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Targeted PI3K/AKT-hyperactivation induces cell
death in chronic lymphocytic leukemia

Veronika Ecker213, Martina Stumpf'213, Lisa Brandmeier2, Tanja Neumayer'?2, Lisa Pfeuffer'?,
Thomas Engleitner?3, Ingo Ringshausen® 4, Nina Nelson®, Manfred Jiicker®, Stefan Wanninger',
Thorsten Zenz® ©, Clemens Wendtner’, Katrin Manske?, Katja Steiger 910 Roland Rad@® 2310,
Markus Miischen® ", Jirgen Ruland® 21912 & Maike Buchner® 2%

Current therapeutic approaches for chronic lymphocytic leukemia (CLL) focus on the sup-
pression of oncogenic kinase signaling. Here, we test the hypothesis that targeted hyper-
activation of the phosphatidylinositol-3-phosphate/AKT (PI3K/AKT)-signaling pathway may
be leveraged to trigger CLL cell death. Though counterintuitive, our data show that genetic
hyperactivation of PI3K/AKT-signaling or blocking the activity of the inhibitory phosphatase
SH2-containing-inositol-5’-phosphatase-1 (SHIP1) induces acute cell death in CLL cells. Our
mechanistic studies reveal that increased AKT activity upon inhibition of SHIP1 leads to
increased mitochondrial respiration and causes excessive accumulation of reactive oxygen
species (ROS), resulting in cell death in CLL with immunogenic features. Our results
demonstrate that CLL cells critically depend on mechanisms to fine-tune PI3K/AKT activity,
allowing sustained proliferation and survival but avoid ROS-induced cell death and suggest
transient SHIP1-inhibition as an unexpectedly promising concept for CLL therapy.
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ignaling derived from the B-cell surface immunoglobulin,

the B-cell receptor (BCR), generally promotes the survival

and proliferation of B cells. However, throughout their
development, B cells are selected depending on their binding
capacity to the respective antigen at several B-cell selection
checkpoints. While B cells that express a functional BCR, which
induces adequate BCR signaling, are positively selected by pro-
moting B-cell survival and expansion, B cells lacking a sufficient
BCR signal die of neglect’:2. These checkpoints also safeguard
against autoimmunity by clonal deletion of autoreactive B cells
that exhibit excessive BCR-signaling strength. Upon constitutively
strong autoantigen binding, B cells undergo an active negative
selection process that eliminates or inactivates autoreactive B-cell
clones?. B cells are therefore selected for a narrow window of
intermediate strength of BCR signaling, since both too weak (no
functional BCR) and excessive strength (autoreactive BCR) of
BCR signaling results in the clonal deletion and cell death. Several
oncogenic drivers in B-cell malignancies constitutively activate
BCR signaling and thereby mimic signaling that promotes posi-
tive selection and B-cell expansion®.

In chronic lymphocytic leukemia (CLL), autonomous auto-
reactive BCR signaling contributes to tumor cell survival®, and
established targeted therapy concepts focus on inhibiting onco-
genic kinases in the BCR pathway®-8, resulting in signal depri-
vation and thereby cell death®10. However, despite initial
remission of CLL, patients frequently relapse with refractory
disease or eventually progress to Richter syndrome transforma-
tion with limited treatment options!!. Recent evidence in pre-B-
cell acute lymphoblastic leukemia (pre-B ALL) suggests that
targeted hyperactivation of signaling components downstream of
the BCR above a maximum threshold will also invariably trigger
cell death!2-14, This indicates that, despite the transformation,
malignant B cells remain vulnerable to checkpoint signals for
removal of autoreactive clones. While direct agonists of BCR-
downstream kinases are not available, targeted hyperactivation
can be achieved by pharmacological inhibition of negative reg-
ulators of the BCR-signaling pathway (e.g., inhibitory phospha-
tases including SHIP1), resulting in the activation of signaling
above a maximum tolerable threshold causing energy stress and
cell death. This effect likely occurs because pre-B ALL cells are in
an early developmental B-cell stage, where B cells are subject to
central tolerance checkpoints for removal of autoreactive
clones!®. As exemplified in pre-B ALL, pharmacological hyper-
activation of BCR signaling may represent a powerful strategy to
overcome conventional drug resistance and to prevent relapse
induced by long-term kinase inhibitor treatment.

While in many B-cell malignancies, the activation of the BCR-
signaling pathway occurs via genetic activation of signaling
mediators!®!7 or by BCR mimicry!®1%, the BCRs expressed by
CLL cells frequently recognize autoantigens, including an internal
epitope of their own BCR®. The activation of the BCR-signaling
pathway occurs primarily in secondary lymphoid organs?(. Here,
it typically converges with activation of the phosphatidylinositol-
3-kinase (PI3K) signaling pathway downstream of homing che-
mokine receptors and adhesion molecules?l:?2, with the PI3K§
isoform as the most prevalent PI3K subclass in mature B cells?3.
Upon its recruitment and activation by binding to phosphory-
lated YxxM motifs in membrane coreceptors, such as CD19 or
BCAP in case of BCR stimulation, PI3K then phosphorylates the
lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P,] to gen-
erate  phosphatidylinositol-3,4,5-trisphosphate ~ [PI(3,4,5)P3],
which acts as a pivotal second messenger signaling molecule by
providing a binding site for intracellular enzymes that contain
pleckstrin homology (PH) domains. For instance, AKT requires
binding with its PH domain to PI(3,4,5)P; to become enzyma-
tically active. The AKT1 isoform in CLL cells plays an important

role in driving cell proliferation, growth, survival, and cellular
metabolism?42°.

The PI3K signaling is negatively regulated by the SH2-
containing inositol 5'-phosphatase SHIP1 that hydrolyzes PI
(3,4,5)P; to PI(3,4)P,, thereby preventing the recruitment and
activation of PH domain-containing effectors and the propaga-
tion of PI3K-mediated downstream signals®®. Mutations causing
hyperactivation of the PI3K pathway are among the most com-
mon genetic lesions in human cancer?’, and somatic mutations in
the INPP5D gene encoding SHIP1 have been detected in acute
myeloid leukemia (AML) patients?8. These mutations strongly
reduce SHIP1 activity, either by directly interfering with the
enzymatic activity of SHIP1 to suppress PI3K/AKT signaling, or
by loss of function of their SH2 domain or PXXP motifs, both of
which are required for proper recruitment of the inhibitory
complex??. Similarly, frame-shifts, as well as other translationally-
inactivating deletions and insertions in the INPP5D gene, occur in
T-cell acute lymphoblastic leukemia (T-ALL). In strong con-
trast, SHIP1 inhibition or genetic deletion of INPP5D in BCR-
ABL1-driven pre-B ALL mimics excessively strong signaling from
an autoreactive BCR and engages a B-cell intrinsic negative
selection program leading to energy stress and cell death!214, Pre-
B ALL cells are derived from B-cell precursors that are subject to
central B-cell tolerance checkpoints. CLL cells exhibit a mature B-
cell phenotype and are thought to be derived from naive B cells.
Here we tested whether CLL cells—like pre-B ALL cells—are
subject to mechanisms of negative B-cell selection. Previous
studies have suggested that SHIP1 is expressed in CLL;3! how-
ever, the functional role of SHIP1 in limiting PI3K signaling in
established CLL is still not clearly defined.

In this study, we, therefore, investigated the cellular con-
sequences of acute AKT activation and SHIPI inhibition in CLL
in vitro and in vivo. While intermediate levels of PI3K/AKT
activity are essential for the survival of CLL cells, we show that the
negative regulator SHIP1 is required to balance PI3K/AKT sig-
naling in CLL to prevent hyperactivation of BCR-downstream
signaling and clonal deletion. Accordingly, we propose transient
SHIP1 phosphatase inhibition as a potential therapeutic option
and a promising strategy to overcome mechanisms of drug
resistance in CLL.

Results

Acute AKT1 hyperactivation in CLL is detrimental to CLL
cells. In order to investigate how CLL cells respond to acute
activation of the PI3K/AKT signaling pathway, we transduced the
CLL-derived cell line MEC-1 with a constitutively active form of
AKT1 (myrAKT132) linked with GFP. Unexpectedly, we observed
a decrease in myrAKT1-expressing GFPT MEC-1 cells over time
as compared to the untransduced, GFP-negative cells while the
fraction of GFP empty vector (EV) control cells remained stable
in the culture (Fig. 1a, b). AKT overexpression and activation was
confirmed using western blot in myrAKT1-expressing MEC-
1 cells as compared to EV transduced cells sorted for GFP
(Fig. 1c). These results indicate that acute activation of the PI3K/
AKT signaling pathway diminishes CLL cell viability and
expansion in this model and thereby contradict the current
understanding of a solely proliferative and prosurvival role of
AKTT1 activation in CLL.

To extend these findings in primary CLL cells, we employed
the TCL1 transgenic (TCL1tg) CLL mouse model3. For this, we
first created a transgenic mouse line for inducible AKT1E17K
expression, a mutation derived from solid tumors and T-cell
lymphoma3* that renders AKT1 constitutively active by increas-
ing the affinity for PI(3,4,5)P; and confering affinity to the
abundant plasma membrane lipid PI(4,5)P,, which is not bound
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by AKTI1 under normal circumstances>. We introduced the
human AKT1E17K cDNA preceded by a loxP-flanked transcrip-
tional and translational STOP cassette into the ubiquitously
expressed Rosa26 locus, followed by an IRES GFP cassette to
track AKT1E7K_expressing cells’® (Supplementary Fig. la-c).
The resulting Rosa26!0xSTOPloxAKRT1EI7K mice were crossed with

Mb1-CreER2 transgenic animals for B-cell-specific inducible
Cre expression®”. The STOP cassette is excised upon tamoxifen
(4-OHT) treatment specifically in the B-cell-lineage, and
AKT1EI7K expression is indicated by GFP expression. After
crossing the AKT1E7K Mb1-CreER™? line to the TCL1tg CLL
model, we obtained triple transgenic animals carrying TCLItg
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Fig. 1 Acute AKT1 activation is detrimental to CLL cells of murine and human origin. a Time course FACS analysis of GFP expression in MEC-1 cells upon
transduction with pMIG EV (empty vector) or pMIG-myrAKT]1, representative for 2 independent experiments. The gating strategies are shown in
Supplementary Fig. S5. b Fold change of GFP expression in MEC-1 Eco cells upon transduction with pMIG-EV (black squares) or pMIG-myrAKT1 (red
squares), pooled analysis of 2 independent experiments. ¢ Immunoblot confirmation of active AKT expression in GFP-sorted MEC-1 Eco cells upon
transduction with pMIG-EV or pMIG-myrAKT1, representative for 2 independent analyses. DHX9 serves as a loading control (LC). d Splenocytes from
aged TCLIwt AKT1ET7K Mb1-CreERT2 (top) or TCL1tg AKT1E17K Mb1-CreERT2 (bottom) mice were analyzed for CD19 and CD5 expression (CLL
development). GFP negativity of murine B cells (mBc) in the upper panel and murine CLL (mCLL) in the lower panel was confirmed (to exclude potential
leakiness of the CreERT2 system). Representative data for n =3 (CLL) and n = 2 (mBc) mice. e GFP expression was confirmed in both normal B cells (upper
panel, GFP blot is gated for viable CD19TCD5~ cells) and CLL cells (lower panel, GFP blot is gated for viable CD19+CD57 cells) upon TAT-Cre or 4-OHT
administration, indicating AKT1E17K transgene expression (left panels). 4 days later, GFP* normal murine B cells (mBc; upper panel) were slightly enriched
while GFPT murine CLL cells (mCLL; lower panel) significantly declined (right panels) over time. Representative data for n=3 (mCLL) and n=2 (mBc)
mice. f The differential response to AKTIE7K expression on the viability of mBc (black squares) and mCLL (red squares) by induction of AKT1E7K on cell
viability is shown over time (representative data are shown in top panel) and a summary of three independent experiments from n=3 (CLL) and n=2
(mBc) biologically independent mice (d4-8, depending on TAT-Cre or 4-OHT induction; lower panel). Data are presented as individual values and mean
values # standard deviation (SD). Statistical significance was assessed by a two-tailed unpaired Student's t-test. g-m Splenocytes from an aged TCL1tg
AKTIE7K Mb1-CreERT2 mouse were transplanted into 10 wt recipients and provided with tamoxifen-containing chow (TAM; clear squares; n = 5 individual
mice) or control chow (control; black squares; n =5 individual mice) for 4 weeks, thereafter all mice received control chow. On d7 and d14, CLL content
was monitored in the peripheral blood by flow cytometric analysis of CD19+CD5* cells. Data are presented as individual values and mean values * SD,
statistical significance was assessed by a two-tailed unpaired Student’s t-test; (n.s.) not significant (g). Representative example of GFP analysis for CLL in
the peripheral blood (PB) on d14 post injection and tamoxifen (TAM) or control chow administration (h). Macroscopic analysis of lymph nodes (axillary)
and spleens 8 weeks post transplantation. Scale bars indicate 1cm. (). Lymph node (j) and spleen size (k) are shown, determined by area quantification
using the Image)J software. Percent CD19+CD5™ CLL cells in the lymph nodes (I) and spleen (m) of wt mice 8 weeks post transplantation is shown (j), for
n=>5 individual animals, respectively. Data are presented as individual values and mean values = SD and statistical significance was assessed by a two-

tailed unpaired Student's t-test in j-m; Source data are provided as a Source Data file.

AKT1E7K Mb1-CreERT? and waited for CLL development in
these mice without activating the AKTIE7K transgene. Once
signs of disease occurred, we harvested splenocytes of the TCL1tg
AKT1E17K Mb1-CreERT2? mice and confirmed CLL development
by detecting a pronounced CD19+CD5% CLL cell population in
the spleen that did not express the AKT1 transgene, as indicated
by the GFP-negative CLL/B-cell population (Fig. 1d). As a control
for normal, non-transformed B cells, we isolated splenocytes from
a littermate carrying the AKT1E17K transgene and Mb1-CreER2
but not the TCL1 transgene (TCL1wt). We then tested for the
AKTI1E17K/GFP expression by administering 4-OHT in vitro.
While both non-transformed B cells and CLL cells recombined
the locus and expressed AKT1E7K as indicated by GFP
expression, AKT1EI7K promoted B-cell survival only in non-
transformed B cells in vitro, while the GFP* CLL cells rapidly
decreased and died in vitro (Fig. 1e, f).

Next, we investigated whether the inducible activation of
AKTI1E7K affects murine CLL growth in vivo. To this end, we
transplanted splenocytes of aged TCLltg AKT1E7K Mb1-
CreERT2 mice into wild-type (wt) recipients and induced
AKTI1EI7K expression by providing tamoxifen-enriched chow or
control chow for 4 weeks. We followed the CLL content in the
peripheral blood and observed a significant drop in the CLL
content of the tamoxifen-treated group post transplantation
(Fig. 1g). However, no GFPT CLL cells were detected in the
peripheral blood suggesting that AKT1E17K expression is not
tolerated in murine CLL cells as dying cells are rapidly cleared
and therefore not detectable in vivo3® (Fig. 1h). To exclude the
possibility that AKT1E17K_expressing CLL cells relocate to the
secondary lymphoid organs, we harvested spleens and lymph
nodes 8 weeks post transplantation. We found a moderate
decrease in the spleen size as well as decreased lymph node sizes
in the tamoxifen-treated group as compared to the control mice
(Fig. li-k). When we performed flow cytometric analyses for
CD19, CD5, and GFP expression, we observed a moderate
reduction in CLL in the lymph nodes (Fig. 11) but not in the
spleen (Fig. 1m). Importantly, we did not detect a substantial
percentage of GFPt CLL cells in the lymphoid organs despite
tamoxifen treatment. Therefore, the vast majority of CLL in the

tamoxifen-treated mice did not express GFP/AKT1E!7K, suggest-
ing that virtually all CLL cells that recombined the locus to
express AKT1E17K had died and were cleared in vivo38, which is
in line with our in vitro studies. However, there was a small but
clearly visible GFP* population detectable in the peritoneal cavity
and the lymph node of tamoxifen-treated mice (less than 0.2% of
CLL cells, summarized in Supplementary Fig. 1d, e) but not in the
control mice, demonstrating that the genetic rearrangement had
occurred upon tamoxifen treatment but did not result in CLL cell
expansion. Taken together, we, therefore, conclude that acute
hyperactivation of the PI3K/AKT pathway by introducing
constitutively active AKT1 in CLL is detrimental for the cells
in vitro and in vivo.

The inhibitory phosphatase SHIP1 is highly expressed and
active in CLL. We next identified strategies to therapeutically
exploit the sensitivity of CLL cells to PI3K/AKT hyperactivation.
As direct activators of PI3-kinases for pharmacological studies are
not available, we investigated whether targeted hyperactivation
can be achieved by pharmacologically inhibiting the inhibitory
phosphatase SHIP1. To determine whether SHIP1 inhibition
could present a useful approach in CLL, we first investigated
SHIP1 expression and activity in CLL samples. The analysis of
mRNA expression levels of INPP5D, encoding the phosphatase
SHIP1, revealed that all 210 CLL samples analyzed® expressed
SHIP1 mRNA, with higher levels in samples derived from CLL
patients with mutated IgVy genes that have a favorable clinical
prognosis as compared to those with an unmutated IgVy
(Fig. 2a). However, there is no significant association of SHIP1
mRNA expression with CLL patients’ time to treatment or overall
survival (Supplementary Fig. 2a). We then analyzed SHIP1 pro-
tein levels of primary CLL samples and compared them to B cells
of healthy age-matched donors, both derived from the peripheral
blood, and found significantly higher SHIP1 expression and
phosphorylation levels in CLL than in normal peripheral B cells,
which is potentially induced by the activated BCR status in CLL’
(Fig. 2b). CLL patients’ characteristics for all samples used in this
study are listed in Supplementary Table 1. In AML, recurrent
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Fig. 2 SHIP1 activity in CLL samples is required to limit AKT signaling for CLL cell survival. a Normalized RNAseq counts of INPPSD mRNA (encoding
SHIP1) are shown for IgVy-mutated CLL cases (M-CLL; black squares; n=94) as compared to IgVy-unmutated CLL samples (UM-CLL; clear squares; n = 95);
samples obtained from the peripheral blood. Data are presented as individual values and mean values + SD. Statistical significance was assessed by a two-tailed
unpaired Student's t-test. b Immunoblot of pSHIP1Y1920 and global SHIP1 with beta-actin (ActB) as a loading control in MACS-isolated CD19+ peripheral blood B
cells from healthy donors (n=75) as compared to CLL samples obtained from peripheral blood (n = 4). Numbers indicated reflect the sample IDs of the CLL
samples listed in Supplementary Table 1. ¢ Direct phosphatase activity was determined using Malachite green assay after pulldown from 250 pg protein isolated
from (left) H1299 cells lentivirally overexpressing wt SHIP1 or the AML-derived R673Q variant of SHIP1 (as positive and negative control, respectively) and (right)
healthy donor peripheral blood B cells (n=15) or primary peripheral blood CLL cells (n=4). Data are presented as individual values and mean values + SD.
Statistical significance was assessed by a two-tailed unpaired Student's t-test. The respective protein expression is shown in Supplementary Fig. S2c. d MEC-1 cells
were treated with the SHIPT inhibitor (SHIP1i) 3AC 5uM (red line) or vehicle (dark gray line) for 3 min and subjected to intracellular pAKT staining; unstained
control cells are indicated in light gray; representative FACS blot (left) and the summary of three independent experiments (right) is shown. Right: Data are
presented as individual values for each experiment; statistical significance was assessed by a two-tailed paired Student's t-test. e Cytotoxicity dose-response to
increasing concentrations of the SHIP1 inhibitor 3AC in 28 primary CLL samples. The percentage of dead cells was determined by flow cytometry via DAPI staining.
The percentage of specific cell death was calculated as follows: 100 x (% dead cells — % baseline dead cells)/(100% — % baseline dead cells). Data are presented
as mean values + SD. f Viability was determined upon 48 h treatment with 5pM 3AC in vitro in CD19+ B cells from healthy donors (filled squares), the B-cell
lymphoma lines BJAB (human Burkitt lymphoma), SUDHL6 (human diffuse, mixed small and large cell lymphoma line), Bal17 (murine B-cell lymphoma; filled
diamonds), and 28 primary CLL samples (clear squares) as well as the CLL-derived cell lines MEC-1 (light gray square) and EHEB (dark gray square), and the
specific cell death was calculated as described in e. Data are presented as individual values and mean values * SD. Statistical significance was assessed by a two-
tailed unpaired Student's t-test. g MEC-1 cells were treated with vehicle (control), treated with the AKT inhibitor AZD-5363 (5 uM) alone, or in combination with
3AC (5 pM). Left: representative flow cytometry analysis of DAPI negative, viable cells upon the treatments. Right: the specific cell death was determined as
described in e, measured in four independent experiments. Data are presented as individual values for each experiment and statistical significance was assessed by
a two-tailed paired Student’s t-test. h Primary CLL cells derived from the peripheral blood of 7 donors were treated with vehicle (control), treated with the AKT
inhibitor AZD-5363 (5 pM) alone or in combination with 3AC (5 pM) and the specific cell death was determined as described in e. Data are presented as individual
values per CLL donor and statistical significance was assessed by a two-tailed paired Student's t-test. Source data are provided as a Source Data file.

mutations in the SHIP1-encoding gene INPP5D lead to a sig-  available sequencing data0-42 (using the cBioportal for Cancer
nificantly reduced phosphatase activity?’. To determine whether ~ Genomics platform (http://cbioportal.org)) and compared them
recurrent loss-of-function mutations in the SHIPl-encoding to INPP5D mutations previously found to reduce SHIP1 phos-
INPP5D gene also exist in CLL, we next identified the types phatase activity?® or protein stability*3. In total, only 0.6% of CLL
and frequency of INPP5D alterations in CLL in publically samples analyzed carried INPP5D gene alterations in CLL
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(6 mutations detected in 1048 analyzed CLL samples). Of the 6
mutations, none occurred recurrently or was previously described
as inactivating the SHIP1 phosphatase activity (listed in Supple-
mentary Fig. 2b). Thus, INPP5D gene alterations are rare in CLL
suggesting that SHIP1 is enzymatically active in the vast majority
of CLL cases. To further confirm that the enzymatic activity of
SHIP1 was stable in primary CLL samples, we performed a
malachite green phosphate assay after SHIP1 precipitation. In
primary CLL samples, we found variable but detectable levels of
PI(3,4,5)P; dephosphorylating activity in all samples comparable
to control cells that lentivirally overexpressed wt SHIP1. In
healthy donor B-cell samples, SHIP1 activity was below the
detection limit in 3 out of 5 tested donors, possibly due to the low
expression levels in the absence of additional stimuli (Fig. 2c and
Supplementary Fig. 2c). Taken together, we, therefore, conclude
that CLL cells express high levels of enzymatically active SHIP1.

SHIP1 inhibition induces AKT activation and is toxic specifi-
cally for CLL cells. To investigate the functional relevance of
SHIP1 phosphatase activity in CLL, we first tested a small
molecule SHIP1 inhibitor 3AC (3 a-Aminocholestane) that
selectively inhibits the enzymatic activity of SHIP1 (ICso ~2.5
uM) but not related phosphatases SHIP2 and PTEN (ICs, > 1
mM)#, To confirm that SHIP1 inhibition hyperactivates the
PI3K/AKT signaling pathway in CLL, we analyzed AKT S473-
phosphorylation levels and, as expected®®, found significantly
increased activation upon SHIP1 inhibition (Fig. 2d). Further
analyses of downstream events indicated the transient activation
of the mTOR/S6 signaling pathway upon 3AC treatment with
upregulation of the anti-apoptotic protein MCL1, followed by a
decrease below baseline levels (Supplementary Fig. 2d). At con-
tinuous treatment for 48 h, the SHIP1 inhibitor induced dose-
dependent cell death in all 28 primary CLL samples tested
(Fig. 2e). To account for the variation in the vehicle-treated
control cells due to spontaneous apoptosis of primary CLL cells
in vitro, we calculated the specific cell death induced by 3AC*°, In
order to determine whether the cytotoxic effects were specific for
CLL, we compared the effects of 3AC on the viability of non-
malignant B cells purified from the peripheral blood of healthy
donors, as well as several B-cell lymphoma cell lines, namely
BJAB, SUDHLS6, and Ball7, to primary CLL samples and the
CLL-like cell lines MEC-1 and EHEB. While B cells derived from
the peripheral blood of healthy donors and Ball7, BJAB and
SUDHL6 lymphoma cells remained largely unaffected in terms of
viability upon 3AC treatment (Fig. 2f), SHIP1 inhibition-induced
cell death specifically in CLL cells, including the MEC-1 and
EHEB cell lines. Amongst CLL samples, cells derived from
patients with a favorable prognosis (mutated IgVy) were more
sensitive to SHIP1 inhibition than those with a poor prognosis
(expressing unmutated IgVyy; Supplementary Fig. 2e). In order to
further clarify whether the activation of AKT is critical for 3AC-
mediated cytotoxicity, we treated MEC-1 cells with the AKT
inhibitor AZD-5363 and evaluated cell viability upon SHIP1
inhibition. Strikingly, co-treatment with the AKT inhibitor sig-
nificantly reduced the cytotoxic effect of the SHIP1 inhibitor 3AC
(Fig. 2g), while AKT inhibition alone had no significant effect on
cell viability (Supplementary Fig. 2f). This was also confirmed in
samples derived from the peripheral blood of seven individual
CLL patients (Fig. 2h). Together, this data demonstrates that
SHIP1 inhibition mediates cytotoxicity specifically in CLL via
AKT activation.

SHIP1 inhibition delays CLL progression in vivo. To test
whether transient inactivation of SHIP1 is a potential therapeutic
option for CLL, we assessed disease progression in different

in vivo models of CLL. To determine the effects of SHIP1 inhi-
bition on CLL in an immunocompetent system, we again used the
TCL1tg CLL mouse model3, which is an established tool for
studying therapeutic targets in human CLL*. Here, we evaluated
the disease progression in the peripheral blood upon transplan-
tation of murine donor CLL cells (mCLL) that revealed a rela-
tively indolent progression in vivo and initiated the 3AC
treatment when the CLL fraction was clearly detectable in the
peripheral blood (d8, Fig. 3a). The treatment schedule is shown in
Supplementary Fig. 3a. We then followed the expansion of CLL
cells in the peripheral blood over time and observed a significant
reduction in the CLL progression in the SHIP1 inhibitor-treated
mice (Fig. 3b). We then analyzed the CLL infiltration in the
secondary lymphoid organs 30 days post CLL injection. All CLL
target organs revealed significantly less CLL cell infiltration in the
3AC-treated group as compared to the control group (Fig. 3c). To
also mimic therapeutic approaches in CLL patients that already
have high levels of CLL in the peripheral blood at the time of
treatment initiation, we also tested the efficacy of SHIP1 inhibi-
tion in a highly aggressive mCLL where the disease had pro-
gressed to ~50% CD19" CD57 cells in the peripheral blood at the
time of treatment initiation (Fig. 3d). Similar to our previous
results, treatment with 3AC diminished the progression of the
disease in the peripheral blood (Fig. 3e) and reduced the levels of
remaining CLL in all target organs of murine CLL, despite the
short treatment schedule of 8 doses (Fig. 3f, treatment schedule is
shown in Supplementary Fig. S3b). To also assess the efficacy of
SHIP1 inhibition on human CLL in vivo, we treated NOD/
SCIDcy~/~ (NSG) mice xenografted with primary patient-
derived CLL cells with the SHIP1-specific inhibitor 3AC in vivo
(treatment schedule shown in Supplementary Fig. 3c). The gating
strategy for the analysis of primary CLL cells is depicted in
Supplementary Fig. 3d. Equal engraftment of hCLL cells was
confirmed prior to injection (Fig. 3g). Similar to the treatment of
murine CLL, we observed a significant reduction in the amount of
hCLL cells in CLL target organs in the 3AC treatment group as
compared to the control group, determined by flow cytometric
analysis (Fig. 3h, i) and histology (using immunohistochemistry
detecting human CD20 in the spleen, Fig. 3j, k). The HE staining
of the histology with hCD20 analysis and labeling for statistical
evaluation of sections derived from five mice per group is shown
in Supplementary Fig. 3e. The SHIP1-specific inhibitor 3AC did
not induce toxicity in vivo as indicated by the constant body
weight of the treated mice pre- and post-treament (Supplemen-
tary Fig. 3f). Together, these results reveal that transient phar-
macological SHIP1 inhibition represents a potential therapeutic
strategy for treating murine and human CLL in vivo.

Genetic validation of effects mediated by SHIP1 inhibition. In
order to validate on-target effects of SHIP1 inhibitors mediating
the observed cytotoxic effects, we employed genetic loss-of-
function studies. We first performed shRNA knockdown
experiments using the CLL-derived cell line MEC-1. We con-
firmed reduced SHIP1 protein levels with two INPP5D-targeting
vectors (shSHIP1 KDI1 and KD2) as compared to scrambled
shRNA control cells with immunoblot (Fig. 4a). When analyzing
the viability of MEC-1 cells with SHIP1 knockdown, we observed
a reduction in viability (Fig. 4b) and cell count upon SHIP1
knockdown (Fig. 4c), similar to the effects observed upon 3AC
treatment. To investigate the relevance of SHIP1 expression
in vivo, we transplanted MEC-1 cells carrying scrambled control
shRNA or SHIP1-targeting shRNA into NSG mice, a model for
aggressive, rapidly progressing human CLL*8. Based on the dif-
ferent viability rates at the time of cell injection, we used
luciferase-expressing MEC-1 cells that can be detected via
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bioimaging in vivo. We conducted bioimaging on the day of cell
injection to confirm similar amounts of viable MEC-1 cells in all
transplanted mice (Fig. 4d, top panel). However, over a period of
4 weeks, SHIP1 knockdown significantly reduced the MEC-1
expansion in vivo as indicated by a reduced light signal detected
via bioimaging (Fig. 4d, lower panels). MEC-1 SHIPI
knockdown-bearing mice lived significantly longer than those
that received MEC-1 cells with scrambled shRNA vectors (Fig. 4d,
e). Importantly, reanalysis of SHIP1-targeting shRNA carrying
MEC-1 cells obtained from mice with active disease revealed that
these expressed SHIP1 at levels similar to those in the control
MEC-1 cells, indicating that the clones that escaped the knock-
down outgrew and formed lethal leukemia (Fig. 4f). In addition,
we performed CRISPR/Cas9-mediated knockout of the INPP5D

O ehicle SHIPTi

0 : OEeeED S
vehicle SHIP1i vehicle SHIP1i

p<0.01

=

vehicle SHIP1i

gene in MEC-1 cells. After successful validation of targeting
through western blot (Fig. 4g) and gene sequencing (Supple-
mentary Fig. 3g), we performed competitor growth assays and
confirmed the selective disadvantage of SHIP1-deficient MEC-
1 cells in vitro (Fig. 4h) and a similar trend was observed in vivo
(Fig. 4i). Note that SHIP1 knockout MEC-1 cells were expanded
from single cells for several weeks prior to these experiments and
may have adapted to higher PI3K/AKT signaling levels during
this period. This adaptation could weaken the growth-limiting
effects of SHIP1 deletion as compared to the acute inhibitor
treatments. To further assess the specificity of our SHIP1 inhi-
bitor, we confirmed that SHIP1-deficient MEC-1 cells were sig-
nificantly less sensitive to 3AC treatment as compared to control
clones (Supplementary Fig. 3h), confirming that the cytotoxic
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Fig. 3 SHIP1 Inhibition reduces CLL progression in vivo. a Representative FACS analysis of murine CLL cells (mCLL) in the peripheral blood prior to
treatment initiation (d8). b Time course of mCLL content in the peripheral blood (PB), arrow indicates the SHIP1 inhibitor (SHIP1i) 3AC (clear squares) or
vehicle (black squares) treatment initiation (n =7 individual animals per treatment group, representative for two independent experiments), with 14 total
doses of 20 mg/kg (treatment schedule is shown in Supplementary Fig. S3a). Data are presented as mean values = SD. Statistical significance was
assessed by a two-tailed unpaired Student'’s t-test for the indicated time points. € murine CLL cell engraftment in the spleen (SP), the bone marrow (BM)
and in peritoneal cavity (PC) after treatment with 3AC or vehicle control is shown as determined by FACS analysis; n =7 animals per treatment group,
representative for two independent experiments. Data are presented as individual values and mean values + SD. Statistical significance was assessed by a
two-tailed unpaired Student’s t-test. d Representative FACS analysis of aggressive mCLL cells in the peripheral blood prior to treatment initiation (d10). e
Time course of mCLL content in the peripheral blood, arrow indicates 3AC/vehicle treatment initiation (n = 7 animals per treatment group; representative
for two independent experiments; treatment schedule is shown in Supplementary Fig. S3b). Data are presented as mean values + SD. Statistical significance
was assessed by a two-tailed unpaired Student’s t-test for the indicated time points. f Murine CLL cell engraftment in the spleen (SP), the bone marrow
(BM), and in peritoneal cavity (PC) after treatment with the SHIP1i 3AC or vehicle control is shown as determined by FACS analysis. Data are presented as
individual values and mean values + SD. Statistical significance was assessed by a two-tailed unpaired Student's t-test. g Summary of human CLL (hCLL)
contents in the peripheral blood prior to treatment initiation (d1 post injection), representative for two independent experiments. h-j Reduction of CLL cells
in the peripheral blood (h), and spleen, bone marrow, and peritoneal cavity (i) of NSG mice treated with 3AC (n = 6) as compared to vehicle control (n=
6), representative for two independent experiments. The treatment schedule is shown in Supplementary Fig. S3c and the gating strategy in Supplementary
Fig. S3d. Data are presented as individual values and mean values £ SD. Statistical significance was assessed by a two-tailed unpaired Student's t-test.
Representative result for two independent CLL donors injected in 12 NSG mice, respectively. j-k Immunohistochemistry (IHC) for human CD20 (hCD20) in
spleens, scale bars represent 500 pm (j), and quantified with automated hCD20+ IHC analysis (k); box plots indicate median (middle line), 25th, 75th
percentile (box) and minimum and maximum (whiskers) and the statistical analysis was performed by Mann-Whitney test. Automated detection of
hCD20 is depicted in Supplementary Fig. S3e. Significance values are depicted in the graph; (n.s.) not significant. Source data are provided as a Source

Data file.

effect is largely due to on-target SHIP1 inhibition. Together, our
data clearly shows that SHIP1 expression and activity is required
for optimal CLL cell growth and survival.

PI3K/AKT hyperactivation promotes oxidative phosphoryla-
tion in CLL cells followed by ROS-mediated cell death. To
elucidate the mechanism of how hyperactivation impairs CLL
progression, we again employed the genetic strategy of PI3K/AKT
hyperactivation by forced constitutively active AKT1 expression
in MEC-1 cells. After sorting of GFPT myrAKT1 or EV-
expressing MEC-1 cells, we conducted RNAseq analysis with
subsequent gene set enrichment analysis*® and found a significant
upregulation of genes related to “oxidative phosphorylation”
upon AKTI activation in MEC-1 cells (Fig. 5a, b and Supple-
mentary Fig. 4a, Supplementary Data 1). Similar effects were
observed in MEC-1 cells upon shRNA-mediated SHIP1 knock-
down (Supplementary Fig. 4b). This upregulation was rather
surprising, as PI3K/AKT signaling is primarily known to promote
the glycolytic metabolic pathway to ensure fast responses to
energy demands®’. To test the metabolic status functionally, we
measured the metabolic consequences of AKT1 activation as well
as SHIP1 inhibition in CLL cells. Without manipulation, CLL
cells primarily rely on mitochondrial oxidative phosphorylation
for energy supply’!. Accordingly, we analyzed mitochondrial
functions by determining the oxygen consumption rate (OCR) in
MEC-1 cells overexpressing myrAKT1 or empty vector control
cells and found higher mitochondrial respiration capacity in the
myrAKT1-expressing CLLs (Fig. 5c), which is in line with the
enriched “oxidative phosphorylation” gene expression signature.
Similarly, treatment of MEC-1 cells with the SHIP1 inhibitor 3AC
increased OCR levels, both at the baseline and upon respiratory
challenge (Fig. 5d). Finally, primary CLL cells also revealed
increased mitochondrial capacity upon SHIP1 inhibition, which
was less pronounced in healthy donor B cells (Fig. 5e). Glycolytic
activity measured by the extracellular acidification rate (ECAR)
was not significantly affected by 3AC treatment (Supplementary
Fig. 4¢). During oxidative phosphorylation, electrons escape from
the electron transport chain to induce formation of reactive
oxygen species (ROS), including superoxide anions and hydrogen
peroxide®2. To investigate whether the increase in mitochondrial
respiration upon SHIP1 inhibition impacts ROS levels in CLL, we

measured levels of cellular ROS upon SHIP1 inhibition and
indeed observed that the high levels of ROS in primary CLL
cells®! were further increased by 3AC treatment (Fig. 5f). Simi-
larly, in the CLL-derived cell line MEC-1 we found upregulated
ROS levels in SHIP1 knockout clones as compared to controls of
the MEC-1 line. Treatment of SHIP1 knockout clones with 3AC,
however, did not further increase ROS levels (Supplementary
Fig. 4d-g), confirming that 3AC-mediated ROS induction is due
to on-target SHIP1 inhibition. Importantly, blocking ROS levels
derived from oxidative phosphorylation with a mitochondria-
targeted antioxidant (mitoTEMPO) significantly reduced the
cytotoxicity of SHIP1 inhibition in MEC-1 cells (Fig. 5g) and
primary CLL cells (Fig. 5h). Similar results were obtained with the
ROS scavenger N-acetyl-cyteine (NAC; Supplementary Fig. 4h, i).
These results indicate that PI3K/AKT pathway activation in CLL
(by myrAKT1 overexpression, genetic SHIP1 deletion, or by
SHIP1 inhibition) promotes the oxidative metabolic pathway in
CLL and thereby leads to the formation of toxic ROS levels.

SHIP1 inhibition induces lytic cell death with immunogenic
features. Given that ROS accumulation plays a key role in
mediating different forms of programmed cell death>3%4, we next
investigated which mode of cell death is induced in CLL upon
SHIP1 inhibition and tested different inhibitors of cell death
pathways in combination with 3AC treatment of primary CLL
samples. While pan-caspase- or caspase-8 inhibition had very
little or no effect on the cytotoxicity induced by 3AC (Fig. 6a, b),
necroptosis inhibition by NECIs (inhibiting RIP1) or GSK-843
(inhibiting RIP3) did significantly reduce the 3AC-mediated
cytotoxicity in primary CLL (Fig. 6¢, d). The respective viabilities
after the indicated treatments (alone and in combination) are
depicted in Supplementary Fig. 4j-m. As necroptosis is an
immunogenic form of cell death, we further evaluated whether
CLL cells acquired characteristics associated with immunogenic
cell death (ICD)>> upon treatment with the SHIP1 inhibitor 3AC.
Translocation of calreticulin to the surface of stressed cells acts as
“eat me” signal for their removal by phagocytosis®®. As we
expected, calreticulin was exposed to the outer membrane in CLL
cells upon SHIP1 inhibition (Fig. 6e). In addition, CLL cells
secreted the danger-associated molecular pattern (DAMP)
HMGBI1 (Fig. 6f) and ATP to the supernatants upon 3AC
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treatment in a dose-dependent manner (Fig. 6g), which also
contributes to the activation of adjacent immune cells. Impor-
tantly, in the untreated control CLL cells, no HMGBI1 and only
low levels of extracellular ATP were detected, despite the high
level of spontaneous apoptotic cell death after 48 h in primary
CLL cell cultures. This indicates that the release of these immu-
nostimulatory molecules by CLL cells is specifically induced by

Days post-transplantation

SHIP1 inhibition rather than secondary, unspecific events during
spontaneous cell death. In line with this assumption, HMGB1
release upon SHIP1 inhibition can be partially blocked by inhi-
biting the MLKL-mediated pore formation using small-molecule
inhibition (Fig. 6h). We also observed increased levels of HMGB1
and ATP secreted upon shRNA-mediated SHIP1 knockdown and
after myrAKT expression in MEC-1 cells (Fig. 61, j). These results
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Fig. 4 Genetic validation of SHIP1 inhibitor effects. a Immunoblot analysis of SHIP1 in MEC-1 cells stably transduced with two different SHIPT shRNA
knockdown constructs (KD1and KD2). B actin serves as a loading control (LC), representative for two independent experiments. b Viability of MEC-1 cells
upon transduction and selection with SHIPT shRNA (shSHIP1; clear squares) or scrambled constructs (shScramble; black squares) was determined via flow
cytometry and DAPI exclusion, summary of three independent experiments is shown, shSHIP1 pooled data using KD1 and KD2 targeting vectors. Data are
presented as individual values and mean values + SD. Statistical significance was assessed by a two-tailed unpaired Student's t-test. ¢ Absolute number of
MEC-1 cells upon transduction and selection with shScramble (black squares) and shSHIP1 (clear squares; pooled data using KD1 and KD2) constructs,
summary of three independent experiments is shown. Data are presented as individual values and mean values + SD. Statistical significance was assessed
by a two-tailed unpaired Student's t-test. d Bioimaging upon injection of MEC-1 Eco/Luc transduced with SHIPT shRNA (KD1 or KD2; n = 4) or scrambled
shRNA (n = 3) containing cells into NSG mice. 1h after injection, equal loading with MEC-1 cells was confirmed. The progression was monitored on day 15
and day 31, as indicated, quantification of the light signal was performed using the Living Image Software. X indicates mice that had already succumbed to
the disease. Data for quantification are presented as individual values and mean values * SD. Statistical significance was assessed by a two-tailed unpaired
Student's t-test. e Kaplan-Meier Survival analysis is shown for NSG mice injected with MEC-1 carrying SHIPT shRNA (red line; n=7; KD1 and KD2) or
shScramble (gray line; n=6) constructs, pooled analysis of two independent experiments. Statistical significance between the survival curves with the
corresponding p-value was calculated by a log-rank (Mantel-Cox) test. f MEC-1 cells with control or SHIP1 shRNA were isolated from diseased mice (n =4
and n =3, respectively) and analyzed for SHIP1 expression via gPCR and normalized to the housekeeping gene GAPDH. Data are presented as individual
values and mean values + SD. Statistical significance was assessed by a two-tailed unpaired Student's t-test. g Western blot analysis of single-cell clones
transduced with INPP5D-targeting guide RNAs and Crispr/Cas9. One successful SHIP1ko clone is shown, DHX9 serves as a loading control (LC).

Representative analysis for at least four independent clones. h Growth competition assay of four successfully generated, independent GFP* SHIP1 knockout
clones (red squares) and 2 GFPT control clones (black circles) by mixing with the GFP-negative parental MEC-1 cells. Data are presented as mean values
(with £SD for knockout clones) of the fold change of GFP expression over time. i SHIPT wt (gray line; n = 4) and knockout MEC-1 cells (red line; n = 5) were
injected into NSG mice and symptom-free survival was assessed. Statistical significance was assessed by log-rank (Mantel-Cox) test. Significance values

are depicted in the graph; (n.s.) not significant. Source data are provided as a Source Data file.

indicate that SHIP1 inhibition induces a lytic form of cell death
with features of necroptosis that triggers the release of immu-
nogenic mediators from CLL cells in vitro. Taken together, we,
therefore, conclude that SHIP1 inhibition induces a lytic form of
cell death with immunogenic features (summarized in Fig. 6k).

Discussion

In this study, we identified a previously unrecognized vulner-
ability of CLL cells to acute and constitutive activation of the
PI3K/AKT signaling pathway. We confirmed that the expression
and activity of the inhibitory phosphatase SHIP1 is required to
limit PI3K/AKT signaling in CLL cells to prevent excessive ROS
production and thereby avoid an immunogenic form of cell
death. We, therefore, suggest transient pharmacological targeting
of SHIP1 as a therapeutic approach for CLL.

When we initiated our investigation of what renders CLL cells
specifically vulnerable to AKT1 activation or SHIP1 inhibition,
we found that additional activation of AKT1 increases oxidative
phosphorylation, thereby triggering ROS-dependent cell death in
CLL. In many solid tumors, malignant cells rely on the fast but
inefficient generation of ATP via glycolysis to maintain their
energy demands in a hypoxic condition with dysfunctional
mitochondria. AKT activation has emerged as a central player in
this metabolic switch. However, similar to non-transformed,
activated B cells, CLL cells circulate in normoxic conditions and
primarily rely on mitochondrial oxidative phosphorylation for
energy supply, despite their active AKT1 signaling®!->7->8,
Therefore, CLL cells already have high levels of ROS and have
evolved mechanisms to cope with this level of oxidative stress, i.e.,
via upregulation of the antioxidant enzyme hemoxidase 1°1.
Enforced increase of AKT signaling, either via SHIP1 inhibition
or genetic activation, however, leads to a further increase in
oxidative phosphorylation and to ROS levels toxic for CLL cells. It
should be noted that SHIP1 can also have activating roles in cell
signaling as PI(3,4)P,, the product of SHIP1 dephosphorylating
PI(3,4,5)P5, can also result in AKT activation®®. However, our
data clearly shows that SHIP1 inhibition results in CLL cell
activation, and this activation is critical for SHIP1 inhibition-
mediated cytotoxicity. In addition, although genetic PI3K/AKT
signaling activation upon introduction of constitutively active

mutant AKT1 induces stronger and more persistent signaling
compared to SHIP1 inhibition or deletion, we still observed
surprisingly similar downstream effects. These effects include the
induction of oxidative phosphorylation and ROS accumulation
followed by immunogenic cell death. Nevertheless, the induction
of cell death was weakened in the genetically manipulated MEC-1
cells as compared to the inhibitor-treated cells, and we speculate
that this weakened effect is largely due to adaptation to the higher
signaling levels as genetic manipulation takes days and even
weeks to successfully create SHIP1 knockdown/knockout lines. In
line with the assumption of cellular adaption, genetic knockout of
SHIP1 in B cells does not delay the disease development in the
TCLI1tg mouse model where pre-malignant cells can develop
strategies to counteract hypersignaling prior to full
transformation®.

AKT activation has also been linked to promoting cell death in
non-hematopoietic cells, particularly if the cells are metabolically
challenged®:92. Our study demonstrates that AKT activation and
increased levels of ROS in CLL cells are critical downstream
mediators of SHIP1 inhibition in CLL resulting in a lytic form of
cell death. In line with our finding, the induction of necroptotic
cell death by TNFa and Caspase inhibition (Z-VAD) in neurons
is preceded by the assembly of the critical necroptosis kinases
RIP1-RIP3 with activated AKT, and, similar to our observation,
pretreatment with small molecule inhibitors of AKT prevented
the formation of ROS and necroptosis®. Increased ROS levels can
be directly detected by RIP1, leading to its activation by autop-
hosphorylation on serine residue 1614, This specific phosphor-
ylation then recruits RIP3 and induces the formation of a
functional necrosome with pore formation and the release of
DAMPs%. We observed that RIP1 and RIP3 kinase activity is
critical for SHIP1 inhibition-induced cytotoxicity in CLL and this
is particularly interesting as we observe features of immunogenic
cell death. We further confirmed that CLL cells exhibit key
characteristics of immunogenic cell death with the release of
immunostimulatory molecules upon SHIP1 inhibition. We hence
provide evidence that SHIP1 inhibition promotes an immuno-
genic form of lytic cell death in CLL, which could be contributing
to the treatment efficacy.

We had initiated our study based on the hypothesis that strong
activation of the PI3K/AKT pathway mimics excessive signaling
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strength from an autoreactive BCR and that this may be leveraged
to trigger negative selection for therapeutic benefit in CLL
patients. It is unlikely that autoreactive B cells undergo an
immunogenic form of cell death during physiological B-cell
selection but most likely undergo classical apoptosis. In T cells,
SHIP1 inhibition induces classical apoptosis via Fas/Caspase-8°,
while our experiments indicate that 3AC-mediated cell death in
CLL is largely independent of caspases. One possible explanation
for the differential mode of cell death triggered by SHIP1 inhi-
bition in CLL is the upregulated antiapoptotic machinery in CLL,
one of the hallmarks of this disease: CLL cells express high ratios
of c-FLIP(L) to caspase-8, and thereby prevent caspase-8 activa-
tion and apoptosis®”, which can promote the induction of a

necroptotic form of cell death®. The sensitivity of CLL cells
towards excessive signaling may therefore still resemble negative
B-cell selection while the induction of an immunogenic form of
cell death upon SHIP1 inhibition specifically occurs in trans-
formed CLL cells.

Nevertheless, targeting negative regulators such as SHIP1 also
risks promoting unwanted proliferation of other, non- or pre-
malignant cells. Indeed, B-cell-specific knockout of SHIP1 in mice
results in the loss of B-cell tolerance and autoimmune
manifestations®®. Similarly, SHIP1 may act as a tumor suppressor
in other tumor entities, including AML and T-ALL, and its
inhibition may promote proliferation of pre-malignant cells of
other origins’?. However, our therapeutic approach is based on
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Fig. 5 Mechanistic analysis of AKT1 activation/SHIP1 inhibition in CLL. a Heatmap analysis of differentially regulated genes associated with oxidative
phosphorylation in MEC-1 cells upon transduction with pMIG EV (left) or pMIG-myrAKT1 (right), representative for two independent experiments. Color
scale indicates the Z score (red = up; blue = down). b Gene set enrichment analysis (GSEA) results for the association with “oxidative phosphorylation” is
shown upon myrAKT expression, Enrichment Score (ES) 0.65666306; Normalized Enrichment Score (NES) 2.847461; Nominal p-value < 0.001; FDR g-
value < 0.001; FWER p-value < 0.007; representative for two independent experiments. € Oxygen consumption rate (OCR) was measured in GFP-sorted
MEC-1 cells upon transduction with pMIG EV or pMIG-myrAKT1, pooled analysis of three independent experiments. Data are presented as mean values £
SEM (left) and as individual values and mean values £ SD in the bar graph (right). Statistical significance was assessed by a two-tailed unpaired Student's t-
test. d OCR was measured in MEC-1 cells treated for 1h with SHIP1 inhibitor (SHIP1i; 5 pM 3AC; clear squares) or control (black squares), pooled analysis
of seven independent experiments. Data are presented as mean values + SEM over time (left) and as individual values and mean values = SD in the bar
graph (right). Right: Statistical significance was assessed using mean values of three independent experiments by a two-tailed unpaired Student's t-test. e
OCR was measured in a healthy donor (HD) B cells (n = 6; circles) and primary CLL cells (n = 6, squares) upon 1h treatment with SHIPTi (5 pM 3AC; clear)
or control (filled); pooled data from two independent experiments. Data are presented as mean values + SEM (left) and as individual values and mean
values £ SD in the bar graph (right). Statistical significance was assessed by a two-tailed unpaired Student's t-test. f Quantification of MFI upon ROS
analysis using the CellROX orange dye in primary CLL cells untreated, or treated for 4 h with 5 pM 3AC is shown (n = 8). Data are presented as individual
values per CLL donor. Statistical significance was assessed by a two-tailed paired Student'’s t-test. g MEC-1 cells were treated with MitoTEMPO (MT; filled
squares), SHIP1i (3AC; clear squares) or the combination (clear circles) for 24 h treatment, measured in five independent experiments; the specific cell
death was determined as described in Fig. 2e. Data are presented as individual values and mean values + SD. Statistical significance was assessed by a two-
tailed unpaired Student’s t-test. h Primary CLL samples (n=3) were treated with MT (filled squares), SHIP1i (3AC; clear squares), or the combination
(clear circles) for 24 h; the specific cell death was determined as described in Fig. 2e. Data are presented as individual values and mean values + SD.
Statistical significance was assessed by a two-tailed unpaired Student'’s t-test. Significance values are depicted in the graph; (n.s.) not significant. Source

data are provided as a Source Data file.

transient SHIP1 inhibition, and potential proliferative signals to
other cells are only present for the limited time of treatment. In
our short-term treatment schedule in mice, we did not observe
any evidence of side effects from SHIP1 inhibition, neither in wt
nor in NSG mice. Similarly, other groups reported extended
survival of mice challenged with multiple myeloma’! with no
apparent toxicity upon SHIP1 inhibitor in vivo treatment, even
upon continuous treatment with 3AC in immunocompetent
miced472,

We hypothesize that some of the effects of SHIP1 inhibition on
other, non-CLL cells may also increase treatment efficacy. Recent
studies have demonstrated that SHIP1 inhibition in different
tumor models can increase the anti-tumor NK- and T-cell
responses’>. This is particularly promising in the context of CLL
where patients suffer from drastic immunosuppression leading to
fatal infections causing up to 30-50% of CLL-related
mortalities’4. We, therefore, suggest that both cell autonomous
and nonautonomous mechanisms can contribute to the ther-
apeutic efficacy of SHIP1 inhibition in CLL. We speculate that
transient SHIP1 inhibition in repetitive cycles can cause lytic cell
death with immunogenic features in the malignant cells and
simultaneously enhance the immunoresponse by directly acting
on NK- and T cells to restore effective immune responses and
potential anti-tumor immunity in CLL.

Taken together, our results show that CLL cells rely on a
delicate coordination between the cellular signaling pathways
regulating metabolic processes for their cellular growth and
depend on intermediate signaling. We show that perturbation of
negative regulation of the PI3K/AKT signaling, even if counter-
intuitive, induces a ROS-mediated lytic and immunogenic form
of cell death in CLL. We, therefore, propose transient inhibition
of SHIP1 as an unexpected concept for CLL therapy, either
alternating with kinase inhibition to potentially enhance the effect
of both solo treatments or to treat the rising cases of kinase
inhibitor-resistant disease.

Methods

Human subjects. Primary CLL samples were obtained from the peripheral blood
of patients at the National Center for Tumor Diseases, Heidelberg, Germany
(CLL1-CLL30, Supplementary Table 1). Data for IgVyy status, SHIP1 expression
was obtained by RNA Sequencing®. Clinical data and gene expression were ana-
lyzed by Junyan Lu (EMBL Heidelberg). In addition, Klinikum Miinchen
Schwabing (Clemens Wendtner; CLL31-CLL36) and Tumor Therapy Center of

Klinikum rechts der Isar (Christian Bogner, CLL37-CLL44) provided peripheral
blood of CLL patients for xenotransplantation approaches and in vitro experi-
ments. The local ethics committee of the Faculty of Medicine, Technical University
Munich, approved patient and healthy donor sampling and all presented experi-
ments. All participants (CLL patients and healthy donors) gave informed consent.
All patients were treatment naive or off CLL therapy for at least 3 months. Healthy
donor-derived blood samples (age-matched) were received from the “Bayerisches
rotes Kreuz” (Munich, Germany).

Cell lines. Chronic B-cell leukemia-derived cell lines MEC-1 (RRID: CVCL_1870),
EHEB (RRID: CVCL_1194), and lymphoma lines SUDHL6 (RRID: CVCL_2206),
BJAB (RRID: CVCL_5711), and Ball7 (RRID: CVCL_9474) were purchased from
DSMZ (Braunschweig, Germany). MEC-1 (Slc7a) Eco cells were generated by
transduction with pLenti6/UbC/mSlc7al, a gift from Shinya Yamanaka (Addgene
plasmid # 17224; RRID: Addgene_17224) and MEC-1 Luciferase positive cells were
generated by the introduction of pCL6-Luc-GFP into MEC-1 Eco cells by retroviral
transduction.

Quantitative real-time PCR (qPCR). RNA was isolated from sorted bone mar-
row- or spinal cord-residing MEC-1 cells by using RNeasy Plus Micro Kit (QIA-
GEN) according to the manufacturer’s instructions. RNA concentration of the
samples was determined by NanoDrop. RNA was reverse transcribed using the
qScript cDNA SuperMix (Quantabio) according to the manufacturer’s instructions
with 20-1000 ng of total RNA. The generated cDNA was used in triplicates for RT-
PCR reactions, with primers that span exon-exon boundaries to ensure cDNA-
specific amplification. The qPCR Kit Takyon™ No ROX SYBR® 2X MasterMix
dTTP Blue (Eurogentec) was used to perform RT-PCR. Gene expression was
normalized to the housekeeping gene GAPDH. The reaction was performed in a
Light Cycler 480 II (Roche). All primer sequences are listed in Supplementary
Table 2.

myrAKT1 in MEC-1. pMIG-emtpy vector (EV) and pMIG-myrAKT1 were kindly
provided by Hassan Jumaa3? and by retroviral transduction introduced into MEC-
1 Eco cells. GFP content was followed over time by flow cytometric analysis and
DAPI exclusion. The expression of active AKT was confirmed by western blot.

Mice. Mice were housed according to the guidelines specified in the EU Directive
2010/63 with a light-dark rhythm of 12 h each with twilight phase, air condition (at
20-24 °C temperature), and a humidity of 45-60%. The AKT1E17K cDNA, carrying
a point mutation at nucleotide position 49 (G to A) in the human AKT1 gene, was
cloned into the ubiquitously expressed ROSA26 vector, preceded by a loxP-flanked
transcriptional and translational STOP cassette. Electroporation of 129]/Ola
embryonic stem cells and generation of chimeric mice were performed by Poly-
gene, Switzerland. Successful recombination of embryonic stem cell clones was
evaluated by Southern Blot analysis of genomic DNA digested with Xbal®.
Germline transmission was confirmed by PCRs specific for the targeted locus. All
primers used are listed in Supplementary Table 2. The bicistronic expression of
AKT1E17K together with eGFP preceded by an internal ribosomal entry site (IRES)
sequence allowed fluorescence monitoring of AKT1E17K expressing cells. Blastocyst
injection of the clones and subsequent chimera breeding resulted in AKT1E17K
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transgenic mice that were then crossed to Mb1-CreERT2 mice?” and the TCLItg
mouse model®3.

For xenotransplant experiments, we used NSG mice (NOD.Cg-Prkdcscid
I12rgtm1W;jl/Sz]), purchased from Charles River or Janvier laboratory as recipients
for the human MEC-1 CLL-like cell line (purchased from DSMZ, Braunschweig,
Germany) or primary CLL patient samples. For treatment of murine CLL in vivo,
we transplanted 2 x 10e7 splenocytes of aged TCL1tg mice3 into C57BL/6N
(Janvier Labs) wt immunocompetent mice and waited for detection of CLL or full
engraftment and disease progression. Treatment schedules are depicted in
Supplementary Fig. 3. All animal experiments were carried out in accordance with
the guidelines of the Federation of European Laboratory Animal Science
Association (FELASA) and followed the legal approval of the Government of
Upper Bavaria (Regierung von Oberbayern).

AKT1 hyperactivation in the TCL1tg model via Cre-mediated recombination
in vitro and in vivo. Isolated splenocytes of AKT1E!7K x TCL1tg or TCL1wt lit-
termates were treated with 500 ng/ml 4-OHT for 48 h or with TAT-Cre (Excellgen)
diluted in Opti-MEM at a final concentration of 2 uM for 1 h at 37 °C, 5% CO,, and
95% humidity. Afterward, cells were washed twice in culture media. The induction of
the AKT1 transgene was analyzed by flow cytometric measurement of GFP percen-
tage and DAPI exclusion. To activate AKT1E17K in vivo, mice transplanted with
above described leukemic triple transgenic splenocytes were induced to express
AKT1EVK by providing tamoxifen-enriched chow (400 mg tamoxifen citrate kg
chow; CreActive TAM400, LASvendi, Soest, Germany) or control chow for 4 weeks
upon transplantation to activate CreERT2. CLL content and GFP expression in the
peripheral blood were followed by flow cytometry and after 2-month mice were
sacrificed, organs harvested, and analyzed by flow cytometry.
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Fig. 6 SHIP1 inhibition induces lytic cell death with immunogenic features. a-d Primary CLL samples were treated with the SHIP1 inhibitor (SHIP1i) 3AC
or the combination of 3AC with the Caspase inhibitor (PanCaspi) Emricasan (a n=7), the Caspase-8 inhibitor (Casp8i) Z-IETD (b n = 8), the RIP1 inhibitor
(RIP1i) NEC1s (¢ n=5) or the RIP3 inhibitor (RIP3i) GSK-843 (d n=7) and the specific cell death was determined as described in Fig. 2e. For the
combination treatment, the viability of the single treatments of the cell death inhibitors was used for determining the baseline cell death to calculate the
specific cell death. Viability is depicted in Supplementary Fig. 4j-m; Data are presented as individual values and statistical significance was assessed by a
two-tailed paired Student's t-test. e Calreticulin (CALR) exposure to the outer membrane is determined after 4 h of 3AC treatment on primary CLL samples
(n=8) as determined by flow cytometric analysis. Data are presented as individual values and statistical significance was assessed by a two-tailed paired
Student's t-test. f Supernatant of four primary CLL samples was collected after 48 h and HMGB1 levels determined by immunoblot. A representative
loading control (unspecific band at 15 kDa) is shown for one CLL sample. g Dose-dependent accumulation of extracellular ATP levels in the supernatants of
primary CLL samples (n = 6) was determined after 4 h of treatment with the SHIP1 inhibitor 3AC. Data are presented as individual values and mean values
+ SD. Statistical significance was assessed by an ordinary one-way ANOVA test. h Supernatant of four primary CLL samples was collected after 48 h with
the SHIP1/2 inhibitor K118 1, 2, and 3AC 5pM and in combination with the MLKL inhibitor (MLKLi) NSA (2 uM), and HMGB1 levels determined by
immunoblot. A representative loading control is shown for one CLL sample. i Supernatants of puromycin-selected (shRNA expressing, d6) or GFP-sorted
(EV, myrAKT expressing, d5) MEC-1 cells were analyzed for HMGB1 content. An unspecific band appearing at 15 kD served as a loading control.
Representative example for two independent experiments. j Fold change to control of extracellular ATP levels in the supernatants of MEC-1 cells after
SHIP1 knockdown (shSHIPT KD1 (black squares) and KD2 (clear squares) vs. shScrambled, d6 post selection) and after myrAKT overexpression (gray
squares; myrAKT vs. pMIG, d5 post sorting), individual values and mean value of two independent experiments are shown. k Cellular consequences of

transient SHIP1 inhibition in CLL are illustrated (top panel) as compared to steady-state status (bottom panel), this figure was created using Servier
Medical Art templates (https://smart.servier.com). Source data are provided as a Source Data file.

Cell culture. The murine B-cell lymphoma cell line BAL17 and freshly isolated
primary murine B and T cells were cultured in RPMI-1640 Glutamax medium
supplemented with 10% FBS, 1% PenStrep, and 0.1% 2-mercaptoethanol. Patient-
derived CLL and healthy donor-derived B cells, as well as EHEB, BJAB, and
SUDHLS cell lines were cultured in RPMI-1640 Glutamax medium supplemented
with 10% FBS and 1% PenStrep. CLL cell line MEC-1 was cultivated in IMDM
medium supplemented with 10% FBS and 1% PenStrep. HEK293T cells for virus
production were grown in DMEM supplemented with 10% FBS and 1% PenStrep.
All cells were cultured under standard cell culture conditions; at 37 °C, 5% CO,,
and 95% humidity.

Cell isolations. Peripheral blood mononuclear cells (PBMCs) were isolated from
whole blood by density gradient centrifugation using Ficoll-Paque (GE Healthcare,
Chicago, IL, USA). CD19" B cells, including MEC-1 cells, were purified by
magnetic-activated cell sorting (MACS) using human B-cell isolation kit II or
human CD19 MicroBeads (Miltenyi, Bergisch-Gladbach, Germany). Purification of
primary CLL cells (CD19F CD5%) and MEC-1 cells (GFP, CD19+) was performed
using fluorescence-activated cell sorting (FACS) (BD Aria II, BD Bioscience,
Franklin Lakes, NJ, USA). All antibodies are listed in Supplementary Table 3.
Peripheral blood, spleen, and axillary lymph nodes were harvested per mouse.
Organs were meshed through a 70 um cell strainer in PBS buffer and erythrocytes
were lysed using G-DEXTMIIb RBC Lysis Buffer (Intron Biotechnologies).

Western blot. Whole-cell lysates for protein analysis were prepared in CHAPS
buffer, supplemented with phosphatase inhibitors (50 mM NaF, 0.1 mM Na;VO,,
and protease inhibitors in resolved EDTA-free Protease Inhibitor Cocktail Tablets,
Roche Diagnostics) for 15 min on ice using standard methods. BCA Protein Assay
Kit (ThermoFisher Scientific) was applied for protein concentration determination.
4-12% gradient gels from Invitrogen, NuPage were applied according to manu-
facturer’s instructions. To analyze the release of HMGBI, supernatants were col-
lected upon 48 h 3AC treatment by centrifugation (400 x g, 5 min, 4 °C) and
Laemmli buffer was added, according to standard protocols. Samples were loaded
on 10% Tris/Bis gels and run in SDS running buffer for 1.5h at 125 V. The
separated proteins were transferred onto a nitrocellulose membrane (Amersham
Protran, GE Healthcare) by wet-blot electrophoresis for 2 h at 300 mA. Antibodies
are listed in Supplementary Table 3.

Flow cytometry. Cells were stained with fluorochrome-labeled antibodies
according to manufacturer information (listed in Supplementary Table 3). To block
free Fc receptors murine CD16/32 or human Fc Receptor Binding Inhibitor
Polyclonal Antibody (eBioscience) were applied. Dead cells were excluded by DAPI
(1 pg/ml) (Sigma Aldrich) staining. General gating strategies for surface marker
expression and viability assessment are shown in Supplementary Fig. 5. Flow
Cytometry was performed using a FACS Canto II cytometer (BD Bioscience). Data
were analyzed with the FlowJo™ software version 10.7.1 (BD Bioscience).

Intracellular staining. To evaluate AKT phosphorylation, anti-phosho AKT
(Ser473 (D9E) Rabbit mAb (PE conjugate, #5315 CST)) or matched isotype control
were used. Upon treatment for 3 min with 3AC or control, MEC-1 cells were
washed in PBS, fixed with 4% formaldehyde, and permeabilized with methanol
(90% final concentration) according to manufacturer’s instructions (CST).

SHIP1 knockdown and SHIP inhibitor treatment in vivo. To inhibit SHIP1

in vivo mice were treated with 20 mg/kg 3AC (MoBiTec Molecular Biotechnology)
or the vehicle, Hydroxypropylcellulose (Klucel, Sigma Aldrich) via intraperitoneal
injections. NSG mice were xenotransplanted with 2 x 10e6 MEC-1 or MEC-1 Luc
CLL cells via intravenous injection into the tail vein and treatment started 2 days
after transplantation. Engraftment and progression of MEC-1 Luc cells were fol-
lowed by IVIS bioimaging. Mice were sacrificed upon clear signs of disease,
comprising neurological symptoms and weight loss. Patient-derived xeno-
transplanted cells (4 x 10e7 i.v., 4 x 10e7 i.p.)”> were treated with 3AC starting at
day 1 after transplantation for 4-8 daily doses. Peripheral blood (PB) analysis
determined the endpoint and organs were harvested when <10% human CLL cells
were detectable in the PB. In the murine TCLI1tg model, 3AC treatment was
initiated when PB of transplanted mice confirmed a CLL positive population <5%
or when CLL content was on average 50% in the peripheral blood. Mice were
treated daily, in different treatment cycles as described in Supplementary Fig. 3.
Organs were harvested at experimental termination and analyzed for CLL content
by flow cytometry. Samples for histology were fixed in 4% PFA.

Histology. Murine spleens were fixed in 10% neutral buffered formalin (for 48 h)
and then dehydrated and embedded in Paraffine (Leica ASP 300S) according to
routine methods. To detect and analyze infiltration with neoplastic cells, blocks
were cut (2 pm thickness) and stained with Hematoxylin-Eosin or anti-human
CD20cy antibody (Agilent, clone L26, 1:2000). CD20 IHC was performed on a
Leica BondRxm using a Polymer Refine detection kit. All slides were scanned with
a Leica AT2 scanning system with x40 magnification. HE stainings and IHCs were
evaluated by a board-certified veterinary pathologist and the amount of CD20
positive neoplastic cells in the spleen was analyzed by using the Aperio Positive-
PixelCount v9. The number of positive pixels was calculated per mm? and the
results between the groups (3AC-treated vs. control) were visualized and statistics
(Mann-Whitney U test) were calculated with IBM SPSS statistics 25.

Bioimaging. MEC-1 Eco cells were transduced with firefly luciferase retrovirus and
selected with blasticidin for bioluminescence imaging!4. 1 h after transplantation of
MEC-1 Luc cells into NSG mice, 2 mg Luciferin were i.p. administered per mouse.
After a 10 min integration time, luminescence in mice was captured using the IVIS
Lumina imaging system (Perkin Elmer) and exposed for 10's, 1 min, and 5 min.
The Living Image Software (Perkin Elmer) was used for analysis.

SHIP1 activity assay. Whole-cell lysates of 1 x 108 primary cells of CLL patients
(n=4) and isolated B cells of healthy donor-derived samples (n = 5) were pre-
pared using NP40 buffer for the SHIP1 inositol phosphatase activity assay?’. H1299
cells that lack endogenous SHIP1 expression were used to lentivirally overexpress
wt SHIP1 or the AML-derived R673Q variant of SHIP1 and served as a positive
and negative control, respectively. 1 mg of each lysate was used for immunopre-
cipitation of SHIP1 using a mouse monoclonal antibody (SHIP1 P1Cl, Santa Cruz
Biotechnology), which had been coupled to G sepharose beads. For the assay, the
buffer was changed from NP40 buffer to phosphatase assay buffer and the beads
containing immunoprecipitated SHIP1 were separated in four parts per sample.
Three parts were used for the three assay replicates and the remaining part for
western blot analysis to evaluate the amount of immunoprecipitated SHIP1. For the
assay, a commercially available phosphate assay kit (Bioassay systems) was used
with 20 puM f.c. ci8-Phosphatidylinositol-3,4,5-trisphosphate as substrate in a final
volume of 400 pl. The sample was preincubated for 5 min at 37 °C after which the
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substrate was added. 90 pl aliquots were taken after 5, 20, 60, and 120's, and the
reaction was stopped by the addition of 31.5 pl of 0.1 M EDTA. The amount of

released phosphate was evaluated photometrically as instructed in the assay kit. To
determine the enzyme activity, the initial change in nmol phosphate (5-20 s)/min
was calculated.

Cell stimulation and inhibitor treatment. Murine TCL1tg splenocytes (>70%
CLL), primary patient-derived peripheral blood CLL cells (>70% CLL) and healthy
peripheral blood MACS-isolated B cells were seeded at 200,000 cells/well in 96-well
u-bottom plates or 500,000 cells in 24-well plates and treated with 3AC (Echelon
Bioscience) (or K118 (Echelon Biosciences) when indicated) up to 48 h. Viability
was analyzed by flow cytometry. In combinatorial treatment experiments with the
inhibitors GSK-843 (Selleckchem; 1 uM), Z-IETD (BD Bioscience; 10 uM),
Emricasan (Selleckchem; 5 uM), AZD-5363 (Toric Bioscience; 5 uM), NEC1s
(BioVision; 30 uM), NSA (Cayman Chemical; 2uM) cells were pre-treated for 1h,
followed by addition of 5 uM 3AC for 48 h. Cell lines (MEC-1, EHEB, Ball7,
SUDHL6, BAJB) were synchronized by cell count and resuspended at 1 x 10 cells/
ml in a fresh culture medium 1 day prior to treatment. Cells were then treated with
3AC at 100,000 cells/well in 96-well u-bottom plates or 500,000 cells/well in 24-well
plates.

ATP measurement. To measure the release of ATP, patient-derived CLL cells were
treated for 4 h with 3AC as described and supernatants were analyzed with the
ATP Enliten Kit (Promega), according to manufacturer’s instructions. Similarly,
supernatants of puromycin-selected (shRNA expressing, d6) or GFP-sorted (EV,
myrAKT expressing, d5) MEC-1 cells were collected and analyzed with the Cell
Titer Glo Kit (Promega) according to the manufacturer’s instructions. For detec-
tion of luminescence the GloMax® Discover platereader was used (Promega).

Specific cell death. DAPI negative cells were defined as viable cells via flow
cytometry. Percentage of specific cell death was calculated by this formula: specific
cell death (%) = 100 x (% dead cells — % baseline dead cells)/(100 — % baseline
dead cells).

Genetic knockdown. shRNA SHIP1 knockdownl (KD1) and shRNA SHIP1
knockdown2 (KD2) as well as scramble (scr) were purchased from Sigma Aldrich
and subcloned into pLKO.1. For the generation of SHIP1 KD MEC-1 cell lines,
MEC-1 Eco and MEC-1 Eco/Luc cells were transduced with scramble or 2 con-
structs of SHIP1-targeting shRNA (KD1, KD2) concentrated lentivirus (pCMV
delta R8.2: Addgene #12263, RRID: Addgene_12263), Phit123: kindly provided by
Markus Miischen). 5 days after spin infection, Puromycin selection was initiated
with 1 ug/ml for 3 days. Cell viability before and after Puromycin selection was
assessed by flow cytometric DAPI exclusion and by total cell count. SHIP1
knockdown was confirmed by western blotting. 1 x 106 shSHIP1 KD1, KD2 MEC-1
cells, and shScramble control-containing MEC-1 cells were transplanted into NSG
mice and CLL engraftment and progression was followed by bioimaging as
described above. Bone marrow and spinal cord cells were isolated from sacrificed
mice and MEC-1 (GFPT, CD19%) cells were FACS sorted and SHIP1 expression
levels were analyzed by qPCR.

Genetic knockout. To generate SHIP1 knockout (KO) CLL cells, MEC-1 Eco cells
were transduced with INPP5D-targeting guide RNAs (5 different sgRNAs, listed in
Supplementary Table 2) and pMIG-Cas9 containing retrovirus'4. After 48 h from
transduction cells were selected with 1 pug/ml of puromycin for 3 days. The selected
cells were seeded as single colonies in 96-well plates by FACS sorting. After

3-4 weeks of culture, cells derived from each colony were used to assess SHIP1
knockout by western blotting and genomic sequencing of the sgRNA target region
(Amplification and sequencing primer are listed in Supplementary Table 2). 2 x
106 SHIP1 KO (3 independent clones) and SHIP1 wild-type (2 independent clones)
MEC-1 cells were transplanted into NSG mice. The mice were sacrificed upon clear
signs of disease, comprising neurological symptoms and weight loss. Prior to
transplantation, all cells were kept overnight at 1 x 10%/ml in fresh media, and
equal viability was confirmed prior to injection.

Competition assay. The growth behavior of MEC-1 SHIP1 KO cells was analyzed
by competition assays. 500,000 GFP-positive knockout cells were mixed with equal
amounts of MEC-1 wild-type, GFP-negative cells. The percentage of GFP-
expressing cells was followed by flow cytometric analysis over time.

RNA preparations/RNASeq. For bulk 3’-sequencing of poly(A)-RNA (RNASeq),
viable GFPT MEC-1 cells on day 7 post-transduction with pMIG-empty (EV) or
PMIG-myrAKT1 were sorted and RNA was extracted from whole-cell lysates via
RNeasy Mini Kit (Qiagen, Hilden, Germany). Barcoded cDNA of each sample was
generated with a Maxima RT polymerase (ThermoFisher) using oligo-dT primer
containing barcodes, unique molecular identifiers (UMIs), and an adapter. 5’ ends
of the cDNAs were extended by a template switch oligo (TSO) and after pooling of
all samples, full-length cDNA was amplified with primers binding to the TSO-site
and the adapter’®. cDNA was fragmented and TruSeq-Adapters ligated with the

NEBNext® Ultra™ II FS DNA Library Prep Kit for [llumina® (NEB) and 3’-end-
fragments were finally amplified using primers with Illumina P5 and P7 overhangs.
In comparison to Parekh et al., the P5 and P7 sites were exchanged to allow
sequencing of the cDNA in readl and barcodes and UMIs in read2 to achieve a
better cluster recognition. The library was sequenced on a NextSeq 500 (Illumina)
with 75 cycles for the cDNA in readl and 16 cycles for the barcodes and UMIs
in read2.

For analysis, gencode gene annotations v28 and the human reference genome
GRCh38 were derived from the Gencode homepage (EMBL-EBI). Drop-Seq tools
v1.1277 were used for mapping raw sequencing data to the reference genome.
Shown experiments (myrAKT1 overexpression and Shipl knockdown with the
respective controls) were separately processed. The resulting UMI filtered count
matrices were imported into R v3.4.4. CPM (counts per million) values were
calculated for the rawdata and genes having a mean CPM value less than 1 were
removed from the dataset. Prior differential expression analysis with DESeq2
v1.18.178, dispersion of the data was estimated with a parametric fit using an
univariate model where treatment was specified as an independent variable. The
Wald test was used for determining differentially regulated genes between
treaetments within each individual patient and shrunken log2-fold changes were
calculated afterwards. A gene was determined as differentially regulated if the
absolute apeglm shrunken log2-fold change was at least 1 and the adjusted p-value
was below 0.01.

GSEA v4.0.3%° was performed in the weighted Preranked mode, where either
the Wald test-statistic or the apeglm shrunken fold change was used as ranking
metric. All genes tested for differential expression were used for GSEA analysis,
with genesets from MsigDB v7.17° where used for testing. A pathway was
considered to be significantly associated with treatment if the FDR value was below
0.05. Rlog transformation of the data was performed for visualization and further
downstream analysis. Genes of Oxphos pathway contributing most to the NES
score of the GSEA are displayed as Heatmap. Heatmap shows z-transformed
expression data. Raw sequencing data are available from the European Nucleotide
Archive under the accession number PRJEB38070.

Oxidative stress. Cellular and mitochondrial ROS levels were determined by flow
cytometry using CellROX® Orange (ThermoFisher Scientific). To analyze the
impact of ROS in therapy-induced cell death, CLL cells were co-treated with 3AC
in presence of ROS scavengers MitoTEMPO (10 uM) (Merck) or NAC (2 mM) (N-
acetyl-cysteine) (Sigma Aldrich) for 24-48 h.

Extracellular flux analysis. Oxygen consumption rate (OCR) and extracellular
acidification rate (ECAR) were measured using a Seahorse XFe96 Flux Analyzer
with the XF Cell Mito Stress Test Kit and XF Glycolysis Stress Test Kit (Agilent)
according to the manufacturer’s instructions. All compounds and materials were
obtained from Agilent.

Statistical analysis. Statistical significance was analyzed with paired or unpaired
two-tailed Student’s t-test, ordinary one-way ANOVA or log-rank (Mantel-Cox),
using Prism Version 7.0, Graphpad Software Inc., as indicated.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability

The RNA sequencing data referenced during the study are available in a public repository
from the European Nucleotide Archive (ENA) under the accession code PRJEB38070.
INPP5D mutations in CLL can be found on cBioPortal, freely available. All the other data
supporting the findings of this study are available within the article and its
Supplementary Information files and from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
All codes used for RNAseq analysis are available upon reasonable request. Source data
are provided with this paper.
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