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Introduction Methods and Results

* (Sparse) Linear systems are everywhere This work adapts and extends the approach from Yeom [8], following a 3-step process:

» Choosing appropriate solvers and preconditioners is
very challenging, especially for a novice

* Non-optimal choices might not converge

Input Embedding Prediction

Problem L _
Matr Solver + Preconditioner Runtime %%
a rIX ksp_t -pc_t ilu -pc_factor levels 0 ’?~ (fl’fQ’... ’fn)
SN o A ~ Relative Importance 4!_)
e e e i g f1 -
.:; -L Icsr ;j\i% gz;m_-pc_::]m_ouenapuz ‘ . f2 ‘:;:‘_
g ; ..' hi:g ﬁ‘k\ sm -pe_asm._ 21 f3 ‘
- - N S x f4 Dimensions: RN1  RNrxNv  RpNv  RNvXNr PRN;
f5
: . » . . (517527°'°7€l€)
Figure 1 The choice of solver-preconditioner pair can yield
quick, slow, or no convergence.
(a) Relevant feature selection via regression analysis (b) Performance Vector Space construction via Word2vec

* SANS systems [1] attempt to use data instead of ex-
pert knowledge to automate the selection process
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relative performance (vs. classification)

« Embedding lessens the impact of having unbalanced
classes and limited data

» Misclassification error doesn’t convey the impact of
a wrong choice (slower convergence vs. no conver-
gence!)

(c) Projection of new samples into the PVS and Solver Selection via k-Nearest Neighbors

Figure 2 Graphical representation of the individual steps.

Applying the method to matrix property and performance data on 775 square matrices with real values from the

— The Absolute Relative Error (ARE) better conveys SuiteSparse Matrix Collection from [6] yielded the following results:
how costly a wrong prediction is:
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* The established method is not nec- TS 2%,
essarily guaranteed to be the best PR &
» There is no single-best solution ) A
(a) Considered Features by importance (b) PVS colored by best solver (c) Solver Embedding
|t IS worthwhile to look under the Figure 3 Results for feature selection and Embedding of the SuiteSparse matrices

hood (beyond a black-box optimizer)

* This approach can be generalized
and extended to further pr0b|em5! - Beyond matrix properties, available software and hardware strongly affects performance (cf. [3])

» Behavior at scale differs from single-core performance and needs to be analyzed further (cf. [6])
» Modern systems increasingly allow using GPUs for computation, adding yet another layer to the problem (cf. [7])
* The current approach serves as proof-of-concept and can be adapted to other selection/tuning problems.
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