
Technische Universität München
TUM School of Computation, Information and Technology

Coding and Bounds for Unreliable Data Storage
Memories

Haider Abdul Hassan Hadi Al Kim

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Ingenieurwissenschaften (Dr. -Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Sebastian Steinhorst
Prüfer*innen der Dissertation: 1. Prof. Dr. -Ing Antonia Wachter-Zeh

2. Prof. Frederic Sala, Ph.D.

Die Dissertation wurde am 17.04.2023 bei der Technischen Universität München ein-
gereicht und durch die TUM School of Computation, Information and Technology am
20.09.2023 angenommen.

Abstract

Effectively storing tremendous amounts of data has become a crucial concern
due to the unreliability of storage devices. Memory reliability rapidly decreases

with the increase in storage capacity due to various physical impairments. Therefore,
developing tailored strategies to make data storage systems ultra-reliable, quick, dense,
and inexpensive is essential. Error detection and correction at the data link control
(DLC) layer provide reliable communication and fault-tolerant information storage
and processing. The DLC is the second telecommunications network layer responsible
for detecting and possibly correcting all types of errors.

This dissertation considers code constructions and bounds for unreliable, so-called
partially stuck (defective), memory cells. Such memory cells can only store partial
information as some of their levels cannot be used fully due to, e.g., wear-out. First,
we explore the basic principles of channel coding, code families, and the known upper
and lower bounds on linear block codes. Second, we identify particular types of data
memories and summarize their channel model additive noise and error types that cause
reliability issues. Third, we present new constructions that are able to mask u partially
stuck cells while correcting t substitution errors in the Hamming metric. "Masking"
process determines a word whose entries coincide with writable levels at the (partially)
stuck cells. Our new constructions coincide and improve upon the required redundancy
for masking partially stuck cells of known constructions (in the error-free case), and
require less redundancy than former works required for masking fully stuck cells (which
cannot store any information). In our constructions, the encoder outputs a word from
an error-correcting code. If this word does not satisfy the partially stuck-at conditions
in some positions, the encoder could deliberately modify it to fulfill the partially stuck-
at constraints. Therefore, in the fourth part, we show that treating some partially stuck
cells as erroneous cells can decrease the required redundancy for some parameters.
Lastly, we derive Singleton-like, sphere-packing-like, and Gilbert–Varshamov-like (GV-
like) bounds. The upper bounds have been derived based on polyalphabetic codes as
an encoder’s output restricts the values in the partially stuck-at cells; in the other
cells, it can attain all values. Polyalphabetic codes use (potentially) distinct alphabets
in each coordinate. On the other hand, we employ GV-like lower bound techniques for
alphabet size q to confirm the existence of q-ary t-error correcting codes with additional
properties. We also study the asymptotic versions of the GV-like bounds. Numerical
comparisons state that our constructions match the GV-like bounds for several code
parameters, e.g., BCH codes that contain the all-one word by our first construction.

ii

Õ�æ
k�
��QË @ 	á��Ô �g��QË @ é� �

��
ÊË @ Õ�æ

���.�
(�H� A

�g. �P �X �Õ
�
Îª�
�
Ë @ @ñ��Kð

�

@ �	áK

	Y
�
Ë @ �ð �Ñ

�
º	JÓ� @ñ�	J �Ó

�
@ �	áK

	Y
�
Ë @ é�<Ë @ ©

�
�	̄ �Q�K
)

11: �éËXAj. ÖÏ @ �éK

�
@ - Õæ

	¢ �ªË@ ��ú
Î�
�ªË @ �é<Ë @ ��� �Y ��

In the name of God, the Gracious, the Merciful
(God raises in ranks those who believed among you and those who have

been given knowledge)
Almighty God, the Most High, the Great, has spoken truly - Verse

Al-Mujadilah: 11

Acknowledgments

This dissertation includes most of my work as a PhD candidate at the Institute
for Communications Engineering, TUM School of Computation, Information and

Technology, at the Technical University of Munich (TUM), Germany. I want to extend
my sincere gratitude to each person who helped me with my research and to have a
great time at the institute.

First and foremost, I would like to express my deepest gratitude to my supervisor,
Antonia Wachter-Zeh, and my mentor, Sven Puchinger.

I want to thank Antonia for her enthusiastic encouragement to pursue my research
in coding theory and its applications, for unending support throughout my Ph.D., and
creating such a wonderful, motivating work atmosphere. She encouraged my research
and enabled numerous opportunities for me to participate in workshops, lectures, and
conferences. Her research network offered innumerable opportunities to collaborate
with scientists worldwide.

Sven inspired scientific debates, which significantly impacted my research in many
ways. He greatly expanded my perspective on research and directed me to answer
emerging questions during my studying.

Additionally, I want to express my appreciation to Ludo Tolhuizen, with whom I had
a lot of worthwhile discussions and productive collaborations. Initially, Ludo showed
interest in the work direction by reading one of our publications. Then, his helpful
criticism always encouraged me to explain my findings more effectively, and finally,
together, we extended some results.

The past years were mainly extraordinary because of all my wonderful colleagues,
coworkers, and friends at TUM.

At our institute, I am incredibly grateful to all (former) members of the coding group
for the scientific discussions: Andreas Lenz, Lukas Holzbaur, Julian Renner, Georg
Maringer, Hedongliang Liu, Lorenz Welter, Marvin Xhemrishi, Sabine Pircher, Hugo
Sauerbier Couvée, Sebastian Bitzer, Vivian Papadopoulou, Anisha Banerjee, Anna
Baumeister, Maximilian Egger, Christoph Hofmeister, Luis Maßny, Anmoal Porwal,
Rawad Bitar, Nikita Polyanskii, Violetta Weger, and Yonatan Yehezkeally. Thanks
also to Vladimir Sidorenko for discussing and working to develop some research direc-
tions related to polyalphabetic codes.

I am also thankful to Chan Kai Jie, Benjamin Koh Yongjie, Sheikh Usman Ali, and
Ye Li, undergraduate students who worked with me on their Bachelor’s and Master’s
theses from (TUM, TUM-Asia, and SiT).

vi

My family has always supported me in my decisions throughout my entire life. I
would especially like to thank my mother Ahlam Hatif Fatlawi, my father Abdul
Hassan Hadi Al Kim, and my siblings Ibrahim, Zainab, Mahmoud, Fatima, Ahmed,
Mohammed, and Zahraa for their steadfast support.

Last but certainly not least, I want to thank my own beloved family, which includes
my beautiful wife Ruwaida Shaheed, my princess Ayat, my hero Ali, and my adorable
baby "the new member" Murtadha, for all that you have given me and continue to
provide to me every day.

Haider Al Kim
TUM, November 2023

vii

Contents

1 Introduction 2
1.1 Outline . 4

2 Preliminaries 8
2.1 Notation . 8

2.1.1 Vector and Matrix Multiplication 9
2.1.2 Polynomials . 10

2.2 Finite (Extension) Field Fq . 10
2.2.1 Extension Field Fq by Irreducible Polynomials 11

2.3 Linear Codes over Fq . 13
2.3.1 Error Detection . 15
2.3.2 Erasure Correction . 16
2.3.3 Error Correction and Decoder Sorts 17
2.3.4 Cyclic Codes . 19
2.3.5 q-ary Repetition and Single parity-check Codes 22
2.3.6 Bose-Ray-Chaudhuri-Hocquenghem (BCH) Codes 23

2.4 Bounds on the Cardinality and Minimum Distance 26
2.4.1 The Singleton Bound . 26
2.4.2 The Griesmer Bound . 27
2.4.3 The Ball–Blokhuis Bound . 28
2.4.4 The Sphere-packing (Hamming) Bound 29
2.4.5 The Gilbert–Varshamov Bound 29
2.4.6 Asymptotic Bounds . 30

2.5 Polyalphabetic Codes . 31
2.5.1 Upper bounds on Polyalphabetic Codes 32

3 Memories with Defects and Errors 36
3.1 Introduction . 36
3.2 Non–Volatile Memories . 37

3.2.1 Flash Memories . 38
3.2.2 Phase-Change Memories . 39

3.3 Channel Model Additive Noise . 40
3.3.1 Programming Noise . 40

viii

Contents

3.3.2 Wear-Out Noise . 40
3.3.3 Retention Noise . 41
3.3.4 Cell-to-cell Interference . 41
3.3.5 Programming Errors . 42

3.4 Coding Methods for Non–Volatile Memories 42
3.4.1 Write Once Memory . 43
3.4.2 Rank Modulation . 43
3.4.3 Masking Cells . 44
3.4.4 Unreachable Memory Cells UMC 45

4 Coding Schemes for Memories with Defects and Errors 48
4.1 Introduction . 48

4.1.1 Contributions and Outline . 49
4.2 Regular Erasure Patterns . 51
4.3 (Partially) Stuck at Patterns . 51
4.4 Construction for Stuck Cell (Without Errors) 53
4.5 Constructions for Partially Stuck Cell (With Errors) 54

4.5.1 Constructions for at most q − 1 partially stuck-at-1 Cells 55
4.5.2 Constructions for more than q − 1 partially stuck-at-1 Cells . . 60

4.6 Generalization to Arbitrary Partially Defective Levels 69
4.6.1 Generalization of the Code Construction (less than q Partially

Stuck Cells) . 69
4.6.2 Generalization of the Code Construction (up to q + d0 − 3 Par-

tially Stuck Cells) . 69
4.6.3 Generalization of the Code Construction (up to 2µ−1(d0 + 1)− 1

Partially Stuck Cells) . 73
4.7 Constructions for Unreachable Memory Cells (With Errors) 74

4.7.1 Equivalent Codes for Unreachable Memory Cells UMC 74
4.8 Errors Positions . 75
4.9 Open Problems and Observations . 76

5 Trading Partial Defects with Errors 78
5.1 Introduction . 78

5.1.1 Contributions and Outline . 79
5.1.2 General Theorem of Trading Partially Stuck Cells with Errors . 79

5.2 Improvements of the General Theorem 80
5.2.1 Based on our Binary-established Construction 80
5.2.2 Based on Another Approach for Introducing Errors 80
5.2.3 Based on Another Approach for Introducing Errors Considering

Arbitrary Partially Stuck Levels 82
5.2.4 Based on our Generalized Construction for Arbitrary Partially

Stuck Levels . 82

ix

Contents

6 Bounds on Memories with Defects and Errors 84
6.1 Introduction . 84

6.1.1 Contributions and Outline . 85
6.2 Upper Bounds on Codes for Partially Stuck Memory Cells (PSMCs) . . 86

6.2.1 Singleton-type Bound on PSMCs 86
6.2.2 Sphere-packing-type Bound on PSMCs 87
6.2.3 Discussion and Numerical Results 87

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs) . . 88
6.3.1 Finite Gilbert–Varshamov-type (GV-type) Bound on PSMCs . . 88
6.3.2 Discussion and Numerical Results 93
6.3.3 Asymptotic Gilbert–Varshamov-type Bound on PSMCs 104
6.3.4 Discussion and Analytical Results 107

6.4 Bounds on Polyalphabetic Codes with Finite Alphabets 109

7 Conclusion and Outlook 110

A Appendix 112
A.1 Observation on Array Codes in Storage Applications 112
A.2 Observation on Polyalphabetic Codes 113
A.3 Remarks on Coding-based Methods for Non-Volatile Memories 114
A.4 An Alternative Proof for Generalization to Arbitrary Partially Stuck

Levels . 115
A.5 Earlier Findings for Gilbert-Varshamov-like Bound 116

x

Abbreviations

Amag-1 Asymmetric Magnitude-1
CSB Center Significant Bit
DMC Discrete Memoryless Channel
DVA Dynamic Voltage Allocation
ECC Error-Correcting Codes
BCH Bose–Ray-Chaudhuri–Hocquenghem
BMD Bounded Minimum Distance
GRS Generalized Reed–Solomon
GV Gilbert–Varshamov
ICI Inter Cell Interference
LDPC Low-Density Parity-Check
LSB Least Significant Bit
Mag-1 Magnitude-1
MDS Maximum Distance Separable
ML Maximum Likelihood
MLC Multi-Level Cell
MSB Most Significant Bit
NVMs Non-Volatile Memories
OFDM Orthogonal Frequency Division Multiplexing
PCC Partitioned Cyclic Code
PCM Phase-Change Memory
PDF Probability Density Function
P/E Program and Erase Cycles
PMF Probability Mass Function
Pol Polyalphabetic
PSMC Partially Stuck Memory Cell
q-SC q-ary Symmetric Channel
RM Reed–Muller
RRE Reduced Row Echelon
RS Reed–Solomon
RP Repetition Code
SMC Stuck Memory Cell
SPC Single Parity-Check

xii

Contents

TLC Triple-Level Cell
UMC Unreachable Memory Cell
WOM Write Once Memory

xiii

Nomenclature

Basics

[g, f] Set of integers {i | g ≤ i ≤ f − 1}
[f] Set of integers {i | 0 ≤ i ≤ f − 1}
A Matrix
A[i, j] Element in i-th row and j-th column of A
A[i, :] i-th row of A
A[:, j] j-th column of A
A(I) Matrix A restricted to the columns indexed by I
E ⊂ [n] Erasure pattern subset of [n] positions
hq(x) q-ary Entropy of random variable x

Matrix and Vector Products

A ·B (Matrix) product
A×B Cartesian product
A⊗B Kronecker product
⟨u, v⟩ Inner product

Codes

C Code (set of vectors/matrices)
n Length of a code / number of memory cells
k Dimension of a code
d Minimum distance of a code
t Number of errors
u Number of partially stuck memory cells
ϕ Positions of (partially) stuck memory cells
n− k Redundancy of a code to correct t errors
l Redundancy of a code to correct u cells

xiv

1
Introduction

In a telecommunications network, the OSI model (Open Systems Interconnection),
or recently the Internet model, has several intermediate predefined layers in which

communication protocols are defined to perform specific tasks. The data link layer,
one of the OSI layers, is defined as "Layer 2" and is responsible for detecting and
possibly correcting errors that may occur in the physical layer. Error detection and
correction provide reliable communication and fault-tolerant information storage and
processing [For07].

The demand for reliable storage solutions and, in particular, for non-volatile memo-
ries (NVMs) such as flash memories and phase-change memories (PCMs) for different
applications is steadily increasing. Non-volatile memory is a memory that stores infor-
mation even when powered off. These multi-level devices provide permanent storage,
a rapidly extendable capacity, faster data access, lower power consumption, and en-
hanced physical resilience. Thus, they have become the principal hard-disk drive
replacement for a range of storage applications [DS16]. Their performance is typically
measured using four metrics: lifespan, latency, throughput, and reliability.

The amount of time from the point at which data is initially stored to the point
at which it is no longer recoverable is referred to as lifespan. The period the system
takes to complete an activity after receiving a command to retrieve or store data is
known as latency. The average amount of data the system can store and retrieve in a
given amount of time is measured as throughput. The probability that data recovered
from the system differs from the data initially stored serves as a measure of reliability.
Flash memory, the most prevalent NVM technology, has been broadly employed in
consumer electronics products and industrial electronic systems due to its support
for high-throughput and low-latency memory access. A flash device is made up of
floating gate transistors that are arranged in a two- or three-dimensional array [DS16].
Every memory cell stores information in the form of charge (voltage levels), which
corresponds to a specific digital value. Electrons are programmed to and erased from
the floating gate through the oxide layer to regulate the voltage levels [WWCW16].
Two procedures, namely programming/erasing (P/E) and reading, are used to store

2

data and retrieve it from flash-based memories.
That said, a primary issue with flash technology is that its read channel degrades

significantly over time, resulting in unacceptable reliability. Capturing and releasing
charges in flash during programming and erasing causes damage, e.g., wear-out in the
form of charge trapping in the oxide and interface states [CWW14; WCW15; ORS86;
MC+09]. The trap (the stuck-at; see [WY16; Hee83]) prohibits a cell from switching
its level, although new charges are injected or removed from this cell. Flash cells
generally store one of a few levels–each can be regarded as a symbol over a discrete
alphabet of size q. The lowest level generally refers to the entirely erased state, while
the highest corresponds to the maximally programmed phase. Due to charge traps,
these cells can only access subsets of the q levels. A typical flash unit is a multi-level
cell MLC [WWCW16; DS16], which can store four levels, e.g., the values {0, 1, 2, 3}.
Charge trapping at level 1 in an MLC stops the ability to set it back to the lowest
level, i.e., the value 0 cannot be modeled anymore. Thus, three out of four values, e.g.,
{1, 2, 3}, are the remaining accessible levels. Treating these cells like erasures, i.e.,
wholly unusable cells, shrinks the storage capacity enormously since, in these cells,
subsets of the q levels are still programmable.

Recently developed devices exploit an increased number of cell levels while, at the
same time, the physical size of the cells was decreased. For instance, modern flash solu-
tions provide more storage capacity in the form of denser memory devices. Therefore,
the resulting increase in physical cell density and signal constellation density amplifies
the degradation problem.

On the other hand, the key characteristic of PCM cells is that they can switch
between two main states: an amorphous state and a crystalline state. PCM cells may
become unreliable (also called defective or stuck) [GPB09; Hwa+05; Che+22; Pir+04]
if they fail in switching their states. This occasionally happens due to the cooling
and heating processes of the cells. Thus, cells can only hold a single phase [GPB09;
Pir+04]. In multi-level PCM cells, failure may occur at a position in either of extreme
states or in the partially programmable states of crystalline.

The deterioration, indeed, can be handled at various layers. At the device layer,
three-dimensional cell structures in the flash system improve durability [CS11; PBK14;
Im+15]. At the system level, channel codes can be used since flash-based memories
are point-to-point communication systems (see Figure 3.1) and usually require chan-
nel codes. The field of channel coding is about developing practical error correction
algorithms that introduce controlled, carefully planned redundancy into a data stream
to ensure the most reliable transmission or storage across a noisy medium. The latter,
employing error correction schemes for unreliable memories, is a promising approach to
overcoming these physical limitations. It dates back to the 1970s [KT74] and has been
extensively researched in [TGKO75; Tsy75b; Tsy75a; Tsy77; BS77; LKD78; KKY78;
Hee83; Kuz85; Che85; BV87; Dum87; Dum89; Dum90] under various aspects. In
practice, codes like Bose-Chaudhuri-Hocquenghem (BCH) codes [CZW08; CKCH14;

3

1 Introduction

KH14] and low-density parity-check (LDPC) codes [MK09; ZPJ10; Zha+13; Wan+14]
add redundancy to protect the stored information. The design of the error-correcting
codes ECC significantly impacts the storage system’s lifetime, latency, throughput,
and reliability. ECC arose from Shannon’s seminal 1948 publication [Sha48]. Shan-
non demonstrated that when the code rate is less than the channel capacity, nearly
error-free discrete data transmission is possible over any noisy channel. This state-
ment is now known as the (noisy) channel coding theorem. The physical properties
of the channel determine its capacity, and for non-trivial communication channels, it
is an active research area. However, due to the non-constructive proof of the channel
coding theorem, it is unclear how to construct error-correcting codes that approach
the Shannon boundary. With the advent of Hamming’s class of codes [Ham50], many
articles and textbooks discussing code constructions, their characteristics, and decod-
ing techniques have been appeared and are still currently underway. The Hamming
metric is the "appropriate" metric for most data transmission and storage systems,
and codes specified in this metric work pretty well in practice.

Since the reliability problems are related to the number of programming and erasing
cycles, reducing them by avoiding unnecessarily erase states (i.e., preventing the need
to return to the zero value) is a straightforward solution. Therefore, write once mem-
ory (WOM) codes [RS82; Jia07; Yaa+12; GD15], rank modulation [JSB08; MBZ13;
QJS13], dynamically voltage allocation (DVA) [WWCW16], and other methods are
used to achieve this goal. In other words, the ability to (re)write a block of cells with-
out erasing is desirable, i.e., minimizing non-mandatory erase cycles. For instance,
assuming an MLC cell traps at level 1, writing data using well-designed codes (i.e.,
their codewords have nonzero components) in the trapped cells means utilizing these
cells in their higher remaining levels without demanding mandatory erases.

Therefore, sophisticated coding and signal processing solutions are indispensable to
overcome reliability issues in non-volatile memories.

1.1 Outline
This dissertation provides coding schemes and bounds for memories of partially de-
fective cells that can only store partial information, in which writing on these cells
considering the trapped levels and simultaneously correcting substitution errors are
proposed. The dissertation is arranged as follows.

Chapter 2 first introduces the notation before providing preliminaries and formal
definitions of the channel coding concepts and relevant bounds examined in this dis-
sertation.

Following these preliminary considerations, Chapter 3 reviews non-volatile memories
and their channel degradation mechanisms corresponding to error and noise models
that make these memories erroneous and defective. This chapter, thus, introduces our
motivation to compromise the influence of these error models in the next chapter.

4

1.1 Outline

Chapter 4 is the beginning of the core dissertation. This chapter defines the mod-
els of joint errors and partially defective cells examined in this dissertation, and then
presents different coding constructions for memories with defects and substitution er-
rors to handle various cases. Despite the fact that the encoding algorithm successfully
produces a vector that matches the partial defects as in [WY16], the storing process
might fail to present a vector that can be appropriately written to that memory due
to substitution errors (i.e., caused by inter-cell interference noise, or other noise dis-
turbance), or the reading process might be unsuccessful [SC19a]. Hence, we consider
the problem of combined error correction and masking of partially stuck cells. The
process of "masking" finds suitable codewords that regard the writable levels in the
partially stuck positions.

Compared to the conventional stuck-cell case in [Hee83], we reduce the redundancy
necessary for masking, similar to the results in [WY16]. Furthermore, we provide code
constructions for any number of partially stuck cells; see Table 4.3 for an overview of
our constructions and their required redundancies. For the error-free case, where only
masking is necessary, our redundancies coincide with those from [WY16] or are even
smaller compared to [WY16, Construction 5].

Non-volatile memories actually consist of a vast number of cells, with a (relatively)
small number of programmable levels permitted in each. Therefore, they demand
channel codes with very long block lengths over a limited range of alphabet sizes. For
example, multi-level cell device employs the alphabet q = 22. Thus, our focus is on
long codes over small alphabets, i.e., the code length n is larger than the field size q.
Otherwise, one could instead mask by a code of length n < q (by using, e.g., [Sol74]).
The final section of Chapter 4 covers codes for unreachable memories [GSD14], i.e., a
reverse of a partially stuck scenario.

Chapter 5 considers a technique where the encoder intentionally introduces errors
at some partially stuck positions of a codeword after a first masking step in order to
satisfy the stuck-at constraints. The decoder, then, uses part of the error-correcting
code capability to correct these purposefully produced errors. We begin with a general
proposition of exchanging some error correction possibilities for masking capabilities.
We then improve this general proposition for some of our code constructions and give
another method for introducing errors by the encoder to fulfill the partially stuck-at
restraints. It turns out that treating some partially stuck cells as erroneous cells can
increase the stored information for some code parameters.

Chapter 6 is devoted to deriving upper- and lower-like bounds on our constructions,
namely Singleton-type, sphere-packing-type (Hamming-type), and Gilbert-Varshamov-
type (GV-type) bounds. In our constructions, an encoder output only limits the val-
ues in the partially stuck cells; nonetheless, it can achieve all values in the other
cells. Consequently, a polyalphabetic code can represent the set of all encoder outputs.
Error-correcting codes are polyalphabetic if they have (possibly) different alphabets
in each entry of their codewords [Sid+05]. Therefore, upper bounds (Singleton-type

5

1 Introduction

and sphere-packing-type) on the size of polyalphabetic codes are also upper bounds
on the size of partially-stuck-at codes. To this end, we provide two corollaries to
state these upper limits for error-correcting and partially-stuck-at masking codes. We
finish proposing various GV-type bounds for finite code length based on our coding
schemes to show the existence of q-ary t-error correcting codes with additional prop-
erties. These lower limits have further been discussed for asymptotic regimes in which
the code length tends to infinity, and the number of partially stuck-at cells and the
number of random errors grow linearly in the code length.

Chapter 6 also contains numerical and analytical comparisons to verify these upper-
/lower-type bounds and to evaluate their performance. They have been conducted
by comparing the derived bounds based on our code constructions with other trivial
codes and known standard limits.

The final section of Chapter 6 briefly summarizes our lower/upper bounds on polyal-
phabetic codes, taking into account bounded alphabet sizes.

Chapter 7 concludes this dissertation.

6

2
Preliminaries

This chapter introduces and briefly covers the primary principles needed in this
dissertation. We begin with Section 2.1, which lists the notations used in the

entire thesis. We recall in Section 2.1.1 the vector and matrix multiplications, e.g., the
inner product. Then we pursue in Section 2.1.2 to present the polynomials in the finite
(extension) field over a single alphabet, which is also covered in the subsequent section
(Section 2.2). We briefly introduce in Section 2.3 the theory of error-correcting codes
in Hamming metric [Ham50]. Some code families are presented in Section 2.3.4, Sec-
tion 2.3.5 and Section 2.3.6. The standard upper and lower bounds on linear codes
are rephrased in Section 2.4. Section 2.5 summarizes the concept of polyalphabetic
codes, i.e., linear codes whose codewords are of coordinates from multiple alphabets.
Finally, Section 2.5.1 exhibits the upper limits on these polyalphabetic codes.

2.1 Notation
For a prime power q, let Fq denote the finite (extension) field of order q, F∗

q := Fq\{0}
be its multiplicative subgroup, and Fq[x] be the set of all univariate polynomials with
coefficients in Fq. The set Fq := {0, 1, . . . , q − 1} is also known as Galois field. For
g, f ∈ Z>0, denote [f] = {0, 1, . . . , f − 1} and [g, f] = {g, g + 1, . . . , f − 1}. Denote
Z/qZ for the set of integers modulo q.

As usual, an [n, k, d]q code (denoted by C) is a linear code over Fq of length n,
dimension k and minimum (Hamming) distance d. The (Hamming) weight wt(x) of
a vector x ∈ Fn

q equals its number of non-zero entries. The code size (also known as
code cardinality) is denoted by M and is given by M = qk. The term "cardinality"
defines the number of elements in a given set, and is expressed as | A | for any set
A. The rate (denoted by R) of the code C is the ratio of its dimension k and its
length n such that R = k/n. The dual code of the code C is denoted by C⊥ of the
parameters [n, n− k, d⊥]q, where d⊥ denotes the dual minimum (Hamming) distance.
In the asymptotic regime as the code length n tends to infinity, we denote by δ the

8

2.1 Notation

relative distance which is the ratio of the minimum distance d over the code length n
such that δ = d/n.

Vectors and matrices are denoted by lowercase and uppercase boldface letters, e.g.,
a and A, respectively, and are indexed starting from 0. For a, b ∈ Z>0, RRE(A([b]))
denotes the reduced row Echelon form of a matrix A([b]) that has its columns indexed
by the set [b]. Denote Fn

q for the vector space consisting of all length n vectors over
Fq, and Fa×b

q for the matrix space of all a × b matrices over Fq. For integers i ∈ [a]
and j ∈ [b] the element in row i and column j is denoted by Ai,j. To restrict to
a given row and to a given column, we write A[i, :] and A[:, j], respectively. A⊥

denotes the transpose of A. Write supp(a) to denote the set of indices of the non-zero
entries (columns) of a and 1ℓ to denote the all-one vector of length ℓ. Note that all
calculations are done in the finite field Fq; that is, all calculations are done modulo q.

We fix throughout the thesis a total ordering "≥" of the elements of Fq such that
a ≥ 1 ≥ 0 for all a ∈ Fq\{0}. So 0 is the smallest element in Fq, and 1 is the next
smallest element in Fq. We extend the ordering on Fq to Fn

q : for x = (x0, . . . , xn−1) ∈
Fn

q and y = (y0, . . . , yn−1) ∈ Fn
q , we say that x ≥ y if and only if xi ≥ yi for all i ∈ [n].

In order to simplify notation, we sometimes identify x ∈ Fq with the number of
field elements not larger than x, that is, with the integer q − |{y ∈ Fq | x ≥ y}|. The
meaning of x will be clear from the context. Figure 3.4 in Section 3.4.3 depicts the two
representations that are equivalent in this sense. Finally, we denote the q-ary entropy
function by hq, that is

hq(0) = 0, hq(1) = logq(q − 1), and
hq(x) = −x logq(x)− (1− x) logq(1− x) + x logq(q − 1) for 0 < x < 1.

2.1.1 Vector and Matrix Multiplication

Different notations of matrix products can be used in mathematics, particularly in
linear algebra. We merely introduce regular matrix, vector, and scalar products and
restate their relation used in the following chapters.

For A ∈ Fm×n′
q and B ∈ Fn′×n

q , we have:

A ·B =


A0,0 . . . A0,n′−1
A1,0 . . . A1,n′−1

...
. . .

...
Am−1,0 . . . Am−1,n′−1

 ·


B0,0 . . . B0,n−1
B1,0 . . . B1,n−1

...
. . .

...
Bn′−1,0 . . . Bn′−1,n−1



9

2 Preliminaries

=


⟨A[0, :], B[:, 0]⟩ ⟨A[1, :], B[:, 1]⟩ . . . ⟨A[0, :], B[:, n− 1]⟩
⟨A[1, :], B[:, 0]⟩ ⟨A[2, :], B[:, 1]⟩ . . . ⟨A[1, :], B[:, n− 1]⟩

...
. . .

...
⟨A[m− 1, :], B[:, 0]⟩ ⟨A[m− 1, :], B[:, 1]⟩ . . . ⟨A[m− 1, :], B[:, n− 1]⟩


where

⟨A[i, :], B[:, j]⟩ =
n′−1∑
l=0

Ai,l ·Bl,j

is the inner product (known also the dot/scalar product) between two vectors.
If B ∈ F1×n

q , B is a vector, and we denote this vector as b = (b0, b1, . . . , bn−1) ∈ Fn
q .

A scalar is an element in Fq and denoted by a non-boldface symbol, i.e., a ∈ Fq.
All calculations are carried out in Fq, i.e., taking modulo q for each matrix or vector
coordinate. We omit the · symbol whenever it is clear from the context.

2.1.2 Polynomials
Polynomials over the finite (extension) field Fq and their standard arithmetic opera-
tions are briefly explained in the following. For a non-negative integer n, a polynomial
can be expressed as:

a(x) =
n∑

i=0
aix

i, (2.1)

where a0, a1, . . . , an are elements in Fq which are so-called the coefficients of the poly-
nomial a(x) [Rot06, page 51].

For a nonzero polynomial over Fq given in (2.1), the degree is denoted by deg a(x) and
defined as the largest index i for which ai ̸= 0. A nonzero polynomial is called monic
polynomial if the coefficient ai of the highest-degree term in the polynomial equals 1.
The standard asthmatic operations such as summation and difference, product, and
division can be conducted on polynomials (e.g., see [Rot06, page 52]).

2.2 Finite (Extension) Field Fq

The typical literature on finite fields, e.g., [Bla+93; Lid+97], and works on coding
theory, e.g., [Ber84; Bla03; Rot06; HP10], provide in-depth analyses of finite fields,
their characteristics, and applications.

Let p be prime1 and denote by Fp the prime (base) field of order p. This finite field
Fp consists of p elements. A finite field can be defined for prime power q = pµ and
denoted by Fq, where µ ≥ 1 is called extension degree and p is called its characteristic.
If the base field Fp is a subfield of Fq, i.e., Fp ⊆ Fq, we say Fq is an extension field of
Fp.

10

2.2 Finite (Extension) Field Fq

Note that Fq = Fp for µ = 1; therefore, all properties of extension fields also hold
for the special case of prime fields. Hence, addition and multiplication operations in
Fq are equivalent to the corresponding arithmetic operations in Fp when applied to
elements in that base field. An extension field Fq of Fp is a vector space over Fp and is
therefore written Fpµ , where the extension degree µ is the dimension of Fp such that
the bijective mapping (Fq = Fpµ) 7→ Fµ

p holds. This one-to-one mapping is formally
called mapping to base field (cf. Definition A.1 in Appendix A.1).

2.2.1 Extension Field Fq by Irreducible Polynomials
Irreducible polynomials over the base field Fp can alternatively define the extension
field Fpµ , i.e., polynomials in the set Fp[x] of degree µ for the indeterminate x, whose
all coefficients lie in Fp. The standard addition and multiplication, as well as division of
polynomials are done in Fp. Corollary 2.11 in [Lid+97] proves that there is at least one
such irreducible polynomial for any degree µ. Irreducible polynomials are an analogy
to prime1 numbers for integers.

Before providing a finite extension field using a base field and polynomials, Defini-
tion 2.1, Definition 2.2 and Definition 2.3 are needed.

Definition 2.1 (Irreducible Polynomials). Let p(x) ∈ Fp[x] denote a polynomial of
degree µ whose coefficients are in Fp. Then p(x) ∈ Fp[x] is called irreducible in Fp if
it is not possible to factor it to lower non-zero degree polynomials in Fp[x].

Note that different representations of the same extension field Fpµ over Fp are pro-
vided by various irreducible polynomials. The reason is that the field Fpµ is indepen-
dent of the choice of an explicit irreducible polynomial p(x) due to the isomorphic
property of fields of the same size, e.g., see [Lid+97, Theorem 1.78] and [MS77, The-
orem 6]. Consequently, the field Fpµ is isomorphic to the polynomial ring over Fp

modulo p(x):
Fpµ
∼= Fp/⟨p(x)⟩.

An irreducible polynomial that fulfills the following conditions is called the minimal
polynomial.

Definition 2.2 (Minimal Polynomial). Let α ∈ Fpµ be any element. A monic irre-
ducible polynomial M(x) with coefficients in Fp such that:

• M(α) = 0, and

• M(x) has the minimal degree

is called the minimal polynomial of α.
1Prime numbers are irreducible integers, and integers can be written as a product of their prime

factors. Likewise, polynomials can be written as a product of their irreducible polynomials.

11

2 Preliminaries

The first condition implies that α is a root of M(x). The second condition means
there is no other monic irreducible polynomial of lower degree, e.g., M ′(x), satisfying
M ′(α) = 0. The minimal polynomial M(x) is then irreducible2 and unique3. Hence,
M(x) of degree at most µ divides p(x) (cf. Definition 2.1).

Definition 2.3 (Primitive Element). Let α ∈ Fpµ be an element such that:{
α0, α1, α2, . . . , αpµ−2

}
= F∗

pµ , (2.2)

and αpµ−1 = 1. Then α is a primitive element of Fpµ where all powers of α generate
the whole field except 0.

There is at least one primitive element in any finite (extension) field [Lid+97, page
51]. The minimal polynomial of a primitive element α is called the primitive polyno-
mial.

The finite extension field then can be expressed as:

Fpµ :=
{
a(x) = a0 + a1x + · · ·+ aµ−1x

µ−1 : aj ∈ Fp

}
, (2.3)

which is the set of all polynomials a(x) ∈ Fp[x] of degree less than µ and have coeffi-
cients in Fp, with calculations carried out modulo the irreducible polynomial p(x) of
degree µ. That is, xi mod p(x) ≡ a(x) ∈ Fp[x], for all i = 0, 1, . . . , pµ − 2. There are
exactly pµ such polynomials, which is the size of the extension field Fpµ [MS77, Theo-
rem 1]. If p(x) is used to construct Fpµ and it satisfies the polynomial in Definition 2.2,
then p(x) is the minimal polynomial, e.g., M(x) := p(x).

Remark 2.1. If the construction of the extension field Fpµ has been done using a
primitive polynomial (Definition 2.2 and Definition 2.3), then the multiplicative group
F∗

pµ is a cyclic group that has at most pµ − 1 distinct elements, i.e., any α ∈ F∗
pµ is

cyclically repeated such that 1, α1, α2, . . . , αpµ−2, with αpµ−1 = 1 [MS77, Thereom 2].
Furthermore, α is a primitive (pµ − 1)th root of unity as αpµ−1 = 1 where pµ − 1 is
its smallest possible order that satisfies the unity (this property will be needed in our
constructions and examples in Chapter 4).

We see later, in Section 2.3.4, how to construct cyclic and BCH codes using the
finite fields and the minimal polynomials.

2If M(x) is reducible, then one can write it as M(x) = M1(x)M2(x) for any lower degrees polynomials
M1(x) and M2(x). Then, by the first condition in Definition 2.2 M(α) = 0, either M1(α) = 0 or
M2(α) = 0, but M1(x) and M2(x) of lower degrees which contradicts the second condition.

3By [MS77, Theorem 6], all finite fields of order pµ are isomorphic due to the one-to-one mapping
between any two finite fields of order pµ. [MS77, Theorem 7] shows that due to [MS77, Theorem 6]
there is a unique finite field of order pµ.

12

2.3 Linear Codes over Fq

2.3 Linear Codes over Fq

A communication system can transmit information from a source to a destination over
a channel. The communication may occur in the time domain (i.e., by storing data
at one point in time and retrieving it some time later) or space domain (i.e., from
one location to another) [Rot06, Chapter 1]. Codes were developed to compromise
errors on noisy communication lines or storage mediums. According to the most
basic description, a code is merely a collection of elements. However, most coding
theory literature focuses on scalar codes whose elements are called codewords. These
codewords are vectors of equal lengths over a specific field. The code is linear and
denoted by [n, k]q if these codewords span a k-dimensional linear subspace of Fn

q , i.e.,
the set of all vectors of length n over the finite fields Fq. The linearity of a code can
be confirmed if any linear combination of codewords in that code is another codeword
and the code comprises an all-zero codeword. Throughout this dissertation, we only
consider linear codes over Fq, where q = pµ for some prime p and µ ≥ 1, i.e., q is
a prime or a prime power. In case the field size is clear from the context or is not
relevant, the linear code is alternatively denoted by [n, k].

If a code is spanned by a k-dimensional space, k linearly independent codewords
are its basis. Every codeword is then expressible as a unique linear combination of
basis vectors. As there are q choices for a scalar multiple of each basis vector, there
are, in total, qk linear combinations. Thus, counting the number of codewords or the
so-called code size is equivalent to counting the number of linear combinations. For a
linear code C over Fq, the size (or commonly known as the cardinality) is given by

| C | = qk.

A matrix G ∈ Fk×n
q that includes a basis as its rows is called a generator matrix of a

linear code. This matrix is a k × n matrix of rank k.
The code is given by

C = {m ·G ∈ Fn
q |m ∈ Fk

q}. (2.4)
The vector m is the message vector, and the mapping c = m · G is the message
encoding, resulting a codeword c. Thus, an encoder at the transmitter side maps a
k-symbol message into an n-symbol codeword in the same alphabet q. Furthermore,
the code can be equivalently stated as

C = {c | c ∈ Fn
q , c ·H⊤ = 0} (2.5)

since each linear subspace has a distinct dual space, where the matrix H ∈ F(n−k)×n
q

involves as its rows a basis of the dual space of C, called the dual code and denoted by
C⊥. A decoder at the receiver side uses c ·H⊤ = 0 to infer if the received codeword,
say ĉ, produces the all-zero vector such that ĉ ·H⊤ = 0. Then, it implies that ĉ = c
(no errors have inducted). Consequently, the scalar product (cf. Section 2.1.1) of

13

2 Preliminaries

G ·H⊤ = 0 holds since each row of G is a codeword of the code C whose is generated
by G.

The dimension n−k of the space spanned by the rows of H is known in the literature
of coding theory as the redundancy of the code C. The redundancy shows that n− k
redundant symbols are needed in a code such that this code is efficient, i.e., it can
correct many errors while having as large as possible information symbols k. Thus, the
amount of redundancy of a code is characterized by its rate, which is a code dimension
k over its length n and is given by

R = k

n
.

Several metrics decide a code proprieties. We solely consider the Hamming metric
[Ham50] in this study. The weight of a vector c ∈ Fn

q under the Hamming metric is
the number of non-zero coordinates

wtH(c) = | supp(c) | = | {j | cj ̸= 0} |.

The Hamming distance between two vectors c, ĉ ∈ Fn
q is defined as the number of

differed positions between these two vectors and is officially given by

dH(c, ĉ) = | supp(c − ĉ) | = | {j | cj ̸= ĉj} |.

Indeed, the minimum distance of a linear code, i.e., the smallest number of locations in
which any two codewords differ, is a code parameter of a particular interest in coding
theory. It is formally defined as

dmin = min
c,ĉ∈C
c ̸=ĉ

dH(c, ĉ) = min
c∈C\{0}

wtH(c). (2.6)

Note that by the linearity of the code, the second equality holds.
In this work, we simply write weight and distance and denote them wt(c) and d

instead of wtH(c) and dH , respectively, since we only consider the Hamming metric.
We also write [n, k, d]q to denote a corresponding linear code over Fq, where d replaces
dmin to denote the minimum Hamming distance.

The behavior of the distance relative to the code length, also known as the relative
or normalized distance δ = d/n, is frequently considered in the asymptotic analysis
in the coding theory. The minimal distance should, in general, be as considerable
as possible. Research on the bounds of the minimum distance concerning other code
parameters is extensive. The bounds of the highest interest for this work are primarily
the Singleton bound, the Hamming (sphere-packing) bound, and Gilbert–Varshamov
bound, which are found in Sections 2.4.1, 2.4.4, and 2.4.5, respectively.
Definition 2.4 (Subfield Subcodes over Fp). Given an [n, k, d]q linear code C for
q = pµ, where p some prime number and integer µ > 1, then its Fp-subfield subcode,

14

2.3 Linear Codes over Fq

denoted by C0, is defined as follows.

C0 := C ∩ Fn
p =

{
c | c ∈ C, ci ∈ Fp ∀ i ∈ [n]

}
.

Alternatively, C0 is given by the Fp kernel of H ∈ F(n−k)×n
pµ , where H denotes a parity-

check matrix of C such that

C0 := C ∩ Fn
p =

{
c | c ·H⊤ = 0, c ∈ Fn

p

}
.

It follows from Definition 2.4 that every codewords of the code C0 is a codeword of
the code C. The parameter d is not (necessarily) the real minimum distance of the
code C0. It is actually known that the distance is larger (see Remark 2.2).

Remark 2.2. The advantage of codes over the extension fields Fpµ for some prime p
and extension degree µ > 1 is that they allow designing codes with a considerably large
minimum distance for their constituent (or subfield; cf. Definition 2.4) codes over
Fp. For example, nested BCH codes that are defined later in Section 2.3.6 are subfield
subcodes of generalized Reed-Solomon codes GRS [Rot06, Chapter 5]. Their minimum
distances are bounded from below by the minimum distances of their corresponding
GRS codes. At the same time, their dimensions could be as large as these GRS codes.

The property in Remark 2.2 is useful in our code constructions presented in Chap-
ter 4. In fact, codes over the binary extension fields, i.e., F2µ over F2 are particularly
interesting and considered in this thesis for our code construction in Section 4.5.2.

2.3.1 Error Detection
Error detection is a principle that is widely used in practice. It is the event when
a receiver becomes aware that an error has emerged, but the correct sent codeword
cannot be reproduced from the delivered one. The receiver then can either request
retransmission or choose to disregard the erroneous codeword.

Figure 2.1 shows the codeword c being sent and y being received. The following
theorem demonstrates that the error can always be detected if the distance between
c and y is less than the code’s minimum distance d.

Theorem 2.1 (Error Detection). Let C be a code of minimum distance d such that
c ∈ C is transmitted (or stored) codeword. Assume the channel adds an error e with
0 ≤ wt(e) ≤ d − 1. Then the decoder can always detect from y = c + e whether an
error aroused or not.

Proof. If 1 ≤ wt(e) ≤ d − 1, the received (or restored) word y = c + e cannot be a
codeword since the minimum distance between any two codewords is at least d. Hence,
the receiver detects that an error transpired. The left case; namely wt(e) = 0, means
no error has happened and y = c is a codeword.

15

2 Preliminaries

y

ĉ

c

c′d− 1

Figure 2.1: Illustration of error detection corresponding to Hamming metric.

2.3.2 Erasure Correction
Linear codes are mainly used to calibrate errors and erasures (or concurrently both)
that ensue during transmitting and receiving (or storing and retrieving when regarding
storage media) processes across a particular channel. When erasures occur in specified
coordinates of a codeword, the corresponding (columns of) symbols in these positions
are replaced by an erasure symbol, commonly denoted by ∗ or ⊛. An erasure pattern
E ⊂ [n] is correctable if and only if there are not two (or more) codewords that match
in all [n]\E (it reads "the set [n] except its subset E") surviving positions (i.e., all
locations that have not been erased). The following theorem explains the erasure
correction.

Theorem 2.2 (Erasure Correction). Let C be a code of minimum distance d such that
c ∈ C is transmitted (or stored) codeword. Assume the channel erases at most d − 1
symbols and their locations are known given in the set E. Then the decoder can always
correct the erased coordinates.

Proof. Since any two codewords differ in at least d locations, a code C with a minimum
distance d ensures that any combination of up to |E| ≤ d−1 erasures can be corrected,
regardless of their positions in the codeword. Hence, fixing d − 1 positions in all the
codewords reveals that any two words still differ by at least one symbol.

The former condition is not a key prerequisite for correctability; it is merely a suf-
ficient one. An erasure pattern can typically be corrected if the mapping from the
message m ∈ Fk

q to the surviving coordinates, such that c(j) = m ·G(j) for j ∈ [n]\E,
is still injective, where the code C is generated by the matrix G. It is obvious that
the prior case is true if and only if the submatrix of G whose columns are labeled by
j ∈ [n]\E is of a full rank k. To this end, the least sets of columns for which this holds
are called the information sets of the code C, i.e., the sets I ∈ [n] such that |I| = k
and rank(G(I)) = k. Therefore, it is sufficient to demonstrate that the complement of
a particular erasure pattern contains an information set of the code in order to show
the ability of a code to correct that specific erasure pattern [HPYW21, Proposition 2].
The dual code C⊥ and the parity-check matrix H can be used as another option to

16

2.3 Linear Codes over Fq

provide a similar condition for an erasure pattern’s correctability. Uncomplicated lin-
ear algebra arguments make it simple to confirm that the erased positions can only be
corrected if they include the dual code’s information set; that is, rank(H(E)) = n− k.

We have introduced the erasure correction principle since our work provides a similar
concept of known-location faulty patterns (cf. Section 3.4.3) that can be corresponded
during the encoding procedure. Contrary to the defective patterns in our scenarios
considered in Chapter 4, erasure patterns can be treated at the decoder regarding the
prior argument on correctability.

2.3.3 Error Correction and Decoder Sorts
In comparison to erasures, the fundamental challenge when examining errors is that
their positions are not typically known. Suppose a codeword c of a q-ary code C is
transmitted (or stored) over a channel (or a storage medium) that poses errors, i.e., flips
some coordinates of the codeword. The channel output is the received (or retrieved)
word which is of the form y = c + e and supp(e) indicates the set of error locations.
The decoder, in this regard, is primarily willing to decode this received (restored) word,
i.e., reconstructing the codeword that is most likely to be the transmitted (stored)
codeword. Since the decoder performs a non-trivial decoding task, three types of
decoders are distinguished: maximum likelihood (ML) decoder, bounded minimum
distance (BMD) decoder, and list decoder. We direct the interested readers to check
the maximum likelihood (ML) decoder in [Rot06, Chapter 1, page 8]. We explain the
bounded minimum distance (BMD) decoder in the following, and for completeness,
we subsequently define the list decoder since it is a generalization of BMD.

Bounded Minimum Distance (BMD) Decoder

It is also called unique decoder and is used to guarantee error correction. The BMD de-
coder requires a stricter maximum error weight constraint compared to error detection.
The following theorem explains the error correction by a BMD decoder.
Theorem 2.3 (Error Correction (BMD)). Let C be a code of minimum distance d such
that c ∈ C is transmitted (or stored) codeword. Assume the channel adds an error e
with 0 ≤ wt(e) ≤ ⌊d−1

2 ⌋. Then the decoder can always correct the errors in the received
(or restored) word y = c + e.
Proof. Since any two codewords differ in at least d locations, a code C with a minimum
distance d ensures that any error of weight 0 ≤ wt(e) ≤ ⌊d−1

2 ⌋ can be corrected. The
fact that decoding spheres of radius ⌊d−1

2 ⌋ surrounding all codewords do not intersect,
as shown in Figure 2.2, guarantees unique correctability by finding the center of the
decoding sphere in which the received y = c + e belongs.

A BMD decoder returns either a unique codeword or an empty set; in the latter, it
declares a decoding failure. Figure 2.2 depicts a BMD decoder in which the received

17

2 Preliminaries

y

ĉ

c

c′
⌊d−1

2 ⌋

Figure 2.2: BMD decoder for q-ary symmetric channel corresponding to Hamming met-
ric.

word y is mapped to the codeword c which is the only one that lies inside the decoding
radius. Many classes of linear codes (in the corresponding metric) have effective BMD
decoders. However, it should be noted that this is typically not an easy problem, as
it is unclear how to effectively decode a random linear code up to its unique decoding
radius. Although the BMD decoder offers the benefit of a decoding guarantee, it can
only be used for half the minimum distance. Therefore, list decoding presented in the
following section is a one way to fix this.

List Decoder

A list decoder aims to deliver a list of all codewords that fall inside an expanded
decoding radius, which goes beyond the unique decoding radius. Let r > ⌊d−1

2 ⌋ be
an extended decoding radius; then, there are overlaps in the Hamming spheres. The
concept of list decoding can be seen as a generalization of unique decoding, i.e., the
list has an individual codeword, and its size equals one. Consequently, a decoding
failure is declared if the output is an empty set as well. Figure 2.3 shows a drawing
of a sphere of radius r around the received word y such that all codewords that lie
in this sphere are an output of a list decoder, e.g., y is mapped to a list of size two
that contains the codewords c and ĉ. Note that the larger the radius r, the higher the
complexity, as the list size can grow exponentially in the code length, which makes the
list decoder practically infeasible. This means that the radius r cannot be arbitrarily
large. We shall see later in Section 2.4.4 how to find the number of words in a sphere
of a given radius, i.e., the volume of a sphere.

In this dissertation, we only consider unique decoding (BMD decoder) correspond-
ing to Hamming metric [Ham50] for q-ary code (cf. Section 2.3.3) to guarantee the
capability of correcting any error vector e of weight 0 ≤ wt(e) ≤ ⌊d−1

2 ⌋ in our code con-
structions given in Chapter 4. Nevertheless, we shall see in Appendix A.1 a potential
extensions of this work suggested upon array codes and a list decoder.

18

2.3 Linear Codes over Fq

y
ĉ

c

c′
⌊d−1

2 ⌋

r

Figure 2.3: List decoder for q-ary symmetric channel corresponding to Hamming met-
ric.

2.3.4 Cyclic Codes
Linear codes over finite fields are cyclic codes if they fulfill the following definition.

Definition 2.5 (Cyclic Codes). Let C be a linear code over Fq. If any cyclic shift of
a codeword c = (c0, c1, . . . , cn−1) ∈ C is again a codeword in C such that

(c0, c1, . . . , cn−1) ∈ C =⇒ (cn−1, c0, . . . , cn−2) ∈ C,

then C is cyclic.

Definition 2.5 indicates unequivocally that a shift of i positions for a codeword
components gives another codeword. For cyclic codes, polynomial representations for
codewords are used to simplify the notation. Each codeword c = (c0, c1, . . . , cn−1) ∈ Fn

q

is associated with a polynomial c(x) = c0 + c1x + c2x
2, . . . , cn−1x

n−1 ∈ Fq[x] of degree
deg c(x) ≤ n− 1, where its coefficients c0, c1, . . . , cn−1 ∈ Fq. Consequently, the cyclic
shift then corresponds to:

cn−1 + c0x + · · ·+ cn−2x
n−1 = x · c(x)− cn−1 · (xn − 1) ≡ x · c(x) mod (xn − 1).

Thus, we say a linear code is cyclic if and only if

c(x) ∈ C ⇒ x · c(x) mod (xn − 1) ∈ C,

and for every p(x) ∈ Fq[x],

c(x) ∈ C ⇒ p(x) · c(x) mod (xn − 1) ∈ C.

We define the polynomials: generator and parity-check polynomials which correspond
to the generator and parity-check matrices, respectively (cf. Section 2.3). A generator
polynomial is a unique monic polynomial of the smallest degree, denoted by g(x).

19

2 Preliminaries

Proposition 2.1. Let code C ⊆ Fn
q fulfill Definition 2.5 and of the parameters [n, k >

0, d]q. Any codeword c(x) ∈ Fq[x] of deg c(x) ≤ n− 1 of the code C must satisfy:

c(x) ∈ C ⇐⇒ g(x)|c(x),

and can be expressed as
c(x) = m(x) · g(x), (2.7)

for some message polynomial m(x) of deg m(x) ≤ k−1 and generator polynomial g(x)
of deg g(x) = n− k.

Proof. We observe that g(x) is a codeword in the code C since surely g(x) divides itself.
Now since g(x)|c(x), we write c(x) = m(x) · g(x) + r(x) with deg r(x) < deg g(x). By
the linearity of the code C, r(x) = c(x) −m(x) · g(x) ∈ C. Still, by the requirement
on the generator polynomial, g(x) ∈ C is the smallest degree nonzero polynomial. We
conclude that r(x) = 0 since its degree is less than g(x).

Additionally, we observe that xn − 1 = h(x) · g(x) + r(x) with deg r(x) < deg g(x);
therefore, r(x) ≡ −h(x)g(x) mod (xn−1). Again as r(x) = 0, it means g(x)|(xn−1),
which is an essential property of a generator polynomial to produce a cyclic code
[Rot06, page 246].

Concerning a parity-check matrix in a linear code, in this context, we define a
parity-check polynomial as

h(x) := xn − 1
g(x) , (2.8)

where h(x) is of degree k. The equivalent definition for cyclic code is then

c(x) · h(x) = 0 mod xn − 1.

Since h(x) · g(x) = xn − 1 by (2.8), we can always split nontrivial4 cyclic codes such
that 1 ≤ k ≤ n− 1 to define the degrees of g(x) and h(x).

Partitioned Cyclic Code

The concept of a partitioned cyclic code introduced in [Hee83] takes advantage of the
degree distribution between g(x) and h(x).

Definition 2.6 (Partitioned Cyclic Code). Let C be a cyclic code fulfilling Defini-
tion 2.5 that has g(x) of degree deg g(x) = n − k and h(x) of degree deg h(x) = k.
Assume there is another generator polynomial g0(x) of degree deg g0(x) = l that has
the following properties:

• g0(x)|h(x) for l ≤ k, and
4Trivial cyclic codes are linear codes with g(x) = 1 or g(x) = xn − 1.

20

2.3 Linear Codes over Fq

• g0(x) shares no common roots with g(x).

Then C could be partitioned such that any word c(x) ∈ C can be expressed as

c(x) = c1(x) + c0(x) = m(x)g(x) + m0(x)g0(x), (2.9)

where the message polynomial m(x) is of degree deg m(x) ≤ i − j and the message
polynomial m0(x) is of degree deg m0(x) ≤ j for 0 ≤ j ≤ i ≤ k − 1.

Generator and Parity-check Matrices for Cyclic Codes

Generator and parity-check matrices can be obtained by their corresponding generator
and parity-check polynomials, receptively, as follows. We write g(x) = g0 + g1x +
g2x

2 + · · ·+ gn−kxn−k so that its coefficients are g0, g1, . . . , gn−k can be used to define
a generator matrix G of the dimensions k × n for a cyclic code in the following form:

G =


g0 g1 . . . gn−k

g0 g1 . . . gn−k 0
0 . . .

. . .
. . .

. . .

g0 g1 . . . gn−k

 ∈ Fk×n
q . (2.10)

Similarly, we write h(x) = h0 + h1x + h2x
2 + · · ·+ hkxk, then the related parity-check

matrix H of the dimensions (n− k)× n can be defined in the following form:

H =


hk hk−1 . . . h0

hk hk−1 . . . h0 0
0 . . .

. . .
. . .

. . .

hk hk−1 . . . h0

 ∈ F(n−k)×n
q . (2.11)

Thus, a codeword polynomial, namely c(x) from (2.7), can be written in a vector form
such that

c ∈ C := m ·G = (m0, m1, . . . , mk−1) ·


g0 g1 . . . gn−k

g0 g1 . . . gn−k 0
0 . . .

. . .
. . .

. . .

g0 g1 . . . gn−k

 ∈ Fn
q ,

where m = (m0, m1, . . . , mk−1) ∈ Fk
q corresponds to

m(x) = m0 + m1x + m2x
2, . . . , mk−1x

k−1 ∈ Fq[x],

21

2 Preliminaries

which is called the message polynomial of degree deg m(x) = k − 1 with coefficients

m0, m1, . . . , mk−1 ∈ Fq.

It also holds that c ·H⊤ = 0 by (2.5) for H defined by (2.11). It is known that a dual
code C⊥ of a cyclic code C is also a cyclic code over Fq of length n, dimension n− k,
and some dual minimum distance d⊥ [Rot06, Corollary 8.4]. Then the dual code of an
[n, k, d]q cyclic code C is an [n, n− k, d⊥]q cyclic code with a generator polynomial

g⊥(x) := xk · h(x−1)
h(0) , (2.12)

where the degree of deg g⊥(x) = n − k⊥ = k and the degree of its parity-check
polynomial h⊥(x) deg h⊥(x) = n− k.

So far, we have regarded the length n and the dimension k of a cyclic code C. The
minimum distance d of C is as defined by (2.6) and can be bounded from below by the
Bose-Ray-Chaudhuri-Hocquenghem (BCH) bound (introduced in Section 2.3.6) [MS77,
Chapter 9], or more involved bounds such as the Hartmann-Tzeng bound [HT72] or
the Roos bound [Roo79].

2.3.5 q-ary Repetition and Single parity-check Codes

Repetition codes (RP) of the parameters [n, 1, n]q are cyclic codes of the generator and
parity-check polynomials, respectively, as follows:

g(x) := 1 + x + x2 + · · ·+ xn−1, (2.13)

h(x) = xn − 1
g(x) = x− q + 1. (2.14)

Then, their dual codes are single parity-check codes (SPC) of the parameters [n, n −
1, 2]q, which are also cyclic codes of the following generator and parity-check polyno-
mials (respectively)

g⊥(x) := xk · h(x−1)
h(0) = x− q + 1, (2.15)

h⊥(x) = 1 + x + x2 + · · ·+ xn−1. (2.16)
Definition 2.6 explains the degree splitting between g(x) and h(x). Notice that taking
k = n−1 for h(x) in Definition 2.6 gives (2.16), and accordingly, g(x) coincides (2.15).
We shall benefit from this spacial case of partitioned cyclic code in Construction 4.3,
located in Chapter 4. We will also see in Chapter 4 the usability and uniqueness of
these code classes, e.g., looking ahead to Example 4.2.

22

2.3 Linear Codes over Fq

2.3.6 Bose-Ray-Chaudhuri-Hocquenghem (BCH) Codes
Before defining BCH codes [MS77, Chapter 9], a particular type of cyclic code, we
introduce the notation of cyclotomic cosets. For that, we first restate Fermat’s theorem
[MS77, Corollary 3, page 96].

Corollary 2.1 (Fermat’s Theorem). Let α be any element over Fpµ of order pµ. Then
α satisfies the identity such that

αpµ = α,

or is equivalently a root of the equation:

xpµ = x.

Hence, the following holds:

xpµ − x =
∏

α∈Fpµ

(x− α). (2.17)

Corollary 2.1 implies that xpµ−x = 0, or alternatively, dividing both sides by x such
that xpµ−1 − 1 = 0 considers all the nonzero α in Fpµ , i.e., the multiplicative group
F∗

pµ (cf. Definition 2.3). Indeed, by (2.17) xpµ−1 − 1 can be factored in Fpµ [x] to its
degree-one polynomials and rewritten as follows:

xpµ−1 − 1 = (x− 1) · (x− α) · (x− α2) · · · · · (x− αpµ−2). (2.18)

Now, we look at the factorization of xpµ−1−1, but over the base field in Fp[x]. Suppose
M(x) ∈ Fp[x] is a monic irreducible factor of xpµ−1 − 1 that has some root αa (cf.
Definition 2.2). By the Frobenius automorphism [FT91, page 144] for any α ∈ Fpµ it
holds that α 7→ αp (it reads "α maps to αp"), then M(x) has also roots

αa·p, αa·p2
, . . . , αa·pna = αa,

for some integer na that taking its modulo pµ − 1 gives back αa. Hence, M(x) has all
αb for b ∈ {a, a · p, a · p2, . . . , a · pna−1} := J as roots. Consequently, the product∏

b∈J
(x− αb)

that lives in Fp[x] [Rot06, page 220] divides M(x). Since M(x) is irreducible then
indeed

M(x) =
∏
b∈J

(x− αb). (2.19)

Considering (2.18), some of the powers of α fall into disjoint sets, and therefore they
have the same minimal polynomial M(x) defined by (2.19). While minimal polyno-

23

2 Preliminaries

mials are defined over Fpµ , they are in fact polynomials in the base field Fp [Rot06,
Proposition 7.3]. To this end, multiplying by the prime p divides the set of integers
modulo pµ − 1 into cyclotomic cosets, and each one defines its corresponding minimal
polynomial.

Definition 2.7 (Cyclotomic Cosets). Let integer n have gcd(n, pµ) = 1. Let µ be the
smallest integers such that n divides pµ − 1. A cyclotomic coset Ma with respect to n
is given by:

Ma :=
{
a · pj mod n, ∀j = 0, 1, · · · , na − 1

}
, (2.20)

where na is the smallest integer such that a · pna ≡ a mod n.

Let α ∈ Fpµ be a primitive nth root of unity in Fpµ , i.e., αn = 1 and n its smallest
possible order that satisfies the unity (refer also to Definition 2.3 and Remark 2.1).
The minimal polynomial (cf. Definition 2.2) of an element αa is given by:

M (a)(x) :=
∏

b∈Ma

(x− αb). (2.21)

We define a BCH code as the following.

Definition 2.8 (BCH Codes). Let a cyclic code of length n, dimension k, and mini-
mum distance d be an [n, k, d]p code C. It has a generator polynomial g(x) of degree
deg g(x) = n− k with roots in Fpµ, where n divides pµ − 1.

The defining set Dc of the code C is the set containing the indices b of the root αb

of the generator polynomial g(x) such that

Dc := {b : g(αb) = 0} = Ma1 ∪Ma2 ∪Ma3 · · · ∪Maw . (2.22)

Then, g(x) ∈ Fp[x] is thus given by

g(x) =
∏

a∈Dc

(x− αa) =
w∏

b=1
M (ab)(x). (2.23)

Hence, deg g(x) = n− k = |Dc| which is defined as the redundancy of the code C. For
any cyclic code, there is a parity-check polynomial that is given by:

h(x) = (xn − 1)
g(x) =

∏
a∈[n]\Dc

(x− αa). (2.24)

Possible lengths n follow from the definition of the defining set Dc. Some lengths are
not feasible when creating a BCH code, specifically the length needs to be co-prime
with p, which is stated in the following lemma.

Lemma 2.1. n|(pµ − 1) implies that gcd(n, pµ) = 1.

24

2.3 Linear Codes over Fq

Proof. n | (pµ − 1) means

∃ k ∈ N, such that k · n = pµ − 1.

Furthermore, suppose now gcd(n, p) = c with c ∈ N, then it follows

∃ a, b ∈ N, such that
a · c = p,

b · c = n.

Substituting n and p with this, we get

k · bc = (ac)µ − 1
k · bc− aµcµ = −1
c
(
−k · b + aµcµ−1

)
= 1.

Since k, a, b, c ∈ N it needs to hold that c = 1.

By Lemma 2.1, only certain combinations of p, µ, and n enable the construction
of BCH codes. The indices 1, . . . , w that define Dc in (2.22) allow designing the
dimensions k of BCH codes since k = n − |Dc|, where |Dc| = ∑w

b=1 |Mab
|. However,

not all values from 1, . . . , n are possible selections for k since |Dc| is a combination
of one or more cyclotomic cosets, and consequently, they define one or more minimal
polynomials (of possibly different degrees) to provide g(x).

Furthermore, Dc permits to design the code minimum distance d since any consec-
utive elements in Dc plus one gives a bound on d. Let αb, αb+1, . . . , αb+D−2 be roots
belonging to the set of roots of C defined by (2.22) for some integers b and D ≥ 2. Then
the designed minimum distance of the code C is d ≥ D [Rot06, Proposition 8.7]. Note
that if n = pµ − 1, the BCH code is called a primitive BCH code (cf. Definition 2.3).

BCH codes can be derived from an underlying Reed-Solomon (RS) codes [Rot06,
Chapter 5] of a larger field, i.e., over a splitting field Fph for integer h ≥ 1. Denote
CRS ⊆ Fpµ the underlying RS code for prime p and some µ > 1. Then by Definition 2.4,
there is a BCH code C ⊆ Fph defined as

C := CRS ∩ Fn
ph .

BCH codes over Fph of degrees 1 ≤ h < µ are known as nested BCH codes. Then any
codeword c(x) of the code CRS with coefficients in Fpµ has to be a multiple of one or
more minimal polynomials in Fp[x] (see (2.3)) while simultaneously being a multiple
of the generator polynomial of the code C. Equivalently, for BCH codes, the defining
set (cf. Definition 2.8) of the code C is a subset of the defining set of CRS. Example 4.5
in Chapter 5 shows a nested BCH code.

25

2 Preliminaries

Since BCH codes (cf. Section 2.3.6) and SPC codes (cf. Section 2.3.5) are cyclic
codes themselves, partitioned BCH and SPC codes are also possible for some achievable
dimensions 1 < k ≤ n− 1 (check Definition 2.6).

Observe also that RP and SPC codes in Section 2.3.5 are BCH codes, e.g., (2.13)
and (2.14) are maximal and minimal degree versions of (2.23) and (2.24), in which
deg g(x) = n− 1 and deg h(x) = 1, respectively.

Throughout this thesis, we use q-ary cyclic codes, in particular BCH codes, to
describe our coding methods, show some examples and provide code constructions
relying on these code classes.

2.4 Bounds on the Cardinality and Minimum Distance
We have defined linear codes and their parameters. In this section, we establish
conditions on these parameters. These conditions relate bounds between the code
length n, its dimension k (or its size qk), its rate R = k/n, and its minimum distance d.
Some of these bounds imply necessary conditions on the values n, k, d and q, i.e., the
bounds in Section 2.4.1 and Section 2.4.4. We also state the condition of the existence
of codes, which is the bound in Section 2.4.5, whenever their parameters n, k, d, and
q fulfill an inevitable inequality. Additional bounds are included in Section 2.4.2 and
Section 2.4.3, which are upper bounds for codes that encompass an n-weight codeword
in their codebooks5.

We also give asymptotic statements where the code length n → ∞. Asymptotic
bounds can be defined such that the asymptotic rate of a code corresponds to its
relative minimum distance (denoted by δ = d/n).

Codes are classified as if they attain each of these bounds or not. The chapters
[Rot06, Chapter 4] and [MS77, Chapter 17] are two of many references to these (asymp-
totic) bounds on code parameters. The references provide problems and examples of
which code families achieve these limits.

In this dissertation, we explore the standard upper and lower bounds to provide
reference limits as a direct comparison with our derived bounds in Chapter 6.

2.4.1 The Singleton Bound

An upper bound on the size (cardinality) or the minimum distance for any [n, k, d]
linear code over Fq is the Singleton bound (cf. [MS77, Chapter 17]). It states that for
any [n, k, d] code

d ≤ n− k + 1, (2.25)

5A codebook is the collection of all codewords belonging to a code.

26

2.4 Bounds on the Cardinality and Minimum Distance

where n is the length of a code, k is its dimension and d is its minimum distance. The
code size qk is then bounded from above as follows:

qk ≤ qn−d+1. (2.26)

Codes satisfying (2.25) with equality are referred to maximum distance separable
(MDS) codes. It is known that MDS codes exist for any choices of length n and
dimension k, but only if the field size is large enough, generalized Reed–Solomon
(GRS) [MS77, Chapter 10] codes are MDS for any prime q ≥ n− 1.

We do not consider in this work q ≥ n−1 as our code constructions (see Chapter 4)
are for linear codes with relatively small alphabet sizes, i.e., q < n. The reason
is that we design coding algorithms for memories of a vast number of n cells with
limited programmable q levels. Nevertheless, MDS codes are essential in our study for
fully comprehension and comparisons (see [Sol74]) and since their subfield subcodes
(regarding Remark 2.2), e.g., BCH codes (cf. Section 2.3.6) with q < n or alternant
codes [MS77, Chapter 12.2], are explicit code families that can be used in our code
constructions in this dissertation.

Many other bounds also consider the field size q in their calculations. Among the
best-known bounds are Griesmer (Section 2.4.2), Ball–Blokhuis (Section 2.4.3), Ham-
ming (Section 2.4.4), and Gilbert–Varshamov (Section 2.4.5). Other limits like Bas-
salygo, Linear Programming, Johnson and Plotkin are not stated in this work, but for
the interested reader, we refer to [Bas65], [MS77, Chapter 17] and [Rot06, Chapter 4].

2.4.2 The Griesmer Bound

The Griesmer bound [Gri60] states the length of the shortest linear code over Fq

of dimension k and minimum distance d that increases the right-hand side of the
inequality n ≥ d + k − 1 (the Singleton bound in (2.25)). The Griesmer bound is
stated as the following.

Theorem 2.4 (Griesmer Bound [MS77, Thereom 23]). Let nq(k > 1, d) denote the
minimum codeword length required for a linear code over Fq of dimension k > 1 and
minimum distance d. Then it holds that

nq(k > 1, d) ≥ d + nq(k − 1,
⌈

d

q

⌉
), (2.27)

where nq(k− 1,
⌈

d/q

⌉
) denotes the next possible shortest length for a liner code over Fq

of dimension k − 1 and minimum distance
⌈

d/q

⌉
.

27

2 Preliminaries

By (2.27), recursively taking 0, 1, . . . , k − 1 we obtain

nq(k > 1, d) ≥
k−1∑
i=0

⌈
d

qi

⌉
. (2.28)

As the Griesmer bound relates to the Singleton bound, it is also an upper bound on
the size and the minimum distance of any linear code. The Griesmer bound is also
an improvement on the Hamming bound (described in Section 2.4.4) on the minimal
required redundancy, i.e., n− k symbols.

We shall compare in Chapter 6 our formulated bounds to the Griesmer bound for
codes consisting of a codeword of weight n and dimension k > 1.

2.4.3 The Ball–Blokhuis Bound
Another lower bound on the length n of a linear code of dimension k and minimum
distance d is the Ball–Blokhuis bound. In fact, it bounds the maximum weight of a
codeword as follow.

Theorem 2.5 (Ball–Blokhuis Bound [BB13, Theorem 6.1]). Let C over Fp for prime
p be a linear code of length n, dimension k, minimum distance d. If C contains a
codeword of weight n, then

n ≥ d

(p− 1) + d + θ, (2.29)

where θ ∈ {0, 1, . . . , k − 2} is maximal while the following holds:(
n− d

θ

)
≡ 0 mod pk−1−θ.

The maximum weight of a codeword c ∈ C over Fp following from (2.29) is then

max
c∈C

wt(c) ≤ (n− d)p− θ(p− 1).

To establish a connection between (2.29) and the Griesmer bound from (2.28) for
q = pµ with µ = 1, we rewrite d = ∑k−2

i=a dip
i < pk−1, da ̸= 0. Then we subtract the

right-hand side of (2.28) from the right-hand side of (2.29) to obtain

d

(p− 1) + d + θ −
k−1∑
i=0

⌈
d

pi

⌉
=

(∑k−2
i=a di

)
(p− 1) + θ + 1 + a− k. (2.30)

Since θ depends on k and n − d and not directly on d, (2.30) gives either a positive
result, which is an improvement on the Griesmer bound, or a negative outcome which
is not [BB13, Section 2, page 577]. It is important to emphasize that the Griesmer

28

2.4 Bounds on the Cardinality and Minimum Distance

bound is valid for all linear codes over Fq, whereas the Ball–Blokhuis from (2.29) is
only valid for linear codes over a prime field that contain an n-weight codeword, e.g.,
the all-one word.

We shall use Ball–Blokhuis bound in Chapter 6 to compare our derived bounds for
codes having a codeword of weight n.

2.4.4 The Sphere-packing (Hamming) Bound
The sphere-packing bound, or well-known as the Hamming bound [Ham50], packs
spheres around each codeword to consider the size of a code. A sphere of radius r in
Fn

q is a set of codewords in Fn
q at Hamming distance r from a fixed codeword in Fn

q .
The union of spheres with radii up to r defines a Hamming ball. Let Volq(n, r) denote
the volume of a Hamming ball with radius r, then

Volq(n, r) =
r∑

j=0

(
n

j

)
(q − 1)j. (2.31)

The sphere-packing bound is then expressed in Theorem 2.6, and it is an upper
bound for linear codes.
Theorem 2.6 (q-ary sphere-packing bound [Rot06, Theorem 4.3]). For any [n, k, d]
code over Fq:

qk · Volq
(

n,
⌊d− 1

2
⌋)
≤ qn. (2.32)

The radius r = ⌊d−1
2 ⌋ assures unique decoding as at most one codeword is at most

⌊d−1
2 ⌋ apart from the received word. Codes attaining the sphere-packing bound in

(2.32) with equality are named perfect codes, e.g., RP and SPC in Section 2.3.5. Perfect
codes are well studied and listed in the coding theory books, e.g., [Rot06, page 96].

We shall compare our developed sphere-packing-type bound in Chapter 6 to the usual
sphere-packing bound given in (2.32), which we name "only errors" in Figure 6.1.

2.4.5 The Gilbert–Varshamov Bound
The Singleton and the sphere-packing limits provide necessary conditions on the pa-
rameters of codes. In contrast, the following theorem offers a sufficient prerequisite
for the existence of a linear code with the provided parameters.
Theorem 2.7 (q-ary Gilbert–Varshamov Bound [Rot06, Theorem 4.4]). Let Fq be a
finite field of size q, and let n, k, and d be positive integers such that

qk · Volq(n− 1, d− 2) < qn. (2.33)

Then the existence of a linear code [n, k] over Fq with minimum distance at least d is
guaranteed.

29

2 Preliminaries

The q-ary Gilbert–Varshamov bound, in abbreviation q-ary GV bound, is a lower
bound on linear codes for specific parameters n, k, d, and q.

We employ the q-ary GV bound techniques to show our formulated GV-like bounds
in Chapter 6 with additional properties. In practical, we also compare to the (q − 1)-
ary GV bound. For short, we occasionally use "GV bound" instead "q-ary GV bound"
in the rest of this thesis.

2.4.6 Asymptotic Bounds
All the previous boundaries have their corresponding asymptotic versions. Let [n, k, d]q
be a linear code denoted by C whose size M = qk. The relative minimum distance,
denoted by δ, of C is its minimum distance d over its length n such that δ = d/n for
n heads to infinity, i.e., n → ∞. The relation between δ and the rate R = logq M/n

describes the asymptotic behavior of the code C. We direct the interested readers
to [Rot06, Chapter 4, Section 4.5] and [MS77, Chapter 17, Section 7] to explore the
aforementioned bounds (plus other limits) in their asymptotic expressions. However,
we state the asymptotic GV bound in the following section for particular significance
since we will use it to derive and compare our asymptotic GV-like bounds in Chapter 6.

Asymptotic Version of the q-ary Gilbert–Varshamov Bound

To introduce the asymptotic version of the q-ary Gilbert–Varshamov bound stated in
(2.33), we recall the following lemma and its proof that have been stated in many
references including [Rot06, page 105] and [GRS19, Proposition 3.3.1] to estimate the
volume of a Hamming ball employing the q-ary entropy function.

Lemma 2.2 (Hamming Ball Estimation). For positive integers n, q ≥ 2 and real δ,
0 ≤ δ ≤ 1− 1

q
,

Volq(n, δn) ≤ qhq(δ)n. (2.34)

Proof. It is immediate for r = 0. Now for r > 0, dividing both sides in (2.34) by qhq(δ)n

and solving the left-hand side is as follows,

q−hq(δ)n · Volq(n, r) = δr(1− δ)n−r(q − 1)−r ·
r∑

i=0

(
n

i

)
(q − 1)i

δ≤1− 1
q

≤ δr(1− δ)n−r(q − 1)−r ·
n∑

i=0

(
n

i

)
(q − 1)i

(
δ

(1− δ)(q − 1)

)i−r

=
n∑

i=0

(
n

i

)
δi(1− δ)n−i

= (δ + (1− δ))n = 1,

therefore, Volq(n, δn) ≤ qhq(δ)n, which is the claim.

30

2.5 Polyalphabetic Codes

The asymptotic version of the q-ary Gilbert–Varshamov boundary of linear codes is
presented in the next theorem.

Theorem 2.8 (Asymptotic q-ary GV Bound [Rot06, Theorem 4.10]). Let n and nR
be positive integers, Fq be a finite field, and δ be a real in (0, 1− 1/q] that fulfills

R ≤ 1− hq(δ).

Then a linear code [n, nR,≥ δn] over Fq exists.

Proof. Considering Volq(n, ⌈δn⌉) ≤ qn(1−R) in Theorem 2.7 proves the existence of
[n, nR,≥ δn] code over Fq. Then it follows from Lemma 2.2.

So far, all the prior bounds are for codes over a single alphabet, i.e., the alphabet q.
In the sequential sections, we introduce two-upper bounds versions for polyalphabetic
codes whose described next.

2.5 Polyalphabetic Codes
Classical linear codes over finite (extension) fields (cf. Section 2.3) are from a single
alphabet, i.e., alphabet q; thereby, they are discriminated as monoalphabetic codes.
Any codeword of these codes is of components (coefficients in the polynomial repre-
sentation) from the field Fq of size q. However, in realistic applications, the symbols
of a codeword could be from multiple alphabet sizes. Applications like orthogonal-
frequency-division multiplexing (OFDM) transmission and memory with partially de-
fective positions (described in Section 3.4.3) motivate considering error-correcting
codes with different alphabets for every coordinate of a codeword. In these appli-
cations, perhaps through a periodic sampling routine, both sender and receiver know
which coordinates have smaller alphabet sizes. Sidorenko et al. [Sid+05] define these
codes as polyalphabetic block codes. Several publications [HS71; EG93; BHOS98; BG04]
have already been written about polyalphabetic (or mixed-alphabetic) codes. The work
in [Sid+05] describes these codes over arbitrary alphabet sizes and do not assume any
algebraic structure. Therefore, it provides a generalization compared to other works.
We redefine the polyalphabetic codes as follows.

Definition 2.9 (Polyalphabetic Codes). Let Cpol be a code that consists of a set of
codewords of finite length n such that every symbol of a codeword at position i for
i = 0, 1, . . . , n− 1 belongs its own alphabet qi. Then

Cpol := {c | c = (c0, c1, . . . , cn−1), ci ∈ [qi]}

is a polyalphabetic (or mixed-alphabetic) block code, where q0, q1, . . . , qn−1 are alphabets
of (possibly) different sizes.

31

2 Preliminaries

Proposition 2.2 (Properties of Polyalphabetic Codes [Sid+05]). Let S be a space that
has size |S|, then

|S| :=
n−1∏
i=0

qi.

Cpol is defined as a subset of S such that Cpol ⊆ S. The code Cpol has size | Cpol | and of
rate

R = log | Cpol |
log |S| .

For any two codewords c1, c2 ∈ Cpol, the minimum Hamming distance is given by

d = min
c1,c2∈Cpol

c1 ̸=c2

dH(c1, c2).

Definition 2.9 does not restrict the alphabets q0, q1, . . . , qn−1 to be prime or power
of prime.

2.5.1 Upper bounds on Polyalphabetic Codes
We have defined the mixed-alphabetic codes in Definition 2.9 and showed their propri-
eties in Proposition 2.2. Next, we exhibit the upper bounds on these codes since they
are the cornerstone for our proposed upper bounds in Section 6.2. For more bounds
on polyalphabetic codes, we refer to Sidorenko et al. [Sid+05, Theorem 4], Perkins
et al. [PSS06], and our recent results in [YAPW23] that are briefly summarized in
Section 6.4 in Chapter 6.

The Singleton-type Bound on Polyalphabetic Codes

The generalized of the Singleton bound (described in Section 2.4.1) corresponding to
mixed-alphabetic codes is given in the theorem below.

Theorem 2.9 (Singleton-type Bound on Polyalphabetic Codes [Sid+05, Theorem 2]).
Let code Cpol be a polyalphabetic code as defined in Definition 2.9 with properties in
Proposition 2.2. The size of the code Cpol with distance d is bounded from above by

|Cpol| ≤
n−d+1∏

i=1
qi. (2.35)

Proof. The proof goes as follows. Assume we obtain a new code, denoted by C ′
pol, by

shortening the code Cpol in at least d−1 coordinates. Shortening a code by ℓ locations,
i.e., in classical monoalphabetic codes (presented in Section 2.3), reduces the distance
of a code by at most ℓ (see, e.g., [MS77, page 29]). A similar argument applies to

32

2.5 Polyalphabetic Codes

C ′
pol, so its distance becomes at least 1. In other words, code C ′

pol codewords of length
n− (d− 1) should pairwise differ; and therefore,

|Cpol| = |C ′
pol| ≤

∣∣∣ [q1]× · · · × [qn−d+1]
∣∣∣ =

n−d+1∏
i=1

qi.

Theorem 2.9 and its proof will directly contribute in our proof of Corollary 6.1,
located in Chapter 6.

The Sphere-packing-type Bound on Polyalphabetic Codes

The authors in [Sid+05, Theorem 3] also developed a sphere-packing-type upper bound
based on a simple expression for sphere size with an exponential number of terms.

As for the classical Hamming bound (see Section 2.4.4 and (2.31)) for single-alphabetic
codes, the number of words in a poly-alphabetic code at Hamming distance r from a
given codeword in the center of a sphere defines the volume of this sphere of a given
radius r. Let V (s)

r denote a Hamming sphere of radius r. V (s)
r can be obtained by the

product of each (qi − 1) considering qi for i = 0, 1, . . . , n− 1 and then summation on
all qi appearing in each radius 0, 1, . . . , r, so we get

V
(s)

0 = 1
V (s)

r =
∑

1≤i1<...<ir≤n

(qi1 − 1) · · · (qir − 1). (2.36)

Note that V
(s)

0 = 1 means a fixed codeword at the center of the sphere is measured
with a codeword with r = 0 distance apart, i.e., it is measured with itself.

Then, the volume of a Hamming ball of radius r, denoted by V (b)
r , is a summation

of V (s)
r on all possible values 0, 1, . . . , r as the following:

V (b)
r =

r∑
i=0

V
(s)

i . (2.37)

A sphere-packing-type bound on polyalphabetic codes is stated in the following theo-
rem.

Theorem 2.10 (Sphere-packing-type Bound on Polyalphabetic Codes [Sid+05, The-
orem 3]). Let code Cpol be a polyalphabetic code as defined in Definition 2.9 with prop-
erties in Proposition 2.2. The size of the code Cpol with distance d is bounded from
above by

|Cpol| ≤

 |S|V
(b)

r

, (2.38)

33

2 Preliminaries

where r = ⌊d−1
2 ⌋.

Theorem 2.10 shall be needed to prove Corollary 6.2, provided in Chapter 6.
Our work in this dissertation consider defective memories (Section 3.4.3) that can

only utilize partial alphabet sizes at the defective positions, i.e., a subset of the set [q]
can be stored on these corrupted memory locations. Thus, upper bounds on size of
an arbitrary polyalphabetic code (cf. Section 2.5.1) are used to derive our bounds on
codes for partially stuck memory cells in Corollary 6.1 and Corollary 6.2.

In the next chapter (Chapter 3), we proceed to define and explore the reliabil-
ity problems related to data storage memories. Since these storage units are point-
to-point communication systems with discreet memoryless channel (see Figure 3.1),
subsequently, Chapter 4 proposes coding methods to overcome reliability issues, e.g.,
the partially stuck scenario (cf. Section 3.4.3) and substitution errors (e.g., cf. Sec-
tion 3.3.5).

34

3
Memories with Defects and Errors

3.1 Introduction

We are in the era of data! The explosion of data has derived the need for storage
solutions, ranging from small units to massive storage systems. In turn, it

led to revolutionary new data devices, e.g., DNA-based storage [SH22] or other ultra-
reliable high-dense units, to compromise the massive growth in data. The dramatic
increment in data usage was estimated to reach 40 Zettabytes1 in 2020 [ZW14]; in
reality, it reached 64.2 Zettabytes, with a forecast that by 2025, it will approach
181 Zettabytes [Sta22]. A key feature of storage media, e.g., non-volatile memories
(NVMs), see Section 3.2, is their longevity as permanent data containers, besides
their availability with affordable costs. In contrast, an immediate issue with NVM
technologies is their unacceptable reliability due to increased cell levels; simultaneously,
the dimensions of the cells were diminished. For instance, contemporary NVMs devices
offer increased storage capacity using denser memory components [DS16].

Typically, storage media can be modeled as a communication system, e.g., a point to
point communication system with a discreet memoryless channel (DMC) depicted in
Figure 3.1. Thus, channel coding principles and error-correcting codes (see Section 2.3
in Chapter 2) can be applied to these memories to ensure reliable communication and
fault-tolerant information storage and processing.

This chapter is organized as follows. Section 3.2 defines the non-volatile memories
and their types, like flash memory and phase-change memories stated in Sections 3.2.1
and 3.2.2, respectively. We see in Section 3.3 why these memories show unreliable
behavior, i.e., they encounter various noise and error types listed in Sections 3.3.1,
3.3.2, 3.3.3, 3.3.4, and 3.3.5. Next, Section 3.4 outlines some coding-based solutions
to moderate the reliability problems. This chapter, therefore, defines the origin of the
reliability problems and motivates us to propose solutions, given in Chapter 4.

1One Zettabyte equals 8 · 1021 bits.

36

3.2 Non–Volatile Memories

Encoder + Decoder

e

m c y ĉ

Transmitter DMC P (y|c) Receiver

Figure 3.1: Point-to-point communication system with an additive discrete memoryless
channel (DMC): a transmitter wants to reliably communicate (store) an
information word (or a message) m out of M possible information words at
a rate R over a noisy communication channel (or a noisy storage medium).
The probability P (y|c) is a conditional probability distribution defined for
every pair (c, y) such that it is the probability the receiver obtaining the
estimated version ĉ of the transmitted codeword c (i.e., ĉ = c), given the
received noisy version of the codeword y = c + e, where e is the error
vector.

3.2 Non–Volatile Memories

Non-volatile memories (NVMs) are a type of storage media that retains stored informa-
tion even after the power source is removed [DS16]. NVMs have become the principal
hard-disk drive substitute for a range of storage applications due to faster data access,
lower power consumption, and enhanced physical resilience. The most popular NVM
technologies nowadays are flash memories (cf. Section 3.2.1) and phase-change mem-
ories (PCM) (cf. Section 3.2.2). Two main procedures are performed to store (write)
data and retrieve (read) data from these memories. The writing process splits further
into two sub-tasks: programming and erasing [DS16]. Programming command means
switching a device cell to its higher or lower states except for the erasing state, i.e.,
the zero value, which contributes the most to the unreliability as it forces a cell to
reset to the initial state. These memory units can solely be utilized for their nominal
endurance specification, i.e., until specified program and erase rounds, after which a
memory is judged unusable due to unacceptable reliability. In fact, there is a trade-off
between the storage density and the endurance, i.e., the lifespan drops ten to twenty
times if the cell density doubles [GDS12]. Furthermore, memory reliability rapidly
declines due to several physical limitations as storage capacity increases. Applying
error-correcting techniques is a particularly interesting strategy for overcoming these
physical constraints in NVMs, which is our focus in this thesis.

37

3 Memories with Defects and Errors

3.2.1 Flash Memories
The storage unit called flash memory has been remarkably developed to increase the
storage capacity while keeping the physical dimensions as small as possible. This could
be done using the multi-layering concept of flash (also called pages). Flash memory
cells are arranged in two-dimensional arrays. Cells are identified by their corresponding
bits and are distributed into pages, which are further combined into blocks. Thanks
to the previously mentioned flash architecture, it is known that the programming
mechanism is conducted at the page layer. In opposite, the erase procedure is done
at the block (containing several pages). Therefore, if the value of a cell needs to be
reduced, the block of cells to which it belongs must entirely be wiped and rewritten.
As flash cells manufacture from a control gate transistor and a floating gate separated

Vth

C
el

lD
ist

rib
ut

io
n

11 01 00 10

MLC

Vth

C
el

lD
ist

rib
ut

io
n

111 110100 101001000010011

TLC

Figure 3.2: Multi-level cell (MLC) and triple-level cell (TLC) with information related
to each level. Different cells have various threshold voltage Vth require-
ments, which results in different cells behaviors.

by oxide layers, the amount of charge (voltage level) on the floating gate represents the
stored data. Electrons are programmed to and erased from the floating gate through
the oxide layer to control the voltage levels (i.e., capturing and releasing phenomena
in oxide traps) [WWCW16].

Four measures are commonly used to assess the performance of these storage sys-
tems: longevity, latency, throughput, and reliability. Longevity is the period of time
between the initial storage of data and the point at which it can no longer be recovered.
Latency is when a system must finish an action after receiving a command to obtain
or store data. Throughput measures how much data the system can typically store
and retrieve in a predetermined time frame. Reliability is determined by the likelihood
that data restored from the system differs from the data initially saved. Reliably stor-
ing and retrieving information receive much consideration in these long-term storage
devices, which is our focus in this work.

The common types used in the literature to investigate the improvement in the reli-
ability and capacity of these storage units are multi-level cell MLC flash [WWCW16],
which contains four possible writing levels, namely {0, 1, 2, 3} or their binary repre-
sentation {00, 01, 10, 11}, and triple-level cell TLC of eight levels {0, 1, · · · , 7}. In

38

3.2 Non–Volatile Memories

principle, each multi-level cell holds one of the q levels and can be considered as a
symbol over a discrete alphabet of size q. The lowest level generally refers to the en-
tirely erased state, while the highest corresponds to the maximally programmed phase.
Dense flash of sixteen levels is also available [GSD14]. Figure 3.2 illustrates MLC and
TLC devices with distribution associated with different cell levels. Apparently, from
this figure, the more levels represented in a cell, the lower the device’s reliability as
the neighboring distributions contour more overlaps.

Since a flash unit is, in practice, a point-to-point communication system with a
discrete memoryless channel (see Figure 3.1), the reliability issues could be resolved
in the channel codes of flash program/erase (or more generally write/read) channels
[WWCW16]. Reducing program/erase (P/E) rounds, specifically delaying or pre-
venting a few erase states, is one direct resolution to which advanced tailored error-
correction code schemes could apply. We outline some of these coding-based methods
in Sections 3.4.1, 3.4.2, and 3.4.3. Then we provide Chapter 4, which gives our con-
tribution in this direction by proposing coding schemes to prevent the erasing state,
i.e., we store codewords with nonzero components in the unreliable cells.

3.2.2 Phase-Change Memories

One other excellent NVM device is a phase-change memory (PCM) technology. Indi-
vidual cells store digital information via a physical cell state, similar to flash memories.
PCM cells have two potential states; an amorphous and a crystalline state; in each,
one bit can be stored. The crystalline state can be further programmed to partially
states, then multiple bits per cell can be stored [Bur+10].

To program a PCM cell to a desired new value, a series of actions referred to as
RESET (for erasing) and SET (for programming) must consecutively be conducted.
The maximum number of permitted RESET procedures is constrained, just like with
flash. The RESET commands a cell to return to the initial amorphous state (the zero
state) by applying a significant temperature. The SET operation sets this cell to the
desired crystalline value using a more moderate temperature. These cells’ cooling and
heating processes occasionally cause failures in switching their states. Failure may
take place in a position in one of the extreme states or the partially programmable
states of crystalline in multi-level PCM cells. Thus, PCM cells may become defective
(also called stuck) [GPB09; Hwa+05; Che+22; Pir+04], i.e., cells can only hold a single
phase [GPB09; Pir+04].

Chapter 4 provides code constructions appropriate to treat these defective cells and
any substitution errors that may arise during the programming/erasing or reading
mechanisms.

39

3 Memories with Defects and Errors

3.3 Channel Model Additive Noise
Unreliability in non-volatile memories (NVMs) evolves thanks to various noise and
error types (see Sections 3.3.1, 3.3.2, 3.3.3, 3.3.4, and 3.3.5). According to the amount
of charge written into and then removed from the memory cell, reliability deteriorates
over time. The term "wear-out" refers to this degradation, which may be considered a
time-varying noise whose variance rises with the number of electrons pushed into and
out of the floating gate, e.g., in flash devices. It can be dealt with on various levels: at
the device level, three-dimensional cell architectures increase durability [CS11; PBK14;
Im+15]; or at the system level, channel codes like BCH [CZW08; CKCH14; KH14]
and LDPC [MK09; Zha+13; ZPJ10; Wan+14] codes add redundancy to safeguard the
stored data.

This thesis focuses on the latter, in which our code constructions in Chapter 4 lie.

3.3.1 Programming Noise
The programming noise denoted by np [CWW14; WCW15; TTN96; Com+07] is
treated as a Gaussian noise for each level such that the noise variance of the pro-
grammed states is lower than that of the erased state. Thus, assuming xi is the
intended i-th voltage level of a cell and the parameters σp and σe are the standard
deviations from the value xi, the noise variance of the programmed states for i > 0 is
then given as the PDF (probability density function) by

fnp(np|xi) = 1
σp

√
2π

exp
− 1

2

(
xi

σp

)2
,

and for the erased state for i = 0 is represented as

fnp(np|xi) = 1
σe

√
2π

exp
− 1

2

(
xi

σe

)2
,

where σe > σp. For MLC and TLC storage media, the zero level represents the erased
state [WWCW16]. The zero subscripts must be avoided in the output vector before
storing it in the memory to prevent the need to erase the current data and avoid the
most prominent contribution of the programming noise (as σe > σp). Hence, and as
later emphasized in Section 3.4.3, the case of partially stuck at-1 (equivalently saying
0 is not allowed) is of a special consideration.

3.3.2 Wear-Out Noise
In NVMs, capturing and releasing charges during programming and erasing leads to
wear-out in the form of charge trapping in the oxide and interface states [CWW14;

40

3.3 Channel Model Additive Noise

WCW15; ORS86; MC+09], which is a form of permanent damage. The trap (the stuck-
at; see Section 3.4.3) prevents a cell from changing its value, despite new charges being
injected or removed from this cell. This noise figure can be modeled as a positive-side
exponential [WWCW16, Section A.3], a negative-side exponential, or a double-sided
exponential (Laplace) distribution [CWW14; PPMP14]. Letting nw be the wear-out
noise. The PDF (for the positive-side exponential) for each level is then expressed as

fnw(nw) =


1
λ

exp(−nw

λ
) if nw ≥ 0

0 if nw < 0
,

where λ denotes the wear-out decay constant that characterizes the slope of the distri-
bution (cf. Figure 3.2 showing the standard distribution), and λ grows proportionally
with the number of program/erase rounds.

3.3.3 Retention Noise
Retention noise denoted by nr is another type of noise disturbance developing re-
liability issues that result from trapping recovery and charge (electron) detrapping
[Mie+06; Yan+06; LCPK03; CWW14; WCW15; Mie+04; Don+12]. It models the
threshold voltage integrity degradation due to charge leakage after a charge is written.
It can approximately be expressed as Gaussian random variable with PDF as follows.

fnr(nr|x) = 1
σr

√
2π

exp
− 1

2

(
x− µr

σr

)2
,

where µr denotes the mean of the distribution and σr denotes the nominal deviation
from the value x, where x is the cell voltage affected by the charge leakage. Both µr

and σr depend on the required threshold voltage, retention time, and the number of
(P/E) cycles.

3.3.4 Cell-to-cell Interference
Usually, any memory cell suffers writing or reading errors. One of the errors related
to the writing process is inter-cell interference [Don+12; DLZ10; SC19a]. Writing on
memory cells requires increasing or decreasing their corresponding voltage values to
write the desired q-ary levels. This triggers a phenomenon, called inter-cell interference
(ICI), that causes magnitude-1 (Mag-1) or its asymmetric version Amag-1 errors. In
non-volatile memories like flash, Mag-1 defines transitions of "one level" upward or
downward from the correct symbol, and Amag-1 describes "one level" changeovers in
the upward direction only [SC19a]. For any cell-i, this process could alter the adjacent
cells, e.g., cell-i− 1 and cell-i + 1 by inducing their instantaneous voltage levels such
that they might have higher or lower magnitudes, as shown in Figure 3.3.

41

3 Memories with Defects and Errors

2

1
0

2

1
0

2

1
0

cel
l-0

cel
l-2

cel
l-1

writing cell-1 = 2
2

1
0

2

1
0

2

1
0

cel
l-0

cel
l-2

cel
l-1

ICI error

Figure 3.3: Illustration of inter-cell interference in non-volatile memories. Writing on
cell-1 induces the neighboring cells by altering their prior voltage levels.
Due to writing the value 2 to cell-1, cell-0 shows ICI (Mag-1) error as its
level decreased from 1 to 0. As a similar consequence, cell-2 suffers Mag-1
or Amag-1 corruption as its value incremented from 0 to 1.

3.3.5 Programming Errors
Programming error are the dominant cause of unreliability in scaled NVMs devices
when they are cycled excessively [PPMP14; Hel+14]. It is the error in which a cell
appears to have been programmed to a different state than the intended one. Such
events may result from an erase failure or the two-step programming process frequently
employed in MLC flash storage.

Assuming no additional noise components and that the original data is distributed
uniformly at random (i.e., each level is equally likely), programming errors can raise
some write thresholds voltages to higher levels, making them equally unlikely. Thus,
it alters the distribution of the stored data. To model the programming error, the
probability mass function PMF can be used. For example, for each level lx ∈ {0, 1, 2, 3}
in MLC devices, the conditional probability of actually writing y for level ly is

3∑
ly=0

Plx,ly = 1,

where Plx,ly = P (Ly = ly|Lx = lx).
Endurance enhancement may be achieved in these memories if such programming

errors have been prevented, e.g., by error-correcting (cf. Section 2.3) and defects-
masking (cf. Section 3.4.3) codes, as proposed in Chapter 4.

3.4 Coding Methods for Non–Volatile Memories
Before we command a new write, a read process needs to be applied earlier to deter-
mine the instantaneous cell status, then decide upon the new data while writing. For

42

3.4 Coding Methods for Non–Volatile Memories

example, let a cell have two bits (LSB and MSB2) with values "1" and "0", respectively
(e.g., both bits represent the integer value 2 ∈ [4] considering MLC cell). Program-
ming them to new values "1" and "1" (equivalently writing the integer value 3 ∈ [4]) in
the recent write requires knowing that the MSB currently has "0" and the program-
ming command only needs to set it to "1". The LSB, on the other hand, does not
change. The programming process could then successfully present a new data without
committing an erasing task; thereby, solutions like in Section 3.4.1, Section 3.4.2, and
Section 3.4.3 are emerged. In these sections we outline some coding-based methods
to cope with the reliability concerns, i.e., reducing the number of program and erase
(P/E) cycles by avoiding unnecessary erase states (equivalently, returning back to the
zero value is not needed).

3.4.1 Write Once Memory
Write once memory (WOM) codes [RS82; Jia07; Yaa+12; GD15; SC19b] provide one
approach to reduce the number of P/E cycles required to store information by per-
mitting multiple writes before an erase cycle is needed. As a consequence, it delays
the deterioration and results in higher device reliability. Solomon et al. in [SC19b]
combine WOM codes and error-correction codes by concatenating codes with usual dis-
turbance due to noise (see Sections 3.3.1, 3.3.2 and 3.3.3) or inter-cells interference (cf.
Section 3.3.4) that causes substitution errors. WOM concept (as a part of a channel)
converts many errors to erasures as known correcting erasures (check Section 2.3.2) is
easier and more tempting than correcting errors (explained in Section 2.3.3).

3.4.2 Rank Modulation
Another way to defer or protect against the wear-out process in NVMs is rank mod-
ulation [JMSB08; JSB08; MBZ13; QJS13]. Rank modulation uses the relative value
(or ordering) of the cell charge levels instead of the absolute (in contrast; see Sec-
tion 3.4.3 and Remark A.3) value to retain information. The rank of a cell indicates
the relative position of its own charge level such that the ranks of n cells influence an
ordered set of {1, 2, . . . , n}. Thus, the programming process starts with the lowest-
ranked cells, followed by the next lowest-ranked ones, until the highest-ranked cells.
As a result, adding charge to reorder the cells correctly makes it possible to rewrite a
block of cells without erasing procedure. Jiang et al. [JSB08] studied the properties
of error correction in rank modulation codes to eliminate the need for discrete cell
levels and to overcome overshoot3 errors and asymmetric errors (e.g., Amag-1 error;
see Section 3.3.4).

2MLC devices have two bits only in each cell to represent the data, namely the least significant bit
(LSB) and the most significant bit (MSB) in the lower and upper pages, respectively. On the
other hand, TLC memories use three bits per cell, LSB, CSB, and MSB, where CSB stands for
the center significant bit [DS16, Chapter 3].

43

3 Memories with Defects and Errors

The authors in [JMSB08] also employ the rank modulation and take a single cell
of the ordered set of n cells and make it the top-charged cell (i.e., choosing an upper
charging limit) to avoid charge over-injection3 during programming processes. Sim-
ilarly, a block deflation4 might be applied. Thus, the relative cells’ values will be
preserved as they are scaled by the same constant, adding or subtracting. As a result,
the designated erase step could be eliminated.

3.4.3 Masking Cells

In NVMs like PCMs, as mentioned in Section 3.2.2, cells might fail to switch their
states due to heating and cooling operations while erasing or programming them,
thereby becoming defective. If they are completely unable to change their values, i.e.,
among q possible values (neither upward nor downward), then these cells are fully
stuck (see Definition 3.1); in short, we refer to them as stuck memory cells (SMC).
Otherwise, cells might be unable to utilize one or more states and can only program
partial levels. Thus, they are termed partially stuck memory cells (PSMC) (see also
Definition 3.2). We interchangeably use the words "defective" and "stuck" cells in this
dissertation.

Corresponding to the two steps, write (of sub-tasks program and erase) and read,
for example, in MLC (see Section 3.2.1), the erase state is considered as the zero level,
among the four possible writing levels. Note that a partially defective cell at level 0 is
a non-defective cell that can store any of the q levels, and a partially defective at level
q− 1 is a fully defective cell. Hence, avoiding the zero value in the output vector from
an encoder of PSMC means preventing the need for a new erase command. Therefore,
partially stuck at 1, equivalent to disregarding the 0 value in the output vector, is of
special importance and regarded separately in Chapter 4.

Works like [Hee83] and [WY16], employ masking techniques using error-correcting
codes to overcome these erroneous cells. "Masking" means selecting a word whose
entries correspond to writable levels in the (partially) stuck positions. That said, the
authors in [WY16], for example, ceased to be able to correct any other error types
(apart from the partially stuck-at error) that might arise from the prior mentioned
noise figures and error types. On the other hand, Heegard in [Hee83] proposed coding
schemes with considerably larger check symbols (i.e., at least the number of stuck-at
cells) to overwhelm the defects and other appearing errors, utilizing partitioned cyclic
codes as discussed in Definition 2.6.

3An overshooting error occurs when programming cells, i.e., injecting undesired charges in a cell over
its predefined doable programmable levels (correspondingly, over its predefined voltage thresh-
olds).

4A block deflation is a process in which there is a possibility of decreasing all the levels in a block
of cells by a constant amount of charge no exceeding the lowest allowed prescribed charge level
(i.e., a reverse of taking a top-charged cell) [JSB08].

44

3.4 Coding Methods for Non–Volatile Memories

Defective (Stuck) Memory Cells SMC

Traditional coding for memory with defects originated in [KT74] that later initiated
a series of publications [TGKO75; Tsy75b; Tsy75a; Tsy77; BS77; LKD78; KKY78;
Hee83; Kuz85; Che85; BV87; Dum87; Dum89; Dum90] under different facets. We
define the fully stuck memory cells as the following.

Definition 3.1 (Stuck Memory Cells SMC). A cell is called defective (stuck-at level
s), if it can only store the value s.

Partially Defective (Stuck) Memory Cells PSMC

The more flexible and relatively common case is the partially stuck memory cells (refer
also to the beginning of Section 3.4.3). We explicitly state the following definition for
partially stuck memory cells.

Definition 3.2 (Partially Stuck Memory Cells PSMC). A cell is called partially defect
(partially-stuck-at level s), if it can only store values which are at least s.

Figure 3.4 depicts the general idea of reliable and (partially) defective memory cells.
It illustrates two different cell level representations: Representation 1 forms the binary
extension field F24 and Representation 2 forms the set of integers modulo q = 4, e.g.,
Z/4Z (see Section 2.1).

Notice that it is not in our concern which (exact) one of the former noise/error types
(cf. Section 3.3.1, Section 3.3.2, Section 3.3.3, Section 3.3.4, and Section 3.3.5) causes
the partially stuck situation in a cell or imposes substitution errors. However, we have
explained how these noise and error figures result in unreliability and pose errors on
NVMs, to which Chapter 4 provides coding solutions.

Our suggested coding methods (see Chapter 4) that utilize the partial levels of the
partially defective cells have the benefit of requiring fewer parity symbols than naively
carrying the information about the positions of the faulty cells to the decoder, thereby
providing an advantage over conventional coding approaches, e.g., correcting them as
erasures (cf. Section 2.3.2 and Section 4.3).

3.4.4 Unreachable Memory Cells UMC
Unreachable memory cell restriction is seen as a dual problem for partially stuck
memory cells PSMC (defined in Section 3.4.3) [GSD14; WY16]. Regarding PSMC,
Figure 3.4 shows that cells cannot use levels from below as they are partially stuck
above them. In the previous regard, a cell is said to be unreachable at a level (from
above) wherever it is allowed to store at most that level. For example, a cell is un-
reachable at the q−2 level (assuming q programmable alphabets), thereby permissibly
programming it until reaching its q − 2 value, see Definition 3.3. Figure 3.5 presents
an MLC memory (defined in Section 3.2.1) with two unreachable cells.

45

3 Memories with Defects and Errors

No value can be stored

The value that cell can store ∈ F22 The value that cell can store ∈ Z/4Z

/Reliable cell stores any value

Level-3 (1 + α)
Level-2 (α)
Level-1 (1)
Level-0 (0)

/ / / / /

R
ep

re
se

nt
at

io
n

1

Values

Cell Levels 0 1 / α 1 + α

0 1 / α 1 + α

Level-3 (3)
Level-2 (2)
Level-1 (1)
Level-0 (0)

/ / / / /

R
ep

re
se

nt
at

io
n

2 0 1 / 2 3 0 1 / 2 3

(A) Reliable Cells (B) Stuck (C) Partially Stuck

Figure 3.4: Illustration of reliable and (partially) defective memory cells. In this fig-
ure, there are n = 5 cells with q = 4 possible levels. The cell levels ∈ F22

are mapped to (0, 1, α or 1 + α) shown in Representation 1 or ∈ Z/4Z are
mapped to (0, 1, 2 or 3) shown in Representation 2. Case (A) illustrates
fully reliable cells which can store any of the four values in both repre-
sentations. In the stuck scenario as shown in case (B), the defective cells
can store only the exact stuck level s. Case (C) is more flexible (partially
defective scenario). Partially stuck cells at level s ≥ 1 can store level s or
higher.

46

3.4 Coding Methods for Non–Volatile Memories

3

2

1
0

3

2

1
0

3

2

1
0

Cell-
0

Cell-
2

Cell-
1

Figure 3.5: A multi-level cell (MLC) device (defined in Section 3.2.1) with two unreach-
able cells where only their lower levels are writable. Cell-0 is reachable at
level 0 only, and Cell-2 is programmable at levels 0 and 1. In contrary,
Cell-1 is a normal cell and reachable at all its four possible values.

Definition 3.3. (Unreachable Memory Cells UMC) A cell is said unreachable at level
s̃, if it can only store values which are at most s̃ value.

Reversely to PSMC, an unreachable cell at level q − 1 is a normal cell that can be
programmed until the (q − 1)-th level, and an unreachable cell at level 0 is a fully
unreachable cell, i.e., it can only store the 0 value (e.g., Cell-0 depicted in Fig. 3.5).
We intentionally notate with s̃ in Definition 3.3 to show the duality corresponding to
s (stated for PSMC in Definition 3.2) that serves our proposed code construction in
Section 4.7.1 of Chapter 4, covering this type of memory.

47

4
Coding Schemes for Memories with
Defects and Errors

Abstract

We present new constructions that are able to mask u partially stuck cells while correct-
ing at the same time t substitution errors. The purpose of "masking" is determining a
word whose entries coincide with writable levels at the (partially) stuck cells. For u > 1
and alphabet size q > 2, our new constructions improve upon the required redundancy
of known constructions for t = 0, and require less redundancy for masking partially
stuck cells than former works required for masking fully stuck cells (which cannot store
any information).
Some work in this chapter is based on our works in [APW19] that has been published in
the 2019 XVI International Symposium "Problems of Redundancy in Information and
Control Systems" (REDUNDANCY), in [APW20] that has been published in the 2020
Algebraic and Combinatorial Coding Theory (ACCT), in [APW21] that has been accepted
in the 12th Annual Non-Volatile Memories Workshop (NVMW 2021), in [APTW23b]
that has been accepted in the 14th Annual Non-Volatile Memories Workshop (NVMW
2023), and in [APTW23a] that is in revision for publication in the journal Designs,
Codes and Cryptography (DCC), 2023.

4.1 Introduction

In Chapter 3, we explored main types of noise and reasons contributing to storage
media’s unreliability. This chapter is to propose new code constructions considering

unreliable (partially defective) memories that also suffer from random errors.
Classical coding for memories with defects (or stuck cells, see Definition 3.1), also

known as defect-correcting codes for memories with defects, dates back to the 1970s,
initiated by Kuznetsov and Tsybakov [KT74]. They proposed binary defect-correcting
codes in finite and asymptotic regimes whose required redundancy is at least the num-
ber of defects. Later works [TGKO75; Tsy75b; Tsy75a; BS77; LKD78; KKY78; Hee83;
Kuz85; Che85; BV87; Dum87; Dum89; Dum90] investigated the problem of defective

48

4.1 Introduction

cells under various aspects: binary and non-binary, only defect-correcting coding and
error-and-defect-correcting coding, and finite and asymptotic length analysis.

In binary defect-correcting coding models, e.g. [Tsy75b; LKD78; KKY78; Che85;
BS77; BV87; Dum87], the authors dealt with masking stuck cells without considering
additional substitution errors. In these studies, it is unclear if the proposed construc-
tions are optimal in terms of their required redundancy. The works [Tsy75a; Hee83;
Kuz85] considered masking stuck memory cells while at the same time correcting po-
tential random errors. In [Hee83], so-called partitioned cyclic code and partitioned
BCH codes were proposed for this task.

The asymptotic model of stuck-cell-masking codes also received considerable atten-
tion in the previously mentioned papers. Moreover, there is work devoted to asymptot-
ically optimal codes for a fixed number of defects [Dum89] or for a number of defects
proportional to the codeword length [Dum90]. The proposed constructions, for ex-
ample [Dum90, Section 4] and its extended version in [Dum90, Section 5] that can
additionally correct substitution errors, show that u check symbols are sufficient for
masking u defects. However, they use codes with a property that is not well studied
in coding theory. Therefore, we do not dwell on [Dum89] and [Dum90], and also our
goal is to obtain code constructions for finite code length n.

The recent work [WY16] considers partially stuck memory cells (cf. Section 3.4.3 and
Figure 3.4.C), and improves upon the redundancy necessary for masking compared to
all prior works for conventional stuck cells (see Section 3.4.3). However, this paper does
not consider error correction in addition to masking. Thus, the authors in [WY16] cap-
ture the influence of one of the reliability issues, e.g., the wear-out noise (Section 3.3.2).
That being said, the encoding algorithms that successfully produce vectors matching
the partial defects might fail to appropriately write these vectors to memories with
defective positions, or the reading process might be unsuccessful [SC19a]. This hap-
pens due to substitution errors caused by inter-cell interference noise (Section 3.3.4) or
other noise/error disturbance (Sections 3.3.1, 3.3.2, 3.3.3, 3.3.5). For instance, the read
voltage threshold for each cell’s level could be distorted, which misleads the writing
process (i.e., in the new write), and raises the programming (writing) error introduced
in Section 3.3.5, a dominant error in flash devices. Hence, code constructions that
overcome the effect of partial defects in the cells and any other channel-added errors
are desirable and are proposed in this chapter.

4.1.1 Contributions and Outline
We regard the problem of combined error correction and masking of partially stuck
memory cells. Compared to the conventional stuck-cell case in [Hee83] as defined in
Section 3.4.3, we reduce the redundancy necessary for masking, similar to the results
in [WY16], and even reduce further compared to [WY16, Construction 5].

If cells are partially stuck at level 1, we can simply use a (q−1)-ary error correcting
code as mentioned in [WY16, Section III]. However, this approach could require too

49

4 Coding Schemes for Memories with Defects and Errors

much redundancy if a cell is partially stuck at different levels rather than 1. For
instance, using (q − s)-ary codes for 2 ≤ s ≤ q − 1 reduces the cardinality of the
code because exempting s out of the available q levels is quite expensive. Further, for
relatively few partially stuck-at-1 cells, even a (q−1)-ary error correcting code is not a
competitor to our constructions (cf. Figure 6.5). Therefore, considering sophisticated
coding schemes is favorable.

The structure of this chapter is as follows. Section 4.2 recalls a regular erasure
pattern’s definition to discriminate from the (partially) stuck-at pattern. Section 4.4
then reformulates the classical defective cells theorem (restated in [WY16, Theorem 1]
and initially provided by [KT74]) for completeness, as our encoding and decoding
schemes in this work employ similar techniques.

Cells are partially stuck at level 1 means the zero values are prohibited (see Fig-
ure 3.4). This situation requires no need to commit to the erasing state (an undesirable
and costly process; see Sections 3.2.1 and 3.2.2) while writing on these cells, i.e., as
explained in Section 3.4. Furthermore, it is observable that the erasing process con-
tributes the most to the reliability concerns [PPMP14].

Therefore, the first part of this study describes (Definition 4.2) and addresses (Sec-
tions 4.5.1 and 4.5.2) the case of being partially stuck at level 1 independently. Sec-
tion 4.5.1 supplies our construction that remedies substitution errors while masking
("masking" is defined in Section 3.4.3) at most q − 1 partially stuck at-1 cells out
of all system cells—followed by a variant version of this construction explicitly using
partitioned cyclic codes (cf. Section 2.3.4 and Definition 2.6). Section 4.5.2 offers a
probabilistic masking method that allows utilizing the memory cells with a particular
probability even if there are more than q − 1 partially stuck cells. It further presents
two other constructions (with few extensions, examples and remarks) to mask more
than q−1 partially stuck at-1 cells and correct errors. Next, Section 4.6 generalizes our
error correction and masking code schemes to any arbitrary partially stuck-at levels.

The penultimate part of this chapter, Section 4.7.1, is dedicated to equivalent codes
for unreachable memory cells (defined in Section 3.4.4) to complete our work regarding
coding for memories with partially defective levels. The last part, Section 4.8, remarks
on the error positions in the case that they overlap with the partially stuck locations
but do not coincide with the partially stuck restriction.

Overall, this thesis provides code constructions for any number of partially stuck
cells at any stuck-at levels while correcting substitution errors in the Hamming metric;
see Table 4.3 for an overview of our constructions and their required redundancies. For
the error-free case, where only masking is necessary, our redundancies coincide with
those from [WY16] or are even smaller.

50

4.2 Regular Erasure Patterns

4.2 Regular Erasure Patterns
Generally, the correctability of an erasure pattern (see Section 2.3.2) must fulfill a
necessary condition: the number of parity symbols must be at least the number of
erasures left in the code truncated in a particular set of locations. The term regular-
ity is used to show the sufficiency of the aforementioned condition that was initially
established by [GHSY12]. In fact, further conditions on the erasure pattern must be
fulfilled such that the pattern is always correctable. For larger topologies like flash
cells (cf. Section 3.2.1), Proposition 2 in [HPYW21] verifies that not only the prior
condition must be satisfied, but also an erasure pattern E ⊂ [n] is correctable-guranteed
if and only if it happens in the parity symbols of a codeword.

4.3 (Partially) Stuck at Patterns
The similarity between regular erasures in the previous section and fully stuck-at pat-
terns (cf. Section 3.4.3) is that storing information is not feasible in both. Regular
erasure patterns happen in the channel and are handled in the decoder with a condi-
tion that they are necessarily occurring in the check symbols, as mentioned earlier in
Section 4.2. On the contrary, the conventional stuck-at-cell scenario could be resolved
in the encoder by masking the defective places anywhere in a given memory using
restricted coordinates of an encoded codeword, given in the following section.

The encoder could avoid the stuck-at positions while writing onto the memory and
let the decoder correct them as an erasure pattern (cf. Section 2.3.2), given that the
decoder is capable of identifying the stuck-at cells as an erasure pattern, e.g., by a read
process. The latter alternative, however, costs considerable redundancy and demands
the stuck-at pattern occurring in a particular set of locations (i.e., they should not
happen in the information set of a code as demonstrated in Section 2.3.2) to be
correctable [HPYW21, Proposition 2].

Furthermore, the cost of treating partially stuck cells like erasures is highly un-
necessary as the memory can still store partial information in the partially stuck-at
positions, which is our interest in this work. For example, codes with a single redun-
dancy symbol can be used [WY16].

Hence, our methods in this chapter rely on the encoder knowing the (partially)
stuck-at pattern to fix them. In contrast, the decoder does not know or care about
them. The decoder’s assignment is to reassemble the message using only the retrieved
codeword (see the decoding principles in Section 2.3.3). Due to the linearity, more
than one codeword can represent the same message to recover from (partially) stuck-at
errors. That is, for any position indexed as partially stuck-at, multiple possible values
(equal or higher than) the corresponding stored values can be applied. Figure 4.1
describes general encoding and decoding schemes for memory with defects.

51

4 Coding Schemes for Memories with Defects and Errors

Legend
m: message vector
w: augmented message vector
ϕ: stuck positions, i ∈ ϕ ⊆ [n]
s: (partially) stuck at levels vector
c: encoder output vector sent (transmitted) to the memory by the write process
y: decoder input vector obtained (received) from the memory by the read process
m̂ retrieved (restored) message vector

m w y

i ∈ ϕ}
{c ∈ Fn

q | ci = si,

s

m̂

encoder memory decoder

××
××
××
×

××
××

××
×

××
××
××
×

××
×
××
××

××
××
××
×

××
×
××
××

(a) Stuck cell case for a memory con-
sists of n cells.

m w y{c ≥ s ⇐⇒ ci ≥ si,

∀i ∈ [n]}

s

m̂

encoder memory decoder

×××
×

×× ××
×
× ××
×

(b) Partially stuck cell case for a
memory consists of n cells.

Figure 4.1: General coding model for memory with defects (cf. Chapter 3). Section 2.1
and Section 2.3 define the legend. Case 4.1a and Case 4.1b illustrate the
stuck memory cells and partially stuck memory cells encoding and decoding
procedures, respectively. The red cross "×" represents the forbidden levels
in the memory.

52

4.4 Construction for Stuck Cell (Without Errors)

4.4 Construction for Stuck Cell (Without Errors)
Typically, codes treating the fully stuck cells (see Section 3.4.3 and Definition 3.1) can
be defined as follows.

Definition 4.1 (Codes for Stuck Memory Cells (n, M)q(ϕ, s) SMC). For s(ϕ) ∈ Σ ⊂
Fn

q and the set of stuck locations ϕ ⊆ [n], a q-ary (ϕ, s)-stuck-at-masking code C of
length n and size M is a coding scheme consisting of a message set M of size M , an
encoder E and a decoder D satisfying:

1. The encoder E is a mapping from M× Σ to Fn
q such that

for each (m, s(ϕ)) ∈M× Σ, E(m, s(ϕ)) = {c ∈ Fn
q | ci = si, i ∈ ϕ},

2. It holds that
D(E(m, s(ϕ))) = m.

Construction 4.1. [WY16, Construction 1] Given s(ϕ) ∈ Σ ⊂ Fn
q , where the set

ϕ ⊆ [n] defines the locations of defective cells. Assume that there is an [n, k, |ϕ|+ 1]q
code C with a systematic (n− k)× n parity-check matrix

H =
[
In−k A(n−k)×k

]
,

where In−k is the (n − k) × (n − k) identity matrix, and A ∈ F(n−k)×k
q . Encoder and

decoder are shown in Algorithm 1 and Algorithm 2.
Theorem 4.1 (Masking Only). The coding scheme in Construction 4.1 is a (ϕ, s)
SMC of length n and cardinality qk which needs n− k redundancy.
Proof. Let | ϕ |= u, the proof is then identical to the proof of [WY16, Theorem 1]
considering one-to-one mapping F : [q] → Fq so operations like addition and multi-
plication on x ∈ [q] are defined as F(x).

It is unknown whether Construction 4.1 is ideal in terms of the realized redundancy
for masking. However, because there are | ϕ | fully defective cells that cannot store
information, the redundancy n− k of such a code must be at least the size of ϕ.

Example 4.1. [WY16, Example 5] confirms that to mask | ϕ |= q = 5, one can use
[30, 22, 6]5 code as the best known code with minimum distance d = |ϕ|+1, which needs
n− k = 30− 22 = 8 check symbols. ▶

The major drawback in SMC schemes is that they necessitate parity symbols at least
the number of stuck-at positions, which is relatively large, e.g., Example 4.1 manifests
to mask only five stuck-at cells, a code with the redundancy of eight symbols is used.

We move now to partially stuck cell constructions that require fewer check symbols
to mask these cells, our focus in this dissertation.

53

4 Coding Schemes for Memories with Defects and Errors

Algorithm 1: Encoding (m; s(ϕ))
Input:

• Message: m = (m0, m1, . . . , mk−1) ∈ Fk
q

• The vector: s(ϕ) ∈ Fn
q

1 Augment {m | w = (0n−k, m) ∈ Fn
q }

2 Find {z ∈ Fn−k
q | y =w + zH , wi = si for i ∈ ϕ}

Output: Codeword y ∈ Fn
q with yi = si for i ∈ ϕ

Algorithm 2: Decoding y

Input:
• Retrieve y ∈ Fn

q

1 ẑ ← (y0, y1, . . . , yn−k−1)
2 ŵ = (ŵ0, ŵ1, · · · , ŵn−1)← (ŷ − ẑ ·H)
3 m̂← (ŵn−k, . . . , ŵn−1)

Output: Message vector m̂ ∈ Fk
q

4.5 Constructions for Partially Stuck Cell (With Errors)

Non-volatile memories are made of a huge number of cells, and in each one, a few pro-
grammable levels are allowed. Therefore, they require channel codes with extremely
long block lengths over a relatively small number of alphabets sizes, e.g., multi-level
cells (MLC) (cf. Section 3.2.1) employ the alphabet q = 22. Hence, our code construc-
tions are over small alphabets, i.e., the code length n is larger than the field size q.
Otherwise, by using, e.g., [Sol74], one could instead mask by a code of length n < q.

We next define codes for the partially stuck cell (see Section 3.4.3 and Definition 3.2).

Definition 4.2 (Codes for Partially Stuck Memory Cells (n, M)q(Σ, t) PSMC). For
Σ ⊂ Fn

q and non-negative integer t, a q-ary (Σ, t)-partially-stuck-at-masking code C
of length n and size M is a coding scheme consisting of a message set M of size M ,
an encoder E and a decoder D satisfying:

1. The encoder E is a mapping from M× Σ to Fn
q such that

for each (m, s) ∈M× Σ, E(m, s) ≥ s,

54

4.5 Constructions for Partially Stuck Cell (With Errors)

2. For each (m, s) ∈M× Σ and each e ∈ Fn
q such that

wt(e) ≤ t and E(m, s) + e ≥ s,

3. It holds that
D(E(m, s) + e) = m.

Definition 4.3 (Special Case of Definition 4.2: (n, M)q(u, 1, t) PSMC). A q-ary
(u, 1, t) PSMC of length n and cardinality M is a q-ary (Σ, t) PSMC of length n
and size M where

Σ =
{

s ∈ {0, 1}n
∣∣∣ wt(s) = | supp(s) | ≤ u

}
.

In this special case, the partially stuck-at condition means that the output of the encoder
is non-zero at each position of the support ϕ of s.

Definitions 4.2 and 4.3 describe error-correcting-and-defects-masking codes that can
handle both partially defective cells and additional channel-added errors. In con-
trast, Definition 4.1 takes into account only the stuck-at cells and conveys codes for a
masking-only scenario.

4.5.1 Constructions for at most q − 1 partially stuck-at-1 Cells
We propose two code constructions over Fq for masking u < q partially stuck-at-1 cells;
one with linear codes using generator matrices in specific forms (cf. Section 2.3) and an
alternate scheme using cyclic codes and polynomials (cf. Definition 2.5, Section 2.1.2,
and Section 2.2.1).

Code Construction (less than q Partially Stuck Cells)

In this section, we present a coding scheme over Fq that can mask up to q − 1 par-
tially stuck cells and additionally can correct errors. We adapt the construction from
[WY16], which allows to mask up to q − 1 partially stuck-at-1 (si = 1 for all i) cells
with only a single redundancy symbol, but cannot correct any substitution errors.

Construction 4.2. Assume that there is an [n, k, d]q code C with a k × n generator
matrix of the form

G =
[
G1
G0

]
=
[
0(k−1)×1 Ik−1 P (k−1)×(n−k)

1 1k−1 1n−k

]
,

where Ik−1 is the (k − 1) × (k − 1) identity matrix, P ∈ F(k−1)×(n−k)
q , and 1ℓ is the

all-one vector of length ℓ. From the code C, a PSMC can be obtained, whose encoder
and decoder are shown in Algorithm 3 and Algorithm 4.

55

4 Coding Schemes for Memories with Defects and Errors

Theorem 4.2. The coding scheme in Construction 4.2 is a (q− 1, 1, ⌊d−1
2 ⌋) PSMC of

length n and cardinality qk−1.

Algorithm 3: Encoding
Input:

• Message: m = (m0, m1, . . . , mk−2) ∈ Fk−1
q

• Positions of partially stuck-at-1 cells: ϕ

1 Compute w = (w1, w2, . . . , wn−1) = m ·G1
2 Find v ∈ Fq \ {wi | i ∈ ϕ}
3 Compute c = w − v ·G0

Output: Codeword c ∈ Fn
q

Algorithm 4: Decoding
Input:

• Retrieve y = c + e , y ∈ Fn
q

1 ĉ← decode y in C
2 v̂ ← first entry of ĉ
3 ŵ = (ŵ0, ŵ1, · · · , ŵn−1)← (ĉ− v̂ ·G0)
4 m̂← (ŵ1, . . . , ŵk−1)

Output: Message vector m̂ ∈ Fk−1
q

Proof. To mask the partially stuck-at-1 positions, the codeword has to fulfill:

ci ≥ 1, for all i ∈ ϕ. (4.1)

Since | ϕ | < q, there is at least one value v ∈ Fq such that wi ̸= v, for all i ∈ ϕ.
Thus, ci = (wi − v) ̸= 0 and (4.1) is satisfied.

The decoder (Algorithm 4) gets y, which is c corrupted by at most ⌊d−1
2 ⌋ substitution

errors (cf. Theorem 2.3 in Section 2.3.3). The decoder of C can correct these errors
and obtain c.

Due to the structure of G, the first position of c equals −v. Hence, we can compute
ŵ = w (cf. Algorithm 4) and m̂ = m.

Corollary 4.1. If there is an [n, k, d]q code containing a word of weight n, then there
is a q-ary (q − 1, 1, ⌊d−1

2 ⌋) PSMC of length n and size qk−1.

56

4.5 Constructions for Partially Stuck Cell (With Errors)

To obtain a cyclic code, similar to [Hee83, Theorem 2], we can adapt Algorithms 3
and 4 of Construction 4.2 to directly operate on the generator polynomial of the code,
which may be beneficial in practice. We will present this variant in Construction 4.3.
For instance, any cyclic code whose generator polynomial is a divisor of g0(x) =
1 + x + x2 + · · · + xn−1 contains the all-one codeword. For BCH codes, this is the
case if the defining set of the code does not contain 0. This gives an explicit family of
codes whose parameters, for a specific choice of cyclotomic cosets, can be bounded by
standard bounds on the minimum distance of cyclic codes such as the BCH bound.

Comparison to the Conventional Stuck Cell Scenario

Theorem 4.2 combines [Hee83, Theorem 1] and [WY16, Theorem 4] to provide a code
construction that can mask partially stuck cells and correct errors. The required
redundancy is a single symbol for masking plus the redundancy for the code generated
by the upper part of G, needed for the error correction. In comparison, [Hee83,
Theorem 1] (see also Construction 4.1) requires at least

min{n− k : ∃ [n, k, d]q code with d > u} ≥ u

redundancy symbols to mask u stuck cells, where the inequality follows directly from
the Singleton bound.

In the following, we present Tables 4.1 and 4.2 to compare ternary cyclic codes of
length n = 8 for masking partially stuck cells to mask stuck cells [Hee83], both with
error correction.

The tables display that masking partially stuck cells requires less redundancy than
masking stuck cells, both with and without additional error correction. The reason
is that there is only one forbidden value in each partially stuck-at-1 cell, while there
are q − 1 forbidden values in each stuck-at cell. We provide the following remarks on
Construction 4.2.
Remark 4.1. The special case of Theorem 4.2 with n < q was used in [Sol74] for
constructing a (q−1)-ary error-correcting code from a q-ary Reed-Solomon code, which
can be of interest if q − 1 is not the power of a prime.
Remark 4.2. The code constructions in Theorem 4.2 and 4.3 also work over the ring
of integers modulo q (Z/qZ) in which q is not necessarily a prime power, similar to
the construction for u < q in [WY16].
Remark 4.3. According to [WY16, Construction 3], it is possible to further decrease
the required redundancy for masking u partially stuck-at-1 cells to 1− logq⌊ q

u+1⌋. We
can use the same strategy here. Let z = ⌊(q

u+1)⌋. We choose disjoint sets A1, A2, .., Az

of size u + 1 in Fq. As additional information, the encoder picks j ∈ {1, 2, . . . , z}. In
Step 2 of Algorithm 1, it selects v from Aj. As the decoder acquires v, it can obtain j
as well.

57

4 Coding Schemes for Memories with Defects and Errors

Table 4.1: Ternary Codes for Partially Stuck-at-1 Memory Cell for n = 8

Cardinality Overall redundancy u t Defining set Dc by (2.22)
37 1 2 0 {4}
36 2 2 0 {4}
35 3 2 0 {5, 7}
34 4 2 1 {4, 5, 7}
33 5 2 1 {1, 2, 3, 6}
32 6 2 1 {1, 2, 3, 4, 6}
32 6 2 1 {1, 3, 4, 5, 7}
3 7 2 1 {1, 2, 3, 5, 6, 7}

Table 4.2: Ternary Codes for Stuck-at Memory [Hee83] for n = 8

Cardinality Overall Redundancy u t The defining set Dc by (2.22)
37 1 1 0 {0}
36 2 1 0 {0}
35 3 1 0 {5, 7}
34 4 1 1 {0, 1, 3}
33 5 1 1 {1, 2, 3, 6}
32 6 1 2 {0, 1, 2, 3, 6}
32 6 2 1 {0, 1, 3}
3 7 2 1 {1, 2, 3, 6}

Variant of the Code Construction for less than q Partially Stuck Cells

This section provides an alternative of Construction 4.2 by generalizing the construc-
tion of [Hee83, Theorem 2]. We use the partitioned cyclic codes (see Definition 2.5 and
Definition 2.6) from [Hee83] as basic idea, but we require only a single redundancy
symbol l = 1 for the masking operation similar to [WY16, Theorem 4 and Algorithm
3]. Compared to Construction 4.2, Construction 4.3 directly implies a constructive
strategy for choosing a cyclic code of a certain minimum distance that is directly
applicable for memories with partially stuck cells that encounter substitution errors.

Construction 4.3 (Variant of Construction 4.2). Let u ≤ min{n, q − 1}. Assume
there is an [n, k,≥ 2t + 1]q cyclic code C with a generator polynomial g(x) of degree
< n− k that divides g0(x) := 1 + x + x2 + · · ·+ xn−1. Encoder and decoder are given
in Algorithms 5 and 6.

58

4.5 Constructions for Partially Stuck Cell (With Errors)

Theorem 4.3. If u ≤ min{n, q − 1}, Construction 4.3 provides an (n, M = qk−1)q

(u, 1, t) PSMC with redundancy of n− k + 1 symbols.

Algorithm 5: Encoding
Input:

• Message: m(x) ∈ Fq[x] of degree deg m(x) < k − 1

• Positions of partially stuck cells: ϕ

1 w(x) = w0 + · · ·+ wn−2x
n−2 ← m(x) · g(x)

2 Select v ∈ Fq \ {wi | i ∈ ϕ}.
3 c(x) = w(x)− v · g0(x) mod (xn − 1)

Output: Codeword c(x) ∈ Fq[x] of degree deg c(x) ≤ n− 1

Algorithm 6: Decoding
Input: Retrieve y(x) = c(x) + e(x), where e(x) ∈ Fq[x] of degree deg

e(x) ≤ n− 1 is the error polynomial
1 ĉ(x)← Decode y(x) in the code generated by g(x)
2 m̂(x)← ĉ(x) mod g0(x)

Output: Message m̂(x) ∈ Fq[x] of degree deg m̂(x) < k − 1

Proof. A cyclic code of length n contains the all-one word if and only if its generator
polynomial g(x) divides g0(x) = 1 + x + · · · + xn−1. Thus, Construction 4.3 follows
directly from Theorem 4.2, but with different encoding and decoding algorithms. Al-
gorithm 5 shows the encoding process for the cyclic code construction. Step 1 in
Algorithm 5 calculates w(x) of degree deg w(x) < n− 1. Since u < q, there is at least
one v ∈ Fq such that all coefficients of w(x), wi ∈ Fq, are unequal to v. Therefore,
after Step 3, cn−1 = −v. The requirement for masking, see (4.1) is satisfied for c(x)
since ci = (wi − v) ∈ Fq ̸= 0.

Algorithm 6 decodes the retrieved polynomial y(x). First, decode y(x) in the code
generated by g(x). Second, the algorithm performs the unmasking process to find
m̂(x). We obtain:

ĉ(x) = m̂(x) · g(x)− v · g0(x)

m̂(x) = ŵ(x) mod g0(x)
g(x) = m(x).

59

4 Coding Schemes for Memories with Defects and Errors

Construction 4.3 provides an explicit cyclic construction that can mask u < q cells
and correct t errors (unique decoding as described in Section 2.3.3). If we use a BCH
code in Construction 4.3, we can bound the minimum distance of the code C by the
BCH bound. This is done in Tables 4.1 and 4.2.

Example 4.2. In the error-free case in Construction 4.2 and Construction 4.3, sin-
gle parity-check codes (SPC) over Fq (cf. Section 2.3.5) can directly be applied on a
memory of n cells (cf. Chapter 3) to mask u partially stuck cells (cf. Section 3.4.3)
less than q while storing n− 1 information symbols since it needs only a single symbol
as a redundancy. Table 4.3 exhibits that as the cardinality in the sixth row is qn−1. ▶

4.5.2 Constructions for more than q − 1 partially stuck-at-1 Cells
The masking technique in the previous section only guarantees successful masking up
to a number of q − 1 partially stuck-at-1 cells. In this section, we present techniques
to mask more than q − 1 cells.

Depending on the values of the stored information in the partially stuck positions,
Construction 4.2 may be able to mask more than q − 1 cells. In the following section,
we determine the probability that masking is possible for fixed partially stuck cell
positions and randomly chosen information vectors.

Next, we propose two code constructions for simultaneous masking and error cor-
rection when q ≤ u < n. One is based on the masking-only construction in [WY16,
Construction 4] and the other is based on [WY16, Section VI], which are able to mask
u ≥ q partially stuck positions, but cannot correct any errors. We generalize these
constructions to be able to cope with errors. The latter construction may lead to larger
code dimensions for a given pair (u, t), in a similar fashion as [WY16, Construction 5]
improves upon [WY16, Construction 4]. Further, taking t = 0 it achieves larger codes
sizes than [WY16, Construction 5] if the all-one word is in the code.

Probabilistic Masking

We determine the probability that masking is possible for u ≥ q partially stuck-at 1
cells stuck positions with the code constructions in Theorem 4.2 and Theorem 4.3.
This probabilistic masking approach enables us to use the memory cells with a certain
probability even if there are more than q − 1 partially stuck cells.

Theorem 4.4. Let G be as in Construction 4.2, and let ϕ ⊂ [n] have size u. If
the columns of G indexed by the elements in ϕ are linearly independent, a uniformly
drawn message from Fk−1

q results in a word c with ci ̸= 0 for all i ∈ ϕ with probability

P(q, u) = 1−
∑q−1

i=0 (−1)i
(

q
i

)
(q − i)u

qu
. (4.2)

60

4.5 Constructions for Partially Stuck Cell (With Errors)

Proof. An appropriate value for v in Step 2 in Algorithm 3 cannot be found if and only
if {wi | i ∈ ϕ} = Fq which is true if and only if f : ϕ 7→ Fq defined by fw(i) = wi is a
surjection. As is well-known (see e.g [LW01, Example 10.2], the number of surjections
from a set of size u to a set of size q equals

q−1∑
i=0

(−1)i

(
q

i

)
(q − i)u. (4.3)

As the columns of G are independent, the vector w restricted to ϕ is distributed uni-
formly on Fu

q , and hence a word is not masked with probability equal to the expression
from (4.3) divided by qu.

The following example illustrates that the probability that masking is successful can
be quite large.

Example 4.3. Let q = 3, n = 8, n − k = 0. The probability to mask u = n − 1
partially stuck-at-1 memory cells is P(3, 7) = 0.17. This ratio is 0.77 if u = q and
clearly it is 1 if u < q. ▶

Remark 4.4. The assumption in Theorem 4.4 that the columns of G indexed by the
partially stuck positions are linearly independent is fulfilled for most codes with high
probability if u ≤ k − 1, especially if u ≪ k − 1. For dependent columns, it becomes
harder to count the number of intermediate codewords w that do not cover the entire
alphabet since wi for all i ∈ ϕ is not uniformly distributed over Fu

q .

Code Construction (up to q + d0 − 3 Partially Stuck Cells)

We recall that [WY16, Construction 4] can mask more than q− 1 partially stuck-at-1
cells and it is a generalization of the all-one vector construction [WY16, Theorem 4].
Hence, replacing the 1n vector in Theorem 4.2 by a parity-check matrix as in [WY16,
Construction 4] allows masking of q or more partially stuck-at 1 cells, and correct t
errors (i.e., bounded minimum distance decoding in Section 2.3.3).

Construction 4.4. Suppose that there is an [n, k, d]q code C with a k × n generator
matrix of the following form:

G =
[

G1
H0

]

where H0 ∈ Fl×n
q is a parity-check matrix of an [n, n − l, d0] code C0. From the code

C, a PSMC can be obtained, whose encoder and decoder are shown in Algorithm 7 and
Algorithm 8.

Theorem 4.5. The coding scheme in Construction 4.4 is a (d0+q−3, 1, ⌊d−1
2 ⌋) PSMC

of length n and cardinality qk−l.

61

4 Coding Schemes for Memories with Defects and Errors

Algorithm 7: Encoding
Input:

• Message: m ∈ Fk−l
q

• Positions of partially stuck-at-1 cells: ϕ

1 Compute w = (w1, w2, . . . , wn−1) = m ·G1

2 Find
{

z = (z0, . . . , zl−1) ∈ Fl
q

∣∣∣∣ (w + zH0)i ̸= 0, for all i ∈ ϕ

}
.

3 Compute c = w + z ·H0
Output: Codeword c ∈ Fn

q

Algorithm 8: Decoding
Input: y = c + e ∈ Fn

q

1 ĉ← decode y in the code C
2 Determine m̂ ∈ Fk−l

q and ẑ ∈ Fl
q such that ĉ = m̂G1 + ẑH0.

Output: Message vector m̂ ∈ Fk−l
q

Proof. For the masking part, the proof is a simple modification of [WY16, Theorem 7].
In Section 4.6, we give a full proof of Proposition 4.2, which generalizes Construc-
tion 4.4. The error correction part of the proof follows the proof of Theorem 4.2.

The gain of Theorem 4.5 in the number of partially stuck cells that can be masked
comes at the cost of larger redundancy. However, the redundancy is still smaller than
the redundancy of the construction for masking stuck-at cells and error correction
in [Hee83]. In particular, let C be an [n, k, d ≥ 2t + 1] code containing an [n, l]q
subcode C0 for which C⊥

0 has minimum distance d0. With Theorem 4.5, we obtain
a (d0 + q − 3, 1, ⌊d−1

2 ⌋) PSMC of length n and cardinality qk−l. The construction in
[Hee83] yields a coding scheme with equal cardinality, allowing for masking up to d0−1
fully stuck cells and correcting ⌊d−1

2 ⌋ errors (cf. Theorem 2.3 in Section 2.3.3) since
the minimum distance d1 defined in [Hee83] for the error correction capability of the
code is d in our notation. Hence, exactly q − 2 more cells that are partially-stuck-at
levels 1 than classical stuck cells can be masked.

Example 4.4. We apply Construction 4.4 to mask up to u = 4 partially stuck cells
over F4 and m ∈ F9

4. Let α be a primitive element in F16 (cf. Definition 2.3) and
let C be the [15, 12, 3]4 code with zeros α0 and α1. Let C0 be the [15, 3] subcode of C
be the BCH code with zeros {αi | 0 ≤ i ≤ 14} \ {α5, α6, α9}. As C⊥

0 is equivalent to
the [15, 12, 3]4 code with zeros α5, α6, α9, it has minimum distance d0 = 3. Hence, we
obtain a (4, 1, 1) PSMC code of cardinality 49. ▶

62

4.5 Constructions for Partially Stuck Cell (With Errors)

Code Construction (up to 2µ−1(d0 + 1)− 1 Partially Stuck Cells)

We generalize [WY16, Section VI] to be able to cope with errors. Unlike [WY16,
Section VI] that could be over any prime power q, the following code construction
works over the finite field Fq where q = 2µ in order to describe a 2µ-ary partially stuck
cells code construction. This is because binary sub-field subcodes that are required in
this construction are not linear subspace for codes over any prime power q. We denote
by β0 = 1, β1, . . . , βµ−1 a basis of F2µ over F2. That is, any element a ∈ F2µ can be
uniquely represented as a = ∑µ−1

i=0 aiβi where ai ∈ F2 for all i (see Section 2.2). In
particular, a ∈ F2 if and only if a1 = · · · = aµ−1 = 0. This is a crucial property of F2µ

that we will use in Construction 4.5.

Construction 4.5. Let µ > 1. Suppose G is a k×n generator matrix of an [n, k, d]2µ

code C of the form

G =

H0
G1
x

 (4.4)

where

1. H0 ∈ Fl×n
2 is a parity-check matrix of an [n, n− l, d0]2 code C0,

2. G1 ∈ F(k−l−1)×n
2µ ,

3. x ∈ F1×n
2µ has Hamming weight n.

From the code C, a PSMC can be obtained, whose encoder and decoder are shown in
Algorithm 9 and Algorithm 10.

Theorem 4.6. The coding scheme in Construction 4.5 is a 2µ-ary (2µ−1d0−1, 1, ⌊d−1
2 ⌋)

PSMC of length n and cardinality 2µ(k−l−1)2l(µ−1).

Proof. Let ϕ ⊂ [n] have size u ≤ 2µ−1d0 − 1.
We first show the existence of z from Step 1. For each i ∈ ϕ, we have that xi ̸= 0, so
there are exactly two elements z ∈ F2µ such that (m′ ·H0 + m ·G1)i + zxi ∈ F2. As
a result,

2u = 2|ϕ| =| {(i, z) ∈ ϕ× F2µ | (m′ ·H0 + m ·G1)i + zxi ∈ F2} | .

As u < 2µ−1d0, there is a z ∈ F2µ such that the condition in Step 1 is satisfied.
As H0 is the parity-check matrix of a code with minimum distance d0, any d0 − 1

columns of H0 are independent, so an appropriate γ exists. Now we show that ci ̸= 0
for all i ∈ ϕ. Indeed, if wi ̸∈ F2, then ci = wi + (γH0)i ∈ {wi, wi + 1}, so ci ̸∈ F2.
By Step 2 in Algorithm 9, for wi ∈ F2, we have that ci = 1. Hence, for all i ∈ ϕ, ci is
either 1 or is in F2µ \ F2, i.e., ci ̸= 0.

63

4 Coding Schemes for Memories with Defects and Errors

Algorithm 9: Encoding (m; m′; ϕ)
Input:

• Message:
(m′, m) ∈ F l × Fk−l−1

2µ , where
F = {∑µ−1

i=1 xiβi | (x1, . . . , xµ−1) ∈ Fµ−1
2 }.

• Positions of partially stuck-at-1 cells: ϕ

• Notations introduced in Construction 4.5.

1 w ←m′ ·H0 + m ·G1 + z · x where z ∈ F2µ is chosen such that
|{i ∈ ϕ | wi ∈ F2}| ≤ d0 − 1.

2 Choose γ ∈ Fl
2 such that (γH0)i = 1−wi for all i ∈ ϕ for which wi ∈ F2.

Output: c = w + γ ·H0 ∈ C

Algorithm 10: Decoding
Input:

• y = c + e ∈ Fn
2µ , where c is a valid output of Algorithm 9 and e is an error of

Hamming weight at most t.

• Notations introduced in Construction 4.5.

1 ĉ← decode y in the code C
2 Obtain a ∈ Fl

2µ , m̂ ∈ Fk−l−1
2µ , ẑ ∈ F2µ such that ĉ = aH0 + m̂G1 + ẑx.

3 Obtain m̂′ ∈ Fk−l−1 and γ̂ ∈ Fk−l−1
2 such that a = m̂′ + γ̂.

Output: (m̂, m̂′)

Decoding: As c ∈ C, ĉ = c. As G has full rank (cf. Section 2.3), and

c = (m′ + γ)H0 + mG1 + zx,

it holds that a = m̂′ + γ̂, m̂ = m and ẑ = z. As m̂′ ∈ F l and γ̂ ∈ Fl
2, we can retrieve

m̂′ = m′ from a = m̂′ + γ̂.

Remark 4.5. Construction 4.5 is a generalized and improved version of our construc-
tion presented in [APW20].

We demonstrate next two minor extensions of Theorem 4.6 for the special case that
x is the all-one vector.

Proposition 4.1. If x is the all-one vector in Theorem 4.6, then the coding scheme
in Construction 4.5 can be modified to produce a 2µ-ary (2µ−1d0 − 1, 1, ⌊d−1

2 ⌋) PSMC

64

4.5 Constructions for Partially Stuck Cell (With Errors)

of length n and cardinality 2× 2µ(k−l−1)2l(µ−1).

Proof. For x = 1, if m′H0 + mG1 + z1 has at most d0− 1 binary entries, then so has
m′H0 + mG1 + (z + 1)1. Hence, there is a z0 ∈ F such that w + z01 has at most
d0 − 1 binary entries, and we can encode

w = m′H0 + mG1 + (z0 + ζ)1,

where ζ ∈ {0, 1} is an additional message bit so that the cardinality from Theorem 4.6
is doubled. As z0 ∈ F and ζ ∈ {0, 1}, the pair (z0, ζ) can be retrieved from z0 + ζ.

Construction 4.5.A (Extension of Construction 4.5). Let G be a k × n generator
matrix of an [n, k, d]2µ code C of the form

G =

H0
G1
1

 , where

1) 1 is the all-one vector of length n
2) G1 ∈ Fk−l−1×n

q

3)
[
H0
1

]
is the parity-check matrix of an [n, n− l − 1, de]2 code.

Theorem 4.6.A. If the conditions of Construction 4.5.A hold, then Construction 4.5
can be modified to produce a 2µ-ary (2µ−1de, 1, ⌊d−1

2 ⌋) PSMC of length n and cardinality
2µ(k−l−1)2l(µ−1).

Proof. In Step 1 of Algorithm 9, the encoder determines z such that | {i ∈ ϕ | wi ∈
F2} | ≤ de − 1; the existence of such a z is proved as in the proof of Theorem 4.5.
Next, the encoder determines γ ∈ {0, 1}l and γ0 ∈ {0, 1} such that

v = (γ, γ0) ·
[
H0
1

]

is such that vi = 1 − wi for all i ∈ ϕ for which wi ∈ {0, 1}. The encoding output
c = v + w = (m′ + γ)H0 + mG1 + (z0 + γ0)1 thus is in C and has no zeros in the
positions of ϕ.

In decoding, from c both (m′ + γ) and m can be retrieved, and so, as m′ ∈ F l and
γ ∈ {0, 1}l, m′ can be retrieved as well.

Proposition 4.1 doubles the size of the PSMC as compared to Theorem 4.6 (by
using ζ as additional message bit), while masking the same number of partially stuck-
at-errors and correcting the same number of substitution errors. Theorem 4.6.A, as
compared to Theorem 4.6, results in a PSMC of the same size and error correction

65

4 Coding Schemes for Memories with Defects and Errors

capabilities, but increases the number of cells that can be masked from 2µ−1d0 − 1 to
2µ−1de − 1. If d0 is odd, then this increment is at least 2µ−1.

Now, we come up with an example using nested BCH codes (see Section 2.3.6),
allowing to store more symbols compared to Theorem 4.6 for the same code parameters.

Example 4.5. Let α be a primitive 15th root of unity in F16 (refer to Definition 2.3
and Remark 2.1), and let C be the [15, 12, 3]4 BCH code with zeros α5, α6 and α9 (see
Definition 2.8). Let the [15, 4]2 subcode C⊥

0 of C (cf. Definition 2.4) be defined as

C⊥
0 =

{
(x0, . . . , x14) ∈ F15

2

∣∣∣∣ 14∑
i=0

xiα
ij = 0 for j ∈ {0, . . . , 14} \ {7, 11, 13, 14}

}
.

As 1 ∈ C\C⊥
0 , the code C has a generator matrix of the form given in Construction 4.5,

namely

G′ =

H0
G1
x

 ,

where H0 is a generator matrix for C⊥
0 (i.e., H0 is obtained by (2.8) in Section 2.3.4)

and G1 has 12− 4− 1 = 7 rows (i.e., G1 is obtained by (2.10) in Section 2.3.4). The
code C0 = (C⊥

0)⊥ is equivalent to the [15, 11]2 BCH code with zeros α7, α11, α13 and
α14. As this BCH code has two consecutive zeros, its minimum distance (and hence
the minimum distance of C0) is at least 3.

We stipulate that α4 = α + 1 to obtain explicit G′ as below,

G′ =



1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
ω ω 0 1 0 0 0 0 0 0 0 0 0 0 0
0 ω ω 0 1 0 0 0 0 0 0 0 0 0 0
0 0 ω ω 0 1 0 0 0 0 0 0 0 0 0
0 0 0 ω ω 0 1 0 0 0 0 0 0 0 0
0 0 0 0 ω ω 0 1 0 0 0 0 0 0 0
0 0 0 0 0 ω ω 0 1 0 0 0 0 0 0
0 0 0 0 0 0 ω ω 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



,

where F4 has elements {0, 1, ω, ω2} with ω = α5. Note that the top row of H0 cor-
responds to the generator polynomial for C⊥

0 , and the top row of G1 corresponds to
the coefficients of (x + α5)(x + α6)(x + α9) which is the generator polynomial of C.
Application of Proposition 4.1 yields a (5, 1, 1) PSMC over F22 of length 15 and size
2× 4724 = 219, whereas application of Construction 4.5.A gives a (7, 1, 1) PSMC over
F22 with cardinality 22(7+4)−4 = 218. Note that application of Construction 4.5 yields
a (5, 1, 1) PSMC over F22 of length 15 and size 4724 = 218.

66

4.5 Constructions for Partially Stuck Cell (With Errors)

Finally, we note that application of Theorem 4.5 to C yields a (4, 1, 1) PSMC of size
48, which has worse parameters than the three PSMC mentioned before. ▶

Example 4.5 clearly shows that for the same code parameters, Construction 4.5,
Proposition 4.1 and Construction 4.5.A significantly improve upon Construction 4.4.

Remark 4.6. For masking only, choose n− k = 0 in Construction 4.5 and therefore,

G1 =
[
0(n−l−1)×(l+1) I(n−l−1) 0(n−l−1)×1

]
,

and we can store n−l−1 information symbols. Thus, Proposition 4.1 for masking only
improves upon [WY16, Construction 5]. For example if l = 4, then n− l − 1 = 10 in
[WY16, Example 7] and the size of the code is 22(n−l−1) · 2l = 224, while n− l− 1 = 10
in Proposition 4.1 for x = 1 and the cardinality is 2 · 22n−l−2 = 225.

We summarize in Table 4.3 our constructions and compare them with some of
the previous works, namely with the construction for masking classical stuck cells
in [Hee83] and constructions for partially stuck cells without errors in [WY16]. Ta-
ble 4.3 clearly shows that more information can be stored with partially stuck-at errors
than with classical stuck cells.

67

4 Coding Schemes for Memories with Defects and Errors

Table 4.3: Comparison among [Hee83], [WY16], and this work. We denote by d the
minimum distance required to correct errors and d0 to mask (partially)
stuck cells. A positive integer µ > 1 is defined in Construction 4.5. Other
Notations: See Section 2.1.

(P
ar

ti
al

ly
)

St
uc

k
C

el
ls

u
D

is
ta

nc
e

d
0

E
rr

or
s

⌊d
−

1 2
⌋

R
ed

un
da

nc
y

C
ar

di
na

lit
y

C
on

st
ru

ct
io

n
4.

2
≤

q
−

1
irr

el
ev

an
t

Ye
s

n
−

k
+

1
qk

−
1

C
on

st
ru

ct
io

n
4.

4
≤

n
≥

u
−

q
+

3
Ye

s
n
−

k
+

l
qk

−
l

C
on

st
ru

ct
io

n
4.

5
≤

n
≥
⌊2

u 2µ
⌋+

1
Ye

s
n
−

k
+

1
+

l µ
qk

−
1−

l µ

Pr
op

os
iti

on
4.

1
≤

n
≥
⌊2

u 2µ
⌋+

1
Ye

s
n
−

k
+

1
+

l−
1

µ
qk

−
1+

1−
l

µ

C
on

st
ru

ct
io

n
4.

5.
A

≤
n

≥
⌊2

u 2µ
⌋

if
d

0
is

od
d

Ye
s

n
−

k
+

1
+

l µ
22(

k
−

1−
l µ

)

[W
Y

16
,

C
on

st
ru

c-
tio

n
2]

≤
q
−

1
irr

el
ev

an
t

N
o

1
(s

in
ce

n
−

k
=

0)
qn

−
1

[W
Y

16
,

C
on

st
ru

c-
tio

n
4]

≤
n

≥
u
−

q
+

3
N

o
l

(s
in

ce
n
−

k
=

0)
qn

−
l

[W
Y

16
,

C
on

st
ru

c-
tio

n
5]

≤
n

≥
⌊2

u q
⌋+

1
N

o
1+

l(1
−

lo
g q
⌊q 2⌋

)(
sin

ce
n
−

k
=

0)
,a

nd
1

+
l µ

(fo
r

q
=

2µ
)

qn
−

1−
l(

1−
lo

g q
⌊q 2

⌋)
,

an
d

22(
n

−
1−

l µ
)

(fo
r

q
=

2µ
)

Pr
op

os
iti

on
4.

1
(m

as
ki

ng
on

ly
)

≤
n

≥
⌊2

u 2µ
⌋+

1
N

o
1

+
l−

1
µ

(s
in

ce
n
−

k
=

0)
22(

n
−

1−
l−

1
µ

)

[H
ee

83
,T

he
or

em
1]

≤
n

≥
u

+
1

Ye
s

n
−

k
+

l
qk

−
l

68

4.6 Generalization to Arbitrary Partially Defective Levels

4.6 Generalization to Arbitrary Partially Defective
Levels

So far, we have considered the important case for si = 1 for all i ∈ ϕ (i.e., the erasing
state is avoided see Sections 3.3.1, 3.3.2 and 3.4.3). In this section, we present error
correction and masking code constructions that can mask partially stuck cells at any
level si and correct errors additionally.

4.6.1 Generalization of the Code Construction (less than q
Partially Stuck Cells)

Here, we give only the main theorem without adding the exact encoding and decoding
processes because it follows directly from Construction 4.2.

Theorem 4.7 (Generalization of Theorem 4.2). Let Σ = {s ∈ Fn
q |
∑n−1

i=0 si ≤ q − 1}.
Assume there is an [n, k, d]q code C of a generator matrix as specified in Theorem 4.2.
Then there exists a (Σ, ⌊d−1

2 ⌋) PSMC over Fq of length n and cardinality qk−1.

Proof. We follow the generalization for the masking partially-stuck-at any arbitrary
levels in [WY16, Theorem 10]. Hence, for s ∈ Σ, we modify Step 2 in Algorithm 3
such that wi − v ≥ si for all i ∈ [n]. Such a v exists as each cell partially-stuck-at
level si excludes si values for v, and ∑n−1

i=0 si < q. The rest of the encoding steps
and the decoding process are analogous to Algorithms 3 and 4. As the output from
the encoding process is a codeword, we can correct ⌊d−1

2 ⌋ errors (see Theorem 2.3
in Section 2.3.3).

4.6.2 Generalization of the Code Construction (up to q + d0 − 3
Partially Stuck Cells)

In the following, we generalize Construction 4.4 to arbitrary s stuck levels.

Generalization Proposition to Arbitrary Stuck Levels

Proposition 4.2 (Generalization of Construction 4.4). Let

Σ =
s ∈ Fn

q

∣∣∣∣ min
{∑

i∈Ψ
si

∣∣∣ Ψ ⊆ [n], |Ψ |= n− d0 + 2
}
≤ q − 1


then the coding scheme in Construction 4.4 can be modified to produce a (Σ, ⌊d−1

2 ⌋)
PSMC of length n and size qk−l.

69

4 Coding Schemes for Memories with Defects and Errors

Proof. To avoid cumbersome notation, we assume without loss of generality that s0 ≥
s1 ≥ · · · ≥ sn−1. As the d0 − 2 leftmost columns of H0 are independent, there is an
invertible T ∈ Fl×l

q such that the matrix Y = T H0 has the form

Y =
[
Id0−2 A

0 B

]
,

where Id0−2 is the identity matrix of size d0−2, 0 denotes the (l−d0 +2)× (d0−2) all-
zero matrix, A ∈ F(d0−2)×(n−d0+2)

q and B ∈ F(l−d0+2)×(n−d0+2)
q . As T is invertible, and

any d0 − 1 columns of H0 are independent, any d0 − 1 columns of Y are independent
as well.

For 0 ≤ i ≤ l − 1, we define

Li = {j ∈ [n] | Yi,j ̸= 0 and Ym,j = 0 for m > i}. (4.5)

Clearly, L0, . . . , Ll−1 are pairwise disjoint. Moreover, for each j ∈ {d0−2, d0−1, . . . , n−
1}, column j of Y is independent from the (d0 − 2) leftmost columns of Y , and so
there is an i ≥ d0 − 2 such that Yi,j ̸= 0. Consequently,

l−1⋃
i=d0−2

Li = {d0 − 2, . . . , n− 1}. (4.6)

By combining (4.6) and the form of Y , we infer that

Lk = {k} for all k ∈ [d0 − 2]. (4.7)

Let w ∈ Fn
q be the vector to be masked, i.e. the vector after Step 1 in Algorithm 7.

The encoder successively determines the coefficients z0, . . . , zl−1 of z ∈ Fl
q such that

w + zY ≥ s, as follows.
For j ∈ [d0 − 2], the encoder sets zj = sj − wj.
Now let d0 − 2 ≤ i ≤ l− 1 and assume that z0, . . . , zi−1 have been obtained such that

wj +
i−1∑
k=0

zkYk,j ≥ sj for all j ∈
i−1⋃
k=0

Lk. (4.8)

It follows from combination of (4.7) and the choice of z0, . . . , zd0−3 that (4.8) is satisfied
for i = d0 − 2.

For each j ∈ Li, we define Fj as

Fj =
{

x ∈ Fq

∣∣∣∣ wj +
i−1∑
k=0

zkYk,j + xYi,j < sj

}
.

70

4.6 Generalization to Arbitrary Partially Defective Levels

Clearly, |Fj| = sj as Yi,j ̸= 0, and so
∣∣∣∣ ⋃

j∈Li

Fj

∣∣∣∣ ≤ ∑
j∈Li

∣∣∣Fj

∣∣∣ =
∑
j∈Li

sj ≤
n−1∑

j=d0−2
sj ≤ q − 1,

where the last inequality follows from the assumption of Σ in the proposition statement
and the ordering of the components of s. Hence, ⋃j∈Li

Fj ̸= Fq. The encoder chooses
zi ∈ Fq \

⋃
j∈Li

Fj. We claim that

wj +
i∑

k=0
zkYk,j ≥ sj for all j ∈

i⋃
k=0

Lk. (4.9)

For j ∈ Li, (4.9) follows from the definition of Fj. For j ∈ ⋃i−1
k=0 Lk, (4.9) follows from

(4.8) and the fact that Yi,j = 0.

By using induction on i, we infer that

wj +
l−1∑
k=0

zkYk,j ≥ sj for all j ∈ ∪l−1
k=0Lk = [n]. (4.10)

That is, with z = (z0, . . . , zl−1), we have that w + zY ≥ s. As Y = T H0, it follows
that z := zT is such that

w + zH0 ≥ s.

The decoding process remains as in Algorithm 8.

An Alternative Proof of the Generalization Proposition

We give an alternative non-constructive proof for Proposition 4.2 in Appendix A.4.

Remark 4.7. The proof of Proposition 4.2 shows that (d0− 2) cells can be set to any
desired value, while the remaining (n− d0 + 2) cells can be made to satisfy the partial
stuck-at conditions, provided that the sum of the stuck-at levels in these (n − d0 + 2)
cells is less than q.

71

4 Coding Schemes for Memories with Defects and Errors

Example 4.6. Let C be the [13, 10, 3]3 generated by

G =
[

G1
H0

]
=



1 0 0 0 0 0 0 0 0 0 1 2 0
0 1 0 0 0 0 0 0 0 0 0 1 2
0 0 1 0 0 0 0 0 0 0 1 0 2
0 0 0 1 0 0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 1 1 2
0 0 0 0 0 1 0 0 0 0 2 0 2
0 0 0 0 0 0 1 0 0 0 1 2 1
1 0 1 1 0 1 0 1 1 1 0 1 1
0 1 1 2 0 0 1 1 2 0 1 1 2
0 0 0 0 1 1 1 1 1 2 2 2 2



∈ F10×13
3

Let C0 be the code with parity check matrix H0. Let

s =
(

2 0 0 0 0 1 1 0 0 0 0 0 0
)
∈ F13

3 .

Notations are as introduced in Construction 4.4 and Proposition 4.2.
Observe that C0 has minimum distance d0 = 3. Note that H0 has the form

H0 =
[
Id0−2 A

0 B

]
=

 1 0 1 1 0 1 0 1 1 1 0 1 1
0 1 1 2 0 0 1 1 2 0 1 1 2
0 0 0 0 1 1 1 1 1 2 2 2 2

 ,

in Proposition 4.2 we can take T the identity matrix, and Y = H0.
For a random message vector m =

(
1 1 1 2 1 1 0

)
∈ F7

3,

w = mG1 =
(

1 1 1 2 1 1 0 0 0 0 1 0 2
)
∈ F13

3 .

To mask the d0 − 2 largest positions of the vector s (corresponding to the (d0 − 2)
leftmost columns of Y), namely s0 (the leftmost value highlighted in blue in s), the
encoder sets zj = sj − wj for j ∈ [d0 − 2]. Thus, z0 = 2− 1 = 1. Note that

w +
(

z0 0 0
)

H0 =
(

2 1 2 0 1 2 0 1 1 1 1 1 0
)

.

Next, the encoder determines z1 and z2 so as to mask in positions 5 and 6. As H0
has non-zero entries in the bottom row of columns 5 and 6, we have that L1 = ∅ and
L2 = {5, 6}. The encoder can thus take any value for z1, so let us say it takes 0. The
coefficient z2 is chosen in such a way that

w +
(

z0 0 0
)

H0 +
(

0 0 z2
)

H0 ≥ s.

This inequality is satisfied if and only if 2+z2 ̸= 0 (position 5) and 0+z2 ̸= 0 (position

72

4.6 Generalization to Arbitrary Partially Defective Levels

6), so if and only if z2 = 2.
Note that, in this example, there are wt(s) = 3 partially stuck cells. As C has

minimum distance 3, it can correct a single error. ▶

Corollary 4.2 (Generalization of Theorem 4.5). Let s ∈ Fq and let

Σ =
{

s ∈ Fn
q | wt(s) ≤ d0 +

⌈
q

s

⌉
− 3 and max{si | i ∈ [n] ≤ s}

}
.

The coding scheme in Construction 4.4 is a (Σ, ⌊d−1
2 ⌋) PSMC scheme of length n and

size qk−l.

Proof. Let s ∈ Σ have weight u ≤ d0 + ⌈ q
s
⌉− 3. Let Ψ ⊆ [n] of size n− d0 + 2 be such

that the number of non-zero components of s in [n] \ Ψ equals min(d0 − 2, u). Then
s has u−min(d0 − 2, u) non-zero components in Ψ. As a consequence, if u ≤ d0 − 2,
then ∑i∈Ψ si = 0, and if u > d0 − 2, then

∑
i∈Ψ

si ≤ s(u− d0 + 2) ≤ s(⌈q
s
⌉ − 1) < s(q

s
+ 1− 1) = q.

Hence in both cases, ∑i∈Ψ si ≤ q− 1. The corollary thus follows from Proposition 4.2.
In particular, if s = 1, the corollary agrees with Theorem 4.5.

4.6.3 Generalization of the Code Construction (up to
2µ−1(d0 + 1)− 1 Partially Stuck Cells)

We do not generalize Construction 4.5 as it is tailored to the special case where si =
1 for all i ∈ ϕ. Nevertheless, as the following remarks show, something is possible.

Remark 4.8. A semi-generalization can be defined for s0 = s1 = · · · = su−1 where
si > 1 of the construction in Construction 4.5. We can have a construction similar
to Construction 4.5, with alphabet size of the form (s + 1)µ and use an (s + 1)-ary
sub-field for masking. Any (s + 1)-ary code is a subspace of codes over (s + 1)µ which
analogs that a binary sub-field is subspace of our 2µ-ary coding scheme. In this regard,
the encoding process masks the remaining positions (u0 =

⌊
(s+1)u
(s+1)µ

⌋
) of values strictly

from the (s + 1) field, i.e., the base field. Thus, the following must hold: H0 ∈ F(l×n)
s+1 ,

γ ∈ Fl
s+1 in Step 2 in Algorithm 9, and the elements of the base field (s + 1) are the

smallest ordered elements among the elements of (s + 1)µ.

Remark 4.9. A generalization of Construction 4.5 to any arbitrary q levels, i.e.,
s ∈ Σ ⊆ Fn

q can be conducted by the same considerations pursued by Proposition 4.2
but for q is strictly a power of the prime 2.

73

4 Coding Schemes for Memories with Defects and Errors

4.7 Constructions for Unreachable Memory Cells
(With Errors)

Section 3.4.4 introduces unreachable memory cells (UMC). In [WY16, Section VIII],
the authors provide code constructions (without correcting additional errors) for un-
reachable memories at levels s̃ := (q− 1)n− s, where s ∈ Σ ⊂ Fn

q (see Definition 4.2).
It is a dual problem of a PSMC scenario (cf. Section 3.4.3). In the sequel, we propose
code constructions for UMC with correcting substitution errors, so we first describe
our coding model concerning both.
Definition 4.4. (Codes for Unreachable Memory Cells (n, M)q(Σ̃, t) UMC) For Σ̃ ⊂
Fn

q , s̃ ∈ Σ̃ and non-negative integer t, a q-ary (Σ̃, t)-unreachable-recovering code C of
length n and size M is a coding scheme consisting of a message set M of size M , an
encoder E and a decoder D satisfying:

1. The encoder E is a mapping from M× Σ̃ to Fn
q such that

for each (m, s̃) ∈M× Σ̃, E(m, s̃) ≤ s̃,

2. For each (m, s̃) ∈M× Σ̃ and each e ∈ Fn
q such that

wt(e) ≤ t and E(m, s̃) + e ≤ s̃,

3. It holds that
D(E(m, s̃) + e) = m.

4.7.1 Equivalent Codes for Unreachable Memory Cells UMC
A code for unreachable cells maps message vectors on codewords that attain the un-
reachable cells, i.e., the values of each codeword at the unreachable cells coincide
with their unreachable levels. Supposing similar encoding and decoding schemes as
described in Figure 4.1 with respect to the UMC defective model (described in Defi-
nition 4.4), the encoder knows the locations and values of the unreachable cells, while
the decoder does not. Hence, the task of the decoder is to reconstruct the message
given only the codeword. The following construction makes a relation between PSMCs
and UMCs.
Construction 4.6 (Constructions for UMC obtained by constructions for PSMC).
Let Σ ⊂ Fn

q such that

Σ̃ =
{

s̃ ∈ Fn
q | ∃s ∈ Σ [s̃ = (q − 1)n − s]

}
.

Then an (n, M)q(Σ̃, t) UMC can be constructed from an (n, M)q(Σ, t) PSMC.

74

4.8 Errors Positions

Theorem 4.8 (Equivalent Codes for UMC). Let Construction 4.6 hold. A q-ary code
C is an (n, M)q(Σ̃, t) UMC if and only if it is an (n, M)q(Σ, t) PSMC.

Proof. Let there be Σ ⊂ Fn
q such that Σ̃ =

{
s̃ ∈ Fn

q | ∃s ∈ Σ [s̃ = (q − 1)n − s]
}

.

Wachter-Zeh and Yaakobi in [WY16, Theorem 15] for t = 0 prove that codes for
PSMCs can be used to obtain codes for UMCs. Assuming t = 0 (i.e., no error correction
is considered) and given s partially stuck levels, there is a (Σ, 0) PSMC of redundancy
n−k by the constructions in Section 4.6.1 and Section 4.6.2. Thus, these constructions
give (Σ, 0) PSMCs that coincide with the constructions in [WY16] for t = 0. Hence,
we infer that a (Σ̃, t > 0) UMC with length n and size M can be constructed from
a (Σ, t > 0) PSMC with the same parameters. A (Σ, t) PSMC can correct at most t
errors (cf. Theorem 2.3 in Section 2.3.3), so as (Σ̃, t) UMC. The converse statement
also holds, i.e., a (Σ, t) PSMC can be obtained from a (Σ̃, t) UMC since s = (q−1)n−s̃
by Construction 4.6.

Remark 4.10. The proof of Theorem 4.8 states that our constructions in Section 4.6.1
and Section 4.6.2 coincide with [WY16, Theorem 15] for t = 0 (error-free case in which
masking only is needed). Thus, following the same argument in [WY16, page 651], our
coding scheme for t > 0 offers an improvement from both [Hee83] and [GSD14] since
(Σ̃, t > 0) UMC with length n and size M can be constructed from a (Σ, t > 0) PSMC
with the same parameters.

4.8 Errors Positions
In our code constructions, corruption can occur in any of n positions. If errors happen
in the partially stuck cells’ locations, they overlap with ϕ ⊆ [n]. Overlapping errors
have been assumed to coincide with the partially stuck constraints. Construction 4.2
and Construction 4.3 disregard one prohibitive value (e.g., the zero subscripts) from
the output vector in the partially stuck-at-1 positions. Overlapping errors, indeed,
could violate this restriction in the previous constructions, e.g., (ci + ei) mod q = 0
for ci = q − 1 and (coincidentally) ei = 1 for i ∈ ϕ. Hence, our work in [AC22]
deals with such a scenario to assure zeros cannot happen in ϕ positions, given the
intersecting vector e ∈ {0, 1}n. Therefore, we update the former constructions such
that the encoded vector never attains the lowest and the highest levels, e.g., 0 and
q − 1 from the set [q].

Accordingly, two values from the set [q] in the output vector are forbidden. Thus, the
modified schemes either cost more redundancy for masking while pondering violative1

overlapping errors or handle fewer masked u cells while preserving our constructions re-
dundancies, e.g., see the column "Redundancy" in Table 4.3 regarding Construction 4.2
and Construction 4.3.

1Overlapping errors can disobey the constraints of partially stuck cells.

75

4 Coding Schemes for Memories with Defects and Errors

In this dissertation, we skip these results for the sake of briefness as they are anal-
ogous to our earlier work in this chapter with a slight alteration in the encoding
algorithms and a stricter condition on the error vector, e.g., e ∈ {0, 1}n.

4.9 Open Problems and Observations
Coding for memories is a broad branch of knowledge that concerns many directions
and code classes, e.g., [CZW08; MK09; ZPJ10; CKCH14; KH14; Wan+14] to overcome
reliability problems. Furthermore, some of the research paths, e.g., [Zha+13], regards
other measured factors like the latency (see Section 3.2.1) deploying low-density parity-
check (LDPC) codes for this purpose.

Considering other metrics rather than the Hamming metric can be employed to
provide coding models for partially stuck memory cells, e.g., some special classes of
rank metric codes such as interleaved codes [WSS15; RPW21] and their properties
can correct errors beyond the unique decoding radius (cf. Section 2.3.3). By using a
collaborative approach, it is possible to correct a larger proportion of errors (beyond
half of the minimum distance of the component code) in various algebraic interleaved
codes, which can be viewed as array codes (cf. Appendix A.1) [Hol+21]. Such cod-
ing schemes perfectly concur with the non-volatile memories thanks to their physical
structure (see Section 3.2). Each cell is an array consisting of a few bits concurrently
programmed to represent a distinct level. Errors then might be considered bit-wise
that can be modeled as a matrix E ∈ Fµ×n

2 . In this regard, a burst of errors with a
certain column weight for an error matrix E ∈ Fµ×n

2 , e.g., supp(E) (cf. Section 2.1),
could be repaired.

We provide further directions, observations, and remarks about probable exten-
sions of this thesis in Appendix A.1, Appendix A.2, and Appendix A.3. MDS codes
(cf. Section 2.4.1) can be used to obtain polyalphabetic codes (cf. Section 2.5) over
qi for i ∈ [n] such that each [qi] ⊆ Fq. Let CRS be a Reed-Solomon (RS) codes
[Rot06, Chapter 5] over Fq and Cpol be a polyalphabetic by Definition 2.9, then there
is Cpol ⊆ CRS. Hence, CRS is called a mother code of Cpol [Sid+05]. Remark A.1 in
Appendix A.2 puts the bedrock to propose coding models based on polyalphabetic
mother codes for partially stuck memory cells (cf. Definition 3.2) and unreachable
memory cells (cf. Definition 3.3).

On the other hand, we exhibit short comparisons between codes covered for PSMC
(defined in Section 3.4.3) with WOM codes (cf. Section 3.4.1) and rank modulation
(cf. Section 3.4.2) through Remark A.2 and Remark A.3 in Appendix A.3. Note that
a formal in-depth investigation could still be carried out in this regard. Combining
two or more of the prior coding-built models perhaps brings more sophisticated cod-
ing schemes but might desirably present the optimum coding solutions for flash-like
technologies.

76

5
Trading Partial Defects with Errors

Abstract

This chapter investigates a technique where the encoder, after a first masking step,
introduces errors at some partially stuck positions of a codeword in order to satisfy
the stuck-at constraints. The decoder uses part of the error-correcting capability to
correct these introduced errors. It turns out that treating some partially stuck cells as
erroneous cells can decrease the required redundancy for some code parameters, e.g.,
by Lemma 5.2.

The work in this chapter is based on our works in [APTW23b] that has been accepted in
the 14th Annual Non-Volatile Memories Workshop (NVMW 2023) and in [APTW23a]
that is in revision for publication in the journal Designs, Codes and Cryptography (DCC),
2023.

5.1 Introduction

Recall that the encoder knows the faulty cells, while the decoder does not know
any information about them. The task of an encoder in our code constructions

in Chapter 4 is to recover from the partially stuck cells by coinciding with their values.
It is possible to be directly consistent with the partially defective cells by the error-
correcting code capability instead of sophisticated error-correcting and defect-masking
schemes, e.g., Construction 4.2, Construction 4.4 and Construction 4.5. A linear block
code C over Fq has the parameters, n, k, and d ≥ 2t + 1 (unique decoding, see Sec-
tion 2.3.3) where t = wt(e) (cf. Section 2.3). The encoder can deliberately introduce
errors in the partially stuck coordinates, i.e., setting them to 1; consequently, all loca-
tions are masked (non-zero). Now, suppose the code C has enough minimum distance
d to correct the substitution errors and any other artificial errors (i.e., invented by the
encoder). Then the decoder can correct these errors and successfully reconstruct the
message. However, the larger the minimum distance suffices to correct both errors,
the higher parity symbols are needed to define a code with that minimum distance.

78

5.1 Introduction

5.1.1 Contributions and Outline
We start with Section 5.1.2 and provide Proposition 5.1 on how to correct the substi-
tution errors and the artificial errors in the partially stuck-at positions. In the second
part of this section, we show a general case through Theorem 5.1 that applies to all
of our constructions (see Chapter 4), replacing any 0 ≤ j ≤ t errors with j masked
partially stuck cells. Section 5.2 proposes improvements from Theorem 5.1, starting
with Lemma 5.1. In the remainder of this section, we provide variations on the idea
of the encoder introducing errors to the result of a first encoding step so that the final
encoder output satisfies the partially stuck-at conditions. Lemma 5.2 and its general-
ized version Lemma 5.3 are for the prior purpose. The final part is Lemma 5.4, which
considers Proposition 4.2 for arbitrary s levels to prove it is possible to mask partially
stuck cells by the mean of the error-correcting code capability with improvement from
Theorem 5.1.

5.1.2 General Theorem of Trading Partially Stuck Cells with
Errors

In the constructions shown so far, the encoder output c is a word from an error cor-
recting code C. If c does not satisfy the partially-stuck-at conditions in j positions,
the encoder could modify it in these j positions to obtain a word c′ = c + e′ satisfying
the partially-stuck-at constrains, while wt(e′) = j. If C can correct t errors (cf. The-
orem 2.3 in Section 2.3.3), then it still is possible to correct t − j errors in c′. This
observation was also made in [Hee83, Theorem 1]. The above reasoning shows that
the following proposition holds.
Proposition 5.1. If there is an (n, M)q(u, 1, t) PSMC, then for any j with 0 ≤ j ≤ t,
there is an (n, M)q(u + j, 1, t− j) PSMC.

We generalize the above proposition to general Σ (Theorem 5.1).
Theorem 5.1 (Partial Masking PSMC). Let Σ ⊂ Fn

q , and assume that there exists an
(n, M)q(Σ, t) PSMC C. For any j ∈ [t], there exists an (n, M)q(Σ(j), t− j) PSMC Cj,
where

Σ(j) =
{

s′ ∈ Fn
q | ∃s ∈ Σ [d(s, s′) ≤ j and s′ ≥ s]

}
.

Proof. Let the encoder Ej and the decoder Dj for Cj be Algorithm 11 and Algorithm 12,
respectively. By definition, c′ ≥ s′. Moreover, if si = s′

i, then ci ≥ si = s′
i, so ci = c′

i.
As a result, d(c, c′) ≤ j.

In Algorithm 12, the decoder D of C is directly used for decoding Cj. As y ≥ s′,
surely y ≥ s. Moreover, we can write y = c + (c′ − c + e). As shown above,
wt(c′ − c) ≤ j, and so wt(c− c′ + e) ≤ t. As a consequence, D(y) = m.

We can improve on Theorem 5.1 for Construction 4.5 giving Lemma 5.1.

79

5 Trading Partial Defects with Errors

Algorithm 11: Encoding
Input: (m, s′) ∈M× Σ(j).

1 Determine s ∈ Σ such that d(s, s′) ≤ j and s′ ≥ s.
2 Let c = E(m, s).
3 Define c′ = E ′

j(m, s′) as c′
i = max(ci, s′

i) for i ∈ [n].
Output: Codeword c′.

Algorithm 12: Decoding
Input: Received y = c′ + e where wt(e) ≤ t− j and y ≥ s′

1 Message m = D(y)
Output: Message vector m

5.2 Improvements of the General Theorem
The following lemmas enhance Theorem 5.1.

5.2.1 Based on our Binary-established Construction
The following lemma corresponds to Construction 4.5.

Lemma 5.1. Given an [n, k, d]q code as defined in Construction 4.5, then for any j
such that 0 ≤ j ≤ ⌊d−1

2 ⌋, there is a 2µ-ary (2µ−1(d0 + j) − 1, 1, ⌊d−1
2 ⌋ − j) PSMC of

length n and size qk−l−1.

Proof. Let ϕ ⊂ [n] has size u ≤ 2µ−1(d0+j)−1. We use the notation from Algorithm 9.
After Step 1, w has at most u0 = ⌊2u

2µ ⌋ ≤ d0 + j − 1 binary entries in the positions
from ϕ. After Step 2, at least d0 − 1 of these entries in c differ from 0. By setting
the at most j other binary entries in the positions from ϕ equal to 1, the encoder
introduces at most j errors, and guarantees that the partially-stuck-at conditions are
satisfied.

5.2.2 Based on Another Approach for Introducing Errors
The following lemma is for Construction 4.2 as follows. In this lemma, we use another
approach for introducing errors in order to satisfy the stuck-at conditions.

Lemma 5.2. Given an [n, k, d]q code containing a word of weight n, for any j with
0 ≤ j ≤ ⌊d−1

2 ⌋, there is a q-ary (q − 1 + qj, 1, ⌊d−1
2 ⌋ − j) PSMC of length n and size

qk−1.

Proof. We use the notation from Construction 4.2.

80

5.2 Improvements of the General Theorem

Let ϕ ⊂ [n] have size u ≤ q − 1 + qj. Let x be a codeword of weight n. For each
i ∈ ϕ, there is exactly one v ∈ Fq such that wi + vxi = 0, and so∑

v∈Fq

| {i ∈ ϕ | wi + vxi = 0} | = u.

As a consequence, there is v ∈ Fq such that c = w + vx has at most ⌊u
q
⌋ ≤ j entries

in ϕ equal to zero. By setting these entries of c to a non-zero value, the encoder
introduces at most j errors. As C can correct up to ⌊d−1

2 ⌋ errors, it can correct these
j errors and additionally up to ⌊d−1

2 ⌋ − j substitution errors.
Example 5.1. Consider a [15, 9, 5]4 code C containing the all-one word, e.g. the BCH
code with zeroes α, α2, α3 (see Section 2.3.6), where α is a primitive element in F16
(see Definition 2.3). Let u ≤ 7 and t = 1. We use the all-one word for partial masking,
ensuring that 0 occurs in at most ⌊u

4⌋ ≤ 1 position indexed by ϕ. We set the codeword
value in this position to 1, introducing one error. We can correct this introduced
error and one additional random error as C has minimum distance 5. Hence, we have
obtained a 4-ary (7, 1, 1) PSMC of length 15 and cardinality 48. ▶

We show in Example 5.2 how applying Lemma 5.2 for Construction 4.5 outperforms
Lemma 5.1.
Example 5.2. Given d0 = 3, u = 15 and q = 22 and let α be a primitive element in
F4 (see Definition 2.3) and take x = 1. Assume we have

w(ϕ) = (m′ ·H0 + m ·G1) + z · 1
= (0, 1, α, 1 + α, 0, 1, α, 1 + α, 0, 1, α, 1 + α, 0, 1, α)
+ z · 1,

then choosing z = 1 + α minimizes the number of binary values in w(ϕ), we get:

w(ϕ) = (1 + α, α, 1, 0, 1 + α, α, 1, 0, 1 + α, α, 1, 0, 1 + α, α, 1).

Following Step 2 in Algorithm 9 and since d0 = 3, we can mask at most d0 − 1 binary
values highlighted in the vector w(ϕ) that leaves us, in this example, with at most
⌊2u

22 ⌋ − d0 + 1 = 5 zeros that remain unmasked.
However, applying Lemma 5.2 instead for Construction 4.5 gives a better result.

Choosing γ = 0 in Step 2 of Algorithm 9, we obtain c(ϕ) = w(ϕ) with (⌊u
q
⌋ = 3) zeros

highlighted in blue above that we can directly trade. ▶

Remark 5.1. As the code from Construction 4.5 has a word of weight n, Lemma 5.2
implies the existence of an (u, 1, t) PSMC of cardinality qk−1 under the condition that
2(t + ⌊u

q
⌋) < d. Lemma 5.1 shows the existence of an (u, 1, t) PSMC of smaller

cardinality, viz. qk−l, under the condition that 2(t + max(0, ⌊2u
2µ ⌋ − d0 + 1) < d. As a

consequence, Lemma 5.1 can only improve on Lemma 5.2 if d0 − 1 > ⌊2u
2µ ⌋ − ⌊ u

2µ ⌋.

81

5 Trading Partial Defects with Errors

5.2.3 Based on Another Approach for Introducing Errors
Considering Arbitrary Partially Stuck Levels

We can generalize Lemma 5.2 as follows.

Lemma 5.3. Given an [n, k, d]q code containing a word of weight n. Let 0 ≤ j ≤
⌊d−1

2 ⌋, and let

Σ =
{

s ∈ Fn
q

∣∣∣∣ ∑
i

si ≤ q − 1 + qj

}
.

There is a q-ary (Σ, ⌊d−1
2 ⌋ − j) PSMC of length n and size qk−1.

Proof. We use the notation from Theorem 4.7. For simplicity, we assume that the
code contains the all-one word. We wish to choose the multiplier v ∈ Fq such that
c = w− v · 1 satisfies ci ≥ si for as many indices i as possible. For each index i, there
are q − si values for v such that this inequality is met. Hence, there is a v ∈ Fq such
that ci ≥ si for at least ⌈1

q

∑
i(q−si)⌉ = n−⌊1

q

∑
i si⌋ indices i. The encoder thus needs

to introduce errors only in the at most ⌊1
q

∑
i si⌋ positions for which the inequality is

not satisfied.

5.2.4 Based on our Generalized Construction for Arbitrary
Partially Stuck Levels

We next show via Lemma 5.4 that trading partially stuck cells (for any arbitrary stuck
levels s, see Proposition 4.2) with errors works while improving upon Theorem 5.1.

Lemma 5.4. Assume there exists a matrix as in Proposition 4.2. Let 0 ≤ j ≤ ⌊d−1
2 ⌋,

and let

Σ =
{

s ∈ Fn
q

∣∣∣∣ ∃Ψ ⊂ [n] :
∣∣∣ Ψ

∣∣∣ = n− d0 + 2
[∑

i∈Ψ
si ≤ q − 1 + qj

]}
.

Then exists a q-ary (Σ, ⌊d−1
2 ⌋ − j) PSMC of length n and size qk−l.

Proof. Let s ∈ Σ. In order to simplify notation, we assume without loss of generality
that ∑n−1

i=d0−2 si ≤ q− 1 + qj. We use the same argument as in the alternative proof of
Proposition 4.2 (see Appendix A.4). Clearly,

n− d0 + 2−
1

q

n−1∑
i=d0−2

si

 ≥ n− d0 + 2− j.

So we infer that for at least n− j indices i ∈ [n],

wi +
(

(z, η)T H0

)
i
≥ si.

82

5.2 Improvements of the General Theorem

Remark 5.2. The proof of Lemma 5.4 shows that the encoder output in fact can be
made equal to s in the d0 − 2 largest entries of s. In fact, it shows that the scheme
allows for masking d0−2 stuck-at errors, masking partial stuck errors in the remaining
cells, and correcting ⌊d−1

2 ⌋−j substitution errors, provided that the sum of the partially
stuck-at levels in the n− d0 + 2 remaining cells is less than (j + 1)q.

Notice that by using Lemma 5.2 and Lemma 5.3, we gain (for example, for j =
1) exactly 2µ−1 and 2µ more masked partially stuck cells under the condition that
2(t + ⌊u

q
⌋) < d. To the present, the only way to determine whether or not it is

profitable to introduce errors into partially stuck cells is numerical. These results that
compare applying Theorem 5.1, Lemma 5.1, and Lemma 5.2 are found in Section 6.3.4
and Section 6.3.4 of Chapter 6. Lemma 5.2 (see Figure 6.8) suggests that treating
some partially stuck cells as erroneous cells can reduce the necessary redundancy for
some code parameters.

83

6
Bounds on Memories with Defects
and Errors

Abstract

We derive Singleton-like, sphere-packing-like, and Gilbert–Varshamov-like bounds re-
garding our code constructions in Chapter 4. We numerically compare our derived
upper- and lower-type bounds. Our sphere-packing-like bound has been compared to
the usual sphere-packing upper bound, and for the case of no errors (t = 0) to [WY16,
Theorem 2]. Our lower-type bounds, for given (u, t), are compared to each other and to
classical Gilbert–Varshamov bound for (q − 1)-ary codes. The exchange of a one error
correction ability with a single masking capability of a partially stuck cell has also been
demonstrated in these comparisons. Numerical comparisons state that our constructions
match the Gilbert–Varshamov-like bounds for several code parameters, e.g., BCH codes
that contain all-one word by Construction 4.2.

Some work in this chapter is based on our works in [APW20] that has been published
in the 2020 Algebraic and Combinatorial Coding Theory (ACCT), in [APW21] that has
been accepted in the 12th Annual Non-Volatile Memories Workshop (NVMW 2021), in
[APTW23b] that has been accepted in the 14th Annual Non-Volatile Memories Workshop
(NVMW 2023), and in [APTW23a] that is in revision for publication in the journal
Designs, Codes and Cryptography (DCC), 2023.

6.1 Introduction

The upper limits (see Sections 2.4.1, 2.4.2, 2.4.3 and 2.4.4) are used to evaluate
the parameters of a code as necessary conditions. On the other hand, the lower

bound (Gilbert-Varshamov bound, cf. Section 2.4.5) provides a sufficient condition on
the existence of a code for given parameters, n, k, d, and q. We have provided various
constructions in Chapter 4 based on q-ary t-error correcting codes with further prereq-
uisites. We want to derive upper and lower limits on the size of these constructions.

84

6.1 Introduction

6.1.1 Contributions and Outline
In this chapter, we derive bounds on our code constructions for PSMCs (from Chap-
ter 4), namely Singleton-type, sphere-packing-type, and Gilbert-Varshamov-type bounds.
The output of an encoder can achieve all the elements from Fq; in the other cells where
stuck-at is supposed, it confines the values in the partially stuck-at cells. So the set
of all encoder outputs constructs a poly-alphabetic code (see Section 2.5), i.e., taking
into account that all the allowed values in the partially stuck cells are sub-alphabets
from the set Fq. Hence, we show in Section 6.2 that upper bounds, namely Singleton-
type and sphere-packing-type, on the size of poly-alphabetic codes (see Section 2.5.1)
are also upper bounds on the size of partially stuck-at codes. Our sphere-packing-like
bound for the size of (Σ, t) PSMCs has been compared to the standard sphere-packing
upper bound (cf. Section 2.4.4) and for the case of no errors (t = 0) to [WY16, Theorem
2], located in Section 6.2.3.

Sufficient conditions for the existence of matrices satisfying the conditions from our
constructions in Chapter 4 have been extensively investigated. We employ Gilbert–
Varshamov-like techniques to show the existence of (u, 1, t) PSMCs in a finite regime.
In the finite GV consideration, Section 6.3.1 (see also Appendix A.5) presents these
outcomes. A (q − 1)-ary code of length n with a minimum distance of at least 2t + 1
is a q-ary (u, 1, t) PSMC of length n with u = n, i.e., such a code can avoid the 0
subscripts from the set [q] in the partially stuck positions. Thus, we give a corollary
to combine this observation with the Gilbert bound for a (q − 1)-ary alphabet in the
final part of Section 6.3.1.

We have compared our GV-type bounds, for given (u, t), to each other and to (q−1)-
ary codes. Our coding method in Section 4.5.1 for the case u < q is to have a generator
matrix consisting of the all-one row vector, i.e., a code containing the all-one word.
To verify our findings related to the aforementioned case, we numerically compare,
located in Section 6.3.2, to other upper boundaries like Griesmer and Ball–Blokhuis
bounds, defined in Sections 2.4.2 and 2.4.3, respectively. On top of that, we compare
to BCH codes (see Section 2.3.6) that possess all-one codewords.

In the same section, we also provide different comparisons between our code con-
structions and the existence of the code based on Theorem 6.1, Theorem 6.2 and
Theorem 6.3. Then, we discuss and compare that it can be advantageous to intro-
duce errors in some partially stuck cells in order to satisfy the stuck-at constraints
as described in Section 5.1.2. We further extend our results to cover the existence of
(u, 1, t) PSMCs in the asymptotic version of the GV bound, given in Section 6.3.3.
In the asymptotic model of our GV-like bounds, partial analytical comparisons have
been discussed in Section 6.3.3, and also confirmed numerically, e.g., via Figure 6.6.

The last part, Section 6.4, briefly summarizes our lower/upper bounds on polyalpha-
betic codes when alphabets sizes are bounded, i.e., unlike [Sid+05] that considers arbi-
trary alphabet sizes (cf. Section 2.5). Our outcomes confirm that the Elias-Bassalygo
bound [Bas65; Joh63] and the first linear-programming bound [Lev98; MRRW77] are

85

6 Bounds on Memories with Defects and Errors

tighter for codes with some minimum distances for finite alphabet sizes.

6.2 Upper Bounds on Codes for Partially Stuck
Memory Cells (PSMCs)

The output of an encoder has restrictions on the values in the partially-stuck-at cells;
in the other cells, it can attain all values. So the set of all encoder outputs is a
poly-alphabetic code [Sid+05], reformulated in Section 2.5. To be more precise, the
following proposition holds.

6.2.1 Singleton-type Bound on PSMCs
Proposition 6.1. Let C be an (n, M)q(Σ, t) partially-stuck-at-masking code with en-
coder E. For any s ∈ Σ, let

Cs = {E(m, s) |m ∈M}.

Then Cs is a code with minimum distance at least 2t + 1 and |M| words, and

Cs ⊂ Q0 ×Q1 × · · · ×Qn−1, where

Qi = {x ∈ Fq | x ≥ si}.

Proof. By our error model, errors in stuck-at cells result in values still satisfying the
stuck-at constraints. Therefore, t errors can be corrected (see Theorem 2.3 in Sec-
tion 2.3.3) if and only if Cs has minimum Hamming distance at least 2t + 1. The rest
of the proposition is obvious.

As a result of Proposition 6.1, upper bounds on the size of poly-alphabetic codes
[Sid+05] are also upper bounds on the size of partially-stuck-at codes. Hence, we give
the following corollaries to state Singleton-type and sphere-packing-type bounds for
error-correcting and partially-stuck-at-masking codes.

Corollary 6.1. (Singleton-type bound) Let C be a q-ary (Σ, t) PSMC of length n and
size M . Then for any s = (s0, . . . , sn−1) ∈ Σ,

M ≤ min
{∏

j∈J

(q − sj)
∣∣∣∣ J ⊂ [n], |J | = n− 2t

}
.

Proof. Combination of Proposition 6.1 and Theorem 2.9.

86

6.2 Upper Bounds on Codes for Partially Stuck Memory Cells (PSMCs)

6.2.2 Sphere-packing-type Bound on PSMCs

Corollary 6.2. (Sphere-packing type bound) Let C be a q-ary (Σ, t) PSMC of length
n and size M . Then for any s = (s0, . . . , sn−1) ∈ Σ

M ≤
∏n−1

i=0 (q − si)
V

(b)
t

,

where V
(b)

t , the volume of a ball of radius t, satisfies

V
(b)

t =
t∑

r=0
V (s)

r ,

where the volume V (s)
r of the sphere with radius r is given by

V
(s)

0 = 1,

V (s)
r =

∑
1≤i1<...<ir≤n

(q − 1− si1) · · · (q − 1− sir).

Proof. Combination of Proposition 6.1 and Theorem 2.10.

Remark 6.1. The difference between poly-alphabetic codes and partially-stuck-at-masking
codes is that in the former, the positions of stuck-at cells and the corresponding lev-
els are known to both encoder and decoder, whereas in the latter, this information is
known to the encoder only.

6.2.3 Discussion and Numerical Results

Figure 6.1 compares our derived sphere-packing-like bound to the amount of storable
information symbols for a completely reliable memory (i.e., no stuck cells, no errors
that can be seen at u = 0 in the solid line) and the upper bound on the cardinality
of an only-masking PSMC (only stuck cells, no errors) derived in [WY16] as depicted
in the solid curve. At u = 0, the derived sphere-packing-type bound (dotted and
dashed-dotted plots) matches the usual sphere-packing bound (defined in Section 2.4.4)
("only errors") case. The more u partially-stuck-at cells, the less amount of storable
information, i.e., only q − 1 levels can be utilized. Hence, the dotted and dashed-
dotted lines are declining while u is growing. On the other hand, the more errors (e.g.,
t = 25 in the dashed-dotted plot), the higher overall required redundancy and the
lower storable information for the aforementioned curve.

87

6 Bounds on Memories with Defects and Errors

0 10 20 30 40 50 60 70 80 90 100 110 12020

40

60

80

100

120

Number of stuck cells u at level s = 1, where 0 ≤ u ≤ n

k
In

fo
rm

at
io

n
Sy

m
bo

ls

only partially stuck cells [WY16, Theorem 2], t = 0, 0 ≤ u ≤ n, s = 1
errors and partially stuck cells, t = 3, 0 ≤ u ≤ n, s = 1
errors and partially stuck cells, t = 25, 0 ≤ u ≤ n, s = 1

Figure 6.1: Sphere-packing bounds: Comparison for k information symbols for
("only partially stuck cells [WY16, Theorem 2]") and our sphere-packing-
like ("errors and partially stuck cells") bounds. The classical sphere-
packing bound ("only errors") can read at u = 0 in our sphere-packing-
like bounds curves. The chosen parameters are µ = 5 and q = 3, and
n = ((qµ − 1)/(q − 1)).

6.3 Lower Bound on Codes for Partially Stuck Memory
Cells (PSMCs)

In the following sections, we show sufficient conditions for the existence of matrices
that meet the requirements from our coding models in Chapter 4.

6.3.1 Finite Gilbert–Varshamov-type (GV-type) Bound on PSMCs

We utilize Gilbert–Varshamov-like strategies (cf. Theorem 2.7) to establish the presence
of (u, 1, t) PSMCs at first in a finite regime (i.e., the code length n does not tend to
infinity). Next in Section 6.3.3, we study the asymptotic (cf. to Theorem 2.8) of the
resulting GV-type bounds.

88

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)

Gilbert-Varshamov-like bound by Construction 4.2

Construction 4.2 requires a code that includes the all-one codeword. Therefore, we
show the existence of a code that contains the all-one vector as a codeword. In the
subsequent section, we will show that Gilbert-Varshamov-like bound from Theorem 4.2
is a special case of Theorem 6.1, given below. Furthermore, we provide earlier findings
for Gilbert-Varshamov-like bound from Theorem 4.2 that were quite interesting and
published in [APW20]. We restate the latter in Appendix A.5.

We start with a somewhat refined version of the Gilbert bound, that should be
well-known, but for which we did not find an explicit reference.
Lemma 6.1. Let q be a prime power, and assume there is an [n, s]q code Cs with
minimum distance at least d. If k ≥ s is such that

d−1∑
i=0

(
n

i

)
(q − 1)i < qn−k+1,

then there is an [n, k]q code Ck with minimum distance at least d that has Cs as a
subcode.
Proof. By induction on k. For k = s, the statement is obvious. Now let κ ≥ s and let
Cκ be an [n, κ]q code with minimum distance at least d that has Cs as a subcode. If
qκ∑d−1

i=0

(
n
i

)
(q − 1)i < qn, then the balls with radius d− 1 centered at the words of Cκ

do not cover Fn
q , so there is a word x at distance at least d from all words in Cκ. As

shown in the proof of [Lin92, Theorem. 5.1.8], the [n, κ + 1]q code Cκ+1 spanned by Cκ

and x has minimum distance at least d.

Finite GV bound based on Lemma 5.2

The following theorem is based on Lemma 5.2 that also proves (see Remark 6.2 next)
the existence of (u, 1, t) PSMCs from Construction 4.2 (cf. Section 4.5.1).
Theorem 6.1. Let q be a prime power. Let n, k, t, u be non-negative integers such
that

2(t+⌊ u
q

⌋)∑
i=0

(
n

i

)
(q − 1)i < qn−k+1.

There exists a q-ary (u, 1, t) PSMC of length n and size qk−1.
Proof. Let C1 be the [n, 1, n]q code generated by the all-one word. Lemma 6.1 implies
that there is an [n, k]q code with minimum distance at least 2(t+⌊u

q
⌋)+1 that contains

the all-one word. Lemma 5.2 shows that Ck can be used to construct a PSMC with
the claimed parameters.
Remark 6.2. GV bound from Theorem 4.2 is a special case of Theorem 6.1 for u ≤
q − 1.

89

6 Bounds on Memories with Defects and Errors

Gilbert-Varshamov-like bound by Construction 4.4

Regarding Construction 4.4 (in Section 4.5.2), we begin with the following lemmas that
provide the bedrock to Theorem 6.2 to demonstrate the presence of (u, 1, t) PSMCs.

Lemma 6.2. Let q be a prime power, and let 1 ≤ k < n. Let E ⊂ Fn
q \ {0}. The

fraction of [n, k]q codes with non-empty intersection with E is less than |E|/qn−k.

Proof. Let C be the set of all [n, k]q codes. Obviously,∣∣∣∣{C ∈ C | C ∩ E ̸= ∅
}∣∣∣∣ ≤ ∑

C∈C:C∩E ̸=∅

∣∣∣ C ∩ E
∣∣∣ =

∑
C∈C

∣∣∣ C ∩ E
∣∣∣.

It follows from [Loe97, Lemma 3] that

1
| C |

∑
C∈C

∣∣∣ C ∩ E
∣∣∣ = qk − 1

qn − 1 |E| <
|E|
qn−k

.

Remark 6.3. If E has the additional property that λe ∈ E for all e ∈ E and λ ∈
Fq \ {0}, then the upper bound in Lemma 6.2 can be reduced to |E|/(q − 1)qn−k.

Lemma 6.3. Let k, n, d and d⊥ be integers such that

d−1∑
i=0

(
n

i

)
(q − 1)i <

1
2qn−k and

d⊥−1∑
i=0

(
n

i

)
(q − 1)i <

1
2qk.

There exists a q-ary [n, k] code C with minimum distance at least d such that C⊥ has
minimum distance at least d⊥.

Proof. Let C denote the set of all [n, k]q codes. By applying Lemma 6.2 with E =
{e ∈ Fn

q | 1 ≤ wt(e) ≤ d − 1} and using the first condition of the lemma, we see
that more than half of the codes in C have empty intersection with E, that is, have
minimum distance at least d. Similarly, more than half of all q-ary [n, n − k] codes
have minimum distance at least d⊥, and so more than half of the codes in C have a
dual with minimum distance at least d⊥. We conclude that C contains a code with
both desired properties.

Theorem 6.2 (Gilbert-Varshamov-like bound by Construction 4.4). Let q be a prime
power. Suppose the positive integers u, t, n, k, l with u, t ≤ n and l < k satisfy

2t∑
i=0

(
n

i

)
(q − 1)i <

1
2qn−l, (6.1)

90

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)

u−q+2∑
i=0

(
n

i

)
(q − 1)i <

1
2ql, (6.2)

2t∑
i=0

(
n

i

)
(q − 1)i < qn−k+1. (6.3)

Then there is a q-ary (u, 1, t) PSMC of length n and cardinality qk−l.
Proof. According to Lemma 6.3, (6.1) and (6.2) imply the existence of an [n, l]q code C0
with minimum distance at least 2t + 1 for which the dual code has minimum distance
at least u− q + 3. Lemma 6.1 shows that C0 can be extended to an [n, k]q code C with
minimum distance at least d. As C has a generator matrix of the form required by
Construction 4.4, the theorem follows.

Gilbert-Varshamov-like bound by Construction 4.5

In this section, we give sufficient conditions for the existence of matrices satisfying the
conditions of Proposition 4.1 (located in Section 4.5.2) since it achieves larger sizes of
coding schemes produced from a modified version of Construction 4.5.

We start with Lemmas 6.4 and 6.5, then we prove the main theorem (Theorem 6.3).

Lemma 6.4. Let G be a k × n matrix over Fq. For s ≥ 1, let

ds = min{wt(mG) |m ∈ Fk
qs \ {0}}.

Then ds = d1.
Proof. Let s ≥ 1. As Fq ⊆ Fqs , it is clear that d1 ≥ ds.

To show the converse, we use the trace function T defined as T (x) = ∑s−1
i=0 xqi . As

is well-known, T is a non-trivial mapping from Fqs to Fq, and

T (ax + by) = aT (x) + bT (y), (6.4)

for all x, y ∈ Fqs and a, b ∈ Fq. We extend the trace function to vectors by applying it
coordinate-wise.

Let m ∈ Fk
qs \ {0}. We choose λ ∈ Fqs such that T (λ ·m) ̸= 0. As T (0) = 0, we

infer that wt(mG) = wt(λ ·mG) ≥ wt(T (λ ·mG)). As all entries from G are in Fq,
it follows from (6.4) that T (λ ·mG) = T (λ ·m)G. As a consequence,

wt(mG) ≥ wt(T (λ ·mG)) = wt(T (λ ·m)G) ≥ d1,

where the last inequality holds as T (λ ·m) ∈ Fk
q \ {0}.

Now we introduce Lemma 6.5 which is the binary version of Lemma 6.3 but with
an extra restriction on the weight of the words.

91

6 Bounds on Memories with Defects and Errors

Lemma 6.5. Let k, n, d and d⊥ be integers such that

d−1∑
i=0

(
n

i

)
<

1
4 · 2

n−k and
d⊥−1∑
i=0

(
n

i

)
<

1
2 · 2

k.

There exists a binary [n, k] code C with minimum distance at least d without a word of
weight more than n− d + 1 such that C⊥ has minimum distance at least d⊥.

Proof. Similar to the proof of Lemma 6.3. Let C denote the set of all binary [n, k] codes.
By applying Lemma 6.2 with E = {e ∈ Fn

2 | 1 ≤ wt(e) ≤ d− 1 or wt(e) ≥ n−d + 1},
we infer that the first inequality implies that more than half of the codes in C contain
no element from E. Similarly, the second inequality implies that more than half of the
binary [n, n− k] codes have minimum weight at least d⊥, and so more than half of the
codes in C have a dual with minimum distance at least d⊥. We conclude that there is
a code in C having both desired properties.

Theorem 6.3 (Gilbert-Varshamov-like bound by Construction 4.5). Let
n, k, l, u, t, µ be positive integers with u ≤ n, 2t < n and l < k be such that

2t∑
i=0

(
n

i

)
<

1
4 · 2

n−l, (6.5)

⌊ u

2µ−1 ⌋∑
i=0

(
n

i

)
<

1
2 · 2

l, (6.6)

2t∑
i=0

(
n

i

)
(2µ − 1)i < 2µ(n−k+1), (6.7)

Then there exists a (u, 1, t) PSMC of length n over F2µ with cardinality
2 · 2µ(k−l−1)2l(µ−1).

Proof. By Lemma 6.5, there exists a binary [n, l] code C0 with minimum distance at
least 2t + 1 for which C⊥

0 has minimum distance at least ⌊ u
2µ−1 ⌋+ 1 with the following

additional property: if H0 ∈ Fl×n
2 is a generator matrix for C0, then the binary code

Cµ with generator matrix
[
H0
1

]
has minimum distance at least 2t + 1. According to

Lemma 6.4, the code Cµ over F2µ with this generator matrix has minimum distance at
least 2t + 1 as well. Lemma 6.1 implies that Cµ can be extended to an [n, k]2µ code
with minimum distance at least 2t + 1. The [n, k] code has a generator matrix of the

form G =

H0
G1
1

. Application of Proposition 4.1 yields the claim.

92

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)

Finite GV bound from trivial construction

Undoubtedly, a (q − 1)-ary code of length n with minimum distance at least 2t + 1 is
a q-ary (u, 1, t) PSMC of length n with u = n. Combining this observation with the
Gilbert bound for a (q − 1)-ary alphabet, we obtain the following corollary.
Corollary 6.3. Let q ≥ 3, and let

M =
 (q − 1)n∑2t

i=0

(
n
i

)
(q − 2)i

 .

There is a q-ary (n, 1, t) PSMC of length n and cardinality M .
So far we have covered the GV-like bounds for our code constructions for finite

length n.

6.3.2 Discussion and Numerical Results
We provide different comparisons between our code constructions and the existence of
the code based on Theorem 6.1, Theorem 6.2 and Theorem 6.3. Next, we also compare
to the known limits and investigate the trade-off between masking and error-correction
as described in Section 5.1.2. Note that we select q = 22 in Figure 6.4 and q = 23 in
the rest of the figures (except Figure 6.2 where q = 7) since we know from Section 3.2.1
that the multi-level cell (MLC) has four levels and the triple-level cell (TLC) has eight
levels. Hence, q = 4 and q = 8 are practical choices to match these memories from
one side and consider Construction 4.5 on the other.

Comparison of Theorem 6.1 for u ≤ q − 1 to other Bounds

Figure 6.2 illustrates the rates of a (q − 1, 1, t) PSMC obtained from Theorem 4.2
stated in Section 4.5.1 (applying Theorem 6.1 for the special case u ≤ q − 1) for
n = 114, q = 7 and 0 ≤ t ≤ 56. We show how close explicit BCH codes that contain
the all-one word of certain rates R and that can correct designed distances d ≥ 2t + 1
to the achieved rates from Theorem 4.2. We note that the solid red graph matches the
dashed-dotted green plot for a few code parameters and overpasses it for t = 39. We
also compare to the classical q-ary GV bound (in dashed black) as well as to reduced
alphabet (q − 1)-ary GV bound (in dashed-dotted blue).

Construction 4.2 in Chapter 4 imposes a generator matrix of an error correction code
that discriminates one dimension which is the all-one vector to satisfy the partially
defective constraints (defined in Section 3.4.3 and Definition 4.2). Thus, we show upper
bounds on the rates that can be obtained from Theorem 4.2 using the Griesmer bound
[Gri60] (cf. Section 2.4.2), and the Ball–Blokhuis bound [BB13] (cf. Section 2.4.3) on
the size of codes containing the all-one word, i.e., a weight n codeword of dimension
k > 1.

93

6 Bounds on Memories with Defects and Errors

10 20 30 40 50 550

0.2

0.4

0.6

0.8

1

Errors (t)

R
at

e
(R

)

Ball–Blokhuis bound [BB13]
Griesmer bound [Gri60]

q-ary GV (u = 0)
Theorem 6.1, u ≤ 6

(q − 1)-ary GV (u arbitrary)
BCH Codes

Figure 6.2: Comparison of other upper and lower limits to our derived GV-like bound
in Theorem 6.1 taking n = 114, q = 7, 0 ≤ t ≤ 56 and u ≤ q − 1. The
dashed-dotted green curve shows the rates for Theorem 4.2 by Theorem 6.1
for u ≤ q − 1 in which codes that have the all-one words are considered.
This curve for several code parameters matches the red line that shows
the rates of BCH codes that contain the all-one word with regard to the
designed distances d ≥ 2t + 1.

94

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)

Comparison among Theorem 6.2, Theorem 6.3 and (q − 1)-ary
Gilbert-Varshamov bound

We plot the achievable rates (R = logqM/n) as a function of t for different fixed
values of u. Figure 6.3 is the resulting plot for n = 200, µ = 3 and q = 2µ. It can be
seen that the GV-like bound in different ranges of u and t based on Construction 4.4
(cf. Section 4.5.2) improves upon the (q − 1)-ary GV bound for u ≤ 5 as depicted in
the solid red curve, and improves further (up to u ≤ 20) based on Construction 4.5
(cf. Section 4.5.2) as shown in the dashed gray line (3rd one from above). The dashed
dotted blue curve is used to see what if we map our 23 levels such that we avoid the
subscript 0 to compare with 7 levels. It is obvious that for µ = 3, the rate loss1 resulting
from using q − 1 instead of q symbols is already quite small. Note that for u = 0 the
solid red curve mostly achieves the exact rates obtained from the standard 23-ary GV
bound for 0 ≤ t ≤ 80, and so as for the dashed red curve but for 0 ≤ t ≤ 47. For µ = 2,
the improvements from Construction 4.4 (u ≤ 10) and Construction 4.5 (u ≤ 30) upon
a usual (q − 1)-ary GV bound are more significant as shown in Figure 6.4.

Comparisons between Theorem 6.1 and (q − 1)-ary Gilbert-Varshamov bound

In Figure 6.5, we compare the GV like bound from Theorem 6.1 for q = 23 with the
conventional GV bound for q − 1 = 7 shown in dashed blue curve. For q = 8, we
observe that the conventional q − 1-ary GV bound is superior to the derived GV-like
bound from Theorem 6.1 for u ≥ 40. However, applying Theorem 6.1 where u ≤ 20,
the traditional q−1-ary GV bound is a bad choice. We observe that the dashed-dotted
green curve by Theorem 6.1 for (u ≤ 7 as stated in Remark 6.2) shows the highest
rates.

Comparisons between Theorem 6.3 and Theorem 6.1

In Figure 6.6, we compare Theorem 6.3 and Theorem 6.1. Theorem 6.3 is showing
higher rates for larger u values, for example taking u = 40 and t = 1, the rate is
R = 0.87 from Theorem 6.3 while R = 0.83 from Theorem 6.1. It is interesting to
note that for u = 30 and t > 10 Theorem 6.1 is better, and for u = 10 and t > 18
Theorem 6.1 is as good as Theorem 6.3.

Comparisons of application of Theorem 5.1 vs direct application of Theorem 6.2

For given (u, t), we illustrate the trading (u + 1, t − 1) in Figure 6.7. For some of
t and a few of u values, it is advantageous if the encoder introduces an error in a
partially-stuck-at position in order to mask this position. The orange solid curve, for
instance, represents the rates that have been determined by Theorem 6.2 for u = 17

1For t = 0, the loss is 1− log8(7) = 0.0642.

95

6 Bounds on Memories with Defects and Errors

10 20 30 40 50 60 70 800

0.2

0.4

0.6

0.8

1

Errors (t)

R
at

e
(R

)

u = 0
u = 10
u = 20
u = 30
u = 40
u = 50
u = 60
u = 70
u = 80
u = 90
u = 100

(q − 1)-ary GV
(u arbitrary)

Figure 6.3: The achievable rates R = 1
n

log23 M of GV bounds for different u, t for
n = 200 and q = 23 in Theorem 6.2 and Theorem 6.3, where M is the
code cardinality. They are also compared to the rates from an ordinary
7-ary GV bound for different t as illustrated in the dashed-dotted blue
plot. The solid and the dashed lines represent the derived GV like bounds
from Theorem 6.2 and Theorem 6.3, respectively.

96

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)

10 20 30 40 50 60 70 800

0.2

0.4

0.6

0.8

1

Errors (t)

R
at

e
(R

)

u = 0
u = 10
u = 20
u = 30
u = 40
u = 50
u = 60
u = 70
u = 80
u = 90
u = 100

(q − 1)-ary GV
(u arbitrary)

Figure 6.4: The achievable rates R = 1
n

log22 M of GV bounds for different u, t for
n = 200 and q = 22 in Theorem 6.2 and Theorem 6.3. They are also
compared to the rates from an ordinary 3-ary GV bound for different t
as illustrated in the dashed-dotted blue plot. The solid and the dashed
lines correspond to the derived GV like bounds by Theorem 6.2 and by
Theorem 6.3, respectively.

.

97

6 Bounds on Memories with Defects and Errors

10 20 30 40 50 60 70 800

0.2

0.4

0.6

0.8

1

Errors (t)

R
at

e
(R

)

Theorem 6.1: u ≤ 7 Theorem 6.1: u = 10
Theorem 6.1: u = 20 Theorem 6.1: u = 30
Theorem 6.1: u = 40 Theorem 6.1: u = 50
Theorem 6.1: u = 60 Theorem 6.1: u = 70
Theorem 6.1: u = 80 Theorem 6.1: u = 90

Theorem 6.1: u = 100 (q − 1)-ary GV
(u arbitrary)

Figure 6.5: The achievable rates R = 1
n

log23 M of GV bounds for different u, t for
n = 200 and q = 23 in Theorem 6.1 that are compared to the reduced
alphabet conventional (q − 1)-ary GV bound for different t. The dashed-
dotted green curve represents the rates from Theorem 6.1 when u ≤ q− 1.

98

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)

0 5 10 15 200.4

0.5

0.6

0.7

0.8

0.9

1

Errors (t)

R
at

e
(R

)

(q − 1)-ary GV
(u arbitrary)

Theorem 6.3, u = 10
Theorem 6.3, u = 30
Theorem 6.3, u = 40
Theorem 6.1, u = 10
Theorem 6.1, u = 30
Theorem 6.1, u = 40

Figure 6.6: The achievable rates R = 1
n

logq M of GV bounds for different u =
{10, 30, 40}, and t = {0, 1, 2, 4, 5, 10, 20} for n = 200 and q = 23 in Theo-
rem 6.3 and Theorem 6.1. They are also compared to the rates for (q− 1)-
ary GV bound as shown in dashed black graph.

99

6 Bounds on Memories with Defects and Errors

and 0 ≤ t ≤ 50, while the orange dotted sketch highlights the rates for u = 16 while
1 ≤ t ≤ 51. Due to the exchange such that u + 1 = 17 and 0 ≤ t− 1 ≤ 50, the orange
dotted line slightly fluctuates up and down the rates shown in the orange solid curve
for most t values.

Let us describe some points of Figure 6.7 in Table 6.1. Let Cu,t be a code by
Theorem 6.2 whose rate is R given in Table 6.1 at u row and t column. Take C21,15
so that its rate R = 0.470. By applying Theorem 5.1 (see Section 5.1.2) on C21,15, we
obtain a code C22,14 of R = 0.470. Direct application of Theorem 6.2 yields a C22,14 of
rate R = 0.475 as highlighted in Table 6.1. We conclude that in this case, the trade
by Theorem 5.1 gives lower rates than taking the same code directly by Theorem 6.2
for given (u = 22, t = 14).

On contrary, for larger t values, Table 6.1 shows that the exchange is beneficial
giving higher rates. For example, we start with C21,41 whose R = 0.105, then applying
Theorem 5.1 gives C22,40 of R = 0.105 which is greater than R = 0.100 that has been
obtained directly by Theorem 6.2 as stated in Table 6.1.

Table 6.1: Table of selected points from Figure 6.7 with slightly lower and higher rates
due to trading. All points are from Theorem 6.2.

H
HHH

HHu
t 13 14 15 . . . 40 41 42

16 0.560 0.545 0.525 . . . 0.170 0.160 0.150
17 0.545 0.530 0.510 . . . 0.155 0.145 0.135
...

...
...

...
...

...
...

...
21 0.505 0.490 0.470 . . . 0.115 0.105 0.095
22 0.490 0.475 0.455 . . . 0.100 0.090 0.080
23 0.480 0.465 0.445 . . . 0.090 0.080 0.070

Comparisons of applications of Theorem 5.1, Lemma 5.1, Lemma 5.2 vs direct
application of Theorem 6.3

For the derived GV bound based on Construction 4.5 from Section 4.5.2 obtained
by Theorem 6.3, we demonstrate the exchange of a one error correction ability with
a single masking capability of a partially stuck cell following Theorem 5.1 (see Sec-
tion 5.1.2) in Figure 6.8. The solid and dotted lines represent the rates before and
after trading, respectively. We also show the exchange by Lemma 5.1 and Lemma 5.2
in which the reduction of the correctable errors by one increases u by 2µ−1 and 2µ,
respectively. As it is seen in Figure 6.8, every single solid curve by Theorem 6.3 cor-
responds to multiple values of u due to the floor operation where C⊥

0 has a minimum

100

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)

0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Errors (t)

R
at

e
(R

)

Theorem 6.2 (u, t) : u = 17
Theorem 6.2 (u, t) : u = 22
Theorem 6.2 (u, t) : u = 26

Theorem 5.1 (u + 1, t− 1) : u = 16
Theorem 5.1 (u + 1, t− 1) : u = 21
Theorem 5.1 (u + 1, t− 1) : u = 25

Figure 6.7: The achievable rates R = 1
n

logq M of GV bounds for different u, and t for
n = 200 and q = 23 in Theorem 6.2. The solid plots are the rates from the
derived GV-like bound and the dotted graphs are the rates after trading
u + 1, t− 1 by Theorem 5.1.

101

6 Bounds on Memories with Defects and Errors

distance at least ⌊ u
2µ−1 ⌋+ 1. For instance, for all u = 8, 9, 10, 11 and µ = 3, we obtain:

⌊ u
23−1 ⌋ + 1 = 3, and the transition starts for u = 12 as ⌊ u

23−1 ⌋ + 1 = 4. Similarly by
the floor operation there is no change for the larger values of u = 13, 14, 15, and so
on. Let us discuss the following curves. For u = 19, the orange solid curve shows the
rates by Theorem 6.3. Exchanging u + 1 and t − 1 throughout Theorem 5.1 obtains
the orange dotted line for u + 1 = 20 which lies slightly below the orange solid plot.
Hence, the exchange gives lower rates. However, it provides rate R = 0.380 for t = 30
while direct application of Theorem 6.3 (compared to its corresponding graph which
is the solid green curve at u = 20, 21, 22, 23) does not.

Now, we apply Lemma 5.1 rather than Theorem 5.1. For the same achieved rates,
we observe that the dashed red graph for u+23−1 = 23 shows the exact rates from the
orange dotted curve for u + 1 = 20. Therefore, it is clear that Lemma 5.1 provides a
gain of masking exactly 3 more cells with regard to Theorem 5.1. Further, Lemma 5.1
provides rate at t = 30 while Theorem 5.1 stops giving rates at t ≥ 29. For this graph,
we conclude that Lemma 5.1 surpasses Theorem 5.1.

However, if we take u = 23 directly by Theorem 6.3, we achieve slightly higher
rates. We conclude that Theorem 6.3 can directly estimate the maximum possible
masked u cells that can also be achieved applying Lemma 5.1, and can achieve slightly
higher rates. On contrary, Theorem 6.3 does not give rates for larger t values while
Lemma 5.1 and Theorem 5.1 do that.

On the other hand, as Theorem 6.3 is based on Construction 4.5 that contains a
word of weight n, Lemma 5.2 is applicable under the condition that 2(t + ⌊u

q
⌋) < d

(cf. Remark 5.1). Hence, we can achieve higher rates as shown in the dashed-dotted
curve while masking up to the same number of u cells, rather employing Lemma 5.1
or Theorem 5.1.

For that we describe some points of Figure 6.8 by Table 6.2. Let Cu,t be a code
by Theorem 6.3 whose rate is R given in Table 6.2 at u row and t column. Taking
C19,27 gives C20,26 and C23,26 with R = 0.435 applying Theorem 5.1 and Lemma 5.1,
respectively. In contrary, taking C19,31 is advantageous as there are codes (C20,30 by
Theorem 5.1 and C23,30 by Lemma 5.1) with R = 0.380 while direct application of
Theorem 6.3 cannot provide these codes as highlighted in green with "None". Now,
we apply Lemma 5.2 on a code obtained by Theorem 6.1 for (u = 7, t = 27) to obtain
the code C15,26 of rate R = 0.465 that satisfies 2(26 + ⌊15

8 ⌋) < 55. The achieved rate
is higher compared to C15,26 of R = 0.460 that is directly obtained by Theorem 6.3,
or applying Theorem 5.1 on C14,27 to obtain C15,26 of R = 0.445, or using Lemma 5.1
on C11,27 to obtain C15,26 of R = 0.456. This result does not mean that application
Lemma 5.2 on a code obtained by Theorem 6.1 always provides higher code rates for
the same parameters u, t (see Figure 6.6).

102

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)

0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Errors (t)

R
at

e
(R

)

Theorem 6.3 (u, t) : u = 8, . . . , 11
Theorem 6.3 (u, t) : u = 12, . . . , 15
Theorem 6.3 (u, t) : u = 16, . . . , 19
Theorem 6.3 (u, t) : u = 20, . . . , 23
Theorem 6.3 (u, t) : u = 24, . . . , 27
Theorem 5.1 (u + 1, t− 1) : u = 19
Theorem 5.1 (u + 1, t− 1) : u = 23
Theorem 5.1 (u + 1, t− 1) : u = 27
Lemma 5.1 (u + 4, t− 1) : u = 19

Lemma 5.2 (u + 8, t− 1) : u = q − 1

Figure 6.8: The achievable rates R = 1
n

logq M of GV bounds for different u, and t for
n = 200 and q = 23 in Theorem 6.3. The solid plots are the rates from the
derived GV like bound and the dotted graphs are the rates after trading
u + 1, t − 1 by Theorem 5.1. We also show the exchange by Lemma 5.1
and Lemma 5.2 in which the reduction of the correctable errors by one
increases u by 2µ−1 and 2µ, respectively.

103

6 Bounds on Memories with Defects and Errors

Table 6.2: Table of selected points from Figure 6.8. All points are from Theorem 6.3.

H
HHH

HHu
t 26 27 28 29 30 31 32

11 0.471 0.456 0.441 0.431 0.416 0.401 0.391
12 0.460 0.445 0.430 0.420 0.405 0.390 0.380
...

...
...

...
...

...
...

...
14 0.460 0.445 0.430 0.420 0.405 0.390 0.380
15 0.460 0.445 0.430 0.420 0.405 0.390 0.380
...

...
...

...
...

...
...

...
19 0.450 0.435 0.420 0.410 0.395 0.380 None
20 0.441 0.426 0.411 0.401 None None None
...

...
...

...
...

...
...

...
23 0.441 0.426 0.411 0.401 None None None

6.3.3 Asymptotic Gilbert–Varshamov-type Bound on PSMCs
In this section, we present the asymptotic version of the GV bounds from the previous
section. That is, we provide lower bounds on the achievable rates of a q-ary (u, 1, t)
PSMCs in the regime that the code length n tends to infinity, and the number u of
partially-stuck-at cells and the number t of random errors both grow linearly in n.

In the subsequent sections, we use Lemma 2.2 (cf. Section 2.4.6) that estimates the
volume of a Hamming ball using the q-ary entropy function.

Asymptotic Gilbert-Varshamov-like bound by Construction 4.2

We observed in Section 6.3.1 that Theorem 6.1 provides (note Remark 6.2) the ex-
istence of PSMCs from Construction 4.2 (cf. Section 4.5.1). Then, the asymptotic
version of Theorem 6.1 is expressed as follows.

Theorem 6.4. Let q be a prime power. Let 0 ≤ τ, υ < 1 be such that

2(τ + υ

q
) < 1− 1

q
.

For sufficiently large n, there exists an (⌊υn⌋, 1, ⌊τn⌋) PSMC of length n and rate at
least

1− hq(2(τ + υ

q
))− 2

n
.

104

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)

Proof. Let n be a positive integer such that ⌈nhq(2(τ + υ
q
)⌉ < n. Let t = ⌊τn⌋ and

u = ⌊υn⌋. Take k = n− ⌈nhq(2τ + 2υ
q
)⌉. Lemma 2.2 (see Section 2.4.6) implies that

Volq(n, 2t + 2⌊u
q
⌋) ≤ qn−k, and so, according to Theorem 6.1, there is a q-ary (u, 1, t)

PSMC of length n with rate k−1
n
≥ 1− hq(2(τ + υ

q
))− 2

n
.

Asymptotic Gilbert-Varshamov-like bound by Construction 4.4

Theorem 6.2 (cf. Section 6.3.1) was found as GV-like bound from Construction 4.4
(stated in Section 4.5.2). We state its asymptotic version in the following theorem.

Theorem 6.5 (Asymptotic Gilbert-Varshamov-like bound from Theorem 6.2). Let q
be a prime power. Let υ, τ be such that

0 < υ, 2τ < 1− 1
q

and hq(υ) + hq(2τ) < 1.

For sufficiently large n, there exists a q-ary (⌊υn⌋, 1, ⌊τn⌋) PSMC of length n and rate
at least

1− hq(2τ)− hq(υ)−
4 logq(2) + 2

n
.

Proof. Let n be a positive integer. Write u = ⌊υn⌋ and t = ⌊τn⌋. Then Volq(n, u −
q + 2) ≤ Volq(n, u). Hence, by setting

l = ⌈nhq(υ) + 2 logq(2)⌉,

Lemma 2.2 implies that (6.2) is satisfied.
Similarly, by setting

k = n− ⌈nhq(2τ) + 2 logq(2)⌉,
it is ensured that (6.3) is satisfied.
According to Theorem 6.2, there is a q-ary (u, 1, t) PSMC of length n and size qk−l,
so with rate k−l

n
. The choices for k and l show that the theorem is true.

Remark 6.4. Theorem 6.5 in fact holds for classical stuck-at cells instead of stuck-
at-1 errors, as follows from considering the generalization of Theorem 6.2 in Proposi-
tion 4.2, i.e., Heegard’s construction [Hee83].

Asymptotic Gilbert-Varshamov-like bound by Construction 4.5

Theorem 6.3, expressed in Section 6.3.1, is the GV-type bound regarding Construc-
tion 4.5, presented in Section 4.5.2. The following sequel is its GV-like boundary in
the asymptotic model.

105

6 Bounds on Memories with Defects and Errors

Theorem 6.6 (Asymptotic Gilbert-Varshamov-like bound from Theorem 6.3). Let µ
be a positive integer, and let υ and τ be such that

0 ≤ υ

2µ−1 <
1
2 , 0 < 2τ <

1
2 , and h2(

υ

2µ−1) + h2(2τ) < 1.

For sufficiently large n there is a 2µ-ary (⌊υn⌋, 1, ⌊τn⌋) PSMC of length n and rate at
least

1− h2µ(2τ)− 1
µ

h2(
υ

2µ−1)− 2
n
− 3

µn
.

Proof. For notational convenience, we set υ0 = υ
2µ−1 and η = 1−h2(2τ)−h2(υ0). Note

that η > 0.
Let n be a positive integer satisfying n ≥ 7

η
, and let u = ⌊υn⌋, u0 = ⌊ u

2µ−1 ⌋ and
t = ⌊τn⌋. We set

l = ⌈nh2(υ0)⌉+ 3.

Lemma 2.2 implies that (6.6) is satisfied. Moreover, as

n− l − 3 ≥ n− nh2(υ0)− 7 = nh2(2τ) + nη − 7 ≥ nh2(2τ),

Lemma 2.2 implies that (6.5) is satisfied.
We set

k = n− ⌈nh2µ(2τ)⌉.
Lemma 2.2 implies that (6.7) is satisfied.

According to [GRS19, Corollary 3.3.4], we have that h2µ(2τ) ≤ h2(2τ), and so

k − l ≥ n− nh2(2τ)− 1− nh2(υ0)− 4 = nη − 5 ≥ 2.

Theorem 6.3 implies the existence of a 2µ-ary (u, 1, t) PSMC of length n with size
2 · 2µ(k−1)2−l, i.e., its rate is

k − 1
n
− l − 1

µn
≥ 1− h2µ(2τ)− 1

µ
h2(υ0)−

2
n
− 3

µn
.

Section 6.3.1 showed Corollary 6.3 as the GV-type bound corresponding to the
(q − 1)-ary codes being used as PSMCs. Below, we state the asymptotic type of
Corollary 6.3.

Theorem 6.7 (Asymptotic Gilbert-Varshamov bound from Corollary 6.3). Let q ≥ 3.
For each positive integer n and each τ with 0 ≤ 2τ < 1 − 1

q−1 , there exists a q-ary
(n, 1, ⌊τn⌋) PSMC of length n and rate at least

(1− hq−1(2τ)) · logq(q − 1).

106

6.3 Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)

Proof. Let t = ⌊τn⌋. Corollary 6.3 implies the existence of a q-ary (n, 1, t) PSMC of
length n and cardinality M satisfying

M ≥ (q − 1)n

Vq−1(n, 2t) ≥ (q − 1)n(1−hq−1(2τ)),

where the last inequality holds by Lemma 2.2.

6.3.4 Discussion and Analytical Results
In the remainder of this chapter, we state the results of the analytical comparisons of
the asymptotic GV bounds from Theorems 6.4, 6.5 and 6.6, ignoring the terms that
tend to zero for increasing n. We will use the following lemma.

Lemma 6.6. Let q ≥ 2 be an integer. If 0 ≤ x, y are such that x + y ≤ 1, then

hq(x + y) ≤ hq(x) + hq(y).

Proof. Let 0 ≤ y < 1, and consider the function fy(x) = hq(x+y)−hq(x)−hq(y) on the
interval [0, 1− y]. Clearly, f ′

y(x) = h′
q(x + y)− h′

q(x) ≤ 0, where the inequality follows
from the fact that the second derivative of hq is non-negative. Hence, fy(x) ≤ fy(0) = 0
for each x ∈ [0, 1− y].

Comparisons between Theorem 6.4 and Theorem 6.5

Proposition 6.2. If υ, τ and q are such that the conditions of Theorem 6.4 and
Theorem 6.5 are met, then the rate guaranteed by Theorem 6.4 is at least equal to the
code rate guaranteed by Theorem 6.5.

Proof. Assume τ and υ are such that the conditions of Theorem 6.4 and Theorem 6.5
are satisfied, that is, such that 2τ + 2υ

q
< 1− 1

q
and hq(υ) + hq(2τ) < 1. By invoking

Lemma 6.6, we see that

hq(2τ + 2v

q
) ≤ hq(2τ) + hq(2 ·

υ

q
) ≤ hq(2τ) + hq(υ),

where the final inequality holds as q ≥ 2 and hq is monotonically increasing on [0, 1− 1
q
].

As a consequence, the code rate guaranteed by Theorem 6.4 is at least equal to the
code rate guaranteed by Theorem 6.5.

Comparisons between Theorem 6.5 and Theorem 6.6

Proposition 6.3. If υ, τ and q = 2µ are such that the conditions of Theorem 6.5 and
Theorem 6.6 are met, then the code rate guaranteed by Theorem 6.6 is at least equal
to the code rate guaranteed by Theorem 6.5.

107

6 Bounds on Memories with Defects and Errors

Proof. Assume that the conditions of Theorem 6.5 and Theorem 6.6 are satisfied. The
difference between the rate of Theorem 6.6 and of Theorem 6.5 equals

h2µ(υ)− 1
µ

h2(
υ

2µ−1). (6.8)

According to the conditions of Theorem 6.5, υ ≤ 1 − 1
2µ , and so h2µ(υ) ≥ h2(υ

2µ−1).
As h2µ(x) = 1

µ
h2(x) + x log2µ(2µ − 1), the difference in (6.8) is non-negative. That is,

Theorem 6.6 is better than Theorem 6.5.

We note that the requirement 2τ < 1
2 from Theorem 6.6 is stricter than the re-

quirement 2τ < 1 − 1
2µ from Theorem 6.5. That is, there are pairs (τ, υ) for which

Theorem 6.5 is applicable, but Theorem 6.6 is not.
Comparison of Theorem 6.4 and Theorem 6.6 is more complicated. We have the

following partial result.

Comparisons between Theorem 6.4 and Theorem 6.6

Proposition 6.4. Let υ, τ > 0 and q = 2µ be such that the conditions of Theorem 6.4
and Theorem 6.6 are met. If υ is sufficiently small, then the rate guaranteed by The-
orem 6.4 is larger than the rate guaranteed by Theorem 6.6.

Proof. Assume that τ and υ are such that the conditions of Theorem 6.4 and of
Theorem 6.6 are satisfied, that is, 2τ + 2 υ

2µ < 1− 1
2µ ,

0 ≤ υ ≤ 2µ−2, 0 ≤ 2τ ≤ 1
2 and h2(

υ

2µ−1) + h2(2τ) < 1.

Let fµ(τ, υ0), where υ0 = υ
2µ−1 , be the bound from Theorem 6.4 minus the bound from

Theorem 6.6, that is

fµ(τ, υ0) = h2µ(2τ) + 1
µ

h2(υ0)− h2µ(2τ + υ0).

The definition of the entropy function implies that for any x ∈ [0, 1]

h2µ(x) = 1
µ

(h2(x) + x log2(2µ − 1)). (6.9)

Applying (6.9) , we infer that

µfµ(τ, υ0) = h2(2τ) + h2(υ0)− h2(2τ + υ0)− υ0 log2(2µ − 1). (6.10)

In particular, µfµ(0, υ0) = −υ0 log2(2µ − 1) ≤ 0.
So for τ = 0, Theorem 6.6 is better than Theorem 6.4. It follows from Lemma 6.6

that the three leftmost terms in (6.10) form a non-negative number. The subtraction

108

6.4 Bounds on Polyalphabetic Codes with Finite Alphabets

of the fourth term, however, can result in a negative function value, especially for large
µ.
Example 6.1 (Numerical example). µfµ(0.055, 0.11) = 2 · h2(0.11) − h2(0.22) −
0.11 log2(2µ − 1) ≈ 0.23397 − 0.11 log2(2µ − 1) is positive for µ ≤ 2 and negative
otherwise. ▶

We now prove Proposition 6.4. That is, we show that for τ > 0 and υ0 sufficiently
small, fµ(τ, υ0) > 0. This follows from the Taylor expansion of µfµ(τ, υ0) around
υ0 = 0. Indeed, fµ(τ, 0) = 0, and h′

2(x)→∞ if x ↓ 0.

6.4 Bounds on Polyalphabetic Codes with Finite
Alphabets

Mixed codes, which are error-correcting codes in the Cartesian product of different-
sized spaces (cf. Section 2.5), model degrading storage systems well, e.g., unrelia-
bility due to partially stuck-at scenario (cf. Section 3.4.3). Furthermore, recall that
Section 6.2 exhibits that upper bounds on the size of polyalphabetic codes are also
upper bounds on the partially stuck-at codes. Theretofore, we were motivated to
further investigate different upper/lower bounds on polyalphabetic codes of finite al-
phabets, i.e., unlike the case of unbounded alphabet sizes in [Sid+05]. Our recent
work [YAPW23] focuses on the case of finite alphabets, and generalizes the Gilbert–
Varshamov, sphere-packing, Elias-Bassalygo (in [Bas65], and reported in [Joh63]), and
first linear-programming [Lev98; MRRW77] bounds to that setting. In the latter case,
our proof is also the first for the non-symmetric monoalphabetic q-ary case using Navon
and Samorodnitsky’s Fourier-analytic approach [NS09].

To avoid distracting the reader from the main purpose of this dissertation, we omit
these results and refer the interested reader to our paper [YAPW23]. Nevertheless,
we summarize its main contributions as follows. Unlike [Sid+05] that proposes a
straightforward expression for sphere size, containing an exponential number of terms
(cf. (2.36) in Section 2.5.1), we provide a recursive formula for the size of spheres
that allows efficient computation of exact sizes in any given case, resulting in said
bounds on code sizes. We also derive closed-form upper and lower bounds on the size
of spheres, yielding asymptotic expressions for the size of balls which readily give the
asymptotic Gilbert-Varshamov and sphere-packing bounds. Finally, we develop the
equivalence of the Elias-Bassalygo bound and the first linear-programming bound for
mixed codes, which are tighter for codes with some minimum distances when alphabet
sizes are bounded, in contrast to a known bound (restated in Theorem 2.9 and [Etz22,
Corollary 2.15], which curiously develop the same bound in this context).

109

7
Conclusion and Outlook

This dissertation studied various characteristics of algebraic coding theory focusing
on concepts related to memory with defects.

In Chapter 2, we explored and summarized the channel coding concepts and their
regarded principles. We referred to, in Chapter 3, the state-of-the-art work employing
error-correcting codes for memories with defects (as they are point-to-point commu-
nication schemes with a discreet memoryless channel). We also defined in the same
chapter possible sorts of such memories, their potential noise, and error types.

In Chapter 4, code constructions for non-volatile memories with partial defects
have been proposed. Our constructions can handle both: partial defects (also called
partially stuck cells) and random substitution errors, and require less redundancy
symbols for the number of partially stuck cells u > 1 and alphabet sizes q > 2 than
the known constructions for stuck cells. Compared to error-free masking of partially
stuck cells, our achieved code sizes coincide with those in [WY16], or are even larger.
We summarize our constructions and the previous works on partially/fully stuck cells
in Table 4.3.

In Chapter 5, we have shown that it can be advantageous to intentionally introduce
errors in some partially stuck cells in order to satisfy the stuck-at constraints. For
the general case that is applicable for all of our constructions, we have shown how to
replace any 0 ≤ j ≤ t errors by j masked partially stuck cells. This result has been
improved for our construction based-binary, and further enhanced by another method
for introducing errors in the partially stuck locations (cf. Example 5.2). We gain (e.g.,
for j = 1) exactly 2µ−1 and 2µ (under the condition that 2(t + ⌊ u

2µ ⌋) < d) additional
masked partially stuck cells applying the former improvements, respectively. So far,
determining if introducing errors in partially stuck cells is advantageous or not can
only be done numerically.

We also derived upper and lower limits on the size of our constructions in Chapter 6.
Our sphere-packing-like bound for the size of (Σ, t) PSMCs (partially-stuck-at-masking
codes) has been compared to the usual sphere-packing upper bound, and for the case
of no errors (t = 0) to [WY16, Theorem 2].

110

We have numerically compared our Gilbert–Varshamov-type bounds, for given (u, t),
to each other and to (q−1)-ary codes. For u ≤ q−1, we formulated a theorem to state
the existence of (u, 1, t) PSMCs with rates that almost match the ones from the usual
q-ary GV bound. Moreover, up to u = 20 for q = 8, we show that application of this
theorem is better than using (q−1)-ary code as mentioned in [WY16, Section III]. On
the other hand, for q = 4 and u = 10, our other derived theorems for GV-like bound
require less redundancy than (q − 1)-ary code.

Treating partially stuck cells as errors can reduce the necessary redundancy for some
parameters. Our work utilized the formulated GV-type bounds to demonstrate that
sacrificing a single error correctability can lead to higher code rates and more masked
cells.

In the asymptotic regime of our GV-like bounds, several bounds are strong competi-
tors, but determining which one is the best choice is not a simple task. The analytical
comparison between two of the competing bounds, referred to as Theorem 6.4 and
Theorem 6.6, is particularly challenging. Numerical results presented earlier in Chap-
ter 6 provide additional confirmation of this challenge. Finally, we shortly summarized
our derived upper/lower bounds on polyalphabetic codes considering limited allowed
alphabets in some coordinates. Our formulated closed-form expressions on the size
of spheres readily express the (asymptotic) Gilbert-Varshamov and sphere-packing
bounds.

The open problems in coding for partially stuck memory cells include finding more
efficient coding schemes using alternative metrics (instead of the Hamming metric)
and exploring the potential of combining different coding models. Further research
involves using array codes to repair burst errors or utilizing polyalphabetic mother
codes to propose substitute coding algorithms.

111

A
Appendix

The appendix covers some of our expectations, observations, remarks, alternatives,
and earlier findings. Appendix A.1 comments on array codes in storage appli-

cations. Then Appendix A.2 provides an observation and a remark on polyalphabetic
mother code-based construction. Short comparisons between other coding-built ap-
proaches for unreliable memories and our code constructions have also been listed in
Appendix A.3. An alternative proof of Proposition 4.2, which is located in Chapter 4,
is given in Appendix A.4. Finally, some of our interesting earlier results on the GV-like
bound based on our constructions in Section 4.5.2 have been stated in Appendix A.5.

A.1 Observation on Array Codes in Storage
Applications

In the literature on coding theory, there are also array codes, which are generalization
of scalar codes (also called vector codes1) where their elements are matrices, i.e.,
codewords are represented in columns instead of single coordinates. In these codes, a
codeword of a linear code over Fp (for prime p) represents a row of the array codeword
over Fpµ (for µ > 1), i.e., applying Definition A.1 given below. The remarkable
property of array codes is that they are seen as codes over an extension field with the
same parameters, fulfilling Remark 2.2.

Array codes are famous for their usability in storage applications. For example, a
flash memory unit (see Section 3.2.1) commonly stores any of the 2µ values as a binary
column representation, where µ ≥ 1 is referred to as the subpacketization. Each bit
located on a different page belongs to a certain 2µ-ary memory cell and holds either
0 or 1. Any vector m ∈ Fk

2µ can be represented as a matrix M ∈ Fµ×k
2 applying the

following definition.
1In Section 2.3, linear codes whose codewords are vectors of equal length n over a given finite

(extension) field have been introduced (cf. (2.4)).

112

A.2 Observation on Polyalphabetic Codes

Definition A.1 (Mapping to Base Field). Assume a vector a ∈ Fn
pµ. Denote a basis

of Fpµ over Fp as B and let an order of this basis β = (β0, β1, . . . , βµ−1) be fixed. Then
the bijective map Q : Fn

pµ 7→ Fµ×n
p that expresses the extension of a over the base field

is as follows.

a = (a0, a1, . . . , an−1) 7→ A =


A0,0 A0,1 . . . A0,n−1
A1,0 A1,1 . . . A1,n−1

...
...

. . .
...

Am−1,0 Am−1,1 . . . Am−1,n−1

 ,

where A ∈ Fµ×n
p is a matrix that is formed such that

aj =
µ−1∑
i=0

Ai,jβi, ∀j ∈ [n].

Application Q : Fn
pµ 7→ Fµ×n

p to a single element a ∈ Fpµ turns it to a vector
a = (a0, a1, . . . , aµ−1) ∈ Fµ

p , i.e., a ∈ F1
pµ 7→ a ∈ Fµ×1

p . Furthermore, any element
a ∈ Fpµ can be uniquely represented as a = ∑µ−1

i=0 aiβi where ai ∈ Fp for all i. The
inverse mapping, Q−1 : Fµ×n

p 7→ Fn
pµ , also holds by Definition A.1.

Definition A.1 is essential to understand how to represent codewords (cf. Section 2.3)
in either a vector over the extension field (e.g., over Fn

2µ) or a matrix over the base
field (e.g., over Fµ×n

2).
Homogeneous interleaved codes [MK90; KL97], types of array codes, have another

significant feature which is increasing the decoding radius beyond ⌊d−1
2 ⌋. They decode

up to d− 2 errors (see the list decoder in Section 2.3.3) with high probability [Hol+21;
RPW21]. We do not consider these codes in this dissertation. However, for interested
researchers, these codes class could provide an extension for our work that regards
only unique decoding radius (cf. Section 2.3.3).

A.2 Observation on Polyalphabetic Codes
Nested BCH codes in Section 2.3.6 build a connection to polyalphabetic codes (cf. Sec-
tion 2.5), i.e., codes over specific fields can be used to construct polyalphabetic codes
over alphabets of sizes at most the sizes of these fields. The following remark gives
the foundation for the proposal.

Remark A.1. Linear codes over Fq for prime power q = pµ are mother codes for
polyalphabetic codes (defined in Section 2.5) of equal alphabets in each coordinate i,
i.e., {qi = ph , ∀i} since their subfield subcodes are codes over Fph for 1 ≤ h ≤ µ (e.g.,
nested BCH codes Section 2.3.6).

This dissertation did not include coding schemes using polyalphabetic mother codes

113

A Appendix

for partially stuck cells case. It could be considered an open problem for further
analysis. Nevertheless, one could proceed to propose a construction as follows.

An encoder for partially stuck cells scenario could use a mother code over ph, e.g.,
any subfield subcode over ph of Reed-Solomon (RS) codes [Rot06, Chapter 5] over pµ

for prime p and 1 ≤ h < µ. The encoder knows the allowed alphabets at each position,
i.e., any reduced alphabets in some positions are likening as partially stuck cells. Thus,
following the encoding procedure in [Sid+05, Section IV], the output vector could be
produced such that some of its coordinates (i.e., the information portion) are from a
reduced information space satisfying the partially stuck cells, given a restriction on
the partially stuck cell locations. On the receiver side, the decoder uses the mother
code over the alphabet ph and decodes, e.g., a nested BCH code (cf. Section 2.3.6), to
reconstruct the encoded message.

A.3 Remarks on Coding-based Methods for
Non-Volatile Memories

The following remarks can shortly summarize the relative comparisons between par-
tially stuck memory cells (PSMC) codes (cf. Chapter 4), write once memory (WOM)
codes (cf. Section 3.4.1), and rank modulation (cf. Section 3.4.2).

Remark A.2 (PSMC and WOM). WOM codes (cf. Section 3.4.1) have a limited
number of writes that can be performed before the need to decrease the cell levels. In
contrast, this limitation in the number of writes does not exist in the partially stuck
memory construction, i.e., the cell level can be decremented as long as the conditions
for partially stuck cells are inviolable. Furthermore, the constructions for WOM codes,
e.g., in [SC19b], are suited for a quite short code length and limited alphabet sizes,
namely for n = 2 and q = 8. Contrary to these WOM codes, PSMC codes in Chapter 4
are applicable for memories with a huge number of cells using long code block lengths,
and alphabet sizes satisfying q < n.

Remark A.3 (PSMC and Rank Modulation). Although rank modulation (cf. Sec-
tion 3.4.2) addresses asymmetric drifts of cell levels, errors can still occur since the
cell levels do not always drift at the same rate [JSB08]. Unlike rank modulation,
partially stuck memory constructions do not consider reordering or permutation cell
levels to store information but rather the relative cell values. They handle all cell-level
drifts as long as they cause partially stuck scenarios or random errors. Compared with
[JSB08], which proposes single-error correction codes, all constructions in Chapter 4
deal with any number of partially defective cells and errors. Furthermore, the erasing
step could be always avoided as it is the zero value (i.e., the partially stuck at state).

114

A.4 An Alternative Proof for Generalization to Arbitrary Partially Stuck Levels

A.4 An Alternative Proof for Generalization to
Arbitrary Partially Stuck Levels

We start with Lemma A.1, and then we give an alternative proof of Proposition 4.2
from Chapter 4.

Lemma A.1. Let M ∈ Fm×n
q be such that each column of M has at least one non-zero

entry. Let s ∈ Fn
q . For each w ∈ Fn

q , there is a v ∈ Fm
q such that

∣∣∣∣{i ∈ [n] | wi + (vM)i ≥ si

}∣∣∣∣ ≥ n−
⌊

1
q

n−1∑
i=0

si

⌋
.

Proof. We define the set S as

S =
{
(i, v) ∈ [n]× Fm

q | wi + (vM)i ≥ si

}
.

Clearly, there is v ∈ Fm
q such that
∣∣∣∣{i ∈ [n]

∣∣∣ wi + (vM)i ≥ si

}∣∣∣∣ ≥
⌈
|S|
qm

⌉
. (A.1)

Let i ∈ [n]. As the i-th column of M has a non-zero entry, for each y ∈ Fq there are
exactly qm−1 vectors x ∈ Fm

q such that (xM)i = y. As a consequence,∣∣∣∣{v ∈ Fm
q | wi + (vM)i ≥ si

}∣∣∣∣ = (q − si)qm−1,

and so
|S| =

n−1∑
i=0

(q − si)qm−1 = nqm − qm−1
n−1∑
i=0

si. (A.2)

The lemma follows from combining (A.1) and (A.2).

We are now in a position to introduce an alternative non-constructive proof for
Proposition 4.2.

An alternative for Proposition 4.2. Let s ∈ Σ. In order to simplify notation, we as-
sume without loss of generality that ∑n−1

i=d0−2 si ≤ q − 1. Let w ∈ Fn
q . We wish to find

z ∈ Fl
q such that wi + (zH0)i ≥ si for many indices i.

As the d0−2 leftmost columns of H0 are independent, there exists an invertible matrix
T ∈ Fl×l

q such that

T H0 =
[
Id0−2 A

0 B

]
,

115

A Appendix

where Id0−2 denotes the identity matrix of size d0 − 2.
For i ∈ [d0 − 2], we choose zi = si − wi and write

v = w + z · (Id0−2 | A).

By definition, vi = si for all i ∈ [d0 − 2].
As any d0 − 1 columns of T H0 are independent, no column of B consists of only
zeroes. Lemma A.1 implies that there is an η ∈ Fl−d0+2

q such that

∣∣∣∣ {i ∈ [d0 − 2, n− 1]
∣∣∣ wi + (ηB)i ≥ si

}∣∣∣∣ ≥ n− d0 + 2−
1

q

n−1∑
i=d0−2

si

 .

Combining this with the fact that vi = si for all i ∈ [d0 − 2], we infer that for all
indices i ∈ [n], wi + ((z, η)T H0)i ≥ si.

A.5 Earlier Findings for Gilbert-Varshamov-like Bound
We provide earlier proof of the GV-type bound for Construction 4.2 and Construc-
tion 4.3 in Section 4.5.1, which gives an uncontrollable code length n and dimension k,
i.e., between two values. These constructions demand a code that includes the all-one
vector. In the proof, we show the existence of a code that contains the all-one vector
as a codeword. We have presented these outcomes in [APW20].
Theorem A.1 (Gilbert-Varshamov-like bound). Let the positive integers n, k ≤ n,
d ≤ n, q fulfill:

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k. (A.3)

Then, there exists an [n′, k′, d]q code that contains the all-one vector, where n′, and k′

satisfy:
n− d + 2 ≤ n′ ≤ n + 1, k − d + 2 ≤ k′ ≤ k + 1.

The parity-check matrix of this [n′, k′, d]q code can be constructed as shown in the proof.
Proof. Similar to the proof of the standard Gilbert–Varshamov bound, we construct a
systematic parity-check matrix by adding columns hl for l = k + 1, k + 2, ... to a k× k
identity matrix as long as:

d−2∑
i=0

(
l − 1

i

)
· (q − 1)i < qn−k. (A.4)

Recall from the proof of the Gilbert-Varshamov bound that this condition ensures that
there exists a column hl that is linearly independent of any collection of d − 2 other
columns.

116

A.5 Earlier Findings for Gilbert-Varshamov-like Bound

If (A.4) is not fulfilled anymore for l = n + 1, we append an additional parity-check
column p to the previous n columns such that the sum of each row is zero (i.e., the
weight is even in the binary case). This matrix is therefore:

He :=
[(

h1, . . . , hn︸ ︷︷ ︸
n

)
p

]
,

where
n∑

i=1
hi + p = 0. (A.5)

However, for He, we cannot guarantee anymore that any d − 1 columns are linearly
independent (as p might be linearly dependent on a small number of hi’s.). Therefore,
in the following, we possibly remove a few columns from He to recover this property
while still having zero row sums.

If p is linearly independent of any d− 1 columns in h1, . . . , hn, we define H := He.

Else p is linearly dependent of ∆ ≤ d−2 columns {hi1 , hi2 , . . . , hi∆
} ⊆ {h1, h2, . . . , hn},

and p is a linear combination of these ∆ columns:

p =
∆∑

j=1
hij
· aj, where aj ∈ {1, 2, . . . , q − 1}.

Thus with 1 ≤ ∆1 ≤ · · · ≤ ∆q−1 ≤ ∆ (by assuming w.l.o.g. an ordering on the
indices),

p =
∆1∑
j=1

hij
+ 2 ·

∆2∑
j=∆1+1

hij
+ · · ·+ (q − 1) ·

∆∑
j=∆q−1+1

hij
. (A.6)

We can rewrite (A.5) as:

n∑
i=1\{i1,...,i∆}

hi +
∆1∑
j=1

hij
+

∆2∑
j=∆1+1

hij
+ · · ·+

∆∑
j=∆q−1+1

hij
+ p = 0.

Combining this with (A.6) yields:

n∑
i=1\{i1,...,i∆}

hi +
∆1∑
j=1

hij
+

∆2∑
j=∆1+1

hij
+ · · ·+

∆∑
j=∆q−1+1

hij
+ p

+
∆1∑
j=1

hij
+ 2 ·

∆2∑
j=∆1+1

hij
+ · · ·+ (q − 1) ·

∆∑
j=∆q−1+1

hij
− p.

= 0.

117

A Appendix

Therefore,

n∑
i=1\{i1,...,i∆}

hi + (2 mod q)
∆1∑
j=1

hij
+ (3 mod q)

∆2∑
j=∆1+1

hij

+ · · ·+ (q − 1 mod q)
∆q−1∑

j=∆q−2+1
hij

= 0. (A.7)

Therefore, the matrix

H :=

h′
1, . . . , h′

n−∆︸ ︷︷ ︸
n−∆

∣∣∣∣2hi1 , ..., 2hi∆1︸ ︷︷ ︸
∆1

∣∣∣∣... ∣∣∣∣− hi∆q−2+1 , ...,−hi∆q−1︸ ︷︷ ︸
∆q−1−∆q−2


where h′

1, . . . , h′
n−∆ = {h1, . . . , hn} \ {hi1 , . . . , hi∆

}, has sum equal to zero in all rows
due to (A.7) and any d−1 columns are linearly independent since they are all columns
(times a non-zero scalar) of the matrix (h1, . . . , hn).

The number of columns n′ of H is bounded by

n− d + 2 ≤ n−∆ ≤ n′ ≤ n + 1,

where n′ = n+1 if p was linearly independent of any d−2 other columns and therefore
no columns have to be removed.

Substituting n in l of (A.4), we obtain:

d−2∑
i=0

(
n− 1

i

)
(q − 1)i < qn−k. (A.8)

Since n ≤ n′ + d− 2 and since n− k = n′ − k′ (the number of rows did not change),
we get

d−2∑
i=0

(
n′ + d− 3

i

)
(q − 1)i < qn′−k′

.

Thus, if this is true, there exists an [n′, k′, d]q code that contains the all-one vector,
where k′ = n′− (n′−k′) = n′− (n−k) = n′−n+k ≥ n−d+2−n+k = k−d+2.

Corollary A.1. Let u < q and let (A.3) hold, i.e., such that an [n′, k′, d]q code that
contains the all-one vector as codeword exists. Then, there is a (q−1, 1, ⌊d−1

2 ⌋) PSMC
of length n′.

Proof. In Theorem 4.2 (cf. Section 4.5.1), it was shown that if the all-one vector is a
codeword of a code with minimum distance d, then for u < q, there is a (q−1, 1, ⌊d−1

2 ⌋)
PSMC.

118

Author’s Related Publications

[AC22] H. Al Kim and K. J. Chan. “Codes for Preventing Zeros at Partially
Defective Memory Positions”. In: 2022 IEEE Information Theory Work-
shop (ITW). 2022, pp. 297–302. doi: 10 . 1109 / ITW54588 . 2022 .
9965909. url: https://ieeexplore.ieee.org/document/9965909.

[APTW23a] H. Al Kim, S. Puchinger, L. Tolhuizen, and A. Wachter-Zeh. “Coding
and bounds for partially defective memory cells”. In: Designs, Codes
and Cryptography DCC (2023).

[APTW23b] H. Al Kim, S. Puchinger, L. Tolhuizen, and A. Wachter-Zeh. “Trad-
ing Partially Stuck Cells with Errors”. In: Extended Abstract accepted
(and nominated as a candidate for "Memorable Award Paper") in the
14th Non-Volatile Memories Workshop (NVMW’23) at the University of
California, San Diego. 2023. url: http://nvmw.ucsd.edu/program/.

[APW19] H. Al Kim, S. Puchinger, and A. Wachter-Zeh. “Error Correction for
Partially Stuck Memory Cells”. In: 2019 XVI International Symposium
"Problems of Redundancy in Information and Control Systems" (RE-
DUNDANCY). 2019, pp. 87–92. doi: 10 . 1109 / REDUNDANCY48165 .
2019 . 9003352. url: https : / / ieeexplore . ieee . org / document /
9003352.

[APW20] H. Al Kim, S. Puchinger, and A. Wachter-Zeh. “Bounds and Code Con-
structions for Partially Defect Memory Cells”. In: 2020 Algebraic and
Combinatorial Coding Theory (ACCT). 2020, pp. 1–7. doi: 10.1109/
ACCT51235.2020.9383410. url: https://ieeexplore.ieee.org/
document/9383410.

[APW21] H. Al Kim, S. Puchinger, and A. Wachter-Zeh. “Coding and Bounds for
Partially Defective Memory Cells”. In: Extended Abstract in the 12th
Annual Non-Volatile Memories Workshop (NVMW’21) at the Univer-
sity of California, San Diego. 2021. url: http://nvmw.ucsd.edu/
program-2021/.

[YAPW23] Y. Yehezkeally, H. Al Kim, S. Puchinger, and A. Wachter-Zeh. “Bounds
on Mixed Codes with Finite Alphabets”. In: the 2023 IEEE Information
Theory Workshop (ITW2023), 23-28 April 2023, Saint-Malo, France.
2023. url: https://arxiv.org/abs/2212.09314.

120

https://doi.org/10.1109/ITW54588.2022.9965909
https://doi.org/10.1109/ITW54588.2022.9965909
https://ieeexplore.ieee.org/document/9965909
http://nvmw.ucsd.edu/program/
https://doi.org/10.1109/REDUNDANCY48165.2019.9003352
https://doi.org/10.1109/REDUNDANCY48165.2019.9003352
https://ieeexplore.ieee.org/document/9003352
https://ieeexplore.ieee.org/document/9003352
https://doi.org/10.1109/ACCT51235.2020.9383410
https://doi.org/10.1109/ACCT51235.2020.9383410
https://ieeexplore.ieee.org/document/9383410
https://ieeexplore.ieee.org/document/9383410
http://nvmw.ucsd.edu/program-2021/
http://nvmw.ucsd.edu/program-2021/
https://arxiv.org/abs/2212.09314

Bibliography

[Bas65] L. A. Bassalygo. “New upper bounds for error correcting codes”. In:
Problems Inform. Transmission 1.4 (1965), 32–35. url: https : / /
www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&
paperid=762&option_lang=eng.

[BB13] S. Ball and A. Blokhuis. “A Bound for the Maximum Weight of a Linear
Code”. In: SIAM Journal on Discrete Mathematics 27.1 (2013), pp. 575–
583.

[Ber84] E. R. Berlekamp. Algebraic Coding Theory. revised ed. Aegean Park
Press, 1984.

[BG04] M Bossert and E Gabidulin. “Polyalphabetic Codes”. In: Dept. TAIT,
University of Ulm, Germany (2004).

[BHOS98] A. Brouwer, H. Hamalainen, P. Ostergard, and N. Sloane. “Bounds on
mixed binary/ternary codes”. In: IEEE Transactions on Information
Theory 44.1 (1998), pp. 140–161. doi: 10.1109/18.651001.

[Bla03] R. E. Blahut. Algebraic Codes for Data Transmission. 1st ed. Cambridge
University Press, 2003.

[Bla+93] I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian.
Applications of Finite Fields. 1st ed. Springer, 1993.

[BS77] I Belov and A. M. Shashin. “Codes that correct triple defects in mem-
ory”. In: (in Russian) Problems Inf. Transmiss., 13.4 (1977), 62––65.

[Bur+10] G. Burr, M. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrish-
nan, B. Jackson, B. Kurdi, C. Lam, L. Lastras, A. Padilla, B. Rajendran,
S. Raoux, and R. Shenoy. “Phase change memory technology”. English
(US). In: Journal of Vacuum Science and Technology B:Nanotechnology
and Microelectronics 28.2 (2010), pp. 223–262. issn: 2166-2746. doi:
10.1116/1.3301579.

[BV87] J. Borden and A. Vinck. “On coding for ’stuck-at’ defects (Corresp.)”
In: IEEE Transactions on Information Theory 33.5 (1987), pp. 729–735.
doi: 10.1109/TIT.1987.1057347.

122

https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=762&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=762&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=ppi&paperid=762&option_lang=eng
https://doi.org/10.1109/18.651001
https://doi.org/10.1116/1.3301579
https://doi.org/10.1109/TIT.1987.1057347

Bibliography

[Che85] C.-L. Chen. “Linear codes for masking memory defects (Corresp.)” In:
IEEE Transactions on Information Theory 31.1 (1985), pp. 105–106.
doi: 10.1109/TIT.1985.1056992.

[Che+22] J. Cheriyan, A. Roberts, C. Roberts, M. J. Graves, I. Patterson, R. A.
Slough, R. Schroyer, D. Fernando, S. Kumar, S. Lee, G. J. M. Parker,
L. Sarov-Blat, C. McEniery, J. Middlemiss, D. Sprecher, and R. L. Jan-
iczek. “Evaluation of dynamic contrast-enhanced MRI measures of lung
congestion and endothelial permeability in heart failure: A prospective
method validation study”. en. In: J. Magn. Reson. Imaging 56.2 (Aug.
2022), pp. 450–461.

[CKCH14] S.-g. Cho, D. Kim, J. Choi, and J. Ha. “Block-Wise Concatenated BCH
Codes for NAND Flash Memories”. In: IEEE Transactions on Com-
munications 62.4 (2014), pp. 1164–1177. doi: 10.1109/TCOMM.2014.
021514.130287.

[Com+07] C. M. Compagnoni, A. S. Spinelli, R. Gusmeroli, A. L. Lacaita, S. Bel-
trami, A. Ghetti, and A. Visconti. “First evidence for injection statistics
accuracy limitations in NAND Flash constant-current Fowler-Nordheim
programming”. In: 2007 IEEE International Electron Devices Meeting.
2007, pp. 165–168. doi: 10.1109/IEDM.2007.4418892.

[CS11] J. Choi and K. S. Seol. “3D approaches for non-volatile memory”. In:
2011 Symposium on VLSI Technology - Digest of Technical Papers.
2011, pp. 178–179.

[CWW14] T.-Y. Chen, A. R. Williamson, and R. D. Wesel. “Increasing flash mem-
ory lifetime by dynamic voltage allocation for constant mutual informa-
tion”. In: 2014 Information Theory and Applications Workshop (ITA).
2014, pp. 1–5. doi: 10.1109/ITA.2014.6804242.

[CZW08] B. Chen, X. Zhang, and Z. Wang. “Error correction for multi-level
NAND flash memory using Reed-Solomon codes”. In: 2008 IEEE Work-
shop on Signal Processing Systems. 2008, pp. 94–99. doi: 10.1109/
SIPS.2008.4671744.

[DLZ10] G. Dong, S. Li, and T. Zhang. “Using Data Postcompensation and
Predistortion to Tolerate Cell-to-Cell Interference in MLC nand Flash
Memory”. In: IEEE Transactions on Circuits and Systems I: Regu-
lar Papers 57.10 (2010), pp. 2718–2728. doi: 10.1109/TCSI.2010.
2046966.

[Don+12] G. Dong, Y. Pan, N. Xie, C. Varanasi, and T. Zhang. “Estimating
Information-Theoretical nand Flash Memory Storage Capacity and its
Implication to Memory System Design Space Exploration”. In: IEEE

123

https://doi.org/10.1109/TIT.1985.1056992
https://doi.org/10.1109/TCOMM.2014.021514.130287
https://doi.org/10.1109/TCOMM.2014.021514.130287
https://doi.org/10.1109/IEDM.2007.4418892
https://doi.org/10.1109/ITA.2014.6804242
https://doi.org/10.1109/SIPS.2008.4671744
https://doi.org/10.1109/SIPS.2008.4671744
https://doi.org/10.1109/TCSI.2010.2046966
https://doi.org/10.1109/TCSI.2010.2046966

Bibliography

Transactions on Very Large Scale Integration (VLSI) Systems 20.9
(2012), pp. 1705–1714. doi: 10.1109/TVLSI.2011.2160747.

[DS16] L. Dolecek and F. Sala. Channel Coding Methods for Non-Volatile Mem-
ories. 2016.

[Dum87] I. I. Dumer. “On linear defect-correcting codes”. In: Proc. 1987 Int.
Workshop on Convolutional Codes and Multiuser Communication. 1987,
pp. 222–225.

[Dum89] I. I. Dumer. “Asymptotically Optimal Codes Correcting Memory De-
fects of Fixed Multiplicity”. In: Problemy Peredachi Informatsii 25.4
(1989), pp. 3–10.

[Dum90] I. I. Dumer. “Asymptotically Optimal Linear Codes Correcting Defects
of Linearly Increasing Multiplicity”. In: Problemy Peredachi Informatsii
26.2 (1990), pp. 3–17.

[EG93] T. Etzion and G. Greenberg. “Constructions for perfect mixed codes and
other covering codes”. In: IEEE Transactions on Information Theory
39.1 (1993), pp. 209–214. doi: 10.1109/18.179360.

[Etz22] T. Etzion. Perfect codes and related structures. eng. Singapore: World
Scientific, 2022. isbn: 9789811255885.

[For07] B. A. Forouzan. Data Communications and Networking. 4th ed. New
York: McGraw-Hill Education, 2007.

[FT91] A. Frohlich and M. J. Taylor. Algebraic Number Theory. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1991.
doi: 10.1017/CBO9781139172165.

[GD15] R. Gabrys and L. Dolecek. “Constructions of Nonbinary WOM Codes
for Multilevel Flash Memories”. In: IEEE Transactions on Information
Theory 61.4 (2015), pp. 1905–1919. doi: 10.1109/TIT.2015.2394400.

[GDS12] L. M. Grupp, J. D. Davis, and S. Swanson. “The Bleak Future of NAND
Flash Memory”. In: Proceedings of the 10th USENIX Conference on File
and Storage Technologies. FAST’12. San Jose, CA: USENIX Associa-
tion, 2012, p. 2.

[GHSY12] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. “On the Locality
of Codeword Symbols”. In: IEEE Transactions on Information Theory
58.11 (2012), pp. 6925–6934. doi: 10.1109/TIT.2012.2208937.

[GPB09] B Gleixner, F Pellizzer, and R Bez. “Reliability characterization of
Phase Change Memory”. In: 2009 10th Annual Non-Volatile Memory
Technology Symposium (NVMTS). Portland, OR: IEEE, Oct. 2009.

[Gri60] J. H. Griesmer. “A Bound for Error-Correcting Codes”. In: IBM Journal
of Research and Development 4.5 (1960), pp. 532–542.

124

https://doi.org/10.1109/TVLSI.2011.2160747
https://doi.org/10.1109/18.179360
https://doi.org/10.1017/CBO9781139172165
https://doi.org/10.1109/TIT.2015.2394400
https://doi.org/10.1109/TIT.2012.2208937

Bibliography

[GRS19] V. Guruswami, A. Rudra, and M. Sudan. Essential Coding Theory. Uni-
versity at Buffalo, 2019. url: https://cse.buffalo.edu/faculty/
atri/courses/coding-theory/book/web-coding-book.pdf.

[GSD14] R. Gabrys, F. Sala, and L. Dolecek. “Coding for Unreliable Flash Mem-
ory Cells”. In: IEEE Communications Letters 18.9 (2014), pp. 1491–
1494. doi: 10.1109/LCOMM.2014.2344677.

[Ham50] R Hamming. Error-Detecting and Error-Correcting Codes,” The Bell
Systems Technical. 1950.

[Hee83] C. Heegard. “Partitioned Linear Block Codes for Computer Memory
with’Stuck-at’Defects”. In: IEEE Transactions on Information Theory
29.6 (1983), pp. 831–842.

[Hel+14] M. Helm, J.-K. Park, A. Ghalam, J. Guo, C. wan Ha, C. Hu, H. Kim,
K. Kavalipurapu, E. Lee, A. Mohammadzadeh, D. Nguyen, V. Patel,
T. Pekny, B. Saiki, D. Song, J. Tsai, V. Viajedor, L. Vu, T. Wong, J. H.
Yun, R. Ghodsi, A. D’Alessandro, D. Di Cicco, and V. Moschiano. “19.1
A 128Gb MLC NAND-Flash device using 16nm planar cell”. In: 2014
IEEE International Solid-State Circuits Conference Digest of Techni-
cal Papers (ISSCC). 2014, pp. 326–327. doi: 10.1109/ISSCC.2014.
6757454.

[Hol+21] L. Holzbaur, H. Liu, A. Neri, S. Puchinger, J. Rosenkilde, V. Sidorenko,
and A. Wachter-Zeh. “Decoding of Interleaved Alternant Codes”. In:
IEEE Transactions on Information Theory 67.12 (2021), pp. 8016–8033.
doi: 10.1109/TIT.2021.3115432.

[HP10] W. C. Huffman and V. Pless. Fundamentals of Error-Correcting Codes.
Cambridge University Press, 2010.

[HPYW21] L. Holzbaur, S. Puchinger, E. Yaakobi, and A. Wachter-Zeh. “Cor-
rectable Erasure Patterns in Product Topologies”. In: 2021 IEEE In-
ternational Symposium on Information Theory (ISIT). 2021, pp. 2054–
2059. doi: 10.1109/ISIT45174.2021.9518208.

[HS71] M. Herzog and J. Schonheim. “Linear and nonlinear single-error-
correcting perfect mixed codes”. In: Information and Control 18.4
(1971), pp. 364–368. issn: 0019-9958. doi: https://doi.org/10.
1016/S0019-9958(71)90464-5. url: https://www.sciencedirect.
com/science/article/pii/S0019995871904645.

[HT72] C. R. P. Hartmann and K. K. Tzeng. “Generalizations of the BCH
Bound”. In: Inf. Control. 20 (1972), pp. 489–498.

125

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf
https://doi.org/10.1109/LCOMM.2014.2344677
https://doi.org/10.1109/ISSCC.2014.6757454
https://doi.org/10.1109/ISSCC.2014.6757454
https://doi.org/10.1109/TIT.2021.3115432
https://doi.org/10.1109/ISIT45174.2021.9518208
https://doi.org/https://doi.org/10.1016/S0019-9958(71)90464-5
https://doi.org/https://doi.org/10.1016/S0019-9958(71)90464-5
https://www.sciencedirect.com/science/article/pii/S0019995871904645
https://www.sciencedirect.com/science/article/pii/S0019995871904645

Bibliography

[Hwa+05] S.-S. Hwang, H.-C. Lee, H. W. Ro, D. Y. Yoon, and Y.-C. Joe. “Poros-
ity content dependence of TDDB lifetime and flat band voltage shift by
cu diffusion in porous spin-on low-k”. In: 2005 IEEE International Re-
liability Physics Symposium, 2005. Proceedings. 43rd Annual. San Jose,
CA, USA: IEEE, 2005.

[Im+15] J.-W. Im, W.-P. Jeong, D.-H. Kim, S.-W. Nam, D.-K. Shim, M.-H. Choi,
H.-J. Yoon, D.-H. Kim, Y.-S. Kim, H.-W. Park, D.-H. Kwak, S.-W.
Park, S.-M. Yoon, W.-G. Hahn, J.-H. Ryu, S.-W. Shim, K.-T. Kang,
S.-H. Choi, J.-D. Ihm, Y.-S. Min, I.-M. Kim, D.-S. Lee, J.-H. Cho, O.-S.
Kwon, J.-S. Lee, M.-S. Kim, S.-H. Joo, J.-H. Jang, S.-W. Hwang, D.-S.
Byeon, H.-J. Yang, K.-T. Park, K.-H. Kyung, and J.-H. Choi. “7.2 A
128Gb 3b/cell V-NAND flash memory with 1Gb/s I/O rate”. In: 2015
IEEE International Solid-State Circuits Conference - (ISSCC) Digest of
Technical Papers. 2015, pp. 1–3. doi: 10.1109/ISSCC.2015.7062960.

[Jia07] A. Jiang. “On The Generalization of Error-Correcting WOM Codes”.
In: 2007 IEEE International Symposium on Information Theory. 2007,
pp. 1391–1395. doi: 10.1109/ISIT.2007.4557417.

[JMSB08] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck. “Rank modulation
for flash memories”. In: 2008 IEEE International Symposium on In-
formation Theory. 2008, pp. 1731–1735. doi: 10.1109/ISIT.2008.
4595284.

[Joh63] S. Johnson. “Improved asymptotic bounds for error-correcting codes”.
In: IEEE Transactions on Information Theory 9.3 (1963), pp. 198–205.
doi: 10.1109/TIT.1963.1057841.

[JSB08] A. Jiang, M. Schwartz, and J. Bruck. “Error-correcting codes for rank
modulation”. In: 2008 IEEE International Symposium on Information
Theory. 2008, pp. 1736–1740. doi: 10.1109/ISIT.2008.4595285.

[KH14] D. Kim and J. Ha. “Quasi-primitive block-wise concatenated BCH
codes for NAND flash memories”. In: 2014 IEEE Information Theory
Workshop (ITW 2014). 2014, pp. 611–615. doi: 10.1109/ITW.2014.
6970904.

[KKY78] A Kuznetsov, T Kasami, and S Yamamura. “An error correcting scheme
for defective memory”. en. In: IEEE Trans. Inf. Theory 24.6 (1978),
pp. 712–718.

[KL97] V. Krachkovsky and Y. X. Lee. “Decoding for iterative Reed-Solomon
coding schemes”. In: IEEE Transactions on Magnetics 33.5 (1997),
pp. 2740–2742. doi: 10.1109/20.617715.

126

https://doi.org/10.1109/ISSCC.2015.7062960
https://doi.org/10.1109/ISIT.2007.4557417
https://doi.org/10.1109/ISIT.2008.4595284
https://doi.org/10.1109/ISIT.2008.4595284
https://doi.org/10.1109/TIT.1963.1057841
https://doi.org/10.1109/ISIT.2008.4595285
https://doi.org/10.1109/ITW.2014.6970904
https://doi.org/10.1109/ITW.2014.6970904
https://doi.org/10.1109/20.617715

Bibliography

[KT74] A. Kuznetsov and B. Tsybakov. “Coding for memories with defective
cells,” in: (in Russian) Problems Inf. Transmiss. Vol. 10. 2. 1974, pp. 52–
60.

[Kuz85] A Kuznetsov. Coding in a channel with generalized defects and random
errors. Vol. 21. 1. 1985, 28––34.

[LCPK03] J.-D. Lee, J.-H. Choi, D. Park, and K. Kim. “Data retention characteris-
tics of sub-100 nm NAND flash memory cells”. In: IEEE Electron Device
Letters 24.12 (2003), pp. 748–750. doi: 10.1109/LED.2003.820645.

[Lev98] V. Levenshtein. “Universal bounds for codes and designs, in Handbook
of Coding Theory”. In: (1998), pp. 1–149. url: https://keldysh.ru/
papers/1998/prep_vw.asp?pid=2319&lg=e.

[Lid+97] R. Lidl, H. Niederreiter, P. Cohn, G. Rota, and B. Doran. Finite
Fields. EBL-Schweitzer v. 20, pt. 1. Cambridge University Press, 1997.
isbn: 9780521392310. url: https://books.google.de/books?id=
xqMqxQTFUkMC.

[Lin92] J. H. van Lint. Introduction to coding theory. en. 2nd ed. Graduate texts
in mathematics. Berlin, Germany: Springer, July 1992.

[LKD78] V. V. Losev, V. K. Konopel’ko, and Y. D. Daryakin. “Double-and-
triple-defect-correcting”. In: (in Russian) Problems Inf. Transmiss.,
14.4 (1978), 98––101.

[Loe97] H.-A. Loeliger. “Averaging bounds for lattices and linear codes”. In:
IEEE Transactions on Information Theory 43.6 (1997), pp. 1767–1773.
doi: 10.1109/18.641543.

[LW01] J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cam-
bridge, U.K.; New York: Cambridge University Press, 2001. isbn:
9780511674877 0511674872 9780511671623 0511671628 9780511987045
0511987048.

[MBZ13] A. Mazumdar, A. Barg, and G. Zemor. “Constructions of Rank Modula-
tion Codes”. In: IEEE Transactions on Information Theory 59.2 (2013),
pp. 1018–1029. doi: 10.1109/TIT.2012.2221121.

[MC+09] C. Monzio Compagnoni, M. Ghidotti, A. L. Lacaita, A. S. Spinelli,
and A. Visconti. “Random Telegraph Noise Effect on the Programmed
Threshold-Voltage Distribution of Flash Memories”. In: IEEE Electron
Device Letters 30.9 (2009), pp. 984–986. doi: 10.1109/LED.2009.
2026658.

127

https://doi.org/10.1109/LED.2003.820645
https://keldysh.ru/papers/1998/prep_vw.asp?pid=2319&lg=e
https://keldysh.ru/papers/1998/prep_vw.asp?pid=2319&lg=e
https://books.google.de/books?id=xqMqxQTFUkMC
https://books.google.de/books?id=xqMqxQTFUkMC
https://doi.org/10.1109/18.641543
https://doi.org/10.1109/TIT.2012.2221121
https://doi.org/10.1109/LED.2009.2026658
https://doi.org/10.1109/LED.2009.2026658

Bibliography

[Mie+04] N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade, A. Kurtz, Q. Meng,
N. Righos, and J. Wu. “Flash EEPROM threshold instabilities due to
charge trapping during program/erase cycling”. In: IEEE Transactions
on Device and Materials Reliability 4.3 (2004), pp. 335–344. doi: 10.
1109/TDMR.2004.836721.

[Mie+06] N. Mielke, H. P. Belgal, A. Fazio, Q. Meng, and N. Righos. “Recovery
Effects in the Distributed Cycling of Flash Memories”. In: 2006 IEEE
International Reliability Physics Symposium Proceedings. 2006, pp. 29–
35. doi: 10.1109/RELPHY.2006.251188.

[MK09] Y. Maeda and H. Kaneko. “Error Control Coding for Multilevel Cell
Flash Memories Using Nonbinary Low-Density Parity-Check Codes”.
In: 2009 24th IEEE International Symposium on Defect and Fault Toler-
ance in VLSI Systems. 2009, pp. 367–375. doi: 10.1109/DFT.2009.25.

[MK90] J. Metzner and E. Kapturowski. “A general decoding technique appli-
cable to replicated file disagreement location and concatenated code
decoding”. In: IEEE Transactions on Information Theory 36.4 (1990),
pp. 911–917. doi: 10.1109/18.53757.

[MRRW77] R. McEliece, E. Rodemich, H. Rumsey, and L. Welch. “New upper
bounds on the rate of a code via the Delsarte-MacWilliams inequalities”.
In: IEEE Transactions on Information Theory 23.2 (1977), pp. 157–166.
doi: 10.1109/TIT.1977.1055688.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting
Codes. Vol. 16. Elsevier/North-Holland, 1977.

[NS09] M. Navon and A. Samorodnitsky. “Linear programming bounds for
codes via a covering argument”. en. In: Discrete Comput. Geom. 41.2
(Mar. 2009), pp. 199–207.

[ORS86] P. OLIVO, B. RICCO, and E. SANGIORGI. “High-field-induced
voltage-dependent oxide charge”. English. In: Applied physics letters
(1986). issn: 0003-6951.

[PBK14] K.-T. Park, D.-S. Byeon, and D.-H. Kim. “A world’s first product of
three-dimensional vertical NAND Flash memory and beyond”. In: 2014
14th Annual Non-Volatile Memory Technology Symposium (NVMTS).
2014, pp. 1–5. doi: 10.1109/NVMTS.2014.7060840.

[Pir+04] A Pirovano, A Redaelli, F Pellizzer, F Ottogalli, M Tosi, D Ielmini,
A. L. Lacaita, and R Bez. “Reliability study of phase-change nonvolatile
memories”. en. In: IEEE trans. device mater. reliab. 4.3 (Sept. 2004),
pp. 422–427.

128

https://doi.org/10.1109/TDMR.2004.836721
https://doi.org/10.1109/TDMR.2004.836721
https://doi.org/10.1109/RELPHY.2006.251188
https://doi.org/10.1109/DFT.2009.25
https://doi.org/10.1109/18.53757
https://doi.org/10.1109/TIT.1977.1055688
https://doi.org/10.1109/NVMTS.2014.7060840

Bibliography

[PPMP14] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis. “Mod-
elling of the threshold voltage distributions of sub-20nm NAND flash
memory”. In: 2014 IEEE Global Communications Conference. 2014,
pp. 2351–2356. doi: 10.1109/GLOCOM.2014.7037159.

[PSS06] S. Perkins, A. Sakhnovich, and D. Smith. “On an upper bound for mixed
error-correcting codes”. In: IEEE Transactions on Information Theory
52.2 (2006), pp. 708–712. doi: 10.1109/TIT.2005.862107.

[QJS13] M. Qin, A. A. Jiang, and P. H. Siegel. “Parallel programming of rank
modulation”. In: 2013 IEEE International Symposium on Information
Theory. 2013, pp. 719–723. doi: 10.1109/ISIT.2013.6620320.

[Roo79] C. Roos. “On the structure of convolutional and cyclic convolutional
codes”. In: IEEE Transactions on Information Theory 25.6 (1979),
pp. 676–683. doi: 10.1109/TIT.1979.1056108.

[Rot06] R. M. Roth. Introduction to Coding Theory. Cambridge University
Press, 2006. doi: 10.1017/CBO9780511808968.005.

[RPW21] J. Renner, S. Puchinger, and A. Wachter-Zeh. “Decoding High-Order
Interleaved Rank-Metric Codes”. In: 2021 IEEE International Sympo-
sium on Information Theory (ISIT). 2021, pp. 19–24. doi: 10.1109/
ISIT45174.2021.9518085.

[RS82] R. L. Rivest and A. Shamir. “How to reuse a "write-once" memory”.
In: Information and Control 55.1 (1982), pp. 1–19. issn: 0019-9958.
doi: https : / / doi . org / 10 . 1016 / S0019 - 9958(82) 90344 - 8.
url: https : / / www . sciencedirect . com / science / article / pii /
S0019995882903448.

[SC19a] A. Solomon and Y. Cassuto. “Error-correcting WOM codes: Concate-
nation and joint design”. In: IEEE Trans. Inf. Theory 65.9 (Sept. 2019),
pp. 5529–5546.

[SC19b] A. Solomon and Y. Cassuto. “Error-Correcting WOM Codes: Concate-
nation and Joint Design”. In: IEEE Transactions on Information Theory
65.9 (2019), pp. 5529–5546. doi: 10.1109/TIT.2019.2917519.

[SH22] I. Shomorony and R. Heckel. “Information-Theoretic Foundations of
DNA Data Storage”. In: Foundations and Trends® in Communica-
tions and Information Theory 19.1 (2022), pp. 1–106. issn: 1567-2190.
doi: 10.1561/0100000117. url: http://dx.doi.org/10.1561/
0100000117.

[Sha48] C. E. Shannon. A Mathematical Theory of Communication,” The Bell
Systems Technical. 1948.

129

https://doi.org/10.1109/GLOCOM.2014.7037159
https://doi.org/10.1109/TIT.2005.862107
https://doi.org/10.1109/ISIT.2013.6620320
https://doi.org/10.1109/TIT.1979.1056108
https://doi.org/10.1017/CBO9780511808968.005
https://doi.org/10.1109/ISIT45174.2021.9518085
https://doi.org/10.1109/ISIT45174.2021.9518085
https://doi.org/https://doi.org/10.1016/S0019-9958(82)90344-8
https://www.sciencedirect.com/science/article/pii/S0019995882903448
https://www.sciencedirect.com/science/article/pii/S0019995882903448
https://doi.org/10.1109/TIT.2019.2917519
https://doi.org/10.1561/0100000117
http://dx.doi.org/10.1561/0100000117
http://dx.doi.org/10.1561/0100000117

Bibliography

[Sid+05] V. Sidorenko, G. Schmidt, E. Gabidulin, M. Bossert, and V. Afanassiev.
“On polyalphabetic block codes”. In: IEEE Information Theory Work-
shop, 2005. 2005, 4 pp.–. doi: 10.1109/ITW.2005.1531889.

[Sol74] G. Solomon. “A Note on Alphabet Codes and Fields of Computation”.
In: Inf. Control. 25 (1974), pp. 395–398.

[Sta22] Statista. Volume of data/information created, captured, copied, and
consumed worldwide from 2010 to 2020, with forecasts from 2021 to
2025. Accessed on 2022-10-24. 2022. url: https://www.statista.
com / statistics / 871513 / worldwide - data - created / # : ~ : text =
The%20total%20amount%20of%20data,to%20more%20than%20180%
20zettabytes (visited on 10/24/2022).

[TGKO75] B. S. Tsybakov, S. I. Gelfand, A. V. Kuznetsov, and S. I. Ortyukov.
“Reliable computation and reliable storage of information”. In: Proc.
IEEE-USSR Workshop (Dec. 1975).

[Tsy75a] B. S. Tsybakov. “Defects and error correction”. In: (in Russian) Prob-
lems Inf. Transmiss., 11.1 (1975), 21––30.

[Tsy75b] B. S. Tsybakov. “Group additive defect-correcting codes”. In: (in Rus-
sian) Problems Inf. Transmiss 11.1 (1975), 111––113.

[Tsy77] B. S. Tsybakov. “Bounds for the codes correcting errors and defects”.
In: Problemy Peredachi Informatsii 13.2 (1977), pp. 11–22.

[TTN96] K. Takeuchi, T. Tanaka, and H. Nakamura. “A double-level-V/sub th/
select gate array architecture for multilevel NAND flash memories”. In:
IEEE Journal of Solid-State Circuits 31.4 (1996), pp. 602–609. doi:
10.1109/4.499738.

[Wan+14] J. Wang, K. Vakilinia, T.-Y. Chen, T. Courtade, G. Dong, T. Zhang, H.
Shankar, and R. Wesel. “Enhanced Precision Through Multiple Reads
for LDPC Decoding in Flash Memories”. In: IEEE Journal on Selected
Areas in Communications 32.5 (2014), pp. 880–891. doi: 10 . 1109 /
JSAC.2014.140508.

[WCW15] H. Wang, T.-Y. Chen, and R. D. Wesel. “Histogram-based Flash channel
estimation”. In: 2015 IEEE International Conference on Communica-
tions (ICC). 2015, pp. 283–288. doi: 10.1109/ICC.2015.7248335.

[WSS15] A. Wachter-Zeh, M. Stinner, and V. Sidorenko. “Convolutional Codes in
Rank Metric With Application to Random Network Coding”. In: IEEE
Transactions on Information Theory 61.6 (2015), pp. 3199–3213. doi:
10.1109/TIT.2015.2424930.

130

https://doi.org/10.1109/ITW.2005.1531889
https://www.statista.com/statistics/871513/worldwide-data-created/#:~:text=The%20total%20amount%20of%20data,to%20more%20than%20180%20zettabytes
https://www.statista.com/statistics/871513/worldwide-data-created/#:~:text=The%20total%20amount%20of%20data,to%20more%20than%20180%20zettabytes
https://www.statista.com/statistics/871513/worldwide-data-created/#:~:text=The%20total%20amount%20of%20data,to%20more%20than%20180%20zettabytes
https://www.statista.com/statistics/871513/worldwide-data-created/#:~:text=The%20total%20amount%20of%20data,to%20more%20than%20180%20zettabytes
https://doi.org/10.1109/4.499738
https://doi.org/10.1109/JSAC.2014.140508
https://doi.org/10.1109/JSAC.2014.140508
https://doi.org/10.1109/ICC.2015.7248335
https://doi.org/10.1109/TIT.2015.2424930

Bibliography

[WWCW16] H. Wang, N. Wong, T.-Y. Chen, and R. D. Wesel. “Using Dynamic
Allocation of Write Voltage to Extend Flash Memory Lifetime”. In:
IEEE Transactions on Communications 64.11 (2016), 4474–4486. issn:
0090-6778. doi: 10.1109/tcomm.2016.2607707. url: http://dx.doi.
org/10.1109/TCOMM.2016.2607707.

[WY16] A. Wachter-Zeh and E. Yaakobi. “Codes for Partially Stuck-at Mem-
ory Cells”. In: IEEE Transactions on Information Theory 62.2 (2016),
pp. 639–654.

[Yaa+12] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and J. K. Wolf. “Codes for
Write-Once Memories”. In: IEEE Transactions on Information Theory
58.9 (2012), pp. 5985–5999. doi: 10.1109/TIT.2012.2200291.

[Yan+06] H. Yang, H. Kim, S.-i. Park, J. Kim, S.-h. Lee, J.-k. Choi, D. Hwang, C.
Kim, M. Park, K.-h. Lee, Y.-k. Park, J. K. Shin, and J.-t. Kong. “Reli-
ability Issues and Models of sub-90nm NAND Flash Memory Cells”. In:
2006 8th International Conference on Solid-State and Integrated Cir-
cuit Technology Proceedings. 2006, pp. 760–762. doi: 10.1109/ICSICT.
2006.306478.

[Zha+13] K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, and N. Zheng. “LDPC-
in-SSD: Making Advanced Error Correction Codes Work Effectively in
Solid State Drives”. In: Proceedings of the 11th USENIX Conference
on File and Storage Technologies. FAST’13. San Jose, CA: USENIX
Association, 2013, 243–256.

[ZPJ10] F. Zhang, H. D. Pfister, and A. Jiang. “LDPC codes for rank modulation
in flash memories”. In: 2010 IEEE International Symposium on Infor-
mation Theory. 2010, pp. 859–863. doi: 10.1109/ISIT.2010.5513603.

[ZW14] M. Zwolenski and L. Weatherill. “The digital universe: Rich data and
the increasing value of the internet of things”. In: Journal of Telecom-
munications and the Digital Economy 2.3 (2014), pp. 47–1.

131

https://doi.org/10.1109/tcomm.2016.2607707
http://dx.doi.org/10.1109/TCOMM.2016.2607707
http://dx.doi.org/10.1109/TCOMM.2016.2607707
https://doi.org/10.1109/TIT.2012.2200291
https://doi.org/10.1109/ICSICT.2006.306478
https://doi.org/10.1109/ICSICT.2006.306478
https://doi.org/10.1109/ISIT.2010.5513603

	Introduction
	Outline

	Preliminaries
	Notation
	Vector and Matrix Multiplication
	Polynomials

	Finite (Extension) Field Fq
	Extension Field Fq by Irreducible Polynomials

	Linear Codes over Fq
	Error Detection
	Erasure Correction
	Error Correction and Decoder Sorts
	Cyclic Codes
	q-ary Repetition and Single parity-check Codes
	Bose-Ray-Chaudhuri-Hocquenghem (BCH) Codes

	Bounds on the Cardinality and Minimum Distance
	The Singleton Bound
	The Griesmer Bound
	The Ball–Blokhuis Bound
	The Sphere-packing (Hamming) Bound
	The Gilbert–Varshamov Bound
	Asymptotic Bounds

	Polyalphabetic Codes
	Upper bounds on Polyalphabetic Codes

	Memories with Defects and Errors
	Introduction
	Non–Volatile Memories
	Flash Memories
	Phase-Change Memories

	Channel Model Additive Noise
	Programming Noise
	Wear-Out Noise
	Retention Noise
	Cell-to-cell Interference
	Programming Errors

	Coding Methods for Non–Volatile Memories
	Write Once Memory
	Rank Modulation
	Masking Cells
	Unreachable Memory Cells UMC

	Coding Schemes for Memories with Defects and Errors
	Introduction
	Contributions and Outline

	Regular Erasure Patterns
	(Partially) Stuck at Patterns
	Construction for Stuck Cell (Without Errors)
	Constructions for Partially Stuck Cell (With Errors)
	Constructions for at most q-1 partially stuck-at-1 Cells
	Constructions for more than q- 1 partially stuck-at-1 Cells

	Generalization to Arbitrary Partially Defective Levels
	Generalization of the Code Construction (less than q Partially Stuck Cells)
	Generalization of the Code Construction (up to q+d0-3 Partially Stuck Cells)
	Generalization of the Code Construction (up to 2-1(d0+1)-1 Partially Stuck Cells)

	Constructions for Unreachable Memory Cells (With Errors)
	Equivalent Codes for Unreachable Memory Cells UMC

	Errors Positions
	Open Problems and Observations

	Trading Partial Defects with Errors
	Introduction
	Contributions and Outline
	General Theorem of Trading Partially Stuck Cells with Errors

	Improvements of the General Theorem
	Based on our Binary-established Construction
	Based on Another Approach for Introducing Errors
	Based on Another Approach for Introducing Errors Considering Arbitrary Partially Stuck Levels
	Based on our Generalized Construction for Arbitrary Partially Stuck Levels

	Bounds on Memories with Defects and Errors
	Introduction
	Contributions and Outline

	Upper Bounds on Codes for Partially Stuck Memory Cells (PSMCs)
	Singleton-type Bound on PSMCs
	Sphere-packing-type Bound on PSMCs
	Discussion and Numerical Results

	Lower Bound on Codes for Partially Stuck Memory Cells (PSMCs)
	Finite Gilbert–Varshamov-type (GV-type) Bound on PSMCs
	Discussion and Numerical Results
	Asymptotic Gilbert–Varshamov-type Bound on PSMCs
	Discussion and Analytical Results

	Bounds on Polyalphabetic Codes with Finite Alphabets

	Conclusion and Outlook
	Appendix
	Observation on Array Codes in Storage Applications
	Observation on Polyalphabetic Codes
	Remarks on Coding-based Methods for Non-Volatile Memories
	An Alternative Proof for Generalization to Arbitrary Partially Stuck Levels
	Earlier Findings for Gilbert-Varshamov-like Bound

