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We study mixing times of the symmetric and asymmetric simple exclu-
sion process on the segment where particles are allowed to enter and exit
at the endpoints. We consider different regimes depending on the entering
and exiting rates as well as on the rates in the bulk, and show that the pro-
cess exhibits pre-cutoff and in some cases cutoff. Our main contribution is to
study mixing times for the asymmetric simple exclusion process with open
boundaries. We show that the order of the mixing time can be linear or ex-
ponential in the size of the segment depending on the choice of the boundary
parameters, proving a strikingly different (and richer) behavior for the simple
exclusion process with open boundaries than for the process on the closed
segment. Our arguments combine coupling, second class particle and censor-
ing techniques with current estimates. A novel idea is the use of multi-species
particle arguments, where the particles only obey a partial ordering.

1. Introduction. The simple exclusion process is an important and intensively studied
interacting particle system [3, 5, 11, 18, 30, 32]. Over the last decades, it equally raises in-
terest of scientists from probability, statistical mechanics and combinatorics; see [5, 37, 41,
61] for review papers in the respective areas. Despite its simple construction, the simple ex-
clusion process is a source for surprising phenomena such as phase transitions and formation
of shocks [18, 20, 21, 23, 58]. In this paper, we study the simple exclusion process with open
boundaries which is given as independently moving random walks on the segment using an
exclusion rule, that is, when a particle tries to move to a site, which is already occupied,
this move is suppressed. In addition, we allow particles to jump in and out of the system at
the ends of the segment. We determine the order of the mixing times for this process, which
quantify the speed of convergence to equilibrium; see (2). Mixing times for simple exclusion
processes have been thoroughly studied; see [4, 30, 32, 34, 60]. Note that in all of the above
mentioned works on mixing times, the number of particles in the segment is preserved and
the simple exclusion process is reversible (in the sense of detailed balance). In general, the
simple exclusion process with open boundaries is no longer reversible. It is one of the most
basic, however very interesting examples of a nonequilibrium particle system in statistical
mechanics.

While the proofs in the symmetric cases of the simple exclusion process with open bound-
aries follow known routes, see Theorems 1.1 and 1.2, where we adopt the arguments of [33]
and [32], our main contribution is to study mixing times for the asymmetric simple exclu-
sion process with open boundaries; see Theorems 1.3 to 1.6. We show that the order of the
mixing time can be linear or exponential in N , depending on the choice of the boundary pa-
rameters. Our arguments combine coupling, second class particle and censoring techniques
with current estimates. A novel idea is the use of multi-species particle arguments, where the
particles only obey a partial ordering. In general, a main difficulty is to write down explicitly
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the stationary distribution of the simple exclusion process with open boundaries. Physicists
and combinatorialists have been working hard to acquire descriptions of the stationary mea-
sure; see Section 1.3. When the stationary measure is hard to describe, a nice alternative is
to simulate it by running a Markov chain. Our results allow to determine how many steps are
required when running the specific Markov chain given by the simple exclusion process with
open boundaries.

We now define the simple exclusion process with drift parameters p,q ≥ 0. Let k ∈ [N ] :=
{1, . . . ,N} for some N ∈ N. The simple exclusion process on a segment of size N with k

particles is a Feller process (ηex
t )t≥0 with state space �N,k given by

(1) �N,k :=
{
η ∈ {0,1}N :

N∑
x=1

η(x) = k

}
.

It is generated by

Lexf (η) =
N−1∑
x=1

pη(x)
(
1 − η(x + 1)

)[
f

(
ηx,x+1) − f (η)

]

+
N∑

x=2

qη(x)
(
1 − η(x − 1)

)[
f

(
ηx,x−1) − f (η)

]
,

where ηx,y ∈ �N,k denotes the configuration in which we exchange the values at positions x

and y in η ∈ �N,k . For an introduction to Feller processes, we refer to [41].
We say that site x is occupied by a particle if η(x) = 1 and vacant otherwise. A particle

at a vertex x is supposed to move to the right at rate p and to the left at rate q whenever
the target is a vacant site. For the simple exclusion process with open boundaries (ηt )t≥0, we
in addition allow creating and annihilating particles at the endpoints of the segment. More
precisely, for parameters α,β, γ, δ ≥ 0, (ηt )t≥0 is defined as the Feller process with state
space �N := {0,1}N generated by

Lf (η) = Lexf (η) + α
(
1 − η(1)

)[
f

(
η1) − f (η)

] + γ η(1)
[
f

(
η1) − f (η)

]
+ δ

(
1 − η(N)

)[
f

(
ηN ) − f (η)

] + βη(N)
[
f

(
ηN ) − f (η)

]
,

where ηx ∈ �N denotes the configuration in which we flip the values at position x in η ∈ �N ;
see Figure 1. In contrast to the simple exclusion process, the number of particles will in
general no longer be preserved over time.

In the remainder, we assume that the above parameters are chosen such that the corre-
sponding simple exclusion process with open boundaries has a unique stationary distribution
μ (which may also be a Dirac measure on a single configuration). Our goal is to investigate
the speed of convergence towards μ. For this, we define the ε-mixing time of (ηt )t≥0 by

(2) tNmix(ε) := inf
{
t ≥ 0 : max

η∈�N

∥∥P(ηt ∈ ·|η0 = η) − μ
∥∥

TV < ε
}

FIG. 1. Simple exclusion process with open boundaries for parameters (p,α,β, γ, δ).
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for all ε ∈ (0,1). Here, ‖·‖TV denotes the total-variation distance, that is, for two probability
measures μ and ν on �N , we define

(3) ‖μ − ν‖TV := 1

2

∑
x∈�N

∣∣μ(x) − ν(x)
∣∣ = max

A⊆�N

(
μ(A) − ν(A)

)
.

Our goal is to study the order of tNmix(ε) when N goes to infinity.

1.1. Main results. In the following, we investigate the mixing times for the simple exclu-
sion process with open boundaries. Without loss of generality, we can assume that q = 1 − p

holds for some p ∈ [1
2 ,1]. To see this, we rescale time by a factor of (p + q) and use the

symmetry in the definition of (ηt )t≥0 with respect to the boundary parameters. Moreover, we
assume that max(α,β, γ, δ) > 0 holds. When all boundary parameters are zero, mixing times
were investigated in [4, 30, 32, 60] among others.

1.1.1. Symmetric simple exclusion process with open boundaries. We start with the case
when all transitions in the bulk are symmetric, that is, p = 1

2 .

THEOREM 1.1. For p = 1
2 , the ε-mixing time of the simple exclusion process with open

boundaries is

(4)
1

π2 ≤ lim inf
N→∞

tNmix(ε)

N2 logN
≤ lim sup

N→∞
tNmix(ε)

N2 logN
≤ C

for all ε ∈ (0,1) and some constant C = C(α,β, γ, δ).

The property that the first order of the ε-mixing times can be bounded within two constants
which do not depend on ε is called pre-cutoff ; see [39], Chapter 18. When all boundary
parameters are zero and particles have a density in (0,1), it was shown in [32], Theorem 2.4,
that the lower bound in (4) gives the asymptotic behavior of the ε-mixing time for the simple
exclusion process. However, the next theorem says that when particles enter and exit only at
a single side, we see a different constant.

THEOREM 1.2. For p = 1
2 , suppose that max(α, γ ) = 0 and min(β, δ) > 0 holds. Then

for all ε ∈ (0,1), the ε-mixing time of the simple exclusion process with open boundaries
satisfies

(5) lim
N→∞

tNmix(ε)

N2 logN
= 4

π2 .

By symmetry, (5) holds for p = 1
2 , min(α, γ ) > 0 and max(β, δ) = 0 as well.

The property that the leading order of the ε-mixing times does not depend on ε is known
as the cutoff phenomenon; see [39], Chapter 18.

1.1.2. Asymmetric simple exclusion process with one blocked entry. Next, consider the
asymmetric simple exclusion process with p > 1

2 . When α > 0, let

(6) a = a(α, γ,p) := 1

2α

(
2p − 1 − α + γ +

√
(2p − 1 − α + γ )2 + 4αγ

)
and similarly, for β > 0, we set

(7) b = b(β, δ,p) := 1

2β

(
2p − 1 − β + δ +

√
(2p − 1 − β + δ)2 + 4βδ

)
.

We study the case where we have one blocked entry, that is, min(α,β) = 0 and max(α,β) > 0.
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THEOREM 1.3. Suppose that p > 1
2 , and let γ, δ ≥ 0 be arbitrary. If α = 0 and β > 0,

then for all ε ∈ (0,1), the ε-mixing time of the simple exclusion process with open boundaries
satisfies

(8) lim
N→∞

tNmix(ε)

N
= (max(b,1) + 1)2

(2p − 1)max(b,1)
.

Similarly, for α > 0 and β = 0, we have that

(9) lim
N→∞

tNmix(ε)

N
= (max(a,1) + 1)2

(2p − 1)max(a,1)
.

In particular, we see in both cases that cutoff occurs.

We will see that a key ingredient for the proof of Theorem 1.3 is to understand the creation
of shocks, which is typical for the asymmetric simple exclusion process. The shocks will
travel at a linear speed and give rise to a sharp mixing behavior.

1.1.3. The reverse bias phase for the simple exclusion process. In contrast to the simple
exclusion process where all boundary parameters are zero, there exists a regime of the asym-
metric simple exclusion process with open boundaries with an exponentially large ε-mixing
time. This case is known in the literature as the reverse bias phase; see [5]. This terminology
can be intuitively justified since the particles are forced by the boundary conditions to move
against their natural drift direction.

THEOREM 1.4. Suppose that max(α,β) = 0 and p ∈ (1
2 ,1) holds. Then for all ε ∈

(0, 1
2), we have that

(10) lim
N→∞

log(tNmix(ε))

N
= log

(
p

1 − p

)

holds whenever min(γ, δ) = 0 and max(γ, δ) > 0. If min(γ, δ) > 0 holds, we have that

(11) lim
N→∞

log(tNmix(ε))

N
= 1

2
log

(
p

1 − p

)
.

1.1.4. The high and low density phase for the simple exclusion process. Now suppose
that min(α,β) > 0 and p > 1

2 , so the quantities a and b from (6) and (7) are both well-
defined. We distinguish three different regimes according to the density within the stationary
distribution; see Section 2 for more details. The regime a > max(b,1) is called the low den-
sity phase of the exclusion process, while we refer to the regime b > max(a,1) as the high
density phase. The remaining case where max(a, b) ≤ 1 holds is called the maximal current
phase. Intuitively, the invariant distribution is an interpolation between two Bernoulli-product
measures with densities 1

1+a
and b

1+b
, respectively, and we will see a justification of this

claim in Lemma 2.10. The terminology low density phase (respectively high density phase)
will be justified in Lemma 2.11, since the density within the invariant measure stays below
(respectively above) 1

2 .

THEOREM 1.5. For parameters α,β > 0 and γ, δ ≥ 0, as well as p > 1
2 , suppose we are

in the high density phase. Then there exists a constant Ch = Ch(a, b,p) > 0 such that the
ε-mixing time of the simple exclusion process with open boundaries satisfies

(12)
1

2p − 1
≤ lim inf

N→∞
tNmix(ε)

N
≤ lim sup

N→∞
tNmix(ε)

N
≤ Ch
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for all ε ∈ (0,1). Similarly, when we are in the low density phase with parameters α,β > 0
and γ, δ ≥ 0, as well as p > 1

2 , the ε-mixing time of the simple exclusion process with open
boundaries satisfies

(13)
1

2p − 1
≤ lim inf

N→∞
tNmix(ε)

N
≤ lim sup

N→∞
tNmix(ε)

N
≤ C�

for some constant C� = C�(a, b,p) > 0 and all ε ∈ (0,1). In particular, pre-cutoff occurs.

For a discussion of the remaining cases and sharp constants, we refer to Section 1.2.

1.1.5. The triple point of the simple exclusion process. An interesting special case of the
simple exclusion process with open boundaries is the triple point where p > 1

2 and a = b = 1
holds (which means α − γ = p − 1

2 , β − δ = p − 1
2 .) Intuitively, the low-density phase, the

high density phase and maximal current phase coexist at the triple point, and it can be shown
that the process gives rise to the KPZ equation [13, 48]. We have the following bound on the
mixing time.

THEOREM 1.6. Suppose that p > 1
2 and a = b = 1 holds, that is, we are in the triple

point. For all ε ∈ (0,1), the ε-mixing time of the simple exclusion process with open bound-
aries satisfies

(14) tNmix(ε) ≤ CN3

for some constant C = C(α,β, γ, δ,p).

1.2. Open problems. We saw in Theorems 1.1 and 1.2 that the symmetric simple exclu-
sion process has pre-cutoff for all nontrivial choices of boundary parameters.

CONJECTURE 1.7. Let p = 1
2 and α,β, γ, δ ≥ 0 with max(α, γ ) > 0 and max(β, δ) > 0.

Then the lower bound in (4) is sharp, and cutoff occurs.

Intuitively, we treat the simple exclusion process with two open boundaries as a symmetric
simple exclusion process on the circle of length 2N and N particles; see Section 3. In the high
density and low density phase, we have the following conjecture.

CONJECTURE 1.8. Under the assumptions of Theorem 1.5, the mixing time in the high-
density phase satisfies for all ε ∈ (0,1)

(15) lim
N→∞

tNmix(ε)

N
= (b + 1)(b − 1)(â + 1)2

(b − â)(bâ − 1)(2p − 1)
,

where â := max(a,1). A similar statement holds for the low density phase.

Let us give some heuristics on this conjecture for the high density phase. Suppose we start
from the empty initial configuration, and wait until we see the equilibrium density of b

b+1
within the segment; see Lemma 2.8. Similar to the hydrodynamic limits in [30], we expect at
time (b + 1)(b − a)−1(2p − 1)−1n to see a density which is 1

a+1 at 1, 1
b+1 at n and linearly

interpolated in between. After this time, the right boundary creates a shock wave traveling
to site 1 which supports the conjecture of cutoff. The total travel time of this shock can be
computed by comparing the current at both endpoints. Note that in the maximum current
phase, no such shock is created, and the particles can travel at the maximal possible speed
of 1

4(2p − 1) (justifying the name maximal current phase). The mixing time is governed by
second class particle fluctuations, see Remark 7.4, and we conjecture the following behavior.
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CONJECTURE 1.9. When max(a, b) ≤ 1 holds (including the triple point), we have that
the ε-mixing time of the simple exclusion process with open boundaries is of order N3/2 for
all ε ∈ (0,1). Moreover, the cutoff phenomenon does not occur.

When p = 1 and γ = δ = 0, the mixing time in the maximal current phase was recently
determined in [54] up to a logarithmic factor. For a = b > 1 and p > 1

2 , called coexistence
line, we see that the right-hand side of (15) in Conjecture 1.8 blows up.

QUESTION 1.10. What is the order of the ε-mixing time of the simple exclusion process
with open boundaries in the coexistence line, and does the cutoff phenomenon occur?

1.3. Related work. The simple exclusion process can be seen from various different per-
spectives. Historically, the simple exclusion process is motivated in physics and biology as a
model for lattice gases, but it can also be used to describe traffic flow or kinetics of protein
synthesis [27, 43]. In a mathematical context, it was introduced by Spitzer [55]. Depending
on the parameters of the simple exclusion process with open boundaries, it is found under
different names, such as (totally/partially) asymmetric simple exclusion process or boundary
driven simple exclusion process.

In this paper, we focus on investigating the speed of convergence to the stationary distribu-
tion. This is done by analyzing the total-variation mixing time; see [39] for a comprehensive
introduction. In the case of the symmetric simple exclusion process (SSEP), that is, when
p = 1

2 holds, the first order of the mixing time was determined using spectral techniques
for the lower bound in [60] and a clever combination of various properties of the SSEP for
the upper bound in [32]. For the asymmetric simple exclusion process (ASEP), Benjamini et
al. showed in [4] that the mixing time is linear in the size of the segment using the simple
exclusion process on the integers and second class particle arguments; see below. We will
see that second class particle arguments play a crucial role in our analysis of the simple ex-
clusion process with open boundaries in Sections 4 to 7. Recently, the cutoff phenomenon
was established for the ASEP in [30]. More generally, mixing times for the simple exclusion
process were investigated in size-dependent or random environments [31, 38, 53] as well as
on general graphs [28, 47]. All these investigations have in common that the underlying sim-
ple exclusion process is reversible. Many techniques for precise bounds on the mixing time
require reversibility, and can in general not be applied for the simple exclusion process with
open boundaries. To our best knowledge, mixing times for a nonreversible simple exclusion
process were so far only investigated for the totally asymmetric simple exclusion process on
the circle [24].

The simple exclusion process with open boundaries and a nonreversible stationary dis-
tribution is one of the simplest examples of a nonequilibrium system. This observation is
quantified by studying currents for the simple exclusion process with open boundaries; see
Section 2.4. For the symmetric simple exclusion process, currents were investigated in [35].
For the simple exclusion process with general parameters, the first order of the current was
determined in [58] using Askey–Wilson polynomials, extending the results of [6]. Current
fluctuations for the asymmetric simple exclusion process with open boundaries are investi-
gated in [26, 36] while related spectral properties are discussed in [15–17] among others.
Furthermore, there are deep connections to the KPZ universality class; see, for example, [12,
13, 48].

Note that the simple exclusion process naturally extends to a Feller process on the integers.
It is a classical result that the Bernoulli product measures are invariant in this case; see [41].
For the asymmetric simple exclusion process on the integers, the moments of the current
are closely linked to the motion of second class particles [2]. In particular, the fluctuations
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of the current at time t ≥ 0 are given by the mean of the displacement of a single second
class particle started from the origin within the Bernoulli product measure. Depending on the
parameter of the product measure, we see either a diffusive or a super-diffusive behavior; see
[3, 22, 50]. We note that currents are also studied for the simple exclusion process with open
boundaries containing second class particles; see [14, 57]. Furthermore, second class particles
can be used to identify shocks [20, 21, 23]. More precisely, for an initial distribution with a
shock, that is, for two product measures with different parameters, we place a second class
particle at the transition point. Under certain assumptions on the parameters of the product
measures, one can show that the second class particle will stay close to the shock location
for all times. In this paper, we will see a similar shock behavior for the asymmetric simple
exclusion process with one blocked entry; see Section 5.5.

Another natural quantity to study is the invariant measure of the simple exclusion process
with open boundaries; see [41], Section III.3. Various beautiful representations were achieved
in statistical mechanics and combinatorics. A key tool is the matrix product ansatz, which is
in an implicit form already given in [40] and was successfully applied for the simple exclu-
sion process with open boundaries in [18] when particles can move only in one direction.
Informally speaking, we assign in the matrix product ansatz to every configuration a weight
which consists of a product of matrices and vectors. The matrices and vectors must satisfy
certain relations, usually called the DEHP algebra; see [18]. The matrix product ansatz allows
us to study the mean current, the density profile and correlations within the stationary distri-
bution; see [52, 58, 59]. Representing the weights in the matrix product ansatz is a question
in combinatorics which gained lots of recent attention. It led to beautiful descriptions such
as (weighted) Catalan paths and staircase tableaux; see [7, 11, 44]. Building on the works of
Sasomoto [51] and Uchiyama et al. in [58], the representations are closely related to Askey–
Wilson polynomials. Similar representations were achieved for the simple exclusion process
with second class particles using Koornwinder polynomials; see [8, 10]. Recently, combina-
torial representations were established for the multi-species simple exclusion process, that is,
for more than two different kinds of particles; see [9, 25, 45].

1.4. Outline of the paper. This paper is organized as follows. In Section 2, we state pre-
liminaries on the simple exclusion process from different perspectives. In Sections 3 and 4,
we study mixing times of the symmetric simple exclusion process with open boundaries.
Lower bounds will be achieved by using a continuous-time version of a generalization of
Wilson’s lemma which was introduced in [46]. A general upper bound will follow from a
comparison to independent simple random walks. This bound is refined in the special case
of one open boundary following closely the ideas of Lacoin in [32]. The analysis of mixing
times for the asymmetric simple exclusion process is carried out in Sections 5 to 7. In Sec-
tion 5, we use second class particle and current arguments to investigate mixing times for the
ASEP with one blocked entry. The reverse bias phase is considered in Section 6 requiring
second class particle estimates and a comparison with the simple exclusion process on the
integers. Section 7 is dedicated to the study of the simple exclusion process within the low
density and the high density phase using multi-species exclusion processes, stochastic order-
ings and the censoring inequality. The triple point for the simple exclusion process is treated
in Section 8 using a symmetrization argument.

2. Preliminaries on the simple exclusion process. In this section, we collect basic
properties and techniques for the simple exclusion process which will be used at multiple
points during the proofs. This includes couplings, second class particles, the simple exclusion
process on the integers, currents, invariant measures and the censoring inequality. Motivations
and applications of these techniques come from probability theory, statistical mechanics and
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combinatorics. For convenience, we give a brief background to the different techniques and
point out where we require generalizations of the quoted results.

2.1. The canonical coupling. A main tool in our arguments is a grand coupling for the
simple exclusion process with open boundaries, that is, a joint realization of the simple exclu-
sion process for all initial configurations simultaneously. Couplings are a well-known tech-
nique in order to bound mixing times; see [39], Chapter 5. In the following, we consider a
specific coupling, the canonical coupling of the simple exclusion process with open bound-
aries, sometimes called basic or standard coupling. Similar couplings are constructed in [4]
and [53] for the simple exclusion process on the closed segment. For the simple exclusion
process with open boundaries, the canonical coupling is given as follows:

We place rate 1 Poisson clocks on all edges e ∈ E. Whenever the clock of an edge e =
{x, x+1} rings, we sample a Uniform-[0,1]-random variable U independently of all previous
samples and distinguish two cases.

• If U ≤ p and η(x) = 1 − η(x + 1) = 1 holds, we move the particle at site x to site x + 1
in configuration η.

• If U > p and η(x) = 1 − η(x + 1) = 0 holds, we move the particle at site x + 1 to site x

in configuration η.

In addition, we place a rate α Poisson clock (a rate γ Poisson clock) on the vertex 1. When-
ever a clock rings, we place a particle (an empty site) at site 1, independently of the current
value of η(1). Similarly, we put a rate β Poisson clock (a rate δ Poisson clock) on the vertex
N . Whenever this clock rings, we place an empty site (a particle) at site N independently of
the current value of η(N).

2.1.1. The component-wise partial order. The canonical coupling is constructed in such
a way that it respects the partial order 	c on �N which is given by component-wise compar-
ison, that is,

(16) η 	c ζ ⇔ η(i) ≥ ζ(i) for all i ∈ [N ]
for all η, ζ ∈ �N . Moreover, the canonical coupling P can be extended such that it is mono-
tone in α, β , γ , δ. These observations are formalized in the following lemma.

LEMMA 2.1. Consider two exclusion processes (ηt )t≥0 and (ζt )t≥0 on the segment of
size N with parameters (p,α,β, γ, δ) and (p,α′, β ′, γ ′, δ′), respectively. Suppose that

(17) α ≥ α′, β ≤ β ′, γ ≤ γ ′ and δ ≥ δ′

holds, then the canonical coupling P can be extended such that

(18) P(ηt 	c ζt for all t ≥ 0 | η0 	c ζ0) = 1.

PROOF. We give an explicit construction of the extended canonical coupling P. Since
p = p′, observe that the canonical coupling preserves the partial order 	c for all transitions
along edges. Hence, it remains to specify P at the boundary. For (ηt )t≥0 and (ζt )t≥0, use the
same rate α′ Poisson clocks to determine when a particle enters at the left-hand side boundary.
In addition, when α > α′ holds, insert particles at the leftmost site in (ηt )t≥0 according to an
independent rate (α − α′) Poisson clock. A similar construction applies for the remaining
boundary parameters. �

Let 1 and 0 be the configurations in �N containing only particles and empty sites, re-
spectively, and observe that these two configurations form the unique maximal and minimal
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elements with respect to the partial order 	c on �N . The following lemma is an immediate
consequence of Lemma 2.1 and [39], Corollary 5.5.

LEMMA 2.2. For a simple exclusion process with open boundaries and ε-mixing time
tNmix(ε), let τ denote the first time, at which the processes started from 1 and 0, respectively,
agree within the coupling P given in Lemma 2.1. If for some s ≥ 0

(19) P(τ ≥ s) ≤ ε

holds, then the ε-mixing time satisfies tNmix(ε) ≤ s.

2.1.2. The partial order via height functions. When max(α, γ ) = 0 or max(β, δ) = 0
holds, we define another partial order 	h on �N for the simple exclusion process with open
boundaries. A similar partial order can be found in [60] for the simple exclusion process. For
max(α, γ ) = 0, we let

(20) η 	h ζ ⇔
j∑

i=1

η(i) ≥
j∑

i=1

ζ(i) for all j ∈ [N ]

for all configurations η, ζ ∈ �N . For max(β, δ) = 0, apply the definition (20) to the simple
exclusion process with open boundaries and parameters (1 − p,0, γ,0, α), that is, we flip
the segment vertically. This partial order arises from the height function representation. For
a given η ∈ {0,1}N , let hη : {0,1, . . . ,2N} →R be its height function with

(21) hη(x) :=
x∑

i=1

2
[
η(i)1{i≤N} + (

1 − η(2N + 1 − i)
)
1{i>N}

] − x

for all x ∈ {0,1, . . . ,2N}. Note that we have hη(0) = hη(2N) = 0 by construction. For all
N ∈ N, we see that a pair of configurations satisfies η 	h ζ if and only if hη(x) ≥ hζ (x)

holds for all x ∈ [N ]. A visualization of the height function in terms of lattice paths, which
are the linear interpolations of height functions, is given in Figure 2. Again, the canonical
coupling can be extended such that it is monotone in α, β , γ , δ with respect to the partial
order 	h. This is stated in the following lemma which uses the same coupling P constructed
in the proof of Lemma 2.1.

FIG. 2. Two ordered instances of the simple exclusion process for N = 4 and with particles entering and exiting
only at the right-hand side of the segment.
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LEMMA 2.3. Consider two exclusion processes (ηt )t≥0 and (ζt )t≥0 on the segment of
size N with parameters (p,α,β, γ, δ) and (p′, α′, β ′, γ ′, δ′), respectively. Suppose that

(22) p ≤ p′, α = α′ = 0, β ≤ β ′, γ = γ ′ = 0, δ ≥ δ′

or

(23) p ≤ p′, α ≥ α′, β = β ′ = 0, γ ≤ γ ′, δ = δ′ = 0

holds. Then there exists a coupling P of the two processes which satisfies

(24) P(ηt 	h ζt for all t ≥ 0 | η0 	h ζ0) = 1.

2.2. The simple exclusion process with second class particles. Second class particles for
the simple exclusion process are well-studied over the last decades; see [41], Section III.1,
for an introduction. The motion of a second class particle can be related to current and shock
fluctuations; see [3, 20–22]. In the context of mixing times, second class particles were used
to study the simple exclusion process when all boundary parameters are zero [4, 53]. In this
paper, we use second class particle arguments in Sections 4 to 7 in order to provide upper
bounds for the mixing time of the simple exclusion process with open boundaries.

For a configuration ξ ∈ {0,1,2}N , we say that a vertex x ∈ [N ] is occupied by a first
class particle whenever ξ(x) = 1 and by a second class particle if ξ(x) = 2 holds. Our main
application for second class particles is to describe the difference of two exclusion processes.
More precisely, for two simple exclusion processes (ηt )t≥0 and (ζt )t≥0 with open boundaries
on a segment of size N , we define the disagreement process (ξt )t≥0 between (ηt )t≥0 and
(ζt )t≥0 by

(25) ξt (x) = 1{ηt (x)=ζt (x)=1} + 21{ηt (x) �=ζt (x)}
for all x ∈ [N ] and t ≥ 0. In words, we keep the current value if the processes (ηt )t≥0 and
(ζt )t≥0 agree and place a second class particle otherwise; see Figure 3. When (ηt )t≥0 and
(ζt )t≥0 with parameters (p,α,β, γ, δ) and (p′, α′, β ′, γ ′, δ′) satisfy the assumptions (17) of
Lemma 2.1, and η0 	c ζ0, then the disagreement process with respect to the coupling P is a
Feller process (ξt )t≥0 on {0,1,2}N according to the following description:

We assign priorities to the particles and empty sites. First class particles have the highest
priority, then second class particles, and then empty sites. Suppose that a site x and its neigh-
bor x +1 are updated in configuration ξ . If ξ(x) = ξ(x +1) holds, we leave the configuration
unchanged. Else, we exchange the values at x and x + 1 in ξ with probability p if ξ(x) has a
higher priority than ξ(x + 1) and with probability 1 − p, otherwise. At the site 1, we place a
first class particle at rate α′ independently of the value of ξ(1). In addition, if α > α′ holds,
assign a rate (α − α′) Poisson clock to vertex 1. When the clock rings and ξ(1) = 0 holds,
we place a second class particle at site 1. A similar construction holds for the remaining
boundary parameters.

In general, we define the simple exclusion process with second class particles (also called
two-species exclusion process) to be the Feller process (ξt )t≥0 on {0,1,2}N which has the

FIG. 3. Two configurations ηt 	h ζt with disagreement process ξt at time t ≥ 0.
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above update rules along the edges, that is, the positions are exchanged according to the
priorities assigned to the sites of the edge. However, we allow general transition rules for the
particles to enter and exit at the boundary.

REMARK 2.4. A similar construction extends the canonical coupling to more than two
different hierarchies of particles. In this case, the resulting process is usually called multi-
species exclusion process; see [9, 25] as well as Section 7.

We notice that two simple exclusion processes in the canonical coupling agree when their
disagreement process contains no second class particles. Therefore, we have the following
immediate consequence of Lemma 2.2.

COROLLARY 2.5. For a given set of parameters, let (η0
t )t≥0 and (η1

t )t≥0 denote the
simple exclusion processes with open boundaries in the canonical coupling P with respect to
the initial configurations 0 and 1. Let (ξt )t≥0 be their disagreement process and denote by
τ the first time at which (ξt )t≥0 contains no second class particle. If P(τ > s) ≤ ε holds for
some ε > 0 and s ≥ 0, then we have that tNmix(ε) ≤ s.

2.3. The simple exclusion process on Z and blocking measures. When we prove bounds
on the mixing time, it will be convenient to compare the simple exclusion process with open
boundaries to an exclusion process on the integers. The simple exclusion process on Z is
given as a Feller process with state space {0,1}Z, generated by the closure of

LZ

exf (η) = ∑
x∈Z

pη(x)
(
1 − η(x + 1)

)[
f

(
ηx,x+1) − f (η)

]

+ ∑
x∈Z

(1 − p)η(x)
(
1 − η(x − 1)

)[
f

(
ηx,x−1) − f (η)

]

for some p ∈ [0,1] and all cylinder functions f . Let now p ∈ (1
2 ,1). By Theorem 1.2 in [41],

Section III, the Bernoulli-product measure ν with marginals

(26) ν
(
η : η(x) = 1

) = cpx

(1 − p)x + cpx
for all x ∈ Z

is invariant for the simple exclusion process on Z for any constant c > 0. The first Borel–
Cantelli lemma yields that

ν
({

η : ∃Cη > 0 s.t. η(x) = 1 ∀x > Cη and η(x) = 0 ∀x < −Cη

}) = 1,

that is, ν is supported on the countable set of configurations η which satisfy η(x) = 1 and
η(−x) = 0 for all x > 0 sufficiently large. For n ∈ Z, we can restrict the state space to

(27) An :=
{
η ∈ {0,1}Z : ∑

x>n

(
1 − η(x)

) = ∑
x≤n

η(x) < ∞
}

and define the simple exclusion process on An as a Feller process with a countable state
space. We define the blocking measure ν(n) on An to be given by ν(n)(.) = ν(· | An) for all
n ∈ Z. Let us stress that this definition does not depend on the choice of c in (26). Further, let
the ground state ϑn of An be

(28) ϑn(x) :=
{

1 if x > n,

0 if x ≤ n
for all x ∈ Z.

Intuitively, the ground state is the state of minimal energy. Observe that ν(ϑn) > 0 holds for
all p ∈ (1

2 ,1] and n ∈ Z. Since ϑn ∈ An, we have that ν(n)(ϑn) > 0 holds. Hence, the simple
exclusion process on An is positive recurrent for all p ∈ (1

2 ,1] and n ∈ Z.
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REMARK 2.6. Note that the canonical coupling and the partial order 	h in (20) naturally
extend to Z, that is, for η ∈ An and ζ ∈ Am with n,m ∈ Z, we have that

(29) η 	h ζ ⇔
j∑

i=−∞
η(i) ≥

j∑
i=−∞

ζ(i) for all j ∈ Z.

Moreover, observe that the canonical coupling is monotone with respect to 	h and that the
ground state ϑn is the unique minimal element with respect to the partial order 	h on An for
all n ∈ Z.

For η ∈ A0, let L(η) and R(η) denote the position of the leftmost particle and the rightmost
empty site in η, respectively. In Sections 5 and 6, we use the following lemma which gives
an upper bound on the positions of the leftmost particle and the rightmost empty site when
starting from the blocking measure. Its proof is deferred to the Appendix.

LEMMA 2.7. For p ∈ (1
2 ,1), let (ηZt )t≥0 denote the simple exclusion process in A0 with

initial distribution ν(0). There exists a constant C = C(p) > 0 such that for any ε ∈ (0, 1
2)

and all x ≥ 0 sufficiently large,

(30) Pν(0)

(
max

(
R

(
ηZt

)
,−L

(
ηZt

)) ≤ x for all t ∈
[
0,

εC

x

(
p

1 − p

)x])
≥ 1 − 2ε.

2.4. Current for the simple exclusion process. This section is dedicated to the study of the
current for the simple exclusion process with open boundaries. Currents are one of the main
objects for the exclusion process in statistical mechanics with deep connections to second
class particles; see [3, 22, 58]. Intuitively, the current formalizes the way of counting the
number of particles which pass through the segment over time. For our purposes, current
arguments will be used in order to prove the upper bounds in Theorems 1.3 and 1.5.

For p ∈ (1
2 ,1], assume that min(α,β) > 0 holds. On the segment of size N , let JN+

t be
the number of particles which have entered at the left-hand side of the segment by time t and
let JN−

t be the number of particles which have exited at the left-hand side of the segment by
time t . Let (JN

t )t≥0 with

(31) JN
t := JN+

t − JN−
t for all t ≥ 0

be the current of the simple exclusion process with open boundaries. Similarly, one could de-
fine the current with respect to the net number of particles crossing the right-hand side of the
segment, leading to the same long-term behavior. The following lemma states an asymptotic
bound on the current. We obtain it from the results in [58], Section 6, and the observation that
under the above assumptions, the simple exclusion process with open boundaries is a positive
recurrent Feller process; see also Theorem 3.6 in [11].

LEMMA 2.8. Recall the definition of a and b from (6) and (7) and set

(32) J = J (a, b,p) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2p − 1)
a

(1 + a)2 if a > max(b,1),

(2p − 1)
b

(1 + b)2 if b > max(a,1),

(2p − 1)
1

4
if max(a, b) ≤ 1.

Then the current (JN
t )t≥0 of the simple exclusion process with open boundaries satisfies

(33) lim
t→∞

JN
t

t
= JN

almost surely for some deterministic sequence (JN)N∈N with limN→∞ JN = J .
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We refer to JN as the flux of the simple exclusion process with open boundaries on the
segment of size N .

2.5. Invariant measures of the simple exclusion process. In this section, we focus on the
stationary distribution μ of the simple exclusion process with open boundaries. A beautiful
combinatorial description of μ is given in [11] using staircase tableaux. The following result,
which is adopted from [7], shows that under certain conditions on the boundary parameters,
the invariant distribution has a product structure. In general, μ can not be stated in a simple
closed form.

LEMMA 2.9 (cf. [7], Proposition 2). Suppose that min(α,β) > 0 and a = 1
b

holds for a

and b given in (6) and (7). Then for every configuration η ∈ �N , we have that

(34) μ(η) = 1

(α + β + γ + δ)N
(α + δ)|η|(β + γ )N−|η| =

(
1

1 + a

)|η|( a

1 + a

)N−|η|
,

where |η| := ∑N
i=1 η(i) denotes the number of particles in η.

Next, we compare the stationary measure μ to the Bernoulli-ρ-product measures νρ for
some ρ ∈ [0,1] on �N . More generally, let ν, ν′ be two probability measures defined on
a common probability space � which is equipped with a partial order 	. We say that ν

stochastically dominates ν′ with respect to 	 (and write ν 	 ν′) if there exists a coupling P

with X ∼ ν and Y ∼ ν′ such that P(X 	 Y) = 1. An equivalent definition using increasing
functions can be found in [41], Theorem B.9.

LEMMA 2.10. Suppose that min(α,β) > 0 holds. Then the stationary distribution μ of
the simple exclusion process with open boundaries satisfies

(35) νcmax 	c μ 	c νcmin,

where

(36) cmin := min
(

1

1 + a
,

b

1 + b

)
and cmax := max

(
1

1 + a
,

b

1 + b

)
.

PROOF. We consider only μ 	c νcmin for cmin = b
1+b

as the remaining cases are similar. In

this case, we have a ≤ 1
b

, and we recall a = a(α, γ,p) from (6). Observe that a is decreasing
in α and note that we can choose some α′ ∈ (0, α] such that a′ := a(α′, γ,p) satisfies a′ = 1

b
.

We conclude by Lemma 2.1 and Lemma 2.9. �

Note that Lemma 2.10 is motivated by treating the simple exclusion process with open
boundaries as having reservoirs at both ends with densities 1

1+a
and b

1+b
, respectively, and μ

interpolating between both sides. The next result characterizes how the interpolation within
the stationary distribution μ is realized. Using Lemma 2.8 and Lemma 2.10, it follows from
the same arguments as Theorem 3.29 in [41].

LEMMA 2.11. Suppose that min(α,β) > 0 holds. Let (xN)N∈N be a sequence with
min(xN, N

2 −xN) → ∞ for N → ∞. Further, let μN denote the measure on {0,1}N given on
the sites 1, . . . ,N − 2xN by the restriction of μ to [xN,N − xN ], and by the Dirac measure
on empty sites everywhere else. Then we have that

(37) lim
N→∞μN =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν 1
1+a

if a > max(b,1),

ν b
1+b

if b > max(a,1),

ν 1
2

if max(a, b) ≤ 1,
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where the limit is with respect to weak convergence, and the product measures are defined on
{0,1}N.

When particles are allowed to enter and exit only from one side of the segment, the measure
μ is reversible and can be given explicitly. More precisely, we say that μ is reversible for the
simple exclusion process with open boundaries if

(38)
∑

η∈�N

f (η)(Lg)(η)μ(η) = ∑
η∈�N

(Lf )(η)g(η)μ(η)

holds for all functions f,g : �N → R. Suppose that particles are only allowed to enter and
exit at the right-hand side, that is, max(α, γ ) = 0 holds (a similar formula will hold when
max(β, δ) = 0). For p ∈ (0,1] and min(β, δ) > 0, consider μ with

(39) μ(η) = 1

ZN

(
δ

β

)|η|
·

|η|∏
i=1

(
1 − p

p

)zi

for all η ∈ �N,

where zi denotes the distance of the ith particle from site N and ZN is a normalization
constant. Then μ is reversible for the process (ηt )t≥0. When min(β, δ) = 0 holds, μ is the
Dirac measure on 1 if β = 0 and on 0 if δ = 0.

2.6. The censoring inequality. The censoring inequality is a very recent technique in
order to give upper bounds on the mixing time. First established by Peres and Winkler in [49]
for spin systems, it was applied to the simple exclusion process by Lacoin in [32]. In words,
this inequality says that leaving out transitions of the exclusion process along certain edges
only increases the distance from equilibrium. Using a slightly more general definition than in
[49], we say that a censoring scheme C for (ηt )t≥0 is a random càdlàg function

(40) C : R+
0 → P(E)

which does not depend on the process (ηt )t≥0. Here, P(E) denotes the power set of the
edges where we treat the boundary interactions as edges to reservoirs at positions 0 and
N + 1, respectively. In the censored dynamics (ηC

t )t≥0, a transition along an edge e at time
t is performed if and only if e /∈ C(t). The following censoring inequality with respect to
the partial order 	h for the simple exclusion process with open boundaries is an immediate
consequence of Theorem 1.1 and Lemma 2.1 in [49].

LEMMA 2.12 (cf. [32], Proposition 6.2). Let C be a censoring scheme for the simple ex-
clusion process with open boundaries. For an initial configuration η and t ≥ 0, let Pη(ηt ∈ ·)
and Pη(η

C
t ∈ ·) denote the law of (ηt )t≥0 and its censored dynamics (ηC

t )t≥0 at time t ≥ 0,
respectively. Under the assumptions of Lemma 2.3, we have that

(41) P1
(
ηC

t ∈ ·) 	h P1(ηt ∈ ·) and P0
(
ηC

t ∈ ·) �h P0(ηt ∈ ·) for all t ≥ 0.

Moreover, the density function η �→ 1
μ(η)

P1(ηt = η) is increasing with respect to the partial
order 	h and we have that for all t ≥ 0

(42)
∥∥P1

(
ηC

t ∈ ·) − μ
∥∥

TV ≥ ∥∥P1(ηt ∈ ·) − μ
∥∥

TV

and

(43)
∥∥P0

(
ηC

t ∈ ·) − μ
∥∥

TV ≥ ∥∥P0(ηt ∈ ·) − μ
∥∥

TV.

REMARK 2.13. Using the partial order 	h from (29) for the simple exclusion process
on Z, the same arguments show that for all n ∈ Z,

(44) Pϑn

(
ηC

t ∈ ·) �h Pϑn(ηt ∈ ·) for all t ≥ 0,

where ϑn is the ground state of An; see (28).
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3. Lower bounds for the symmetric exclusion process. In this section, we prove the
lower bounds in Theorems 1.1 and 1.2. A key tool will be a generalized version of Wilson’s
lemma, which was introduced in [46] for discrete-time Markov chains. It transfers to our
setup as follows. For a Feller process (Xt)t≥0 with generator A, we consider a function F

which behaves almost like an eigenfunction of −A. Further, let (Mt)t≥0 be the associated
martingale given by

(45) Mt := F(Xt) − F(X0) −
∫ t

0
(AF)(Xs)ds for all t ≥ 0.

We denote its quadratic variation by (〈M〉t )t≥0. For an introduction to martingales and their
quadratic variation, we refer to [42], Chapter 3 and 5. The next lemma is similar to Lemma 2
in [46]. Its proof is deferred to the Appendix.

LEMMA 3.1 (Generalized Wilson’s lemma). Let (Xt)t≥0 be an irreducible Feller process
with finite state space S and generator A. Let F : S →R be a function with

(46)
∣∣(−AF)(y) − λF(y)

∣∣ ≤ c for all y ∈ S,

with constants λ > 0 and c ≥ 0 with λ ≥ c. Moreover, we assume that the quadratic variation
(〈M〉t )t≥0 of the associated martingale defined in (45) satisfies

(47)
d

dt
E

[〈M〉t ] ≤ R

for some R > 0 and all t ≥ 0. Then for all ε ∈ (0,1), the ε-mixing time tmix(ε) of (Xt)t≥0
satisfies

(48) tmix(1 − ε) ≥ 1

λ
log

(‖F‖∞
) − 1

2λ
log

(
16(3c‖F‖∞ + max(R, c))

λε

)
.

In order to apply Lemma 3.1 for the simple exclusion process with open boundaries for
p = 1

2 , we construct a function F which satisfies (46) and (47). We call F an approximate
eigenfunction.

Observe that for all choices of boundary parameters and initial configurations η, we have
that (fη(x, t))x∈[N],t≥0 given by

fη(x, t) := Eη

[
ηt (x)

]
for all x ∈ [N ] and t ≥ 0

solves a discrete heat equation, where we see either discrete Dirichlet boundary conditions for
closed endpoints, or (a variant of) discrete Neumann boundary conditions for open endpoints.
In the following, we consider a simple exclusion process with discrete Dirichlet boundary
conditions at both endpoints, and compare it to a simple exclusion process on the circle
of length 2N with N particles. On the circle, the eigenfunctions are sine and cosine waves,
where the length of the circle is a multiple of the period length; see [34], Lemma 2.2, and [60],
Section 3.4. We use this intuition to construct approximate eigenfunctions as stretched and
shifted eigenfunctions of the classical discrete heat equation. With a slight abuse of notation,
extend each η ∈ �N to �2N,N given in (1) by

η(x) := 1 − η(2N + 1 − x) for all x ∈ {N + 1, . . . ,2N}.

LEMMA 3.2. Recall that p = 1
2 and assume that max(α, γ ) > 0 and max(β, δ) > 0

holds. We set

(49) C := 1

2(α + γ )
− 1

2
and D := 1

2(β + δ)
− 1

2
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and define M := N + C + D. Let φ : Z/(2N)Z →R be given by

(50) φ(x) := sin
((

x + C − 1

2

)
π

M

)
for all x ∈ [N ]

and set φ(x) = −φ(2N + 1 − x) for all x ∈ {N + 1, . . . ,2N}. Moreover, we let λN := 1 −
cos( π

M
) and define

(51) �N(η) :=
2N∑
x=1

η(x)φ(x) + φ(1)

λN

(γ − α) + φ(N)

λN

(β − δ)

for all η ∈ �N . Then �N satisfies the conditions of Lemma 3.1 for λ = λN , for some c of
order N−3, some R of order N−1 and ‖�N‖∞ of order N . In particular, under the above
assumptions the lower bound stated in Theorem 1.1 holds.

PROOF. Using trigonometric identities, we have that (�φ)(x) = −λNφ(x) holds for all
x ∈ {2, . . . ,N − 1}. Here, � is the discrete Laplace operator on the circle of length 2N , that
is, for all functions f : Z/(2N)Z →R, we set

(52) (�f )(x) := 1

2

(
f (x − 1) + f (x + 1)

) − f (x) for all x ∈ Z/(2N)Z.

By our choice of C and D, observe that for all N large enough

(53)

∣∣(�φ)(1) + (1 − α − γ )φ(1) + λNφ(1)
∣∣ ≤ c1

M3 for c1 > 0,

∣∣(�φ)(N) + (1 − β − δ)φ(N) + λNφ(N)
∣∣ ≤ c2

M3 for c2 > 0

holds using the Taylor expansion of the sine and trigonometric identities. For fixed x ∈
Z/(2N)Z, we let gx(η) = η(x) for all η ∈ �N , and note that

N∑
x=1

(Lgx)(η)φ(x) =
N∑

x=1

(�η)(x)φ(x) + φ(1)

(
η(1)(1 − α − γ ) + α − 1

2

)

+ φ(N)

(
η(N)(1 − β − δ) + δ − 1

2

)

and (Lgx)(η) = −(Lg2N+1−x))(η) for all x ∈ [N ] and η ∈ �N . Since

2N∑
x=1

(�η)(x)φ(x) =
2N∑
x=1

(�φ)(x)η(x)

we can use (�φ)(0)η(0) = −(�φ)(1)(1 − η(1)) and (�φ)(N + 1) = −(�φ)(N)(1 − η(N))

to see that
2N∑
x=1

(Lgx)(η)φ(x)

=
N−1∑
x=2

(�η)(x)φ(x) +
2N−1∑

x=N+2

(�η)(x)φ(x)

+ 2φ(1)

(
η(1)(1 − α − γ ) + α − 1

2

)
+ 2φ(N)

(
η(N)(1 − β − δ) + δ − 1

2

)

+ (�φ)(1)
(
2η(1) − 1

) + (�φ)(N)
(
2η(N) − 1

)
.
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In particular, using (53) to rewrite (�φ)(1) and (�φ)(N), we get that∣∣∣∣∣(2η(N)−1
)
φ(N)(1−β −δ)+ (

2η(1)−1
)
φ(1)(1−α −γ )+

2N∑
x=1

(
(�η)(x)+λNη(x)

)
φ(x)

∣∣∣∣∣
is bounded from above by 2(c1 + c2)M

−3. This yields

∣∣(−L)�N(η) − λN�N(η)
∣∣ ≤ 2(c1 + c2)

M3

and gives condition (46) in Lemma 3.1. To verify condition (47), we follow the ideas of the
proof of Lemma 2.2 in [34]. Observe that the process (�(ηt ))t≥0 can change its value only
when an edge or boundary vertex is updated. This happens at a rate N ′ Poisson clock where
N ′ := N − 1 + α + β + γ + δ. For two configurations η and η′ which differ by at most one
transition, we have that

∣∣�(η) − �
(
η′)∣∣ ≤ 2 max

x∈[2N]
∣∣φ(x) − φ(x + 1)

∣∣ ≤ c3

M

for some constant c3 = c3(C,D) > 0. Combining these observations, we conclude

d

dt
E

[〈M〉t ] ≤ N ′
(

c3

M

)2
for all t ≥ 0.

This gives the desired bound on R of order N−1. Since max(|�N(1)|, |�N(0)|) is of order
N , we see that Lemma 3.1 yields the lower bound stated in Theorem 1.1. �

Next, we consider the case of the simple exclusion process with open boundaries when
particles are allowed to enter and exit the segment only at one side. Without loss of generality,
assume that max(α, γ ) = 0 and max(β, δ) > 0 holds. We will provide an argument similar to
Lemma 3.2. To do so, we will use the height function representation of the simple exclusion
process with open boundaries defined in Section 2.1.2.

LEMMA 3.3. Recall that p = 1
2 and assume that max(α, γ ) = 0 and max(β, δ) > 0

holds. For D defined in (49), let φ̃ : Z/(2N)Z →R be

(54) φ̃(x) := sin
(

xπ

2(N + D)

)
for all x ∈ [N − 1]

and set φ̃(x) = φ̃(2N + 1 − x) for all x ∈ {N + 1, . . . ,2N}. Moreover, we set λ̃N := 1 −
cos( π

2(N+D)
) and define

(55) φ̃(N) := 1

β + δ − λ̃N

φ̃(N − 1).

Recall the height function for the simple exclusion process defined in (21) and set

(56) �̃N(η) :=
2N∑
x=1

hη(x)φ̃(x) + φ̃(N)

λ̃N

(β − δ) for all η ∈ �N.

Then �̃N satisfies the conditions of Lemma 3.1 for λ = λ̃N , some c of order N−4, some R of
order N and ‖�̃N‖∞ of order N2. In particular, the lower bound in Theorem 1.2 holds for
max(α, γ ) = 0 and max(β, δ) > 0.
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PROOF. Using trigonometric identities, we have that

(57) (�φ̃)(x) = −λ̃N φ̃(x)

holds for all x ∈ {1, . . . ,N − 2} ∪ {N + 2, . . . ,2N − 1}. By our choice of D, observe that

(58)
∣∣∣∣1

2
φ̃(N − 2) + β + δ

2
φ̃(N) − (1 − λ̃N )φ̃(N − 1)

∣∣∣∣ ≤ c̃

N4

holds for some constant c̃ > 0 using the Taylor expansion for φ̃ and λ̃N , and trigonometric
identities. For fixed x ∈ [2N ], set Gx(η) = hη(x) for all η ∈ �N , and observe that

(LGx)(η) = (�hη)(x) + 1{x=N}
(
(1 − δ − β)(�hη)(N) + δ − β

)
.

Together with the facts that hη(0) = 0 and φ̃(0) = 0, and (58) we obtain

2N−1∑
x=1

(LGx)(η)φ̃(x) =
2N−1∑
x=1

(�hη)(x)φ̃(x) + φ̃(N)
(
(�hη)(N)(β + δ − 1) + δ − β

)

= −λ̃N

2N−1∑
x=1

Gx(η)φ̃(x) + φ̃(N)(δ − β).

Hence, we see that

∣∣(−L)�̃N(η) − λ̃N�̃N(η)
∣∣ ≤ c̃

N4

holds, which gives condition (46) of Lemma 3.1 for c of order N−4. For condition (47), we
again follow the ideas of the proof of Lemma 2.2 in [34]. Note that the process (�̃(ηt ))t≥0
can change its value only when an edge or boundary vertex is updated. This happens at a rate
N ′ Poisson clock for N ′ = N − 1 + β + δ. For two configurations η and η′ which differ by
at most one transition, observe that �̃(η) and �̃(η′) differ by at most 2. Hence, we conclude
that

d

dt
E

[〈M〉t ] ≤ 4N ′ for all t ≥ 0.

This gives the desired bound on R of order N . Since we have that max(|�̃(1)|, |�̃(0)|) is of
order N2, Lemma 3.1 yields the desired lower bound. �

Combining Lemma 3.2 and Lemma 3.3, this finishes the proof of the lower bounds in
Theorem 1.1 and Theorem 1.2.

4. Upper bounds for the SSEP with open boundaries. In this section, we prove the
upper bounds in Theorem 1.1 and Theorem 1.2. We start with a general upper bound for the
simple exclusion process with open boundaries for p = 1

2 and arbitrary boundary rates with
max(α,β, γ, δ) > 0. This bound is refined in Section 4.2 when particles enter and exit only
at one side of the segment.

4.1. A general upper bound. We now prove the upper bound in Theorem 1.1. Without
loss of generality, assume that max(α,β, γ, δ) = α holds as we can flip the segment and use
the particle – empty site symmetry, otherwise. Let τ be the first time at which all second class
particles have left in the disagreement process (ξt )t≥0. By Corollary 2.5 (taking t = log N

ε
) it

suffices to show that for some constant c > 0, and all t ≥ 0,

(59) P
(
τ > ctN2) ≤ Ne−t .
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Since p = 1
2 and objects of the same type are indistinguishable, we can also describe the

dynamics along the edges such that the values of the endpoints are swapped at rate 1
2 , inde-

pendently. From this perspective, the second class particles perform continuous-time simple
random walks with absorption at (at least one of) the boundaries. Using a comparison to the
Gambler’s ruin problem on [N ] with reflection at the right-hand side, we see that with prob-
ability at least 1

2 , a given second class particle gets either absorbed or reaches site 1 by time
2N2. Note that this bound does not depend on the starting point of the particle. Moreover, for
a second class particle at site 1 at time t , with probability at least (1 − e−α)e−1/2 the particle
gets absorbed at the boundary by time t + 1. Thus, we have that

(60) P
(
τ∗ > 2N2 + 1

) ≤ 1 − 1 − e−α

2e1/2

holds, where τ∗ denotes the absorption time of a fixed second class particle in the above
dynamics. Using (60) and the Markov property, we see that

(61) P
(
τ∗ > t

2e1/2

1 − e−α

(
2N2 + 1

)) ≤
(

1 − 1 − e−α

2e1/2

)t 2e1/2

1−e−α ≤ e−t

for all t ∈ N. The inequality (59), and hence the upper bound in Theorem 1.1 follow using a
union bound on the events in (61), and choosing c accordingly.

REMARK 4.1. Note that by a standard argument, the bound in (59) implies that any
eigenvalue λ of the generator of the symmetric simple exclusion process with open bound-
aries must satisfy |λ|−1 ≤ cN2; see Corollary 12.7 in [39] for a similar statement for re-
versible, discrete-time Markov chains.

4.2. Cutoff for the SSEP with one open boundary. In this section, we prove the upper
bound in Theorem 1.2 using the ideas and results of [32]. Since large parts of the proof will
follow verbatim from the arguments in Section 8 of [32] for the simple exclusion process,
we will focus on presenting the required adjustments in the proof rather than giving full
details. In Sections 4.2.1 to 4.2.3, we collect some technical results on the simple exclusion
process with open boundaries. Together with the results presented in Section 2, this will
cover the corresponding preliminaries on the simple exclusion process in Section 6 of [32].
In Section 4.2.4, we highlight how these results are used if one adapts the arguments of [32]
for the simple exclusion process with one open boundary.

4.2.1. Correlation properties of the SSEP with one open boundary. Our first preliminary
result is the FKG-inequality as well as a corollary of Holley’s inequality for the simple ex-
clusion process with p = 1

2 and one open boundary. For any two configurations η, ζ ∈ �N ,
we let min(η, ζ ) and max(η, ζ ) be the configurations in �N which satisfy

(62) hmin(η,ζ )(x) := min
(
hη(x), hζ (x)

)
and hmax(η,ζ )(x) := max

(
hη(x), hζ (x)

)
for all x ∈ [N ], respectively. Note that min(η, ζ ) and max(η, ζ ) are indeed elements of �N

and �N equipped with these operations is a distributive lattice. By (39)

μ
(
min(η, ζ )

)
μ

(
max(η, ζ )

) = μ(η)μ(ζ )

holds when δ ≥ β , and similarly for δ < β . With these insights, the next result follows from
the same arguments as Proposition 6.1 in [32].
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LEMMA 4.2 (cf. [32], Proposition 6.1). For any two functions f and g on �N which are
increasing with respect to the partial order 	h on �N , we have that

(63)
∫

fg dμ ≥
∫

f dμ

∫
g dμ.

Moreover, we have for any two increasing subsets A ⊆ B of �N with

(64)
{
min(η, ζ )|η ∈ A,ζ ∈ B

} ⊆ B

that 1
μ(A)

∫
A f dμ ≥ 1

μ(B)

∫
B f dμ holds for any increasing function f .

4.2.2. Mean of the height function of the SSEP with one open boundary. Next, we give
an estimate on the mean of the height function of the simple exclusion process with p = 1

2
and one open boundary. For a given η ∈ �N , we define, recalling (21),

(65) h∗
η(x) := hη(x) − min(x,2N + 1 − x)

δ − β

δ + β
for all x ∈ [2N ].

Intuitively, h∗
η is the height function of η after subtracting the mean height according to equi-

librium.

LEMMA 4.3 (cf. [32], Lemma 6.4). For all N large enough, we have that

(66) max
x∈{0,...,2N}

∣∣Eη

[
h∗

ηt
(x)

]∣∣ ≤ 3Ne−λt

holds for all t ≥ 0 and initial states η ∈ �N , where λ = 1 − cos( π
2N+(β+δ)−1 ).

PROOF. Observe that the function fη : {0, . . . ,2N} × R
+
0 → R with fη(x, t) :=

Eη[h∗
ηt

(x)] for some initial state η ∈ �N is a solution to the system of equations

(67)

{
∂tfη = (

1{x �=N} + 1{x=N}(β + δ)
)
�fη,

fη(0, t) = fη(2N, t) = 0

for all t ≥ 0 and x ∈ {0, . . . ,2N}, with initial condition fη(x,0) = h∗
η(x). Here, � denotes the

discrete Laplace operator which is defined in (52). Using Taylor expansion and a continuity
argument, we see that there exists some cN ∈ [ 1

2(β+δ)
− 1, 1

2(β+δ)
] such that for all N large

enough, the function g : {0,1, . . . ,2N} →R with

g(x, t) :=
(
1{x≤N} sin

(
xπ

2(N + cN)

)
+ 1{x>N} sin

(
(2N − x)π

2(N + cN)

))
e−λN t

for all x ∈ {0,1, . . . ,2N}, t ≥ 0 and λN := 1− cos( π
2(N+cN )

), is a solution to (67), with initial
condition g(x,0). Note that sin(zπ/2) ≥ min(z,2 − z) holds for all z ∈ [0,2], and cN ≥ −1.
Hence, we have for sufficiently large N that

∣∣h∗
η(x)

∣∣ ≤ 2 min(x,2N − x) ≤ 3Ng(x,0)

for all x ∈ {0,1, . . . ,2N} and η ∈ �N . Since this relation is preserved in (67) over time, we
conclude. �



992 N. GANTERT, E. NESTORIDI AND D. SCHMID

4.2.3. Scaling limits for the SSEP with one open boundary. We now study the law of the
height function in equilibrium.

LEMMA 4.4 (cf. [32], Lemma 8.5). Let η be a configuration sampled according to the
stationary distribution μ of the simple exclusion process with p = 1

2 and one open boundary.
Then

(68)
(

β + δ√
Nβδ

h∗
η(xN)

)
x∈[0,1]

converges for N → ∞ in law to a standard Brownian motion on the interval [0,1].

PROOF. Using the explicit form of the invariant distribution μ in (39) for p = 1
2 and

the binomial theorem, we see that the total number of particles |η| in a configuration η ac-
cording to μ is binomial-(N, δ

β+δ
)-distributed. Conditioning on the number of particles in

the segment, observe that the number of particles in η until position y is binomial-(y, δ
β+δ

)-
distributed. The convergence for all finite marginals follows from the De Moivre–Laplace
theorem. Together with a tightness argument, we obtain the convergence in law to a standard
Brownian motion on [0,1]. �

4.2.4. Proof of the upper bound in Theorem 1.2. The upper bound in Theorem 1.2 is
shown in two steps. First, we give an upper bound on the time it takes to reach equilibrium
when starting from the two extremal configurations 1 and 0. In the next step, we consider
a suitable coupling such that the exclusion processes started from 1 and 0 agree with high
probability. This will be formalized in Lemma 4.5 and Lemma 4.6.

LEMMA 4.5 (cf. [32], Propositions 8.2). Let (η1
t )t≥0 and (η0

t )t≥0 denote the simple ex-
clusion processes with one open boundary and p = 1

2 started from the configurations 1 and
0, respectively. For a given ε > 0, we set

(69) t0 := 4

π2 N2 logN

(
1 + ε

2

)
.

Then we have that

lim
N→∞

∥∥P (
η1

t0
∈ ·) − μ

∥∥
TV

= 0 and lim
N→∞

∥∥P (
η0

t0
∈ ·) − μ

∥∥
TV

= 0(70)

holds for all ε > 0.

SKETCH OF THE PROOF. The proof of Lemma 4.5 is divided into two main steps. First,
we consider the simple exclusion process (ηt )t≥0 with open boundaries for initial states 1 and
0 up to time t2, where

(71) t2 := 4

π2 N2 logN

(
1 + ε

4

)
.

We study the functions (h∗
ηt

)t≥0, defined in (65), and evaluate them at xi := �2iN/K� for
K := ε−1 and i ∈ {0, . . . ,K}. Following [32], we call the dynamics restricted to (xi)i∈[K]
the skeleton. Our goal is to argue that when the mean of (h∗

ηt
)t≥0 at time t2 has at most the

order of the typical fluctuations within the stationary distribution μ, the law of the skeleton at
time t2 is in total-variation distance close to equilibrium. This follows by applying the same
arguments as for the proof of Lemma 8.4 in [32], replacing Proposition 6.1 and Lemma 8.5
in [32] by Lemma 4.2 and Lemma 4.4, respectively. In order to conclude the first step, use
Lemma 4.3 to see that for initial state η ∈ �N , we have that Eη[h∗

ηt
(x)] is at most of order
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√
N at time t = t2 for all x ∈ [2N ]. In a second step, we apply the censoring inequality in

Lemma 2.12 for the censoring scheme

C(t) = {{xi, xi + 1} : i ∈ [K]},
where t ∈ [t2, t0], in order to show that the dynamics mixes locally. In words, this censoring
scheme ensures that the number of particles in the interval [xi−1, xi] for all i ∈ [K] remains
almost surely constant between t2 and t0. Thus, we have K independent simple exclusion
processes on a closed segment during this period. Together with the above bounds at time t2,
the remainder of the argument is analogous to the proof of Proposition 8.2 in [32]. �

Note that Lemma 4.5 does not immediately imply Theorem 1.2 since there could be an
initial state other than 1 or 0, which maximizes the distance from equilibrium. However,
using Lemma 4.5, we obtain the following result which allows us to conclude the upper
bound in Theorem 1.2 using Lemma 2.2.

LEMMA 4.6 (cf. [32], Propositions 8.1). For a given ε > 0, we set

(72) t1 := 4

π2 N2 logN(1 + ε).

Then there exists a coupling P̃ which respects 	h such that

(73) lim
N→∞ P̃

(
η1

t1
�= η0

t1

) = 0

is satisfied for all ε > 0.

SKETCH OF THE PROOF. In order to show Lemma 4.6 using Lemma 4.5, we consider a
coupling which is monotone with respect to 	h and maximizes the fluctuations of (h∗

ηt
)t≥0.

We use the construction of the alternative coupling defined in [32], Section 8.4. However,
for all transitions where particles enter and exit the segment, we apply the update rule of the
canonical coupling for the simple exclusion process with open boundaries, that is, we use
the same rate β and rate δ Poisson clocks in both simple exclusion processes to determine
when a boundary vertex is updated. The proof of Lemma 4.6 follows the same arguments
as the proof of Proposition 8.1 given in [32], Section 8.4, replacing Lemma 8.5 in [32] by
Lemma 4.4. �

5. Mixing times for ASEP with one blocked entry. In this section, we prove Theo-
rem 1.3 for the asymmetric simple exclusion process with one blocked entry. We start by
defining the simple exclusion process on the half-line as an auxiliary process, and investigate
its current. By a coupling to the original dynamics, this allows us to deduce the lower bound
on the mixing time. For the upper bound, we again use the simple exclusion process on the
half-line to estimate the hitting time with respect to the extremal states 0 and 1, and conclude
by a shock wave argument. In the following, we only consider the case α = 0 and β > 0, and
prove (8), since (9) follows from the same arguments using the symmetry between particles
and empty sites.

5.1. The simple exclusion process on the half-line. In the following, a key tool in our
investigations will be the simple exclusion process (σt )t≥0 on the half-line N = {1,2, . . . }
with drift p ∈ [1

2 ,1], where particles enter at rate α̃ and exit at rate γ̃ at site 1. Formally,
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(σt )t≥0 is defined as the Feller process on {0,1}N generated by

(74)

(
LNf

)
(η)

=
∞∑

x=1

(
pη(x)

(
1 − η(x + 1)

) + (1 − p)η(x + 1)
(
1 − η(x)

))[
f

(
ηx,x+1) − f (η)

]

+ (
α̃

(
1 − η(1)

) + γ̃ η(1)
)[

f
(
η1) − f (η)

]
for all cylinder functions f . Recall the notion of the current from (31), and let (JN

t )t≥0 be the
current of (σt )t≥0, that is, the net number of particles entering at the left-hand side bound-
ary. Moreover, recall (16) and the stochastic domination for probability measures from Sec-
tion 2.5. We have the following bound on the current of the simple exclusion process on the
half-line, which extends results from [40] for general boundary parameters.

LEMMA 5.1. Let α̃ > 0 and p > 1
2 , and recall a = a(α̃, γ̃ , p) from (6). Then the simple

exclusion process (σt )t≥0 started from the empty initial configuration 0 satisfies

(75) P0(σt ∈ ·) �c ν 1
1+a

,

where ν 1
1+a

denotes the Bernoulli- 1
1+a

-product measure on N. Furthermore,

(76) lim
t→∞

JN
t

t
= (2p − 1)

max(a,1)

(max(a,1) + 1)2

holds almost surely.

PROOF. Note that the measure ν 1
1+a

is invariant for the simple exclusion process on the

half-line. This can be seen by a direct calculation using the generator in (74), or alternatively,
by Lemma 2.9 when taking b = 1/a and letting the size of the segment go to infinity. Hence,
(75) follows using the canonical coupling and monotonicity for the simple exclusion process
on the half-line when starting from ν 1

1+a
.

For ≤ in (76), we compare (σt )t≥0 to a simple exclusion process (ηt )t≥0 on the segment of
size N with drift p and boundary parameters α = α̃, β = p, γ = γ̃ , δ = 0 (implying b = 0)
which is started from the empty configuration. We adjust now the canonical coupling P such
that we use the same Poisson clocks in both processes on the sites [N −1], and try to remove a
particle in (ηt )t≥0 at site N whenever the clock for performing a jump from site N to N +1 in
(σt )t≥0 rings. In particular, the coupling ensures that when ηt (x) = 1 holds for some x ∈ [N ],
then σt (x) = 1, provided that both processes agreed initially on [N ]. Therefore, the current
(JN

t )t≥0 of (ηt )t≥0 satisfies JN
t ≥ JN

t for all t ≥ 0 and N ∈ N, P-almost surely, and we
conclude ≤ in (76) by Lemma 2.8 and taking N → ∞.

For ≥ in (76), we assume without loss of generality that a ≥ 1. This is due to the fact
that for a = a(α̃, γ̃ , p) < 1, we can decrease α̃ continuously until we reach a = 1, and ap-
ply (a half-line version of) Lemma 2.1 to see that this will only decrease the current. Using
Lemma 2.1 again, and the canonical coupling P, we see that the current in (76) is bounded
from below by the current in (σt )t≥0 when starting initially from ν 1

1+a
. In order to conclude

(76), it suffices to show that ν 1
1+a

is extremal invariant, that is, the measure ν 1
1+a

is an extremal

point in the (convex) set of invariant measures of (σt )t≥0; see Theorem B.52 of [41]. Follow-
ing the arguments of Theorem 1.17 in Part III of [41], which relates the extremal invariant
measures of the ASEP on Z to those of the SSEP on Z, we have to show that ν 1

1+a
is extremal

invariant for the simple exclusion process on the half-line with p = 1
2 , where particles enter
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at rate 1
2(α̃+a−1γ̃ ) and exit at rate 1

2(γ̃ +aα̃), respectively. As observed in Section 2 of [29],
a sufficient condition for some distribution ν to be extremal invariant is that for any finite set
A ⊆ N, we have

(77) lim
t→∞PνA

1
(σt ∈ B) = lim

t→∞PνA
0
(σt ∈ B) for all finite B ⊆ N,

where νA
1 (·) := ν(· | η(x) = 1 ∀x ∈ A) and νA

0 (·) := ν(· | η(x) = 0 ∀x ∈ A). The process
(σt )t≥0 can be realized as a disagreement process within the canonical coupling, where we
start with initial laws νA

1 and νA
0 . Since ν 1

1+a
is a product measure, we have initially second

class particles on A, and a Bernoulli- 1
1+a

-product measure everywhere else. Since p = 1
2 , we

can view the dynamics as an interchange process, where all second class particles perform
symmetric simple random walk on N, with absorption at site 1 at rate at least (α̃ + a−1γ̃ +
γ̃ + aα̃)/2 > 0. This allows us to conclude (77). �

5.2. Lower bound for the ASEP with one blocked entry. We will now show ≥ in (8).
First, we assume α = γ = 0 as well as β > 0. Using (39), the stationary distributions μ = μN

of (ηt )t≥0 satisfy

(78) lim
N→∞μ

(∃x ∈ {1, . . . ,N − √
N} : η(x) = 1

) = 0.

Suppose we start from the configuration 1 with all sites being initially occupied. Using (3),
we see that in order to prove an asymptotic lower bound tN on tNmix(ε) for all ε ∈ (0,1), it
suffices to show that with probability tending to 1, no more than N − √

N particles have
exited the segment by time tN . Using the symmetry between particles and empty sites, we
see that the number of particles which have exited the segment by time tN is dominated by the
current of the simple exclusion process on the half-line with drift p and boundary parameters
α̃ = β , γ̃ = δ, evaluated at time tN . Hence, we can conclude the lower bounds on the mixing
time in Theorem 1.3 due to Lemma 5.1. Note that for γ > 0, the statement (78) holds as well,
due to Lemma 2.1. Consider the initial state ηN ∈ �N given by

(79) ηN(x) = 1x≥√
N

for all x ∈ [N ]. Comparing the process started from ηN to the blocking measure on Z, we
see that almost surely no particle reaches site 1 by time N2 for all N sufficiently large, due to
Lemma 2.7. Hence, we can now use again the previous bound via the current for the simple
exclusion process on the half-line to conclude.

5.3. An a priori upper bound on the hitting time. In order to show ≤ in (8), we will
bound the hitting time τ0, that is, the first time the process reaches 0, when all sites are
initially occupied. We start with an a priori bound when the starting configuration contains a
small number of particles and the particles are concentrated on the right-hand side.

LEMMA 5.2. Let α = γ = 0 and β > 0. For k ∈ [N − 1], assume that η ∈ �N satisfies
η(i) = 0 for all i ∈ [N − k]. There exists c = c(β, δ,p) > 0 such that for all k and N

(80) Eη[τ0] ≤ exp
(
ck3)

.

PROOF. Suppose that δ > 0 and p < 1 holds. We define the first return time τ+
0

(81) τ+
0 := inf{t ≥ τ�N\{0} : ηt = 0}

for the simple exclusion process with open boundaries, where for a set A ⊆ �N , we let τA

denote the hitting time of A. Note that for all η ∈ �N \ {0}
Eη[τ0] ≤ E0

[
τ+

0
](
P0

(
τη < τ+

0
))−1

.
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Further, by Kac’s lemma E0[τ+
0 ] = (μ(0))−1 holds, and thus E0[τ+

0 ] is bounded uniformly
in N due to (39) (note that ZN in (39) is bounded uniformly in N ). Starting from 0, there
exists a sequence of at most k2 updates to reach η involving only the rightmost k + 1 edges
and the right-hand side boundary. Moreover, this sequence can be chosen in such a way that
all other updates do not affect the evolution of the process. Thus, forcing the rate 1 Poisson
clocks along these edges to ring according to a given order, we see that

μ(0)P0
(
τη < τ+

0
) ≥ μ(0)

(
min(1 − p, δ)

k + β + δ

)k2

≥ exp
(−ck3)

holds for some c > 0. For δ = 0 or p = 1, use Lemma 2.3 to bound Eη[τ0] by the expected
hitting time for a simple exclusion process with the same parameters, except for some differ-
ent choices of δ > 0 and p < 1. �

5.4. Upper bound for the ASEP with one blocked entry. We now prove ≤ in (8) for
the asymmetric simple exclusion process (ηt )t≥0 with one blocked entry. We will bound
the hitting time τ0 of the configuration 0, starting from configuration 1 where all sites are
occupied, and conclude by Lemma 2.2 since τ0 stochastically dominates the coupling time
τ in (19) between the states 0 and 1. Using Lemma 2.1, we can assume without loss of
generality that γ = 0. For all k ∈ [N ], let θk be the configuration in �N where the rightmost
k sites are occupied and all other sites are empty, and recall that L(η) denotes the position of
the leftmost particle in η. We set

(82) cb,p := (
max(b,1) + 1

)2
/
(
(2p − 1)max(b,1)

)
.

Our key tool is the following lemma, showing that the particles travel like a shock wave at
linear speed until a time τ̃ (defined later on). In particular, τ̃ will be a stopping time which
describes that enough particles exited.

LEMMA 5.3 (Shock wave phenomenon). Assume α = γ = 0 and β > 0. Further, let
p > 1

2 and δ ≥ 0. Let ε, ε̃ > 0. Then there exist N0, k0 ∈ N such that for all N ≥ N0 and
k ≥ k0 with k = k(N) ∈ [N ], we find a stopping time τ̃ such that (ηt )t≥0 on �N started from
θk satisfies

(83) P
(∣∣L(ητ̃ ) − N

∣∣ ≤ log3 k and τ̃ ≤ (1 + ε)cb,pk | η0 = θk

) ≥ 1 − ε̃.

Moreover, for all t ≥ 0, we have that

(84) P
(
τ0 ≥ (1 + ε)cb,pk + t | η0 = θk

) ≤ P(τ0 ≥ t | η0 = θ�log3 k�) + ε̃.

The proof of Lemma 5.3 is deferred to the upcoming Section 5.5. We conclude this para-
graph by showing Theorem 1.3 under the assumption that Lemma 5.3 holds.

PROOF OF THEOREM 1.3 USING LEMMA 5.3. Fix ε, ε̃ > 0. For N sufficiently large,
we apply Lemma 5.3 twice, for k = N with t = 2εcb,pN as well as for k = log3 N ≤
(1 + ε)−1εN with t = εcb,pN , respectively, to see that

(85)
P

(
τ0 ≥ (1 + 3ε)cb,pN | η0 = 1

) ≤ P(τ0 ≥ 2εcb,pN | η0 = θ�log3 N�) + ε̃

≤ P(τ0 ≥ εcb,pN | η0 = θ�log3(�log3 N�)�) + 2ε̃

holds. Using Lemma 5.2 and Markov’s inequality, the right-hand side of (85) is bounded by
3ε̃ for all N large enough. Since ε and ε̃ were arbitrary, we apply Lemma 2.2 to conclude.

�
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FIG. 4. Visualization of the initial configurations of the different processes used in the proof of the upper bound
in Theorem 1.3 for N = 4 and k = 3.

5.5. Proof of the shock wave phenomenon. In order to prove Lemma 5.3, we will now
introduce three auxiliary exclusion processes, which will be intertwined by the canonical
coupling P. A visualization of their construction can be found in Figure 4. In a first step, we
define (ηNt )t≥0 by extending the simple exclusion process (ηt )t≥0 on the segment of size N

to the half-line (−∞,N ]. More precisely, we let (ηNt )t≥0 be the simple exclusion process
on the half-line (−∞,N ] ∩ Z with drift p, and particles exiting and entering at site N at
rates β and δ, respectively. On all positive integers, we use the same clocks for the processes
(ηt )t≥0 and (ηNt )t≥0. In particular, when both processes agree initially on the sites in [N ], this
construction will ensure that the position L(·) of the leftmost particle satisfies L(ηNt ) ≤ L(ηt )

almost surely for all t ≥ 0. In the following, we will assume that (ηt )t≥0 and (ηNt )t≥0 are
started from the configurations, where exactly the rightmost k sites are occupied.

Next, we let (ζt )t≥0 be the exclusion process on (−∞,N ] ∩ Z with the same transition
rules as (ηNt )t≥0, but started from the all full configuration. Under the canonical coupling P,
let (ξt )t≥0 denote the disagreement process between (ηNt )t≥0 and (ζt )t≥0 (recall (25)). Note
that (ξt )t≥0 is again an exclusion process on (−∞,N ] ∩ Z where the rightmost k sites are
initially occupied by first class particles, and all other sites by second class particles. If ξt

has a positive number of first class particles, let L1(ξt ) be the position of its leftmost first
class particle. For all x ∈ [k], let τ̃ (x) be the first time at which k − x particles have exited in
(ζt )t≥0. The next lemma shows that L1(ξt ) is close to the boundary at time t = τ̃ (�log2 k�).
Indeed τ̃ (�log2 k�) will be the stopping time τ̃ whose existence we claim in Lemma 5.3.

LEMMA 5.4. Let ε̃ > 0. Then there exist k0 ∈ N such that for all k ≥ k0 and all N ∈ N,
we have that under the above canonical coupling P

(86) P
(∣∣L1(ξτ̃ (�log2 k�)) − N

∣∣ ≤ log3 k
) ≥ 1 − ε̃.

PROOF. Note that by construction, (ξt )t≥0 must contain at least log2 k first class particles
until time τ̃ (�log2 k�), and hence L1(ξτ̃ (�log2 k�)) is well defined. In order to show (86), we
use similar ideas as Benjamini et al. in [4] for the closed segment. Recall (27) and define a
process (ξ∗

t )t≥0 on A0 from (ξt )t≥0 as follows: For every t ≥ 0, consider the sequence which
we obtain by first deleting all sites which are empty in ξt (here certain edges are merged) and
then replacing all second class particles by empty sites. We let ξ∗

t be the unique configuration
in A0 which contains this sequence, and has only empty sites to the left and only first class
particles to its right; see Figure 5. Note that ξ∗

0 = ϑ0 holds by construction.
We claim that up to the first time τ ∗ at which a second class particle exits at the right-hand

side boundary in (ξt )t≥0, the process (ξ∗
t )t≥0 has the law of a simple exclusion process on A0

with censoring. More precisely, an edge e is censored in ξ∗
t at time t if:
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FIG. 5. Construction of ξ∗ ∈ A0 from ξ . All censored edges are drawn dashed.

• one of its endpoints is > N ,
• the edge is merged in the first step of the construction from two edges which are adjacent

to an empty site,

see Figure 5. To see this, consider an update in the configuration ξt along an edge e =
{x, x + 1}. When ξt (x) = ξt (x + 1), or one of the sites in e contains an empty site, this
will not change the configuration ξ∗

t . Similarly, whenever an empty site or a particle exits in
ξt , this does not change the configuration ξ∗

t . However, each update in ξt along the edge e in
which we swap a first and a second class particle will in the same way be applied in ξ∗

t , that
is, we will swap the particle – empty site pair along the corresponding edge in ξ∗

t . As these
are all possible updates in ξt , this gives the claim.

Equipped with the process (ξ∗
t )t≥0, we will now show Lemma 5.4 using four families of

events {Bi
k}i∈[4],k∈N. These events will allow us to control:

• the total number of particles which exited in (ξt )t≥0 (events B1
k ),

• the number of second class particles which exited in (ξt )t≥0 (events B2
k ),

• the interaction between first and second class particles in (ξt )t≥0 (events B3
k ),

• the density of empty sites in (ξt )t≥0 (events B4
k ).

Recall the constant cb,p from (82). For all k ∈N and ε > 0, we define

(87)
B1

k := {
τ̃
(⌈

log2 k
⌉) ≤ (1 + ε)cb,pk

}
,

B2
k := {

τ̃
(⌈

log2 k
⌉) ≤ τ ∗}

to be the events that there exists some time before (1 + ε)cb,pk at which at least k − �log2 k�
particles in (ζt )t≥0 exited, and that no second class particle exited in (ξt )t≥0 before that time,
respectively. Observe that the total number of particles which have left in (ζt )t≥0 at time
t has the same law as the current of a simple exclusion process on the half-line at time t

with boundary parameters α̃ = β and γ̃ = δ (recall (74)). Hence, Lemma 5.1 implies that
P(B1

k ) = 1 − ε̃/4 for all k sufficiently large. Moreover, when{
τ ∗ ≤ τ̃

(⌈
log2 k

⌉) ≤ (1 + ε)cb,pk
}

holds, there must be an empty site in (ξ∗
t )t≥0 at position log2 k until time τ ∗. Note that the

censoring scheme for the process (ξ∗
t )t≥0 does not depend on the motion of the particles

in (ξ∗
t )t≥0, since in order to determine the positions of the empty sites in (ξt )t≥0, we do

not need to distinguish between first and second class particles. Thus, we can conclude that
P(B2

k | B1
k ) ≥ 1 − ε̃/4 by combining Lemma 2.7 and Remark 2.13, using that the process

(ξ∗
t )t≥0 can be seen as a simple exclusion process with censoring. In particular, this yields

P(B2
k ) ≥ 1 − ε̃/2. Recall that R(·) denotes the position of the rightmost empty site. Again,

by Lemma 2.7, we see that the events

B3
k := {∣∣L(

ξ∗
t

) − R
(
ξ∗
t

)∣∣ ≤ log2 k for t = τ̃�log2 k�
}
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satisfy P(B3
k | B1

k ∩ B2
k ) ≥ 1 − ε̃/4 for k sufficiently large. Note that whenever the events B1

k ,
B2

k and B3
k occur, a sufficient condition for the statement in Lemma 5.4 to hold is that the

event

B4
k := {|x ∈ [

N − log3 k,N
] : ξt (x) �= 0| ≥ 2 log2 k for all t ∈ [

0, (1 + ε)cb,pk
]}

occurs. Using the particle – empty site symmetry, we see by (75) in Lemma 5.1 that the law
of ζt dominates a Bernoulli- b

b+1 -product measure for all t ∈ [0, (1 + ε)cb,pk], and hence, we

can conclude that P(B4
k | B1

k ∩ B2
k ∩ B3

k ) ≥ 1 − ε̃/4 for all k large enough. �

PROOF OF LEMMA 5.3. Set τ̃ = τ̃ (�log2 k�) and recall that L(ηNt ) ≤ L(ηt ) holds almost
surely for all t ≥ 0. By Lemma 5.1, we get that τ̃ ≤ (1 + ε)cb,pk holds with probability
tending to 1 when k → ∞. The first statement (83) is now immediate from Lemma 5.4. For
the second statement (84), we apply the strong Markov property for (ηt )t≥0 with respect to
the stopping time τ̃ (�log2 k�). Note that by adding additional particles to the process (ηt )t≥0
at some time t ≤ τ0, we will only increase the hitting time τ0 of the state 0. Hence, whenever
the event in (83) holds with respect to τ̃ (�log2 k�), we see that the hitting time of 0 starting
from ητ̃(�log2 k�) is stochastically dominated by the hitting time when starting from θ�log3 k�.
This yields (84). �

6. Mixing times for the reverse bias phase. In this section, we prove upper and lower
bounds on the mixing time of the simple exclusion process in the reverse bias phase. Recall
that 1

2 < p < 1 and α = β = 0 holds, that is, the particles have a drift to the right-hand
side, but can neither exit at the right-hand side nor enter at the left-hand side boundary.
Intuitively, the particles have to move against their natural drift direction. We will see that
this results in an exponentially large mixing time. For the lower bound, we consider two
exclusion processes with different initial states and show that with high probability, they
have a disjoint support even at exponentially large times. For the upper bound, we compare
the disagreement process with respect to initial states 0 and 1 to a birth-and-death chain.

6.1. Lower bounds for the reverse bias phase. We start with the lower bound when
min(γ, δ) > 0 holds. Recall the total-variation distance from (3) and note that by the triangle
inequality

(88) max
ζ∈{θ,θ ′}

∥∥Pζ (ηt ∈ ·) − μ
∥∥

TV ≥ 1

2

∥∥Pθ(ηt ∈ ·) − Pθ ′(ηt ∈ ·)∥∥TV

holds for any two initial states θ, θ ′ ∈ �N of the simple exclusion process (ηt )t≥0 with open
boundaries. We define

(89) θ(x) := 1{x≥�N
2 �} and θ ′(x) := 1{x≥�N

2 �+1} for all x ∈ [N ].
Note that the total-variation distance of two distributions is 1 if they have disjoint support.
Hence, we see that the right-hand side of (88) is bounded from below by 1 minus the proba-
bility that at least one particle enters or exits in at least one of the exclusion processes started
from θ and θ ′. We estimate this probability by comparing the simple exclusion processes
started from θ and θ ′, respectively, to the simple exclusion processes on Z via the embedding

(90) η̃(x) :=

⎧⎪⎪⎨
⎪⎪⎩

η(x) if x ∈ [N ],
0 if x ≤ 0,

1 if x > N
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for all x ∈ Z and all configurations η ∈ �N . In particular, note that θ̃ and θ̃ ′ are the ground
states in An and An+1 for n = �N/2�, respectively. Moreover, using the usual extension of
the canonical coupling on the segment to the integers via the censoring inequality, we obtain
that the simple exclusion processes started from θ̃ and θ̃ ′ are stochastically dominated by
the respective exclusion processes started from the blocking measures on An and An+1; see
Remark 2.6. Thus, we obtain the lower bound in (11) of Theorem 1.4 by applying Lemma 2.7
for the simple exclusion process on Z with x = �N/2� − 1 and ε = N−1.

In the case where particles can exit only from one side of the segment, a similar argument
holds. More precisely, using the particle – empty site symmetry, it suffices to consider γ > 0
and α,β, δ = 0. The stationary distribution μ is then the Dirac measure on 0. Consider the
initial state ζ with ζ(x) = 1{x=N} for all x ∈ [N ] and note that ζ̃ is the ground state on AN−1.
Similar to the previous case, we obtain the lower bound in (10) by applying Lemma 2.7 for
the simple exclusion process on Z with x = N − 2 and ε = N−1. This concludes the proof of
the lower bounds in Theorem 1.4.

6.2. Upper bounds for the reverse bias phase. We now show the upper bounds in Theo-
rem 1.4. By Corollary 2.5, it suffices to consider the disagreement process for states 1 and 0,
and study the time it takes until all second class particles have left the segment. In the follow-
ing, we enumerate the second class particles from left to right, and let (X

(i)
t )t≥0 for i ∈ [N ]

denote the trajectory of the ith second class particle in the disagreement process. Moreover,
denote its exit time of the segment by τ ex

i . In order to bound these exit times, we compare

(X
(i)
t )t≥0 to a certain continuous-time birth-and-death chain (Bt )t≥0 with state space [n] for

some n ∈N which will be determined later on. Similar to (81), we let for all j ∈ [n]
(91) τ+

j := inf{t ≥ τ[n]\{j} : Bt = j}
be the first return time of (Bt )t≥0 to the state j .

LEMMA 6.1. Consider a birth-and-death chain (Bt )t≥0 on [n] for some n ∈ N with
transition rates 1 − p to the right and p to the left (and 1 − p to the right at 1, p to the left
at N ). Then we have that the return time τ+

n to the site n satisfies

(92) Ek

[
τ+
n

] ≤ 1

Z

(
p

1 − p

)n

for any initial state k ∈ [n], with a constant Z > 0.

PROOF. Observe that the stationary distribution μ′ of the birth-and-death chain satisfies
μ′(x) = 1

Z′ (
1−p
p

)x for all x ∈ [n], with a normalization constant Z′ > 0. Moreover,

Ek

[
τ+
n

] ≤ Pn

(
τ+
k < τ+

n

)−1
En

[
τ+
n

] = Pn

(
τ+
k < τ+

n

)−1
Z′

(
p

1 − p

)n

holds for all k ∈ [n − 1]. Observe that Pn(τ
+
k < τ+

n ) is bounded from below by some c > 0
uniformly in k and n. We obtain (92) for 1/Z = supn∈N c−1Z′. �

We start with the case where particles can enter only at one side of the segment. Without
loss of generality, assume that δ > 0 and γ = 0 holds. The stationary distribution μ is then
the Dirac measure on the configuration 1. Observe that each second class particle moves to
the right at least at rate 1 −p, and to the left at most at rate p independently of the remaining
particle configuration. Thus, we have that until time τ ex

i , (X
(i)
t )t≥0 stochastically dominates

the process (Bt )t≥0 from Lemma 6.1 for n = N and started from B0 = X
(i)
0 , that is, we find
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a coupling such that X
(i)
t ≥ Bt holds almost surely for all t < τ ex

i . Moreover, when a second

class particle reaches site N at time t , with probability at least 1−e−δ

e
, it has exited the segment

by time t +1. Thus, with respect to the canonical coupling, we conclude that there exists some
constant c > 0 such that

E
[
τ ex
i

] ≤ c

(
p

1 − p

)N

for all i ∈ [N ].

Moreover, by Markov’s inequality, we see that

P
(
τ ex
i > cN2

(
p

1 − p

)N)
≤ 1

N2 for all i ∈ [N ].

We conclude the upper bound in (10) of Theorem 1.4 using a union bound for the event that
some second class particle has not left the segment by time cN2(p/(1 − p))N .

Now suppose that min(γ, δ) > 0 holds. Note that each second class particle has a distance
of at most �N/2� to either the site 1 or the site N . Consider the family of processes (Y

(i)
t )t≥0

given by

(93) Y
(i)
t := max

(
X

(i)
t − �N/2�, �N/2� + 1 − X

(i)
t

)
for all t ≥ 0 and i ∈ [N ]. Note that (Y

(i)
t )t≥0 increases by 1 at most at rate p and decreases

by 1 at least at rate 1 − p. For all i ∈ [N ], (Y
(i)
t )t≥0 is stochastically dominated by the birth-

and-death process in Lemma 6.1 for n = �N/2� and B0 = Y
(i)
0 . A similar argument as for the

one-sided case finishes the proof of Theorem 1.4.

7. Mixing times in the high and low density phase. In this section, we prove Theo-
rem 1.5 for the asymmetric simple exclusion process in the high density and low density
phase. We will focus on showing an upper bound of order N . The lower bound of order N

follows from a comparison to a single particle dynamics using the fact that the invariant mea-
sure has a positive density in the bulk; see also Section 5.2. To see this intuitively, fix some
ε > 0 sufficiently small, and note that with probability tending 1 as N → ∞, the segment
[(1 − 2ε)N, (1 − ε)N] contains at least one particle in the stationary distribution. However,
starting from the all empty configuration, we see that with probability tending 1 as N → ∞,
no particle has reached the segment by time (1 − 3ε)(2p − 1)−1N . Since ε > 0 was arbitrary,
we conclude. In the following, we will only consider the high density phase. For the low
density phase, similar arguments apply using the particle – empty site symmetry.

7.1. Construction of two disagreement processes. We assume that we are in the high den-
sity phase of the simple exclusion process with parameters (p,α,β, γ, δ), that is, we have that
a = a(p,α, γ ) and b = b(p,β, δ) defined in (6) and (7) satisfy b > max(a,1). We have the
following strategy to show the upper bound (13) in Theorem 1.5. For j ∈ [4], we study simple
exclusion processes (η

j
t )t≥0 with open boundaries within the canonical coupling P. The pro-

cesses (η1
t )t≥0, (η2

t )t≥0 and (η3
t )t≥0 are defined with respect to the parameters (p,α,β, γ, δ).

They are started at states 1, 0 and from the stationary distribution μ, respectively.
In order to define (η4

t )t≥0, note that b is decreasing and continuous in β . Thus, we can
choose some β ′ > β such that b > b′ > max(a,1) holds for b′ := b(p,β ′, δ). We let (η4

t )t≥0
be the simple exclusion process with open boundaries for parameters (p,α,β ′, γ, δ) started
from its equilibrium. Using Lemma 2.1, note that we can choose the initial configurations in
(η3

t )t≥0 and (η4
t )t≥0 such that

(94) P
(
η3

t 	c η4
t for all t ≥ 0

) = 1.
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We define (ξt )t≥0 to be the disagreement process between (η1
t )t≥0 and (η2

t )t≥0. Further, we let
(ζt )t≥0 be the disagreement process between (η3

t )t≥0 and (η4
t )t≥0. Since all simple exclusion

processes are within the canonical coupling, note that (ξt )t≥0 and (ζt )t≥0 can be seen as
Markov processes on {0,1,2}N , and (ζt )t≥0 is started from equilibrium. Further, observe that
in (ξt )t≥0, no second class particles can enter the segment. In (ζt )t≥0, second class particles
can enter only at site N provided that N is occupied by a first class particle. In Lemma 7.2,
we will see that if enough second class particles have exited in (ζt )t≥0, then (ξt )t≥0 has no
second class particles with probability tending to 1.

For i ∈ {0,1,2}, let (J
(i)
t )t≥0 denote the current of objects of type i, that is, for a given

time t ≥ 0, J
(i)
t denotes the number of objects of type i which have entered by time t minus

the number of objects of type i which have exited by time t at the left-hand side boundary in
(ζt )t≥0; see also (31). The following lemma shows that the current of second class particles
in (ζt )t≥0 is linear when starting from its equilibrium μ′.

LEMMA 7.1. Let (ζt )t≥0 have initial distribution μ′. There exists some c = c(b, b′,p) >

0 such that for all t = t (N) ≥ cN , we have that

(95) lim
N→∞ P

(−J
(2)
t (N) > 4N

) = 1.

PROOF. Let (ζ 2→1
t )t≥0 and (ζ 2→0

t )t≥0 denote the processes which we obtain from
(ζt )t≥0 by projecting all second class particles to first class particles and empty sites, re-
spectively. Noting that ζ 2→1

t = η3
t and ζ 2→0

t = η4
t for all t ≥ 0, we see that (ζ 2→1

t )t≥0
and (ζ 2→0

t )t≥0 are stationary simple exclusion processes with parameters (p,α,β, γ, δ) and
(p,α,β ′, γ, δ), respectively. Observe that (J

(1)
t + J

(2)
t )t≥0 is given by the current of parti-

cles in (ζ 2→1
t )t≥0 and (J

(0)
t + J

(2)
t )t≥0 is given by the current of empty sites in (ζ 2→0

t )t≥0.
Since (ζ 2→1

t )t≥0 and (ζ 2→0
t )t≥0 are stationary, we get by Lemma 2.8 that there exists some

N0 = N0(p, b, b′) such that for all N ≥ N0 and t > 0

t−1
E

[
J

(1)
t + J

(2)
t

] + t−1
E

[
J

(0)
t + J

(2)
t

]
<

1

2
(2p − 1)

(
b

(1 + b)2 − b′

(1 + b′)2

)
< 0.

Then using the ergodic theorem for the current in (ζ 2→1
t )t≥0 and (ζ 2→0

t )t≥0, we get

lim
N→∞ P

(
J

(0)
cN + J

(1)
cN + 2J

(2)
cN < −4N

) = 1

for some constant c > 0 which does not depend on N . Since by construction

J
(0)
t + J

(1)
t + J

(2)
t = 0 for all t ≥ 0,

and (J
(2)
t )t≥0 is decreasing in t , we conclude. �

7.2. Comparison via a multi-species exclusion process. Next, we relate the current of
second class particles in (ζt )t≥0 to the motion of the second class particles in (ξt )t≥0. The fol-
lowing lemma shows that when at least 4N second class particles have exited at the left-hand
side boundary in (ζt )t≥0, all second class particles must have left in (ξt )t≥0, with probability
tending to 1.

LEMMA 7.2. For all N large enough and T = T (N) ≤ N2, we have

(96) P
(
ξT (x) �= 2 for all x ∈ [N ] | −J

(2)
T (N) > 4N

) ≥ 1 − 1

N
,

where (J
(2)
t )t≥0 is defined with respect to (ζt )t≥0.
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FIG. 6. Coupling (χt )t≥0 between the processes (ζt )t≥0 and (ξt )t≥0 for N = 7.

PROOF OF THEOREM 1.5. The upper bound in Theorem 1.5 follows from Lemma 7.1
and Lemma 7.2 together with Corollary 2.5. �

In order to show Lemma 7.2, we require a bit of setup. Define the process (χt )t≥0 =
(ζt , ξt )t≥0 and note that under the canonical coupling, (χt )t≥0 is a Markov process with state
space SN where S := {0,1,2}2. In the following, we will use an alternative interpretation of
the process (χt )t≥0 on the state space {0,1,2}N . By construction, every site in (χt )t≥0 which
is not occupied by two first class particles or by two empty sites, must be of the form (0,2),
(2,2), (1,2) or (2,1) (e.g., note that the configuration (2,0) is not attained since whenever
a second class particle is created in (ζt )t≥0 at the boundary, there has to be a first class
particle in (ξt )t≥0). We refer to these configurations as second class particles of types 1 to 4,
respectively; see Figures 6 and 7.

By definition, χ0 contains only second class particles of types 1, 2 and 3, while all second
class particles which enter at site N must have type 4. Among each other, the second class
particles of types i and j respect the canonical coupling, that is, a particle of type j has a
higher priority than a particle of type i if i < j ; see Remark 2.4. For example, a second class
particle of type 1 associated to (0,2) has in both components a lower priority than a second
class particle of type 4 which is associated to (2,1). However, there is one exception: When
two second class particles of types 3 and 4 are updated, they create the configurations (2,2)

and (1,1). In this update mechanism, we call (1,1) a second class particle of type 5; see
Figure 7. To the other configuration values (1,1) and (0,0) in (χt )t≥0, we refer as first class
particles and empty sites, respectively. Note that when ignoring the labels of the second class
particles, the process (χt )t≥0 has the same transition rates as (ζt )t≥0. In particular, entering
and exiting of first class particles and empty sites in (χt )t≥0 is not affected by the types of
the second class particles.

FIG. 7. Visualization of the different types of second class particles. The tip of an arrow between two types
indicates which type has the lower priority. The dashed arrows signalize that updating an edge with two second
class particles of types 3 and 4 creates two second class particles of types 2 and 5, respectively.
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We will now investigate the behavior of the different types of second class particles in
(χt )t≥0 among each other using an auxiliary process (χ�

t )t≥0, which will have a similar con-
struction as (ξ∗

t )t≥0 in Section 5.5. Intuitively, for each t ≥ 0, we obtain χ�
t by deleting all

sites which are either empty or occupied by a first class particle in χt (here certain edges are
merged), and replacing all second class particles of types 1, 2, 3 with empty sites, as well
as all second class particles of types 4 or 5 with first class particles. We then extend χt to a
configuration on {0,1}Z by adding particles on the right-hand side, and empty sites (as well
as a finite number of particles) on the left-hand side of the segment. We will see from the for-
mal construction below that χ�

0 = ϑ0 (recall (28)), and that (χ�
t )t≥0 has the law of a simple

exclusion process on Z with censoring, in which the rightmost empty site R(χ�
t ) is replaced

by a first class particle whenever the corresponding second class particle in (χt )t≥0 exits at
site N at time t . An edge e is censored for χ�

t at time t if and only if it was merged in χt in
the deletion step, or if one of its endpoints is occupied by a particle which is not present in χt ,
and thus was only added in the construction when extending the configuration to Z. Note that
this censoring scheme does not depend on the different types of the second class particles in
(χt )t≥0.

We now give a formal construction of (χ�
t )t≥0. Consider the following procedure which

assigns some χ� = χ�(v) ∈ {0,1}Z to every χ ∈ {0,1,2}N and every v = {0,1}k for k ∈
N∪ {0}.

Step 1 Delete all vertices in χ which are empty or contain a first class particle.
Step 2 Concatenate the vector v at the left-hand side of the diminished segment.
Step 3 Turn all second class particles to empty sites if they are of type 1, 2 or 3 and turn

them into first class particles if they are of type 4 or 5.
Step 4 Extend to a configuration χ� ∈ {0,1}Z by adding empty sites at the left-hand side

and first class particles at the right-hand side of the segment.

An illustration is given in Figure 8. Note that χ� in this procedure is only defined up to
translations on Z. We use this additional degree of freedom when we define the process
(χ�

t )t≥0 from (χt )t≥0. For all t ≥ 0, let v = v(t) denote the vector of all second class particles
which have left the segment at the left-hand side boundary by time t . More precisely, we
place a 1 at position i in v if the ith second class particle exiting is of type 4 or 5, and we put
a 0, otherwise. For all t ≥ 0, we obtain χ�

t up to translations by applying the above procedure
for χt and v(t). In order to determine the specific translation of χ�

t in (χ�
t )t≥0, we proceed

as follows. We choose χ�
0 ∈ A0 where A0 is defined in (27). In particular, note that χ�

0 = ϑ0
holds. For t > 0, suppose that χ�

t ∈ An holds for some n ∈ Z. If at time t a second class
particle of type 1, 2 or 3 exits at the right-hand side boundary in χt , we choose the updated
configuration such that χ�

t+ ∈ An−1 holds. In all other cases, we choose χ�
t+ ∈ An. The next

lemma states that the position of the leftmost particle (L(χ�
t ))t≥0 is close to the position of

the rightmost empty site (R(χ�
t ))t≥0.

FIG. 8. Construction of χ� from χ for v = (0,1). Censored edges are drawn dashed.
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LEMMA 7.3. There exists a constant c > 0 such that

(97) P
(∣∣R(

χ�
T

) − L
(
χ�

T

)∣∣ > c logN + N
) ≤ 1

N

holds for all N sufficiently large and T ≤ N2.

PROOF. Let (η0
t )t≥0 and (η−N

t )t≥0 be two simple exclusion processes on A0 and A−N

with initial states ϑ0 and ϑ−N , respectively. We let (η0
t )t≥0 and (η−N

t )t≥0 be canonically
coupled to (χ�

t )t≥0, and apply the same censoring scheme. Since (η0
t )t≥0 and (χ�

t )t≥0 dif-
fer only by the fact that in (χ�

t )t≥0 occasionally the right-most empty site is replaced by a
particle, we see that R(χ�

t ) ≤ R(η0
t ) holds almost surely for all t ≥ 0. Further, we claim that

L(χ�
t ) ≥ L(η−N

t ) holds almost surely for all t ≥ 0. This can be seen by conditioning on the at
most N times at which the rightmost empty site in (χ�

t )t≥0 gets replaced, and then using an
induction argument. Since the above way of prohibiting updates in (χ�

t )t≥0 is indeed a cen-
soring scheme in the sense of Section 2.6, we use the censoring inequality from Remark 2.13
to see that the laws of (η0

t )t≥0 and (η−N
t )t≥0 are stochastically dominated by the blocking

measures on A0 and A−N , respectively, with respect to the partial order 	h. The statement in
(97) now follows from Lemma 2.7. �

PROOF OF LEMMA 7.2. Note that when the current of second class particles is at most
−4N at time T , we know that at least 4N second class particles are absorbed at the left-hand
side boundary in (χt )t≥0 at time T . Note that in this case, at least 2N of them must be of
type 4 since all second class particles created at site N are of type 4, and there are at most
N second class particles of types 1, 2, 3 initially in the segment. By Lemma 7.3, we see that
with probability at least 1 − N−1, each second class particle of type 1, 2 or 3 in χT has at
most c logN +N second class particles of type 4 or 5 to its left (counting also particles which
have exited at site 1). Hence for all N large enough, all second class particles in (χt )t≥0 of
type 1, 2 or 3, and thus also all second class particles in (ξt )t≥0, have left the segment by time
T with probability at least 1 − N−1. �

REMARK 7.4. For the simple exclusion process in the maximal current phase, we con-
jecture that a similar analysis of the disagreement process started from 1 and 0 yields the
order of the ε-mixing time. We believe that the typical time for all second class particles to
leave the segment is of order N3/2, using a comparison to the typical fluctuations of a second
class particle on Z in a Bernoulli- 1

2 -product measure [3]. Further, note that the exponent 3
2

is the KPZ relaxation scale which has been proved by Baik and Liu for periodic models as
well as by Corwin and Dimitrov for the ASEP on Z, see [1, 12], and more broadly is present
in all KPZ class models. Moreover, Corwin and Shen, as well as Parekh showed that under a
weakly asymmetry scaling, the height function (suitably normalized) of the simple exclusion
process with open boundaries in the triple point converges to a solution of the KPZ equation;
see [13, 48]. This supports Conjecture 1.9 for the maximal current phase of a mixing time of
order N3/2, and no cutoff.

8. Mixing times for the triple point. In this section, we prove Theorem 1.6 for the sim-
ple exclusion process (ηt )t≥0 with open boundaries and parameters (p,α,β, γ, δ) in the triple
point. We use a symmetrization argument, similar to the one presented in [24] for the case of
the totally asymmetric simple exclusion process on the circle. The main technique used is a
Nash inequality as introduced in [19]. We compare the total-variation distance between the
law of (ηt )t≥0 and its stationary distribution μ to the spectral gap of a process (ζt )t≥0, that is,
the absolute value of the largest nonzero eigenvalue of the generator for (ζt )t≥0. We start by
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defining the adjoint L� of the generator L of the simple exclusion process (ηt )t≥0 with open
boundaries. This is the linear operator which satisfies∑

η∈�N

f (η)(Lg)(η)μ(η) = ∑
η∈�N

(
L�f

)
(η)g(η)μ(η)

for all functions f,g : �N → R. In particular, note that for reversible processes, we have
that L = L� holds; see (38). By Lemma 2.9, we have that the stationary distribution μ of
(ηt )t≥0 is the uniform measure on �N . Hence, observe that the simple exclusion process with
open boundaries and parameters (1 − p,γ, δ,α,β) has generator L∗. We now consider the
additive symmetrization of the simple exclusion process (ηt )t≥0 with open boundaries with
generator L and the simple exclusion process generated by its adjoint L∗. More precisely,
we let (ζt )t≥0 be the Feller process on �N generated by 1

2(L� + L). Observe that (ζt )t≥0 is
reversible with respect to μ. Moreover, (ζt )t≥0 has the law of a simple exclusion process with
open boundaries for parameters (p′, α′, β ′, γ ′, δ′) given by

p′ = 1

2
, α′ = γ ′ = α + γ

2
and β ′ = δ′ = β + δ

2
.

The next lemma relates the total-variation distance of (ηt )t≥0 to the spectral gap of (ζt )t≥0.
It is an immediate consequence of Theorem 2.14 in [24].

LEMMA 8.1. Let λ denote the spectral gap of (ζt )t≥0. We have that

(98)
∥∥Pξ (ηt ∈ ·) − μ

∥∥
TV ≤ 2N/2+1 exp(−λt)

holds for all initial states ξ ∈ �N and t ≥ 0.

PROOF OF THEOREM 1.6. By Remark 4.1, we see that λ−1 ≤ CN2 holds for some
constant C = C(α,β, γ, δ), and we conclude by applying Lemma 8.1. �

APPENDIX A: PROOF OF LEMMA 2.7

To show Lemma 2.7, we bound the hitting time τ0 of the ground state ϑ0 in A0.

LEMMA A.1. For x ≥ 0, let θx ∈ A0 with θx(y) := 1{−x≤y<0} + 1{y>x} for all y ∈ Z be
the initial state for the simple exclusion process (ηZt )t≥0 on A0. Then there exists some c > 0
such that for all x ≥ 0, we have that Eθx [τ0] ≤ cx holds.

PROOF. For all x ≥ 0, we define Bx to be the set of configurations

(99) Bx := {
η ∈ A0 : max

(
R(η),−L(η)

)
> x

}
and denote for all s ≥ 0 by τ s

Bc
x
:= inf{t ≥ s : ηt /∈ Bx} the first time after time s when we hit

the set Bc
x . We claim that there exists some c̃ > 0 such that for all x, s ≥ 0

(100) Eθx

[
τ s
Bc

x

] − s ≤ c̃.

To see this, let (ηx
t )t≥0 and (η−x−1

t )t≥0 be two exclusion processes on Ax and A−x−1, started
from the blocking measure, respectively. Using Remark 2.6, we note that

(101) P
(
R

(
ηZt

) ≤ R
(
ηx

t

)
and L

(
ηZt

) ≥ L
(
η−x−1

t

)
for all t ≥ 0

) = 1

holds with respect to the canonical coupling P; see also Figure 9. Moreover, note that
(ηx

t , η−x−1
t )t≥0 is a stationary and positive recurrent Feller process for which the state
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FIG. 9. The initial state θx of (ηZt )t≥0 is shown in thicker. The position of the leftmost particle in (ηZt )t≥0 is

stochastically dominated by the position of the leftmost particle in (η−x−1
t )t≥0. A similar statement holds for the

rightmost empty site in (ηZt )t≥0.

(ϑx,ϑ−x−1) has a strictly positive probability in equilibrium, and that τ s
Bc

x
≤ T whenever

(ηx
t , η−x−1

t )t≥0 is in the state (ϑx,ϑ−x−1) at time T ≥ s. We conclude (100) using Kac’s
lemma for the embedded discrete chain of (ηx

t , η−x−1
t )t≥0, see Theorem 21.12 in [39], and a

time-change. Next, by Theorem 1.9 in [4],

(102) Pθx (τ0 ≤ c1x) ≥ c2

holds for all x ≥ 0 with constants c1, c2 > 0. We claim that together with (100), this yields

(103) Eθx [τ0] ≤ c2c1x + (1 − c2)
(
c1x + c̃ +Eθx [τ0]).

To see this, note that with probability at least c2, we hit ϑ0 by time c1x. Suppose that ϑ0 was
not hit by time c1x, then we can wait until hitting Bc

x and use (100). Since η �h θx holds for
all η ∈ Bc

x , the hitting time of ϑ0 starting from the configuration at time τ
c1x
Bc

x
is stochastically

dominated by the hitting time of ϑ0 when starting from θx . Now take expectations to get
(103). Since Eθx [τ0] < ∞, we conclude by solving (103) for Eθx [τ0]. �

Next, we study the return time τ+
Bx

:= inf{t ≥ τBc
x
: ηt ∈ Bx} to the set Bx .

LEMMA A.2. There exists some C > 0 such that for all x ≥ 1

(104) Eν(0)

[
τ+
Bx

] ≥ ν(0)(ϑ0)Eϑ0[τBx ] ≥ C

x

(
p

1 − p

)x

.

PROOF. Observe that an exclusion process in Bc
x can change its state if and only if a

clock on the sites [−x, x] rings. Hence, using Kac’s lemma for the embedded discrete chain,
we see that

(105) Eν(0)(·|Bx)

[
τ+
Bx

] ≥ 1

(2x + 1)ν(0)(Bx)
≥ c1

x

(
p

1 − p

)x

holds for all x ≥ 0 and some constant c1 > 0. Since ϑ0 �h η for all η ∈ Bc
x , we get

(106)

Eν(0)(·|Bx)

[
τ+
Bx

] = ∑
ζ∈Bc

x

(
Eν(0)(·|Bx)[τζ | ητBc

x
= ζ ] +Eζ [τBx ]

)
Pν(0)(·|Bx)(ητBc

x
= ζ )

≤ Eν(0)(·|Bx)[τ0] +Eϑ0[τBx ].
Recall that η �h θx for all η ∈ Bc

x . Note that there exists some c2 > 0 such that

(107) Eν(0)(·|Bx)[τ0] = ∑
y≥x

∑
η∈By\By+1

Eη[τ0]ν(0)(η|Bx) ≤ ∑
y≥x

Eθy+1[τ0]ν(0)(By |Bx) ≤ c2x
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holds for all x ≥ 0, using Lemma A.1 and the fact that ν(0)(By |Bx) ≤ c3((1 − p)/p)y−x for
some c3 > 0 in the last inequality. Combining (106) and (107), we see that

Eϑ0[τBx ] ≥ Eν(0)(·|Bx)

[
τ+
Bx

] −Eν(0)(·|Bx)[τ0] ≥ Eν(0)(·|Bx)

[
τ+
Bx

] − c2x.

Together with the lower bound on Eν(0)(·|Bx)[τ+
Bx

] from (105), this yields (104). �

PROOF OF LEMMA 2.7. We will prove Lemma 2.7 by contradiction. Take C > 0 from
Lemma A.2 and assume that (30) is not true. Then, using the general fact that for arbitrary
events A and B , the inequality P(A ∩ B) ≥ P(A) − P(Bc) holds, we have

q := Pν(0)

(
ηt ∈ Bx for some t ∈

[
0,

εC

x

(
p

1 − p

)x]
and η0 ∈ Bc

x

)
> 2ε − ν(0)(Bx).

A similar argument as for (103) yields

(108) Eν(0)

[
τ+
Bx

] ≤ q
εC

x

(
p

1 − p

)x

+ (1 − q)

(
εC

x

(
p

1 − p

)x

+Eν(0)

[
τ+
Bx

])
.

Solving (108) for Eν(0)
[τ+

Bx
], and using the definition of ν(0) for q , we see that for all x large

enough Eν(0)
[τ+

Bx
] < εCx−1(p/(1 − p))x holds. This contradicts Lemma A.2. �

APPENDIX B: PROOF OF THE GENERALIZED VERSION OF WILSON’S LEMMA

PROOF OF LEMMA 3.1. For fixed X0 = η, let f (t) := E[F(Xt)] = Eη[F(Xt)] for all
t ≥ 0, and note that

f ′(t) = E
[
(AF)(Xt)

] ∈ [−λf (t) − c,−λf (t) + c
]

for all t ≥ 0

by using the martingale property of (Mt)t≥0 and (46). Applying Gronwall’s lemma, we get

f (t) ≤ f (0)e−λt +
∫ t

0
ce−λ(t−s) ds ≤ f (0)e−λt + c

λ
for all t ≥ 0,

see Lemma 2.7 in [56]. Similarly, apply Gronwall’s lemma to −f to conclude that

(109)
∣∣f (t) − e−λtf (0)

∣∣ ≤ c

λ
for all t ≥ 0.

Next, we define g(t) := E[(F (Xt))
2]. Observe that (F (Xt))t≥0 is a semimartingale. Thus,

we apply Itô’s formula to see that

F 2(Xt) − F 2(X0) = 2
∫ t

0
F(Xs)d

[
F(Xs) −

∫ s

0
(AF)(Xr)dr

]

+ 2
∫ t

0
F(Xs)d

[∫ s

0
(AF)(Xr)dr

]
+ 1

2

∫ t

0
2 d〈M〉s

holds; see Theorem 5.33 in [42]. Taking expectations and changing the order of integration,
a calculation yields that

g(t) − g(0) = 2
∫ t

0
E

[
F(Xs)(AF)(Xs)

]
ds +E

[〈M〉t ] for all t ≥ 0.

Now taking derivatives gives us that

g′(t) = 2E
[
F(Xt)(AF)(Xt)

] + d

dt
E

[〈M〉t ] for all t ≥ 0.
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Moreover, using (46), we obtain that

2E
[
F(Xt)(AF)(Xt)

] ≤ −2λg(t) + 2c‖F‖∞

holds. Further, by applying Gronwall’s lemma and using (47), a calculation shows that

g(t) ≤ g(0)e−2λt + c‖F‖∞
λ

+
∫ t

0

(
d

ds
E

[〈M〉s]
)
e−2λ(t−s) ds ≤ g(0)e−2λt + c‖F‖∞ + R

λ

holds for all t ≥ 0. Together with (109) and the fact that g(0) = f (0)2, we deduce that

(110) Var
(
F(Xt)

) = Varη
(
F(Xt)

) = g(t) − f (t)2 ≤ 3c‖F‖∞ + R

λ

holds for any initial state η ∈ S, and all t ≥ 0. Recall the total-variation distance from (3)
and let dη(t) denote the total-variation distance between the law of Xt started from η and its
stationary distribution. Note that for all t ≥ 0 and any initial state η, we have

P

(
F(X∞) ≥ 1

2
E

[
F(Xt)

]) ≤ P

(
F(X∞)2 ≥ 1

4
E

[
F(Xt)

]2
)

≤ 4
E[F(X∞)2]
E[F(Xt)]2

and hence

dη(t) ≥ P

(
F(Xt) ≥ 1

2
E

[
F(Xt)

]) − P

(
F(X∞) ≥ 1

2
E

[
F(Xt)

])
(111)

≥ 1 − 4
Var(F (Xt))

E[F(Xt)]2 − 4
Var(F (X∞)) +E[F(X∞)]2

E[F(Xt)]2 ,(112)

where we used Chebyshev’s inequality for the second inequality. Here, X∞ is a random
variable whose law is the stationary distribution of (Xt)t≥0. The goal is to show that for t

equal to the right-hand side of (48), the right-hand side of (111) is ≥ 1 − ε, which implies
(48). Let η be such that |F(η)| = ‖F‖∞ holds. Then, to estimate the denominator of the last
term in (111) for t equal to the right-hand side of (48), note that by (109),

E
[
F(Xt)

] ≥ e−λtF (X0) − c

λ
= e−λt‖F‖∞ − c

λ
≥ 1

2
e−λt‖F‖∞,

where the last inequality is due to our choice of t . To estimate the nominator of the last term in
(111), taking t → ∞ in (109) and (110), we see that |E[F(X∞)]| ≤ c/λ and |Var[F(X∞)]| ≤
(3c‖F‖∞ + R)λ−1. Now we see after a calculation that indeed the right-hand side of (111)
is ≥ 1 − ε. �

Acknowledgments. We thank Noam Berger, Ivan Corwin, David Criens, Hubert Lacoin,
Allan Sly, Herbert Spohn and Lauren Williams for helpful discussions and comments. We are
indebted to the anonymous referee for a careful reading and pointing out several inaccuracies.
This project was started at Cambridge University and carried out during visits of the authors
at Princeton University and Technical University of Munich. We thank all three institutions
for their hospitality.

Funding. The second author was partially supported by EPSRC Grant EP/R022615/1
and NSF Grant DMS-2052659.

The third author acknowledges the TopMath program and the Studienstiftung des
deutschen Volkes for financial support.



1010 N. GANTERT, E. NESTORIDI AND D. SCHMID

REFERENCES

[1] BAIK, J. and LIU, Z. (2018). Fluctuations of TASEP on a ring in relaxation time scale. Comm. Pure Appl.
Math. 71 747–813. MR3772401 https://doi.org/10.1002/cpa.21702

[2] BALÁZS, M. and SEPPÄLÄINEN, T. (2007). Exact connections between current fluctuations and the
second class particle in a class of deposition models. J. Stat. Phys. 127 431–455. MR2314355
https://doi.org/10.1007/s10955-007-9291-3

[3] BALÁZS, M. and SEPPÄLÄINEN, T. (2010). Order of current variance and diffusivity in the asymmetric sim-
ple exclusion process. Ann. of Math. (2) 171 1237–1265. MR2630064 https://doi.org/10.4007/annals.
2010.171.1237

[4] BENJAMINI, I., BERGER, N., HOFFMAN, C. and MOSSEL, E. (2005). Mixing times of the biased card
shuffling and the asymmetric exclusion process. Trans. Amer. Math. Soc. 357 3013–3029. MR2135733
https://doi.org/10.1090/S0002-9947-05-03610-X

[5] BLYTHE, R. A. and EVANS, M. R. (2007). Nonequilibrium steady states of matrix-product form: A solver’s
guide. J. Phys. A 40 R333–R441. MR2437671 https://doi.org/10.1088/1751-8113/40/46/R01

[6] BLYTHE, R. A., EVANS, M. R., COLAIORI, F. and ESSLER, F. H. L. (2000). Exact solution of a par-
tially asymmetric exclusion model using a deformed oscillator algebra. J. Phys. A 33 2313–2332.
MR1751977 https://doi.org/10.1088/0305-4470/33/12/301

[7] BRAK, R., CORTEEL, S., ESSAM, J., PARVIAINEN, R. and RECHNITZER, A. (2006). A combinatorial
derivation of the PASEP stationary state. Electron. J. Combin. 13 Research Paper 108, 23. MR2274323

[8] CANTINI, L. (2017). Asymmetric simple exclusion process with open boundaries and Koornwinder polyno-
mials. Ann. Henri Poincaré 18 1121–1151. MR3626299 https://doi.org/10.1007/s00023-016-0540-3

[9] CANTINI, L., GARBALI, A., DE GIER, J. and WHEELER, M. (2016). Koornwinder polynomials and the
stationary multi-species asymmetric exclusion process with open boundaries. J. Phys. A 49 444002,
23. MR3562836 https://doi.org/10.1088/1751-8113/49/44/444002

[10] CORTEEL, S., MANDELSHTAM, O. and WILLIAMS, L. (2017). Combinatorics of the two-species ASEP and
Koornwinder moments. Adv. Math. 321 160–204. MR3715708 https://doi.org/10.1016/j.aim.2017.09.
034

[11] CORTEEL, S. and WILLIAMS, L. K. (2011). Tableaux combinatorics for the asymmetric exclusion process
and Askey–Wilson polynomials. Duke Math. J. 159 385–415. MR2831874 https://doi.org/10.1215/
00127094-1433385

[12] CORWIN, I. and DIMITROV, E. (2018). Transversal fluctuations of the ASEP, stochastic six vertex
model, and Hall–Littlewood Gibbsian line ensembles. Comm. Math. Phys. 363 435–501. MR3851820
https://doi.org/10.1007/s00220-018-3139-3

[13] CORWIN, I. and SHEN, H. (2018). Open ASEP in the weakly asymmetric regime. Comm. Pure Appl. Math.
71 2065–2128. MR3861074 https://doi.org/10.1002/cpa.21744

[14] CRAMPE, N., MALLICK, K., RAGOUCY, E. and VANICAT, M. (2015). Open two-species exclusion pro-
cesses with integrable boundaries. J. Phys. A 48 175002, 18. MR3335684 https://doi.org/10.1088/
1751-8113/48/17/175002

[15] DE GIER, J. and ESSLER, F. H. L. (2005). Bethe ansatz solution of the asymmetric exclusion process with
open boundaries. Phys. Rev. Lett. 95 240601, 4. MR2185698 https://doi.org/10.1103/PhysRevLett.95.
240601

[16] DE GIER, J. and ESSLER, F. H. L. (2006). Exact spectral gaps of the asymmetric exclusion process
with open boundaries. J. Stat. Mech. Theory Exp. 2006 P12011–P12011. https://doi.org/10.1088/
1742-5468/2006/12/p12011

[17] DE GIER, J. and ESSLER, F. H. L. (2008). Slowest relaxation mode of the partially asymmetric exclu-
sion process with open boundaries. J. Phys. A 41 485002, 25. MR2515875 https://doi.org/10.1088/
1751-8113/41/48/485002

[18] DERRIDA, B., EVANS, M. R., HAKIM, V. and PASQUIER, V. (1993). Exact solution of a 1D asymmetric
exclusion model using a matrix formulation. J. Phys. A 26 1493–1517. MR1219679

[19] DIACONIS, P. and STROOCK, D. (1991). Geometric bounds for eigenvalues of Markov chains. Ann. Appl.
Probab. 1 36–61. MR1097463

[20] FERRARI, P. A. (1992). Shock fluctuations in asymmetric simple exclusion. Probab. Theory Related Fields
91 81–101. MR1142763 https://doi.org/10.1007/BF01194491

[21] FERRARI, P. A. and FONTES, L. R. G. (1994). Shock fluctuations in the asymmetric simple exclusion pro-
cess. Probab. Theory Related Fields 99 305–319. MR1278887 https://doi.org/10.1007/BF01199027

[22] FERRARI, P. A. and FONTES, L. R. G. (1994). Current fluctuations for the asymmetric simple exclusion
process. Ann. Probab. 22 820–832. MR1288133

[23] FERRARI, P. A., KIPNIS, C. and SAADA, E. (1991). Microscopic structure of travelling waves in the asym-
metric simple exclusion process. Ann. Probab. 19 226–244. MR1085334

http://www.ams.org/mathscinet-getitem?mr=3772401
https://doi.org/10.1002/cpa.21702
http://www.ams.org/mathscinet-getitem?mr=2314355
https://doi.org/10.1007/s10955-007-9291-3
http://www.ams.org/mathscinet-getitem?mr=2630064
https://doi.org/10.4007/annals.2010.171.1237
http://www.ams.org/mathscinet-getitem?mr=2135733
https://doi.org/10.1090/S0002-9947-05-03610-X
http://www.ams.org/mathscinet-getitem?mr=2437671
https://doi.org/10.1088/1751-8113/40/46/R01
http://www.ams.org/mathscinet-getitem?mr=1751977
https://doi.org/10.1088/0305-4470/33/12/301
http://www.ams.org/mathscinet-getitem?mr=2274323
http://www.ams.org/mathscinet-getitem?mr=3626299
https://doi.org/10.1007/s00023-016-0540-3
http://www.ams.org/mathscinet-getitem?mr=3562836
https://doi.org/10.1088/1751-8113/49/44/444002
http://www.ams.org/mathscinet-getitem?mr=3715708
https://doi.org/10.1016/j.aim.2017.09.034
http://www.ams.org/mathscinet-getitem?mr=2831874
https://doi.org/10.1215/00127094-1433385
http://www.ams.org/mathscinet-getitem?mr=3851820
https://doi.org/10.1007/s00220-018-3139-3
http://www.ams.org/mathscinet-getitem?mr=3861074
https://doi.org/10.1002/cpa.21744
http://www.ams.org/mathscinet-getitem?mr=3335684
https://doi.org/10.1088/1751-8113/48/17/175002
http://www.ams.org/mathscinet-getitem?mr=2185698
https://doi.org/10.1103/PhysRevLett.95.240601
https://doi.org/10.1088/1742-5468/2006/12/p12011
http://www.ams.org/mathscinet-getitem?mr=2515875
https://doi.org/10.1088/1751-8113/41/48/485002
http://www.ams.org/mathscinet-getitem?mr=1219679
http://www.ams.org/mathscinet-getitem?mr=1097463
http://www.ams.org/mathscinet-getitem?mr=1142763
https://doi.org/10.1007/BF01194491
http://www.ams.org/mathscinet-getitem?mr=1278887
https://doi.org/10.1007/BF01199027
http://www.ams.org/mathscinet-getitem?mr=1288133
http://www.ams.org/mathscinet-getitem?mr=1085334
https://doi.org/10.4007/annals.2010.171.1237
https://doi.org/10.1016/j.aim.2017.09.034
https://doi.org/10.1215/00127094-1433385
https://doi.org/10.1088/1751-8113/48/17/175002
https://doi.org/10.1103/PhysRevLett.95.240601
https://doi.org/10.1088/1742-5468/2006/12/p12011
https://doi.org/10.1088/1751-8113/41/48/485002


MIXING TIMES FOR THE SEP WITH OPEN BOUNDARIES 1011

[24] FILL, J. A. (1991). Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with
an application to the exclusion process. Ann. Appl. Probab. 1 62–87. MR1097464

[25] FINN, C., RAGOUCY, E. and VANICAT, M. (2018). Matrix product solution to multi-species ASEP with
open boundaries. J. Stat. Mech. Theory Exp. 4 043201, 28. MR3801953 https://doi.org/10.1088/
1742-5468/aab1b5

[26] GORISSEN, M., LAZARESCU, A., MALLICK, K. and VANDERZANDE, C. (2012). Exact current statis-
tics of the asymmetric simple exclusion process with open boundaries. Phys. Rev. Lett. 109 170601.
https://doi.org/10.1103/PhysRevLett.109.170601

[27] HELBING, D. (2001). Traffic and related self-driven many-particle systems. Rev. Modern Phys. 73 1067–
1141. MR3875436 https://doi.org/10.1103/RevModPhys.73.1067

[28] HERMON, J. and PYMAR, R. (2020). The exclusion process mixes (almost) faster than independent parti-
cles. Ann. Probab. 48 3077–3123. MR4164461 https://doi.org/10.1214/20-AOP1455

[29] JUNG, P. (2003). Extremal reversible measures for the exclusion process. J. Stat. Phys. 112 165–191.
MR1991035 https://doi.org/10.1023/A:1023679620839

[30] LABBÉ, C. and LACOIN, H. (2019). Cutoff phenomenon for the asymmetric simple exclusion process
and the biased card shuffling. Ann. Probab. 47 1541–1586. MR3945753 https://doi.org/10.1214/
18-AOP1290

[31] LABBÉ, C. and LACOIN, H. (2020). Mixing time and cutoff for the weakly asymmetric simple exclusion
process. Ann. Appl. Probab. 30 1847–1883. MR4132639 https://doi.org/10.1214/19-AAP1545

[32] LACOIN, H. (2016). Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion.
Ann. Probab. 44 1426–1487. MR3474475 https://doi.org/10.1214/15-AOP1004

[33] LACOIN, H. (2016). The cutoff profile for the simple exclusion process on the circle. Ann. Probab. 44
3399–3430. MR3551201 https://doi.org/10.1214/15-AOP1053

[34] LACOIN, H. (2017). The simple exclusion process on the circle has a diffusive cutoff window. Ann. Inst.
Henri Poincaré Probab. Stat. 53 1402–1437. MR3689972 https://doi.org/10.1214/16-AIHP759

[35] LANDIM, C., MILANÉS, A. and OLLA, S. (2008). Stationary and nonequilibrium fluctuations in boundary
driven exclusion processes. Markov Process. Related Fields 14 165–184. MR2437527

[36] LAZARESCU, A. (2013). Matrix ansatz for the fluctuations of the current in the ASEP with open boundaries.
J. Phys. A 46 145003, 21. MR3041516 https://doi.org/10.1088/1751-8113/46/14/145003

[37] LAZARESCU, A. (2015). The physicist’s companion to current fluctuations: One-dimensional bulk-driven
lattice gases. J. Phys. A 48 503001, 80. MR3434835 https://doi.org/10.1088/1751-8113/48/50/503001

[38] LEVIN, D. A. and PERES, Y. (2016). Mixing of the exclusion process with small bias. J. Stat. Phys. 165
1036–1050. MR3575636 https://doi.org/10.1007/s10955-016-1664-z

[39] LEVIN, D. A., PERES, Y. and WILMER, E. L. (2017). Markov Chains and Mixing Times. Amer. Math.
Soc., Providence, RI. Second edition of [MR2466937], With a chapter on “Coupling from the past” by
James G. Propp and David B. Wilson. MR3726904 https://doi.org/10.1090/mbk/107

[40] LIGGETT, T. M. (1975). Ergodic theorems for the asymmetric simple exclusion process. Trans. Amer. Math.
Soc. 213 237–261. MR0410986 https://doi.org/10.2307/1998046

[41] LIGGETT, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
324. Springer, Berlin. MR1717346 https://doi.org/10.1007/978-3-662-03990-8

[42] LIGGETT, T. M. (2010). Continuous Time Markov Processes: An Introduction. Graduate Studies in Mathe-
matics 113. Amer. Math. Soc., Providence, RI. MR2574430 https://doi.org/10.1090/gsm/113

[43] MACDONALD, C. T., GIBBS, J. H. and PIPKIN, A. C. (1968). Kinetics of biopolymerization on nucleic
acid templates. Biopolymers: Original Research on Biomolecules 6 1–25.

[44] MANDELSHTAM, O. (2015). A determinantal formula for Catalan tableaux and TASEP probabilities. J.
Combin. Theory Ser. A 132 120–141. MR3311340 https://doi.org/10.1016/j.jcta.2014.12.005

[45] MANDELSHTAM, O. (2015). Matrix ansatz and combinatorics of the k-species PASEP. arXiv:1508.04115
[math.CO].

[46] NAM, D. and NESTORIDI, E. (2019). Cutoff for the cyclic adjacent transposition shuffle. Ann. Appl. Probab.
29 3861–3892. MR4047994 https://doi.org/10.1214/19-AAP1495

[47] OLIVEIRA, R. I. (2013). Mixing of the symmetric exclusion processes in terms of the corresponding single-
particle random walk. Ann. Probab. 41 871–913. MR3077529 https://doi.org/10.1214/11-AOP714

[48] PAREKH, S. (2019). The KPZ limit of ASEP with boundary. Comm. Math. Phys. 365 569–649. MR3907953
https://doi.org/10.1007/s00220-018-3258-x

[49] PERES, Y. and WINKLER, P. (2013). Can extra updates delay mixing? Comm. Math. Phys. 323 1007–1016.
MR3106501 https://doi.org/10.1007/s00220-013-1776-0

[50] PRÄHOFER, M. and SPOHN, H. (2002). Current fluctuations for the totally asymmetric simple exclusion
process. In In and Out of Equilibrium (Mambucaba, 2000). Progress in Probability 51 185–204.
Birkhäuser, Boston, MA. MR1901953

http://www.ams.org/mathscinet-getitem?mr=1097464
http://www.ams.org/mathscinet-getitem?mr=3801953
https://doi.org/10.1088/1742-5468/aab1b5
https://doi.org/10.1103/PhysRevLett.109.170601
http://www.ams.org/mathscinet-getitem?mr=3875436
https://doi.org/10.1103/RevModPhys.73.1067
http://www.ams.org/mathscinet-getitem?mr=4164461
https://doi.org/10.1214/20-AOP1455
http://www.ams.org/mathscinet-getitem?mr=1991035
https://doi.org/10.1023/A:1023679620839
http://www.ams.org/mathscinet-getitem?mr=3945753
https://doi.org/10.1214/18-AOP1290
http://www.ams.org/mathscinet-getitem?mr=4132639
https://doi.org/10.1214/19-AAP1545
http://www.ams.org/mathscinet-getitem?mr=3474475
https://doi.org/10.1214/15-AOP1004
http://www.ams.org/mathscinet-getitem?mr=3551201
https://doi.org/10.1214/15-AOP1053
http://www.ams.org/mathscinet-getitem?mr=3689972
https://doi.org/10.1214/16-AIHP759
http://www.ams.org/mathscinet-getitem?mr=2437527
http://www.ams.org/mathscinet-getitem?mr=3041516
https://doi.org/10.1088/1751-8113/46/14/145003
http://www.ams.org/mathscinet-getitem?mr=3434835
https://doi.org/10.1088/1751-8113/48/50/503001
http://www.ams.org/mathscinet-getitem?mr=3575636
https://doi.org/10.1007/s10955-016-1664-z
http://www.ams.org/mathscinet-getitem?mr=3726904
https://doi.org/10.1090/mbk/107
http://www.ams.org/mathscinet-getitem?mr=0410986
https://doi.org/10.2307/1998046
http://www.ams.org/mathscinet-getitem?mr=1717346
https://doi.org/10.1007/978-3-662-03990-8
http://www.ams.org/mathscinet-getitem?mr=2574430
https://doi.org/10.1090/gsm/113
http://www.ams.org/mathscinet-getitem?mr=3311340
https://doi.org/10.1016/j.jcta.2014.12.005
http://arxiv.org/abs/arXiv:1508.04115
http://www.ams.org/mathscinet-getitem?mr=4047994
https://doi.org/10.1214/19-AAP1495
http://www.ams.org/mathscinet-getitem?mr=3077529
https://doi.org/10.1214/11-AOP714
http://www.ams.org/mathscinet-getitem?mr=3907953
https://doi.org/10.1007/s00220-018-3258-x
http://www.ams.org/mathscinet-getitem?mr=3106501
https://doi.org/10.1007/s00220-013-1776-0
http://www.ams.org/mathscinet-getitem?mr=1901953
https://doi.org/10.1088/1742-5468/aab1b5
https://doi.org/10.1214/18-AOP1290


1012 N. GANTERT, E. NESTORIDI AND D. SCHMID

[51] SASAMOTO, T. (1999). One-dimensional partially asymmetric simple exclusion process with open bound-
aries: Orthogonal polynomials approach. J. Phys. A 32 7109–7131. MR1732546 https://doi.org/10.
1088/0305-4470/32/41/306

[52] SASAMOTO, T. (2000). Density profile of the one-dimensional partially asymmetric simple exclusion pro-
cess with open boundaries. J. Phys. Soc. Jpn. 69 1055–1067. https://doi.org/10.1143/JPSJ.69.1055

[53] SCHMID, D. (2019). Mixing times for the simple exclusion process in ballistic random environment. Elec-
tron. J. Probab. 24 Paper No. 22, 25. MR3933201 https://doi.org/10.1214/19-EJP286

[54] SCHMID, D. (2021). Mixing times for the TASEP in the maximal current phase. Preprint, https://arxiv.org/
abs/2104.12745.

[55] SPITZER, F. (1970). Interaction of Markov processes. Adv. Math. 5 246–290. MR0268959 https://doi.org/10.
1016/0001-8708(70)90034-4

[56] TESCHL, G. (2012). Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathe-
matics 140. Amer. Math. Soc., Providence, RI. MR2961944 https://doi.org/10.1090/gsm/140

[57] UCHIYAMA, M. (2008). Two-species asymmetric simple exclusion process with open boundaries. Chaos
Solitons Fractals 35 398–407. MR2359487 https://doi.org/10.1016/j.chaos.2006.05.013

[58] UCHIYAMA, M., SASAMOTO, T. and WADATI, M. (2004). Asymmetric simple exclusion process with open
boundaries and Askey–Wilson polynomials. J. Phys. A 37 4985–5002. MR2065218 https://doi.org/10.
1088/0305-4470/37/18/006

[59] UCHIYAMA, M. and WADATI, M. (2005). Correlation function of asymmetric simple exclusion process
with open boundaries. J. Nonlinear Math. Phys. 12 676–688. MR2118894 https://doi.org/10.2991/
jnmp.2005.12.s1.52

[60] WILSON, D. B. (2004). Mixing times of Lozenge tiling and card shuffling Markov chains. Ann. Appl.
Probab. 14 274–325. MR2023023 https://doi.org/10.1214/aoap/1075828054

[61] WOOD, A. J., BLYTHE, R. A. and EVANS, M. R. (2020). Combinatorial mappings of exclusion processes.
J. Phys. A 53 123001, 51. MR4084240 https://doi.org/10.1088/1751-8121/ab73aa

http://www.ams.org/mathscinet-getitem?mr=1732546
https://doi.org/10.1088/0305-4470/32/41/306
https://doi.org/10.1143/JPSJ.69.1055
http://www.ams.org/mathscinet-getitem?mr=3933201
https://doi.org/10.1214/19-EJP286
https://arxiv.org/abs/2104.12745
http://www.ams.org/mathscinet-getitem?mr=0268959
https://doi.org/10.1016/0001-8708(70)90034-4
http://www.ams.org/mathscinet-getitem?mr=2961944
https://doi.org/10.1090/gsm/140
http://www.ams.org/mathscinet-getitem?mr=2359487
https://doi.org/10.1016/j.chaos.2006.05.013
http://www.ams.org/mathscinet-getitem?mr=2065218
https://doi.org/10.1088/0305-4470/37/18/006
http://www.ams.org/mathscinet-getitem?mr=2118894
https://doi.org/10.2991/jnmp.2005.12.s1.52
http://www.ams.org/mathscinet-getitem?mr=2023023
https://doi.org/10.1214/aoap/1075828054
http://www.ams.org/mathscinet-getitem?mr=4084240
https://doi.org/10.1088/1751-8121/ab73aa
https://doi.org/10.1088/0305-4470/32/41/306
https://arxiv.org/abs/2104.12745
https://doi.org/10.1016/0001-8708(70)90034-4
https://doi.org/10.1088/0305-4470/37/18/006
https://doi.org/10.2991/jnmp.2005.12.s1.52

	Introduction
	Main results
	Symmetric simple exclusion process with open boundaries
	Asymmetric simple exclusion process with one blocked entry
	The reverse bias phase for the simple exclusion process
	The high and low density phase for the simple exclusion process
	The triple point of the simple exclusion process

	Open problems
	Related work
	Outline of the paper

	Preliminaries on the simple exclusion process
	The canonical coupling
	The component-wise partial order
	The partial order via height functions

	The simple exclusion process with second class particles
	The simple exclusion process on Z and blocking measures
	Current for the simple exclusion process
	Invariant measures of the simple exclusion process
	The censoring inequality

	Lower bounds for the symmetric exclusion process
	Upper bounds for the SSEP with open boundaries
	A general upper bound
	Cutoff for the SSEP with one open boundary
	Correlation properties of the SSEP with one open boundary
	Mean of the height function of the SSEP with one open boundary
	Scaling limits for the SSEP with one open boundary
	Proof of the upper bound in Theorem 1.2


	Mixing times for ASEP with one blocked entry
	The simple exclusion process on the half-line
	Lower bound for the ASEP with one blocked entry
	An a priori upper bound on the hitting time
	Upper bound for the ASEP with one blocked entry
	Proof of the shock wave phenomenon

	Mixing times for the reverse bias phase
	Lower bounds for the reverse bias phase
	Upper bounds for the reverse bias phase

	Mixing times in the high and low density phase
	Construction of two disagreement processes
	Comparison via a multi-species exclusion process

	Mixing times for the triple point
	Appendix A: Proof of Lemma 2.7
	Appendix B: Proof of the generalized version of Wilson's lemma
	Acknowledgments
	Funding
	References

