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Abstract
This work presents a new extension to B-Splines that enables them to model functions
on directed tree graphs such as non-braided river networks. The main challenge of
the application of B-splines to graphs is their definition in the neighbourhood of
nodes with more than two incident edges. Achieving that the B-splines are continuous
at these points is non-trivial. For both, simplification reasons and in view of our
application, we limit the graphs to directed tree graphs. To fulfil the requirement of
continuity, the knots defining the B-Splines need to be located symmetrically along
the edges with the same direction. With such defined B-Splines, we approximate the
topography of the Mekong River system from scattered height data along the river.
To this end, we first test and validate successfully the method with synthetic water
level data, with and without added annual signal. The quality of the resulting heights
is assessed besides others by means of root mean square errors (RMSE) and mean
absolute differences (MAD). The RMSE values are 0.26m and 1.05m without and
with added annual variation respectively and the MAD values are even lower with
0.11m and 0.60m. For the second test, we use real water level observations measured
by satellite altimetry. Again, we successfully estimate the river topography, but also
discuss the short comings and problems with unevenly distributed data. The unevenly
distributed data leads to some very large outliers close to the upstream ends of the
rivers tributaries and in regions with rapidly changing topography such as the Mekong
Falls. Without the outlier removal the standard deviation of the resulting heights can
be as large as 50m with a mean value of 15.73m. After the outlier removal the mean
standard deviation drops to 8.34m.
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1 Introduction

In geosciences, observations are often available either on the two-dimensional (2-D)
surface of the Earth or as a one-dimensional (1-D) time series at a specific spatial loca-
tion, or as a combination of both. B-splines (basic splines) are often used to describe the
physical relationships underlying these observations in a purely mathematical model.
B-Splines are piecewise polynomial basis functions with limited support and certain
continuity properties (Prautzsch et al. 2002).

In the last decades a large number of modifications brought the 1-D B-spline
modelling approach to higher dimensions. To be more specific, whereas so-called
endpoint-interpolating B-splines allow for modelling a 1-D target function defined
within a finite interval (Stollnitz et al. 1995a, b), trigonometrical B-splines are defined
on a circle. Consequently, the above mentioned 2-D observations globally distributed
on the Earth’s surface can be represented by a series expansion in tensor products of
endpoint-interpolating B-splines for describing the latitude dependency and trigono-
metric B-splines for describing the longitude dependency (Schumaker and Traas 1991;
Jekeli 2005; Schmidt et al. 2015). As described e. g. by Schmidt (2012), the tensor
product approach can even be extended to a representation of a multi-dimensional (n-
D) signal. As two examples, the vertical total electron content and the electron density
of the ionosphere are represented as a 3-D and a 4-D series expansion (e.g. Durmaz
and Karslioğlu 2011; Schmidt et al. 2015; Goss et al. 2019); other examples are rain-
fall interpolation (Gallo et al. 1998), air pollution (Leitenstorfer and Tutz 2007), and
magnetic field modelling (Jiang and Zhang 2013) just to name a few.

In other applications continuous quantities are only observable along a network
such as a river system or a road network embedded in a 2-D surface. Air pollution in
cities, for example, is often onlymeasurable along the street network; the continuously
changing water temperature of a river can be monitored only along the same (Laaha
et al. 2013). Another example is the topography along river networks which is the
topic of this work. The height of the mean water level and the topography of the shore
line change continuously along the path of the river, water falls excluded. At river
junctions, the height in all branches are continuous albeit more or less independent
from each other.

In this paper we expand endpoint-interpolating B-splines to facilitate modelling on
a river network. We prove the concept with the estimation of the topography along the
Mekong River system fromwater level observations of satellite altimetry. Also Villad-
sen et al. (2015) and Bercher et al. (2013) estimated river topography from altimetry
observations but only with low degree polynomial functions which is not feasible for
a more complicated topography or large river systems. Also, neither of them consid-
ered tributaries of the river network. Zakharova et al. (2020) also used B-Splines for
the topographic modelling from altimetric observations, although only along a lim-
ited stretch of the main river. The here presented B-spline method has already been
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successfully applied to model the non-constant unknown mean in Universal Kriging
(Boergens et al. 2019).

In the sequel, we will first provide an introduction to endpoint-interpolating B-
splines in Sect. 2 followed by our extension to B-splines on directed tree graphs
Sect. 3. In Sect. 4 we apply the new method to estimate the river topography for the
Mekong River system. The manuscript closes with a discussion and a conclusion in
Sect. 5 where also the application of the method to other possible graphs is considered.

2 Endpoint-interpolating B-splines

ThenormalisedB-spline functions Bm
k (x)of degreem ∈ N and shift k = 0, 1, . . . , K−

1 depending on the variable x ∈ R
1 are calculable recursively via the relation

Bm
k (x) = x − tk

tk+m − tk
Bm−1
k (x) + tk+m+1 − x

tk+m+1 − tk+1
Bm−1
k+1 (x) (1)

from the initial values

B0
k (x) =

{
1 if tk ≤ x < tk+1 and tk < tk+1
0 otherwise

}
; (2)

see e.g., Stollnitz et al. (1995a, b) or (Schmidt 2007). The positive integer value K
defines the number of given non-decreasing values t0, t1, . . . , tK+m+1, denoted as
knots. A B-spline is compactly supported, i.e. its values are different from zero only in
a finite range on the real axis. Since Bm

k (x) �= 0 for tk ≤ x < tk+m+1 and Bm
k (x) = 0

otherwise, this finite range corresponds to an interval [tk, tk+m+1].
For regional modelling, i.e. x ∈ [xl , xr ], where xl and xr with xr > xl denote the

left and right finite boundary values, we introduce the endpoint-interpolating B-splines
of degree m ; see e.g. (Stollnitz et al. 1995a, b). For that purpose we set the first m + 1
knots to the value xl and the lastm+1 knots to the value xr . Hence, the knot sequence
for endpoint-interpolating B-splines of degree m is given as

xl = t0 = t1 = . . . = tm < tm+1 < . . . < tK−1 < tK = tK+1 = . . . = tK+m = xr ,

(3)

where the distances �xk = tk+1 − tk for k = m, . . . , K − 1 and m < K between
two neighbouring knots could vary. Note that in Eq. (1), the factors are taken as zero
if their denominators are zero. As can be seen from Fig. 1, the endpoint-interpolation
modifies the first and the last m B-spline functions which have a different shape than
the other B-spline functions.

In the following we use the endpoint-interpolating B-splines of degree m = 2 –
denoted as quadratic B-splines – for k = 0, . . . , K − 1. Each of the these functions is
different from zero only in the sub-interval

[tk, tk+3] for k = 0, . . . , K , (4)
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Fig. 1 Example of endpoint-interpolating B-splines of degree m = 2 with non-equally spaced knots in the
interval [0, 10]; the B-spline function B2

3 (x) is marked in red. It is different from zero only in the interval
[t3, t6] according to Eq. (4) (colour figure online)

and thus, called is a localising function. Considering the set of the altogether K B-
spline functions the condition

K−1∑
k=0

B2
k (x) = 1 holds for x ∈

K−1⋃
k=0

[tk, tk+3] = [xl , xr ] (5)

holds. Figure 1 shows the K = 6 B-spline functions B2
k (x) within the interval [xl =

0, xr = 10]. The black dots on the x-axis mark the altogether 9 knots: the first 3 knots
t0 = t1 = t2 = xl = 0 at the left boundary, the regular knots t3 to t5 as well as the
last 3 knots t6 = t7 = t8 = xr = 10. The red-coloured B-spline B2

3 (x) is different
from zero in the interval [t3, t6] according to Eq. (4). As can be seen the distances
�xk = tk+1− tk for k = 2, . . . , 5 are different, since the knots are non-equally spaced
along the x-axis within the interval [0, 10].

3 B-splines on directed tree graphs

B-splines are well defined in R
1 as was shown in the previous section, as well as to

higher dimensionsRn for n > 1 as was mentioned in Sect. 1; see also Schmidt (2012).
In this paper we show how to use B-splines on a directed tree graph G embedded in a
metric space (R2, d). We can think of d as the Euclidean or spherical metric. We will
demonstrate this using the example of river topologies.

In order to apply our method to the river topography, we model the geographical
river shape as a directed tree graph denoted as G.

The river network is usually provided as polygonal chains describing the shore line,
i.e. both the left and right river bank are given. In a first step, these polygonal chains are
skeletonised (Jiang et al. 2011). The reaches between two confluences are discretised
with less than 1km distance. This yields a planar embedding of a graph G such that
vertices of the skeletons correspond to vertices ofG. In addition, we introduce vertices
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for both the upstream ends and the downstream ends of all tributaries as well as for the
downstream end of the river. We direct edges in flow direction and obtain a directed,
acyclic, planar graph in which each vertex has out-degree 0 or 1. Out-degree is the
number of outgoing edges in a vertex, i. e. an out-degree of 0 or 1 means that we do
not consider multi-channel and braided rivers. We call such graphs directed tree even
though this term is usually used for digraphs which are directed in the opposite way.
A vertex with more than one incoming edge is called junction vertex.

To realise B-splines on a directed tree G, the knots tk have to be placed on the
branches of G, which is the part of G between two junction vertices. By identifying
G with its image under the planar embedding, we define the B-Spline function f :
R
2 → R as

f (x) =
K−1∑
k=0

αk B
2
k (x) (6)

where αk are the B-Spline coefficients.
Figure 2 displays a schematic example of B-Splines in the neighbourhood of such a

junction. As can be seen in the figure, a B-spline centred below the junction can reach
up into the upper branches and vice versa.

The difficulty of applyingB-splines on directed graphs arises at a junction aswe aim
at a continuity of the function f . As explained in Sect. 2 and shown in Fig. 1 the shape
and width of a B-spline depends on the distance between the knots. Thus, to ensure
a continuous function across a junction the knots have to be placed symmetrically
on the two upper branches. As written before, a B-spline centred below the junction
reaches in both upstream branches and the distance between the B-spline knots define
the shape of the spline. Such a junction crossing B-Spline (e. g. the red spline in Fig. 2)
can be either defined by the knots downstream of the junction together with the knots
on the left upstream branch or with the knots on the right upstream branch. However,
the shape of the B-spline downstream of the junction should be the same for both
alternatives. This can only be ensured by placing the knots upstream of the junction
symmetrically on both branches. Additionally, a function f (x) (see Eq. 6) modelled
with such defined B-splines will be continuous both for the path downstream-left
upstream branch and for the path downstream-right upstream branch.

These considerations lead to the following rules for placing the B-Spline knots tk :

1. At the sink, according to endpoint-interpolating B-splines (see Sect. 2);
2. At all sources, according to endpoint-interpolating B-splines as well;
3. At each junction vertex;
4. Along the branches equidistant to the next lower junction vertex with a fixed width.

The distances between each two knots have to be chosen carefully such that enough
knots can be placed on each branch. The interval [tk, tk+m+1] of a B-spline Bm

k (x) of
degreem = 2 coversm+2 = 4 knots and thus, at leastm = 2 knots need to be placed
symmetrically on the two branches. Thus, the distance dk between the knots needs to
obey
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Fig. 2 Schematic example of B-splines at a junction. G is shown in blue. The green and red B-Spline have
their central knot below the junction and thus extent in both branches, while purple and orange are centred
on the upstream branches and thus only reaches in the downstream branch (colour figure online)

dk ≤ min dbi
m

= min dbi
2

where dbi is the length of the i th branch. The dense spatial resolution of G allows to
place all knots on vertices with a reasonable accuracy.

4 B-splines for river topographymodelling

In this section we will demonstrate the usage of B-Splines on graphs for modelling
the river topography including tributaries. The mean river heights in a river basin
cannot in general be described with any polynomial function due to a rapidly changing
river slope. The topography of the main river and of the tributaries upstream of the
confluence have to be modelled separately while ensuring continuity at the junctions.

In the here presented experiment we use satellite altimetry data of various missions
to measure the river topography and to estimate the B-spline coefficient for the whole
basin. As a test case we chose the Mekong River Basin in South-East-Asia.

4.1 Method

For this study the B-spline knots t are automatically placed along the main river and
the major tributaries of the Mekong River following the rules above (c. f. Sect. 3).
The maximum distance between two knots is 30km, which we found an appropri-
ate compromise between the river reaches with dense and sparse data coverage. We
excluded river reaches upstream of dams, as they constitute a discontinuity of the river
topography. This results in 221 knots in the whole river basin. Figure 3(a) displays the
knot placement in the whole river basin which is zoomed in to show the placement
around two river junctions in Fig. 3(b). Most notably is the smaller distance down-
stream of the left junction compared to the distance of the knots in the two upstream
branches. Whereas, around the right junction the distances between the knots in the
two upstream branches are nearly the same to the downstream knot.
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Fig. 3 (a) The placement of all B-Spline knots (red circles) in the Mekong River Basin. The black box
indicates the location of the region shown in subplot (b) and the two names indicate the river reaches
investigated in more detail. (b) Example of the placement of the knots around junctions. The graph is
shown in black, with the river outline in blue. The main river flows from North to South in this part (colour
figure online)

The such defined knots lead to the definition of B-Splines following Eq. 1, i. e. 221
B-Splines. With these B-Splines we can interpolate any function on the graph G by
estimating all B-Spline coefficientsαk with a sufficient number of observations of f (x)
(c. f. Eq. 6). In the two following experiments, we have around 10000 height obser-
vations for f (x) for which we assume equal uncertainty in a least-square-adjustment.

4.2 Synthetic data experiment

4.2.1 Synthetic data

For the synthetic data set we simulate water level heights along the Mekong River
and its tributaries based on the HydroSHEDS topography model (Lehner et al. 2008).
The simulation consists of three steps: First, we choose to simulate the water levels at
the same location as the altimetry observations in the second experiment (see Fig. 6).
However, the location of the river in HydroSHEDS and the altimetry observation do
not always coincide. Thus, for each point we use theminimum height in HydroSHEDS
in a 2’ by 2’ window around the location. These heights are mostly located on the river
but still do not form a more or less continuous height profile along the river. Thus,
secondly, we employ these heights to estimate a first set of B-Spline coefficients, with
whichwe gain interpolated improved heights at the locations. The such derived heights
are taken as the "true" river topography. Unfortunately, this method does not ensure
monotonous rising heights along the river.
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Fig. 4 Estimated heights (a) and errors i. e. differences between estimated and true heights (b)

In the third and last step, we manufacture two synthetic data sets. For the first only
noise is added to the true heights to simulate measurement uncertainties. We choose a
constant normal distributed noise level with a standard deviation of 1m. For the second
synthetic data set, we add besides the noise an additional annual sinusoidal signal to
the heights with a constant amplitude of 5m. To determine the annual signal, every
location gets a random date. It should be noted that the choice of seasonal amplitude
has an influence on the quality of the results with higher amplitudes decreasing the
quality. However, an amplitude of 5m is for most parts of the Mekong River basin an
upper bound to the amplitudes observed in reality.

4.2.2 Results

The two synthetic data sets, with and without annual signal, are used to estimate the B-
Spline coefficients which are then employed to model the river topography. The result-
ing heights of the data set with annual signal are displayed in Fig. 4 (a).We refrain from
additionally showing the results from the data set without annual signal, as differences
are not visible at this resolution. In Fig. 4 (b) the differences between the estimated
heights and the true heights are shown. Most differences are below 1m but can be as
large as 9m. The differences tend to be larger in reaches with sparse data coverage and
at the upstream ends of tributaries. Besides this, no systematic effect is observable.

Further, we employed quality measures to compare the estimated heights with
the true heights: the root mean square error (RMSE), correlation coefficient (ρ), the
mean absolute difference (MAD), and both the standard deviation andmaximum value
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Table 1 Validation results

RMSE [m] ρ MAD Std(AD) Max(AD)

W/o annual signal 0.26 0.99 0.11 0.24 10.86

With annual signal 1.05 0.99 0.60 0.85 9.16

(std(AD) andmax(AD)) of the absolute differences (AD). The results of this validation
is summarised in Table 1. For both synthetic data sets the correlation is nearly perfect.
The RMSE is as low as only 26cm for the case without added annual signal and about
1m with added annual signal. The MAD values in comparison are lower showing
that a few very large differences distort the RMSE to larger values. The std(AD) of
the synthetic data without added annual signal is significantly smaller even while the
maximum observed absolute differences are very similar for both synthetic cases.

Lastly, we investigate in more detail the height estimation in two river reaches:
The Tonle Srepok in the South-East, and the upstream main river reach South of
Luang Prabang (see Fig. 3). For these two river reaches, we plot the true heights, the
synthetic heights, and the resulting estimated topography for both data sets in Fig.
5. The resulting topography estimated with the synthetic data without added annual
signal shows nearly no difference to the true heights in both investigated reaches.
On the other hand, the results of the data with annual signal reveals an interesting
point. In both reaches some observations close by each other seem to have a similar
phasing (Tonle Srepong between 500km and 530km and between 750km and 780km,
upstream between 1580km and 1625km) which leads to a uniform shift of the data
and, thus, the resulting estimated topography. Further, we can see the continuity of the
estimated topography across the river junctions (marked in grey in the figure). Only
at the second junction of Tonle Srepok a small step is visible. However, around the
junction only few observations are present which might lead to this feature.

4.3 Altimetry data experiment

4.3.1 Altimetry data

We use river water level height data of the satellite altimetry missions Envisat (2002–
2010), Envisat Extended Mission (EM) (2010–2011, drifting orbit), SARAL (2013–
2016), SARAL Drifting Phase (DP) (2016-present), Jason-2 (2008–2016), Jason-3
(2016-present), and CryoSat-2 (2010-present). The missions Envisat, SARAL, Jason-
2, and Jason-3 are so-called short-repeat orbit missions which lead to water level
height time series at fixed locations with a temporal resolution of 10 to 35 days but
suffering on a sparse spatial resolution. The other missions are either on non-repeat
orbits (Envisat EM and SARAL DP) or on long-repeat orbits (CryoSat-2, repeat time
369 days). This leads to a very dense spatial coverage.

All data have been processed with DAHITI (Database for Hydrological Time Series
of Inland Waters, (Schwatke et al. 2015)), except for the CryoSat-2 data which were
processed following the method described by Boergens et al. (2017). The uncertainty,
expressed as standard deviation, of the altimetric observations depends on the width
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40

60

80

100

120

140

160

180

200

450 500 550 600 650 700 750 800

(b) Tonle Srepok with annual signal

200

220

240

260

280

300

1600 1650 1700 1750 1800 1850

(c) Upstream w/o annual signal

200

220

240

260

280

300

1600 1650 1700 1750 1800 1850

(d) Upstream with annual signal

True topography

Synthetic data

Fitted topography

Fig. 5 Example of two river reaches, the tributary Tonle Srepok and the upstream reach south of Luang
Prabang. Panels (a) and (c) show the results with the synthetic data without any annual variations whereas
for the results in the panels (b) and (d) an annual signal as been superimposed on the input data. The grey
vertical lines indicate locations of river junctions

of the river as well as the observing satellite mission and is estimated to be between
10cm and 1.5m.

Figure 6 displays the spatial distribution of the data in the river basin. Here the
dense spatial distribution of the long and non-repeat orbits missions (visualised by
black symbols ) compared to the sparse distribution of the short-repeat orbit missions
(visualised by red-coloured squares) is visible.

4.3.2 Results

Fig. 7(a) shows the resulting estimated topography heights at all points of the topology.
TheB-Splinemodelled topographymostly fitswell to the topographymodel.However,
at some points the estimated heights do not correspond with the surrounding heights.
Most prominently, many upstream end points of tributaries are not correctly modelled,
which is likely caused by missing altimetry data in these reaches. Also in river reaches
where only sparse altimetry data is available, especiallywith only a single observations,
the quality of the estimated heights deteriorates (see Fig. 6) as the estimation of αk in
Eq. 6 gets numerically unstable. In these parts a denser or more evenly distributed data
coverage could improve the results. Additionally, the abrupt height change around
the Mekong Falls (13.95°N, 105.94°E) cannot be modelled sufficiently with only
the sparse data available. To correctly model such a reach a dense data coverage
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Fig. 6 Altimetry data distribution within the study area. Red squares indicate the location of short-repeat
orbit time series, black ’+’ symbols indicate a single altimetry observation (colour figure online)

would be needed and possibly more B-spline knots to enable the modelling of small
scale changes. Consequently, in these reaches also the estimated standard deviation
of the heights increases (Fig. 7(b)). The standard deviations are estimated from the a
posteriori uncertainties, as no globally reliable data uncertainties are available.

Based on these observationswe removedpointswith a standard deviation larger than
25m and points with less then 50 altimetry observations in their 50km neighbourhood.
However, this leads to gaps in the heights along the river. The result of this procedure
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Fig. 7 Estimated heights along the whole Mekong River (a), their associated standard deviations (b), and
after outlier removal in reaches with sufficient data coverage (c)
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Fig. 8 Example of two river reaches, the tributary Tonle Srepok (a) and the upstream reach south of Luang
Prabang (b). The grey vertical lines indicate locations of river junctions (colour figure online)

w.r.t. the estimated heights is shown in Fig. 7(c). The mean of all standard deviations
is 15.73m before the outlier removal and 8.34m afterwards.

As in the synthetic data experiment,we also investigate the estimated heights for two
river reaches in more detail in Fig. 8. Two things are notably along the Tonle Srepok.
First, the dip in river topography around 650kmwhich is not explained by the altimetric
observations. As we saw the same decline in the synthetic data experiment this might
be caused by the knot distribution in this region causing unexpected behaviour in the
B-Splines. Second, the step around the second junction is visible in the estimated
topography, which we also already observed in the synthetic data results. Again, this
might be caused by either the knot placement or the missing altimetry data around the
junction. It might also be possible, that the river topography in changing that rapidly
in this region such that the B-Splines cannot model it sufficiently.
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5 Discussion and conclusions

This study introduces amethodwhich allows to applyB-splines ondirected tree graphs.
This procedure allows formodelling a continuous quantity along graphs.Most notably,
it ensures the continuity of the B-splines around junction vertexes, i. e. vertices with
more than one incoming edge. This is established by a symmetrical knot placement on
the two incoming edges incident to the same vertex. To allow for a proper modelling
of all sources and the sink of the graph we applied endpoint-interpolating B-splines.

We demonstrate the new method to the example of topographic modelling along a
non-braided river network. Thus, the knots defining the B-splines have to be placed
symmetrically on both river reaches upstream a confluence. The method was success-
fully tested to estimate mean water levels along the Mekong River system from both
synthetic and altimetric water level observations. The synthetic data case allows a
validation of the estimated river topography. The validation proves the suitability of
the method for topographic modelling. Even if annual water level variations are not
removed from the observation, the method is able to estimate an accurate topogra-
phy. Further, we found in additional investigations that the noise level of synthetic
altimetry observations if of minor influence to the quality of the resulting topography.
This proves the stability of the proposed method. In the second investigation, we
employed altimetric water level observations. Here the main challenge are outliers
in the data set which needs to be removed. Further, for both the synthetic and real
data set cases the unevenly distributed observation hinder the topography estimation
in regions with sparse data coverage. Another problem of real altimetry data can be
the systematic biases between different satellite altimetry missions. To this end, we
used cross-calibrated corrections provided via OpenADB (https://openadb.dgfi.tum.
de/en/) following the method of Bosch et al. (2014) to remove these biases from the
altimetry data before hand. Alternatively, one could add an additional bias parameter
for each satellite mission in the parameter estimation of the B-Splines coefficients.
However, this would imply that the biases remain per mission constant over space and
time, which is not necessarily the case.

In this study we only considered B-splines on directed tree graphs, but the question
arises if it is possible to extend these ideas to more general graphs.

First, let us again consider a tree shaped graph (i.e. one or three edges in each
vertex), but investigate the directionality of the whole graph. As mentioned in Sect. 3
the direction of the directed tree is of no importance for the proposed approach. In the
next step, we can removeleave out the directionality altogether. Such an undirected
tree graphmight , for example, be used to model the density of biological specimens in
a river network. So far, the directionality of the graph implies a hierarchy of the edges
at each vertex with B-spline knots symmetrically distributed along two of the three
edges. This is because B-Splines centred below the junction reach into both upstream
reaches, but B-Splines centred upstream only reach into the downstream reach and
not the second upstream reach. If the directionality is left out, B-splines centred on
any of the three edges reach into both other edges. Thus, the knots need to be placed
symmetrically around the vertex on all three edges. With this we know how to place
the B-Spline knots locally around each junctionvertex but not how to combine the knot
placement around several connected vertices. So far, in the case of the directed graph,
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d

Fig. 9 Knot placement around junctions in a non-directed graph

the non-symmetry of the knot placement on the downstream branch allowed to place
the B-Spline knots equidistant on each branch starting on its downstream end. This
leads to a possible smaller distance between the last knot below the next junction and
the junction (see the knots in Fig. 2). In the case of the non-directional graph this is
no longer a suitable solution.

A possibility for a non-directional graph is shown in Fig. 9. With the aid of this
example, we will provide you with an ideashow you how to proceed with the knot
placement. Around each vertex (large coloured dots) we placed locally equidistant
knots (small coloured dots). Let us assume, we choose the same distance d for the
equidistant knot placement around all vertices (d will be later defined). In the case of
an edge length larger than four times d (e. g. edge between red and yellow vertices)
the B-Spline knots are simply placed symmetrically around the red and yellow vertex.
The remaining space on the edge is then filled up with as many knots as needed (Fig.
9 black dots). In the case of an edge length of exactly four time d (green and yellow
vertices) we again place the knots symmetrically around each vertex. However, this
time, one knot overlaps from each vertex (the green-yellow dot in the example). For
even shorter edges, it is also possible to have two overlapping knots. This leads us to
the definition of d which has to chosen such, that all edged can be divided in three or
four d long pieces plus an optional remaining piece. Theoretically, it is not necessary
to use the same d around each vertex although this simplifies the automatisation of
the method.

The same idea can be even further expanded to cyclic graphs. As long as the knots
are place symmetrically around the vertices the proposed method can be applied.
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