
Towards Autonomous Policy Synthesis:
Tactile Manipulation Skills, Learning

Architecture, and
Process-Taxonomy-Based Planning

Lars Johannsmeier, M.Sc.

Ph.D. Thesis

TECHNISCHE UNIVERSITÄT MÜNCHEN
TUM School of Computation, Information and Technology

Towards Autonomous Policy Synthesis: Tactile
Manipulation Skills, Learning Architecture, and

Process-Taxonomy-Based Planning

Lars Johannsmeier, M.Sc.

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Angela Schoellig

Prüfende der Dissertation: 1. Prof. Dr.-Ing. Sami Haddadin

2. Prof. Dr. Marc Toussaint

3. Prof. Dr. Dieter Fox

Die Dissertation wurde am 18.04.2023 bei der Technischen Universität München ein-
gereicht und durch die TUM School of Computation, Information and Technology am
22.12.2023 angenommen.

v

Will robots inherit the earth? Yes,

but they will be our children.

Marvin Minsky

vi

Acknowledgment

Human intelligence is most noteworthy in our ability to design and use tools. It is my
dream to make robots become intelligent tools, the hammer of tomorrow, an extension
of our own mind. This thesis is my humble attempt to make this dream come true, and
thus contribute to solutions for our society's most pressing problems by utilizing robots
as the physical embodiment of arti�cial intelligence.
For the opportunity to complete this work, �rst and foremost I want to thank my super-
visor and mentor Sami Haddadin for his continued support, counsel and feedback during
the process of creating this dissertation, as well as for the numerous opportunities to ex-
plore various facets of the robotics research landscape. He gave me the opportunity to do
research on the very frontier of robotics technology, and the platform to present my work
to the research community, industry, politics and beyond. The impact that my work has
might otherwise not have been possible.
Then, I would like to thank my former colleagues at the Munich Institute of Robotics and
Machine Intelligence as as the Institute of Automatic Control at the Gottfried Wilhelm
Leibniz Universität Hannover, Anna Adamczyk, Lingyun Chen, Xiao Chen, Diego Hidalgo
Carvajal, Alexander Moortgat-Pick, Robin Kirschner, Torsten Lilge, Kim Peper, Ed-
mundo Pozo Fortunic, Dennis Ossadnik, Johannes Ringwald, Moritz Schappler, Jonathan
Vorndamme, and Fan Wu for their company, interesting conversations and perspectives,
and fruitful collaboration. I especially want to express my gratitude to Samuel Schneider
who supported me with experimental work, Fernando Diaz Ledezma, Dennis Knobbe, Jo-
hannes Kühn, Erfan Shahriari, Florian Voigt, and Peter So for the many successful team-
ups for publications and demonstrators, Rolando Franjga for the invaluable craftsmanship
support and pragmatism, and Jan Harder and Regine Hunstein for their commitment and
dedication to make MIRMI a place of opportunities that enabled me to write this thesis.
Furthermore, I want to thank Sven Parusel at Franka Emika GmbH for his continued
support with the robot hardware I used.
Finally, I would like to thank my parents, my brother and my sister for their support and
interest in my work, and most importantly my wife Maria and daughter Kira for their
love, support, and patience.

vii

viii

Abstract

Robots are becoming more and more commodity in our society. Industry has long been
a place for robots, but now also healthcare, logistics, and the domestic sector are start-
ing to take advantage of such �exible automation solutions. The most relevant drivers
for this development are the demographic change and labor shortage. In order to meet
the upcoming requirements technology jumps are necessary that pave the way for next-
generation tactile robots. Future Workplaces and factories will rely on the versatility
and manipulation capabilities of tactile robots to automate highly dynamic manufactur-
ing processes while keeping the energy demand low. The robots will generate solutions to
problems on-the-�y without the need for manual programming, and learn them completely
autonomously. They will become intelligent tools in autonomous, modular factories, assis-
tants in households, and embodiments for telepresence applications. Besides interaction
and mobility, manipulation capabilities are key to progress further in this direction.
Vast progress in robotic manipulation research has already been made toward this vision,
especially in the last decade, and the results, such as novel control methodologies, motion
planning, and perception are beginning to merge into the industrial domain. As of today
there already exist application �elds such as testing, inspection and machine tending that
make use of advanced pre-programmed robot skills. However, considering more di�cult
manipulation processes, there is a two-part challenge. First, there is a missing constructive
link between process descriptions and tactile skill models. Second, learning such models
for challenging tactile processes is di�cult and currently not even the most powerful
(traditional) end-to-end frameworks are capable of generating reliable manipulation skill
solutions, let alone achieve transfer between di�erent problems.
The main contribution of this thesis is an autonomous synthesis framework that connects
formal process de�nitions provided by process experts with compatible tactile skill mod-
els. The connection between these endpoints is proposed to be a tactile manipulation
skill taxonomy that determines a unique solution skill for a given process. The tactile
skill is then formulated as a learning problem that can be solved with a sample-e�cient
learning architecture. This divide and conquer approach can be scaled inde�nitely in
terms of numbers of skills and processes and can also be connected to automatic process
planning systems. It may thus allow for solving complex tasks without the need for expert
programming. The resulting versatility in terms of manipulation process solutions makes
this concept a �rst step toward an ever increasing curriculum for robots that, similar to
established curricula for (human) trainees in industrial �elds, could provide a framework
for the acquisition of all relevant manipulation skills for robots.
This thesis provides the theoretical foundations for tactile skills, their synthesis, learning
and planning capabilities. It describes the implementation of the foundations and a num-
ber of validation cases. Extensive experimental work is presented that demonstrates the
manipulation framework's capabilities. Exhaustive veri�cation experiments validate the

ix

x

approach for a meaningful number of skills, showcasing high robustness and performance,
which are fundamental requirements for industrial applications. The learning performance
of the proposed architecture and synthesis pipeline is analyzed for state-of-the-art ma-
chine learning algorithms. The overall system shows superior learning performance and
e�ciency when compared against bleeding-edge end-to-end approaches. In a large experi-
mental campaign, even a systematic transfer learning e�ect between di�erent challenging
physical manipulation skill instances was observed. This allows to learn large number of
skills by systematically exploiting their similarity. The performance of the optimized skills
and the learning performance are directly compared to human capabilities. The results
show that for some skills human-level performance can already be achieved. Finally, a
collaborative assembly planning problem for industrial mechatronics systems with tight
tolerances and multi-dimensional insertion processes showcases the planning capabilities
of the framework. With the developed framework it �nally is possible to automate robot
programming even for complex manipulation processes without the need for robot expert
knowledge.
The results of this work have impacted further research e�orts in control, learning, telep-
resence, and motion planning, and have even opened up an entirely new �eld, namely
dentronics. Furthermore, it has in�uenced various projects, publications and products.
To the best of the author's knowledge, this thesis is the �rst that enables non-experts to
solve complex manipulation problems on an industrial level through an automatic skill
synthesis and learning approach with low energy demand and only restricted computa-
tional resources.

Zusammenfassung

Roboter werden in unserer Gesellschaft immer mehr zu einem alltäglichen Werkzeug. In
der Industrie werden Roboter schon lange eingesetzt, aber auch im Gesundheitswesen, in
der Logistik und im häuslichen Bereich werden solche �exiblen Automatisierungslösungen
zunehmend genutzt. Die wichtigsten Treiber für diese Entwicklung sind der demogra�sche
Wandel und der Arbeitskräftemangel. Um den kommenden Anforderungen gerecht zu wer-
den, sind Technologiesprünge notwendig, die den Weg für die nächste Generation taktiler
Roboter ebnen. Zukünftige Arbeitsplätze und Fabriken werden sich auf die Vielseitigkeit
und die Manipulationsfähigkeiten von taktilen Robotern verlassen, um hochdynamische
Fertigungsprozesse zu automatisieren und gleichzeitig den Energiebedarf niedrig zu halten.
Die Roboter werden im laufenden Betrieb Lösungen für Probleme generieren, ohne dass
eine manuelle Programmierung erforderlich ist, und diese völlig autonom erlernen. Sie
werden zu intelligenten Werkzeugen in autonomen, modularen Fabriken, zu Assistenten
in Haushalten und zu Verkörperungen für Telepräsenzanwendungen. Neben Interaktion
und Mobilität sind die Manipulationsfähigkeiten der Schlüssel zu weiteren Fortschritten
in dieser Richtung.
Auf dem Gebiet der Robotermanipulation wurden, vor allem in den letzten zehn Jahren,
bereits groÿe Fortschritte erzielt, und die Ergebnisse, wie z. B. neuartige Kontroll-
methoden, Bewegungsplanung und Wahrnehmung, �nden allmählich Eingang in den in-
dustriellen Bereich. Heute gibt es bereits Anwendungsbereiche wie Testen, Inspektion
und Maschinenbedienung, in denen fortgeschrittene, jedoch vorprogrammierte Roboter-
fähigkeiten zum Einsatz kommen. Betrachtet man jedoch schwierigere Manipulation-
sprozesse, so besteht eine zweiteilige Herausforderung. Erstens fehlt eine konstruktive
Verbindung zwischen Prozessbeschreibungen und taktilen Fähigkeitsmodellen. Zweitens
ist das Erlernen solcher Modelle für anspruchsvolle taktile Prozesse schwierig, und derzeit
sind nicht einmal die leistungsstärksten (traditionellen) End-to-End-Frameworks in der
Lage, zuverlässige Lösungen für Manipulationsfähigkeiten zu generieren, geschweige denn
eine übertragung zwischen verschiedenen Problemen zu erreichen.
Der Hauptbeitrag dieser Arbeit ist eine autonomes Synthese-Pipeline, welche formale
Prozessde�nitionen, die von Prozessexperten bereitgestellt werden, mit kompatiblen tak-
tilen Fähigkeitsmodellen verbindet. Als Verbindung zwischen diesen Endpunkten wird
eine Taxonomie der taktilen Manipulationsfähigkeiten vorgeschlagen, die eine eindeutige
Lösungsfähigkeit für einen bestimmten Prozess bestimmt. Die taktile Fertigkeit wird
dann als ein Lernproblem formuliert, das mit einer e�zienten Lernarchitektur gelöst wer-
den kann. Dieser teile-und-hersche-Ansatz lässt sich in Bezug auf die Anzahl der Fer-
tigkeiten und Prozesse unbegrenzt skalieren und kann auch mit automatischen Prozess-
planungssystemen verbunden werden. Auf diese Weise können komplexe Aufgaben gelöst
werden, ohne dass eine Programmierung durch Experten erforderlich ist. Die sich da-
raus ergebende Vielseitigkeit bei der Lösung von Manipulationsprozessen macht dieses

xi

xii

Konzept zu einem ersten Schritt in Richtung eines immer umfangreicheren Curriculums
für Roboter, das, ähnlich wie etablierte Curricula für (menschliche) Auszubildende in
industriellen Bereichen, einen Rahmen für den Erwerb aller relevanten Manipulations-
fähigkeiten für Roboter bieten könnte.
Diese Arbeit liefert die theoretischen Grundlagen für taktile Fähigkeiten, ihre Synthese,
Lern- und Planungsfähigkeiten. Sie beschreibt die Umsetzung der Grundlagen und eine
Reihe von Validierungsfällen. Es werden umfangreiche experimentelle Arbeiten vorgestellt,
die die Fähigkeiten des Manipulationsrahmens demonstrieren. Ausführliche Veri�zierung-
sexperimente validieren den Ansatz für eine aussagekräftige Anzahl von Fertigkeiten und
zeigen eine hohe Robustheit und Leistung, die grundlegende Anforderungen für indus-
trielle Anwendungen sind. Die Lernleistung der vorgeschlagenen Architektur und Syn-
thesepipeline wird für modernste maschinelle Lernalgorithmen analysiert. Das Gesamt-
system zeigt eine überlegene Lernleistung und E�zienz im Vergleich zu den modernsten
End-to-End-Ansätzen. In einer umfangreichen experimentellen Kampagne wurde sogar
ein systematischer Transfer-Lerne�ekt zwischen verschiedenen anspruchsvollen physikalis-
chen Manipulationsfähigkeiten beobachtet. Dies ermöglicht das Erlernen einer groÿen
Anzahl von Fertigkeiten durch systematische Ausnutzung ihrer Ähnlichkeit. Die Leistung
der optimierten Fertigkeiten und die Lernleistung werden direkt mit den menschlichen
Fähigkeiten verglichen. Die Ergebnisse zeigen, dass für einige Fertigkeiten bereits das
Niveau menschlicher Fähigkeiten erreicht werden kann. Abschlieÿend wird anhand eines
kollaborativen Montageplanungsproblems für industrielle Mechatroniksysteme mit engen
Toleranzen und mehrdimensionalen Einfügeprozessen die Planungsfähigkeit des Frame-
works demonstriert. Mit dem entwickelten Framework ist es schlieÿlich möglich, die
Roboterprogrammierung auch für komplexe Manipulationsprozesse zu automatisieren,
ohne dass Roboterexpertenwissen erforderlich ist.
Die Ergebnisse dieser Arbeit haben weitere Forschungsarbeiten im Bereich der Steuerung,
des Lernens, der Telepräsenz und der Bewegungsplanung beein�usst und sogar ein völlig
neues Gebiet, nämlich die Dentronik, erö�net. Darüber hinaus haben sie verschiedene
Projekte, Verö�entlichungen und Produkte beein�usst. Nach bestem Wissen des Autors
ist diese Arbeit die erste, die es Nicht-Experten ermöglicht, komplexe Manipulationsprob-
leme auf industrieller Ebene durch einen automatischen Synthese- und Lernansatz mit
geringem Energiebedarf und nur begrenzten Rechenressourcen zu lösen.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Research Questions and Contribution . 3
1.4 State of the Art . 5

1.4.1 Robot Platforms . 5
1.4.2 Interaction Control . 5
1.4.3 Skill Frameworks . 9
1.4.4 Skill Taxonomies . 13
1.4.5 Skill Learning . 14
1.4.6 Robot Software Frameworks . 19
1.4.7 Assembly Planning . 19

1.5 Thesis Structure . 20
1.6 Curriculum Vitae . 20

2 Theoretical Foundations 25
2.1 Representation . 25

2.1.1 Tactile Skill . 25
2.1.2 Process De�nition . 29
2.1.3 Taxonomy Structure . 30

2.2 Tactile Skill Synthesis Procedure . 31
2.3 Arti�cial Intelligence-Based Assembly Planning 33

2.3.1 Introduction . 33
2.3.2 Assembly Plan Representation . 36
2.3.3 Task Allocation and Planning . 37

2.4 Machine Learning . 43
2.4.1 Algorithms . 43
2.4.2 Performance Metrics . 47
2.4.3 Robot Motor Memory E�ect . 50

2.5 Conclusion . 51

3 System Architecture and Validation Cases 53
3.1 GGTWreP Framework . 53

3.1.1 Implementation Examples . 56
3.2 Machine Intelligence Operation System . 59

3.2.1 System Overview . 59
3.2.2 Design Objectives . 60

xiii

xiv CONTENTS

3.2.3 Capabilities . 61
3.2.4 Modules . 61
3.2.5 GGTWreP Implementation . 62
3.2.6 Learning . 66

3.3 Validation Experiments: Use Case Integration 67
3.3.1 New Application Domain: Dentronics 67
3.3.2 Distributed Control: Telepresence 68
3.3.3 Local Multi-Robot System: Pinakothek der Moderne 69
3.3.4 Collaborative Assembly Station . 70

3.4 Validation Experiments: Learning . 71
3.4.1 Manipulation Learning: Peg-in-Hole 71
3.4.2 Distributed Multi-Robot System: Collective 72

3.5 Conclusion . 73

4 Experimental Analysis 75
4.1 Taxonomy Veri�cation . 76

4.1.1 Experimental Setup . 76
4.1.2 Veri�cation Process . 76
4.1.3 Results . 77

4.2 Tactile Skill Learning . 80
4.2.1 Comparative Analysis of Algorithms for Skill Learning 80
4.2.2 Comparison with Deep Reinforcement Learning 83
4.2.3 Skill Transfer Learning . 86

4.3 Performance Comparison: Robot vs. Human 93
4.3.1 Task Description . 93
4.3.2 Case Study . 98

4.4 Collaborative Assembly Planning . 101
4.4.1 Experimental Setup . 101
4.4.2 Results . 103

4.5 Conclusion . 104

5 Conclusion 105
5.1 Contributions . 105
5.2 Impact . 107
5.3 Future Work . 108

Appendix 109

A Appendix 111
A.1 Skill Synthesis: Policies . 111

Bibliography 125

Abbreviations and Symbols

In this thesis, scalar quantities are written as plain letters, e.g., λ, c, K. Vectors and
matrices are represented by bold letters, whereas vectors have small letters, e.g., q, θ and
matrices capital letters K, M . The total derivative w.r.t. time is indicated by a dot
above the symbol, i.e., ẋ = d

dt
x, ẍ = d2

dt2
x. The Euclidian norm of a vector q is denoted

by |q|, the dot product of two vectors a and b by (a, b) and their cross product by a× b.
All symbols are introduced in the text before they are used. In some sections, the argument
is omitted for brevity. Several variables appear with di�erent subscripts, superscripts,
additional symbols and dimensions. In the following list, the quantities are generally
described without being further speci�ed. The speci�c meaning becomes apparent when
the respective variable is introduced in the text. Please note that the list of symbols is
not complete, but it contains symbols that appear frequently or are of major importance
in this thesis.

List of Symbols

General Symbols

q Joint positions

q̇ Joint velocities

q̈ Joint acceleration

T Pose in matrix form

T d Desired pose in matrix form

x Pose in vector form

xd Desired pose in vector form

ẋ Twist

ẋd Desired twist

ẍ Cartesian acceleration

ẍd Desired Cartesian acceleration

f Wrench

f d Desired wrench

f ff Feed-forward wrench

f ext External wrench

xv

xvi CONTENTS

τ Joint motor torques

τ d Desired joint motor torques

τ ext External joint torque

Kx Cartesian sti�ness

K Joint sti�ness

Dx Cartesian damping

D Joint damping

Jx Jacobian

M Mass matrix

C Coriolis vector

g Gravity vector

t Time

U(().) Environment around a pose

Process, Tactile Skill, and Taxonomy

ς Skill

ι Task

πd Tactile policy

Π Set of tactile policies

p Process

P Set of processes

T Taxonomic synthesis algorithm

o Object

O Set of objects

s Process state

s0 Initial process state

s1 Final process state

se Error process state

sπ Policy process state

Cpre Process pre condition

Cerr Process error condition

Csuc Process success condition

δ Process step transition

CONTENTS xvii

∆ Set of process step transition

θ Parameters

θπ Skill parameters

θc Controller parameters

GGTWreP framework

w World state

W World state space

E E�ects of skill execution on environment

R Requirements for skill execution

D Parameter domain

C Skill constraints

D Dataset from a learning experiment

Q Quality metric

C Tactile policy commands

Planning

A Assembly

ρ Assembly part

Γ Set of assembly parts

a Assembly action

α Sequence of assembly actions

w Agent

W Set of agents

ζ Assembly state

Z Set of assembly states

Abbreviations

AI Arti�cial intelligence

API Application programming interface

DL Deep learning

xviii CONTENTS

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Centre)

DMP Dynamic motion primitives

DOF Degrees of freedom

EE End e�ector

e.g. Exemplis grata (for example)

ET Empirical transferability

etc. Et cetera (and so forth)

F/T sensor Force/torque sensor

FCI Franka control interface

GGTWreP Graph-Guided Twist-Wrench Policy Approximation

ICRA International Conference on Robotics and Automation

i.e. Id est (that is)

IEEE Institute of Electrical and Electronics Engineers

IROS International Conference on Intelligent Robots and Systems

LbD Learning by demonstration

LE Learning e�ort

LER Learning e�ort ratio

LTE Long-term evolution

LWR Lightweight Robot

KPI Key performance indicator

ML Machine learning

MIRMI Munich Institute of Robotics and Machine Intelligence

ODE Ordinary di�erential equation

PA Policy approximator

PC Personal computer

PbD Programming by demonstration

PDDL Planning domain de�nition language

RL Reinforcement learning

RMM Robot motor memory

ROI Region of interest

ROS Robot Operating System

RPC Remote procedure call

SVM Support vector machine

TMS Taxonomy of Manipulation Skills

CONTENTS xix

TUM Technical University Munich

UAV Unmanned aerial vehicle

UDP User datagram protocol

w.r.t. With respect to

xx CONTENTS

1
Introduction

1.1 Motivation

Currently, companies from various industrial domains are evolving from using mono-
lithic process structures and production technologies to being dynamic and �exible ser-
vice providers. The ultimate goal after the wave of industry 4.0 of the previous decade
based on the major breakthroughs in data-driven arti�cial intelligence (AI) and robotics
has become the concept of Production-as-a-service. The basic concept is that a blueprint
of a product to be manufactured can be sent to a smart, modular factory system that
recon�gures its production and logistics lines to manufacture the potentially low-volume
product. The capability to produce virtually anything in one place requires highly �exi-
ble, autonomous tools, e.g. tactile robots with the ability to learn and generalize in short
cycles, that can safely and purposefully interact with the environment and manipulate
it. It also means that a continuous stream of new manufacturing processes has to be
solved by these robots to cope with countless new assembly problems, custom material
processing and testing requirements. Clearly, it is impossible to meet this challenge with
human experts that program the robots with new skills. Instead the robots need to be
able to instantiate and optimize new skills on their own from simpli�ed instructions or
observing humans.

1.2 Problem Statement

In robotics research, remarkable progress was achieved in recent years with milestones
such as the emergence of lightweight robots [1�5], compliant interaction control [6�9]
and the establishment of safe physical interaction between robots and humans [10, 11].
These developments paved the way for robotic manipulation, which is a complex chal-
lenge connecting numerous research �elds such as robot hardware development, motion
and interaction control, interaction policy design, vision, motion and task planning, learn-
ing and human-robot interaction. The advances in these �elds brought about systematic

1

2 CHAPTER 1. INTRODUCTION

approaches for implementing skillful and versatile physical robot manipulation capabili-
ties called manipulation skills. When considering near-future automated workplaces and
the signi�cant performance steps made [12, 13], manipulation skills have gained increas-
ing interest from various application domains. In industrial workshops workers will use
intuitive-to-handle robots to do repetitive work [14], in doctors' o�ces robot assistants
will improve hygiene and reliability of diagnostics [15,16], and the homes of elderly citizens
will be equipped with robot assistants to help manage their daily routine [17,18]. All these
robotic applications require sophisticated tactile capabilities to enable a safe, reliable and
e�cient integration into human-centered processes. However, while workers can rely on
systematic curricula speci�cally developed for their profession (e.g. in Germany [19]),
there is no such curriculum for robots to learn the capabilities required for their tasks.
A signi�cant challenge for today's researchers and engineers is to transfer skill frame-
works to relevant industrial scenarios in order to enable the automation of many tasks
that are still manually performed. There are strict requirements for robot manipulation
coming from this context such as safety regulations, a high degree of reliability and robust-
ness, repeatability, reaction to unforeseen events, etc. These requirements can, at least
in principle, be addressed by structured skill frameworks. However, a typical caveat of
structured approaches is the missing compatibility with (machine) learning methods. As
a consequence, skill implementations usually require extensive manual design and robotic
expertise. The currently popular end-to-end approaches to skill modeling [20, 21] focus
on this speci�c problem, when autonomous learning is essentially hard-wired into their
architecture. However, considerable obstacles for the integration of autonomously learned
robot skills into industrial processes include the need to collect massive amounts of data,
and that these methods may not be able to reliably meet process constraints (in particular
safety regulations) without signi�cant intervention in their internal structure. Further-
more, the required learning time, achievable performance, and amount of computational
and energy resources needed are still far from being practical [22] These limitations must
be overcome before large numbers of robots will be able to perform countless manipulation
skills in di�erent situations. In particular, it would be impractical for each robot to learn
each skill from scratch. It is also impractical for human experts to manually program each
robot, let alone thousands of devices, which is still today's preferred solution in industrial
automation. The ability to e�ciently transfer knowledge from already learned skills to
solve new problems would signi�cantly advance robot learning and improve the manipu-
lation performance of robots, allowing them to complete tasks to the high standards that
are required in real-world scenarios. Being able to use prior experience to signi�cantly
speed up this learning process would make robots not only more resource-e�cient, but
also much more �exible to use. In the end, current approaches are not versatile enough
to match the need for highly �exible automation solutions in today's industry. Structure-
based frameworks are often able to implement many di�erent skills but there is so far
no way to systematically scale their designs to large numbers of processes. Similarly,
learning-based frameworks lack proper transfer capabilities such that extensive learning
for each skill is still required. An additional problem external to the skill frameworks
themselves is the necessity to identify appropriate tactile manipulation skills for each spe-
ci�c physical process (including goals, constraints, subtasks, etc.) without access to robot
expert knowledge. This issue prevents laypeople, e.g. shop-�oor workers or technicians,
from employing robots to carry out repetitive or demanding tasks, as there generally is a
lack of expertise in the implementation of robot manipulation skills. As a result, compa-

1.3. RESEARCH QUESTIONS AND CONTRIBUTION 3

nies either rely on manual labor, or have to �nd and pay rare and expensive experts to
set up automation solutions. As mentioned above, autonomous learning capabilities, at
least when used alone, are not yet ready to �ll this gap.

1.3 Research Questions and Contribution

The set of fundamental research questions that are addressed in this thesis aim to provide
convincing answers to help push the existing boundaries of robotics research and generate
solutions to several of the aforementioned challenges:

� Q1: How can robot expert knowledge be systematically encoded such that non-
experts can use robots to automate complex manipulation processes?

� Q2: For this, it is essential to understand how tactile manipulation skills can be
encoded such that control, policy, learning, and planning are uni�ed.

� Q3: To generate breakthroughs in the robot learning problem, it needs to be under-
stood how complex robot manipulation skills can be learned in a short amount of
time and with low energy consumption and computational demands such that the
solution is robust and of high performance.

� Q4: Finally, this thesis aims to give answers to the question of whether systematic
similarities between skills can be exploited by new ways of transfer learning so skill
learning can be scaled up to large numbers of skills without running into the curse
of dimensionality.

This thesis has made three core contributions that provide answers to above research
questions. The contributions can be clustered into three major groups, namely tactile
skill modeling, automatic skill synthesis, and autonomous skill learning. In Fig. 1.1 they
are summarized in an overview.

Contribution 1: Tactile Skill Modeling The theoretical foundations for tactile skills
are provided, consisting of tactile platform, tactile controller, tactile policy, and per-
formance evaluator. The graph-guided twist-wrench policy approximation (GGTWreP)
framework is introduced as an algorithmic means of modeling tactile skills. It connects
task goals with interaction control through a process-informed multi-layered structure
and forms the basis for most experiments in this thesis. Furthermore, a versatile software
stack MIOS has been developed that implements the theoretical foundations.

Contribution 2: Skill Synthesis Pipeline A novel process-informed skill taxonomy
is introduced that systematically connects manufacturing processes and tactile skills. It
encodes robot expert knowledge and connects to learning algorithms so that laypeople
such as technicians and shop-�oor workers will be enabled to set up automation solutions
without robotics knowledge. A synthesis pipeline selects a tactile policy based on for-
mal process descriptions. The GGTWreP framework then takes the selected policy and
integrates it with the boundary conditions (e.g. success and error conditions) from the
process description into a tactile skill model. In further validation experiments, a mean-
ingful number of skills has been implemented and optimized, demonstrating the desired

4 CHAPTER 1. INTRODUCTION

...

Skill Planning
(Sections 2.3 and 4.4)

Skill Learning
(Sections 2.4
and 4.2)

Learning
Algorithm

Learning
Problem

Tactile
Skill

Skill Modeling
(Sections 2.1.1
and 3.1)

Taxonomy and Skill Synthesis
(Sections 2.1.3, 3.1, and 4.1)

Process

Assembly
Planner

Assembly

...

Figure 1.1: The process descriptions that originate e.g. from human technicians are used to synthesize tactile skills based
on a taxonomy. The skills are formulated as a learning problem and then optimized by an autonomous learning architecture.
Finally, the optimized skills are used in an assembly planning system that solves problems provided by the technician.

high robustness and performance also for challenging real-world manufacturing processes.
A collaborative assembly planner is introduced that �nds an optimal plan to solve an
assembly with a team of humans and robots based on validated tactile skills.

Contribution 3: Skill Learning The skill model generated from the synthesis pipeline
is formulated as a parameter learning problem, which can then be solved by a state-of-
the-art compatible learning algorithm. Experiments demonstrate a very short learning
time even for very di�cult processes, e.g., such as insertion. During these experiments
a transfer learning e�ect was observed and was investigated through further large-scale
experiments. The results indicate strong transfer capabilities of the GGTWreP framework
which further improves the versatility of the overall end-to-end approach. The learning
and achieved manipulation performance of the skills were directly compared to human
capabilities in a reference experiment setup. The results indicate comparable performance
for a subset of the implemented skills, and provide insights on the still-existing gaps.

With these fundamental contributions and to the best of the author's knowledge an un-
precedented level of sophistication, performance and resource e�ciency in terms of energy
and computation has been achieved in robot learning. This constitutes a major step for-
ward in making robots autonomous and learning-enabled as well as able to systematically
leverage existing and well established process knowledge.

1.4. STATE OF THE ART 5

1.4 State of the Art

The following literature overview covers the most relevant topics related to this thesis, i.e.
robot platforms, interaction control, skill models, taxonomies, skill learning, and assembly
planning. This chapter was written based on [5, 14,23�25]

1.4.1 Robot Platforms

Although there is no hardware development or design in this thesis, the choice of the
used robot platform was important in terms of its manipulation capabilities and available
low-level access. Most of the experiments were completed with the Franka Emika Robot
arm [5,26], which is the current state-of-the-art robot for compliant physical interaction.
The most important properties for its use in this work were its sensitivity, redundancy and
kinematic versatility as well as its high-performance research interface that allows for a
high degree of freedom when implementing custom controllers. Other arguments were the
integrated low-level re�exes [11] and safety-by-design [27,28]. A thorough introduction to
the robot and ways of programming it can be found in [5]. By now the Franka Emika Robot
arm has become a widely used platform for robot learning, e.g. [29�32] Furthermore, it has
been adopted by the robotics community for various simulation environments, e.g. [29,33].
Older systems such as the DLR LWR III [1,8] (which was also used for some preliminary
experiments in this work) and the KUKA LWR IV [3] were the �rst mature systems in
this context and started to shift towards joint-side torque control which explicitly uses
the dynamics properties of the robot into the control loop. The required sensing of the
joint torque is implemented in di�erent ways, e.g. by measuring the current combined
with a low gear ratio (e.g. Barrett WAM [34]), by exploiting the implicit compliance
of series elastic actuators (e.g. Rethink Robotics Baxter [35] and Sawyer [36]), or by
adding torque sensors as e.g. the KUKA iiwa [37] and iisy [38] systems, the Kinova Gen3
arms [4] or the Franka Emika Panda arm. Using joint-torque sensors allows for high-
performance compliant control as well as integrated, highly sensitive safety mechanisms
such as collision detection with a reaction time of milliseconds.
Other systems such as the YuMi from ABB [39] and the Universal Robot arms [40] regulate
only position or velocity, neglecting the dynamic characteristics of the joints which leads
to very sti� position control. Contact-rich manipulation tasks such as insertion would
then require the use of costly F/T sensors. Safe human-robot interaction is in these cases
only possible at low velocities and low e�ective masses.
The PR2 [41] should be mentioned since it has been used in numerous works on robot
learning due to its redundant kinematics, large array of sensors, community support and
compatibility with numerous ROS packages.
Finally, in Fig. 1.2 an over of current robot platform is given regarding their most impor-
tant properties with respect to their utility in research.

1.4.2 Interaction Control

The choice of the right controller is essential for robotics applications and usually goes
hand in hand with the choice of the hardware platform. There are controllers that can
provide precision in the range of micrometers, and others that can compliantly interact
with the environment. For this work, the latter case is much more relevant, since the in-

6 CHAPTER 1. INTRODUCTION

Figure 1.2: A technological overview of the most relevant currently available robot manipulators, their control paradigms,
sensors, interfaces, and target use cases. The robot images are taken from [5, 42�47]. N/A: not applicable; UR: Universal
Robot

1.4. STATE OF THE ART 7

vestigated tactile manipulation skills interact with the environment in potentially complex
ways. In the following the rigid body dynamics

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ d + τ ext, (1.1)

is considered, where M (q) is the symmetric, positive de�nite mass matrix, C(q, q̇) the
Coriolis matrix, g(q) the gravity vector, τ ext the vector of external link-side joint torques
and τ d a controller joint-torque command.

1.4.2.1 Impedance Control

Impedance control aims to control the motion of a robot as well as its interaction behavior
with the environment. A typical formulation for a rigid, n-DOF manipulator in Cartesian
space is given by

τ d = Jx(q)
T (Kxe+Dxė) + τ r (1.2)

where Kx is the Cartesian sti�ness matrix, Dx is the damping matrix and Jx(q) is the
Jacobian. The position and velocity errors are denoted by e = x⋆ − x and ė = ẋ⋆ − ẋ,
respectively. The dynamics compensator τ r(t) can be de�ned in multiple ways, see for
example [48]. The Cartesian damping matrix requires design e.g. according to [49].
Note that

Ke+Dė+ [Mxë] (1.3)

de�nes the desired interaction dynamics of the robot with the environment. The last
term would determine the desired inertia, however, due to the di�culty of measuring or
estimating the acceleration in real-world systems, it is usually left out. Note though that
this is a topic of current research e�orts [50].
Impedance control was �rst introduced to robotics in [6, 51, 52]. Since then much work
has been done to explore the numerous possibilities and variations of this control scheme.
In [53] force information was used in addition to improve impedance control for uncertain
environment as in deburring, grinding, and assembly tasks. [54] showcases an impedance
controller implementation which is able to switch between free motion and a contact task,
without having to use inverse kinematic computations. In [55] an analysis of stability
properties is provided focusing on two main implementations of impedance control. In [56]
an object-centric impedance controller was introduced, which compensates the system's
dynamics and directly controls the internal forces of a grasped object.
Especially the Cartesian space formulation of impedance control has been extensively re-
searched, e.g. in [7] where impedance control is compared to admittance and sti�ness
control and a new impedance controller enhanced by local sti�ness control was proposed.
In [49] several practical aspects of impedance control are discussed such as nullspace
sti�ness for redundant manipulators, avoidance of mass matrix decoupling and damp-
ing design. [57] introduces a force-tracking impedance controller able to track a desired
force in the presence of uncertainties in the environment as well as in the robot dynamic
model. The results were demonstrated in simulation and real-world experiments. In [58]
impedance control has been applied to 6-DOF industrial robots in several experiments.
In [59] a velocity based variable impedance controller is tested for human-robot coopera-
tion using force di�erentiation to determine human intention. The authors of [8] describe
a general passivity-based framework for the control of �exible joint robots that incor-
porates position, torque and impedance control. In [60] two impedance controllers for

8 CHAPTER 1. INTRODUCTION

�exible joint robots are proposed based on an inner torque feedback loop. [61] provides a
thorough overview of Cartesian impedance control for redundant and �exible-joint robots.
In [62] an application of reinforcement learning for learning variable impedance control is
demonstrated in simulation and real-world experiments. Current surveys on impedance
control can be found in [63,64].
Although single-arm manipulators have been one of the driving factors in impedance
control research, the scheme has been successfully applied to various other �elds. In [65]
applications to lower-limb rehabilitation can be found. Also for hydraulic [66, 67] and
pneumatic [68,69] actuators impedance control schemes have been developed. Other areas
where impedance control has assumed a central role are whole-body control for wheeled
[70�72] and biped humanoids [67, 73, 74], UAVs [75], exoskeletons [76, 77], telepresence
[78�80], and multi-�ngered hands [81].

1.4.2.2 Adaptive Impedance Control

Early work on adaptive impedance control can be found e.g. in [82, 83]. The authors
of [84] introduced a variable impedance controller for cooperation tasks between robots
and humans. They �rst analyzed the human behavior in a human-human tasks and then
encoded the results in their controller model. In [85] an adaptive impedance controller
was introduced which consists of a �lter component, an adaptive controller, and an algo-
rithm that maps the Cartesian-space control input to the joint-space control torque. The
controller does not require knowledge of the robot's dynamics parameters or the inverse
kinematics. In [86] model reference adaptive control was applied to impedance control
and demonstrated on an industrial robot. The authors of [87] applied an iterative learning
scheme to impedance control on a SCARA robot. [88] introduces, tests and compares for
nonlinear adaptive impedance controllers for human-robot interaction. Inspired by human
motor control [89], the impedance control methodology has been extended to adaptive ver-
sions where the sti�ness (and possibly damping) and an additional feedforward wrench
are dependent on the tracking error [48, 90, 91]. The exact behavior is governed by a
learning factor and a forgetting factor. Such an adaptive impedance controller is given by

τ d = Jx(q)(−f ff (t)− f d(t)−Kx(t)e−Dx[M (q),K(t,K)]ė) (1.4)

where f ff (t) is the adaptive feedforward wrench, f d(t) is an additional prede�ned wrench
trajectory that encodes potential prior knowledge, and Kx(t) is the adaptive sti�ness
matrix. The approach was also extended to a deformable environment [9].

1.4.2.3 Force Control

A typical force controller in Cartesian space can be expressed by

τ d = Jx(q)
T (kpf e + ki

∫ t

0

(f d(σ)− f ext(σ))dσ + kdḟ e) (1.5)

where kp is the proportional gain, ki is the integral gain, kd is the derivative gain of the
control law, and f e = f d − f ext is the force error.
Force control is e.g. used in unmodeled contact situations or if the goal of a task requires
precise (even dynamic) force tracking.

1.4. STATE OF THE ART 9

Force control in robotics has been researched for many years now. In [92] a method for
combining motion control and force control has been presented based on the operational
space formulation. [93] provides an early (historical) review of force control in robotics.
The authors of [94, 95] provide insights into the role of dynamics and nonlinearities in
force control approaches. In [96] a force control scheme without force sensor based on
a disturbance observer is presented and demonstrated in a real-world experiment. [97]
introduces an adaptive force control algorithm for velocity and position controlled robot
arms. Force control has been applied in many robotics-related areas. The authors of [98]
presented an observer-supported force controller that is able to compensate the motion
of a beating heart, thus aiding cardiac interventions. In [99] a controller to track desired
contact forces for whole-body approaches in humanoids is presented. Other research
focuses on contact forces in human-robot collaborations [100] or surface electromyogram-
based control strategies for exoskeletons [101]. Most force controller schemes rely on
external force/torque sensors or joint torque sensors and a momentum observer [102].
Others have also shown approaches without force sensing [103]. Some earlier surveys can
be found in [104�106].

1.4.2.4 Uni�ed Force / Impedance Control

Uni�ed force / impedance control combines the advantages of force control and impedance
control in a single controller. Early work can be found in [107] that enables impedance con-
trol and position-limited force control simultaneously. [108] introduces a uni�ed controller
connected to an energy tank that preserves passivity of the system. This approach was
extended in [109]. [110] presents a force / impedance control augmented with a kinestatic
�lter, which ensures that the commanded pose and wrench are consistent with a given
task model. [111] proposes a uni�ed motion / force / impedance controller for unknown
contacts.
A uni�ed force/impedance controller can be written as

τ d = −Jx

[
kp(f d − f ext) + kd(ḟ d − ˙f ext) + kihi(f ext, t) +Kxe+Dxė

]
(1.6)

where Kx is the Cartesian sti�ness matrix, Dx is the Cartesian damping matrix, kp, kd,
and ki are the force controller gains, and hi is de�ned as

hi(f ext, t) =

∫ t

0

(f d(σ)− f ext(σ))dσ (1.7)

1.4.3 Skill Frameworks

This section presents the state of the art in skill frameworks. The �rst parts focuses on
skill model structures, and the second part on policy representation.
Note that in the literature the terms skill, task, action, capabilities and others are often
used to describe the same thing. In this thesis the terms skill and task are used. A task
ι is de�ned as a concrete manipulation problem, i.e. it is unique. A skill ς is the means
to solve the task, but it is not restricted to solve only that particular task. However, it is
valid to say that a skill is learned, despite the fact that the robot interacts only with one
task. Thus, skill and task have a similar meaning when used in the context of learning.

10 CHAPTER 1. INTRODUCTION

1.4.3.1 Skill Models

There has been much work on representing robot manipulation skills or actions, yet no
common representation has been established so far. In fact, in most cases there is no for-
mal frame for manipulation skills since researchers and engineers tend to create their own
custom solutions for most approaches. In [112] the authors thoroughly reviewed the cur-
rent research in this area and came to the conclusion that a common basis for representing
skills is missing, although there are numerous works that each partially cover the same or
similar aspects and may �nally lead to a unifying formalism. Speci�cally, they point sev-
eral open research challenges regarding skill representations, i.e. e�ect grounding, couple
forward and inverse models, exploiting language for action understanding, intrinsically
motivated learning, selective attention, the correspondence problem, and sequence-based
modeling.
Early work on skill representations and frameworks can be found e.g. in [113] where
an intermediate level between incoming sensor data and the symbolic level acts as a
bridge, [114, 115] where AND/OR graphs are used to represent assembly plans and con-
nect to a planning layer, or [116] where hidden Markov models are used to represent
observed human actions. The authors of [117] describe a hierarchical abstract behavior
architecture combining hierarchical task structures with behavior-based systems. Their
approach enables reuse of simple behaviors across multiple tasks suggesting a notion
of atomic actions. It was experimentally validated on a mobile robot. [118] provides
an approach inspired by neuroscienti�c and psychological data. The authors describe a
cognitive architecture designed for action recognition and imitation using a distributed
system of inverse and forward models. [119] proposes a bio-inspired process of imitation
learning using goal-directed action sequences consisting of motor primitives. In [120] a
hierarchical task representation using primitive action sequences is proposed. They are
grounded by using human demonstrations. In [121] an unsupervised learning approach
for action primitives based on human demonstration is proposed. The primitives are
represented by parametric hidden Markov models which encode motion trajectories for a
robot. The authors discuss how such primitives can be learned, how they can be used to
synthesize movements to achieve desired e�ects, and how the model can be used to detect
action primitives and the entailing e�ect from observing human demonstrations. In [122]
a high-level reasoning framework was developed using DMPs as low-level policy.
Sometimes, researchers adapt existing formal methods to robot manipulation such as Petri
nets for higher-level components [123�126] and behavior trees [127�130] which are also
often used to represent control policies to a certain degree.
In [131], object action complexes (OAC), one of the �rst attempts at bridging low-level
control and high-level planning and learning, are introduced. In [132, 133] OACs are
connected to a robot vision system to segment and extract properties of objects. The
authors argue that objects and actions are inherently coupled. In [134, 135] a formal
de�nition and examples of OACs are provided. The authors of [136] demonstrate the
application of OACs to a programming by demonstration approach to create sequences
of actions for a household kitchen scenario.
The authors of [137] have developed a multi-layered architecture consisting of a semantic
event chain (high-level), a �nite state machine (mid-level), and a hardware level (low-
level). On the high level actions are described in a symbolic and abstract way by relating
them to relevant objects. The mid level utilizes a �nite state machine to execute low-

1.4. STATE OF THE ART 11

level action primitives in the correct sequence. This approach is tested on a variety of
real-world manipulation problems.
There are other approaches based on a strong link between actions and objects. For
example, in [138] actions and object representations are used to build generative models
for internal simulations on action outcomes, in [139] representations for reasoning about
the e�ects on objects due to actions are developed, and in [140] a knowledge base for
action and object representations is introduced.
The authors of [141] have proposed an assembly skill framework which models skills
based on trajectories described in pose-wrench space as well as a �nite state machine.
The approach has been tested in a real-world experiment involving a snap-�t problem.
[142] introduces a planning and execution framework called SkillMaN which combines
learned or user-provided knowledge on skills with geometric reasoning and task planning.
Many researchers combined the concepts of language and action due to their inherent
similarity. [143] discusses how actions and language can be represented and combined and
suggests a number of research milestones and test scenarios for cognitive robotics.

1.4.3.2 Policy Representations

Manipulation policies express a solution to a manipulation problem in a formal, quanti-
tative way. There are many ways how such policies can be represented and most of them
can be separated into three classes (loosely based on (Kroemer et al. 2019)):

� Non-parametric policies: This is the most general and expressive type of policy.
Although they are very �exible, these policies require large amounts of data. Promi-
nent examples are:

� Locally-weighted regression: Locally-weighted regression is a way of estimating
a regression surface using a multivariate smoothing procedure. A function of
the independent variables is �tted locally and based on a similar mechanism
how a moving average for a time series is computed. In [144] a survey on
locally weighted learning can be found, in [145] an application to learning
high-dimensional problem spaces is shown. In [146] locally weighted learning
is applied to various high-dimensional robotics problems such as pole-balancing
and inverse-dynamics learning.

� Gaussian processes: A Gaussian process is a stochastic process such that ev-
ery �nite linear combinations of the contained random variables is normally
distributed. They provide a probabilistic non-parametric modeling approach
for black-box identi�cation problems for non-linear dynamic systems. In [147],
applications to model-based predictive control. The authors of [148] have used
Gaussian processes to model robot tasks in a learning-by-demonstration ap-
proach. In [149] an application of Gaussian processes to learning the inverse
dynamics of a robot. In [150] Gaussian processes have been utilized to control
the high-dimensional space of a simulated octopus arm.

� Generic �xed-size parametric Policies: This type of policy usually makes stronger
assumptions about the structure of the policy. The representational capabilities are
still very broad, however, much more design choices are involved that determine the
frame. Examples are:

12 CHAPTER 1. INTRODUCTION

� Look-up tables: Usually, a look-up table is a data structure (e.g. an array or a
hash map) which allows for quick access to data based on a key, since no addi-
tional computation is required. It is not often used as a policy representation,
but a few application are shown in [151].

� Fourier basis: The Fourier basis is based on the Fourier series and used for
linear function approximation. Applications for reinforcement learning can be
found in [152,153].

� Neural networks: Neural networks are one of the most widely used and popular
policy representations today and are applied to a wide spectrum of domains
such as image and object detection, speech recognition and robotics. They
consist of multiple layers of arti�cial neurons containing speci�c parameterized
activation functions such as recti�ed linear units, sigmoid functions or softmax.
For example, neural networks have been used to learn basic manipulation tasks
using a mapping from the robot state [20] and visual input [154] to robot
torques.

� Restricted parametric (goal-driven) policies: These are specialized policy represen-
tations with limited representational capabilities. However, these types of policies
usually exploit existing structures of the problems they are applied to. This ex-
ploitation is mostly based in their design and requires manual choices. In turn,
their complexity is reduced which allows for much more sample-e�cient learning.
Examples are:

� Structured neural network architectures: These are neural networks with an
inherent structure that allows for higher performance on speci�c problem do-
mains. Examples are [155] which introduces a generalized value iteration net-
work that is evaluated on a range of benchmark problems, and [156] where the
authors describe a network based on �rst-order principles for inverse dynamics
learning.

� Dynamic motion primitives: Dynamic motion primitives (DMP) [146,157,158]
consist of a nonlinear attractor dynamics and an additional oscillatory term.
DMPs have been shown to be able to generate human-like motions and are
also capable of handling contacts with the evironment. They are often used
for programming by demonstration approaches [159�161]. In [162], the authors
introduce a method to sequence DMPs and demonstrate it in a real-world ex-
periment with tasks such as pouring and table wiping. In [163] DMPs have been
used in combination with potential �elds for obstacle avoidance. Other appli-
cation of DMPs to physical manipulation include [164], where a multi-�ngered
hand folded a piece of paper, [165] where DMPs were part of a framework
including object detection, pose estimation and manipulation for grasping of
everyday objects by a humanoid robot, and [166] where a bimanual collabora-
tive human-robot task was performed using DMPs.

� Linear Quadratic Regulators and Linear Quadratic Gaussian based methods:
These methods attempt to describe the dynamics of a system by a set of linear
quadratic equations. In [20] an example to robot manipulation learning can be
found, in [167] for planning grasping tasks.

1.4. STATE OF THE ART 13

1.4.4 Skill Taxonomies

In general, a taxonomy is a systematic approach to classify things in groups or types in a
structured way and can signi�cantly aid in providing further insights into the respective
�eld often allowing for a wider perspective. Many taxonomies have a hierarchical tree
structure, however, this is not a requirement. The most commonly known and oldest
taxonomies are the classi�cations of organisms [168] which are constantly updated and
revised as new information becomes available. These taxonomies classify e.g. animals
according to their relation to each other, nowadays also supported by DNA sequencing.
Other prominent examples are the classi�cation of diseases [169], which orders diseases
according to their cause, pathogenesis or symptoms, of viruses [170] where viruses are
classi�ed by e.g. their morphology and nucleic acid type, and folk taxonomies [171] which
order e.g. animals and plants according to social knowledge and everyday language em-
bedded in speci�c cultures. In the economic domain corporate taxonomies hierarchically
classify physical or conceptual entities such as products, processes, documents, or job
titles [172]. The human factors and classi�cation system [173] is a safety taxonomy de-
signed to identify the human cause of accidents, which was primarily motivated by the
rate of human error related to �ight accidents.
The taxonomy introduced in this thesis is concerned with manipulation skills for au-
tonomously acting robots. In the following related work in this area is reviewed and
followed with a review on taxonomies in robotics in general.

1.4.4.1 Skill Taxonomies

Extensive real-world-tested manipulation skill taxonomies are di�cult to build since they
require a signi�cant e�ort in terms of programming, experimentation and validation.
In [174] the authors describe a taxonomy of haptic tasks based on human manipulation
which also relates to robotics. First, they categorize manipulation action by broad la-
bels such as signi�cant required arm strength or the need of two-handed manipulation.
Then, they added a second category that is determined by the direction of force and/or
torque used in the respective task. In [175] an assembly taxonomy is proposed which
represents the decomposition of complex assembly tasks into simple skills which can be
reused in order to reduce programming time and overhead. Another approach is shown
in [176]. The authors combine high-level AI-planning methods and compliant manipu-
lation schemes in order to classify typical household shores. They created a hierarchical
taxonomic structure that classi�es manipulation tasks with respect to contact complexity.
Their taxonomy makes use of general contact classi�ers to make it accessible to high-level
planning and introduces a sub-categorization based on the detailed contact situation to
further distinguish manipulation actions. There has also been work that aims more at
the integration of robots into established frameworks. In [177] the authors discuss the
compromise between standards and �exible formalisms in industry. Although they do
not make use of a taxonomic approach they argue for the use of �exible skills and their
connection to context-dependent data. In [178] skills are derived from an abstract process
view and de�ned within the concept of PPR in AutomationML. Skills are understood as
more general abilities and tasks as concrete instantiations. Although not directly a tax-
onomy of manipulation skills, [179] introduces a system of benchmark tasks categorized
by the type of test and the tested part of the robot. They furthermore provide guidelines
for designing test protocols and experiments. In [180] a taxonomy of motions related to

14 CHAPTER 1. INTRODUCTION

cooking tasks is developed. The motions are grouped into similar sets based on trajectory
and contact attributes.

1.4.4.2 Other Taxonomies in Robotics

Among the most prominent works on taxonomic structures in robotics and related �elds
are grasp taxonomies. Those taxonomies do not directly relate to the work in this paper
but provide an important source of inspiration in terms of structure. They usually classify
di�erent grasps in a hierarchical structure for human or anthropomorphic hands. Most
notably among them are the classi�cations of Cutkosky [181] and Bullock [182]. In [183]
these taxonomies are extended by classi�cation elements related to tactile interaction.
One of the �rst approaches towards such a taxonomy is [184] that divided grasps into
power and precision grasps. In [185] a taxonomy is presented which contains various
approaches to structuring swarm robots. In the �eld of multi-robot system, the authors
of [186] proposed a taxonomy of task allocation where it is shown that many problem
related to multi-robot task allocation can be viewed as instances of other, well studied,
optimization problems. It is demonstrated how the taxonomy can be used to synthesize
new approaches based on existing theory. This taxonomy is extended by further research
in [187]. Taxonomic research has also been done e.g. in humanoid robotics. In [188, 189]
a taxonomy for whole-body poses and the transitions between them has been developed.
The authors propose a formal de�nition to characterize whole-body poses and to provide
a framework for planning and benchmarking whole-body motion and loco-manipulation.
In [190] a taxonomy of robot-assisted training systems is introduced that classi�es existing
systems by e.g. requirements, interaction types, level of autonomy and possibilities of
personalization. One result of this taxonomy is a set of open challenges for designing
and developing such training systems. A more general taxonomy of robotic hardware
systems is proposed in [191]. The authors developed a representation of robots that
links application requirements to robot capabilities with the aim of aiding application
developers in choosing the right platform for their purpose. [192] introduced a more speci�c
taxonomy of socially interactive robots.
A taxonomy of action representations in robotics is given in [112]. In [193] a taxonomic
overview of programming by demonstration approaches is developed. The authors re-
viewed existing work and identi�ed the basic elements of current methods. In the �eld
of human-robot interaction [194] introduced a taxonomy that classi�es human-robot in-
teraction scenarios by e.g. the role of the human, communication channels, proximity or
�eld of application.

1.4.5 Skill Learning

Machine learning (ML) is a topic that is entangled with robotics for quite some time
now since already 50 years ago �rst ideas were formulated [195] and experiments were
conducted. Early surveys can be found in [144, 196�200], more recent ones in [201�210].
Although machine learning in general as well as in the context of robotics is a very broad
�eld, in this section the focus explicitly lies on manipulation learning and related topics.
In general, machine learning is often separated into supervised learning, unsupervised
learning and reinforcement learning. Although, the focus of this work is on supervised
learning. However, reinforcement learning is of signi�cant importance to the �eld of robot

1.4. STATE OF THE ART 15

manipulation learning [206], thus related work from this �eld is also reviewed. Although
used in robotics for some applications [211�214], unsupervised learning is not relevant for
the present use case and is therefore omitted.
Since this thesis focuses on real-world manipulation learning the following review is divided
into simulation-based and real-world-based learning. Additionally, the special case of
transfer learning is reviewed which also covers learning from demonstration and sim-to-
real approaches. Finally, overview of algorithms used in robot manipulation learning is
given.

1.4.5.1 Manipulation Learning in Simulation

Learning robot manipulation in simulation is a widely-spread practice for benchmarking
learning methods and to avoid the costly and time-demanding setup of real-world systems.
However, the gap between simulation and reality is, depending on the task, signi�cant.
Whereas simple position-based tasks such as moving, grasping and pushing objects can
be realized in simulation, more contact-intensive interactions such as insertion or bending
objects prove to be much more di�cult in the real world. Nonetheless, the work done in
simulation has provided the research community with much needed guidance in terms of
algorithms and general experience with manipulation learning. Furthermore, sim-to-real
is a term coined by the e�ort of transferring results acquired in simulation to the real
world with no or only minimal additional learning. This speci�c branch of robot learning
is reviewed in Sec. 1.4.5.3.
Early work in this �eld can be found in [215] where reinforcement learning is used in a
hierarchical context. First elementary skills are learned and then high-level coordination
policies. The approach is demonstrated for a simulated mobile robot.
Due to their straight-forward usability and reliance on computers alone Simulations have
been leveraged to create various benchmark and test suites, especially for reinforcement
learning approaches. Examples are SURREAL [216] which is an open-source framework
o�ering various benchmark manipulation or RLBench [29] which also o�ers a wide variety
of tasks in terms of complexity. In [217] a set of simple pushing and pulling tasks were
learned on di�erent simulated robots. The authors of [218] propose an approach based
on Gaussian mixture models to learn and reproduce manipulability ellipsoids from expert
demonstrations.

1.4.5.2 Manipulation Learning in the Lab

Learning high-performance real-world robot manipulation is one of the most intriguing
and important challenges in robotics research. Solving it would allow for completely dif-
ferent approaches to automation in industry, meaning faster setup times and lower energy
consumption. However, to this date there has been no real application of autonomous
robot learning to relevant, real-world problems in an industrial, commercial scenario. The
jump out of the lab has not yet happended. The reasons are mostly robustness, task di�-
culty and lack in general autonomy of the robotic systems. Despite the still considerable
obstacles, the research community has had impressive progress regarding real-world robot
manipulation learning. In [219] learning of two motor skills, i.e. ball-in-a-cup and ball
padding were learned on a real Barret WAM robot using both imitation and reinforcement
learning. In [220] the authors demonstrated learning a pool stroke and a box �ipping task

16 CHAPTER 1. INTRODUCTION

on a PR2 dual-arm robot. In [221] a survey of applications and real-world challenges for
reinforcement learning in robotics is given. In [222] hierarchical learning of complex skills
has been explored. The robot learns a probabilistic model of the various phases and phase
transitions of a skill from human demonstrations. Basic motor primitives are used to tran-
sition between the phases. [223] demonstrates the usage of Gaussian mixture models for
robot manipulation in both simulation and real-world experiments. The approach uses
synergistic basis vectors tied to the covariance matrices of the Gaussian mixture model
to allow for reuse of policy parts. [20,154] showcases the learning of several manipulation
tasks such as closing a bottle or stacking Lego blocks based on an end-to-end approach
which maps the robot state and additional visual input to robot torques. This approach
has found some popularity and was applied to other real-world tasks such as opening a
door [21], moving objects [224] and long-term tasks involving grasping and placing ob-
jects [225]. In [226] guided policy search is extended to be used for random initial states
and a reset-free procedure, and demonstrated in simulation and a real-world placing task.
The authors of [227] demonstrate the application of soft Q-learning to real-world manipu-
lation tasks and showcase a higher sample e�ciency than model-free approaches typically
used in reinforcement learning. In [228] the application of generative motor re�exes to a
real-world peg-in-hole task was demonstrated.
In [229] a deep predictive policy training is proposed for data-e�cient skill learning. The
approach is demonstrated for a grasping and ball throwing task on a real robot. Deep
reinforcement learning has in some cases also been applied to very di�cult assembly prob-
lems as shown in [230] where an industrial-grade insertion problem with very tolerances
has been learned.
The authors of [231] explicitly look at possible pitfalls and di�culties when setting up a
reinforcement learning experiment for real-world problems. They also suggest some steps
to mitigate these challenges.

1.4.5.3 Transfer Learning

In general, the process of transferring knowledge is usually referred to as transfer learning,
which is described in detail in [232, 233] while good surveys can be found in [234�236].
Interestingly most work on transfer learning and related topics can be found on clas-
si�cation, language processing and computer vision, and only few researchers address
physical robotic applications, such as transfer between di�erent manipulation skills and
robot systems [217]. Moreover, in real-world robot applications one has to distinguish
between mostly position-based problems (such as grasping, pick-and-place or positioning)
and interaction-based problems with complex and hard-to-observe dynamics (such as in-
sertion). The former is much easier to simulate (and transfer to the real world) since it is
essentially a vision problem. Literature about transferring learned experience in robotics
alone is �lled with numerous di�erent approaches. In order to give an overview of existing
approaches, they are reviewed in terms of the source system and the variations between
source and target tasks (such as goal state, cost function, environment etc.). Furthermore,
only cases where the target system is a real-world robot are considered.
Related works are categorized based on their respective i.) source and target system
combination, ii.) underlying model of the manipulation skill policy, iii.) and di�erences
between the source and target tasks such as goal state, environment, cost function, etc.
(see Fig. 1.3). Note that policies are reviewed in Sec. 1.4.3.

1.4. STATE OF THE ART 17

to solve source task A to solve target task B

[153,201,205,237]

[207,238�245]

Target SystemTransferSource System

Real-World Learning Simulated Learning Human Demonstration Real-World Learning Simulated Learning

I

II

III

learns optimal policy π⋆

minθQ → π⋆ with θA,0 ∼ N (µ, σ)

with policy class:
Non-parametric

policies

Generic �xed-sized

parametric policies

Restricted parametric

(goal-driven) policies

learns optimal policy π⋆ with
transferred knowledge
minθQ → π⋆ with θB,0 = θ⋆

A

θ⋆
A

Di�erences in:

[21, 246�249] [33,250�262]

[144�150] [20,151�154]

Spatial Relations

Geometry

[21,263,264]

[224,265]

[146,155�161,163]

[20,164�167]

Figure 1.3: Categorization of transfer learning based on the source and target systems, policy representation, and source
and target tasks. π⋆ denotes an optimal policy, Q a suitable quality metric, and θ a set of parameters that de�ne the policy
π. The source system, policy, task space changes, and related work are all categorized.

Source System
The source system denotes the origin of the transferred knowledge or information, i.e., by
which system the source skill was learned. Three basic cases are distinguished:

� Human demonstration: Learning by (human) demonstration (LbD) is a well-
researched topic that describes the process of a robot learning a skill by observing
a human teacher [153, 201, 205, 207, 237]. The employed methods range from direct
kinesthetic interaction [238, 239], tracking and imitating human kinematics [240],
to analyzing video recordings of humans [241]. Other source technologies, such as
EMG signals, have also been used in [242] various applications, including navigation
[243], household assistance, [244] and cleaning [245]. LbD assumes that robots and
humans are kinematically similar enough, or that a human is able to compensate
the dynamics of a robot arm during a demonstration.

� Sim-to-real: Much e�ort has gone into researching sim-to-real approaches to utilize
the advantages of fast and easily scalable simulations in robot learning by transfer-
ring the acquired knowledge to the real world [250�254]. [33] used simulations that
were informed by real-world roll-outs to learn policies for real-world skills, such
as opening a drawer, on two di�erent robots. In [255], a transfer of manipulation
policies was shown by �rst using randomized dynamics in simulation and then in
the real world. [256] addressed the problem of learning manipulation skills that in-
volve deformable objects in simulation. This approach implies that the simulated
world is accurate enough to forecast real-world processes (or, at least, they can be

18 CHAPTER 1. INTRODUCTION

suitably informed via model �tting). One example of using transfer learning on
parameterized skills is [257], where a simulated robot was able to throw a ball to
di�erent target locations. [258] aimed to reduce the amount of �ne-tuning when
transferring the results to the real world by changing the simulation parameters.
Recently, [259] introduced a robust value iteration algorithm to �nd more robust
policies when transferring them from simulation to the real world. They showcased
superior robustness compared to state-of-the-art deep reinforcement learning meth-
ods. In [260], a simulation-trained approach was able to handle object rearrangement
problems. [261] used hybrid sim and real training to enable a pneumatically-driven
robot to learn to play table tennis. In [262], an anthropomorphic hand was able
to solve a rubiks cube solely based on the perception of the hand position and
interaction torques, which were learned using an initial simulation step.

� Real-world robot: There have not yet been many examples of using a real robot
as a knowledge source. However, a few examples do exist. For instance, [246] trans-
ferred simple RL policies for a ball-hitting skill, and [247] transferred learning for the
controllers of two quadrotor platforms. Another early work is [21], where multiple
robots learned to open (equivalent) doors collaboratively. First methods to share
policies between real-world agents were developed, although the di�erences between
the tasks were only on the level of spatial displacements. A di�erent approach is to
use real-world data to feed simulations [248]. However, the lack of real-world exper-
iments in literature demonstrates how di�cult this challenge is. Partially unknown
dynamics or dynamics that have not been considered for the used robot platforms
contribute to the complexity of this challenge. Furthermore, the material properties
and interaction dynamics of the learned tasks also make it di�cult. This implies
that standard big-data approaches will ultimately run into problems, since it is not
possible to scale up the setups in the same way as in simulated worlds. Domain
randomization may help pushing the boundaries of this obstacle [249].

Skill Variations
On the source system a skill is learned by performing it in a speci�c task environment.
The di�erences between source and target skill are related to the speci�c con�guration of
the environment (kinematics), geometric properties of involved objects, a goal state and
typically an explicit or implicit optimization goal.

� Spatial Relations: The spatial relations of the target skill may vary in terms of
the goal poses or kinematic states of the environmental elements like dynamic ob-
jects. Such di�erences could range from a few millimeters to completely di�erent
orientations and large translations. Many works introduced minor variations [263]
to analyze the robustness of the learned skill. However, generalization to arbitrary
pose shifts for contact-rich manipulation problems (as for contact-free motion prob-
lems [264]) were not yet achieved. Another form of spatial di�erence is transferring
between skills that have previously been learned on physically di�erent but geomet-
rically identical setups, e.g., [21].

� Geometry: The object geometry may change signi�cantly [224, 265]. This type
of change ranges from small variations in, for example, the length or diameter, to
completely di�erent object types, such as from a cylinder to a key.

1.4. STATE OF THE ART 19

� Goal State: The goal state de�nes the desired �nal world state after the skill
has been executed. This is either expressed implicitly by a loss function and/or is
explicitly encoded in the policy for goal-driven approaches. If the goal is changed
substantially, e.g., from inserting an object to pushing it, the knowledge transfer
process becomes signi�cantly more complicated. At this point, the skill has changed
on a more fundamental level compared to, for example, two insertion skills with
di�erent objects. To the best of the author's knowledge, no works have yet explored
this level of knowledge transfer.

It is important to note that without any change in the skill con�guration, there is, by
de�nition, no new skill to be learned. In that case, learning from human demonstration
or a di�erent real robot can be considered a �head start�, since it is the same skill just
with more information about the initial state. Similarly, transferring knowledge from
simulation to the real world would be a test of the simulator's performance and accuracy
in the case that also the source and target systems are the same. Scenarios with only
small changes in the kinematic con�guration may also be counted towards this.

1.4.6 Robot Software Frameworks

There exist many robot frameworks, also speci�cally for learning. An early attempt at
an open-source, community-driven framework is orocos [266]. One of the most popular
and widespread ones is the Robot Operating System (ROS) [267]. Its principle is to have
nodes that communicate in the network with a publisher / subscriber mechanism. It is
highly �exible and o�ers a vast library of user-generated content for various applications
and hardware systems. It currently is about to be replaced by its successor, ROS 2 [268]
which has similar design principles but has a much higher performance. There are several
meta frameworks that build on ROS, such as [269] that provides real-time capabilities,
or [270] that adapts ROS for multi-robot systems speci�cally.
There is a variety of smaller, and usually more specialized, frameworks. ArmarX is de-
signed to program humanoid robots with a rich toolset [271]. [272] introduces XBotCore, a
real-time capable robot control framework for EtherCat-based robots and software middle-
ware, that satis�es hard real-time requirements. [273] presents the KnowRob2 framework
that is designed for knowledge processing and reasoning.

1.4.7 Assembly Planning

Human-robot collaboration [274�277] has developed into a large �eld involving various re-
search directions such as human-robot interaction [278,279], safety [280�282], and (multi-
agent) task planning and allocation [283�287]. Assembly planning is highly related to
human-robot collaboration since human workers and robots are often utilized as a team.
Numerous works have built entire frameworks to solve assembly problems. [288] provides
an overview on human-robot collaborative assembly and the used methods. To represent
assembly planning problems on task level in robotics, various approaches have been used
such as AND/OR graphs [114] and Petri nets [289]. Other works focus the planning on
motion level such as [290] that presents an approach that solves an assembly problem on
motion level through the use of a genetic algorithm. The ROBO-PARTNER project's aim
was to develop intelligent assembly cells, task planning, and communication methods for

20 CHAPTER 1. INTRODUCTION

collaborative human-robot assembly [291]. [292] shows a multi-layered framework called
�exHRC which also uses AND/OR graphs to model human-robot cooperation models
with an additional focus on the use of wearable sensors for additional data on the envi-
ronment and human co-workers. [293] introduces a cyber-physical assembly system-based
metaheuristic for automated assembly sequence planning. [294] developed a method to
transfer knowledge about constraints from one assembly onto another.

1.5 Thesis Structure

The thesis is structured as follows. Chapter 2 provides the theoretical foundations for tac-
tile skills, their synthesis from formal process de�nitions, the taxonomy of manipulation
skills, skill learning, and planning. Chapter 3 introduces the GGTWreP framework and
its implementation, the Machine Intelligence Operating System (MIOS). Furthermore, it
presents numerous validation experiments such as related publications and demonstra-
tors shown at public events that verify the overall learning architecture. In Ch. 4 the
theoretical foundations are experimentally validated using the architecture. It presents
experiments and results from skill synthesis, skill learning, transfer learning, and assembly
planning. Finally, Ch. 5 concludes the thesis and gives an outlook on future work.

1.6 Curriculum Vitae

Education

Since 04/2018 Dissertation
Technical University Munich

09/2014�03/2018 Dissertation
Gottfried Willhelm Leibniz Universität Hannover

10/2012�07/2014 Master of Science
Gottfried Willhelm Leibniz Universität Hannover

10/2007�09/2012 Bachelor of Science
Gottfried Willhelm Leibniz Universität Hannover

08/2003�07/2007 High School Diploma
Fachgymnasium Wirtschaft (Wunstorf)

Professional Experience

Since 04/2022 Franka Emika GmbH
Head of Robotics Learning

04/2018�03/2022 Research Assistant
Technical University Munich

09/2014-03/2018 Research Assistant
Gottfried Willhelm Leibniz Universität Hannover

1.6. CURRICULUM VITAE 21

KPI Statistics

Citations 857

h-index 11

i10-index 11

July 25, 2024

Publications

Conference Papers

� Johannsmeier, L., & Haddadin, S. (2022, October). Can we reach human expert
programming performance? A tactile manipulation case study in learning time and
task performance. In Proc. International Conference on Intelligent Robots and
Systems (IROS) (pp. 12081-12088). IEEE.

� Chen, X., Johannsmeier, L., Sadeghian, H., Shahriari, E., Danneberg, M., Nick-
las, A., ... & Haddadin, S. (2022, October). On the Communication Channel in
Bilateral Teleoperation: An Experimental Study for Ethernet, WiFi, LTE and 5G.
In Proc. International Conference on Intelligent Robots and Systems (IROS) (pp.
7712-7719). IEEE.

� Voigt, F., Johannsmeier, L., & Haddadin, S. (2020). Multi-Level Structure vs.
End-to-End-Learning in High-Performance Tactile Robotic Manipulation. In Proc.
Conference on Robot Learning (CoRL) (pp. 2306-2316).

� Grischke, J., Johannsmeier, L., Eich, L., & Haddadin, S. (2019, May). Dentronics:
review, �rst concepts and pilot study of a new application domain for collaborative
robots in dental assistance. In Proc. International Conference on Robotics and
Automation (ICRA) (pp. 6525-6532). IEEE.

� Kühn, J., Ringwald, J., Schappler, M., Johannsmeier, L., & Haddadin, S. (2019,
May). Towards semi-autonomous and soft-robotics enabled upper-limb exopros-
thetics: �rst concepts and robot-based emulation prototype. In Proc. International
Conference on Robotics and Automation (ICRA) (pp. 9180-9186). IEEE.

� Johannsmeier, L., Gerchow, M., & Haddadin, S. (2019, May). A framework for
robot manipulation: Skill formalism, meta learning and adaptive control. In Proc.
International Conference on Robotics and Automation (ICRA) (pp. 5844-5850).
IEEE.

� Haddadin, S., & Johannsmeier, L. (2018, October). The art of manipulation: Learn-
ing to manipulate blindly. In Proc. International Conference on Intelligent Robots
and Systems (IROS) (pp. 1-9). IEEE.

22 CHAPTER 1. INTRODUCTION

� Grassmann, R., Johannsmeier, L., & Haddadin, S. (2018, October). Smooth
Point-to-Point Trajectory Planning in SE(3) with Self-Collision and Joint Con-
straints Avoidance. In Proc. International Conference on Intelligent Robots and
Systems (IROS) (pp. 1-9). IEEE.

� Shahriari, E., Johannsmeier, L., & Haddadin, S. (2018, June). Valve-based virtual
energy tanks: A framework to simultaneously passify controls and embed control
objectives. In Proc. American Control Conference (ACC) (pp. 3634-3641). IEEE.

� Haddadin, S., Johannsmeier, L., Becker, M., Schappler, M., Lilge, T., Haddadin,
S., ... & Parusel, S. (2018, March). roboterfabrik: a pilot to link and unify German
robotics education to match industrial and societal demands. In Proc. International
Conference on Human-Robot Interaction (pp. 375-375). IEEE.

Journals

� Ringwald, J., Schneider, S., Chen, L., Knobbe, D., Johannsmeier, L., Swikir, A.,
& Haddadin, S. (2023). Towards Task-Speci�c Modular Gripper Fingers: Automatic
Production of Fingertip Mechanics. Robotics and Automation Letters (R-AL), 8(3),
1866-1873.

� Haddadin, S., Parusel, S., Johannsmeier, L., Golz, S., Gabl, S., Walch, F., ... &
Haddadin, S. (2022). The franka emika robot: A reference platform for robotics
research and education. IEEE Robotics & Automation Magazine (RAM), 29(2),
46-64.

� Naceri, A., Elsner, J., Tröbinger, M., Sadeghian, H., Johannsmeier, L., Voigt, F.,
... & Haddadin, S. (2022). Tactile Robotic Telemedicine for Safe Remote Diagnostics
in Times of Corona: System Design, Feasibility and Usability Study. Robotics and
Automation Letters (R-AL), 7(4), 10296-10303.

� Grischke, J., Johannsmeier, L., Eich, L., Griga, L., & Haddadin, S. (2020). Den-
tronics: Towards robotics and arti�cial intelligence in dentistry. Dental Materials,
36(6), 765-778.

� Shahriari, E., Johannsmeier, L., Jensen, E., & Haddadin, S. (2019). Power �ow
regulation, adaptation, and learning for intrinsically robust virtual energy tanks.
Robotics and Automation Letters (R-AL), 5(1), 211-218.

� Haddadin, S., Johannsmeier, L., & Ledezma, F. D. (2018). Tactile robots as
a central embodiment of the tactile internet. Proceedings of the IEEE, 107(2),
471-487.

� Johannsmeier, L., & Haddadin, S. (2016). A hierarchical human-robot interaction-
planning framework for task allocation in collaborative industrial assembly pro-
cesses. Robotics and Automation Letters (R-AL), 2(1), 41-48.

1.6. CURRICULUM VITAE 23

Workshops

� Johannsmeier, L., Ringwald, J., Kühn, J., & Haddadin, S. (2016). Teleoperated
semi-autonomous control of the lwr and a humanoid hand via the myo armband.
Workshop in International Conference on Robotics and Automation (ICRA), 12, 13.

� Johannsmeier, L., & Haddadin, S. (2015). A framework for task allocation in col-
laborative industrial assembly processes. In 8th International Workshop on Human-
Friendly Robotics.

Book Chapters

� A�smann, U., Chen, L., Ebert, S., Göhringer, D., Grzelak, D., Hidalgo, D., ...,
Johannsmeier, L., ... & Podlubne, A. (2021). Human-robot cohabitation in
industry. In Tactile Internet (pp. 41-73). Academic Press.

Submission in Preparation

� Johannsmeier, L., Schneider, S., Voigt, F., & Haddadin, S. (2024). Motor Memory
for Few-Shot Learning in Robotic Manipulation. In preparation.

� Johannsmeier, L., Schneider, S., Li, Y., Burdet, E., & Haddadin, S. (2024). A
Process-Centric Manipulation Taxonomy for the Organisation, Classi�cation and
Synthesis of Tactile Robot Skills. Submitted to Nature Machine Intelligence.

24 CHAPTER 1. INTRODUCTION

2
Theoretical Foundations

This chapter introduces the theoretical foundations on which the proposed learning archi-
tecture is built. The fundamental element of the framework is the tactile skill formalism
described in Sec. 2.1 consisting of the tactile platform, tactile controller, tactile policy, and
a performance evaluator. As a complementary component, a formal process de�nition is
provided that describes industrial processes in terms of manipulation steps and boundary
conditions such as error and success states. In order to connect these two elements, a
taxonomy is devised with a hierarchical structure that organizes tactile policies accord-
ing to process properties. Based on the tactile skill, process de�nition, and taxonomy, a
synthesis procedure is presented that automatically selects a tactile policy that is suited
to solve a given input process. In Sec. 2.3 an assembly planner is introduced that makes
direct use of the tactile skill concept and extends it to skill sequences. The planner solves
the allocation problem for a team of humans and robots for a given assembly problem. Fi-
nally, in Sec. 2.4 the basis for the learning architecture introduced in Ch. 3 is introduced.
It presents a number of state-of-the-art learning algorithms that are used throughout this
thesis as well as useful performance metrics to realize the performance evaluator. Finally,
a robot motor memory e�ect is described that was discovered in an earlier experiment.
The e�ect forms the basis for the transfer learning experiments described in Ch. 4. This
chapter was written based on [14,23�25].

2.1 Representation

2.1.1 Tactile Skill

Tactility [295] refers to the capability to perceive external stimuli through touch in the
form of, for example, force, surface texture, or hardness. In this work, a tactile skill is
referred to as a computational complex consisting of policy, control, and learning that,
together with a tactile platform, constitutes the system class of tactile robots that is
introduced in [296]. Tactile perception systems match corresponding levels in the fun-
damentally underlying physical event chain from contact pressure distribution to joint

25

26 CHAPTER 2. THEORETICAL FOUNDATIONS

Tactile
Policy

Tactile
Control

Environment

Performance
Evaluator

Goal
State ẋd,f d τ d

Learning
f ext

Ω

Q

θπ θc

ẋΩ

Tactile Skill

Tactile
Platform

Figure 2.1: Tactile Skill Architecture. ẋd is the desired twist, fd is the desired wrench, τd is the desired joint torques, ẋ
is the actual twist of the robot, fext is the measured external wrench, Ω is the percept vector, Q is the performance of the
skill, θπ is the policy parameters, and θc is the controller parameters.

torque, ranging from joint torque sensors to endpoint force/torque sensors and high �-
delity tactile skin feedback. Figure 2.1 depicts the overall architecture of a tactile skill,
which is composed of three fundamental components and closely connected to a fourth
one as follows.

I. Tactile Platform The interaction of a tactile platform (i.e., the robot's hardware)
with its environment is determined by the power pair < ẋ,f ext >, where ẋ is the twist
of the robot's end e�ector and f ext is the external wrench. The dynamics of a robot that
interacts with the environment is

M (q)q̈ +C(q, q̇)q̇ + g(q) = τ d + τ ext , (2.1)

where M (q) is the mass matrix, C(q, q̇) is the coriolis matrix, g(q) is the gravity vector,
q is the joint position, q̇ is the joint velocity, q̈ is the joint acceleration, and τ d is the
desired motor torque. τ ext is the result of the physical event chain from the surface
pressure distribution u, which originates from a contact, to e�ective external joint torques
in generalized coordinates

τ ext = f 1(f 2(f 3(f 4(u)))), (2.2)

where {f i} denote the subsequent stages of the physical event chain. The percept vector
Ω encodes the tactile platform's proprioceptive and exteroceptive sensor measurements,
including tactile sensation. It is de�ned as the product of sensor matrix Ψ and physical
state vector ς

Ω := Ψς(u). (2.3)

2.1. REPRESENTATION 27

The physical state vector

ς(u) =

u := {{jσj,
jξj}j=1...ki}i=1...n

{{iF j}j=1...ki}i=1...n = f 4(u)
{iF i}i=1...n = f 3({{iF j}j=1...ki}i=1...n)
{imzi}i=1...n = f 2({iF i}i=1...n)

τ ext = f 1({imzi}i=1...n)
q
q̇
x := f ik(q)
ẋ

(2.4)

contains the physical event chain and the robot state. jσj denotes the normal contact
stresses and jξj denotes the strains.

iF j is the wrench at link i of the kinematic chain,
imzi represents the moments that act at joint i. The forward mapping f ik calculates the
end-e�ector pose x.
Note that, in this work, the focus lies on a sensor matrix Ψ with measurements τ ext,
q, q̇, x, and ẋ. This is technologically feasible with state-of-the-art systems. However,
future work will also cover Ω with extensive sensing abilities of tactile skins, including
interaction vibrations, temperature, surface humidity or chemistry, [297, 298], as well as
individual Cartesian link state measurements (which were introduced in [50,299]).

II. Tactile Controller A tactile controller - typically a uni�ed force/impedance con-
troller [8, 108] or an adaptive impedance controller [9] - receives Ω and computes the
desired joint torques τ d.

Uni�ed Force / Impedance Controller

The most basic form is a parametric force / impedance controller that is able to adapt
its sti�ness via θc,K with a feedforward wrench and a desired wrench via θc,f

τ d(θc) =JT
x (q)[−K(θc,K)e(t)−D[M(q),K(θc,K)] ė(t)− g(q)+

kp(θc,f)(f d(t)− f ext) + kd(θc,f)(ḟ d(t)− ḟ ext) + ki(θc,f)hi(f ext, t)]

+ f ff (θc,f , t),

(2.5)

where K(·) is the sti�ness matrix, D(·) is the damping matrix, f ff is a feedforward
wrench, Jx(·) is the Jacobian (de�ned by ẋ = Jx q̇), e = xd − x is the pose error,
and ė is the velocity error. kp(·), ki(·) and kd(·) are the force controller parameters, and
f e = f d − f is the force error. hi is de�ned as

hi(f ext, t) =

∫ t

0

(f d(σ)− f ext(σ))dσ (2.6)

Adaptive Force / Impedance Controller

Another controller that is used in the experiments in Sec. 4.2.1 is the adaptive force /
impedance controller given by

τ d = Jx(q)(−f ff (t)− f d(t)−Kx(t)e−Dx[M (q),K(t,K)]ė) (2.7)

28 CHAPTER 2. THEORETICAL FOUNDATIONS

where f ff (t) is the adaptive feed forward wrench, f d(t) is an additional prede�ned type-
depended wrench trajectory that encodes potential prior knowledge, Kx(t) the adaptive
sti�ness matrix, Dx the damping matrix, and Jx the Jacobian. The position and velocity
error are e = xd − x and ė = ẋd − ẋ, respectively. The adaptive feed forward wrench
f ff (t) and sti�ness Kx are

f ff (t) =

∫ t

0

˙f ff (t)dt+ f ff,0 (2.8)

Kx(t) =

∫ t

0

K̇x(t)dt+Kx,0 (2.9)

where f ff,0 and Kx,0 denote the initial values. The controller adapts feed forward and
sti�ness by

˙f ff (t) =
1

T
diag(α)(ϵ− diag(γα(t))f ff (t)) (2.10)

K̇x(t) =
1

T
diag(β)(diag(ϵ ◦ e)− diag(γβ(t))Kx(t)) (2.11)

The positive-de�nite meta parameter vectors α, β, γα, γβ are the learning rates for feed
forward commands, sti�ness and the respective forgetting factors. The learning rates α
and β determine sti�ness and feed-forward adaptation speed. γα and γβ are responsible
for slowing down the adaptation process, which is the main dynamical process for low
errors. T denotes the sample time of the controller.
In order to constrain the subsequent meta learning problem the following well-known
constraints are used that characterize essentially every physical real-world system. For
better readability the scalar case is discussed, which generalizes trivially to the multi-
dimensional one. The �rst constraint of an adaptive impedance controller is the upper
bound of sti�ness adaptation speed

K̇max = max
t>0

1

T
[β(ϵ(t)e(t)− γβK(t)] (2.12)

If it is assumed that K(t = 0) = 0 and ė then emax may be de�ned as the error at which
K̇max =

βe2max

T
holds. Then, the maximum value for β can be written as

βmax =
K̇maxT

e2max

(2.13)

Furthermore, the maximum decrease of sti�ness occurs for e = 0 and K(t) = Kmax,
where Kmax denotes the maximum sti�ness, also being an important constraint for any
real-world impedance controlled robot. Thus, an upper bound for γβ may be calculated
as

γβ,max =
K̇max

βmaxKmax
(2.14)

Finding the constraints of the adaptive feed forward wrench may be done analogously. In
conclusion, the upper limits of the meta parameters α, β, γα, γβ can be related to the
inherent system constraints Kx,max, fmax, K̇x,max, and ḟmax.

2.1. REPRESENTATION 29

III. Tactile policy The tactile controller follows a suitable tactile policy πd(Ω,θπ) =
[ẋd,f d] that uses the percept feedback Ω and the policy parameters θπ to learn and
generate a global behavior with a local reaction ability, see Fig. 2.1. This tactile policy
may be the solution of a virtual impedance system as described in [9], a tactile dynamic
movement primitive [300], or a basic ODE system that inherently captures a coordinated
motion and wrench reference through the implicit functions Fx (twist commands) and Ff

(wrench commands), i.e.,

Fx [θπ,Ω,xd(t), ẋd(t), ẍd(t)] =0 (2.15)

Ff

[
θπ,Ω,f d(t), ḟ d(t), f̈ d(t)

]
=0. (2.16)

where xd(t), ẋd(t), and ẍd(t) are the desired pose, velocity, and acceleration, respectively,
and f d(t), ḟ d(t), and f̈ d(t) are the desired wrench and its derivatives.

IV. Performance Evaluator Finally, the performance evaluator measures the skill
performance Q based on a set of n performance measures {Qi(Ω)} weighted with {ωi}.

Q(Ω) =
n∑

i=1

Qi(Ω)ωi , where
n∑

i=1

ωi = 1. (2.17)

2.1.2 Process De�nition

A process p is de�ned by the steps that are needed to achieve the process objective and
by its boundary conditions. There are four process states; namely, the initial state s0, the
error state se, the �nal state s1, and the policy state sπ. The policy state sπ contains a
number of substates, which are connected by transitions δ ∈ ∆, where ∆ is the set of all
transitions in p. The substates are later implemented by a compatible skill framework.
Three boundary conditions determine the switch between the top-level states, and the
transitions determine the switch between the policy states:

� The precondition Cpre(O) = c1,pre(O) ∧ · · · ∧ cnpre,pre(O) checks whether the process
is ready to start, and it switches from s0 to sπ.

� The error condition Cerr(O) = c1,err(O) ∨ · · · ∨ cnerr,err(O) is triggered in the case of
irreversible failure, and it immediately terminates the process, leading to the error
state se. It switches from s0 or sπ to se.

� The success condition Csuc(O) = c1,suc(O)∧ · · · ∧ cnsuc,suc(O) indicates the success of
the process. It switches from s0 or sπ to s1.

� A substate sπi switches to another substate sπj through a connecting transition δ
if a number of conditions is ful�lled, i.e. each transition is an expression δ(O) =
δ1(O) ∧ · · · ∧ δnδ

(O).
npre, nerr, nsuc, and nδ indicate the respective number of conditions. The boundary con-
ditions and transitions map logical conjunctions to the interval [0, 1] where 0 means false
and 1 means true. In case of a true evaluation a state switch is triggered. The conditions
depend on a set of objects O that form the environment for the process. An object o ∈ O
is characterized by at least its Cartesian pose To , and possibly other physical properties
such as mass, center of mass, inertia, etc. All objects have a unique identi�er (e.g., Object)
and a handle (e.g., o1).

30 CHAPTER 2. THEORETICAL FOUNDATIONS

2.1.3 Taxonomy Structure

Figure 2.2: Ranks of the taxonomy of manipulation skills

A constructive end-to-end manipulation framework with three distinct structural elements
is introduced. The manipulation process de�nition constitutes the abstraction and the
interface that is compatible with the taxonomy of manipulation skills (TMS), encoding
the skill selection process. The actual implementation is realized by a process-compatible
tactile skill framework, which can utilize machine learning while still maintaining stability
and guaranteeing safety in its control stack. With the help of this three-element approach,
it is possible for a user or an autonomous planning system to select reliable tactile skills
that perform well in industrial contexts. The skills can be used and optimized without
domain-speci�c robotics or machine learning knowledge.
The process de�nition is the input to the taxonomy. It is the interface for process experts
such as technicians, robot operators, or shop-�oor workers to frame their process knowl-
edge. Overall, this abstraction is inherently compatible with AI planning systems such as
the PDDL-based FastDownward planner [301], or the ASP-based clingo [302].
The developed TMS connects the two domains of process-centric and robot-centric repre-
sentations. Speci�cally, it allows us to map a given process de�nition to a unique tactile
skill model using its underlying classi�cation scheme. The TMS contains �ve taxonomic
ranks (see Fig. 2.2) in total; namely, family, domain, class, subclass, and instance. Each
rank represents a decision layer that reduces the set of possible solution policies for a
given input process until a complete solution is determined. The family rank determines
the type of interaction with the environment. So far, only processes with force interaction
were considered in the taxonomy. The domain rank separates policies on the basis of the
interaction forces between the process objects and the environment. At the class rank,
further re�nement is done based on well-de�ned, concrete manipulation steps that lead
from the initial state of the process to its �nal state. The subclass rank groups the skill
solutions according to the distinct geometries of the manipulated objects (e.g., plugs and

2.2. TACTILE SKILL SYNTHESIS PROCEDURE 31

keys). Finally, the instance rank contains skill solutions that represent an input process
with a concrete physical setup. Note though that the con�guration of the setup (i.e. the
object poses) is not de�ned, meaning that one skill instance can have arbitrarily many
tasks, i.e. physical instantiations.
Input processes for the TMS are directly derived from established standards such as the
German curricula for trainees in metalworking [303], electronics [304], and mechatron-
ics [305]. These standards provide the basis for almost any process in today's industry
by de�ning boundary conditions, manipulation steps, requirements, and objectives. By
building on top of standard works, the presented framework is directly compatible with
the current needs of industrial companies. As a �rst step, the TMS contains processes
that range from machine tending (e.g. operating levers and pressing buttons), to assembly
(e.g. insertion), or material processing (e.g. bending and cutting).

2.2 Tactile Skill Synthesis Procedure

A synthesis procedure was devised to formally close the gap between process de�nition
and skill implementation. The selection of a robot manipulation policy πd(Ω,θπ) from a
desired manipulation process p ∈ P is expressed by

T = T1 ◦ T2 ◦ T3 ◦ T4 : p→ πd, (2.18)

where T is the taxonomic algorithm that maps p to a unique πd(.). πd is then learned
with a suitable algorithm (i.e., the policy and controller parameters (θπ,θc) are learned)
so that π∗

d = πd(Ω,θ∗
π) and τ ∗

d = τ d(θ
∗
c) are the optimal policy and controller, solving p.

The algorithm steps Ti correspond to the ranks in the taxonomy1.
Π0 is the initial set of all available policies. T iteratively narrows down Π0 to a single πd

by the following steps, which are currently being done manually but could be automated:

1. The Domain rank (T1) selects policies based on their desired wrench f d:
Π1,1 = {πd | f d(t) = 0 ∀ t}, Π1,2 = {πd | f d(t) = Const. ∀ t},
Π1,3 = {πd | f d(t) ∈ {fd,1, . . . ,fd,n} ∀ t}, Π1,4 = {πd | f d(t) ∈ R ∀ t}

2. The Class rank (T2) selects policies that reach s1:
Π1,i,j = {πd | w(t) = s1 for t→∞}

3. The Subclass rank (T3) selects policies that follow the process steps de�ned by ∆:
Πi,j,k = {πd | δ → true ∀δ ∈ ∆}

4. The Instance rank (T4) selects the policy with the lowest number of parameters:
πd = c({πd | min|θπ | πd ∈ Πi,j}).
c represents a choice if more than one policy is left. Furthermore, the parameter
domain D is determined using constraints from the system and the process instance:
D = fD(θπ,θc,C)
with constraints
C = {τ ext,max,f ext,max, tmax, ẋmax, ẍmax}
This (so far manual) step is represented by fD, i.e.

1Note that the family rank is omitted since, so far, only one element exists on its level.

32 CHAPTER 2. THEORETICAL FOUNDATIONS

For two example processes, inserting an Ethernet plug and cutting a piece of cloth, the
synthesis procedure is described below. More details such as the available set of policies
Π can be found in App. A.1. Note that in the following U(T) means an environment
around a Cartesian pose T that is de�ned by intervals in x, y, and z as well as in SE(3).
Furthermore, boundary conditions and transitions are expressed as equations that map a
number of conditions connected by conjunctions to [0, 1] (false or true).

Synthesis: Inserting an Ethernet Plug
Process de�nition:
O = {o1, o2, o3}, Cpre = ∅, Cerr = ∅, Csuc = To1 ∈ U(o3),
∆ = {δ1,2 = To1 ∈ U(o2), δ2,3 = f ext > f contact}

1. Domain (T1): The process involves a search process with complex interaction forces.
Therefore Π1,4 is selected:

Π1,4 = {πd,13,πd,14,πd,15,πd,16,πd,17,πd,18,πd,19,πd,20,πd,27,πd,28,πd,32}

2. Class (T2): The policies that can reach the �nal state s1 of the insert process are

Π1,4,1 = {πd,17,πd,20,πd,27,πd,28,πd,32}

3. Subclass (T3): The policies that are not guaranteed to reach the process's substates
are removed:

Π1,4,1 = {πd,27,πd,28,πd,32}

4. Instance (T4): From Π1,4,1, the least complex policy is selected to be πd,27.

Synthesis: Cutting Cloth
Process de�nition:
O = {o1, o2, o3, o4, o5}, Cpre = ∅, Cerr = {f ext,z < f cut}, Csuc = To1 ∈ U(o5),
∆ = {δ1,2 = To1 ∈ U(o2), δ2,3 = f ext > f cut, δ3,4 = To1 ∈ U(o4)}
f cut is the desired cutting force.

1. Domain (T1): The process requires a constant cutting force, but it also has phases
without any contact. Therefore, Π1,3 is selected:

Π1,3 = {πd,22,πd,24,πd,26,πd,30,πd,31}

2. Class (T2): The policies that can reach the �nal state s1 of the cut process are

Π1,3,2 = {πd,26,πd,31}

3. Subclass (T3): The policies that are not guaranteed to reach the process's substates
are removed:

Π1,3,2 = {πd,26}

4. Instance (T4): From Π1,3,2, the least complex policy is selected to be πd,26.

2.3. ARTIFICIAL INTELLIGENCE-BASED ASSEMBLY PLANNING 33

2.3 Arti�cial Intelligence-Based Assembly Planning

This section describes the representation of assembly plans and a search method to solve
them.

2.3.1 Introduction

In the following, industrial assembly processes are considered that are typically well under-
stood and planned in advance. Therefore, the construction plans are known beforehand.
Also, it is assumed that during task execution all necessary tools and parts are fed to
the team by suitable mechanisms such as conveyor belts. In turn, the requirements for
autonomy are restricted to speci�c problems such as being able to execute a set of assem-
bly and manipulation skills, or to communicate with humans and other robots within the
context of assembly processes.
A framework for human-robot collaboration is proposed that comprises three di�erent
architectural levels: the team-level assembly task planner, the agent-level skill planning,
and the skill execution level that is the �nal decision component above the robot real-time
control stack.
The planner at team level performs the task allocation for the agents based on an ab-
stract world model and with the help of suitable cost metrics. To suitably model the
types of assembly processes AND/OR graphs [114] are employed as they implicitly model
parallelism. The team-level planner produces task sequences for every agent via A⋆ graph-
search, from which it derives task descriptions that are then passed down to the agent's
skill execution level. The agents in turn implement tactile skills as introduced in Sec. 2.1.
The proposed separation in terms of entities (agents, team-level planner) and abstraction
leads to an e�cient planning framework that can produce optimal nominal task plans to
build a desired assembly, while handling failures due to dynamic and uncertain environ-
ments in a safe and reliable way on the lower levels of control.

2.3.1.1 Preliminaries

To be able to create (large) assembly plans and design control processes that implement
those plans, it is necessary to select a proper representation. In this chapter such a repre-
sentation is brie�y introduced and reasonable assumptions are made about the structure
of the assembly, simplifying the subsequent theoretical analysis. Note that in this work
the generation process of assembly plans is not treated. Instead, it is assumed that such
plans are already at disposal. A popular algorithm to generate assembly plans is e.g.
described in [306].
In the following, a mechanical assembly is denoted by A. An intuitive representation for a
single assembly is the graph of connections G. This is obtained by simplifying the graph
of contact, which was already used in several works [306�308]. The resulting graph of
connection contains a node for every part ρ ∈ Γ, where Γ is the set of all parts, and an
edge if and only if there is at least one contact between the two respective parts.
The parts ρ are assumed to be solid rigid objects, i.e. their shape remains the same
throughout the complete assembly process. A subassembly Γs ⊂ Γ has similar properties
as the complete assembly. If a subassembly consists of more than one part, all the parts are
connected, meaning the graph of connections induced by that subassembly is connected.

34 CHAPTER 2. THEORETICAL FOUNDATIONS

For the sake of simplicity it is assumed that every part ρ is unique, i.e. they are not
interchangeable when they have equal properties (e.g. two screws of the same type).
Furthermore, it is assumed that the geometry and characteristics of the connection of
every pair of parts are unique. Thus, every subassembly implicitly de�nes the complete
geometry of the involved parts as well as their connections. A subassembly with only one
part is considered atomic.
In order to build an assembly an assembly plan is needed, which describes the possibilities
of how to assemble a work piece. In particular, it assumes that all parts are in their
designated places and the necessary connections were made already, so that one begins
with the correct subassemblies. The process of executing the assembly plan is called
assembly process. The process of assigning the available workers w ∈ W (for which also
the more general term agent is used) to the assembly actions is called task allocation.
A sequence of assembly actions a that lead from the initial con�guration to the �nished
product is called an assembly sequence α. An assembly action a denotes one step in the
assembly process and can be understood as a skill instantiation.

2.3.1.2 Assumptions

Three predicates are introduced to further concretize the scenario which is being investi-
gated. First, it is assumed that a subassembly Γs is stable, st(Γs), i.e. its parts remain in
contact without applying any external forces and the relative geometry of all parts does
not change. Then, the actions a that are used in the assembly process are classi�ed as
geometrically feasible and mechanically feasible:

� gf(a) denotes that there exists a collision free path to join the two involved sub-
assemblies.

� mf(a) holds if it is possible to permanently establish all necessary connections.

Sequentiality A plan is sequential if there exists a sequence of assembly actions, in-
volving only one subassembly that can represent the plan. This means that it is never
necessary, though possible, to move two subassemblies at a time. A plan that holds this
property could thus be executed by a robot with a single manipulator. Whether an as-
sembly can be described by a sequential plan depends on its geometry. Also, it requires
that every subassembly is stable.

Monotonicity A plan is called monotone if it contains no action that would break an
already established connection or modi�es the relative geometry in an already existing
subassembly. Monotonicity is often built into real world assemblies.

Coherency A plan is coherent for a graph G if every subassembly occurring in the plan
corresponds to a connected sub graph of G. More formally, there exists a connected graph
G such that

� there exists an isomorphism from the set of parts to the set of nodes in G and

� for every subassembly occurring in the plan, the sub graph of G that is induced by
that subassembly is connected.

2.3. ARTIFICIAL INTELLIGENCE-BASED ASSEMBLY PLANNING 35

2.3.1.3 Collaborative Assembly Planning Framework

Assembly M

Assembly Level AND/OR Graph YM

Pi

. . .

.

.

Pj

ai aj

ak al

Team Level Task Allocation

OR node

AND node

Assembly Sequences α

aii aij aik

aji ajj ajk

wi

wj

Agent Level

ςi

ςk

s0

Real-time
Communication

GGTWreP Model

O
n
li
n
e

O
�
in
e

Pi

. . .

.

.

Pj

ai aj

ak al

wi →

wj →

. . .

II

III

IV

I

ςj

sπ

se

pm pn pl s1

Figure 2.3: Collaborative assembly planning framework. The top layer depicts the input to the team-level planner, which
is an AND/OR graph YA resulting from an assembly A (Step I). The planner then solves the problem of optimal task
allocation (Step II) for multiple agents considering a given cost function and constructs a set of assembly sequences (Step
III). The actions from the sequences are then passed to the respective agents (Step IV), which possess corresponding skills
ς. Skills in turn consist of more basic structures, i.e. atomic actions, which eventually map to the real-time-level.

36 CHAPTER 2. THEORETICAL FOUNDATIONS

Figure 2.3 provides an overview of the collaborative assembly planning framework. The
used notation w → a denotes a speci�c allocation of agent w to action a. The framework
comprises three main levels, which are strictly separated. However, they communicate
bilaterally with each other and share common information. Although the approach is
considered as rather general in principle, the focus here lies on its application to industrial
assembly processes.
The �rst level, called team level, plans the assembly process from the view of a foreman,
i.e. it has information about the possible construction plans, assembly parts, the available
agents and other resources. It knows only actions that can manipulate this world model
in an abstract way, i.e. it is domain-speci�c. The planning process on team-level solves
the problem of task allocation in the assembly process for a team of human and robotic
workers. It should be noted that at this level of abstraction no explicit distinction between
human and robotic workers is made, since the team-level planner relays only abstract
task descriptions without the need to take into account speci�c implementations of the
necessary skills. It is possible to distinguish between agents by encoding their respective
capabilities into cost functions that are used for planning. At this point it is important
to state how the planner interacts with the agents. During the search process the planner
sends the request to perform a speci�c action to an agent. The agent answers with the
cost and possibly a further request for an interaction, which in turn is integrated into the
planning process. If an agent is not able to perform a speci�c action it returns in�nite
costs. The planner then uses the received costs from all available agents to determine the
optimal task allocation. Please note further, that the planning process at team-level is
o�ine, see Fig. 2.3, hence, fast replanning and re�nement methods are out of the planner's
scope, despite it might be possible for a manageable assembly complexity.
The second level, called agent level, maps the team-level planning process to the capa-
bilities (skills) of the robot. In general, the agent level may of course contain also other
sophisticated planning systems that plan out sequences of skills to accomplish a given
objective. However, for executing industrially relevant skills that need a high level of
expert knowledge, practical experience shows that their automatic planning instead of
semi-handcrafting in collaboration with process experts is the signi�cantly less capable
approach as of today. Note that since the agent level is implemented on the robot it-
self, it is possible to use di�erent robot types. For this, the systems have to provide the
necessary formal semantics to the team level, which obviously requires the systems to be
able to execute the same actions in principle. Another important task of the agent level
is the consistent handling of events such as collisions or human induced interruptions of
the assembly process. Although the reaction to the actual event itself is assumed to be
handled by the skill level, the agent level either has to deal with the consequences in a way
that is consistent with the overall plan on team level, or report a failure in plan execution
and request replanning from the team-level planner.
The third level, the skill level, is directly responsible for executing trajectory planning,
controllers, etc. For the experimental analysis of the planning system it is realized by the
GGTWreP framework (see Sec. 3.2.5).

2.3.2 Assembly Plan Representation

In a collaborative scenario where actions are distributed among several agents w ∈ W , it
may be desirable and more e�cient that some of the actions are executed in parallel. In

2.3. ARTIFICIAL INTELLIGENCE-BASED ASSEMBLY PLANNING 37

particular, when humans and robots work together, scenarios become possible where join-
ing subassemblies may require rather complex and delicate procedures that are extremely
di�cult to automate, while assembly of subassemblies may be very easy to automate.
Consequently, one possibility is that the human handles the complex task of joining the
subassemblies, while the robotic co-workers prepare the mentioned subassemblies and
'feed' them to the human when needed.
As mentioned above, AND/OR graphs are chosen as the representation of assembly plans
because of their ability to explicitly facilitate parallel execution of assembly actions, as
well as the time independence of parallel executable actions. Using AND/OR graphs
for the representation of assembly sequences was �rst proposed in [114]. More recent
applications can be found in [309]. The AND/OR graph of a particular assembly can be
constructed by disassembling the complete assembly until only atomic parts ρ are left.
Having this idea in mind, the graph of feasible assembly actions is built.

De�nition 1: AND/OR graph of feasible assembly sequences A mechanical
assembly is de�ned by A = (Γ, st, gf,mf). The AND/OR graph YA of feasible assembly
sequences of assembly A is de�ned as the hypergraph (V,E), where

V = {Γs|Γs ⊆ Γ ∧ st(Γs)},
E = {{Γs,k,Γs,i,Γs,j}|Γs,k,Γs,i,Γs,j ∈ V },

and

Γs,k = (Γs,i ∪ Γs,j) with gf({Γs,i,Γs,j}) ∧mf({Γs,i,Γs,j}).

Note that, although each edge in the hypergraph is an unordered set, one of the three
subassemblies, namely Γs,k is distinguished because it is the union of the other two sets
Γs,i and Γs,j. Figure 2.4 shows an excerpt from an AND/OR graph of a four part assembly
consisting of the parts Γ = {A,B,C,D}.

2.3.3 Task Allocation and Planning

2.3.3.1 Team-Level Task Allocation

The team-level planner takes an assembly plan in the form of an AND/OR graph as
input. Furthermore, a reference to a database is needed, which contains the necessary
information about part locations, agents and other resources. To optimally solve the allo-
cation problem with respect to a particular cost metric, the well-known A⋆ graph search
algorithm [310] is applied. In the following, the formal problem statement, relevant cost
metrics and heuristics, as well as further considerations concerning multi-agent allocation
are provided.

1) Problem Statement The overall goal is to �nd an allocation of agents to assembly
actions that is optimal with respect to a speci�ed cost function. In the following, Z =
{ζ1, . . . , ζn} denotes the set of assembly states, each of which corresponds to a set of OR
nodes vo(ζ) ⊂ Vo, where Vo denotes the set of all OR nodes in the AND/OR graph YA.
Similarly, the assembly actions a(ζ) that are applicable in a state ζ correspond to a set
of AND nodes va(ζ) ⊂ Va, where Va denotes the set of all AND nodes in YA. Since YA

38 CHAPTER 2. THEORETICAL FOUNDATIONS

ABCD

BCD

CD BC

D B A C

AC

.

Figure 2.4: Partial AND/OR graph of an exemplary assembly. The blue colored rectangles depict OR nodes, the red
colored circles AND nodes.

and the number of available agents, and therefore, the number of possible allocations, are
�nite, the search space is �nite as well.
The general idea is now to propagate through YA from the root node via disassembly ac-
tions until some state contains only atomic subassemblies. The following formal de�nition
of the problem complies to the simpli�cations for the assembly process introduced in Sec.
2.3.1.2.

� The initial assembly state ζ0 corresponds to the root node vo,0 of YA, which corre-
sponds to the complete assembly A.

� In a state ζ the number of applicable assembly actions is at most as large as the
number of OR nodes nζ,o in that state due to strict sequentiality. Also, a single
OR node can provide at most one AND node to a valid set of actions, since a given
assembly can not be disassembled into two di�erent con�gurations at the same
time. Therefore, in ζ there are nζ,a =

∏
i na,i di�erent valid sets of actions, where

na,i denotes the number of children of the i-th OR node. Also note that an agent
w does not have to be assigned to an action. In addition, every action from a(ζ)
can be assigned to every agent w ∈ W . In a state ζ, there is a maximum number of
assignments

NA =
l∑

i=1

nζ,a

(
nw

i

)
nζ,o!, (2.19)

where l = min(nw, nζ,o) is either the number of available workers nw or the number
of OR nodes with children nζ,o, i.e. whichever is lower.

2.3. ARTIFICIAL INTELLIGENCE-BASED ASSEMBLY PLANNING 39

� The goal state ζg contains only OR nodes that correspond to atomic subassemblies.

� The cost of an action can be chosen from di�erent possibilities and will be further
elaborated below.

To illustrate the propagation of the search algorithm through the search space (i.e. the
AND/OR graph) Fig. 2.5 depicts an example.

ABCD

w1 → a1

ABCD

w1 → a1

AB CD

AB CD

a2w1 → w2 → a3

A B C D

expand

Figure 2.5: Example propagation via search through search space. In the top graph agent w1 has been assigned to the
indicated AND node in state ζ and thus, the corresponding assembly action. This AND node has two children that are
expanded and form the new state ζ′. In the bottom graph two parallel actions are assigned, which again yield two children,
respectively. The dashed boxes depict the currently active state, the dotted ones the chosen allocation.

2) Multi-Agent Considerations Up to now, no particular assumptions regarding the
number of workers were made in the problem statement. Although the AND/OR graph
implicitly models parallelism, it is at no point required to have more than one worker
available if the simpli�cations from Sec. 2.3.1.2 are met. Yet, to potentially increase
e�ciency/speed of the assembly process, a team of agents is used. For this, some factors
have to be considered, which are introduced into the planning process at team level.

a) Actions and Interactions Within a multi-agent scenario in the domain of collab-
orative assembly planning, actions are not just used to build the assembly but also to
enable interactions between agents. Therefore, it is distinguished between actions that
directly modify the assembly and actions that characterize an interaction between two

40 CHAPTER 2. THEORETICAL FOUNDATIONS

agents. Also note, that at team level actions are considered to be atomic, i.e. they di-
rectly change the model of the world. At agent level the same actions are called skills
which in turn map to the skill level. The actions at team level are formally de�ned as
follows.

De�nition 2: Assembly action Let a(type,W) be a general action in the context
of assembly processes. Let type denote a descriptor that speci�es the action type that
is requested and W can either be a single assignment W = wi, or a pair assignment
W = (wi, wj) depending on the type. Note that interactions, i.e., actions with a pair
assignment, with at most two agents are considered.
If e.g. type=hand_over and W = (w1, w2), a needed part is not reachable by w1 and
must be provided by w2 via a hand-over action.
Note that there is no need to change the problem statement to include interactions, it is
only necessary to integrate them into the expanded AND/OR graph YA,ζ that is de�ned
as follows.

De�nition 3: Expanded AND/OR graph Let YA,ζ′ be called the local AND/OR
graph of the state ζ ′, then YM,ζ′ is created as a copy of YA,ζ of state ζ, which is the
predecessor of ζ ′. The initial YA is the AND/OR graph of ζ0.
Since every interaction is speci�c to the assigned agent pair and arises from a particular
context (e.g one agent cannot reach a part, yet another can, or one agent needs the
assistance of another agent to join two subassemblies), it makes sense to change the
AND/OR graph only locally in the search problem, i.e. for the respective state ζ. Over
a sequence of states ζ the graph is expanding with the occurrence of interactions.
If an interaction is necessary, a new OR node with the corresponding subassembly Γ′

s and
a new AND node va, which represents the interaction, are inserted, see Fig. 2.6. The new
AND node (i.e. the action) can then be assigned to an agent as described above. The
new (intermediate) subassembly Γ′

s has the same parts as Γs i.e. ρ(Γ′
s) = ρ(Γs). However,

the state of ρ(Γ′
s) is di�erent from that of ρ(Γs) depending on the type of interaction.

b) Synchronization Another important aspect in a multi-agent scenario is synchro-
nization. In an ideal situation, the nominal plan would be executed in the real world
without any modi�cations. In practice, this is highly unlikely, in particular due to dy-
namically changing environments and uncertainty. Thus, it is not possible to guarantee
e.g. a successful hand-over action without communication. Since the action sequences
arise from the AND/OR graph, every need for synchronization can be dealt with by
interactions.
This means that agents do not need to synchronize their actions, as long as their action
sequences α are not connected via an interaction. Since the team-level planner knows (via
con�rmation from the agents) which actions have been performed, it can let agents wait
until the requirements for their next scheduled task are ful�lled. This way only tasks that
are applicable are performed. The following example refers to Fig. 4.17, which is also the
graph for the experiments in Sec. 4.4. Consider an agent w1 that performs action a11 and
is then scheduled to perform action a7. Also consider agent w2 that performs action a10.
w1 can not perform a7 as long w2 does not con�rm the completion of a10. Hence, the
structure of the AND/OR graph represents the agents actions.

2.3. ARTIFICIAL INTELLIGENCE-BASED ASSEMBLY PLANNING 41

Γk

a1w1 →

Γi Γj

YA,s YA,s′ Γk

a1w1 →

Γ′
i Γj

Γi

w2 → a2

Figure 2.6: To model an interaction between two agents in the AND/OR graph a new AND/OR node pair is inserted.
In this example, the subassembly Γk is created by agent w1 via joining Γi and Γj , which corresponds to the action
a1 := a(assemble, wa). Yet, some kind of interaction is necessary to complete the assembly step. E.g., the performing agent
cannot reach Pi so another agent w2 needs to hand this part over. Therefore, Γ′

i and the AND node that corresponds to
the interaction a2 := a(hand_over, (w1, w2)) are inserted on the right side.

3) Optimization Metric and Heuristic Although the most obvious way to evaluate
the cost of an allocation is to measure the overall execution time, there may be other
metrics that are more important in speci�c situations. Furthermore, it is unlikely that time
constraints assumed by the team-level planner are adhered to by the human co-workers,
since the daily work routine of a factory worker is undetermined over short periods of time.
Considering this and the fact that it is not explicitly distinguished between humans and
robots at team level, other cost metrics are needed that are more applicable in human-
robot collaboration and encode all necessary information about the speci�c workers. For
example, the assembly could involve the handling of dangerous and/or heavy material
and thus the human workload and risk should be minimized. Therefore some example
cost functions are introduced that are suitable candidates to the given problem:

� Execution Time: One may distinguish between overall execution time and local
execution time, i.e. the time needed for the execution of a single action.

� Resource costs: Resources such as energy consumption, peak power, etc. could be
taken into account.

� Risk factors: Danger to human, workload amplitude and frequency or ergonomic
factors may be of relevance.

� Assumptions about the human worker: A worker pro�le could be generated that
maps to a cost function, using properties such as attention level, general experience
level, and reliability.

A cost function for a robot could e.g. look like cr(w, a) = ω1ft(w, a) + ω2fp(w, a), where
w and a denote the worker-action pair of the assignment, ft the amount of time w would

42 CHAPTER 2. THEORETICAL FOUNDATIONS

need to perform a and fp the amount of power consumption of w when performing a. ω1

and ω2 are weighting factors. A human cost function could be ch(w, a) = ω1fa(w, a) +
ω2fw(w, a), where fa is a measurement for the anticipated attention level of the human
when performing action a and fw is a workload measurement. Note that joint costs, i.e.
costs that arise from interactions, can be treated explicitly. This is useful in order to
integrate interdependencies between two speci�c agents into the cost function.

Now, in order to make use of the advantages of the A⋆ algorithm, a suitable heuristic needs
to be de�ned. The approach for the stated search problem is as follows. The minimum
amount of assembly actions na,min that need to be applied under the assumptions from
Sec. 2.3.1 to get from the current state ζ to the goal state ζg are found to be

na,min = log2(max
i

(nρ(vo,i))). (2.20)

The function nρ yields the number of parts of the subassembly Γs that corresponds to the
OR node vo,i. An admissible and consistent (or monotone) heuristic can then be derived
by multiplying na,min with the minimum cost an agent can achieve for any action that has
not yet been applied. If the heuristic is admissible and consistent the algorithm will �nd
the optimal path [311].

4) Problem Reduction Due to the large number of possible agent assignments to
actions if many agents are used, or a complex assembly with many possibilities is to
be built, it is often more e�cient to reduce the problem complexity �rst. The proposed
method to achieve this, is to reduce the search space by simplifying the AND/OR graph by
separating it into multiple smaller graphs, i.e. independent problems. For this, reducible
subassemblies are introduced.

De�nition 4: Reducible Subassembly Let vo,R be the root node of the partial
AND/OR graph YR ⊂ YA that is induced by the reducible subassembly Γs,R and Va,p

the set of parent nodes of vo,R. If all edges E = {(vo,R, vo|vo ∈ Va,p} were removed, the
result would be two distinct AND/OR graphs, i.e. YR ∪ Y ′

A = ∅, where Y ′
A = YA \ YR.

Obviously, this scheme is a divide-and-conquer approach, where the actions that represent
the removed edges are ignored at �rst. The graph Y ′

A is now smaller because it only
contains the root node vo,r of the reducible subassembly Ps,R. Hence, the allocation
problem is easier to solve. This is the case because several small search spaces are now
present instead of a single larger one.

2.3.3.2 Agent-Level Task Allocation

The agent level implements the autonomous behavior of a single robot to ensure the safe
and successful execution of the actions that are assigned to the robot by the planner at
team level. The assembly skills at agent level directly correspond to the actions received
from the team-level planner. Arrow IV in Fig. 2.3 depicts this connection. The GGTWreP
framework introduced in Sec. 3.2.5 provides the necessary capabilities for the robot.

2.4. MACHINE LEARNING 43

2.4 Machine Learning

2.4.1 Algorithms

In this section the choice of algorithms that were tested in the real-word experiments in
Sec. 4.2 are discussed. Due to its structure black-box optimization methods are best suited
for the used GGTWreP framework. Within this subclass of machine learning the number
of potential algorithms was reduced by comparing the requirements with the capabilities
of candidate algorithms.
Since the intention is to learn real-world physical manipulation problems, the algorithm
will face various challenges that result in speci�c requirements:

� Generally, no feasible analytic solution is available, meaning simple models cannot
be relied upon.

� Gradients are usually not available.

� Real-world problems are inherently stochastic due to various factors such sensor
noise, actuator noise, model inaccuracies and noise coming from the task environ-
ment itself (e.g. wear and tear over time).

� No assumptions are possible on minimum or cost function convexity.

� Violation of safety, task or quality constraints have to be considered which means
that discontinuities in the cost function are possible due to sudden failure events.
In general this can be stated as the requirement to handle unknown constraints.

� Low computational e�ort is required. This is essential for real-world robot learning
with limited computational resources (due to e.g. lack of network connection, low
desired power consumption of the system, etc.)

� Low total learning time is desired which is a major factor for real-world robot
learning which cannot be scaled up as easily as a simulation.

Thus, suitable learning algorithms must provide a numerical black-box optimization and
cannot rely on gradients. Also, stochasticity must be considered and the method has to be
able to optimize globally. Furthermore, it should handle unknown and noisy constraints
and �nally, it must use only few computational resources while still keeping the number
of required samples low.
Table 2.1 lists several groups of state-of-the-art optimization methods and compares them
with respect to above requirements. In [312] a similar reasoning can be found for a
humanoid walking problem. Note that extensions exist for the stochastic case for all of
the algorithms.
Generally, gradient-descent-based algorithms are unsuitable since they rely on gradients
and do not optimize globally. Grid search and evolutionary algorithms cannot handle
unknown constraints very well without extensive knowledge about the problem they op-
timize, i.e. make use of well-informed barrier functions. The latter aspect applies also
to particle swarm algorithms. Only Bayesian optimization (BO) in accordance to [313] is
capable of explicitly handling unknown noisy constraints during optimization. However,

44 CHAPTER 2. THEORETICAL FOUNDATIONS

Table 2.1: Suitability of existing learning algorithms with respect to the desired properties

Method no
gradient

stochasticity
assumption

global
optimizer

unknown
constraints

low computational
requirements

Grid Search + + + − +
Gradient-
descent
family

− + − − +

Evolutionary
algorithms

+ + + − +

Particle
Swarm

+ + + − +

Bayesian Op-
timization

+ + + + −

usually the best performing implementations of Bayesian optimization have high compu-
tational requirements if they run for a higher number of trials. Judging from the table all
algorithms except gradient descent seem more or less suited for real-world robot learning,
thus they are evaluated in an experimental setting.
In later experiments also the hierarchical relative entropy search (HiREPS) algorithm and
a newly developed SVM-based optimization method which partitions the parameter space
to �nd an optimal (and robust) solution were compared.

2.4.1.1 Bayesian Optimization

In general, BO �nds the minimum of an unknown objective function f(θ) on some domain
D by developing a statistical model of f(θ) where θ is the set of parameters. Apart from
the cost function, it has two major components, which are the prior and the acquisition
function.

Prior A Gaussian process is used as prior to derive assumptions about the function
being optimized. The Gaussian process has a mean function m : D→ R and a covariance
function B : D × D → R. As a kernel the automatic relevance determination (ARD)
Matérn 5/2 kernel is used which is given by

BM52(θ,θ
′) = θ0(1 +

√
5r2(θ,θ′) +

5

3
r2(θ,θ′)e−

√
5r2(p,p′), (2.21)

with

r2(θ,θ′) =
d∑

i=1

(pi − p′i)
2

θ2i
. (2.22)

This kernel results in twice-di�erentiable sample functions which makes it suitable for
practical optimization problems as stated in [314]. It has d + 3 hyperparameters in d
dimensions, i.e. one characteristic length scale per dimension, the covariance amplitude
θ0, the observation noise ν and a constant mean m. These kernel hyperparameters are
integrated out by applying Markov chain Monte Carlo (MCMC) via slice sampling [315].

2.4. MACHINE LEARNING 45

Acquisition function Predictive entropy search with constraints (PESC) is used as a
means to select the next parameters θ to explore, as described in [316].

2.4.1.2 Particle Swarm Optimization

Usually particle swarm optimization starts by initializing all particle positions xi(0) and
velocities vi(0) with a uniformly distributed random vector, i.e. xi(0) ∼ U(blb, bub) and
vi(0) ∼ U(−|bub − blb|, |bub − blb|) with U being the uniform distribution. The particles
are evaluated at their initial positions and their personal best θ⋆

i and the global best θ⋆

are set. Then, until a termination criterion is met, following steps are executed:

1. Update particle velocity:

vi(t+ 1) = vi(t) + c1(θ
⋆
i − xi(t))R1 + vi(t) + c2(θ

⋆ − xi(t))R2 (2.23)

where R1 and R2 are diagonal matrices with random numbers generated from a
uniform distribution in [0, 1] and c1, c2 are acceleration constants usually in the
range of [0, 4].

2. Update the particle position:

xi(t+ 1) = xi(t) + vi(t+ 1) (2.24)

3. Evaluate the �tness of the particle f(xi(t+ 1)).

4. Update each θ⋆
i and global best θ⋆ if necessary.

2.4.1.3 Covariance Matrix Adaptation Evolution Strategy

The covariance matrix adaptation evolution strategy (CMA-ES) is an optimization al-
gorithm from the class of evolutionary algorithms for continuous, non-linear, non-convex
black-box optimization problems [317,318].
The algorithm starts with an initial centroid c0 ∈ Rn, a population size λ, an initial step-
size σ > 0, an initial covariance matrix C = I and isotropic and anisotropic evolution
paths pσ = 0 and pc = 0. c0, λ and σ are chosen by the user. Then the following steps
are executed until the algorithm terminates.

1. Evaluation of λ individuals sampled from a normal distribution with mean c and
covariance matrix σC.

2. Update of centroid c, evolution paths pσ and pc, covariance matrix C and step-size
σ based on the evaluated �tness.

2.4.1.4 Latin Hypercube Sampling

Latin hypercube sampling (LHS) [319] is a method to sample a given parameter space
in a nearly-random way. In contrast to pure random sampling LHS generates equally
distributed random points in the parameter space. Such a method is useful in the present
case to see whether systematic checking of the parameter space might come close to
already good solutions without actually learning. It can be an indication as to how
necessary learning actually is for the particular problem cases.

46 CHAPTER 2. THEORETICAL FOUNDATIONS

2.4.1.5 HiREPS

The Hierarchical Relative Entropy Search algorithm was proposed in [320]. Here, its
function is only brie�y described.
As input the algorithm takes an information loss tolerance ϵ, an entropy tolerance κ, and
a number of options n. It initializes the policy π with n Gaussians with random means.
Then, for a number of L episodes it executes the following steps:

1. The sample policy is set to

q(a|s) =
∑
O

πold(O|s)πold(a|s,O) (2.25)

.

2. Then new samples are collected from the sample policy and added to the current
dataset by

{sj p(s0), aj q(a|sj), Rj}j ∈ {1, . . . , N} (2.26)

.

3. The importance weights are calculated to

vki =
qk(si, ai)∑k

h=k−H qh(si, ai)
∀i (2.27)

.

4. The proposal distribution is updated by

p̃(O|si, ai) = pold(O|si, ai)∀i (2.28)

.

5. The dual function is minimized by

[θ, ν, ϵ] = argmin
[θ,ν,ϵ]

g(θ, ν, ϵ) (2.29)

.

6. Finally, the policy can be updated by

p(si, ai,O) = vki p̃(O, si, ai)1+
ϵ
ν exp(

Ri − θTϕ(si)

ν
) (2.30)

and π(O|s) and π(a|s,O) can be estimated. The output is a new policy π(a,O|s).

2.4.1.6 Parameter Space Partitioning Algorithm

The parameter space partitioning (PSP) algorithm [321] runs for k episodes. Each episode
consists of a number of trials ne. For each trial i of an episode, parameters θsi are
sampled ∈ q(a) in sample-space, i.e. the hypercube, with q(a) being the sampling policy.
These are translated into solution-space and applied to the optimization problem. The
resulting reward ri is stored together with the parameters in sample-space θsi . If a trial

2.4. MACHINE LEARNING 47

is unsuccessful, the reward ri is set to a negative value, ri = −1. This is done to assure
negative classi�cation in the update step. At the end of each episode, the sampling policy
q(a) is updated. The sampling policy q(a) consists of two elements, a proposal policy p(a)
and a �ltering policy f(p(a)). p(a) proposes parameters until a sample has been found
which is accepted by the �ltering policy f(p(a)). p(a) proposes parameters θp, which are
then classi�ed by the �ltering policy f(θp). The �ltering policy is a non-linear support
vector machine (SVM).

Proposal Policy In the beginning, the proposal policy is a Latin hypercube sampler
since there is not yet enough data to generate meaningful data. Instead the available
solution space is more evenly sampled. After the �rst episode a uniform random sampler
is used. In later episodes, assuming su�cient data is available, a Gaussian mixture model
(GMM) is used as policy.

Filtering Policy The �ltering policy is a non-linear SVM with rbf-kernels. It is only
used if a su�cient number of successful samples (in the sense of a successful skill execution)
is available to ensure a robust estimation.

2.4.2 Performance Metrics

In this section the metrics used for learning and speci�cally transfer learning are intro-
duced.

2.4.2.1 Monotonically Decreasing Cost Function

The monotonically decreasing cost function Qc,m always has the lowest already seen cost
value at any particular time point. It gives a better impression of the learning progress
than a pure cost function Qc. It it de�ned as

Qc,mi
=

{
Qci−1

if Qci > Qci−1

Qci else
(2.31)

Figure 2.7 provides a visual aid for it.

2.4.2.2 Average Cost and Con�dence Interval

A single learning process is strongly stochastic and can signi�cantly vary from process
to process. Therefore, learning a speci�c skill (i.e. a speci�c experiment) is repeated to
collect enough data to derive statistically sound results. After repeating an experiment
for n times n data sets Di are available. Now, the monotonically decreasing cost function
either based on trials or time can be averaged over the n data sets. Also a con�dence
interval can be calculated from the data [322]. To calculate a con�dence interval ic one
has to �rst select a con�dence level (e.g. 90% or 95%). Based on that the Z-value Z can
be taken from a Z-table and the formula

ic = Z
s√
n

(2.32)

48 CHAPTER 2. THEORETICAL FOUNDATIONS

can be applied, where s is the standard deviation and n the number of samples. Thus, an
average cost can be de�ned with the con�dence interval given by

Q̄c ± Z
s√
n
. (2.33)

2.4.2.3 Average Learning Success Rate

The results are not only analyzed in terms of the optimization goal and how fast learning
converges to an optimum, but also in terms of actual success, i.e., how well the learning
algorithm manages to �nd feasible areas in the parameter space. Therefore, the average
learning success rate (ALSR) is de�ned to be

ALSR(t) =
1

n

ne∑
l=1

Qs,l(t) (2.34)

where ne denotes the number of repeated experiments to learn the same skill and Qs,l(t)
is the success indicator whether the trial at time t for experiment l was successful or not.
This gives a statistical measure of how successful a skill is over time during learning.

2.4.2.4 Learning E�ort and Transferability

To interpret the results of the transfer learning experiments in Sec. 4.2.3, a comparable
quanti�cation of the achieved transfer learning performance is required. The highly non-
linear and noisy nature of real-world robot manipulation learning makes standard existing
metrics from system theory or image classi�cation, such as MNIST or CIFAR, unsuitable.
To the best of the author's knowledge, there are no metrics that explicitly analyze trans-
fer learning in robot manipulation. There are some in the domain of image classi�cation,
such as LEEP [323] or H-score [324], but the problem at hand is fundamentally di�erent
since dynamic processes are compared. Existing metrics for comparing two systems with
each other, such as µ-gap [325, 326], usually focus on linear or non-statistical problems.
Statistical distance measures like the Bhattacharyya distance [327], K-S-Test [328], or
the KL Divergence [329] can be useful in constructing an evaluation metric. However,
they are more di�cult to interpret since they do not directly re�ect the learning process
itself. Thus, to analyze the learning results quantitatively, three metrics are introduced:
learning e�ort (LE), learning e�ort ratio (LER) and empirical transferability (ET). These
metrics are designed to capture the performance of the knowledge transfer over the entire
experiment, as is detailed below.
Speci�cally, the learning e�ort LE is de�ned as

LE =

∫
D

Qc,m(t)dt, (2.35)

where D is the available sample data of the learning process in chronological order con-
taining a tuple (θ,Qc,m) with chosen parameters and a resulting cost function for every
sample k. The quantity Qc,m(t) denotes the value of the monotonically decreasing cost
function at time t. In consequence, LE measures the minimum total cost required to learn
a skill.

2.4. MACHINE LEARNING 49

Learning Time [s]

C
os
t
[]

Cost Function (raw learning)
Monotonically decreasing
cost function (raw learning)
Monotonically decreasing
cost function (with prior)

LE (raw learning)

LE (with prior) b

Figure 2.7: Monotonically decreasing cost function, learning e�ort LE, and learning e�ort ratio LER

The learning e�ort ratio LER is the ratio between the LEs from data sets Di and Dj

LER =
LEi − b

LEj − b
, (2.36)

where the factor b is de�ned asmin(min(Qc,m,i(t))|Di|,min(Qc,m,j(t))|Dj|). It is the lowest
value of Qc,m(t) in either Di or Dj, and it is subtracted to remove the bias from the data
that would otherwise be caused by the minimum reachable cost. The LER can be used to
quantify the e�ectiveness of using prior knowledge from task ιj on task ιi. Raw learning,
i.e., learning ιi without prior knowledge, is represented by the dataset Di, and learning ιi
with prior knowledge from ιj is represented by Dj.
Finally, the empirical transferability ET is de�ned as

ETi,j = min

(
LERi,i

LERi,j

, 1

)
. (2.37)

It relates the LER into the context of task ti by normalizing it. This is done by using
LERi,i, which is the LER of learning task ti with prior knowledge from itself. The un-
derlying assumption is that, theoretically, this is the most e�ective knowledge transfer.
Any LERi,j for any task ιj can then be seen with respect to the best-case scenario, which
essentially amounts to a measured transferability between the two tasks. The ET cannot
grow larger than 1.

2.4.2.5 Learning Speedup

The learning speedup is de�ned as the reduction in the learning time when using prior
knowledge compared to raw learning with an uninformed initialization. There is no prac-
tical way to determine the exact speedup a priori, since there is no reliable objective
criterion for when a real-world skill is learned. For example, a task can be considered
learned if it reaches a prespeci�ed cost value or as soon as the cost changes remain within
a prede�ned con�dence interval. In this work, the latter is applied.

50 CHAPTER 2. THEORETICAL FOUNDATIONS

Random init
θ0 ∼ N (µ, σ)

Learning Time [s]

R
ew

a
rd

Learned

∼ 10 min

Key insertion is very complex

Can we reuse tasks?

Cylinder as candidate solution?

Transfer Process

θ⋆
A θ⋆

B
Can this work?

θ0 = θA

Learning Time [s]

R
ew

a
rd

Learned

∼ 1 min

Figure 2.8: Transfer learning observation with a 10x reduction in the learning time for task B. θ0 denotes the initial
parameters drawn from a normal distribution N (.) with a mean µ and standard deviation σ. θ⋆

A and θ⋆
B are the optimal

parameters for tasks A and B, respectively.

2.4.3 Robot Motor Memory E�ect

In a randomly performed demonstration of the tactile skill formalism GGTWreP (see
Sec. 3.1), a signi�cant speedup of roughly 10× was observed when simply reusing learned
parameters from a cylinder insertion in a key insertion task [330], leading to learning
times of 1 minute instead of 10 minutes, see Fig. 2.8.
In hindsight, it is hypothesized that the speci�c task-informed design of the tactile skill
learning framework, which heavily depends on well-known principles from human motor
control, made this straightforward transfer possible. This somewhat surprising �nding
encouraged further investigations into the e�ects of reusing knowledge from seemingly
similar skills, which is also believed to be useful for further theoretical groundwork.
Based on this initial experimental observation, it is believed that a transfer e�ect for
tactile skills is embedded in the developed structure. This allows us to exploit inherent
similarities between skills for faster learning, even without specially designed complex
computational transfer mechanisms. The con�rmation of such a behavior could be inter-
preted as an emerging robot motor memory (RMM) that plays a similar role as the motor
memory e�ect in human motor control. However, no claim is made here that there is a
connection between the two. Although the similarity between two skills as a whole may
not be exactly quanti�able by experimental work, transferability might provide a way to
�sample� the similarity locally. In other words, if two tactile skills are similar enough, a
learned optimal policy solution for the �rst skill would speed up the time taken to �nd
an optimal policy solution for the second skill.
To structure and analyze skill similarities and achievable transfer learning, the taxonomy
classi�cations skill class, skill subclass, and skill instance from Sec. 2.1.3 are used (see
Fig. 2.9). This classi�cation results in level-2, level-1, and level-0 transfers, respectively.
A transfer learning process is denoted as level-0 between di�erent tasks that belong to the
same skill instance, level-1 from a skill instance to another instance from the same skill
sub class, level-2 from a di�erent skill sub class, and level-3 from another skill class. In
this work level-0, level-1, and level-2 transfers are addressed. A level-0 transfer refers to,
e.g., a cylinder insertion process in which the task was learned with prior knowledge from
its own previous learning. Level-1 indicates that this cylinder was learned with knowledge

2.5. CONCLUSION 51

Figure 2.9: Hierarchical three-level classi�cation proposal of tactile manipulation skills

from a di�erent cylinder. In a level-2 transfer, the cylinder was successfully learned based
on the knowledge from, e.g., a key insertion skill. Based on these de�nitions and the
speedup metric introduced in Sec. 2.7 a hypothesis can be stated that on average across
all investigated tasks the speedup factor is highest for level-0 transfers. Level-1 transfers
are second and level-2 transfers have the lowest speedup. This also means that there is a
learning e�ort ratio (LER) that increases with the transfer level.

2.5 Conclusion

This chapter introduces the theoretical foundations for the learning architecture in Ch. 3.
The concept of tactile skills is developed and connected to a formal process de�nition
through a hierarchical taxonomy. These components are then used in a synthesis pipeline
that automatically selects a tactile policy to solve a given input process. A suitable
planning system is described that uses tactile skills in sequences to solve an assembly
problem for a collaborative team of humans and robots. A number of learning algorithms
are introduced that are later experimentally evaluated using a number of performance
metrics. Finally, a robot motor memory e�ect is described that forms the basis for the
transfer learning capabilities of the learning architecture.

52 CHAPTER 2. THEORETICAL FOUNDATIONS

3
System Architecture and Validation Cases

This chapter describes the overall learning architecture that realizes the theoretical foun-
dations provided in Ch. 2. It is used for the experimental work described in Ch. 4. First,
in Sec. 3.1 the graph-guided twist-wrench policy approximation (GGTWreP) framework
is introduced. It is a multi-layered architecture that models the tactile skill concept. It
consists of a system layer connected to the tactile platform, a control layer that provides
a tactile controller, a policy layer that implements a tactile policy, and a semantic layer
that handles process steps and connects to a learning algorithm. Section 3.2 outlines
the Machine Intelligence Operating System (MIOS), a highly integrated software stack
that e�ciently implements the GGTWreP framework in a scalable and distributed fash-
ion. Section 3.3 describes a number of validation experiments and applications where the
architecture developed in this thesis has been successfully used. These cover the �eld
of dentronics, a telepresence application, a collaborative assembly station, and a highly
sophisticated robotic art project in the Pinakothek der Moderne in Munich, Germany.
Section 3.4 presents two more cases in which the learning component was the main mat-
ter of interest. These are a manipulation learning setup for industrial-grade peg-in-hole
and a complex, distributed robots system denoted the collective. This chapter was written
based on [15,25,331,332].

3.1 GGTWreP Framework

This section introduces the graph-guided twist-wrench policy approximation (GGTWreP)
framework [23,24]. It consists of multiple hierarchical layers. Each layer models a di�erent
aspect of tactile manipulation. This multi-layer structure descends from a high-level
semantic layer down to the hardware system layer that is directly connected to the physical
robot platform, which is coupled to the real world (see Fig. 3.1). w ∈ W denotes an
element of the world state spaceW and contains, e.g., the robot poses, external forces, or
object positions. Ω ∈ W denotes the percept vector, and it contains information received
by internal or external sensors (see also Sec. 2.1).

53

54 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

Layers The framework layers are described in detail in the sections below. Each layer
receives inputs and additional parameters from the above layer, and provides outputs to
the below layer. They also provide constraints C in terms of the context of the task and the
system's limits. These constraints model the limits of the valid input of the respective layer
(e.g., the maximum admissible velocities). Additionally, the percept processor updates
and provides the world state w to the other components based on the percept vector Ω
and internal models. Figure 3.1 provides an overview of the GGTWreP framework with
its di�erent layers.

Semantic Layer
I1 : O,θπ,w0 → R,E ,D
I2 : O,θπ → Q,w1

fs : O,θπ,w → s, p

Policy Layer
fπ : s, p,θπ,w → C

Control Layer
fc : C,θc,w → τ d

Input Processor
fi : Ω→ w

User / AI

Ω

s, p

C

τ d

w

Ch

System Layer
fh : τ d → Ω

Environment

Cπ

Cs

Cognitive Bridge

Physical Bridge

Cc

Real Time

Figure 3.1: Architectural overview of the GGTWreP framework

� The semantic layer decides the currently active high-level state as well as the cur-
rently active policy in the policy layer. Furthermore, it is the point of communication
with higher-level components such as learning and planning algorithms.

� The policy layer holds a set of ordinary di�erential equations (ODE), which are
embedded in a graph structure, that produce tactile commands.

� The control layer implements a uni�ed impedance / force controller that is fed
by tactile commands sent from the policy layer. It then produces desired motor
commands for the system layer. Also, safety mechanisms ensure the system and
process constraints.

� The system layer is the lowest layer, and it sends motor commands from the control
layer to the robot hardware. It also provides the current robot state to the other
layers.

3.1. GGTWREP FRAMEWORK 55

Objects A skill is instantiated by using objects O that de�ne the environment that
is relevant to the skill, similar to the de�nition of manipulation processes introduced in
Sec. 2.1.2. Note that all skills also contain the end e�ector (End E�ector) as a default
object. It has the handle EE.

Semantic Layer The semantic layer consists of a non-deterministic (non-realtime) com-
ponent for interface purposes and a deterministic (realtime) component that contains a
hierarchical state machine.
The non-deterministic (non-realtime) interface consists of two parts: an execution inter-
face I1 and a learning interface I2, which are represented by the functional mappings

I1 : O,θπ,w0 → R,E ,D,
I2 : O,θπ → Q,w1.

R ∈ W describes the requirements in terms of the world state for executing the skill,
E ∈ W is the e�ect of the skill when it is applied to a user-de�ned world state wu with
objects O, and D is the domain of valid parameters for every θ ∈ θ.
The deterministic component contains a discrete two-layer state machine that consists of
four high-level states; namely, the initial state s0, the policy state sπ, the error state se,
and the �nal state s1. s0 is active in the beginning, s1 is active at the end in a nominal
case, se is the end state in case an error occurs, and sπ activates the policy layer. Three
transitions govern the switch behavior at the top level of the state machine. They directly
implement the boundary conditions from the process de�nition introduced in Sec. 2.1.2,
therefore the explanation of their meaning is omitted here. However, there are a number
of default conditions coming from the robot system:

� There is a default precondition Cpre,0 = {TEE ∈ ROI} which states that the robot
has to be within a suitable region of interest (ROI).

� There are three default error conditions Cerr,0 = {|f ext| > f ext,max, TEE /∈ ROI, t >
tmax} which state that the robot may not exceed the maximum external forces, may
not leave the ROI, and may not exhaust a maximum time for skill execution.

The policy state sπ contains a state machine layer that is denoted as manipulation graph,
and it implements the execution state from the process de�nition. The graph may be
described by G(P,∆), where P denotes the set of policy approximators (nodes), and ∆
denotes the set of transitions (edges). The transitions are conditions that, if true, trigger
a switch of the current PA according to the graph structure.
The deterministic component of the semantic layer is represented by the functional map-
ping

fs : O,θπ,w → s, p. (3.1)

Policy Layer The policy layer contains a set of sets (which are denoted policy ap-
proximators) of ODEs. Each policy approximator (PA) implements one process state
while maintaining the stated conditions. The currently active PA p is determined by the
semantic layer.
A single PA implements a tactile policy πd.

56 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

Overall, the policy layer functional mapping is expressed by

fπ : s, p,θπ,w → C, (3.2)

where p and s denote the currently active PA and high level state as determined by the
semantic layer. For s ̸= sπ, a default PA

C =
[
ẋd

f d

]
=

[
0[

0T fgrasp
]T]

, (3.3)

is activated, where fgrasp denotes the current grasp force.

Control Layer The control layer receives commands C from the policy layer and cal-
culates the desired motor commands τ d. It uses controllers such as the ones introduced
in Sec. 2.1. Architecturally, the control layer is encoded by the functional mapping

fc : C,θc,w → τ d. (3.4)

Furthermore, the control layer contains safety mechanisms such as value and rate limita-
tions, collision detection, re�exes, and virtual walls.

System Layer The system layer is expressed by the functional mapping

fh : τ d → Ω. (3.5)

It de�nes the control/sensing interface to the robot's hardware system and other devices.
It encapsulates any subsequent hardware-speci�c control loops and other processes. It is
the implementation of the Tactile Platform.

Input Processor The input processor holds all of the models for internal and external
processes. Examples of internal models are the estimated mass matrix M̂ (q), Coriolis
forces Ĉ(q, q̇), and gravity vector ĝ(q). External models describe the state of environ-
mental elements such as the physical objects handled by the robot. For example, if the
robot were to place an object at a new location, a model of the object would be updated
with the new pose. The processor continuously updates the models by using Ω from the
current world state w . The processor functional mapping is

fi : Ω→ w . (3.6)

Task Frame The task frame T de�nes a coordinate frame relative to the robot's origin
frame O so that there exists the transformation OTT. All skill commands C are then
calculated in the task frame and transformed via this transformation matrix into the
frame of origin.

3.1.1 Implementation Examples

In this section, two examples of processes and their implementation as GGTWreP models
are presented. The examples are inserting an Ethernet plug and cutting a piece of cloth.
Figure 3.2 visualizes the process and the skill implementation. The details of the policy
selection through T are described in Sec. 2.2 with the same process examples.

3.1. GGTWREP FRAMEWORK 57

p1: Approach

p2: Contact

p3: Insertion

s0

sπ

{f ext,g > fgrasp, TEE,g ∈ U(To1)}

ẋd = fpg(To3 , ẋg,p1 , ẍg,p1)

f d = [0 fgrasp]

ẋd = ftg(To2 , ẋg,p2 , ẍg,p2)

ẋd = fpg(To2 , ẋg,p3 , ẍg,p3)

f d = [0 fgrasp]

f d =
[
a sin(2πυt) + fpush fgrasp

]

{To1 ∈ U(To2)} {f ext,g < fgrasp}

ses1

O = {o1, o2, o3}
Cpre = ∅
Cerr = ∅
Csuc = {To1 ∈ U(To2)}
∆ = {To1 ∈ U(To2),f ext,z > f contact}

O = {o1, o2, o3, o4, o5}
Cpre = ∅
Cerr = {f ext,z < f cut}
Csuc = {To1 ∈ U(o5)}
∆ = {To1 ∈ U(o2),f ext > f cut,

p1: Approach

p2: Contact

p3: Cut

s0

sπ

{f ext,g > fgrasp, TEE,g ∈ U(To1)}

ẋd = fpg(To2 , ẋg,p1 , ẍg,p1)

f d = [0 fgrasp]

ẋd = ftg(To3 , ẋg,p2 , ẍg,p2)

ẋd = fpg(To4 , ẋg,p3 , ẍg,p3)

f d = [0 fgrasp]

f d = [f cut fgrasp]

{To1 ∈ U(To5)} {f ext,g < fgrasp,

ses1

ẋd = fpg(To5 , ẋg,p4 , ẍg,p4)

f d = [0 fgrasp]

To1 ∈ U(To2)

f ext,z > f contact

To1 ∈ U(o2)

f ext > f cut

To1 ∈ U(o4)p4: Retract

f ext,z < f cut | p3}

To1 ∈ U(o4)}

Insert Process Cut Process

Insert Skill Cut Skill

Figure 3.2: The two examples show the process description and their corresponding GGTWreP models.

58 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

3.1.1.1 Inserting an Ethernet Plug

In general, an insertion process can be described as �tting one object into another, i.e.,
matching their geometries by form-close. In an industrial context, this process is required
for, for example, part mating. Details about insertion-related processes are described in
specialized literature such as [333], norms [334], and robotics-related publications such
as [335,336]. In the following section, the details of the skill implementation that uses the
GGTWreP framework are outlined.

Process Description The process de�nition states that the Insertable o1 has to be
moved toward an Approach pose o3. From there, contact is established in the direction
of the Container o2. Finally, the Insertable has to be inserted into the Container.

Conditions The process de�nition states no preconditions. However, there is a default
precondition that the robot has to be within the user-de�ned ROI, and an implementation-
speci�c precondition that the robot must have grasped the Insertable o1.
The default error conditions are that the external forces and torques must not exceed a
prede�ned threshold, the ROI must not be left, and the maximum execution time must
not be exceeded. Additionally, the robot must not lose the Insertable o1 at any time.
Note that, for simplicity, the default conditions are not shown in Fig. 3.2.
The process de�nition states that, to be successful, o1 has to be matched with o2. In the
implementation, this is expressed by a prede�ned maximum distance U(o2).

Tactile Policies The insertion skill model consists of three distinct phases: 1) approach,
2) contact, and 3) insert. The approach phase uses a simple point-to-point motion gen-
erator to drive the robot through free space toward o3. The contact phase drives the
robot into the direction of o2 until contact has been established, i.e., when external forces
that exceed a de�ned contact threshold fcontact have been perceived. The insertion phase
attempts to move o1 toward o2 by pushing downward with a constant wrench while em-
ploying a Lissajous �gure to overcome friction and material dynamics. Additionally, a
simple motion generator takes care of the end e�ector's orientation and lateral motion
toward the goal pose. A grasp force fgrasp is applied simultaneously to all three phases to
hold o1 in the gripper.

3.1.1.2 Cutting a Piece of Cloth

A cutting process can be described as dividing an object into two parts by using a cutting
tool such as a knife. Details about cut-related processes are described in specialized
literature such as [337] and in robotics-related publications such as [338].

Process Description The process de�nition states that the Knife o1 has to be moved
toward an Approach pose o3. From there, contact is established in the direction of the
Surface o2. Then, the o1 is moved toward a Goal pose o4 while it maintains contact with
the surface. Finally, o1 is moved to a �nal Retract pose o5.

3.2. MACHINE INTELLIGENCE OPERATION SYSTEM 59

Conditions The process de�nition does not state any preconditions. However, there
is a default precondition that the robot has to be within the user-de�ned ROI, and an
implementation-speci�c precondition that the robot must have grasped the Knife o1.
The default error conditions are that the external forces and torques must not exceed a
prede�ned threshold, the ROI must not be left, and the maximum execution time must
not be exceeded. Additionally, the robot must not lose the Knife o1 at any time, and
f ext,z < fcontact must be maintained when moving from o3 to o4
The process de�nition states that, to be successful, o1 has to be moved toward o5.

Tactile Policies The cutting skill model consists of four distinct phases: 1) approach,
2) contact, 3) cut, and 4) retract. The approach phase uses a simple point-to-point
motion generator to drive the robot through free space toward o3. The contact phase
drives the robot into the direction of o2 until contact has been established, i.e., when
external forces that exceed a de�ned contact threshold fcontact have been perceived. The
cut phase moves o1 toward o4 by using a point-to-point motion generator combined with
a constant downward pushing wrench. The retract phase moves o1 toward o5 by using a
point-to-point motion generator. A grasp force fgrasp is simultaneously applied to all four
phases, a to hold o1 in the gripper.

3.2 Machine Intelligence Operation System

3.2.1 System Overview

The Machine Intelligence Operating System (MIOS) has been developed as a software
platform for the Franka Emika Robot arm with a focus on real-world manipulation and
robot learning. Over time, it has proven to be an advantageous tool for other research
topics as well as demonstrator for various use cases in the context of robot manipulation.
Although it has only been developed and tested for the Franka Emika Robot arm, its
code structure is designed in a highly modular way so that it can easily be adapted to
other robot platforms by utilizing their respective APIs. MIOS consists of several modules
which are coordinated by a core module. An overview of the most important components
is shown in Fig. 3.3. The system is capable of various means of communication such as web
socket, UDP or RPC. It is also compatible with the widely used ROS framework, enabling
the use of a range of di�erent third-party packages. Note that ROS was initially not used as
a core component since the modules of MIOS are highly integrated and the node structure
of ROS would have brought no bene�t. MIOS uses its own mongodb database to save
environment data, global parameters and results from learning experiments. Since the
code has been documented over the course of this thesis, it is straight-forward to extend
in future development to approach not yet covered manipulation problems. Additionally,
the software has been prepared to run with as little requirements as possible. Besides the
usual requirements of the robot's API libfranka itself (e.g. a real-time con�gured Linux
kernel), MIOS has only a few dependencies and can even be used in a Docker environment
making it almost completely independent from the host system. It is mostly written in
C++ using the 2017 standard, and Python 3.8.
The most important part is the implementation of the GGTWreP model which stretches
over several of these modules as explained in Sec. 3.2.4.

60 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

Core

Portal

ML Module

Memory

Skill Engine

Controller Pipeline

Safety Stage II

Safety Stage I

C

Csafe

τ

τ safe

Ω
Robot Body

Core Control Loop
(GGTWreP implementation)

Support Modules

Command
Interface

Telemetry

ROS Node

Communication

Machine Intelligence Operating System (MIOS)

Figure 3.3: Overview of the MIOS modules

3.2.2 Design Objectives

The development of MIOS bases on the following design principles:

� Enablement of Tactile Skills : The concept of tactile skills must be implemented,
i.e. the software must be able to 1) process tactile stimuli from a tactile platform;
2) it must implement a tactile controller; 3) it must provide a platform for tactile
policies that command twist-wrench pairs; 4) it must be capable of evaluating skill
executions.

� Skill Optimization: The software must be capable of using learning algorithms to
optimize skills such that no external software packages have to be integrated.

� Safety : Safety mechanisms must be built in to ensure a stable and reliable platform
for research and demonstrations.

� Maintainability : The software must be maintainable, i.e. individual components
should be replaceable without introducing breaking changes throughout the system.

� Realtime: All control-related parts of the software must be executable in less than
0.5 ms to ensure a reliable real-time process when connected to a robot.

3.2. MACHINE INTELLIGENCE OPERATION SYSTEM 61

3.2.3 Capabilities

MIOS has several controllers at its disposal. Among them are joint and (adaptive) Carte-
sian Impedance controller, and a force controller. It has two safety stages that ensure
that only valid commands are sent to the robot platform. It is capable of running a
complete cycle of generating skill and controller commands, sending the commands to the
robots and receiving a new robot state within the bounds of a 1 kHz real-time process.
A modular toolset of implemented policies enables a programmer to extend the current
library of manipulation skills according to the GGTWreP model. It can also directly ex-
ecute sequences of skills provided for example by the collaborative assembly planner (see
Ch. 2.3). A number of communication channels allows peer-to-peer, or even one-to-many
communication and telepresence with other robots or user interfaces. MIOS also sup-
ports a simpli�ed Python interface for programming complex tasks. Its built-in mongodb
database can store information about physical objects and locations and use it to reason
about its skills. In summary, MIOS is a platform and an enabler for various research
�elds ranging from manipulation learning and planning, over motion planning, control
and safety, to telepresence and human-robot interaction.

3.2.4 Modules

Core The core as the central module coordinates all other modules and connects the
various components of the command pipeline, i.e. it runs the base control cycle which
coordinates the update of the percept struct, queries skill commands and relays them
through the controller pipeline to the robot hardware.

Task Engine The task engine is the most outer loop in the program logic. It takes
care of loading the context of a given task, running and (potentially) recovering it, and
event handling such as various error cases. After execution it stores the various data from
the result in the short-term memory. A task is a container for any number of skills and
can execute additional commands in any manner allowed by the C++ language. When no
explicit task is selected to run, an idle task is executed as default.

Memory The memory module is responsible for storing any form of data such as task re-
sults and environment data. It consists of a short-term memory and a long-term memory.
The short-term memory uses only internal RAM to quickly store information and access
it. The long-term memory connects to an external mongodb database to permanently
store information. The latter is only updated in between task executions.

Command Interface The interface module o�ers a variety of high-level methods for
interaction with MIOS via network. It utilizes RPC, websocket and UDP protocols as
a framework for json-based communication channels. Additionally, it runs a ROS core,
allowing for communication with the ROS ecosystem. The latter can also internally be
utilized by skills for publishing or subscribing to ROS topics or make service requests.
The methods o�ered by the various servers are always the same and range from basic
hardware commands such as locking/unlocking brakes over information requests to start-
ing/stopping tasks.

62 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

Telemetry The telemetry module allows a client to subscribe to MIOS and receive
telemetry data via UDP with a speci�ed frequency. An already tested use case is a digital
twin of the robot using e.g. the UNREAL engine [339].

Portal The portal module o�ers communication services to other modules (e.g. the
command interface and the telemetry). These are message-based communication methods
as well as continuous streams via UDP.

Skill Engine The skill engine takes care of properly loading a skill including its context
(any required execution information). It also serves as an interface for the core to execute
the skill cycle. At the end of execution the skill engine collects the results from the last
skill and adds them to the current task results.

Controller Pipeline The controller pipeline is a modular component that o�ers various
control methodologies. In its current implementation it can connect to hardware interfaces
based on joint torque, joint velocity, Cartesian twist, joint angles and Cartesian pose.
Depending on the interface it makes use of e.g. custom Cartesian impedance and force
controllers, nullspace controllers and joint torque controllers. It is easy to extend since a
speci�c pipeline inherits from a base C++ class.

Safety Stages MIOS has two safety stages, the �rst modi�es commands on veloc-
ity / pose / feedforward force level, the second on joint torque level. The used safety
mechanisms are virtual walls, velocity walls, velocity scaling, and limitation of rates and
maximum values. Furthermore, built-in checks for invalid values and bu�ering are imple-
mented.

Robot Body The robot body module implements the bridge from MIOS to the used
robot hardware. The current implementation is focused on the Franka Emika Robot
arm and uses libfranka. This module translates the platform-speci�c robot state into a
MIOS-readable percept struct which is then used throughout the other modules. In the
other direction it translates the MIOS-speci�c commands struct into platform-readable
commands depending on the used hardware interface.

Machine Learning Service The machine learning service is implemented in Python
and communicates with the C++ part of MIOS using a websocket client. It runs an engine
that calls the interface module in order to execute tasks and receive evaluation informa-
tion. The engine is used by machine learning services which are based on third-party
Python packages. Exemplary implementations are PSP, CMA-ES, Bayesian optimization
and various algorithms from the sklearn Python package [340]. The services are instructed
by a problem de�nition class which determines the parameter domain, used cost function,
and setup, reset and termination routines for the experiment.

3.2.5 GGTWreP Implementation

The GGTWreP model is implemented within MIOS as depicted in Fig. 3.2.1 The se-
mantic and policy layers are mostly covered by three di�erent classes, i.e. skill class,

3.2. MACHINE INTELLIGENCE OPERATION SYSTEM 63

manipulation primitive class and policy class (abstracted by the skill engine), while the
control and hardware layer are taken care of by other modules. In the following all rele-
vant components are brie�y described. Additionally, in Alg. 1-6 pseudo code for the most
important software routines is given.

Core Loop The MIOS core module contains the base loop for skill execution. It calls
all necessary components in the right order, see Alg. 1.

Algorithm 1 Core Loop

1: procedure StartSkill(skill)
2: ActiveSkill = skill
3: Ω← UpdatePercept(Body.GetState())
4: ActiveSkill.Initialize(Ω)
5: ControllerPipeline.Initialize(Ω)

6: procedure CoreLoop
7: while C.stop = false do
8: C ← ActiveSkill.SkillCycle(Ω)
9: τ ← ControllerPipeline.Step(Ω,C)
10: Ω← Body.Control(τ)
11: Ω← UpdatePercept(Ω)

Skill Class The skill class plays a central role for the GGTWreP implementation. It
contains the entire semantic layer and the manipulation graph which in turn holds a
number of manipulation primitive classes. The skill class is an abstract base class from
which the actual skill implementations inherit. The base class has a host of di�erent
methods to interface with other modules of MIOS and to provide various support to the
concrete skill instantiations. All concrete skills have to implement a set of methods to
ensure basic functionality.
The skill class runs its cycle in real time as indicated in Alg. 2. In this cycle the di�erent
conditions of the semantic layer are checked and acted upon if triggered. Then, the
currently active event conditions are checked and the current primitive is switched if they
are triggered. If no conditions were triggered, the currently active manipulation primitive
is called to calculate its next command.

Manipulation Primitive Class The manipulation primitive class is a container for
multiple policies that can be executed in parallel. When queried for a command by the skill
class, the primitive in turn queries the policies it contains. It makes sure that the resulting
command C is valid, such that e.g. no two contradicting pose commands are relayed down
the command pipeline. The most important functionality of the manipulation primitive
class is shown in Alg. 3.

Policy Class The policy class is an abstract base class from which concrete policies
can be derived. The concrete policies have to implement basic functionality such as
initialization, command calculation and a termination condition. Concrete implemented

64 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

Algorithm 2 Skill

1: procedure Initialize(Ω)
2: CycleState ← Init
3: ActiveMP ← MPGraph.GetInitialMP(Ω)
4: Success ← false
5: procedure SkillCycle(Ω)
6: if CycleState = Init then
7: if CheckPreconditions(Ω) = true then
8: CycleState ← Execution
9: else
10: C ← ActiveMP.stop()
11: CycleState ← Execution

12: if CycleState = Terminate then

13: if CycleState = Execution then
14: if CheckErrorConditions(Ω) = true then
15: C ← ActiveMP.stop()
16: CycleState ← Terminate

17: if CheckSuccessConditions(Ω) = true then
18: Success ← true
19: if CheckTerminationConditions(Ω) = true and Success = true then
20: C ← ActiveMP.stop()
21: CycleState ← Terminate

22: if SwitchMP(Ω) = true then
23: ActiveMP ← MPGraph.GetNextMP()

24: C ← ActiveMP.GetCommand(Ω)
return C

Algorithm 3 Manipulation Primitive

1: procedure GetCommand(Ω)
2: for p in Policies do C ← C+ p.GetCommand(Ω)

3: if CheckCommands(C) = false then C.stop = true
return C

3.2. MACHINE INTELLIGENCE OPERATION SYSTEM 65

policies are e.g. a point-to-point motion generator, a twist generator, or a Lissajous
wrench generator. In Alg. 4 the example of a point-to-point motion generator is shown.

Algorithm 4 Policy

1: procedure Initialize MotionGenerator.Initialize(T0, Tg, Ẋd, Ẍd)

2: procedure GetCommand(Ω) MotionGenerator.Step(Ω)
3: C.ẋd ← MotionGenerator.GetTwist() return C

Controller Pipeline Class The controller pipeline class provides implementations of
controllers to bridge the skill commands C and the robot hardware. The pipeline class
itself is an abstract base class and multiple concrete pipelines can be derived. Concrete
pipelines have to take care of proper controller execution and context switches, i.e. the
proper blending of commands between skill executions. MIOS in its current state provides
di�erent pipelines for the various command interface levels of the Franka Emika Robot
arm. In this thesis, a pipeline consisting of a uni�ed force / impedance controller including
nullspace control with desired joint torque as output is used, see Alg. 5 for an example.

Algorithm 5 Controller Pipeline

1: procedure Initialize(Ω)
2: CartImpCntr.Initialize(Ω)
3: NullSpaceCntr.Initialize(Ω)
4: ForceCntr.Initialize(Ω)

5: procedure Step(Ω,C)
6: CartImpCntr.Step(Ω,C)
7: NullSpaceCntr.Step(Ω,C)
8: ForceCntr.Step(Ω,C)
9: τ ← CartImpCntr.Gettorque() + NullSpaceCntr.Gettorque() + ForceC-

ntr.Gettorque() return τ

Robot Body Class The robot body class is the low-level bridge between MIOS and the
FCI of the Franka Emika Robot arm. It uses the API of libfranka to establish connection
on various command interface levels, e.g. joint torque, Cartesian twist or joint positions.
Its main functionality is to connect the speci�c libfranka control loop with the MIOS
core loop, see Alg 6. Furthermore, it provides access to the gripper as well as high-level
features such as locking and unlocking the brakes of the robot or searching for its IP
address in a local network during the start up phase of MIOS.

Algorithm 6 Panda Body

1: procedure Control(τ)
2: Ω← libfranka.Control(τ) return Ω

66 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

3.2.6 Learning

Manipulation learning is enabled by the learning module which is implemented in Python.
The reason for this is the high availability of third-party packages for machine learning in
the Python language. The learning module consists of several connected components, as
shown in Fig. 3.4.

Base Service

Interface

GGTWreP Implementation

MongoDB Database

User-De�ned Experiment

Service B

Service C

...
Service A

Engine Knowledge Base

Problem
De�nition

Trial
Task
Result

θ Q

D

Figure 3.4: Overview and working principle of the learning module

3.2.6.1 Functional Components

Services Services implement the actual machine learning methods and are derived from
a service base class which provides a common framework and functionality such as ini-
tialization of global parameters, parsing of the problem de�nition and coordination of
the learning process. Concrete services have to implement method-speci�c initialization,
learning and termination procedures. Examples for services are the PSP algorithm intro-
duced in Sec. 2.4.1, CMA-ES and Bayesian optimization.

Interface The interface is a network-capable point of communication for the learning
module attached to the base service class. The communication is currently realized by
the RPC protocol and allows for starting and stopping learning experiments remotely.

Engine The engine is the core mechanism of the learning module. Services push pa-
rameter sets θ to the engine's queue which is processed asynchronously by sending the
parameters including default execution settings de�ned in the problem de�nition to an
available agent. Note that one service can work with an arbitrary number of agents
to sample a given problem. The engine also takes care of setup, reset and termination
routines as well as storing results into a local database.

3.3. VALIDATION EXPERIMENTS: USE CASE INTEGRATION 67

Knowledge Base The knowledge base processes the results that are stored in the
database. For example, it can derive a priori knowledge for transfer learning applications.

3.2.6.2 Data Structures

Problem De�nition The problem de�nition is a collection of various data items such
as the domain D, the initial parameters θ0 (if applicable to the used ML method) and
cost function design (e.g. weights). Furthermore, it calculates the �nal cost function value
according to the metrics in Sec. 2.4.2.

Task Result A task result is a simple container that holds all available information
from a task execution, e.g. cost function value, heuristics and success indicator.

3.3 Validation Experiments: Use Case Integration

This section presents a number of validation experiments in which MIOS has been used
as a platform. Each experiment uses, besides the core software, di�erent components,
or was even the incentive the extend the software accordingly. It is demonstrated how
MIOS and as a consequence the GGTWreP framework and the concept of tactile skills
have enabled further research work and publications in various related �elds.

3.3.1 New Application Domain: Dentronics

Figure 3.5: (Top left) The �eld of dentronics [331]. (Bottom left) The modalities of the devised interaction framework
dependent on the communication range [15]. (Right) Experimental prototype setup for the conducted user-study consisting
of a Franka Emika Robot arm [5] (a) equipped with an SR300 camera [341] (b), a mobile device (c), colored gloves (d), a
pedal (e) and a microphone (f) [15].

68 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

In [15] the concept of dentronics was introduced and further developed in [331,342]. This
new �eld is already starting to be recognized by scientists beyond the circle of initial au-
thors [343], and has been featured in IEEE Spectrum [344]. It envisions robotic assistance
in typical dental procedures such as assistance during treatment or device disinfection.
A set of design principles, namely human safety, human-centered interaction, human-
robot communication, reliable manipulation skills, and intuitive to use, was introduced on
which basis a prototypically implemented dentist-robot interaction framework was devel-
oped. With the help of a consecutive user-study it could be shown that the concept has
the potential to become a realistic application domain for collaborative robots, provid-
ing bene�t to the dentist. The results also indicate individual user-preferences regarding
interaction modalities. In summary, it is hypothesized that a powerful and intuitive multi-
modal interaction framework signi�cantly increases the acceptance of robotic assistance
in dentistry and is worth to be taken further beyond the �rst steps.
For the experimental realization a number of software components from MIOS have been
used and extended with an interaction framework. The developed framework builds upon
the dentronics design principles and combines several communication modalities in order
to cover a wide range of dentist-robot distances. These are speech recognition, hand
gesture recognition, haptic gestures, a web interface, and a foot pedal. Figure 3.5 shows
the setup for the user study.

3.3.2 Distributed Control: Telepresence

In [332], a pioneering experimental comparison between 5G communication and existing
technologies in the context of haptic robotic telepresence was studied. For this purpose,
a passivity-based control framework was proposed that is intuitive to understand and to
implement as a baseline. For the experiment and evaluation, three 7-DoF tactile robot
arms were used as well as a �exible research communication link that implements 5G
and 4G LTE as well as commercially available 5G, 4G LTE and WiFi technologies. The
telepresence performance of these six communication methods in terms of tracking and
force re�ection is compared. From the results it is concluded that 5G communication
technology is indeed superior in terms of tracking and force re�ection, although existing
methods may su�ce for various, however, basic applications. Therefore it is believed that
5G campus networks will play an important role for wireless robotics applications due to
the lower latency and increased stability.
The experimental setup consists of three Franka Emika Robot arms [5] as illustrated in
Fig. 3.6 on the top left. The leader robot (LR) and the follower robot (FR) form the
teleoperation system, while the third one, the human operator robot (HO), acts the role
of a human operator. The motion-controlled HO is rigidly connected to the gravity-
compensated LR, such that they both follow the same Cartesian motion. The LR motion
passes through the communication layer to the FR. On the other hand, the contact wrench
sensed by the FR is sent back to the LR through the same communication layer. Ideally,
the FR should follow the exact Cartesian motion of the HO, and the external wrench
sensed by the HO should be the same as the sensed external wrench by the FR.
In order to realize this experiment, MIOS was thoroughly extended with a UDP com-
munication interface and telepresence skills. It is possible to use di�erent telepresence
modes such as direct joint or Cartesian pose as presented in [332], or a joystick mode,
where the leader robot acts as a joystick by employing impedance control. The latter was

3.3. VALIDATION EXPERIMENTS: USE CASE INTEGRATION 69

Figure 3.6: (Top left) The teleoperation setup consists of a leader (LR), a follower (FR) and an human operator robot
(HO) which is rigidly connected to the leader for providing repeatable experimental scenarios [332]. (Top right) The kicko�
of the KI.Fabrik project © TUM. (Bottom) The one-to-many telepresence showcase in the collective © TUM.

prototypical work for a telemedicine application [345].
Applications based on the telepresence capabilities of MIOS have been shown at numerous
occasions. At CeBit 2019 the �rst 5G-enabled telepresence case for robot arms has been
presented togehter with TU Dresden and Vodafone. It has been used in combination with
the collective (see Sec. 3.4.2) to enable external demonstrations. The most impressive
example of this was the o�cial opening of the Munich Institute of Robotics and Machine
Intelligence (MIRMI) where one robot was used to directly control 36 others at three
di�erent sites in Germany. Other noteworthy showcases were the Hannover Messe 2019
where the Chancellor of Germany Angela Merkel shook hands with the Scienti�c Co-
ordinator of MIRMI across several hundred kilometers using bilateral telepresence, and
the o�cial start of the KI.Fabrik project where an operator at the MIRMI labs used a
telepresence-controlled robot to insert a time capsule into its holding at the Deutsches
Museum, see Fig. 3.6. It has also impacted and directly supported scienti�c publica-
tions such as [346] where a drone has been connected to a Franka Emika Robot arm via
telepresence. One showcase that might open up further lines of research is one-to-many
telepresence as implemented within the robot collective at MIRMI, see Fig. 3.6 at the
bottom.

3.3.3 Local Multi-Robot System: Pinakothek der Moderne

In 2021 a complex robotic art installation called KI.ROBOTIK.DESIGN was opened in
the Pinakothek der Moderne in Munich [347]. It consisted of eight robots equipped with

70 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

cameras in front of a slowly moving canvas. Each robot had a number of pens in reach
that were used to draw on the canvas. The drawings were images of daily news sites from
around the world or ones created by users via an App. A ninth robot used a crank to
move the canvas.

Figure 3.7: KI.ROBOTIC.DESIGN in the Pinakothek der Moderne© TUM

MIOS was utilized to control the robots. During the setup of the exhibition new skills
such as draw and crank were added, and its inherent telepresence capabilities have been
used. Furthermore, the software stack was extended to handle communication between
multiple robots and to provide an interface to container management systems such as
Kubernetes. The art installation is depicted in Fig. 3.7.

3.3.4 Collaborative Assembly Station

MIOS has been used in a demonstrator that was created based on the collaborative
assembly planner presented in [14]. The theoretical foundations and the experimental
analysis of this work can be found in Sec. 2.3 and Sec. 4.4, respectively. The demonstrator
is shown in Fig. 3.8 on the left.

It was used to showcase several manipulation capabilities such as the compliant interac-
tion with an uncertain environment and safety features such as collision detection. The
demonstrator was e.g. featured at the Hannover Messe 2016. Later this was extended
to also include a phase-based motion generator that is capable of velocity adaptation
depending on human co-workers in the vicinity [348]. This case has also been presented
when the German Chancellor Angela Merkel visited MIRMI in 2019, see Fig. 3.8 on the
right.

3.4. VALIDATION EXPERIMENTS: LEARNING 71

Figure 3.8: (Left) The collaborative assembly station [14]. (Right) The later version of the station at the visit of chancellor
Angela Merkel © TUM.

3.4 Validation Experiments: Learning

This section showcases two demonstration systems that were build to present the learning
capabilities of MIOS to the public.

3.4.1 Manipulation Learning: Peg-in-Hole

The experimental results of the learning architecture have found their way into a con-
tinuously developed demonstrator. It showcased the learning of a di�cult peg-in-hole
problem and demonstrated the robustness and high performance of the found solution.

Figure 3.9: From left to right and top to bottom: A political event at the monastery in Seon© CSU, the opening of the
Vodafone 5G lab© Vodafone, Hannover Messe 2019© TUM, DLD 2019© TUM, AI Council of Bavaria© TUM.

72 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

It used the learning components of MIOS and also served as a testing platform for new
developments within the software stack. It was featured on numerous occasions such as
the automatica and Hannover Messe trade fairs, various public and political events, and
international conferences. Figure 3.9 shows a collage of impressions.

3.4.2 Distributed Multi-Robot System: Collective

The collective was the most complex demonstrator coming out of this thesis. To the
best of the author's knowledge it is the �rst long-standing large-scale robot system. At
�rst, its standard con�guration consisted of 13 robots, and was later extended to over 70.
Each robot was equipped with a camera and its own real-time PC that ran MIOS. It was
used for numerous smaller experiments in the �elds of manipulation learning, planning,
telepresence, human-robot interaction and control. Many of the experiments of this thesis
have been done with this setup.

Figure 3.10: From left to right and top to bottom: The o�cial opening of the Munich Institute of Robotics and Machine
Intelligence (MIRMI)© TUM, the visit of German chancellor Angela Merkel at MIRMI© TUM, the AI.BAY conference
2023© TUM, Falling Walls 2019 © TUM.

The collective was often featured on public and political events, trade shows, and internal
demonstrations, most notably the opening ceremony of MIRMI, the visit of the German
chancellor Angela Merkel, and the Falling Walls conference. Due to its size and complexity
it was only moved once to an external location, namely the o�cial opening of the Munich
Institute of Robotics and Machine Intelligence (MIRMI) in the Pinakothek der Moderne.
On other occasions, only one robot was moved and connected to the rest via telepresence.
Figure 3.10 shows several impressions from various events.

3.5. CONCLUSION 73

3.5 Conclusion

This chapter describes the developed learning architecture that forms the basis for the
experiments in Ch. 4. Its main components are the GGTWreP framework, a model for
tactile skills, and MIOS, the software stack that implements the GGTWreP framework.
Finally, a number of challenging validation experiments underline the unprecedented per-
formance of the developed framework.

74 CHAPTER 3. SYSTEM ARCHITECTURE AND VALIDATION CASES

4
Experimental Analysis

This chapter discusses the extensive experimental work that veri�es the theoretical foun-
dations for tactile skills, skill synthesis, skill learning, and assembly planning. In Sec. 4.1
a veri�cation experiment demonstrates the implementation of 28 di�erent skills that solve
a variety of challenging real-world industrial processes. The results indicate a high degree
of robustness and performance as well as performance stability. It can also be shown
that the tactile policies coming from the skill synthesis process are reusable across di�er-
ent skill classes. In Sec. 4.2 the learning architecture is experimentally veri�ed. First, a
number of relevant learning algorithms are compared and evaluated with regard to their
performance on a di�cult insertion problem, which is considered unsolved in robotics.
Second, based on the insights from the �rst experiments, a novel SVM-based learning
algorithm was developed and compared to state-of-the-art deep reinforcement learning
approaches on the basis of a key insertion process. The results show superior learning
performance, robustness and achieved manipulation performance. Third, in an earlier
experiment a transfer e�ect has been observed that accelerates skill learning when using
prior knowledge from an apparently similar skill. In order to investigate this further, a
large experimental campaign was conducted that produced several essential insights with
regard to similarity among skills such as dependency on geometry and asymmetry in trans-
ferability. Then, Sec. 4.3 describes a reference experiment methodology for comparison of
human and robot manipulation capabilities. Additionally, the learning performance of the
robot was compared with the programming skills of a robot expert. The results indicate
that human-level manipulation performance can already be reached for some skills and
that autonomous learning at least achieves similar results to a human expert programmer,
albeit slower. Finally, in Sec. 4.4 an experiment is shown in which a collaborative assem-
bly planner that is compatible with the developed skill pipeline solves the task allocation
problem for a complex assembly, which has also been tested on real-world production
cases. This chapter was written based on [14,23�25,321,349]

75

76 CHAPTER 4. EXPERIMENTAL ANALYSIS

4.1 Taxonomy Veri�cation

In this section the veri�cation experiment for the taxonomy of manipulation skills is
presented. First, the general hardware setup and the speci�c process setups are described.
Then the veri�cation process is outlined and the results are shown. Finally, the results
are discussed.

4.1.1 Experimental Setup

The taxonomy veri�cation experiments are based on a common hardware base setup that
consists of the following components.

� A Franka Emika Robot arm [5]: This is a 7-DOF manipulator with link-side joint
torque sensors and a 1 kHz torque-level real-time interface, which allows us to di-
rectly connect the GGTWreP framework to the system hardware, i.e., the real-time
interface FCI [5].

� A Franka Emika Robot hand: A standard two-�ngered gripper that is su�cient for
a wide range of tasks.

� Intel NUC: A small PC that uses an Intel i7 CPU, 16 GB RAM, and an SSD. 1

� Software: MIOS is used.

Input processes for the taxonomy of manipulation skills (TMS) are directly derived from
established standards such as the German curricula for trainees in metalworking [303],
electronics [304], and mechatronics [305]. These standards provide the basis for almost
any process in today's industry by de�ning boundary conditions, manipulation steps,
requirements and objectives. By building on top of standard works the robot manipulation
framework is then directly compatible with the current needs of industrial companies. As
a �rst step, the TMS contains processes that range from the domain of machine tending
(such as lever operation and button pressing), to assembly (such as insertion), or material
processing (such as bending and cutting). To illustrate the power of the framework,
28 real-world manipulation skills were implemented within the GGTWreP framework as
described in Table 4.1.

4.1.2 Veri�cation Process

For the validation experiment, each skill model was executed 50× on the same setup. A
single trial involves executing a particular skill model until it terminates. When appropri-
ate, arti�cial errors were used to o�set the skill's goal poses in the validation experiment to
simulate a more realistic process environment. For example, in typical industrial environ-
ments, moving parts of heavy machines cause process disturbances that impact the robot's
precision. The process-speci�c experiment setups are depicted in Fig. 4.1. Considering
the validation experiment, as well as the optimization experiments (both autonomous
learning and manual tuning), roughly 6000 trials were run, i.e., executions, for a single
skill. Taking into account the optimization times and setup times (i.e., physically adjust-
ing the robot's environment for the next experiment), the entire experimental work took
about one month to complete.

1The used learning approaches do not require GPU acceleration or distributed computing clusters.

4.1. TAXONOMY VERIFICATION 77

Figure 4.1: Taxonomy of manipulation skills, experimentally validated skills are shown with the used setup. For clarity,
the taxonomy ranks are indicated as family (F), domain (D), class (C), and subclass (S). Instances are omitted since they
are represented by the pictures.

4.1.3 Results

Overall, high performance levels could be achieved in terms of the two cost functions'
minimum execution time and contact moments. Table 4.2 summarizes the achieved ro-
bustness against the goal pose randomization and the average and standard deviation of
these metrics. The skills were either autonomously learned or domain expert-tuned.
The implementation of 28 tactile skills exhibits a robust behaviour, and high performance
in various industrial automation tasks that have been subjected to signi�cant process
disturbances. Importantly, the simple transfer of policies and the e�cient learning through
the parameter vector θ demonstrate the versatility enabled by the taxonomy.
Surprisingly, the seeming disadvantage of having to design a large number of di�erent
skills is vastly mitigated by the fact that the vast majority of policies can be transferred
without modi�cations within the same skill class. The same policy was used for each
skill class, respectively, and only the parameters θ = [θπ,θc] needed to be adapted (or

78 CHAPTER 4. EXPERIMENTAL ANALYSIS

Table 4.1: Setup descriptions

Insert A cylinder (ex,y,z ± 0.003 m) with 30 mm diameter and very low tol-
erances (< 0.1 mm), a household key, and an Ethernet plug (both
ex,y,z ± 0.001 m).

πd,27

Tip A mechanical enter key and two di�erent spring-loaded buttons. For the
enter key δ2 was automatically triggered when the key was hit properly.
ex,y,z ± 0.001 m for all three cases.

πd,23

Drag A box �lled with objects, resulting in roughly 2.1 Kg of weight, was
dragged over three di�erent surfaces, i.e., wood, cloth and foil.

πd,3

Slide A common computer mouse and three di�erent surfaces, i.e., wood, cloth
and foil. The robot had to maintain a contact force of 15 N.

πd,6

Press
Mecha-
nism

A pedal (ex,y,z ± 0.01 m), a user stop, and a �ip switch (both ex,y,z ±
0.005 m). The pedal must be pressed for 1 s, the other two buttons have
no minimum press time. The user stop required signi�cantly more force
to be pressed down than the other two button variations. The press
button skill was only optimized for contact torques, since the execution
time is mostly determined by the press time.

πd,33

Extract A cylinder (ex,y,z ± 0.003 m) with 30 mm diameter and very low tol-
erances (< 0.1 mm), a household key, and an Ethernet plug (both
ex,y,z ± 0.001 m).

πd,34

Cut A cutter knife on a carton surface, a cloth surface and a foil surface.
Success was con�rmed manually and by visual inspection by a human
experimenter depending on whether the surface has been cut properly.

πd,26

Grab An object (HDMI switch in this case) on a table with ex,y,z ± 0.005 m.
Note that, the grab skill is very easy to test since it is a position-based
task for the most part with little physical interaction. The grab skill was
only optimized for execution time due to the minimal amount of physical
interaction.

πd,35

Place An object (HDMI switch in this case) grasped by the robot to be placed
on a �at table with ex,y,z ± 0.005 m. The place skill was only optimized
for execution time due to the minimal amount of physical interaction.

πd,36

Swipe A stylus on a tablet with ex,y,z ± 0.005 m. The success of the skill was
determined visually by the human experimenter depending on a success-
ful swipe operation on the tablet.

πd,26

Bend Two wooden plates connected by heavy cables which allow for a reset
without too much wear on the setup (ey ± 0.005 m).

πd,3

Turn
Mecha-
nism

A key inserted into a lock (ex,y,z ± 0.005 m). πd,2

Slide
O�

A battery casing with a slideable lid (ex,y,z ± 0.005 m). The success of
the skill was determined visually by the human experimenter.

πd,4

Move
Mecha-
nism

A common lever (ey ± 0.005 m). πd,1

relearned) to �nd the new optimum. Some policies are even directly transferable between
di�erent classes. When looking at the building blocks of the selected policies, one might
even say that many manipulation processes can be solved by using a small toolset of

4.1. TAXONOMY VERIFICATION 79

Table 4.2: Experimental results for all skills

Skill Task
Execution Time Contact Torques
Robustness Value Robustness Value

Insertion
Cylinder 94 % 1.76± 0.36 s 92 % 3.21± 0.35 Nm
Key 100 % 1.1± 0.18 s 98 % 2.97± 0.244 Nm

Ethernet Plug 100 % 1.04± 0.19 s 100 % 2± 0.55 Nm

Extraction
Cylinder 100 % 0.35± 0.05 s 100 % 6.03± 0.123 Nm
Key 100 % 0.31± 0.02 s 100 % 5.46± 1.277 Nm

Ethernet Plug 100 % 0.23± 0.001 s 100 % 2.29± 0.023 Nm

Press Mechanism
Pedal 100 % N/A 100 % 4.12± 0.223 Nm

Flip Switch 100 % N/A 100 % 1.6± 0.083 Nm
User Stop 100 % N/A 98 % 3.39± 0.17 Nm

Tip
Enter Key 100 % 0.82± 0.005 s 100 % 0.59± 0.013 Nm
Red Button 100 % 0.69± 0.034 s 100 % 1.41± 0.137 Nm
White Button 100 % 0.69± 0.008 s 100 % 1.32± 0.023 Nm

Grab HDMI Switch 100 % 2.87± 0.005 s N/A N/A

Place HDMI Switch 100 % 2.42± 0.064 s N/A N/A

Slide Object
Wood 100 % 1.21± 0.008 s 100 % 8.34± 0.125 Nm
Cloth 100 % 1.21± 0.005 s 100 % 8.69± 0.098 Nm
Foil 100 % 1.21± 0.005 s 100 % 9.56± 0.077 Nm

Drag
Wood 100 % 1.02± 0.06 s 100 % 6.42± 0.04 Nm
Cloth 100 % 1.09± 0.06 s 100 % 6.5± 0.016 Nm
Foil 100 % 1.01± 0.008 s 100 % 11.86± 0.078 Nm

Cut
Carton 100 % 1.69± 0.009 s 100 % 7.16± 0.502 Nm
Cloth 100 % 1.75± 0.089 s 100 % 6.08± 0.105 Nm
Foil 100 % 1.72± 0.011 s 100 % 5.92± 0.145 Nm

Turn Mechanism Key 95 % 0.71± 0.19 s 100 % 0.94± 0.345 Nm

Swipe Tablet 100 % 1.4± 0.17 s 66 % 3.1± 0.155 Nm

Move Mechanism Red Lever 100 % 1.33± 0.036 s 86 % 4± 0.079 Nm

Bend Cables 100 % 1.99± 0.006 s 100 % 4.37± 0.195 Nm

Slide o� Battery Case 98 % 1.13± 0.66 s 96 % 7.22± 0.623 Nm

building blocks. This result supports the idea that the proposed approach is versatile
enough to be relevant for realistic scenarios.
As this approach enables the learning of a wide range of skills in realistic settings, the issue
of energy consumption in real-world 24/7 skill acquisition settings becomes a pertinent
concern. Therefore, the computational energy required for the presented approach is
compared with that of an exemplary state-of-the-art deep learning system, as is illustrated
in Figure 4.2. The GGTWreP framework used in this work is compared with the deep
deterministic policy gradient method (DDPG) [350]. Furthermore, GGTWreP is shown
for the case in which every skill is learned from scratch as well as for the case in which
learned solutions can be reused and transferred to subsequent learning. This suggests
that using current state-of-the-art data-based methods to learn many skills may require
signi�cant resource demands, as was anticipated, for example, in [351]. However, using the
GGTWreP framework requires an order of magnitude lower energy, and even signi�cantly
less energy than that with transfer learning.
For the deep deterministic policy gradient (DDPG) framework, convergence was observed

80 CHAPTER 4. EXPERIMENTAL ANALYSIS

Figure 4.2: A comparison of the required energy to learn a great number of skills. The deep deterministic policy gradient
(DDPG) algorithm is compared with the GGTWreP framework (see Sec. 3.2.5 both with and without transfer learning.

after ∼ 300 trials. However, contrary to previous expectations, no robust solution was
achieved most of the time. A trial includes executing a skill and calculating the learning
algorithm. Learning a skill with the use of prior knowledge from another skill within
the same subclass (level-1 transfer) reduces the number of required trials to ∼ 30 for
GGTWreP, and to ∼ 60 for transfer across subclasses (level-2 transfer). DDPG, in its
current form, does not achieve a reliable transfer. To compare all calculations with the
same widely available computing platform, an Intel NUC with an i7 processor was used
that has an average power consumption of 30 W. To compare the power consumption
for the di�erent frameworks, only the CPU time allocated for the learning algorithm was
considered, which is 1 ms for GGTWreP and 0.6 s for DDPG. For a conservative analysis,
it is assumed that the CPU worked at full capacity in both approaches. Consequently,
the energy consumption per trial is estimated to be 0.03 J for GGTWreP and 18 J for
DDPG. The overall energy consumption is

ens =
ns∑
i=0

di, (4.1)

where ens denotes the energy consumption for ns number of sequentially learned skills,
and di is the vector for the required number of trials for each learned skill. To make a
reasonable comparison with transfer learning, it is assume that the goal is to sequentially
learn 100 skill subclasses with 10 instances for each of a single skill class.

4.2 Tactile Skill Learning

4.2.1 Comparative Analysis of Algorithms for Skill Learning

This experiment provides a proof-of-concept for the learning architecture introduced in
Ch. 3 and its theoretical foundations in Ch. 2. Four di�erent learning algorithms are
compared and the results discussed.

4.2. TACTILE SKILL LEARNING 81

4.2.1.1 Experimental Setup

The experimental setup consists of a Franka Emika Panda robot [102] and and three
variations of the insertion problem as shown in Fig. 4.3, i.e. a key, a puzzle piece and an
aluminum cylinder.

Figure 4.3: Experimental setup, puzzle (top right), key (bottom left) and cylinder (bottom right)

The three tasks are as follows:

� Puzzle: The puzzle piece is an equilateral triangle with a side length of 0.075 m.
The hole has a depth of 0.005 m. The tolerances between puzzle piece and hole are
< 0.1 mm and there are no chamfers. Note that the same basic setup as in [352]
was used.

� Key: The lock has a depth of d = 0.0023 m. The lock and the key have chamfers
to make the initial insertion easier by design.

� Cylinder: The aluminum cylinder has a diameter of 0.02 m and the hole a depth
0.035 m. The tolerances are ≪ 0.1 mm and there is a 0.5 mm chamfer on the
cylinder. The hole has no walls which results in a higher chance of getting stuck
during insertion, which further increases the di�culty.

The experiment has the following routine:

1. The learning problems are given as described above.

2. The insertion skill is selected from the taxonomy (note that the parameters and
structure of the GGTWreP model in this early experiment di�er from the current
version. Please refer to [23] for details.).

82 CHAPTER 4. EXPERIMENTAL ANALYSIS

3. The objects (key, puzzle and cylinder) are taught kinesthetically by a human expert.

4. Latin hypercube sampling (LHS), particle swarm optimization (PSO), Bayesian op-
timization (BO) and covariance matrix adaptation evolution strategy (CMA-ES)
are selected as learning algorithms.

5. Each combination of insertion problem and algorithm was run ten times to ensure
a statistical con�dence.

For Bayesian optimization (BO) the spearmint software package [313, 314, 353, 354] was
used in combination with predictive entropy search with constraints (PESC) [316] as
acquisition function. For evolutionary algorithms Covariance Matrix Adaptation Evo-
lutionary Strategy (CMA-ES) [317, 318] was selected and for Particle Swarm Optimiza-
tion (PSO) the standard implementation [355]. Furthermore, Latin Hypercube Sampling
(LHS) [319, 356] is utilized, an uninformed grid-based sampler. The learning algorithms
are con�gured as follows.

� LHS: The parameter space is sampled at 75 points.

� CMA-ES: The algorithm ran for 15 generations with a population of 5 individuals
and an initial standard deviation of σ0 = 0.1. These values were found by initial
try-outs. The initial centroid was set in the middle of the parameter space.

� PSO: 25 particles were used and the algorithm ran for 3 episodes. The acceleration
constants were set to c1 = 2 and c2 = 2 (default values).

� BO: The algorithm is initialized with 5 equally distributed random samples from
the parameter space.

Execution time was used as cost function Qc. The maximum skill execution time was set
to tmax = 15 seconds. The heuristic Qh of the insertion skill is given as the distance to its
goal pose de�ned by the Container object of the insertion skill.

4.2.1.2 Results

The performance results are shown in Fig. 4.4. The blue line indicates the execution time
over trials averaged over all ten experiments per problem/algorithm combination. The
grey area indicates the 90% con�dence interval. The results of BO for learning to insert
the cylinder are not included since it was not able to �nd a solution in the given time
frame.
These results show that all four algorithms are suited to a certain degree to learn easier
variations of the insertion task such as the puzzle and the key. However, it has to be noted
that Bayesian optimization on average �nds solutions not as good as the other methods.
Furthermore, the con�dence interval is notably larger. It also terminates early into the
experiment since the model was at some point not able to �nd further suitable candidates.
This might indicate a solution space with high noise and discontinuities that is di�cult
to model.
The comparison with LHS indicates that the GGTWreP approach su�ciently reduces the
complexity of the manipulation skill design. Finding solutions with practically relevant

4.2. TACTILE SKILL LEARNING 83

Figure 4.4: Experimental results. The columns correspond to the learning algorithms (LHS, BO, PSO, CMA-ES) and the
rows to the tasks (Puzzle, Key, Cylinder). The blue line denotes the cost of an algorithm/task combination averaged over
10 experiments. The light blue area denotes the 90 % con�dence interval.

execution times by sampling rather than explicit learning is possible for at least lower
tactile di�culty.
The plot showing the LHS results for the cylinder insertion indicates the high complexity
of the problem. Random sampling leads to feasible solutions, however, the con�dence
interval is too large to conclude assurance. PSO achieves better solutions, yet it also has
a very low con�dence. CMA-ES outperforms both methods and is able to �nd a solution
that is better in terms of absolute cost as well as con�dence.
Considering the best performing algorithm CMA-ES, a feasible solution for any of the
tasks was already found after 2−4 minutes and optimized after 5−20 minutes depending
on the task, signi�cantly outperforming existing approaches for learning insertion. Note
also that with the exception of BO no noteworthy computation time was necessary.

4.2.2 Comparison with Deep Reinforcement Learning

This experiment compares the parameter space partition (PSP) algorithm introduced
in [321] in combination with the GGTWreP framework to state-of-the-art deep learning
methods for a di�cult insertion problem.

4.2.2.1 Experimental Setup

The setup consists of a Franka Emika Robot arm and a key insertion task, see Fig. 4.5.
The lock has a depth of d = 0.0023 m. The lock and the key have chamfers to make the
initial insertion easier by design.

84 CHAPTER 4. EXPERIMENTAL ANALYSIS

Figure 4.5: Experiment setup consisting of a robot arm and a key/lock combination

The experiment was setup as follows:

1. The problem task is given by the key/lock setup.

2. The insertion skill from the manipulation skill taxonomy was used.

3. The problem was taught kinesthetically by a human expert.

4. Multiple algorithms were compared, i.e. hierarchical relative entropy policy search
(HiREPS), covariance matrix adaptation evolution strategy (CMA-ES), parameter
space partition (PSP) and four deep reinforcement leaning approaches, namely deep
determistic policy gradient (DDPG), asynchronous advantage actor-ritic (A3C),
twin delayed deep deterministic policy gradient (TD3) and soft actor critic (SAC).

5. Ten experiments for each algorithm were run, each consisting of 10 episodes and 20
trials per episode.

The neural network-based approaches are applied to the insertion phase only, while ap-
proach and extraction are handled by GGTWreP-based skills. HiREPS, CMA-ES and
PSP make use of the GGTWreP framework. The neural network-based methods are
con�gured with a state space of 21 dimensions, i.e. q, q̇ and τ ext and an action space
consisting of the 7 dimensional motor torques τ d.

4.2.2.2 Results

Figures 4.6 and 4.7, and Tab. 4.3 show the results for the applied algorithms. None of the
neural network-based learners was able to solve the task in the experiments. There is a
clear learning behavior for PSP and HiREPS which seem to be similar. CMA-ES, while
also reaching a similar optimized cost, shows a distinctively slower learning rate. Table
4.3 shows the average optimized cost over 10 experiments for each algorithm.
Both PSP and HiREPS seem to fare similar in the experiment. However, the variance
of HiREPS is higher, while the average cost is slightly lower. This stems from the fact
that HiREPS �nds unreliable solutions, which can yield slightly lower costs but are prone
to failure. The mean and variance of the parameters for those costs were calculated and
the data for parameter tuples within this range were checked. It could be veri�ed that
for those parameter tuples the probability of yielding those superior costs was around 38
%, while 62 % resulted in far higher costs (due to very high noise) or failure. The same

4.2. TACTILE SKILL LEARNING 85

Figure 4.6: Results of the comparison experiment for HiREPS, CMA-ES, and PSP. The blue line denotes the cost averaged
over 10 experiments. The light blue area denotes the 90 % con�dence interval.

Figure 4.7: Results of the comparison experiment for A3C, DDPG, SAC, and T3D

Table 4.3: Optimized costs for successful trials

PSP HiREPS CMAES DDPG TD3 SAC A3C
Result success success success failure failure failure failure
c̄o 0.3514 0.3345 0.3384 14.842 14.816 14.834 14.831

var(c̄o) 0.0225 0.0366 0.0377 0.136 0.193 0.163 0.118

investigation applied to PSP did not result in such �ndings. Tab. 4.4 shows the average
percentage of successful trials per episode over the course of learning.
From the results one can see that the PSP algorithm is able to discriminate between
successful and unsuccessful parameter spaces and therefore �nds reliable optimized solu-

86 CHAPTER 4. EXPERIMENTAL ANALYSIS

Episode 1 2 3 4 5 6 7 8 9 10
PSP 50.7 71.2 85.5 89.8 91.2 94.2 96.2 98.5 98.3 98.8

HiREPS 57.5 54.5 60.5 61.5 69.5 67.5 72.0 71.5 69.0 69.5
CMAES 2.8 21.1 43.3 59.4 71.1 65.0 71.1 68.9 71.7 69.2

Table 4.4: Successful trials over episodes in % (averaged over experiments)

tions. Also, due to its nature, it is able to not only provide a singular solution, but rather
a solution subspace within the initial search space. CMA-ES needs several episodes to
achieve a distinctive percentage of successful proposals, but still only manages to get on
par with HiREPS.
Thus, in this experiment the suitability of the PSP algorithm for di�cult real-world robot
learning in combination with the GGTWreP framework was demonstrated. Not only
are the converged solutions robust, but also the ones sampled directly from the learner,
which allows to improve while achieving success to a certain margin. The general idea of
de�ning and iteratively reducing sub spaces of interest seems a promising direction and
allows to optimize parameters and to approximate sub spaces of parameters which may
be applicable to a speci�c optimization problem variation. Furthermore, the algorithm
in combination with the GGTWreP framework was compared to the state of the art in
robotic manipulation learning which is not able to �nd solutions to the considered (very
challenging) manipulation problem, at least within the given frame of 200 trials.
These �ndings suggest that employing a meaningful structure may be bene�cial for learn-
ing very challenging real-world manipulation problems such as key insertion.

4.2.3 Skill Transfer Learning

This section presents experimental results on transfer learning. The experiments follow up
on the discovery of a transfer e�ect as described in Sec. 2.4.3. First, the experimental per-
formance of state-of-the-art deep reinforcement learning to solve the transfer problem in
tactile skill learning2 is analyzed. Speci�cally, the well-adopted gold-standard algorithms
soft-actor-critic (SAC) [357] and deep deterministic policy gradient (DDPG) [358] were
evaluated. Then a large-scale experimental campaign to investigate the transfer learning
capabilities of the MIOS framework is described. The results are examined with regard
to the hypothesis made in Sec. 2.4.3.

4.2.3.1 Experimental Setup

The experimental setup consists of nine di�erent, albeit somewhat similar insertion prob-
lems. The objects to insert are six cylinders with diameters ranging from 10 to 60 mm
and three di�erent keys (see Fig. 4.8). The clearance for the cylinders is < 0.1 mm.
Therefore, it is on an industrial level; thus, it is a non-trivial challenge that is still not
considered solved in the manipulation and control community. Furthermore, to make the
task even more challenging, the holes have no walls. This increases the chance of jamming
with the cylinders during insertion - an e�ect that cannot yet be simulated. The keys are

2Note that the focus is explicitly on blind, tactile-only manipulation, i.e., no cameras or other external
sensors were considered.

4.2. TACTILE SKILL LEARNING 87

Figure 4.8: The analyzed reference tasks consist of six cylinders with increasing diameters and three di�erent common
household keys (bottom left). Five robots were used in total for the experiment.

common household keys with a typical clearance of < 1 mm, and their particular insertion
mechanics are also far from being replicable in physics simulators today. In accordance
with the taxonomy hierarchy there are level-0 transfers (each task is paired with itself),
level-1 transfers (any cylinder is paired with any other cylinder, or any key with any other
key), and level-2 transfers (any cylinder is paired with any key) (see Sec. 2.4.3).
Five Franka Emika Robot arms [5] were used to learn the skills in parallel where possible.
Each robot was connected to an o�-the-shelf PC with an Intel i7 processor, 8 GB RAM,
an SSD, and no additional graphics card. All calculations by the learning algorithm were
done on the PCs locally using MIOS (see Sec. 3.2).

4.2.3.2 Experimental Procedure

A robot learning a skill is referred to as an experiment, and one experiment consists of a
number of trials. A trial consists of the following procedure.

1. �rmly grasp the object with two-�nger gripper

2. move to a kinesthetically taught approach pose

3. execute the insertion skill until it is successful, or until an error occurs

4. reset the skill by extracting the object and retract back to approach pose

The movement and extraction skills used to prepare and reset every trial were not part of
the learning process but they were implemented by the GGTWreP framework and were
parameterized beforehand.

88 CHAPTER 4. EXPERIMENTAL ANALYSIS

Deep Reinforcement Learning In the deep RL experiment, only the cylinders with
the sizes 30, 40, and 60 mm were considered. They were learned independently, and then
the obtained policy was transferred to the other two cylinder scenarios, respectively. For
each cylinder an experiment that consisted of 500 trials was run. For statistical con�dence,
10 experiments per cylinder were performed, so there were 15.000 trials in total. The deep
RL methods were applied to the insertion problem in two di�erent con�gurations: 1) The
same initial pose at each trial and 2) with o�sets in the (x − y)-plane of up to ±5 mm
(random uniform distribution). The reward function

r(t) = 100(−δz(t) + 3|δx(t)|+ 3|δy(t)|), (4.2)

was used, where δz is the change in height. Therefore, the reward correlates linearly with
the achieved insertion depth at each time step. |δx(t)| and |δy(t)| are the changes in the
deviation from the the goal position. When the item is successfully inserted, a reward
of rsucc = 20 is added. The network architecture is deep deterministic policy gradient
(DDPG) [358], and the implementation was kept close to the originally proposed design.
The parameters of the implementation can be found in Tab. 4.5. The soft-actor-critic
(SAC) algorithm did not perform su�ciently well, therefore, its parameterization is not
shown for sake of brevity.

Table 4.5: DDPG parameters

Parameter Value
Optimizer Adam [359]
Learning rate (critic and actor) 3 ∗ 10−4

Discount(γ) 0.99
Replay bu�er size 106

Number of hidden layers 3
Number of units per hidden layer 256
Number of samples per mini-batch 64
Activation function ReLU
Output activation function TanH
Target smoothing coe�cient (τ) 0.005
Action dimension size 6
Observation dimension size 18
Initial exploration phase w/o learning (observations) 1000

Actions are limited to ±1 and scaled by factor sa = [5, 5, 10, 1, 1, 2] prior to robot appli-
cation. The factor sa was found empirically during experimentation.
Since no successful insertions were observed for pure end-to-end learning on a joint level,
a 6-dimensional wrench (action ∈ R6) in Cartesian space was applied. For the sensory
feedback, the Cartesian pose, velocity, and external end e�ector wrench (each ∈ R6) was
selected. Therefore, the stacked observation vector is R18. Each element of the action
was limited between ±1N. Before applying the action to the robot, it was multiplied by
the factor sa = [5, 5, 10, 1, 1, 2]. These values were found experimentally, and they seem
to de�ne a rather con�ned box, where the resulting forces are still high enough to solve
the insertion task but also low enough to not trigger excessive forces during unwanted
collisions and contact. Furthermore, when the values are too high, the robot tends to get
stuck in undirected exploration phases, presumably because the task region of interest

4.2. TACTILE SKILL LEARNING 89

(ROI) is rather small. There is also the possibility of building up to much energy, which
leads to safety violations during impact. Finally, the amount of movement upward was
limited to 1 cm above the insertion hole, as subsequent downwards movement exerts too
much kinetic energy during impact.

GGTWreP In the GGTWreP experiment, every skill was learned by itself without any
prior knowledge, and the results were saved to a database. Then, every skill was learned
again with the prior knowledge of every other skill so that every combination of skills
was covered. They were also learned again using their own prior knowledge. In addition,
every experiment was repeated 10 times to ensure statistical con�dence. The CMA-ES
algorithm (see Sec. 2.4.1) was used to learn the skills, speci�cally, the implementation
available at [360]. The number of generations was set to 10. The other parameters
were set according to the recommendations in [360], which resulted in a total number of
130 trials per experiment. Note that slightly better solutions may be found after more
than 130 trials since real-world manipulation learning is usually very noisy. Learning
with or without prior knowledge may also end at slightly di�erent costs after 130 trials,
but it should eventually converge to the same minimum for t → ∞. For learning skills
without prior knowledge, c0 was set to 0.2 θi,max for every parameter i, except for ∆x
(an intentional deviation from the goal pose), which was set to 0.5 θi,max. This choice
re�ects an arbitrary, but safe, initialization. It considers that the process starts with low
velocities and contact forces. The total number of experiments amounts to 900, and the
total number of evaluations, and thus real-world interactions, to 117.000. The experiment
took about �ve entire days to complete.

4.2.3.3 Knowledge Transfer: DDPG

The known network parameters θ⋆
nn,i from the source task ιi are used and applied to the

target task ιj, θnn,j = θ⋆
nn,i . This is straightforward, as all the networks in the deep

RL implementation have the same number of layers and nodes. Note that no similarities
between the network parameters θnn were examined in any of the tasks, and no form of
soft update was used for this transfer. After this transfer, learning was not continued, as
the networks did not converge reliably. It is acknowledged that this transfer approach is
extremely greedy; however, it is not feasible to generate any kind of weighted mean due
to the nonlinear nature of deep neural networks. In addition, the need to �nd generally
applicable reordering methods for such networks in order to make them comparable, and
the time needed to approximate their potential value (i.e., weight), are out of the scope
of this work.

4.2.3.4 Knowledge Transfer: GGTWreP

To transfer knowledge from task ιi to task ιj within the GGTWreP framework, a set of
already found optimal parameters θ⋆ from ιi is used as an initial centroid c0 for ιj (i.e.,
c0,j = θ⋆

i). This method of transferring knowledge is intentionally used, since, to the best
of the author's knowledge, no general methods have been established yet for such new
types of transfer learning. In order to acknowledge the simplicity of the solution, it is
referred to this transfer learning as a "greedy type," as it is entirely uninformed about
optimal prior choices. The optimal parameter set θ⋆

i for ιi is extracted from the successful

90 CHAPTER 4. EXPERIMENTAL ANALYSIS

trials of the experiment. However, simply using the parameters from the trial that gen-
erated the lowest cost may not be su�ciently robust. A set of parameters is considered
robust if similar parameter sets lead to similar costs Q, while strong �uctuations indicate
lack of robustness. Therefore, successful trials are clustered �rst. From the parameters
for the best performing cluster, a weighted mean is calculated as

θ⋆ = ω1θ1 + ω2θ2 + · · ·+ ωnθn, (4.3)

where n is the number of parameter sets in the best performing cluster. The associated
weights ω1, . . . , ωn decrease in logarithmic fashion and are normalized.

ωi =
ln(n+ 0.5)− ln(i)∑n
j=1 ln(n+ 0.5)− ln(j)

(4.4)

For task ιi, the weighted mean of the successful parameter sets θ⋆
i is used.

4.2.3.5 Results: Deep Reinforcement Learning

The results of the deep reinforcement learning experiments are depicted in Fig. 4.9. No
convergence could be observed for the soft-actor-critic (SAC) algorithm, despite best
e�orts, as is shown in the time plots at the bottom of Fig. 4.9. The time plots for the
deep deterministic policy gradient (DDPG) algorithm [358] were omitted, since learning
the tasks worked in principle and the transfer learning results showcased by the matrices at
the top of Fig. 4.9 were the focus of the experiment. The insertion times were considered as
cost for the Level-0 and Level-1 knowledge transfers. The columns of the matrices denote
the source tasks and the rows present the target tasks. During learning, the network
parameters θ were saved every 100 trials, and were examined thereafter regarding reliable
task execution. Note that this experiment was split into two parts as mentioned above.
In the �rst experiment, there was no initial o�set between initial pose and hole, while a
random o�set for the initial pose was applied in the second experiment. The �rst and
second matrix show the results without an o�set, and the third and fourth matrix show
the results with uniform random o�sets of up to ±5 mm.
The time plots (bottom of 4.9) for the SAC algorithm show representative examples of the
learning behavior. The y-axis shows the reward that was obtained for each trail, and the
x-axis shows the trials. One exemplary episode is shown for each of the pegs. No solution
could be obtained for any peg with this algorithm; therefore, no knowledge transfer could
be observed. For the pegs with a diameter of 30 mm or 40 mm, not one successful
insertion could be observed. The small rewards re�ect the algorithm's struggle to manage
even slight insertions. Successful insertions for the 60 mm peg were observed during
learning, however, when the successful parameters were tested without any additional
learning or exploration, the performance was not reliable. In total, 25 di�erent parameter
sets per peg were applied and there were 50 trials per set over the course of learning. Note
that since the observed level-0 transfer in the DDPG experiment without an o�set was
superior to that with an o�set, any experiments with an initial o�set were omitted for
the SAC experiment. Furthermore, the experimental setup was the same for DDPG and
SAC. This result was in stark contrast to initial expectations, as SAC performed best in
simulations [361]. One can only hypothesize why this discrepancy occurred. Presumably,
the extremely complex nature of the examined contact-rich tasks di�ers dramatically from

4.2. TACTILE SKILL LEARNING 91

Figure 4.9: Top) The transfer learning performance of DDPG. Bottom) A representation of the SAC algorithm's learning
performance in the insertion task. Graphs are shown for the 30 mm, 40 mm, and 60 mm pegs. The rewards above the green
line indicate successful trials. For the 30 mm and the 40 mm pegs, no successful trials were observed. While successful
trials were observed for the 60 mm peg, these were random and not systemically exploited.

standard simulation problems and is indeed very hard to accurately capture and simulate
physically.

Observations The DDPG algorithm did not converge reliably in the experiment. Rea-
sonable policies were learned sometimes, with success rates of > 90% in the �rst 100 trials
of an experiment. Regardless, the network later got stuck in policies with success rates
of only < 2%. In the experiment, vanilla end-to-end learning without carefully integrated
model knowledge (e.g., by suitable coordinate choice and cost function design) was not
able to successfully insert a cylinder, as was �rst indicated in [321]. Moreover, an explicit
reward function needs to be formulated to incorporate additional knowledge, including a
substantial part of the insertion policy itself. Ultimately, knowledge generation and trans-
fer were unreliable, although a slight knowledge transfer was observable. Apparently, no
systematic representation of learned tasks, such as a dependable insertion policy, could
be transferred.

4.2.3.6 Results: GGTWreP-based Learning

The results of the large-scale GGTWreP experiment are depicted in Figures 4.10-4.12.
From observing the respective speedup results, it can be concluded that using prior
knowledge (in this case, in the form of initial policy and control parameters) in real-
world tactile manipulation learning is bene�cial even to very simple transfer mechanisms
and may lead to a signi�cant increase in the learning speed. Interestingly, the learning
speed decreased in some cases, which hints at possible adverse e�ects when attempting to
use prior knowledge. Figure 4.11 depicts a similar behavior for the learning success rate
of skills. Speci�cally, based on the results, the following observations can be made.

92 CHAPTER 4. EXPERIMENTAL ANALYSIS

Figure 4.10: The logarithmic cost evolution of learning a single skill without prior knowledge (solid blue lines) and the
mean cost when using a level-0 (dashed lines), level-1 (dotted lines), and level-2 transfer (dash-dotted lines), respectively.
Each task was learned using prior knowledge from every other task. For clarity, the results from each subclass (cylinders
and keys) were grouped by averaging the resulting costs and plotting the mean. The cylinder insertion tasks are ι1 to ι6,
and the key insertion tasks are ι7 to ι9.

Observations In addition to the aforementioned bene�ts of transfer learning to the
learning performance in general, the asymmetry of the empirical transferability (ET),
learning e�ort ratio (LER), and speedup stands out when inspecting the results. Thus,
it can be concluded that transferring knowledge from task ιi to task ιj may signi�cantly
speed up the learning process, but, in turn, this is not necessarily the case when knowledge
is transferred from task ιj to task ιi.

Investigating the experimental results more deeply, it was observed that the learning time
for all cylinders was signi�cantly lower when using prior knowledge from other cylinders,
while the same holds for the keys with prior knowledge from other keys (i.e., level-0 and
level-1 transfers). On the other hand, when using prior knowledge from one of the keys on
the cylinders or the other way around (i.e., level-2 transfer), the e�ect was considerably
smaller - sometimes negligible or, in a few cases, even negative. This indicates that the
transfer learning performance depends on the speci�c geometry of a given task. Although,
no obvious geometric property stands out such as a diameter change (e.g. in level-1
transfers between the cylinders). In the context of the experiment, one can only speculate
about the reasons for this. However, the most in�uential factors appear to be friction and
almost unnoticeable tolerance di�erences between the cylinder-hole combinations. Note
that the data di�erences in the transfer learning performance among the de�ned transfer
levels support the taxonomy hierarchy proposed in Sec. 2.1.3. In direct support, the initial
ALSR also indicates higher initial success rates when prior knowledge was used. Tasks
such as the third key (ι9) are the exception, since using prior knowledge to learn it had
a mostly negative e�ect (e.g., a slowdown of 50 %) even when using its own knowledge.

4.3. PERFORMANCE COMPARISON: ROBOT VS. HUMAN 93

Figure 4.11: Average learning success rate (ALSR) in the same pattern as Figure 4.10. For better readability, the ALSR
was approximated by time-window averaging and plotted as stair function. The black dashed line is the theoretical optimal
case with a slope of 1. For each skill, the average ALSR is shown when taking prior knowledge from the cylinder tasks
and from the key. Note that an ALSR<1 means that not enough learning time has passed to fully converge to a feasible
solution. However, the di�erence between raw learning and transfer learning over time is of interest.

This is presumably because task ι9 belonged to the special case of simple-to-learn tasks,
as is indicated by the high ALSR when learning ι9 from scratch. This particular key has
a simple geometry and can be inserted into the lock at a wide range of angles. Also,
it requires very little pushing force and works even with signi�cant initial o�sets. This
presumably leads to fewer learning bene�ts from previous knowledge, as it is already quite
simple to learn the skill without any prior knowledge.

4.3 Performance Comparison: Robot vs. Human

In this section an experimental case study is presented which compares (learned) robot
manipulation performance to human capabilities. The study consists of a tactile-only
(meaning no vision) manipulation task, composed of a set of challenging tactile skills.
The performance of the robot is compared against that of an adult human in terms of
both execution time as well as learning time, see Fig. 4.13. In this the capabilities of the
GGTWreP framework for manipulation skill learning are further demonstrated.

4.3.1 Task Description

For the comparative case study the following single-handed task was investigated. Given
is a board with a lock and a button on it, and a matching key for the lock is nearby in
a holding slit. A visual depiction of the task is shown in Fig. 4.14. The task has the
following steps.

94 CHAPTER 4. EXPERIMENTAL ANALYSIS

Figure 4.12: Top) The ET, speedup factor, and LER for each task combination. The black dividers separate the level-0,
level-1, and level-2 transfers (see the legend on the right). On the left side, the target tasks are denoted, and, at the bottom,
the source tasks. The color maps are depicted to the right of each plot. Bottom) The mean LER, ET, and speedup factor
(log10) over all tasks for the respective transfer levels.

1. Grab the key from its storage.

2. Insert the key into the lock.

3. Turn the key by 90 degrees clockwise and turn it back.

4. Extract the key from the lock.

5. Place the key back into its storage.

6. Press the button.

Each of these steps can be achieved by a single skill. These particular skills were chosen
to cover multiple important aspects of manipulation. These are handling objects (grab
and place), di�cult contact-rich manipulation with changing contact state (insertion and
extraction), manipulation without changing contact state (turn) and fast manipulation
(press button). Additionally, phases of free motion connect the skills. The skills are
implemented using the GGTWreP framework (see Sec. 3.1).
The experiment compares 1) manual programming of the robot and autonomous learning
to achieve optimal performance, and 2) the achieved performance with that of a human
adult in terms of execution time. Note that in this case study the focus lies on execution
time as a means of comparing human and robot performance since it is 1) the most
interesting one and 2) the simplest to implement. Other cost functions such as energy or
contact forces would require signi�cant e�ort on the measuring part for the human and
are therefore out of scope.

4.3. PERFORMANCE COMPARISON: ROBOT VS. HUMAN 95

Figure 4.13: The intention of the case study is to draw a comparison between robot and human manipulation performance.
This also entails a comparison between the learning and tuning approaches towards this performance level. For the presented
case study a number of skills of varying tactile complexity was selected and a reference task was constructed based on them.

4.3.1.1 Expert Tuning

The manual parameter tuning was done by a robot expert skill by skill with execution
time as an optimization goal in mind. The tuned parameters per skill and their domains
from which valid values were chosen are given in Tab. 4.6. To measure the execution
time, each skill as well as the overall task was executed ten times and the average was
taken. In addition, another expert robot programmer not familiar with the GGTWreP
framework or MIOS was asked to tune the parameters of the skills while the time they
required to achieve comparable performance was measured.

4.3.1.2 Parameter Learning

The parameter learning was done for each skill separately as follows.

1. The seven learning problems are given by the study task as described in Sec. 4.3.1.
The seventh problem is the basic move skill responsible for the free-motion phases.

96 CHAPTER 4. EXPERIMENTAL ANALYSIS

Figure 4.14: The left picture shows the overall setup. The right side shows the respective steps of the task. The arrows
indicate the direction of movement for the task steps: 1. Grab the key, 2. Insert the key, 3. Turn the key and turn in back,
4. Extract the key, 5. Place the key, 6. Press the button.

2. The appropriate skills were selected from the taxonomy.

3. All skills were grounded by kinesthetic teaching.

4. The CMA-ES algorithm was used to learn solutions for the skills. The meta-
parameters were chosen according to the recommendations found in [360] and the
number of generations was set to ng = 20. The initial centroid c0 was set to 0.1θi,max

for every parameter i for all skills, except for ∆x of the insertion skill which was set
to 0.5θi,max. This choice re�ects a safe initialization considering the process starts
with low velocities and contact forces.

5. Each of the skills was learned separately and each experiment was repeated ten

4.3. PERFORMANCE COMPARISON: ROBOT VS. HUMAN 97

Table 4.6: Parameter domains

Parameter Dimension Domain

Move

Ẋd 3× 1 ([0, 0.5], [0, 1],N/A)

Ẍd 3× 1 ([0, 1], [0, 4],N/A)

Grab

Ẋd,g 3× 1 ([0, 0.5], [0, 1], [0, 2])

Ẍd,g 3× 1 ([0, 1], [0, 4],N/A)

Insertion

Ẋd,i 3× 1 ([0, 0.5], [0, 1],N/A)

Ẍd,i 3× 1 ([0, 1], [0, 4],N/A)

a 6× 1 ([0, 10], [0, 10], [0, 10], [0, 3], [0, 3],N/A)

f 6× 1 ([0, 2], [0, 2], [0, 2], [0, 2], [0, 2],N/A)

∆X 6× 1
([−0.01, 0.01], [−0.01, 0.01],N/A,
[−0.0175, 0.0175], [−0.0175, 0.0175],N/A)

ẋmin 1 ([0, 0.5])

Turn

Ẋd,t 3× 1 (N/A, [0, 2.5],N/A)

Ẍd,t 3× 1 (N/A, [0, 25],N/A)

Extraction

Ẋd,e 3× 1 ([0, 0.5], [0, 1],N/A)

Ẍd,e 3× 1 ([0, 1], [0, 4],N/A)

a 6× 1 ([0, 10], [0, 10], [0, 10], [0, 3], [0, 3],N/A)

f 6× 1 ([0, 2], [0, 2], [0, 2], [0, 2], [0, 2],N/A)

ẋmin 1 ([0, 0.5])

Place

Ẋd,p 3× 1 ([0, 0.5], [0, 1], [0, 2])

Ẍd,p 3× 1 ([0, 1], [0, 4],N/A)

Press Button

Ẋd,p 3× 1 ([0, 0.5], [0, 1],N/A)

Ẍd,p 3× 1 ([0, 1], [0, 4],N/A)

fpush 1 ([0, 10])

Controller

K 6× 1 ([0, 2000], [0, 2000], [0, 2000], [0, 200], [0, 200], [0, 200])

times resulting in 70 learning experiments in total. Each skill was optimized for
execution time with a maximum of tmax = 5 s.

Note that the approach velocities and accelerations were not learned for any of the skills

98 CHAPTER 4. EXPERIMENTAL ANALYSIS

but instead a separate move skill was learned. This skill is not explicitly part of the
experiment task but its results are used for the approach phases of the various skills.

4.3.1.3 Measuring Human Performance

The human performance was measured in terms of execution time per skill and per overall
task. The study protocol was as follows:

1. The general setup and the task are explained to the participant. The task is demon-
strated once.

2. Each skill is demonstrated once.

3. The participant trained each skill until they were able to reliably execute it.

4. Each skill was performed three times with normal speed and three times fast with
distinct pauses in between and the performance was recorded per video.

5. The participant performed the overall task at subjective normal speed. The perfor-
mance was recorded per video.

6. The participant performed the overall task as fast as they could. The performance
was recorded per video.

From the recorded videos the execution times per skill and overall task were extracted
by always taking the time from the �rst movement until the hand stopped again. The
task was performed by �ve healthy human participants between the age of 25− 35 on the
same setup as the robot. Note that the human participants could rely on their eyesight
whereas the robot was blind i.e. no cameras were involved. However, the robot knew the
exact poses of all objects and locations.

4.3.2 Case Study

4.3.2.1 Experimental Setup

The experimental setup looks as follows. A Franka Emika Robot arm [362] is mounted
on a table and has a board with the described task before it. Initially, the key is placed
in the storage slit. The buttons on the board are connected to a micro controller which
sends a conformation to the robot when a button has been successfully pressed. Figure
4.14 shows the overall setup and the single task steps. Note that the used two-�ngered
gripper is one of the most used gripper designs in real-world robotics and is therefore
representative in such a case study. The overall task as well as the single steps in terms
of execution time are compared.

4.3.2.2 Results

Task Learning Figure 4.15 shows the learning process for each of the skills as well
as the progress of the expert programmer. The graphs show the cost Qc over learning
time averaged over nl = 10 experiments. The light blue area around it denotes the 95%
con�dence interval. The dashed line separates the learning guided by the heuristic tmax+h

4.3. PERFORMANCE COMPARISON: ROBOT VS. HUMAN 99

Figure 4.15: Learning process for all skills. The blue line denotes the cost over time averaged over 10 experiments. The
light blue area denotes the 95% con�dence interval. The red triangles denote the tuning steps of the expert programmer.

and learning guided by the optimization criterion te. The red triangles denote the tuning
steps of the expert. Note that the skills were tuned in the order of move, grab, place,
insertion, extraction, turn, press button.
The robot is able to reliably learn and optimize each of the skills within a few minutes.
This demonstrates the applicability of the GGTWreP framework to a wider range of
manipulation learning problems. The total time to learn and su�ciently optimize all skills
autonomously was roughly about 80 minutes on average whereas the expert programmer
took only about 12 minutes.

Comparison Table 4.7 lists the average execution time and standard deviation for each
skill for the robot using expert-tuned parameters and learned parameters as well as the
human performance at subjective normal and high speed. The last row shows the required
time for the entire task. The success rate is not shown since human and robot (for the
case of learning as well as manual tuning) achieved a 100% success rate.

Table 4.7: The average execution time and standard deviation in seconds of all skills (executed isolated) and the overall
task for human performance (subjective normal and fast speed) and robot performance (expert-tuned and learned). The
execution times for skills where human-level performance has been reached are written bold.

Skill Human
(Normal)

Human
(Fast)

Robot
(Expert)

Robot
(Learned)

Grab 1.2± 0.18 s 0.62± 0.13 s 3.21± 0.05 s 3.08± 0.06 s

Insertion 1.43± 0.43 s 0.82± 0.2 s 0.85± 0.02 s 0.7± 0.07 s

Turn 0.59± 0.19 s 0.27± 0.04 s 0.61± 0.006 s 0.61± 0.005 s

Extraction 0.73± 0.24 s 0.47± 0.16 s 0.37± 0.004 s 0.39± 0.003 s

Place 1.53± 0.18 s 0.84± 0.2 s 2.25± 0.05 s 2.04± 0.06 s

Press Button 1.02± 0.3 s 0.58± 0.22 s 0.53± 0.01 s 0.6± 0.05 s

Complete Task 5.5± 0.88 s 3.73± 0.63 s 10.43± 0.3 s 10.32± 0.39 s

Figure 4.16 shows the execution times for each skill when executed not isolated but during
the task. To answer the main question behind this case study, i.e. what is the state robotic
manipulation performance compared to human manipulation performance:

� It could be shown that state-of-the-art manipulation learning systems on suitable
robot hardware are capable of acquiring a range of complex manipulation skills to

100 CHAPTER 4. EXPERIMENTAL ANALYSIS

Figure 4.16: Comparison of skill execution times during task execution.

the same degree of performance as a human expert robot programmer could achieve
given the underlying framework is human-understandable.

� Human expert programmers are still faster than learning approaches in program-
ming skills, given a suitable formalism. One reason for this is the human ability
of reusing acquired experience. However, note that the employment of robotic so-
lutions in industry and other domains is increasing much more rapidly than the
number of available expert programmers.

� The side-by-side comparison clearly demonstrates that current robot manipulation
performance still lags behind what humans are capable of.

� The performance gap is mainly due to two factors, i.e. e�cient blending of skills
and coordinated tactile control, e.g. when grasping or placing an object.

� Considering isolated skill execution, however, robot manipulation performance is
catching up and partially even beginning to surpass human performance for di�cult
skills such as insertion.

(I) From this it can be concluded, that future research should also focus on sequencing
and blending skills. Although there has been some work on this topic already, e.g. [363],
it is mostly concerned with free-space motions and not contact-rich manipulation skills.
(II) The results clearly hint at the importance of research into anthropomorphic hand-
arm systems, related coordinated tactile control and the potential tactile dexterity and
therefore performance increase that may be gained from it, see also [364].
(III) Comparing expert tuning and autonomous learning, it is obvious that human ex-
perts need signi�cantly less time to tune the skills when they are able to reuse already
acquired experience from previous programming. Therefore, transfer learning for real-
world manipulation skills is identi�ed as a third important research direction.

4.4. COLLABORATIVE ASSEMBLY PLANNING 101

4.4 Collaborative Assembly Planning

This section presents an experiment to demonstrate the capabilities of the collaborative
assembly planner introduced in Sec. 2.3.

4.4.1 Experimental Setup

Two kinds of experiments were conducted. First, it was investigated how the planner
works on team-level in a realistic setting, however, isolated from real-world e�ects. In the
second experiment the whole framework was tested in a real human-robot collaborative
assembly scenario.
To show the output of the team level planner a computational experiment was conducted
in which a small assembly, consisting of eight parts is to be assembled by a team of
two robots and one human with two di�erent cost metrics. The agents are denoted by
W = {r1, r2, h}. The corresponding AND/OR graph is shown in Fig. 4.17. None of the
atomic parts are in the human worker's reach and the time needed for hand-over actions
is estimated to be 8 seconds. Except hand-over actions no interactions are involved.

ABCDEFGH

a1 a2 a3

ABCDEF CDEFGH

a4 a5

ABCD CDEF EFGH

a6 a7 a8

AB CD EF GH

a9 a10 a11 a12

A B C D E F G H

Figure 4.17: AND/OR graph of the experiments assembly plan

102 CHAPTER 4. EXPERIMENTAL ANALYSIS

As cost function cm = maxic(⟨w, a⟩i) was used. ⟨w, a⟩ denotes the assignment of an agent
w to an action a in the state s. The speci�c cost c for an assignment ⟨w, a⟩ is listed in
Tab 4.8. The left table shows the amount of time the agents need for a speci�c action,
i.e. the cost metric C1. In the second cost metric C2, human workload is considered as
well. Metrics for measuring the human workload can for example be found in [365]. The
resulting action sequences are depicted in Fig. 4.19.

The simulation experiments were performed on a computer with a Windows 7 operating
system, an Intel i7-3770 processor with 3.4 GHz and 4 GB RAM. The A⋆ algorithm
took about 40 ms, respectively 2 ms to calculate the action sequences and expanded 74,
respectively 6 nodes. A Fibonacci heap was used as data structure for the open list
and a hash table for the closed set. In order to indicate the scalability of the presented
approach an additional experiment with a strongly connected assembly [114] with 10
parts, two workers and random costs for the worker-actions pairs was conducted. The
amount of planning time averages at 15 s. As another example the same experiment was
conducted on a binary assembly with 32 parts. All sub assemblies of a binary assembly
can be divided into two sub assemblies with an equal number of parts. Here, the average
execution time is 3.5 s.

The second experiment (its setting is not related to the previous simulations) was con-
ducted with a real robot in a collaborative assembly scenario, see Fig. 4.18. Note, that for
sake of simplicity the actions of the robot and the human in this experiment were not timed
(apart from the implicit, discrete timing determined by the team-level). Nonetheless, it
is straightforward to introduce an additional timing e.g. via simple human con�rmation.
Such an input would be incorporated on team-level. Other synchronization schemes that
could be employed on agent- or real-time-level are for example time scaling, i.e. the robot
would drive slower or even stop in the vicinity of the human. For such capabilities visual
perception and/or real-time robot-to-robot communication would have to be available.

(a) (b) (c)

(d) (e) (f)

Figure 4.18: The robot is started by the human (a), the robot uses its assembly skills (b), a tool is handed over to
the human (c), the human co-worker and the robot work in parallel (d), the human stops the robot in order to �nish an
assembly step the robot would otherwise disturb (e), the human takes over an assembly step from the robot manually (f).

4.4. COLLABORATIVE ASSEMBLY PLANNING 103

Table 4.8: Cost Metrics C1 (top) and C2 (bottom)

C1 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

r1 ∞ ∞ ∞ 10 5 20 10 ∞ 20 10 10 10

r2 ∞ ∞ ∞ 10 5 10 5 5 20 10 10 10

h 20 5 15 20 5 3 15 10 5 5 10 10

C2 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

r1 ∞ ∞ ∞ 10 5 20 10 ∞ 20 10 10 10

r2 ∞ ∞ ∞ 10 5 10 5 5 20 10 10 10

h 50 50 50 200 50 30 100 100 50 50 100 100

a11 a9

a12 a10

a8 a6 a2

r1

r2

h

C1

a11 a7

a10 a12

a9

a5

a3

r1

r2

h

C2

assembly steps

assembly steps

Figure 4.19: Agents' assembly sequences for C1(a), and C2(b). The solid arrows depict a precedence relation, i.e. the
source of the arrows provides a needed sub assembly to the sink.

4.4.2 Results

It is shown in Fig. 4.19 (top) that the planner produces parallelized execution schemes
where possible, which leads to a short overall execution time. A disadvantage of such a
parallelized assembly process is the dependency of the agents on each other. If one agent
is disturbed in its task, other agents may have to wait. In Fig. 4.19 (bottom) the human

104 CHAPTER 4. EXPERIMENTAL ANALYSIS

workload has been considered as well, resulting in an execution scheme where the robots
work in parallel and the human is only assigned to a task the robots are not capable of
performing.
Note, that in order to formally incorporate the aspect of a (human) worker being distracted
and therefore potentially disturbing the entire assembly process, one could use a cost
function that encodes e.g. some form of worker pro�le. The probability of a worker being
distracted from his task could depend, among others, on his daily routine and experience.
The simulation experiments show that the planner can be adapted to the requirements
of a speci�c scenario by providing a cost function that re�ects the needs of the situation.
E.g. consider that the assembly from Fig. 4.17 is being built in large quantities by human-
robot teams. When the demand is normal, a cost metric similar to C2 could be used. The
robots would do most of the work while the human co-workers could be available to other
tasks as well. If the demand rises, a cost metric such as C1 could be used, resulting in a
higher production output at higher human workload.

4.5 Conclusion

This chapter describes the extensive experimental work done in this thesis. Speci�cally,
the taxonomy of manipulation skills is veri�ed with a large number of challenging skills
that exhibit high robustness and performance. This shows that the approach is appli-
cable to a wide range of relevant processes. The learning architecture is experimentally
validated with a number of di�erent learning algorithms and a comparison with state-of-
the-art deep learning methods. The results aid in selecting compatible learning algorithms
and show superior results when compared to the state-of-the-art. Furthermore, a large
experimental campaign is described that investigates the architectureâ¿�s transfer learn-
ing capabilities. It demonstrates accelerated learning when reusing knowledge to learn
new skills and provides insights into the transfer mechanism such as dependency on ge-
ometry and asymmetric transferability. The learning performance as well as achieved
manipulation performance were directly compared to human manipulation capabilities
and skill programming. The results show that for some skills human performance can
already be achieved, while also pointing out the speci�c gaps that still need to be closed.
Finally, a collaborative assembly problem is solved by an automatic planning system and
a human-robot team demonstrating how existing skills can be used automatically to solve
even complex tasks.

5
Conclusion

5.1 Contributions

Future workplaces will make use of tactile robots that need to be equipped with a large
variety of manipulation skills in order to cope with the highly dynamic production pro-
cesses of tomorrow's industry. For example, autonomous factories will produce at lot size
one within the context of the production-as-a-service paradigm, meaning that production
lines have to be recon�gured regularly. This implies that new processes will constantly
introduce new requirements that have to be met by autonomous robot capabilities since
human expert programmers will not be able to meet the demand for new skills. The robots
will be required to generate optimized skill solutions on-the-�y from simple process de-
scriptions alone. Furthermore, these solutions have to be robust and ideally perform at
or above human level. This thesis was inspired by the challenge of providing a way to
completely automate the synthesis and optimization of reliable and performant tactile
skills for relevant industrial tasks.

An end-to-end manipulation framework has been developed that connects manufacturing
processes and tactile skill models with a synthesis pipeline. A learning architecture can
directly learn the parameters of those models and optimize them with respect to a given
cost function. Thus, the framework is capable of automatically providing optimized tac-
tile skills for given processes without the need for manual programming. This pipeline
was validated with extensive experimental work which substantiates the theoretical foun-
dations. Moreover, the experiments yielded su�cient robustness and performance for a
number of manipulation skills that are relevant in real-world settings. A comparison study
even showcased human-level performance for some cases. Additionally, an assembly plan-
ning system was developed to demonstrate the compatibility with advanced AI planning
systems. Finally, during the work contained in this thesis, a number of demonstration
systems were developed together with a software framework that showcased the various
results of this thesis.

105

106 CHAPTER 5. CONCLUSION

Tactile Skill A theoretical basis for tactile skills has been laid out that combines torque-
controlled hardware systems with suitable tactile controllers, tactile policies and perfor-
mance evaluation. It de�nes how tactile stimuli can be perceived and reacted to without
necessarily making many assumptions on the used sensors, controllers, and policies. The
tactile policies are de�ned to output energy-encoded commands, i.e. combined twist and
wrench. The commands are turned into a desired joint torque by the tactile controller.
In general, the tactile skill could make use of various sensors that are capable of perceiv-
ing strains and stresses, forces, moments, or external joint torques. However, this thesis
focuses on the latter.

Taxonomy and Synthesis A taxonomy has been developed to formally organize ma-
nipulation processes in a hierarchical structure. Its purpose is to map formal process
descriptions to tactile skill models through a synthesis procedure. The procedure selects
the models based on process properties such as interaction forces and process steps in an
iterative fashion. Each rank of the taxonomy hierarchy applies a selection step to reduce
the set of tactile policies that can potentially solve the input process. The output is a
single tactile policy that is combined with a suitable controller within a graph-guided
twist-wrench policy approximation(GGTWreP) model. The GGTWreP framework was
introduced as a way of modeling tactile skills while at the same time complying with
process requirements, system limits, and safety. It consists of four layers, namely the se-
mantic layer, the policy layer, the control layer, and the system layer. The semantic layer
provides an interface to users and automatic planning systems. It also determines the
current state of the skill model by considering the boundary conditions and manipulation
steps coming from the process description. The policy layer implements a tactile policy
and outputs a twist-wrench command that is fed to the subsequent control layer. The
control layer was realized with a uni�ed force / impedance controller. Finally, the system
handles the connection to the robot platform, i.e. sends torque commands and receives the
percept vector. A large validation experiment con�rms the feasibility of the synthesis pro-
cedure as well as the GGTWreP framework. The implementation of 28 tactile skills using
GGTWreP models exhibits a robust behavior and high performance in various industrial
automation tasks subjected to signi�cant process disturbances. Importantly, the simple
transfer of policies and the e�cient learning through the parameter vector demonstrate
the versatility enabled by the taxonomy which enables process experts without speci�c
robotics knowledge to deploy robots in the �eld using little con�guration time.

Tactile Skill Learning The output of the synthesis procedure is a tactile skill imple-
mented by a GGTWreP model that can directly be formulated as a learning problem.
The skill model has de�ned parameters with process- and system-informed limits that
form a domain on which a learning architecture can autonomously search for an opti-
mal set of parameters that minimize a given cost function such as execution time and
contact moments. The learning approach has been experimentally tested on various se-
tups and skills with a strong focus on the insertion skill. The insertion problem (often
called peg-in-hole) is representative for very contact-intensive manufacturing processes
and therefore highly relevant for real-world industrial processes. A number of algorithms
have been compared and it was found that evolutionary strategies such as the covari-
ance matrix adaptation (CMA) method are very suitable for the black-box optimization
problem formulated by GGTWreP. Later, an SVM-based algorithm was developed that

5.2. IMPACT 107

improved the learning performance even more. It �nds an optimal solution with high
robustness by iteratively partitioning the parameter space. The learning architecture was
compared to state-of-the-art deep reinforcement learning approaches and outperformed
them on the insertion problem both in learning time and �nal manipulation performance
and robustness. During an experiment a transfer e�ect was observed which led to the
hypothesis that GGTWreP is capable of systematically transferring knowledge from one
skill to another. The e�ect was described as robot motor memory (RMM) and connected
to the taxonomy hierarchy in terms of skill classes, subclasses, and instances. The e�ect
was veri�ed in a large experimental campaign where nine di�erent insertion skills have
been learned and transferred. A total amount of 117.000 single real-world interactions of
the robot with the environment have taken place over the course of a week during the
completely autonomous experiment. The results clearly show a signi�cant decrease in
learning time for similar skills, but also possible adverse e�ects for speci�c combinations.
An initially suspected linear dependency of the speedup on geometry (e.g. diameter) could
not be found. However, a di�erence at least in terms of geometry classes (e.g. cylinders
and keys) was present. Overall, transfer learning enables GGTWreP to scale e�ciently
to large numbers of skills.

Tactile Skill Planning A planning system was devised that is able to allocate a team
of robots and humans to tasks in an optimal way such that a given assembly problem is
solved. The planner consists of three layers, i.e. the assembly level, the team level, and the
agent level. The assembly level models the assembly problem using a modi�ed AND/OR
graph. The team level solves the problem of allocating agents (humans or robots) to the
actions necessary to build the assembly. The action level connects to tactile skill models
that are ordered in a sequence and achieve the planned assembly steps. The system was
demonstrated in an experiment with an exemplary assembly where the robot had to pick
and place parts, �t them together, and hand them over. The collaborative assembly
planner is suited to solve real-world assembly problems by combining the capabilities of
humans and robots in an optimal way. The layered architecture enables the system not
only to generate nominal plans, but also react to and cope with unforeseen and possibly
faulty events, a crucial capability to be prepared for the real-world. The layered planning
scheme di�erentiates between the human-robot team as a whole, the single agent, i.e.
every robot and human, and the real-time command structure of that agent. This makes
the system able to deal with problems at the right level of abstraction in order to �nd the
most e�cient solution, respectively.

5.2 Impact

The work in this thesis has had an impact on technological, scienti�c, and industrial
levels. Numerous demonstrators have been developed and showcased at international
conferences, trade fairs, and other public events. Some of the most prominent examples
are the automatica and Hannover Messe trade fairs, where the learning architecture and
tactile skill capabilities have been shown to the highest political level of Germany which
led to follow-up visits by e.g. the German chancellor and further investments into the
research e�orts of the Munich Institute of Robotics and Machine Intelligence. Other
signi�cant public events were the o�cial opening of the Munich Institute of Robotics and

108 CHAPTER 5. CONCLUSION

Machine Intelligence and the Falling Walls conference. Additionally, parts of this work are
used in the labs of Vodafone as part of a telepresence showcase. Further demonstrations
at various robotics conferences such as ICRA and IROS disseminated the results into
the research community inspiring new work in the �elds of manipulation learning and
planning. There has been a technology transfer of published algorithms into the industry
as well as close collaboration. Also, new projects have been initiated such as the KI.Fabrik,
a lighthouse initiative in close cooperation with the industry. Based on the theoretical
foundations the Machine Intelligence Operating System(MIOS was developed that enabled
many other works at MIRMI and beyond. It powers and enables experimental work on
lab automation [366], automatic production [367], learning, control, telepresence [332,346]
and human-robot interaction.

5.3 Future Work

As a next step, the taxonomy's set of skills should be extended and experimentally vali-
dated. The current taxonomy has a strong focus on processes from machine tending and
assembly. An extension could focus on material manipulation such as sawing, �ling, and
grinding. A thorough experimental investigation on those processes would bring new in-
sights that might lead to improvements to the taxonomy hierarchy, the synthesis process,
and the GGTWreP model. Moreover, the validation experiments can be improved by con-
sidering more realistic process disturbances to test against robustness and performance
stability. Besides adding more processes to the taxonomy, it would also be a promising
next step to introduce new hardware platforms such as di�erent grippers and arms. This
may not only lead to a generalization of the theoretical foundations and capabilities of
the overall framework but also allows to include processes in the taxonomy that could so
far not be handled due to hardware restrictions. Beyond the extension to more content,
the taxonomy may also be adapted to be used as a programming interface. To achieve
this, the process de�nitions have to be formulated as program blocks which can be param-
eterized by process experts without the need for robot knowledge. Another interesting
next step is the use of more complex policies within the GGTWreP models such as dy-
namic motion primitives (DMP), or neural networks. This could combine very general
policy representations with a framework that guarantees stable control and safety. The
upscaling of the (transfer) learning capabilities to many robots and skills may accelerate
the overall learning performance beyond what is possible today. There have been par-
allel investigations into collective learning capabilities on the basis of the results of this
work. Simulations and experiments indicate signi�cant potential to increase the learning
performance for large-scale systems when large numbers of robots share their acquired
knowledge. The next steps into this direction involve setting up a large real-world experi-
ment, the necessary software components and devising an experiment procedure. Results
from such a system that support the already established theory would have considerable
impact on research and in the long-term on commercial robotics products. Finally, the
results of this thesis in terms of tactile skill synthesis and learning may be of signi�cant
relevance in ongoing research and development in geriatronics. The envisioned humanoid
assistants have to rely on a vast range of manipulation skills in order to successfully in-
teract with their highly dynamic and potentially unknown environment. This opens up
the possibilities to extend the work of this thesis to other robot platforms (mobile and

5.3. FUTURE WORK 109

bimanual with anthropomorphic hands), and a new domain of processes.

110 CHAPTER 5. CONCLUSION

A
Appendix

A.1 Skill Synthesis: Policies

In the following all policies used in the experiments are provided here. Note that for some
piece-wise de�ned policies the conditions for the cases are transitions that activate the
respective case, which do not have to remain true once they have been triggered.

πd,1 =

 ẋd = flpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T ∀t , πd,2 =

 ẋd = frpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T ∀t

πd,3 =

 ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T ∀t ,πd,4 =

 ẋd = flpg(To1 , ẋg,,ẍg,)

f d =
[
fConst. fgrasp

]T ∀t

πd,5 =

 ẋd = frpg(To1 , ẋg,,ẍg,)

f d =
[
fConst. fgrasp

]T ∀t , πd,6 =

 ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
fConst. fgrasp

]T ∀t

πd,7 =

 ẋd = 0

f d =
[
0 fgrasp

]T ∀t , πd,8 =

 ẋd = 0

f d =
[
fConst. fgrasp

]T ∀t

πd,9 =

 ẋd = 0

f d =
[
fConst. fgrasp

]T ∀t

111

112 APPENDIX A. APPENDIX

πd,10 =

 ẋd = flpg(To1 , ẋg,,ẍg,) +
[
a sin(2πf t) 0

]T
f d =

[
0 fgrasp

]T ∀t

πd,11 =

 ẋd = frpg(To1 , ẋg,,ẍg,) +
[
a sin(2πf t) 0

]T
f d =

[
0 fgrasp

]T ∀t

πd,12 =

 ẋd = fpg(To1 , ẋg,,ẍg,) +
[
a sin(2πf t) 0

]T
f d =

[
0 fgrasp

]T ∀t

πd,13 =

 ẋd = 0

f d =
[
a sin(2πf t+φ) fgrasp

]T ∀t

πd,14 =

 ẋd = 0

f d =
[
a sin(2πf t+φ) + fConst. fgrasp

]T ∀t

πd,15 =

 ẋd = flpg(To1 , ẋg,,ẍg,)

f d =
[
a sin(2πf t+φ) fgrasp

]T ∀t

πd,16 =

 ẋd = frpg(To1 , ẋg,,ẍg,)

f d =
[
a sin(2πf t+φ) fgrasp

]T ∀t

πd,17 =

 ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
a sin(2πf t+φ) fgrasp

]T ∀t

πd,18 =

 ẋd = flpg(To1 , ẋg,,ẍg,)

f d =
[
a sin(2πf t+φ) + fConst. fgrasp

]T ∀t

πd,19 =

 ẋd = frpg(To1 , ẋg,,ẍg,)

f d =
[
a sin(2πf t+φ) + fConst. fgrasp

]T ∀t

πd,20 =

 ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
a sin(2πf t+φ) + fConst. fgrasp

]T ∀t

A.1. SKILL SYNTHESIS: POLICIES 113

πd,21 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for f ext > f contact

πd,22 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
fConst. fgrasp

]T for f ext > f contact

πd,23 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for f ext > f contact

πd,24 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,)

f d =
[
fConst. fgrasp

]T for f ext > f contact

114 APPENDIX A. APPENDIX

πd,25 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for f ext > f contact

ẋd = fpg(To4 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To3)

πd,26 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,)

f d =
[
fConst. fgrasp

]T for f ext > f contact

ẋd = fpg(To4 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To3)

πd,27 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,)

f d =
[
a sin(2πf t+φ) + fConst. fgrasp

]T for f ext > f contact

A.1. SKILL SYNTHESIS: POLICIES 115

πd,28 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,) +
[
a sin(2πf t) 0

]T
f d =

[
a sin(2πf t+φ) + fConst. fgrasp

]T for f ext > f contact

πd,29 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,) +
[
a sin(2πf t) 0

]T
f d =

[
0 fgrasp

]T for f ext > f contact

πd,30 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,) +
[
a sin(2πf t) 0

]T
f d =

[
fConst. fgrasp

]T for f ext > f contact

πd,31 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
fConst. fgrasp

]T for f ext > f contact

ẋd = fpg(To3 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To3)

116 APPENDIX A. APPENDIX

πd,32 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,)

f d =
[
a sin(2πf t+φ) + fConst. fgrasp

]T for f ext > f contact

ẋd = fpg(To4 , ẋg,,ẍg,)

f d =
[
fConst. fgrasp

]T for T ∈ U(To3)

πd,33 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,)

f d =
[
fConst. fgrasp

]T for f ext > f contact

ẋd = 0

f d =
[
fConst. fgrasp

]T for f ext ≥ fConst.

ẋd = fpg(To4 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for t > twait

πd,34 =

 ẋd = fpg(To1 , ẋg,,ẍg,) +
[
a sin(2πf t) 0

]T
f d =

[
a sin(2πf t+φ) + fConst. fgrasp

]T ∀t

πd,35 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d = 0
for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d = 0
for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for f ext > f contact

A.1. SKILL SYNTHESIS: POLICIES 117

πd,36 =

ẋd = fpg(To1 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for ∅

ẋd = fpg(To2 , ẋg,,ẍg,)

f d =
[
0 fgrasp

]T for T ∈ U(To1)

ẋd = fpg(To3 , ẋg,,ẍg,)

f d = 0
for f ext > f contact

ẋd = fpg(To4 , ẋg,,ẍg,)

f d = 0
for T ∈ U(To3)

118 APPENDIX A. APPENDIX

List of Figures

1.1 The process descriptions that originate e.g. from human technicians are
used to synthesize tactile skills based on a taxonomy. The skills are formu-
lated as a learning problem and then optimized by an autonomous learning
architecture. Finally, the optimized skills are used in an assembly planning
system that solves problems provided by the technician. 4

1.2 A technological overview of the most relevant currently available robot
manipulators, their control paradigms, sensors, interfaces, and target use
cases. The robot images are taken from [5, 42�47]. N/A: not applicable;
UR: Universal Robot . 6

1.3 Categorization of transfer learning based on the source and target systems,
policy representation, and source and target tasks. π⋆ denotes an optimal
policy, Q a suitable quality metric, and θ a set of parameters that de�ne
the policy π. The source system, policy, task space changes, and related
work are all categorized. 17

2.1 Tactile Skill Architecture. ẋd is the desired twist, f d is the desired wrench,
τ d is the desired joint torques, ẋ is the actual twist of the robot, f ext is the
measured external wrench, Ω is the percept vector, Q is the performance
of the skill, θπ is the policy parameters, and θc is the controller parameters. 26

2.2 Ranks of the taxonomy of manipulation skills 30
2.3 Collaborative assembly planning framework. The top layer depicts the in-

put to the team-level planner, which is an AND/OR graph YA resulting
from an assembly A (Step I). The planner then solves the problem of op-
timal task allocation (Step II) for multiple agents considering a given cost
function and constructs a set of assembly sequences (Step III). The actions
from the sequences are then passed to the respective agents (Step IV),
which possess corresponding skills ς. Skills in turn consist of more basic
structures, i.e. atomic actions, which eventually map to the real-time-level. 35

2.4 Partial AND/OR graph of an exemplary assembly. The blue colored rect-
angles depict OR nodes, the red colored circles AND nodes. 38

2.5 Example propagation via search through search space. In the top graph
agent w1 has been assigned to the indicated AND node in state ζ and
thus, the corresponding assembly action. This AND node has two children
that are expanded and form the new state ζ ′. In the bottom graph two
parallel actions are assigned, which again yield two children, respectively.
The dashed boxes depict the currently active state, the dotted ones the
chosen allocation. 39

119

120 LIST OF FIGURES

2.6 To model an interaction between two agents in the AND/OR graph a new
AND/OR node pair is inserted. In this example, the subassembly Γk is
created by agent w1 via joining Γi and Γj, which corresponds to the ac-
tion a1 := a(assemble, wa). Yet, some kind of interaction is necessary to
complete the assembly step. E.g., the performing agent cannot reach Pi so
another agent w2 needs to hand this part over. Therefore, Γ′

i and the AND
node that corresponds to the interaction a2 := a(hand_over, (w1, w2)) are
inserted on the right side. 41

2.7 Monotonically decreasing cost function, learning e�ort LE, and learning
e�ort ratio LER . 49

2.8 Transfer learning observation with a 10x reduction in the learning time for
task B. θ0 denotes the initial parameters drawn from a normal distribution
N (.) with a mean µ and standard deviation σ. θ⋆

A and θ⋆
B are the optimal

parameters for tasks A and B, respectively. 50
2.9 Hierarchical three-level classi�cation proposal of tactile manipulation skills 51

3.1 Architectural overview of the GGTWreP framework 54
3.2 The two examples show the process description and their corresponding

GGTWreP models. 57
3.3 Overview of the MIOS modules . 60
3.4 Overview and working principle of the learning module 66
3.5 (Top left) The �eld of dentronics [331]. (Bottom left) The modalities of

the devised interaction framework dependent on the communication range
[15]. (Right) Experimental prototype setup for the conducted user-study
consisting of a Franka Emika Robot arm [5] (a) equipped with an SR300
camera [341] (b), a mobile device (c), colored gloves (d), a pedal (e) and a
microphone (f) [15]. 67

3.6 (Top left) The teleoperation setup consists of a leader (LR), a follower
(FR) and an human operator robot (HO) which is rigidly connected to the
leader for providing repeatable experimental scenarios [332]. (Top right)
The kicko� of the KI.Fabrik project © TUM. (Bottom) The one-to-many
telepresence showcase in the collective © TUM. 69

3.7 KI.ROBOTIC.DESIGN in the Pinakothek der Moderne © TUM 70
3.8 (Left) The collaborative assembly station [14]. (Right) The later version

of the station at the visit of chancellor Angela Merkel © TUM. 71
3.9 From left to right and top to bottom: A political event at the monastery in

Seon© CSU, the opening of the Vodafone 5G lab© Vodafone, Hannover
Messe 2019 © TUM, DLD 2019 © TUM, AI Council of Bavaria © TUM. 71

3.10 From left to right and top to bottom: The o�cial opening of the Munich
Institute of Robotics and Machine Intelligence (MIRMI)© TUM, the visit
of German chancellor Angela Merkel at MIRMI © TUM, the AI.BAY
conference 2023 © TUM, Falling Walls 2019 © TUM. 72

4.1 Taxonomy of manipulation skills, experimentally validated skills are shown
with the used setup. For clarity, the taxonomy ranks are indicated as family
(F), domain (D), class (C), and subclass (S). Instances are omitted since
they are represented by the pictures. 77

LIST OF FIGURES 121

4.2 A comparison of the required energy to learn a great number of skills. The
deep deterministic policy gradient (DDPG) algorithm is compared with
the GGTWreP framework (see Sec. 3.2.5 both with and without transfer
learning. 80

4.3 Experimental setup, puzzle (top right), key (bottom left) and cylinder (bot-
tom right) . 81

4.4 Experimental results. The columns correspond to the learning algorithms
(LHS, BO, PSO, CMA-ES) and the rows to the tasks (Puzzle, Key, Cylin-
der). The blue line denotes the cost of an algorithm/task combination
averaged over 10 experiments. The light blue area denotes the 90 % con�-
dence interval. 83

4.5 Experiment setup consisting of a robot arm and a key/lock combination . . 84
4.6 Results of the comparison experiment for HiREPS, CMA-ES, and PSP.

The blue line denotes the cost averaged over 10 experiments. The light
blue area denotes the 90 % con�dence interval. 85

4.7 Results of the comparison experiment for A3C, DDPG, SAC, and T3D . . 85
4.8 The analyzed reference tasks consist of six cylinders with increasing diame-

ters and three di�erent common household keys (bottom left). Five robots
were used in total for the experiment. 87

4.9 Top) The transfer learning performance of DDPG. Bottom) A represen-
tation of the SAC algorithm's learning performance in the insertion task.
Graphs are shown for the 30 mm, 40 mm, and 60 mm pegs. The rewards
above the green line indicate successful trials. For the 30 mm and the
40 mm pegs, no successful trials were observed. While successful trials
were observed for the 60 mm peg, these were random and not systemically
exploited. 91

4.10 The logarithmic cost evolution of learning a single skill without prior knowl-
edge (solid blue lines) and the mean cost when using a level-0 (dashed lines),
level-1 (dotted lines), and level-2 transfer (dash-dotted lines), respectively.
Each task was learned using prior knowledge from every other task. For
clarity, the results from each subclass (cylinders and keys) were grouped by
averaging the resulting costs and plotting the mean. The cylinder insertion
tasks are ι1 to ι6, and the key insertion tasks are ι7 to ι9. 92

4.11 Average learning success rate (ALSR) in the same pattern as Figure 4.10.
For better readability, the ALSR was approximated by time-window aver-
aging and plotted as stair function. The black dashed line is the theoretical
optimal case with a slope of 1. For each skill, the average ALSR is shown
when taking prior knowledge from the cylinder tasks and from the key.
Note that an ALSR<1 means that not enough learning time has passed to
fully converge to a feasible solution. However, the di�erence between raw
learning and transfer learning over time is of interest. 93

4.12 Top) The ET, speedup factor, and LER for each task combination. The
black dividers separate the level-0, level-1, and level-2 transfers (see the
legend on the right). On the left side, the target tasks are denoted, and, at
the bottom, the source tasks. The color maps are depicted to the right of
each plot. Bottom) The mean LER, ET, and speedup factor (log10) over
all tasks for the respective transfer levels. 94

122 LIST OF FIGURES

4.13 The intention of the case study is to draw a comparison between robot and
human manipulation performance. This also entails a comparison between
the learning and tuning approaches towards this performance level. For
the presented case study a number of skills of varying tactile complexity
was selected and a reference task was constructed based on them. 95

4.14 The left picture shows the overall setup. The right side shows the respective
steps of the task. The arrows indicate the direction of movement for the
task steps: 1. Grab the key, 2. Insert the key, 3. Turn the key and turn in
back, 4. Extract the key, 5. Place the key, 6. Press the button. 96

4.15 Learning process for all skills. The blue line denotes the cost over time
averaged over 10 experiments. The light blue area denotes the 95% con-
�dence interval. The red triangles denote the tuning steps of the expert
programmer. 99

4.16 Comparison of skill execution times during task execution. 100
4.17 AND/OR graph of the experiments assembly plan 101
4.18 The robot is started by the human (a), the robot uses its assembly skills

(b), a tool is handed over to the human (c), the human co-worker and the
robot work in parallel (d), the human stops the robot in order to �nish an
assembly step the robot would otherwise disturb (e), the human takes over
an assembly step from the robot manually (f). 102

4.19 Agents' assembly sequences for C1(a), and C2(b). The solid arrows depict
a precedence relation, i.e. the source of the arrows provides a needed sub
assembly to the sink. 103

List of Tables

2.1 Suitability of existing learning algorithms with respect to the desired prop-
erties . 44

4.1 Setup descriptions . 78
4.2 Experimental results for all skills . 79
4.3 Optimized costs for successful trials . 85
4.4 Successful trials over episodes in % (averaged over experiments) 86
4.5 DDPG parameters . 88
4.6 Parameter domains . 97
4.7 The average execution time and standard deviation in seconds of all skills

(executed isolated) and the overall task for human performance (subjective
normal and fast speed) and robot performance (expert-tuned and learned).
The execution times for skills where human-level performance has been
reached are written bold. 99

4.8 Cost Metrics C1 (top) and C2 (bottom) . 103

123

124 LIST OF TABLES

Bibliography

[1] G. Hirzinger, N. Sporer, A. Albu-Scha�er, M. Hahnle, R. Krenn, A. Pascucci, and
M. Schedl, �Dlr's torque-controlled light weight robot iii-are we reaching the techno-
logical limits now?� in Proc. International Conference on Robotics and Automation
(ICRA). IEEE, 2002, pp. 1710�1716.

[2] A. Albu-Schä�er, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, and G. Hirzinger,
�The dlr lightweight robot: design and control concepts for robots in human envi-
ronments,� Industrial Robot: An International Journal, vol. 34, no. 5, pp. 376�385,
2007.

[3] R. Bischo�, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schä�er, A. Beyer,
O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, et al., �The kuka-dlr
lightweight robot arm-a new reference platform for robotics research and manu-
facturing,� in Proc. International Symposium on Robotics (ISR) and German Con-
ference on Robotics (ROBOTIK). VDE, 2010, pp. 1�8.

[4] A. Campeau-Lecours, H. Lamontagne, S. Latour, P. Fauteux, V. Maheu, F. Boucher,
C. Deguire, and L.-J. C. L'Ecuyer, �Kinova modular robot arms for service robotics
applications,� in Rapid Automation: Concepts, Methodologies, Tools, and Applica-
tions. IGI global, 2019, pp. 693�719.

[5] S. Haddadin, S. Parusel, L. Johannsmeier, S. Golz, S. Gabl, F. Walch, M. Sabaghian,
C. Jaehne, L. Hausperger, and S. Haddadin, �The franka emika robot: A reference
platform for robotics research and education,� Robotics & Automation Magazine
(RAM), pp. 2�20, 2022.

[6] N. Hogan, �Impedance control: An approach to manipulation: Part i�theory,�
Journal of Dynamic Systems, Measurement, and Control, vol. 107, no. 1, pp. 1�7,
1985.

[7] A. Albu-Scha�er and G. Hirzinger, �Cartesian impedance control techniques for
torque controlled light-weight robots,� in Proc. International Conference on Robotics
and Automation (ICRA). IEEE, 2002, pp. 657�663.

[8] A. Albu-Schä�er, C. Ott, and G. Hirzinger, �A uni�ed passivity-based control frame-
work for position, torque and impedance control of �exible joint robots,� The In-
ternational Journal of Robotics Research (IJRR), vol. 26, no. 1, pp. 23�39, 2007.

[9] Y. Li, G. Ganesh, N. Jarrassé, S. Haddadin, A. Albu-Schae�er, and E. Burdet,
�Force, impedance, and trajectory learning for contact tooling and haptic identi�-
cation,� Transactions on Robotics (T-RO), vol. 34, no. 5, pp. 1170�1182, 2018.

125

126 BIBLIOGRAPHY

[10] A. de Luca, A. Albu-Scha�er, S. Haddadin, and G. Hirzinger, �Collision detection
and safe reaction with the dlr-iii lightweight manipulator arm,� in 2006 ieee/rsj
international conference on intelligent robots and systems, O. Wilde, Ed. [Place of
publication not identi�ed]: John Wiley, 2007, pp. 1623�1630.

[11] S. Haddadin, A. de Luca, and A. Albu-Scha�er, �Robot collisions: A survey on
detection, isolation, and identi�cation,� Transactions on Robotics (T-RO), vol. 33,
no. 6, pp. 1292�1312, 2017.

[12] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger,
and O. Madsen, �Robot skills for manufacturing: From concept to industrial de-
ployment,� Robotics and Computer-Integrated Manufacturing, vol. 37, pp. 282�291,
2016.

[13] M. Indri, A. Grau, and M. Ruderman, �Guest editorial special section on recent
trends and developments in industry 4.0 motivated robotic solutions,� IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 4, pp. 1677�1680, 2018.

[14] L. Johannsmeier and S. Haddadin, �A hierarchical human-robot interaction-
planning framework for task allocation in collaborative industrial assembly pro-
cesses,� Robotics and Automation Letters (R-AL), vol. 2, no. 1, pp. 41�48, 2017.

[15] J. Grischke, L. Johannsmeier, L. Eich, and S. Haddadin, �Dentronics: Review, �rst
concepts and pilot study of a new application domain for collaborative robots in
dental assistance,� in Proc. International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 6525�6532.

[16] V. Seidita, F. Lanza, A. Pipitone, and A. Chella, �Robots as intelligent assistants
to face covid-19 pandemic,� Brie�ngs in Bioinformatics, vol. 22, no. 2, pp. 823�831,
2021.

[17] E. Martinez-Martin and A. P. del Pobil, �Personal robot assistants for elderly care:
an overview,� Personal Assistants: Emerging Computational Technologies, pp. 77�
91, 2018.

[18] M. Tröbinger, C. Jähne, Z. Qu, J. Elsner, A. Reindl, S. Getz, T. Goll, B. Loinger,
T. Loibl, C. Kugler, et al., �Introducing garmi-a service robotics platform to support
the elderly at home: Design philosophy, system overview and �rst results,� Robotics
and Automation Letters (R-AL), vol. 6, no. 3, pp. 5857�5864, 2021.

[19] M. V. Zinggeler, �The educational duty of the german chamber of commerce,� Global
Business Languages, vol. 7, no. 1, p. 9, 2010.

[20] S. Levine, N. Wagener, and P. Abbeel, �Learning contact-rich manipulation skills
with guided policy search,� in Proc. International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2015, pp. 156�163.

[21] S. Gu, E. Holly, T. Lillicrap, and S. Levine, �Deep reinforcement learning for robotic
manipulation with asynchronous o�-policy updates,� in Proc. International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2017, pp. 3389�3396.

BIBLIOGRAPHY 127

[22] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, The Computational
Limits of Deep Learning, 2020.

[23] L. Johannsmeier, M. Gerchow, and S. Haddadin, �A framework for robot manipu-
lation: Skill formalism, meta learning and adaptive control,� in Proc. International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 5844�5850.

[24] L. Johannsmeier, S. Schneider, F. Voigt, and S. Haddadin, �Motor memory for
few-shot learning in robotic manipulation,� submission in preparation, 2024.

[25] L. Johannsmeier, S. Schneider, Y. Li, E. Burdet, and S. Haddadin, �A process-
centric manipulation taxonomy for the organisation, classi�cation and synthesis of
tactile robot skills,� submission in preparation, 2024.

[26] A. de la Garza, �A revolutionary robotic arm: The 50 best inventions of 2018,�
2018. [Online]. Available: https://time.com/collection-post/5454734/panda/

[27] S. Haddadin, A. Albu-Scha�er, M. Frommberger, J. Rossmann, and G. Hirzinger,
�The �dlr crash report�: Towards a standard crash-testing protocol for robot safety
- part i: Results,� in Proc. International Conference on Robotics and Automation
(ICRA). IEEE, 2009, pp. 272�279.

[28] S. Haddadin, A. Albu-Schä�er, and G. Hirzinger, �Requirements for safe robots:
Measurements, analysis and new insights,� The International Journal of Robotics
Research (IJRR), vol. 28, no. 11-12, pp. 1507�1527, 2009.

[29] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, �Rlbench: The robot learn-
ing benchmark & learning environment,� Robotics and Automation Letters (R-AL),
vol. 5, no. 2, pp. 3019�3026, 2020.

[30] N. Jaquier, L. Rozo, S. Calinon, and M. Bürger, �Bayesian optimization meets
riemannian manifolds in robot learning,� in Proc. Conference on Robot Learning
(CoRL), 2020, pp. 233�246.

[31] A. S. Chen, H. Nam, S. Nair, and C. Finn, �Batch exploration with examples for
scalable robotic reinforcement learning,� Robotics and Automation Letters (R-AL),
vol. 6, no. 3, pp. 4401�4408, 2021.

[32] L. Roveda, M. Magni, M. Cantoni, D. Piga, and G. Bucca, �Assembly task learning
and optimization through human's demonstration and machine learning,� in Proc.
International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020,
pp. 1852�1859.

[33] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratli�, and
D. Fox, �Closing the sim-to-real loop: Adapting simulation randomization with real
world experience,� in Proc. International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 8973�8979.

[34] B. Rooks, �The harmonious robot,� Industrial Robot: An International Journal,
vol. 33, no. 2, pp. 125�130, 2006.

https://time.com/collection-post/5454734/panda/

128 BIBLIOGRAPHY

[35] C. Fitzgerald, �Developing baxter,� in Proc. Conference on Technologies for Prac-
tical Robot Applications (TePRA). IEEE, 2013, pp. 1�6.

[36] Rethink Robotics, �Sawyer collaborative robots for industrial automation,� 2015.
[Online]. Available: https://www.rethinkrobotics.com/sawyer

[37] KUKA AG, �Mensch-roboter-kollaboration - der lbr iiwa - kuka
ag,� 06.02.2021. [Online]. Available: https://www.kuka.com/de-de/
produkte-leistungen/robotersysteme/industrieroboter/lbr-iiwa

[38] R. Tre�er, �"ich bin der neue",� KUKA AG, 31.01.2019. [Online]. Available:
https://www.blog.kuka.com/2019/01/31/lbr-iisy/

[39] F.-P. Kirgis, P. Katsos, and M. Kohlmaier, �Collaborative robotics,� in Robotic Fab-
rication in Architecture, Art and Design, D. Reinhardt, R. Saunders, and J. Burry,
Eds. Springer International Publishing, 2016, pp. 448�453.

[40] Universal Robots, �Collaborative robotic automation | cobots from universal
robots,� 06.02.2021. [Online]. Available: https://www.universal-robots.com/

[41] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise,
L. Mösenlechner, W. Meeussen, and S. Holzer, �Towards autonomous robotic but-
lers: Lessons learned with the pr2,� in Proc. International Conference on Robotics
and Automation (ICRA). IEEE, 2011, pp. 5568�5575.

[42] Universal Robots. (2008) Ur series. [Online]. Available: https://robots.ieee.org/
robots/universal/

[43] ABB. (2011) yumi. [Online]. Available: https://robots.ieee.org/robots/yumi/

[44] Barret Technnology. (2004) Wam. [Online]. Available: https://robots.ieee.org/
robots/wam/

[45] KUKA. (2013) Kuka iiwa. [Online]. Available: https://robots.ieee.org/robots/
lbriiwa/

[46] Rethink Robotics. (2015) Sawyer. [Online]. Available: https://robots.ieee.org/
robots/sawyer/

[47] W. Kreft, �Inverse kinematics determination and trajectory tracking algorithm de-
velopment of a robot with 7 joints,� in Proc. International Conference on Control,
Automation, Robotics and Vision (ICARCV). IEEE, 2020, pp. 1001�1007.

[48] C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schae�er, and E. Burdet,
�Human-like adaptation of force and impedance in stable and unstable interactions,�
Transactions on Robotics (T-RO), vol. 27, no. 5, pp. 918�930, 2011.

[49] A. Albu-Scha�er, C. Ott, U. Frese, and G. Hirzinger, �Cartesian impedance con-
trol of redundant robots: recent results with the dlr-light-weight-arms,� in Proc.
International Conference on Robotics and Automation (ICRA). IEEE, 2003, pp.
3704�3709.

https://www.rethinkrobotics.com/sawyer
https://www.kuka.com/de-de/produkte-leistungen/robotersysteme/industrieroboter/lbr-iiwa
https://www.kuka.com/de-de/produkte-leistungen/robotersysteme/industrieroboter/lbr-iiwa
https://www.blog.kuka.com/2019/01/31/lbr-iisy/
https://www.universal-robots.com/
https://robots.ieee.org/robots/universal/
https://robots.ieee.org/robots/universal/
https://robots.ieee.org/robots/yumi/
https://robots.ieee.org/robots/wam/
https://robots.ieee.org/robots/wam/
https://robots.ieee.org/robots/lbriiwa/
https://robots.ieee.org/robots/lbriiwa/
https://robots.ieee.org/robots/sawyer/
https://robots.ieee.org/robots/sawyer/

BIBLIOGRAPHY 129

[50] S. A. B. Birjandi, J. Kühn, and S. Haddadin, �Observer-extended direct method for
collision monitoring in robot manipulators using proprioception and imu sensing,�
Robotics and Automation Letters (R-AL), vol. 5, no. 2, pp. 954�961, 2020.

[51] N. Hogan, �Impedance control: An approach to manipulation,� in 1984 American
Control Conference. IEEE, 6/6/1984 - 6/8/1984, pp. 304�313.

[52] ��, �Impedance control: An approach to manipulation: Part ii�implementation,�
Journal of Dynamic Systems, Measurement, and Control, vol. 107, no. 1, pp. 8�16,
1985.

[53] R. J. Anderson and M. W. Spong, �Hybrid impedance control of robotic manipula-
tors,� Journal on Robotics and Automation, vol. 4, no. 5, pp. 549�556, 1988.

[54] N. Hogan, �Stable execution of contact tasks using impedance control,� in Proc.
International Conference on Robotics and Automation (ICRA). IEEE, 1987, pp.
1047�1054.

[55] D. A. Lawrence, �Impedance control stability properties in common implementa-
tions,� in Proc. International Conference on Robotics and Automation (ICRA).
IEEE, 1988, pp. 1185�1190.

[56] S. Schneider and R. H. Cannon, �Object impedance control for cooperative ma-
nipulation: theory and experimental results,� in Proc. International Conference on
Robotics and Automation (ICRA). IEEE, 1989, pp. 1076�1083.

[57] S. Jung, T. C. Hsia, and R. G. Bonitz, �Force tracking impedance control of robot
manipulators under unknown environment,� Transactions on Control Systems Tech-
nology, vol. 12, no. 3, pp. 474�483, 2004.

[58] G. Ferretti, G. Magnani, and P. Rocco, �Impedance control for elastic joints indus-
trial manipulators,� Transactions on Robotics and Automation, vol. 20, no. 3, pp.
488�498, 2004.

[59] V. Duchaine and C. M. Gosselin, �General model of human-robot cooperation us-
ing a novel velocity based variable impedance control,� in Proc. Joint EuroHaptics
Conference and Symposium on Haptic Interfaces for Virtual Environment and Tele-
operator Systems. IEEE, 2007, pp. 446�451.

[60] C. Ott, Cartesian Impedance Control of Redundant and Flexible-Joint Robots, ser.
Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg, 2008.

[61] C. Ott, A. Albu-Scha�er, A. Kugi, and G. Hirzinger, �On the passivity-based
impedance control of �exible joint robots,� Transactions on Robotics (T-RO),
vol. 24, no. 2, pp. 416�429, 2008.

[62] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, �Learning variable impedance
control,� The International Journal of Robotics Research, vol. 30, no. 7, pp. 820�
833, 2011.

130 BIBLIOGRAPHY

[63] P. Song, Y. Yu, and X. Zhang, �Impedance control of robots: An overview,� in
International Conference on Cybernetics, Robotics and Control (CRC). IEEE,
2017, pp. 51�55.

[64] ��, �A tutorial survey and comparison of impedance control on robotic manipu-
lation,� Robotica, vol. 37, no. 5, pp. 801�836, 2019.

[65] J. C. P. Ibarra and A. A. Siqueira, �Impedance control of rehabilitation robots for
lower limbs, review,� in Proc. Joint Conference on Robotics: SBR-LARS Robotics
Symposium and Robocontrol. IEEE, 2014, pp. 235�240.

[66] Q. P. Ha, Q. H. Nguyen, D. C. Rye, and H. F. Durrant-Whyte, �Impedance control
of a hydraulically actuated robotic excavator,� Automation in Construction, vol. 9,
no. 5-6, pp. 421�435, 2000.

[67] J. Koivumaki and J. Mattila, �Stability-guaranteed impedance control of hydraulic
robotic manipulators,� Transactions on Mechatronics, vol. 22, no. 2, pp. 601�612,
2017.

[68] A. Toedtheide, T. Lilge, and S. Haddadin, �Antagonistic impedance control for
pneumatically actuated robot joints,� Robotics and Automation Letters (R-AL),
vol. 1, no. 1, pp. 161�168, 2016.

[69] A. Toedtheide, E. Shahriari, and S. Haddadin, �Tank based uni�ed
torque/impedance control for a pneumatically actuated antagonistic robot joint,� in
Proc. International Conference on Robotics and Automation (ICRA). IEEE, 2017,
pp. 1255�1262.

[70] A. Dietrich, T. Wimbock, and A. Albu-Scha�er, �Dynamic whole-body mobile ma-
nipulation with a torque controlled humanoid robot via impedance control laws,� in
Proc. International Conference on Intelligent Robots and Systems (IROS). IEEE,
2011, pp. 3199�3206.

[71] A. Dietrich, K. Bussmann, F. Petit, P. Kotyczka, C. Ott, B. Lohmann, and A. Albu-
Schä�er, �Whole-body impedance control of wheeled mobile manipulators,� Au-
tonomous Robots, vol. 40, no. 3, pp. 505�517, 2016.

[72] K. Bussmann, A. Dietrich, and C. Ott, �Whole-body impedance control for a plan-
etary rover with robotic arm: Theory, control design, and experimental validation,�
in Proc. International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 910�917.

[73] A. Rocchi, E. M. Ho�man, D. G. Caldwell, and N. G. Tsagarakis, �Opensot: A
whole-body control library for the compliant humanoid robot coman,� in Proc.
International Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.
6248�6253.

[74] J. Vorndamme, M. Schappler, A. Todtheide, and S. Haddadin, �Soft robotics for the
hydraulic atlas arms: Joint impedance control with collision detection and distur-
bance compensation,� in Proc. International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2016, pp. 3360�3367.

BIBLIOGRAPHY 131

[75] V. Lippiello and F. Ruggiero, �Exploiting redundancy in cartesian impedance con-
trol of uavs equipped with a robotic arm,� in Proc. International Conference on
Intelligent Robots and Systems (IROS), I. Sta�, Ed. IEEE, 2012, pp. 3768�3773.

[76] A. M. Khan, D.-w. Yun, M. A. Ali, J. Han, K. Shin, and C. Han, �Adaptive
impedance control for upper limb assist exoskeleton,� in Proc. International Con-
ference on Robotics and Automation (ICRA). IEEE, 2015, pp. 4359�4366.

[77] Z. Li, Z. Huang, W. He, and C.-Y. Su, �Adaptive impedance control for an up-
per limb robotic exoskeleton using biological signals,� Transactions on Industrial
Electronics, vol. 64, no. 2, pp. 1664�1674, 2017.

[78] L. J. Love and W. J. Book, �Force re�ecting teleoperation with adaptive impedance
control,� Transactions on Systems, Man, and Cybernetics, vol. 34, no. 1, pp. 159�
165, 2004.

[79] E. Nuno, R. Ortega, N. Barabanov, and L. Basanez, �A globally stable pd controller
for bilateral teleoperators,� Transactions on Robotics (T-RO), vol. 24, no. 3, pp.
753�758, 2008.

[80] M. Tufail and C. W. de Silva, �Impedance control schemes for bilateral teleopera-
tion,� in Proc. International Conference on Computer Science & Education. IEEE,
2014, pp. 44�49.

[81] T. Wimbock, B. Jahn, and G. Hirzinger, �Synergy level impedance control for mul-
ti�ngered hands,� in International Conference on Intelligent Robots and Systems.
IEEE, 2011, pp. 973�979.

[82] R. Carelli and R. Kelly, �An adaptive impedance/force controller for robot manip-
ulators,� Transactions on Automatic Control, vol. 36, no. 8, pp. 967�971, 1991.

[83] R. Kelly, R. Carelli, M. Amestegui, and R. Ortega, �On adaptive impedance control
of robot manipulators,� in Proc. International Conference on Robotics and Automa-
tion (ICRA). IEEE, 1989, pp. 572�577.

[84] R. Ikeura and H. Inooka, �Variable impedance control of a robot for cooperation with
a human,� in Proc. International Conference on Robotics and Automation (ICRA).
IEEE, 1995, pp. 3097�3102.

[85] R. Colbaugh, H. Seraji, and K. Glass, �Direct adaptive impedance control of robot
manipulators,� Journal of Robotic Systems, vol. 10, no. 2, pp. 217�248, 1993.

[86] R. Kamnik, D. Matko, and T. Bajd, �Application of model reference adaptive control
to industrial robot impedance control,� Journal of Intelligent and Robotic Systems,
vol. 22, no. 2, pp. 153�163, 1998.

[87] C.-C. Cheah and D. Wang, �Learning impedance control for robotic manipulators,�
Transactions on Robotics and Automation, vol. 14, no. 3, pp. 452�465, 1998.

[88] M. Shari�, S. Behzadipour, and G. Vossoughi, �Nonlinear model reference adaptive
impedance control for human�robot interactions,� Control Engineering Practice,
vol. 32, pp. 9�27, 2014.

132 BIBLIOGRAPHY

[89] E. Burdet, R. Osu, D. W. Franklin, T. E. Milner, and M. Kawato, �The central ner-
vous system stabilizes unstable dynamics by learning optimal impedance,� Nature,
vol. 414, no. 6862, pp. 446�449, 2001.

[90] G. Ganesh, A. Albu-Scha�er, M. Haruno, M. Kawato, and E. Burdet, �Biomimetic
motor behavior for simultaneous adaptation of force, impedance and trajectory in
interaction tasks,� in Proc. International Conference on Robotics and Automation
(ICRA). IEEE, 2010, pp. 2705�2711.

[91] G. Ganesh, N. Jarrassé, S. Haddadin, A. Albu-Schä�er, and E. Burdet, �A versatile
biomimetic controller for contact tooling and haptic exploration,� in Proc. Interna-
tional Conference on Robotics and Automation (ICRA), 2012, pp. 3329�3334.

[92] O. Khatib and J. Burdick, �Motion and force control of robot manipulators,� in
Proc. International Conference on Robotics and Automation (ICRA). IEEE, 1986,
pp. 1381�1386.

[93] D. E. Whitney, �Historical perspective and state of the art in robot force control,�
The International Journal of Robotics Research, vol. 6, no. 1, pp. 3�14, 1987.

[94] S. Eppinger and W. Seering, �On dynamic models of robot force control,� in Proc.
International Conference on Robotics and Automation (ICRA). IEEE, 1986, pp.
29�34.

[95] ��, �Understanding bandwidth limitations in robot force control,� in Proc. Inter-
national Conference on Robotics and Automation (ICRA). Institute of Electrical
and Electronics Engineers, 1987, pp. 904�909.

[96] K. S. Eom, I. H. Suh, W. K. Chung, and S.-R. Oh, �Disturbance observer based
force control of robot manipulator without force sensor,� in Proc. International
Conference on Robotics and Automation (ICRA). IEEE, 1998, pp. 3012�3017.

[97] J. Roy and L. L. Whitcomb, �Adaptive force control of position/velocity controlled
robots: theory and experiment,� Transactions on Robotics and Automation, vol. 18,
no. 2, pp. 121�137, 2002.

[98] R. Cortesao and M. Dominici, �Robot force control on a beating heart,� Transactions
on Mechatronics, vol. 22, no. 4, pp. 1736�1743, 2017.

[99] B. J. Stephens and C. G. Atkeson, �Dynamic balance force control for compliant
humanoid robots,� in Proc. International Conference on Intelligent Robots and Sys-
tems (IROS). IEEE, 2010, pp. 1248�1255.

[100] E. Magrini, F. Flacco, and A. de Luca, �Control of generalized contact motion and
force in physical human-robot interaction,� in Proc. International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 2298�2304.

[101] Z. Li, B. Wang, F. Sun, C. Yang, Q. Xie, and W. Zhang, �semg-based joint force
control for an upper-limb power-assist exoskeleton robot,� Journal of Biomedical
and Health Informatics, vol. 18, no. 3, pp. 1043�1050, 2014.

BIBLIOGRAPHY 133

[102] S. Haddadin, S. Haddadin, and S. Parusel, �Franka emika gmbh,� 2017. [Online].
Available: www.franka.de

[103] A. Stolt, M. Linderoth, A. Robertsson, and R. Johansson, �Force controlled robotic
assembly without a force sensor,� in Proc. International Conference on Robotics and
Automation (ICRA). IEEE, 2012, pp. 1538�1543.

[104] G. Zeng and A. Hemami, �An overview of robot force control,� Robotica, vol. 15,
no. 5, pp. 473�482, 1997.

[105] B. Siciliano and L. Villani, Robot Force Control, ser. Kluwer international series
in engineering and computer science: Robotics: vision, manipulation, and sensors.
Springer US, 1999.

[106] T. Yoshikawa, �Force control of robot manipulators,� in Proc. International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2000, pp. 220�226.

[107] F. Almeida, A. Lopes, and P. Abreu, �Force-impedance control: a new control
strategy of robotic manipulators,� Recent Advances in Mechatronics, vol. 1, pp.
126�137, 1999.

[108] C. Schindlbeck and S. Haddadin, �Uni�ed passivity-based cartesian force/impedance
control for rigid and �exible joint robots via task-energy tanks,� in Proc. Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2015, pp. 440�447.

[109] K. Karacan, H. Sadeghian, R. Kirschner, and S. Haddadin, �Passivity-based skill
motion learning in sti�ness-adaptive uni�ed force-impedance control,� in Proc. In-
ternational Conference on Intelligent Robots and Systems (IROS). IEEE, 2022,
pp. 9604�9611.

[110] A. G. Marin and R. Weitschat, �Uni�ed impedance and hybrid force-position con-
troller with kinestatic �ltering,� in Proc. International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 3353�3359.

[111] Y. Lin, Z. Chen, and B. Yao, �Uni�ed motion/force/impedance control for manipu-
lators in unknown contact environments based on robust model-reaching approach,�
Transactions on Mechatronics, vol. 26, no. 4, pp. 1905�1913, 2021.

[112] P. Zech, E. Renaudo, S. Haller, X. Zhang, and J. Piater, �Action representations in
robotics: A taxonomy and systematic classi�cation,� The International Journal of
Robotics Research (IJRR), vol. 38, no. 5, pp. 518�562, 2019.

[113] A. Chella, M. Frixione, and S. Gaglio, �A conceptual representation of the actions
of an autonomous robot,� in Proc. European Workshop on Advanced Mobile Robots
(Eurobot). IEEE, 1999, pp. 97�104.

[114] L. S. Homem de Mello and A. C. Sanderson, �And/or graph representation of as-
sembly plans,� Transactions on Robotics and Automation, vol. 6, no. 2, pp. 188�199,
1990.

www.franka.de

134 BIBLIOGRAPHY

[115] T. Cao and A. C. Sanderson, �And/or net representation for robotic task sequence
planning,� Transactions on Systems, Man and Cybernetics, Part C (Applications
and Reviews), vol. 28, no. 2, pp. 204�218, 1998.

[116] J. Yang, Y. Xu, and C. S. Chen, �Human action learning via hidden markov model,�
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,
vol. 27, no. 1, pp. 34�44, 1997.

[117] M. N. Nicolescu and M. J. Matari¢, �A hierarchical architecture for behavior-based
robots,� in Proc. International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS). ACM Press, 2002, p. 227.

[118] Y. Demiris and M. Johnson, �Distributed, predictive perception of actions: a biolog-
ically inspired robotics architecture for imitation and learning,� Connection Science,
vol. 15, no. 4, pp. 231�243, 2003.

[119] W. Erlhagen, A. Mukovskiy, E. Bicho, G. Panin, C. Kiss, A. Knoll, H. van Schie,
and H. Bekkering, �Goal-directed imitation for robots: A bio-inspired approach to
action understanding and skill learning,� Robotics and Autonomous Systems, vol. 54,
no. 5, pp. 353�360, 2006.

[120] R. Zoliner, M. Pardowitz, S. Knoop, and R. Dillmann, �Towards cognitive robots:
Building hierarchical task representations of manipulations from human demon-
stration,� in Proc. International Conference on Robotics and Automation (ICRA).
IEEE, 2005, pp. 1535�1540.

[121] V. Kruger, D. L. Herzog, S. Baby, A. Ude, and D. Kragic, �Learning actions from
observations,� Robotics & Automation Magazine (RAM), vol. 17, no. 2, pp. 30�43,
2010.

[122] B. J. Cohen, S. Chitta, and M. Likhachev, �Search-based planning for manipula-
tion with motion primitives,� in Proc. International Conference on Robotics and
Automation (ICRA). Piscataway, N.J.: IEEE, 2010, pp. 2902�2908.

[123] T. Cao and A. C. Sanderson, �Task decomposition and analysis of robotic assembly
task plans using petri nets,� Transactions on Industrial Electronics, vol. 41, no. 6,
pp. 620�630, 1994.

[124] P. Lima, H. Gracio, V. Veiga, and A. Karlsson, �Petri nets for modeling and coor-
dination of robotic tasks,� in SMC'98 Conference Proceedings. 1998 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218). IEEE,
1998, pp. 190�195.

[125] H. Costelha and P. Lima, �Modelling, analysis and execution of robotic tasks using
petri nets,� in Proc. International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2007, pp. 1449�1454.

[126] ��, �Robot task plan representation by petri nets: modelling, identi�cation, anal-
ysis and execution,� Autonomous Robots, vol. 33, no. 4, pp. 337�360, 2012.

BIBLIOGRAPHY 135

[127] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, �Towards a uni�ed be-
havior trees framework for robot control,� in Proc. International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 5420�5427.

[128] F. Rovida, B. Grossmann, and V. Kruger, �Extended behavior trees for quick def-
inition of �exible robotic tasks,� in Proc. International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 6793�6800.

[129] B. Banerjee, �Autonomous acquisition of behavior trees for robot control,� in Proc.
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3460�3467.

[130] K. French, S. Wu, T. Pan, Z. Zhou, and O. C. Jenkins, �Learning behavior trees
from demonstration,� in Proc. International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2019, pp. 7791�7797.

[131] C. Geib, K. Mourao, R. Petrick, N. Pugeault, M. Steedman, N. Krueger, and
F. Wörgötter, �Object action complexes as an interface for planning and robot con-
trol,� in Proc. International Conference on Humanoid Robots (Humanoids). IEEE,
2006.

[132] D. Kraft, N. Pugeault, E. Ba³eski, M. Popovi¢, D. Kragi¢, S. Kalkan, F. Wörgötter,
and N. Krüger, �Birth of the object: Detection of objectness and extraction of
object shape through object�action complexes,� International Journal of Humanoid
Robotics, vol. 05, no. 02, pp. 247�265, 2008.

[133] K. Huebner, M. Björkman, B. Rasolzadeh, M. Schmidt, and D. Kragic, �Integration
of visual and shape attributes for object action complexes,� in Proc. International
Conference on Computer Vision Systems (ICVS). Springer-Verlag Berlin Heidel-
berg, 2008, pp. 13�22.

[134] N. Krüger, J. Piater, F. Wörgötter, C. Geib, R. Petrick, M. Steedman, A. Ude,
T. Asfour, D. Kraft, D. Omrcen, et al., �A formal de�nition of object-action com-
plexes and examples at di�erent levels of the processing hierarchy,� PACO-PLUS
Technical Repor, 2009.

[135] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr, �Cognitive agents
� a procedural perspective relying on the predictability of object-action-complexes
(oacs),� Robotics and Autonomous Systems, vol. 57, no. 4, pp. 420�432, 2009.

[136] M. Wachter, S. Schulz, T. Asfour, E. Aksoy, F. Worgotter, and R. Dillmann, �Ac-
tion sequence reproduction based on automatic segmentation and object-action
complexes,� in Proc. International Conference on Humanoid Robots (Humanoids).
IEEE, 2013, pp. 189�195.

[137] M. J. Aein, E. E. Aksoy, M. Tamosiunaite, J. Papon, A. Ude, and F. Worgotter, �To-
ward a library of manipulation actions based on semantic object-action relations,� in
Proc. International Conference on Intelligent Robots and Systems (IROS). IEEE,
2013, pp. 4555�4562.

136 BIBLIOGRAPHY

[138] M. Do, J. Schill, J. Ernesti, and T. Asfour, �Learn to wipe: A case study of structural
bootstrapping from sensorimotor experience,� in Proc. International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 1858�1864.

[139] M. Tenorth and M. Beetz, �A uni�ed representation for reasoning about robot ac-
tions, processes, and their e�ects on objects,� in Proc. International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 1351�1358.

[140] M. Tenorth, A. C. Perzylo, R. Lafrenz, and M. Beetz, �Representation and exchange
of knowledge about actions, objects, and environments in the roboearth framework,�
Transactions on Automation Science and Engineering, vol. 10, no. 3, pp. 643�651,
2013.

[141] A. Wahrburg, S. Zeiss, B. Matthias, J. Peters, and H. Ding, �Combined pose-wrench
and state machine representation for modeling robotic assembly skills,� in Proc.
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,
pp. 852�857.

[142] M. Diab, M. Pomarlan, D. Beÿler, A. Akbari, J. Rosell, J. Bateman, and M. Beetz,
�Skillman � a skill-based robotic manipulation framework based on perception and
reasoning,� Robotics and Autonomous Systems, vol. 134, p. 103653, 2020.

[143] A. Cangelosi, G. Metta, G. Sagerer, S. Nol�, C. Nehaniv, K. Fischer, J. Tani,
T. Belpaeme, G. Sandini, F. Nori, L. Fadiga, B. Wrede, K. Rohl�ng, E. Tuci,
K. Dautenhahn, J. Saunders, and A. Zeschel, �Integration of action and language
knowledge: A roadmap for developmental robotics,� Transactions on Autonomous
Mental Development, vol. 2, no. 3, pp. 167�195, 2010.

[144] C. G. Atkeson and S. Schaal, �Learning tasks from a single demonstration,� in Proc.
International Conference on Robotics and Automation (ICRA). IEEE, 1997, pp.
1706�1712.

[145] S. Vijayakumar and S. Schaal, �Locally weighted projection regression: An o (n)
algorithm for incremental real time learning in high dimensional space,� in Proc.
International Conference on Machine Learning (ICML), vol. 1, 2000, pp. 288�293.

[146] S. Schaal, S. Kotosaka, and D. Sternad, �Nonlinear dynamical systems as movement
primitives,� in Proc. International Conference on Humanoid Robotics (Humanoids).
IEEE, 2000, pp. 1�11.

[147] C. E. Rasmussen, �Gaussian processes in machine learning,� in Advanced Lectures
on Machine Learning, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004, pp. 63�71.

[148] M. Schneider and W. Ertel, �Robot learning by demonstration with local gaussian
process regression,� in Proc. International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2010, pp. 255�260.

[149] D. Nguyen-Tuong, M. Seeger, and J. Peters, �Model learning with local gaussian
process regression,� Advanced Robotics, vol. 23, no. 15, pp. 2015�2034, 2009.

BIBLIOGRAPHY 137

[150] Y. Engel, P. Szabo, and D. Volkinshtein, �Learning to control an octopus arm with
gaussian process temporal di�erence methods,� Advances in Neural Information
Processing Systems, vol. 18, pp. 347�354, 2005.

[151] R. S. Sutton and A. G. Barto, Reinforcement Learning, Second Edition: An Intro-
duction. MIT Press, 2018.

[152] George Konidaris, Sarah Osentoski, and Philip Thomas, �Value function approxima-
tion in reinforcement learning using the fourier basis,� Proc. Conference on Arti�cial
Intelligence (AAAI), vol. 25, no. 1, 2011.

[153] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, �Robot learning from
demonstration by constructing skill trees,� The International Journal of Robotics
Research (IJRR), vol. 31, no. 3, pp. 360�375, 2012.

[154] S. Levine, C. Finn, T. Darrell, and P. Abbeel, �End-to-end training of deep vi-
suomotor policies,� The Journal of Machine Learning Research, vol. 17, no. 1, pp.
1334�1373, 2016.

[155] S. Niu, S. Chen, H. Guo, C. Targonski, M. Smith, and J. Kova£evi¢, �Generalized
value iteration networks: Life beyond lattices,� in Proc. Conference on Arti�cial
Intelligence (AAAI), vol. 32, 2018.

[156] F. Diaz Ledezma and S. Haddadin, �First-order-principles-based constructive net-
work topologies: An application to robot inverse dynamics,� in Proc. International
Conference on Humanoid Robotics (Humanoids). IEEE, 2017.

[157] S. Schaal, �Dynamic movement primitives -a framework for motor control in humans
and humanoid robotics,� in Adaptive Motion of Animals and Machines. Springer
Tokyo, 2006, pp. 261�280.

[158] A. J. Ijspeert, J. Nakanishi, H. Ho�mann, P. Pastor, and S. Schaal, �Dynamical
movement primitives: learning attractor models for motor behaviors,� Neural com-
putation, vol. 25, no. 2, pp. 328�373, 2013.

[159] T. Matsubara, S.-H. Hyon, and J. Morimoto, �Learning parametric dynamic move-
ment primitives from multiple demonstrations,� Neural Networks, vol. 24, no. 5, pp.
493�500, 2011.

[160] D. Kuli¢, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura, �Incremental learning of full
body motion primitives and their sequencing through human motion observation,�
The International Journal of Robotics Research (IJRR), vol. 31, no. 3, pp. 330�345,
2012.

[161] D. Lee and C. Ott, �Incremental kinesthetic teaching of motion primitives using the
motion re�nement tube,� Autonomous Robots, vol. 31, no. 2-3, pp. 115�131, 2011.

[162] B. Nemec and A. Ude, �Action sequencing using dynamic movement primitives,�
Robotica, vol. 30, no. 5, pp. 837�846, 2012.

138 BIBLIOGRAPHY

[163] D.-H. Park, H. Ho�mann, P. Pastor, and S. Schaal, �Movement reproduction and
obstacle avoidance with dynamic movement primitives and potential �elds,� in Proc.
International Conference on Humanoid Robots (Humanoids). IEEE, 2008, pp. 91�
98.

[164] A. Namiki and S. Yokosawa, �Robotic origami folding with dynamic motion primi-
tives,� in Proc. International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 5623�5628.

[165] A. Mitrevski, A. Padalkar, M. Nguyen, and P. G. Plöger, � �lucy, take the noodle
box!�: Domestic object manipulation using movement primitives and whole body
motion,� in Proc. CoboCup. Springer, 2019, pp. 189�200.

[166] B. Nemec, A. Gams, M. Denisa, and A. Ude, �Human-robot cooperation through
force adaptation using dynamic motion primitives and iterative learning,� in Proc.
International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2014, pp.
1439�1444.

[167] Platt, Robert, Jr., R. Tedrake, L. Kaelbling, and T. Lozano-Perez, �Belief space
planning assuming maximum likelihood observations,� in Proc. Robotics: Science
and Systems (RSS), 2010.

[168] T. Cavalier-Smith, �A revised six-kingdom system of life,� Biological Reviews,
vol. 73, no. 3, pp. 203�266, 1998.

[169] G. L. Snider, �Nosology for our day: its application to chronic obstructive pulmonary
disease,� American Journal of Respiratory and Critical Care Medicine, vol. 167,
no. 5, pp. 678�683, 2003.

[170] M. J. Adams, E. J. Lefkowitz, A. M. Q. King, and E. B. Carstens, �Recently agreed
changes to the international code of virus classi�cation and nomenclature,� Archives
of Virology, vol. 158, no. 12, pp. 2633�2639, 2013.

[171] M. A. Park, Introducing anthropology: An integrated approach, 2nd ed. Boston:
McGraw-Hill, 2003.

[172] Delphi Group et al., �Information intelligence: content classi�cation and the enter-
prise taxonomy practice,� 2004.

[173] D. A. Wiegmann and S. A. Shappell, A human error approach to aviation accident
analysis: The human factors analysis and classi�cation system. Routledge, 2017.

[174] A. Bloom�eld, Y. Deng, J. Wampler, P. Rondot, D. Harth, M. McManus, and
N. Badler, �A taxonomy and comparison of haptic actions for disassembly tasks,�
in Proc. Virtual Reality. IEEE, 2003, pp. 225�231.

[175] J. O. Huckaby and H. I. Christensen, �A taxonomic framework for task modeling
and knowledge transfer in manufacturing robotics,� in Proc. Conference on Arti�cial
Intelligence (AAAI), 2012.

BIBLIOGRAPHY 139

[176] D. Leidner, C. Borst, A. Dietrich, M. Beetz, and A. Albu-Scha�er, �Classifying
compliant manipulation tasks for automated planning in robotics,� in Proc. Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, 2015, pp.
1769�1776.

[177] A. Bjorkelund, L. Edstrom, M. Haage, J. Malec, K. Nilsson, P. Nugues, S. G.
Robertz, D. Storkle, A. Blomdell, R. Johansson, M. Linderoth, A. Nilsson,
A. Robertsson, A. Stolt, and H. Bruyninckx, �On the integration of skilled robot
motions for productivity in manufacturing,� in Proc. International Symposium on
Assembly and Manufacturing (ISAM). IEEE, 2011, pp. 1�9.

[178] J. Pfrommer, M. Schleipen, and J. Beyerer, �Pprs: Production skills and their
relation to product, process, and resource,� in Proc. Conference on Emerging Tech-
nologies & Factory Automation (ETFA). IEEE, 2013, pp. 1�4.

[179] A. Huamán Quispe, H. Ben Amor, and H. I. Christensen, �A taxonomy of bench-
mark tasks for robot manipulation,� in Robotics Research: Volume 1. Springer
International Publishing, 2018, pp. 405�421.

[180] D. Paulius, Y. Huang, J. Meloncon, and Y. Sun, �Manipulation motion taxonomy
and coding for robots,� in Proc. International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 5596�5601.

[181] M. R. Cutkosky, �On grasp choice, grasp models, and the design of hands for man-
ufacturing tasks,� Transactions on Robotics and Automation, vol. 5, no. 3, pp. 269�
279, 1989.

[182] I. M. Bullock, R. R. Ma, and A. M. Dollar, �A hand-centric classi�cation of human
and robot dexterous manipulation,� Transactions on Haptics, vol. 6, no. 2, pp.
129�144, 2013.

[183] J. Liu, F. Feng, Y. C. Nakamura, and N. S. Pollard, �A taxonomy of everyday grasps
in action,� in Proc. International Conference on Humanoid Robots (Humanoids).
IEEE, 2014, pp. 573�580.

[184] J. R. Napier, �The prehensile movements of the human hand,� The Journal of Bone
and Joint Surgery, vol. 38-B, no. 4, pp. 902�913, 1956.

[185] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, �A taxonomy for swarm robots,� in
Proc. International Conference on Intelligent Robots and Systems (IROS). IEEE,
1993, pp. 441�447.

[186] B. P. Gerkey and M. J. Matari¢, �A formal analysis and taxonomy of task allocation
in multi-robot systems,� The International Journal of Robotics Research (IJRR),
vol. 23, no. 9, pp. 939�954, 2004.

[187] G. A. Korsah, A. Stentz, and M. B. Dias, �A comprehensive taxonomy for multi-
robot task allocation,� The International Journal of Robotics Research (IJRR),
vol. 32, no. 12, pp. 1495�1512, 2013.

140 BIBLIOGRAPHY

[188] J. Borras and T. Asfour, �A whole-body pose taxonomy for loco-manipulation
tasks,� in Proc. International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 1578�1585.

[189] J. Borràs, C. Mandery, and T. Asfour, �A whole-body support pose taxonomy for
multi-contact humanoid robot motions,� Science Robotics, vol. 2, no. 13, 2017.

[190] K. Tsiakas, M. Kyrarini, V. Karkaletsis, F. Makedon, and O. Korn, �A taxonomy in
robot-assisted training: Current trends, needs and challenges,� in Proc. Pervasive
Technologies Related to Assistive Environments Conference, vol. 6, no. 4, 2018, p.
119.

[191] M. Linjawi and R. K. Moore, �Towards a comprehensive taxonomy for characterizing
robots,� in Proc. Towards Autonomous Robotic Systems. Springer International
Publishing, 2018, pp. 381�392.

[192] T. Fong, I. Nourbakhsh, and K. Dautenhahn, �A survey of socially interactive
robots,� Robotics and Autonomous Systems, vol. 42, no. 3-4, pp. 143�166, 2003.

[193] J. Bautista-Ballester, J. Vergés-Llahí, and D. Puig, �Programming by demonstra-
tion: A taxonomy of current relevant methods to teach and describe new skills
to robots,� in First Iberian Robotics Conference: Advances in Robotics (ROBOT).
Springer International Publishing, 2014, vol. 252, pp. 287�300.

[194] L. Onnasch and E. Roesler, �A taxonomy to structure and analyze human�robot
interaction,� International Journal of Social Robotics, vol. 13, no. 4, pp. 833�849,
2021.

[195] R. E. Fikes, P. E. Hart, and N. J. Nilsson, �Learning and executing generalized
robot plans,� Arti�cial Intelligence, vol. 3, pp. 251�288, 1972.

[196] B. Horne, M. Jamshidi, and N. Vadiee, �Neural networks in robotics: A survey,�
Journal of Intelligent and Robotic Systems, vol. 3, no. 1, pp. 51�66, 1990.

[197] K. L. Moore, M. Dahleh, and S. P. Bhattacharyya, �Iterative learning control: A
survey and new results,� Journal of Robotic Systems, vol. 9, no. 5, pp. 563�594,
1992.

[198] J. H. Connell and S. Mahadevan, �Introduction to robot learning,� Robot Learning,
pp. 1�17, 1993.

[199] P. Bakker and Y. Kuniyoshi, �Robot see, robot do: An overview of robot imitation,�
in Proc. Workshop on Learning in Robots and Animals (AISB), 1996, pp. 3�11.

[200] L. P. Kaelbling, M. L. Littman, and A. W. Moore, �Reinforcement learning: A
survey,� Journal of Arti�cial Intelligence Research, vol. 4, pp. 237�285, 1996.

[201] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, �A survey of robot learning
from demonstration,� Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469�
483, 2009.

BIBLIOGRAPHY 141

[202] J. Kober, J. A. Bagnell, and J. Peters, �Reinforcement learning in robotics: A
survey,� The International Journal of Robotics Research (IJRR), vol. 32, no. 11,
pp. 1238�1274, 2013.

[203] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, �Deep rein-
forcement learning: A brief survey,� Signal Processing Magazine, vol. 34, no. 6, pp.
26�38, 2017.

[204] A. S. Polydoros and L. Nalpantidis, �Survey of model-based reinforcement learning:
Applications on robotics,� Journal of Intelligent and Robotic Systems, vol. 86, no. 2,
pp. 153�173, 2017.

[205] Z. Zhu and H. Hu, �Robot learning from demonstration in robotic assembly: A
survey,� Robotics, vol. 7, no. 2, p. 17, 2018.

[206] H. Nguyen and H. La, �Review of deep reinforcement learning for robot manipu-
lation,� in Proc. International Conference on Robotic Computing (IRC). IEEE,
2019, pp. 590�595.

[207] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, �Recent advances
in robot learning from demonstration,� Annual Review of Control, Robotics, and
Autonomous Systems, vol. 3, no. 1, pp. 297�330, 2020.

[208] W. Zhao, J. P. Queralta, and T. Westerlund, �Sim-to-real transfer in deep reinforce-
ment learning for robotics: a survey,� in Proc. Symposium Series on Computational
Intelligence (SSCI). IEEE, 2020, pp. 737�744.

[209] O. Kroemer, S. Niekum, and G. Konidaris, A Review of Robot Learning for Manip-
ulation: Challenges, Representations, and Algorithms. Jornal of Machine Learning
Research, 2021.

[210] J. Cui and J. Trinkle, �Toward next-generation learned robot manipulation,� Science
Robotics, vol. 6, no. 54, 2021.

[211] S. Xiao, Z. Wang, and J. Folkesson, �Unsupervised robot learning to predict person
motion,� in Proc. International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 691�696.

[212] C. Finn, I. Goodfellow, and S. Levine, �Unsupervised learning for physical interac-
tion through video prediction,� Advances in Neural Information Processing Systems,
vol. 29, 2016.

[213] L. Pinto, D. Gandhi, Y. Han, Y.-L. Park, and A. Gupta, �The curious robot: Learn-
ing visual representations via physical interactions,� in Proc. European Conference
on Computer Vision (ECCV). Springer International Publishing, 2016, pp. 3�18.

[214] S. Krishnan, A. Garg, S. Patil, C. Lea, G. Hager, P. Abbeel, and K. Goldberg, �Tran-
sition state clustering: Unsupervised surgical trajectory segmentation for robot
learning,� The International Journal of Robotics Research (IJRR), vol. 36, no. 13-14,
pp. 1595�1618, 2017.

142 BIBLIOGRAPHY

[215] L.-J. Lin, �Hierarchical learning of robot skills by reinforcement,� in Proc. Interna-
tional Conference on Neural Networks. IEEE, 1993, pp. 181�186.

[216] Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan Creus-
Costa, Silvio Savarese, and Li Fei-Fei, �Surreal: Open-source reinforcement learn-
ing framework and robot manipulation benchmark,� in Proc. Conference on Robot
Learning (CoRL), 2018, pp. 767�782.

[217] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, �Learning modular neural
network policies for multi-task and multi-robot transfer,� in Proc. International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 2169�2176.

[218] L. Rozo, N. Jaquier, S. Calinon, and D. G. Caldwell, �Learning manipulability el-
lipsoids for task compatibility in robot manipulation,� in Proc. International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 3183�3189.

[219] J. Kober and J. R. Peters, �Policy search for motor primitives in robotics,� in Proc.
Advances in Neural Information Processing Systems, 2009, pp. 849�856.

[220] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal, �Skill learning
and task outcome prediction for manipulation,� in Proc. International Conference
on Robotics and Automation (ICRA). IEEE, 2011, pp. 3828�3834.

[221] P. Kormushev, S. Calinon, and D. Caldwell, �Reinforcement learning in robotics:
Applications and real-world challenges,� Robotics, vol. 2, no. 3, pp. 122�148, 2013.

[222] O. Kroemer, C. Daniel, G. Neumann, H. van Hoof, and J. Peters, �Towards learn-
ing hierarchical skills for multi-phase manipulation tasks,� in Proc. International
Conference on Robotics and Automation (ICRA). IEEE, 2015, pp. 1503�1510.

[223] A. K. Tanwani and S. Calinon, �Learning robot manipulation tasks with task-
parameterized semitied hidden semi-markov model,� Robotics and Automation Let-
ters (R-AL), vol. 1, no. 1, pp. 235�242, 2016.

[224] C. Devin, P. Abbeel, T. Darrell, and S. Levine, �Deep object-centric representations
for generalizable robot learning,� in Proc. International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 7111�7118.

[225] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz,
S. Levine, R. Hadsell, and K. Bousmalis, �Sim-to-real via sim-to-sim: Data-e�cient
robotic grasping via randomized-to-canonical adaptation networks,� in Proc. Con-
ference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019, pp.
12 627�12 637.

[226] W. Montgomery, A. Ajay, C. Finn, P. Abbeel, and S. Levine, �Reset-free guided
policy search: E�cient deep reinforcement learning with stochastic initial states,�
in Proc. International Conference on Robotics and Automation (ICRA). IEEE,
2017, pp. 3373�3380.

[227] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine, �Compos-
able deep reinforcement learning for robotic manipulation,� in Proc. International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 6244�6251.

BIBLIOGRAPHY 143

[228] P. Ennen, P. Bresenitz, R. Vossen, and F. Hees, �Learning robust manipulation
skills with guided policy search via generative motor re�exes,� in Proc. International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 7851�7857.

[229] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Bjorkman, �Deep predictive policy
training using reinforcement learning,� in Proc. International Conference on Intel-
ligent Robots and Systems (IROS). IEEE, 2017, pp. 2351�2358.

[230] T. Inoue, G. de Magistris, A. Munawar, T. Yokoya, and R. Tachibana, �Deep rein-
forcement learning for high precision assembly tasks,� in Proc. International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 819�825.

[231] A. Rupam Mahmood, D. Korenkevych, B. J. Komer, and J. Bergstra, �Setting
up a reinforcement learning task with a real-world robot,� in Proc. International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 4635�
4640.

[232] S. J. Pan and Q. Yang, �A survey on transfer learning,� Transactions on Knowledge
and Data Engineering, vol. 22, no. 10, pp. 1345�1359, 2010.

[233] K. Weiss, T. Khoshgoftaar, and D. Wang, �A survey of transfer learning,� Journal
of Big Data, vol. 3, 2016.

[234] M. E. Taylor and P. Stone, �Transfer learning for reinforcement learning domains:
A survey,� Journal of Machine Learning Research, vol. 10, no. 7, 2009.

[235] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, �A survey on deep
transfer learning,� in Proc. International Conference on Arti�cial Neural Networks,
2018, pp. 270�279.

[236] F. L. Da Silva and A. H. R. Costa, �A survey on transfer learning for multiagent
reinforcement learning systems,� Journal of Arti�cial Intelligence Research, vol. 64,
pp. 645�703, 2019.

[237] S. Chernova and A. L. Thomaz, �Robot learning from human teachers,� Synthesis
Lectures on Arti�cial Intelligence and Machine Learning, vol. 8, no. 3, pp. 1�121,
2014.

[238] K. Kronander and A. Billard, �Learning compliant manipulation through kinesthetic
and tactile human-robot interaction,� Transactions on Haptics, vol. 7, no. 3, pp.
367�380, 2014.

[239] F. J. Abu-Dakka, L. Rozo, and D. G. Caldwell, �Force-based variable impedance
learning for robotic manipulation,� Robotics and Autonomous Systems, vol. 109, pp.
156�167, 2018.

[240] M. Hueser, T. Baier, and J. Zhang, �Learning of demonstrated grasping skills by
stereoscopic tracking of human head con�guration,� in Proc. International Confer-
ence on Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, pp. 2795�2800.

144 BIBLIOGRAPHY

[241] Yezhou Yang, Yi Li, Cornelia Fermuller, and Yiannis Aloimonos, �Robot learning
manipulation action plans by "watching" unconstrained videos from the world wide
web,� Proceedings of the AAAI Conference on Arti�cial Intelligence, vol. 29, no. 1,
2015. [Online]. Available: https://ojs.aaai.org/index.php/aaai/article/view/9671

[242] C. Yang, C. Zeng, C. Fang, W. He, and Z. Li, �A dmps-based framework for robot
learning and generalization of humanlike variable impedance skills,� Transactions
on Mechatronics, vol. 23, no. 3, pp. 1193�1203, 2018.

[243] M. Wigness, J. G. Rogers, and L. E. Navarro-Serment, �Robot navigation from hu-
man demonstration: Learning control behaviors,� in Proc. International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 1150�1157.

[244] E. Pignat and S. Calinon, �Learning adaptive dressing assistance from human
demonstration,� Robotics and Autonomous Systems, vol. 93, pp. 61�75, 2017.

[245] J. Kim, N. Cauli, P. Vicente, B. Damas, F. Cavallo, and J. Santos-Victor, � �icub,
clean the table!� a robot learning from demonstration approach using deep neural
networks,� in Proc. International Conference on Autonomous Robot Systems and
Competitions (ICARSC). IEEE, 2018, pp. 3�9.

[246] S. Barrett, M. E. Taylor, and P. Stone, �Transfer learning for reinforcement learning
on a physical robot,� in Proc. International Conference on Autonomous Agents and
Multiagent Systems-Adaptive Learning Agents Workshop (AAMAS-ALA), vol. 1,
2010.

[247] M. K. Helwa and A. P. Schoellig, �Multi-robot transfer learning: A dynamical system
perspective,� in Proc. International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017, pp. 4702�4708.

[248] E. Heiden, L. Palmieri, L. Bruns, K. O. Arras, G. S. Sukhatme, and S. Koenig,
�Bench-mr: A motion planning benchmark for wheeled mobile robots,� Robotics
and Automation Letters (R-AL), vol. 6, no. 3, pp. 4536�4543, 2021.

[249] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, �Domain
randomization for transferring deep neural networks from simulation to the real
world,� in Proc. International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 23�30.

[250] J. Van Baar, A. Sullivan, R. Cordorel, D. Jha, D. Romeres, and D. Nikovski, �Sim-to-
real transfer learning using robusti�ed controllers in robotic tasks involving complex
dynamics,� in Proc. International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 6001�6007.

[251] C. C. Beltran-Hernandez, D. Petit, I. G. Ramirez-Alpizar, and K. Harada, �Variable
compliance control for robotic peg-in-hole assembly: A deep-reinforcement-learning
approach,� Applied Sciences, vol. 10, no. 19, p. 6923, 2020.

[252] P. D. H. Nguyen, T. Fischer, H. J. Chang, U. Pattacini, G. Metta, and Y. Demiris,
�Transferring visuomotor learning from simulation to the real world for robotics

https://ojs.aaai.org/index.php/aaai/article/view/9671

BIBLIOGRAPHY 145

manipulation tasks,� in Proc. International Conference on Intelligent Robots and
Systems (IROS), 2018, pp. 6667�6674.

[253] A. A. Rusu, M. Ve£er\'\ik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell, �Sim-
to-real robot learning from pixels with progressive nets,� in Proc. Conference on
Robot Learning (CoRL), 2017, pp. 262�270.

[254] F. Golemo, A. A. Taiga, A. Courville, and P.-Y. Oudeyer, �Sim-to-real transfer
with neural-augmented robot simulation,� in Proc. Conference on Robot Learning
(CoRL), 2018, pp. 817�828.

[255] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, �Sim-to-real transfer
of robotic control with dynamics randomization,� in International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 1�8.

[256] J. Matas, S. James, and A. J. Davison, �Sim-to-real reinforcement learning for
deformable object manipulation,� in Proc. Conference on Robot Learning (CoRL),
2018, pp. 734�743.

[257] J. H. Metzen, A. Fabisch, L. Senger, J. Gea Fernández, and E. A. Kirchner, �Towards
learning of generic skills for robotic manipulation,� KI - Künstliche Intelligenz,
vol. 28, no. 1, pp. 15�20, 2014.

[258] J. van Baar, A. Sullivan, R. Cordorel, D. Jha, D. Romeres, and D. Nikovski, �Sim-to-
real transfer learning using robusti�ed controllers in robotic tasks involving complex
dynamics,� in Proc. International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 6001�6007.

[259] M. Lutter, S. Mannor, J. Peters, D. Fox, and A. Garg, �Robust value iteration for
continuous control tasks,� arXiv preprint arXiv:2105.12189, 2021.

[260] Ahmed H Qureshi, Arsalan Mousavian, Chris Paxton, Michael Yip, and Dieter Fox,
�Nerp: Neural rearrangement planning for unknown objects,� in Proc. Robotics:
Science and Systems (RSS), 2021.

[261] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf, and J. Peters, �Learning
to play table tennis from scratch using muscular robots,� Transactions on Robotics
(T-RO), 2022.

[262] L. Sievers, J. Pitz, and B. Bäuml, �Learning purely tactile in-hand manipulation
with a torque-controlled hand,� arXiv preprint arXiv:2204.03698, 2022.

[263] B. Nemec, F. J. Abu-Dakka, B. Ridge, A. Ude, J. A. Jorgensen, T. R. Savarimuthu,
J. Jou�roy, H. G. Petersen, and N. Kruger, �Transfer of assembly operations to new
workpiece poses by adaptation to the desired force pro�le,� in Proc. International
Conference on Advanced Robotics (ICAR), 2013, pp. 1�7.

[264] R. Laha, L. F. Figueredo, J. Vrabel, A. Swikir, and S. Haddadin, �Reactive coopera-
tive manipulation based on set primitives and circular �elds,� in Proc. International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 6577�6584.

146 BIBLIOGRAPHY

[265] Nemanja Rakicevic and Petar Kormushev, �Active learning via informed search
in movement parameter space for e�cient robot task learning and transfer,� Au-
tonomous Robots, vol. 43, no. 8, pp. 1917�1935, 2019.

[266] H. Bruyninckx, �Open robot control software: the orocos project,� in Proc. Inter-
national Conference on Robotics and Automation (ICRA), vol. 3. IEEE, 2001, pp.
2523�2528.

[267] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng,
et al., �Ros: an open-source robot operating system,� in Proc. International Con-
ference on Robotics and Automation - Workshop on Open Source Software, vol. 3,
no. 3.2. IEEE, 2009, p. 5.

[268] Y. Maruyama, S. Kato, and T. Azumi, �Exploring the performance of ros2,� in Proc.
Conference on Embedded Software, 2016, pp. 1�10.

[269] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. R. Tsouroukdissian,
J. Bohren, D. Coleman, B. Magyar, G. Raiola, M. Lüdtke, et al., �ros_control: A
generic and simple control framework for ros,� The Journal of Open Source Software,
vol. 2, no. 20, pp. 456�456, 2017.

[270] M. Li, Z. Cai, X. Yi, Z. Wang, Y. Wang, Y. Zhang, and X. Yang, �Alliance-ros:
a software architecture on ros for fault-tolerant cooperative multi-robot systems,�
in Proc. Paci�c Rim International Conference on Arti�cial Intelligence (PRICAI).
Springer, 2016, pp. 233�242.

[271] N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, and T. Asfour, �The robot
software framework armarx,� IT-Information Technology, vol. 57, no. 2, pp. 99�111,
2015.

[272] L. Muratore, A. Laurenzi, E. M. Ho�man, A. Rocchi, D. G. Caldwell, and N. G.
Tsagarakis, �Xbotcore: A real-time cross-robot software platform,� in Proc. Inter-
national Conference on Robotic Computing (IRC). IEEE, 2017, pp. 77�80.

[273] M. Beetz, D. Beÿler, A. Haidu, M. Pomarlan, A. K. Bozcuo§lu, and G. Bartels,
�Know rob 2.0 - a 2nd generation knowledge processing framework for cognition-
enabled robotic agents,� in Proc. International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2018, pp. 512�519.

[274] A. BAUER, D. WOLLHERR, and M. BUSS, �Human�robot collaboration: A sur-
vey,� International Journal of Humanoid Robotics, vol. 05, no. 01, pp. 47�66, 2008.

[275] M. A. Goodrich and A. C. Schultz, Human-Robot Interaction: A Survey, ser. Foun-
dations and trends in human-computer interaction. Now Publishers, 2008.

[276] B. Chandrasekaran and J. M. Conrad, �Human-robot collaboration: A survey,� in
Proc. SoutheastCon. IEEE, 2015, pp. 1�8.

[277] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schä�er, K. Kosuge, and
O. Khatib, �Progress and prospects of the human�robot collaboration,� Autonomous
Robots, vol. 42, no. 5, pp. 957�975, 2018.

BIBLIOGRAPHY 147

[278] B. D. Argall and A. G. Billard, �A survey of tactile human�robot interactions,�
Robotics and Autonomous Systems, vol. 58, no. 10, pp. 1159�1176, 2010.

[279] V. Villani, F. Pini, F. Leali, and C. Secchi, �Survey on human�robot collaboration
in industrial settings: Safety, intuitive interfaces and applications,� Mechatronics,
vol. 55, pp. 248�266, 2018.

[280] I. Maurtua, A. Ibarguren, J. Kildal, L. Susperregi, and B. Sierra, �Human�robot
collaboration in industrial applications,� International Journal of Advanced Robotic
Systems, vol. 14, no. 4, p. 172988141771601, 2017.

[281] J. Arents, V. Abolins, J. Judvaitis, O. Vismanis, A. Oraby, and K. Ozols, �Human�
robot collaboration trends and safety aspects: A systematic review,� Journal of
Sensor and Actuator Networks, vol. 10, no. 3, p. 48, 2021.

[282] M. Valori, A. Scibilia, I. Fassi, J. Saenz, R. Behrens, S. Herbster, C. Bidard,
E. Lucet, A. Magisson, L. Schaake, J. Bessler, G. B. Prange-Lasonder, M. Kühn-
rich, A. B. Lassen, and K. Nielsen, �Validating safety in human�robot collaboration:
Standards and new perspectives,� Robotics, vol. 10, no. 2, p. 65, 2021.

[283] J. Rosell, �Assembly and task planning using petri nets: A survey,� Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufac-
ture, vol. 218, no. 8, pp. 987�994, 2004.

[284] X. Jia and M. Q.-H. Meng, �A survey and analysis of task allocation algorithms in
multi-robot systems,� in Proc. International Conference on Robotics and Biomimet-
ics (ROBIO). IEEE, 2013, pp. 2280�2285.

[285] S. Alatartsev, S. Stellmacher, and F. Ortmeier, �Robotic task sequencing problem:
A survey,� Journal of Intelligent and Robotic Systems, vol. 80, no. 2, pp. 279�298,
2015.

[286] A. Khamis, A. Hussein, and A. Elmogy, �Multi-robot task allocation: A review of
the state-of-the-art,� in Proc. Cooperative Robots and Sensor Networks, A. Koubâa
and J. Martínez-de Dios, Eds. Springer International Publishing, 2015, pp. 31�51.

[287] P. Tsarouchi, S. Makris, and G. Chryssolouris, �Human�robot interaction review and
challenges on task planning and programming,� International Journal of Computer
Integrated Manufacturing, vol. 29, no. 8, pp. 916�931, 2016.

[288] L. Wang, R. Gao, J. Váncza, J. Krüger, X. V. Wang, S. Makris, and G. Chrys-
solouris, �Symbiotic human-robot collaborative assembly,� CIRP Annals, vol. 68,
no. 2, pp. 701�726, 2019.

[289] W. Zhang, �Representation of assembly and automatic robot planning by petri net,�
Transactions on Systems, Man, and Cybernetics, vol. 19, no. 2, pp. 418�422, 1989.

[290] M. Bonert, L. Shu, and B. Benhabib, �Motion planning for multi-robot assembly sys-
tems,� International Journal of Computer Integrated Manufacturing, vol. 13, no. 4,
pp. 301�310, 2000.

148 BIBLIOGRAPHY

[291] G. Michalos, S. Makris, J. Spiliotopoulos, I. Misios, P. Tsarouchi, and G. Chrys-
solouris, �Robo-partner: Seamless human-robot cooperation for intelligent, �exible
and safe operations in the assembly factories of the future,� Procedia CIRP, vol. 23,
pp. 71�76, 2014.

[292] K. Darvish, F. Wanderlingh, B. Bruno, E. Simetti, F. Mastrogiovanni, and
G. Casalino, �Flexible human�robot cooperation models for assisted shop-�oor
tasks,� Mechatronics, vol. 51, pp. 97�114, 2018.

[293] K.-C. Ying, P. Pourhejazy, C.-Y. Cheng, and C.-H. Wang, �Cyber-physical assem-
bly system-based optimization for robotic assembly sequence planning,� Journal of
Manufacturing Systems, vol. 58, pp. 452�466, 2021.

[294] I. Rodríguez, K. Nottensteiner, D. Leidner, M. Durner, F. Stulp, and A. Albu-
Schä�er, �Pattern recognition for knowledge transfer in robotic assembly sequence
planning,� Robotics and Automation Letters (R-AL), vol. 5, no. 2, pp. 3666�3673,
2020.

[295] F. McGlone, J. Wessberg, and H. Olausson, �Discriminative and a�ective touch:
sensing and feeling,� Neuron, vol. 82, no. 4, pp. 737�755, 2014.

[296] S. Haddadin, L. Johannsmeier, and F. D. Ledezma, �Tactile robots as a central
embodiment of the tactile internet,� Proceedings of the IEEE, vol. 107, no. 2, pp.
471�487, 2018.

[297] J. Liang, J. Wu, H. Huang, W. Xu, B. Li, and F. Xi, �Soft sensitive skin for safety
control of a nursing robot using proximity and tactile sensors,� Sensors Journal,
vol. 20, no. 7, pp. 3822�3830, 2019.

[298] R. Kõiva, T. Schwank, G. Walck, M. Meier, R. Haschke, and H. Ritter, �Barometer-
based tactile skin for anthropomorphic robot hand,� in Proc. International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 9821�9826.

[299] R. Dahiya, N. Yogeswaran, F. Liu, L. Manjakkal, E. Burdet, V. Hayward, and
H. Jörntell, �Large-area soft e-skin: The challenges beyond sensor designs,� Pro-
ceedings of the IEEE, vol. 107, no. 10, pp. 2016�2033, 2019.

[300] E. Shahriari, A. Kramberger, A. Gams, A. Ude, and S. Haddadin, �Adapting to
contacts: Energy tanks and task energy for passivity-based dynamic movement
primitives,� in Proc. International Conference on Humanoid Robotics (Humanoids).
IEEE, 2017, pp. 136�142.

[301] M. Helmert, �The fast downward planning system,� Journal of Arti�cial Intelligence
Research, vol. 26, pp. 191�246, 2006.

[302] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, �Clingo= asp+ control:
Preliminary report,� arXiv preprint arXiv:1405.3694, 2014.

[303] J. Burmester, J. Dillinger, W. Escherich, E. Ignatowitz, S. Oesterle, L. Reiÿler,
A. Stephan, R. Vetter, and F. Wieneke, Fachkunde Metall, 58th ed., ser. Europa
Lehrmittel. Verlag Europa-Lehrmittel Nourney Vollmer GmbH & Co. KG, 2020.

BIBLIOGRAPHY 149

[304] H. Bumiller, M. Burgmaier, C. Duhr, W. Eichler, B. Feustel, T. Käppel, W. Klee,
J. Manderla, O. Reichmann, J. Schwarz, K. Tkotz, and U. Winter, Fachkunde Elek-
trotechnik, 32nd ed., ser. Europa Fachbuchreihe für elektrotechnische Berufe. Verlag
Europa-Lehrmittel Nourney Vollmer GmbH & Co. KG, 2021.

[305] H. Hebel, W. Eichler, G. Lämmlin, C. Sartor, A. Scheib, P. Schott, O. Spielvo-
gel, E. Thiele, and U. Winter, Fachkunde Mechatronik, 6th ed., ser. Europa-
Fachbuchreihe für Mechatronik. Verlag Europa-Lehrmittel, 2020.

[306] L. S. Homem de Mello and A. C. Sanderson, �A correct and complete algorithm for
the generation of mechanical assembly sequences,� in Proc. International Conference
on Robotics and Automation (ICRA). IEEE, 1989, pp. 56�61.

[307] T. de Fazio and D. Whitney, �Simpli�ed generation of all mechanical assembly
sequences,� Journal on Robotics and Automation, vol. 3, no. 6, pp. 640�658, 1987.

[308] Y. F. Huang and C. Lee, �Precedence knowledge in feature mating operation as-
sembly planning,� in Proc. International Conference on Robotics and Automation
(ICRA). IEEE, 1989, pp. 216�221.

[309] A. Koc, I. Sabuncuoglu, and E. Erel, �Two exact formulations for disassembly line
balancing problems with task precedence diagram construction using an and/or
graph,� IIE Transactions, vol. 41, no. 10, pp. 866�881, 2009.

[310] S. Russel and P. Norvig, Arti�cial intelligence: a modern approach. Pearson Edu-
cation, Inc., 2002.

[311] R. Dechter and J. Pearl, �Generalized best-�rst search strategies and the optimality
of A⋆,� Journal of the ACM (JACM), vol. 32, no. 3, pp. 505�536, 1985.

[312] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, �An experimental com-
parison of bayesian optimization for bipedal locomotion,� in Proc. International
Conference on Robotics and Automation (ICRA). IEEE, 2014.

[313] J. Snoek, �Bayesian optimization and semiparametric models with applications to
assistive technology,� Ph.D. dissertation, University of Toronto, 2013.

[314] J. Snoek, H. Larochelle, and R. P. Adams, �Practical bayesian optimization of ma-
chine learning algorithms,� in Advances in Neural Information Processing Systems,
2012, pp. 2951�2959.

[315] R. M. Neal, �Slice sampling,� Annals of Statistics, pp. 705�741, 2003.

[316] J. M. Hernández-Lobato, M. Gelbart, M. Ho�man, R. Adams, and Z. Ghahramani,
�Predictive entropy search for bayesian optimization with unknown constraints,� in
Proc. International Conference on Machine Learning (ICML). PMLR, 2015, pp.
1699�1707.

[317] N. Hansen and A. Ostermeier, �Completely derandomized self-adaptation in evolu-
tion strategies,� Evolutionary Computation, vol. 9, no. 2, pp. 159�195, 2001.

150 BIBLIOGRAPHY

[318] N. Hansen, Ed., Towards a New Evolutionary Computation. Springer, Berlin,
Heidelberg, 2006.

[319] M. D. McKay, R. J. Beckman, and W. J. Conover, �Comparison of three methods
for selecting values of input variables in the analysis of output from a computer
code,� Technometrics, vol. 21, no. 2, pp. 239�245, 1979.

[320] C. Daniel, G. Neumann, and J. Peters, �Hierarchical relative entropy policy search,�
in Proc. Arti�cial Intelligence and Statistics, 2012, pp. 273�281.

[321] F. Voigt, L. Johannsmeier, and S. Haddadin, �Multi-level structure vs. end-to-end-
learning in high-performance tactile robotic manipulation,� in Proc. Conference on
Robot Learning (CoRL), 2021, pp. 2306�2316.

[322] G. E. P. Box, W. H. Hunter, S. Hunter, et al., Statistics for experimenters. John
Wiley and Sons New York, 1978, vol. 664.

[323] C. Nguyen, T. Hassner, M. Seeger, and C. Archambeau, �Leep: A new measure to
evaluate transferability of learned representations,� in Proc. International Confer-
ence on Machine Learning (ICML). PMLR, 2020, pp. 7294�7305.

[324] Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang, Amir R. Zamir, and Leonidas J.
Guibas, �An information-theoretic metric of transferability for task transfer learn-
ing,� 2019.

[325] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice hall Upper Saddle
River, NJ, 1998, vol. 104.

[326] M. J. Sorocky, S. Zhou, and A. P. Schoellig, �Experience selection using dynam-
ics similarity for e�cient multi-source transfer learning between robots,� in Proc.
International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
2739�2745.

[327] T. Kailath, �The divergence and bhattacharyya distance measures in signal selec-
tion,� Transactions on Communications, vol. 15, no. 1, pp. 52�60, 1967.

[328] F. J. Massey Jr, �The kolmogorov-smirnov test for goodness of �t,� Journal of the
American statistical Association, vol. 46, no. 253, pp. 68�78, 1951.

[329] T. van Erven and P. Harremoes, �Rényi divergence and kullback-leibler divergence,�
Transactions on Information Theory, vol. 60, no. 7, pp. 3797�3820, 2014.

[330] S. Haddadin and L. Johannsmeier, �The art of manipulation: Learning to manipu-
late blindly,� in Proc. International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 1�9.

[331] J. Grischke, L. Johannsmeier, L. Eich, L. Griga, and S. Haddadin, �Dentronics:
Towards robotics and arti�cial intelligence in dentistry,� Dental Materials, vol. 36,
no. 6, pp. 765�778, 2020.

BIBLIOGRAPHY 151

[332] X. Chen, L. Johannsmeier, H. Sadeghian, E. Shahriari, M. Danneberg, A. Nicklas,
F. Wu, G. Fettweis, and S. Haddadin, �On the communication channel in bilateral
teleoperation: An experimental study for ethernet, wi�, lte and 5g,� in Proc. Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp.
7712�7719.

[333] K. Feldmann, Ed., Handbuch Fügen, Handhaben, Montieren, 1st ed., ser. Edition
Handbuch der Fertigungstechnik. Hanser, 2014.

[334] Deutsches Institut für Normung, �Fertigungsverfahren fügen - teil 1: Zusammenset-
zen; einordnung, unterteilung, begri�e,� 2003.

[335] J. F. Broenink and M. L. J. Tiernego, �Peg-in-hole assembly using impedance control
with a 6 dof robot,� in Proc. European Simulation Symposium, 1996, pp. 504�508.

[336] S. R. Chhatpar and M. S. Branicky, �Search strategies for peg-in-hole assemblies
with position uncertainty,� in Proc. International Conference on Intelligent Robots
and Systems, vol. 3. IEEE, 2001, pp. 1465�1470.

[337] J. Dietrich and J. Dietrich, �Schneiden (zerteilen),� Praxis der Umformtechnik:
Umform-und Zerteilverfahren, Werkzeuge, Maschinen, pp. 266�290, 2018.

[338] R. Bogue, �Cutting robots: a review of technologies and applications,� Industrial
Robot: An International Journal, vol. 35, no. 5, pp. 390�396, 2008.

[339] EPIC Games, �Unreal engine,� 2022. [Online]. Available: https://www.
unrealengine.com/en-US/

[340] F. Pedregosa, G. Varoquaux, A. Gramfort, and V. Michel, �scikit-learn,� 2010.
[Online]. Available: https://scikit-learn.org/stable/index.html

[341] L. Keselman, J. Iselin Wood�ll, A. Grunnet-Jepsen, and A. Bhowmik, �Intel re-
alsense stereoscopic depth cameras,� in Proc. Conference on Computer Vision and
Pattern Recognition. IEEE, 2017, pp. 1�10.

[342] C. Mönnink, L. Eich, S. Haddadin, M. Stiesch, and J. Grischke, �Dentronics: Tooth
cleaning with a tactile, collaborative robot. an in vitro proof of concept.� Interna-
tional Journal of Computerized Dentistry, pp. 1�17, 2023.

[343] M. Jayaweera, H. Amarasinghe, and N. W. Johnson, �Reshaping dental practice
in the face of the covid-19 pandemic: Leapfrogging to dentronics,� Oral Diseases,
2021.

[344] I. Spectrum. (2019) Dentronics: New application domain for collaborative robots
in dental assistance. [Online]. Available: https://www.youtube.com/watch?v=
M8s9bS8qkRE

[345] A. Naceri, J. Elsner, M. Tröbinger, H. Sadeghian, L. Johannsmeier, F. Voigt,
X. Chen, D. Macari, C. Jähne, M. Berlet, et al., �Tactile robotic telemedicine for
safe remote diagnostics in times of corona: System design, feasibility and usability
study,� Robotics and Automation Letters (R-AL), vol. 7, no. 4, pp. 10 296�10 303,
2022.

https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://scikit-learn.org/stable/index.html
https://www.youtube.com/watch?v=M8s9bS8qkRE
https://www.youtube.com/watch?v=M8s9bS8qkRE

152 BIBLIOGRAPHY

[346] A. Moortgat-Pick, A. Adamczyk, T. Tomi¢, and S. Haddadin, �Feeling the true
force in haptic telepresence for �ying robots,� in Proc. International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 9789�9796.

[347] P. der Moderne. (2021) Ki.robotik.design. [Online]. Available: https://www.
pinakothek-der-moderne.de/ausstellungen/ki-robotik-design/

[348] D. Zardykhan, P. Svarny, M. Ho�mann, E. Shahriari, and S. Haddadin, �Collision
preventing phase-progress control for velocity adaptation in human-robot collabora-
tion,� in Proc. International Conference on Humanoid Robots (Humanoids). IEEE,
2019, pp. 266�273.

[349] L. Johannsmeier and S. Haddadin, �Can we reach human expert programming per-
formance? a tactile manipulation case study in learning time and task performance,�
in International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.

[350] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, �Continuous control with deep reinforcement learning,� arXiv preprint
arXiv:1509.02971, 2015.

[351] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, �The computational
limits of deep learning,� arXiv preprint arXiv:2007.05558, 2020.

[352] A. Stemmer, G. Schreiber, K. Arbter, and A. Albu-Schä�er, �Robust assembly of
complex shaped planar parts using vision and force,� in Proc. International Confer-
ence on Multisensor Fusion and Integration for Intelligent Systems. IEEE, 2006,
pp. 493�500.

[353] E. Brochu, V. M. Cora, and N. de Freitas, �A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning,� arXiv preprint arXiv:1012.2599, 2010.

[354] K. Swersky, J. Snoek, and R. P. Adams, �Multi-task bayesian optimization,� in
Advances in Neural Information Processing Systems, 2013, pp. 2004�2012.

[355] R. Poli, J. Kennedy, and T. Blackwell, �Particle swarm optimization,� Swarm In-
telligence, vol. 1, no. 1, pp. 33�57, 2007.

[356] W.-L. Loh, �On latin hypercube sampling,� The Annals of Statistics, vol. 24, no. 5,
pp. 2058�2080, 1996.

[357] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, �Soft actor-critic: O�-policy max-
imum entropy deep reinforcement learning with a stochastic actor,� in Proc. Inter-
national Conference on Machine Learning (ICML). PMLR, 2018, pp. 1861�1870.

[358] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, �Continuous control with deep reinforcement learning,� arXiv preprint
arXiv:1509.02971, 2015.

[359] D. P. Kingma and J. Ba, �Adam: A method for stochastic optimization,� arXiv
preprint arXiv:1412.6980, 2014.

https://www.pinakothek-der-moderne.de/ausstellungen/ki-robotik-design/
https://www.pinakothek-der-moderne.de/ausstellungen/ki-robotik-design/

BIBLIOGRAPHY 153

[360] Francois-Michel de Rainville, �Deap,� 15.02.2021. [Online]. Available: https:
//github.com/deap/deap

[361] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,
A. Gupta, P. Abbeel, et al., �Soft actor-critic algorithms and applications,� arXiv
preprint arXiv:1812.05905, 2018.

[362] S. Haddadin, S. Haddadin, and S. Parusel, �Franka emika panda,� 04.02.2021.
[Online]. Available: https://www.franka.de/

[363] Y. Huang, M. Mahmudi, and M. Kallmann, �Planning humanlike actions in blend-
ing spaces,� in Proc. International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2011, pp. 2653�2659.

[364] A. Billard and D. Kragic, �Trends and challenges in robot manipulation,� Science,
vol. 364, no. 6446, 2019.

[365] G. Michalos, S. Makris, L. Rentzos, and G. Chryssolouris, �Dynamic job rotation
for workload balancing in human based assembly systems,� CIRP Journal of Man-
ufacturing Science and Technology, vol. 2, no. 3, pp. 153�160, 2010.

[366] D. Knobbe, H. Zwirnmann, M. Eckho�, and S. Haddadin, �Core processes in in-
telligent robotic lab assistants: Flexible liquid handling,� in Proc. International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 2335�
2342.

[367] J. Ringwald, S. Schneider, L. Chen, D. Knobbe, L. Johannsmeier, A. Swikir, and
S. Haddadin, �Towards task-speci�c modular gripper �ngers: Automatic production
of �ngertip mechanics,� Robotics and Automation Letters (R-AL), vol. 8, no. 3, pp.
1866�1873, 2023.

https://github.com/deap/deap
https://github.com/deap/deap
https://www.franka.de/

	Acknowledgment
	Contents
	Abbreviations and Symbols
	Introduction
	Motivation
	Problem Statement
	Research Questions and Contribution
	State of the Art
	Robot Platforms
	Interaction Control
	Skill Frameworks
	Skill Taxonomies
	Skill Learning
	Robot Software Frameworks
	Assembly Planning

	Thesis Structure
	Curriculum Vitae

	Theoretical Foundations
	Representation
	Tactile Skill
	Process Definition
	Taxonomy Structure

	Tactile Skill Synthesis Procedure
	Artificial Intelligence-Based Assembly Planning
	Introduction
	Assembly Plan Representation
	Task Allocation and Planning

	Machine Learning
	Algorithms
	Performance Metrics
	Robot Motor Memory Effect

	Conclusion

	System Architecture and Validation Cases
	GGTWreP Framework
	Implementation Examples

	Machine Intelligence Operation System
	System Overview
	Design Objectives
	Capabilities
	Modules
	GGTWreP Implementation
	Learning

	Validation Experiments: Use Case Integration
	New Application Domain: Dentronics
	Distributed Control: Telepresence
	Local Multi-Robot System: Pinakothek der Moderne
	Collaborative Assembly Station

	Validation Experiments: Learning
	Manipulation Learning: Peg-in-Hole
	Distributed Multi-Robot System: Collective

	Conclusion

	Experimental Analysis
	Taxonomy Verification
	Experimental Setup
	Verification Process
	Results

	Tactile Skill Learning
	Comparative Analysis of Algorithms for Skill Learning
	Comparison with Deep Reinforcement Learning
	Skill Transfer Learning

	Performance Comparison: Robot vs. Human
	Task Description
	Case Study

	Collaborative Assembly Planning
	Experimental Setup
	Results

	Conclusion

	Conclusion
	Contributions
	Impact
	Future Work

	Appendix
	Appendix
	Skill Synthesis: Policies
	List of Figures
	List of Tables

	Bibliography

