−γ 1
0 ), (H�γ 2,−γ 2

0 )] ⊆ (epi(z) − (x∗, η∗))−. As
(π, π0) is extremal in the set (epi(z) − (x∗, η∗))− ∩ L , this implies that both

(H�γ 1,−γ 1
0 ), (H�γ 2,−γ 2

0 ) ∈
{
(π, π0) + v

∣∣∣∣v ∈ L⊥
}
which in turn implies that

(γ 1, γ 1
0 ), (γ 2, γ 2

0 ) ∈ P∗ ∩
{
(γ, γ0)

∣∣∣∣(H�γ,−γ0) − (π, π0) ∈ L⊥
}
. As (γ ∗, γ ∗

0 ) is

extremal in P∗ ∩
{
(γ, γ0)

∣∣∣∣(H�γ,−γ0) − (π, π0) ∈ L⊥
}
, we obtain that (γ 1, γ 1

0 ) =
(γ 2, γ 2

0 ) = (γ ∗, γ ∗
0 ), which proves extremality of (γ ∗, γ ∗

0 ) in P∗. ��
In particular, Theorem 3.3 implies the following: If (γ ′, γ ′

0) ∈ P≤(x∗, η∗) is an
optimal vertex with respect to the objective function (Hω,−ω0) such that the result-
ing cut normal (H�γ ′,−γ ′

0) does not satisfy the Facet criterion, then the optimal
solution for maximizing (Hω,−ω0) over P≤(x∗, η∗) is not unique. Furthermore, by

5 relint(S) (relbd(S)) denote the interior (boundary) relative to the affine hull of S.
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Corollary 2.2, this implies that the same is true for maximizing the objective (ω, ω0)

over (epi(z) − (x∗, η∗))−.
We can summarize our results as follows: While any Facet-cut is also anMIS-cut,

the reverse is not always true. However, if we optimize the objective (Hω,−ω0) over
the alternative polyhedron, then there exists only a subdimensional set of choices for
the vector (ω, ω0) for which the resulting cut might not satisfy the Facet criterion
(those, for which the optimum over the reverse polar set is non-unique).

This suggests that these cases should be “rare” in practice, especially if we choose
(or perturb) (ω, ω0) randomly from some full-dimensional set. This argument, why
a cut obtained for a generic vector (ω, ω0) can be expected to be facet-defining, is
identical to the concept of “almost surely” finding facet-defining cuts proposed by
Conforti and Wolsey (2018).

Looking back at Remark 2.2, this similarity should not come as a surprise: With
(ω, ω0) = (x̄ − x∗, η̄ − η∗) for a point (x̄, η̄) ∈ relint(epi(z)), the resulting cut-
generating LP is almost identical. In fact, the point (x̄, η̄) in this case takes the role of
the point that the origin is relocated into in the approach from Conforti and Wolsey
(2018). Observe, however, that while Conforti andWolsey (2018) require that point to
lie in the relative interior of epi(z), we can actually expect a cut satisfying the Facet
criterion from any (ω, ω0) for which the optimal objective over the reverse polar is
strictly negative. By Theorem 2.2, one sufficient (but not necessary) criterion for this
is to choose (ω, ω0) = (x̄ − x∗, η̄ − η∗) for an arbitrary point (x̄, η̄) ∈ relint(epi(z)).

3.3 Pareto-optimality

The first systematic work on the general selection of Benders cuts to our knowledge
was undertaken by Magnanti and Wong (1981). The paper, which has proven very
influential and still being referred to regularly, focuses on the property of Pareto-
optimality. It can intuitively be described as follows: A cut is Pareto-optimal if there is
no other cut valid for epi(z) which is clearly superior, which dominates the first cut.

In this setting, any cut that does not support epi(z) is obviously dominated. Between
supporting cuts, there is no general criterion for domination.Wecan, however, compare
cuts where the cut normal (π, π0) satisfies π0 �= 0 (this is also the case covered by
Magnanti and Wong (1981)):

Definition 3.3 For a problem of the form (1.1), we say that an inequality π�x+π0η ≤
α with π0 < 0 is dominated by another inequality π ′�x + π ′

0η ≤ α′ if π ′
0 < 0 and

π ′�x − α′

−π ′
0

≥ π�x − α

−π0
for all x ∈ S, (3.3)

with strict inequality for at least one x ∈ S.
If π0 < 0 and π�x + π0η ≤ α is not dominated by any valid inequality for epi(z),

then we call it Pareto-optimal.

Remember that the set S contains all points x ∈ R
n that are feasible for an opti-

mization problem of the form (1.1) if we ignore the linear constraints Hx + Ay ≤ b.
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Fig. 4 The dotted cut supports a
facet of epi(z) and it supports
epiS(z), but it is still not
Pareto-optimal. The solid cut
supports a facet of epiS(z) and is
hence Pareto-optimal. The
dashed cut is Pareto-optimal
even though it does not support a
facet of epi(z) (or epiS(z))

By the above definition, a cut dominates another cut if the minimum value of η that it
enforces is at least as good for all x ∈ S and strictly better for at least one x ∈ S (see
Fig. 4).

Analogously to the previous criteria, we define the Pareto criterion for a cut
normal:

Definition 3.4 For a problemof the form (1.1)with z as defined as in (1.2), let (π, π0) ∈
R
n×R.We say that (π, π0) satisfies the Pareto criterion if there exists a scalar α ∈ R

such that the inequality π�x + π0η ≤ α is Pareto-optimal.

This criterion is very reasonable: If a cut is not Pareto-optimal, then there exists a
different cut which is also valid for epi(z), but leads to a strictly tighter approximation.
We would hence prefer to generate a stronger, Pareto-optimal cut right away.

The following theorem provides us with a characterization of Pareto-optimal cuts.
It is based on the idea of Magnanti andWong (1981, Theorem 1), which is formulated
under the assumption that the subproblem is always feasible (which implies that π0 <

0 for any cut normal (π, π0)). While the original theorem is only concerned with
sufficiency, we extend the result in a natural way to obtain a criterion that gives a
complete characterization of Pareto-optimal cuts. We use the following separation
lemma:

Lemma 3.1 (Rockafellar (1970)) Let C ⊆ R
n be a non-empty convex set and K ⊆ R

n

a non-empty polyhedron such that relint(C)∩ K = ∅. Then, there exists a hyperplane
separating C and K which does not contain C.

Using this lemma, we obtain the following theorem:

Theorem 3.4 For a problem of the form (1.1), let (π, π0) ∈ R
n ×R with π0 < 0. The

inequality π�x + π0η ≤ α is Pareto-optimal if and only if H≤
((π,π0),α) is a halfspace

supporting epi(z) in a point (x∗, η∗) ∈ epi(z) ∩ relint(conv(S)) × R.

Proof For the if part, suppose for a contradiction that (π�, π0)(x, η)� ≤ α

is not Pareto-optimal, i. e. there exist some π ′, π ′
0, α

′ such that the inequality
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(π ′�, π ′
0)(x, η)� ≤ α′ dominates the former inequality. This means that for all x ∈ S

(and hence all x ∈ conv(S)), it holds that

π ′�x − α′

−π ′
0

≥ π�x − α

−π0
(3.4)

and furthermore

π ′� x̄ − α′

−π ′
0

>
π� x̄ − α

−π0
for some x̄ ∈ S.

Finally, since H≤
((π,π0),α) supports epi(z) in (x∗, η∗),

π ′�x∗ − α′

−π ′
0

≤ η∗ = π�x − α

−π0
≤ π ′�x∗ − α′

−π ′
0

and hence equality must hold everywhere in the above inequality chain. Now, as
x∗ ∈ relint(conv(S)), we can choose λ > 1 such that x̃ := x̄ + λ(x∗ − x̄) ∈ conv(S).
But then

π ′� x̃ − α′

−π ′
0

= (1 − λ)︸ ︷︷ ︸
<0

π ′� x̄ − α′

−π ′
0︸ ︷︷ ︸

> π� x̄−α
−π0

+λ
π ′�x∗ − α′

−π ′
0︸ ︷︷ ︸

= π� x̄−α
−π0

<
π� x̃ − α

−π0
,

contradicting (3.4).
For the only-if part, we first note that if H≤

((π,π0),α) does not support epi(z), then it

is obviously dominated by H≤
((π,π0),α′) with α′ := α′ + ε for some ε > 0. Therefore,

let H≤
((π,π0),α) be such that it supports epi(z), but not in points from the set epi(z) ∩

relint(conv(S)) × R. Denote by S∗ :=
{
x ∈ R

n

∣∣∣∣∃η : (x, η) ∈ epi(z) ∩ H((π,π0),α)

}

the set of points where H≤
((π,π0),α) supports epi(z).

Since relint(conv(S)) ∩ S∗ = ∅, we can use Lemma 3.1 to obtain a hyperplane
separating conv(S) and S∗ which does not contain S. Hence, there exist π∗, α∗ such
that π∗�x ≥ α∗ for all x ∈ S∗ and π∗�x ≤ α∗ for all x ∈ conv(S), where the second
inequality is strict for some x ∈ conv(S) and thus also for some x∗ ∈ S.

Let ε > 0, π ′ := π − επ∗ and α′ := α − εα∗. If ε is sufficiently small, then the
inequality (π ′�, π0)(x, η)� ≤ α′ is valid for epi(z): All (x, η) ∈ epi(z) with x /∈ S∗
satisfy the original inequality strictly and for all x ∈ S∗,

(π ′�, π0)(x, η)� − α′ = (π�, π0)(x, η)� − α − ε (π∗�x − α∗︸ ︷︷ ︸
≥0

)
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≤ (π�, π0)(x, η)� − α ≤ 0,

since the original inequality is valid for epi(z).
Finally, we claim that the inequality (π�, π0)(x, η)� ≤ α is dominated by the

inequality (π ′�, π0)(x, η)� ≤ α′: For all x ∈ S, it holds that

π ′�x − α′

−π0
= π�x − α

−π0
+ ε · π∗�x − α∗

−π0
≥ π�x − α

−π0
.

Since the last inequality is strict for x∗ ∈ S, this proves the statement. ��
For the case where S is convex, the previous theorem immediately implies the

following statement:

Corollary 3.2 Let S be convex. Then, π�x + π0η ≤ α is Pareto-optimal if and only if
H≤

((π,π0),α) supports a face F of epiS(z) such that F �⊂ relbd(S) × R.

Magnanti and Wong (1981) also propose an algorithm that computes a Pareto-
optimal cut by solving the cut-generating problem twice. While their algorithm is
defined for the original Benders optimality cuts, it can be adapted to work with other
cut selection criteria, as well. Sherali and Lunday (2013) present a method based on
multiobjective optimization to obtain a cut that satisfies a weaker version of Pareto-
optimality by solving only a single instance of the cut-generatingLP. Papadakos (2008)
notes that, given a point in the relative interior of conv(S), a Pareto-optimal cut can
be generated using a single run of the cut-generating problem. Also, under certain
conditions on the problem, other points not in the relative interior allow this, as well.
However, the approach suggested by the authors adds Pareto-optimal cuts indepen-
dently from master- or subproblem solutions, together with subproblem-generated
cuts, which are generally not Pareto-optimal. This means that the Pareto-optimal cuts
which are added may not even cut off the current tentative solution. The upcoming
Theorem 3.5 will lead to an approach that reconciles both objectives, generating cuts
that are both Pareto-optimal and cut off the current tentative solution.

We use a result by Cornuéjols and Lemaréchal (2006) on the set of points exposed
by a cut normal (π, π0) to derive a method that always obtains a Pareto-optimal cut.
The following lemma has been slightly generalized and rewritten to match our setting
and notation, but it follows the general idea of Cornuéjols and Lemaréchal (2006,
Theorem 3.4).

Lemma 3.2 (Cornuéjols and Lemaréchal (2006)) Let (x∗, η∗) ∈ R
n ×R \ epi(z) and

(ω, ω0) ∈ pos(epi(z) − (x∗, η∗)) and let

(x̄, η̄) := (ω, ω0)

−hQ(ω, ω0)
+ (x∗, η∗).

where hQ(ω, ω0) := sup

{
ω�x + ω0η

∣∣∣∣(x, η) ∈ Q

}
is the support function of the set

Q.
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Table 1 Properties of a cut resulting from a vertex in the alternative polyhedron which maximizes (ω̃, ω̃0)

(under the assumption that a finite optimum exists)

(ω̃, ω̃0) MIS Facet Pareto

∈ R
m × R ✓ ✗ ✗

∈ (H , −1) · Rn × R ✓ (✓) ✗

∈ (H , −1) · relint(conv(epiS(z) − (x∗, η∗))) ✓ (✓) ✓

The checkmark in parentheses (✓) indicates that the property is satisfied for all (ω̃, ω̃0) in the specified set
except those from a specific sub-dimensional subset

If (π, π0) is optimal in Q := (epi(z) − (x∗, η∗))− with respect to the objective
(ω, ω0) then there exists α ∈ R such that H≤

((π,π0),α) supports epi(z) in (x̄, η̄).

Proof The case of (ω, ω0) ∈ (epi(z) − (x∗, η∗)) was proven by Cornuéjols and
Lemaréchal (2006, Theorem 3.4). If (ω, ω0) ∈ pos(epi(z) − (x∗, η∗)), then there
is μ > 0 such that μ · (ω, ω0) ∈ (epi(z) − (x∗, η∗)). Note that if (π, π0) is optimal
with respect to (ω, ω0), then also with respect to μ · (ω, ω0). Thus it follows from
Cornuéjols and Lemaréchal (2006, Theorem 3.4) that there exists α ∈ R such that
H≤

(π,π0),α
supports epiS(z) in

(x̄, η̄) := μ · (ω, ω0)

−hQ(μω,μω0)
+ (x∗, η∗) = (ω, ω0)

−hQ(ω, ω0)
+ (x∗, η∗).

��
We can now prove the theorem already mentioned above.

Theorem 3.5 Let (x∗, η∗) ∈ S × R, (ω, ω0) ∈ relint(conv(epiS(z) − (x∗, η∗))),
(π, π0) be optimal in (epi(z) − (x∗, η∗))− with respect to the objective (ω, ω0), and
π0 < 0. Then (π, π0) satisfies the Pareto criterion.

Proof Let Q := (epi(z) − (x∗, η∗))− again and λ := −(hQ(ω, ω0))
−1. Since, in

particular, (ω, ω0) ∈ epiS(z) − (x∗, η∗) it follows from the definition of the reverse
polar set that hQ(ω, ω0) ≤ −1 and thus λ ∈ [0, 1].

For (x̄, η̄) from Lemma 3.2, we obtain (x̄, η̄) = λ ((ω, ω0) + (x∗, η∗)) + (1 −
λ)(x∗, η∗) is a convex combination of (ω, ω0) + (x∗, η∗) ∈ relint(conv(epiS(z))) ⊆
relint(conv(S)) × R and (x∗, η∗) ∈ S × R. Therefore, x̄ ∈ relint(conv(S)) and thus
by Theorem 3.4 the cut defined by (π, π0) is Pareto-optimal. ��

The results from this section are summarized in Table 1.

4 Computational results

To validate the theoretical results presented in this paper, we have compared our refined
cut selection approach to that presented by Fischetti et al. (2010) on a set of instances
of the Capacity Expansion Problem for electrical power systems.
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To map the range of potential instances we use a total of 14 test instances, spanning
froma small, closely connectedmodel of theBavarian power system to a large, realistic
model of the (rather sparsely connected) European power system consisting of 102
demand regions with 587 (aggregated) generation units and 195 existing and potential
transmission lines (Schaber et al. 2012), that were investigated in the context of two
joint research projects.

For both models, we optimize capacity expansion and hourly dispatch based on
demand data and data for the availability of renewable energy sources in hourly reso-
lution for a period of one year. Due to their inherent structure, where subproblems for
individual timesteps are loosely coupled by capacity expansion decisions and storage
constraints, this type of problem is generally well-suited for Benders decomposition.
To give an indication of the size of the resulting optimization problems, instances
1-12 each consist of ≈ 800,000 variables, ≈ 1,200,000 constraints and ≈ 3,700,000
non-zero entries in the constraint matrix. Instances 13 and 14 consist of ≈ 1,500,000
variables, ≈ 2,600,000 constraints and ≈ 7,600,000 non-zero entries in the constraint
matrix.

To demonstrate the benefits of our refined cut selection approach, we continuously
update the weight vector (ω̃, ω̃0) so that in each iteration it satisfies the conditions of
Theorem 3.5 and thus the resulting cut meets the most advantageous of the criteria
developed in this paper (corresponding to the last row in Table 1).We call this approach
adaptive cuts.

As a benchmark,we use a version of the approach proposed by Fischetti et al. (2010)
that strengthens the resulting cuts without additional computational effort using the
information represented by the matrix H (thereby in particular making sure that the
obtained cut is always supporting). We denote this approach by the term static cuts.

More specifically, we compare the following approaches:

“adaptive cuts” (ω̃, ω̃0) = (H ,−1)�(x̄ − x∗, η̄ − η∗) where (x̄, η̄) is a (suboptimal)
feasible solution computed based on a current upper bound from the
Benders Decomposition algorithm.

“static cuts” (ω̃, ω̃0) = (H ,−1)�(1, 1).

As mentioned above, the computational effort for the cut-generating LP in both
approaches is almost identical: The only difference is that in the “adaptive cuts”
approach, we use a different objective function, which can be obtained from the result
of the previous iteration via a simple matrix-vector multiplication.

We have implemented both approaches in C++ using Gurobi 7.5. For our compu-
tations, we used ten CPU cores running at 2.4 GHz with 45 GB of main memory.

To solve master problem and subproblems, we use the dual simplex algorithm (i. e.,
the version of the simplex algorithm that maintains dual feasibility while pivoting
between bases). In each iteration, we warm-start all problems using the optimal basis
from the previous iteration and solve all subproblems in parallel on the available
cores. Beyond this, we run the solution algorithm with default settings, i. e., we did
not undertake any computational optimizations with respect to either the algorithm
itself or the solution method of master and subproblems. In particular, also the specific
update mechanism use for the adaptive cuts approach should be seen as an illustrative
example rather than a performance-optimized prescription.
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Table 2 Time (in hours) to reach different relative duality gaps with static cuts and adaptive cuts, respec-
tively, for different instances in our test set

Gap Instance 1 Instance 2 Instance 3 Instance 4

Static Adaptive Static Adaptive Static Adaptive Static Adaptive

1.00 × 10−1 3.10 1.37 2.90 1.44 2.99 1.15 3.20 1.07

1.00 × 10−2 6.61 2.20 5.36 1.94 6.53 1.86 6.02 1.70

1.00 × 10−3 10.11 3.60 8.57 3.16 9.90 3.05 8.81 2.69

1.00 × 10−4 13.46 5.04 12.05 4.24 13.83 4.47 11.72 3.56

1.00 × 10−5 15.69 6.06 14.45 5.28 17.37 5.69 14.60 4.82

Gap Instance 5 Instance 6 Instance 7 Instance 8

Static Adaptive Static Adaptive Static Adaptive Static Adaptive

1.00 × 10−1 2.99 1.22 3.11 1.08 2.87 1.22 3.34 1.32

1.00 × 10−2 5.29 2.00 5.52 1.68 5.17 1.99 5.58 2.57

1.00 × 10−3 8.91 3.52 9.13 2.44 8.69 3.05 8.52 4.10

1.00 × 10−4 13.13 5.10 13.58 3.66 13.88 4.67 12.38 5.74

1.00 × 10−5 17.52 6.99 18.06 5.39 18.41 6.21 15.49 6.86

Gap Instance 9 Instance 10 Instance 11 Instance 12

Static Adaptive Static Adaptive Static Adaptive Static Adaptive

1.00 × 10−1 2.48 1.24 2.68 1.08 3.08 1.32 2.98 1.31

1.00 × 10−2 5.79 2.01 6.13 1.95 6.32 2.46 6.16 2.09

1.00 × 10−3 9.41 3.12 9.64 3.17 9.55 3.51 8.88 3.51

1.00 × 10−4 14.01 4.29 13.59 4.31 12.89 4.53 11.69 4.68

1.00 × 10−5 17.76 5.86 18.28 6.23 15.10 5.34 13.98 5.44

Gap Instance 13 Instance 14

Static Adaptive Static Adaptive

1.00 × 10−1 2.60 1.46 2.38 1.25

1.00 × 10−2 2.85 1.50 2.53 1.25

1.00 × 10−3 3.25 1.65 3.09 1.44

1.00 × 10−4 3.81 1.76 3.75 1.66

1.00 × 10−5 4.06 1.95 4.10 1.85

As a performance measure, we use the time to reach different thresholds for the
relative duality gap, i. e., the gap between upper and lower bound relative to the optimal
objective value. This takes into account that in practical applications, one is often
satisfied with a solution that is guaranteed to be within a certain tolerance of the
optimal solution (e. g., 0.1 %), rather than a strictly optimal solution. Our results show
that for any desired gap, the adaptive cuts selection approach performs substantially
better than the static cuts approach.
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Fig. 5 Progression of the average relative duality gap using static cuts and adaptive cuts over all our test
instances based on the European power system: The adaptive cuts reduce the gap by a factor of 2–3 faster
compared to the static cuts approach

The results can be inspected in detail in Table 2: The adaptive cuts approach gener-
ally reaches any given optimality threshold by a factor of 2–3 faster than the static cuts
approach. While the general result is very consistent across all instances, differences
in the magnitude of the advantage exist: The benefit of the adaptive cuts approach
tends to be larger in more difficult instances which overall take longer to solve.

To further visualize our results, Fig. 5 compares the two approaches with respect
to the progression of the average duality gap over all instances based on the (larger)
European power system model. The plot confirms our observation from Table 2: The
adaptive cuts approach reduces the duality gap by a factor of 2–3 faster than the static
cuts approach.

5 Outlook

We conclude with an outlook on interesting research questions raised by the results
presented in this paper.

Our theoretical results clearly point to a computational advantage from improv-
ing the parametrization of cut-generating LPs in Benders decomposition and we have
demonstrated this advantage in the context of Capacity Expansion Problems for elec-
trical power systems. This holds despite the fact that we have not performed any “fine
tuning” of parameters beyond what is immediately implied by our theoretical results.
A broader computational study of such optimizations (for which we point out some
ideas below), aswell as of general performance across other types of problem instances
would certainly be worthwile.

In a generic implementation of Benders decomposition, feasible solutions are used
primarily to decide when the algorithm has converged sufficiently close to the optimal
solution. By Theorem 2.2, however, any such solution can furthermore be used to
derive a subproblem objective which satisfies the prerequisites of both Corollary 2.3
and Theorem 3.3. Together with Theorem 3.5, they thus result in the generation of
cuts which are always supporting, almost always support a facet and (if π0 < 0) are
also pareto-optimal. In our computational experiments, these cuts proved to be very
useful in improving the performance of a Benders decomposition algorithm. Since
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information from a feasible solution can thus be used within the cut generation, it
makes sense to investigate more closely the possibilities how such a solution can be
obtained during the algorithm. This is likely to be very problem-specific, but some
general ideas could be:

– How is the information from feasible solutions computed in different iterations
best aggregated?Does itmake sense to use e. g. a stabilization approach or a convex
combination with some other choices for (ω, ω0), e. g. from previous iterations?
This corresponds to the method used by Papadakos (2008) in their empirical study.

– More broadly, what different methods can be used to generate feasible solutions
and what effect do different feasible solutions have on cut generation and the
computational performance of the algorithm?

Furthermore, if a feasible solution is not available as the basis for a subproblem
objective, the cut-generating problem might be unbounded/infeasible. On the other
hand, the approach from Fischetti et al. (2010) with ω̃ = 1 yields a cut-generating LP
that is always feasible, but the resulting cut might be weaker. How can both approaches
be combined in a best-possible way? For instance, is choosing ω̃ = Hω + ε ·1 as the
relaxation term and letting ε go to zero a good choice?

Finally, our approach provides a clear geometric interpretation of the interaction
between parametrization of the cut-generating LP and the resulting cut normals. How
can this be used to leverage a-priori knowledge about the problem (or information
obtained through a fast preprocessing algorithm) to improve the selection of a sub-
problem objective (ω, ω0) from a set of cuts satisfying the same quality criteria (e.g.
that are all facet-defining)?
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