Chair of Scientific Computing in Computer Science TUM School of Computation, Information and Technology **Technical University of Munich**

Data-Driven Solver Selection for Sparse Linear Matrices at Scale

Hayden Liu Weng[§], Hans Joachim Bungartz[§], and Felix Dietrich[§]

[§] {h.liu, bungartz, f.dietrich}@tum.de, TUM School of Computation, Information and Technology, Technical University of Munich

Introduction

• (Sparse) Linear systems are everywhere • Choosing appropriate solvers and preconditioners is very challenging, especially for a novice • Non-optimal choices might not converge

Methods and Results

This work adapts and extends the approach from Yeom [8], following a 3-step process:

Figure 1 The choice of solver-preconditioner pair can yield quick, slow, or no convergence.

• SANS systems [1] attempt to use data instead of expert knowledge to automate the selection process • Classical machine learning has been used for solver selection in, e.g., SALSA [2] and Lighthouse [3] • Other recent approaches use neural networks [4]

Main Ideas

- Feature selection limits model complexity and reduces computation time
- Regression (wrt. runtime) maintains information on relative performance (vs. classification) • Embedding lessens the impact of having unbalanced classes and limited data • Misclassification error doesn't convey the impact of a wrong choice (slower convergence vs. no convergence!)

- The Absolute Relative Error (ARE) better conveys how costly a wrong prediction is:

 $\mathsf{ARE} = \frac{||t_{\mathsf{pred}} - t_{\mathsf{best}}||}{||t_{\mathsf{pred}} - t_{\mathsf{best}}||}$

Takeaway Messages

- The established method is not necessarily guaranteed to be the best
- There is no single-best solution
- It is worthwhile to look under the hood (beyond a black-box optimizer)
- This approach can be generalized and extended to further problems!

(c) Projection of new samples into the PVS and Solver Selection via k-Nearest Neighbors Figure 2 Graphical representation of the individual steps.

Applying the method to matrix property and performance data on 775 square matrices with real values from the SuiteSparse Matrix Collection from [6] yielded the following results:

Outlook

- Beyond matrix properties, available software and hardware strongly affects performance (cf. [5])

• Behavior at scale differs from single-core performance and needs to be analyzed further (cf. [6])

- Modern systems increasingly allow using GPUs for computation, adding yet another layer to the problem (cf. [7])
- The current approach serves as proof-of-concept and can be adapted to other selection/tuning problems.

References

- [1] J. Dongarra and V. Eijkhout, "Self-adapting numerical software for next generation applications," The International Journal of High Performance Computing Applications, vol. 17, no. 2, pp. 125–131, 2003.
- [2] S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyes, "Application of machine learning to the selection of sparse linear solvers," Int. J. High Perf. Comput. Appl, 2006.
- [3] E. Jessup, P. Motter, B. Norris, and K. Sood, "Performance-based numerical solver selection in the lighthouse framework," SIAM Journal on Scientific Computing, vol. 38, no. 5, pp. S750–S771, 2016.
- [4] Y. Funk, M. Götz, and H. Anzt, "Prediction of optimal solvers for sparse linear systems using deep learning," in Proceedings of the 2022 SIAM Conference on Parallel Processing for Scientific Computing, pp. 14–

24, SIAM, 2022.

- [5] P. A. Motter, *Hardware awareness for the selection of optimal iterative linear solvers*. PhD thesis, University of Colorado at Boulder, 2017.
- [6] K. Sood, Iterative Solver Selection Techniques for Sparse Linear Systems. PhD thesis, University of Oregon, 2019.
- [7] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, and M. Köhler, "Preconditioned krylov solvers on gpus," Parallel Computing, vol. 68, pp. 32–44, 2017.
- [8] J.-S. Yeom, J. J. Thiagarajan, A. Bhatele, G. Bronevetsky, and T. Kolev, "Data-driven performance modeling of linear solvers for sparse matrices," in 2016 7th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), pp. 32–42, IEEE, 2016.