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Introduction
• (Sparse) Linear systems are everywhere
• Choosing appropriate solvers and preconditioners is
very challenging, especially for a novice

• Non-optimal choices might not converge

Figure 1 The choice of solver-preconditioner pair can yield
quick, slow, or no convergence.

• SANS systems [1] attempt to use data instead of ex-
pert knowledge to automate the selection process

• Classical machine learning has been used for solver
selection in, e.g., SALSA [2] and Lighthouse [3]

• Other recent approaches use neural networks [4]

Main Ideas
• Feature selection limits model complexity and re-
duces computation time

• Regression (wrt. runtime) maintains information on
relative performance (vs. classification)

• Embedding lessens the impact of having unbalanced
classes and limited data

• Misclassification error doesn’t convey the impact of
a wrong choice (slower convergence vs. no conver-
gence!)

– The Absolute Relative Error (ARE) better conveys
how costly a wrong prediction is:

ARE = ∥tpred − tbest∥
tbest

Outlook
• Beyond matrix properties, available software and hardware strongly affects performance (cf. [5])
• Behavior at scale differs from single-core performance and needs to be analyzed further (cf. [6])
• Modern systems increasingly allow using GPUs for computation, adding yet another layer to the problem (cf. [7])
• The current approach serves as proof-of-concept and can be adapted to other selection/tuning problems.

Methods and Results
This work adapts and extends the approach from Yeom [8], following a 3-step process:

(a) Relevant feature selection via regression analysis (b) Performance Vector Space construction via Word2vec

(c) Projection of new samples into the PVS and Solver Selection via k-Nearest Neighbors

Figure 2 Graphical representation of the individual steps.

Applying the method to matrix property and performance data on 775 square matrices with real values from the
SuiteSparse Matrix Collection from [6] yielded the following results:

(a) Considered Features by importance (b) PVS colored by best solver (c) Solver Embedding

Figure 3 Results for feature selection and Embedding of the SuiteSparse matrices

Takeaway Messages
• The established method is not nec-
essarily guaranteed to be the best

• There is no single-best solution

• It is worthwhile to look under the
hood (beyond a black-box optimizer)

• This approach can be generalized
and extended to further problems!


