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Abstract
Many systems can be expressed as multivariate state sequences (MSS) in terms of
entities and their states with evolving dependencies over time. In order to interpret the
temporal dynamics in such data, it is essential to capture relationships between entities
and their changes in state and dependence over time under uncertainty. Existing prob-
abilistic models do not explicitly model the evolution of causality between dependent
state sequences and mostly result in complex structures when representing complete
causal dependencies between random variables. To solve this, Temporal State Change
Bayesian Networks (TSCBN) are introduced to effectively model interval relations
of MSSs under evolving uncertainty. Our model outperforms competing approaches
in terms of parameter complexity and expressiveness. Further, an efficient structure
discovery method for TSCBNs is presented, that improves classical approaches by
exploiting temporal knowledge and multiple parameter estimation approaches for
TSCBNs are introduced. Those are expectation maximization, variational inference
and a sampling based maximum likelihood estimation that allow to learn parameters
from partially observedMSSs. Lastly, we demonstrate howTSCBNs allow to interpret
and infer patterns of captured sequences for specification mining in automotive.
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1 Introduction

Many domains, including medicine (Orphanou et al. 2016) and automotive (Mrowca
et al. 2018b) require to capture temporal system behavior for diagnosis and prediction
tasks. Such systems are increasing in complexity, as functional variety and inter con-
nectivity of components grow. Gaining insights of its underlying processes is essential
to allow for better understanding, functional optimization and fault reduction.

To achieve this in a data-drivenmanner, a common approach is to capture procedural
behavior in models, that are trained from observations of recorded system executions.
This type of behavior can be represented along multiple dimensions (which we call
Temporal Variables (TV)) as processes that change its state over time. For example, the
behavior to inspectmight be the activation process of a sprinkler system,which consists
of the three TVs grass, sprinkler and rain, as it is illustrated in Fig. 1. Each execution of
this process forms an observed Multivariate State Sequence (MSS), e.g. Fig. 1 shows
the MSS 〈g = dry, s = no, r = no, s = yes, g = wet, r = yes, s = no〉. Other
runs of this process might have produced different outcomes. By using multiple such
observed MSSs, a model is trained to represent this process.

MSSs of behavioral processes contain a high number of execution variants in com-
plex systems and are usually noisy, incomplete and imprecise in real life. Therefore,
models that represent such multidimensional processes need to be robust, to com-
pactly represent the process and to allow for inference in multiple dimensions under
uncertainty.

Existing models do have major limitations in the representation of such processes,
which is why we introduce a novel model in this work.

First, related models are presented in Sect. 1.1. An overview of our novel model is
found in Sect. 1.2 and an outline of this work in Sect. 1.3.

1.1 Related work: existingmodels

Process models First, existing models are the ones used in the field of Process Mining
(e.g. PetriNets). Those representations assumeone dimensional sequences. This yields
massive model sizes that are hard to interpret in the given scenario, where multiple
execution variants and dimensions are possible. This is amplified by the fact that,
each occurrence and state that a TV is in, does produce an additional node in the
resulting model. Assuming that any variant can occur in any state, in the example of
Fig. 1, this would give 3 · 2 + 3 · 2 + 2 · 2 = 16 nodes that all could be interlinked.
Further, those methods do mostly use frequency based filtering, rather than statistical
methods, for complexity reduction during model discovery. This yields a less precise
structure. Inference is still possible with those models, while it is not practical as
high complexity needs to be dealt with, no uncertainty is captured and dimensional
information is excluded.
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242 A. Mrowca et al.

Fig. 1 A MSS with 3 temporal variables for the process of wetting grass, and models to generate it, are
shown. If the grass is dry the sprinkler turns on, if it is not raining. Once it starts raining the sprinkler turns
off. The same model could produce a sequence where the rain is falling throughout the process. Then, the
sprinkler would never have turned on. Temporal State Change Bayesian Networks provide a compact yet
expressive representation for such scenarios. S̃g3 indicates the latent state change 〈wet, wet〉, which is not
observed (i.e. latent) here, while in another constellation an observed change, e.g. 〈wet, dry〉, might have
occurred

Temporal Bayesian networks (BN) A more promising direction for modeling MSS
processes are temporal BNs, as those allow for more compact representations, multi-
dimensionality and uncertainty. This is why we also chose to design our novel model
on the basis of BNs.
Time-sliced BNs: The first group of models includes time-sliced BNs such as dis-
crete time nets (Dean et al. 1989) with static structures and its dynamically adjusting
extensions (Olesen et al. 2006) and Dynamic Bayesian Networks (DBN), that break
the Markovian assumption (Tucker 2001) or the stationarity assumption (Song et al.
2009). The application of DBNs to the given scenario is shown in Fig. 1. It can be seen
that a static dependency structure is used, that is repeated in regular time intervals.
Main caveats of such networks include its static structure, and its high overhead due
to repetition of structures.
Interval-based BNs: The group of interval-based BNs models temporal events or
intervals as states of nodes. A subgroup of those BNs defines the type of event as
state, and the interval in which the event occurred as outcome, in a node. There
nodes represent irreversible events whose outcomes are a cross product of discretized
intervals and state outcomes of events (Arroyo-Figueroa et al. 1999; Galán et al. 2000).
Problems of such models include, that for higher precision this leads to huge outcome
spaces and events are irreversible. Other models represent a certain event only, with
times of occurrence as outcome (Galán et al. 2002).

Temporal Bayesian Network of Events (TBNE) that were introduced in Arroyo-
Figueroa et al. (2005) are comparable to Temporal State Change Bayesian Networks
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(TSCBN). Similar to TSCBNs, there, intervals are modeled as tuples of time of occur-
rence of a state change and states of the next interval including the option of remaining
in the same state. However, TBNEs omit the following aspects, which are solved in
TSCBNs. First, interval lengths are discretized which allows for less temporal preci-
sion. Second, no notion for representation of dynamic causal relations between states of
different TVs is defined. Third, the model does not allow to model causal dependence
of state transitions that remain in the same state, which is solved in TSCBNs using
latent sequences. Networks, such as Modifiable Temporal Belief Networks (MTBN)
(Aliferis et al. 1996) allow to model intervals in terms of nodes for start, end and dura-
tion of an interval. There again each node represents the time and duration of one event
only. Kwon and Suh (2012) the modeling of temporal information is accomplished by
using Hybrid Bayesian Networks (HBN) consisting of discrete nodes for the values
and continuous nodes for the time delays. However, rather than modeling dynamics of
a process as TSCBNs do, those model dependence between time and state statically.

Process basedmodelsTomodel continuous timeunder uncertaintyMarkovProcesses,
Continuous-Time Markov Processes or other processes are used. Nodelman et al.
(2002) Nodelmann introduced Continuous Time Bayesian Networks (CTBN), whose
application on the given scenario is also shown in Fig. 1. This model uses Markov
Processes that depend on the structure of one static BN to determine consequent
states and time intervals in dependence of states a TV is in in time. Those CTBNs
have been extended in terms of more general transition times, explicit negative evi-
dence (Gopalratnam et al. 2005) or by adding static chance nodes of BNs (Portinale
and Codetta-Raiteri 2009). To model event streams, in Bhattacharjya et al. (2020)
Event-Driven Continuous Time Bayesian Networks, where proposed that model event
occurrences modeled as a multivariate point process and states as Markov processes.
In further works, event streams aremodeled with Poisson cascades (Simma and Jordan
2012) or graphical event models (Gunawardana and Meek 2016).

As processes are used in such models, the temporal behavior is modeled implicitly.
Thus, no explicit inference can be performed on this model and especially for long
processes processes get impossible to model as the same matrices and structures are
used to model all stages of the process. Tawfik et al. (2000) Tawfik considered events
as distributions over time. This approach unlike us does not model defined processes
of intervals, but rather static causal dependencies of continuously evolving processes.

General probabilistic networks Apart from BNs in Causal Probabilistic Networks
(Berzuini 1990) event occurrence and its times of occurrences are modeled separately.
That means, dynamic causal influence of states on duration of intervals of TVs is
not included (Ryabov et al. 2004). Probabilistic Temporal Interval Networks nodes
are temporal intervals and edges are uncertain interval relations modeled in terms of
Allen’s relations. Thus, intervals are considered rather qualitatively (e.g. as duration,
before) than quantitatively.

Specialized models Further, in many domains specialized models were proposed. In
reliability engineering Object Oriented BNs (De Carlo et al. 2013), Markov Chains
and Event Sequence Diagrams (Swaminathan et al. 1999) were applied for temporal
modeling under uncertainty. Those approaches focus on object interactions and fault
detection without general extensibility and applicability to interval modeling. Models
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of temporally evolving dependencies further include the approach proposed in Hallac
et al. (2017), where evolving Markov Random Field based models are used for time-
series clustering or in Gu et al. (2017) and Corneli et al. (2015), where temporal
evolution in social networks is modeled. However, the further is optimized for time-
series, while the latter is focused on graph data rather than MSSs.

1.2 Overview of TSCBNs

Those approaches do have multiple limitations when modelingMSSs, which are over-
comeby themodel proposed in thiswork.As a basis to discuss this, the idea ofTSCBNs
is given first, before, next, limitations of existing models are pointed out.

TSCBNs As Figure 1 shows, TSCBNs are Hybrid BNs, that model each state change
of a MSS as a node (preliminaries on Bayesian Networks can be found in Appendix
A). Each of those nodes, consists of a discrete state node and a continuous time node.
The further, represents the states a MSS changes to, given any previous MSS state that
it is causally dependent on, e.g. S̃g2 is causally influenced by S̃s2. If S̃s2 was given
a state change 〈no, yes〉 the likelihood of S̃g2 to be in the state change 〈dry, wet〉 is
higher than in the case where S̃s2 was given the state change 〈no, no〉.
Continuous time nodes represent the temporal distribution which determines when the
state change occurs, depending on state nodes that causally influence this state change
(i.e. that have an edge to this node).

Thus, TSCBNs model a process as a whole, with edges at times where causality is
given in the process and nodes at each position where a state change might occur with
a sufficiently high likelihood.

Limitations of exiting approaches First, other approaches are not optimally compact
and require a high number of parameters. Process models require complex structures,
time-sliced BNs require redundant repetition of structure, interval-based approaches
are of qualitative nature (e.g. MTBNs Aliferis et al. 1996) or explode with process
lengths (Galán et al. 2002). TSCBNs and TBNEs (Arroyo-Figueroa et al. 2005) are
similarly compact, as only likely changes are modeled. Markov-based approaches do
not model the procedure explicitly, while being compact as well.

Second, good inference requires an unrolledmodel, as this allows to directly read of
behavioral patterns and to more precisely express multidimensional processes. Apart,
from Process models, TBNEs and DBNs are the only comparable unrolled represen-
tations. TSCBNs are also unrolled.

Third, existing models do not allow for multidimensional procedural inference. To
assess uncertainty of a subpart of a process, given what happened in the first part of
this process, it is essential to be able to provide evidence. DBNs allow for this similar
to TSCBNs.

Fourth, causal dependencies are likely to change throughout a modeled process.
Therefore, causality needs to be represented between state changes that actually influ-
ence one another. Existing models redundantly store a static structure (e.g. DBNs,
CTBNs) or are of high complexity (e.g. process models). TSCBNs are compact while
at the same time representing causality only at steps in a process where it is existent.

123



Temporal state change Bayesian networks 245

Fig. 2 Here, the compact TSBCN representation of the adaption process of the active cruise control system
of a car is shown. It consists of 5 TVs. The distance, the controller, the brakes, the acceleration and the
driving mode. If e.g. the distance is too high (i.e. node 0 of Sdist has outcome too far), the controller will
send an acceleration command (i.e. node 1 of Sctrl is speed up), which activates the high acceleration (i.e.
engine, node 1 of Sacc is high) in Sport mode (i.e. node 0 of Smode is Sport) until the distance is in an
acceptable range (i.e. node 1 of Sdist is ok) in which case it will deactivate (i.e. node 2 of Sctrl is keep) the
acceleration (i.e. node 2 of Sacc is off )

Lastly, per TV only state changes are observed. That is, for the case where an interval
remains in the same state, the transition between those intervals is not observed, while
it still might have a causal influence on other states. In the example of Fig. 1 the
TV grass has the true (but unobserved) state sequence 〈dry, wet, wet〉, as once the
rain starts falling it has a causal influence on the TV grass’ state by making it wet.
However, what is actually observed in this case are only the state changes 〈dry, wet〉.
Thus, the actual sequence 〈dry, wet, wet〉 is latent. Estimating this latent sequence
fromobservations is challenging asmultiple valid sequences could have been produced
(e.g. 〈dry, dry, wet〉). TSCBNs are the first model to solve this problem.

All of those limitations and how those are overcome by TSCBNs are discussed in
more detail in Sect. 2.5.

1.3 Outline

Thisworkprovides a novel approach to representMSSs asTSCBNs, aswell asmethods
to learn both the structure and parameters of TSCBNs from MSSs.

In Sect. 2 a definition of the model TSCBNs is given. Learning of structure is
presented in Sect. 3 and learning of parameters discussed in Sect. 4. Lastly, in Sect. 5
TSCBNs and its learning methods are evaluated. In Sect. 6 the usage of TSCBNs is
discussed in a real world scenario.
Running example To improve comprehensibility we use a simplified example process
in the following sections. This is the adaption process of the automatic cruise control,
that, while driving, ensures that the distance to the preceding car is kept stable. Figure 2
shows the TSCBN that represents this adaption process.

Definition of multivariate state sequences As illustrated in Fig. 3 for our running
example, a MSS consists of multiple TVs. Each TV has a state it is in at any point
in time, e.g. the TV Sdist indicates the state of the distance sensor at any time. In
Fig. 3 the distance has an initial state too near, which activates the controller to adjust
the speed. The controller in turn activates the brakes. Any state change is causally
dependent on its previous state. Further, if states change and which states TVs change
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Fig. 3 A possible MSS of the running example of Fig. 2 is shown. It shows one possible outcome for the
adaption process of the active cruise control, i.e. the process of braking until an acceptable distance is given,
if a preceding car is too near. Notably, if the controller had been in state speed up, the acceleration would
have changed to high, i.e. here, causality between Sctrl and Sacc is given at this stage

to might depend on other TVs, e.g. in Fig. 3 the brake state might more likely change
from inactive to active if the state of the controller is speed down.
Such MSSs were introduced in Batal and Sacchi (2009). Here, MSSs M are interde-
pendent sequences Ei = (s, e, Sk, s j ) of intervals of TVs Sk , where all TVs are in a
defined state at any time, with start times s, end times e and states s j they are in. Also,
each TV is in a state at all times and only state changes are observed. Formally that
means that

M = 〈E1, ..., El〉 : Ei .s ≤ Ei+1.s, Ei .e = Ei+1.s

2 Model

In this section we introduce TSCBNs. For this, first, TSCBNs are defined formally in
Sect. 2.1 based on the example in Figs. 3 and 4. A comprehensive explanation of those
models is presented in Sects. 2.2 and 2.3. Second, a comparison to existing approaches
is given in Sect. 2.5.

2.1 Formal definition

Let’s assume a set S of TVs Si that each temporally evolves over a set of states
Ξi = {si1, si2, ...}, which can be dynamically interdependent, e.g. in Fig. 3 there are
5 TVs, where TV Sbrake has Ξbrake = {inactive, active}.

Every TSCBN is a HBN B = (G,Θ) with parameter set Θ , DAG G = (N , E),
nodes N and directed edges E . While the inverse does not hold, a HBN is a TSCBN
under the following conditions.

– Exactly one discrete node vik ∈ V (called state node) and one continuous node
Δtik ∈ T (called temporal node) represent the possible state change ∗ �→ si j of a
TV Si from its previous state ∗ to its next state si j , where N = V ∪ T .
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Fig. 4 Two TVs S1 and S2 are illustrated. The top part shows a MSS that is generated by the
TSCBN shown in the lower part. X1 and X2 indicate the observed sequence of state changes,
which are generated by the true latent sequences 〈(v10, Δt10), (v11,Δt11), (v12, Δt12), (v13, Δt13)〉 and
〈 (v20,Δt20), (v21, Δt21), (v22, Δt22)〉. Note that a temporal-causal dependency between state change v11
of TV S1 and state change v21 of TV S2 is given in the shown TSCBN

– State node vik indicates the state si j a TV changes to and has possible states
of the TV as outcomes.

– Temporal node Δtik defines the relative temporal distance of the state change
to its latest preceding causally dependent state change.

– Each temporal node Δtik depends on the state vik a TV changes to and thus, has
an edge

(vik,Δtik) ∈ E,∀i ∈ [1,m],∀k ≤ 0 (1)

– If a state change niq = (viq ,Δtiq) causally depends on a state change nkr this is
represented by edges

(viq , vkr ) ∈ E (2)

(viq ,Δtkr ) ∈ E (3)

– Intra-variable edges TSCBNs assume that each consecutive state change of the
same TV depends on its preceding state. Thus, TSCBNs have the following edges
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per TV Si (if m TVs are assumed):

(vi(k−1), vik) ∈ E,∀i ∈ [1,m],∀k > 0 (4)

(vi(k−1), Δtik) ∈ E,∀i ∈ [1,m],∀k > 0 (5)

– Inter-variable edges If a state change niq = (viq ,Δtiq) of TV Si causally depends
on a change nkr of another TV Sk representing edges are

(viq , vkr ) ∈ E, i �= k (6)

(viq ,Δtkr ) ∈ E, i �= k (7)

– Initial nodes Each TV Si has two initial nodes ni0 = (vi0,Δti0) = (side f , 0) at
time t i0abs = 0 in a default state side f ∈ Ξi .

Example In the TSCBN of Fig. 2 and one possible outcome that is shown in Fig. 3
this applies as follows.

– Sbrake has six nodes, as state changesmight occur at three points in time in themod-
eled process. Those nodes are three state nodes vbrake 0, vbrake 1, vbrake 2 and three
temporal nodes Δtbrake 0, Δtbrake 1, Δtbrake 2 (in Fig. 2 each (vbrake i ,Δtbrake i )

is represented as one node).
– State node vbrake 1 models the state the TV Sbrake changes to in the process, which
might be either active or inactive. Figure 3 shows an outcome of the TSCBN in
Fig. 2, where vbrake 0 has outcome inactive and vbrake 1 has outcome active.

– Temporal node Δtbrake 1 models the temporal distance to either vbrake 0 or
vctrl 1. For the outcome in Fig. 3 vctrl 1 is closer, thus, Δtbrake 1 here mod-
els the time between change vctrl 1 (〈keep, speeddown〉)and change vbrake 1
(〈inactive, active〉).

– For the TSCBN in Fig. 2 the outcome in Fig. 3, among others has initial states off
for Sacc or inactive for Sbrake.

– In Fig. 2 and outcome Fig. 3, the distributions at state vbrake 1 and at Δtbrake 1
depend on its previous state vbrake 0 = inactive (intra-edge) and the causally con-
nected state of vctrl 1 = speed down (inter-edge). Δtbrake 1 additionally depends
on the outcome at vbrake 1.

2.2 Modeling behavior of states in MSSs

As can be seen in Fig. 4 according to our definition all continuous temporal nodes
Δtik are leaf nodes. Thus, when temporal nodes are excluded, the remaining model of
a set of all state nodes vik and its edges can be inspected as a network of discrete RVs
(called state model). This allows inference algorithms of standard BNs to be applied
on the state structure of a TSCBN, e.g. the Most Probable Explanation (MPE) could
be determined to identify dominant system behavior. Based on Fig. 4, in the following
it is described how TSCBNs can be used to model this type of behavior of MSSs.
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2.2.1 Univariate state sequence

First, we discuss how a one dimensional MSS is modeled as TSCBN. For this, we
only consider one TV of Fig. 4 at a time, with the respective part of the TSCBN (i.e.
nodes v1k for S1 and nodes v2k for S2, without inter-edges).

In the outcome shown for S2 the state changes at each component of the model are
fully observed (from D to E to F), i.e. here the observed outcome X2 = 〈D, E, F〉
can be directly represented in the three nodes (v20 = D, v21 = E, v32 = F).

However, in a different outcome not all state changes might have occurred, e.g.
we could have observed 〈D, F〉. This is the case if we consider the outcome shown
for S1. Here, the outcome X1 = 〈A, B, A〉 is observed, while the actual latent state
sequence is 〈A, B, B, A〉, i.e. at the second B causality exists and a state change could
have occurred. TSCBNs model such latent occurrences explicitly as nodes, where any
outcome combination, e.g. (v10 = A, v11 = B, v12 = B, v13 = A), directly maps to
an unequivocal observation, e.g. 〈A, B, A〉

During training a challenge arises from this. From the observation 〈A, B, A〉 the
true latent sequence is not clear. Multiple other latent sequences could be assumed
from this observation, e.g. 〈A, A, B, A〉 or 〈A, B, A, A〉. Thus, when estimating the
latent parameters vi j of a TSCBN from multiple observed sequence examples of X2,
latent estimation is required. In Sect. 4 we propose an approach for this.

Running example In the example of Fig. 2, per observation of an adaption process,
we get 5 state sequences. For instance, in the case of being too far away from the
preceding car the car needs to speed up until the distance is within the target range.
This gives Smode = 〈Sport〉, Sacc = 〈of f , high, of f 〉, Sbrake = 〈inactive〉, Sctrl =
〈keep, speed up〉, Sdist = 〈too f ar , ok〉. Here, Sbrake did not change its state, which
is why only the state inactive was observed, while the true latent state sequence
is 〈inactive, inactive, inactive〉. Notably, this latent representation, which models
each potential state change as RV, is useful, as the distance Sdist does depend on the
brake being active or not at the respective state node 1. In another scenario it could
have been active, which would lead to a growing distance Sdist in node 1 of Sdist .

2.2.2 Multivariate state sequence

So far only one dimension (i.e. one TV) was considered. If multiple TVs are given,
states of TVs may causally depend on states of other TVs. Such causal dependence is
defined with an edge between the corresponding state changes, e.g. in Fig. 4 the state
of v21 the TV S2 changes to, not only depends on its previous state, but also on the
state change v11 of TV S1.

In particular, this amplifies the above challenge of estimating parameters from
observed state sequences, as those dependencies need to be included during this mul-
tidimensional parameter estimation.

Running example In the example of Fig. 2, the initial value at node 0 of Sdist causally
determines what the controller Sctrl does at state 1. If it is too high, Sctrl is likely to
be speed up in node 1, while if the distance is ok, the controller would remain at keep
in node 1.
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Notably, this TSCBN representation is a joint probability distribution. Thus,
behind any state change there is a likelihood that is conditioned on its input state
nodes, e.g. given Sctrl = keep at node 0 and given Sdist = too high, there
is a defined state change distribution at node 1 of Sctrl which could be P(1 =
keep|keep, too high) = 0.04, P(1 = speed up|keep, too high) = 0.95, P(1 =
speed down|keep, too high) = 0.01. This allows for an effective way to perform
evidence based inference on this compact representation of any complex process,
e.g. as the P(1 = speed down|keep, too high) = 0.01 was learned from observed
instances, it can be easily read off that in 1 per cent of cases the a critical misbehavior
might occur, which would be resolved by experts during development. In the same
way it can be read off that in most cases a speed up was correctly initialized.

2.3 Modeling behavior in time in MSSs

Time is modeled by temporal nodes Δt . Each node Δt is a continuous RV, with a
distribution Σ , defined by parameters Θ , that is conditionally dependent on the same
parents Pa(vi j ) as vi j and on vi j itself. As all Δt are conditioned solely on discrete
parents. The temporal part of each state change can be conveniently represented by
having one continuous distribution at each Δtik , per outcome combinations of its
parents. Formally, this is

Δti j |Pa(vi j ) ∪ {vi j } �→ Σ(Θ(Pa(vi j ) ∪ {vi j })). (8)

In particular, it is assumed that the duration of a state does not influence the consequent
state and the duration of a TV, i.e. all Δt are leaf nodes.

Absolute time TSCBNs represent time relatively. Thus, the absolute time tabs of a state
change event needs to be determined from its latest parent’s absolute time. If the event
of state change was not observed at a parent node, the time of a state node is measured
relatively to its last occurring TV state change P̄a. This can be expressed as

t ikabs = max
r ,s

(P̄a(nrs).tabs) + Δt (9)

where P̄a(nrs) are all parents of vrs , that did occur, max
r ,s

(P̄a(nrs).tabs) indicates the

latest occurring TV node and Δt is the temporal gap from this parent node to the
absolute time of the current node.
In TSCBNs each state node vi j is connected to a temporal node Δti j . If a state node
has exactly one predecessor node, this gap is computed relatively to the absolute time
of this predecessor nodes’ state change, e.g. if v12 occurred at time 17 and the outcome
of its consequent state change v13 is Δt13 = 3, the time at which the state change v13
occurred is 20 (= 17 + 3).

If a state node has two or more preceding nodes (i.e. parent nodes) the absolute time
of this node’s state change is determined relatively to the time of the parent nodes’
state change that occurred last, e.g. in Fig. 4 the absolute time of the state change
v21 is determined relatively to the absolute time of its parents v11 and v20. If change
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v11 occurred at time 7, v20 at time 0 and Δt21 = 4, the time of v21 is determined
relatively to v11 (as 7 > 0). The resulting absolute time of the state change v21 would
be 11 (= 7+ 4) in this example. Notably, at worst every temporal node of a TV has a
reference point in its initial node, at absolute time t i0abs = 0, i.e. Δti0 = 0.

Absolute time in latent sequences As stated above in a latent sequence nodes may
not be observed and thus, may have no absolute time, e.g. in S1 the time of transition
from B to B is not observed. Thus, using this point as reference for succeeding nodes’
time of occurrence Δt is not possible. In this case the relative time is measured from
the point of the last observed state change. If for a node in a TV no parent occurred,
the last observed state change of the corresponding TV is used as reference point,
which is at worst the initial state which is well defined. For instance, let’s assume the
outcome 〈B, A, B, A〉 for sequence S1 with observed absolute times of state change
〈0, 5, 8, 10〉 and 〈D, D, F〉 for sequence S2 with observed times 〈0, 7〉. Then, the time
of v21 = D is not observed. Thus, no absolute time of this nodes is known from
the observation, i.e. the absolute time of the state change v22 = F cannot be found
relatively to v21. Instead this hidden node v21 is skipped and the next observed parent
v20 is used as reference in a TSCBN. Here, Δt22 = 7 (under the given condition of
state changes) defines the absolute time of v22 to be 7 (= 0 + 7).

Running example In the example of Fig. 2, the acceleration Sacc at node 1 is condi-
tioned on its previous node, on Sctrl node 1 and on Smode node 0. Thus, its temporal
gap is stored relative to the time that the ctrl variable changes its state in 1, e.g. the dis-
tribution at Sacc node 1, given defined outcomes for its parents (e.g. Smode 0 = Sport ,
Sacc 0 = of f , Sctrl 1 = speed up) could be a Gaussian with mean 0.4 s, which indi-
cates that for this parent state combination, it takes about 0.4 s until the acceleration
starts, i.e. P(Σ |(Smode 0 = Sport, Sacc 0 = of f , Sctrl 1 = speed up)) = N (μ =
0.4s, σ 2). Notably, other parent conditions might have led to different timings. This,
shows that the model capacity in terms of timing is very specific, as it is stored per
possible constellation of its causal influences.

2.4 Compact representation

In practice it is often required to discuss suchmodelswith experts (e.g. for specification
mining as described in Sect. 6). For this and for the purpose of a simpler visualization
the TSCBN can be written in a more compact manner. Each state change vik and its
time of changeΔtik can be condensed to one node nik = (vik,Δtik). Also, connecting
edges between two nodes v transform to connecting edges between the corresponding
nodes n. Edges to temporal nodes Δt are implicitly assumed, e.g. the model of Fig. 4
can be condensed to the model shown in Fig. 5. The running example in Fig. 2 uses
this representation, as well.

2.5 Discussion

The limitations of existing approaches for modeling of MSSs and how those are
overcome by TSCBNs, are laid out next, using the scenario of Fig. 3. Extended details
of this discussion are provided in Appendix A.
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Fig. 5 The compact representation of a TSCBN defines each node n as the state a TV Si changes to and its
time of change

Compactness and parameter complexity Compact representations are desirable,
as those require to train less parameters and are easier interpretable. Process models
are complex in size, as nodes represent TVs with outcomes. Time-sliced BNs repeat
a static structure. Among interval-based approaches TBNEs (Arroyo-Figueroa et al.
2005) are comparably compact, while containing less temporal information. Other
approaches are qualitative (Aliferis et al. 1996)) or use trees that explode with process
lengths (Galán et al. 2002). CTBNs store more variants yielding a high parameter
space.

TSCBNs model state changes where change is possible, making it highly compact
and well interpretable as temporal patterns can be directly read of, e.g. in Fig. 3
one can directly read that Sdist causes changes in Sctrl , that in turn influences both
the acceleration Sacc and braking Sbrake actions. No other process model is able to
provide this degree of expressiveness for MSSs.

Explicit modeling Existing approaches can model MSSs’ processes either explicitly
(e.g. ProcessModels) or implicitly [e.g. tree-like BNs (Galán et al. 2000)]. The further,
is advantageous when analyzing behavioral patterns in data, while the latter is mostly
suited to answer specific types of questions (e.g. diagnose a disease given symptoms in
temporal order). Existing explicit models include TBNEs, Process Models or unrolled
DBNs. TBNEs are less expressive due to to continuous nodes, ProcessModels do have
high numbers of edges and repetition in DBNs does not represent the actual process
flow. TSCBNs are the first BNs that provide an expressive unrolled representation of
the whole modeled process in multiple dimensions in state and time, which enables
effective multidimensional inference, e.g. by computing JPDs new types of analyses
are enabled, such as finding of rare state changes.

Continuous temporal modeling Representing time continuously allows for better
representation of temporal behavior. In TSCBNs timings can be directly analyzed by
setting evidences on the TSCBN and by inspecting the distributions at each node. This
is less precise in DBNs and CTBNs as timings are represented through discretization
and statically conditioned matrices respectively. Process models are similarly able
to determine such timings through path analysis, while this is more complex, then
reading it from a TSCBN structure.

3 TrieDiscover: novel structure discovery with tries

To allow for inference the structure of TSCBNs needs to be discovered from a set of
observed MSSs. This, requires an automatic discovery approach. Existing approaches
do not allow to efficiently discover an interpretable structure for TSCBNs, which is
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why in this section a novel approach is presented. This is challenging, as possible edge
combinations explode with more state changes, data is incomplete, outlier MSSs are
possible and temporal aspects need to be included to find plausible edges.

Running example In Fig. 2, we might want to learn how the adaption system of the
cruise control works. This includes what causal influences there are between TVs, as
well as how likely certain behavior is. For this, we observe and record this process
multiple times in the shape of a set of MSSs, e.g. {〈Smode : Sport, Sacc : of f , Sbrake :
inactive, Sctrl : keep, Sdist : too f ar , Sctrl : speed up, Sacc : high, Sdist :
ok, Sctrl : keep, Sacc : of f 〉, 〈...}. Another possible MSS is shown in Fig. 3. With a
set of MSSs of this shape the structure shown in the figure can be learned, with the
method proposed in this section.

3.1 Related work: existing approaches

Structure Discovery (SD) approaches in BNs are typically categorized in score-based,
constraint-based and hybrid approaches. When it comes to discovery of dynamic
structures, we further use the categories of learning of temporal BNs and process
mining, which is a related field for learning process models from sets of sequences.

The learning of structures of BNs is a challenging problem due to the exponential
increase of the space of potential network structures with the number of nodes. Most
approaches reduce complexity by constraining the space of allowed structures, speci-
fying orders of variables, applying temporal conditions, including prior knowledge or
limiting the network size.

Score-based Such approaches start with an initial graph, evaluate the graph using a
score function and try to ultimately optimize the structure to maximize the function’s
score. Performance of those methods depends on the choice of reasonable scoring
functions, well constraining the space of allowed structures, by designing an appropri-
ate optimizer and by encoding of the networks. Common scores include the Bayesian
InformationCriterion (BIC) (Schwarz et al. 1978).Classical approaches include theK2
algorithm (Cooper andHerskovits 1992) or GreedyHill Climbing (GHC) (Heckerman
et al. 1995). Those approaches do not guarantee to converge to the global optimum.
For global optimization this was solved in several ways. Those include among many
others formulating a linear optimization problem and solving it with branch and cut
(Bartlett and Cussens 2013) or constraint programming. Score-based approaches work
well for less data, but suffer from bad computational performance for growing data.
In addition to that, directions of edges are not clear which is especially relevant when
modeling temporal data.

Constraint-based Such approaches constrain potential edges and use Conditional
Independence (CI) tests to find the network structure. Typical CI tests include the
χ2 or G tests. Traditional approaches include the SGS approach (Spirtes et al. 2000)
or the PC algorithm (Spirtes and Glymour 1991), which use CI tests on subsets of
Random Variables (RV) to discover structures. Possible constraints include structural
constraints given by properties of the specific objective network (De Campos et al.
2003) (e.g. Markovian assumption in DBNs) or heuristics to limit potential parents
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of nodes (Scanagatta et al. 2015). This type of methods tends to find hidden common
causes, handle selection bias and work well with sparse graphs (Daly et al. 2011).

Hybrid Other works connect score and constraint-based approaches to combine their
best properties. This was done by CI tests to find initial ordering of RVs or initial
graph skeletons, which are used as input for consequent optimization (Tsamardinos
et al. 2006).

Temporal BN learning When learning static DBNs the Markovian assumption is
assumed and the discovery is decoposed into learning edges within a time slice and
between subsequent time-slices. Murphy and Russell (2002) the further is done with
above approaches as in the static case, while the latter reduces to a feature selection
problemwhere each node chooses one ormore parents from the previous time-slices. In
further works, SD approaches for DBNswith noMarkovian assumption (Tucker 2001)
or stationarity assumption (Song et al. 2009) were presented. Further approaches, that
are comparable to our case, use event sequences as input and Process Discovery
algorithms to create the network. The approach described in Savickas and Vasilecas
(2014) extracts a Directed Acyclic Graph (DAG) from event sequences by adding
edges to the BN if two events directly follow each other in multiple event sequences.
Then, in case of cycles in the model dedicated edges are removed. However, this
approach is not applicable to our scenario, as we aim at modeling different events of
the same TV using more than one node. This strategy was improved by the authors
in Savickas and Vasilecas (2017). There, a unique label is assigned to each of the
events to prevent the formation of cycles in the BN and the labeling of events is done
in a naive way. TrieDiscover finds an advanced solution to this problem of uniquely
labeling events, in that it allows to handle optionally occurring events, as discussed in
Sect. 3.4.
All of the algorithms in this section so far assumed dependencies between events if
the events directly follow each other in the sequences. No statistical tests or score
optimization is used to check for independencies. This is solved in Sutrisnowati et al.
(2013), where the authors use a score-based procedure to filter edges in the dependency
graph of the Heuristic Miner using a mutual information score. Nevertheless, this does
not solve the problem of connecting events that are not directly consecutive which is
required in TSCBNs.

Process discovery In the Process Mining (PM) community multiple algorithms were
proposed for mining a process model from event logs (usually extracted from busi-
ness processes). The algorithms proposed in this field are related to the discovery of
temporal BNs. However, those approaches do not model multiple dimensions and TV
structure but rather event sequences. Important algorithms of this type that were incre-
mentally improved include the Alpha Miner (Van der Aalst et al. 2004) for discovery
of Petri nets. This method did not allow for silent transitions, i.e. optionally occurring
events in sequences are not represented. Thus, this was extended in theHeuristicMiner
(Weijters et al. 2006) that includes support of edges in terms of occurrence frequencies,
but cannot handle the concept of parallel events.Hence, thiswas improved in the Induc-
tive Miner and Inductive Miner infrequent (Leemans et al. 2013), where sequences
and its representations are decomposed according to defined rules that allow to extract
multiple temporal concepts (e.g. parallel, subsequent). Other approaches, such asWal-
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Fig. 6 The basics step of the discovery approach are shown. Starting from a long trace the input MSSs for
TrieDiscover are deduced by segmentation. With this TrieDiscover finds a BN structure to represent a set
of MSSs

icki and Ferreira (2011) use tries for partitioning, i.e. to assign each sequence element
to a process. In contrast to this, our approach assumes one process and uses tries to
represent possible paths with those that are merged to get one temporal model.
All of the aforementioned approaches are less effective and efficient for the SD of
TSCBNs, as those do not optimally reduce the search space towards multidimensional
states, do not focus on searching inter-edges and are not able to handle optionally
occurring events. Our novel approach solves those issues. In Sect. 3.4 we discuss
differences to, and limitations of existing approaches in more detail. To be able to do
this in the following TD is introduced.

3.2 Overview of TrieDiscover

Figure 6 shows the basic steps of the discovery, where multipleMSSs are used as input
to learn a representation of those as TSCBN. A pseudocode of TrieDiscover is given
in Appendix B.

Basic idea Given a set of MSSs TrieDiscover performs two steps for discovery, called
Parent Candidate Identification and Structure Optimization. The further step reduces
the search space, while the second step tests for causal edges.
In the first step sequences of TVs are considered, i.e. sequences M̂ of TVs rather
than MSSs. For this the MSS M = 〈E1, ...El〉 is transformed to a TV sequence
M̂ = 〈Si , ...〉i ∈ [1,m], with m as number of dimensions. For instance in Fig. 3 this
could be 〈Smode, Sacc, Sbrake, Sctrl , Sdist , Sctrl , Sacc, Sdist , Sctrl , Sacc〉. The set of all
observed sequences is denoted as M = {M̂1, M̂2, ...}.
Further, we assume intra-edges implicitly. With this, the objective of TrieDiscover is
to determine the optimal set of nodes and inter-edges.

Example For better comprehensibility we use the following set of TV sequences with
TVs S = {A, B,C, D, E, F,G} as an example throughout this section:

Mobs = {〈A, B, A, D, A, E,G〉, 〈A,C, A, D, A, F,G〉,
〈A, B, D, A, E,G〉, 〈A,C, D, A, F,G〉}
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Fig. 7 Trie modeling the
observation of four MSSs
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Fig. 8 DAWG after minimizing
the trie in Fig. 7
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Notably, two sequences start with AB and end with EG, two sequences start with AC
and end with FG. Also, the second occurrence of A is optional, as it occurs in half of
the sequences only.

3.3 Detailed description of TrieDiscover

1. Trie creation We use Tries (Bodon 2005) to obtain a compressed representation
of all sequences Mobs , e.g. yielding the trie in Fig. 7 from Mobs .
Filtering By counting the support of each path within the trie, edge weights are
assigned as the number of times an edge was observed inMobs . An outgoing edge
e of node X is filtered out if it was observed less than k times the total number of
observations of node X (if f requency(e) < k · f requency(X)).

2. Minimization through subtree merging The created trie resembles a lossless
compression ofMSSs.This representation hasmanydisjoint branches of potentially
overlapping sub-paths. Therefore, identical sub-paths are merged to get a more
expressive representation, called a directed acyclic word graph (DAWG), as shown
in Fig. 8.
Merging approachMerging of branches is performed using the method proposed
in Bubenzer (2011) from automata theory. For this we convert the trie to a determin-
istic finite automaton (DFA) (trie edges are states, nodes are state transitions). The
approach performs a post-order depth-first tree traversal. Each node is assigned a
sub-tree code describing the nodes’ successors. If two nodes are assigned the same
sub-tree code, the nodes are merged, which yields maximal lossless compression.
In our example this gives the structure in Fig. 8.

3. Node indexing The minimal DAWG is used to assign occurrence indices to all
nodes.This is donebyfirst, traversing thegraph in topological (= IndexAssignment)
and then, in reversed (= Index Refinement) topological order.
Index assignment The first traversal assigns provisional indices to the nodes.
Starting from the root node with { A0, B0, C0, D0, E0, F0, G0 }, the set of
previous nodes (parents set) is recursively passed to each node in the DAWG. Each
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Fig. 9 DAWG that contains an event with non-unique assignment to temporal nodes

node is indexed based on the highest index of the matching TV in the parents set.
For example, the root node in Fig. 8 is indexed as A1 since the latest state change
of TV A in the passed set is A0. If a node has more than one predecessor (e.g. node
G in Fig. 8) all parents sets are merged before an index is assigned.
In the example this gives us 〈A1, B1, A2, D1, A3, E1, G1〉, 〈A1, C1, A2, D1, A3,
F1, G1〉, 〈A1, B1, D1, A3, E1, G1〉 and 〈A1, C1, D1, A3, F1, G1〉. Notably, this
approach correctly identified that the second occurrence of TV A in the latter two
sequences corresponds to the node A3 rather than node A2 as a naive assignment
would assume. Passed parents sets at each node resemble candidate inter-edges to
the current node.
Index refinement The first step might yield cases in which the index is not unique
in the sense that there is an occurrence gap, e.g. in Fig. 9 the lower path from A1 to
B3 contains one occurrence of TV B, which can be either B1 or B2. Such ambiguous
occurrences are refined in a second traversal in reverse topological order. In Fig. 9
B was provisionally indexed as B1 in the first traversal. By passing a successors set
backwards the second traversal identifies missing occurrences, such as the missing
assignment of B2 on the lower path.Determination ofwhich assignment is preferred
is done using the number of strongly connected components (SCC) when merging
nodes of the same TV and index. More SCCs are preferred. Figure 10a shows the
resulting merged graph when event B in the lower path of the graph of Fig. 9 is
assigned to node B1. There, it contains seven SCCs as the nodes B1 and C1 form
one SCC. When assigning it to B2 the graph in Fig. 10b yields eight SCCs and
thus, is preferred.

4. Parent candidate identification
Union of parents sets After the previous step some nodes in the DAWG might
belong to the same TV and index (e.g. nodes D in the DAWG in Fig. 8), but
have different parents sets. In Fig. 8 parents of D are B1 or C1. Both parents are
assumed candidate parents here. In case that two nodes Xi and Y j occur in parallel
(i.e. sometimes Xi precedes Y j and sometimes Y j precedes Xi ), both nodes contain
one another in their parents set. We assume that in this case nodes are independent.
Thus, nodes are removed from each other’s parents set. Such nodes can be identified
by SCCs with more than one node (as it is the case in Fig. 10a).
Temporal filtering of parents sets Complexity is further reduced by filtering
of parent candidates by defining a temporal threshold tth . As all state changes of
TVs include timestamps relative to the beginning of the sequence, averaging of
relative times between individual nodes can be used to determine average time
delay between two arbitrary nodes. Parents that are further than tth away from a
node are removed from the node’s parents set.

5. Structure optimization From the identified parent candidates per node of the
TSCBN, a set of optimal parents is found through structure optimization, which
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(a) Resulting merged graph when the problematic event is assigned to temporal node B1.
Resulting SCC is highlighted in yellow.
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(b) Resulting merged graph when the problematic event is assigned to temporal node B2.

Fig. 10 Resulting merged graphs for two different event assignments. The assignment in Fig. 10b leads to
one more SCC and thus is preferred

can be done either using score-based (SB) optimization procedures or CI tests. Both
approaches are applied here. When using SB optimization, we call our approach
Score-based (SB) TrieDiscover and when using CI tests we call itConstraint-based
(CB) TrieDiscover. SBTrieDiscover uses a decomposable score (e.g. BIC,AIC,K2,
BDeu) for optimization, while CBTrieDiscover uses CI tests to find optimal parents
per node.
However, performing CI tests can be computationally expensive as the Markov
Blanket with various condition sets needs to be iterated. Therefore, in a third
approach we perform a χ2 test to filter out connections between RVs (i.e. nodes
of TVs) that are below a correlation threshold χth . The remaining candidates are
reduced with CI tests. For the CI tests edges with a significance level lower than a
threshold α are removed.
Conversion to TSCBN Intra-edges are defined inherently by connecting nodes
that correspond to the same TV, e.g. B0, B1 and B2. Inter-edges for each node of
a TV are defined by the parent set of that node that remains after the structure
optimization step. Notably, any event in the tree starts at index 1 for each TV (e.g.
B1). Thus, as a corresponding parent with index 0 is passed to those nodes as
candidate set, initial nodes are always present with TrieDiscover (e.g. B0).

Complexity The complexity of TrieDiscover is deduced in Appendix B. Given the
number of sequencesm and the average length L of sequences M̂ , the complexity of all
steps prior to structure optimization (SO) isO(m ·L). SO uses existing methods which
determine the additional complexity. At worst every node could have the respective
maximally possible number of parents in its parent set, yielding no benefit of TD. At
best, the optimal set of parents is found per node. Using for instance score-based SO,
this gives complexityO(m · L · p), where p is the average parent set size. If p is limited
this gives O(m · L).

3.4 Discussion

TrieDiscover directly discovers structures of TSCBNs. This requires to exploit tem-
poral constraints, to capture optionally occurring events and to focus on the search

123



Temporal state change Bayesian networks 259

of inter-edges rather then, intra-edges. Existing approaches add overhead in either of
these categories, as those focus on the general scenario of events rather then, multidi-
mensional state sequences. TD is the first method, to combine these aspects to yield
an efficient discovery and an effective representation.

Reduced search space by temporal constraints TD can be categorized as a hybrid
approach. For the given scenario, this is preferred over score and constraint-based
methods. The further explode in complexity due to a high number of combinations that
are possible. The latter, do not inherently include temporal aspects. Further, Process
Mining methods assume one dimensional sequences and do not include multidimen-
sional and statistical relations of the data.
By reducing the search space through heuristic temporal constraints (e.g. temporal
range) first, and then, performing CI tests on remaining plausible edges both temporal,
multidimensional and statistical relations of the data are captured. This is achieved
by using approaches similar to Process Discovery in the first phase. Unlike any other
approach TD is the first to perform the further on state changes rather than events.

Search for inter-edges Comparable approaches do assume the general scenario of
events that might be arbitrarily interlinked. In contrast to this, TSCBNs do not look
for edges among nodes of the same TV, but for inter-edges only.

Smart node indexing TrieDiscover is the first SD algorithm of BNs to not use a
naive node indexing. As stated before, comparable methods (Savickas and Vasilecas
2014) add nodes per directly consecutive event and remove edges if cycles occur. This
is not applicable here, as modeling of multiple events of the same TV is required.
Savickas and Vasilecas (2017) this is solved by using unique index per event that
prevent formation of cycles. However, indexing of events is done in a naive way. That
is, all the i th occurrences of an event of TV X are indexed Xi . The algorithm we
present in this work is the first approach, to find an advanced solution to this problem.
This is achieved by allowing to handle optionally occurring nodes, e.g. in sequences
〈 B, A, A, B 〉 and 〈 B, A, B 〉, in the first sequence labeling of A might be A1 or A2. To
discover the best structure here, an effective traversal strategy and inspection of SCCs
is used.

Handling noise TD is well able to handle noise by using a technique adapted from
Process Mining, i.e. TD uses early filtering to focus on relevant edges only. This is
especially relevant when applied to real world data, where automated segmentation
may yield imperfect sequences. This effect is also exemplified in the case study in
Sect. 6. Comparable approaches that do not apply such constraints contain additional
redundancy and computational overhead, as combinations of edges of rare paths are
included in computation which adds to the structural search space.

4 Parameter estimation

Given the structure, TSCBNs (e.g. in Fig. 2) are parameterized with a set ofMSSs. For
this, the same MSSs are used as during structure discovery. However, to learn tempo-
ral behavior, additionally the timings are given, which are used to learn parameters of
temporal nodes, e.g. in the running example a MSS set might be {〈(t = 0.0, Smode :
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Sport), (t = 0.0, Sacc : of f ), (t = 0.0, Sbrake : inactive), (t = 0.0, Sctrl :
keep), (t = 0.0, Sdist : too f ar), (t = 0.1, Sctrl : speed up), (t = 0.5, Sacc :
high), (t = 2.4, Sdist : ok), (t = 2.5, Sctrl : keep), (t = 2.9, Sacc : of f )〉, 〈...}.
TSCBN estimators For fully observedMSS (i.e. at every node there are state changes)
the TSCBN model can be estimated using non-latent approaches such as MLE and
Bayesian Estimation with Dirichlet priors (details given in Appendix C). However,
when dealing with latent MSSs, per TV, nodes are only partially observed and thus,
latent estimation methods are required.
For this we designed two approaches, which are an EM approach and a Coordi-
nate Ascent Variational Inference (CAVI) approach. In contrast to existing estimation
approaches, our estimator needs to tackle the following challenges. First, a latent
observation of one TV (e.g. for TV S1, 〈A, B〉) correlates to a subset of nodes (e.g.
n11, n12, n13) in the TSCBN, where nodes of subsets might be interdependent (e.g.
by connected inter-edges, n12 and n23). Second, the mapping per observation to pos-
sible latent estimates is constrained in time, i.e. temporal order of events needs to
conform with nodes and directions of edges in the TSCBN. Also, in state, per TV
only a combinatorial subset of outcomes is possible (e.g. 〈A, B〉 can be 〈A, A, B〉 or
〈A, B, B〉).
We solve this in EM by sampling from TSCBNs and dropping inconsistent samples
and in VI by deducing a set of update equations, by finding a meaningful computation
per Δt and by excluding invalid mappings from full to latent TV sequences during
computation of expectations. Further, we introduce a naiveMLE approach, where sim-
ilar sampling as in EM is used to approximate samples from latent to full observations.
The full observations can then be directly computed via MLE of the TSCBN.

Formalization Each latent sequence of a TV Si is defined as a latent variable Zi =
(vi1, vi2, ...) and the observed sequence as Xi . The set of all latent variables for
observation k is Zk = {Zk

1, Z
k
2, ..., Z

k
m} and the set of all observed sequences is

Xk = {Xk
1, X

k
2, ..., X

k
m}. X = {X1, X2, ...} are all observations and Z = {Z1, Z2, ...}

the according latent sequences. For the latent case all Zk are assumed missing at
random.Further,we define the empirical distribution, that results from the observations
Z as q(vi j |Pa(vi j )).

4.1 Randommaximum likelihood estimation

When latent variables are not fully observed, estimates need to be found to approximate
the parameters of the TSCBN. One approach to do this is using a standard sampling
based MLE approach (MLE-R) which is presented here. We exploit the convenience,
that continuous TVs are leaf nodes in a TSCBNand thus, can parameterize all temporal
nodes and all state nodes separately as follows.

Temporal node estimation As temporal nodes depend on its corresponding state
node, as well as on this nodes’ parents, one distribution needs to be found per condition
combination. For this, first, per node Δt and per condition, a distribution is defined
(e.g. Gaussian). Second, during the MCMC sampling procedure all nsamp gaps for Δt
are recorded and stored under its respective parent conditions. Then, per condition set
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at each nodeΔt , the recorded gaps are used to fit a distribution over the observed gaps
and the corresponding distribution parameters are used in the temporal nodes.

State node estimationA common way to handle latency is by meaningfully imputing
missing values (Van den Broeck et al. 2015) at each observation and then applying
non-latent approaches (e.g. MLE) for parameter estimation, as follows.

1. Per input sequence Xk
i draw a valid random mapping from the current TSCBN to

get Zk
i . This results in a list of full observations Z (in state and time).

2. Use Z to perform MLE to find parameters of the TSCBN.
3. Repeat step 1) and 2) until convergence, with the newly updated parameters that

were found in 2).

Amain disadvantage of this approach is that combinations of outcomes for the TSCBN
that were not drawn during the sampling process do not update the corresponding
parameters. Thus, those parameters remain in its initial state, which might e.g. be
random or uniform. This is overcome in latent variable estimators such as EM and VI.

4.2 Expectationmaximization

In EM the goal is to maximize the likelihood L(Θ|X , Z) of the TSCBN given the
observed data. Thismeans, it maximizes the expectation of (i) the TSCBNwith param-
eters Θ to produce all latent sequences Z and (ii) Z and Θ to produce the observed
sequences X . Formally, this means EM maximizes

Θ∗ = argmaxEZ∼p(Z |X ,Θ)[log p(X , Z |Θ)]. (10)

EM approach To compute the expectation per TV exactly all combinations of map-
pings from Xi to Zi would need to be computed. Per sequence Si with n latent sequence
elements and k observed sequence elements,

(n−1
k−1

)
combinations are possible, which is

worst for
(2p
p

)
or n = 2k−1. Thus, e.g. at worst a TVwith n = 20 has already 184756

combinations, which for growing numbers of n and more TVs becomes in-feasible
to compute. Thus, efficient exact computation of EZ∼p(Z |X ,Θ)[log p(X , Z |Θ)] is not
possible.
To solve this, we use aMonte Carlo sampling approximation to determine approximate
distributions at each step.
Using K observations and M sequences (i.e. TVs) EM is performed as follows. Per
observation k and sequence i a local estimate q(Zk

i ) of the latent sequence that can be
mapped from the corresponding observed sequence Xk

i is assumed (e.g. given Xk
i =

ABC and 4 nodes for TV Si , Zk
i may be ABBC, AABC or ABCC), where Θ holds

the parameters of the model at the current iteration.
At first both q(Zk

i ) and allΘ are assumed uniformly distributed, before being updated
on each iteration. For this, per observation MCMC sampling from all M q(Zk

i )s is
used to draw nsamp samples from the whole TSCBN. This gives nsamp (or less, as
samples not satisfying temporal constraints are dropped) valid outcomes per local
latent sequence Zk

i . With this the following update steps are performed.
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Update q(Zk
i ): To maximize the likelihood of the local estimate, the updated estimate

q∗(Zk
i ) is computed as q∗(Zk

i ) = ∑nsamp
t=1 p(Zk

it |Θ), where Zk
it is the tth sample

drawn (e.g. 〈A, A, B, C〉) and p(Zk
it |Θ) is the likelihood of this sequence to occur.

Update Θ: To update Θ , E[log p(X , Z |Θ)] is found by simply counting all occur-
rences of all nsamp drawn samples under the respective conditioning observed in the
sample. With this the likelihood is iteratively maximized.

Temporal constraints To improve accuracy of the EM algorithm (when estimating
the latent Zks from its Xk) we propose to exclude latent sequence combinations from
Xk to Zk which are not possible according to the given temporal structure of the
TSCBN. Any drawn MSSs Zk is valid if the following is given:

– If a sequence element vik has an identical state as its previous intra-dependent
node (vik = vi(k−1)), the end-time t i(k+1)

abs of its interval needs to happen after all

its parents’ vr t start times tr tabs : t
i(k+1)
abs > tr tabs .

– For all parents vr t with vr t = vr(t−1) of a sequence element vik with vik �= vi(k−1),

vr t ’s start times need to occur before vik ends. That is, t
i(k+1)
abs > tr tabs .

– For all parents vr t with vr t �= vr(t−1) of nodes vik with vik �= vi(k−1), vr t we
require t ikabs < tr tabs .

4.3 Variational inference

Another common approximation approach for latent variablemodels, such as TSCBNs
is Variational Inference, which we introduce here. We oriented this approach around
the framework presented in Bishop et al. (2003), where the general idea of using the
Markov Blanket for local computations of the updates in VI in BNs is introduced. We
extend this approach for our purpose by (i) defining the correlations of an observa-
tion per TV as vector that correlates to its latent nodes of the same TV in state and
time, (ii) adapting computation of expectation to allow only valid mappings (which
reduces computational complexity) (iii) deducing update equations between continu-
ous and discrete nodes, (iv) by including the observed absolute times as Δt values for
computation of the expectation with an interpolation strategy.

4.3.1 Coordinate ascent variational inference in TSCBNs

For the VI approach, we assume the probabilistic structure shown in Fig. 4, but with
inverted edges reaching from vi j to Xi for all TVs. From this representation, we will
deduce update equations to find estimates for all RVs vi j and Δti j . The result of the
update equations is presented in the following, while a detailed deduction of formulas
can be found in Appendix C.
In Coordinate Ascent Variational Inference each variational distribution q∗(zi j ) is
updated until convergence using

q∗(zi j ) ∝ exp (Eq−i j [log p(Z , X)]) (11)

Assumptions
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– E is both computed over K observations and for all valid latent mappings from Xi

to Zi . Computationally this means to compute E over valid combinations only.
– According to Bishop et al. (2003) the expectation needs to only be computed over
the Markov Blanket around the updated node zi j .

Using those assumptions we deduce update equations q∗(zki j ) for state nodes vi j and
for temporal nodes Δti j . This is done by iteratively alternating between updating
network parameters p(Z |X) from all q∗(zi j ) and updating q∗(zi j ) from the current
network parameters p(Z |X). This is done as follows.

Update state nodes vi j : With above assumptions and the definition of the TSCBN
structure the update equation of any state node vi j is given as

q∗(vi j ) ∝ exp (Eq−i j [log p(Z , X)]) (12)

= (13)

q∗(vi j ) ∝ exp (Eq−i j [log (Ψ (vi j ) · Γ (vi j ) · Ξ(vi j ))]) (14)

with Ψ as the factor with all parents of vi j , Γ as all factors that contain co-parents of
vi j and Ξ as factor with children of vi j .
Notably,Ξ(vi j ) includes the observed sequence Xi with factor p(Xi |vi j∪CoPa(vi j )),
which is zero for invalid mappings.
Notably, in CAVI the expectations are computed with respect to the update node, i.e.
Eq−i j is excluding q(vi j ).

Updating network parameters: With the local updated estimates the network param-
eters can be found with

p(vi j |Pa(vi j )) = mean(
∏

τ∈{vi j }∪Pa(vi j )

q(τ )) (15)

With, mean as the mean over all K observations. Here, the mean field assumption is
applied assuming all nodes q(vi j ) to be pairwise independent.

Update temporal nodes Δti j : Here, for nodes Δti j , we still consider the structure in
Fig. 4 and a Gaussian distribution per temporal node. With this, the update equation
for the local estimate of Δti j , governed by its parameters μ and σ per observation is

q∗(Δti j ;μ∗
i j , σ

∗
i j
2
) ∝ exp (EΔt−i j [log p(Z , X)]) (16)

For this case again the structure of TSCBNs is assumed, only valid mappings are
assumed and only the Markov Blanket is considered per node. This results in the
following update equation for the local estimate μ∗

i j of the temporal node Δti j

μ∗
i j =

∑

ω∈Pa(Δti j )
μi j |ω · ∏

ωr∈ω q(vr = ωr )

∑

ω∈Pa(Δti j )
·∏ωr∈ω q(vr = ωr )

(17)
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This makes intuitively sense, as the μi j governing Δti j is a weighted average over its
outcomes depending on its likelihoods.
Updating network parameters: Finally the estimate p(Δti j ;μi j |ω, σ 2

i j |Pa(Δti j ) of
each CPD of each temporal node can be found as the weighted average

μ∗
i j |ω =

∑

ω∈Pa(Δti j )
μ∗
i j · ∏

ωr∈ω q(vr = ωr )

∑

ω∈Pa(Δti j )
·∏ωr∈ω q(vr = ωr )

(18)

Estimation algorithm By altering computation of local and global parameters until
convergence updates are computed. A pseudo code is provided in Appendix C.

4.3.2 Computing1t

When computing any Δti j in a latent sequence (e.g. 〈A, A, B, B〉) from a full obser-
vation Xi (e.g. 〈A, B〉), in order to be usable in the computation of the expectations
in CAVI each latent node requires a defined absolute time at which it occurs. We use
the following interpolation strategy for this.

– Times between two elements are interpolated linearly within known parts,
e.g. given A at t = 1 and B at t = 2 would result in times and values
〈(A, 1), (A, 1.33), (A, 1.66), (B, 2.0)〉 for a latent sequence 〈A, A, A, B〉.

– If the last observed element is followed by further elements in the latent sequence,
its preceding element’s distance is used for interpolation, e.g. having seen A at
t = 1 and B at t = 2 that is extended to 〈A, A, B, B, B〉 would result in
〈(A, 1), (A, 1.5), (B, 2), (B, 2.5), (B, 3.0)〉. This extension time is determined by
subtracting the last observed time by its predecessors interpolated time. If no pre-
decessor is available the distance is computed by dividing the total time of the
current sequence by its number of nodes. While this interpolation may potentially
lead to temporal inconsistency, it produces a reasonable approximation that tends
to decrease deviation from the true mean when enough sequences were observed.

Running example At this point, each node in the example of Fig. 2 has conditional
probability distributions associated in state and time. Dependent on its preceding
parent nodes, those nodes determine how likely a certain state change is to occur and
at what time it will occur. Those distribution represent the behavior observed from
multiple MSSs (here multiple runs of adaption of the cruise control) and thus, reduces
the complexity of a set of MSSs to a compact TSCBN that represents this process
in multiple dimensions under uncertainty. Using the learned TSCBN, among others,
experts are able to determine conditions under which anomalous behavior becomes
likely or most prevalent constellations of the adaption (e.g. to use this knowledge to
design specifications).
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5 Synthetic evaluation

We evaluated our model and the developed parameter estimation against DBNs and
CTBNs, as the two main competing approaches. Further, TrieDiscover is compared
to multiple baseline SD approaches. Notably, both our code and the data used for
evaluation are made available.1

5.1 Experimental setup

All Experiments were conducted on an HPTM Z-840 equipped with Intel® Xeon® E5-
2640 v3 2.60GHz CPUs and 96 GB of RAM. To compare the models, we performed a
synthetic evaluation, where ground truth MSSs are generated that are used for training
and evaluation of the models.

5.1.1 Data generator

For synthetic data analysis we implemented a generator for MSSs. This generator is
a TSCBN, with defined structure that models evolving dependencies between TVs.
Sampling from such a defined TSCBN gives a set of MSSs that is used as input for
training of all models. Also, for the comparison of the models the generator TSCBN
is used as a ground-truth. The state lengths are sampled from a Gaussian distribution.
Additionally, the generator allows to set a defined probability of state change per node.
From this model we draw defined numbers of samples used for evaluation. Those
samples can be latent sequences per TV (e.g. 〈S0 = 0, S0 = 0, S0 = 1〉) when drawn,
which are reduced to true observations (e.g. 〈S0 = 0, S0 = 1〉).
The parameters that define the MSSs are set by defining the TSCBN structure. This
includes the following parameters.

– Structure of TSCBN number of TVs nTV , number of nodes per TV nn , i.e. length
of sequence per TV

– Connections in TSCBN number of TVs that have a connection with other TVs
nTV int , number of edges ninter that nodes have if a connection is present.

– Parameterization of TSCBN number of states per state node nc and settings for
μ and σ per temporal node, state change probability pSC , which is the probability
with which a node remains in the state it previously was in.

To allow for comparison, we deduce the structure of DBNs and CTBNs from the true
structure of the TSCBN. This is done as follows.

1. A TSCBN with nTV TVs and nn nodes per TV is created. A DBN with nTV nodes
per time slice and a CTBN with a fixed structure with nTV nodes are generated.

2. Per TV, nTV int connecting TVs are randomly chosen. Then, ninter connections to
nodes of this TV are randomly set. In CTBNs and DBNs those edges form the
static network structure. This structure is assumed given for DBNs, CTBNs and
TSCBNs when performing parameter estimation. In DBNs the structure is defined
by its resolution, which is the breadth of each time slice.

1 https://github.com/arturmrowca/tscbn.
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3. Next, nc states are created per node and a CPD is randomly generated per node and
condition. In TSCBNs, this CPD forms the ground truth and is used for sampling
MSSs. Each CPD is created such that all probabilities of a intra-node to remain
in its same state are set fixed to pSC , while a random distribution is drawn for the
remaining CPD entries. Further, a Gaussian distribution with μ′ and σ ′ is used to
draw values μ, that are set to the temporal nodes under given conditions. With this
per node differentμs are provided and state sequences of equal lengths are avoided.
In the experiments σ ′2 was set to 0.1.

4. With this a structure for all three network types is given, while for TSCBNs an
additional parameterization is given. The TSCBN is used for sampling sequences
as described in the beginning of this section.

5. In all experiments of this section those samples are used as input.

5.1.2 Setup for model and parameter estimation

Experiments After performing steps 1 to 5 of the data generator for the evaluation
of the model various variants of TSCBN structures are created. For evaluation of
parameter estimations, a copy of the TSCBN is created where all parameters are
deleted. This TSCBN is used as input for parameter estimation, while the original is
kept as ground truth.
The generated samples are split 90:10 into a training and a test set which are ran-
domly chosen from the data. Then, for all three network types parameter estimation
is performed by using the sampled MSSs from the training data set. The estimated
parameters are then, used for evaluation by applying the evaluation criteria which are
described in the next section. Results of model evaluation are presented in Sect. 5.2,
while the results for parameter estimation are given in Sect. 5.3.

BaselinesAs a benchmark for performance of the model and our parameter estimation
we use the two most comparable types of networks, which are DBNs (Dean et al.
1989) and CTBNs (Nodelman et al. 2002). For the further, we used python’s libpgm
package and for the latter a python wrapper for the R package CTBN-RLE (Shelton
et al. 2010) waswritten and used. InDBNswe define static edges between related TVs.
The structure is repeated in discrete time, with outcomes at each slice. The maximum
distance of a time-slice to a state change to capture is defined as DBN tolerance,
which defines the resolution of the structure repetition. Parameter Estimation is done
with a Maximum Likelihood Estimator. For CTBNs we define the same static edges
between TVs for both the transition and intensity matrices as provided by the ground
truth TSCBN. Then, CTBN-RLE’s parameter learning engine is used to estimate
parameters of the CTBN.

Parameters used For all models we assumed 5 nodes per TV (i.e. 4 intervals), 4 states
per node, per TV 2 edges to two other TVs. For the DBN we used a resolution of 0.02
and the length of all intervals is drawn from a Gaussian with μ = 0.5 and σ 2 = 0.1.
The number of TVs nTV , the number of samples for training and test nsamp, and the
probability of a state change occurring pSC were varied. For parameter estimation per
sequence during MCMC sampling 1000 samples are drawn per iteration, 5 iterations
were performed for EM and VI. Per iteration a CPD smoothing of ε = 0.1 is used.
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Fig. 11 Results of structural complexity, as number of nodes nN and CPDs nC , for various numbers of
TVs

5.2 Model

In the following we evaluate the TSCBN model in terms of structure against the
existing baseline approaches DBN and CTBN.

5.2.1 Setup

Evaluation criteriaWe evaluated the models and parameter estimation approaches in
terms of structure using the number of edges nE , nodes nN , states nS and parameters
nC . The structure of the models is quantified with the number of components required
to model a MSS. For a given model this includes the number of edges nE , number
of nodes nN , total number of states nS and the total number of entries required in all
CPD tables of all nodes nC (i.e. the number of parameters).

Experiments To evaluate the model structure, the number of intervals and TVs is
varied and an according TSCBN, CTBN and DBN found to represent this MSS. The
structures are evaluated in terms of number of nodes, edges, states and conditional
probability entries (=parameters).

5.2.2 Results

Structural comparison In Fig. 11 the results of the structure evaluation are shown.
Both DBNs and TSCBNs need additional nodes nN per interval, while CTBNs have
a fixed number of nodes, which is the number of TVs. DBNs add multiple nodes per
state change (depending on its resolution), making it complex in size and in terms
of parameters. In contrast to that, TSCBNs require only one node per further interval
making it smaller than DBNs. CTBNs are more compact than both approaches in
terms of nodes, as those assume a static structure. However, in terms of parameters
nC CTBNs require intensity matrices per condition given in its static network. Thus,
especially when multiple TVs are involved that change its dependence on other TVs
over time, CTBNs need to store a correlation in its static network per combination of
correlated TVs. In contrast to that, in TSCBNs only dependence at its actual time in
the process are included, resulting in less edges per node in TSCBNs. Also, CTBNs
require to store a matrix per condition and node while TSCBNs only store its CPD and
temporal distribution parameters per condition and node. Thus, CTBNs are similarly
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light as TSCBNs in terms of parameter size, if no evolving dependencies are given,
while TSCBNs show to be lighter when evolving dependencies are modeled in MSSs.
In our evaluation this becomes evident aswe assume two edges to be randomly directed
between any TV combination, all of which are modeled in TSCBNs only at the nodes
that they occur. In CTBNs all correlations need to be modeled within its TV network
structure resulting in more combinations and thus, bigger numbers of parameters.

5.3 Parameter estimation

Here, the performance of the parameter estimation approaches that were proposed in
Sect. 4 are evaluated. This is done first, against CTBNs and DBNs when including the
model and second, the approaches are compared against each other within TSCBNs.

5.3.1 Setup

Evaluation criteria Evaluation in expressiveness was done in terms of mean log-
likelihood and temporal mean log-likelihood, while the performance was evaluated
using the runtime.
Mean Log-Likelihood: The mean log-likelihood resembles the state expressiveness of
a model computed from N given outcomes with M nodes per outcome. Values closer
to zero indicate better expressiveness. It is normalized by the total number of nodes
M in the model to allow for fair comparison between TSCBNs, DBNs and CTBN. It
is defined as

lmean(Θ|X) = 1

N · M
∑N

i=0

∑M

j=0
log P(x j

i |Pa(x j
i )) (19)

where x j
i is the jth outcome and the ith node of the model. This metric is computed

for all discrete nodes x j
i (i.e. in TSCBNs all nodes v and in DBNs all nodes). The

magnitude of this metric is called the Absolute Mean Log-likelihood.
In CTBNs we computed this metric by walking through each sample in a sequence
and by storing all previous values of the outcomes of TVs as conditions. Then, per
sample the transition matrix per TV is used to find the log-likelihood of the TV
transitioning into the observed state under the given previous condition. All computed
log-likelihoods are then summed up and normalized by the number of summands
yielding the Mean Log-Likelihood. This metric resembles how likely a CTBN would
have produced the observed sequence.
Temporal Mean Log-Likelihood: If x j

i is a temporal node (x j
i = Δt ji ), P(x j

i |Pa(x j
i ))

in lmean(Θ|X) is the Gaussian of the according temporal node in the TSCBN. It
measures the temporal expressiveness of a TSCBN.We call this criterion the temporal
log-likelihood in the following.

Experiments The parameter estimation is evaluated by training a model with 90 per-
cent of the data and testing it with 10 percent. During testing the mean log-likelihood
of the test sequences are used for evaluation of the trained model. Further, for the

123



Temporal state change Bayesian networks 269

0.5 0.6 0.7 0.8 0.9 1

10−0.2

100
100.2
100.4
100.6
100.8

Probability of State-Change

Absolute MLL

TSCBN: nTV = 3 DBN: nTV = 3 CTBN: nTV = 3
TSCBN: nTV = 5 DBN: nTV = 5 CTBN: nTV = 5
TSCBN: nTV = 10 DBN: nTV = 10 CTBN: nTV = 10

0 0.25 0.5 0.75 1 1.25 1.5
·104

100

100.3

100.7

# Samples

Absolute MLL

0.5 0.6 0.7 0.8 0.9 1
102

103

Probability of State-Change

Runtime

EM: nTV = 3 EM: nTV = 5
VI: nTV = 3 VI: nTV = 5
MLE-R: nTV = 3 MLE-R: nTV = 5

Fig. 12 Left and Mid: Abs. MLL and runtime when varying probability of state change and number of
training samples using the EM algorithm for estimation of TSCBN parameters. right: Runtimes for three
approaches including EM, VI and MLE random for two structure sizes

TSCBN the temporal log-likelihood and runtime of the parameter estimation is mea-
sured. This is done once with fixed pSC = 0.8 and increasing nsamp and once with
fixed nsamp = 2000 and increasing pSC .

5.3.2 Results

Comparison in expressiveness Figure 12 shows, that for an increasing number of
state changes DBNs have a constant likelihood, while it improves in TSCBNs. This
is due to the structure of DBNs, which is independent of state changes and samples
data at regular time steps. CTBN are also, less influenced by state changes as CTBNs
generalize over those changes (as process independent intensity matrices are learned)
and only learn the observed. So, CTBNs ignore structure of events and changes of
evolving dependencies, which makes them less expressive. In TSCBNs less state
changes require more marginalization during parameter estimation and thus, decrease
expressiveness. However, in comparison to CTBNs even for a small state-change
probability of 0.55 our approach is about 2 times and for DBNs even 8 times more
expressive for equal numbers of TVs when representing MSSs.

Expressiveness of TSCBN Figure 13 shows that parameter estimation in TSCBNs
improves with more training samples and smaller state-change probability. This is,
as with more training samples more behavior is observed and thus, the model is
more likely to expressively represent unknown samples. Higher probability of a state
change improves likelihood of the data both in time and state as less marginalization
is required. For a small number of samples the temporal log-likelihood does improve
significantly if more samples are added, while it stagnates later. Further, it can be seen
that less TVs show a better temporal expressiveness, as in this case it is more likely
that unknown samples are similar to observed samples in training.

Runtime The runtime improves for less TVs and more expected state-changes that
occur which is illustrated in Fig. 12 (right). This is, as sampling is only required
for latent sequences, whereas no MCMC sampling is performed if the length of the
observed sequence matches the number of nodes for a TV.
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Fig. 13 Results: KL divergence and temp. MLL when varying probability of state change and number of
training samples for three approaches including EM, VI and MLE random for two structure sizes

Comparing estimation approaches We also compared the proposed approaches
against each other using Figs. 12 (right) and 13. An in depth discussion of these
results can be found in Appendix D. Overall, VI performs better in runtime, is slightly
less expressive in state, but most expressive in time. MLE-R and EM perform similar
in those three categories and yield better expressiveness in state thanVI. Consequently,
all three approaches are about equally suited for parameter estimation in TSCBNs,
while trading off expressiveness in state, expressiveness in time and runtime.

5.4 Structure discovery

In this section we present the results of the evaluation of TrieDiscover in terms of
performance and precision.

5.4.1 Setup

We evaluated the presented algorithm TrieDiscover by generating random TSCBNs
with the generator described above and by using samples of that TSCBN to learn a
TSCBN structure. By comparison of the given ground truth model and the learned
TSCBN evaluation is performed.

Parameterization The temporal gap between subsequent state changes of a TV is
randomly drawn between 0.5 and 1.0 from a uniform distribution. The state change
probability is set to 0.95, the number of states per TV to 3, number of TVs to nTV = 5
and length per TV to nL = 4 and 0.5 · nL · nTV random inter-edges and 5000 MSSs
sampled for learning. The structure learned by each algorithm was compared to the
structure of the original network. TrieDiscover is parameterizedwith k = 0.1 to be able
to filter the noisy parts, tth to 1.0 as gaps between intra nodes are drawn fromGaussians
with mean 0.5. In the sbTD BIC is used as score, in cbTD and cbvTD α = 0.01 and
χthr = 1.0. In the results given in Fig. 14 we adjusted the three parameters above and
used nTV = 3, length nL = 3 and tth = 0.5.
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Fig. 14 Left: Various number of added and missing edges for sbTD in comparison to ground truth when
structure and tth is varied, with 3 TVs assumed. Mid and right: Execution time when assuming nL = 3 for
various numbers of TVs and the two steps of TrieDiscover

Evaluated approaches In total we compared six different algorithms. First, those are
our approaches with different structure optimizations as proposed in Sect. 3, which are
cbTD, cbvTD and sbTD. During Structure Optimization TrieDiscover uses an exact
score optimization approach called parent graph, which was presented in Yuan and
Malone (2013). It calculates the score for small parent sets first. If a parent set is
non-optimal, also parent sets that include the non-optimal parent set are non-optimal.
A heuristic is used to decide for which parent set the next score is calculated. Second,
as baselines we use greedy hill climbing (GHC), the PC algorithm (PC) and the hybrid
max-min hill climbing algorithm (MMHC). We chose static approaches here as no
existing dynamical approach is directly applicable to generate TSCBNs, while with
static methods correlations can be found when nodes per TV are provided. Further,
to make those applicable the assignment of state changes to temporal nodes in the
TSCBN has to be done prior to execution. We decided to use a naive assignment
(i th event of signal X is assigned to node Xi ) to evaluate if the advanced assignment
of our algorithm leads to better results. No structural constraints are implanted in
the initial networks as this may lead to cycles. The PC algorithm usually returns a
partially directed structure. We decided to orient the edges using the index number of
the sequential nodes per TV (from smaller index number to the larger one). If both
index numbers are identical, an arbitrary orientation is chosen.
The significance level in the constraint-based and hybrid approaches was chosen from
the values α = 0.01, α = 0.05, and α = 0.1. Good results were achieved when
using α = 0.01 in the PC, MMHC, cbTD and cbvTD algorithms. Also, a maximal
condition set size of two nodes turned out to be a good tradeoff between precision
and performance when executing the cbTD and PC algorithm. All algorithms were
implemented in Python, while GHC, PC, and MMHC were taken from the Python
package pgmpy.2

Evaluation criteria As a computational performance metric we use the runtime of
the algorithms.
To measure precision Structural Hamming Distance (SHD) is used (Tsamardinos
et al. 2006), which is a common metric for comparing discovered to original network

2 http://pgmpy.org/.
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Fig. 15 Results in terms of runtime and SHD for various sizes of the training set and various SC probabilities

structures. The SHD is given by the sum of the number of missing edges, the number
of additional edges and the number of wrongly oriented edges. Thus, a small SHD
indicates a higher similarity between networks. Further, the number of edges that were
wrongly added and missing edges are used.

Experiments In the first experiments in Fig. 14 we evaluated the proposed discovery
approaches individually in terms of the influence of tth and the structure size. Next, we
compared our approach to the baselines when different numbers of samples are used
for training and different SC probablities are given. The results of this experiment are
shown in Fig. 15.

5.4.2 Results

Varying parameters of TrieDiscover Varying nL and tth gave the results shown in
Fig. 14 (left two). It can be seen that small tth lead to less edges, i.e. many missing
edges, as the candidate set is empty.However,with increasing tth the number ofmissing
edges decreases. Too pessimistic tth lead to an increase of added edges, as the structure
optimization step yields a large number of edges that are spurious dependencies, e.g.
given an edge A2 → B2, strong dependencies exist between A2 and preceding events.
This may lead to spurious dependence between A1 and B2. Further, it can be seen
that for increasing nL the absolute number of bad edges increases, while when putting
it into relation to the structure the relative increase is less. Thus, the choice of tth is
important to achieve good precision. In Sect. 6 we will show how this value can be
found empirically by inspection of the input MSSs.
Next, we discuss the results when varying the sample size, the SC probability and
nTV .

Varying number of TVs When the number of TVs is increased the execution time
grows as well, which is shown in Fig. 14 (two right). There parent set identification
becomes increasingly complex, as the complexity of the trie network grows with more
potential combinations. This requires more operations such as merging, and thus,
more time. For instance for the case of 8 TVs it makes up around 95% of runtime. The
structure optimization is less complex, when good subsets are found in the first step.
Especially during parent set identification, e.g. with s TVs and m nodes per TV, this
is as the number of potential paths in the trie is ss·m . Hence, increasing the number of
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TVs has a worse impact on the number of paths in the trie than increasing the number
of nodes. Thus an increase of nTV and nL make theminimization of the trie inefficient.

Varying sample size The size of the training set does not meaningfully improve preci-
sion of TrieDiscover as Fig. 15 (left) shows. This is as for the given network structure
already less samples suffice to discover paths in the trie as we capture those losslessly.
MMHC and PC, however improve with more samples as correlations become clearer
with this.
In terms of runtime GHC performs best, while it is least precise. Our three proposed
approaches are about 10 times faster than the constraint-based baselines and also good
in precision even for less samples given.

Varying SC probability The SC probability sets the noise in the data during learning.
Varying the SC probability gives the results shown in Fig. 15 (right two). By looking at
the SHD it can be seen that all algorithms perform worse for smaller SC probabilities,
i.e. if more latency is present. Overall all three variants of TrieDiscover yield the best
results here. Especially if a higher degree of latency is present, our approach still yields
good results. This is as our trie is built up exactly, i.e. even if paths are seen rarely,
those are present as candidates for structure optimization.
Moreover, the naive event-to node assignment used in the baselines however, results
in unclear relations between two events, e.g. for a sequence 〈A, A, B, A〉, the second
A is latent thus, the third A will be assumed A2. This in turn weakens the correlations
computed between such state changes and makes it hard for static approaches to
discover those. This effect becomes less meaningful with less latency. Thus, for the
case of no latency the static approaches improve significantly performing similar to
our approaches. Additionally, the discovered structure of the static baseline algorithms
suffer from wrongly oriented edges, as we assumed a naive orientation rule for those
algorithms. This is overcome in TrieDiscover by including control flow information.

Also, constraint-based approaches outperform score-based approaches in terms of
additional edges as the latter tend to contain spurious dependencies. The further, use
CI tests that are performed conditioned on a set of other nodes, which allows to find
and remove edges with spurious dependencies. This is also why cbTD works better
than sbTD.

In terms of runtime GHC and MMHC perform best, while all other approaches
yield higher runtimes with more latency. This is as more latency also means more
variation in possible paths represented in the data set. For the proposed approaches
this results in more merging operations required. This could be improved in the future
by using more approximative merging techniques.

Conclusion The proposed approach allows to successfully discover a meaningful
structure of TSCBNs. In comparison to the baseline approaches it is most precise in
discovering structures. Further, it yields higher runtimes if more latency is present,
while it is similar to the baseline approaches if only fully observed MSSs are given.
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6 Case study: automotive fault diagnosis

In this section we demonstrate how TSCBNs can be used for the effective extraction
of specifications fromMSSs. For this we analyzed a real world data set recorded from
a fleet of test vehicles of a big automobile company. This is done with TrieDiscover
and EM to learn the TSCBN followed by BaySpec (Mrowca et al. 2019) and MPE for
Specification Extraction.

6.1 Background

In modern vehicles communication between Electronic Control Units (ECUs) is per-
formed within its intra-vehicular networks to execute functionality, e.g. sensor data is
exchanged during wiper usage (Mrowca et al. 2018a). Analyzing such data in terms
of correctness is essential to guarantee functional quality of subsystems at a low cost.
Such traces of vehicles are recorded as signals, which are sent between ECUs. Each
signal is one piece of information, i.e. events, states or state changes of the car, such
as the acceleration pedal, the brake state or the GPS position. Those signals can be
interdependent. Modeling causal dependency between such signals allows to capture
the vehicle’s state and to infer specifications.
Signals are usually sent cyclically within milliseconds and potentially with identical
signal values. Including all of those signals is intractable due to a high number of
signals. This requires to remove duplicate subsequent signals, ending up with state
changes per signal only. Thus, the communication behavior can be seen as aMSSwith
each signal as TV. An important task to ensure functional correctness of subsystems is
the identification of relevant specifications. Finding those however, is challenging as
functional complexity increases and thus, manual definition of specification becomes
intractable. Hence, automated specification mining approaches are required to solve
this. TSCBNs can be well used for this task. That is, givenMSSs of observed behavior
of a functional process, TSCBNs can be learned. We demonstrate this in the following
using two functions.

6.2 Data sets

The given data set represents the functionality of the indicator lights in a car. The
indicator light is switched on by a driver using the handle bar, when turning left or right.
This function consists of a handle Sbar that (de-)activates the indicator either in steady
mode or for 3 seconds, indicated in Stype. This influences the state of the indicator
Sstate, e.g. right indicator on. Depending on this, in steady mode synchronization
Ssync is started and a new indication cycle Scycle begins. Once Sbar changes back to
its default state from the 3 second state, depending on this state, synchronization is
stopped. If it is in steady mode it is only stopped later at Sbar , when being returned to
default by the user.
Here, 28.6% of the observed sequences remain in an identical state over multiple
intervals, which shows that our latent parameter estimation is required. Properties of
the data set are given in Table 1.
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Table 1 Properties of the automotive data set including results aftermodel creation and parameter estimation

Data set # Samples # Temp. # States/# Latent Mean Temporal
variables nodes sequences log-likelihood log-likelihood

Indicator 104 5 3.67 28.6% −0.23 -44.78

6.3 Fully automated specification extraction

6.3.1 Setup

Here, we demonstrate how TSCBNs can be used for automated specification mining
to infer the following two types of specifications. First, those are LTL specifications
deduced from combinations of paths within a TSCBN which capture the most likely
sequential behavior between paths along TVs of the learned process. Second, those
are most dominant system states which resemble the most likely overall process pro-
gression when all TVs are taken into account at the same time.

Experiment We train the TSCBN from the data set using TrieDiscover for structure
discovery and the EM approach for parameter estimation. On the resulting TSCBNwe
once, apply the BaySpec (Mrowca et al. 2019) algorithm to deduce LTL specifications
and as an alternative find the Most Probable Explanation (MPE) of the network to
deduce dominant process states as potential specifications.

Most probable explanation The MPE is an estimate of the unknown latent dominant
system state, which the modeled process represents. We assume that a MPE estimate
in our case resembles the most likely constellation of the process. This can either
be interpreted as a potential specification of the system or, during fault diagnosis, as
the prevalent system state that might have lead to a fault. For the latter, segments
that contain a known fault could have been taken for training and the cause of the
error could be found with MPE. We compute the n most likely MPE estimates in
state and time by sampling 100 000 times from the trained TSCBN and by counting
the occurrence frequencies of drawn state (excl. temporal nodes) combinations. Most
likely drawn combinations are then, ranked according to its occurrence frequencies.
Each state combination outcome is specified in time by setting the combinations as
evidence in the discrete state nodes, and reading the corresponding learned μ values,
under given evidence, from the temporal nodes. This gives a specification in state and
time with associated likelihoods per outcome combination.

BaySpec BaySpec is a Specification Mining algorithm, that allows to learn LTL spec-
ifications from BNs. This is done by first, looking for most probable paths and then,
subsequently merging those paths until specifications of appropriate strictness are
found. We used the implementation provided by the authors of Mrowca et al. (2019).3

BaySpec finds formulas of the type premise �→ conclusion, where the premise is a
unique combination within the trace, that if present must have the conclusion follow.
If this is not the case the specification is violated.

3 https://github.com/arturmrowca/bayspec.
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Fig. 16 Left: Distribution of gaps between consecutive state changes in nanoseconds. Right: Number of
inter-edges after structure discovery for different values of k and χth

Fig. 17 This figure shows the
network that was discovered
with TrieDiscover

ParameterizationWeused cbvTDwhich has parameters tth , k and χth . tth of TrieDis-
cover is found by inspecting the distribution of gaps between consecutive events in
the data set as shown in Fig. 16. To avoid ignorance of potentially relevant temporal
dependencies we chose tth pessimistically to include the last two preceding events (i.e.
twice the highest gap size), i.e. for indicator tth = 2 ·4 ·109. Then, we ran the approach
for values of k between 0.05 and 1.00 and for χth between 0.05 and 100.00 to find k
and χth that yield a medium number of inter-edges, i.e. as k removes noisy events and
χth defines the required strength of correlations between events both values have a
high impact on the quality of the algorithm’s performance on real world data. Results
of this are shown in Fig. 16. For the indicator we chose k = 0.2 and χth = 0.25. We
ran the EM Algorithm with 5 iterations for parameter estimation. For BaySpec we
used the metric-based approach with a minimum likelihood threshold of 0.6. Lastly,
certain state changes occur at exactly the same time, while directions of dependencies
matter. This is because such information is recorded at similar sampling rates, e.g. to
an expert it is obvious that the detection of opposing traffic causes to change the control
of the high beam state. Therefore, we define with an expert the order between some
TVs if a correlation is found. The discovered network is shown in Fig. 17, excerpts
of the most likely discovered LTL specifications are shown in Table 2, its metrics are
provided in Table 3 and excerpts of the most likely MPE estimates are provided in the
results section.

Metrics The found LTL specifications are evaluated in terms of complexity as used
in Mrowca et al. (2019), in terms of height and width of the specifications. Height
resembles the depth of the formula (i.e. deepest number of consequent nested oper-
ators), while the width is the number of unique literals in the formula. Further, an
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Table 2 Excerpt of LTL specifications found with BaySpec for the indicator data set with likelihoods of
found specifications L

L (%) Discovered LTL—specifications

87.37 G((Sbar : tip up ∨ Ssync:cyc. continues) �→ XG((Ssync:new cyc.
�→ X((Ssync:sync ∧ X(Ssync:cyc. continues))))))

86.90 G((Sbar :overtip down ∨ Sbar :tip up) �→ X(F(Sbar :no action)))

86.36 G((Sbar :tip down ∨ Sbar :tip up) �→ X(F((Ssync:new cyc. ∧
X(Ssync:sync ∧ X(Ssync:cyc. continues))))))

expert manually labeled found specifications as either fully right or only partly right.
The latter implies that at least one literal is placed badly, such that malicious firing of
the specification might occur. The accuracy resembles the ratio of specifications that
are fully right. Further, from the accurate traces we labeled the found specifications
as either trivial, i.e. specifications that always fire, or relevant, i.e. specifications that
fire in a critical case which might reveal an anomalous spot in the trace.

6.3.2 Results

We evaluate the learned model structure, the found LTL specifications and the found
MPE estimates. As shown in Table 1, good results, with low likelihoods in state and
time are found when modeling the given data with TSCBNs. This shows that the data
set can be modeled expressively with TSCBNs. Please also note that overfitting is a
desired property in our scenario, as we do not aim for generalization but rather for
model fitness.

Model structure The discovered model is shown in Fig. 17. Overall the discovered
indicator structure seems intuitive and plausible. The edges rooting in Sbar influence
Sstate and Ssync, which is as expected, as the handle bar’s initial value - i.e. the type
of action - determines the state the indicator will change to and if a synchronization is
initialized. Further, Ssync continues to influence Scycle based on its evidence, which is
also true as an activation of synchronization starts a newcycle or continues it depending
on Scycle preceding state. Also, dependent on the synchronization type Ssync it can
be read off Stype if a permanent or a non-permanent indication is present. The edge
between Sbar 0 and Sstate 2 seems surprising at first. However, it makes sense as a
normal pushing of the handle bar causes the indicator to turn on at 1 and return to its
default state after some time, which is within the training sequence, while if a further
push is applied on the bar the indicator will permanently blink, i.e. state 2 will remain
in on state.

BaySpec LTL specificationsAs Table 3 shows BaySpec found 28 specifications from
the indicator TSCBN. Some examples of specifications are given in 2, while metrics
found over all specifications are provided in Table 3, e.g. the first LTL formula suggests
that if the handle bar was tipped up and the synchronization started a new cycle, the
synchronization has to continue, before then, a newcycle is started. The second formula
implies that a movement of the handle bar needs to return to its default state, while the
last formula says that the synchronization sequence of the first formula is started once
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Table 3 Metrics for the specifications that were extracted with BaySpec

Data set # LTL spec. ∅height ∅width Accuracy (%) Relevant (%)

Indicator 28 5.75 4.03 67.85 84.22

the handle bar was triggered by the user. In Table 3 we see that a good accuracy is
reached. The discrepancy to 100% can be explained with an imbalance in the data set.
That is, in the indicator data sets users tend to use the short indication far more often
than the permanent indication. Therefore, the non permanent case is well represented
while the permanent case yields CPDs that are mostly approximated during the EM
approach. This, can be adjusted in future applications by either including balancing or
including expert input at this stage. The complexity and expressiveness of the found
specifications yields a good quality, with a high percentage of relevant specifications
and specifications of heights around 5 and 3 to 4 symbols included per specification.
This shows, that TSCBNs can be used to automatically learn LTL specifications from
observed system behavior. This allows to lower manual effort during specification
generation.

MPE estimations—indicator For the indicator frequencies are within 11.99% and
0.017%. The two most likely estimates are with 11.99% frequency

Sbar = 〈(t i p up,Δt = 0.0s) , (no action,Δt = 0.513s)〉
Ssync = 〈(cyc. cont ., Δt = 0.0s) , (new cyc., Δt = 0.017s), (sync,Δt =
0.639s), (cyc. cont ., Δt = 2.052s)〉
Stype = 〈(non permanent,Δt = 0.0s), (non permanent,Δt = 0.0s)〉
Sstate = 〈(both of f ,Δt = 0.0s), (right on,Δt = 0.017s), (both of f ,Δt =
1.682s)〉
Scycle = 〈(no ind., Δt = 0.0s), (normal,Δt = 0.0s), (no ind., Δt = 2.660s)〉

and with 4.4% frequency

Sbar = 〈(t i p down,Δt = 0.0), (no action,Δt = 0.572s)〉
Ssync = 〈(cyc. cont ., Δt = 0.0), (new cyc., Δt = 0.020s), (sync,Δt = 0.639s),
(cyc. cont ., Δt = 2.052s)〉
Stype = 〈(non permanent,Δt = 0.0s), (non permanent,Δt = 0.0s)〉
Sstate = 〈(both of f ,Δt = 0.0s), (le f t on,Δt = 0.0204s), (both of f ,Δt =
1.675s)〉
Scycle = 〈(no ind., Δt = 0.0s), (normal,Δt = 0.181s), (no ind., Δt =
2.660s)〉

For this case the indicator learned both the activation of the right indicator after the
handle bar was tipped up and the left activation when tipping down. Both caused a
new indication cycle to start. Notably, here the timing was learned nearly exact, e.g.
it is plausible that after tipping up the indicator starts 0.017 seconds later and stops
indication after around 1.7 seconds (Sstate 2) and confirms this at around 2.6 seconds
in Scycle 2 with the no indication signal. In practice, this approach allows an expert to
first, directly understand the prevalent system behaviors (e.g. for fault diagnosis) and
to second, deduce potential specifications in state and time in an automated manner.
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This is, as snapshots of process variants of MSSs can be compactly represented as
outcomes of learned TSCBNs.
In the future this opens up further applications, such as in prediction tasks, e.g. when
setting observed initial states of the multidimensional indicator state as evidence in the
network and reading of Maximum Aposteriori Hypothesis (MAP) estimates or likely
paths, as in BaySpec, from the network.

7 Conclusion

We introduced TSCBNs as an effective way to model MSSs, as well as structure and
parameter learning approaches for this model. In an extensive evaluation we showed
that the proposed approaches improve the state of the art.

Future work With the introduced model several applications for temporal diagnosis
and prediction, such as anomaly detection or deduction of test cases, become avail-
able. However, for this specialized inference algorithms need to be developed, e.g. as
TSCBNs represent observed processes, setting evidence of subparts of it and inspec-
tion of unlikely outcomes resulting from it allows to identify anomalies and to draw
conclusions for diagnosis. Also, unlikely paths could be searched for. In the same
way, given evidence conclusions about most likely successive outcomes can be used
for prediction. Future work includes approaches that allow to infer such anomalies
fromTSCBNs and to predict processes in state and time. Further directions include the
extraction of multidimensional specifications and the application of those on TSCBNs
for verification. Mrowca et al. (2019) one dimensional specifications are extracted by
transforming TSCBNs into amining graph, wheremost probable paths can be deduced
as specifications. Lastly, advanced statistics could be extracted from TSCBNs. Often
the usage of a system guides the design of the product, i.e. in which states and under
which conditions and in which order a system is used. This can also be modeled with
TSCBNs and allows to deduce temporal statistics, e.g. the most probable orders of
usage.
Further,we introducedEM,VI andMLE-R as parameter estimation approaches. Those
can be further improved in terms of scalability by developing efficient implementations
for GPU based computations.
TrieDiscover grows in complexity and thus, in runtime when the number of TVs is
increased. This is mainly due to the effort of minimization of the trie. Minimizing
the trie is done to enable a lossless compression of the found sequences. Thus, future
work might replace this step with a lossy compression of the event sequences which
we expect to improve the run time of TrieDiscover significantly. Lastly, most modeling
approaches focus on either modeling state sequences, continuous data (Hallac et al.
2017; Nodelman et al. 2002) or discrete events (Galán et al. 2002), while it would be
interesting to model interdependence between all three temporal types combined in
order to capture dependence of states on evolving events and time-series. Although,
the proposed approaches already provide good scalability for models of up to about
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50 nodes, this needs still to be improved. This can e.g. be achieved by using lossy SD
approaches or by adding more constraints to the BN.
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Appendix A

Preliminaries: Bayesian networks

BNs are DAGs that represent causal relationships between RVs Xi as nodes and their
dependencies as edges. Such networks define a Joint Probability Distribution (JPD)
P(X1, X2, ..., Xn) over all n RVs in the graph, which allows for various types of
probabilistic inference tasks, including diagnosis or prediction. JPDs are computed
from Conditional Probability Distributions (CPD) P(Xi |Pa(Xi )) which are defined
per RV Xi in the network conditioned on its respective parents Pa(Xi ). For a set of
variables X1, X2, ..., Xn the JPD is computed with

P(X1, X2, ..., Xn) =
n∏

i=1

P(Xi |Pa(Xi )). (20)

To infer probability distributions along the network under given evidence approaches
such as marginalization of JPDs or Bayes’ theorem can be used.
Mostly, for ease of computation of JPDs, RVs are assumed to be either all of discrete
or all of continuous type. If both types occur in the network simultaneously, the graph
is called a HBN. In HBNs the set of RVs X is divided into two sets X = Y ∪ Z , where
Y represents discrete and Z continuous RVs. In this work we restrict our notion of
HBNs to the case, where continuous RVs can only be conditioned on discrete ones
and the inverted case is not allowed. A common way for inference in such cases is to
assume fixed distributions (e.g. Gaussian or Exponential) defined with parameters Θ

per continuous node Z and to condition each Θ on Z ’s discrete parents, e.g. assuming
one discrete parent Y , each parent outcome y gives a distribution Σ for the respective
node. That is,

Z |Y = y �→ Σ(Θ(y)). (21)

In this work the notion of HBNs is extended to a general temporal model, that allows
to compactly model intervals and its dependencies in MSSs.
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Discussion: comparison of TSCBNs to existing approaches

In this section extended details are provided for the discussion of 2.5. This is also done
on the basis of the scenario in Fig. 3.

Compactness and parameter complexity Compact representations are desireable,
as a more compact model requires to train less parameters and allows for better inter-
pretability. Process models are complex in size, as those model each state change with
each outcome as a separate node, e.g. in Fig. 3 for Sdist at both node 0 and 1 therewould
be three nodes: too near , too f ar , ok. Time-sliced BNs repeat a static structure, that
has edges between TVs anywhere where TSCBNs have those, i.e. not only at points
where true causality is given. This fact and redundancy due to repetition make those
complex, as well. Among interval-based approaches TBNEs (Arroyo-Figueroa et al.
2005) are comparably compact, while containing less temporal information. Other
approaches are either of qualitative nature (e.g. MTBNs Aliferis et al. 1996) or do
model variants of possible occurrences as a tree that explodes with the length of the
process to model (Galán et al. 2002). CTBNs do require the same static structure
as DBNs and to store all variants of connection combinations. This results in many
condition combinations resulting in a high parameter space.
In contrast to this, TSCBNs model state changs only at times that a change is possible.
This for the first time enables multidimensional path analyses along actually possible
paths (e.g. given evidence of a subprocess, to infer likely or unlikely behavior). Also,
this representation allows for best interpretability, as temporal patterns can be directly
read of, e.g. in Fig. 3 one can directly read that Sdist causes changes in Sctrl , that in
turn influences both the acceleration Sacc and braking Sbrake actions, no matter what
the outcomes of those nodes are. No other process model is able to provide this degree
of expressiveness for MSSs.

Explicit modeling Existing approaches can model MSSs’ processes either explicitly
(e.g. Process Models) or implicitly (e.g. tree-like BNs Galán et al. 2000). The further,
is advantageous when analyzing behavioral patterns in data, while the latter is mostly
suited to answer specific types of questions (e.g. diagnose a disease given symptoms in
temporal order). Existing explicit models include TBNEs, Process Models or unrolled
DBNs. TBNEs build up a tree like structure to capture the process flow and do not
model time as continuous nodes making it less expressive. Process Models do have
high numbers of edges, while the repetition in DBNs is not able to explicitly represent
the actual flow of the process. TSCBNs are the first BNs that provide an expressive
unrolled representation of the whole modeled process in multiple dimensions in state
and time. This enables effective multidimensional inference. In particular, the shape
of TSCBNs represents a process of multiple MSSs as a JPD of the overall process in
state and time. This enables new types of analyses, such as finding rare state changes
as anomalies given any set of assumed evidence.

Multidimensional procedural inference By representing the multidimensional
nature of the data, effective evidence based inference is possible, as it was described
before. For example in Fig. 3 the aim could be to compare the TSCBN distributions in
Sport mode against the ones in ECO mode. In TSCBNs this can be achieved by first
computing most likely constellations given each respective evidence setting, yielding

123



282 A. Mrowca et al.

one MPE estimate for Sport and a MPE estimate for ECO mode. By comparing the
same state nodes in those two cases differences can be read off, i.e. looking at node 1 of
Sacc for Smode = Sport this is high, while for ECO it is low. In process models this
would require to compare and search multiple paths, in DBNs all repetitions would
need to be compared and in CTBNs multiple samples would need to be generated
and compared per case. The same holds for the temporal behavior. Here, in TSCBNs
relative timings can be compared with the same approach. For DBNs it would be
required to inspect multiple repeated structures to check at which a change happens.
For CTBNs sampling would again be needed and in Process Models multiple paths
need to be analyzed.

Dynamic dependencies TSCBNs are the first explicit multidimensional BNs with an
explicit process representation to assume that causality between states does change
in time. Process models assume this, too, while those suffer from its one dimensional
nature in this scenario. Comparable models, such as DBNs and CTBNs, assume static
structures, that either result in an overhead of edges (e.g. in DBNs) or reduced variabil-
ity in temporal modeling (e.g. in CTBNs). The assumption of dynamic dependence is
a matter of definition, as in general TVs that are causally dependent keep this property
permanently, while in our simplified assumption TSCBNs only keep causal dependen-
cies at times that those do influence another state. This yields no loss of information,
while resulting in better expressiveness. As stated before, this allows for more efficient
inference, as only relevant paths of causality are analyzed in TSCBNs. In particular the
static nature of CTBNs requires to store matrices per condition. However, if causality
changes for a defined condition, the matrix cannot have two different values, making
it impossible to model longer processes with dynamic dependencies.

Expressive intervalmodelingAs laid out above, in real world data, per TV latent state
changes can occur, e.g. in Fig. 3 Sacc remained in the off state, while it is causally
dependent on Sctrl at this stage. Thus, under different conditions a state change of
Sacc to high would have been possible. TSCBNs are the first process models to
represent such latent dependencies.With this, intervals and causality between intervals
(even if those do not change its state) is represented effectively. In DBNs this is
represented through repetition of structure and in CTBNs it is implicitly represented
through conditions of previous states. However, unlike in TSCBNs for those models
it is not possible to perform explicit inference on this latent node, e.g. in Fig. 3 one
might perform evidence based inference to compare behavior when Sacc remained
off against when it remained low. TBNEs do not include such interval relations, too,
as state changes that were not observed cannot be included in the model. Thus, this
latent influence is not represented. With this, TSCBNs are the first models to allow to
perform explicit evidence based inference of processes on intervals in state and time
under uncertainty.

Continuous temporal modeling Representing time continuously allows for better
representation of temporal behavior. In TSCBNs timings can be directly analyzed by
setting evidence on the TSCBN and by inspecting the distributions at each node, e.g.
one might set Sctrl = speed down at node 1 and Sbrake = inactive at node 0. Then,
the μ of the defined Gaussian directly tells the average time the brake takes to change
to Sbrake = active in node 1 after the control signal occurred. This, is less precise
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in DBNs and CTBNs, as timings are represented through discretization and statically
conditioned matrices respectively, e.g. for DBNs it would be required to determine
the most likely static repetition at which the control signal occurred and at which the
brake changed. A similar approach is required in CTBNs. Processmodels are similarly
able to determine such timings. However, here the respective paths would need to be
analyzed, which is far more complex, then reading it from the structure as it is the case
in TSCBNs.

Appendix B

TrieDiscover: complexity analysis

Letm be the number of sequences in M̂ and L be the average length of the sequences.
With this, the complexity for each step can be given as:

1. Trie creation During creation for every sequence in average L nodes are created
yielding complexity O(m · L). During filtering, the approach needs to check if an
outgoing edge is removed for every node (i.e. at worst m · L nodes) resulting in a
complexity of O(m · L · d), where d is the maximum output degree. This degree
is usually restricted yielding constant d and thus, complexity O(m · L).

2. Minimization through subtree merging This step has linear runtime w.r.t. the
number of nodes which is at worst O(m · L).

3. Node indexing Topological sorting has complexity O(numbnodes + numbedges).
At worst we have m · L nodes and m · (L − 1) edges, yielding O(m · L). During
the provisional index assignment we use topological sorting, and for each node
an indexing and passing the set to the next nodes for all outgoing edges, giving
O(m · L · d) or O(m · L) if d is assumed constant. During refinement there is one
traversal O(m · L). Further, we assume h number of refinements required, where
the SCC approach we use has O(numbnodes + numbedges), which in our case is
againO(m · L), i.e. for h refinementsO(m · L ·h). Assuming a constant number of
refinements this yields O(m · L). Thus, for both steps combined we get an overall
complexity of O(2 · m · L) = O(m · L).

4. Parent candidate identification For every ambiguous assignment in the set union
step, a SCC algorithm has to be run, which gives for constant h of those assignments
O(h · m · L) = O(m · L). The temporal filtering is done per node resulting in
complexity O(m · L).

Overall complexity The overall complexity of all steps, except for structure opti-
mization, is O(m · L). For the optimization step existing methods are used, which
determine the additional complexity. The improvement of TD depends on the number
of potential edges that are identified. At worst every node could have the respective
maximally possible number of parents in its parent set, yielding no benefit of TD. On
the contrary, at best, the optimal set of parents is found per node. Using for instance
score-based structure optimization, this would result in complexityO(m ·L · p), where
p is the average parent set size. Yielding O(m · L) for a limited number p of parents
per node.
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TrieDiscover: pseudocode

Let PODF(T ) be the post-order depth-first traversal of T . Let Top(T ) be a topological
sorting of T . Let RevTop(T ) be a reversed topological sorting of T . Let Cand(X) be
the set of parent candidates of a node X . With this, the pseudo code of Algorithm 1 is
given.

Algorithm 1 TrieDiscover
1: for every sequence M̂i , i ∈ [1,m] in Mobs do � Trie Creation
2: for every TV Si , i ∈ [1, l] in M̂i do
3: Add Si to trie T if required.

4: for every node X in T do
5: for every outgoing edge e of X do
6: Remove edge e from T if f requency(e) < k · . f requency(X)

7: for every node X in PODF(T ) do � Subtree Merging
8: Assign sub-tree code to X .
9: Hash X based on the sub-tree code.
10: Merge X with other node in case of hash collision.

11: Initialize parents set of root of T to all initial nodes. � Node Indexing
12: for every node X in Top(T ) do
13: Merge parents sets passed by predecessors.
14: Add node to set based on the latest state change of X ’s TV.
15: Pass updated parents set to all successors.

16: Initialize successors set of leaves of T to empty set.
17: for every node X in RevTop(T ) do
18: Merge successors sets passed by successors.
19: Identify ambiguous assignments and resolve based on SCCs.
20: Pass updated successors set to all predecessors.

21: Merge nodes of the same TV and occurrence. � Parent Candidate Identification
22: for every node X in T do
23: Update Cand(X) to the union of parents sets of the merged nodes.

24: for every SCC in T do
25: Remove nodes in the SCC from each other’s Cand’s.
26: for every node X in T do
27: Remove nodes from Cand(X) based on the temporal threshold tth .

Appendix C

Non-latent estimation

Non-latent Bayesian estimation andMLE

If there are no latent state changes, classical parameter estimation can be used. This
is the case, when we assume that all states changed in a MSS or when we aim to
model fully observed multivariate event sequences. Such parameter estimation can be
MLE or Bayesian based. We further estimate states and temporal nodes separately as
temporal nodes are leaf nodes.
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State nodes can be estimated in the following manner.

State nodes—MLE The goal of MLE is to set the parameters Θ of the TSCBN such
that those maximize the likelihood of the data. These ML estimates Θ∗ of the state
structure of a TSCBN can be computed independently under the i.i.d. assumption. For
this, according to Barber (2012) it is possible to decompose the network structure,
such that per node vi j and parent outcome set Pa(vi j ) = t the following holds for
each CPD

p(vi j = s|Pa(vi j ) = t) ∝
N∑

n=0

I[vni j = s|Pa(vni j ) = t]. (22)

This corresponds to the fact, that the CPD entry p(vi j = s|Pa(vi j ) = t) can be set
by counting the number of times {vi j = s|Pa(vi j ) = t]} was seen in the data set Z
for fixed joint parental state t (Barber 2012).
For bigger networks data fragmentation becomes problematic as for higher numbers
of parameters more samples need to be observed. This also means that few samples for
parameter estimation tend to overfit the data (Karkera 2014). Fragmentation decreases
with less parent nodes and discrete parent values. TSCBNs are designed to minimize
the further, while the latter needs to be restricted.

State nodes—Bayesian approach According to Barber (2012) in this approach each
node is governed by a parameter which is assumed to have a distribution itself, with
the JPD of the network as p(z1, z2, ...). This can be represented with its parameters
as

p(z1, z2, ...) = p(z1|Pa∗(z1);Θz1)p(z2|Pa∗(z2);Θz2)... (23)

= Θ
Pa∗(z1)
z1 Θ

Pa∗(z2)
z2 ... (24)

where zi are all nodes vi j of the TSCBN and Pa∗(zi ) is a defined conditional set of zi ’s
parents. Assuming global parameter independence and observations X the posterior
can be represented as

p(Θz1,Θz2, ...|X) ∝ p(Θz1|x∗
1 )p(Θz2|x∗

2 )... (25)

where Θzi is the product of all CPDs of its node Θ
Pa∗(zi )
zi and x∗

i the observation at
node i . This allows to learn parameter posteriors separately. As each parameter Θzi is
still multidimensional it is common to further assume local parameter independence,
which is thatΘzi is the product of all CPDs of its nodeΘ

Pa∗(zi )
zi .With this the posterior

both factorizes over parental states and the local parameters, which means that

p(Θzi |x∗
i ) ∝ p(x∗

i |Θzi )p(Θ
Pa∗(zi )1
zi )p(Θ Pa∗(zi )2

zi )... (26)

By assuming i.i.d. data and the local and global parameter prior independencies,
Dirichlet priors can be used to now determine the parameters. This is explained in
more detail in according literature (Barber 2012).

Temporal nodes Temporal nodes can be simply estimated by fitting Gaussian distri-
butions over each node under the respective conditions.
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Latent estimation

Challenges of latent estimation

Challenges The following challenges arise.
Consistency: Learning parameters of TSCBNs from partially observed MSSs is chal-
lenging, as subsets of nodes (i.e. TV sequences) are potentially interdependent,
temporal consistency needs to be guaranteed and a valid combinatorical mapping
from observations to latent estimates is required.
Complexity:Additionally, for the case of many parents complexity in TSCBNs grows,
which requires scalability of approaches.
Ambiguity of Nodes: In a MSS an interval is defined by its state changes and so is the
TSCBN. However, if at an expected state change of a TV the sequence remains in its
previous state, this state change is not observed. Instead, the observed interval simply
continues and the next, actual state change is observed. Thus, as shown in Fig. 4 the
structure of a TSCBNmay require more nodes per TV than were observed. In this case
the problem occurs that assigning k observed state changes to n nodes is ambiguous,
e.g. for n = 5 and an observed sequence 〈A, B, A, C〉 the actual state changes could
be 〈A, A, B, A, C〉, 〈A, B, B, A, C〉, 〈A, B, A, A, C〉 or 〈A, B, A, C , C〉. In general(n−1
k−1

)
combinations are possible.

Deduction of variational inference equations

A common approximation approach for latent variable models, such as TSCBNs is
Variational Inference, which was introduced in the main part. Here, a detailed deduc-
tion of formulas is provided.
Similar to the EM algorithm, VI tries to estimate the posterior latent distribution and
the posterior observed distribution. In VI this is achieved by approximating the global
latent posterior distribution p(Z |Θ) with tractable local distribution estimates q(Z).
This is done through maximization of the Evidence Lower Bound (ELBO). Further,
using the Mean field assumption we consider the local estimates as conditionally
independent, which allows to compute individual latent variables separately. Also,
unlike in EM, where we considered each latent sequence, in VI we consider each
latent node vi j and Δti j .

Variational inference in TSCBNs

Structure and mapping of latency For the VI approach, we assume the probabilistic
structure shown in Fig. 4, but with inverted edges reaching from vi j to Xi for all TVs.
From this representation, we will deduce update equations to find estimates for all
RVs vi j and Δti j .
Notably, in this representationwe aremapping observations to latent state node values.
An important assumption that we introduce here is, that each observation Xo only
allows for a subset of valid latent outcomes, which are represented in each vi j of each
Xi . Thus, per observation Xo = (xo1, xo2, ...) only a subset of mappings from vi j to
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Xi are possible, e.g. for an observed Xi = 〈A, B〉 Zi might only be (vi1 = A, vi2 =
A, vi3 = B) or (vi1 = A, vi2 = B, vi3 = B). With this we define all such valid
mappings from an observed Xi = Xo to its latent Zi as

p(Xi = Xo|Zi ) =
{
1 if Zi �→ Xo valid

0 else
(27)

For the example above p(Xi = 〈A, B〉|vi1 = A, vi2 = A, vi3 = B) = 1, while for
any bad mapping such as Zi = 〈A, B,C〉 p(Xi = 〈A, B〉|vi1 = A, vi2 = B, vi3 =
C) = 0 holds. Notably, when taking all dimensions (i.e. X1, X2, ...) into account, with
this invalidMSSs combinations (that are formed by all Zi combined) have a likelihood
of 0 in the TSCBN.

ELBO derivation In VI the goal is to find the variational distribution q(Z) that
approximates the true posterior p(Z |X) of the TSCBN.
According to Bishop et al. (2003) the likelihood of a general latent BN can be written
as

p(Z , X) =
∏

n

p(wn|Pa(wn)) (28)

with wn being all n nodes in the network, i.e. in TSCBNs either state nodes v or
temporal nodes Δt .
Further, the probability P(X) of any observation can be written in terms of the ELBO
L and the KL divergence between the real and variational distribution as

ln(P(X)) = L(q) + KL(q||p) (29)

L(q) =
∑

Z

q(Z |X) · ln(
p(Z , X)

q(Z |X)
) (30)

KL(q||p) = −
∑

Z

q(Z |X)ln(
p(Z |X)

q(Z |X)
) (31)

where
∑

Z
is the sum over all network outcomes of Z (Bishop et al. 2003). With

this, minimization of KL is equal to maximizing the ELBO which can be written as
expectation

L(q) = Eq(Z)[log p(X , Z) − log q(Z)] (32)

Mean field approximation We factorize the variational JPD q(Z) to allow for local
computations around nodes as

q(Z) =
M∏

i=0

Mi∏

j=0

q(zi j ) (33)

123



288 A. Mrowca et al.

where zi j can be a discrete state node vi j or a continuous temporal node Δti j .
With this, maximization of the overall ELBO (i.e. finding good approximations

of parameters per node) is similar to maximization of the ELBO of the factorized
distributions q(zi j ).

Coordinate ascent variational inference in TSCBNs

Maximization of the ELBO of the factorized distributions q(zi j ) can be done using
Coordinate Ascent Variational Inference, which uses iterative updates. By inserting
the factorization of Eq. 33 in Eq. 29, it can be found that each updated variational
distribution q∗(zi j ) is

q∗(zi j ) ∝ exp (Eq−i j [log p(Z , X)]) (34)

Computation of expectation Any parameter of a node in the network (v or Δt) are
updated by computing this exponential expectation iteratively until convergence. To
compute those expectations efficiently the following assumptions are made:

– E is both computed over K observations and as stated above for all valid latent
mappings from Xi to Zi . Mathematically this results from Eqs. 27, while com-
putationally this means to compute E over valid combinations only. This reduces
computational costs.

– The computational costs are further optimized by enabling local computations per
node. This is, as according to (Bishop et al. 2003) the expectation needs to only
be computed over the Markov Blanket around the updated node zi j .

Using those assumptions we can deduce update equations q∗(zki j ) for state nodes vi j
and for temporal nodes Δti j . This is done by iteratively alternating between updating
network parameters p(Z |X) from all q∗(zi j ) and updating q∗(zi j ) from the current
network parameters p(Z |X). This is done as follows.
Update state nodes vi j : With above assumptions and the definition of the TSCBN
structure the update equation of any state node vi j is given as

q∗(vi j ) ∝ exp (Eq−i j [log p(Z , X)]) (35)

= (36)

q∗(vi j ) ∝ exp (Eq−i j [log (Ψ (vi j ) · Γ (vi j ) · Ξ(vi j ))]) (37)

with Ψ as the factor with all parents of vi j , Γ as all factors that contain co-parents of
vi j and Ξ as factor with children of vi j , which is

Ψ (vi j ) = p(vi j |Pa(vi j )) (38)

Γ (vi j ) =
∏

γ∈CoPa(vi j )

ξ∈Ch(vi j )

p(ξ |γ ) (39)

Ξ(vi j ) =
∏

ξ∈Ch(vi j )

p(ξ |vi j ∪ CoPa(ξ)) (40)
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Notably,Ξ(vi j ) includes the observed sequence Xi with factor p(Xi |vi j∪CoPa(vi j )),
which was defined in Eq. 27 to be zero for invalid mappings.
Computation of E: In this update equation all expectations are composed of terms
that are solely discrete and terms that are of mixed type (i.e. continuous and discrete).
This is, as all nodes in a TSCBN also have a temporal node that needs to be included
in this step. For the purpose of clarity we split the expectation in a mixed Ec and a
discrete part Ed which gives us the typical shape of the update equation

E[log p(Z , X)] = E[log(p(Δti j |vi j , ...) + log(p(Δtkr |vi j , ...) + ... (41)

+ log(p(vi j |vkr , ...)] + log(p(vxy |vqs, ...)] (42)

= E[log(p(Δti j |vi j , ...) + log(p(Δtkr |vi j , ...) + ...] (43)

+E[log(p(vi j |vkr , ...)]+log(p(vxy |vqs, ...)]=Ec+Ed (44)

Ed can be simply computed by iteration of outcome combinations, while Ec is com-
puted as follows. As all Δt are root nodes in TSCBNs, Ec is made up of components
of the shapeE[Δt |Pa(Δt)], with discrete nodes Pa(Δt). Those components are com-
puted as

E[Δt |Pa(Δt)] =
∑

V

(

∫ ∞

−∞
Δt · log p(Δt |Pa(Δt))d Δ t) · q(Pa(Δt)) (45)

=
∑

V

χ(Δt, Pa(Δt)) · q(Pa(Δt)) (46)

where V are all outcome combinations of the discrete parents of Δt , i.e. Pa(Δt), and
q(Pa(Δt)) its local probabilities. Notably, in CAVI the expectations are computed
with respect to the update node, i.e. Eq−i j is excluding q(vi j ).
Updating network parameters: With the local updated estimates the network param-
eters can be found with

p(vi j |Pa(vi j )) =
∏

τ∈{vi j }∪Pa(vi j )

q(τ ) (47)

This is possible according to the mean field assumption where we assume all nodes
q(vi j ) to be pairwise independent.

Update temporal nodes Δti j : Here, for nodes Δti j , we still consider the structure in
Fig. 4 and a Gaussian distribution per temporal node. With this, the update equation
for the local estimate of Δti j , governed by its parameters μ and σ per observation is

q∗(Δti j ;μ∗
i j , σ

∗
i j
2
) ∝ exp (EΔt−i j [log p(Z , X)]) (48)

For this case again the structure of TSCBNs is assumed and only the Markov Blanket
is considered per node, i.e. as Δti j are leaf nodes only one term with its parents is of
relevance. Also, the valid mappings assumption in Eq. 27 holds. That gives the non
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constant part to compute the expectation over as

p(X , Z) = p(Δti j ;μi j , σi j
2|Pa(Δti j ))) (49)

Here, this remaining term captures the distribution given its parents.
Estimating latent outcomes from observations: For the computation of the expectation
per outcome combination and observation wemap the absolute times of observed state
changes to latent observed values for each node Δti j by using the method described
in Sect. 4. This allows to get a full sample estimate of the network (with values for
all Δt) for each outcome combination ω which is based on the current observation.
With this latency in mappings from observed vectors Xi to its latent node outcomes
is handled in time.
Per such estimated observation Δti jobs|ω we assume a Gaussian N (μi j |ω =
Δti jobs|ω, σ 2). The idea is to compute the expectation around the observed absolute
times by interpolating them and by resolving latency via computation of the CAVI
update around relevant parent outcomes. Also, we assume the variances σi j

2 to be
fixed and only update each μi j per condition outcome combination ω that Pa(Δti j )
can take.
Estimation of local node estimate q∗(Δti j ;μ∗, σ ∗2): From the interpolated observa-
tions μi j |ω and the current estimates of the outcomes q(vr = ωr ) a local estimate per
node is found with Eq. 48. For this the expectation can be written as

EΔt−i j [log p(Z , X)] (50)

=
∑

ω∈Pa(Δti j )

log p(Δti j ;μi j , σi j
2|Pa(Δti j ) = ω) ·

∏

ωr∈ω

q(vr = ωr ) (51)

=
∑

ω∈Pa(Δti j )

logN (μi j |ω, σ 2) ·
∏

ωr∈ω

q(vr = ωr ) (52)

where vr are all nodes of Pa(Δti j ) with a specific outcome ωr , e.g. for a node Δt12
vr might correspond to nodes v12 and v11. Also the Gaussian distribution is fixed with
a mean of the given interpolated observation μi j |ω = Δti jobs|ω.
When, inserting Eq. 52 into Eq. 48 it can be found that for the updated local estimate
μ∗
i j of the temporal node Δti j it holds that

μ∗
i j =

∑

ω∈Pa(Δti j )
μi j |ω · ∏

ωr∈ω q(vr = ωr )

∑

ω∈Pa(Δti j )
·∏ωr∈ω q(vr = ωr )

(53)

This makes intuitively sense, as the μi j governing Δti j is a weighted average over its
outcomes depending on its likelihoods.
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Updating network parameters: Finally the estimate p(Δti j ;μi j |ω, σ 2
i j |Pa(Δti j ) of

each CPD of each temporal node can be found as the weighted average

μ∗
i j |ω =

∑

ω∈Pa(Δti j )
μ∗
i j · ∏

ωr∈ω q(vr = ωr )

∑

ω∈Pa(Δti j )
·∏ωr∈ω q(vr = ωr )

(54)

Estimation algorithm With the given update equations the VI algorithm in Algo-
rithm 2 is deduced. Notably, in this representation each line within the while loop
consists of local updates per node that can be computed in parallel. Further, the obser-
vations X are included in the way described in this section at lines 3 and 6.ω resembles
all possible parent outcome combinations.

Computing1t

When computing any Δti j in a latent sequence (e.g. 〈A, A, B, B〉) from a full obser-
vation Xi (e.g. 〈A, B〉), in order to be usable in the computation of the expectations
in CAVI each latent node requires a defined absolute time at which it occurs. We use
the following interpolation strategy for this.

– Times between two elements are interpolated linearly within known parts,
e.g. given A at t = 1 and B at t = 2 would result in times and values
〈(A, 1), (A, 1.33), (A, 1.66), (B, 2.0)〉 for a latent sequence 〈A, A, A, B〉.

– If the last observed element is followed by further elements in the latent sequence,
its preceding element’s distance is used for interpolation, e.g. having seen A at
t = 1 and B at t = 2 that is extended to 〈A, A, B, B, B〉 would result in
〈(A, 1), (A, 1.5), (B, 2), (B, 2.5), (B, 3.0)〉. This extension time is determined by
subtracting the last observed time by its predecessors interpolated time. If no pre-
decessor is available the distance is computed by dividing the total time of the
current sequence by its number of nodes. While this interpolation may potentially
lead to temporal inconsistency, it produces a reasonable approximation that tends
to decrease deviation from the true mean when enough sequences were observed.

Appendix D

Comparison of parameter estimation approaches

We also compared the proposed approaches estimation approaches against each other,
with results shown in Fig. 12 (right) and in Fig. 13. In terms of runtime VI performs
better than EM and MLE-R. This is, as expectations are computed directly within VI,
while in both other approaches the MCMC sampling requires time. The expectation
in VI is computed based on all allowed outcome combinations. Thus, with growing
structure, combinations increase, which in turn leads to longer computational runtime.
In EM and MLE-R bigger structures only increase the time required for sampling and
computation of global estimates, which does increase less than the effect of growth in
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Algorithm 2 CAVI Approach for parameter estimation in TSCBNs
Input: V : State Nodes, T : Temporal nodes, X : observations
Output: μ∗

i j |ω: Estimated parameters of temporal nodes, p∗(vi j |Pa(vi j )) : Estimated Parameters of state
nodes
1: q(vi j |ω) = U(); ∀vi j ∈ V � Initialization
2: while ¬ (L(q) converged) do
3: q∗(vi j ) = exp (Eq−i j [log (Ψ (vi j ) · Γ (vi j ) · Ξ(vi j ))]); ∀vi j ∈ V � State Node Updates
4: p∗(vi j |Pa(vi j )) = mean(

∏
τ∈{vi j }∪Pa(vi j )

q∗(τ )); ∀vi j ∈ V � State Network Updates

5:

6: μ∗
i j =

∑

ω∈Pa(Δti j )
μi j |ω ·∏ωr∈ω q(vr=ωr )

∑

ω∈Pa(Δti j )
· ∏ωr∈ω q(vr=ωr )

; ∀Δti j ∈ T � Temporal Node Updates

7: μ∗
i j |ω =

∑

ω∈Pa(Δti j )
μ∗
i j ·

∏
ωr∈ω q(vr=ωr )

∑

ω∈Pa(Δti j )
·∏ωr∈ω q(vr=ωr )

; ∀Δti j ∈ T � Temporal Network Updates

8: return μ∗
i j |ω∀Δti j ∈ T , p∗(vi j |Pa(vi j )); ∀vi j ∈ V

combinations in VI. Thus, for larger network structures EM or MLE-R perform best,
while for smaller networks VI is best. However, as can be seen in Fig. 13 (left), all
approaches yield similar results in expressiveness, whileMLE-R andEMyield slightly
better results than VI. In contrast to MLE-R, EM and VI are more approximative
approaches, which perform slightly worse. All approaches improve with decreasing
SC probability, which makes sense, as with this less latency is present and the degree
of approximation of latent variables is smaller. Figure 13 (mid) further shows that
more samples yield better expressiveness for all approaches. This again is due to the
increased amount of information available for estimation in that case. The temporal
expressiveness is best in VI as its latent continuous nodes are included in the overall
approximation procedure, which allows to improve those over time. For EMandMLE-
R we used identical approaches, but the EM temporal approximation was updated on
each iteration, while for MLE-R this estimate is computed in one run only. The effect
of iteration seems to only deviate little from the estimate of one run, as Fig. 13 (right)
shows, i.e. EM and MLE-R yield similar results. Overall, for the given networks VI
performs better in runtime, is slightly less expressive in state, but most expressive
in time. MLE-R and EM perform similar in those three categories and yield better
expressiveness in state than VI. Consequently, all three approaches are about equally
suited for parameter estimation in TSCBNs, while trading off expressiveness in state,
expressiveness in time and runtime.
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