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Abstract
In automated lane-free traffic, vehicles can choose any arbitrary lateral location. This enables vehicle flocking where, com-
pared to platooning, the grouping of vehicles is possible with smaller space gaps, not only longitudinally but also laterally.
Vehicle flocking can fulfill several purposes, such as increasing the road capacity, saving energy by reducing the aerodynamic
drag force, and dampening shockwaves. Within this paper, we develop a control framework for modeling vehicle flocks in
automated lane-free traffic. The proposed control algorithm considers two types of agents: a -agents representing potential
flock mates and a g -agent representing the virtual leader with collective objectives (e.g., slowing down in the case of traffic
congestion ahead). Our algorithm is based on energy functions for flock centering and collision avoidance, a consensus algo-
rithm for velocity matching, and navigational feedback exerted by the virtual leader. The virtual leader’s path, which should be
followed by the flock, is defined in an upper-level controller. In addition, a feedback algorithm for dynamic road boundary
control is implemented. We simulate the proposed approach with very promising results. We show that vehicle flocks are
efficiently formed within a few seconds, speeds are successfully aligned, and vehicle arrangements stay stable under different
scenarios. In addition, the lateral and longitudinal flock extension changes with different energy functions and changing road
boundaries, and vehicle flocks follow the trajectory of the virtual leader. Most importantly, vehicle flocks stay stable in the
case of perturbations and the induced shock is dampened efficiently because of slight changes in the vehicles’ lateral
locations.
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The transportation sector in the 21st century faces enor-
mous challenges. The rise in vehicle miles traveled on lim-
ited, costly transportation infrastructure leads to massive
traffic congestion, causing environmental and economic
damages and reduced traffic safety. The emergence and
advancement of connected and automated vehicles
(CAVs) equipped with highly precise sensors and smart
technologies for fast and reliable vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication offers
the possibility to develop new road management strate-
gies. CAVs are able to make fast decisions based on con-
trol strategies to avoid collisions, efficiently move
forward, and also cooperate with other vehicles. In free-
way traffic, for example, CAV platoons can be formed
that drive with a very short headway, resulting in fuel
saving and increased highway capacity (1). While the pla-
toon speeds of human-driven vehicles will depend on the

speed of the front vehicle, CAV platoons can agree on a
common desired speed or follow external recommenda-
tions (2). If receiving further information, platoons can
optimally plan their trajectories, for example, to
smoothly decelerate when downstream congestion is
detected (3) or to minimize fuel consumption based on a
given road inclination (2). However, the benefits only
apply to the vehicles in one specific lane and long pla-
toons can hinder other vehicles from performing lane
changes or even entering or leaving the freeway (4).
Considering that CAVs cannot only cooperate with
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vehicles in front or behind them but also with all sur-
rounding vehicles, lane changes can be performed coop-
eratively and, eventually, the sheer need for fixed vehicle
lanes can be questioned in the case of a fully connected
and automated environment. Vehicle lanes were intro-
duced as essential instruments for simplifying driving
tasks for human drivers and increasing traffic safety
when automobiles prevailed as an important means of
transport with higher speeds in the 20th century.
However, as stated by Papageorgiou et al. (5), this hap-
pened at the expense of road capacity, as lanes reduce the
lateral static occupancy on motorways by almost 50%.
Additional dynamic capacity loss is caused by lane-
changing maneuvers. Papageorgiou et al. (5) introduced
a novel paradigm for freeway traffic in which vehicles are
not limited to traffic lanes but rather can use the entire
road width, allowing for an increase in the efficiency of
traffic operations. Recent evaluations demonstrate a
great potential for increasing road capacity in a fully
automated lane-free environment (6). The positive
impacts could further be increased by traffic management
strategies that support the formation of groups of vehi-
cles with certain headways and speeds.

Since lanes no longer exist in the assumed lane-free
traffic environment, flocking will be developed as a gen-
eralization of platooning. Flocking is considered a novel
approach for grouping vehicles not only longitudinally,
but also laterally (Figure 1a shows an example). It is
inspired by flocking phenomena observed in nature (e.g.,
from birds and fish) and can fulfill several purposes, such
as increasing the road capacity, saving energy by reduc-
ing the drag force, sharing resources (e.g., electric

charging, internet), and playing the role of a traffic con-
trol measure. This paper builds on previous publications
by Berahman et al. (6) and Rostami-Shahrbabaki et al.
(7) and extends the existing concepts by introducing a
new flock management layer that allows for achieving
certain vehicle headways, flock speeds, and lateral distri-
butions of vehicles on the road. Potential use cases of
such a flock management are shown in Figure 1b. They
include variable speed limits in oversaturated traffic con-
ditions, optimally navigating vehicles through curves or
construction zones, or making a flock move to the side
to let an emergency vehicle pass.

The outline of the paper is as follows: the next section
provides the background and most relevant literature
with respect to vehicular flocks. Following that, the
applied methodology is explained in detail. The simula-
tion setup that is used for the implementation and eva-
luation of the presented concept is described afterward.
The section following that discusses the results and shows
the key features of the algorithm. Finally, a conclusion
and outlook are given in the conclusion section.

Background and Literature Review

CAV Platoons

CAV platoons take advantage of fast and reliable V2V
communication and automated maneuvering to signifi-
cantly reduce vehicle headways. Several papers present
algorithms for platoon formation and analyze their
effects on individual fuel consumption as well as overall
environmental, traffic safety, and capacity benefits (8–
11). Smaller vehicle gaps are beneficial with respect to
the aerodynamic drag force and can therefore signifi-
cantly reduce fuel or energy consumption (9, 10). In
addition, freeway capacity is increased if vehicles are able
to drive at shorter distances (8). One important require-
ment for platooning algorithms is string stability, that is,
ensuring that small disturbances with the front vehicle’s
trajectory are not amplified along the vehicle string (12,
13). Platoon forming can be challenging if vehicles in the
platoon have different destinations (14).

CAV Platoons Across Multiple Lanes

Motivated by the goal of further increasing road capac-
ity, a few researchers have developed concepts for lane-
based platooning across multiple lanes. Kato et al. (15)
conducted a simulation study on cooperative driving for-
mations across multiple lanes with vehicles starting from
an initial state. Their model could handle different
events, such as splitting, merging, overtaking, and obsta-
cle avoidance. Several researchers (16–20) used ideas
from swarm robotics for developing multiple-lane pla-
tooning strategies that control each vehicle in the group

Figure 1. Examples of vehicular flocking: (a) schematic
representation of a vehicle platoon and a vehicle flock and (b)
flock management use cases.
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longitudinally and laterally. Hao et al. (21) developed a
model that manages platoons in two dimensions at signa-
lized intersections. Xu et al. (22) proposed a method for
multi-lane vehicle formation control that is combined
with a method to calculate conflict-free passing sequences
at unsignalized intersections.

Lane-Free CAV Traffic

According to Papageorgiou et al. (5), the lateral occu-
pancy in current lane-based traffic on motorways is only
slightly higher than 50% and additional capacity losses
are caused by lane-changing maneuvers. Motivated by
this fact, they introduced the novel paradigm of lane-free
vehicular traffic for CAVs: the so-called TrafficFluid
concept. It is based on the assumption that in the not-
too-far future CAVs can communicate with each other
(V2V) and with the infrastructure (V2I) precisely,
quickly, and reliably, making the need for traffic lanes as
structuring elements obsolete. The TrafficFluid concept
is based on two combined principles: ‘‘lane-free traffic’’
and ‘‘nudging.’’ Within lane-free traffic, vehicles are not
limited to traffic lanes but rather can use the entire road
width and choose any arbitrary lateral location, allowing
for an increase in the efficiency of traffic operations.
Nudging describes the effect of vehicles in front changing
their behavior as they sense the presence of other vehicles
with a higher desired speed, basically quitting the aniso-
tropy of traffic flow resulting from human drivers.

In Sekeran et al. (23), an overview of the history of
lane-free traffic is provided. Malekzadeh et al. (24, 25)
extended the TrafficFluid concept by mathematical mod-
els for real-time internal boundary control by which the
total road width is shared among the two directions in
dependence of the bi-directional demand. Thereby, the
total flow efficiency of both directions can be maximized.
Control strategies and path planning algorithms for
CAVs in the lane-free environment were designed by
Levy and Haddad (26), Karafyllis et al. (27), Yanumula
et al. (28), and Troullinos et al. (29). These strategies
avoid collisions with other vehicles, obstacles, and the
road boundary and optimize vehicle speeds. Some of
them also cover additional objectives, such as minimizing
fuel consumption or maximizing passenger comfort.
Most approaches are based on longitudinal and lateral
artificial forces/potential fields that determine the two-
dimensional vehicle acceleration. Troullinos et al. (30)
developed a simulator (TrafficFluid-Sim) for CAVs in
lane-free traffic built on the open-source traffic simula-
tion software SUMO. Using this simulator, in Rostami-
Shahrbabaki et al. (31), a so-called potential line
approach is developed by which each vehicle receives a
specific desired lateral location based on its desired
speed. This approach mimics the behavior of today’s

traffic where faster vehicles drive on the right-hand side
of the road, which leads to much higher throughput
because of the harmonized traffic movements. Berahman
et al. (6) proposed a driving strategy for CAVs in the
lane-free traffic environment combining artificial forces
and a reinforcement learning approach. An artificial
ellipsoid border is assumed around each vehicle with lat-
eral and longitudinal forces to reach closer space gaps,
supplemented by an additional longitudinal repulsive
force for avoiding longitudinal collisions. The methodol-
ogy was implemented in the SUMO traffic simulator and
promising results were shown: the maximum traffic flow
in the lane-free scenarios was about two times higher
than in lane-based traffic and the speed deviation from
the vehicles’ desired speeds at maximum flow was
around half that of the lane-based model. This shows the
great potential of lane-free traffic for increasing road
capacity.

The Concept of Flocking

According to Caruntu et al. (19), flocking is a simple
approach in which entities form large groups without
colliding, based on local interactions, to move toward a
common target. The flocking phenomenon can be
observed in nature, where some natural species, such as
birds, fish, or ants, travel as a flock, school, or herd for
various reasons: to protect themselves from the threat of
predators; to search for food; for energy efficiency; or
for social and mating activities. There is no central con-
trol unit. The complex but coordinated flock formation
and motion are merely the aggregate result of the actions
of individuals based on their local perception. In com-
parison to structured approaches where individuals fol-
low a leader with a fixed path, this is a self-organized
behavioral approach with decentralized control in which
each individual has a desired behavior. According to
Reynolds (32), flock behavior is produced by three basic,
simple rules of interaction:

1. flock centering: individuals should stay close to
other individuals in the flock;

2. collision avoidance: collisions with other flock
members have to be avoided;

3. velocity matching: individuals should travel at a
common speed.

Flocking was analyzed by numerous studies for animals
(33, 34) and chemical entities (35), and adapted to mobile
robots (36, 37), autonomous drones (38), satellites (39),
general multi-agent systems (40, 41) and more. There are
several reasons for the application of flocking within
these use cases: using space more efficiently, reducing
space gaps for resource sharing, or saving energy in
operations.

Rostami-Shahrbabaki et al 3



Most control strategies for flock formations are based
on artificial forces, consensus control, and graph theory.
The Reynolds rules can be modeled by potential fields
based on artificial forces. Attractive forces make individ-
uals join formations, while repulsive forces make them
avoid collisions with obstacles and flock mates. The indi-
viduals move along the gradient direction of the potential
fields. Within consensus control approaches, individuals
use the aggregate information from neighbors to reach a
common goal, for example, the weighted average of
speeds. Within graph theoretical approaches, vertices
represent individuals and edges indicate the communica-
tion between these. Based on these approaches, specific
formations among vehicles can be reached.

CAV Flocking in Lane-Free Traffic

The general road capacity increase within lane-free traf-
fic could be further amplified by the application of CAV
flocking. Compared to platoons in lane-based traffic,
CAV flocks have more degrees of freedom for choosing
positions and thus can reach significantly smaller lateral
and longitudinal space gaps. Besides that, CAV flocks
could fulfill additional purposes: saving energy by build-
ing aerodynamically efficient formations and reducing
the drag force, sharing resources (e.g., electric charging,
internet) among CAVs in a flock or playing the role of a
traffic control measure (e.g., dampening speeds).
However, until now few studies have dealt with vehicular
flocking in non-lane-discipline or lane-free traffic. Tang
and Li (42) developed stable longitudinal and lateral
consensus-based control protocols for flocking of non-
lane-discipline CAVs. Chuang et al. (43) developed coop-
erative control algorithms for CAV flocking using pair-
wise attractive–repulsive interactions. The authors found
that critical thresholds exist between coherent, stable,
and scalable flocking and the dispersed or collapsing
motion of the group. Rostami-Shahrbabaki et al. (7)
developed a decentralized two-layer approach for vehicu-
lar flocking in lane-free traffic. In the tactical layer, the
control mode is defined and vehicles are matched. In the
operational layer, the inter-vehicle forces and vehicle
movements are calculated based on defined motion
dynamics. Self-organized, collision-free vehicular flocks
result from the defined flock attraction and repulsion
forces.

Compared to the authors’ previous work (7), which
considered different zones and control modes for the
movement of vehicles, in this work, vehicular flocking is
developed using a single energy function and the princi-
ples of graph theory. The general framework is built on
the flocking algorithm developed by Olfati-Saber (41). A
dynamic graph is constructed based on the elliptic dis-
tance between the vehicles in the flock. This graph is

used in the consensus approach for velocity matching of
the flock members. The developed energy function pro-
vides the necessary inter-vehicle force for flock repulsion
and attraction. Based on this function, the vehicles are
automatically located in the flock, where the total energy
is minimized, unless there are some constraints, such as
boundary conditions, that result in vehicle locations
where the energy level is higher. In addition, the control
algorithm considers the behavior of a virtual leader as
the navigational feedback for the adaption of the flock
to a desired path and speed. The developed methodology
is explained in detail in the following section.

Methodology

Each vehicle is modeled using discrete double integra-
tor dynamics and moves on the road with implied long-
itudinal and lateral accelerations. The discrete-time
setup is best suited to the computer implementation of
the approach. The control algorithm has three terms:
(1) flocking force, (2) consensus term, and (3) naviga-
tional feedback derived from the virtual leader. The
overall methodology is visualized in Figure 2. The top
part of the figure shows that the flocking force (part 1)
is realized via an energy function that applies to each
individual vehicle in the flock (denoted as the a -agent)
and depends on the distances and relative positions to
its neighbors. The consensus term (part 2) ensures that
vehicles within the flock drive at similar speeds. To
implement the consensus algorithm, the topology of
the flock is modeled as a spatial graph and a weighted
adjacency matrix is derived. The navigational feedback
(part 3) is realized via a virtual leader (denoted as the g

-agent) with a given trajectory that guides the flock in
case of traffic congestion or curves. The virtual leader
could be any vehicle of the flock or an external control
unit. In addition, vehicle accelerations are bound
because of the physical limitations of the vehicles and
the road boundary.

In the following sections, the vehicle dynamics are first
described, followed by the graph definition. The details
of the control algorithm (along with the description of
the bottom part of Figure 2) are given afterwards.

Basic Definitions

Vehicle Dynamics. In the lane-free environment, the lateral
and longitudinal positions of the vehicle on a two-
dimensional plane are considered as the vehicle output.
As input commands, the vehicle is controlled by the
respective accelerations in the longitudinal and lateral
directions. The motion dynamics for a given vehicle i are
described with the following discrete-time equations in
the longitudinal and lateral directions:
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xi(k + 1)= xi(k)+ Tvi, x(k)+
1

2
T 2ui, x(k) ð1aÞ

vi, x(k + 1)= vi, x(k)+ Tui, x(k) ð1bÞ

yi(k + 1)= yi(k)+ Tvi, y(k)+
1

2
T 2ui, y(k) ð1cÞ

vi, y(k + 1)= vi, y(k)+ Tui, y(k) ð1dÞ

where xi and vi, x are the longitudinal position and speed
of the vehicle, whereas yi and vi, y represent the lateral
position and speed, and ui, x and ui, y are the longitudinal
and lateral accelerations, respectively. In Equation 1, T

is the sampling period and k = 0, 1, . . . is the discrete-
time index where t = k � T . Note that the vehicle states
are measured with respect to the vehicle’s center. The
motion dynamics (Equation 1) are subject to the follow-
ing bound constraints:

� ux, min\ui, x(k)\ux, max ð2aÞ

� uy, min\ui, y(k)\uy, max ð2bÞ

vi, y(k)\al � vi, x(k) ð2cÞ

The longitudinal and lateral acceleration of vehicles
are limited because of the physical capability of the vehi-
cles for accelerating and breaking and, of course, because
of the comfort issues of the passengers. In addition, since
the movement of vehicles, specifically in highways, is
essentially longitudinal, the decoupled Equation 1 is jus-
tified (28). However, to prevent inappropriate lateral
maneuvers, the lateral speed is assumed to be bounded
by the longitudinal speed as in Equation 2c, where al is a
tuning parameter.

Flock Topology. The vehicle flock topology is modeled as a
spatial graph. A graph G =(V ,E) consists of a set of ver-
tices (or nodes) V = f1, 2, � � � , ng and edges (or links)
E � f(i, j)ji, j 2 V , j 6¼ ig. A graph is undirected if
(i, j) 2 E, (j, i) 2 E (44). The adjacency matrix A= ½aij�
of a graph is a matrix with 0-1 elements satisfying the
property aij 6¼ 0, (i, j) 2 E. In this work, we assume a

Figure 2. Overview of the methodology for vehicular flocking in lane-free traffic. (Color online only.)
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weighted adjacency matrix for the vehicle flock whose
non-zero elements are position-dependent. Therefore,
the induced graph is dynamic or is called a spatial graph.
More specifically, each vehicle is one vertex of the graph
and aij is defined as the elliptic distance between the two

vehicles i and j using the following equations:

aij =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxij

ea

� �2

+
dyij

eb

� �2
s

ð3Þ

where ea and eb are the elliptic distance parameters and
dxij = xi � xj and dyij = yi � yj are the longitudinal and
lateral space gaps between the two vehicles, respec-
tively. With this definition, the adjacency matrix will be
symmetric (AT =A). The adjacency matrix is used later
in Equation 9 in the consensus algorithm, a component
of the flocking algorithm, where each vehicle j contri-
butes to the change in the speed of vehicle i with the
factor of aij.

Flocking Algorithm

The flocking algorithm consists of three terms and is
inspired by the work of Olfati-Saber (41). In his flocking
theory, three types of agents are considered: a -agents, b

-agents, and g -agents, which represent agents perform-
ing flocking, obstacles, and (virtual) collective objectives
or leaders, respectively. In this present work, we only
consider the a - and g -agents. Since the focus of this
paper is on the vehicular flock formation and analysis of
its behavior, no obstacle is considered. Note that the col-
lision avoidance between the flock members is addressed
by means of the defined energy function and the corre-
sponding gradient-based term. In addition, for control-
ling the flock within the boundary, a boundary control
approach that limits the lateral acceleration of the vehi-
cles is proposed. The flocking behavior of the a -agents
is controlled using the gradient of the proposed energy
function and a consensus algorithm. The consideration
of a virtual leader, the g -agent, controls the collective
behavior of the flock. Thus, the control input of vehicle i

in each direction has three terms:

ui, x = cg � f g
i, x + cc � f c

i, x + cg � f g
i, x, ð4aÞ

ui, y = cg � f g
i, y + cc � f c

i, y + cg � f g
i, y, ð4bÞ

where f g is the gradient-based term, f c is the consensus
term, and f g is the navigational feedback imposed by the
virtual leader or g -agent. The contribution of each term
in the final applied acceleration is defined based on the
weighting factors cg, cc, and cg. The different terms are
visualized in the bottom part of Figure 2. The flowchart
uses the same colors as the schematic representation in
the top part with the red vehicle depicting the currently

considered ego vehicle i. As described above, the current
longitudinal and lateral positions and speeds of all vehi-
cles are known. Now, the relative positions to other a -
agents are used in the flock centering term (green box) to
derive f

g
i . The consensus term (purple box) uses the speed

differences between vehicles in the neighborhood defined
by the adjacency matrix to derive f c

i . The trajectory of
the g -agent and the attempt of the flock to follow this
virtual leader provides f

g
i . Before the acceleration ui

obtained from Equation 4 is applied in the next time
step, it is limited by the boundary control (yellow box)
and kinematic limitations. In the following sections, each
part is elaborated in detail.

Definition of the Energy Function and Its Gradient. As men-
tioned in the background section, three simple rules
define the collective behavior of a flock (32). In this
paper, by defining a proper energy function, the first two
Reynolds rules, that is, flock centering and collision
avoidance with flock members, are realized. To this end,
the two-dimensional Mexican hat function, originally
proposed by Ricker (45) to describe the propagation of
seismic waves, is used to model the energy function:

j(x, y)=M � 1� k1 � x
fa

� �2

+ y

fb

� �2
� �� �

� exp �k2 � x
fa

� �2

+ y

fb

� �2
� �� � ð5Þ

where fa and fb define the shape and location of the mini-
mum area of the function in the longitudinal and lateral
directions, respectively, and M , k1, and k2 are tuning
parameters to scale the function. The function with two
sets of parameter values is shown in Figure 3a. The pro-
posed energy function has a clear ellipsoid area with
minimum energy shown in a bluish color. In addition, it
is shown how the size and shape of the minimum area
are affected by the change of the function variables.
Note that the shape of the energy function defines the
location of the vehicles in the flock, since the vehicles
move toward the locations with the minimum energy.
The area outside this ellipse implies the attraction force
and the area inside repels the other flock members. For a
better understanding of the shape of the energy function,
a three-dimensional view of it is illustrated in Figure 3b.

The values of fa and fb are a function of the vehicles’
size, the flock speed, and the initial distribution of the
vehicles. In the case in which the vehicles are initially far
from each other, a larger attraction region is required
and, as long as the vehicles approach each other, fa and
fb take smaller values allowing closer space gaps between
the flock members. In addition, as the flock speed
increases, the repulsion area should expand for safety
reasons.

6 Transportation Research Record 00(0)



Each vehicle i has its own energy function and applies
a flocking force in the negative direction of its energy

function gradient f
g

i = �rj(x, y) to other flock mem-

bers. The gradient of the Mexican hat function is

rj(x, y)= ∂j
∂x
(x, y) x!+ ∂j

∂y
(x, y) y!. Here, x! indicates the

longitudinal direction and y! refers to the lateral one.
The partial derivatives are calculated as follows:

∂j
∂x

(x, y)=
x

f 2
a

� CT ð6aÞ

∂j
∂y

(x, y)=
y

f 2
b

� CT ð6bÞ

where CT is the common term used in both partial deri-
vatives and is calculated as follows:

CT = � 2Mk1 exp �k2
x
fa

� �2

+ y

fb

� �2
� �� �

� 1+ k2

k1
1� k1

x
fa

� �2

+ y

fb

� �2
� �� �� � ð7Þ

For any vehicle i at time k, the gradient-based force is
calculated as shown in Equation 8 for the longitudinal
and lateral directions:

f
g

i, x = �
Xn

j= 1

∂j
∂x

dxij, dyij

� �
, j 6¼ i ð8aÞ

f
g

i, y = �
Xn

j= 1

∂j
∂y

(dxij, dyij), j 6¼ i ð8bÞ

where n is the number of flock members. Obviously, the
closer neighboring vehicles have a higher effect on the
vehicle. This is completely in line with the flock centering
rule of Reynolds. The rule states that each individual
attempts to stay close to nearby flockmates, which there-
fore have a large influence, while the actual center of the
entire flock is unknown to the individual (32).

Consensus Algorithm. In this work, the third Reynolds rule
(32), that is, the velocity matching of the flock members,
is carried out using the consensus algorithm in both
longitudinal and lateral directions. In networks of agents
(or dynamic systems), ‘‘consensus’’ means to achieve an
agreement on a single target value with respect to a cer-
tain quantity of interest that depends on the state of all
agents (40). In the following consensus algorithm, the
speed of the vehicle is affected by the speed of other vehi-
cles with the factor of their corresponding adjacency ele-
ment. In Equation 9, we additionally normalize the
consensus term to keep its value consistent with the other
flocking terms in Equation 4. This approach leads to
minimum variation in vehicle speeds within the flock.
This implementation does not only harmonize the flock
speed, but also dampens the speed perturbation of the
flock members:

f c
i, x =

Pn
j= 1 aij(vj, x � vi, x)Pn

j= 1 aij

ð9aÞ

f c
i, y =

Pn
j= 1 aij(vj, y � vi, y)Pn

j= 1 aij

ð9bÞ

where aij is the corresponding elliptic distance defined in
Equation 3.

Navigational Feedback via a Virtual Leader. In addition to the
location of vehicles in the flock and their relative speed,
the overall path and movement of a vehicular flock
should be controlled for several reasons, such as traffic
efficiency and traffic measure purposes. To this end, a
‘‘virtual’’ leader as the g -agent is defined whose longitu-
dinal speed and lateral movement (defined by the lateral
speed) are defined in an upper-level controller. The long-
itudinal and lateral speed of this leader are used in the
flocking control algorithm to shape the collective goal of
the flock. Note that the lateral location of the vehicles
should not be similar to the lateral location of the g -
agent so as to prevent platoon behavior. The derived

Figure 3. The Mexican hat function is used as the energy
function for flock formation: (a) top view of two Mexican hat
functions and (b) three-dimensional view of a Mexican hat
function. (Color online only.)
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desired trajectory plays the role of navigational feedback
and helps the flock navigate through curves and so forth,
or dampen traffic shockwaves by longitudinal accelera-
tion or deceleration.

We assume that the dynamics of the virtual leader also
follow the double integrator model given in Equation 1.
Thus, the g -agent force in Equation 4 is calculated as
follows:

f
g

i, x = c1(vg, x � vi, x) ð10Þ

f
g

i, y = c2(vg, y � vi, y) ð11Þ

where c1 and c2 are control gains.

Dynamic Boundary Control

It is crucial to bound the movement of all vehicles within
the road boundary. In addition, a flock should not
occupy the full lateral occupancy of the road. The bound-
ary of the flock should be controlled, specifically when
the flock should follow a pre-defined path to perform an
overtaking maneuver or allow an emergency vehicle pre-
emption, as indicated in Figure 1. Therefore, the need for
efficient boundary control for the flock is essential. To
this end, additional lateral acceleration constraints are
required. This task may be addressed as a feedback con-
trol problem, whereby the left (right) road boundary is
considered a reference value for all vehicles’ lateral move-
ment (46). This control command specifies how much lat-
eral acceleration is needed to lead the vehicle toward the
boundary. This value is then assumed as the maximum
acceleration and ensures that the vehicles never cross the
boundary.

Assuming that w is the vehicle width and yl(k) and
yr(k), where yl(k).yr(k), are the left and right road
boundary, respectively, the left (right) desired reference
location for the boundary control is yb, l(k)= yl(k)� w=2

(yb, r(k)= yr(k)+w=2). Given that the road geometry
information is known, we consider that the lateral speed
vb, l(k) (vb, r(k)) at which the location of the left (right)
road boundary changes at time k is also known. We now
consider the following set of state-feedback (left and
right) boundary controllers for the lateral acceleration of
the vehicle i developed by Malekzadeh et al. (46) with
the extension that, in our case, the boundary changes
dynamically and thus vb, l (vb, r) is non-zero:

bacc
i, l = b1(yb, l � yi, y)+ b2(vb, l � vi, y) ð12Þ

bacc
i, r = b1(yb, r � yi, y)+ b2(vb, r � vi, y) ð13Þ

where b1 and b2 are feedback gains. As mentioned ear-
lier, these lateral accelerations bound the vehicles’ accel-
eration. Therefore, the bound constraint (Equation 2b) is
updated as follows:

max (bacc
i, r , � uy, min)\ui, y(k)\min (bacc

i, l , uy, max) ð14Þ

Note that the input arguments in the minimum function
in Equation 14 have positive values, whereas the maxi-
mum function applies on the negative arguments.

Simulation Setup

To evaluate the proposed approach, a stretch of a ring
road with 5 km length and 10.2 m width is developed in
the software MATLAB as the traffic network. This net-
work is illustrated in Figure 4. In addition to the per-
manent road boundary, a new dynamic flock boundary
is defined that restricts the lateral movement of the
flock. This boundary could be the result of a bottle-
neck, construction site, emergency vehicle preemption,
or any other obstacle. The flock boundary is shown
with a dashed red line in Figure 4. At the beginning of
the simulation, vehicles are positioned randomly at the
first section of the road with different initial speeds.
For the g -agent, we assume a pre-defined and known
trajectory.

Without loss of generality and for the simplicity of
evaluating the results, we assume five vehicles with ran-
dom initial locations and random initial longitudinal
speeds in the range of 15–35m/s. The simulation dura-
tion is 5min. The simulation results are shown and eval-
uated in the next section.

Results and Discussion

The simulation results are presented in the following
with each section focusing on a different aspect. Firstly,
it is shown how different input values and road bound-
aries lead to different flock formations. Secondly, the
effect of the consensus algorithm is demonstrated.
Afterwards, the impacts of the g -agent are described
before the stability of the flock against perturbations is
demonstrated.

Figure 4. An overview of the considered traffic network. (Color
online only.)
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Flock Formation

Firstly, the results of the flock formation are shown in
this section for three different scenarios. Within the first
scenario, an energy function with a larger ellipsoid area is
chosen. The second scenario uses the same energy func-
tion, but exhibits a squeezed road boundary because of
the possible use cases mentioned above (e.g., bottleneck).
The third scenario uses an energy function with a smaller
ellipsoid area under normal road boundaries. Figure 5
shows for all of the three mentioned scenarios that the
implemented flocking algorithm successfully leads to the
formation of vehicular flocks in lane-free traffic. In the
figures, a flock of five vehicles is shown for each scenario.
The size of the flock is also depicted. Note that, for con-
sistency in the rest of this section, the vehicle numbering
and coloring remain the same, as shown in Figure 5a.
The figures clearly depict that, as intended, the vehicle
arrangement within the flock formation remains the same
in all scenarios, and only the longitudinal and lateral
space gaps between vehicles, or consequently the flock
size, change with changing boundaries or different sizes
of the energy function. The values of fa and fb of the
Mexican hat function in Figure 5c are smaller compared
to the ones in Figure 5a. Consequently, scenario 3 exhi-
bits a smaller ellipsoid area compared to scenario 1.
Therefore, the size of the flock and the longitudinal and
lateral space gaps between vehicles are also smaller. This
demonstrates that the energy functions defined in
Equation 5 fulfill the flock centering requirements. In
scenario 2, the boundary of the ring road was squeezed
by 3m at both sides, for example, because of a bottle-
neck. Figure 5b reveals the effect of the squeezed bound-
ary on the lateral size of the flock. Also here, the vehicle
arrangement is stable but longitudinal and lateral space
gaps are adjusted.

Velocity Matching

As mentioned in the methodology section, the consensus
algorithm is used to perform the velocity matching of the
flock. The longitudinal speeds of the vehicles at the very
beginning of the simulation time are shown in Figure 6a.
Initially, vehicles take different random speeds between
15 and 35m/s, and just after a few seconds, they
approach the agreed speed, which is, in this case, the
speed of the g -agent. The lateral speed of the vehicles at
the similar simulation time is shown in Figure 6b. This
clearly demonstrates that the implemented consensus
algorithm successfully aligns longitudinal speeds between
vehicles.

The vehicles’ initial lateral speed is zero and changes
at the very first seconds because of the flock formation
induced by the gradient-based term (see Equation 8).

This fast convergence of the lateral speed also demon-
strates the effectiveness of the used energy function.

Navigational Feedback

The third term in the flocking algorithm is based on the
virtual leader, the g -agent, and its trajectory. The effect
of the g -agent’s speed is partially illustrated in Figure 6,
where the flock vehicles agree and converge to its speed.
However, and for better evaluation of the navigational
feedback, we assumed a pre-defined trajectory for the g -
agent that should be followed by the flock. Figure 7
shows how the vehicles’ longitudinal and lateral speeds
follow the speed of the virtual leader. The speed of the

Figure 5. The location of vehicles within the flock depends on
the size of the Mexican hat function and the road boundary: (a)
location of vehicles with larger energy function (scenario 1), (b)
location of vehicles at the squeezed boundary (scenario 2), and (c)
location of vehicles with a smaller energy function (scenario 3).
(Color online only.)
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virtual leader is defined in an upper-level controller, for
example based on the downstream traffic conditions.
This feature allows the implementation of a speed limit
for the flock or shockwave dampening strategies via
vehicular flocking.

In addition to that, in Figure 8, the lateral movement
of all vehicles, as well as of the g -agent, are shown and
compared over time. Initially, the lateral position of the
g -agent does not change. After a few seconds of the
flock formation phase, vehicles maintain their lateral
location and then follow the path defined by the move-
ment of the g -agent. This trajectory following is a
desired behavior of the flock with many use cases. For

instance, the virtual leader could navigate vehicles
through curves or construction zones, make the flock
move to the side to let an emergency vehicle pass, lead
the flock on energy-efficient trajectories, or even coordi-
nate overtaking maneuvers. Note that the vehicles
roughly pass the bottleneck between seconds 75 and 105
of the simulation. Although vehicles have different longi-
tudinal positions and arrive at the bottleneck with some
short delays, in Figure 8 we show how the bottleneck
affects the lateral locations of vehicles. During this time,
the lateral locations of the vehicles, as already discussed,
are imposed by the dynamic boundary constraints.
Following the bottleneck, the vehicles follow the g -agent

Figure 6. All the vehicles agree on a similar speed as the result of the flocking algorithm: (a) longitudinal speed of the vehicles and (b)
lateral speed of the vehicles.

Figure 7. The speed of the vehicles follows the dynamics of the g -agent: (a) longitudinal speed of the vehicles and (b) lateral speed of
the vehicles.
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trajectory, again demonstrating the stability of the imple-
mentation under different scenarios.

Flock Stability

Finally, we demonstrate the stability of the flock in the
case of perturbation. At the time of 200 s, manual

braking is applied to the front vehicle, that is, vehicle
number 4. This braking is implemented by exerting a
longitudinal deceleration of 22m/s2 for a duration of 1 s.
In Figure 9, the consequences of this perturbation on the
other vehicles’ longitudinal and lateral accelerations and
speeds are depicted. The results in Figure 9, a and b,
shows that once the perturbation signal is released to
vehicle 4, it takes the maximum possible longitudinal
acceleration to recover its previous speed. More interest-
ingly, it is noticeably visible that the other vehicles
encounter tiny longitudinal acceleration and speed
changes, demonstrating that the induced shock is dam-
pened very efficiently. The dampening behavior is also
illustrated in Figure 9, c and d, where the lateral accelera-
tion and speed of the vehicles are shown. The flexibility
of the vehicles within lane-free traffic to slightly change
their lateral location compared to lane-based traffic
reduces the negative and large longitudinal effect of the
perturbation on the rear vehicles. In particular, the front
vehicle, vehicle 4, and its predecessor, vehicle 1, drive in
the opposite directions, alleviating the longitudinal per-
turbation consequences.

Figure 8. The lateral location of the vehicles follows the lateral
movement of the g -agent.

Figure 9. The vehicles go back to their equilibrium condition after the perturbation: (a) longitudinal acceleration of the vehicles, (b)
longitudinal speed of the vehicles, (c) lateral acceleration of the vehicles, and (d) lateral speed of the vehicles.
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Conclusion

Within this paper, we developed a new control algorithm
for the flocking of automated vehicles in lane-free traffic
that allows for achieving certain speeds, vehicle head-
ways, and lateral distributions of vehicles on the road.
The flocking algorithm is inspired by the work of Olfati-
Saber et al. (40) and considers two types of agents:
a -agents that represent vehicles performing flocking and
g -agents that represent virtual leaders with collective
objectives (e.g., slowing down in the case of traffic con-
gestion ahead or following specific energy-efficient tra-
jectories). Since the focus of this paper was on the
implementation and analysis of flock formations, no
obstacles (b -agents) were considered yet. For the a -
agents, we defined a specific type of energy function that
resulted in attraction and repulsion forces outside and
inside of an ellipsoid area around the vehicle, respec-
tively. Thereby, we successfully implemented the flock
centering and collision avoidance rules. The velocity
matching was realized by applying a normalized consen-
sus algorithm, which not only harmonizes the flock
speed, but also dampens the speed perturbation of the
flock members. The following of the virtual leader’s tra-
jectory, defined in an upper-level controller, was realized
via the g -agent concept and the implemented naviga-
tional feedback. Finally, a feedback control algorithm
was implemented for the dynamic boundary control.

The proposed approach was simulated for different sce-
narios within the software MATLAB with very promising
results. Vehicular flocks were successfully and efficiently
formed via energy functions within a few seconds and speeds
aligned by the consensus algorithm. The flocks showed sta-
ble vehicle arrangements but changing sizes depending on
the chosen energy functions and road boundaries. It was
also demonstrated that the vehicles follow the trajectory of
the virtual leader. Most importantly, we demonstrated the
stability of the flock in the case of perturbation caused by a
braking vehicle. The induced shock is dampened very effi-
ciently as the vehicles are more flexible to slightly change
their lateral location, which reduces the required longitudi-
nal acceleration and speed changes.

Within future research, we would like to integrate an
obstacle avoidance mechanism into our control algo-
rithm. This allows us to implement the flock formation
and movement in real traffic conditions with other non-
flock vehicles. Until now, we did not control for specific
vehicle arrangements within the flock, for example, to
further minimize the aerodynamic drag in the case of side
winds. This could be done by varying the orientations of
the energy functions or by applying additional forces
pushing the flock members to fixed positions inside the
group. We also plan to implement the proposed flocking
method within the traffic simulator SUMO. The imple-
mentation of flocks in a realistic traffic simulator paves

the way for the evaluation of the impact of the flock for-
mation on the road capacity and, additionally, exploita-
tion of the flock as the traffic control measure.
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