
Chair of Scientific Computing in Computer Science
TUM School of Computation, Information and Technology
Technical University of Munich

Data-Driven Solver Selection for Sparse Linear
Matrices at Scale
Hayden Liu Weng§, Hans Joachim Bungartz§, and Felix Dietrich§

§ {h.liu, bungartz, f.dietrich}@tum.de, TUM School of Computation, Information and Technology, Technical University of Munich

References
[1] J. Dongarra and V. Eijkhout, “Self-adapting numerical software for next generation applications,” The In-

ternational Journal of High Performance Computing Applications, vol. 17, no. 2, pp. 125–131, 2003.

[2] S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyes, “Application of machine learning to the
selection of sparse linear solvers,” Int. J. High Perf. Comput. Appl, 2006.

[3] E. Jessup, P. Motter, B. Norris, and K. Sood, “Performance-based numerical solver selection in the light-
house framework,” SIAM Journal on Scientific Computing, vol. 38, no. 5, pp. S750–S771, 2016.

[4] Y. Funk, M. Götz, and H. Anzt, “Prediction of optimal solvers for sparse linear systems using deep learn-
ing,” in Proceedings of the 2022 SIAM Conference on Parallel Processing for Scientific Computing, pp. 14–

24, SIAM, 2022.

[5] P. A. Motter, Hardware awareness for the selection of optimal iterative linear solvers. PhD thesis, University
of Colorado at Boulder, 2017.

[6] K. Sood, Iterative Solver Selection Techniques for Sparse Linear Systems. PhD thesis, University of
Oregon, 2019.

[7] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, and M. Köhler, “Preconditioned krylov solvers on
gpus,” Parallel Computing, vol. 68, pp. 32–44, 2017.

[8] J.-S. Yeom, J. J. Thiagarajan, A. Bhatele, G. Bronevetsky, and T. Kolev, “Data-driven performance model-
ing of linear solvers for sparse matrices,” in 2016 7th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS), pp. 32–42, IEEE, 2016.

Introduction
• (Sparse) Linear systems are everywhere
• Choosing appropriate solvers and preconditioners is
very challenging, especially for a novice

• Non-optimal choices might not converge

Figure 1 The choice of solver-preconditioner pair can yield
quick, slow, or no convergence.

• SANS systems [1] attempt to use data instead of ex-
pert knowledge to automate the selection process

• Classical machine learning has been used for solver
selection in, e.g., SALSA [2] and Lighthouse [3]

• Other recent approaches use neural networks [4]

Main Ideas
• Feature selection limits model complexity and re-
duces computation time

• Regression (wrt. runtime) maintains information on
relative performance (vs. classification)

• Embedding lessens the impact of having unbalanced
classes and limited data

• Misclassification error doesn’t convey the impact of
a wrong choice (slower convergence vs. no conver-
gence!)

– The Absolute Relative Error (ARE) better conveys
how costly a wrong prediction is:

ARE = ∥tpred − tbest∥
tbest

Outlook
• Beyond matrix properties, available software and hardware strongly affects performance (cf. [5])
• Behavior at scale differs from single-core performance and needs to be analyzed further (cf. [6])
• Modern systems increasingly allow using GPUs for computation, adding yet another layer to the problem (cf. [7])
• The current approach serves as proof-of-concept and can be adapted to other selection/tuning problems.

Methods and Results
This work adapts and extends the approach from Yeom [8], following a 3-step process:

(a) Relevant feature selection via regression analysis (b) Performance Vector Space construction via Word2vec

(c) Projection of new samples into the PVS and Solver Selection via k-Nearest Neighbors

Figure 2 Graphical representation of the individual steps.

Applying the method to matrix property and performance data on 775 square matrices with real values from the
SuiteSparse Matrix Collection from [6] yielded the following results:

(a) Considered Features by importance (b) PVS colored by best solver (c) Solver Embedding

Figure 3 Results for feature selection and Embedding of the SuiteSparse matrices

Takeaway Messages
• The established method is not nec-
essarily guaranteed to be the best

• There is no single-best solution

• It is worthwhile to look under the
hood (beyond a black-box optimizer)

• This approach can be generalized
and extended to further problems!


