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Abstract

Ultrasound is a versatile medical imaging modality that complements X-ray computed tomog-
raphy and magnetic resonance imaging. It is safe, low-cost and devices can be exceptionally
portable. However, artifacts from the physics governing the propagation of ultrasound waves
and the image formation process can limit the image quality. This thesis investigates several
advances in medical ultrasound imaging addressing this.

First, a comprehensive review of techniques for ultrasound image reconstruction, specifically
for receive beamforming is presented. Conventionally, ultrasound receive beamforming
is performed either mechanically (through an acoustic lens), electronically (by means of
delay-lines), or in digital logic (field-programmable gate arrays) and consists of a two-step
approach: Delaying of signals to create focus and summation of the aperture data to emulate
a single ultrasound receiver. The review focuses on algorithms replacing the summation of
aperture-data with more refined means and the developments in this field.

To facilitate research in ultrasound imaging algorithms an open framework for software-based
ultrasound imaging is presented. There are aspects in an ultrasound imaging setup that
explicitly require electronics, such as pulse emission and digitization of received echo signals.
All other components are covered in the software framework, from ultrasound sequence
pulse programming (also called transmit beamforming), over receive beamforming, envelope
detection, log-compression, and scan-conversion. It is easily extensible for other techniques,
e.g. for the addition of alternative algorithms for comparison.

Depending on the diagnostic task, the presence of speckle in the images—an intrinsic property
of ultrasound imaging—can be detrimental for visualization. For this reason algorithms
for speckle-removal are employed in virtually all clinical scanners. This thesis investigates
synthetic data-generation and training considerations of deep-learning based speckle filters,
resulting in a speckle filter that performs favorably without requiring real data for training or
manual tuning.

In the presence of large tissue property differences, mainly in the vicinity of bones and air
cavities, special care must be taken by the ultrasound system operator to select a so-called
acoustic window that allows for sufficient transmission of ultrasonic energy to the anatomy
under investigation in order to preserve image quality and visibility of the target anatomy
all-together. For robotic ultrasound acquisitions, this thesis presents a technique for fully
automatic acquisition planning using a target visibility model based on ultrasound-physics.

As these advances continue to improve the quality, ease of use and applicability of ultrasound
as imaging modality, we can be sure to see it employed in an ever growing array of ways,
leading to better patient care through better image guidance and non-invasive diagnosis.






Zusammenfassung

Ultraschall ist ein vielseitiges medizinisches Bildgebungsverfahren, das die Rontgen-Computer-
tomographie und die Magnetresonanztomographie erginzt. Er ist sicher, kostengiinstig und
Gerate konnen aufdergewohnlich tragbar sein. Allerdings kann die Bildqualitidt durch Artefakte
beeintrachtigt werden, die sich aus den physikalischen Bedingungen fiir die Ausbreitung der
Wellen und dem Bildgebungsprozess ergeben. In dieser Arbeit werden mehrere Fortschritte in
der medizinischen Ultraschallbildgebung untersucht, die dieses Problem adressieren.

Zunéchst wird ein umfassender Uberblick {iber Techniken zur Rekonstruktion von Ultraschall-
bildern, insbesondere zum Empfangsbeamforming, gegeben. Konventionell besteht Ultraschall-
Empfangsbeamforming aus einem zweistufigen Ansatz: Verzogerung von Signalen, um Fokus
zu erzeugen, und Summierung der Aperturdaten, um einen einzelnen Ultraschallempfianger
zu emulieren. Die Ubersicht konzentriert sich auf Algorithmen, die die Summierung von
Aperturdaten durch differenziertere Mittel ersetzen, und die Entwicklungen hierzu.

Zur Unterstiitzung der Forschung auf dem Gebiet der Ultraschallbildgebungsalgorithmen wird
ein freies Framework fiir softwarebasierte Ultraschallbildgebung vorgestellt. Es gibt Aspekte in
einem Ultraschallsystem, die explizit Elektronik erfordern, die Impulserzeugung und die Digita-
lisierung der Echosignale. Alle anderen Komponenten werden durch das Software-Framework
abgedeckt, von der Programmierung von Ultraschallimpulssequenzen {iber Empfangsbeamfor-
ming, Hiillkurvendetektion, Log-Kompression und Scan-Konvertierung. Es ist leicht erweiterbar
fiir andere Techniken, so dass alternative Algorithmen hinzugefiigt werden konnen.

Je nach diagnostischer Aufgabe kann das Vorhandensein von Speckle in den Bildern fiir die
Visualisierung nachteilig sein. Aus diesem Grund werden Algorithmen zur Speckle-Entfernung
in praktisch allen klinischen Scannern eingesetzt. In dieser Arbeit werden die Generierung
synthetischer Daten und Uberlegungen zum Training von Deep-Learning-basierten Speckle-
Filtern untersucht. Das Ergebnis ist ein Speckle-Filter, der gute Resultate liefert, ohne dass
reale Daten fiir das Training oder manuelle Einstellungen erforderlich sind.

Bei grofden Unterschieden in den Gewebeeigenschaften muss der Ultraschallanwender darauf
achten, ein akustisches Fenster zu wihlen, das eine ausreichende Ubertragung der Ultraschall-
energie auf die Anatomie ermoéglicht, um die Bildqualitdt und die Sichtbarkeit zu erhalten. Fiir
robotergestiitzte Ultraschallaufnahmen wird in dieser Arbeit eine Technik zur automatischen
Aufnahmeplanung mithilfe eines physikbasierten Modells der Sichtbarkeit vorgestellt.

Da diese Fortschritte die Qualitét, Benutzerfreundlichkeit und Anwendbarkeit des Ultraschalls
als bildgebendes Verfahren weiter verbessern, konnen wir sicher sein, dass er auf immer
vielfaltigere Weise eingesetzt wird, was zu einer besseren Patientenversorgung durch bessere
Navigation und nicht-invasive Diagnose fiihrt.
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Medical Imaging

1.1 Background

Medical imaging allows physicians to asses the status of tissues non-invasively. It is used to
diagnose and treat many diseases and injuries, including cancer, cardiovascular diseases, and
musculoskeletal injuries. It is also used to monitor the progress of treatments or track disease
progression. Medical imaging is essential for the diagnosis of a wide variety of conditions
and for helping physicians determine the best course of treatment for their patients. Imaging
modalities include X-ray, computed tomography (CT), magnetic resonance imaging (MRI),
nuclear medicine such as positron emission tomography (PET), and ultrasound (US).

Depending on their working principle, different modalities allow for structural or functional
imaging. Structural imaging provides anatomical information, while functional imaging can
be used to measure and monitor physiological processes, such as blood flow or metabolic
activity.

Since X-ray and CT imaging are based on the absorption of X-ray radiation, their contrast is
related to the tissue densities. This makes them well suited for the diagnosis of bone and joint
disorders. With the administration of contrast-agent they can also be used for the assessment
of cardiovascular structures, such as the abdominal aorta. In contrast, MRI and PET do not
rely on the absorption of X-ray radiation and can provide more details of soft tissues than X-ray
and CT. MRI allows for higher soft tissue contrast by measuring different tissue properties,
such as the proton density, or diffusion velocities of liquids. PET imaging is often used in
cancer treatment, as it can detect tumors not visible on X-ray or CT images. It does, however,
require the administration of radioactive tracers, targeted at the specific tissues in question.
US imaging reveals structural and functional information using high frequency sound-waves,
which are reflected by the tissue interfaces. It can be used to interactively assess the dynamic
motion of structures, and provides a good overview of soft tissues, such as the vascular system
and many of the abdominal organs. Besides their use for diagnosis, certain imaging modalities,
such as X-ray imaging and US can be used for image guidance during interventions for the
navigation of tools such as catheters during a procedure, or to minimize risks to the patient,
e.g. to localize and avoid major vessel structures during liver resections. This allows physicians
to perform interventions less invasively.

The interpretation of acquired images requires experience with the modality and in depth
knowledge of the anatomy and physiology. For this reason, physicians work closely with
specially trained radiologists and technologists to analyze medical imaging studies and to
formulate the most accurate diagnosis and treatment plan for their patients. Medical imaging
techniques can involve radiation exposure, primarily from X-Rays, CT scans, and nuclear
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medicine scans. While the amount of radiation exposure is generally small, the risk of harm
from radiation increases with repeated exposures. Furthermore, some medical imaging
modalities, such as US imaging, rely on the operator’s skill and experience, and poor image
quality can hamper an accurate diagnosis. Therefore, it is important for healthcare providers
to weigh the risks and benefits of the modalities, before their application.

Medical imaging is an important part of modern medicine, and will continue to be an essential
tool. This thesis focuses on ultrasound imaging and advances specifically with respect to
image quality.

1.2 Essentials of Ultrasound Imaging

In this section, we provide an overview of the essentials in US image formation as an introduc-
tion to the following chapters.

1.2.1 Hardware setup

An US imaging system begins with an US probe, that emits ultrasonic pulses and receives the
echoes from tissue boundaries and inhomogeneities therein. The probe is often also referred
to as transducer, as it generates a mechanical wave when excited by an electric pulse and
vice versa. The transducer is connected to a pulse generator, which is responsible for creating
the electric pulses. The transducer also is connected to an US frontend, that amplifies and
conditions the received electric waveforms caused by the reflected ultrasonic waves. The
signals are then sampled by analog-to-digital converters (ADCs) at an appropriate sampling
frequency, followed by digital processing to form the images, which are then shown to the
operator on a screen. The operator generally can influence major properties of the imaging
process, such as imaging depth, pulse frequency, and visible field of view, through controls on
the imaging system.

These components are most often integrated in a mobile imaging console to which one or
multiple different probes can be connected, but there are also even more mobile realizations
that are integrated more tightly. This can range from US systems in laptop like form factors,
to all electronics and processing being integrated in the probe handle that then transfers the
US images to a mobile phone for display and operator interaction.

1.2.2 Transducers

Transducers are the most crucial component of the imaging system, as their construction
defines the applicable imaging protocols and limitations. They are constructed from one or
more US elements. US elements perform the conversion from electrical signals to a pressure
wave and back. They can be bulk piezoelectric crystals [35], piezoelectric micromachined
ultrasonic transducers (PMUT) [24] or even be constructed from silicon as is the case for
capacitive micromachined ultrasonic transducers (CMUT) [82].

Chapter 1 Medical Imaging



Based on the number and arrangement of the elements there are a few general classes of
transducers, which can be selected by the operator depending on the imaging task at hand.

* Single element transducers: They are mechanically focused to be sensitive only in a
narrow beam. They are often combined with a mechanical motion system to cover an
area.

* Linear arrays: A number of elements (usually 64-256) in a straight line, often used for
smaller field of views, imaging perpendicular to the line.

* Phased arrays: Similar to linear arrays, but since elements are spaced more closely
imaging happens in a fan shape starting at the transducer. They are mainly applied when
there is only a small space available for placing the transducer, e.g. in cardiac imaging.

* Curvilinear arrays also known as convex arrays: An array of elements placed on a curve
with usual radii around 2 to 7 cm. Imaging happens in a fan shape around the transducer.
They are often used for very deep acquisitions.

* Matrix arrays: Different from the one-dimensional arrays above, which image within a
single plane, matrix arrays allow for volumetric imaging, by combining a large number
of elements in a two-dimensional arrangement.

When an array of transducer elements is used, it is common to use multiple elements at
the same time during pulse emission or echo reception, in order to improve the imaging
performance.

1.2.3 Imaging

The general operation of a medical US system is independent of the transducer type. First,
an ultrasonic pulse with a frequency in the MHz-range is generated by applying an electric
waveform to the element(s). This pulse travels through the tissue, away from the transducer.
The wave is then partially reflected at interfaces between tissues (such as the boundary
between sub-cutaneous fat-tissue and a skeletal muscle) and at inhomogeneities within tissues.
This can be for example the different fibers in muscle tissue, or blood cells in the otherwise
homogeneous plasma.

The reflections can then be detected by the transducer, which converts them to a voltage
waveform that is recorded. Knowing the average speed of sound in tissue, the depth at which
a reflection occurred can then be deduced by the time difference between the pulse and the
reception of the echo. This recorded signal represents a measure of the tissue reflectivity
modulated with the US pulse frequency. The reflectivity signal can be recovered by computing
the instantaneous amplitude (also called envelope) of the modulated signal. An example for
both these signals is shown in Figure 1.1.

For single element transducers, as the spatial sensitivity of the element is designed to be very
narrow, this signal is considered to originate from one line, a scan-line. After acquisition of

1.2 Essentials of Ultrasound Imaging



Fig. 1.1.

Fig. 1.2.
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Example echo signal from a single scatterer and the corresponding envelope as reflectivity measure.

one scan-line, the transducer can then be repositioned to repeat the process of emitting a pulse
and recording the echos to acquire a next line. When arranging the signals received from a
number of scan-lines next to each other, the result is an image of the tissue reflectivity.

With array transducers, multiple elements are generally used at the same time to generate a
shaped pressure wave and to receive the echos, a process often referred to as beamforming.
In the transmission of the pulse, the temporal relationship between the elements’ excitations
influences the resulting transmit wave, as the waves generated by the individual elements
interfere with each other as they travel through the tissue. If the waveforms are delayed
such that the spherical waves emitted by each element all constructively interfere in one
location, analog to the focusing of a convex lens, the imaging scheme is said to employ focused
beams. This narrows the overall spatial sensitivity of the system (during that pulse-echo
event) at that depth drastically, increasing the resolution. The signals received by multiple
elements are then combined in a process called receive beamforming, in order to further
narrow the array sensitivity. Receive beamforming applies delays to the signals, that are
similar to the transmit delays and then combines them, effectively emulating interference.
A more detailed explanation of receive beamforming is given in chapter 2. Similar to single
element transducers, this results in one scan-line. Multiple scan-lines are acquired by selecting
a different set of elements to transmit a pulse or by steering the focal point in a different
direction. Fig. 1.2 shows the wavefronts for three differently steered focused beams.

5 ps ey
5 ps == 5ps &
10 ps e 10 ps &
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15ps o 15 ps o
';;‘)_ 15ps o
B 20 ps & 20 ps 2
20 ps &=
\25;15 QSUS/
25 ps >

lateral lateral lateral

Focused beam wavefront propagation over time of three differently steered beams using the same
linear array. Contours show the 6 dB level of the instantaneous pressure amplitude at each time point.
The transducer location is indicated in orange at the top of the figures.

Besides focused imaging, there are additional schemes that utilize a multitude of elements in
an array transducer:

Chapter 1 Medical Imaging
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Fig. 1.3. Planewave propagation over time of three differently steered planewaves using the same linear array.
Contours show the 6 dB level of the instantaneous pressure amplitude at each time point. The transducer
location is indicated in orange at the top of the figures.

* Synthetic aperture imaging schemes cover the area of interest by performing a sequence
of pulse-echo events, that each emit a pulse from one of the transducer elements followed
by the reception of the echos on all transducer elements. By then combining the recorded
waveforms from all pulse-echo events with appropriate delays, it is possible to virtually
focus the transmit wave on each point separately, improving the focusing compared to
focused beams.

* Planewave imaging intentionally broadens the transmit beam by emitting (tilted) planar
waves using all elements. This allows for the imaging of a larger region of the tissue
than just a line, reducing the number of required pulse-echo events to cover a certain
area drastically. Fig. 1.3 shows three planewaves with different steering angles. While
a single planewave could cover the area of interest, planewave imaging does reduce
the image quality compared to focused imaging. This is counteracted by using a few
planewave events with different tilts, and combining the resulting images, leading to a
net decrease in the required pulse-echo events, increasing the frame rate.

* Diverging wave imaging is similar to planewave imaging in that it broadens the trans-
mitted beam, but instead of creating planar waves, it creates spherical waves where the
source of the wave is placed behind the array. Since this is only emulated by delaying
the single element transmissions appropriately, this source behind the array is called
a virtual source. Its distance from the array and tilt relative to it defines the opening
angle of the beam and its direction. Fig. 1.4 shows the beam patterns of three diverging
waves. As with planewave imaging, diverging wave imaging allows the reduction of the
number of pulse-echo events, leading to a higher imaging frame rate.

These schemes as well as focused imaging can be applied to one-dimensional arrays as well as
matrix arrays to form planar and volumetric images respectively.

1.2.4 Challenges and Limitations

For all its advantages, medical US imaging is not without challenges. US is subject to a number
of effects inherent to the modality.

1.2 Essentials of Ultrasound Imaging



Fig. 1.4.

8

5US\ 5 s cemme———— 5&15/
10“5\ 10 ps e 1Op5/
f‘% \ 15 ps 15 ps 15 ps /
\ 20 ps 20 ps mm——— 20 ps /
\ZSus 25 ps e 25u5/

lateral lateral lateral

Diverging wave propagation over time of three differently steered beams using the same linear array.
Contours show the 6 dB level of the instantaneous pressure amplitude at each time point. The transducer
location is indicated in orange at the top of the figures.

First, as the pulse is emitted from the same location that records the echos, the tissue
appearance depends on the direction of imaging. This can require the operator to manipulate
the probe until the optimal direction is found, which can be time consuming in certain clinical
tasks.

Second, acoustic shadows caused by high tissue density differences can obscure parts of the
image. This heavily influences structures located near and especially behind bone, calcified
tissue or air filled cavities and can make them difficult to image.

The third effect inherent to US imaging is speckle, caused by the constructive and destructive
interference of multiple reflected waves. This creates a granular texture in the image, even for
tissues that appear homogeneous on the macro-scale.

Finally, since virtually all imaging schemes require the recording of multiple pulse-echo events
to form a single image, the resulting images can be degraded by tissue motion during the
execution of the sequence of pulse-echo events. This is of particular importance for fast moving
organs such as the heart, often limiting the acquisition schemes that can be employed.

This thesis investigates a number of approaches to alleviate some of these limitations, in
order to advance the technology and its use. The remainder of the manuscript is organized as
follows: First, we perform a comprehensive review of techniques for US image reconstruction
in chapter 2, specifically focused on receive beamforming. This is followed by the presentation
of an open framework for software-based US imaging that aims at facilitating research in US
imaging algorithms in chapter 3. In chapter 4, we present an approach for synthetic data-
generation and training considerations of a deep-learning based speckle filter that improves
the appearance of tissue structures after acquisition. Finally, we investigate in chapter 5 an
automatic acquisition planning approach for robotic US imaging using a target visibility model
based on ultrasound-physics.

Chapter 1 Medical Imaging



Review of Receive Beamforming
Techniques

2.1 Introduction and Scope

With the advent of software-based US imaging pipelines and the increase in readily available
compute performance, research in medical ultrasound imaging has made significant progress in
the last years. The developments reached all parts of the imaging pipelines, from beamforming
to image filtering, with the most notable change being ultrafast imaging based on plane-
wave (PW) or synthetic aperture (SA) imaging.

In most applications, medical US is performed using transducer arrays to allow for electronic
scanning—that is the imaging of a larger area than possible with only a single element—and
to improve the image quality and field of view by using multiple transducer elements—the
so-called aperture—to send and receive ultrasonic pulses, generally addressed with the terms
beamforming and beam steering. Beamforming is applied twice in one pulse-echo event; First,
during transmit, it is used to shape the created pulse by using interference within the medium
to be imaged and exciting the individual transducer elements with different waveforms and
delays w.r.t. each other. Second, after reception of the resulting echos through multiple
transducer elements, by adequately delaying and combining the received signals, influencing
the spatial sensitivity of the reception, among other things. Consequently, the first is usually
referred to as transmit beamforming, while the latter is called receive beamforming. Transmit
beamforming creates outgoing waveforms via the physical interference of each transducer
element’s spherical wave. Receive beamforming uses computational interference across the
aperture to amplify in-phase signals and dampen out-of-phase interference and noise. This
principle of (computational) interference gives rise to the well-known delay and sum (DAS)
beamformer, emulating the physical superposition. It is however possible to combine the
delayed signals across the aperture in different ways in order to change the outcome of the
beamforming process.

An overview of the development of transmit and receive beamforming systems from analog to
digital implementations is given by Thomenius et al. [110]. Lu et al. [68] review different
methods of beam focusing and the influence different parameters have on the beam shape.
Demi [25] gives an introduction to the different commonly used image acquisition schemes
ranging from multi line acquisition and transmission to PW and SA imaging and their trade-offs.
Wang et al. [118] summarize several manuscripts dealing with aperture data (i.e. data at the
same state as this review), specifically around phase aberration correction, sidelobe reduction,
and vector velocity estimation. Hasegawa provides an overview of recent developments in
beamforming on a broader scope [36], not limited to aperture data processing only.
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The focus of this review is on methods that are applied to the delayed signals after reception,
also called aperture data processing. This excludes the fixed transmit beamforming of e.g.
focused imaging (calculation of delays and waveforms to apply to transducer elements), as
well as the calculation and application of delays after reception (dynamic focusing in transmit
or receive). In short, for the purposes of this review, the received data has already been shifted
appropriately. We want to provide an overview of methods to combining the data, that are
more than just the sum.

In section 2.2 we discuss the beamforming algorithms, grouped by their general theory
of operation, followed by a comparison and discussion of their respective advantages and
potential shortcomings in section 2.3. Finally, in section 2.4 we give a brief conclusion and
outline a possible path for future development opportunities.

Work Group | Main contribution

Hollman, [42] CF Introduces coherence factor (CF)

Li, [65] CF Generalizing CF to reduce sensitivity to phase abberations
Wang, [117] CF Adaptive weighting of CF to reduce sensitivity to noise
Camacho, [13] CF Uses coherence of phase instead of signal amplitude (PCF)
Hasegawa, [38] CF Non-overlapping subapertures improve speckle appearance in PCF
Xu, [125] CF Spatio-temporal smoothing of CF improves speckle visualization
Lediju, [62] SLSC Introduces short-lag spatial coherence imaging

Bottenus, [11] SLSC Synthetic aperture increases depth-of-field vs. focused beams

Li, [66] SLSC Applies concept of SLSC to planewave TX beamforming

Zhao, [131] SLSC Combines SLSC in RX with MV beamforming to improve resolution
Hyun, [45] SLSC Demonstrates advantages of SLSC for 3D imaging

Hyun, [44] SLSC Modifications that reduce computational complexity drastically
Matrone, [75] DMAS Introduces delay multiply and sum to ultrasound imaging
Matrone, [74] DMAS DMAS with THI increases resolution

Matrone, [73] DMAS DMAS suppresses multi line acquisition artifacts

Matrone, [76] DMAS Synthetic aperture increases homogeneity vs. focused beams
Shen, [102] DMAS DMAS after IQ-demodulation reduces computational complexity
Synnevag, [107] MV Applies and adapts minimum variance to medical ultrasound
Vignon, [112] MV Multiple focused beams for cov. matrix estimation

Synnevag, [106] MV Temporal averaging of cov. matrix improves speckle appearance
Salari, [96] MV Compute diagonal loading, subarray and temp. averaging lengths
Deylami, [28] MV Solve MV optimization iteratively to reduce comp. requirements
Nilsen, [81] MV Solve MV in low-dim. beam-space for reduced computations
Deylami, [27] MV Use DCT matrix to span beam-space for increased performance
Kim, [54] MV Construct subspace through PCA of conventional MV weights
Asl, [4] MV Project MV weights on cov. matrix eigenvectors for contrast
Synnevag, [105] Other Reduce MV solution space to discrete set for performance
Chernyakova, [16] Other Fast statistical beamforming solution iMAP improves contrast
Lucies, [70] DNN Use neural networks to suppress clutter in aperture data

Hyun, [43] DNN DNN trained on DAS and subaperture data to reduce speckle
Luijten, [71] DNN FCNN to approximate MV weights and reduce comp. requirements
Wiacek, [123] DNN FCNN to estimate SLSC provides speedup

Selection of discussed works with their main contributions.

2.2 Beamforming Techniques

Included in the review are a number of beamforming methods that can be grouped based on
their underlying working principles. Besides DAS that emulates physical interference through
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the (weighted) sum, we identified families of algorithms based on signal coherence within the
aperture data (such as short-lag spatial coherence (SLSC)) and the related delay multiply and
sum (DMAS) that employs cross-correlations of the signals to improve image contrast. The
minimum variance (MV) methods perform an optimization of the weight vector in order to
reject signals not originating from the desired location. Finally, we also discuss a number of
works that stand on their own, either because they are application-specific or have not been
explored deeply in the body of work as of now. Table 2.1 provides an at-a-glance overview of
select discussed works and their main contributions.

Notation used throughout this chapter: Matrices A and vectors x are denoted by boldface
letters, uppercase and lowercase, respectively. Scalar quantities are kept in regular font weight.
The expressions A;; and x; with indices ¢, j denote the element (4, j) of matrix A and the i-th
element of vector x.

More specifically, we use s(t) to describe the aperture signal vector for one reconstruction
sample in the output image. It is the data per element, after the application of focusing delays,
where s;(t) is the signal of the i-th transducer element and the number of receive channels is
N (i.e. s(t) has dimension (V, 1)). The result of a beamformer is usually denoted with y(t).
We may omit the time parameter ¢ where it is not required.

Unless noted otherwise, all shown images are scaled symmetrically around zero to show the
range [—iext, fext), Where iexy = max,eq |I(2)| is the extreme value of the image I and the
lowest and highest values in the range correspond to black and white respectively.

2.2.1 Delay and Sum

As mentioned before, DAS is the simplest beamformer. It gained its popularity due to the
possibility of simple implementation, first, through analog circuitry which was later replaced
by digital implementation [110]. It can be expressed as

ypas(t) = si(t), 2.1)

i=1

although it is common to weight the contributions of the different elements through so-called
apodization

N
Yoas(t) = Z w;(t)s;(1), (2.2)

=1
where w is a predefined weight or apodization vector. In essence, DAS emulates a single
large mechanically focused US element with the advantage of allowing for dynamic focusing.

Figure 2.1 shows the application of DAS to example data, starting from synthetic raw channel
data, through aperture data to the beamformed result.
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Fig. 2.1.

Fig. 2.2.
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(a) channel data (b) in focus (c) DAS focus (d) side (e) DAS side (f) DAS image

Depth

1 40 —1000 0 1000 1 40 —100 0 100 -3.2 —-1.1 1.1 3.2
Channels Aperture Aperture Width [mm]

Visual illustration of DAS. (a) Channel data from echo of a point reflector, as if received by a linear
ultrasound transducer. (b) Section of aperture data after application of dynamic receive focus delays for
central broadside beam, the reflector is in focus. (¢) Result of DAS for reflector in focus (one scanline
in depth direction). (d) Aperture data section with reflector 2.2 mm laterally of the focal point. (e)
Result of DAS for out of focus reflector. (f) Resulting DAS image. The shown aperture data is used in the
subsequent beamformer illustrations as input as well.

2.2.2 Coherence based Methods

Coherence based methods can be placed into two groups. The coherence factors on the one
hand use some measure of coherence across the aperture to weight the result of another
beamformer. SLSC methods on the other hand are presented as standalone beamformers,
their output is considered the image.

Coherence Factors The coherence based beamforming methods generally use the coherence
across the aperture as a measure of focusing quality. The coherence factor (CF) can be
introduced as

S sf
N siP

representing the ratio of coherent energy and incoherent energy [42]. The CF assumes a

CF(t) (2.3)

(a) CF+DAS focus (b) CF focus (c) CF+DAS side (d) CF side (e) CF image (f) CF weight

Depth

T T T T
—1000 0 1000 0.0 0.5 1.0 -5 0 5 0.0 0.5 1.0 -32 -11 11 3.2-32 —-11 1.1 3.2
Width [mm] Width [mm]

Visual illustration of CF. (a) Result of CF for reflector in focus. (b) Weighting factor for reflector in
focus. (c) Result of CF for out of focus reflector. (d) Weighting factor for out of focus reflector. (e)
Resulting CF-weighted image. (f) Weight image (range [0, 1]).

value of one for fully coherent signals (e.g. when all s; are equal) and its value is reduced in
the presence of phase errors or sidelobe signals. While it was suggested originally as means
to quantify focusing quality for use in aberration correction, several methods employ it as
adaptive weighting together with a different beamformer. Figure 2.2 shows the use of CF in
this fashion as well as the resulting weighting.
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The CF on its own can be sensitive to small phase aberrations and for diffuse scattering it
changes the appearance of speckle when used as weighting factor. To ease this constraint
the generalized coherence factor (GCF) was introduced [65], based on the Fourier transform
of the aperture data Sk (t), where k is the spatial frequency. Instead of only considering the
coherent energy, the GCF includes the energy of the low frequency regions —My < k < My

W g 1Sk ()

GCF(t) = == : 2.4)
L 1Sk P

Based on their results, the authors suggest to choose the cutoff frequency M, in the range

(a) GCF+DAS focus (b) GCF focus (c) GCF+DAS side (d) GCF side (e) GCF image (f) GCF weight
-~ -
. -
| "
- ‘ 4
Ed | 4
@ > g
e I p
i B
= -
= -
- —
—1000 0 1000 0.0 0.5 1.0 —100 0 100 0.0 0.5 1.0 =32 —-1.1 1.1 32-32 —-1.1 1.1 3.2
Width [mm] Width [mm]

Fig. 2.3. Visual illustration of GCF with M, = 1. (a) Result of GCF for reflector in focus. (b) Weighting factor

for reflector in focus. (c) Result of GCF for out of focus reflector. (d) Weighting factor for out of focus
reflector. (e) Resulting GCF-weighted image. (f) Weight image (range [0, 1]).

of 1-3 for diffuse scattering, for M, = 0 it is equivalent to the CF. Figure 2.3 illustrates the
method and the resulting weights. The GCF was evaluated for use in SA imaging [64] with
the effect of improved contrast. In breast imaging the GCF showed great promise in tackling
the artifacts present in this challenging anatomy [119].

A different approach to preserve the image appearance in speckle regions was proposed by
Wang et al. [117]. They provide a method to adaptively strengthen or weaken the application
of the CF based on the local signal to noise ratio (SNR), where the signal power is estimated
from the low frequency regions — My < k < M, of the aperture spectrum (similar to GCF)
and the noise power from the remaining aperture spectrum.

Camacho et al. propose the phase coherence factor (PCF) that aims to make coherence
estimation more robust by using phase information instead of the signal amplitude [13]

PCF(t) = max (0, 1- Joa(gpi(t))> : (2.5)
where ~ is a sensitivity parameter, oy = 7/v/3 is the standard deviation of a uniform distri-
bution in [, 7], and o(y;(t)) is the standard deviation of the phases of s;(t) after eventual
corrections for phase wraparounds. In their evaluation, the authors choose v = 1. This
value is also used in the example plots in Figure 2.4. With the sign coherence factor (SCF),
they also propose a simplification with still good performance yet allowing for simplified
implementation

p

SCEP(¢) = |1 — 1—[;{23971(&(1&))] , (2.6)
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Fig. 2.4.

Fig. 2.5.
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(a) PCF+DAS focus (b) PCF focus (c) PCF+DAS side (d) PCF side (e) PCF image (f) PCF weight

Depth

—1000 0 1000 0.0 0.5 1.0 —50 0 50 0.0 0.5 1.0 -32 —-11 11 3.2-32 —-11 11 3.2
Width [mm] Width [mm]

Visual illustration of PCF with v = 1. (a) Result of PCF for reflector in focus. (b) Weighting factor

for reflector in focus. (c) Result of PCF for out of focus reflector. (d) Weighting factor for out of focus
reflector. (e) Resulting PCF-weighted image. (f) Weight image (range [0, 1]).

where p is a sensitivity parameter. Figure 2.5 illustrates SCF on example data. Unfortunately,

(a) SCF+DAS focus (b) SCF focus (c) SCF+DAS side (d) SCF side (e) SCF image (f) SCF weight

Depth

—1000 0 1000 0.0 0.5 1.0 -1 0 1 0.0 0.5 1.0 -32 -1.1 1.1 3.2-32 -1.1 1.1 3.2
x10~4 Width [mm] Width [mm]

Visual illustration of SCF with p = 1. (a) Result of SCF for reflector in focus. (b) Weighting factor
for reflector in focus. (c) Result of SCF for out of focus reflector. (d) Weighting factor for out of focus
reflector. (e) Resulting SCF-weighted image. (f) Weight image (range [0, 1)).

the authors did not directly compare the PCF or SCF with CF.

Hasegawa et al. investigated the influence of (overlapping and not overlapping) subaperture
beamforming on the undesired suppression of echoes from diffuse scattering regions in PCF
[38]. They found that by using not overlapping apertures, the speckle suppression can be
avoided without degradation of the spatial resolution. Besides the linear nature of the PCF
w.r.t. the phase standard deviation in (2.5), two other functions were suggested [37].

To address the dark regions in the proximity of strong scatterers (e.g. strongly hyperechoic
inclusion) observed with CF, the use of spatio-temporal smoothing of the CF terms was
suggested [125]. The authors propose the averaging of the numerator and denominator of
(2.3) over several time points ¢ and the use of prebeamforming of the signals with overlapping
subapertures. They report a decrease in the dark region artifacts and a reduction in speckle
variance. The influence of these modifications on the spatial resolution were not evaluated.

Short-lag Spatial Coherence Imaging Contrary to the coherence based weighting factors,
the SLSC is proposed as an imaging method by itself [62]. It uses the normalized spatial
correlation R(m, t) between elements of distance m

- 1 Nz_in Sy, si(t)sipm(t)

R(m,t) = ; (2.7)
=T, SO T, ()

T N-m
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Fig. 2.6.

where the correlation kernel length ¢, — ¢; is suggested to be around one wavelength. The
spatial correlation is then accumulated over the first M lags, giving rise to the SLSC

M
Ry(t) =Y R(m,t). (2.8)

m=1

The SLSC and the spatial correlations are shown in Figure 2.6 for the example data. While
point targets are challenging for it, the authors show great improvements in contrast to noise
ratio (CNR) and SNR compared to DAS in focused imaging. This advantage was found to

(a) SLSC focus (b) spatial corr. R(m) (c) SLSC side (d) spatial corr. R(m) (e) SLSC image

Depth

0 1 2 111 21 31 0 1 111 21 31 -32 -11 11 3.2
x10% m x10% m Width [mm]

Visual illustration of SLSC with M = 8. (a) Result of SLSC for reflector in focus. (b) Spatial
correlation (eq. (2.7)) for all lags, reflector in focus. (c¢) Result of SLSC for out of focus reflector. (d)
Spatial correlation for all lags, out of focus reflector. (e) Resulting SLSC image (asymmetric range
[0, mazzecal(z)]).

persist even in the presence of high amplitude channel noise [20].

When combined with tissue harmonic imaging (THI) (i.e. computing (2.8) on the filtered
signals containing the harmonics) in in-vivo settings, it was found to outperform fundamental
SLSC as well as THI B-mode imaging w.r.t. clutter removal, especially on patients where
B-mode imaging was difficult [21, 47].

As SLSC depends on the focus quality, it can show significant brightness variations across
the image depth in focused imaging. In SA this effect is not as predominant [11], where a
great improvement in the depth-of-field of the SLSC imaging is shown compared to scanline
imaging. Li et al. [66] suggested an approach orthogonal to that. After discussing the theory of
angular coherence, they propose an application with the short-lag angular coherence (SLAC)
beamformer that uses the coherence across different individually DAS beamformed PW
images—in essence using SLSC for TX beamforming. While this is only a brief excursion in
their theoretically focused manuscript, the results seem very comparable to using SLSC in
receive (RX). Combining SLSC as RX beamformer with MV as TX beamformer improves the
lateral resolution compared to the DAS TX beamformer with RX SLSC, bringing it roughly
on par with that of DAS for TX and RX, while generally retaining the advantages of SLSC
[131]. Using the full SA dataset in a dual aperture approach, that is MV in TX with SLSC in
RX and MV in RX with SLSC in TX followed by averaging the two resulting Ry rx and Ry x
was shown to further improve contrast and CNR [87].

When applying SLSC to volumetric imaging with matrix arrays, its benefits are even more
pronounced than for one-dimensional arrays [45]. The authors observed a slight decrease
in CNR when prebeamforming (not overlapping) is applied—as is common in matrix array
implementations—but it resulted in a slight increase in SNR and most importantly in a
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significant reduction in the required computations. The benefits of SLSC in 3D imaging were
confirmed in phantom and hepatic in-vivo imaging [46], where a more clear depiction of
vessel structures was observed compared to DAS. Addressing the computational complexity
of the SLSC, Hyun et al. [44] evaluated modifications to the method—namely: a shorter
temporal kernel, a downsampled receive aperture and a modified correlation estimator—that
reduced the improved computational speed by a factor of 20 in their in-vivo evaluation while
the image quality was not impacted significantly.

2.2.3 Delay Multiply and Sum

Similar to the use of the normalized correlation in the SLSC, DMAS uses the auto-correlation
across the aperture to create an image. It was first introduced to US for application on
radio-frequency (RF) signals [75]

8i(t) = sgn(si(t)s; (1)) - \/1si(t)s;(2)]

N-1 N
vhwas(t) = D D (1) (2.9)

i=1 j=i+1

ES
YEDMAS = YDMas * vBp

using §;; as "signed" square root of the product of s; and s;, and the bandpass filter hgp to
obtain the beamformed signal yrpmas. The signal y;,s is considered an intermediate, as it
contains both a DC component as well as the desired component at 2f,. This is caused by
the (multiplicative) mixing of two signals with a center frequency of fy. For that reason, it is
suggested to filter it with a bandpass centered at 2 f, with a bandwidth of at least the probe
bandwidth, giving rise to the filtered delay multiply and sum (F-DMAS). Figure 2.7 shows
this and the resulting F-DMAS image based on the example data, highlighting the increase in
spatial frequency. It is worth noting, that before applying (2.9), one needs to ensure that s;(t)

(a) DMAS focus (b) F-DMAS focus (c) DMAS side (d) F-DMAS side (e) F-DMAS image

Depth

T T T T T T T T T T T T
—5 0 5 —2.5 0.0 2.5 -1 0 1 —2500 0 2500 —3.2 —1.1 1.1 3.2
X105 X105 x10% Width [mm]

Visual illustration of DMAS. (a) Result of unfiltered DMAS for reflector in focus. (b) Result of E-DMAS
for reflector in focus. (¢) Result of unfiltered DMAS for out of focus reflector. (d) Result of F-DMAS for
out of focus reflector. (e) Resulting FF-DMAS image.

is sampled with a sampling frequency sufficient for the increased signal frequencies resulting
from the mixing. Compared to DAS, the authors show an increase in contrast ratio (CR)
and lateral resolution in focused imaging, the CNR however was decreased by the increased
speckle variance. Applying this concept to THI logically shifts the band of interest to the
fourth harmonic. Matrone et al. [74] show that in THI the advantages of DMAS carry over
from fundamental imaging, resulting in an similar improvement of CR and lateral resolution
compared to DAS-based THI. It was also found beneficial in multi line acquisition schemes,
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where DMAS beamforming of data containing four transmit beams was found to compare
favorably to single line transmission data processed with DAS [73], with the benefit of reduced
acquisition time.

Like SLSC, DMAS is influenced by the focus quality, which in focused imaging leads to a
change in the speckle pattern in regions besides the focal point. In SA this effect is alleviated,
leading to more homogeneous brightness and speckle pattern in the whole image, while
retaining the advantages of DMAS [76]. The general influence of signal coherence and the
resulting DMAS image properties have also been confirmed theoretically [86].

Su et al. [103] extend the concept of DMAS to include (overlapping) subaperture averaging,
which reduces speckle variance and thus increases the CNR while also reducing the computa-
tional requirements. Another modification to reduce the processing time is to to apply DMAS
in the baseband, i.e. on in-phase and quadrature (IQ) data, instead of RF-data [102]. Since
no shift in frequency is induced in the baseband, the sample rate requirements are relaxed
and no bandpass is necessary.

2.2.4 Minimum Variance

The MV or Capon beamformer [15] (named after J. Capon) was introduced for narrowband
applications like radar. It formulates the beamforming process as an optimization problem,
where the overall output signal power is minimized while ensuring the signal from the desired
direction is kept unchanged (distortionless), thus aiming to reject all other signals. This
is achieved by computing a weight vector w(t) for each output sample depending on the
aperture data s(t)

s(t) = [s1(t), s2(t), -+ s ()]

N (2.10)
ywy (1) = Z wi(t)si(t) = w(t)s(?).

The optimization problem is then formulated in terms of the spatial covariance matrix R(t) =
E[s(t)s(t)"] of the received aperture data s(t) as

arg min w(t)IR(t)w(t),
w(t) (2.11)
s.t.w(t)fa=1,

where a is the steering vector. In narrowband applications this vector would contain the per
element phase shifts that lead to the desired focal point. When working on already delayed
aperture data, the array steering direction of interest is the broadside, thus a is a vector of N
ones. The solution to this constrained optimization problem is given by

R(t)"la

When trying to apply this method directly to US imaging, one faces two challenges. First,
the spatial covariance matrix R(¢) is unknown and needs to be estimated from the available
data. A good estimate is required for robust performance of the beamformer. The second
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challenge is computational complexity, which stems from the non-stationary nature of the
covariance matrix, that makes it necessary to estimate R(¢) and compute (2.12) for almost
every temporal sample. A lot of the works applying MV consequently focus on these two
aspects.

Du et al. [29] give an overview of user parameter free adaptive beamforming algorithms
from the general point of view, i.e. not limited to US. After presenting the algorithms, they
also analyze the influence of imperfections and noise that are common when applying the
algorithms in practice. Here, we focus on applications of these and further methods to medical
US and developments made specifically for it.

In their very influential work, Synnevag et al. apply the minimum variance beamformer to
medical US imaging [107]. To achieve robust operation, they employ subarray averaging and
diagonal loading of the covariance matrix and explore the effects thereof, in settings with and
without speed of sound errors.

The concept of subarray averaging can be interpreted as dividing the aperture data of N
elements into N — L + 1 overlapping arrays of length L

Si(t) = [s1(t), 5141 (1), -, sipp—1 (0] (2.13)

which then can be viewed as multiple observations of aperture data of that reduced length.
The sample covariance matrix R(t) is then computed from these observations

N—-L+1

PR TOCTORS (2.19)

=1

N 1
R(t) = ——

®) N-L+1
with the matrix R(t) being of size L x L. To ensure R(t) is invertible, they suggest to choose
L < Nj2.

In addition to the subarray averaging, they apply so called diagonal loading to the covariance
matrix, proportional to the power of the received signals in order to increase the robustness of
the beamformer

A~

R(t) = R(t) + €I 2.15)
e=Atr(R(t)) '

where I is the L x L identity matrix and A the constant loading factor, chosen lower than
1/L.

Using the covariance matrix estimate R.(¢) in (2.12) results in a weighting for the subaperture
data—w(t) is of length L. The beamformed result is then computed as the average of the
beamformed subapertures

N—-L+1
1 +

Ysynnevag mv(t) = m Z W(t)Hgl(t)' (2.16)
=1
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Fig. 2.8.

They show that MV applied in such a manner increases spatial resolution and reduces sidelobe
clutter compared to DAS. Moreover they found that large L can lead to an underestimation of
the peak amplitudes. This can be addressed by choosing a smaller subaperture length, which
also has the effect of increasing the robustness, e.g. against speed of sound errors, but it limits
the lateral resolution gains. Increasing the diagonal loading had similar effects. In addition
to the effects on the resulting image, the application of subarray averaging also reduces the
size of the matrix in the optimization problem, reducing the computational requirements
drastically.

In order to further improve the robustness and speckle appearance, Synnevag et al. suggest to
employ temporal averaging of the covariance matrix estimate f{(t) over a temporal window
of approximately one wavelength [106], in addition to the spatial averaging and diagonal
loading

(a) MV focus (b) w(t) focus (c) MV side (d) w(t) side (e) MV image

Depth

—1000 0 1000 1 20 —25 0 25 1 20 —-3.2 —1.1 1.1 3.2
Subaperture Subaperture Width [mm]

Visual illustration of MV with temporal averaging [106], N = 40, L = 20, A = 1/(100L). (a) Result of

MV for reflector in focus. (b) Computed weights w(t) for reflector in focus (w(t) = [}, ..., +] uniform

across the aperture). (c) Result of MV for out of focus reflector. (d) Computed weights w(t) for out of
focus reflector. (e) Resulting MV image.

K
Riemp(t) = %ﬂ > R(t-k), (2.17)
k=—K
where K is the half-length of the temporal window (i.e. half the wavelength) and f{temp(t) the
temporally averaged matrix. After application of diagonal loading—in their experiments with
A = 1/(100L)—the estimate is then used in (2.12). This is illustrated in Figure 2.8 for the
example data.

Vignon et al. [112] propose to apply MV to aperture data from focused acquisitions as well.
However, instead of subarray averaging, they suggest using data from multiple focused
transmits in a virtual source imaging setting to estimate the signal covariance matrix. In their
evaluation, they employ N/4 transmits for that purpose and report increased spatial resolution
and contrast compared to DAS.

In [78], Mehdizadeh et al. present an adaptive technique to detect portions of the aperture
that are affected by shadowing (e.g. from proximity of a bone) and to remove those from
the MV calculations, which in their experiments improves its performance in such situations
especially by reducing signal cancellation. Element shading is detected from the temporally
averaged per element energy

K

pi(t)—meKle(t ), (2.18)
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from which a new contiguous aperture to be used in MV is selected with a threshold of
p; > Pim = —10dB relative to the highest power in the aperture.

Liu et al. [67] propose a method for adaptive determination of the diagonal loading factor
through shrinkage, that allows to reduce the intrinsic trade-off when choosing a constant
loading factor for all samples. The presented simulation studies demonstrate an increase
in robustness without loss of contrast or resolution compared to MV with low constant
diagonal loading. Using this concept, Salari et al. [96] investigate several improvements to
MV, namely data-dependent loading instead of fixed diagonal loading, which—combined with
the shrinkage for estimation of the loading strength—improves resolution. Additionally, they
propose to determine the subarray length and temporal averaging kernel length dynamically
based on the CF

N
L(t) = (2 — 1) CF(t)+1, 2.19)

K(t) = 2B,(1 - CFS(1)),

where E, is the length of the excitation pulse in samples. They found this approach to improve
contrast. Together, these modifications lead to a MV beamformer without user parameters.

Most methods specify the solution of the MV problem as the closed-form solution (2.12),
suggesting they compute the inverse of R(t) or employ a direct solver for R(t)v = a, where
v can then be used in (2.12). Deylami et al. [28] consider the practical implications of this,
namely computational requirements, and suggest to instead solve the MV problem iteratively.
By using the resulting weight vector of already computed samples (in range direction) and a
stopping criterion based on the beamformer output energy, the iterative solution is close to the
closed-form solution, while reducing the computational complexity. They report a reduction
of required operations by a factor of 7.1 for a sample case.

Another approach that avoids the computational cost incurred by inversion of the covariance
matrix is presented by Asl et al. [3]. By using a technique called dominant mode rejection,
they suggest a approximation of the covariance matrix R using only a small number D,,, of
the eigenvectors associated with the largest eigenvalues while preserving the observed power,
i.e. the covariance matrix trace

Do L
5 H H
R = g Aivivi + o E ViV
i=1 i=Dp+1

D >\L — H
=1

1 D,
=i p- (tr(R) - ;AZ) ,

where v, and A; are the i-th eigenvector and eigenvalue respectively. In this model, the weight
vector can be computed efficiently without numerical matrix inversion and the resulting
beamformer becomes computationally very favorable. Its complexity is similar to that of
the subspace methods, while the imaging performance is very close to when using the full
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covariance matrix. The considered numbers of accurately retained eigenvectors D,,, ranged
from 1 up to 5 in their evaluation.

Subspace Minimum Variance Subspace minimum variance methods are a family of ap-
proaches that perform the beamforming in a subspace of the N-dimensional space of the
aperture data. The space of the aperture is also called the element-space in some works. By
approaching the beamforming problem in a subspace with as little as three dimensions, the
computational complexity (especially of the matrix inversion) is drastically reduced compared
to the N-dimensional problem in the element-space.

In subspace methods, the MV problem is usually first reformulated in terms of a N-dimensional
unitary transform B with

Bc (CN><N
BB =BB =1
sp(t) = Bs(t) (2.21)
wp(t) = Bw(t)
ap(t) = Baf(t).

Using these definitions, the optimization problem can be expressed as

wlRw = w E[ss |w
= w/ E[BYBss" B/ B]lw
= wiB” E[Bss” BY|Bw (2.22)
= wj Elspsilwg

=wlRpwp,

where R g is the covariance matrix in the space B. When using the full matrix, the original
problem and the reformulated one are equivalent. However, depending on the construction of
B, it can be feasible to only consider a certain number of columns of it to span a subspace.
Since that reduces the dimensionality of R, subspace methods can substantially lower the
computational complexity and potentially increase robustness. The subspace methods mainly
differ in how the subspace is constructed and in the dimensionality of said subspace.

Nilsen et al. [81] propose to perform the MV in the so-called beam-space. That means
that instead of computing how to combine the signals from the elements (conventional
element-space MV), the goal is to find an optimal weighting between the results of differently
steered (DAS) RX beams. This is achieved using the normalized N-point discrete Fourier
transform (DFT) matrix

BPFT = \/%e*j%lmﬂv. (2.23)

lLm

The resulting beams then have the main directions (for NV even)

arcsin(2n/N) n=0,1,---,N/2
0, = (2.24)
arcsin(2n/N — N) n=N/2+1,--- ,N —1.
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By using an orthogonal (w.r.t. the steering vectors) beam basis, it fulfills (2.22). In pulse-echo
imaging the majority of the energy is transmitted and received in the steering direction, which
corresponds to the broadside direction after application of receive delays. Thus, the most
influential beam directions are those around ,. Consequently, the concept in beam-space MV
is to consider only those beams with strong response in the directions the desired signal or
interference was received from. The method also employs subaperture and temporal averaging
and diagonal loading, with similar parametrization to element-space MV. They demonstrate
in focused imaging that it is possible to consider only a subset of as little as three of those
beams with only a slight loss in imaging performance, yet drastic reductions in computational
complexity. The beam-space MV was shown to be suitable for cardiac imaging using focused
beams [2] and its requirement for real-time execution with the implementation presented by
the authors.

Deylami et al. [27] suggest to use the discrete cosine transform (DCT) matrix BP¢T to construct
the beam-space, instead of the DFT matrix from the original formulation [81]

1 —
BYST={VE [=0,0=sm=N-1 (2.25)
\/—ﬁcosT2 1<I<KN-1,0<m<N-1.

In their results, this shows improvements in MV estimation accuracy and robustness against
focus errors compared to the DFT-based subspace when using the same number of columns.
The symmetry of the beam patterns of the DCT beam-space also allow for the usage of

(a) BSMV focus  (b) BS signal (c) w(t) focus (d) BSMV side (e) BS signal (f) w(t) side  (g) BSMV image
—
F ——
a —
——
Z1000 0 1000 12 3 12 3 5 0 2 1 2 3 1 2 3 -32-11 11 32

Subaperture Subaperture Subaperture Subaperture Width [mm]

Visual illustration of beam-space MV [27], N = 40, L = 20, A = 1/(100L) and subspace dimension 3.
(a) Result of beam-space MV for reflector in focus. (b) Beam-space signal of the central subaperture
for reflector in focus. (¢) Computed weights w(t) for reflector in focus. (d) Result of beam-space MV
for out of focus reflector. (e) Beam-space signal of the central subaperture for out of focus reflector. (f)
Computed weights w(t) for out of focus reflector. (g) Resulting beam-space MV image.

even numbers of columns—e.g. 2—without introducing asymmetric distortions, offering
more flexibility in choosing the subspace dimensionality. Figure 2.9 shows the DCT-based
beam-space MV on the example data.

In an approach related to the beam-space MV, Kim et al. [54] propose a dimensionality reduc-
tion of the covariance matrix by projection into a signal subspace. This space is determined
through principal component analysis (PCA) of exemplary MV weights, as opposed to the
the DFT matrix in beam-space. The result is an approximation of the standard MV with
drastically reduced computational requirements, while the resulting images are very close to
the element-space MV and outperform the beam-space method in their experiments when
using the same subspace dimensionality.
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Bae et al. present an alternative projection space based on Legendre polynomials [7]. They
show that in this basis, the imaging performance is comparable or even outperforms the
beam-space or PCA projection methods with the same number of subspace dimensions.

Park et al. [83] provide a modified derivation for the MV process, that promises to reduce
the complexity. While not strictly a subspace method—since no dimensionality reduction is
involved—they employ a transform into a different space, namely one in which the covariance
matrix is a scalar multiple of 7 by means of QR decomposition, removing the need to compute
a matrix inverse. In the simulated and experimental data they show, the results of conventional
MV and the QR based method are virtually identical.

Contrasting the subspace methods above, the eigenspace MV described by Asl et al. [4]
computes the MV weight conventionally first and then projects the weight vector into a
subspace spanned by the most influential eigenvectors of the covariance matrix before using
it to compute the beam sum. To obtain a suitable covariance matrix estimate, they employ
subarray and temporal averaging (similar to Synnevag). The projection matrix is constructed
from the eigenvectors associated with a certain energy, by retaining those with eigenvalue
above a threshold § relative to the largest eigenvalue. They show a significant sidelobe
reduction using ¢ = 0.5, that benefits image contrast while not compromising the resolution
of the MV in their experiments. It is worth noting, that the eigenspace MV does not reduce the
computational requirements compared to element-space MV. However, it seems plausible that
the projection after computation of the weight vector could be combined with the eigenspace
covariance matrix approximation presented in [3].

Multistage Beamforming Sakhaei et al. [95] utilize the robustness increase of the eigenspace
MV for an approach that promises to alleviate the loss of beamforming performance that
occurs when MV needs to be applied with spatial smoothing. This is achieved by applying a
second stage MV to combine the beamformed subapertures, replacing the otherwise employed
sum over them. In their evaluation on simulations using the eigenspace MV for both stages
resulted in the best performance for their method, outperforming the subaperture averaged
MV.

A different combination of two beamformers is suggested by Shamsian et al. [100]. It uses

DAS as the first stage on small (e.g. J = 8) subapertures followed by a decimation (e.g.

D = 4), effectively prefiltering the aperture data with a stride > 1 leading to a considerable
reduction in the aperture dimension. Using MV or beam-space MV as the second stage is then
considerably less computationally expensive. Their results suggest that this method is a good
approximation of the MV and beam-space MV results.

2.2.5 Hybrid Methods
Asl et al. [5] combine the MV with CF weighting (both computed on s;(¢))

yAsl(t) = CF(t) * YSynnevag MV(t) (2.26)

Doing this, they show an increase in contrast compared to DAS and MV in simulations.
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The opposite has been investigated by Wang et al. [120]. They propose a method to estimate
the coherence factor based on the principles of the MV and use it as weighting of DAS results

Ywang (t) = CFmvpr (%) - Ypas(t)
1 1 (2.27)

= 2 R-1(a trr ) P

They also extend this similar to the GCF by taking the energy from multiple closely spaced
steering vectors a(#) into account.

Su et al. [104] combine the DMAS beamformer with SCF weighting for each individual low
resolution image in a PW sequence and their results suggest this as an interesting avenue to
increase contrast and resolution compared to DMAS alone. The images they present however
exhibit depth-dependent brightness changes reminiscent of those observed when applying
SLSC to focused imaging.

2.2.6 Others

A low complexity adaptive beamformer was suggested by Synnevag et al. [105] that is
inspired by the working principle of the MV. By limiting the solution space of the MV to a
set of preselected weight vectors, this approach presents a very compelling trade-off between
the imaging performance of the MV, computational complexity and ease of implementation.
Instead of minimizing (2.11), the low complexity variant selects the weight from P preselected
windows, that minimizes the output variance

argminE[|Wfs(t)|2],p: 1,---, P, (2.28)

p
where the variance is estimated over a temporal window for each weight vector

K

LS whsi— k)|, (2.29)
K

2K+1k

A2
p =

followed by selecting the p with lowest variance 5 and using the weight w,, for beamform-
ing.

Zahnd et al. [129] introduce a DAS weighting scheme, that uses a bimodal Gaussian function
symmetric around the aperture center. This induces transversal oscillations in the resulting
beamformed data—in addition to the implicitly present longitudinal oscillations—that enable
phase based motion tracking in two dimensions. They evaluate this approach in-vivo with
intima-media tracking and observed an increase in tracking accuracy compared to intensity
based tracking on conventional images.

Zhuang et al. [132] propose a beamforming method that uses the accumulated phase change
across the aperture to highlight specular or bone interfaces while strongly suppressing soft-
tissue responses.
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In some way similar to CF and GCF, Wang et al. [121] propose an image weighting scheme
targeted at sidelobe suppression that is based on the consistency of the aperture data. This
is achieved by considering the ratio of mean to standard deviation either on the aperture
data itself or on the spectrum of the aperture data, resulting in a weighting whose effects are
similar to CF and GCF respectively.

Chernyakova et al. [16] present a statistical interpretation of the beamforming process. By
modeling the aperture data as s = 1y+n, with the signal of interest y and a noise vector n both
assumed to be Gaussian random variables (y ~ N(0,07) and n ~ N(0,521)), they propose an
iterative beamformer based on alternating maximume-likelihood estimation of the distribution
parameters 05 and 02 and maximum-a-posteriori estimation of the signal of interest, as shown
in Algorithm 1. The resulting iMAP beamformer shows, in their experiments, resolution similar

Algorithm 1 iMAP beamforming [16]

1: Initialize yivap, (o) = ~17s
2: Update distribution parameters
(62,62} oy = { e % Is = Lonase, | |
) i ,(1)) N )
3: Update signal estimate
&3.) H

YIMAP, (i+1) = z7——5sr— 178
(1) = 57 STNeT

to DAS, contrast improvements better than CF, while suppressing the speckle less than CF.
This appears to be advantageous in acquisition schemes with low transmit focus, i.e. ultrafast

(a) iIMAP; focus (b) oy focus (c) on focus (d) iIMAP; side (e) oy side (f) on side (g) IMAP; image
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Fig. 2.10. Visual illustration of iMAP with two iterations. (a) Result of iMAP for reflector in focus. (b) Determined
signal standard deviation for reflector in focus. (¢) Determined noise standard deviation for reflector in
focus. (d) Result of iMAP for out of focus reflector. (e) Determined signal standard deviation for out of
focus reflector. (f) Determined noise standard deviation for out of focus reflector. (g) Resulting iMAP
image.

imaging, especially when a limited number of transmissions is employed. Figure 2.10 shows
the result of iAP when executing two iterations, including the determined signal and noise
parameters.

Polichetti et al. [85] propose a generalization of DAS that is also related to DMAS. They present
p-DAS which uses the (signed) p™-root before summation, and p-power scaling afterwards to
introduce nonlinearity

N
Jppas(t) = ; sgn(si(t)) |si(t)] (2.30)

Yp-pas(t) = sgn(fp-pas(t)) [Fp-pas(t)[”.
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This is followed by a bandpass centered at the probe center frequency f,. The strength of
the effect is tunable through the choice of p, the authors evaluate p = 2 and p = 3, for
p = 1 it is equivalent to DAS. The result is a promising increase in resolution and contrast in

(a) p-DAS, focus (b) p-DAS, side (c) p-DAS,, image (d) p-DAS; focus (e) p-DAS; side (f) p-DAS4 image

Depth

—1000 0 1000 -5 0 5 =32 —-11 1.1 3.2 —1000 0 1000 —-0.2 0.0 02 -32 —-11 1.1 3.2
Width [mm] Width [mm]

Visual illustration of p-DAS. (a) Result of p-DAS (p = 2) for reflector in focus. (b) Result of p-DAS
(p = 2) for out of focus reflector. (c¢) Resulting p-DAS (p = 2) image. (d) Result of p-DAS (p = 3) for
reflector in focus. (e) Result of p-DAS (p = 3) for out of focus reflector. (f) Resulting p-DAS (p = 3)
image.

their simulated and experimental phantom data, albeit with a change in speckle appearance
compared to DAS. The effects of p-DAS are illustrated in Figure 2.11.

Deep Learning based Methods A method for suppressing off-axis scattering in aperture data
is presented by Luchies et al. [70]. It uses a set of neural networks that are tasked to remove
echos from scatterers outside of the mainlobe. The input to the networks are the short time
Fourier transform (STFT) coefficients of each input channel (STFT applied to the time-domain
delayed data) and the output are the coefficients after removal of the undesired signals. When
followed by inverse STFT, the resulting aperture data is summed to create the image. They
trained the networks on single scatterer simulations where the scatterer was either placed in
the mainlobe and its echo should consequently be retained, or outside of the mainlobe, where
the desired output was zero. In phantom and in-vivo data, they show contrast improvements
similar to or outperforming CF, while generally retaining the speckle appearance of DAS. They
extend this work with a detailed investigation of the learning process [69]. The effects of
training set size and the other hyperparameters are evaluated, while also probing the method
for robustness against channel noise. Additionally, they extend the training data to contain
multiple scatterers.

Hyun et al. [43] utilize a deep neural-network (DNN) for speckle reduction from aperture
data, where the network input are prebeamformed RF signals from several subapertures as
well as the DAS image. The network is then trained on simulations and the echogenicity maps
used to create the simulations serve as the training targets. They show promising performance
and outperform spatial compounding and other speckle reducing postprocessing filters in a
number of cases. In their investigation of the training loss, they found a combination of the
L, norm and the multiscale structural similarity index to perform best on log-compressed
images.

Complimentary to these deep learning based methods that aim at novel image characteristics,
there is a movement that employs machine learning with the goal of runtime performance
improvements of non-learned methods.
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Luijten et al. [71] propose the use of fully-connected neural networks to learn a fast ap-
proximation of a computationally complex beamformer. The method called ABLE (adaptive
beamforming by deep learning) operates on each output sample independently and its output
is a weight vector to be used analog to (2.2). It is a lightweight network trained with an
intriguing combination of losses: First, an image loss of the beamformed result against the
MV output after application of the logarithm to better capture the deviations that would be
perceptible after log-compression. The second term Loty (WasLe) = |17 WapLe — 1|2 penalizes
deviations of the output weight vector wap g from unity gain. This aims at promoting a
distortionless response, i.e. the signal amplitude in the direction of interest is not reduced.
In their evaluation, it performed on par with, or better than the eigenspace MV beamformer
similar to [4] used as training target. In terms of computational complexity, ABLE compares
favorably against the MV, the first being in O(NN?), whereas MV generally falls into O(N?),
potentially alleviating performance constraints for the application of MV-methods.

In a similar spirit, Wiacek et al. [123] present with CohereNet an architecture for the speedup
of correlation estimations. It is based on a fully connected neural network that estimates all
spatial correlations R(m,t),m € {1,--- , N — 1} in the aperture data, with the numeric version
(2.7) as training target. Using the spatial correlation estimates to compute the SLSC, they
show a significant speedup of their method compared to the conventional CPU implementation
and better accuracy compared with a previously proposed GPU implementation of the SLSC,
which makes use of simplifying assumptions.

2.3 Comparison and Discussion

We compare a number of the highlighted beamforming algorithms on two datasets qualitatively
and through contrast and resolution measurements. For this, we chose with DAS, CF [42], GCF
[65], PCF, SCF (both [13]), SLSC [62], F-DMAS [75], element-space MV [106], beam-space
MV [27], iMAP [16] and p-DAS (for p € {2,3}) [85] the foundational methods from each
group. We execute them on two focused imaging datasets from the UltraSound ToolBox
[92, 134], that were acquired with an Alpinion ultrasound machine using a L3-8 probe.
The datasets depict different regions of a CIRS General Purpose Ultrasound Phantom Model
054GS (CIRS Inc., Norfolk, VA, USA). One consists of a homogeneous background with an
anechoic and a hypoechoic inclusion relative to the background. The second contains a
hyperechoic inclusion (approx. 12 dB relative to the background), two isolated wire targets,
and a resolution group. The phantom was imaged with 256 focused emissions and a transmit
focus at 30 mm depth.

The scan lines were delayed appropriately, followed by the application of the different beam-
formers on the resulting aperture data. For display, the beamformed images were envelope
detected using a Hilbert-FIR filter followed by logarithmic compression except for SLSC, where
only logarithmic compression is applied. The code to apply the beamformers, create the illus-
trations and perform the comparisons is available at https://github.com/goeblr/rxbf review.
Figure 2.12 shows the result of the beamformers on the region with the anechoic inclusion.
Compared to DAS, using CF, SCF and p-DAS, drastically changes the speckle appearance,
making the background appear as less homogeneous—with SCF even to the point where
subsequent speckle filtering could become challenging. For GCF, iMAP, F-DMAS, and p-DAS,
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this effect is less pronounced and with PCF, or the MV variants the texture of the background
region is very similar to the DAS result. In the SLSC image, the background appears even
smoother than all other images. The anechoic inclusion should—ideally—be depicted as black,
however there is noise visible in the DAS, PCF and MV results. While the others show no noise
(within the shown range of 60dB), the CF, SCF, and GCF images stand out in their sharp
delineation of the inclusion boundary. It appears as if there is a trade-off between speckle
appearance and noise in the anechoic region for the shown beamformers.

In Figure 2.13 we focus on the appearance of the wire targets that are incorporated into the
phantom and have a diameter of 100 um. In it, the SCF and the MV variants show the most
narrow response. CF, PCF, F-DMAS and the p-DAS images also exhibit an improvement in the
width of the targets compared to DAS, while the iMAP image response appears comparable to
it. In the GCF and SLSC the point response is wider than in DAS. It is noteworthy, that most
of the coherence based methods (CF, GCF, SCF, and SLSC) suppress the background in the
lateral vicinity of the wires, and iMAP and p-DAS; show this to some degree as well.

We also quantitatively compare the selected methods on the datasets shown in Figures 2.12
and 2.13. They are investigated w.r.t. the contrast ratio (CR)

£E for known dark targets
HT

CR — (2.31)
Z—;, for known bright targets,

relative to the background, and the contrast to noise ratio (CNR)
CNR = lps = pr| (2.32)

2 2’
Vot ot

where 7 and o are the mean an standard deviation of the uncompressed envelope (except
for SLSC, where no envelope detection is required) in a target region, while pz and op are
computed on an homogeneous background region. The speckle signal to noise ratio (SNRs)

SNRs = 25 (2.33)
oB
is used as a measure of homogeneity in the background region. These metrics are determined
for the anechoic and the hyperechoic inclusion. Finally, the full width half maximum (FWHM)
of the wire target responses is used as a measure of the beamformer resolution capabilities.

Table 2.2 shows the results of the evaluation. The CR measurements of the anechoic inclusion
(ideally infinity, for an area completely void of echos) mostly agree with our observations
regarding the noise within the inclusion. With CR around 30dB, DAS, PCF and the MV
variants show noise well within the shown dynamic range. The highest CR values result from
the application of SCF, CF, and GCF, which had the clearest boundary definition visually.

For the hyperechoic inclusion with echogenicity (as given by the manufacturer) of "about
12dB" (without a specified tolerance), there are two methods for which the CR is the furthest
from 12dB, SCF and F-DMAS, both of which seem to suppress the background speckle
disproportionately.
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Tab. 2.2.

Anechoic inclusion approx. +12dB inclusion Wires
Circles in Figure 2.12 Circles in Figure 2.13 In Figure 2.13
CR CNR SNRs CR CNR SNRs FWHM 1 FWHM 2
[dB] [dB] [dB] [dB] [mm] [mm]
DAS 28.51 4.33 1.71 13.06 2.84 1.81 1.28 2.16
CF+DAS 58.43 -0.44 0.95 14.95 -1.32 0.99 0.99 1.65
GCF+DAS 50.49 2.75 1.38 14.61 1.80 1.42 1.35 2.16
PCF+DAS 29.95 3.39 1.53 13.42 1.87 1.63 1.21 2.01
SCF+DAS 88.44 -6.99 0.45 20.91 -5.69 0.43 0.77 1.13
iMAP, 43.21 3.84 1.57 13.12 2.07 1.63 1.28 2.16
SLSC 44.70 7.53 2.40 12.26 5.03 2.69 2.38 4.35
F-DMAS 38.55 1.40 1.19 8.17 -2.21 1.24 0.99 1.57
p-DAS,, 40.18 2.15 1.29 14.26 0.83 1.33 0.91 1.65
p-DAS, 44.47 0.48 1.06 15.36 -0.57 1.08 0.91 1.50
MV 28.81 3.89 1.63 11.72 1.94 1.78 1.72 1.13
BS-MV 29.30 4.07 1.66 11.96 2.20 1.82 1.65 1.13

Contrast and resolution metrics computed on the highlighted areas in Figure 2.12 and Figure 2.13.

FWHM 1 determined on the wire at 20 mm, FWHM 2 at 40 mm. In bold: For the contrast and noise
ratios the three highest values - except for the CR of the +12 dB inclusion, where smallest differences to
12 dB are highlighted. For wire FWHM the three lowest values are emphasized.

The SNRs measurements of the background regions describe the appearance of the speckle
within them. High values indicate smooth appearance, while low values are the result of high
intensity variations. They generally match between the two acquisitions, especially on the
relative ordering of the methods and agree with the visual impressions of speckle suppression
or the lack thereof.

The choice of a beamforming method is influenced by a number of factors. The first constraint
to consider is the amount of required computations. Given real-time nature of US and its
interactive use, a beamformer that cannot be applied fast enough simply cannot be used.

In situations where computational resources are limited, e.g. to fit a given power envelope, or
when ultrafast imaging should to be performed at the rate limit given by the physical wave
propagation time, one might consider the less computationally demanding approaches such as
CF, PCF, SCF, and p-DAS. These are followed by the more complex methods GCF and iMAP.
Should the available compute not be a limiting factor, one might consider the application
of MV (likely in a subspace variant), DMAS, or SLSC. In terms or computational complexity,
learned methods can span a wide range. The approaches aimed at replicating the results of a
different method tend to be designed to be faster than the originals, while the techniques that
introduce novel imaging methods can be more computationally demanding.

Given this initial selection, the clinical application dictates which approach is to be selected. If
the task requires accurate representation of image contrast, e.g. to show and grade inclusions
accurately, SLSC should be a prime candidate. Should it be necessary to achieve maximum
resolution, then a MV method or their learned approximations can be an excellent fit. If,
however, the images are mainly degraded by clutter, the coherence based weighting methods
or F-DMAS should be considered.

Generally, there is no single best beamformer, the suitability of a method depends on the
requirements of the clinical application, the anatomy to be visualized and available perfor-
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mance. Given these constraints, one has to select the optimal beamformer for the specific
circumstance.

2.4 Conclusion

In this chapter, we gave an overview of the developments in US beamforming methods that
perform aperture data processing. We grouped the works by their main working principle and
compared the results of select methods on phantom data. Although there are a few clusters
of works w.r.t. their underlying principles, such as aperture data coherence, all methods
have their own strengths and weaknesses. Among the most important aspects to consider
are the beamformers resolution capabilities, the accuracy in reproducing tissue contrast, the
appearance of the resulting images, and of course the computational requirements. This
makes the selection of beamforming method ultimately dependent on the clinical application
of the system and the trade-offs acceptable in each specific setting.

With our focus on processing methods that operate on the data after delay application, effects
from speed-of-sound errors are not considered in our evaluation. A detailed investigation
of the influence of speed-of-sound mismatch and phase-abberations (as caused by speed of
sound inhomogeneities in tissue) on the methods would be of interest.

Within the body of work on ultrasound beamforming, there has been a shift in presented
algorithms towards data-driven approaches, specifically utilizing deep learning. We believe
this to be a very promising avenue for further imaging performance improvements, the
reduction of computational requirements of existing beamformers, and most importantly the
development of entirely new methods.
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Fig. 2.12.

(b) CF+DAS (c) GCF+DAS

(e) SCF+DAS

-15-10 -5 0 5 10 15 -15-10 =5 0 5 10 15 -15-10 =5 0 5 10 15

Qualitative comparison between beamformers on phantom data. The images show 60 dB of dynamic
range. Highlighted areas are used for contrast measurements, with the blue circle defining the target,
the ring between the orange circles the background region. Raw ultrasound dataset: "Alpinion L3-8 FI
hypoechoic", v1.0.2 from [134]
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(b) CF+DAS (c) GCF+DAS

(d) PCF+DAS (e) SCF+DAS
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Fig. 2.13. Qualitative comparison between beamformers on phantom data. The images show 60 dB of dynamic
range. Highlighted areas are used for contrast measurements, with the blue circle defining the target, the
orange circle the background region. Raw ultrasound dataset: "Alpinion L3-8 FI hyperechoic scatterers",
v1.0.2 from [134]
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Software based Ultrasound
Imaging

In this chapter we present an open framework for software-based ultrasound imaging, aimed
at being flexible to extend and real-time use. The goal is to close the gap between research
around US image formation that often operates offline on pre-recorded data and closed
commercial imaging systems that allow interactive, real-time application.

Section 3.1 provides the motivation and reviews the related work. In section 3.2 we present
the design considerations behind and properties of the proposed framework and in section 3.3
we investigate the imaging performance and run-time behavior of it.

Substantial parts of this chapter have been published and are quoted verbatim:

[32] Riidiger Gobl, Nassir Navab, and Christoph Hennersperger. “SUPRA: open-source
software-defined ultrasound processing for real-time applications”. International
Journal of Computer Assisted Radiology and Surgery (Mar. 2018).

Reproduced with permission from Springer Nature.

3.1 Motivation and Related Work

Ultrasound (US) imaging is used in a wide variety of applications and complements modalities
such as computed tomography (CT) and magnetic resonance imaging (MRI). It enables non-
invasive, low cost acquisition of anatomical, dynamical, as well as, functional information
while being highly portable. Because of this, there is a trend to replace MRI and especially CT
with US imaging when applicable.

The image acquisition process of US can be broken down into several steps forming a
pipeline.

* First, an ultrasonic pulse modulated with a chosen frequency is generated in the tis-
sue through precisely orchestrated electrical excitation of piezo transducer elements
(transmit beamforming).

* The echos induced by this pulse in the tissue are converted to electrical signals by the
transducer elements and commonly stored digitally (receive).
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* After that, the signals are used to compute how they would have been received from
one single line, where the data from different channels is delayed such that scattered
signals from that line are intensified by constructive interference and echoes from other
positions are reduced through destructive interference (receive beamforming) [101].

* The result of this operation is called the radio frequency (RF) data, because the echos
are still modulated with the transmit frequency.

* Since only the scattered intensity is of interest to the user, the RF-data is demodulated
(envelope detection), leaving the signal amplitude. As this reduces the maximum signal
frequency, it is usually decimated during this step.

* Before these amplitudes are shown on a screen they undergo a non-linear compression
stage to match their dynamic range to the perceived dynamic range (log-compression).

* Finally, the single lines that have been reconstructed and which are not necessarily par-
allel to each other are interpolated to create an image representing physical dimensions
(scan conversion).

Those steps typically have been performed in specialized hardware, field programmable gate
arrays (FPGAs), or digital signal processors (DSPs). Implementations like this have been
necessary in the early years of US imaging. With the increase of computing power available
in modern workstations, this need has been relaxed, especially when using GPUs to perform
the numerical calculations. When implemented in separate hardware, modifications to the
algorithms are hardly possible, as programming interfaces might not be available and the
development for FPGAs and DSPs is highly complex and time-consuming. Especially for
research applications, such limitations often lead to the utilization of frame-grabbers to allow
for a retrieval of US images from clinical scanners [130] even in recent publications [9, 91],
which is not only limiting reproducibility but also potentially hampers image quality.

There already exist some US systems, in which all of the processing happens on GPUs, thus
allowing the manufacturer of the device to implement changes to their pipeline more rapidly.
Yet, as vendors protect their intellectual property, it is difficult for independent research groups
to use those machines for research purposes. On the other hand, there have been efforts
to give researchers access to parts of the US pipelines they employ, as for example by the
PLUS toolkit [61]. While this project is tailored to tracked and freehand 3D-US applications,
it does not provide US beamforming or low-level processing capabilities. An open source
US processing implementation based on ITK [77] has been proposed. While it is real-time
capable, it only covers the later processing steps (envelope detection to scan conversion),
requiring the use of other (potential proprietary) implementations for the early steps. Besides
those efforts, a group of researchers recently announced the UltraSound ToolBox for MATLAB
[92]. While this platform provides basic capabilities for beamforming and development of
advanced low-level processing methodologies, it is conceptionally not directed towards the
use in real-time applications, thus not being suited for many applications in computer assisted
interventions.
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In [124] Wilson proposes with the Ultrasonix 500 RP a research interface to intermediate data
at different stages up to RF as well as control over many system parameters. This allows for
the execution of methods other than the proprietary built-in functionality. However, it does
not yet enable access to channel data. By using an additional data aquisition module (either
SonixDAQ [17] or the real-time capable RX-DAQ [116]) channel data can be captured. Yet,
the base implementations are proprietary—and are as such bound the Ultrasonix hardware-and
can only be replaced to some extent. In contrast to this, the ULA-OP US system [10] is open
and it is possible to implement new methods for it. Yet, as the processing happens in FPGAs
and DSPs, this task is complex.

On this basis, we try to close the gap between low-level offline US research on the one side,
and the processing of already processed US images on the other. We propose an open source
pipeline for 2D and 3D US imaging called SUPRA (software defined US processing for real-
time applications) that can be used to perform all computation-based steps in US and enable
researchers and developers to work on all parts of the imaging process. This ranges from
beamforming the raw channel data recorded by an US-system to the output of B-mode images.
Thus, we hope to integrate efforts of other platforms, and also specifically provide a way
towards a stronger integration of high-level processing (targeting e.g. at a specific medical
image computing or computer aided intervention application) with low-level, US-specific
information (e.g. raw channel or RF data). This way, SUPRA could for example be used to
integrate efforts from image segmentation throughout all levels of the US processing pipeline,
potentially leveraging specific first order data not considered so far.

3.2 SUPRA

In the following, we describe our approach towards software defined US processing for
real-time applications (SUPRA). The framework is licensed under LGPLv3 and designed as
cross-platform solution tested with both Windows and Linux/Ubuntu. It is publicly available
on GitHub!.

The term software defined US is derived from a concept called “software defined radio”. In
this field of radio communication, hardware implementations of signal processing components
such as filters, amplifiers and modulators are replaced by software implementations. This can
help to reduce costs and simplify their development.

Our framework SUPRA follows the same concept. In addition to being fully implemented in
software, all the real-time critical processing steps have been implemented in NVIDIA CUDA to
achieve high throughput. Figure 3.1 shows a pipeline with the steps as outlined in Section 3.1
and highlights where the respective processing takes place. The transmit beamforming is
performed on the CPU, as it is only necessary to compute the transmit parameters once for
a fixed acquisition. It is important to note here that only the actual transmit and recieve
steps require specific hardware with an analog frontend, allowing for the excitation of piezo-
elements in the US probe to create acoustic waves. Thus, all other steps in the pipeline
(receive beamforming, envelope detection, log-compression, and scan conversion) can be

Thttps://github.com/IFL-CAMP/supra
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fully customized in software. Since these are performed repeatedly, we implemented them in
NVIDIA CUDA. As a consequence, it is possible to execute the pipeline for 3D US on consumer

Transmit . Transmit & : Receive
Beamforming [—> Receive —> Beamforming
CPU : Hardware GPU
I
v
Envelope . .
P _| Log-Compression _| Scan-Conversion
Detection
GPU GPU GPU

Implemented pipeline with the modules realized in SUPRA, hence in software, marked with solid lines
and the module that has to be performed in hardware with dashed lines.

graphics cards, as we show in Subsection 3.3.3.

Besides the aim to maximize real-time capability by parallelizing relevant parts of the US
pipeline, we also considered the modularity of the pipeline as a major design goal. We
achieved this by encapsulating the processing components into nodes on a data-flow graph,
realized with the Intel Thread Building Blocks open source library?. Based on this architecture,
the nodes only exchange shared pointers to data containers (which may reside either on the
CPU or the GPU) among each other, eliminating unnecessary memory operations.

In detail, each encapsulated node can utilize an input, provide an output, or both. On this
foundation, by placing the processing steps of the US pipeline within the data-flow graph,
nodes can be added, removed, or exchanged without recompiling the actual code. Besides
this possibility to exchange individual parts of the pipeline, the overall pipeline can also be
altered completely using the input-output mechanisms. In this way, it is for example possible
to perform two differently parametrized beamforming runs in parallel on the same input data
to extract different information. In a hardware-based pipeline this is not possible, while with
SUPRA such considerations are limited only by the computational power.

In view of our efforts to provide a fully functional basic US beamforming and processing
pipeline, the following methods are available in SUPRA:

1. Dynamic transmit and receive beamforming for a fully flexible scanline layout and
resolution, as well as full control of acoustic wave excitations and multi-line acquisitions

2. Delay and sum beamforming for received raw channel data directly after analogue to
digital conversion [101]

3. Envelope detection by IQ-demodulation, including frequency compounding through a
bank of configurable bandpasses

4. Configurable log compression for target imaging dynamic range

5. Scan conversion in 2D and 3D, for a wide range of scan-line configurations

2https://www. threadingbuildingblocks.org/
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Fig. 3.2.

6. Graphical user interface for online-configuration and real-time visualization of received
data

7. Configurable XML-interface for the generation of system parameters and specific imaging
pipelines

In addition to the nodes that make up the core pipeline, several input and output nodes are
present. Input nodes provide the interface to the actual US system hardware (i.e. hardware
transmit and receive as indicated above) and are thus vendor or system-specific interface
implementations. At this stage, Cephasonics US hardware (Cephasonics, Santa Clara, CA, USA)
is integrated with the full pipeline for beamforming; and Ultrasonix systems (BK Ultrasound,
Peabody, MA, USA) can be interfaced using the proprietary ulterius software interface. It
should be noted, however, that the integration of other hardware-platforms would only require
the implementation of a new input node within the data graph, providing a respective interface
to the system-specific transmit and receive hardware.

Output nodes provide a way to either forward information at any stage of the overall pipeline
to a dedicated interface, or provide a means to save data to a file on the hard-disk respectively.
Implemented output nodes represent at this stage:

* ROS bridge for interaction with robotic environments,
* OpenlIGTLink bridge for exchange of image and tracking data,
* Storage of information as meta images (mhd) for offline use.

It is worth noting that output nodes are not limited to the last step of the pipeline, but can also
be used with any intermediate data stream present in the system. Following the generic and
modular software architecure, nodes for input and output can also contain other information.
For the use in interventional settings, tracking information can be attached to the images. In
this view, SUPRA provides generic interfaces for tracking in- and output via OpenIGTLink and
as ROS messages.

File LoglLevel Preview

Control Previews
Stop | Sequence Start Preview Node SCAN
Nodes
All Nodes Parameters: LOGC
BEAM (1.5 Hz, 11.1 ms) Dynamic Range 80.00
DEMO (1.5 Hz, 2.47 ms) .
IGTL Gain 1.00
LOGC (1.5 Hz, 0.0746 ms Max Input 1024.00
MHD_Scan

MHD_ScanMask
SCAN (1.85 Hz, 13.7 ms)
US-Cep (1.5 Hz)

Graphical user interface with the processing nodes in the left column, the parameters of the selected
node in the central column and a live preview of one data stream on the right.
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The online-configuration mentioned before is realized via a generic parameter system, that
enables all processing nodes to define parameters with default values and valid value ranges
(continuous, discrete), where applicable. Through this parameter-system the respective
nodes are notified of parameter changes and can react accordingly. The parameters can be
inspected and modified during run-time by the user in the GUI, which is shown in Figure 3.2.
Additionally, for the use in automated systems, the parameters can be accessed through a ROS
service, allowing fully dynamic imaging.

To this end, in order to use the full pipeline as introduced above, a respective US system
is required, providing access to the beamforming parameters and the raw data collected at
channel level has to be available. However, even without this access, a user can still apply
the other parts of the pipeline to harness the full control over those steps, e.g. by injecting
previously acquired data into the pipeline.

Additionally, with the planned inclusion of image post-processing to SUPRA, such as speckle
reduction techniques [57], or advanced imaging protocols like harmonic imaging [6] and
planewave imaging [108], the current baseline provided by the framework will allow re-
searchers to evaluate their methods in a more meaningful manner.

3.3 Comparison

For evaluation we employ the proposed SUPRA pipeline with a 384 channel cQuest Cicada™
from Cephasonics, CA, USA and a Cephasonics CPLA12875 transducer with 7 MHz center
frequency, 128 elements, and 0.3 mm pitch and work with the raw channel data collected
by this system. For this transducer only 64 channels can be used. The resulting images
are compared qualitatively as well as quantitatively to the clinical pipeline native to the
Cephasonics Cicada with the same transducer. Both systems use the following parameters:
frequency: 7.6 MHz, depth: 4.5 mm, focal depth: 30 mm. Additionally, we show acquisitions
performed with a 2D matrix probe with all 384 channels of the Cephasonics interface.

3.3.1 Qualitative Comparison

For a qualitative comparison of the image quality between the two systems, we show in-vivo
images of the carotid artery and the biceps tendon in combination with the brachialis of a
healthy volunteer, as well as phantom data acquired with a CIRS multi purpose phantom
(Model 040GSE). Due to tissue deformations and limited probe placement reproducibility, the
anatomy shown is not exactly the same. Nevertheless, in the in-vivo images in Figure 3.3 it
can be observed, that the tissue texture is comparable in both systems, although it appears
less blurred with the Cephasonics pipeline.

This blur in the SUPRA images is likely caused by settings of the frequency compounding
during envelope detection, as the filters used to separate different frequencies of the RF lines
can cause blurring.
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In the phantom images the tissue texture in the image acquired with SUPRA appears more
consistent than with Cephasonics. Additionally, the wires in the lower part of the images
exhibit a higher contrast in SUPRA and seem less blurred as well, while being more spread in
the upper part. The qualitative comparison thus shows, that the image quality of SUPRA is
comparable to what can be achieved with the built-in Cephasonics pipeline.

As pointed out earlier, SUPRA is not limited to classical 2D US, but is also capable of 3D
imaging. Slices of a volume acquired with a 32 x 32 element Vermon matrix probe are shown
in Figure 3.4. It was connected to a Cephasonics cQuest Cicada with 384 channels. The
volume shown was acquired with 70 mm depth, a frequency of 7 MHz and with 512 (32 x 16)
scanlines over a field of view of 60°. The top-left image shows a volume slice perpendicular
to all internal structures and it is clearly visible that the resolution decreases with increasing
depth, as is expected for a phased array. The image in the top-right shows a 3D rendering of
the volume, where the different lengths of the the hyperechoic inclusion and the wires are
apparent. Bottom left shows a slice perpendicular to that, including a longitudinal view of
the hyperechoic inclusion and the image in the bottom-right shows a longitudinal view of the
horizontal wires. It is worth noting that the wires are longer than is visible from the slice,
but due to the increasing scanline angles to the image boundaries natural to phased arrays in
combination with the highly specular reflectivity of the wires, their visibility quickly falls off
with distance from the center.

3.3.2 Quantitative Evaluation

To complement the qualitative comparison with a quantitative evaluation of both beamformers,
we estimate the point-spread functions (PSFs) of both systems, following the approach of
Jeong [50]. For this purpose, we imaged a wire target in a tank with distilled water at 48°C
(resulting in a speed of sound of 1540 m/s [8]) at different depths. We acquired the RF data
after beamforming, both for the Cephasonics and SUPRA. Afterwards we performed envelope
detection through the hilbert transform in a numerics software followed by a log compression
to a dynamic range of 50 dB.

Given the Dirac-like reflector, images representing the PSFs at depths 10, 15, 20 and 25 mm
are retrieved. Figure 3.5 shows in the top row the PSFs of both systems at 20 mm and 50 dB.
While the lateral extent of Cephasonics appears larger than that of SUPRA combined with the
Cephasonics system and probe, their height is comparable. This becomes even more clear
in the bottom row of Figure 3.5, where the lateral PSF full-width-half-maximum (FWHM)
of SUPRA is smaller in most depths, except for close to the transducer and the focal depth,
whereas the axial FWHM of SUPRA and the Cephasonics beamformer differ only very little.

This result only partially agrees with the observations from section 3.3.1, where a more
pronounced blurring could be observed for SUPRA, even in axial direction. This difference can
be explained by the fact that the qualitative evaluation takes the complete imaging pipeline
into account, while the PSF evaluation only considers the pipeline up to the beamforming.
Overall, however, it shows that SUPRA can provide comparable image quality, following the
purely software-based approach.

3.3 Comparison
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Carotid cross-sect.

Carotid long.

Biceps tendon and bracialis long.

CIRS phantom

Cephasonics SUPRA

Qualitative comparison of Cephasonics cQuest Cicada (left) and SUPRA with a Cephasonics cQuest
Cicada (right) equipped with a linear transducer at 7.6 MHz, depth 45 mm. The first three rows show
in-vivo acquisitions of the carotid (cross-sectional and longitudinal) and the biceps / brachialis of a
healthy volunteer. The last row shows images of a CIRS multi purpose phantom (Model 040GSE).
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Fig. 3.4.

(c)

3D US volume acquired with SUPRA of a CIRS multi purpose phantom (Model 040GSE). (a) shows a
cross-section of the structures in the phantom. A rendering of the volume is shown in (b). The second
row shows two longitudinal views, (c) of a hyperechoic region, (d) wires. Note the limited visibility of
the horizontal wires in (d), caused by their highly specular reflectivity.

3.3.3 Performance

In the following, we present a run-time analysis of a SUPRA pipeline consisting of beamformer,
envelope detection, log compression and scan conversion. We performed this evaluation on a
number of computers

¢ Dedicated workstation with a NVIDIA GeForce GTX 1080 / 8 GB (Ubuntu Linux 14.04,
Intel Xeon E5 - 1660 v4, 3.2 GHz, 8 core, 32 GB RAM)

¢ Notebook with a NVIDIA GeForce GTX 960M / 2 GB (Windows 10, Dell XPS 15 9550,
Intel Core i7 6700 HQ, 2.6 GHz, 4 core, 16 GB RAM)

* Jetson TX2, an embedded SoC with a total power target of 15 W, includes a NVIDIA GPU
sharing the main memory (Ubuntu Linux 16.04, ARM A57, 2.0 GHz, 4 core, 8 GB RAM)

3.3 Comparison
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Point spread functions (PSFs) measured for the Cephasonics and SUPRA beamformers with a linear
probe. The top row shows exemplary PSFs at 20 mm depth and 50 dB dynamic range, the bottom row
measurements of the full-width-half-maximum (FWHM) in lateral and axial directions.

As stated before, one of the design goals of SUPRA is its interactive use, consequently limiting
the run-time of all nodes of a pipeline. Table 3.1 shows the node and pipeline run-times we
observed in milliseconds on the different hardware configurations. Note that SUPRA used
previously recorded raw channel data as input for the beamforming on the Windows laptop
and the ARM SoC. From this table a number of observations are noteworthy. The benchmarks
on the NVIDIA Jetson TX2 show that a pure software 2D US pipeline can be executed on
an embedded device with reasonable frame rates. This has the potential to enable mobile
US-systems based on software beamforming. It can be seen, that the log compression and
scan conversion nodes exhibit only limited variation for the different scanline configurations.
This is caused by two circumstances: While the log compression run-time is governed by the
CUDA management overhead as it performs only limited computations, the run-time of the
scan-conversion depends mostly on the resolution and size of the output.

Chapter 3 Software based Ultrasound Imaging



Tab. 3.1.

Scanlines [ Beamformer Envelope Log comp. Scan conv. [ Total
Jetson TX2 SoC, Integrated GPU / 8 GB shared

= 64/1) 7.02 £0.89 9.00 £1.31 0.41 to0.16 20.91 +2.88 37.64 +8.22
& 64/ 2) 11.21 £1.09 12.80 +1.47 1.01 40.24 21.45 +2.19 46.66 +5.31
g (128/1) 11.09 £0.48 11.32 +0.96 0.75 £0.14 19.68 £1.19 43.43 +5.30
N (128 / 2) 20.27 £0.57 16.80 +1.10 0.66 +0.21 19.27 +0.80 57.44 +6.40
Notebook, NVIDIA GeForce GTX 960M / 2 GB

5 64/1) 3.35 40.22 5.08 £0.64 0.13 40.03 6.68 10.26 15.25 +1.01
] 64/ 2) 4.97 £0.28 6.60 *1.00 0.70 £0.22 7.03 £0.45 19.28 £2.07
E (128/1) 5.39 +0.23 9.28 +1.31 0.80 +0.17 7.18 +0.32 22.70 +2.01
N (128 /2) 9.04 +0.24 11.04 +0.90 0.74 £0.19 7.14 +0.26 28.15 +2.65
Dedicated workstation, NVIDIA GeForce GTX 1080 / 8 GB

= 64/1) 1.54 +o0.21 1.68 £o0.19 0.08 +0.02 2.06 +0.19 5.37 +0.44
] 64/ 2) 0.93 £0.04 0.98 £0.17 1.10 0.19 1.23 +0.03 4.24 F0.47
g (128 /1) 1.03 £0.03 0.98 £0.17 1.15 40.19 1.22 £0.03 4.38 £0.49
N (128 / 2) 1.68 £0.03 1.98 +0.29 0.08 +0.03 1.23 £0.02 5.00 1-0.48
3D phased 11.15 t+o0.65 2.49 t0.28 0.08 +0.03 13.79 +0.31 27.49 £1.04

Observed pipeline and node run-times [ms] for 2D and 3D imaging (mean and standard deviation).
The 2D imaging was performed in different scanline configurations ranging from 64 reconstructed
scanlines without multiline receive (64 / 1) to 255 scanlines reconstructed from data of 128 transmit
events (128 / 2) scanlines with depth 45 mm and isotropic image resolution 0.0225 mm. The 3D pipeline
was parametrized as described in section 3.3.1.

As the GPU in the tested laptop is significantly faster than that present in the Jetson TX2, it is
not surprising that the node run-times are lower. On the dedicated workstation with a NVIDIA
GTX 1080 it is clear that even the 2D beamforming is limited by CUDA management operations
as its run-time is not influnced by the scanline configuration. The overall 2D pipeline should
thus be able to perform significantly faster than 100 Hz.

In addition to the 2D pipeline profiled on all three machines, we executed a 3D pipeline
on the dedicated workstation and measured its run-time as well. Although the number of
scanlines was only twice as large as with the largest 2D pipeline, the beamforming took
significantly more time. This is caused by the increased number of raw channels (384 vs. 64)
and the resulting need to take those into account during beamforming. It can furthermore be
observed, that the 3D scan conversion requires more time, which is caused by the addition of
a whole dimension to its output. Due to the significant memory requirements and number of
neccessary operations of the 3D pipeline, we did not execute it on the laptop and the Jetson
TX2.

This run-time analysis is shows that a purely software based US pipeline as implemented with
SUPRA can in fact be used for real-time imaging, even on commodity graphics hardware.

3.3 Comparison
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Deep Speckle-Removal

This chapter introduces our work in advancing the ultrasound image quality after acquisition,
specifically the removal of speckle from images through a deep-learning based method.
Sections 4.1 and 4.2 provide the motivation and place our work in the literature. The method
for data generation and model training is described in section 4.3 and evaluated in section
4.4. In sections 4.5 and 4.6, we discuss the proposed method and provide an outlook.

4.1 Motivation

US imaging is a valuable tool to support non-invasive diagnosis and for use during interven-
tions, as it is portable, affordable and does not subject the patient or staff to ionizing radiation.
It is not, however, without problems. One of the major differences between CT and MRI on
the one hand and US on the other hand is the presence of speckle, a grainy, noiselike image
degradation that even affects tissue regions that are homogeneous in their microstructure such
as liver or thyroid tissue (e.g. see Figure 4.1a). This speckle can make interpretation of the
images difficult—especially for users with limited experience working with US. Consequently,
most—if not all—US systems apply speckle reduction techniques after image formation, where
the amount of "graininess" that is retained usually can be controlled by the user through a lin-
ear combination or blending of filtered and unfiltered data, depending on the clinical task and
user preference. Figure 4.1 shows a thyroid image before and after filtering with our method
compared to a state-of-the-art method and outlines a way to preserve a controlled amount
of speckle. While for some tasks, such as the characterization or classification of masses, the
presence of speckle is advantageous [80, 90], for others it can be detrimental. The tasks that
benefit from speckle removal include interventional navigation using 3D visualization [94,
99] and the imaging of tissue boundaries [30].

The speckle patterns that emerge in US images are directly influenced by the location of sub-
resolution scatterers in the medium. Since the distances between the scatterers are below the
resolution limit, the reflections caused by the individual scatterers cannot be separated by the
US imaging system. The result is interference between the echoes of different amplitude and
phase, leading to an apparent echogenicity that changes depending on the spatial configuration
of the scatterers within each resolution cell and the orientation of transmitting and receiving
elements. In addition to speckle, there is also electronic noise that degrades US images, which
is not the focus of this work. Speckle, while sometimes referred to as noise, is a deterministic
phenomenon. In fact, if it were possible to place an US transducer at the exact same location
when repeating a scan, the resulting speckle pattern would be exactly the same.
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(a) Unfiltered (b) Filtered: OBNLM (c) Filtered: Ours (d) Blending

Comparison of image appearance of a thyroid. Unfiltered (a), despeckling with a state-of-the-art
method (OBNLM) (b), despeckling with our method (c) and a linear combination of (a) and (c) in (d).

4.2 Related Work

Conventional despeckling approaches such as speckle-reducing anisotropic diffusion (SRAD)
[128] and the Optimized Bayesian non-local means filter (OBNLM) [19]—itself building upon
non-local means (NLM) [12]—have been studied extensively. We refer the interested reader to
the review from Mohd Sagheer and George [79]. Especially the latter method OBNLM exhibits
excellent despeckling performance, but requires application-specific tuning and significant
processing time.

Cammarasana et al. [14] alleviate both these concerns by using a regression CNN that is
trained against images despeckled with a tuned, computationally expensive conventional
method, thereby allowing the CNN to replicate its results while lowering the execution time.
Yang et al. [126] propose a dual-branch network operating on high- and low-spatial frequency
components of the image (and feature-maps). They use clinical images despeckled with some
other method as training target and add speckle following a simplified model to generate
the input data for training. The performance of their approach is comparable with OBNLM.
Khor et al. [53] apply a dual-path network after wavelet-transform, treating the low and
high-frequency components of the images separately. In the absence of noise-free images,
they propose an approach using a generative adversarial network, where the generator and
discriminator are first trained on synthetic images of limited realism—paired noise-free and
high-noise image, generated by the application of multiplicative noise to optical images.
The networks are then fine-tuned with phantom US image pairs, where only high-noise and
low-noise (images despeckled with another method) pairs are available for training. During
fine-tuning, the networks task is to predict the low-noise image based on the high-noise
image.

A number of approaches in the literature use learned methods that are trained on simulated
US data. They then use the echogenicity map that was used to generate the simulated image
as the training target, effectively creating a method for regression of the tissue echogenicity.
Ando et al. [1] use Field-II simulated images as the network input and a spatial map of
the scattering strength as the target image. This approach was also investigated by Jin and
Palmeri [51] in their work on the effects of US data representation on the performance of deep
learning methods. In a similar approach, Hyun et al. [43] use Field-II simulations to train a
network whose output is a speckle reduced image. The echogenicity map is used as target
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image. Contrary to the methods working on beamformed images, the input for the network is
the individual US elements signals (channel data) as well as a beamformed image, limiting
it’s applicability to systems with access to the channel data. The use of the echogenicity map
as training target, however, means that some phenomena specific to US imaging can not
be directly represented in the data, leading to the potential removal of these image aspects.
This includes shadowing, e.g. around stones, which can be used for detection and treatment
decision based on their size [22]. It also becomes difficult to realistically account for direction
dependant visibility of structures such as vessel lumen, bone interfaces or most prominent
needles.

In other areas different to US imaging, there exists a body of work on the task of image de-
noising without requiring perfectly matched pairs of corrupted and clean data. In Noise2Noise
[63], a CNN learns to restore images from a number of different corruptions, by using a
corrupted image as input and a second image of the same "scene" with a different realization
of the corruption as training target. The authors show that this can reach the performance of
methods training against clean images. Noise2Void [58] takes this even further by requiring
only unpaired corrupted images, it requires however, strong assumptions on the corruption,
namely zero-mean and per-pixel independent noise.

Given the difficulties of acquiring clean images in many medical imaging modalities, these
general approaches have been further specialized. In optical coherence imaging, a few well-
chosen modifications to the acquisition setup can allow for the acquisition of two independent
speckle instances with otherwise unchanged scanning setup [127], effectively allowing for
direct use of Noise2Noise. However, this method cannot be directly applied to US imaging, as
these modifications are not possible in US scanning setups.

In this chapter, we build on the concept of exploiting two independent corrupted observations
with the same scanning setup and geometry, and transfer this to a generalizable method for
US imaging. In this way, we present a technique for learning a CNN-based US despeckle
filter only from images containing speckle. To do so, we apply the concept of Noise2Noise
[63], combined with a scheme for US simulation for data generation, and modifications to
the training loss to enhance the image appearance in a method we call Speckle2Speckle. By
simulating different observations of the same general anatomical geometry but with different
scatterer locations, we create images with uncorrelated speckle patterns. In our qualitative
comparison and quantitative evaluation with state-of-the-art approaches, we show that the
method can remove speckle from real US data efficiently while not relying on manual data
annotation or acquisitions, while the application of the filter is several orders of magnitude
faster.

4.3 Method

In this section we first summarize the original formulation of Noise2Noise, followed by a
description how we create simulated US images to be used with a denoising approach like this,
and the modifications that were required to account for the peculiarities of US. Figure 4.2
shows a comparison between the concepts for conventional (clean-target) [14], Noise2Noise
and Speckle2Speckle filter learning.

4.3 Method
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Overview of training a model with corrupted data input to clean data output (a), Noise2Noise training
with both corrupted data inputs and outputs of different realizations (b), and Speckle2Speckle training
with corrupted realizations of US data simulated from the same tissue model (c).

4.3.1 Noise2Noise

Noise2Noise [63] is a deep-learning based technique for general image restoration that does
not require clean, uncorrupted data for training. In a conventional restoration approach, one
would use corrupted images as input and clean images of the same scene as the training target.
In their work however, Lehtinen et al. derive, from a statistical perspective, that a network
trained with infinite samples can learn to estimate the expectation of the target samples. This
allows the input images as well as the target images to be corrupted with noise, like image
noise observed with digital image sensors. The authors show that the networks trained in this
manner perform on-par with networks trained against clean data.

These relaxed requirements on the training targets allow for the application of this technique
to situations where the acquisition of clean targets is either costly or impossible all-together. In
their work, Noise2Noise is applied to a number of different image corruption scenarios ranging
from photographs subjected to Gaussian-, Poisson- and Bernoulli-noise or text-overlays, Monte-
Carlo rendered images, and even MRI acquisitions in the randomly sampled k-space. The
network architecture is a modified U-Net following [93], see Figure 4.3.
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Network architecture of Noise2Noise and Speckle2Speckle. Numbers left of each box show the sizes
of the feature maps, exemplified with a 128 by 128 pixel input. The number of channels per feature map
is given by the numbers above the boxes. Different arrows represent different operations. The rightmost
convolution (marked with %) has linear activation.

4.3.2 Speckle2Speckle: Data

US imaging is a perfect example for a situation where a noise-free target image is difficult
to obtain: since diffuse scattering is present for any US acquisition, speckle patterns remain
visible at any time for acquired echo data. Thus, one can argue that in US imaging, there
is no image without speckle. The strong correlation between the location and scattering
behaviour of the tissue inhomogeneities causing the echos and the locations of extrema in
the observed reflections (i.e. the speckle pattern), however, makes the acquisition of multiple
images with independent corruption (of the desired echogenicity measurement) difficult for
real acquisitions.

However, we can instead turn to realistic US simulations, where we can exploit the specific
control over individual scatterers to generate an arbitrary amount of corrupted datasets for a
given setup. The training data for Speckle2Speckle is generated with the simulation software
Field II [48, 49]. Field II is based on the computation of the spatial impulse response of the
US transducer elements. Assuming constant speed of sound throughout the medium and
linear wave propagation (no generation of harmonic components), it accurately models the
propagation of the excitation pulse to the scatterers, the reflections caused by them and the
interactions between the reflected signals at the individual transducer elements. The resulting
channel data—the signals received from each transducer element over time—is then processed
in the same manner as is done with real US acquisitions to form images.

Images are generated in pairs, using independent in-silico scatterer phantom datasets (col-
lections of scatterers with associated scattering strengths). These in-silico scatterer phantom

4.3 Method

51



Fig. 4.4.

52

datasets are derived from the same geometric phantom, which is a collection of 3D shapes
each of which with a number of parameters describing their appearance in US imaging and
scatterer parameters:

* scatterer density

* scatterer amplitude distribution

» presence or absence of an interface
* interface scatterer density

* interface scatterer amplitude distribution

For the shapes that define the inclusions, we chose spheroids and cuboids. While neither
of these shapes are common in biological tissue, the shapes exhibit common local features:
varying inclusion surface curvatures including no curvature. Thus, the combination of these
structures consider a wide range of interfaces as observed in biological tissue through the
different angles, curvatures, and the overlap of multiple shapes.

Based on the these properties, this approach allows for the generation of scatterer phantom
datasets with independent scatterer locations and is thus ideally suited for approaches such
as Noise2Noise. Scatterer locations can be generated randomly, but since the "macro-scale"
geometry (e.g. areas of higher scattering) is the same, the US images created from the different
scatterer phantoms look structurally identical and even the speckle distributions are identical.
The main difference, however, is that the speckle pattern "instance" is different, for which an
example is shown in Figure 4.4a and Figure 4.4b.

(a) Instance 1 (b) Instance 2 (c) Average (d) Interface map

Comparison of the different image types created through simulation: US images of two different
scatterer instances from the same phantom geometry (a) and (b), average of nine US images from the
same geometry (c), interface map derived from the phantom geometry (d).

While the training is performed with pairs of scatterer instances, we use a different target
for the testing and validation. In order to facilitate the evaluation of speckle removal in the
absence of noise-free images, we compare the output of our method with an image that is
composed by averaging multiple US images of the same phantom geometry but different
scatterer instances. For the test and validation sets, we generated 10 instances per phantom,
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one of which is used (randomly) as input, the other nine are averaged. Figure 4.4c shows
the average of nine images corresponding to the same geometry as in Figure 4.4a and
Figure 4.4b.

In addition to the US images, we also derive an interface map directly from the geometric
phantom. Being of the same size and spatial origin as the simulated US images, it contains
whether an interface of a shape was present at each location. Figure 4.4d shows the interface
map associated with the geometry used for the simulations of the US images in Figure 4.4.
This is later utilized to adapt the training loss to the challenges of US imaging in order to
achieve enhancements of prominent interfaces in the output.

Following this general scheme, a dataset was generated with a training set consisting of
1000 image pairs while the validation and test sets each contain 100 phantom geometries
with 10 speckle instances per phantom geometry, resulting in 4000 simulated images in total.
Fundamentally, the size of the dataset was limited by the simulation time, where each image
required roughly between one and two days on a single CPU core to simulate (depending
on the concrete number of scatterers and the CPU performance), although parallelization
between images was trivial.

Conventionally, the scatterer density is chosen at or above 10 scatterers per resolution cell A\
(where ) is the wavelength of the transmit pulse) to ensure fully developed speckle [115].
If the scatterer density is not high enough, there is the possibility of spurious dark-regions
forming in areas that are intended as homogeneous medium. The run-time of the chosen
simulation method, however, is linear to the number of scatterers in the scatterer phantom
dataset. So in order to limit the simulation run-time, the scatterer densities values were
empirically determined as high as required such that further increase did not cause a change
in the speckle patterns.

The probabilities of geometries being anechoic and the scatterer amplitude distributions were
determined arbitrarily to ensure visibility of the different regions. The specific parametrization
used to determine the macro-scale geometric phantom properties is listed in Table 4.1, where
"probability anechoic" represents the probability that a given geometric region (background or
inclusion) is anechoic, i.e. devoid of scatterers.

The simulated imaging protocol used focused imaging and it followed the same restrictions as
an actual focused scan using a CPLA12875 probe with a cQuest Cicada (both Cephasonics, CA,
USA) would be subject to. Table 4.2 contains the detailed acquisition parameters.

The output of the simulations was US radio-frequency channel data, which was subsequently
processed to US images using SUPRA [32] with parameters as in Table 4.3. After delay-
and-sum beamforming, envelope detection and log-compression, the resulting images were
converted to PNGs and interface indicator maps for inclusions with an interface were created
by examining the geometry at every pixel location for the presence of an interface.
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Region Parameter Value
Background probability anechoic 0.4
scatterer density 0.333 x 10"9m™3
scatterer amplitude normal distributed A/(0, af,g);
obg drawn per phantom from A/ (1,0.5%)
Inclusion random objects spheroids & cuboids, uniformly distributed

number per phantom
extents

probability anechoic
scatterer density
scatterer amplitude

100

drawn per axis uniformly from [1, 5] mm
0.4

0.333 x 10"m ™

normal distributed A (0, 02.);

oinc drawn per inclusion from N(4, 2%)

Inclusion Interface

probability interface
scatterer density
scatterer amplitude

Simulated phantom parameters and values

0.5

5x10°m™

constant per inclusion,

drawn per inclusion from A/(14, 22)

Parameter Value
transducer CPLA12875
number elements 128
element pitch 0.30 mm
elevation focus None
transmit frequency | 7MHz
transmit pulse bipolar
imaging depth 60 mm
focus depth 30 mm
steering 0°
number scanlines 128

TX aperture size 32

RX aperture size 64

Simulated acquisition parameters and values

4.3.3 Speckle2Speckle: Learning

The network architecture employed in Speckle2Speckle follows Noise2Noise (see section 4.3.1).
The training loss, however, was adjusted for the peculiarities of US imaging. While the original
Noise2Noise approach used different loss data terms depending on the noise, we extended the
data term L, with a term to enhance the appearance of interfaces in the images, as interfaces
retain key information for interpreting US imaging data.

The interface term is based on the known locations of interfaces given by the interface indicator
map ;. We chose a smoothed version of the interface indicator map Ijc = ¢; * I; as spatial
weight for the interface loss, where g; is a 2D Gaussian with standard deviation o;. This serves
to i) extend the range of the interface effects from the potentially sharp peaks in the interface
map, as well as ii) achieve a smooth transition between the effects of the data term and the
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Parameter Value

beamforming DAS with hamming window
dynamic range 70 dB

image resolution | 0.075 mm

image width 37.6 mm = 502 pixels
image height 60.0 mm = 801 pixels

Image reconstruction parameters and values

interface term. The data term is spatially weighted with the inverse weight i = 1 — I;;. With
that, we formulate the overall loss Lp as

Lp(Io, I, Ii) = Lo(Io ® Lig, It ® Iig) + ASp (I, I+, Ty), 4.1
1
SD(IO7 Ita Il) = @ Z ((IO * gpsf - I‘[) @ IiG)2 ) (42)
€N

where I, is the network output, I; the target image, A\ the weighting of the interface term, ®
denotes the Hadamard product (element-wise multiplication) and gy a filter kernel of the
point spread function (PSF). Q is the set of pixel coordinates z in the images. The notion
for the interface term is: In the target image, the interfaces are smoothed by the PSF by

the process of imaging. Whereas in the output image the goal is to reduce the blurring, i.e.

increase the sharpness. Consequently, the term I, * g, — I; penalizes deviations in I, from
sharp peaks. The PSF in this case could be the result of a per-image estimation, learned for
one specific system, manually determined for one system or treated as hyper-parameter. We
assumed the PSF to be an anisotropic Gaussian, with Uﬁsf = FWHM],;/2 and agsf = FWHM,/2
determined experimentally from a simulated point reflector, where we measured the full width
half maximum (FWHM) in lateral and axial directions. The hyper-parameters and their values
are listed in Table 4.4.

Parameter Value

A 500

learning rate | 3 x 107°

epochs 1000

oi (interface) | 0.375mm = 5 pixels
Ugsf (axial) 0.075mm = 1 pixel
O';Sf (lateral) 0.525 mm = 7 pixels

Training hyper-parameters and their values

4.4 Evaluation

In order to achieve a fair comparison we evaluate our approach to a group of well-established
and state-of-the-art speckle filters, and provide qualitative comparisons and quantitative
evaluations for the simulated, phantom, and in-vivo datasets in the following. To this end, we
compare the results of our method against SRAD! [128], median filter?, bilateral filter? [111],

limplementation from [135]
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non-local means? (NLM) [12], and optimized Bayesian non-local means® (OBNLM) [19].
Table 4.5 contains the parametrization used for the mentioned methods. These parameters
were obtained through qualitative tuning on the in-vivo image in Figure 4.7a. The in-vivo
image was chosen for tuning of the methods, as it represents the eventual use-case for all
methods—for any system in clinical use, the processing pipeline would be optimized for
in-vivo use. Additionally, while it would have been technically possible to perform quantitative
tuning on the inputs and average images of the test set, the required computation time for the
used implementations would have been prohibitive.

Method | Parameter Value
SRAD number of iterations 200
lambda 0.1
Median window size 15
Bilateral | degree of smoothing 0.05
spatial sigma 5
NLM degree of smoothing 0.075
search windows size 101
comparison window size | 21
OBNLM search area size 101
patch size 45
degree of smoothing 1.05

Comparison method parameters and their values after manual tuning on the image in Figure 4.7a.

4.4.1 Qualitative Comparison

Simulated data. In the simulated image from the validation set (see section 4.3.2) shown
in Figure 4.5, we can visually compare the result of applying the different methods directly
with the average image of nine speckle instances. It is clear that SRAD (c), median filtering
(d) and the bilateral filter (€) mostly change the appearance of the speckle, but do not fully
remove it. NLM (f), OBNLM (g) and our method (h) all remove the speckle very well. In the
outlined area in the top of the image, the less dense speckle is not fully removed by OBNLM.
Another noteworthy region is the rectangular object in the top left that has a bright interface
in the input as well as the average image. NLM and OBNLM do not retain this feature with
high contrast, whereas our method shows contrast close to the average image. The interface
indicator map corresponding to this image is shown in Figure 4.4d. The elliptic object in the
bottom right appears in our method not as clearly as it is visible in the average image, we
believe this is due to comparatively low brightness of interface around it. The other methods,
however, also struggle to highlight the object.

Phantom data. The experimental image in Figure 4.6 shows an US quality assurance phantom
(Model 040GSE, CIRS Inc., Norfolk, VA, USA). The image was acquired with a CPLA12875
probe and a cQuest Cicada (both Cephasonics, CA, USA), with equivalent imaging parameters
as used for the simulations (see Table 4.2), but with an imaging depth of 45 mm. Being
acquired from a physical phantom, there is no average image as reference, but the distinct
regions in the phantom are constructed as regions of homogeneous scattering. The image
shows a background region, several string reflectors, as well as two different circular hyper-

2implementation from MATLAB R2020b
3implementation from [133]
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(a) Original (b) Average image (d) Median

(e) Bilat. (f) NLM (g) OBNLM (h) Ours

Qualitative comparison on a simulated image. The original speckled image (processed following
Table 4.3) (a), the average of nine different scatterer instantiations (b), output of SRAD (c), median
filter (d), bilateral filtering (e), NLM (f), OBNLM (g) and ours (h).

echoic inclusions. The result of SRAD (b), median (c¢) and bilateral (d) show the same general
patterns as with the simulated data—not succeeding in completely removing the speckle.
NLM (e), OBNLM (f) and our method (g) are again close to that goal. While NLM shows the
smoothest image among the three methods and shows a sharp edge of the bright inclusion,
it suppresses the string responses more. The result of OBNLM is almost as smooth as NLM
overall, but it shows inhomogeneities around the bright inclusion and its outline is not as
well defined as with the other methods. Our method—while smooth locally—shows a certain
inhomogeneity in the background, but does not suppress the point reflectors as strongly and
has a clear demarcation of both inclusions.

In-vivo data. In the in-vivo image in Figure 4.7—a cross-sectional view of the thyroid of a
healthy volunteer acquired with the same configuration as the phantom data with 35 mm
depth—we can see that SRAD (b), median (c) and bilateral filtering (d) perform better than
in the simulated and experimental cases, although NLM (e), OBNLM (f) and our method (g)
exhibit a significantly more homogeneous appearance in the thyroid and especially OBNLM
and our method retain more sharpness in comparison. While OBNLM better captures the
muscle interfaces over the carotid artery (top right of the image) compared to our method, it is
also less smooth in the overall area of the carotid. Our method does not retain said interfaces
completely, but is not disturbed by the clutter within the artery.
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(a) Original (c) Median (d) Bilateral

(e) NLM (F) OBNLM (g) Ours

Qualitative comparison on an experimental phantom image. The original speckled image (processed
following Table 4.3, imaging depth 45 mm) (a), the output of SRAD (b), median filter (c), bilateral
filtering (d), NLM (e), OBNLM (f) and ours (g). The marked regions in the inclusion and background
are used for quantitative evaluation.

4.4.2 Quantitative Evaluation

Simulated data. For the quantitative evaluation in the simulated case we utilize the average
images as an approximation of the speckle-free image. We perform this for all 100 simulated
images in the validation set and the corresponding average images. The input images are
scaled to the range [0, 1] before application of any of the methods. Table 4.6 shows the mean
and standard deviation of the mean squared errors (MSE) and the mean absolute differences
(MAD) between the considered methods and the average images. All methods besides SRAD

Method MSE (x1073) MAD (x1072)
Input 5.87 +1.31 5.86 4+ 0.87
SRAD 2.33 +0.86 3.61 £ 0.76
Median 1.82 +0.25 3.25 +0.33
Bilateral 1.48 +0.20 2.94 + 0.30
NLM 1.27 £+ 0.09 2.70 +0.13
OBNLM 1.48 £ 0.15 2.87 +0.20
Ours 1.20 £ 0.11 2.60 + 0.20

Quantitative comparison on 100 simulated images from the validation set. It shows the mean and
standard deviation of the MSE and the MAD between images processed with each methods (and the
unprocessed input) against the average images of nine speckle instances. Lowest error mean and
standard deviation for both MSE and MAD are highlighted in bold without implying significance.

and median show a similar performance with respect to MSE and MAD, where our method
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(a) Original (b) SRAD (c) Median (d) Bilateral

(e) NLM (f) OBNLM (g) Ours

Fig. 4.7. Qualitative comparison on an in-vivo image. The original speckled image (processed following

Table 4.3, imaging depth 35 mm) (a), the output of SRAD (b), median filter (c), bilateral filtering (d),
NLM (e), OBNLM (f) and ours (g). The marked region in the thyroid is used for quantitative evaluation.

yields the best result. Note, however, that while the proposed method was trained on data
from this domain, the comparative methods were tuned on the in-vivo image. In combination
with the clearly varying image appearance of the different methods, this emphasizes the
trade-offs between the methods compared here.

Phantom and in-vivo data. In the experimental and in-vivo images it is not possible to observe
different speckle instantiations and thus no average image can be computed. Consequently, we
focus on homogeneous image regions, namely the hyperechoic inclusion and the background
for the phantom dataset (see Figure 4.6a) as well as the thyroid in the in-vivo dataset
(see Figure 4.7a). Within those regions of assumed homogeneous scatterer distribution the
ideal speckle removal filter would result in a flat response. Figure 4.8 shows violin plots of
the intensity distribution in the marked regions of the phantom images, while Figure 4.9
shows those of the in-vivo image regions. The results of NLM, OBNLM and our method on
the experimental image show very similar distributions; SRAD, median and bilateral-filter
however are less tightly packed. This generally is matched by the evaluation for the in-vivo
image data, but the distribution of our method is less pronounced than NLM and OBNLM.

In Table 4.7, we show the image intensity standard deviations within the homogeneous image
regions. As expected from the violin plots, SRAD, median, and the bilateral-filter exhibit
larger standard deviations in the three regions than NLM, OBNLM and our method. While our
method does not outperform NLM and OBNLM—which share best performance within the
three regions and were tuned on the thyroid image—it shows how well our method translates
to real US data, despite not having been trained with real images.
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Fig. 4.8. Image intensity distribution within homogeneous background region (a) and hyperechoic inclusion
(b) of the experimental images.

4.5 Discussion

The qualitative and quantitative evaluations show that Speckle2Speckle works well in the
simulated images, performing on-par with or even outperforming NLM and OBNLM, as can be
seen in Figure 4.5 and Table 4.6. It also performs well in real acquisitions, although no real
images have been used for training. There are shortcomings however, especially regarding the
overall smoothness as in the background area and the reproduction of the point scatterers in
Figure 4.6. Yet, it seems the highlighting of interfaces translates well to real images, with the
exception of the linear structures in the muscle layer above the carotid artery in Figure 4.7.
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Fig. 4.9. Image intensity distribution within homogeneous thyroid region of the in-vivo images.
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Region Experimental (x10~2) In-Vivo (x1072)
Method Background Inclusion | Thyroid

Input 7.10 7.58 8.96

SRAD 3.55 3.96 5.89

Median 3.37 3.83 6.05

Bilateral | 2.39 2.69 5.42

NLM 1.49 0.96 4.21

OBNLM 1.32 1.60 4.20

Ours 1.61 1.51 4.54

Tab. 4.7. Quantitative evaluation on the experimental and in-vivo images and shown in Figure 4.6a and
Figure 4.7a respectively. The table shows the image intensity standard deviation in homogeneous regions
in the background and foreground of the experimental images, and within the thyroid in the in-vivo
case. Lowest standard deviation per region highlighted in bold without implying significance.

Since US is mostly used interactively, the run-time of algorithms in the imaging pipeline is of
importance. The proposed method can be performed within tens of milliseconds on a recent
GPU, making it suitable for real-time use.

4.6 Outlook and Future Work

We have shown with Speckle2Speckle a technique for training despeckling filters purely on
simulated data as well as the generation of the simulated data. The concept is intriguing,
since it allows for the generation of multiple speckle realizations from the same underlying
geometry. The learned filter translates well to real acquisitions, performing similar to NLM
and OBNLM, while allowing for real-time execution.

The method also enables the creation of matching maps with high-level information on the
structures present in the image that can be used to guide the outcome of the method during
training—as we have done with interfaces in this case.

As discussed by [126] in their ablation study, their network architecture that treats the low
and high spatial frequency components separately can outperform pure convolutional residual
networks in speckle removal. It would be interesting to explore the combination of the training
and loss approach proposed here with the architecture proposed by them or the wavelet-based
adversarial method described by [53].

Including single point scatterers and/or strings in the simulated images could improve the
reproduction of those structures. They could be included in the interface map used for
sharpening or placed in a separate map all-together, only depending on the desired appearance.
This aspect of using additional geometric maps to tune the result for particular locations could
possibly be exploited beyond speckle removal, for example for clutter filtering in blood vessels
within the same filter pass.
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Image Quality in Robotic
Ultrasound Imaging

This chapter presents our work on image quality improvement in autonomous robotic ul-
trasound acquisitions. It is achieved through an US specific planning stage that takes the
expected image quality into account.

Section 5.1 describes the motivation and related work on robotic US and planning thereof.
In section 5.2 we present the proposed planning approach which is evaluated in section 5.3,
followed by a discussion in section 5.4.

Substantial parts of this chapter have been published and are quoted verbatim:

[33] Riidiger Gobl, Salvatore Virga, Julia Rackerseder, Benjamin Frisch, Nassir Navab,
and Christoph Hennersperger. “Acoustic window planning for ultrasound acquisi-
tion”. International Journal of Computer Assisted Radiology and Surgery (June 2017),
Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/).

5.1 Motivation and Related Work

Sonography is a fundamental imaging modality for chronic cancerous [72] and non-cancerous
[109] liver diseases. Novel develompents in ultrasound (US) research, such as perfusion
imaging [18], further contribute to its importance as a screening and interventional imaging
device. Its main drawback, high operator variability, could be overcome by a robotic US
imaging approach, that would allow for reproducible and precise data acquisition [40]. This
will enable improved longitudinal studies and automated interventional US imaging, providing
versatilities similar to other interventional imaging modalities such as Cone-Beam CT (CBCT),
frequently employed in clinical practice.

Aiming at widespread applications, however, the automatic planning of US trajectories needs
to be addressed not only in 2D, but also in 3D. The latter provides crucial information in a
number of clinical settings, such as diagnosis of hepatic diseases [59]. For planning, both
the US probe position as well as its orientation heavily impact the resulting image quality.
Consequently, one has to account for the directional physics of US imaging with acoustic
attenuation, potential shadowing, and other imaging artifacts such as reverberations. Beyond
the basic US-related constraints, the probe position planning needs to consider anatomical
constraints such as the patient surface, and optimize for the resulting (expected) image quality
to avoid adverse objects (e.g. bones in US). Only this way, an optimal acquisition can be
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performed for a given target anatomy. While a generalized planning can still be considered
for easily accessible organs and structures such as the carotid artery, here we focus specifically
on automatic acquisitions for organs with non-trivial acoustic windows, such as the liver or
the heart.

Despite first approaches to US acquisition trajectory planning [34], a full optimization of
2D- and 3D-US acquisition trajectories with respect to the resulting image quality was to our
knowledge not considered so far. In this regard, we introduce a novel planning framework
for autonomous 2D- and 3D-US, and include geometrical, anatomy-based, and imaging-
physics-based constraints to automatically retrieve the optimal position and orientation for a
specific target point of interest. To optimize for the image quality, we integrate US attenuation
estimates in our planning, which are derived from existing tomographic data such as CT and
MRI. Ultimately, we aim at closing the gap for US trajectory planning, making autonomous US
imaging more versatile.

In view of prior work covering planning of automatic US acquisitions, a general US probe path
planning is proposed in [34]. The method allows for the full coverage of a region of interest,
but does not consider the resulting image quality of the planned acquisition to optimize
for appropriate acoustic windows. More recently, [40] and [113] showed the feasibility
and accuracy of autonomous US acquisitions performed by a robotic system, introducing
concepts for constant force acquisitions with lightweight robots. The focus of these studies
was, however, not on planning of the US trajectories based on the optimization of acoustic
windows, but on their actual execution. The proposed systems employ US confidence maps
[41, 52, 55] to estimate the quality of acquired US images, which can only be used during the
acquisition itself but not for quality simulation. Thus, they cannot provide a global optimal
planning. For a targeted quality optimization in a planning stage, US simulation approaches
as in [56, 97, 122] make use of the physics-based properties of US-imaging, and focus on
the synthesis of realistic images or images with realistic appearance. They do not provide a
measure of image quality to assess the anatomical constraints linked to determining the best
acoustic window for an acquisition.

5.2 Acoustic Window Planning

In this section we introduce a method to determine optimized US probe positions for the
acquisition of single US images. We show how a US sensor model can be used to integrate
hard constraints, allowing the automatic planning of acquisitions for a target point (or
structure) with a predefined US probe (Sec. 5.2.1). On this basis, we describe how acoustic
transmission estimates can be used to retrieve the best acoustic window for a target structure
(Sec. 5.2.2). Finally, the overall probe position planning is described, which incorporates
the aforementioned parameters for optimization of the probe position and its orientation
(Sec. 5.2.3). An overview of the proposed planning workflow is depicted in Fig. 5.1.
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Fig. 5.2.
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Schematic workflow of our method. For a defined target point, pose candidates are selected according
to the hard constraints given by the US probe and acquisition properties. Next, the transmission of
acoustic waves is optimized such that the best possible pose is selected to cover a defined target point.
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Constraints for US probe placement, as determined by the image plane in axiolateral (a) and eleva-
tional (b) directions, as well as by the need for correct acoustic coupling of the US probe (c).

5.2.1 Sensor Model

US imaging imposes certain requirements with respect to the probe positioning based on
the underlying US imaging physics (longitudinal acoustic waves), the acquisition parameters
(wavelength, field of view) as well as the transducers hardware design (piezo element size
and array shape). During their training, physicians learn to intuitively regard for all these
parameters to identify reasonable acoustic windows for certain target structures. To mimic
a similar behavior for automatized acquisition planning, we model a set of constraints for
US pose optimization and evaluate a set of pose-candidates with respect to the expected
image quality. While 3D-US allows for improved structural coverage by acquiring volumetric
information, at first we specifically focus on the foundation of 2D US imaging, and later extend
the concept to 3D-imaging with freehand sweeps in Sec. 5.2.4.

The task of single view probe position planning is to find a corresponding US probe pose
Tys to allow for optimal imaging of a target point P, defined by the operator. For automatic
acquisitions, we assume that pre-operative images are employed for the planning, in our case
X-ray Computed Tomography (CT). From these images, a target point or structure is selected,
and the probe positioning planned accordingly. For US imaging, resulting images are defined
by the system settings (e.g. penetration depth d,,, frequency) and the probe geometry. With
the discrete patient surface S extracted from the CT, we select a subset S of points s € S for
which the target point can be imaged based on these parameters. This is influenced by the
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image depth and the axial orientation of the probe with respect to the corresponding surface
normals n
Sc={seS8: |P—s| <dy N (dg,ns) <}, (5.1

with the transducers axial orientation d, restricted to the connection to the target-point
(P, — s)/|P, — s|. By doing this, one ensures that the target is always within the image-plane,
given the depth-constraint is fulfilled.

Fig. 5.2 shows intuitively how these constraints are enforced in order to allow for US probe
planning. To maintain sufficient acoustic coupling and ensure patient comfort, we restrict
the angle between the target (patient) surface and the US probe. This limit depends on a
number of factors including the transducers physical geometry and the stiffness of the covering
tissue-layers. During our experiments we used « = cos(30°). These constraints thus guarantee
that the region of interest is inside the image and that the insonificating pulse can reach the
patients skin.

5.2.2 Attenuation Estimation

The identified pose-candidates allow for the acquisition of images for a target region of interest,
yet they do not regard for features of the patient anatomy, which could heavily influence
the US image quality. In order to identify a suitable acoustic window for a target point, one
has to ensure that sound waves reach the target with sufficient wave intensity. This thus
corresponds to finding a linear path to the target that exhibits low attenuation while traversing
the tissue.

Building on the efforts of Wein et al. [122], we propose an attenuation estimation based on
CT, which is employed for acoustic window planning to evaluate possible poses as identified in
Sec. 5.2.1 with respect to their expected image quality. The acoustic transmission coefficient
of US waves through an interface of two tissues with acoustic impedances Z; and Z; can be
written as

2
ZQZl) (5.2)

t(41,22)=1— | =——
(13 2) <Z2+Zl

Using the approximately linear relationship between density p and X-ray attenuation coefficient
u in tissues [98, 122], this can be rewritten as

2
At(z) =1— (25(%)) : (5.3)

where a constant speed of sound is assumed for simplicity. US waves can traverse several
tissue interfaces, such that the overall transmission from a base point b along a ray of direction

B ©/JAub+ )]\’
t(x) =exp </0 (2/,6([)—|-l1})> dl> , 5.4

with z = b+ av,a € RT. To account for the processing in common US imaging pipelines, a

v is

log-compression is applied to the transmission estimate

o log(14 vt(x))
t(r) = W, (5.5)

Chapter 5 Image Quality in Robotic Ultrasound Imaging



Fig. 5.3. Mean transmission estimation 7 for one target point in the liver, drawn for each surface point.

with v = 0.5 representing a constant compression factor in this work, comparable to the
findings of Wein et al. [122]. As the respective US probe geometry and resulting image
geometries are known a-priori (number of elements N,;, scan-line origins w.r.t. the central
element b, and their direction v;), we can approximate the US transmission for a pose
candidate and retrieve an average transmission value ¢ for each relevant surface point s € S,
and transducer orientation R € SO(3)

Nel d
_ 1 v
s, R) = 5o ;:1: /0 E(R(b; + vy) + s)dl, (5.6)

thus computing the mean along all scan-lines. As the average transmission is mainly influenced
by strong reflectors (e.g. bone) between the target structure and the respective surface point,
this allows for the identification of surface points with higher wave intensities (and thus better
signal to noise ratio) at the target structure. Fig. 5.3 shows the exemplary mean transmission
values estimated for each point on the surface for a target point inside the liver.

5.2.3 Probe Position Planning

On the foundation of the hard constraints and the transmission model, we can retrieve a
patient-specific optimal US pose to cover a target point with maximized acoustic intensity.
Anatomical factors such as the ribs will cause strong reflections (i.e. low transmission) for
certain probe orientations, whereas a change in its position potentially has smaller effects on
the expected transmission. We propose a two-stage quality maximization, where the best angle
is retrieved first, since the transmission values should be almost convex w.r.t. the probe angle.
The surface position s is then optimized to retrieve the final US probe pose Ty s = (R, 3).

In our case, the US probe pose is already characterized by a base point on the patient surface

s; € S and the axial orientation d,. Therefore, the goal of the first optimization stage is to find
the best transducer orientation Rys for the acquisition in one degree of freedom. By defining
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the axial direction to be d, = (P; — s;)/|P: — s:|, we effectively align the transducer center
towards the target-point and reduce the space of eligible orientations to the rotations around
d,. The mean transmission ¢ can then be employed as quality metric in order to maximize the
overall transmission for a given target position

(s,0) = argmax  t(s, Ra,(9)), (5.7)
(5,0)ESc X[0,...,7[

where Ry, (¢) is the rotation around the fixed axis d, by the angle ¢. Intuitively, by maxi-
mizing the transmission across one image and different image candidates, those with a low
transmission are rated lower and discarded in the optimization.

5.2.4 Planning of 3D-trajectories

Generalizing the proposed method for 3D-trajectories, we optimize the best acoustic window
for the acquisition of all the N, target points P,; within a structure. The 3D-trajectories
planned by our method are restricted to one base point s € S, and only vary with respect to
their orientation. By choosing a point that allows for high transmissions to all target points,
we ensure that all poses are within an acoustic window.

Ny
(5, (i, ON,)) = arg max [T Ra(62)), (5.8)

(5,(Pirs ) ESTX([0,...,w[) N ;5

where the set of surface points has to fulfill the hard constraints w.r.t. every target point
Sr = ﬂZN:"l Sci. We follow the same two-step maximization approach as above by first
selecting the best rotations for each target point and surface point s € Sr, followed by
selecting the base-point with the overall best transmission.

5.3 Experiments

As acoustic window planning has not been considered so far, we compare the results of the
proposed planning framework to a naive planning, comparable to the planning approaches
in [34, 40]. This consists of choosing the surface point s,, nearest to the target point P, as
base-point for the acquisition. The transducer orientation d, is then chosen in the same way
as described in Sec. 5.2.3, while minimizing the angle between the transducer and the surface
normal n,, at s,. By doing so, the transducers lateral axis d; is (n,, X dg)/|nn X du|. When
multiple views are considered, the naive approach is to choose the base-point and d,, as for
single-views and the elevational direction d. as the rejection of the input-trajectory direction
dr from d,, aiming at trajectories with parallel image planes.

d dr — do (da, dr)

— 5.
= e — da (da.dr) | (59

We first perform a set of experiments on publicly available datasets (Sec. 5.3.1), as well as for
a torso (rib) phantom, where scans are performed with a robotic US system (Sec. 5.3.2).
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Fig. 5.4. Comparison of single-view poses for the N, target points for one subject from the SLIVERO7 dataset

[39] together with a render of the underlying CT volume. The orientations of the image axes are
visualized with colored lines, green for axial and blue for lateral directions. (a) shows the plans created
naively. The results of our method are shown in (b).

The planning was performed on a workstation (Intel i7-4820K, NVIDIA Titan Black) and the
computation of the mean transmission was implemented in CUDA. Computing the best poses
for 10 target points took on average 356 seconds.

5.3.1 Synthetic Planning

Using a dataset of 20 annotated upper-torso CTs from the SLIVERO7 challenge dataset [39]
we performed an evaluation of the proposed single and multi view planning method. The
volumes featured different portions of the thorax and abdomen respectively, but all contained
the liver with some margin. For our evaluation, we chose N, = 2000 random points inside the
liver segmentations and manually defined between 4 and 6 plans for each volume to cover the
large vessel trees. This resulted in a total of 100 multi-view plans for all evaluated datasets.

Stability

We demonstrate the effectiveness of our acoustic window planning approach qualitatively by
independently computing the best poses for the N, random points of one case. Fig. 5.4 shows
the resulting pose in combination with a visualization of the corresponding CT volume. The
poses computed with the naive approach are widely spread over the thorax and a significant
number of image planes intersect with ribs, resulting in a majority of images with strong
reflectors and prominent artifacts in images. The proposed method results in poses that closely
follow the acoustic windows in the intercostal spaces. Inferior to the costal cartilage, the
image planes are oriented tangent to the rib cage, suggesting that the planned poses are suited
better for US-imaging.

5.3 Experiments
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Quality of Acoustic Window

A quantitative comparison of both planning methods was performed using the ratio of non-
soft-tissue areas rcr and the ratio of depicted liver rgq, as given by the segmentation,

rer = 5 Ha o p(@) < Br v pu(z) > Bo}| (5.10)

Tseg = + |[{z : = € segmentation}|. (5.11)

Where n is the number of pixels in the image, and 5, = —100 HU, 5, = 150 HU separating soft
from hard tissue following [98]. The ratio of non-soft-tissue rcr indicates the fraction of dense
tissues (i.e. bones or air-filled areas) contained in the image, which impairs the transmission
of US pulses across soft-tissues. Consequently, a lower ratio exhibits potentially better overall
image quality, as a large rcr potentially also causes US artifacts. Conversely, the ratio of
the target organ 7, depicted in a target image serves as measure of how much anatomical
context is provided in the resulting US images. A higher r., provides more context, as a
higher fraction of the target organ is covered by the image content.

The evaluation was performed on CT slices at the respective pose with the size of the US
image, as shown in Fig. 5.5. We used the single- and multi-view plans created using the
segmentations of each of the 20 datasets. Table 5.1 shows the quantitative results for both
evaluated measures. As the mean ratio of non-soft-tissues is lower for our method, while
the ratios of depicted target anatomy are roughly equal, this effectively shows that the poses
resulting from our method are less likely to have shadowing artifacts, while allowing for a
similar coverage of the target image region. In Fig. 5.5, the pose obtained with naive planning
cuts through several ribs, which would result in strong shadows in an US-image. Our method
planned a pose that only contains non-optimal regions at the bottom and is likely to have no
shadowing artifacts in the liver.

5.3.2 Robotic Acquisition Experiments

The two methods were evaluated on real acquisitions performed by a robotic US system.
Intuitively, the manual execution of planned trajectories is prone to errors and would lack
accuracy even in the case of statically placed phantoms. Furthermore, the reproducibility
of such trajectories would be limited significantly. Robotic US well tackles these limitations
and allows for the autonomous execution of planned probe trajectories. In this view, the
robotic system previously presented in [40] and [113] represents a good choice to qualita-
tively and quantitatively assess the performance of our proposed planning technique for US
acquisitions.

| Tet Ours Tee Naive | Tgeg Ours Tseg Naive
Single view planning | 0.222+0.163  0.294 +0.174 0.488 £0.171 0.477 £0.161
Multi view planning 0.214 £ 0.175 0.256 £0.179 0.470 £ 0.225 0.456 £0.214

Acoustic window quality mean and SD for the naive and our planning technique applied to single and
multi view settings. Columns 1 and 2 show the ratios of non-soft-tissue values, columns 3 and 4 the
ratios of depicted liver.

Chapter 5 Image Quality in Robotic Ultrasound Imaging



Fig. 5.5. Comparison of synthetic poses for one target point. (a) shows the CT slice at the proposed pose,

(b) at the one resulting from naive planning. (c) and (d) set the poses in relation to the surrounding
anatomy.

The system is composed of a robotic arm, KUKA LBR iiwa R800 (KUKA Roboter GmbH,
Augsburg, Germany), controlled using a custom software module! and the Robot Operating
System (ROS) framework. An RGB-D sensor (Kinect, Microsoft Corporation, Redmond, WA,
USA) is positioned above the examination bed and used to perform CT to phantom calibration.
The US acquisitions are obtained from an Ultrasonix® Sonix RP US system equipped with
a 4DC7-3/40 curvilinear transducer, using the following parameters: frequency: 3.3 MHz,
depth: 140 mm, gain: 50%. ROS and the respective modules to control the robot ran on a PC
(Intel Core i5, NVIDIA GTX 970) communicating with the planning system.

Using this system, the acoustic window planning was evaluated for single and multi-view
acquisitions on a gelatin-agar phantom based on [23]. The tissue mimicking material is
targeted to multi-modal imaging. A liver was molded from a gel made out of 10 weight
percent (wt%) gelatin and 6wt% agar, diluted in water. For enhanced scattering in US 0.6wt%
graphite powder were added. The surrounding tissue mimicking gel consisted of 3 and 1.5wt%
gelatin and agar, respectively. Shortly before complete solidification of the gel, the liver model
and chalk sticks to simulate ribs were added.

Acquisitions were planned in a CT volume of the phantom and target acquisition trajectories
were computed both with our and the naive planning method. The 5 target lines (27.0-
53.5mm) defined for the acquisitions with differing orientations w.r.t. the ribs are shown in

1 https://github.com/SalvoVirga/iiwa_stack
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Fig. 5.6.

Fig. 5.7.
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(c)

Phantom and robotic system used for experiments. (a) Robotic arm equipped with US transducer
approaching the phantom covered by a thin latex sheet. (b) Gelatin-agar phantom, chalk bars resembling
ribs are visible. (c) Rendering of the phantom, the selected trajectories are shown in distinct colors.

Target 1 Target 2 Target 3 Target 4 Target 5
> 150
2
$ 100
=
= N MW‘MW
0 10 20 0 20 40 0 20 400 20 40 0 50

mm mm mm mm mm

US-intensities along planned trajectories in phantom for naive and the proposed planning technique,
ours in blue, naive in orange. For target points that were not covered by the acquisition, no value is
shown.

Fig. 5.6c. After planning, the trajectories were executed by the robotic setup as in [40]. A
constant force of 5 N onto the phantom’s surface was applied for all US acquisitions. They
were reconstructed into 3D volumes (compounding) and employed for evaluation.

Fig. 5.7 shows the US intensity profiles measured along the 5 defined target lines. Blue plots
display the intensities from acquisitions planned with our method, while the orange plots
show the naively planned ones. Where target points were not covered by the US acquisition,
no values are shown. Such regions result from inherent inaccuracies of the surface to surface
registration employed in [40], as well as by tissue deformation. It can be clearly seen that
naively planned volumes exhibit high intensity variations along the line within homogeneous
tissue, while ours show a continuously high visibility, only containing speckle variations.

Slices of two acquisitions are shown in Fig. 5.8 together with the target lines inside of the
volume, comparing naive planning to our method. As it can be observed, the naively planned
trajectories cross bones and the resulting images are subject to strong shadowing artifacts in
these locations. In contrast to this, the plans created with our method allow for imaging of
the selected structures without shadowing throughout the sweep.
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Fig. 5.8. Phantom US acquisitions (red) for two trajectories using the CT for planning. Rows 1 and 3 show the

naive sweeps, rows 2 and 4 sweeps according to our planning, each in different planes (first and second
column). The positioning of the target points is shown as green line in the rendering and the slices.

5.4 Discussion

On the foundation of our analysis and presented work, the results of both the synthetic
trajectory planning as well as the phantom acquisitions show the need for trajectory planning
approaches, considering the inner anatomy for optimizing the image quality. Based on the
physics of the US image formation process, the introduced maximization of the expected image
quality by acoustic transmission allows for the planning of single and multi view acquisitions
not affected by shadowing artifacts, as we have shown. With this work, we aim at providing
the basis for truly autonomous US acquisitions of a variety of anatomies, that could not be
imaged previously due to restricted acoustic windows. Beyond that, the proposed method
could also be used to train US technicians, providing trainees with feedback on the transducer
positioning.

While our method provides optimal acquisition plans, their execution requires an accurate
patient registration, as acoustic windows can be of limited size. For the example of cardiac
US, a planning in the intercostal space needs to be precise w.r.t. the patient registration,
as otherwise images would be distorted significantly by the ribs. This becomes even more
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important, as respiratory motion could potentially require a continuous update of the patient
registration in view of imaging in-vivo.

With this basis, our future work will include a more precise patient registration, possibly
adding image based registration refinement as proposed in [40] and incorporating methods to
detect degraded image quality during the acquisition [52]. This would allow the system to
exclude affected images from the 3D compounding as well as the extension of our method for
the planning of longer US trajectories with varying base points. Excluding degraded images
based on their actual quality can reduce the impact of changes which inherently could not be
accounted for in the planning, such as the presence of bowel gas or lesions resulting from the
current treatment. Those changes could cause significant artifacts and attenuation.

The observed computation times do not allow for an interactive execution, but since the
trajectories are meant to be obtained pre-operatively, this is not critical. Nevertheless, we plan
to reduce the computational cost in the future.

Finally, our future work includes the generalization of the proposed method to use other
tomographic modalities such as MRI as basis for the transmission estimation [97] and ulti-
mately develop it towards an atlas-based approach as in [113]. We also aim at integrating
further factors into the optimization, such as the volumetric coverage and anatomical context
provided by the trajectory. To this end, a proof-of-concept study involving human acquisitions
will be necessary to show the validity of the approach in a clinical setting, where CT data is a
prerequisite for a clinical trial.

Chapter 5 Image Quality in Robotic Ultrasound Imaging



Part Ill

Conclusions and Outlook






Conclusions and Outlook

In this dissertation, we presented an overview of the field of medical ultrasound imaging and,
based on identified challenges, presented novel approaches to further the field.

We introduced an open-source software framework for US processing aimed at making
fundamental US imaging research more accessible. The platform, called SUPRA, is based
on software rather than hardware, which makes it easier to improve and customize, and it
is designed to be flexible and modular so that specialized solutions can be used in place of
baseline algorithms. SUPRA is designed to be used in real-time, and it has been evaluated to
show that it produces image quality comparable to a clinical pipeline.

Following that, we presented a method for the generation of synthetic training data for de-
speckling filters. We also proposed a novel method for deep learning based speckle removal
using data generated in this fashion, including an augmented loss to steer the resulting image
appearance. The loss function makes use of the precise knowledge of the presence of certain
geometries in the image. In experiments with simulated and real data, we demonstrated the
effectiveness of the approach. The combination of data generation and model training has the
potential to significantly decrease the cost of training de-speckling filters, as well as open up
new possibilities for image filtering applications. While in this work we only employed the
extended loss for enhancement of object interfaces, it is easy to imagine how this principle
could be extended, e.g. to include blood-clutter reduction in the same network.

Finally, we presented a method to improve the trajectory planning for robotic US systems,
formalizing the image quality considerations human operators already take into account.
In estimating the influence of probe placement on the expected image quality, we showed
improved target visibility when usable acoustic windows are defined by the presence of bones.
Based on real patient data we performed 20 virtual planning scenarios and 5 real robotic
acquisitions on a realistic tissue-mimicking phantom. Compared to a naive planning approach
the investigated method showed a higher acoustic window quality within the sweeps while
still covering the target structures, suggesting overall improved image quality. The phantom
experiments showed the improvement in image quality directly, as the shadowing from bones
was eliminated. With our approach that utilizes ultrasound physics to inform imaging and
planning thereof, we have demonstrated the potential of the inclusion of this information in
approaches to automate acquisitions and provide a pathway for improved imaging and better
diagnostics.

We have investigated a number of approaches concerning US imaging, from very low-level,
concerning the image formation, to processing of the so generated images to achieve better
quality, and finally an application of the principles underlying the imaging process which
promises to reduce operator dependence in US imaging.
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Discussed in this Thesis

Robotic Ultrasound for Catheter Navigation in Endovascular
Procedures

F. Langsch, S. Virga, J. Esteban, R. Gobl, N. Navab

Endovascular procedures require real time visual feedback on the location of inserted catheters.
This is currently achieved using X-ray fluoroscopy, which causes exposure to radiation. This
study describes an alternative method using a robotic ultrasound system for catheter tracking
and navigation in endovascular interventions, focusing on endovascular aneurysm repair.
This approach relies on the registration of pre-operative images to provide both a tracking
trajectory and visual feedback of the real-time catheter position. The procedure was validated
on healthy volunteers and on a phantom that included a realistic vessel structure, showing an
average tracking error of the moving catheter tip of 1.78 & 1.02 mm.

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

Manifold Exploring Data Augmentation with Geometric
Transformations for Increased Performance and Robustness

M. Paschali, W. Simson, A. G. Roy, R. Gébl, C. Wachinger, N. Navab

In this paper we propose a novel augmentation technique that improves not only the per-
formance of deep neural networks on clean test data, but also significantly increases their
robustness to random transformations, both affine and projective. Inspired by ManiFool, the
augmentation is performed by a line-search manifold-exploration method that learns affine
geometric transformations that lead to the misclassification on an image, while ensuring that
it remains on the same manifold as the training data.

This augmentation method populates any training dataset with images that lie on the border
of the manifolds between two-classes and maximizes the variance the network is exposed to
during training. Our method was thoroughly evaluated on the challenging tasks of fine-grained
skin lesion classification from limited data, and breast tumor classification of mammograms.
Compared with traditional augmentation methods, and with images synthesized by Generative
Adversarial Networks our method not only achieves state-of-the-art performance but also
significantly improves the network’s robustness.

International Conference on Information Processing in Medical Imaging, IPMI 2019
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Total Variation Regularization of Pose Signals with an
Application to 3D Freehand Ultrasound

M. Esposito, C. Hennersperger, R. Gébl, L. Demaret, M. Storath,
N. Navab, M. Baust, A. Weinmann

Three-dimensional freehand imaging techniques are gaining wider adoption due to their
flexibility and cost efficiency. Typical examples for such a combination of a tracking system
with an imaging device are freehand SPECT or freehand 3D ultrasound. However, the quality
of the resulting image data is heavily dependent on the skill of the human operator and on
the level of noise of the tracking data. The latter aspect can introduce blur or strong artifacts,
which can significantly hamper the interpretation of image data. Unfortunately, the most
commonly used tracking systems to date, i.e., optical and electromagnetic, present a trade-off
between invading the surgeon’s workspace (due to line-of-sight requirements) and higher
levels of noise and sensitivity due to the interference of surrounding metallic objects. In this
paper, we propose a novel approach for total variation regularization of data from tracking
systems (which we term pose signals) based on a variational formulation in the manifold
of Euclidean transformations. The performance of the proposed approach was evaluated
using synthetic data as well as real ultrasound sweeps executed on both a Lego phantom
and human anatomy, showing significant improvement in terms of tracking data quality
and compounded ultrasound images. Source code can be found at https://github.com/IFL-
CAMP/pose_regularization.

IEEE Transactions on Medical Imaging, vol. 38, no. 10

Landmark-Free Initialization of Multi-Modal Image
Registration

J. Rackerseder, M. Baust, R. Gébl, N. Navab, C. Hennersperger

To achieve convergence, nonlinear deformable image registration tasks of partial-view 3D
ultrasound and MR, as often seen in US guided interventions or retrospective studies thereof,
need to be initialized. In clinical practice corresponding 3D landmarks are selected in both
images. Performing this depends on the geometrical understanding of the targeted anatomy
and the modality-specific appearance and is thus prone to error. Therefore, we propose a
novel landmark-free initialization procedure that is robust in terms of target area overlap
(pixels where target area and US volume are superimposed before initialization) as well as
image overlap (pixels where MRI and US are superimposed). The method only requires N low-
resolution coarse segmentations as input, which in most cases can be obtained automatically or
with minimal user interaction, such as few pre-labeled pixels. A euclidean distance transform
is applied to these N label maps, creating a multi-class distance map for both images. This
leads to a minimization problem, where these maps are registered by optimizing our proposed
similarity measure via a modified gradient descent scheme, which prevents unstable behaviour.
The proposed method was evaluated, showing a success rate of 100% for registration tasks
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with initial target area overlap over 10%. It also converges for all cases with image overlap of
30% or more.

Bildverarbeitung fiir die Medizin 2019

Initialize Globally Before Acting Locally: Enabling
Landmark-Free 3D US to MRI Registration

J. Rackerseder, M. Baust, R. Gébl, N. Navab, C. Hennersperger

Registration of partial-view 3D US volumes with MRI data is influenced by initialization. The
standard of practice is using extrinsic or intrinsic landmarks, which can be very tedious to
obtain. To overcome the limitations of registration initialization, we present a novel approach
that is based on Euclidean distance maps derived from easily obtainable coarse segmentations.
We evaluate our approach on a publicly available brain tumor dataset (RESECT) and show
that it is robust regarding minimal to no overlap of target area and varying initial position. We
demonstrate that our method provides initializations that greatly increase the capture range
of state-of-the-art nonlinear registration algorithms.

International Conference on Medical Image Computing and Computer-Assisted Intervention,
MICCAI 2018

An Observer-Based Fusion Method Using Multicore Optical
Shape Sensors and Ultrasound Images for
Magnetically-Actuated Catheters

A. Denasi, F. Khan, K. J. Boskma, M. Kaya, C. Hennersperger, R. Gébl, M. Tirindelli, N.
Navab, S. Misra

Minimally invasive surgery involves using flexible medical instruments such as endoscopes
and catheters. Magnetically actuated catheters can provide improved steering precision over
conventional catheters. However, besides the actuation method, an accurate tip position is
required for precise control of the medical instruments. In this study, the tip position obtained
from transverse 2D ultrasound images and multicore optical shape sensors are combined
using a robust sensor fusion algorithm. The tip position is tracked in the ultrasound images
using a template-based tracker and a convolutional neural network based tracker, respectively.
Experimental results for a rhombus path are presented, where data obtained from both
tracking sources are fused using Luenberger and Kalman state estimators. The mean and
standard deviation of the Euclidean error for the Luenberger observer is 0.20 & 0.11 [mm]
whereas for the Kalman filter it is 0.18 & 0.13 [mm)], respectively.
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Use the Force: Deformation Correction in Robotic 3D
Ultrasound

S. Virga, R. Gébl, M. Baust, N. Navab, C. Hennersperger

Purpose. Ultrasound acquisitions are typically affected by deformations due to the pressure
applied onto the contact surface. While a certain amount of pressure is necessary to en-
sure good acoustic coupling and visibility of the anatomy under examination, the caused
deformations hinder accurate localization and geometric analysis of anatomical structures.
These complications have even greater impact in case of 3D ultrasound scans as they limit
the correct reconstruction of acquired volumes. Methods. In this work, we propose a method
to estimate and correct the induced deformation based solely on the tracked ultrasound
images and information about the applied force. This is achieved by modeling estimated
displacement fields of individual image sequences using the measured force information. By
representing the computed displacement fields using a graph-based approach, we are able to
recover a deformation-less 3D volume. Results. Validation is performed on 30 in vivo human
datasets acquired using a robotic ultrasound framework. Compared to ground truth, the
presented deformation correction shows errors of 3.39 + 1.86 mm for an applied force of 5N at
a penetration depth of 55 mm. Conclusion. The proposed technique allows for the correction
of deformations induced by the transducer pressure in entire 3D ultrasound volumes. Our
technique does not require biomechanical models, patient-specific assumptions or information
about the tissue properties; it can be employed based on the information from readily available
robotic ultrasound platforms.

International Journal of Computer Assisted Radiology and Surgery 13.5 (2018)
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