

Long-term Trend Estimation of Climate Related Mass Transport in Satellite Gravity Simulations

Marius Schlaak, Matthias Graf, Roland Pail

Chair of Astronomical and Physical Geodesy, Technical University of Munich, Munich, Germany, email: marius.schlaak@tum.de

2nd ICCC Workshop, Geodesy for Climate Research, March 28-29.2023, Online

Variations in terrestrial water storage represent continental climate related mass transports

- Climate model projections from the CMIP6 include components of the Terrestrial Water Storage (TWS):
 - soil moisture
 - snow
 - ice
- Changes in TWS are directly measured by satellite gravimetry and quantify climate effects

The right choice for a parameter model depends on the properties of the globally heterogenic climate system

• $f_2(x) = x_1 + x_2 * t + \sum_{j=1}^{\#months} x_{(2+j)}$

Marius Schlaak (TUM) |

Co-estimation of linear trend and annual signal yield stable solutions for the long-term trend

Parameter Model:

Marius Schlaak (TUM) |

$$f_1(x) = x_1 + x_2 * t + x_3 * \cos(\omega t) + x_4 * \sin(\omega t); \ \varphi = \tan\left(\frac{x_3}{x_4}\right); \ A = \sqrt{(x_3^2 + x_4^2)}$$

IAPG

The resolvability of long-term trends depends on strongly on observation period and the observation system

Residuals 2000 - 2049 — — σ_{Linear} 2000 - 2029

- Residuals compared to reference signal of same retrieval period.
- · Residuals decrease with:
 - increased observation interval

Parameter Model:

Marius Schlaak (TUM) |

Reference Signal 2000 - 2099

 $f_1(x) = x_1 + x_2 * t + x_3 * \cos(\omega t) + x_4 * \sin(\omega t); \ \varphi = \tan\left(\frac{x_3}{x_4}\right); \ A = \sqrt{(x_3^2 + x_4^2)}$

The resolvability of long-term trends depends on strongly on observation period and the observation system

Marius Schlaak (TUM)

- Residuals compared to reference signal of same retrieval period.
- Residuals decrease with:
 - increased observation interval
 - advancing observation systems

 30 years mark breaking point, where robust trend estimation becomes possible.

$$f_1(x) = x_1 + x_2 * t + x_3 * \cos(\omega t) + x_4 * \sin(\omega t); \ \varphi = \tan\left(\frac{x_3}{x_4}\right); \ A = \sqrt{(x_3^2 + x_4^2)}$$
7 [APG

Not all parameter models are suitable to recover global Ing-term trends

Parameter Model:

•
$$f_1(x) = x_1 + x_2 * t + x_3 * \cos(\omega t) + x_4 * \sin(\omega t); \ \varphi = \tan\left(\frac{x_3}{x_4}\right); \ A = \sqrt{(x_3^2 + x_4^2)}$$

•
$$f_2(x) = x_1 + x_2 * t + \sum_{j=1}^{\#months} x_{(2+j)}$$

Marius Schlaak (TUM) | • $f_3(x) = x_1 + x_2 * t + (x_3 + x_4 * t) * \cos(\omega t - (ax_5 + bx_6 * t))$

Local long-term trends can be recovered from different parameter models, but not from all

IAPG

Several parameter models can retrieve long-term trends globally, but tailored solutions to local climate are a promising new development

- > Monthly co-estimation yields no benefit for long-term trend estimation
- Considering amplitude and phase trends achieve a stable long-term trend, but they do not show any improvement in the signal representation either.
- Local basis functions are currently investigated. First results show a robust trend estimation using mascon approach globally.
- By densifying the mascon grid over selected target, the spatial resolution can be improved.
- Outlook: tailored spatial-temporal estimation considering locale climate are currently investigated.

Marius Schlaak (TUM) |

Publications

[1] Schlaak, Marius; Pail, Roland; Jensen, Laura; Annette Eicker (2023): Closed Loop Simulations on Recoverability of Climate Trends in Next Generation Gravity Missions. In Geophys J Int. <u>https://doi.org/10.1093/gji/ggac373</u>

 [2] Jensen, L., Eicker, A., Dobslaw, H., & Pail, R. (2020). Emerging Changes in Terrestrial Water Storage Variability as a Target for Future Satellite Gravity Missions. Remote Sens., 12(23), 3898. <u>https://doi.org/10.3390/rs12233898</u>

[3] Guo, H., John, J. G., Blanton, C., McHugh, C., Nikonov, S., & Radhakrishnan, A., et al. (2018). NOAA- GFDL GFDL-CM4 model output. <u>https://doi.org/10.22033/ESGF/CMIP6.1402</u>