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Space-Charge Layers in Solid Electrolytes
Stephan Sinzig,1,2,z,* Thomas Hollweck,1 Christoph P. Schmidt, 1,* and Wolfgang
A. Wall1

1TUM School of Engineering and Design, Department of Engineering Physics and Computation, Institute for Computational
Mechanics, Technical University of Munich, Germany
2TUMint.Energy Research GmbH, 85748 Garching bei München, Germany

All-solid-state batteries are seen as promising candidates to replace conventional batteries with liquid electrolytes in many
applications. However, they are not yet feasible for many relevant applications. One particular question of interest is the
identification of physical effects inside all-solid-state batteries and their quantitative influence on the performance of the entire
battery cell. Simulation models can contribute to answering the aforementioned question by systematical studies, e.g. enabling or
disabling certain physical effects. Especially the influence of space-charge layers (SCLs) is heavily discussed in the scientific
community. So far, the different length scales of SCLs and the microstructure of a battery cell made a spatial discretization of
realistic microstructures with resolved SCLs infeasible. However, thermodynamically consistent continuum models which are
applied to simplified geometries are already established in the literature. In this work, we propose a model that enables the
prediction of the spatial development of SCLs within geometrically resolved microstructures by exploiting that effects in SCLs are
predominantly one-dimensional. With the proposed approach it is possible to quantify the geometric influence of realistic
microstructures on the formation process of SCLs. SCLs in realistic microstructures remarkably differ from SCLs computed with
simplified one-dimensional models which are already established in the literature.
© 2023 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
1945-7111/acc692]
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Research activity has strongly increased in recent years to improve
both the energy and power densities of batteries. Especially, lithium-ion
batteries are nowadays seen as the superior battery technology for many
applications,1 especially for electric vehicles. It is foreseeable, that
conventional lithium-ion batteries with liquid electrolytes will reach
their physical limit soon. All-solid-state batteries could theoretically
overcome the drawbacks of conventional lithium-ion batteries with
liquid electrolytes. Some of the advantages of all-solid-state batteries
are their possibility for high power densities, facilitating of lithium
metal anodes, thus achieving high energy densities, and ensuring high
safety standards due to the non-flammability of many solid
electrolytes.2–4 However, they still require more research effort to
establish them for various real-world applications. While experimental
research is already well-established in the field of electrochemistry,
simulative investigations become more prominent to rapidly evaluate
the influence of different operating scenarios, quantifying the influence
of certain physical effects, or testing the combination of different
materials. Profound predictions of the behavior of a battery cell require
models that are based on fundamental physics and are solved in a
mathematically consistent manner.

The formation of regions where charges separate, i.e. double
layers for liquid electrolytes5 and space-charge layers (SCLs) for
solid electrolytes,6 is known for decades. However, their influence in
terms of resistance and capacitance on the entire battery cell is
heavily discussed in the literature,7 ranging from rather negligible8,9

to important.10–12 We do not claim to give a full overview of the
physical phenomena inside SCLs but refer the reader to the
literature, e.g. in Ref. 13 and summarize only the key aspects.
SCLs are small regions inside the solid electrolyte, that form close to
the electrodes. Inside these regions, separation of charges is
observable (e.g. in Refs. 14, 15), as shown in various
experiments.16–22 Due to the different chemical potentials of two
materials in contact, charge carriers will redistribute to form either
an accumulation layer or a depletion layer until equilibrium is
reached.23 SCLs occur at all interfaces of a battery cell where two
materials with different chemical potentials are in contact. They

occur especially at the interface between the solid electrolyte and the
electrodes, and at internal interfaces inside the solid electrolyte.24

Simulation models can contribute to the mentioned discussion of the
influence of SCLs on the entire battery cell. Of course, a simulation
model can never cover all physical effects, that occur inside an all-solid-
state battery but needs to be tailored to the specific question that it
should answer. In the scientific community, different modeling
approaches are available to incorporate the effect of SCLs into a
model, each with a different focus: Atomistic models (e.g. in Refs. 25,
26), DFT models (e.g. in Refs. 11, 27), kinetic Monte Carlo models (e.
g. in Ref. 28), or continuum models. In light of the following sections,
we want to elaborate more on continuum models, as the other models
can only be applied to domains with dimensions in the range of
nanometers due to computational limitations and thus, not to geometries
representing realistic microstructures. Continuum models can be further
subdivided into: Phenomenological models, which modify known
equations e.g. from liquid electrolytes to include the effects of solid
electrolytes (e.g. in Refs. 29–31), zero-dimensional models, that resolve
a complex geometric microstructure and add e.g. a capacitor to the
interface to represent SCLs (e.g. in Refs. 32–34), and one-dimensional
models, that spatially resolve the shape of SCLs between two electrodes
(e.g. in Refs. 35, 36). As all models, the outlined models have different
limitations that can be significant for relevant questions.
Phenomenological models do not ensure positive entropy production
and are thus thermodynamically not consistent or neglect the transient
development of the SCL, zero-dimensional models cannot resolve the
spatial shape of SCLs, and one-dimensional models neglect the
inhomogeneous geometric influence, which can be significant as we
will show in this work. For completeness, we want to state that also the
chosen model35,36 has limitations originating from the atomistic nature
of the charges that make up the SCL. The model neglects Coulomb
interaction between Li-defects and impurities of the crystal lattice.7 The
interaction of discretized sites at high concentrations is not well
described by bulk dielectric screening. Additionally, the model does
not account for the electronic structure of the electrolyte (see e.g. in Ref.
11 for details) which can be important in the near electrode region.
However, incorporating these effects into a continuum model is beyond
the scope of this work.

Especially the different length scales (≈10–100 nm18) of SCLs
and realistic microstructures (≈100 μm) are currently hindering azE-mail: stephan.sinzig@tum.de
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three-dimensionally resolved solution of the SCLs in realistic
microstructures. A three-dimensional mesh, as needed for the
discretization of the continuous model, e.g. with the finite element
method, would require mesh cells with a size of about 1 nm to
capture gradients within the thin layer. This would exceed currently
available computational resources if realistic microstructures would
be discretized with the required fineness, resulting in the order of one
billion nodes of a discretization mesh.

In this work, we introduce a novel approach that allows resolving
and incorporating SCLs within geometrically complex microstruc-
tures. The approach is motivated by the observation, that SCLs
develop in regions close to the electrodes and are predominantly
one-dimensional due to the perpendicular electric field on equipo-
tential surfaces, i.e. perfectly electronic conducting electrodes. In the
remaining part of the solid electrolyte, the condition of local charge
neutrality holds.15 By using different discretizations in SCL regions
and outside of SCL regions we propose a solution to the unsolved
challenge to resolve SCLs in realistic microstructures. Based on the
observation of predominant one-dimensional effects in SCLs we
discretize the domain in the vicinity of the electrodes in one
dimension, while it is three-dimensionally discretized outside of
the SCL region. This reduces the computational effort significantly
because the mesh size outside of the SCL region can be adapted
according to the dimensions of the microstructure, while the one-
dimensional discretization in the SCL region can be adapted to the
shape of the SCL. Consequently, the computational effort reduces to
a manageable size. We base the continuous SCL model on the work
reported in Refs. 35, 36, which guarantees positive production of
entropy and is formulated in the three-dimensional space. However,
our proposed discretization scheme is not attached to this model but
is conceptually applicable to any other continuum model for SCLs.
Additionally, we reduce the computational effort, by enforcing the
condition of constant concentrations to regions outside of the SCL.

This work is outlined as follows: We begin with recalling a
continuous approach to model SCLs including physically mean-
ingful boundary and initial conditions. Afterwards, we simplify the
model outside of the SCL regions by enforcing constant concen-
trations. Based on this, we introduce a novel approach for a
consistent coupling of SCL regions and regions outside of the SCL.
Subsequently, we present the numerical incorporation of the
coupling of the SCL regions and regions outside of the SCL and
add remarks on an efficient solution strategy for this system.
Moreover, we present results computed with the proposed coupling
approach to compare our solution with one-dimensional models, to
find a quantitative measure for the size of the SCL region, to
validate conservation principles, to quantify the quality of the
proposed approach by defining approximation errors, and to show
the applicability to large systems that represent realistic micro-
structures.

To our knowledge, this work is the first to show results for
spatially resolved SCLs within realistic microstructures.

Continuum Model for Solid Electrolytes Including SCLs

In this section, we present a continuum model for SCLs by
splitting the geometry of the solid electrolyte into an SCL region
close to the electrodes and the remaining domain. We summarize a
thermodynamically consistent model for solid electrolytes, which is
already established in the literature. Subsequently, we define
different assumptions for the two domains and apply them to the
thermodynamically consistent model. Afterwards, we elaborate on
the coupling between both domains and discuss the approximation
errors that we introduce by our proposed approach.

Geometric definitions and nomenclature.—Before presenting
the equations that define the model for the solid electrolyte, we need
to define the geometric setup as shown in Fig. 1 that schematically
sketches both electrodes and the solid electrolyte. The focus of this
work is on the domain of the solid electrolyte ΩSE where the
development of SCLs is expected, as we do not consider charge
separation in the electrodes in this work. The domain of the solid
electrolyte is split into a part where we expect SCLs to develop
ΩSCL and into the bulk domain Ωbulk: Ω = Ω ∪ ΩSE SCL bulk. The
electrodes Ωed are subdivided into the anode Ωa and the cathode Ωc:
Ω = Ω ∪ Ωed a c. Their boundaries are drawn by dashed lines to
indicate, that we do not solve any equations inside these domains
within this work. Instead, we focus on the solid electrolyte as we are
only interested in the SCLs that form at the interface between the
electrolyte and the electrodes. Thus, we do not resolve SCLs at grain
boundaries inside the solid electrolyte. However, their incorporation
would be methodologically identical.

We define surfaces as intersections of domains or outer bound-
aries. At first, we define the intersection between the bulk domain of
the solid electrolyte Ωbulk and the SCL domains ΩSCL as Γ -SCL bulk .
The intersection between the electrodes Ωed and the SCL
domain ΩSCL is defined as Γ -SCL ed. All boundaries in the lateral
direction of the battery cell are model boundaries, where symmetry
assumptions are made and the according boundary conditions are
applied. They are denoted with Γsymm. For completeness, we define
outer boundaries to the current collectors Γ -cc a , Γ -cc c, and Γ -cc SE
where Γ -cc SE includes the boundaries of both the SCL domain
ΩSCL and the bulk domain Ωbulk of the solid electrolyte.

Finally, a natural coordinate ξ ( )x is introduced perpendicular
to Γ -SCL bulk which is restricted to ΩSCL. Its direction is defined from
the electrodes to the electrolyte, with the origin at the electrode.
Consequently, it is a function of the location x.

Thermodynamically consistent model for solid electrolytes
including SCLs.—We use the approach developed in Ref. 35 and
later extended in Ref. 36 to model the electrochemical transport
phenomena in solid electrolytes. This approach is thermodynami-
cally consistent, i.e. a positive production rate of entropy is
guaranteed. The key aspects of the approach as well as the used
symbols are summarized in the Appendix A and the governing
equations are

∂
∂

+ ∇ · = Ω [ ]+
+N

c

t
0 in , 1SE

⎛
⎝

⎞
⎠

ϵ χ∂
∂

+ ∇ · − ∂∇Φ
∂

= Ω [ ]+ +N
q

t
z F

t
0 in , 20 SE

ϵ−∇ · ( ∇Φ) = Ω [ ]q in , 3F SE

σ= − ∇ − ∇Φ Ω [ ]+ + +
+

N D c
z F

in . 4SE

A physically meaningful (i.e. no violation of conservation proper-
ties) and mathematically consistent set of boundary conditions needs
to be defined to obtain a well-posed system. The shape of the SCLs

Figure 1. Schematic sketch of the computational domain. The domain is
split into subdomains Ωi and surfaces Γ−i j denoting the interface between the
domains Ωi and Ωj .
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is determined by the boundary conditions applied to the interface
between the solid electrolyte and the electrodes Γ -SCL ed. In the
remaining Sections of this work, we assume blocking electrodes
which lead to Dirichlet boundary conditions for the electric potential
and homogeneous Neumann boundary conditions for the concentra-
tion of cations on the interface

Φ = Φ̂ Γ [ ]−on , 5SCL ed

⋅ = Γ [ ]+ −N n 0 on . 6SCL ed

For completeness, we define homogeneous Neumann boundary
conditions as well for all quantities on Γsymm and note that all
boundary conditions have to satisfy global charge neutrality, namely

∫ ( ) Ω = ∀
Ω

xq t t, d 0
SE

.

For the transient equations, we define initial conditions that
represent an unpolarized solid electrolyte. This results in bulk
concentration for anions −c and cations +c , and thus implicitly zero
total charge q

( = ) = ( = ) = [ ]+ −x xc t c t c, 0 , 0 , 7bulk

( = ) = [ ]xq t, 0 0. 8

Assumption of constant concentrations outside of the SCL
region.—For the derivation of a model of the solid electrolyte
outside of the SCL region, we start with the fundamental assumption

= = = Ω [ ]+ −c c c const. in . 9bulk bulk

This is a reasonable assumption for transference numbers close to
unity if the local electroneutrality condition is satisfied.7,37 As a

direct consequence this assumption implies =∂
∂

+ 0c

t
and ∇ =+c 0.

Within this work, we keep the dielectric permeability independent of
any excitation frequencies, i.e. ϵ= const. The assumption in Eq. 9
ensures that no free charge (see Eq. A·2) accumulates, as positive
and negative charges sum up to zero =q 0F .

In the following, we will show that those assumptions simplify
the system of equations outlined before to a Laplace equation for the
electric potentialΔΦ = 0. First, we simplify the constitutive equa-
tion for the flux of cations in Eq. 4. The diffusive term related to the
gradient of the concentration vanishes

σ= − ∇Φ [ ]+
+

N
z F

. 10

Moreover, the transport properties become constants with respect to
the cation concentration, namely the ionic conductivity and the
diffusion coefficient

σ ν= ( ) ( − ( − ) Δ ) [ ]+ ++z F c c c1 , 112
max bulk bulk

=
( − )

[ ]+ ++D RT
c

c c c
. 12max

max bulk bulk

By using the absence of free charge Ωbulk , Eq. 3 simplifies to
ϵ∇⋅( ∇Φ) = 0, and by using constant dielectric permeability ϵ it

simplifies further to the Laplace equation

ΔΦ = Ω [ ]0 in . 13bulk

Furthermore, Eq. 1 reduces to ( )∇ · − ∇Φ =σ
+

0
z F

by using that the

temporal derivative of the cation concentration is zero and by
substituting the expression for the flux of cations +N . All prefactors
are constant in this expression, such that this equation reduces to
ΔΦ = 0 as well.

Finally, we substitute all findings into Eq. 2 and apply the
divergence operator on both terms inside the brackets

⎛
⎝

⎞
⎠

σ ϵ χ∂
∂

+ − ΔΦ − ∂ΔΦ
∂

= [ ]q

t t
0. 140

As shown before, the Laplacian of Φ will evaluate to zero, such

that only the temporal derivative of the total charge density
∂
∂
q

t
remains. The total charge density q is composed by summing up
the free charge density qF and the bound charge density qB. For
the first, we already know that it is zero, while the latter is
defined as ϵ χ= ΔΦqB 0 . Again, we make use of the Laplacian
of Φ to be zero leading to =q 0B . Finally, we can conclude
that =q 0. Obviously, this equation ( =0 0) is implicitly ful-
filled. This means, that from the entire set of equations, we only
need to solve for the Laplacian of Φ to be zero in Ωbulk .

Assumption of one-dimensionality inside the SCL region.—The
key aspect of this work is to propose a model that can spatially
resolve the effect of SCLs in realistic microstructures by reducing
the required computational effort. We do this by assuming, that all
spatial derivatives inside ΩSCL that are tangential to the interface
Γ -SCL bulk vanish

(∇Ψ − (∇Ψ⋅ ) ) ⋅ = Ω [ ]n n n 0 in , 15SCL

for any scalar quantity Ψ and the vector n being normal to the
interface Γ -SCL bulk with length one. This assumption is motivated
by the observable main characteristics of SCLs that are predomi-
nantly one-dimensional. The one-dimensionality is caused by the
electric field = −∇ΦE which has to be perpendicular to
equipotential, i.e. ideally conducting surfaces ∇Φ⋅ = ∥∇Φ∥n as
a limit assumption for the high conductivity of many electrode
materials. Furthermore, we distinguish between the steady state
and the transient state for blocking electrodes. In the steady state,
the flux of cations vanishes, and Eq. 4 simplifies to
∇ = − ∇Φσ

+
+ +

c
D z F

. Consequently, the gradient of the cation con-

centration in the steady state is normal to the surface as well.
Thus, the electric potential and the concentration are constant on
this surface. Now, we conclude that the electric potential and the
concentration at an infinitesimal distance from the surface are
equal as well, due to the constant values at the surface and normal
gradients with uniform magnitude. This surface with an infinite-
simal distance forms another surface with uniform electric
potential and concentration. Repeating this thought experiment
reveals that the gradient of the electric potential and the
concentration is normal to the surface throughout the entire
SCL domain, i.e. that all gradients remain parallel to the normal
of the surface.

In the transient state, the tangential component of the flux of
cations can have non-zero values but remain comparably small as we
will show in this work.

Consequently, the partial differential equations as outlined before
are reduced to one-dimensional equations. Inside the remaining part
of the geometrically complex solid electrolyte Ωbulk, no further
constraint to the gradient is given, such that the equations are
resolved in all three dimensions of space. Considering this, we arrive
at a set of equations inside both the SCL domain ΩSCL and the bulk
domain Ωbulk

ΔΦ = Ω [ ]0 in , 16bulk bulk

ξ
∂

∂
+ ∂

∂
= Ω [ ]c

t

N
0 in , 17SCL SCL

SCL
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⎛

⎝
⎜

⎞

⎠
⎟

( )
ϵ χ

ξ
∂

∂
+

∂ −

∂
= Ω [ ]

∂

∂
ξ

∂Φ
∂

q

t

zFN

0 in , 18

t
SCL

SCL 0

SCL

SCL

( )ϵ

ξ
−

∂

∂
= Ω [ ]ξ

∂Φ
∂

q in , 19F SCL

SCL

ξ
σ

ξ
= − ∂

∂
− ∂Φ

∂
[ ]N D

c

zF
, 20SCL

SCL SCL

where we abbreviated the cation concentration +c with c, the flux of
cations +N with N , the charge number +z with z , and the diffusion
coefficient +D with D, as from now on the cation concentration
mathematically is the only unknown concentration. Additionally, we
distinguish between quantities in the bulk domain and in the SCL
domain by assigning the respective subscript. In the following, we
do not solve for the total charge qSCL in Eq. 18, as it is not an
independent variable in the case of blocking electrodes and can
simply be post-processed from the electric potential and the cation
concentration.

Coupling regions inside and outside of the SCL.—At the
transition from the bulk domain to the SCL domain Γ -SCL bulk we
require continuity between all primary variables, i.e. the concentra-
tion, and the electric potential. Additionally, conservation properties
need to be ensured. The first requirement is fulfilled by requesting

Φ = Φ Γ [ ]−on , 21SCL bulk SCL bulk

= Γ [ ]−c c on . 22SCL bulk SCL bulk

The second requirement can be incorporated by enforcing consistent
coupling fluxes between two domains. While the flux inside the
three-dimensional bulk domain is a vector, the flux inside the one-
dimensional SCL domain is treated as a scalar. Thus, the flux inside
the bulk domain needs to be projected in the direction normal to the
interface implying the one-dimensional SCL domain to be perpen-
dicular to the coupling surface Γ -SCL bulk

⋅ = Γ [ ]−N n N on , 23bulk SCL SCL bulk

⋅ = Γ [ ]−i n i on . 24bulk SCL SCL bulk

Geometric approximation of realistic microstructures.—We
define the bulk domain of the solid electrolyte as Ω = Ωbulk SE and
the SCL domain as Ω = Γ ×- lSCL SCL bulk SCL. Here, lSCL is an
estimation of the thickness of the SCL and ≪l lSCL SE, with lSE
being a typical length scale of the solid electrolyte. Note, that this
approximation slightly enlarges the original geometry.

Approximation errors introduced by the coupling approach.—
By coupling the one-dimensional and the three-dimensional do-
mains, we introduce three types of approximation errors to the
system. They serve as a measure to quantify the quality of the
proposed approach:

1. Model error. The model for the bulk domain is derived from the
thermodynamically consistent model for SCLs based on the
assumption = =+ −c c cbulk. Thus, the error introduced by the
assumption scales with ϵ = −+c cerr bulk . It is negligible if the
SCL domain is chosen large enough as the concentration
converges toward the bulk concentration for great distances
from Γ -SCL ed.

2. Geometric error. By adding a thin layer representing the SCL
domain we modify the geometry and thus enlarge the
geometric dimensions of the solid electrolyte. Effectively,
this results in a slightly larger resistance of the solid
electrolyte. However, we select the thickness of the addi-
tional layer ≪l lSCL SE which means that the additional
resistance, which scales with the length of the solid electro-
lyte, is negligible. In case the aforementioned condition is not
valid anymore, it is possible to reduce the size of the bulk
domain to compensate for the additional thin layer repre-
senting the SCL.

3. Compatibility error. The one-dimensional model inside the
SCL domain can only capture gradients in the direction
normal to Γ -SCL bulk. Gradients parallel to Γ -SCL bulk on equipo-
tential surfaces occur in the transient state but cannot cause
a flux in the one-dimensional model. Again, this error is
comparably small as long as ≪l lSCL SE . Exemplarily, this
can be shown by a Taylor expansion of the electric
potential for a two-dimensional geometry in polar coordi-
nates θ( )r, to capture the curvature of the equipotential
surface:

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎡
⎣

⎤
⎦



[ ]

θ θ

θ θ θ

Φ( ) = Φ( ) +

+ [ ]
−

− +
+ ( )θ θ

θ θ θ

∂Φ
∂

∂Φ
∂Θ

∂ Φ
∂

∂ Φ
∂ ∂

∂Φ
∂

∂ Φ
∂ ∂

∂Φ
∂

∂ Φ
∂

∂Φ
∂

25

r
r

r
r

r

0,

,

r r

r r r

r r r r

0

0

1

1

2

1

1 1

3

2

2

2

2 2

2

Due to the equipotential surface, the derivatives
θ

∂Φ
∂

and
θ

∂ Φ
∂

2

2 vanish.

The compatibility error scales with derivatives the reduced dimen-
sional model cannot capture, i.e. derivatives w.r.t. θ , and thus

w.r.t. θ
θ

∂ Φ
∂ ∂

r
r 0

2
. Therefore, the distance to the equipotential surface

must be minimal to reduce the compatibility error.

We conclude, that the domain of the SCL should be as large as
possible to reduce the first approximation error, while it should be as
small as possible, to reduce the other two approximation errors. We
will present concepts on how to choose the size of the SCL domain.

Numerical Treatment of The SCL Model

In this Section we want to present the discretization schemes
in space and time we used to discretize the continuous equations.
Furthermore, we show the incorporation of the coupling condi-
tions between the bulk domain and the SCL domain into the
discretized system of equations. Afterwards, we discuss the
required constraint enforcement and the applied solution
techniques.

Discretization in time.—The equation for the bulk domain is
stationary, while the set of equations for the SCL domain contains
time derivatives, namely the temporal derivative of the concentra-
tion. Thus, only the mass conservation equation in the SCL domains
is discretized in time. It is not the aim of this work to rewrite in all
detail the steps for discretizing the time-continuous equations. For
brevity, the main steps of the One-Step-Theta method which is used
in this work are recaptured. It is used to discretize first-order
differential equations of the type

∂
∂

= ( ) [ ]x
c

t
cfn , , 26SCL

SCL

in time for ∈ [ ]t t t,0 end . The underlying discretization scheme can be
expressed as
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with c n
SCL and +c n

SCL
1 being the values of cSCL at time steps tn and +tn 1,

with possibly non-uniform values of the time step sizeΔt .
Choosing θ = 0.5 represents the well-established implicit Crank-
Nicolson scheme of second-order accuracy.

Discretization in space.—We use the finite element method to
discretize the set of partial differential equations in space for both
the bulk domain Ωbulk and the SCL domain ΩSCL. While the bulk
domain is discretized in all three dimensions of space, the domain
for the SCL is only discretized in one dimension. Consequently, the
number of unknowns of the spatial discretization reduces signifi-
cantly, as a fine discretization in only one direction is required.

Again, we do not aim to walk the reader through all steps of the
discretization scheme of the finite element method but want to focus
on the main aspects. First, we derive the weak form of equations 16
to 20 by multiplication with an arbitrary test function w, integration
over the respective domain, and transforming derivatives of second
order in space to the test function w by applying the chain rule of
divergence and Gauß divergence theorem. Afterwards, we discretize
the geometry (x), the test functions (w), and the solution variables
(Φ Φc, ,bulk SCL SCL) with the same shape functions. This means that
Ψ Ψ= ˆN , with Ψ ∈ { Φ Φ }x w c, , , ,bulk SCL SCL represents the vector
of all variables, N the matrix of corresponding size containing the

shape functions, and Ψ̂ the vector of the discretized variables.
Throughout this work, we use linear shape functions for the matrix
N . Finally, we arrive at a set of nonlinear, algebraic equations

Φ( ) = [ ]Φ
+R 0, 28nbulk

bulk
1

Φ( ) = [ ]+ +R c 0, , 29c
n nSCL
SCL

1
SCL

1

Φ( ) = [ ]Φ
+ +R c 0, , 30n nSCL

SCL
1

SCL
1

where Φ +n
bulk

1, +cn
SCL

1, and Φ +n
SCL

1 denote the vector-organized nodal
values of the primary variables.

Solution of the algebraic nonlinear system of equations.—The
set of nonlinear equations is solved by the Newton-Raphson scheme.
Both, the primary variables and the residuals are combined
into global vectors ω Φ Φ= [ ]+ + + +c, ,n n n n1

bulk
1

SCL
1

SCL
1 T and

= [ ]Φ ΦR R R R, ,c
bulk SCL SCL T. This allows defining the Newton-

Raphson scheme as
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where the inverse of the matrix
ω
∂

∂ +
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1

is of course not computed.

Instead, the system ωΔ =
ω
∂
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n 1 is solved using a linear

solver, with ω ω ωΔ = −+
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For brevity, we summarize the expressions for the single blocks of
the matrix by introducing submatrices Ψ Ψ

ΩK ,1 2
.

Incorporation of the coupling by constraint enforcement.—In
Fig. 2 we show the discrete coupling scheme between the bulk
domain and the SCL domain. The bulk domain Ωbulk is discretized
with standard finite elements for three-dimensional spaces, meaning
hexahedrals or tetrahedrals. By their choice, the surface discretiza-
tion of the interface Γ -SCL bulk is determined, namely by quadrilaterals

Figure 2. Schematic sketch of the discrete coupling between the two
domains with different dimensions of space.

Figure 3. Projected one-dimensional discretization on the two-dimensional
interface. Scaling of the equations in the SCL domain with the projected area
Ai guarantees the conservation properties across the interface Γ -SCL bulk .
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and triangulars. We connect the nodes on Γ -SCL bulk and Γ -SCL ed by
introducing a one-dimensional discretization consisting of line
elements to discretize ΩSCL. The mesh of the one-dimensional
discretization can be much finer compared to the three-dimensional
mesh in Ωbulk .

The coupling conditions derived before will now be imposed on
the linear system of equations to couple the three-dimensional
discretization in Ωbulk with the one-dimensional discretization in
ΩSCL. At first, we consider the requirement of conservation across
the coupling interface. Therefore, we assign an area Ai to each one-
dimensional SCL discretization to extend the discretization to all
three dimensions of space (see Fig. 3) which is consistent with the
chosen linear shape functions and could be extended to higher-order
shape functions. For the linear shape functions, this corresponds to a
piecewise constant behavior of the SCL domain in the tangential
direction of the interface Γ -SCL bulk. Subsequently, we scale both the
residual RSCL and the linearization matrix KSCL of the SCL domain
with the projected areas Ai. We organize the projected areas Ai in a
vector and evaluate them by integrating the shape functions at the
interface over the constant value one:  ∫= Γ

Γ
A Ndele

coup,ele
, with

the assembly operatorele. This results in =Ψ ΨR R A.SCL,coup SCL

and =Ψ Ψ Ψ ΨK K A.,
SCL,coup

,
SCL

1 2 1 2
, with “.” denoting the operator for row-

wise multiplication.
Now, we can enforce the requirement of continuity between the

bulk domain and the SCL domain. This is achieved by (a) splitting
the primary variables into coupled variables Ψcoup and interior
variables Ψi, (b) further subdividing the coupled variables in
accordance with conventions into “slave” on the SCL side and
“master” on the bulk side, labeled with “s” and “m” respectively, (c)
introducing Lagrangian multipliers to enforce the constraint of
continuity Ψ Ψ=bulk SCL at Γ -SCL bulk , and (d) applying a condensation
scheme to remove the Lagrangian multipliers as well as the slave-
side interface variables from the system of equations defining the
final linear system of equations
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Solution of the linearized system of equations.—Within this
work, we choose a monolithic coupling scheme to solve the outlined
linear system of equations where equations from the bulk domain
and the SCL domain are coupled. As shown elsewhere (e.g. in Ref.
38 for n-field problems or in Ref. 39 for electrochemical problems),
the monolithic solution approach is seen as superior considering
robustness and often also with respect to efficiency compared to
other schemes like partitioned coupling or sub-cycling for various
types of applications. The most prominent drawback of the mono-
lithic coupling approach is, that the underlying matrix is comparably
ill-conditioned. This is caused by additional entries in the matrix that
are far away from the main diagonal, and entries with different
orders of magnitude originating from the different domains, dimen-
sions, and discretization coarseness that are coupled. Thus, standard

Table I. Material parameters of LLTO, initial and boundary conditions, and natural constants for all simulations.

Quantity Symbol Value Source

ionic conductivity σ 0.02 S

m
Ref. 42

maximal concentration cmax 14 214 mol

m3
calculated

bulk concentration cbulk 9 476 mol

m3
calculated

lower bound of bulk concentration =c c0.999bulk,min bulk 9 466.5 mol

m3
defined

upper bound of bulk concentration =c c1.001bulk,max bulk 9 485.5 mol

m3
defined

tolerance of concentration ϵc −10 4 mol

m3
defined

susceptibility in SCLs χ 105 Ref. 43

difference in partial molar volume ν ν νΔ = −+ v 0 Ref. 35
transference number of cations +t 1 defined
charge number z 1 Ref. 36
average molar mass M 0.168822 kg

mol
calculated in Ref. 36

average mass density ρ 4 000 kg

m3
Ref. 44

initial concentration c0 9 476mol

m3
equals cbulk

difference in potential ΔΦ 2V defined, as in Ref. 36
temperature T 298K defined, as in Ref. 36

dielectric permittivity of vacuum ϵ0 · −8.85 10 12 F

m
defined, as in Ref. 36

Faraday constant F ·9.65 104 C

mol
defined, as in Ref. 36

universal gas constant R 8.314 J

molK
defined, as in Ref. 36
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iterative solvers that are required to solve realistic microstructures
with a large number of unknowns, are not applicable anymore and
tailored preconditioners are required. We choose a combined Block-
Gauß-Seidel and Algebraic-Multigrid preconditioner as outlined in
Ref. 40. The core idea is to split the full linear system of equations
into subblocks, that are physically meaningful, e.g. geometric
domains or types of primary variables, and apply a Block-Gauß-
Seidel scheme on these blocks. This already improves the condition
of the subblocks compared to the full system of equations.
Additionally, we perform a prescaling of the rows and the columns
of the subblocks to further improve the condition of the subblocks.
Finally, we apply an Algebraic-Multigrid preconditioner to the
subblocks on the main diagonal within the Block-Gauß-Seidel
iteration.

Results

The results presented in this Section are computed with BACI,41

our in-house multi-physics research code. We begin with approx-
imating an optimal length and discretization size for the SCL
domain, validating the proposed model, and conclude with showing
the applicability of the model to realistic microstructures.

Materials.—The idea of this paper is not to investigate the
behavior of the SCL for different materials and conditions. Instead,
we want to analyze the proposed model in more detail. Hence, we
restrict ourselves to one set of material parameters (for lithium
lanthanum titanate - LLTO) throughout this work if not explicitly
stated to be different. All relevant material parameters, initial
conditions, and physical constants are chosen as in Ref. 36 and are
listed in Table I.

Two characteristic values to quantify an SCL.—We compute
two characteristic quantities to quantify SCLs: the spatial
thickness ( )xdSCL and the integrated free chargeQSCL. By using
fixed values for cbulk,min and cbulk,max we can define the thickness of
the SCL by

⎧
⎨⎩

[ ]ξ
ξ
ξ( ) = ( )

( ( ( )) > ) <
( ( ( )) < ) 34x x

x
x

d
c c c c

c c
where

argmin if

argmin else
.

x
SCL

bulk,min bulk

bulk,ma

The integrated deviation from the neutrally charged stateQSCL is
computed as the integrated difference of the concentration c from the
bulk concentration cbulk scaled by the charge number z and
Faraday’s constant F to obtain a charge

∫= ( ( ) − ) Ω [ ]
Ω

xQ zF c c d , 35SCL bulk
SCL

where ΩSCL can be divided into the part at the anode ΩSCL,a and at
the cathode ΩSCL,c, and subsequently the integrated valuesQSCL,a

andQSCL,c, respectively. From the conservation of mass and charge
we know, that a consistent formulation needs to
fulfill + = = ∀Q Q Q t0SCL,a SCL,c SCL .

Suitable representation of the SCL domain.—We estimate the
optimal length and discretization size for the SCL domain within the
coupled model based on simulations with a one-dimensional model
as outlined before and the parameters from Table I.

Optimal length of the SCL domain.—While the geometric
representation of the bulk domain Ωbulk is already defined by the
problem statement, the extension lSCL of the SCL domain ΩSCL has
to be determined for the proposed coupling approach. We select it
based on the following two criteria to minimize the approximation
errors defined before:

1. The length of the SCL domain lSCL must be large enough to
enable the complete formation of SCLs at interfaces of the
electrodes with the solid electrolyte Γ -SCL bulk . This can be
expressed in the requirement of vanishing gradients of the
concentration ξ∇ ( = ) = ∀c l t0SCL in ΩSCL in accordance with
Eq. 9.

2. The length of the SCL domain lSCL must be as small as possible
to minimize the geometric error and the compatibility error.
We combine two findings established in the literature to
estimate a value of lSCL:

1. The ratio l

l
SCL

SE
is proportional to a non-dimensional length scale

λ, which is similar to the Debye-length of double layers in liquid
electrolytes35 and defined as

λ ϵ
ρ

= [ ]k T M

e l
, 36B

0
2

SE
2

with Boltzmann constant kB, elementary charge e0, molar mass M ,
and mass density ρ. Smaller values of λ correspond to thinner SCLs
if identical boundary conditions are applied.18 From this parameter,
we deduce, that ∝l TSCL .
2. At the low-temperature limit, i.e. →T 0K , the spatial extensions

lSCL,c and lSCL,a of one-dimensional SCLs can be expressed
analytically36 as

ϵ= ΔΦ
( + )( )

[ ]− −

+ − − − −
l

F

z c

z c z c z c

2
, 37SCL,c

max

= −
+

= · [ ]−

+ −
−

l
z

z z
l f l . 38c

c

SCL,a c sym cmax

Both, lSCL,c and lSCL,a are proportional to the square root of the

applied difference in electric potential ∝ ΔΦl l,SCL,c SCL,a .
Depending on the ratio −c

cmax
, the respective lengths can significantly

differ. Therefore, we introduce a symmetry factor fsym to quantita-
tively capture this asymmetry. For the material parameters used in

this work, the symmetry factor is computed as =fsym
3

2
, such that

>l lSCL,a SCL,c.
Now, we can estimate the length of the SCL by the following ansatz

* (ΔΦ ) = ( + )· [ ]l T k k T l, , 39SCL,c,a 0 1 SCL,c,a

with the unknown constants k0 and k1. By performing one-dimen-
sional simulations with different values for ΔΦ T, , and blocking
electrode conditions, we can compute k0 and k1. Additionally, we
introduce a safety factor ζ to cover the impact of complex three-
dimensional microstructures which cannot be considered in this
estimate and define

* *ζ= · { } [ ]l l lmax , . 40c aSCL

For the aforementioned material parameters, and a safety factor
of ζ = 2 we get μ=l 0.4 mSCL . We use this value throughout the
remainder of this work.

We verify our choice of lSCL by considering an extreme case
where the entire difference in electric potential occurs inside one
SCL. Therefore, the conditions for blocking electrodes are applied,
and additionally, the concentration is fixed on one side of the domain

ξ( = ) =c l cSCL bulk to obtain a single-sided SCL. The result for this
setup is shown in Fig. 4a. It can be seen, that the gradients of the
concentration vanish for ξ μ> 0.2 m, such that μ=l 0.4 mSCL is a
sufficiently large choice. This estimated size is in good agreement
with measurements, e.g. μ= [ ]d 0.2; 0.3 mSCL .17
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Optimal discretization size of the SCL domain.—While the length
of the SCL domain is obtained based on the maximal expected size
of the SCL, the discretization size is determined by the minimal
expected size of the SCL to resolve the change in gradients there.
Thus, we perform a spatial convergence analysis by comparing the
stored chargeQSCL inside the smaller SCL for different sizes of the
discretization. We conduct the simulation for

= { }n 40, 80, 160, 320ele and choose =n 2 560ele as the reference
solution. Thus, the reference discretization has four times the nodes
of the finest discretization in the convergence study. Again, we
investigate a single-sided SCL. Figure 4b illustrates that for the used
material parameters and boundary conditions approximately 300
nodes are required to obtain a relative error below 0.1% which is
considered as very small. We emphasize, that the required number of
nodes per lSCL is a function of the symmetry factor fsym. In general,
higher values of fsym increase the computational effort, as it leads to

a larger length lSCL and requires a finer discretization.

Validation of the outlined model.—Different strategies are
followed to validate the outlined model: Solving a pseudo one-
dimensional problem, testing for conservation properties, and
comparing the results with those obtained by a fully resolved model.

Validation of the coupled three-dimensional model as pseudo
one-dimensional model.—We compare the results of our coupled
model that combines one- and three-dimensional discretizations
(“coupled SCL model”) with the result of a pure one-dimensional
model as shown before (“pure SCL model”). For comparison, the x-
dimension of the coupled approach matches exactly the length of the
pure one-dimensional model =l l Dcoup 1 . The length of the coupled
problem is = +l l l2coup coup,SCL coup,bulk (see Fig. 5). The other two
dimensions in the coupled SCL model are chosen such that a
reasonable aspect ratio of the three-dimensional domain is main-
tained. The three-dimensional domain of the coupled SCL model is
discretized using two equal-sized hexahedral elements with linear
shape functions, while the one-dimensional domain of the coupled
SCL model consists of 2400 line elements with linear shape
functions, meaning 300 nodes in each SCL discretization. The
pure SCL model is discretized with 1800 line elements, such that
the discretization inside the SCL domain is identical for both
models.

We prescribe a scenario with blocking electrodes: A difference in
potential ΔΦ is applied to both ends of the domain, while the flux of
mass outside of the considered domain is prohibited. All relevant
parameters are summarized in Table II. In Fig. 6a we compare the
results of the concentration and in Fig. 6b the electric potential from
the pure SCL model with the results from the coupled SCL model
for different points in time.

The results computed with the two models are in very good
agreement. Even in regions where the curvature of both the
concentration and the electric potential, changes most (see zooms)
the deviation is negligible.

Analyzing the results of the pure one-dimensional model allows
quantifying the approximation error labeled as “model error”. In
Fig. 7, it can be seen that the concentration inside the bulk domain is
very close to the bulk concentration cbulk throughout the entire
simulation time. This shows that the only assumption in the
derivation for the equations of the bulk domain, namely that the
concentration remains at the fixed value cbulk , is justified.

Besides, we want to quantify the approximation error, which we
labeled “geometric error” by modifying the dimensions ofΩbulk . As
shown in Fig. 6b, most of the potential drop occurs inside the SCLs
except for the first instances of time. This already shows that the
influence of a slightly larger domain has a negligible influence on the
global shape of the potential and the concentration. To investigate
this in more detail, we choose =l lcoup,bulk 1D and keep the size of the
SCL domain untouched, such that >l lcoup 1D. In Fig. 8 we compare
the results of the matching geometric size with the results of the

Figure 4. Determining the optimal length and discretization size for the SCL domain. (a) Concentration and gradient of the concentration show that
μ=l 0.4 mSCL is a good choice for the length of the SCL domain for the used material parameters and boundary conditions. (b) Relative error of integrated charge

QSCL in the steady state for the used material parameters and boundary conditions.

Figure 5. Schematic sketch of the computational domain for comparison of
the coupled three-dimensional model and the one-dimensional model.
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enlarged geometry by zooming into the plot of the concentration
(Fig. 8a) and the electric potential (Fig. 8b) at the SCL on the left
side of the domain.

As expected, we introduce an error in the shape of the electric
potential that decreases toward the steady state, while the error in the
concentration in the bulk is negligible. However, in this academic
example, we triggered the geometric error on purpose to show its
influence but want to emphasize, that here ≪l lSCL SE is not valid
anymore.

Validation of conservation properties.—For the validation of
conservation properties, we use a geometry, that is not pseudo-one-
dimensional but still as simple as possible (see Fig. 9). It consists of
one spherical particle embedded into the bulk solid electrolyte
representing the cathode (e.g. NMC). The anode is represented by
a planar surface (e.g. lithium metal). The size of the geometry is
reduced by making use of symmetry. All relevant parameters are
listed in Table III. Again, we apply a difference in potential ΔΦ
without any flux of mass between both electrodes to represent
blocking electrodes and observe the transient behavior until the
steady state is reached. For visualization, we take snapshots at

= { }t 0, 0.31, 0.625, 1.25, 2.5, 10.0 s to present the three-dimen-
sionally resolved development of the electric potential and of the
thickness of the SCL at Γ -SCL c over time (see Fig. 10).

It is clearly visible, that the thickness of the SCL changes over
time and also significantly varies at different spatial positions. As
expected, the electric potential converges toward a constant value in
the steady state and thus, also the thickness converges toward a
constant value as the thickness is determined by the difference in
potential across the SCL.

We expect the integrated deviation of charge from the neutrally
charged state as defined before to remain constant over time due to
the conservation of mass. For visualization, we split this integral into
one part at the anode QSCL,a and one part at the cathode QSCL,c. In

Fig. 11a we show the development of QSCL, QSCL,a , and QSCL,c over
time.

We can clearly see that QSCL,a increases, while QSCL,c decreases
over time, but their sum remains - in the expected bounds of the

Table II. Parameters for comparing results between pure and
coupled three-dimensional Space-Charge-Layer model.

Quantity Symbol Value

length of domain =l l Dcoup 1 2.4 μm

lateral length ll 0.4 μm
length of SCL domain lcoup,SCL 0.4 μm

coupled: number of elements (SCL) nele, SCL 2 400
coupled: number of elements (bulk) nele,bulk 2
pure: number of elements nele, 1D 1 800
time step size Δt 1 ms

total time tmax 1 s

Figure 6. Comparison of concentration and electric potential for the pure SCL model (crosses) and the coupled SCL model (solid lines). The different time steps
are assigned to the lines by color codes. The small figures inside the plots represent zooms into the SCL domains at the right side with a finer resolution of the
crosses. Note, that the crosses do not represent the spatial discretization.

Figure 7. Zoom to concentration in the bulk domain computed with the pure
one-dimensional model at different time steps approximately equals the bulk
concentration (red line) inside the bulk domain. The vertical lines separate
the bulk domain from the SCL domain.
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numerical accuracy - constant. This shows that our formulation
guarantees conservation properties.

From this geometrically simple example, we can derive further
insights beyond the proof of conservation properties considering the
development of the thickness of the SCL, which strongly differs

depending on its local position. While the thickness of the SCL on
Γ -SCL c close to the anode develops instantly, the SCL on the opposite
side on Γ -SCL c develops much slower. In Fig. 11b we compare the
minimal thickness = ( )d dminSCL,c,min SCL,c and the maximal thick-
ness = ( )d dmaxSCL,c,max SCL,c,max of the SCL at the interface to the
cathode. The minimal thickness converges monotonically toward the
steady state, while the maximal thickness rapidly increases to a
value, that is larger than the final value at the steady state and
eventually decreases again toward the thickness at the steady state.
This unintuitive behavior can be explained by investigating the
impedance between both electrodes (see Fig. 10). The total

Figure 8. Comparison of concentration and electric potential for the matching geometry (dashed lines) and the enlarged geometry (solid lines). The different
time steps are assigned to the lines by color codes.

Figure 9. Geometric representation of the geometry for validation of
conservation properties.

Table III. Parameters for testing conservation properties.

Quantity Symbol Value

length of domain l 3 μm
diameter of sphere d 2 μm
lateral length ll 0.97 μm
length separator ls 1 μm
length of SCL domain lcoup,SCL 0.4 μm

number of nodes bulk nbulk 2 384
number of nodes SCL nSCL 103 500
time step size Δt 5 ms

total time tmax 10 s

Figure 10. Temporal development of electric potential and thickness of SCL
from the initial state to the steady state (top to bottom). The locations where
the minimal and maximal thickness of the SCL occurs are highlighted with
an orange dot.
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impedance is composed of the sum of the impedance in the bulk and
in the SCL and its minimal value defines the favored conduction
path. The impedance in the bulk electrolyte scales with the length
through the electrolyte. The impedance in the SCL increases with
increased stored charge. During the transient phase, the minimal
total impedance continuously changes, as the impedance from the
SCL changes due to more stored charge. Thus, the favored
conduction path changes to regions with more contributions from
the impedance of the bulk. This can be observed in the electric
potential inside the bulk electrolyte which at the beginning features a
gradient only between the anode and regions on Γ -SCL c closest to the
anode. Later, the gradient is visible inside the entire bulk domain,
before it vanishes completely in the steady state.

Additionally, we observe in the steady state that the electric
potential in the bulk domain differs from the electric potential in the
pseudo one-dimensional case computed in the examples before. This
is caused by the different areas of the interfaces with the anode and
the cathode, respectively. As shown before, the total charge within
both SCLs sum up to zero, but due to the different interface areas,
the local charge density is different, and thus, the entire shape of the
SCL. Again, this highlights the necessity to three-dimensionally
resolve SCLs.

Comparison of the solution without simplification assumptions.—
For further validation of the proposed model, we compare the
solution computed with the proposed model with the solution
computed with a model without further assumptions, i.e. solving
the non-reduced equations in all three dimensions of space. The
geometry for both models is shown in Fig. 12 and the respective
parameters are summarized in Table IV. The geometric dimensions
are chosen such that the domain of the coupled model including both
the bulk domain and the SCL domain equals the domain of the
model without assumptions. The electrode is represented by a
cylinder. To reduce the computational effort of the models, we
design the problem as two-dimensional, with constant thickness in
the third dimension of space. Additionally, we set the concentration
at the right boundary to cbulk to obtain a single-sided SCL at the
cylindrical electrode. Thus, we need a strong refinement of the mesh

only at the cylindrical electrode. In contrast to the examples before,
we choose the difference in electric potential to ΔΦ = 0.1V to
reduce the size of the SCL, which is evaluated according to Eq. 40 to

μ≈l 0.1 mSCL . The difference in electric potential is applied between
the cylindrical electrode and the right boundary.

First, we want to justify the assumption, that the main effects inside
the SCL are one-dimensional and thus estimate the compatibility error.
Therefore, we visualize the gradient of the electric potential computed

Figure 11. Results for the validation of conservation properties. (a) Temporal development of the integrated deviation of the charge from the charge-neutral state
for the SCL at the anode, at the cathode, and their sum. (b) Temporal development of minimal and maximal thickness of SCLs at the spherical electrode.

Figure 12. Geometric representation of the coupled model (top) and the
model without assumptions (bottom).
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with the model without assumptions (see Fig. 13a). It can be seen that
the gradient at the interface to the electrode is perfectly perpendicular as
expected. With increasing distance to the electrode, the direction of the
gradient begins to deviate from the perpendicular direction. This means
that the assumption, that the effects inside the SCL are mainly one-
dimensional is sufficiently satisfied, as long as the domain ΩSCL is
small enough.

By comparing the temporal development of the minimal and
maximal thickness of the SCL between the model without assump-
tions and the coupled model, we observe a good agreement. As
expected, the deviation of the minimal thickness is larger compared
to the maximal thickness. The minimal thickness occurs at the left-
most point on the cylindrical electrode where the normal vector is
perpendicular to the main direction of the gradient of the electric
potential inside the bulk domain, as cations cannot redistribute
tangentially within the SCL. Instead, they need to travel through the
bulk domain in order to move tangentially to the surface before
entering another SCL domain. Therefore, the redistribution paths are
longer compared to those in the fully resolved model. Thus, the
compatibility error is more prominent during the equilibration
process than in the steady state. There, nearly perfect alignment of
dSCL can be observed between both models, as all tangential
redistribution is accomplished.

This model allows not just the comparison of physically mean-
ingful quantities but also to compare the differences in computa-
tional efficiency. While the CPU time of the model without

assumptions was in the order of days, the coupled model was solved
within minutes.

Numerical experiment using a realistic microstructure.—
Beyond the academic examples we showed before to validate the
proposed approach, we want to apply the model to a geometrically
realistic microstructure to show its capabilities.

Geometric representation and spatial discretization.—We create
the geometric representation of the realistic microstructure using a
setup, where perfectly shaped spherical particles as the active
material of the cathode (e.g. NMC particles), and a planar foil as
the anode (e.g. lithium metal) are assumed (see Fig. 14 and Table V).
For this purpose we employed the following workflow: The domain
of the solid electrolyte is split into the separator Ωbulk, s and the part
of the solid electrolyte inside the composite cathode Ωbulk, CC. Both
domains have the same lateral length ll, while their axial length ls,
and = −l l lCC s differs. The diameter of the cathode particles

Figure 13. Results to quantify the compatibility error. (a) Electric potential (color bar) and gradient of electric potential (streamlines) in the region of the SCL in
the steady state. (b) Temporal development of the maximal and minimal thickness of the SCL computed with the model without assumptions (blue) and the
coupled model (red).

Figure 14. Dimensions of the realistic geometry.

Table IV. Parameters for comparison of the coupled model and the
model without assumptions.

Quantity Symbol Value

radius of cylinder r 0.5 μm
radius of cylinder (coupled) rc 0.6 μm
vertical edge length lv 1 μm
horizontal edge length lh 2 μm
length of SCL domain (coupled) lSCL 0.1 μm
number of nodes n 150 650
number of nodes (coupled, total) nc 13 136
time step size Δt 0.2 s
total time tmax 200 s
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follows a log-normal distribution with mean μ and variance σ2. We
create as many particles following the log-normal distribution as
needed to satisfy a given volumetric ratio r of the active material and
the solid electrolyte. The position of the center points of the particles
is computed using a simulation with the discrete element method to
obtain a spatially realistic distribution of the particles. Consequently,
the SCL domain is defined on that surface Ω = Γ ×- lSCL SCL bulk SCL.

The interface of the solid electrolyte and the cathode is on the
surface of the spheres, and the interface of the solid electrolyte and
the anode is the planar surface at the bottom of Fig. 14. We
discretize the geometry using tetrahedral elements with the meshing
tool Coreform Cubit 2021.3. The interface nodes of the bulk solid
electrolyte domain and of the electrode domain are connected with
line elements representing the SCL domain.

Figure 15. Temporal development of the thickness of the SCL at the cathode. (a) Propagation of the thickness of the SCL through the geometrically resolved
microstructure at the beginning of the formation process at = { }t 0.25, 1, 2, 5 s. (b) Equalization of the SCL thickness towards the steady state at

= { }t 8.25, 35.25, 65.25, 491.25 s. (c) Temporal development of maximal and minimal thickness of SCL. The subfigure represents a zoom into the
interval = [ ]t 0; 4 s.
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Results.—A difference in electric potential between both elec-
trodes is applied. We set the electric potential at the anode to
Φ = 0Va and at the cathode to Φ = 2Vc . Again, we want to study
the transient behavior until the steady state is reached, such that we
choose a total simulation time of 500 s.

At first, we analyze the thickness of the SCL dSCL by plotting it in
the three-dimensional geometric representation (see Fig. 15a) during
its initial development at = { }t 0.25, 1, 2, 5 s. For visualization, we
disable the colorful representation if the thickness is below a
threshold ( ) <xd 1nmSCL and otherwise assign a linear color bar
to the thickness. This representation indicates the non-uniformness
of the development of the thickness of the SCL: The dominating
trend is comparable to the simplified examples we showed before,
namely a propagation through the composite cathode beginning at
the points closest to the anode. Due to the geometric complexity of
the resolved microstructure, also an inhomogeneous behavior in the
lateral plane is observable, which we want to discuss in more detail.
The inhomogeneity can be explained by optimal percolation paths.
The percolation path in the bulk is now not just defined by the
theoretically shortest distance to the anode, but also by geometric
obstacles increasing the percolation path, namely the active material
particles. Obviously, these obstacles differ in the lateral plane and
thus, explain the lateral inhomogeneity of ΦSCL. We observe that the

SCL has already further developed where only very few active
material particles are on the percolation path.

After an SCL has developed everywhere, a convergence toward
an equal-sized thickness is observable. Again, we identify some
areas close to the anode where a decrease in thickness occurs, such
that the largest thickness is not present in the steady state, but after
some instances of time. Figure 15b shows the thickness of the SCL
at = { }t 8.25, 35.25, 65.25, 491.25 s.

The observed inhomogeneous development of the thickness of
the SCL can further be expressed in terms of maximal and minimal
thicknesses = ( )d dminSCL,c,min SCL,c and = ( )d dmaxSCL,c,max SCL,c ,
respectively (see Fig. 15c). While the maximal value of the thickness
is reached within the first instances of time, the SCL at other
positions has not yet developed at all.

As the dominating trend of all quantities is one-dimensional, we
define laterally averaged quantities as

∫ ∫

∫ ∫
Ψ̄( ) =

Ψ( )
[ ]x

x y z z y

z y

, , d d

d d
. 41

y z

y z

In Fig. 16a we show the development of the laterally averaged
thickness of the SCL at the cathode ¯ ( )d xSCL as a function of the axial

Figure 16. Laterally averaged quantities. (a) Temporal development of the laterally averaged thickness of the SCL along the axial coordinate x . (b) Temporal
development of the laterally averaged potential of the solid electrolyte along the axial coordinate x .

Table V. Parameters for the simulation of the realistic geometry.

Quantity Symbol Value

length of domain l 70 μm
length of solid electrolyte separator ls 17 μm
lateral length ll 45 μm
log-normal distribution of diameter of cathode particles μ 1.8189

σ 0.4589
volumetric ratio of AM and SE in composite cathode r 0.502
length of SCL domain lSCL 0.15 μm

number of nodes in bulk domain nbulk 130 211
number of nodes in SCL domain nSCL 5 998 200
size of time step Δt { <t50 ms if 5 s

300 ms else

total time tmax 500 s
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position x. At =x xmax the anode is nearest, while at =x 0 the
distance to the anode is greatest. The different lines represent
different points in time. Again, we see, the thickness developing
through the solid electrolyte and converging toward a constant value
at the steady state. Additionally, we observe the influence of the
heterogenous geometry by the kink and almost horizontal line at

μ≈x 20 m. We would expect a smooth slope of the averaged
thickness if the lateral dimensions would converge toward infinity.
However, due to the finite length of the lateral dimension, the lateral
planes geometrically differ from each other in a statistical sense and
geometric inhomogeneities become visible. This is in good agree-
ment with the observations in Fig. 15a, where an elongated
percolation path is visible at the same location where the slope has
the prominent kink in Fig. 16a.

Finally, we want to investigate the influence of the SCL on the
bulk domain of the solid electrolyte by analyzing the laterally
averaged electric potential Φ̄( )x and plotting it over the axial
direction (see Fig. 16b). The lines depict different points in time.
At the beginning of the formation of the SCLs, we see that there is
only a gradient in electric potential in regions close to =x xmax, such
that only there a development of the SCL is present. During the
transient development, the SCL in the vicinity of =x xmax is nearly
fully charged, such that the optimal percolation paths change toward
regions at =x 0 until the electric potential has converged to a
constant value in the steady state. Again, the electric potential is
different from the potential computed in the examples before due to
different interface areas at the anode and at the cathode side, as
already discussed before.

Conclusions

We propose a novel approach to incorporate the effect of SCLs
spatially resolved into a continuum model for all-solid-state bat-
teries. To our knowledge, this is the first work reporting an approach
to model the formation of SCLs in geometrically complex resolved
microstructures by overcoming the computational limitations hin-
dering the solution of fully resolved SCLs so far. The governing
equations are already established in the literature35,36 and are
thermodynamically consistently derived ensuring a positive produc-
tion rate of entropy. Our approach is motivated by the dominating
one-dimensional nature of SCLs as we have shown in this work. We
divide the domain of the solid electrolyte into a domain that is close
to the electrodes and the remaining domain. Inside the first domain,
the partial differential equations are treated as one-dimensional
while in the latter, we model them in three dimensions of space. This
is advantageous, as a fine discretization, which is required in regions
where SCLs develop, is now only required in one dimension of
space. This significantly reduces the size of the used mesh and thus,
enables a solution of the effects in SCLs even in complex and
realistic cases. Furthermore, we assume that the cation concentration
in the domain outside of the SCL region remains constant and
subsequently simplify the equations inside this domain. Obviously,
the proposed modeling approach introduces approximations into the
system. We systematically determine, analyze, and quantify these
approximations and show conservation properties of the model.
Finally, we present the applicability of our model to realistic
microstructures. Beyond the existing knowledge on the temporal
development of SCLs in a one-dimensional setup, we observe a
strong influence of the geometric inhomogeneity, like non-mono-
tonic development of the thickness of the SCL or the inhomogeneous
convergence of the electric potential toward the steady state.

The outlined model can in principle be applied to the case
including mass transfer across the interface between electrode and
electrolyte. However, a thermodynamically consistent model for the
underlying kinetics is not yet known to the authors so far. Geometric
variations like incorporating grain boundaries, as well as a sys-
tematic variation of the material parameters, are easily viable with
the proposed model and should be the subject of future studies.
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Appendix A. Summary of A Thermodynamically Consistent
Model for Solid Electrolytes Including SCLs

We recall an approach to model solid electrolytes including SCLs
as already derived in Refs. 35, 36 and define a consistent set of
boundary and initial conditions.

Governing equations.—We will only summarize the underlying
assumptions for the model of SCLs and summarize the resulting
equations. For a more thorough derivation, we refer to recent work.36

For the derivations of the set of equations, the continuum
approach is followed. Only one species of cations (subscript+) is
assumed as a mobile charge carrier within a stationary anion
(subscript−) lattice. This corresponds to a transference number +t
of one and is a valid assumption for various commonly used solid
electrolyte materials.30 We refer to the cation concentration as +c ,
with ∈ ] [+ +c c0, ,max . The motion of the cations is expressed by the
flux vector +N . Thus, the conservation of cations is ensured by

∂
∂

+ ∇ · = [ · ]+
+N

c

t
0. A 1

The free charge qF reflects the sum of all charged species and is
calculated as the sum of the charge induced by the anions and the
cations

∑= [ · ]q z Fc , A 2
i

i iF

with ∈ {+ −}i , , F denoting the Faraday constant, and zi repre-
senting the charge number of species i.

A spatially constant dielectric susceptibility χ can be assigned to
the polarizable background lattice by neglecting any polarization of
the cations. The local polarization density P is therefore given by

ϵ χ=P E0 . Hence, the electric potentialΦ can be calculated
depending on the free charge qF and the dielectric
permeability ϵ ϵ χ= ( + )10 as

ϵ−∇ · ( ∇Φ) = [ · ]q . A 3F

Furthermore, the conservation of charge is decoupled from the
conservation of mass and represents another independent equation.
Both the free charge density qF and the bound charge density

= −∇⋅ PqB , which is the source of the local polarization, contribute
to the total charge density q, i.e. = +q q qF B. Each of these
quantities are conserved, which allows formulating the conservation
of qF and qB

∂
∂

+ ∇ · = [ · ]i
q

t
0. A 4F,B

F,B

The charge transfer inside the solid electrolyte is not just caused by a
free current iF due to the redistribution of cations. Likewise, a
polarization current iB related to the transport of qB contributes to the
total current density = +i i iF B. Thereby, the current of free charge

is derived as ∑=i Nz F
i

i iF , with =−N 0 due to the fixed anion

lattice. From Eq. A·4 and the definition of qB it follows

that
ϵ χ= ∂

∂
= ∂( )

∂
i

P E
t t

B
0 , with = −∇ΦE . Finally, the conservation
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of the total charge
∂
∂

+ ∇ · =i
q

t
0 reads

⎛
⎝

⎞
⎠

ϵ χ∂
∂

+ ∇ · − ∂∇Φ
∂

= [ · ]+ +N
q

t
z F

t
0. A 50

Additionally, the conservation of linear momentum has to be
satisfied. Changes of the linear momentum are caused by pressure
gradients ∇p and electromagnetic forces EqF and could be
incorporated into a coupled electro-chemo-mechanics model for
all-solid-state batteries as introduced in Ref. 45. However, time-
scale considerations35 suggest that inertial forces have a negli-
gible impact compared to the remaining forces, which allows
stating the conservation of linear momentum as

∇ = − ∇Φ [ · ]p q , A 6F

such that the mechanical pressure p can be post-processed. In
order to close the system of equations, a constitutive law for the
flux of cations, +N has to be specified. An approach based on the
free energy guarantees a positive entropy production
rate ̇ ( ) >xs t, 0gen to derive a linear relation between the gradients
∇ +c , ∇Φ, and ∇p and the flux of cations, +N . By making use of the
relation between ∇p and ∇Φ in Eq. A·6, +N can be formulated,
such that +N solely depends on ∇ +c and ∇Φ, the respective
diffusion coefficient +D , and the ionic conductivity σ . Both
material parameters are a function of the cation concentration
and the mobility factor++ (see Ref. 35)

σ ν= ( ) ( − ( − ) Δ ) [ · ]+ ++ + +z F c c c1 , A 72
max

=
( − )

[ · ]+ ++
+ +

D RT
c

c c c
, A 8max

max

with νΔ the difference in partial molar volumes of cations and cation
sites, T the temperature, and R the universal gas constant. For the
evaluation of the diffusion coefficient, we assume = ϵ+ +c c , , if

< ϵ+ +c c , , and = − ϵ+ +c c cmax , , if > − ϵ+ +c c cmax , with small
values for ϵ+c , to avoid divisions by zero during the nonlinear
solution scheme. Finally, we summarize the system of equations

∂
∂

+ ∇⋅ = Ω [ · ]+
+N

c

t
0 in , A 9SE

⎛
⎝

⎞
⎠

ϵ χ∂
∂

+ ∇ · − ∂∇Φ
∂

= Ω [ · ]+ +N
q

t
z F

t
0 in , A 100 SE

ϵ−∇ · ( ∇Φ) = Ω [ · ]q in , A 11F SE

σ= − ∇ − ∇Φ Ω [ · ]+ + +
+

N D c
z F

in . A 12SE

Appendix B. List of Symbols

The list of symbols does not include symbols with only a local
scope.

Geometric quantities.—
dSCLthickness of SCL
li length of domain i
n unit normal vector
x spatial coordiante
Γ−i j intersection of domains i and j

Ωi domain i
ξ ( )x natural coordinate of SCL domain

Constants.—
F Faraday constant
R universal gas constant
kBBoltzmann constant
ϵ0 dielectric permeability of vacuum

Model parameters.—

∗c concentration of species ∗ or identifier ∗
+D diffusion coefficient of cations

E electric field
i flux of charge
iF,B flux of free / bound charge

Ψ ΨK i
,1 2

derivative of residual of quantity Ψ1 w.r.t. quantity Ψ2 in domain i

+N flux of cations
P polarization density
p pressure
QSCL total charge in SCL
q total charge density
qF,B free / bound charge density

ΨR i residual of quantity Ψ in domain i

̇sgen production rate of entropy
T temperature
t time
∗t transference number of species ∗
∗z charge of species ∗

χ dielectric susceptibility
ϵ dielectric permeability
Φ electric potential

ΨΨ, exemplary quantity
νΔ difference in partial molar volumes

σ ionic conductivity
ρ mass density
++ mobility factor
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