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Abstract

The vast majority of the universe is in the plasma state. Virtually all of it, in
turn, consists of electrons and ions. In the vicinity of intense gamma-ray sources,
however, a more exotic type of plasma can form, known as electron–positron
pair plasma. In a pair plasma, the two species of particles involved are oppo-
sitely charged but have the same mass. This mass equality is the reason why
pair plasmas are much less susceptible to instabilities than their electron–ion
counterparts. For this reason, it is of great interest to study such a plasma.

The APEX collaboration has the ambitious but achievable goal of creating
the first magnetized low-energy electron–positron pair plasma in the laboratory.
Magnetic dipole fields and stellarators are particularly well suited to confine
such plasmas, both of which have different properties, which is why APEX
follows both paths. Since the availability of positrons is very limited, these
devices are table-top sized to reduce the number of positrons required to achieve
a sufficiently small Debye length, a prerequisite for a plasma. Nonetheless,
positrons from a reactor-based source must first be accumulated in several stages
before an intense pulse can be injected into a confinement device. Electrons, on
the other hand, are extremely cheap and readily available via thermionic emission.

As mentioned above, positrons are very precious, so special care must be taken
to ensure that they can be injected into the confinement devices with as little
loss as possible. For this reason, Proto-APEX was built as a test device, which
successfully demonstrated that a nearly lossless transfer of positrons from the
incoming beamline into the magnetic dipole field of a supported permanent mag-
net via the E×B drift is possible. Due to the time-limited positron beam times
and the limited diagnostic capabilities of Proto-APEX, numerical simulations are
a key part of understanding the behavior of positrons in the confinement devices
in detail.

For this thesis, single-particle simulations were performed to investigate, among
other things, how the radial deposition of positrons can be manipulated during
injection, what limits the confinement time and how it can be extended, and
how the trap can be emptied efficiently. The simulations were performed with a
previously developed code that can propagate particles through electric poten-
tials and analytically calculated magnetic fields. To remove the dependency on
other programs, it has been extended here with its own electric potential solver,
which supports arbitrary user-defined geometries on a regular grid as well as an
octree data structure. The latter allows the geometry of the upcoming devices
to be resolved with higher precision without the aggressive memory consumption
scaling of a regular grid.



Zusammenfassung

Der weitaus größte Teil des Universums befindet sich im Plasmazustand. Prak-
tisch alles davon besteht wiederum aus Elektronen und Ionen. In der Nähe von
intensiven Gammastrahlenquellen kann sich jedoch auch eine exotischere Art
von Plasma bilden, das so genannte Elektron–Positron-Paarplasma. In einem
Paarplasma sind die beiden beteiligten Teilchenarten gegensätzlich geladen, haben
aber die gleiche Masse. Diese Massengleichheit ist der entscheidende Faktor
dafür, dass Paarplasmen im Vergleich zu Plasmen, die aus Elektronen und Ionen
bestehen, viel weniger anfällig für Instabilitäten sind. Aus diesem Grund ist es
von großem Interesse, ein solches Plasma genauer zu untersuchen.

Die APEX-Kollaboration hat das ehrgeizige, aber erreichbare Ziel, das erste
magnetisierte niederenergetische Elektron–Positron-Paarplasma im Labor zu
erzeugen. Für den Einschluss solcher Plasmen eignen sich vor allem magnetische
Dipolfelder und Stellaratoren. Diese beiden Methoden haben unterschiedliche
Vorteile, weshalb APEX beide Ansätze verfolgt. Da Positronen nur in sehr begren-
zten Mengen zur Verfügung stehen, werden beide Geräte tischgroß sein, um die
Anzahl der Positronen zu verringern, die benötigt werden, um eine ausreichend
kleine Debye-Länge zu erreichen, was eine Voraussetzung für die Erzeugung
eines Plasmas ist. Dennoch müssen Positronen aus einer reaktorbasierten Quelle
zunächst in mehreren Stufen akkumuliert werden, bevor ein intensiver Puls in
eine Einschlussvorrichtung injiziert werden kann. Im Gegensatz dazu stehen
Elektronen durch thermionische Emission in praktisch unbegrenzten Mengen
sofort zur Verfügung.

Wie bereits erwähnt, sind Positronen sehr kostbar, so dass besonders darauf
geachtet werden muss, dass diese möglichst verlustfrei in die Einschlussvorrich-
tungen injiziert werden können. Aus diesem Grund wurde Proto-APEX als
Testvorrichtung gebaut, mit der erfolgreich gezeigt werden konnte, dass ein na-
hezu verlustfreier Transfer von Positronen von der eingehenden Strahlführung in
das magnetische Dipolfeld eines auf einem Stab befestigten Permanentmagneten
über die E×B-Drift möglich ist. Aufgrund der zeitlich begrenzten Verfügbarkeit
von Positronen und der beschränkten diagnostischen Möglichkeiten von Proto-
APEX sind numerische Simulationen ein wichtiger Bestandteil, um das Verhalten
von Positronen in den Einschlussvorrichtungen im Detail zu verstehen.

Für diese Arbeit wurden Einzelteilchensimulationen durchgeführt, um unter
anderem zu untersuchen, wie die radiale Verteilung der Positronen während der
Injektion manipuliert werden kann, welche Faktoren die Einschlusszeit begrenzen
und wie diese verlängert werden kann, und wie die Falle effizient geleert werden
kann. Die Simulationen wurden mit einem zuvor entwickelten Code durchgeführt,
der Teilchen durch elektrische Potentiale und analytisch berechnete Magnetfelder
bewegen kann. Um weniger abhängig von anderen Programmen zu sein wurde
die Software hier um einen eigenen Löser für elektrische Potentiale erweitert,
der beliebige benutzerdefinierte Geometrien sowohl auf einem regulären Gitter
als auch auf einer Octree-Datenstruktur unterstützt. Letztere erlaubt es, die
Geometrien der zukünftigen Einschlussvorrichtungen mit höherer Genauigkeit
aufzulösen, ohne die aggressive Skalierung des Speicherverbrauchs eines regulären
Gitters.
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Chapter 1

Introduction

In the universe, it is estimated that more than 99 % of the visible matter is in
the plasma state [1], from stars to the interstellar medium. This state of matter,
which consists of a mixture of charged particles, can also be observed on Earth
e.g. as lightnings or as auroras, which are caused by the interaction of the solar
winds with the magnetosphere. Plasmas also have a wide range of applications,
ranging from plasma cutters, to extreme ultraviolet (EUV) light sources needed
for state-of-the-art lithography processes, to fusion reactors that seek to generate
energy by fusing atomic nuclei.

Plasmas usually consist of ionized atomic nuclei and free electrons, so the masses
differ by at least a factor of 1836 as in the case of a hydrogen plasma, but there
are also plasmas in which both species have the same mass, the so-called pair
plasmas. These pair plasmas exist in relativistic jets, such as those emitted
by pulsars or active galactic nuclei [2, 3, 4], where the enormous luminosity of
gamma radiation interacting with the surrounding matter can produce large
amounts of electron–positron pairs via pair production.

One of the properties that makes the study of pair plasmas so interesting
is their extraordinary stability in parameter regimes of experimental interest
[5, 6], which arise from the mass equality of the involved species. An example of
this is the ion acoustic wave, broadly sketched in Figure 1.1. When a density
fluctuations occurs in an electron–ion plasma, the electrons can quickly leave the
region of elevated density, whereas the ions remain behind due to their greater
inertia. The resulting charge separation creates an electric field, which pushes
the ions away from the region of elevated density and the electrons back to the
ions, but, due to their inertia, the ions overshoot, causing an oscillation that
is damped by Coulomb collisions and Landau damping. Considering the same
density fluctuation in an electron–positron plasma, no oscillation occurs, because
electrons and positrons leave the region of elevated density simultaneously and
therefore no electric fields are generated.

The goal of the APEX (A Positron–Electron eXperiment) collaboration is to
create a magnetized, low-energy, electron–positron plasma in the laboratory for
the first time. There are two magnetic confinement devices that are particularly
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Chapter 1. Introduction

(a) (b)

(c) (d)

Figure 1.1: Qualitative illustration of the evolution of a density fluctuation
in case of electrons and ions (a+b), and electrons and positrons (c+d). In this
simple simulation, the magnetic field pointed from left to right and all species
had the same initial temperature.

suitable for confining a neutral pair plasma: one is a magnetic dipole and the
other is a stellarator. Both paths are pursued by the APEX collaboration with
APEX-D, in which the magnetic dipole field is generated by a superconducting,
levitating coil, and with EPOS (Electrons and Positrons in an Optimized Stel-
larator) [7], a tabletop-sized stellarator which also uses superconducting coils.

To create the conditions for a plasma, the Debye length must be much smaller
than the size of the plasma. In case of a pair plasma, the Debye length λD is
given by [8]:

λD =
√

ϵ0kBT

2ne2 ∝
√

T

n
(1.1)

with the vacuum permittivity ϵ0, the Boltzmann’s constant kB , the temperature
T , the density n = ne+ = ne− , and the elementary charge e. For the target
parameters of APEX-D and EPOS (volumes of about 10 L, a plasma size of
about 8 cm, and temperatures lower than 1 eV), the required number of positrons
is therefore in the order of 1010 − 1011 [9]. Currently, there is no source that
can deliver this many positrons in the short time (< 100 µs) required to fill
the confinement devices. For this reason, it is planned to capture and accu-
mulate positrons from a reactor-based source (see Chapter 2) in several stages

2
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(discussed in detail in Chapter 3) before they are injected into one of the de-
vices, as illustrated in the grand scheme of the APEX collaboration in Figure 1.2.

Figure 1.2: The grand scheme of the APEX collaboration. The positrons from
a reactor-based source are accumulated in several stages to inject an intense
pulse into either APEX (which will be called APEX-D in the following to better
distinguish it from the collaboration) or EPOS (modified version of [10]).

It is one thing to achieve the necessary densities for a pair plasma, but care must
also be taken to allow sufficient time to study the plasma before the positrons an-
nihilate. Figure 1.3 gives an overview of the main processes that limit the lifetime
of the plasma in the targeted range. One can see that three-body recombination,
direct annihilation and positronium formation via radiative recombination do
not have a significant detrimental effect on the positron lifetime. However, di-
rect annihilation on residual gas molecules and atoms, like nitrogen and helium
(which is used to cool the levitated, superconducting coil, see Section 4.2), and
charge exchange with atomic hydrogen (outgassed from the stainless steel vacuum
chamber [11]) will result in a limitation of the expected lifetime in the order of
tens of minutes, if the positron energy is less than 10 eV, which is still more than
sufficient to investigate occurring plasma phenomena.

To date, experiments have been performed mainly with a predecessor device of
APEX-D, called Proto-APEX (see Section 4.1). In this device, the magnetic
dipole field is generated by a supported permanent magnet, and the positron
beam is injected directly without accumulation, so no plasma densities could be
achieved. Nevertheless, important milestones were achieved with Proto-APEX.
Among other things, our team was able to inject the positron beam into the
dipole field with an efficiency of 100 % [12], to hold these trapped positrons in
the dipole field for more than one second [13], and to show that positrons can be
injected into an already existing electron cloud [14, 15].

3
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Figure 1.3: Overview of the main annihilation processes in a electron–positron
plasma for different energies [10].

The focus of this dissertation is on single-particle simulations of positrons in
Proto-APEX. These simulations are used to study injection, confinement, and
ejection of positrons independently of the reactor cycle, as well as to gain in-
sights that are not accessible experimentally or are very difficult to obtain. The
simulations were performed with AlGeoJ, a program written in Java, which was
previously developed in-house [16] and was extended here with an electrostatic
field solver.

In the next chapter, the positron source used for APEX is described in more
detail. The plan of how these positrons will be accumulated to produce an intense
pulse is elaborated in Chapter 3. Chapter 4 focuses on the setup of Proto-APEX
and the status of APEX-D. The simulation framework is presented in depth
in Chapter 5, including the calculation of the electric and magnetic fields and
the propagation of the particles in these fields. Chapter 6 will introduce a more
sophisticated way of describing and solving the electric potentials, using octrees
as the underlying data structure. The continuous injection of positrons into
Proto-APEX is investigated in Chapter 7 by simulations and comparisons with
experimental data, in particular how the radial deposition can be manipulated
with the available free parameters. Which factors limit the confinement time
of positrons and how the confinement time can be improved are the subject of
Chapter 8. In Chapter 9, a previous beam time is recreated in the simulation
framework as an example, which also yielded an unexpected result. Various
ways of efficiently removing confined positrons from the dipole trap are explored
by simulations in Chapter 10. Chapter 11 examines whether the trap can also
be filled with multiple positron pulses and whether this is already testable in
Proto-APEX. Finally, there is a summary and an outlook on future plans and
developments in Chapters 12 and 13 respectively.

4



Chapter 2

The positron source
NEPOMUC

In order to achieve a Debye length that is small enough to reach plasma condi-
tions, a correspondingly strong positron source is needed.

A widespread source for positrons are radionuclides, which emit positrons via
β+ decay. The most commonly used isotope for creating a positron beam is
22Na, since it has a half-life of 2.6 years and strong sources of up to 50 mCi
(1.85 GBq) are commercially available [17]. Radioisotopes are often used in
conjunction with a moderator, e.g. solid neon [18], to reduce the kinetic energy
of the emitted positrons. This is done by implanting the positrons in the chosen
moderation material, where most of them are lost by annihilation and, depending
on the geometry, by transmission without thermalization, but a small fraction is
re-emitted with energies in the low eV range.

Another way to create positrons is by using a linear accelerator to shoot electrons
onto a high-Z target in order to produce bremsstrahlung [19]. If the photon
energy is higher than 1022 keV, it can be converted into an electron–positron pair
via pair production, which in turn can be moderated and formed into a beam.
One such accelerator based positron source is, for example, operated by National
Institute of Advanced Industrial Science and Technology (AIST) in Japan [20].

The high-energetic gammas necessary for pair production can also be produced by
nuclear reactors, either as a byproduct of the fission process [21] or by capturing
the emitted neutrons in a metal target in the vicinity of the reactor core. A
reactor-based source that utilizes thermal neutron capturing is the NEutron-
induced Positron source MUniCh (NEPOMUC) [22] at the Research Neutron
Source Heinz Maier-Leibnitz (FRM II) in Garching bei München. Since the
FRM II is located on the same campus as the IPP, NEPOMUC was naturally
the first choice for conducting pair-plasma research, which is why all experiments
of APEX to date have been carried out there and the future equipment will also
be tailored to this positron source. For this reason, NEPOMUC will now be
described in more detail.

5



Chapter 2. The positron source NEPOMUC

2.1 The primary beam
The so-called primary beam of NEPOMUC is created by thermal neutrons from
the FRM II reactor core hitting a 113Cd-enriched cap mounted on the SR11
beam tube, as illustrated in Figure 2.1. Since the cross section of 113Cd for
capturing thermal neutrons is about 20600 barn, the 113Cd(n, γ)114Cd process
is the most dominant. As the neutron binding energy of 113Cd is ≈9 MeV, this
energy is released as a cascade of γ-rays during the de-excitation, with about 2.25
photons with energies above 1.5 MeV being emitted with each neutron captured
[23]. The platinum structure inside the beam tube, directly behind the cadmium
cap, acts as a converter material for the photons, since the cross section for pair
production is proportional to Z2; it also serves as a moderator for the positrons
created (positron work function Φ+ = (−1.95± 0.05) eV [24]), since platinum has
better long-term stability and is easier to handle than tungsten [25], although the
latter has better moderation efficiency. With the help of a high voltage applied
to the structure, the positrons can be extracted and then magnetically (in fields
of 4 mT− 7 mT) guided to the different experiments, providing them with over
1 · 109 e+/s with energies between 400 eV and 1000 eV.

Figure 2.1: Cross-section of the in-pile positron source inside the SR11 beam
tube [26].

2.2 The remoderated beam
In order to enhance the brightness of the positron beam, the 1000-eV primary
beam can be guided onto another moderator, as shown in Figure 2.2, which
consists of a tungsten single crystal (in situ annealed W(100) with a positron
work function of Φ+ = −3.0 eV [27]) in back reflection geometry [28]. The energy
of the beam can be varied between 5 eV and 20 eV, but APEX used mainly the
5-eV beam for most of the experiments.
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Chapter 2. The positron source NEPOMUC

Figure 2.2: Overview of the beam line of NEPMOUC at the remoderation
stage [22]. The primary beam can either be directly guided to the experiments
or routed to the remoderation stage (7) beforehand via beam switches (4, 8).

This remoderated beam was characterized at the location of the experiment using
a retarding field analyzer (RFA) [29]. At the energy of 5 eV and when measured
in 5 mT, the width of the beam was determined to be about 3 mm (FWHM)
with an intensity over 2 · 107 e+/s.

The distribution of the perpendicular energy E⊥ was found to be well described
by a Maxwell–Boltzmann distribution:

f (E⊥) = 1
kBT⊥

exp
(
− E⊥

kBT⊥

)
= 1
⟨E⊥⟩

exp
(
− E⊥

⟨E⊥⟩

)
(2.1)

where the product of the Boltzmann constant kB and the perpendicular temper-
ature T⊥ was set to the mean perpendicular energy, which was measured to be
⟨E⊥⟩ = 0.78 eV.

The parallel energy is Gaussian-distributed:

f
(
E∥
)

= 1√
2πσ∥

exp
(
−
(
E∥ −

〈
E∥
〉)2

2σ2
∥

)
(2.2)

= 1√
2π ⟨E⊥⟩

exp
(
−
(
E∥ −

〈
E∥
〉)2

2 ⟨E⊥⟩2

)
(2.3)

where the spread of the parallel energy σ∥ can be assumed to be the mean
perpendicular energy. The mean parallel energy was determined to be

〈
E∥
〉

=
5.16 eV. These values were also used to initiate the energy distributions of the
positrons in most of the simulations, as described in Chapter 5.

7





Chapter 3

Positron accumulation

To create a pair plasma, up to 1011 positrons are needed, which would take
NEPOMUC between one hundred and a few thousand seconds to deliver. Because
confinement times cannot be expected to be this long, and because injection
into magnetic traps will most likely be done in short pulses, the continuous
beam from NEPOMUC must be accumulated for a considerable period of time
so that an intense positron pulse can be rapidly injected into the experiment
to reach the desired density. This accumulation is done in several stages to
incrementally increase the number of stored positrons. For logistical reasons,
design and construction of the entire system has been divided into two projects,
namely the buffer-gas trap (BGT) with subsequent accumulator, and the multi-
cell trap. Since these projects are an essential part of the grand scheme of APEX
(see Figure 1.2), they will be described in more detail in this chapter.

3.1 Buffer-gas trap and accumulator
The principle of a BGT is based on a Penning-Malmberg (PM) trap, which
confines charged particles with the same sign of charge radially with a magnetic
field and prevents axial losses with electric potentials at its ends. In addition,
a BGT uses a gas to reduce the energy of incoming particles through inelastic
collisions in order to trap them inside the potential well [30]. To prevent the
incoming particles from being reflected from the potential at the end of the trap, a
relatively high buffer gas pressure in the order of 10−2 mbar is present in the first
stage to ensure a high probability of an inelastic collision in the first pass. Since a
high gas pressure also increases the likelihood of annihilation, multiple stages with
progressively larger electrode diameters are used, operated at progressively lower
pressures (via differential pumping) and electrostatic potentials, as illustrated
in Figure 3.1. The most efficient buffer gas for positrons is N2, since the cross
section for its electronic excitation is larger than that for positronium formation
in the range of 9 eV to 11 eV [31]. Once the positrons have lost enough energy to
reach the third stage, they must be cooled. Instead of nitrogen, CF4 is used as
it is the most efficient cooling gas due to its large vibrational excitation cross
section [32].
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Chapter 3. Positron accumulation

Figure 3.1: General working scheme1of a three-stage BGT. The upper part
shows the structure of the electrodes and the lower part shows the profile of
the electric potential along the central axis, parallel to the magnetic field. The
positrons lose energy by inelastic collisions with the buffer gas, which causes
them to be trapped due to the stepped potential well in regions of progressively
lower gas pressure.

The BGT (stage I+II) and accumulator system (stage III) that will be used for
APEX is shown in Figure 3.2. The BGT has an expected trapping efficiency
of 5-10 % and will eject its trapped positrons into the accumulator about every
second. These accumulated positrons (> 108) are then transferred to the multi-
cell trap approximately every 60 s [33]. Magnetic field asymmetries, which cause
heating of the trapped particles, are a general problem of Penning-Malmberg
traps. In addition to carefully aligning the electrodes within the field, a common
technique also used in the BGT, accumulator, and multi-cell trap is the rotating
wall technique, in which sinusoidal voltages (with correspondingly offset phases)
are applied to the wall sectors of a segmented electrode [34]. The heating caused
by the rotating wall is compensated for by the gases that are already in the system.

The BGT works best for incoming positrons with energies around 10 eV due to
the dominant cross section for positronium formation above 11 eV [17], which
is why the BGT will be installed directly after the remoderator of NEPOMUC.
This also has the advantage that all other experiments of NEPOMUC have the
possibility to use the low energy positrons (< 1 eV) provided by the BGT system.

1Vectorized and modified version of "Buffer-gas-trap.jpg". Created by Physicscomputingfacil-
ity. Distributed under Creative Commons Attribution-Share Alike 4.0 International. Wikimedia
Commons. 28 March 2019.
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Chapter 3. Positron accumulation

Figure 3.2: Illustration of the buffer gas trap and the accumulator with the
magnetic field strength along the central axis [33]. The positrons are injected
from the left.

3.2 Multi-cell trap
The number of positrons stored in a PM trap is limited, mainly for technical
reasons, since potentials in the kilovolt range are needed to confine large space
charges. Instead of using high voltages, several smaller PM traps could be
used, like shown in Figure 3.3, to realize the storage of 1010 to 1011 positrons.
This so-called multi-cell trap [35] consists of a larger master-cell that takes the
positrons from the accumulator and shifts the plasma radially via autoresonant
excitation of the diocotron mode using the rotating wall to fill the off-axis cells
[36]. Since it can take several hours to fill all the storage cells, special care must
be taken to avoid positron losses in the meantime. This includes a clean UHV
environment, the use of the rotating wall to keep the plasmas compressed, and
careful alignment of the cells within the magnetic field [37]. To counteract the
inevitable heating, e.g. by the rotating wall itself, cooling is nevertheless required.
Since a cooling gas would also increase the risk of annihilations, the entire trap
is placed in a magnetic field of several tesla to use cyclotron radiation as the
main cooling mechanism. It is not yet clear if all storage cells can be emptied at
the same time to create one intense positron pulse or if they need to be emptied
in multiple batches. In Chapter 11, some preliminary simulation results are
presented to see if such an injection of positrons via multiple pulses would be
possible for Proto-APEX.

Figure 3.3: One possible design of a multi-cell.trap [17]. Positrons are trans-
ferred from the master-cell (“feed electrodes”) to the 21 hexagonally closed packed
(HCP) storage cells by using the “diocotron mode” [36]. Each cell has its own
set of rotating wall electrodes.
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Chapter 4

Magnetic confinement
devices

This chapter provides a more detailed description of the current and future
magnetic confinement devices used by the APEX collaboration. All these devices
have in common that the incoming positrons are transferred via the E×B drift
[38, p. 18] (with the electric field vector E⃗ and the magnetic field vector B⃗)

v⃗E×B = E⃗ × B⃗

B2 (4.1)

from the beam line into the confinement region [39].

4.1 The prototype trap: Proto-APEX
The setup of Proto-APEX, whose primary results have been to verify the E×B
drift injection technique and subsequent positron confinement [40, 41], is shown
in Figure 4.1. The positron beam from NEPOMUC, most of the time the re-
moderated 5-eV beam, is magnetically guided to the experiment, where a set of
guide field coils couples the magnetic field of the beam line to the dipole field.
The guide field coils are centered around the beam tube, which is offset by 4 cm
relative to the main chamber. Inside the beam tube is a deflector, a cylindrical
electrode that can be biased to prevent the positron beam from reaching the
experiment. The beam first passes through a diagnostic chamber; there, a target
plate can be inserted to measure the incoming beam intensity, or a microchannel
plate (MCP) can be inserted to visualize the beam. The positrons then pass
through two sets of steering coils, which are used to fine-tune the position of the
injection into the main chamber.

Once the beam enters the main chamber two oppositely charged plates pro-
vide the necessary electric field for the positrons to drift onto the closed field lines
of the dipole, hence the name E×B plates. In order to reduce the disturbance
of the successfully injected positrons by this strong electric field, a grounded
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shield plate is located directly beside them. The central dipole field is generated
by a supported neodymium magnet (height: 40 mm, diameter: 28 mm, 600 mT
at the poles), which is housed in a copper casing (height: 46 mm, diameter:
34 mm) so that it can be biased to prevent positrons from annihilating on it. The
magnet, the E×B plates, and the shield plate are surrounded by a cylindrical
wall (radius: 9 cm), which is divided into several segments, all of which can be
biased separately. The lower ring is divided into eight equal segments, while the
top ring is divided into a 1/8 segment and a 7/8 segment. Normally, all segments
are grounded except for RW1 and Top1, highlighted in Figure 4.1, which are
both positively biased during the injection for most experiments conducted,
as this dramatically increases injection efficiency by preventing positrons from
hitting the wall if they are not directly confined. This allows a positron to be
electrostatically reflected by the wall electrodes and magnetically mirrored by
the dipole field (or electrostatically reflected due to the magnet case bias) within
the electric field of the E×B plates, sometimes even multiple times, until the
positron is ultimately confined in the dipole field (more on this in Section 7.1).

(a) (b)

Figure 4.1: Side view (a) and top view (b) of Proto-APEX, as modeled in
the simulation program. Magnetic field lines are depicted in blue and a sample
positron trajectory is shown in red.
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Once confined, the positrons travel toroidally around the magnet due to the
grad-B drift v⃗∇B and curvature drift v⃗R [38, p. 20–21]:

v⃗∇B = −E⊥

q

∇⃗B × B⃗

B3 (4.2)

v⃗R =
2E∥

qR2
c

R⃗c × B⃗

B2 (4.3)

with the kinetic energy E perpendicular and parallel to the magnetic field B,
the charge q, and the radius of curvature Rc pointing away from the center
of the approximated circle. For low-energies (at which the gyromotion is fast
compared to the drifts) the positrons perform three distinct motions in the dipole
field (values given correspond to the remoderated 5-eV beam): they gyrate in
the magnetic field at the cyclotron frequency (f ≈ (280 ± 70) MHz), bounce
between the poles (T ≈ (280± 40) ns) and drift toroidally around the magnet
(T ≈ (15 ± 4) µs). On the opposite side of the chamber with respect to the
injection region, a target probe can be inserted, acting as an annihilation target
for the positrons. With this target probe, the injection efficiency and the radial
distribution of the positrons can be measured either by counting the annihilation
gammas with a collimated bismuth germanium oxide (BGO) scintillation detector
or by directly measuring the incoming current. The effect of the target probe on
the measurement is discussed in Section 7.2.

4.2 The levitated dipole trap: APEX-D
Proto-APEX has produced excellent results, but is not suitable for creating
plasma conditions because the loss cone onto the magnet can only be plugged
for either positrons or electrons at the same time. For this reason, APEX-D
[42] will use a levitated superconducting coil (GdBaCuO-tape from THEVA,
TC = 92 K), which of course does not have this loss cone because the field lines
do not intersect material surfaces.

In Figure 4.2, the 3D model is shown. The setup consists of two chambers.
In the lower chamber, the cooling assembly is situated. At the beginning of an
experimental cycle, the normally conducting floating coil (radius: ≈ 7.5 cm, mass:
< 2 kg, 30 kA− turns, 1 T) is placed inside this cooling assembly and enclosed
by a removable lid. Next, the high-temperature superconducting coil within the
assembly is ramped up to produce a strong magnetic field. Helium is injected into
the assembly to provide good thermal contact between the floating coil and the
assembly itself, which is cooled to 20 K with a cryocooler. Once the temperature
of the floating coil is well below its critical temperature, the charging coil is
ramped down to induce a current in the floating coil. After the helium has been
pumped out of the cooling assembly, the lid is removed, and the floating coil is
mechanically lifted into the upper experimental chamber. Once inside experimen-
tal chamber, a copper, water-cooled lifting coil is engaged to levitate the floating
coil in the chamber, while the lifter is retracted. This configuration, with the
lifting coil on top, is stable for slide and tilt motions, but the vertical motion of
the floating coil is unstable [43]. Three laser sensors are therefore used to provide
position data to a feedback system that controls the current of the lifting coil to
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Figure 4.2: Computer model of APEX-D with the cooling assembly and cahrging
coil in the lower chamber, the leviating coil in the upper experimental chamber,
and the lifting coil at the top of the chamber [10].

keep the floating coil in place. The main factors that limit the levitation time are
the current decay due to the residual resistance in the floating coil and the heat-
ing due to thermal radiation from the environment. The effect of the radiation
heating is reduced by gold-plating the floating coil and connecting the electrode
structure in the experimental chamber to the cryocooler, thus acting as a radia-
tion shield. When the levitation can no longer be maintained, the lifter is raised
to capture the floating coil and safely return it to the cooling assembly, where
the cycle can be repeated once the coil has warmed above its critical temperature.

As the main diagnostic tool, the chamber will be surrounded by 48 cylindrical
BGO-detectors (crystal size: 1 in× 1 in), which are directly connected to three
V1730 digitizer cards from CAEN [44]. These cards also support on-board pulse
processing to directly return timing and energy information for each incoming
detector signal, enabling a quick data analysis and perhaps even a tomographic
reconstruction. In the future, high-purity germanium detectors may be added
to provide better energy resolution, which, in conjunction with a gas, could
potentially provide an upper limit on the positron energy [45]. Another option
would be to inject pellets or cold gas jets into the plasma to locally increase the
annihilation rate to obtain radial density profiles [9].
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4.3 The optimized stellarator trap: EPOS
Besides the dipole configuration, a stellarator is also suitable for confining a pair
plasma. Therefore, EPOS (Electrons and Positrons in an Optimized Stellarator)
is being developed in parallel to APEX-D to cover a wider physical range for
studying pair plasmas [7]. One of the main physical differences will be that
instead of using a floating coil, which requires cooling and warming cycles, to
generate the confining magnetic field, EPOS will use many 3-D coils, which will
be mechanically mounted, allowing the device to operate in a steady state. As
a result, the magnetic topology will also be different. Instead of having field
lines that close after one pass around the coil, which is the case for a levitated
dipole, a stellarator will have flux surfaces with correspondingly longer magnetic
connection lengths. An overview of the major differences between the two config-
urations is given in Table 4.1.

Property Stellarator Levitated dipole
Time scale Steady state Requires cooling/warming cycles

Wider relevance Fusion Astrophysics
Flux expansion Negligible Large

Topology Magnetic flux surfaces Field lines close after one pass
B-field connection length Long Short
Drift orbit confinement Requires optimization Confined (due to axissymmetry)

Coils Many 3-D coils 2–3: floating, lifting, charging
Current leads Permanently attached Detachable/inductively charged

Positron fuelling Pulsed fuelling Possibility of steady state

Table 4.1: A comparison of the different characteristics of a stellarator and a
levitating dipole [10].

At the time of writing, EPOS is still in the development phase, but it is likely
to be a quasi-axisymmetric stellarator, optimized to reduce collisionless trans-
port. The optimization process will also pay special attention to the robustness
to manufacturing tolerances, and since EPOS is table-top sized, it is an ideal
candidate for testing this. EPOS is also breaking new ground by attempting to
3D print the metal frame around which the high-temperature superconducting
tape is wrapped.
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The simulation framework

A very helpful counterpart to experiments are numerical simulations. They
are able to explain experimental results by visualizing complete trajectories
of particles, gather data that would be inaccessible otherwise and can assist
designing future experiments. Furthermore, numerical simulations are of course
not dependent on the limited availability of positrons, which makes them an
essential tool of the quest to create an electron–positron plasma, as it allows for
a rapid iteration and feasibility studies of e.g. electrode configurations.

At the current stage of the experiments, the achievable positron densities are low
enough to assume that positrons act as single particles without any interaction
between other particles. This greatly simplifies the simulations, since only a
global description of the electric and magnetic fields at each point is needed, and
the iterative propagation of the particles through these fields is independent of
other particles and thus can be trivially parallelized. None of the known free or
commercial simulation software combined a fast, analytical calculation of the
magnetic fields of coils, a solver for electric potentials in arbitrary geometries,
and a particle pusher fast enough to numerically explore the large parameter
space of APEX in a reasonable time. Therefore, AlGeoJ was developed from
scratch to fill this gap.

This chapter describes in detail all the components needed to run particle
simulations. First, a particle pusher algorithm with excellent energy conserving
properties is presented to efficiently propagate particles through electric and
magnetic fields. In Section 5.2, the implemented analytical formulas for the
calculation of the magnetic fields are given for each type of coil used in APEX.
Section 5.3 describes how the electric potentials are calculated, including multiple
acceleration techniques. Several ways to obtain the electric field vector from a
discrete potential are presented in Section 5.4. Section 5.5 covers the available
options in AlGeoJ for describing the electrode geometries. Finally, Section 5.6
illustrates a method for generating a realistic spatial distribution of particles
from an image.

19



Chapter 5. The simulation framework

5.1 Particle pusher
The trajectory of a charged particle is, in our case, determined solely by the
Lorentz force:

a⃗ = dv⃗

dt
= q

m
(E⃗ + v⃗ × B⃗) = Σ⃗ + v⃗ × Ω⃗ (5.1)

where q and m is the charge and the mass, respectively, of a particle, E⃗ the
electric field vector, B⃗ the magnetic field vector, Σ⃗ = q

m E⃗ and Ω⃗ = q
m B⃗. The

velocity can be replaced by the average of the old and new velocity:

v⃗new − v⃗old

∆t
= Σ⃗ + v⃗new − v⃗old

2 × Ω⃗ (5.2)

With the time step ∆t and

A⃗ = Ω⃗∆t/2 (5.3)

C⃗ = v⃗old + ∆t
(

Σ⃗ + v⃗old × Ω⃗/2
)

(5.4)

Equation (5.2) can be solved for the new velocity vector by [46, p. 30]:

v⃗new = C⃗ + A⃗A⃗ · C⃗ − A⃗× C⃗

1 + A2 (5.5)

The new position xnew is subsequently given by:

x⃗new = x⃗old + ∆t · v⃗new (5.6)

This is a variant of the second-order leapfrog integrator, which conserves phase
space volume [47, p. 231] and is therefore a much better choice for propagating
particles through electromagnetic fields than, for example, the fourth-order
Runge-Kutta method [16].

5.2 Magnetic fields
In APEX, charged particles are confined in the main dipole field, so special care
was taken to avoid any ferromagnetic materials inside the experimental chamber
that may deform the field. This has the positive side effect of simplifying the
calculation of the magnetic field since the field at any given point can be assumed
to be the superposition of the generated fields of each individual coil.

In general, the magnetic field produced by a current carrying wire can be
calculated with the Biot–Savart law:

B⃗(r⃗) = µ0

4π

∫
C

Id⃗l × r⃗ − r⃗′

|r⃗ − r⃗′|3
(5.7)

From a simulation standpoint, this is far from ideal, as a line integral must
be calculated for each individual step along the trajectory for each individual
coil. Fortunately, there is an analytical solution for each type of coil used in
the experiment, which allows one to avoid an inaccurate approximation of the
magnetic field on a discrete grid.
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5.2.1 Circular current loop
Probably the simplest coil is a single, circular, current-carrying loop. Such loops
are very well suited to model the beam line coils, since the large distance of these
coils to the positron beam makes their physical dimension negligible. With the
radius of the coil R, the distance to the symmetry axis ρ, the distance to plane
z, the ampere-turns I and

α2 = R2 + ρ2 + z2 − 2Rρ (5.8)
β2 = R2 + ρ2 + z2 + 2Rρ (5.9)
k2 = 1− α2/β2 (5.10)
C = µ0I/π (5.11)

the magnetic field of a current loop in cylindrical coordinates is given by [48]:

Bρ = Cz

2α2βρ

[(
R2 + ρ2 + z2)E

(
k2)− α2K

(
k2)] (5.12)

Bz = C

2α2β

[(
R2 − ρ2 − z2)E

(
k2)+ α2K

(
k2)] (5.13)

K(k) and E(k) are the complete elliptic integrals of the first and second kind, re-
spectively. These functions can be calculated quite efficiently with the arithmetic-
geometric mean described in Appendix B.

5.2.2 Continuous finite solenoid
In Proto-APEX, the dipole magnetic field is created by a neodymium permanent
magnet. One way to reproduce the magnetic field of the magnet would be to
stack multiple of the aforementioned circular current loops, but this approach
would require about 75 loops to achieve an accuracy better than 1% on the
equatorial plane at a radius of 9 cm compared to the limit of an infinite number
of windings (see Figure 5.1). At smaller radii, were the windings of the solenoid
play a more significant role (see Figure 5.2), even more loops would be required.

Figure 5.1: Comparison of the B-field strengths of the Proto-APEX magnet
modeled by a continuous finite solenoid and a solenoid with a certain number of
windings [16]. Measured on the midplane at a radius of 9 cm.
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Instead of using a stack of circular current loops to model the magnet, it is
computationally much more efficient to calculate the field with a closed formula
for a finite continuous solenoid where the field is generated by a surface current.
With the length of the solenoid L, the radius R, the current I, the distance to the
center of the solenoid along the symmetry axis z, the distance to the symmetry
axis ρ and

ζ± = z ± L/2 (5.14)

h2 = 4Rρ

(R + ρ)2 (5.15)

k2 = 4Rρ

(R + ρ)2 + ζ2 (5.16)

the magnetic field of a continuous finite solenoid can be calculated in cylindrical
coordinates by [49]

Bρ = µ0I

2πL

√
R

ρ

[
k2 − 2

k
K
(
k2)+ 2

k
E
(
k2)]ζ+

ζ−

(5.17)

Bz = µ0I

4πL

1√
Rρ

[
ζk

(
K
(
k2)+ R− ρ

R + ρ
Π
(
h2, k2))]ζ+

ζ−

(5.18)

with the three complete elliptic integral K(k), E(k), and Π(n, k). How these can
be computed efficiently is described in Appendix B.

(a) Solenoid (b) Continuous solenoid.

Figure 5.2: Comparison of the field lines generated by a solenoid (a) consisting
of 10 current loops and a continuous finite solenoid (b) [16].

5.2.3 Rectangular coils
The steering coils, that are used to fine adjust the positron beam position right
before it enters the main chamber, have a rectangular shape, as seen in Figure 4.1.
Of course, these hand-wound coils do not have a perfect rectangular shape in
real life, so they could well be modeled with circular current loops, but since
analytical expressions exist for calculating the magnetic field of a rectangular
coil, one of them was used instead as described in the following.
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Assuming a coil with side lengths of 2a and 2b that is centered in the x-y-plane,
like shown in Figure 5.3, then with

C1 = −C4 = a + x (5.19)
C2 = −C3 = a− x (5.20)
d1 = d2 = y + b (5.21)
d3 = d4 = y − b (5.22)

and the distances rn from the point of evaluation to the corners of the coil

r1 =
√

(a + x)2 + (y + b)2 + z2 (5.23)

r2 =
√

(a− x)2 + (y + b)2 + z2 (5.24)

r3 =
√

(a− x)2 + (y − b)2 + z2 (5.25)

r4 =
√

(a + x)2 + (y − b)2 + z2 (5.26)

the magnetic field of a rectangular coil is given in Cartesian coordinates by [50]

Bx = µ0I

4π

4∑
n=1

[
(−1)n+1z

rn[rn + dn]

]
(5.27)

By = µ0I

4π

4∑
n=1

[
(−1)n+1z

rn [rn + (−1)n+1Cn]

]
(5.28)

Bz = µ0I

4π

4∑
n=1

[
(−1)ndn

rn [rn + (−1)n+1Cn] −
Cn

rn[rn + dn]

]
(5.29)

Figure 5.3: Rectangular current
loop in the x-y plane. P is the
point of evaluation [50].

Figure 5.4: Illustration of the
dimensions of a circular coil with
rectangular cross section (based
upon [51])
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5.2.4 Circular coil with rectangular cross section
In the future, the main dipole field of APEX will be produced by a levitated
superconducting coil (see Chapter 4). Since it is a coil, particles can of course fly
through it unhindered, unlike Proto-APEX, where they are inevitably stopped
by the magnetic case. In addition, it cannot be biased, which ultimately leads to
particles being able to stay in close proximity to the coil, making an approxi-
mation of the magnetic field by a singular current loop less suitable. For that
reason, a semi-analytic method was implemented to calculate the magnetic field
of a circular coil with rectangular cross section.

For a coil with dimension as illustrated in Figure 5.4 and the uniform cur-
rent density J , the magnetic field in cylindrical coordinates at a position (ρ, z) is
given by [51]:

Bρ = µ0Jr

2π

2∑
i=1

2∑
j=1

(−1)i+jPρ(Ri, Zj) (5.30)

Bz = µ0Jr

2π

2∑
i=1

2∑
j=1

(−1)i+jPz(Ri, Zj) (5.31)

With the scaling transformation

R1,2 = Rmean ∓ d/2
ρ

(5.32)

Z1,2 = ∓h− z

ρ
(5.33)

R0 =
√

R2 + 1− 2R cos φ + Z2 (5.34)

and

Pρ(R, Z) =
∫ π

0
(R0 + cos φ ln(R0 + R− cos φ)) · cos φ dφ (5.35)

Pz(R, Z) =
∫ π

0
Z ln(R0 + R− cos φ) + 1

2 cos φ ln
(

R0 − Z

R0 + Z

)
(5.36)

− sin φ arctan
(

Z(R− cos φ)
R0 sin φ

)
dφ (5.37)

For the simulation of trajectories, however, this is very time-consuming, since eight
integrals have to be numerically solved for each step. Nevertheless, with the help of
this implementation and an optimization procedure, a combination of previously
described coils can probably be found that produces a good approximation of the
magnetic field of the APEX coil, which can make trajectory simulations feasible
again.
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5.2.5 Ideal magnetic dipole
The point of magnetic reflection is mostly expressed under the condition that
the magnetic moment µ = mv2

⊥/(2B) is adiabatically invariant. In a dipole
field, however, this is only valid to the lowest order. If higher orders are also
considered, the point at which a charged particle is mirrored depends also on
the phase of its gyration motion and on its parallel velocity [52]. In order to
investigate the resulting effects in more detail, an ideal magnetic dipole is a good
choice:

B⃗(m⃗, r⃗) = µ0

4π

3(m⃗ · r̂)r̂ − m⃗

r3 (5.38)

with the magnetic dipole moment m⃗.

5.3 Electric potentials
The first Maxwell equation states for the electric field E that

∇E⃗ = ρ

ϵ
(5.39)

with the charge density ρ, the permittivity ϵ. Therefore, charges generate a
divergent electric field. In the electrostatic case, the electric field can also be
expressed as the gradient of the electric potential Φ:

E⃗ = −∇Φ (5.40)

Applying the∇ operator to Equation (5.40) and setting it equal to Equation (5.39)
results in the Poisson’s equation

∆Φ(x, y, z) = −ρ(x, y, z)
ϵ

(5.41)

with the Laplace operator ∆.If the charge density ρ(x, y, z) = 0 then the Poisson
equation simplifies to the Laplace equation:

∆Φ(x, y, z) = 0 (5.42)

5.3.1 Discretization of the potential
In general, the Poisson equation or the Laplace equation, respectively, can only
be solved analytically for very simple, idealized cases. The calculation of the
electric potential therefore requires a numerical approach. To make it numerically
solvable in the first place, the problem must be discretized. At first sight, an
approach with cylindrical coordinates seems to be a good fit for the Proto-APEX
potentials, but the disadvantages in handling the shield plate, the E×B plates and
the target probe outweigh its advantages. This leaves only a regular Cartesian
grid for which the solution of an electric potential is derived in the following,
including multiple methods to reduce the required computational resources.
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The second order derivative of a function can be written as the limit of the
second order central difference quotient

f ′′(x) = lim
h→0

f(x + h)− 2f(x) + f(x− h)
h2

= f(x + h)− 2f(x) + f(x− h)
h2 +O(h2)

(5.43)

where h is a small step. Combining Equations (5.42) and (5.43) results in the
local approximation of the Laplace equation:

∆Φ(x, y, z) = Φ(x + h, y, z)− 2 · Φ(x, y, z) + Φ(x− h, y, z)
h2 +

Φ(x, y + h, z)− 2 · Φ(x, y, z) + Φ(x, y − h, z)
h2 +

Φ(x, y, z + h)− 2 · Φ(x, y, z) + Φ(x, y, z − h)
h2

= 0

(5.44)

For a discretized potential on a grid Φx,y,z, with x, y, z being the array indices,
Equation (5.44) can be written as:

∆Φx,y,z = Φx+1,y,z + Φx−1,y,z + Φx,y+1,z+
Φx,y−1,z + Φx,y,z+1 + Φx,y,z−1 − 6 · Φx,y,z

= 0
(5.45)

This can then be easily solved for Φk
x,y,z, with k indicating the kth iteration:

Φk+1
x,y,z = 1

6 ·(Φ
k
x+1,y,z+Φk

x−1,y,z+Φk
x,y+1,z+Φk

x,y−1,z+Φk
x,y,z+1+Φk

x,y,z−1) (5.46)

This means that if the potential on the grid is correct, the potential at every
grid point is the average of its six direct neighbors as illustrated in Figure 5.5. It
does, however, not provide an instant global solution for the potential, therefore
it is necessary to iterate over all grid points until the maximum change between
iterations is smaller than a given threshold or until a maximum number of
iterations is reached. The threshold itself must be greater than the machine
precision used to ensure that it can be reached at all.
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(a) 2D. (b) 3D.

Figure 5.5: Illustration of a local Laplace iteration step in 2D and 3D.

5.3.2 Boundary conditions
Before solutions for the different electrical potentials can be calculated, some
boundary conditions have to be defined. In this case, Dirichlet boundary con-
ditions (which require a function to take given values on the boundary of the
domain) are the logical choice, since no adjustments to the derived formulas need
to be made for them.

Figure 5.6 shows the two different boundary types, namely the domain boundary
and object boundaries. If the boundary of the domain is set to 0 V, which is
usually the case since only electrodes within the domain are biased, then no
adjustments need to be made because when a potential array is created, all
values are set to 0 in the first place and while iterating over the cells with e.g.
Equation (5.48), the boundary needs to be omitted anyway (see Algorithm 3).
With the domain boundary alone, one can of course not yet calculate a usable
potential. A simple way to discretize the geometry is to check whether the center
of a cell is inside the object or not. In order to achieve better coverage, especially
for rounded objects, it can be helpful to also consider cells whose centers are
close to the object (compare Figures 5.6a and 5.6b). In the case of Proto-APEX,
a threshold of 20 % of the grid spacing yielded good results. Once the geometry
cells are found, these cells can be initialized in the potential array. The set value
can correspond either directly to the desired potential, or 1 V, which allows for a
quick change of the potential strength by simply scaling it,without the need to
recalculate the full potential.

In the following pseudocode examples, the method isGeometry(x, y, z) re-
turns either true or false, depending on whether the cell at the passed position
was marked as geometry. The actual implementation can be done using a boolean
array in which the geometry marker for each cell is stored. This way each cell
has to be checked only once and isGeometry is reduced to a single array access.
The additional memory demand is relatively small, because a boolean array,
depending on the used programming language, requires much less memory than a
potential array (e.g. in Java: boolean/float = 1/4) and only one array is necessary
per domain.
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(a) (b) (c)

Figure 5.6: The discretization on a regular grid. Cells with geometry are
colored in red. The domain boundary cells are set to 0 V and highlighted in blue.
In (a), only cells were marked as geometry if their centers were completely within
the object. In (b), cells located at a distance up to 20 % of the grid spacing from
the object were also considered. The solved potential is shown in (c), where the
cylinder and the cube are oppositely charged.

5.3.3 Successive over-relaxation
An improvement of Equation (5.46), also known as the Jacobi method, is the so
called Gauss-Seidel method:

Φk+1
x,y,z = 1

6 ·(Φ
k
x+1,y,z+Φk+1

x−1,y,z+Φk
x,y+1,z+Φk+1

x,y−1,z+Φk
x,y,z+1+Φk+1

x,y,z−1) (5.47)

The Gauss-Seidel method is very similar to the Jacobi method with the only
difference that values are updated in-place and previously updated values are
directly used. This has the benefit that a temporary array storing the updated
values can be omitted. A negative side effect of the Gauss-Seidel method is, how-
ever, that the local update causes an asymmetry in the direction of the iteration,
but this asymmetry should be small once the potential has converged. Another
disadvantage to the Jacobi method is that the iteration cannot be parallelized
in a straightforward way since this would require a synchronization mechanism
between threads and their work block boundaries.

To speed up the convergence, the Gauss-Seidel can be modified to the successive
over-relaxation method (SOR) [53][47, p. 308]:

Φk+1
x,y,z =(1− ω) · Φk

x,y,z + ω

6 · (Φ
k
x+1,y,z + Φk+1

x−1,y,z + Φk
x,y+1,z+

Φk+1
x,y−1,z + Φk

x,y,z+1 + Φk+1
x,y,z−1)

(5.48)

with the SOR parameter ω and 1 < ω < 2. If ω = 1 then Equation (5.48) is
identical to the Gauss-Seidel method (Equation (5.47)). The optimal choice of ω
is unfortunately highly dependent on the problem and can usually only be found
heuristically. Once found, however, the number of iteration until convergence
is reached can be reduced quite drastically (a factor of 10 was achieved in the
example shown in Figure 5.7). For the calculation of the Proto-APEX potentials
ω = 1.9 was chosen.
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5.3.4 Multigrid preconditioning
The term “multigrid” can refer to a variety of schemes to solve a discretized
partial differential equation system, with the basic idea being to first solve the
problem on a coarser grid and then to apply this solution to the fine grid. The
different schemes differ mainly in the number of levels of coarser grids, and in
what order the fine grid is restricted to the coarser grids and the coarse grids
prolongated to the finer ones, respectively [47, p. 308].

Solving a potential using the multigrid method alone in a domain with a lot of
geometry proves to be difficult, as this requires special considerations during
the restriction and prolongation between the different grid levels. However, the
potential array can be preconditioned using a basic multigrid method to further
decrease the number of expensive SOR iterations on the finest grid. In this
instance, the potential is first solved on the coarsest grid with 1/4 of the resolu-
tion (d = 4, see Algorithm 3 in Appendix E.1), then the values are prolongated
(described in Algorithm 4 in Appendix E.1) to a grid with half the resolution of
the finest grid and solved again (d = 2). Finally, the values are prolongated once
again to the finest grid and relaxed using the SOR method (now d = 1) until
convergence. Even with this simple approach, the number of expensive, full SOR
iterations can be decreased by over 50 % while the dependence on the parameter
ω is weakened at the same time (see Figure 5.7).

Figure 5.7: The effect of different SOR parameters on the number of full SOR
iterations needed until convergence. The data shown here corresponds to the
magnet case potential of Proto-APEX (see Figure 4.1) with 201× 201× 401 grid
points.

5.3.5 Symmetry
An obvious way to reduce the amount of system memory occupied by the po-
tential arrays and to decrease the time to solve these potentials is to exploit
mirror symmetries inside the domain. Looking at the geometry of Proto-APEX,
a symmetry in z-direction can be seen (see Figure 4.1). It can also be seen that
the geometries of the mainly used electrodes (Top1, RW1, E×B plates and the
magnet case) are themselves symmetric in the z-direction and consequently so
are their potentials, except for the ExB potential which is antisymmetric. When
solving such a (anti-)symmetric the potential via SOR (see 5.3.3), special care
must be taken at the symmetry plane which depends on the type of symmetry
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(antisymmetric or not) and the number of grid points in the symmetry direction
(even or not). This is accomplished by an additional boundary iteration after
each SOR iteration. A pseudocode implementation of this is given in Algorithm 5
in Appendix E.2.

If the multigrid preconditioner is used (see 5.3.4), the methods for propagating
potential values from a coarse grid to the next finer grid have to be adapted as
well, like shown in Algorithm 6 in Appendix E.2.

Finally, to also ensure that a (anti)-symmetric potential is still defined in the
whole domain, the methods to retrieve a calculated potential value at a specific
grid point have to be modified. Implementations of both cases are given in
Algorithm 7 in Appendix E.2.

When the symmetry of an electrodes is exploited, the system memory con-
sumption of its potential is naturally halved and so is the time necessary to
solve the potential since the SOR has to be applied to only halve the grid points.
Another benefit is that the potential is actually symmetric compared to one
where the symmetry is not explicitly used because the SOR iterations are done
diagonally which causes a small asymmetry.

Algorithm 1: Complete algorithm to compute the potential on a grid
using SOR with multigrid preconditioning and symmetry.

Input: The potential array: Φ
The size of the domain: nx, ny, nz
The multigrid preconditioning level: d (1,2,4,...)
The successive over-relaxation parameter: ω

Function: computePotential()
Φ← initPotentialArray(nx, ny, nz)
level ← 3
while level > 0 do

d← 2level−1

repeat
iterationSOR(Φ, d, ω)
if Φ has a symmetry then

iterateBoundary(Φ, nx, ny, nz, d, ω)

until Φ converged or max. # of iterations reached

if level > 1 then
prolongate(Φ, d)
if Φ has a symmetry then

prolongateBoundary()

level ← level-1
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5.4 Calculation of the electric field vector
To iteratively propagate a charged particle through a potential landscape, it
is necessary to know the electric field vector at every location, as discussed in
Section 5.1. In the following, multiple ways to differentiate a discrete scalar field
are presented.

Before that, a few necessary functions have to be defined.

The electric field vector exactly at a grid point can be directly calculated with

E⃗x,y,z =

−(Φx+1,y,z − Φx−1,y,z)/(2 · d)
−(Φx,y+1,z − Φx,y−1,z)/(2 · d)
−(Φx,y,z+1 − Φx,y,z−1)/(2 · d)

 (5.49)

This is the discretized version of Equation (5.40), where the gradient was replaced
by the central difference quotient in the corresponding direction, with d being
the grid spacing. At the domain boundaries, the central difference quotient has
to be replaces with the forward and backward difference, respectively.

Assuming that x lies between the values p0 and p1, the value at position x
can be linearly interpolated with

l(p0, p1, x) =
(

1.0− x− ⌊x⌋
d

)
· p0 + x− ⌊x⌋

d
· p1 (5.50)

where 0 ≤ x ≤ nx− 1 with nx being the number of grid points in the domain
in x-direction. This can be extended to two dimensions, also known as bilinear
interpolation:

b(p0, p1, p2, p3, x, y) = l(l(p0, p1, x), l(p3, p2, x), y) (5.51)

Linear interpolation in three dimensions is called trilinear interpolation:

t(p0, . . . , p7, x, y, z) = l(b(p0, p1, p2, p3, x, y), b(p4, p5, p6, p7, x, y), z) (5.52)

In Figure 5.8, the different linear interpolation steps are illustrated. In case that
p0, . . . , p7 are vectors, the trilinear interpolation is applied to each component of
the vectors separately. It should be noted that the order in which the axes are
interpolated does not have any influence on the result.

5.4.1 Nearest-neighbor
The easiest way to retrieve an electric field vector at an arbitrary position inside
the domain is to find the closest grid point and use Equation (5.49) to calculate
the field vector at that point:

E⃗(x, y, z) = E⃗nint(x),nint(y),nint(z) (5.53)

Of course, this is only a very rough approximation and therefore hardly suitable
for the simulation of trajectories. A possible application would be the fast
visualization of field vectors, under the condition that the density of grid points
in the viewing area is sufficiently high.
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Figure 5.8: Illustration of trilinear interpolation at the point p (green) from
the given values p0, . . . , p7 (blue). Red points are intermediate results.

5.4.2 Difference quotient with bilinear interpolation
Another method to obtain an electric field vector within a cell is to first perform
a bilinear interpolation on each side of the cell and then use these values to form
the difference quotient for each direction:

E⃗(x, y, z) =



−
(

b
(
Φ⌈x⌉,⌊y⌋,⌊z⌋, Φ⌈x⌉,⌈y⌉,⌊z⌋, Φ⌈x⌉,⌈y⌉,⌈z⌉, Φ⌈x⌉,⌊y⌋,⌈z⌉, y, z

)
−

b
(
Φ⌊x⌋,⌊y⌋,⌊z⌋, Φ⌊x⌋,⌈y⌉,⌊z⌋, Φ⌊x⌋,⌈y⌉,⌈z⌉, Φ⌊x⌋,⌊y⌋,⌈z⌉, y, z

))
/d

−
(

b
(
Φ⌊x⌋,⌈y⌉,⌊z⌋, Φ⌈x⌉,⌈y⌉,⌊z⌋, Φ⌈x⌉,⌈y⌉,⌈z⌉, Φ⌊x⌋,⌈y⌉,⌈z⌉, x, z

)
−

b
(
Φ⌊x⌋,⌊y⌋,⌊z⌋, Φ⌈x⌉,⌊y⌋,⌊z⌋, Φ⌈x⌉,⌊y⌋,⌈z⌉, Φ⌊x⌋,⌊y⌋,⌈z⌉, x, z

))
/d

−
(

b
(
Φ⌊x⌋,⌊y⌋,⌈z⌉, Φ⌈x⌉,⌊y⌋,⌈z⌉, Φ⌈x⌉,⌈y⌉,⌈z⌉, Φ⌊x⌋,⌈y⌉,⌈z⌉, x, y

)
−

b
(
Φ⌊x⌋,⌊y⌋,⌊z⌋, Φ⌈x⌉,⌊y⌋,⌊z⌋, Φ⌈x⌉,⌈y⌉,⌊z⌋, Φ⌊x⌋,⌈y⌉,⌊z⌋, x, y

))
/d


(5.54)

This produces good results within a cell, but the values change discontinuously
when the next cell is entered. This method is nevertheless useful when a short
computation time is more important than accurate trajectories, such as for a
quick assessment of the effect of an electrode voltage change on the general
trajectory of a particle.
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5.4.3 Trilinear vector interpolation
To obtain a globally continuous gradient one can first calculate the field vectors
at the vertices of a cell using Equation (5.49) and then the field vector at each
desired position within the cell by trilinear interpolation:

E⃗(x, y, z) = t
(

E⃗⌊x⌋,⌊y⌋,⌊z⌋, E⃗⌈x⌉,⌊y⌋,⌊z⌋, E⃗⌈x⌉,⌈y⌉,⌊z⌋, E⃗⌊x⌋,⌈y⌉,⌊z⌋,

E⃗⌊x⌋,⌊y⌋,⌈z⌉, E⃗⌈x⌉,⌊y⌋,⌈z⌉, E⃗⌈x⌉,⌈y⌉,⌈z⌉, E⃗⌊x⌋,⌈y⌉,⌈z⌉, x, y, z
) (5.55)

This method is well suited for accurate propagation of particles in the electric field;
it is, however, numerically quite expensive. In the case of non-time-dependent
potentials, the field vectors at the vertices can be cached and reused for the next
trilinear interpolation to reduce the computational cost as long as a particle is
inside the same cell.

5.4.4 7-point stencil
The last possibility mentioned here to obtain the field vector is to form the
difference quotient by taking a step of the length of half the grid spacing in each
direction and determining the value of the electric potential at this point by
trilinear interpolation.

E⃗x,y,z =

−(Φ(x + d/2, y, z)− Φ(x− d/2, y, z))/d

−(Φ(x, y + d/2, z)− Φ(x, y − d/2, z))/d

−(Φ(x, y, z + d/2)− Φ(x, y, z − d/2))/d

 (5.56)

This is the method of choice here, since it delivers a globally continues gradient,
like the previous one, but with better performance for time-varying potentials.
In case d is chosen to be smaller than the grid spacing, the obtained results are
very similar to Equation (5.54).

5.5 Defining the geometry
In most cases, the geometry can be defined by geometric primitives (like cuboids,
cylinders, spheres. . . ) that are simply placed in the 3D workspace to form the de-
sired simulation boundaries. For these geometric primitives, it is mathematically
straightforward to check whether a point is inside or outside the object, which is
essential to initialize and solve the electric potential, as discussed previously, but
also necessary to determine if a particle hit an object and consequently should
be stopped.

More complex geometries can be created by using constructive solid geome-
try (CSG). With CSG, the geometry is described by a set of geometric primitives
together with boolean operators (union, difference and intersection). This has
the benefit that the object created maintains the accuracy of the geometric
primitives used. For objects created by CSG it is also straightforward to check if
a point is inside by simply checking the point against all primitive geometries
while considering the same boolean operators.
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If even more complicated structures are needed that cannot be easily gener-
ated by CSG, e.g. the stellarator shape of EPOS, triangle meshes can be used.
However, finding out whether a point is inside the mesh is not trivial. A common
way is to start a ray from the point in question and count the number of intersec-
tions with the object. If it is an odd number then the point is inside the mesh,
otherwise it is outside. Another option is to check if the normal of the triangle
at the closest intersection has the same (inside) or opposite (outside) direction of
the ray. In the STL file format, a widely used format to exchange triangulated
surfaces, the vertices v1, v2, v3 of a triangle are ordered by the right-hand rule
in such a way that the normal n calculated by n⃗ = (v2 − v1) × (v3 − v1) is
pointing outwards. One can see that both approaches are computationally very
expensive, since for each point to be tested, all triangles must be checked to see
if they intersect the test ray, for example via the Möller–Trumbore ray-triangle
intersection algorithm [54]. Instead of testing every triangle, it is therefore much
more efficient to partition the mesh into voxels and only test the triangles in
the voxels that the test ray traverses. Here, a simple regular grid is used for
partitioning, but nested grids, octrees (see Chapter 6) and especially k-d trees
are also common choices. The first obstacle in using a regular grid is determining
the grid resolution. A widely used scheme is given by [55]

Nx = dx
3

√
λN

V
, Ny = dy

3

√
λN

V
, Nz = dz

3

√
λN

V
(5.57)

with the grid resolution Nx,y,z, the size of the bounding box of the specific
dimension dx,y,z, the volume of the bounding box V , and the number of triangles
N . For the free parameter λ, which is used to optimize the performance, values
between 3 and 5 seem to be a good choice [56]. In the next step, the triangles have
to be sorted into the created voxels. This can be done by taking the bounding box
of the triangle and adding it to every voxel the bounding box intersects. A more
accurate method would be to actually check if the triangle overlaps the voxel
[57] but the cost for that usually outweighs the benefits [56]. Once all triangles
have been sorted, one can already test if a point is inside the mesh by finding
the voxel that contains the point, picking any standard-basis vector (preferably
the one pointing towards the closest side of the bounding box) and checking all
voxels in that direction for triangle intersections. After all intersections have
been found it can directly be determined if the point is inside by comparing
the direction of the chosen basis vector to the normal of the closest face, as
mentioned earlier. Checking the parity of the number of intersections, however,
is usually not straightforward, since triangles may be assigned to multiple voxels
and therefore be tested for intersection multiple times. This can be avoided
by, for example, mail-boxing [58], where each triangle keeps a note of whether
it has already been tested, or by removing all duplicate values from the list of
intersections. If one is more interested in finding the intersection points of the ray
with the triangle mesh (as depicted in Figure 5.9), the initial step is to find the
voxels that the ray traverses. This can be accomplished by using an 3D extension
of a Digital Differential Analyser (DDA), which are typically used to rasterize
lines in computer graphics. A common 3D-DDA is presented by Amanatides et.
al [58]. Like mentioned before, special care must be taken to avoid duplicated
intersection points.
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Figure 5.9: Illustration of a ray (black line) intersecting a triangle mesh1. The
bounding box of the mesh is shown in cyan. The voxels that are traversed by
the ray are shown in blue and the tested triangles are highlighted in green. For
illustration clarity, a low resolution (Nx,y,z = 10) of the regular partition grid
was chosen instead of calculating it with Equation (5.57). The intersection points
of the ray with the mesh and the sections of the ray inside the object are shown
in red.

5.6 Image based sample generation
To obtain good predictions, e.g. for the injection efficiency, it is essential to
know the spatial extent of the positron beam. As a good first approximation,
one can assume a Gaussian distribution of the beam [29]. However, since there
are strong variations between beam times caused by upstream changes, such as
modifications of the remoderator or the steering of the beam to the experiment,
it would be useful to use a microchannel plate (MCP) image (such as the example
shown in Figure 5.10), which is typically obtained during the beam centering
process at the beginning of each beam time, to generate a more realistic spatial
distribution.

To generate sample positions that follow an image-based distribution, inverse
transform sampling is a good choice. This works by first generating a uniformly
distributed random number x between 0 and 1, and then by calculating C−1(x),
the inverse of the cumulative distribution function C. For a discrete distribution,
C can be calculated in a straightforward manner by just accumulating the indi-
vidual probability values.

In the case of an image, the probability values are determined by the brightness
of the individual pixels (see Figure 5.10d and Algorithm 8 in Appendix E.3).
After calculating the cumulative distribution function and storing the result in an
array, C−1(x) can be simply evaluated by searching for the best insertion index
of x into the array. The index found corresponds directly to a pixel of the image,
which in turn provides a location. Since an image provides only a discretized
spatial distribution limited by the resolution of the image, the location within a
pixel is undefined. It can be assumed, however, that values within a pixel are
uniformly distributed (see Algorithm 9 in Appendix E.3).

1“Utah teapot (solid).stl”. Created by Nik Clark. Distributed under Creative Commons
CC0 1.0. Wikimedia Commons. 27 May 2015.

35

https://commons.wikimedia.org/wiki/File:Utah_teapot_(solid).stl


Chapter 5. The simulation framework

(a) (b)

(c) (d)

Figure 5.10: Figure (a) shows an image of the illuminated MCP. In (b), the
illumination was turned off, clearly showing the positron beam hitting the MCP.
The green line in (c) serves as reference scale (12.5 mm). The green circle is
just a help to find the center of the MCP more easily. The blue rectangle limits
the sampling area considered. Test sampled are shown in red. The normalized,
cumulated brightness values for the selected area are shown in (d).
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5.7 Summary
This chapter introduced all the components necessary to simulate single particles
in static electromagnetic fields, namely expressions to analytically compute the
magnetic fields of all coils used in Proto-APEX, a solver for electric potentials
(including various acceleration methods), several methods to differentiate the
electric potentials to obtain a field vector, and a particle pusher to propagate
particles through these fields. It was also explained how the geometry can be
defined in AlGeoJ either by primitive objects, by using these primitives to create
more complex objects via CSG, or by loading STL files. Finally, it was shown
how to extract a 2D distribution from an image, which can be used to generate re-
alistic positron starting positions based on a MCP image of the NEPOMUC beam.

In the next chapter, a potential solver with a more sophisticated data structure
will be presented, which will be able to resolve finer details of the geometry more
efficiently than the regular grid solver presented here, by only locally increasing
the grid density.

The Chapters 7 to 11 will all focus on the single-particle simulations of positrons
in Proto-APEX, all of which have been carried out using this simulation frame-
work.

In the introduction to this chapter it was mentioned that this simulation frame-
work can be used to visualize trajectories and discover positron loss channels
that would be very difficult to determine experimentally. Examples of these use
cases are given in Appendix D and Appendix F, respectively. Last but not least,
the user interface of AlGeoJ is shown and explained in Appendix G.
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Octree-based field solver

The regular cartesian grid has been found to be a very efficient method for
modeling the electrical potential in most cases. However, geometries that are
smaller than the grid size, curved surfaces or geometries that are angled in
relation to the grid cannot be accurately reproduced. Reducing the grid size
will alleviate these problems but only to a limiting degree due to the aggressive
O(n3) scaling between the grid size and the number of grid points and memory
consumption, respectively. A more elegant approach would be to only increase
the grid resolution locally where it is beneficial, especially near surfaces, but
keeping a lower resolution everywhere else.

The method of choice here is the octree with cell-centered values where some
cells are subdivided into eight equal sub-cells therefore the name oct(Greek)
+ tree = eight + tree. The octree is the three-dimensional extension of the
binary tree, whereas the quadtree is its two-dimensional variant. Compared to an
unstructured mesh, the locations of the cells follow a logical order, which should
result in smaller memory footprint and higher performance. The relation with
the Cartesian mesh also allows the procedure to be reused, with adjustments, for
solving the potentials, as described in Section 5.3.3.

6.1 Terminology
Before addressing the various aspects of implementing an octree-based electric
potential, it is necessary to define some terminology first, which is illustrated in
Figure 6.1.

At the base of every octree there is a root cell. If a cell is subdivided into
child cells, it is called a parent cell. In the case of the octree, a parent cell
has always exactly eight child cells and therefore a degree of 8. If a cell is
not subdivided, it is called a leaf cell with degree 0. Here, the child cells are
labeled from A to H to encode their spatial position within their parent cell (see
Figure 6.6). Every cell has neighboring cells. If the neighboring cell has the same
parent, it is a sibling cell. The level of a child cell is one higher than the level of
its parent cell, with the root cell being at level 0.
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Figure 6.1: Illustration of the terminology used to describe tree data structures.

Since the electrical potential requires a minimum resolution, it would be very
inefficient to start with just one root cell and keep subdividing it until the desired
base resolution is reached, as this would cost valuable memory to store this
unused portion of the tree, and would also make it more expensive to find a
particular cell within the tree. For these reasons, a full 3D array of root cells
is initialized at the desired minimum resolution, which is equivalent to the case
of the regular grid. Since many root cells will be subdivided at the end of the
refinement process, it would be more accurate to speak of a forest of octrees,
but for simplicity the data structure will be referred to simply as octree in the
following.

Algorithm 2 shows an example of an implementation of a cell class in Java
with all variables; however, depending on the cell type, not all are needed.

Algorithm 2: The cell class implemented in Java.

public class Cell {
int xi, yi, zi; \\Location in the root cell array

Cell parent;
Cell [ ] childs;
byte level;
boolean geometry;
float [ ] potential;

}
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6.2 Tree balancing
To simplify the handling of octrees, a balanced tree is often desired. This means
that the subdivision level of a cell differs from all neighboring cells by a maximum
of ±1 (see Figure 6.2). This condition has the consequence that all cells of the
boundary of the domain must not be subdivided. To achieve and maintain a
balanced tree, the easiest way is to check the levels of all the neighbors of a cell
each time it is subdivided, and then recursively subdivide them if necessary.

(a) Unbalanced tree. (b) Balanced tree.

Figure 6.2: In an unbalanced tree (a), the subdivision level of a cell is not
subject to any rules. In a balanced tree (b), the subdivision level of a cell may
only differ by ±1 from all its neighbors.

6.3 Grid refinement
The first step in solving the potential on an octree is to determine which cells
should be subdivided and which not. Currently, only static geometries are taken
into account, especially their surfaces, since the interior of an object is not
important for the simulation.

One option to find cells that are close to the surface is to check if the cen-
ter of a cell is within an object or not, as described in Section 5.3.2, but with the
addition of also checking all eight corners of a cell. If at least one corner, but not
all, are within the object then the surface intersects the cell, and the cell should
therefore be subdivided. This has the problem, however, that cells that are
outside an object but very close to its surface are not considered for subdivision
despite being able to deliver an overall better coverage of the geometry. The
result can slightly be improved by also checking if the cell lies within a threshold
to the object. To reach higher refinement levels, the process can be repeated
for the previously subdivided cells. This method falls apart, however, when one
dimension of the object is smaller than the grid size, for example a thin plate.

Another way to refine the octree, which is not afflicted by the previously men-
tioned issues, is a ray-tracing-based scheme, illustrated in Figure 6.3. First,
the bounding box of the object is found to limit the volume of interest. Then,

41



Chapter 6. Octree-based field solver

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.3: Overview of the different octree grid refinement steps: (a) before
refinement, (b) bounding box, (c) finding surface points via ray tracing, (d)
subdividing cells and marking them as geometry, (e) mark remaining cells inside
the object as geometry. (f) Repeated refinement with slightly larger object. (g)
two level subdivision, (h) three level, (i) four level.

the surface of an object is sampled at the desired resolution with axis-parallel
rays from each direction. The surface samples found can be used to directly
determine their corresponding cells, which can subsequently be subdivided and
marked as geometry. If the desired, the procedure can be repeated with a slightly
larger object to guarantee that it is completely surrounded by cells at the highest
refinement level that are not tagged as geometry. Last but not least, since only
the surface of an object is processed, all cells inside the bounding box must
be checked to see if they are inside the object so that they can be marked as
geometry cells as well. This ray-tracing-based refinement method also works for
two-dimensional objects, in contrast to the previously mentioned method, but
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it fails to refine one-dimensional objects. This is not a critical issue, however,
since one-dimensional geometries do not occur in the experimental setup. If they
do, a simple solution would be to directly generate samples along the object and
refine the octree with them. Another advantage of ray tracing is that finding
the surface points is very easy even for complex objects that are created using
constructive solid geometry (CSG) [59].

6.4 Calculation of the potential
After the octree has been refined and all eligible cells have been marked as
geometry and initialized with the desired voltages, solving the potential can be
addressed. Since the grid spacing is no longer constant, but instead changes as
one moves from coarse to refined cell regions, and vice versa, the discretization
of the potential, as described in Section 5.3.1, must be re-derived.

The second order central difference quotient of a function f(x) for unequal
sub-intervals is given by [60]:

f ′′(x) = 2 [h+f(x− h−)− (h− + h+)f(x) + h−f(x + h+)]
h−h+(h− + h+) (6.1)

In case of equal sub-intervals h+ = h− = h, this simplifies to the usual second
order difference quotient as given in Equation (5.43).

With Equation (6.1), the Laplace equation can then be solved for the potential
again, resulting in the octree equivalent of Equation (5.46):
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With this, the successive over-relaxation method (see Equation (5.48)) is then
given by:
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The choice of h and the used potential value Φ is determined by the subdivision
level of the cell in that specific direction. For a balanced octree, three cases are
possible:

Case: cell level < neighbor cell level

If the neighboring cell is one level further subdivided than the current cell (see
Figure 6.4a), then Φ(x, y, z) is the average of the four neighboring cell values and
h = 0.75. Since the octree is balanced, these neighboring cells are not allowed to
be further subdivided, so no other cell level combinations have to be considered.

Case: cell level = neighbor cell level

This case is straightforward, as it is equivalent to the regular grid. Φ(x, y, z) is
simply the value of the neighboring cell and h = 1 (Figure 6.4b).

Case: cell level > neighbor cell level

The most difficult case is when the neighboring cell has a lower level. Here,
Φ(x, y, z) has to be interpolated as seen in Figure 6.4c with h = 1.5. The difficulty
arises from the fact that the three cells surrounding the neighboring cell could also
be subdivided and thus have the same level as the cell currently being considered.
Therefore, all eight combinatorial possibilities have to be treated individually.
Fortunately, by looking at Figure 6.8 and using symmetry transformations, these
can be reduced to just four different interpolations that need to be implemented.

(a) (b) (c)

Figure 6.4: Overview of the three different types of neighboring cells (shown
with dotted lines) in a balanced octree: (a) higher level, (b) same level, (c)
smaller level. Blue dots represent existing values, red dots represent interpolated
values. The three cells in case (c) that do not touch the black cell may also be
subdivided.
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The SOR method can now be applied iteratively to each cell, or recursively if
the cell is subdivided. During the iteration, all h and Φ can be cached in a
temporary object instead of local variables to reduce the workload of Java’s
garbage collector. To check when the potential has converged, several test cells
are selected at the beginning. Before each iteration, the current values of the
potential are cached in order to compare them with the new values after the
iteration. If for all test cells the difference between the two values is smaller
than a certain threshold, the potential can be considered as converged. In the
current implementation, 26 cells are selected as test cells along each of the three
principal axes, the six diagonals in the principal axis planes, and the four space
diagonals of the domain.

6.4.1 Multigrid preconditioning
Just like in the case of the regular grid, the potential in an octree can be
preconditioned using the multigrid method. The method implemented here is
relatively basic, since it ignores the refinement and only uses the root cells at the
lowest level. The problem with this, however, is that refined parent cells should
not store potential values, because this would unnecessarily take up memory
space as only values of cells at the highest refinement level are used by the
SOR and the simulation in general. The solution to this is to use the value of
a child cell at the highest refinement level instead and, after performing the
preconditioning, to copy the value of this child cell to its sibling cells. The
potential can be solved with the above described SOR method afterwards.

6.4.2 Load balancing for multithreading
To further reduce the time needed to numerically solve the electric potential,
multithreading can be utilized also for the octree. For the octree, however, it
was implemented in a different way compared to the regular grid. For regular
grids, each potential is stored in its own 3D array that can be processed by
one thread, but no more. This means that if more threads are available than
there are potentials, the full performance of the CPU is not utilized, which is
quite often the case since modern (2022) mid- to high-end CPUs usually have
eight threads or more, but only about four potentials are present in the simulation.

The version implemented here is based on assigning approximately the same
number of cells to each thread for processing. This is done by slicing the 3D root
cell array in one direction and then determining the number of cells in each slice.
These slices are then grouped into blocks in such a way that they contain roughly
the same number of cells. Two constraints can limit the number of blocks and
thus the number of working threads: Each block should consist of at least four
slices to avoid interference between two threads if they would process adjacent
slices, and it should also contain at least 100 000 cells, because starting a thread
always involves an overhead. However, these constraints have a very small impact
on the actual solution time, since they only come into effect for small octrees,
which can be solved quickly anyway.
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6.5 Potential interpolation
Now that the electric potential can be solved, there is still a way missing to
interpolate the potential between the cell centric values. The method chosen
here is based on trilinear interpolation, just like in the case of the regular grid.
The difficulty, however, is that each corner cell can either be subdivided or not,
resulting in 28−1 = 255 possible variations. Fortunately, these can be reduced to
21 unique variations, shown in Figure 6.5, by exploiting rotational and reflective
transformations. This is one of the reasons why the octree is required to be
balanced, otherwise there would be exponentially more variations, which would
render this approach impractical.

Figure 6.5: The 21 unique permutations of cells under rotation and reflection
transformation in a balanced octree.

The interpolation procedure starts by finding the nearest vertex that is surrounded
by exactly eight cells. These cells can then be checked in the order shown in
Figure 6.6 (or any other as long as the same order is consistently used) to see
if they are subdivided or not. This allows the cell variation to be determined
and any necessary transformation to be applied, which is described in more
detail in Algorithm 10 in Appendix E.4. Before the trilinear interpolation
can be performed, the irregular volume spanned by the cell centers must be
partitioned into rectangular cuboids, as exemplified in Figure 6.7 for the case
of one subdivided cell. The partitioning into cuboids is not arbitrary, since
it must be ensured that the interpolated value is continuous at the transition
between adjacent volumes. To ensure this, the partitioning is predefined for
each possible interface, as shown in Figure 6.8. Last but not least, the vertices
of the corresponding cuboid that do not coincide with cell centers have to be
interpolated (by linear or bilinear interpolation of neighboring cells), then the
final trilinear interpolation can be performed. Once all 21 permutations have been
partitioned and the corresponding interpolation rules have been implemented,
continuous values of the potential can be retrieved in the whole domain, as
demonstrated in Figure 6.9.
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Figure 6.6: The cell naming
scheme used for children cells as
well as for cells that surround a
common vertex like seen in Fig-
ure 6.7. In the code, A–H were
defined as constants with values
0–7. This allows for a more under-
standable handling of cell configu-
rations.

Figure 6.7: For interpolation, the
volume between cells is split up
into smaller volumes (red cuboids)
in which trilinear interpolation can
be easily performed. The blue dots
represent the existing values. How
the volume is split up on each side
is constrained by its specific type,
as shown in Figure 6.8.

(a) (b) (c)

(d) (e)

Figure 6.8: The five possible interfaces between cells. Blue dots represent
existing values, red dots represent interpolated values. The red dashed lines
visualize how the volume must be divided at this boundary.
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(a) (b) (c)

Figure 6.9: Illustration of the grid (top) and the interpolated potential (bottom)
of a charged cylinder (grey, only a quarter section is shown) on (a) a regular grid,
(b) an octree at level 2 and (c) at level 4.

6.6 Calculation of the electric field vector
As a final step, before simulations can be performed, a method must be imple-
mented to calculate the electric field vector.

6.6.1 7-point stencil
The simplest method is to use the 7-point stencil explained in Section 5.4, since
it requires only potential evaluations. To avoid discontinuities in the transition
between regions with different refinement levels, d (see Equation (5.56)) must be
chosen smaller than half the length of the smallest cell.

6.6.2 Adaptive 7-point stencil
The 7-point stencil method can be improved by adaptively choosing d based
on the level of the cell at the evaluation point as well as on the levels of the
three closest neighbor cells in each direction. An implementation of this adaptive
7-point stencil is outlined in Algorithm 11 in Appendix E.4.

6.6.3 Difference quotient with bilinear interpolation
Another possible way to calculate the electric field vector is based on the difference
quotient method already presented in Section 5.4. The evaluation is performed
in the same partitioned cuboids that are used for the potential interpolation
like shown in Figure 6.7. However, the implementation effort is very high,
since all 21 possible cell permutations (see Figure 6.5) have to be dealt with
separately, as already for the interpolation. For this reason, this method has not
yet been implemented, but it promises to be significantly faster than the other
two methods, since finding the eight cells to determine the permutation is the
most costly part and this only needs to be done once instead of six times.
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6.7 Outlook
The main focus of the current implementation was functionality, which is why
there is some room for optimization, especially in memory usage. The next step
will be to create a separate class for each individual cell type with only the
required variables, instead of a single class for all types containing a correspond-
ingly large number of unnecessary variables, as shown in Algorithm 2. Another
option is to encode the hierarchy, position, and level in a single, unique ID [61],
which would allow the cells to be stored in a hashmap. This should reduce the
memory requirements by quite a bit at the cost of slower retrieval time of these
variables due to the additional decoding step. Furthermore, it should be easy to
exploit a symmetry within the domain, if such a symmetry exists.

Since Java is constantly being developed further, an increase in performance is
also possible in the future, e.g. with JEP (Java Enhancement Proposal) 401 [62],
which has the goal to allow the creation of primitive classes.

Currently, only the surfaces of objects are refined. One idea would be to extend
this to areas with steep gradients by using information from the preconditioning
step, which would allow a more accurate particle propagation in these areas.
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Continuous injection of
positrons

In previous experiments, lossless injection of a 5-eV positron beam into Proto-
APEX was demonstrated [12]. This was achieved by optimizing the effective
potential energy, which is explained in more detail below. The primary diagnostic
to investigate these injected positrons is the insertable target probe, making it
important to examine to what extent it can possibly falsify the measurement of the
radial distribution. After that, a study is presented on how the radial distribution
can be manipulated by changing the free parameters of the experiment. The
results obtained during this work and presented here have also been previously
published in [63].

7.1 Effective potential energy
The range of motion of a single charged particle in our dipole traps is limited by
a combination of electrostatic reflection and magnetic mirroring. An elegant way
to describe this is in terms of the effective potential energy [64]

Ueff = eϕE + µB (7.1)

experienced by a particle with charge e, magnetic moment µ = mv2
⊥/(2B),

mass m, and perpendicular velocity v⊥ in an electric potential ϕE and magnetic
field B. Since the magnetic moment can generally be assumed to be an an
adiabatic invariant, the effective potential boundary associated with a particle’s
total energy therefore limits the guiding center drift motion of said particle. In
Figure 7.1, it can be seen how this can be used to visualize where particles are
reflected as they stream along the magnetic field lines. It shows vertical slices
of three simulated trajectories of positrons with the same initial total energy
but with different initial pitch angles. The dashed contours indicate surfaces at
which the effective potential energy of a particle is equal to its total energy, i.e.,
the boundaries at which the particle is reflected. This underlines how important
the perpendicular energy spread of the incoming positron beam is, as positrons
with a high perpendicular velocity may not be successfully injected, especially if
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the magnetic field is stronger like in the upcoming APEX-D experiment. It also
shows that particles with larger pitch angles are excluded from areas close to the
magnet where stronger magnetic fields are present, causing them to be deposited
further out, potentially reducing the confinement time of these particles, as
described in more detail in Chapter 8.

(a)

(b) (c)

Figure 7.1: Surfaces of maximum effective potential energy (dashed lines) for
positrons with E0 = 5 eV and different initial pitch angles α = arctan(v⊥0/v∥0).
Red: α = 10◦, Green: α = 20◦, Blue: α = 30◦. (a) shows the trajectories of these
positrons during drift injection projected onto the vertical plane at a toroidal
angle of 5◦. The dot at the end of the trajectory indicates the particle position at
this plane. The dotted field line (grey) defines the boundary of the confinement
region. (b) shows the most recent parts of the trajectories of the same particles
at a toroidal angle of 90◦ with the corresponding field lines and effective potential
energy surfaces. (c) shows the extent of the effective potential energy surfaces at
the mid-plane [63].
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7.2 Perturbation caused by the target probe
The insertable target plate is the main diagnostic for determining the positron
injection efficiency and additionally allows the measurement of the radial dis-
tribution of injected positrons. The probe is used two ways: by measuring the
positron current it collects or by counting the positron annihilation photons,
using the collimated BGO detector viewing the probe (see Figure 4.1b). An
important question raised by this diagnostic is how strongly positron trajectories
are affected by the insertion of a grounded electrode into the already complex
3D electrostatic landscape of the confinement region.

(a) (b)

Figure 7.2: Simulation of the radial positron distribution at a magnet case
bias of 0 V (a) and 30 V (b). The dashed line (“Out”) shows the cumulative
distribution in the unperturbed case with the target probe retracted. The solid
line (“In”) shows the cumulative distribution of the maximal perturbed case
with the target probe fully inserted. The black dots (“Sim”) show the simulated
counts on a target probe that is inserted step wise from the wall towards the
magnet, as it is in the experiment. Inserting the probe into the trap creates
integrated profiles, so the true radial distributions are their derivatives (Figure
adapted from Figure 2 in [63]).

An answer to this question is provided by the simulation results of two extreme
cases shown in Figure 7.2. Three different simulation methods are compared for
the scenario where the magnet case is biased to either 0 V (a) or 30 V (b). The
graphs labeled as “In” and “Out” correspond to simulations where the target
probe was either fully inserted (like in Figure 7.3) or fully retracted. For the
data points labeled “Simulation” the target probe was stepwise inserted into
the trap (just like in the experiments) and the potentials recalculated for every
position. Looking at Figure 7.2a, it is immediately apparent that all three simu-
lation methods produce the same result, confirming the assumption that other
potentials within the trap, except the magnet case bias, have no influence on the
measurement of radial distribution of positrons. Figure 7.2b demonstrates that
when the magnet case is biased, the positron trajectories are significantly affected
by the fully inserted target probe.. However, this effect is significantly weakened
if, as in the experiment, the measurement is performed by a stepwise insertion of
the target probe (“Simulation”). Moreover, since the radial distribution of the
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injected positrons is farther away from the magnet, the higher the bias voltage
is (see Figure 7.8), this reduces the perturbation effect even further. Negative
voltages were not investigated as they are generally unfavorable for efficient
injection and unsuitable for long-term confinement.

Figure 7.3: Perturbation of the electric potential caused by the grounded target
probe if the magnet case is biased to 30 V [63].

In a comparison of experiment and simulation, which is shown in Figure 7.4,
the positron injection efficiency and the mean position of the radial distribution
could be reproduced by the simulation, although the spread of the distribution
is not as large as in the experiment. Uncertainties of the experiment which are
not taken into account in the simulation might explain this discrepancy, such as,
among others, a tilting of the magnet, an angled positron beam at the injection
port caused by misaligned beam line coils, Earth’s magnetic field, or other stray
fields present in the experimental hall.

Thus, although the grounded target probe may indeed affect the measurement of
the radial distribution of positrons due to the deformation of the electrostatic
landscape when the magnet case is biased, it is nevertheless an important and
useful tool to determine the positron distribution and injection efficiency.
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Figure 7.4: Comparison of an experimentally measured radial positron distri-
bution (red squares) with the corresponding simulation (black dots) using the
same parameters. In addition, the simulated cumulative distributions are shown
with a fully inserted (In) and retracted target probe (Out), respectively. The
magnet case was biased to 8 V [63].

7.3 Manipulation of the radial deposition profile
In the previous section, it was verified that the insertable target probe is a
viable diagnostic to measure the radial distribution of positrons. This section
investigates to what extent the free parameters can influence that radial distri-
bution. This would help to optimize previous experiments and to design future
experiments. In confinement experiments, for example, it was observed that
positrons closer to the wall have a shorter confinement time [13]. When studying
the compression of trapped positrons by oscillating wall biases, distributions with
larger radii are advantageous to verify a successful compression more clearly. In
future experiments, higher positron densities might be achieved by accumulating
multiple positron pulses in the trap. For this, it might be useful to deposit the
different pulses at different radii.

In the following, the comparison of simulations and experimental data is used
to investigate how the position of the radial positron distribution changes when
the free parameters are varied. The free parameters considered are the voltages
applied to the E×B plates, Top1, RW1, and the magnet case and the currents of
the two steering coils Ir and Iθ. In the simulations, 200 particles were launched
for each bin and the perturbation of the target probe was taken into account.
Just like in the previous section, all profiles shown here are the integrated radial
positron densities. The values of the parameters that are not scanned are listed in
Appendix C. The color scale of the histograms shows the normalized fraction of
positrons hitting the target probe relative to the total count of injected positrons.
The maximum value of each row is therefore the injection efficiency for that
particular parameter value.
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7.3.1 E×B plate voltage
The effect on the radial distribution and injection efficiency by varying the voltage
applied to the E×B plates can be seen in Figure 7.5. For the chosen steering coil
settings (Appendix C), the highest injection efficiency is achieved in the range
between 200 V and 300 V. The simulations can be used not only to reproduce
the injection efficiency, but also to explain why they are not injected or where
they annihilate outside the field of view of the detector: below 50 V, positrons
hit the shield plate, and between 50 V and 150 V they either are reflected back
up the beam line or hit the wall before reaching the target probe. At voltages
above 350 V, the mean position of positrons is further outside, so many positrons
already hit the wall before they could reach the target probe, but these positrons
still annihilate in the field of view of the gamma detector. This is the reason why
a signal is detected at high voltages even with fully retracted target probe (upper
right corner). In terms of manipulating the radial deposition of positrons with
the E×B bias, the possibilities are quite limited without affecting the injection
efficiency.

(a)

(b)

Figure 7.5: Normalized 2D histogram of counts on the target probe as the
radial position of the probe and the E×B bias are varied. (a) Experimental data
of an injected 5-eV positron beam. (b) Simulation result using the same settings
[63].
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7.3.2 Top1 voltage
Figure 7.6 shows that the Top1 bias has no influence on the radial distribution.
The injection efficiency is also unaffected from the applied voltage as long as it is
higher than the beam energy of 5 eV to prevent positrons from hitting the Top1
electrode. However, other simulations have shown that if the E×B voltage is
significantly higher than in the case shown, the bias of the Top1 electrode is no
longer necessary for good injection and a voltage between 0 V and 8 V can very
well shift the mean position about 1 cm outwards.

(a)

(b)

Figure 7.6: Normalized 2D histogram of counts on the target probe as the
radial position of the probe and the Top1 bias are varied. (a) Experimental data
of an injected 5-eV positron beam. (b) Simulation result using the same settings
[63].
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7.3.3 RW1 voltage
The voltage applied to the RW1 electrode has, like the Top1 electrode, no real
influence on the radial distribution once the voltage is higher than the beam
energy, as one can see in Figure 7.7. At lower voltages, positrons tend to be
injected closer to the wall, but this also increases the probability of hitting the
wall and thereby decreases the injection efficiency measured at the target probe.
Since the Top1 and RW1 electrode are both, generally speaking, necessary for
good injection and have very similar effects on the radial deposition, they can be
paired together, which shortens the optimization time at the beginning of every
beam time and also frees up a power supply.

(a)

(b)

Figure 7.7: Normalized 2D histogram of counts on the target probe as the
radial position of the probe and the RW1 bias are varied. (a) Experimental data
of an injected 5-eV positron beam. (b) Simulation result using the same settings
[63].
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7.3.4 Magnet case voltage
As both the simulation and the experiment show in Figure 7.8, the applied
voltage on the magnet case is very suitable for manipulating the radial position
of the injected positrons in Proto-APEX, as long as it is high enough to prevent
positrons with low perpendicular energy from hitting it. Further simulations
show that this trend continues beyond the shown 10 V up until 40 V without
degrading the injection efficiency. This correlation is easily explained in terms of
the effective potential energy introduced in Section 7.1. Increasing the magnet
case bias causes the positrons to be reflected earlier, similar to positrons with
increasingly larger pitch angles as shown in Figure 7.1a, which in turn causes
the positron to be deposited further out (see Figure 7.1b).

(a)

(b)

Figure 7.8: Normalized 2D histogram of counts on the target probe as the radial
position of the probe and the magnet case bias are varied. (a) Experimental data
of an injected 5-eV positron beam. (b) Simulation result using the same settings
[63].
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7.3.5 Steering coil currents

No experimental data are available for the comparison of coil current and target
probe position, so simulations must suffice for this, but since the simulations
have been able to reproduce the experiments very well so far, they should be
sufficient for a rough estimate of the occurring effects.

In Figure 7.9, one can see that there is not much room to vary the steering coil
current Iθ without reducing the injection efficiency considerably. If the current is
higher than the optimal value, the positron beam is guided towards the positively
charged E×B plate which has the consequence that the positrons are reflected
back up the beam line before even entering the trap. If the current is too low,
they enter the trap but are reflected as well and subsequently hit the wall in
the injection region or, if the current is even lower, the positrons directly hit the
negatively charged E×B plate. The main purpose of the steering coils for the
θ-direction is therefore to center the incoming beam with respect to the E×B
plates.

Figure 7.9: Normalized 2D histogram of counts on the target probe as it is
inserted and the steering coil current Iθ is varied [63].

The steering coil current Ir is a particularly useful “knob” to control the radial
deposition of positrons during injection, as the simulation in Figure 7.10 shows.
In the range from −2 A to −8.5 A, the distribution can be shifted by about
3 cm while maintaining lossless injection. At higher currents, the positrons start
hitting the wall, and at very low currents, they hit the top of the shield plate.
Some are even injected on the other side of the plate, causing them to eventually
reflect back into the beam line. At high Ir currents and small radii, the drop
of the count rate is caused by positrons at large radii missing the rod of the
target probe (diameter: 3 mm) since some may have a large enough gap between
mid-plane crossings (this can also be seen at E×B biases in Figure 7.5).
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Figure 7.10: Normalized 2D histogram of counts on the target probe as it is
inserted and the steering coil current Ir is varied [63].

7.4 Conclusion
It was discovered by simulations and experimental data that from all free param-
eters present in the Proto-APEX experiment, the applied voltage to the magnet
case and the steering coil current Ir have the desirable property of manipulating
the radius of positron deposition during injection without compromising the
injection efficiency. Here, only one parameter was changed at a time. The multi-
dimensional parameter space, however, is highly non-linear (as seen in Figure 7.11
as well as in Appendix F), so it is likely that the radius can be changed with
even finer control by simultaneously varying multiple parameter at once.

Figure 7.11: Ir − Iθ steering coil current regions with an injection efficiency of
> 50% for a range of E×B voltages [63].

In this chapter, it was also shown that the effective potential energy can be used
to describe the complex behavior of positrons in electric and magnetic fields,
which is particularly useful for understanding the injection of positrons into
magnetic confinement devices.
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Finally, the target probe was tested to see if its insertion into Proto-APEX
could perturb the trajectories of the positrons, which would cause a discrepancy
between the measured radial distribution and the actual distribution. It has
been found that the target probe does affect the radial distribution when the
magnet case is biased, but this effect is small and does not outweigh the benefits
of having this tool. A target probe will most likely also be installed in APEX-D,
so the perturbation effect should not exist, since the levitated coil has no leads
attached and therefore cannot be biased at all, but it remains to be seen how far
the coil is charged up over time by the surrounding positrons and/or electrons.
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Confinement of positrons

Besides the efficient injection discussed in the previous chapter, the confinement
of the positrons is very important, since a longer confinement time allows more
possibilities to study the pair plasma. Previous experiments in Proto-APEX
had already yielded good confinement times, but the corresponding simulations
revealed the factors that prevented even longer confinement times [13]. This
chapter will expand on this topic by investigating, through simulations, how to
extend the confinement time of positrons in Proto-APEX.

First, the procedure of the confinement experiments is described in detail in
Section 8.1, followed by an explanation of the measures taken to simulate the
confinement of positrons in Section 8.2. Section 8.3 takes a closer look at the
results and limitations of the previous confinement experiments. The main part,
Section 8.4, explores several ways to remove or reduce these limitations in order
to improve the positron confinement time in Proto-APEX. Last but not least, a
brief look at future experiments will be given in Section 8.5.

8.1 Setup of the experiments
In Proto-APEX, injected positrons are pushed towards the wall as they drift
toroidally around the magnet, as seen in Figure 8.1, until they ultimately anni-
hilate on the wall after just one rotation due to the potential of the positively
charged E×B plate. Hence, the effective potential energy (see Section 7.1) nec-
essary for the injection prohibits confinement times longer than one toroidal
rotation, which is about 10 to 15 µs for a 5-eV positron.

To achieve longer confinement times, an electrode switching scheme must there-
fore be employed (Figure 8.2) [13]. The idea is to inject positrons into the trap
until the loss rate equilibrates with the injection rate, so for at least 15 µs, and
then bias the deflector to prevent positrons from reaching the main chamber, as
well as switch off the voltages applied to the E×B plates and the wall electrodes.
Since the effective potential energy is now symmetric, the confinement time is
extended; however, only about 300 positrons can be trapped simultaneously for
the positron rate provided by the remoderated beam of NEPOMUC. At the
time of the experiment, only two BGO detectors were available. The covered
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solid angle of these two detectors in combination with the low annihilation rate
was therefore not sufficient to be able to record meaningful life times straight
away. To achieve a better signal-to-noise ratio, the potentials of the electrodes
were turned on again after a certain time to provoke an ejection of the trapped
positrons, which resulted in a strong “dump” signal. Nevertheless, the whole
cycle had to be repeated thousands of times to compensate for the low number
of trapped positrons and the small covered solid angle. In order to determine
the confinement time, the so-called hold time (between filling and dumping) was
varied and the relative dump signals compared.

(a)

(b)

(c)

Figure 8.1: Simulated radial distribution of 5000 positrons on the mid-plane at
different toroidal angles (red histogram): at 90◦ (a) at 180◦ (b) and at 270◦ (c).
The electric potential is illustrated by the contour lines [63].
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Figure 8.2: Illustration of the confinement cycle used in Proto-APEX.

8.2 Setup of the simulations
In the simulation of positron confinement, a signal-to-noise ratio does, of course,
not exist because the position of a positron is known at all times. Under the
assumption that the main loss channel is elastic scattering with the residual gas,
some simplifications have to be made to make the simulation computationally
feasible. First, elastic scattering is implemented by randomizing the direction of
the positrons’ velocity vector. This can be done by picking a random point on a
unit sphere, for example with [65]

x =
√

1− u2 cos θ (8.1)

y =
√

1− u2 sin θ (8.2)
z = u (8.3)

where θ ∈ [0, 2π) and u ∈ [−1, 1], and then scaling this unit vector by the
original velocity magnitude. Secondly, the small time step needed to resolve the
gyromotion makes it costly to simulate particles for more than 10 ms which is,
however, of the same order as the expected mean collision time in the experiment.
It is therefore necessary to conduct the simulation with a collision frequency in
the order of 1 MHz to reduce the simulation time to a reasonable duration. This
collision frequency is still lower than the bounce frequency between the magnet
poles but higher than the toroidal rotation. To compensate for missed collisions
of the positrons with the E×B plates or the shield plate, a positron is stopped
once the vertical distance to the equatorial plane is large enough so that it would
have the possibility to hit the plates.

8.3 Previous results
So far, the record for the longest confinement of positrons measured in Proto-
APEX was found to have a timescale of (1.5± 0.1) s when fitted with a single
exponential decay curve [13]. This confinement time, which corresponded to
approximately 200 collisions of a positron with background neutrals, is consistent
with positrons diffusing radially outwards and reaching field lines that intersect
the E×B plates and shield plate (see Figure 8.3). In the same beam time, another
experiment was performed where the magnet was grounded. This drastically
reduced the confinement time to only (0.28± 0.04) s — or about 25 collisions —
and is consistent with the dominant loss mechanism being positrons scattering
into the loss cone of the permanent magnet and hitting it, consequentially.
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(a) (b)

Figure 8.3: In the simulations [13], about three-quarters of the confined
positrons end up hitting the plates and about one-quarter scatters into the loss
cone of the magnet (a). If the magnet is grounded, most positrons annihilated
on the magnet (b).

8.4 Improving the confinement time
In the following, simulations are used to investigate whether the confinement time
can be extended, and if so, by how much. The collision frequency of all following
simulations was set to 1 MHz. This value has the positive side effect that the
confinement time can be easily converted into the number of collisions, which in
turn facilitates an estimation of the expected confinement time for different gas
pressures. Figure 8.4 shows the result of a simulation, that is used as a baseline

Figure 8.4: Reference confinement simulation. The data is fitted well by a two-
phase exponential decay function, where the fast decay (ncoll,1) corresponds to
the scattering into the magnet loss cone and the longer one (ncoll,2) to positrons
hitting the plates.
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reference. The data is very well described by an exponential decay with two
phases, which can be justified by the fact that the scattering of positrons into
the loss cone of the permanent magnet is a much faster process (≈ 20 collisions)
than drifting outwards and subsequently hitting the plates (> 200 collisions).

Note that this simulation result should not be directly compared with the
previously mentioned experimental data, because the settings used in the simula-
tion are slightly different and the amount of available data was insufficient to
resolve these two loss processes.

8.4.1 Shorter plates
Since longer confinement times are mainly limited by the plates, it would be
logical to shorten them so that they no longer intersect the field lines of the
confinement volume. Before doing so, however, it must be ensured that this
does not reduce the injection efficiency, as this is essential to achieve plasma
densities in the future. Fortunately, single-particle simulations can easily answer
this question. In Figure 8.5, the injection efficiency — defined as fraction of
launched positrons reaching the target probe — was simulated for a range of
plate lengths. It shows that, without needing to change any other parameters,
the plates can be shortened by over 40 mm without deteriorating the injection
efficiency. By changing the injection parameters, the plates could be shortened
even further, but would come at the cost of also reducing the parameter space
for good injection.

Figure 8.5: An injection efficiency of over 99 % can be maintained with shorter
plates up to 90 mm without changing any parameters.

Not only is the high injection efficiency maintained with shorter plates, they also
have the positive side effect of reducing the influence of the E×B potential on the
trajectories of transiently trapped positrons, which can be seen in Figure D.1 in
the Appendix. Since the positively charged E×B-plate is now further away from
the confinement region, the positrons hit the wall later, which in turn means
that more positrons can be captured in each injection-hold-dump cycle, resulting
in a slightly better signal-to-noise ratio.
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For the confinement simulation (Figure 8.6), a plate length of 115 mm was chosen.
It shows that by merely shortening the plates, the confinement time could be
extended by more than 65 %. There are still two loss processes present: the faster
loss process is still the scattering of positrons into the loss cone of the magnet,
the slower one is now the outwards drift and the subsequent annihilation on the
wall.

Figure 8.6: Simulation result of the confinement time when the height of the
E×B plates and shield plate is reduced from 135 mm of the reference simulation
(Figure 8.4) to 115 mm. The two phases of the exponential decay fit correspond
to the scattering into the magnet loss cone (ncoll,1) and the annihilation on the
wall after drifting outwards (ncoll,2).

8.4.2 Higher magnet bias
So far, the magnet case was biased to 8 V. As the previous simulations show,
this is not enough to electrostatically prohibit 5-eV positrons from scattering
into the loss cone. The next step is therefore to verify that this loss process
can be stopped by applying a higher bias to the magnet case. The simulation
result shown in Figure 8.7 indeed confirms that biasing the magnet case to 20 V
will stop positrons from hitting the magnet, which in turn increases the overall
confinement time by 50 % compared to just using shorter plates (Figure 8.6)
and by a factor of 2.5 compared to the reference simulation (Figure 8.4). Since
changing the potential applied to magnet case also effects the radial distribution
of the injected positrons, as discussed in Section 7.3, special care was taken to
maintain the same radial distribution as before (see Figure 8.8) by counteracting
the shift by simultaneously adjusting the Ir steering coil current.
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Figure 8.7: Simulation of the confinement time with shorter plates (Figure 8.6)
and an increased magnet case bias (from 5 V to 20 V). Positrons are now lost
only by drifting outward, to the wall electrodes.

8.4.3 Radial distribution
After shortening the plates and increasing the magnet case bias, the only loss
channel remaining is the outward drift of positrons and the annihilation on the
wall. To further increase the confinement time, one could use the knowledge
presented in Section 7.3 on how different free parameters affect the radial dis-
tribution to try to inject positrons closer to the magnet, which would have the
consequence that they would need more collisions until they end up hitting the
wall. Figure 8.8 illustrates how the radial distribution is shifted inward, towards
the magnet, when the magnet case bias is lowered to 15 V (which is still high
enough to prevent positrons from hitting it) and the steering coil current Ir is
set to −7 A instead of −6.2 A.

Figure 8.8: Comparison of the different radial distributions of injected positrons
used in the simulations.
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In the simulation (Figure 8.9), this radial shift of just 5 mm significantly improved
the confinement time. Compared to the previous simulation, it was almost
doubled, resulting in a confinement time five times longer than the initial reference
simulation.

Figure 8.9: Simulation of the confinement time of positrons in Proto-APEX
if the plates are shortened, the magnet case bias increased, and the radial
distribution is shifted towards the magnet.

8.5 Plans for future experiments
In this chapter it was shown that the confinement time of positrons can be
dramatically extended by shortening the E×B plates, by increasing the bias of
the magnet case, and by depositing the positrons closer to the magnet during
injection, using the methods described in Section 7.3. All of these methods can
be easily applied to Proto-APEX for the next beam time.

In addition, the data acquisition system was completely revamped since the
last experiments. This includes the switch from an analog setup and using an
oscilloscope to bin the raw data to a digitizer based setup, which is able to tag
events with a resolution of 2 ns or even lower, depending on the loaded digitizer
firmware. The digitizers also make it possible to increase the number of BGO
detectors from two to at least eight, which will significantly boost the amount of
data collected. Each digitizer card can support up to 16 channels, but the layout
at the experiment site will need to be significantly modified to create enough
space to use all of them at the same time. Another advantage of the digitizers
is that they can record annihilation events not only during the dump, but also
during the entire hold phase, which were ignored by the old acquisition setup.
This could also eliminate the need for the dump phase, which would simplify the
confinement experiments.
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One of the most important questions to be answered by future experiments
is how different types of gases and pressures affect the confinement time of
positrons. For APEX-D, for example, a gas might be injected to increase the
volumetric annihilation rate, which, by a tomographic reconstruction, could give
an indication of the positron densities. Proto-APEX can be used for preliminary
studies to investigate which gas would be best suited for this purpose.
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Chapter 9

Beam time reproduction
workflow

The 13th beam time assigned to Proto-APEX started September 25, 2018 and
lasted until October 3, 2018. This chapter is intended to serve as an example of
how the simulation model is initialized from data collected during beam times
and how such a model can reveal previously unknown phenomena.

After determining the parallel and perpendicular energy distributions and the
shape and position of the incoming positron beam in Sections 9.1 and 9.2,
respectively, the experimental results are compared with the simulations in Sec-
tion 9.3. The dump signal is then examined in more detail in Section 9.4. Finally,
positrons that are not ejected during the dump, as discovered by the simulations,
are discussed in Section 9.5.

9.1 Energy distribution
Since the positrons in the simulation are launched inside a magnetic field, both
the parallel and perpendicular energy distributions must be known to properly
initialize their velocity vectors.

9.1.1 Parallel energy distribution
The parallel energy of the positron beam can be measured by ramping up the
bias of a plate, acting as a potential barrier, while counting the annihilation
gammas of positrons which are still able to hit said plate. In the beam time
described in this chapter, this was done with the grid in Beam Monitor 2 (BM2)

— an upstream measurement station in the NEPOMUC beam line — as well
as the target at the MCP. Fitting the measurement of the latter one with an
error function (see Figure 9.1) results in a Gaussian-distributed parallel energy
of (16.2± 3.2) eV.
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Figure 9.1: Parallel energy distribution of the positron beam measured at the
MCP target by ramping up the bias of the deflector and counting annihilation
gammas with a BGO detector.

9.1.2 Perpendicular energy distribution
The perpendicular positron energy cannot be measured directly with the current
experimental setup, so it was linearly interpolated between E⊥ = 1.22 eV at
E∥ = 11.77 eV and E⊥ = 1.3 eV at E∥ = 20.7 eV. These values were obtained from
retarding field analyzer measurements performed to characterize the NEPOMUC
positron beam [29]. This gives the Maxwell-Boltzmann distribution:

f(E⊥) = 1/a · e−E⊥/a (9.1)
a = 1.26 eV (9.2)

9.2 Beam shape and position
The NEPOMUC positron beam can be visualized at the experiment with an
insertable MCP. The raw image (Figure 9.2a) captured at the beginning of the
beam time can be processed and cropped (Figure 9.2b) so that the shape of the
beam can be used directly in the simulation to generate appropriately distributed
samples, as described in more detail in Section 5.6. Since the MCP diameter is
known to be 25 mm, the beam size can be inferred from it accordingly.

For accurate simulations, the position of the positron beam must also be known
(in addition to its shape and size), but this is difficult to determine from an MCP
image alone, since the MCP is manually inserted and therefore not guaranteed
to be perfectly centered in the beam line. One way to find the beam position —
and to compensate for any misalignment of the beam line coils and steering coils

— is to do a scan of the initial beam position in the simulation using the optimal
settings of the experiment in order to find the location where the maximum
number of positrons are injected (Figure 9.3). Here, a positron was counted as
injected if it successfully made half a toroidal rotation, which is equivalent to
hitting an ideal, fully inserted target probe. The best injection efficiencies of 70 %
to 80 % were achieved with the center of the beam shifted by −1 mm towards
the magnet and 12 mm towards the negatively charged E×B plate relative to the
center of the beam line.
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(a) (b)

Figure 9.2: (a) The raw MCP image. (b) The inverted, denoised, and brightness-
adjusted (23 %) image with the reference scale (green, Ø= 25 mm), sampling
area (blue), and test samples (red).

(a) (b)

Figure 9.3: The maximum injection efficiency (70 % to 80 %, here 79 %) was
achieved when the position of the center of the sampling area (blue rectangle in
(b), see also Figure 9.2b) was shifted by dx = −1 mm and dz = 12 mm relative
to the center of the beam tube (green point). A positron was considered injected
when it toroidally drifted 180◦.

9.3 Comparison of experiment and simulation
Now that all simulation parameters have been determined, one can attempt to re-
produce the experimental data with simulations to confirm the overall consistency.

First, a 2D scan of the steering coil currents Ir and Iθ was performed that
reproduced well the experimentally recorded data (see Figure 9.4). Since techni-
cal problems occurred during the beam time that prevented any current mea-
surements that would allow the injection efficiency to be measured, it was also
the task of the simulations to quantify it. In the simulation, about 62 % of
the injected positrons were stopped within the detector view cone by the fully
inserted target probe. However, the high beam energy of 16 eV allows a not
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unimportant fraction of positrons to miss the rod of the target probe and are
therefore not detected. If these are included, the injection efficiency reaches about
70 %. Another consideration is that the low resolution of the parameter scan
skips over the optimal value of Iθ = 5.5 V. The injection efficiency can therefore
be concluded to be in the 70 % to 80 % range, as already seen in Figure 9.3. The
limiting factors were the low voltages used (VMagnet = 12 V, VT op1 = 14 V and
VRW 1 = 20 V), which could not prevent positrons from the high-energy tail of
the beam from annihilating on these electrodes. Biasing all of these electrodes to
25 V, injection efficiencies higher than 90 % were achieved in the simulations.

(a) (b)

Figure 9.4: Comparison of an Ir − Iθ scan recorded during the beam time (a)
with the simulation (b, 500 e+/bin). In both, experiment and simulation, the
counts were detected by a detector looking at the target probe. Counts are not
normalized.

The radial distribution of the injected positrons was also compared with sim-
ulations. After fitting the data with an error function, the distribution means
were found to agree quite well with each other, as seen in Figure 9.5. In contrast,
the width of the simulated distribution is much larger than the measured one.
An explanation for this would be magnetic perturbations, above all a tilting of
the magnet, which, however, cannot be integrated into the simulation without a
great deal of additional effort and guessing of free parameters. The radial steps
of the experimental data differ slightly from those shown in Figure 7.4 because
the target probe was changed to be fully automatic instead of manually operated.

9.4 Dump signal delay
During the analysis of the recorded confinement data, a clear delay of the dump
signal of about 40 µs relative to the actual trigger signal became apparent, as
seen in Figure 9.6.

When the actual voltage waveforms of the individual electrodes are recorded with
an oscilloscope (see Figure 9.7), the reason for the delay is obvious. It turns out
that the self-built switching electronics have a lag relative to the rising trigger
signal (for the “dump”) of about 25 µs, as well as a slow rise time, especially for
the E×B plates.
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Figure 9.5: Comparison of radial positron distributions. Both, the experimen-
tally measured profile (red squares) and the corresponding simulation (black dots)
using the same parameter, were fitted with the error function a·erfc

(
x−m
s·

√
2

)
/2+y0.

The mean values agree well. The spread of the simulated distribution is, however,
higher than the experimentally recorded data.

Figure 9.6: Accumulated experimental data recorded during the dump phase.

In order to investigate in more detail how the delay and the slow rise times
affect the ejection of positrons, a simulation was performed using the recorded
voltage curves of the respective electrons. In the simulation, the hold-phase (see
Figure 8.2) is triggered at 10 µs and the electrodes turn off a few microseconds
later. 10 000 particles were started randomly between 0 µs and 15 µs. The particle
injection ends 5 µs after the hold-phase trigger to make sure that the trap is
completely filled. The dump phase is triggered at 50 µs and the electrodes slowly
turn on ∼25 µs later. In the simulation result shown in Figure 9.8, one can see
that the peak of the dump signal is at 93 µs, so around 40 µs after the trigger,
which is in very good agreement with the experiment. Interestingly, a smaller
peak can be seen in the simulation result prior to the main peak, presumably
caused by the relative fast switch on of the RW1 electrode. The analysis of this
peak revealed that it contains only positrons closest to the wall and which have
a small total kinetic energy. In the experimental data this smaller peak is not
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Figure 9.7: Timing scheme used in the simulation. The timing curves of
the electrodes were recorded with an oscilloscope. The noisy, raw oscilloscope
traces were smoothed with a moving average, interpolated with C2-splines and
normalized for usability purposes. The switching times of the electrodes were
recorded with following amplitudes: RW1: 0 V to 20 V, Top1: 0 V to 15 V, ExB:
0 V to 10 V.

visible, which is probably due to the limited number of recorded events and the
low time resolution. After this beam time, the gamma detection and timing
electronics received a major upgrade (Chapter 4), including fast high-voltage
switches, so it is unlikely that this feature will be seen in the future despite the
significant improvement of the data recording capabilities.

Figure 9.8: Simulation of the dump using the voltage curves that were recorded
during the beam time. During the injection phase, many positrons are lost
because they were either not successfully injected or ejected after one toroidal
rotation due to the still biased electrodes.
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9.5 Positrons confined after the dump
When evaluating the simulation result, surprisingly another peak appeared,
namely at the end of the simulated period at 250 µs (see Figure 9.9). This can
only happen if positrons are still flying when the simulation is terminated which
in turn implies that these positrons are confined even with all electrodes fully
biased. Since over 10 % of all confined positrons are not dumped, it is worth to
investigate why this is the case.

Figure 9.9: When plotting the data of Figure 9.8 over the full range, another
peak appears at 250 µs, which was the predefined termination time of the simu-
lation. This means that over 10 % of the confined positrons were still confined
even after the dump and with all electrodes fully biased again.

Looking at Figure 9.10, where all positrons are shown with start and stop
times, one can distinguish two populations of “long-confined” positrons (green
points): one with a start time earlier than 5 µs and one with a start time later
than ∼ 10 µs. The first population consist of positrons that are injected way
before the hold-phase starts and are not ejected by the injection potentials after
the first toroidal rotation (an example of such a trajectory is shown in Figure D.2
in the Appendix). This size of this population is drastically reduced if the voltage
applied to RW1 is increased from 20 V to 25 V. For 5-eV positrons, this popula-
tion does not exist. In the second population are positrons that are started right
before the hold phase-starts. All long-confined positrons have in common that
they are located in the first half of the trap (z > 0, see Figure 4.1b) during the
switch-off of the electrodes, which explains the gap between the two populations.
In Figure 9.11a, the radial distribution of all confined positrons is plotted. It
shows that the long-confined positrons are all located close to the permanent
magnet. Furthermore, these positrons have a high kinetic energy, especially
perpendicular energy (see Figure 9.11), which is the reason why they are able to
stay confined even with all electrodes fully biased. A possible explanation for
this above-average kinetic energy is that the long-confined positrons gain energy
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during the ramp down of the potential of the negatively charged E×B-plate.
This would also explain why these long-confined positrons are mostly located
within the region of influence of the E×B potential during the switch-off.

High-energy positrons in the trap are unfavorable for the goal of achieving
plasma conditions, as stated in Equation (1.1), so a fine-tuned injection and
switch-off order is required in the future. On the other hand, they might provide
some favorable properties for stacking multiple pulses to increase the number of
positrons in the trap in combination with a cooling gas. So far, long-confined
positrons have only been seen in the simulations, therefore an experimental proof
is required to rule out any numerical effects. How such an experiment could look
like is described in Chapter 10.

Figure 9.10: Each point represents the start and stop time of a single positron
in the simulation. Positrons that are not successfully injected are shown in red.
Injected positrons that are lost after one toroidal rotation due to the still-biased
electrodes are shown in blue. If linear fits are applied to these two sets, the
vertical difference of the two fits gives the average confinement time with active
potentials, which is about 4.5 µs. This number together with the beam intensity
allows for a rough estimate of how many positrons can be confined in each cycle.
Considering only positrons with a start time <5 µs, one can deduce the injection
efficiency to be ∼75 %. The black dots are positrons that were confined and lost
during the dump. Long-confined positrons are highlighted in green.
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(a) (b)

(c) (d)

Figure 9.11: Illustrations of the radial and energy distributions of all confined
positrons at their first mid plane crossing after the dump trigger. One can see
that all long-confined positrons were located very close to the magnet (a) and
that their total kinetic energy (b) is much higher than the average. This is due
to the high perpendicular energy (c). There seems to be no correlation between
the confinement time and the parallel energy (d).

9.6 Summary
This chapter has shown the general procedure of using experimentally collected
data to extract energy distributions, as well as using the position and shape of the
positron beam to initialize the simulation model. The results of the subsequent
simulations were in good agreement with the experiments and reproduced the
delay of the dump signal relative to the trigger signal. The simulations also
revealed that positrons can gain energy if they are in the injection region while
the electric potentials are turned off. These positrons are even able to resist the
dump and remain trapped, so Chapter 10, which explores new dump schemes,
will also address the removal of these high-energy positrons.
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Chapter 10

Simulations of different
dump scenarios

In Chapter 8, which discussed the confinement of positrons, it was mentioned that
a dump scheme was used in the experiments to quickly empty the trap at different
times after the injection, in order to estimate the confinement time. Dumping the
trap content by switching the potentials required for the injection (E×B plates,
RW1, Top1) back on again results in a strong signal, but it is apparently not
sufficient to completely empty the trap. The simulations presented in Section 9.5
suggest that some positrons gain energy during the potential switch-off after the
injection phase, allowing them to remain confined even after the dump.

The following describes how different dumping schemes were simulated in order
to find a way to confirm the presence of these long-confined positrons, to deter-
mine how to remove them, and to investigate if there are schemes that provide
additional information about the trapped positrons. First, the current dumping
scheme and the influence of the switching speed on the positron ejection will
be discussed in Section 10.1. Several ways of using the magnet case bias to
eject confined positrons in Proto-APEX are explored in Section 10.2. Finally, in
Section 10.3, different dumping schemes are investigated using the wall electrodes,
which will be particularly useful for APEX-D.

All simulations were initialized with the identical 10 000 positrons used in the
simulation shown in Figure 8.9, which achieved the longest confinement time.
The dump was triggered at 50 µs and the simulation was terminated at 500 µs.
Data labeled with “Fast” used the newly acquired fast high-voltage switches from
Stahl-Electronics [66] (measured rise time: 116 ns), while “Ramp” used a linear
ramp of 100 µs, if not stated otherwise. The magnet case was always biased to
15 V during the whole simulation, unless it is explicitly mentioned that it was
switched as well.
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10.1 Current dumping scheme
So far, the trap was emptied by simply switching the injection potentials back on
after the hold phase (here: VE×B = 220 V, VRW 1 = VT op1 = 18 V). The self-built
switches can empty the trap in roughly 100 µs, but they have a delay of about
50 µs before the potentials are strong enough to eject positrons and they are not
able to eject the last 4 % of the content composed of the high-energetic positrons
close to the magnet (see Figure 10.1).

Figure 10.1: Result of the dump simulation for different switching speeds of
the potentials. “Slow” uses the timings previously shown in Figure 9.7. “Fast”
uses the new high-voltage switches or, respectively, slowed down by a factor of
250.

The high-voltages switches from Stahl-Electronics can dump most of the positrons
in less than 50 µs and without a significant delay, however, over 12 % of the trapped
positrons remain confined. Due to the fast rise time in the order of 100 ns, the
dump is very chaotic, with positrons hitting all wall electrodes as well as the
shield plate and the E×B plates, as shown in Figure 10.2c. What is not shown is
that about 1.5 % of the positrons were ejected from the main trap into the beam
line.

These unfavorable properties can be mitigated by slowing down the rise time
of the switch. At a factor of 250, almost no positrons annihilate on the plates
anymore (Figure 10.2b) and the fraction of positrons that stay confined drops
again to 4 %. The annihilation locations on the wall remain fairly spread out
compared to the slow switch, where most positrons are lost on RW8 (see Fig-
ure 10.2a). When slowing down the rise time of the fast switch by a factor of
1000, the number of positrons hitting RW3-RW6 is further reduced, though the
fraction of long-confined positrons does not change significantly.
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(a) (b) (c)

Figure 10.2: Locations of the positrons at the end of the simulations. The
annihilation positions are shown in red, positrons that are still confined are
illustrated in blue. (a) Slow switch, (b) fast switch slowed down by a factor of
250, (c) fast switch.

10.2 Magnet case bias
In Chapter 8, it was concluded that a high magnet case bias is necessary for
good confinement. It can therefore be assumed that a negative voltage applied
to the magnet case has a correspondingly bad effect on the confinement time.
The simulation shows that a fast switch from +15 V to −150 V indeed dumps
nearly the whole trap content almost instantaneously onto the magnet case, as
shown and illustrated in Figure 10.3 and Figure 10.4a. Only 140 of the initially
started 10 000 positrons remain confined, which can be further reduced to 24 by
using −200 V and only 4 at −250 V.

Figure 10.3: Simulation of dumping the trap content by changing the potential
applied to the magnet case.
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(a) (b) (c)

Figure 10.4: Locations of the positrons at the end of the simulations. The
annihilation positions are shown in red, positrons that are still confined are
illustrated in blue. (a) Fast switching of the magnet case bias to −150 V, (b)
ramp to −150 V, (c) ramp to −400 V.

10.2.1 Ramp
If instead of switching the magnet case potential as quickly as possible, it is
changed linearly, one can avoid possible pile-up effects in the gamma detectors,
but also gain insight into the magnetic moment distribution of the trapped
positrons, since the time of annihilation on the magnet case depends only on the
applied potential and thus on time itself, as shown in Figure 10.5. About 3.5 % of
all positrons are not dumped if a voltage of −150 V is used. The small top–down
asymmetry of the electric potential caused by the plates and the support rod of
the magnet is the reason why most long-confined positrons accumulate at the
bottom of the magnet, which can be seen in Figure 10.4b. Figure 10.4c shows
that all positrons can be dumped if the applied voltage is increased to −400 V.
One has to note that the E×B-drift induced by the high potential of the magnet
case exceeds the grad-B and curvature-drift, resulting in a direction reversal of
the toroidal rotation.
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Figure 10.5: Dependency of the magnetic moment µ0 of a positron on the time
it hits the magnet case if the voltage applied to it is changed linearly from 15 V
at 50 µs to −400 V at 150 µs.

10.2.2 Delayed magnet
Since the previous simulations confirmed that all confined positrons, even the
highly energetic ones, can be dumped by switching the magnet case bias to a
high negative voltage, this could potentially be used to verify the presence of
these long-confined positrons in the experiments. In Figure 10.6, the simulation
result shows that if the magnet is switched after the first main dump (here
200 µs later), virtually all remaining positrons are dumped. A closer look at the
positrons hitting the magnetic case (Figure 10.7) reveals that they are indeed
those long-confined particles already described in Section 9.5, that are located in
proximity to the magnet and simultaneously have a high total energy.

Figure 10.6: Simulation of the dump using the default scheme (switching on
the injection potentials), but with the rise time slowed down by a factor of 500.
At 250 µs, the potential of the magnet case is switched from 15 V to −150 V.
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(a) (b)

Figure 10.7: (a) Positrons that hit the magnet case are highlighted in green,
positrons that are still confined are illustrated in blue, and all other annihilation
positions are shown in red. (b) Scatter plot of the initial radial and total energy
distributions of the simulated positrons. The positrons that hit the magnet are
highlighted green.

10.3 Wall segment
Switching the magnet case bias to a high negative voltage seems to be a viable
way to dump the complete trap content of Proto-APEX, according to the simu-
lations. Of course, this is no longer possible for the next stage of the experiment,
APEX-D, in which a levitating superconducting coil is used to generate the
dipole magnetic field, since the levitation prohibits any control over the electric
potential of the coil housing. This brings the wall electrodes back into focus,
since these will also be present in APEX-D.

The simplest possible option would be to just use the RW1 and Top1 electrode
to dump the trap content by switching the injection potentials back on again.
However, the simulation reveals that this is anything but effective, with over
26 % of the positrons still trapped in the end as Figure 10.8 and Figure 10.9a show.

The next logical step to increase the efficiency of the dump is to increase the
applied voltage. Since it is technically not straightforward to switch between
three states (injection: 18 V, hold: 0 V, dump: 150 V) with a switch that has
only two states, RW5 will take over the task of the dump. For that, the electrode
structure was modified in the simulation so that RW5 spans the whole height of
the trap (see Figure 10.9b). As Figure 10.8 shows, when RW5 is quickly switched
to 150 V, only 3.5 % of the positrons remain confined. At 500 V, the number of
long-confined positrons drops to only 6 of the initially started 10 000. Interest-
ingly, these high voltages cause the trajectories of the still trapped positrons to
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be mainly restricted to the region between the magnet and RW5, which can be
clearly seen in Figure 10.9b. Some example trajectories are given in Figure D.3
in the Appendix.

Figure 10.8: Comparison of dump simulations using different wall configurations:
switching RW1 and Top1 to the injection biases of 18 V, a full-height RW5
switched to 150 V, and a vertically split full-height RW5 with the second half
linearly ramped to 150 V within 400 µs with the target probe inserted 1 cm.

(a) (b) (c)

Figure 10.9: Locations of the positrons at the end of the simulations. The
annihilation positions are shown in red, positrons that are still confined are
illustrated in blue. (a) Switching RW1 and Top1 to the injection biases of 18 V,
(b) full-height RW5 switched to 150 V, (c) vertically split full-height RW5, second
half linearly ramped to 150 V within 400 µs with the target probe inserted 1 cm.
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10.3.1 Limiter

Biasing RW5 to dump positrons opens up new possibilities. One question would
be, for example, what happens during the dump if a limiter was inserted — or
the target probe in case of Proto-APEX. In order for the positrons to be able to
hit the target probe when the full-height RW5 electrode is biased, it had to be
split vertically into two halves with the first one being grounded and only the
second half being biased, as illustrated in Figure 10.9c.

For the simulation, the second half of RW5 was linearly ramped to 150 V within
400 µs and the target probe was inserted 1 cm into the confinement region. At
the end of the simulation at 500 µs, only 30 of 10 000 initiated positrons were
still confined; these were also restricted to orbits between the magnet and RW5,
as mentioned before. Figure 10.8 shows that about 4.5 % of the positrons were
lost within the first 25 µs. The reason for that is that the target probe was
not present during the injection simulation of the started positron ensemble.
Since the target probe was now inserted, however, positrons at the outer radii
inevitably hit it immediately at the start of the simulation or as soon as they
toroidally drifted far enough around the magnet to be able to hit the probe.
An inserted target probe therefore slightly decreases the injection efficiency, but
on the other hand virtually all confined positrons will annihilate at or near the
target probe, as Figure 10.9c shows, which potentially allows for a better signal
with a correspondingly adjusted gamma detector arrangement.

When the potential of RW5 is slowly ramped, as in this case, the time a positron
hits the target probe is actually correlated to its initial radius, as shown in
Figure 10.10. This dumping scheme is therefore an easy-to-implement diagnostic
tool to retrieve the radial distribution of the confined positrons.

(a) (b)

Figure 10.10: Illustrations of the dependence between the radius of a positron
and the time of its annihilation. Positrons lost before 50 µs are the result of
an simulation artifact caused by the fact that the target probe was not present
during the simulation which created the started positron ensemble.
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10.4 Conclusion
In Chapter 8, the confinement of positrons in Proto-APEX was discussed. There
it was mentioned that in order to get a strong annihilation signal, the trap
contents were dumped by turning the injection potentials back on. In Chapter 9,
however, positrons were observed in the simulations that were able to resist being
ejected because they gained energy when the electric potentials were turned
off during the injection. Therefore, the goal of this chapter was to investigate
different dump schemes that are capable of ejecting all positrons or that may
have other advantages.

The simulations showed that using the new fast high-voltage switches (instead of
the self-built electronics) actually worsened the efficiency of the dump. Slowing
it down by a factor of 250 resulted in a very similar dump signal to the default
dump scheme.

For Proto-APEX, a very efficient dumping scheme is to apply a high nega-
tive voltage to the magnet case. However, the rapid annihilation of all confined
positrons could be problematic, as it could lead to pile-up signals in the BGO
detectors. By increasing the voltage linearly to −400 V instead of switching
instantly, the trap can be completely emptied without the risk of overloading
the detectors. This also has the advantage of inferring the magnetic momen-
tum distribution of confined positrons. The simulations also showed that by
switching the magnet bias after the default dump, the existence of high-energy
long-confined positrons can be confirmed.

Finally, different dumping schemes were simulated using only wall electrodes, as
this is more relevant for the upcoming APEX-D experiment. The most promising
scheme uses the slightly inserted target probe while linearly increasing the bias
of one half of the split RW5 electrode to a high positive voltage. This scheme
empties the trap almost completely, including the high-energy positrons. It
also has the advantage that the time at which a positron is lost depends on its
radial position before the dump, which could be used to reconstruct the radial
distribution profile.
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Pulsed injection of positrons

Until now, positrons have been continuously injected into the trap. However, it
is still uncertain whether this will remain the method of choice in the future or
whether it will be necessary to fill the trap with multiple positron pulses. One
reason for a pulsed injection could be, that it is not yet certain whether it is
feasible to eject all positrons of the multi-cell trap (Section 3.2) at once or whether
several ejection cycles are required to do so. Also, no definitive method has been
chosen yet how electrons and positrons should enter the trap simultaneously.
This could, for example, be accomplished by creating a non-neutral plasma of one
species and then injecting the other, by injecting both species at the same time,
or, if the positrons from the multi-cell trap need to be pulsed, an alternating
injection of positrons and electrons.

In this chapter, it is investigated if positrons can effectively be injected via
multiple pulses and to which extent the pulsed injected positrons differ from
those that were injected continuously. Finally, Section 11.3 shows how a success-
ful injection of multiple positron pulses could be experimentally confirmed in
Proto-APEX.

11.1 Setup of the simulation
For the simulation, the 1 µs long pulse shown in Figure 11.1a was used to switch
the injection potentials (E×B plates, Top1, RW1, see Figure 4.1). The rise and
fall times are 116 ns and 157 ns long, respectively, obtained from measurements
of the recorded time traces of the high-voltage switches from Stahl-Electronics
[66], which were also used in Chapter 10. During each pulse, 1000 positrons were
started within a 100 ns time window.

Figure 11.1b shows how the injection efficiency depends on the delay between
the launch of the positrons and the start of the pulse. Since the positrons are
initiated in the beam line (see Figure 4.1), they need about 200 ns to reach the
main chamber, so the 100 % injection efficiency is still maintained even with no
delay. As the choice of the delay has no discernible effect, it has been set to 0 ns
in all of the following simulations.
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(a) (b)

Figure 11.1: (a) Pulse used for switching the electrodes. The 100 ns positron
launch window is shown in green. (b) Injection efficiency when varying the delay
of the positron launch relative to pulse start.

11.2 Simulation result
In the first simulation, the pulse shown in Figure 11.1a was used to switch the
electrodes five times every 10 µs while also starting 1000 positrons with every
pulse. The result, as seen in Figure 11.2, indicates that more than 4600 of the
total 5000 positrons launched are confined at the end of the simulation at 50 µs
(10 pulses: ≈ 7300/10 000, 15 pulses: ≈ 8750/15 000). This is unexpected, since a
simulation with a continuously filled trap showed that about 17 % of the confined
positrons are lost when an empty pulse occurs. Repeated simulations with 100
and 10 000 positrons per pulse yielded the same ratio of trapped to launched
positrons. The same ratio was also obtained with a five times smaller time step
(0.1 ns instead of 0.5 ns) and a two times longer rise/fall time of the used pulse.

Figure 11.2: Simulation result after five injection pulses (green) with 1000
positrons each. Positrons lost during a pulse are illustrated in red. The blue bin
at 50 µs shows the number of positrons that remained confined until the end of
the simulation.
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(a)

(b) (c)

(d) (e)

Figure 11.3: Radial and energy distribtions of the positrons that remained
confined at the end of the simulation compared to the ones resulting from a
continuous injection. The distributions of the pulsed simulation were scaled up
to match the number of particles of the continous injection simulation.

Looking at Figure 11.3, which shows comparisons of the radial and energy distri-
butions of confined positrons between continuous and pulsed injection, reveals
that the confined positrons are closer to the magnet and have noticeably more
energy in case of a pulsed injection than if they were injected continuously. These
findings are qualitatively identical to the ones found in Section 9.5, where the
switch-off of the injection potentials resulted in a highly energetic positron popu-
lation close to the magnet which can withstand the ejection when the potentials
are switched back on again. In addition, due to the short pulse length, the
positrons do not have time to move outwards to the wall due to the asymmetric
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electric potential while they drift toroidally around the magnet (see Figure 8.1),
so the majority of freshly injected positrons stays close to the magnet after the
potentials are switched off.

The energy gain is caused by the switching of the injection potentials, as men-
tioned earlier, and since they are switched on and off multiple times during the
pulsed injection, this results in multiple branches of positrons with different
energies close to the magnet (< 45 mm), as illustrated in Figure 11.4. In total,
three branches can be distinguished: a low energy branch consisting of positrons
with an average kinetic energy of about 5 eV, a medium energy branch between
10 eV and 20 eV, and a branch of high-energy positrons with kinetic energies up
to 35 eV. Moreover, it can be seen that the switching of the potentials mainly
affects the positrons that have already been trapped, since the positrons injected
with the last pulse (red) are relatively close together in terms of energy and
radius compared to the positrons that were injected previously, especially during
the first pulse. With two pulses, only the medium energy branch is visible, but
with three pulses and more, all three branches are visible. Since even with 15
pulses only these three branches are produced, this indicates that the number of
branches is independent of the number of pulses. The reason for the branching
itself and the fact that there are exactly three branches is the task of a future
investigation. However, the fact that there are highly energetic positrons present,
which are rather disadvantageous for achieving plasma conditions, a cooling gas
is most likely needed when using pulsed injection.

Figure 11.4: Energy and radial distribution of the confined positrons at the
end of the simulation. The color indicates during which pulse the positrons were
injected.
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11.3 Realistic simulation
To see if an experimental proof of a successful pulsed injection is possible with
the equipment currently available, the simulation will need some adjustment.

First, the pulse duration was increased to 10 µs since this is the limit of the fast
high-voltage switches from Stahl-Electronics. Second, due to the longer pulses,
the time between pulses was increased to 50 µs to give the positrons enough time
to spread out evenly in the trap. Furthermore, neither the BGT nor the MCT is
installed, so no pulses can be injected, only the continuous remoderated positron
beam of NEPOMUC, which can provide 5 ·107 e+/s. Since the deflector would be
biased when the injection potentials are off to prohibit positrons from reaching
the chamber, positrons were launched only in a 20 µs time frame around each
pulse to ensure that a maximum number of positrons enter the trap during the
pulse, but also to avoid the unnecessary simulation of positrons that cannot be
injected in the first place. The used timing scheme is summarized in Figure 11.5.

Figure 11.5: Timing scheme of the simulation. 1000 positrons are launched
in the beam line within a time frame of 20 µs every 50 µs (highlighted in green).
The electrodes are switched on for 10 µs for every pulse.

Looking at the simulation result shown in Figure 11.6, it can be seen that
the difference in confined positrons between only one injection pulse and two
pulses is about 25 %, and between one pulse and three pulses about 40 %, so an
experimental discrimination is within the realm of possibility. When using any
dump scheme presented in Chapter 10 that ensures that all positrons are dumped,
including the ones which gained energy during the switching, a differentiation of
two and three injection pulses might also be possible despite the small difference
of only 10 % in trapped positrons. Discrimination of more than three pulses is
unlikely, since about as many positrons are lost as can be injected in one pulse.

An experiment with two injection pulses can directly be realized with the DG645
digital delay generator [67], as shown in Figure 11.7. Here, the magnet bias
is used to dump the trap content at the end of the second hold phase, like
described in Section 10.2. The T0 output of the delay generator (or a second
pulse generator) can also be used to gate the data acquisition and/or to reset the
time stamp of the digitizer [44]. This setup also allows for a quick reconfiguration
of the experiment to cross-check the results, e.g. by using only the first or only
the second pulse, or by switching the potentials in the second pulse but without
opening the deflector.
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Figure 11.6: Number of confined positrons at the end of the simulation for
different numbers of injection pulses.

Figure 11.7: Possible timing scheme with two pulses using the DG645 digital
delay generator [67]. The channel configurations are given in the parentheses.
High levels mean “on”, low levels mean “off” except for the magnet where the
low level refers to the injection/confinement setting and a high level to the dump
setting (see Section 10.2). The T0 output or another pulse generator is used for
synchronization with the data aquisition.

11.4 Conclusion
This chapter investigated the possibility of injecting multiple pulses of positrons
into a magnetic confinement device. This is important because it is not yet clear
whether all the positrons accumulated in the multi-cell trap can be ejected at
once or whether several pulses are needed.

The simulations performed showed that such a pulsed injection is indeed possible,
but they also indicated that the repeated switching of the injection potentials
causes the positrons to gain energy, similar to what was observed in Section 9.5.
This means that a cooling gas is most likely needed to reduce the energy of
the positron so that a small Debye length can be achieved. Furthermore, the
simulations showed that pulsed injection can already be tested in Proto-APEX
by repeatedly blocking the incoming continuous positron beam from NEPOMUC.
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Summary

The APEX collaboration plans to accumulate the positrons of the NEPOMUC
beam using a buffer-gas trap system and a multi-cell trap, and then inject this
intense positron pulse together with electrons into a magnetic dipole trap with a
levitating, superconducting coil (APEX-D) or a stellarator (EPOS) to create the
world’s first magnetized low-energy pair plasma. Pair plasmas are particularly
interesting to study because they have exceptional stability properties compared
to an ion–electron plasma due to the equal masses of the species. So far, experi-
ments have been conducted with a predecessor device, Proto-APEX, in which
the central dipole field is generated by a permanent magnet.

This device has been extensively studied by numerical single-particle simulations,
using analytical formulae to describe the magnetic fields, a Lorentz-equation
solver to calculate the electric potentials inside the trap, and the Boris algo-
rithm to propagate positrons in these fields. The simulation framework was
described in detail at the beginning, including the introduction of an electric
potential solver using an octree data structure, which is capable of resolving
small geometric details in large volumes by refining the mesh in important
areas while maintaining a coarse resolution everywhere else. This work has
also shown, through simulations and comparisons with available experimental
data, that the radial deposition of positrons during injection can be consider-
ably altered by varying the steering coil current Ir as well as the magnet case bias.

This knowledge could immediately be used to show that positrons can be trapped
for longer if they are deposited closer to the magnet. Simulations have also shown
that the E×B plates, which can be hit by positrons and thus limit their confine-
ment time, can be shortened without compromising the injection efficiency. If, in
addition, the magnet case is biased high enough to prevent positrons from scatter-
ing into the loss cone, the total confinement time was increased by a factor of five.

After modelling a previous beam time in the simulation software, it was discov-
ered that positrons can gain energy when the injection potentials are switched
off. When the potentials are switched back on to empty the trap, these positrons
are able to resist and remain trapped.
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Several new methods of emptying the trap content were then investigated. Bias-
ing the magnet case to a high negative voltage gave the best results, including the
ejection of the high-energy positrons mentioned above. It was also shown that
by dumping the content by turning on the injection potentials and then biasing
the magnet case after a delay to eject the remaining high energy positrons, their
existence or non-existence could be experimentally verified. Another promising
option would be to bias a wall electrode to a high positive voltage in combination
with a limiter. This method would also work in APEX-D and would allow to
obtain some information about the radial distribution of the confined positrons
if the voltage was increased slowly enough.

Finally, this work has shown that the trap can be filled by several positron
pulses in case it is not possible to empty the multi-cell trap in one large pulse.
However, this results in a complex energy and radial distribution which would
most likely require the use of an additional cooling gas inside APEX-D to lower
the energy of the positrons in order to achieve plasma conditions. Last but not
least, simulations have shown that pulsed injection can already be verified exper-
imentally in Proto-APEX using the continuous positron beam of NEPOMUC.
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Outlook

Since FRM II is not due to restart until the beginning of 2024 at the earliest,
it was decided to carry out experiments with Proto-APEX at AIST in Japan.
The focus of these experiments will be on the improvement of the confinement
and the field testing of the gamma detection system. After Proto-APEX was
removed, the RFA was installed at the open beam port, which will be used to
characterize the NEPOMUC positron beam before and after the installation of
the BGT and accumulator once the reactor is back in operation.

From the simulation point of view, APEX-D will become more and more im-
portant. For these simulations, the use of the octree potential solver will be
crucial, which will be further optimized, especially in terms of memory usage by
exploiting symmetries within the boundary and by assigning a unique ID to the
cells to store them efficiently in a hashmap. To also reduce the time needed to
solve the electric potentials on the regular grid, there are plans to backport some
aspects of the octree solver, such as the convergence test and the multithreading
implementation. Since in a charged cloud or in a plasma the assumption of single
particles becomes less and less true with increasing number of particles, it is
conceivable to use the software presented here and interface it with a PIC code.

Since this software is written in Java, improvements can be expected through
future enhancements to Java itself. Project Lilliput, for example, has the goal to
reduce the size of object headers from currently 96/128 bit (with and without
compressed class pointers) to 64 bit and potentially even 32 bit [68], which would
noticeably reduce the memory consumption of octrees. Project Valhalla aims to
completely rethink Java’s distinction between primitive values (int, double, . . . )
and objects [62]. This includes the introduction of value classes and primitive
classes, which would both reduce the memory consumption of the cells of an
octree and also increase the performance in general. Project Panama wants to
bring the Java virtual machine and native code closer together [69]. This includes
adding an API for vector computation to make use of SIMD (Single Instruction,
Multiple Data) capabilities of modern CPUs.
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A Symbols

Symbol/Name Description
µ0 Vacuum permeability
a⃗ Vector
â Unit vector

a← b Assignment operator
a % b Modulo operator
a≪ b Left shift operator
a | b Bitwise OR operator

nint(x) Round to closest integer
⌊x⌋ Floor function
⌈x⌉ Ceiling function

erfc(x) Complementary error function
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B Elliptic integrals
To calculate the magnetic field of a current loop (see Section 5.2.1) and a
continuous finite solenoid (see Section 5.2.2), respectively, two or all three kinds
of the complete elliptic integrals have to be evaluated at each point. There
are many ways available to solve these integrals including brute force numeric
integration and power series. Here, they were computed very efficiently by using
the method of the arithmetic-geometric mean [70, Eqs. 19.8(i)].

The arithmetic–geometric mean, agm(x, y), is defined as

a0 = x (1)
g0 = y (2)

an+1 = 1
2 (an + gn) (3)

gn+1 = √an · gn (4)

where the two interdependent sequences an and gn converge quadratically to the
same value.

B.1 Complete elliptic integral of the first kind
The complete elliptic integral of the first kind can be calculated directly using
the arithmetic–geometric mean [70, Eq. 19.8.5]:

K(k) =
∫ π

2

0

dθ√
1− k2 sin2 θ

= π

2 · agm
(
1,
√

1− k2
) (5)

B.2 Complete elliptic integral of the second kind
With the additional sequence

cn =
√

a2
n − g2

n (6)

which convergence quadratically to 0, the complete elliptic integral of the second
kind is given by [70, Eq. 19.8.6]:

E(k) =
∫ π

2

0

√
1− k2 sin2 θ dθ (7)

= π

2 · agm
(
1,
√

1− k2
) ·(a2

0 −
∞∑

n=0
2n−1c2

n

)
(8)

= K(k) ·
(

a2
1 −

∞∑
n=2

2n−1c2
n

)
(9)

Because the second kind depends on the elliptical integral of the first kind and
both are required in any case for the calculation of the magnetic field, it is useful
to calculate the first and the second kind at the same time to save some valuable
computing power.
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B.3 Complete elliptic integral of the third kind
For the evaluation of the last integral, the following sequences are necessary:

pn+1 = p2
n + angn

2pn
, p0 =

√
1− α (10)

ϵn = p2
n − angn

p2
n + angn

(11)

Qn+1 = 1
2Qn

p2
n − angn

p2
n + angn

, Q0 = 1 (12)

Here pn converges quadratically to the same value as an and gn, ϵn and Qn

converge to 0 quadratically and faster than quadratically, respectively. The
complete elliptic integral of the third kind can now be computed with [70,
Eq. 19.8.7]:

Π(α, k) =
∫ π

2

0

dθ(
1− α sin2 θ

)√
1− k2 sin2 θ

(13)

= π

4 · agm
(
1,
√

1− k2
) ·(2 + α

1− α

∞∑
n=0

Qn

)
(14)

= K(k)
2 ·

(
2 + α

1− α

∞∑
n=0

Qn

)
(15)
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C Parameter settings

Table 1: Parameter settings of the experiments and simulations.

Figure Ir Iθ E×B Magnet Top1 Top2 RW1 RW2-8
[A] [A] [V] [V] [V] [V] [V] [V]

7.1 -9 4 210 12 12 0 12 0
7.2a -8.3 4 220 0 14 0 20 0
7.2b -8.3 4 220 30 14 0 20 0
7.4 -8.3 4 220 8 14 0 14 0
7.5 -8.3 4 - 8 14 0 20 0
7.6 -8 4 180 8 - 0 14 0
7.7 -8 4 200 8 22 0 - 0
7.8 -8.3 4 220 - 14 14 20 0
7.9 -8.3 - 220 8 14 0 20 0
7.10 - 4 220 8 14 0 20 0
7.11 - - - 0 12 0 12 0
8.1 -9 3 210 12 12 0 12 0
8.3a -8.3 4 220 8 14 0 22 0
8.3b -8.3 4 220 0 14 14 22 0
8.4 -4 -1 220 8 18 0 18 0
8.5 -5.5 -1 230 12 12 0 12 0
8.6 -3.7 -1 220 8 18 0 18 0
8.7 -6.2 -1 220 20 18 0 18 0
8.9 -7 -1 220 15 18 0 18 0
9.3 -4 5.5 250 12 14 0 20 0
9.4 - - 250 12 14 0 20 0
9.5 -4 5.5 250 20 15 0 20 0
9.6 -4 5.5 250 20 15 0 20 0
9.8 -4 5.5 250 20 15 0 20 0
11.2 -7 -1 220 15 18 0 18 0
11.6 -7 -1 220 15 18 0 18 0
D.1 -9 3 210 12 12 0 12 0
F.x -9 3 210 12 12 0 12 0
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D Trajectories of positrons
D.1 Shorter E×B plates

(a) (b)

(c) (d)

Figure D.1: Simulation of a trajectory in traps with different plate lengths:
135 mm((a) & (b)) and 115 mm (c) & (d)). The sample positron trajectory shown
in red was started with E∥0 = 5 eV and E⊥0 = 0.5 eV. [63].
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D.2 Long-confined positrons

(a) (b)

(c) (d)

Figure D.2: Trajectory of the long-confined positron with start time 2.37 µs.
(a) and (b) is the trajectory before the hold-phase began. (c) and (d) is the
trajectory after the dump. at the end of the simulation.
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D.3 Confined positron after RW5 dump

(a) (b) (c)

Figure D.3: Illustration of some of the possible trajectories a positron can take
when the full-height RW5 electrode is biased to a high voltage. (a) Eight-shaped
trajectory. (b) Trajectory very close to the magnet with an arc when being
between the magnet and RW5. The arc can switch from being on the top to
being on the bottom. (c) Trajectory with just the lower part of the eight-shaped
trajectory. This kind of trajectory can also form at the top pole of the magnet.
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E Algorithms
E.1 Multigrid preconditioning

Algorithm 3: SOR iteration for different multigrid levels. The full
SOR iteration is performed with d = 1.

Input: The potential array: Φ
The multigrid preconditioning level: d (1,2,4,...)
The successive over-relaxation parameter: ω

Function: iterateSOR(Φ, d, ω)
for x← d to lengthx(Φ)− d by d do

for y ← d to lengthy(Φ)− d by d do
for z ← d to lengthz(Φ)− d by d do

if isGeometry(x, y, z) is false then
Φx,y,z ← (1− ω) · Φx,y,z +

ω
6 · (Φx−d,y,z + Φx+d,y,z+

Φx,y−d,z + Φx,y+d,z +
Φx,y,z−d + Φx,y,z+d)
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Algorithm 4: Prolongation of values from a coarse grid to the next
finer grid.

Input: The potential array: Φ
The multigrid preconditioning level: d (2,4,...)

Function: prolongate(Φ, d)
e← d/2
for x← e to lengthx(Φ)− e by e do

for y ← e to lengthy(Φ)− e by e do
for z ← e to lengthz(Φ)− e by e do

if isGeometry(x, y, z) is false then
if x % d = 0 and y % d = 0 and z % d ̸= 0 then

Φx,y,z ← 1/2 · (Φx,y,z−e + Φx,y,z+e)
else if x % d = 0 and y % d ̸= 0 and z % d = 0 then

Φx,y,z ← 1/2 · (Φx,y−e,z + Φx,y+e,z)
else if x % d ̸= 0 and y % d = 0 and z % d = 0 then

Φx,y,z ← 1/2 · (Φx−e,y,z + Φx+e,y,z)

else if x % d = 0 and y % d ̸= 0 and z % d ̸= 0 then
Φx,y,z ← 1/4 · (Φx,y−e,z−e + Φx,y−e,z+e+

Φx,y+e,z−e + Φx,y+e,z+e)
else if x % d ̸= 0 and y % d = 0 and z % d ̸= 0 then

Φx,y,z ← 1/4 · (Φx−e,y,z−e + Φx−e,y,z+e+
Φx+e,y,z−e + Φx+e,y,z+e)

else if x % d ̸= 0 and y % d ̸= 0 and z % d = 0 then
Φx,y,z ← 1/4 · (Φx−e,y−e,z + Φx−e,y+e,z+

Φx+e,y−e,z + Φx+e,y+e,z)

else if x % d ̸= 0 and y % d ̸= 0 and z % d ̸= 0 then
Φx,y,z ← 1/8 · (Φx−e,y−e,z−e + Φx−e,y−e,z+e+

Φx−e,y+e,z−e + Φx+e,y−e,z−e+
Φx−e,y+e,z+e + Φx+e,y−e,z+e+
Φx+e,y+e,z−e + Φx+e,y+e,z+e)
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E.2 Symmetric electric potentials
Algorithm 5: SOR iteration at the symmetry boundary.

Input: The potential array: Φ
The size of the domain: nx, ny, nz
The multigrid preconditioning level: d (1,2,4,...)
The successive over-relaxation parameter: ω

Function: IterateBoundarySymmetricX(Φ, nx, ny, nz, d, ω)
lx ← lengthx(Φ)
// actual length of Φ in x-direction = ⌈nx/2⌉

δx← (lx − 1) mod d

x ← lx − 1− δx

for y ← d to ny − d by d do
for z ← d to nz − d by d do

if isGeometry(x, y, z) is false then
if nx/2 is even then

Φx,y,z ← (1− ω) · Φx,y,z+
ω
6 · (Φx−d,y,z + Φx,y,z+

Φx,y−d,z + Φx,y+d,z+
Φx,y,z−d + Φx,y,z+d)

else
Φx,y,z ← (1− ω) · Φx,y,z+

ω
6 · (2 · Φx−d,y,z+

Φx,y−d,z + Φx,y+d,z+
Φx,y,z−d + Φx,y,z+d)

Function: IterateBoundaryAntiSymmetricX(Φ, nx, ny, nz, d, ω)
lx ← lengthx(Φ)
δx← (lx − 1) mod d

x ← lx − 1− δx

if nx/2 is even then
f ← (1 + 2 · δx)/(1 + 2 · (d + δx))

else
f ← δx/(d + δx)

if f ̸= 0 then
for y ← d to ny − d by d do

for z ← d to nz − d by d do
if isGeometry(x, y, z) is false then

Φx,y,z ← f · Φx−d,y,z
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Algorithm 6: Prolongation of values from a coarse grid to the next
finer grid.

Input: The potential array: Φ
The multigrid preconditioning level: d (2,4,...)

Function: prolongateBoundarySymmetricX(Φ, d)
e← d/2
for x← e to lengthx(Φ)− e by e do

for y ← e to lengthy(Φ)− e by e do
for z ← e to lengthz(Φ)− e by e do

if isGeometry(x, y, z) is false then
if x % d = 0 and y % d = 0 and z % d ̸= 0 then

Φx,y,z ← 1/2 · (Φx,y,z−e + Φx,y,z+e)
else if x % d = 0 and y % d ̸= 0 and z % d = 0 then

Φx,y,z ← 1/2 · (Φx,y−e,z + Φx,y+e,z)
else if x % d ̸= 0 and y % d = 0 and z % d = 0 then

Φx,y,z ← Φx−e,y,z

else if x % d = 0 and y % d ̸= 0 and z % d ̸= 0 then
Φx,y,z ← 1/4 · (Φx,y−e,z−e + Φx,y−e,z+e+

Φx,y+e,z−e + Φx,y+e,z+e)
else if x % d ̸= 0 and y % d = 0 and z % d ̸= 0 then

Φx,y,z ← 1/2 · (Φx−e,y,z−e + Φx−e,y,z+e)
else if x % d ̸= 0 and y % d ̸= 0 and z % d = 0 then

Φx,y,z ← 1/2 · (Φx−e,y−e,z + Φx−e,y+e,z)

else if x % d ̸= 0 and y % d ̸= 0 and z % d ̸= 0 then
Φx,y,z ← 1/4 · (Φx−e,y−e,z−e + Φx−e,y−e,z+e+

Φx−e,y+e,z−e + Φx−e,y+e,z+e)
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Algorithm 7: Retrieving the value at a grid point of a potential that is
symmetric or antisymmetric in x-direction

Input: The potential array: Φ
The size of the domain: nx, ny, nz
The indices of the desired potential value: x, y, z

Ensure: 0 ≤ x < nx
0 ≤ y < ny
0 ≤ z < nz

Function: getPotentialSymmetricX(Φ, nx, ny, nz, x, y, z)
if x ≥ lengthx(Φ) then

return Φnx−1−x,y,z

else
return Φx,y,z

Function: getPotentialAntiSymmetricX(Φ, nx, ny, nz, x, y, z)
if x ≥ lengthx(Φ) then

return −Φnx−1−x,y,z

else
return Φx,y,z
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E.3 Image based sample generation

Algorithm 8: Accumulation of pixel brightnesses into an array.

Input: The source image: I
The width of the source image: w
The height of the source image: h

Result: An array with the normalized cumulated brightness values of
the source image: C

Function: computeCumulative(I, w, h)
s← 0
maxBrightness ← 2I.getBitsPerChannel() − 1 // 255 for 8 bit
for y ← 0 to h do

for x← 0 to w do
s← s + I.getPixel(x, y).getBrightness() / maxBrightness
C[y · w + x]← s

for i← 0 to w · h do
C[i]← C[i]/s // Normalization to 1

return C

Algorithm 9: Generation of random samples from a cumulated array.

Input: An array of cumulated, normalized brightness values: C
The width of the source image: w
Random(): A random floating point value between 0 and 1
Search(Array,key): Returns index of the key, otherwise
(-(insertion point) – 1).

Result: A random position within a pixel

Function: getSample(C, w)
i← Search(C, Random())

if i < 0 then
i← −i− 1

return (i % w + Random(), ⌊i/w⌋+ Random())
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E.4 Octree

Algorithm 10: Potential interpolation in an octree.

Input: An array with the eight surrounding cells: C
The location of the interpolation relative to the central vertex of
these cells: x, y, z
The root cell grid spacing: r

Result: An interpolated potential value at (x,y,z): Φ
Function: interpolate(x, y, z, C)

m← level(C0) // Find lowest level
for i← 1 to 7 do

if level(Ci) < m then
m← level(Ci)

t← 0 // Calculate type(binary) with bit operations
for i← 0 to 7 do

t← t |
(
(level(Ci)−m)≪ (7− i)

)
l← r/(2≪ m) // Normalize coordinates
x← 0.5 · (x/l + 1) // x, y, z ∈ [0, 1)
y ← 0.5 · (y/l + 1)
z ← 0.5 · (z/l + 1)
switch t do

case 00000000 do // default trilinear interpolation
Φ← interpolate(x, y, z, a, b, c, d, e, f, g, h, C)

case 00000001 do // Rot180◦

x
Φ← interpolateA(x, 1− y, 1− z, h, g, f, e, d, c, b, a, C)

...
case 00100000 do // Figure 6.7, Rot180◦

z
Φ← interpolateA(1− x, 1− y, z, c, d, a, b, g, h, e, f, C)

...
case 01010101 do // Rot−90◦

z
Φ← interpolateACEG(y, 1− x, z, b, c, d, a, f, g, h, e, C)

...
case 11111110 do // No transform

Φ← interpolateABCDEFG(x, y, z, a, b, c, d, e, f, g, h, C)

return Φ
Function: interpolateX(x, y, z, a, b, c, d, e, f, g, h, C)

// Finds the cuboid (as illustrated in Figure 6.7) in
which the point (x,y,z) is located and performs the
trilinear interpolation. Only the default case has to
be implemented as the transform is already given via
the method parameters (a-h are array indices for C).
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Algorithm 11: Adaptive 7-point stencil method for retrieving an electric
field vector within an octree.

Input: The location of the field vector evaluation: x, y, z
The cell at (x, y, z): C
The normalized values of x, y, z in C: u, v, w ∈ [0, 1]
Half the size of C: d

Result: The electric field vector at (x,y,z): E

Function: getFieldVector(x, y, z, u, v, w, C)
d+

x ← 1
d−

x ← 1

if u > 0.5 then
C+

x ← getNeighboringCell+
x (C)

if level(C+
x ) > level(C) then

d+
x ← 1.5− x

else if level(C+
x ) < level(C) then

d+
x ← 2 · x

else
C−

x ← getNeighboringCell−
x (C)

if level(C−
x ) > level(C) then

d−
x ← x + 0.5

else if level(C−
x ) < level(C) then

d−
x ← 2− 2 · x

Ex ←
(
interpolate(x− d−

x · d, y, z)−
interpolate(x + d+

x · d, y, z)
)
/
(
(d+

x + d−
x ) · d

)
// Ey and Ez are calculated equivalently.
return E
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F Loss channels for all 2D parameter scans
This section provides an overview of the different loss channels for all possible
parameter scan combinations. The color indicates the percentage of launched
positrons that are lost at a specific location named in the diagram title. The
values of the non-scanned parameters are given in Appendix C.

F.1 Ir - Iθ

Figure F.1: Steering coil curent Ir vs steering coil curent Iθ.
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F.2 Ir - RW1

Figure F.2: Steering coil curent Ir vs RW1 bias.
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F.3 Ir - Top1

Figure F.3: Steering coil curent Ir vs Top1 bias.
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F.4 Iθ - RW1

Figure F.4: Steering coil curent Iθ vs RW1 bias.
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F.5 Iθ - Top1

Figure F.5: Steering coil curent Iθ vs Top1 bias.
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F.6 E×B - Ir

Figure F.6: Bias of the E×B plates vs steering coil curent Ir.
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F.7 E×B - Iθ

Figure F.7: Bias of the E×B plates vs steering coil curent Iθ.
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F.8 E×B - RW1

Figure F.8: Bias of the E×B plates vs RW1 bias.

F.9 E×B - Top1

Figure F.9: Bias of the E×B plates vs Top1 bias.
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F.10 Magnet case - Ir

Figure F.10: Magnet case bias vs steering coil curent Ir.
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F.11 Magnet case - Iθ

Figure F.11: Magnet case bias vs steering coil curent Iθ.
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F.12 Magnet case - RW1

Figure F.12: Magnet case bias vs RW1 bias.

F.13 Magnet case - Top1

Figure F.13: Magnet case bias vs Top1 bias.
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F.14 Magnet case - E×B

Figure F.14: Magnet case bias vs bias of the E×B plates.

F.15 Top1 - RW1

Figure F.15: Top1 bias vs RW1 bias.
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G User interface of AlGeoJ
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Figure G.2: Properties dialog of a particle source. The left column contains all
the settings to define the initial properties of the particles to be launched. This
includes the type of particle (particle, field line, photon), the spatial distribution
(point, line, disk, image (see Section 5.6),. . . ), the start time distribution, the
number of particles, the charge distribtion, the mass distribution, and the starting
vector and velocity/energy distributions. Distributions can be specified in a
variety of ways, including a single value, a range of random values, Gaussian,
or as a probability/cumulative density function. The second column labeled
“Record” contains the list of conditions when a particle should record data
that can later be used to create plots (the dialog is shown in Figure G.3).
The “"Simulation"” column contains the option to enable the drawing of the
trajectories, the possibility to plot the recorded data as well as an option to
enable particle annihilation. The right column contains all the settings for the
appearance of the particles and their trajectories. Setting the colors to a color
ramp automatically enables a variety of ways to directly visualize the recorded
data in the viewport.
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Figure G.3: Dialog of a record setting. First, the type of condition (time, plane
intersection, object hit,. . . ) is specified. Then, the maximum number of times
this condition can be fulfilled (0=infinite) and whether the particle should be
stopped after reaching the limit can be set. Actions can be defined that are
executed when the condition is met, such as tagging the particle or randomizing
its velocity vector. After setting mandatory values for the selected condition
type, the condition can be refined, for example, by specifying that the condition
can only be met if the particle was previously tagged. Finally, all parameters to
be recorded can be selected.
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Figure G.4: Properties dialog of an electrode. Each electrode is defined by
two points. After specifying the general type of the geometry (cuboid, cylinder,
hollow cylinder, STL (see Section 5.5),. . . ), further properties can be defined,
such as the radius in this instance (the height is grayed out because it is already
defined by the start and end points). Enabling “Stop photons” adds this electrode
to the list of objects, that is checked for intersections if particle annihilation is
enabled (see Figure G.2). When “Moderation” is activated, further options are
shown (moderation efficiency, energy distribution after moderation, and emission
angle) to allow this object to act as a moderator (an “Object hit” record setting
has to be added for this object, like shown in Figure G.3, and “Moderation” has
to be added as action). Setting an appropriate symmetry with respect to the
potential domain speeds up the computation of its electric potential, as discussed
in Section 5.3.5. Furthermore, the maximum octree refinement level can be set,
see Chapter 6. Finally, the applied voltage can be defined. This voltage can also
be time-dependent and can even depend on any property of a particle. If no
voltage is set, the electrode is assumed to be grounded.
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