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Abstract

Motivation: As the internet has evolved, so too have the methods for collecting and process-
ing personal information. From static websites to social media platforms and mobile devices,
the scope of accessible data attributes and their potential misuse has expanded. In response,
researchers and practitioners have focused on developing privacy-enhancing technologies (PETs)
to balance privacy and utility, allowing for the extraction of valuable information from user data
while preserving privacy to a controllable degree. Among PETs, differential privacy (DP) has
become the golden standard, providing a provable privacy guarantee that bounds the amount of
new information an attacker can gain from observing a function’s output. Despite their promise,
many PETs, including DP, are not yet ready for widespread adoption in practice. In this dis-
sertation, we aim to help tackle the lack of widespread adoption of PETs, particularly DP, by
improving their applicability in data sharing and analytics applications (DSAA).

Research Design: Throughout this dissertation, we employed various research methods to ad-
dress the identified gaps in the literature. These methods included systematic literature reviews,
expert interviews, and design science.

Contribution: This dissertation presents three contributions aimed at improving the applica-
bility of PETs, particularly DP, in practice. (I) The first contribution reveals opportunities and
challenges in the applicability of PETs in DSAAs. (II) The second contribution helps in improv-
ing the applicability of DP algorithms, and (III) the third contributions delves into improving
the applicability of DP systems. Together, these contributions help advance the state of the art
in PETs and DP in particular, and facilitate their wider adoption in practice.

Results: In this dissertation, we draw on the results of four publications to contribute to the
field of PETs and DP. Through systematic literature reviews, we identified encryption, secure and
outsourced computation, and anonymization and plausible deniability as the main techniques
used in PETs. We also identified the challenges associated with applying PETs and found no
established solution for building privacy-enhancing DSAAs, highlighting the need for improved
applicability of PETs. Additionally, through expert interviews, we studied the use cases where
PETs can be most valuable and provided guidance on how researchers can select the appropriate
technology based on the characteristics of the use case. As a result of these initial findings, we
proposed a verifiable DP algorithm that uses zero-knowledge proofs to attest to the correctness of
a DP query output while maintaining practical performance. We also explored the limitations of
DP tooling and highlighted the gaps that practitioners need to address to bring DP into practice.
Our work also contributes a range of artifacts, including classifications, mapping, non-functional
requirements, and two software components.

Limitations: The findings presented in this dissertation may be subject to certain limitations,
including those related to internal validity, external validity, construct validity, and reliability.
It is important to carefully consider these limitations and interpret the results accordingly. To
minimize potential threats to the validity of the findings, we implemented appropriate counter-
measures when possible.
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Future Research: We outline the potential for further research in each of the three contribution
streams and discuss ongoing work moving Contribution III forward and establishing a new
research stream focused on improving the applicability of differential privacy in virtual reality
applications. This section presents opportunities for researchers and academics to investigate
applied DP and suggests avenues for further research, such as studying systematic methods for
selecting suitable PETs, exploring new combinations of PETs, and designing models to quantify
data leakage in data exchanges and analytics.
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Zusammenfassung

Motivation: Mit der fortschreitenden Verbreitung des Internets verändern sich auch die Meth-
oden zum Sammeln und Verarbeiten von persönlichen Informationen. Von statischen Websites
über soziale Medienplattformen bis hin zu mobilen Geräten hat sich die Datenmenge und auch
ihr möglicher Missbrauch stetig ausgeweitet. Um dem entgegenzuwirken, entwickelten Forscher
und Praktiker Privacy-Enhancing Technologies (PETs). Diese balancieren den Datenschutz und
die Nützlichkeit von verarbeiteten Daten aus. Dadurch können wertvolle Informationen aus
Nutzerdaten extrahiert werden, doch der Datenschutz bleibt in einem kontrollierbaren Maße
erhalten. Aus unterschiedlichen PETs entwicklete sich Differential Privacy (DP) zum Goldstan-
dard. Die Technologie liefert eine nachweisbare Privatsphärengarantie, die die Menge an neuen
Informationen begrenzt, die ein Angreifer aus der Beobachtung des Ergebnisses einer Funktion
gewinnen kann. Trotz ihres Versprechens sind viele PETs, einschließlich DP, noch nicht bereit
für eine breitere Anwendung in der Praxis. In dieser Dissertation möchten wir das Problem des
mangelnden Einsatzes von PETs, insbesondere DP, in Data Sharing and Analytics Applications
(DSAA) beleuchten.

Forschungsdesign: In dieser Dissertation verwenden wir die Forschungsmethoden Systema-
tische Literaturüberprüfungen, Experteninterviews und Design Science, um die von uns identi-
fizierten Lücken in der Literatur zu schließen.

Ergebnisse: Diese Dissertation stellt drei Beiträge vor, die darauf abzielen, die Anwendbarkeit
von PETs, insbesondere DP, in der Praxis zu verbessern. (I) Der erste Beitrag zeigt Chancen
und Herausforderungen bei der Anwendung von PETs in DSAAs auf. (II) Der zweite Beitrag
hilft dabei, die Anwendbarkeit von DP-Algorithmen zu verbessern, und (III) der dritte Beitrag
befasst sich mit der Verbesserung der Anwendbarkeit von DP-Systemen. Diese Beiträge tragen
insgesamt zur Weiterentwicklung des Standes der Technik bei PETs und DP und erleichtern ihre
breitere Anwendung in der Praxis.

Beitrag: In dieser Dissertation nutzen wir die Ergebnisse von vier unserer Veröffentlichun-
gen, um zum Forschungsfeld der PETs und DP beizutragen. Durch systematische Liter-
aturübersichten identifizierten wir Verschlüsselung, sichere und ausgelagerte Berechnung sowie
Anonymisierung und plausible Leugnung als die Haupttechniken, die in PETs verwendet wer-
den. Wir identifizierten auch die Herausforderungen im Zusammenhang mit der Anwendung von
PETs und fanden dabei keine etablierte Lösung für DSAAs mit verbessertem Datenschutz. Dies
verdeutlicht die Notwendigkeit einer verbesserten Anwendbarkeit von PETs. Zusätzlich haben
wir durch Experteninterviews untersucht, in welchen Anwendungsfällen PETs am wertvollsten
sind und Anleitung dazu gegeben, wie Forscher die geeignete Technologie basierend auf den
Eigenschaften ihres Anwendungsfalls auswählen können. Basierend auf diesen ersten Ergebnis-
sen haben wir einen überprüfbaren DP-Algorithmus vorgeschlagen, der Zero-Knowledge Proofs
verwendet, um effizient die Korrektheit eines DP-Abfrageergebnisses zu belegen. Weiterhin
haben wir die Grenzen von DP-Tools untersucht und Lücken identifiziert, die in der Praxis
angegangen werden müssen, um DP einzusetzen. Unsere Arbeit umfasst Klassifikationen, Map-
ping, nicht-funktionale Anforderungen und zwei Softwarekomponenten.
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Limitationen: Die Ergebnisse dieser Dissertation können gewisse Limitierungen aufweisen,
beispielsweise in der Übertragbarkeit auf andere betrachtete Anwendungsfälle. Es ist wichtig,
diese Einschränkungen sorgfältig zu berücksichtigen und die Ergebnisse entsprechend zu inter-
pretieren. Um potenzielle Limitierungen bei der Validität unserer Ergebnisse zu minimieren,
haben wir geeignete Gegenmaßnahmen ergriffen.

Ausblick: Wir stellen Möglichkeiten für künftige Forschung in jedem der drei Beitragsthemen
vor und diskutieren laufende Arbeiten zur Weiterentwicklung von Beitrag III. Darüber hinaus
stellen wir einen neuen Forschungsbereich vor, der sich auf die verbesserte Anwendbarkeit von DP
in Virtual-Reality-Anwendungen konzentriert. Dieser Abschnitt präsentiert Möglichkeiten für
Wissenschaftler, angewandte DP zu untersuchen und schlägt Wege für weitere Forschung vor, wie
z.B. die systematische Untersuchung geeigneter PETs, die Erkundung neuer Kombinationen von
PETs und die Gestaltung von Modellen zur Quantifizierung von Datenlecks bei Datenaustausch
und -analyse.
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CHAPTER 1

Introduction

This dissertation investigates the opportunities and challenges of privacy-enahncing technology
(PET) in data sharing and analytics applications (DSAAs) and delves deeper into improving the
applicability of one of these technologies, differential privacy (DP), in such applications. The
embedded papers comprising this cumulative dissertation identify and fill the research gaps by
systematically reviewing the state-of-the-art of PETs and DP, and conducting expert interviews
to identify their use cases and adoption roadblocks. Additionally, we outline the outstanding
gaps in DP tooling, elicit a series of non-functional requirements to fill such gaps, and develop two
software components to improve the applicability of DP in the broader industry. We motivate
the dissertation in section 1.1, introduce the research questions that guide this dissertation and
discuss related work in section 1.2, summarize the embedded papers and outline the contributions
in section 1.3, and present the structure of the dissertation in section 1.4.

1.1. Motivation

Through the mists of rapid changes in technology paradigms and consumer preferences through-
out the life of the internet, a clear pattern has remained true: with every new technology and
medium for accessing the internet come new and enhanced methods for collecting and processing
personal information. From static websites in the early stages of the internet, to social media
platforms in the early 2000s and mobiles phones, smart wearables, and virtual assistants more
recently, users have experienced an increase in the scope of accessible data attributes and their
unwarranted use for purposes other than the strictly required [NGS23]. Thus, as new internet
technology expands the attack surface on user privacy, a suite of defensive technologies must
correspond to these new threats, the so-called PETs. In short, PETs are tools designed to
balance privacy and utility, i.e., they enable the extraction of valuable information from user
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1. Introduction

data while preserving their privacy to a (potentially adjustable) degree. Thus, privacy becomes
a continuum rather than a binary state of a user’s information disclosure. At one extreme,
data remains siloed and never shared, which would throttle innovation and the economy; at the
other end, data is open to the scrutiny and use of any entity, which would incur profound social
consequences and political unrest. Striking a balance between the two extremes is a delicate
endeavor, and consequently, PETs require special attention in their deployment in practice.
However, despite the efforts from academics and researchers, many of the most promising PETs
are not yet ready for broad adoption.

Among PETs, one particular technique has become the golden privacy standard in academia:
differential privacy (DP), which Dwork et al. [DMNS06] introduced in 2006. DP is a context-
agnostic provable privacy guarantee that bounds the amount of new information an attacker
can gain from observing a function’s output. A function (e.g., an aggregation) fulfills DP by
adding calibrated random noise, typically to its deterministic outputs. In effect, with DP, the
likelihood of obtaining the same output is essentially the same with or without the presence of
an input data element (e.g., an individual’s age). In other words, as the outputs are unlikely to
diverge significantly as the input changes by one element, the presence or absence of a particular
individual in the input is protected, providing plausible deniability. Moreover, one feature that
makes DP so appealing is the possibility to tune such indistinguishability with a parameter ex-
ante, which, depending on its value, privacy is more or less protected. Given this unprecedented
mathematically quantifiable formulation of privacy, DP holds much promise. However, its full
potential has yet to be realized.

A few organizations managed to deploy DP in productive environments [App17, AG21,
DKY17, Joh21], demonstrating its value. Nevertheless, the vast majority of organizations
have not adopted DP, despite such examples and the plethora of open-source tools available
[Goo21a, Goo21b, Goo20, WZL+19, Goo19, Har21, GHV20, IBM20, Met21, Ope22, Tum21,
NH12, RSK+10, BBG+21, HMM+16, JDL+21, TBG+20a, GHK+16, NBH+22]. Thus, a gap
between academia and practice needs to be closed for DP to become widely adopted in the
industry, which is the goal this dissertation helps tackle.

In this dissertation, after building an understanding of the state-of-the-art of PETs and DP,
as well as their challenges, and opportunities, we tackle a set of research gaps to improve the
applicability of DP in DSAAs. In particular, we think practitioners unfamiliar with privacy
must be able to seamlessly use DP tooling, which still requires the improvement of the avail-
able open-source DP libraries and frameworks. Additionally, we find it essential to verify the
correct execution of DP, which requires a detailed examination and careful adaption of existing
differentially-private noise sampling algorithms. With this effort, organizations can be more
willing to adopt DP as their privacy guarantee, and users can increase their trust in such sys-
tems. In summary, in this dissertation, we identify the need for applicability improvements in
DP tooling and algorithms and realize a set of these improvements to help push the adoption of
DP in the industry.
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1. Introduction

1.2. Research Questions & Related Work

This section highlights the research gaps in related work, which this dissertation aims to fill by
answering the hereby presented research questions.

Research Gap 1: There is a lack of comprehensive yet detailed systematic analysis of the body
of knowledge, use cases, and challenges of privacy-enhancing technology.

A few studies have provided a comprehensive overview or classification of PETs [SCS18,
PHS+19a, TBG+20b], but they laack the depth and systematic rigor needed to fully understand
the challenges and opportunities of these technologies. Among other less-comprehensive studies
that organized existing knowledge [LYA+18, SLZ20, ZMWC19, DJG+18, PRW15, PGUXS16,
ZMW14], some focused only on challenges of DSAA [ZMWC19, PRW15, ZMW14], while oth-
ers reviewed a subset of PETs from a technical perspective and outlined their challenges
and opportunities [DJG+18, PGUXS16]. Other studies delved into user privacy preferences
[SLZ20] and technical design requirements [LYA+18] for DSAAs. Furthermore, some studies
[DJG+18, PGUXS16, SCS18] briefly discussed secure and outsourced computation, syntactic
privacy definitions like 𝑘-anonymity, and DP, and outlined their implications without regard
for other existing PETs. For example, J. Pennekamp et al.’s [PHS+19a] overview of PETs
and their associated challenges lacks depth, as they defined concepts briefly, presented a sub-
set of the challenges we found during our research, and drew their results from use cases, and
therefore, cannot provide the rigor of a systematic search and review of the extant literature.
The rest of the aforementioned studies provided privacy policies, commented on digital rights,
scratched the surface of PETs challenges, or provided a user perspective on DSAAs. Some-
thing to note is that only some of the technologies included in these extant reviews enhance
privacy. Particularly, these other technologies focus on authenticating information, e.g., dis-
tributed ledger technologies and version controls, which some researchers have confounded with
PETs [LF20, DKJG17, DJG+18].

Regarding PETs and classifications of DSAAs, some of the above papers contained frame-
works. For example, S. Sharma et al. [SCS18] classified PETs into information sharing and
outsourced computation, and Pennekamp at al. [PHS+19a] proposed a structure for the layers
of DSAAs: data security, data processing, proving support, platform capabilities, and external
measures. Moreover, A. Trask et al. [TBG+20b], heavily inspired by Nissenbaum’s contextual
integrity [Nis09], looked at PETs from the lenses of an information flow segmented into input,
computation, and output steps, and assessed privacy, verifiability, and governance at each step.
We enhanced and expanded their frameworks for our classifications and mappings.

Looking at other extant studies, we found works focused on a single PET. Most of such studies
either applied the technology to a specific use case, optimized the solution in terms of perfor-
mance, or added new guarantees. For example, there is work on applying secure multiparty com-
putation (MPC) to train deep learning models [BCD21], apply DP to health data [CGDS+20],
or map trusted execution environments (TEE) to different use cases [AGT14]. However, these
publications do not provide an overview of PETs or their associated privacy use cases. In con-
trast, other researchers stayed at a high level by surveying general privacy requirements and
how PETs can fulfill them [HZNF15, PHS+19b], highlighted the business problems that PETs
can tackle (e.g., building trust and competitive advantage [JTBN12]), and proposed industry use
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1. Introduction

cases without explicitly mapping them to PETs (e.g., for the supply chain [GKHD20], predictive
maintenance in the automotive industry [TPVKE21], and smart homes [CAEK19]). Moreover,
a few researchers have produced surveys of PETs and their applications; namely, a repository
with use cases across different industries like health, finance, and transportation [CDE21], and
case studies that leveraged PETs in the financial sector [FFI20]. However, these publications
did not identify suitable technology capabilities to map use cases to PETs systematically.

Summary. Overall, the extant literature had not provided a systematic, holistic, and detailed
overview of the scientific body of knowledge in PET, which signals a research gap and the lack of
academic rigor of the limited-scope, extant reviews on PETs. We address this gap by conducting
a systematic literature review of PETs and their challenges and draw a mapping to use cases. We
start by identifying the most prominent PETs, study the literature to outline the outstanding
challenges, and interview experts to reveal the use cases where PETs can contribute the most.
Against this backdrop, we formulate the first research question:

Research question 1 (RQ1)

What are the most relevant privacy-enhancing technologies and their corresponding
challenges and use cases in the scope of data sharing and analytics applications?

Answering RQ1, revealed the two remaining gaps we tackle during this dissertation.

Research Gap 2: There is a lack of cryptographic primitives and applications that combine the
unique properties of secure computation and techniques that offer formal privacy guarantees.

Despite researchers acknowledging the benefits of combining anonymization with secure and
outsourced computation techniques, it had been rare to find such publications. At the time of
answering RQ1 partly with a systematic literature review, only two of the 37 collected studies—
focused on implementations—designed a DSAA using both technology types. For example,
some techniques enable data and computation verification, others can hide the inputs and the
computation itself, while some can protect the outputs; in combination, the application would
be close to achieving an end-to-end privacy-enhancing data sharing and analysis workflow. In
particular, we found it critical to verify the correct use of formal privacy guarantees that require
randomness (e.g., with a cryptographically verifiable process), as proving the correct execution of
a stochastic process to third parties is not trivial and has been understudied in the literature.

While there exists a significant body of research in formal privacy guarantees (DP) [HLM17a,
KSK14, KOV14, HKR12, HLM17b, BV19] and in verification technologies (zero-knowledge
proofs (ZKP)) [GOS06, BSCG+13, BSBHR19], there are only a few that connect them. Rückel
et al. [RSH22] designed an architecture to verify the sampling of differentially-private noise in
a federated learning setting. However, the authors did not acknowledge that their solution only
fulfills a particular type of DP, omitted the corresponding bound of a critical parameter (𝛿),
and did not contemplate a high-precision approach as they used an approximate inverse cumu-
lative distribution function. Moreover, Tsaloli et al. [TM19] limited their work to providing
a high-level motivation for using ZKP for verifiable DP without an associated implementation
or design. Furthermore, although Kato et al. [KCY21] elicited details on the creation of ran-
domness with a similar technology (MPC), they did not have a verifiability step, i.e., there is
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no cryptographic check of whether the value is truthful prior to noise addition. Lastly, while
Narayan et al. [NFPH15] discussed the upsides of verifiable DP, they did not provide details
about their ZKP-based implementation, e.g., the specifics of rounding or achieving accuracy
guarantees. Additionally, their implementation has impractical performance, requiring 2 hours
of proof generation for 32 servers.

Summary. Altogether, there is no proposal for a performant verification of DP in the literature,
a gap we aim to fill by exploring, combining, and improving existing algorithms related to sam-
pling differentially-private noise so that ZKP can verify their execution. Given this background,
we aim to answer the following research question:

Research question 2 (RQ2)

What new algorithm can verify the use of formal privacy guarantees with practical
performance and bounded guarantees?

Research Gap 3: Researchers and industry practitioners have not widely adopted existing
open-source formal privacy-enhancing tools for developing their work.

As with research gap 2, answering RQ1 also revealed the third gap we aim to tackle in this
dissertation: the studied publications rarely used open-source libraries or built upon previously
peer-reviewed systems. This lack of adoption is the case despite the multiple open-source tools
providing MPC, DP, ZKP, and homomorphic encryption (HE) functionality. Building upon
our knowledge in DP obtained by answering RQ2 and because of the increased maturity of DP
primitives relative to other PETs, i.e., practical DP is within striking distance, we targeted the
open-source libraries, frameworks, and systems dedicated to lowering the entry barrier of DP to
help with the last yet critical development efforts. Particularly, we aim to guide library designers
and privacy practitioners by outlining the remaining challenges to bridge the gap between theory
and practice in DP.

Adopting DP in productive environments is possible, as Apple [App17, AG21], Google [AG21],
Microsoft [DKY17], and the US Census Bureau [Joh21] have demonstrated. However, no other
organizations have showcased the use of DP. The options are ample and have been designed
by a diverse set of institutions: Google [Goo21a, Goo21b, Goo20, WZL+19, Goo19], Harvard
[Har21, GHV20], IBM [IBM20], Meta [Met21], OpenMined [Ope22] (experimental product),
Tumult Labs [Tum21], and the University of Pennsylvania [NH12], and Texas [RSK+10]. Addi-
tionally, some open-source tools are focused on visualizations: Bittner et. al [BBG+21], DPcomp
[HMM+16], DPP [JDL+21], Overlook [TBG+20a], PSI (Ψ) [GHK+16], and ViP [NBH+22]. In
this dissertation, we distill a set of key requirements from this collection of tools that a holistic
and formal privacy-enhancing analytics tool should fulfill and outline the remaining gaps.

Concerning existing work related to the applicability issues of current DP tooling, we find sur-
veys of DP applications in social networks [JPY+21], a user survey regarding privacy in data
sharing applications [CZ19], cyber physical systems like the IoT [HRC20], location-based ser-
vices [KEK+21], statistical learning [SWW+20], and lessons learned from employing DP in the
US Census [GAP18]. Prominently, Kifer et al. [KMR+20] compiled best practices and lessons
learned from their experience implementing DP systems at Meta, an organization familiar with
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DP. In contrast, to fill research gap 3, we focused on companies unfamiliar with DP and discussed
whether DP has potential in the broader industry. Lastly, Dwork et al. [DKM19] produced the
closest work to ours. We differentiate from their work in that we interview practitioners without
an in-depth knowledge of DP. Furthermore, we note that if DP is widely adopted, it will depend
on these practitioners and their organizations unfamiliar with the technicalities of DP, which
are the vast majority.

Summary. Overall, we aim to fill this research gap by conducting interviews at organizations
without knowledge in DP to qualitatively understand the practicality and adaptability of DP to
legacy data sharing and analytics workflows. With the learnings and our understanding of the
available DP tooling, we elicit a set of key system desiderata for holistic DP tools and draw the
attention of library designers to the remaining gaps in their tools.

Research question 3 (RQ3)

Which are the existing gaps and key requirements a formal privacy-enhancing
analytics tool should fulfil to become closer to a broad industry adoption?

1.3. Contributions & Publications Summary

This dissertation resulted in four first-author publications providing three main con-
tributions to answer the three research questions. Outside this dissertation, we expand
these contributions with additional related publications comprising one equal-contribution pub-
lication, two first-author and one equal-contribution pre-prints (PP), and four second-author
publications (2AP). Overall, we contributed a total of 12 manuscripts to the research commu-
nity. The rankings of the publication outlets were measured on 07.12.2022 using the conference
ranking tools CORE [Edu] for P1, P3-4, 2AP1, and 2AP4 and the journal ranking tool Scopus
Preview [Sco] in the subject of computer science applications for P2. For the publications not
ranked in CORE (2AP2-3), we used ERA-sourced conference ranks [Sch]. We describe this
dissertation’s contributions and summarize the papers in the following.

1.3.1. Dissertation Contributions & Publications

We provide in Table 1.1 an overview of the publications associated with the three dissertation’s
contributions.

The contributions are three-fold:

Contribution I: Revealing Opportunities and Challenges in the Applicability of
Privacy-Enhancing Technologies in Data Sharing and Analytics Applications.

Given the lack of comprehensive, detailed, and systematic analyses of the literature regarding
the use of PETs (research gap 1), we conducted a systematic literature review [fGS+21] and un-
structured expert interviews [GSU+22] to shed light on the current opportunities and challenges
of applying PETs to DSAAs—answering research question 1.
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RQ No. Title Outlet Type Ranking Pages
Contribution I: Opportunities and Challenges in the Applicability of PETs

RQ1 P1 Exploring privacy-enhancing technologies in the
automotive value chain†

Big
Data

CON B 8

RQ1 P2 Revealing the Landscape of Privacy-Enhancing
Technologies in the Context of Data Markets for
the IoT: A Systematic Literature Review

JNCA JNL Top 3% 43

Contribution II: Improving the Applicability of Differential Privacy Algorithms

RQ2 P3 Towards Verifiable Differentially-Private Polling ARES CON B 10

Contribution III: Improving the Applicability of Differential Privacy Systems

RQ3 P4 Lessons Learned: Surveying the Practicality of
Differential Privacy in the Industry

PETS CON A 20

†Short paper. Abbreviations: P = Publication, CON = Conference, JNL = Journal. Outlet: Big Data = 2021 IEEE
International Conference on Big Data (Big Data), JNCA = Journal of Network and Computer Applications, ARES = 17th
International Conference on Availability, Reliability and Security (2022), PETS = 23rd Privacy Enhancing Technologies
Symposium (2023). Ranking: Conferences use CORE and journals use Scopus Preview.

Table 1.1.: Overview of (embedded) dissertation publications.

In our first work (P1) [fGS+21] primarily focuses on opportunities in the application of PETs
in DSAA, namely, in the most promising industry use cases where PETs can make a difference.
We conducted unstructured expert interviews to identify such opportunities and searched for
open-source tools that practitioners can readily use to start deploying PETs in the identified use
cases. Moreover, we selected a few reference use cases to elaborate on the role and importance of
PETs and elicited a series of technology capabilities required by use cases so that mapping PETs
to use cases becomes easier for practitioners. The concrete output artifacts of our publication
are (i) a list of use cases classified per application domain, (ii) a list of the most prominent PETs
and associated open-source tools, (iii) a mapping between PETs and use case characteristics,
and (iv) a mapping between PETs and selected use cases per application domain.

Complementary to P1, P2 [GSU+22] sheds light on the broad and narrow challenges in the
application of PETs in DSAA. We conducted a systematic literature review to classify PETs
and outline the remaining challenges for the adoption of PETs in DSAAs, providing a starting
point ofr practitioners looking to improve the applicability of PETs. The specific output artifacts
of this work are (i) a taxonomy of PETs, (ii) privacy challenges in IoT data markets, (iii) an
examination of the IoT’s negative impacts on privacy, (iv) a mapping between PETs and the
associated privacy challenges, (v) a reference model for a privacy-enhancing IoT data market,
and (vi) a metadata aggregation of the selected publications.

Contribution II: Improving the Applicability of Differential Privacy Algorithms.

Motivated by the lack of studies bridging formal privacy guarantees and cryptographic verifica-
tion tools, we designed, implemented, and evaluated an algorithm capable of verifying the use
of DP—answering research question 2.

Given the challenges and opportunities outlined by P1 and P2, P3 [MGSB22] tackled the chal-
lenge of the verifiability of DP algorithms. In particular, we explored the literature to find
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algorithms related to the problem and proposed and adapted a series of algorithms until we
found the logic we could successfully verify cryptographically. The output artifacts of P3 consist
of (i) an algorithm to cryptographically verify the use of DP and (ii) its open-source implemen-
tation.

Contribution III: Improving the Applicability of Differential Privacy Systems.

The gap between the theory and practice of DP is closing; however, there are remaining critical
challenges that require the attention of library designers and practitioners. Thus, we conducted
expert interviews and outlined the future work items to help close the gap—answering research
question 3.

Motivated by the challenge revealed in Contribution I, P4 [GLMS23] contains the results of
structured expert interviews regarding the usefulness of DP in practice and examined the state-
of-the-art of open-source DP tooling to highlight the aspects library designers should work on
to bridge the gap between theory and the practical use of DP in the industry. The artifacts
of this publication are (i) a set of ten functional requirements for holistic and formal privacy-
enhancing analytics systems, (ii) a list of outstanding research and engineering gaps blocking the
wider adoption of DP, (iii) an early-stage blueprint for the design of a holistic privacy-enhancing
analytics system, (iv) an early-stage open-source implementation of a benchmarking tool to test
the suitability of DP libraries and frameworks for some of the blueprint’s components.

1.3.2. Additional Related Publications

Adding to the embedded publications of this dissertation, we wrote eight additional related
publications—many led by co-authors—expanding the answers to the three research questions
and adding a new research stream (see Table 1.2). Even though the insights of these additional
publications help expand the answers to the research question, we selected P1-4 as the primary
research contributions for this dissertation.

Expanding Contribution I

A series of second-author publications expand the search for opportunities and challenges in
the use of PETs in the DSAA. Specifically, we improved further the mappings between PETs
and challenges of P2 (2AP1) [SMGMM22], proposed future work avenues in developing systems
for the de-identification of datasets (2AP2) and in evaluating such a tool [BGBM20], (2AP3)
[BGBM], and propose a verification scheme for outsourced computation (2AP4) [HKMG].

Expanding Contribution III

We upgraded the benchmarking tool initially designed in P4 from an early-stage prototype to a
more comprehensive system. With such a system, by selecting an input dataset and a query, the
tool indicates the user which is the best-performing library in terms of accuracy, precision, and
execution time [GNM+21]. Additionally, we evaluated the most prominent open-source tools
based on these metrics and highlighted areas of future work for library designers.

New Research Stream: Improving the Applicability of Differential Privacy in Vir-
tual Reality Applications.
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RQ No. Title Outlet Type Ranking Pages
Expanding Contribution I: Opportunities and Challenges in the Applicability of PETs

RQ1 2AP1 Mitigating Sovereign Data Exchange Challenges:
A Mapping to Apply Privacy- and Authenticity-
Enhancing Technologies

TB CON B 16

RQ1 2AP2 The Use of De-identification Methods for Se-
cure and Privacy-enhancing Big Data Analytics
in Cloud Environments

ICEIS CON C 7

RQ1 2AP3 Towards a Privacy-Enhancing Tool Based on De-
Identification Methods†

PACIS CON A 8

RQ1 2AP4 Verifying Outsourced Computation in an Edge
Computing Marketplac

CMLA CON C 19

Expanding Contribution III: Improving the Applicability of DP Systems

RQ3 PP1 Do I get the privacy I need? Benchmarking utility
in differential privacy libraries

UR CON - 20

New Research Stream: Improving the Applicability of DP in Virtual Reality Applications

- PP2 SoK: Data Privacy in Virtual Reality PETS CON A 18

- PP3 Exploring the Privacy Risks of Adversarial VR
Game Design*

PETS CON A 19

- PP4 Going Incognito in the Metaverse* UIST CON A* 16

*Equal Contribution. †Position paper. Abbreviations: DP = Differential Privacy, 2AP = Second-Author Publication, P =
Publication, PP = Pre-Print, CON = Conference, JNL = Journal. Outlet: UR = Under review, TB = Trust, Privacy and
Security in Digital Business (2022), ICEIS = International Conference on Enterprise Information Systems (2020); PACIS
= Pacific Asia Conference on Information Systems (2020); CMLA = International Conference on Machine Learning &
Applications (2022), NDSS = Symposium on Network and Distributed System Security (2023). Ranking: CORE ranking
for all manuscripts except for 2AP3 and 2AP3, which used Conference Ranks.

Table 1.2.: Overview of additional related publications.

Having expanded our knowledge in DP, we hypothesized that emerging systems such as virtual
reality (VR) could benefit from its formal privacy guarantees. Thus, we conducted a system-
atization of knowledge to draw the landscape of privacy attacks and defenses in VR [NGS24]
and demonstrated in a case study the unprecedented scope and depth of new attack vectors in
VR [NGS23]. With the acquired practical offensive knowledge in VR [NGS23], an overview of
existing privacy defenses [NGS24], and our expertise in DP, we developed the first proposal for
an “incognito mode” for VR: MetaGuard [NMGS23]. We provide more details in ongoing work
in section 6.2.

1.4. Structure of the Dissertation

This dissertation comprises four publications that aim to answer the three research questions.
We structure the dissertation into three parts as per Fig. 1.1:

Part A includes three chapters. Chapter 1 introduces this dissertation by motivating the
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importance of PET in DSAA, particularly of DP (see section 1.1), presents the three research
questions we tackle in this dissertation (see section 1.2), and introduces the three contributions
and four publications (see section 1.3). Afterward, we compile in Chapter 2 all the necessary
background to follow this dissertation; specifically, we discuss the concept of privacy (see sec-
tion 2.1), which systems are included in DSAA (see section 2.2), the diverse PETs available to
practitioners (see section 2.3), and present in more depth the concept of DP (see section 1.1).
Lastly, in Chapter 3, we explain our research strategy (see section 3.1) and research methods
(see section 3.2).

Part B compiles the fact sheets of the four embedded publications. The first two publications
(P1-2) compose Contribution I and tackle the first research question, the third publication (P3)
provides Contribution II and answers the second research question, and the fourth study (P4)
sheds light on the third research questions by realizing Contribution III.

Part C comprises of three chapters. In Chapter 5, we discuss the key findings of this dis-
sertation (see section 5.1, answer the research questions (see section 5.2), and reflect on the
dissertation’s limitations (see section 5.3). Consecutively, we provide an overview of future and
ongoing work in Chapter 6 by introducing the possible expansions of Contributions I, II, and III
(see section 6.1) and the new research stream (see section 6.2). We conclude this dissertation
with our conclusions and answers to the research questions in Chapter 7.
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CHAPTER 2

Background

In this section, we provide the necessary descriptions of the fundamental concepts appearing
throughout this dissertation and the embedded publications. We first describe Privacy (§2.1), a
key concept that frames our work, followed by a description of Data Sharing & Analytics Appli-
cations (§2.2), the target of our differential privacy applicability improvements. Consecutively,
we provide an overview of Privacy-Enhancing Technologies (§2.3) to contextualize Differential
Privacy (§2.4), which is at the core of Contributions II and III.

2.1. Privacy

Throughout human history, the evolution of technology and the activities created around it
affected how humans and institutions perceived and acted concerning privacy, shaping, in turn,
human culture [DFF14]. However, it was not until the emergence of the first information and
communications technologies (ICT) such as the radio, television, first computers, and early
mobile phones that privacy became a major concern for society. Such concerns led governments
to create the first data protection laws in the world: the Swedish Data Act enacted in 1973, and
one year later, the Privacy Act in the USA. Since then, the increasing attention and importance
of privacy have encouraged practitioners to provide many acknowledged privacy definitions.
For example, Fink et al. [FSJ18]: “[...] freedom from observation, disturbance, or unwanted
public attention [...]”, from Westin [Wes67]: “[...] the claim of individuals [...] to determine
for themselves when, how and to what extent information about them is communicated [...]”,
or from Renaud and Galvez-Cruz [RGC10]: “Privacy is the faculty and right that a person
has to define, preserve and control the boundaries that limit the extent to which the rest of
society can interact with or intrude upon. At the same time, he or she retains complete control
over information generated by, and related to, him or her.” Despite these efforts, there is no
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concise and agreed-upon definition. Solove describes the privacy community’s inability to form
a consensus and argues that any attempt to distill a unique, timeless definition is infeasible due
to the multifaceted concept of privacy [Sol15].

Nonetheless, in computer science, adopting a threat model perspective narrows the possible
definitions, as privacy would likely not have emerged if adversaries would not exist: transgressors
of one’s sensitive information gave reason to define privacy. Hence, Wu [Wu12] may provide a
suitable privacy definition in the context of computer science: “[Privacy] is defined not by what
it is, but by what it is not – it is the absence of a privacy breach that defines a state of privacy,”.
Wu defined privacy based on the threat model of Deng et al. [DWS+11] (Lindunn), which
provides a framework to assess the privacy risks of an application and guides practitioners
in determining what information to protect and from whom before defining an application.
Following Wu’s [Wu12] privacy philosophy, for the context of this dissertation, we consider
privacy as the prevention of an individual’s re-identification by an adversary. Further, note that
in the context of this work, we refer to security as the measures for blocking unauthorized data
access, while privacy focuses on limiting harm by authorized entities.

Once ICTs become privacy-forward, several advantages emerge for society. For example, from
an economic standpoint, privacy features enable cross-organizational data exchange and fair
products and services that prevent price discrimination [GO18]. Moreover, enhancing privacy
may increase in number the data collection sources because such features may help overcoming
regulatory barriers, in addition to mitigating the risk of fines, appreciating and differentiating
a brand [McK20], and increasing customers’ willingness to pay [SLZ20]. Moreover, researchers
argue that privacy may be the only way towards unobtrusive forms of governments that en-
joy political freedom and stability [CC02], privacy-first journalism, and less pervasive digital
platforms (e.g., social media) that can enable pernicious social engineering [ZMW14]. Further-
more, academics indicate that disregarding privacy may result in long-term economic adversities
[LLS20].

Despite the potential benefits of using privacy-first applications, and while consumers emphasize
the importance of privacy, they typically do not take small additional efforts or pay for privacy
[Kok17], the so-called privacy-paradox. Therefore, in the interest of business and end users,
governments have enacted more data protection directives, rules, and laws in the past decades
to protect users against privacy violations, specifically for data collection through advanced
ICTs such as personal computers, smartphones, home assistants, or wearables. Examples of
these regulations include the European Data Protection Directive in 1995, the HIPAA Privacy
and Security Rule in 1996, the APEC cross-border privacy rules in 2011, the GDPR in 2016,
and the Consumer Privacy Act in 2020 in the USA, which comprises of Acts such as the CCPA
of 2018.

2.2. Data Sharing & Analytics Applications

Using the broad umbrella term “Data Sharing & Analytics Applications” is intentional, as this
dissertation’s contributions apply to many current applications that manage and analyze sensi-
tive data and, therefore, require privacy measures. For example, devices such as smartphones,
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wearables, home assistants, and personal computers provide a plethora of useful applications
that interact with users and gather and analyze data daily. Examples of these applications
are browsers, data markets, social media, e-commerce, or media entertainment, among others.
Moreover, corporate-grade systems and sensors that collect, store, communicate, and process
large scale data flows from users and critical business operations are also subject to privacy
risks. Thus, in this dissertation, we consider any device with a CPU connected to the Internet
that acts as the gateway to applications that share and analyze user or business-critical data.

Contribution I [fGS+21, GSU+22] explores the challenges and opportunities of privacy tech-
nologies in the broad landscape of IoT [ORRK18] and its applications, which encompass all the
aforementioned devices. These applications rely on several privacy-critical layers, described in
Table 2.1, which require distinct privacy data protections—briefly introduced in § 2.3. Storage
and processing allow systems to utilize information when required, the communication layer
comprises a set of technologies and protocols to exchange such information, verification allows
the recipients to validate the authenticity of the data and identities, and the governance layer
comprises a set of rules that govern which (sensitive) data may be exposed to which entities,
usually in the form of pre-determined privacy policies, e.g., blocklists and allowlists.

Layer Description
Storage Stores data.
Processing Accesses stored data and executes algorithms to extract valuable information.
Communication Shares data between machines.
Verification Checks the authenticity of data and the identities involved.
Sovereignty Governs the privacy policies of the other layers.

Table 2.1.: Description of the privacy-relevant layers in data sharing and analytics applications.

Contribution II [MGSB22] targets user devices such as personal computers or smartphones that
communicate with servers interested in performing aggregate statistics. Lastly, Contribution III
[GLMS23] focuses on industry-grade analytics tools that act as the gateway for practitioners to
access multiple large-scale user datasets.

2.3. Privacy-Enhancing Technologies

Since the advent of the internet in the 90s, the market has experienced a surge of digital plat-
forms that require an increasing amount of data to offer products, services, and plan their
corresponding future iterations. Accordingly, companies have deployed scalable infrastructure
for the generation, collection, storage, processing, distribution, and analysis of big data to realize
the economic potential of users’ information. However, these lucrative practices bring a set of
obligations and prohibitions towards the public’s privacy, as their sensitive information can be
compromised and used against their private interests. Thus, institutions face the challenge of
enhancing user privacy while extracting value from their data. This contemporary challenge
sparked the development of a new suit of tools called PET. The term PET was coined by the
Dutch Data Protection Authority and the Ontario Information Commissioner [HBNC98] in 1995,
which explored a novel approach to privacy protection [Opp05]. PETs may adopt various forms,
some are architectures built with privacy-by-design policies and principles [PMB+16, SN15],
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Figure 2.1.: Simplified privacy-enhancing technology classification by removing the leaf nodes of
Fig.5.2 (cf. [GSU+22]).

others rely on cryptographic primitives or on data alterations stemming from heuristics or math-
ematical privacy guarantees. Fig. 2.1 (cf. adapted [GSU+22]) depicts a simplified classification
of PETs based on their deployment layer: verification, storage, communication, processing, and
sovereignty (see section 5.2 for details).

In the following, we briefly define the most representative PETs per layer in Fig. 2.1 with the
aim to (i) provide context to industry practitioners not familiar with the topic (a recurrent
request throughout the recent past years), and (ii) contextualize DP by describing what the
other PETs can accomplish.
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PETs Shielding Data

Encryption is a foundational building block of confidential storage and transmission of data
[PHS+19a], digital signatures, and is at the core of most of the other PETs shielding data
and altering computation. Encryption schemata are either symmetric (a single key for both
encryption and decryption) or asymmetric (a public key for encryption and a private key for
decryption, or viceversa).

Homomorphic Encryption (HE) enables the computation of functions over encrypted data
(ciphertext), effectively hiding the inputs and allowing only the parties with the decryption
key to decrypt the outputs [Che16]. Researchers classify HE based on the breadth of opera-
tions allowed by the corresponding scheme [WK15, CGSM19]: Fully HE supports addition and
multiplication, partially HE allows for one of these two operations typically in exchange for
improved performance, and somewhat HE schemata lay in between the two [SCS18]. Celebrated
HE schemata are Paillier [Pai99] Boneh-Goh-Nissim [BGN05], and Hash-ElGamal [NIW+13].
While this PET holds promise, HE incurs significantly higher computational complexity and
comparatively large cyphertext storage requirements [BGV14].

Trusted executions environments (TEE) were introduced in 2009 by the Open Mobile
Terminal Platform as hardware and software components support for applications that require
protection against adversaries aiming to steal cryptographic key material or other critical infor-
mation [OMT09a]. TEEs are unique in that the considered adversaries include the legitimate
hardware owners or remote access to the system running the TEE. In practice, a TEE allows
a user to define a secure area of a CPU that impedes any code outside the secure environment
to record the data or tamper with its computation, i.e., TEEs ensure confidentiality of inputs,
outputs, and computation integrity. Precisely, TEEs associate hardware with unique encryption
keys, and thus, hardware tampering is as hard as attacking the software layer. Nonetheless,
TEEs still holds limitations, such as the limited memory offers and the vulnerabilities unveiled
on multiple occasions by researchers [KM22, AVBS+22, SYG+19].

PETs altering computation

Zero-Knowledge Proofs (ZKP) facilitate a verifier to validate the data authenticity and
computation integrity of a prover without requiring revealing such data or replicating the com-
putation [GO94]. Moreover, if the prover ’s claims are attested by a digital certificate signed
by a trusted third party, ZKPs can also verify identity authenticity. ZKPs enable such verifi-
cations thanks to the following properties: (i) zero-knowledgeness, i.e., the verifier only learns
the correctness of the statement, (ii) completeness, i.e., the prover ’s attestation is successful
with high probability, (iii) soundness, i.e., the prover ’s attestation of a wrong statement has a
low probability of succeeding [Sim02, KPC+20]. Furthermore, practitioners can choose between
interactive and non-interactive ZKP protocols. The former requires engaging in a sequence
of messages, while the latter allows a prover to convince the verifiers of a claim with a sin-
gle message [Sim02]. Regarding the limitations of ZKPs, researchers agree the need to keep
improving its computational complexity (primarily for the prover) and close the gap between
cryptographers and software engineers [BBK+09].

Secure Multiparty Computation (MPC) allows many parties to jointly compute a func-
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tion over obliviously exchanged data, i.e., without revealing any inputs [Yao82a, Sta96]. MPC
implementations are based in either secret sharing or garbled circuits. In secret sharing, each
party splits the secret input into shares broadcasted to the other computing parties. Upon re-
ceiving the sharded information, each party computes arithmetic operations independently and
communicates the outputs to the rest of the parties to reconstruct the result [Yao82a]. On the
other hand, garbled circuits achieve the same result by transforming functions into Boolean cir-
cuits, i.e., a combination of logic gates like AND, XOR, and OR that can construct any function
[Yao82b, Yak17]. Oblivious transfer [GIR20] is the core of garbled circuits, i.e., a party shares
one of many potential inputs to other parties while remaining oblivious of which data point has
been sent. While MPC is more computationally efficient than fully HE schemata [YHL+19], it
incurs high processing and communication costs and high sensitivity to latency, which decreases
performance [KLB20].

Privacy-Preserving data mining (PPDM) is a means to extract useful information from
data by the use of machine learning (ML) or conventional statistical analyses such as aggre-
gations while enhancing the privacy of the process. In short, PPDM performs computations
in the data owner’s machine and can further protect the computation with cryptographic
and data alteration techniques. The most popular PPDM tool is federated learning (FL)
[KMR15, LSTS20, YLC+19], which collaboratively trains a base ML model on each client’s
local data; thereafter, the trained weights are shared with a server that aggregates them to
form a unique model. Alternatives to FL are split learning approaches [VGSR18, GR18], which
decompose the neural network’s layers across different machines to separate data inputs and
labels, and gossip learning [GG19, OHJ], whereby ML models perform a random walk over
clients, where they are trained and merged. Additionally, practitioners can enhance the privacy
of these PPDM approaches by broadcasting the weights with MPC [BIK+17] protocols, protect
the client selection mechanisms with HE [ZLC+21], and enhance the privacy of the underlying
data by altering the input data or the ML training process.

PETs Altering Data

DP, the targeted technology of this dissertation, provides a unique privacy guarantee among
the rest of PETs, which is discussed in detailed in §2.4.

K-Anonymity is the primordial privacy definition among a suit of subsequent syntactic privacy
models such as 𝑙-diversity, 𝑡-closeness, 𝛽-likeness, and 𝛿-presence, among others. Unlike DP,
𝑘-anonymity and its variations define a property of the data itself [DFLS12]. For example,
𝑘-anonymization, i.e., processing data so that the output dataset fulfills 𝑘-anonymity, clusters
attribute values into equivalence classes of size 𝑘, where each individual is indistinguishable
from 𝑘 − 1 others. Typically, a 𝑘-anonymization process that minimizes information loss is an
NP-hard problem. Therefore, researchers have studied heuristics to achieve near-optimal results
[MW04].

PETs Managing Data

Privacy policies are soft privacy measures that compile the obligations and prohibitions of
a data governance model for an application. Practitioners should define privacy policies ex-
ante and consider the requirements of the user. For example, access control embodies a policy
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that can dictate when and who can access which data. While policies do not require advanced
technologies, they face challenges. There is a lack of a global standard for electronic privacy poli-
cies [SN15], applications must prioritize among conflicting policies based on the circumstances
[GTD18], and policy enforcement in conventional systems typically requires a human in the
loop (as observed in the interviewed organizations [GLMS23]) due to the organizations’ lack of
automated privacy tooling, potentially causing delays in data processing [GTD18].

We should note that there is no “one-size-fits-all” PET; it is only the combination of these
technologies that can strive to guarantee an end-to-end privacy-enhancing solution. For example,
while MPC might maintain the inputs of a computation secret, its outputs are typically known
to the participants. These outputs could leak information about the inputs; thus, definitions
such as DP are necessary to protect the parties’ privacy completely.

2.4. Differential Privacy

The privacy community has demonstrated how unsafe traditional privacy techniques are (e.g.,
suppressing names, generalizing values, and syntactic privacy definitions like 𝑘-anonymity), pri-
marily because they are vulnerable to background knowledge attacks [DSSU17, SAW13, GFS+14,
KHdMR20, NS08, AGKZ18]. In contrast, DP, originally introduced by Dwork et al. [DMNS06]
in 2006, proposes a context-agnostic provable privacy guarantee, i.e., the privacy guarantee holds
despite available past, present, or future auxiliary information [DR13]. A function ℳ(·) (e.g.,
a summary statistic) fulfils DP if it effectively bounds how much new information an adversary
can gain from observing its outputs. Specifically, such (randomized) function ℳ(·) satisfies DP
by adding calibrated random noise, typically to a deterministic function’s output: ℳ(𝒟) =
𝒲(𝒟) + 𝑁𝑜𝑖𝑠𝑒. The similarity of likelihoods is bounded by the parameter 𝜀, which is inversely
proportional to the privacy guarantee’s strength. In practice, the outputs of ℳ(·) are similarly
likely with or without an individual’s input contribution (dataset 𝐷 vs. 𝐷′). Symmetrically,
individuals absent in a dataset have “essentially” the same privacy guarantee as if they were in
the dataset. Formally, Dwork et al. [DR13] defined DP as:

Definition 1. ((𝜀, 𝛿)-Differential privacy). A randomized function ℳ(·) is (𝜀,
𝛿)-differentially private iff for any two neighboring datasets 𝐷 and 𝐷′ differing
on at most one element, and any set of possible outputs 𝒮 ⊆ 𝑅𝑎𝑛𝑔𝑒(ℳ):

Pr[ℳ (𝐷) ∈ 𝒮] ≤ 𝑒𝜀 × Pr[ℳ (𝐷′) ∈ 𝒮] + 𝛿.

Having briefly introduced the fundamental concept of DP, the following provides a series of
critical aspects to consider when working with DP and necessary to follow Contribution III
[GLMS23].

Pure & Approximate DP. Definition 1 is considered pure DP when 𝛿 = 0. In contrast, if
𝛿 ̸= 0, the DP function provides more utility (e.g., output accuracy) in exchange for lowering
the privacy guarantee of the individual [DR13]. Specifically, the parameter 𝛿 is the probability
that the information gained by an adversary is not bounded by 𝜀, i.e., distinguishing between
𝐷 and 𝐷′ is trivial.
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Boundedness. Depending on how the neighboring datasets 𝐷 and 𝐷′ differ in one individual,
the randomized function fulfills either unbounded or bounded DP. In unbounded DP, an indi-
vidual record is removed (|𝐷′| = |𝐷| − 1) or added (|𝐷′| = |𝐷| + 1), whereas in bounded DP,
an individual record is changed (|𝐷′| = |𝐷|). In both settings, 𝐷 and 𝐷′ are at a Hamming
distance of 𝑑ℎ (𝐷,𝐷′) = 1, i.e., differ in one individual. A higher Hamming distance is desired
for DP guarantees in group privacy [Mir17].

Sensitivity. The noise added by a randomized function ℳ(·) is sampled from a random variable
(r.v.). The scale of this r.v. (noise) is affected by the value 𝜀 and the global ℓ1-sensitivity of the
deterministic function, which corresponds to the maximum difference of the function’s outputs
over all possible neighboring datasets 𝐷 and 𝐷′. Picking the maximum ensures that any other
individual’s contribution with a lower impact on the output is protected. Depending on the
function type, the ℓ1-sensitivity may vary, e.g., a mean query could have a lower ℓ1-sensitivity
than a count query and, therefore, the scale of the added noise is smaller. Formally, Dwork et
al. [DR13] defines ℓ1-sensitivity as:

Definition 2. (ℓ1-sensitivity). The ℓ1-sensitivity of an algorithm 𝒲 : R𝑚 → R𝑛,
executed over datasets 𝒟, 𝒟′ ∈ R𝑘 at a Hamming distance of 𝑑ℎ (𝒟,𝒟′) = 1, is:

Δ𝑓 = max 𝒟,𝒟′∈R𝑘

𝑑ℎ(𝒟,𝒟′)=1

‖𝒲 (𝒟)−𝒲 (𝒟′) ‖1.

Depending on whether DP was defined as bounded or unbounded, the value of ℓ1-sensitivity varies,
e.g., a bounded multi-dimensional count query has an ℓ1-sensitivity= 2, while its unbounded
counterpart has a ℓ1-sensitivity= 1. Additionally, if we define ℓ1-sensitivity for a fixed 𝐷,
Definition 2 describes local sensitivity. The local sensitivity is smaller than the global sensitivity
(the upper bound) because it does not consider all the possible values and combinations of 𝐷 and
𝐷′, resulting in better utility (lower noise scale). However, using a function’s local sensitivity
limits its applicability to one particular 𝐷, as it does not account for any other possible larger
individual contribution.

DP Mechanisms. There exist a myriad of mechanisms fulfilling Definitions 1 and 2. The most
popular are the Laplace mechanism [Dwo08] and the Gaussian mechanism [DR13] for numerical
data, and the Exponential mechanism [MT07] for categorical and numerical data. The original
Laplace and Exponential mechanisms fulfill pure DP, while the Gaussian mechanism follows
approximate DP. Formally, the Laplace mechanism is defined as [Dwo08]:

Definition 3 (Laplace mechanism). For an algorithm 𝒲 executed over a dataset
𝒟, its differentially private version ℳ adds Laplace noise: ℳ(𝒟) = 𝒲(𝒟) +
𝐿𝑎𝑝(𝑥|𝜇, 𝑏), with

Lap

(︂
𝒲 (𝒟) = 𝑥|𝜇 = 0, 𝑏 =

Δ𝑓

𝜀

)︂
=

𝜀

2Δ𝑓
exp

(︂
−𝜀|𝑥|
Δ𝑓

)︂
.

The Gaussian mechanism is equivalent; however, the noise is sampled from a normal r.v. In
contrast, the Exponential mechanism returns the category that approximately maximizes a
utility function 𝑢, i.e., unlike the Laplace and Gaussian mechanisms, it does not add noise
directly to the output of a deterministic function.
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Definition 4 (The Exponential mechanism). Given a utility function 𝑢 : (𝐷 ×
𝑅) → 𝑅, and a dataset 𝐷, the exponential mechanism ℳ(𝐷,𝑢) returns outputs
𝑟 ∈ ℛ with probability 𝑝𝑟 ∝ exp( 𝜀

2Δ𝑢𝑢𝑟), where 𝑢𝑟 is he utility of the element 𝑟
and Δ𝑢 is the ℓ1-sensitivity of 𝑢.

Definitions 3 and 4 show the impact of the value 𝜀: the larger the 𝜀, the larger the standard
deviation of the sampled noise, and thus, the stronger the privacy guarantee and the weaker the
utility of the mechanism. Nonetheless, note that the magnitude of the noise is independent of
the dataset size (the number of records). Therefore, analyzing larger datasets provides better
relative utility.

Central/Local Model. Practitioners enhance the privacy of applications by deploying DP in
the local mode, i.e., imbuing noise to each client’s data point individually (using techniques such
as randomized response [War65], based on two coin flips), or in the central mode, i.e., adding
noise after aggregating the data points across clients. The central model is typically less noisy
than the local model; however, the local model requires less trust assumption with the server.

Privacy Levels. Practitioners can choose the scope of their DP implementation at three levels
[NR20]: (i) user level privacy, when all the records linked with a user are either absent or
present, (ii) event level privacy, when all the records associated with an event or a group of
events are either present or absent, and 𝑤-event level privacy, when a set of 𝑤 occurrences of
records produced by an event or groups of events are either absent or present.

Sequential Composition. DP algorithms obey sequential composition [DR13], i.e., the result-
ing 𝜀 of the execution of a sequence of 𝑛 (possibly different) DP mechanisms over 𝐷 with 𝜀𝑖 is
the consumed privacy budget 𝜀 =

∑︀
𝜀𝑖.

Privacy Budget Tracking. Given that the sampling noise distribution is centered around 0,
an adversary could reverse engineer the 𝑛 query results by averaging out the noise. Therefore,
DP tool designers should implement built-in budget trackers to prevent this type of attack.

Floating-Point Vulnerabilities. The original proofs for the Gaussian and Laplace mech-
anisms rely on distributions on the real numbers line; however, computers approximate real
numbers with floating-point representations that depend on the input values. In contrast, DP
outputs should be independent of the input data, and therefore, practical DP implementations
make outputs distinguishable—breaking DP [Mir12]. Moreover, DP implementations are vul-
nerable to precision-based attacks, where outputs can be distinguished based on the fact that
some will be multiples of a specific power of two while others may not [HDH+22].

Quality of Randomness. DP implementations using low-quality random number generators
may lead to privacy leakage [GL20]. Thus, developers should be mindful of using cryptographic-
secure random number generators.

Semantic Consistency. An important practical consideration of DP applications is preserving
the output consistency of the analysis, e.g., a count query result should not be negative or have
decimal values, the variance should not result in negative or zero values, and dividing a DP sum
by the count query result should yield similar values to the DP mean. While there are solutions
to constraint DP query outputs, they can also introduce errors or biases.

Outstanding Challenges. While DP has become the privacy golden standard for academics
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and the industry and governmental institutions strive to deploy DP in practice [App17, AG21,
DKY17, Joh21], there still exist remaining challenges [GLMS23]:

1. Choosing Privacy Parameters. The most limiting roadblock is choosing an appropriate
𝜀 value, as there is not yet a consensus and generalizable guidelines [DKM19].

2. DP tooling maturity. While at a striking distance, practitioners still have issues de-
ploying current open-source DP tooling [GLMS23].

3. High Adaption Effort. While academics have adapted DP to numerous algorithms
(e.g., ML and aggregations) and use cases using the local or global models, these adaptions
require significant effort and extensive expertise [DFSBJ21].

4. Fairness. In use cases whose outcome significantly impacts users’ well-being, e.g., dis-
tributing budget across social groups based on aggregated economic data, DP calculations
could over- or under-estimate the allocation of resources or reduce the correctness of data-
driven decisions [KKM+21].

5. User Data Streams. Users produce and share data on a daily basis, which, because of
sequential composition, it is a challenge to guarantee user-level privacy [LSV+19].

6. Privacy Budget Tracking Across Systems. Users employ different siloed platforms
and produce linkable and redundant data, giving the opportunity to adversaries to switch
between platforms to exploit untethered privacy budgets.

7. DP Verifiability. Verifying the correctness of DP algorithms is a complex endeavour, as
it requires proving and fitting a mathematical model to the system’s semantics or the use
of technologies such as ZKP to prove validity [KMR+20].

Throughout this dissertation, we survey and work with tools focused on facilitating the use of DP
(Contribution III), which offer choice across the aspects introduced in this section, e.g., available
tools allow for both pure and approximate DP and the two boundedness definitions, some cal-
culate sensitivity automatically, employ cryptographic-secure random number generation, have
protections to circumvent floating-point vulnerabilities, and most offer a range of diverse DP
mechanisms, privacy budget odometers, and semantic consistency features. Mainly, we focus
our work on user-level privacy, and we provide contributions in the local model (Contribution
II) and the central model (Contribution III) of DP.

Concerning the challenges of DP, in short, we help tackle Challenge (2) DP Tooling Maturity in
Contribution III by outlining the remaining gap for the deployment of DP tooling and Challenge
(7) DP Verifiability in Contribution II by proving the use of DP in the local model with a
cryptographically verifiable proof based on ZKPs (see section 2.3).
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CHAPTER 3

Research Design

This chapter describes the research design we used to conduct our research endeavors and answer
our research questions and fill the gaps satisfactorily [Bha12]. The two aspects of a research
design are defining a research strategy (see Section 3.1) and selecting research methods appro-
priately [Bha12] (see Section 3.2).

3.1. Research Strategy

Scientific inquiries are either inductive, i.e., the derivation of patterns from observations and the-
oretical knowledge for those patterns, or deductive, i.e., developing a hypothesis and conducting
experiments to validate it [Bha12]. The type of inquiry influences the research design and data
collection [Mye97]. We rely on an inductive process for contributions I and III and a deductive
process for contribution II. Furthermore, research could be primary, i.e., studies that contain
original data collected by the authors or their designs, artifacts, and experiments, or secondary,
i.e., work that reviews or systematizes existing knowledge. Additionally, we could use several
research approaches: qualitative, quantitative, and mixed strategies [CC18]:

• Qualitative strategies strive to understand and explain complex social phenomena that
often cannot be generalized [SC90]. Researchers use this strategy when conducting case
studies and expert interviews [Bha12].

• Quantitative strategies aim to measure variables and understand such data to derive pat-
terns or test hypotheses [Yıl13, CC18]. Researchers rely on this strategy typically for
conducting surveys and experiments.

• Mixed strategies are rooted in the philosophy that combining quantitative and qualitative
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information provides synergistic insights, i.e., the researcher can learn more new informa-
tion than with the qualitative and quantitative data alone [CC18]. Thus, the researcher
collects, integrates, and interprets both types of data [JOT07, CC18].

Based on the research gaps of section 1.2, we decided to follow a mixed strategy by using a three-
fold approach combining (i) semi-structured expert interviews and (ii) (systematic) literature
reviews aimed to understand the state-of-the-art (qualitative research), and (iii) design-science
research verified with experimental results (quantitative research). This resulted in three of our
papers to be mainly primary (P1, P3, P4) and one secondary study (P2). Through our three-
fold approach, we aim to reveal unique insights and solutions [VBB13] aimed to improve the
applicability of Privacy-Enhancing Technology (PETs) in Data Sharing and Analytics Applica-
tions (DSAAs), specifically, in the use of DP—a technique providing privacy guarantees unique
among PETs.

Fig. 3.1 illustrates the overarching strategy we followed in this dissertation. First, we used
evidence-based research methods, namely, gray and systematic literature reviews, to identify
the problems and research gaps in applying PETs to DSAAs (P1, P2). Secondly, we conducted
other minor literature reviews (P3, P4) to elicit the necessary algorithm components (P3) and
functional requirements to create tools that can tackle the identified problems (P4). In combi-
nation with expert interviews (P1, P4) and the industry experience in privacy of the authors
of the research papers (P4), we designed and developed two software components: a verifiable
differential privacy algorithm (P3) and an initial benchmarking tool (introduced in P4 and ex-
panded upon in PP1). By working on PP1, we built knowledge and expertise that also helped
writing P4. We note that the benchmarking tool is at an initial stage, and its purpose is to
compare existing DP tools. With the comparison results, we can choose the tools that best suit
the architecture of a holistic privacy-enhancing analytics tool, which we designed in P4.

Systematic
Literature

Review (P2)

(Gray)
Literature

Review (P1)

Un- & Semi-
Structured Expert

Interviews (P1, P4)

Observations of the
Use of PETs in the

Industry (P4)

(1) Problem & Research Gaps Identification

Algorithm
components (P3)

Functional
Requirements (P4)

Literature Review (P3, P4)

Software
Components

(P3, P4)

(2) Define Objectives

(3) Design & development Verifiable
Differential Privacy

Algorithm (P3)

Benchmarking Tool
(P4, PP1)

(4) Demonstration &
Evaluation

Research papers
(P1, P2, P3, P4)

Ph.D. Dissertation

(5) Communication

Figure 3.1.: Overview of our research approach. P = Embedded paper.
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No. Inquiry Type Strategy type Study type Research Method
Contribution I: Opportunities and Challenges in the Applicability of PETs
P1 Inductive Qualitative Primary

Secondary
Unstructured Expert Interviews
(Gray) Literature Review

P2 Inductive Qualitative Secondary Systematic Literature Review
Contribution II: Improving the Applicability of Differential Privacy Algorithms
P3 Deductive Quantitative Primary Literature Review

Design Science
Contribution III: Improving the Applicability of Differential Privacy Systems
P4 Inductive Qualitative Primary

Secondary
Structured Expert Interviews
Literature Review
Design Science

Table 3.1.: Overview of research types, strategies, and methods applied in the embedded publi-
cations.

3.2. Research Methods

In this section, we briefly describe the three research methods used throughout this dissertation:
systematic literature reviews, expert interviews, and research design. Particularly, we describe
their general characteristics, process, and how they contributed to the results of this dissertation.
Each of the embedded publications P1-4 describe in detail the corresponding used method. In
summary, we lay out the different research strategies and methods each of the embedded papers
follows in Table 3.1. The descriptions of this section are inspired by the work of one of the
co-authors of P2, Ömer Uludağ [Ulu22].

Systematic Literature Reviews. Literature reviews aim to provide an overview of the target
research field by dissecting the content of a series of extant publications and deriving insights,
taxonomies, or other artifacts in a systematic and reproducible manner [Coo88, Bak00, WW02,
RS04]. Moreover, a literature review highlights, assesses, and structures the seminal studies in
the field, and summarizes their content for researchers to quickly understand the state-of-the-art
[LE06, TDS03]. Furthermore, a literature review extracts future work avenues for researchers
looking to advance the field and facilitates theory development [WW02]. The transparency of the
review process, i.e., search, filtering, and analysis, is critical for other researchers to verify that
the findings are not biased or lack depth [VBSN+09]. In response, researchers conduct literature
reviews with a systematic process detailed in their publications [TDS03, VBSN+09].

For the systematic literature review of P2, we used the goal-question-metric paradigm [BCR94].
We formulated the goal of as follows:
(P2) “We systematically analyze peer-reviewed literature to provide an overview of the state-of-
the-art concerning available research and trade-offs on privacy-enhancing data markets for the
IoT as well as potential research gaps from the point of view of both scholars and practitioners.”
From that standpoint, we created two research questions to guide our search for seminal studies.
The literature reviews for P1, P3, and P4 had a similar approach and were conducted mainly to
find relevant related work and were not the main means to achieve their associated contributions.
The goals of the literature reviews of P1, P3, and P4 were:
(P1) “We analyze gray literature to provide an overview of existing open-source tools to support
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use cases handling critically sensitive information,”
(P3) “...[provide an overview] of a series of differentially private noise sampling algorithms that
we could use for implementing their verifiable version,” and
(P4) “...[provide an overview] of existing tools offering differential privacy functionality and
profiling the gap our research aims to fill.”

Expert Interviews. Researchers conduct empirical studies to extract new information or
validate hypotheses, which the field of software engineering also requires [GPRN18]. Conducting
a set of expert interviews is one such empirical method. These studies aim to gather data
from a target population sample by personally or impersonally interacting with the interviewees
[IM95, Kas05].

Two of the studies in this dissertation used expert interviews. P1 performs unstructured inter-
views, i.e., the goal and outcome of the interview are set, but the researchers do not specify
questions ex-ante. The goal of the interviews in P1 was to find industry use cases where PETs
could provide value. In contrast, the interviews in P4 were structured, i.e., the questions were
defined before the interview. The questions in P4 aimed to understand the role that DP could
play in companies unfamiliar with its formal privacy guarantee.

Design Science. Design science aims to create novel artifacts, i.e., solutions to critical problems
or roadblocks in a target research field [HMPR04, PTRC07], with rigor, and relevance [HMPR04,
RV08, Sta95, BW96]. If the artifacts proved relevant and have been evaluated and validated,
early-stage design artifacts could positively impact organizations’ localized problems. To create
these artifacts, e.g., software components, researchers must rely on rigorous methodologies in
close collaboration with the industry [BMSS13a, BMSS13b].

We followed the guidelines of design science research [HMPR04] and its method [PTRC07] to
develop two software components: a verifiable differentially private noise sampler (P3), and a
benchmarking tool (P4); however, note that the benchmarking tool is only introduced in P4,
while it is in PP1 [GNM+21] where the tool is the focus. Fig. 3.1 follows the method of Peffers et
al. [PTRC07]: (1) identify a problem, (2) define objectives, (3) design and develop the artifact,
(4) demonstrate and evaluate the artifact, and (5) communicate the results. Note that to identify
the problem this artifacts tackle and fine-tune their requirements and characteristics, we used
the aforementioned systematic literature reviews and expert interviews.

26



Part B

27



CHAPTER 4

Contributions

4.1. Contribution I: Revealing Opportunities and Challenges in
the Applicability of Privacy-Enhancing Technologies in Data
Sharing and Analytics Applications

(P1) Exploring Privacy-Enhancing Technologies in the Automotive Value
Chain

Authors. Munilla Garrido, Gonzalo* and Schmidt, Kaja and Harth-Kitzerow, Christopher and
Klepsch Johanne and Luckow, Andre and Matthes, Florian*.
*Technische Universität München, Chair of Software Engineering for Business Information Sys-
tems, Boltzmannstraße 3, D-85748 Garching, Germany.

Outlet. 2021 IEEE International Conference on Big Data.

Page Number. 8.

Status. Published.

Paper Version. Accepted Version.

Contribution of first author. Problem definition, research design, data collection, data
analysis, interpretation, writing, and reporting.

Abstract. Privacy-Enhancing Technologies (PETs) are becoming increasingly crucial for ad-
dressing customer needs, security, privacy (e. g., enhancing anonymity and confidentiality), and
regulatory requirements. However, applying PETs in organizations requires a precise under-
standing of use cases, technologies, and limitations. This paper investigates several industrial
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use cases, their characteristics, and the potential applicability of PETs to these. We conduct
expert interviews to identify and classify uses cases, a gray literature review of relevant open-
source PET tools, and discuss how the use case characteristics can be addressed using PETs’
capabilities. While we focus mainly on automotive use cases, the results also apply to other use
case domains.

Research Gap. While there is a wealth of research applying or optimizing PET to particular
use cases, there is a lack of studies outlining opportunities and guiding practitioners to identify
actionable privacy-related use cases in the industry and select the appropriate PET for a given
use case.

Method. We conducted a survey of 17 experts and a gray literature review that revealed 76
open-source PET tools and mapped the identified use cases with PET.

Artifacts.

1. List of use cases classified per application domain.

2. List of the most prominent PETs and associated open-source tools.

3. Mapping between PETs and use case characteristics.

4. Mapping between PETs and selected use cases per application domain.

Results. We define a guideline to select a PET based on use case characteristics and provide
representative examples to showcase the reasoning for selecting a particular PETs.

Conclusion. We conclude that there is “no-size-fits-all” PET and the level of knowledge to
deploy them is significantly high, and, thus, we call for caution at the time of integrating PETs
in legacy or new systems and encourage researchers to produce more guidance and improve
open-source tools to bridge the gap between theory and practice.

(P2) Revealing the landscape of privacy-enhancing technologies in the context
of data markets for the IoT: A systematic literature review

Authors. Munilla Garrido, Gonzalo* and Sedlmeir, Johannes and Uludağ, Ömer* and Soto
Alaoui, Ilias* and Luckow, Andre and Matthes, Florian*.
*Technische Universität München, Chair of Software Engineering for Business Information Sys-
tems, Boltzmannstraße 3, D-85748 Garching, Germany.

Outlet. Volume 207, Journal of Network and Computer Applications.

Page Number. 43.

Status. Published.

Paper Version. Published Version.

Contribution of first author. Problem definition, research design, data collection, data
analysis, interpretation, writing, and reporting.

Abstract. IoT data markets in public and private institutions have become increasingly relevant
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in recent years because of their potential to improve data availability and unlock new business
models. However, exchanging data in markets bears considerable challenges related to disclosing
sensitive information. Despite considerable research focused on different aspects of privacy-
enhancing data markets for the IoT, none of the solutions proposed so far seems to find a
practical adoption. Thus, this study aims to organize the state-of-the-art solutions, analyze and
scope the technologies that have been suggested in this context, and structure the remaining
challenges to determine areas where future research is required. To accomplish this goal, we
conducted a systematic literature review on privacy enhancement in data markets for the IoT,
covering 50 publications dated up to July 2020, and provided updates with 24 publications dated
up to May 2022. Our results indicate that most research in this area has emerged only recently,
and no IoT data market architecture has established itself as canonical. Existing solutions
frequently lack the required combination of anonymization and secure computation technologies.
Furthermore, there is no consensus on the appropriate use of blockchain technology for IoT
data markets and a low degree of leveraging existing libraries or reusing generic data market
architectures. We also identified significant challenges remaining, such as the copy problem
(i.e., once an entity releases data, the data is no longer under the original owner’s control) and
the recursive enforcement problem (i.e., the recursive need to supervise a supervising entity).
These challenges—while solutions have been suggested to some extent—are often not sufficiently
addressed in proposed designs. We conclude that privacy-enhancing technologies need further
improvements to positively impact data markets so that, ultimately, the value of data is preserved
through data scarcity and users’ privacy and businesses-critical information are protected.

Research Gap. Despite the increasing number of publications dedicated to studying PET,
there is a lack of comprehensive yet detailed review, classification, and analysis of PET and
challenges in the broad context of IoT.

Method. We conducted a structured literature review covering 74 publications, from which we
extracted taxonomies, opportunities, and challenges of applying PET in the IoT.

Artifacts.

1. Taxonomy of PETs.

2. Taxonomy of privacy challenges in IoT data markets.

3. Examination of the IoT’s negative impacts on privacy.

4. Mapping between PETs and the associated privacy challenges.

5. Reference model for a privacy-enhancing IoT data market.

6. Metadata aggregation of the selected publications.

Results. The main results indicate that many researchers tend to re-invent the wheel instead
of improving and contributing to existing open-source tools, combinations of PETs offering
secure computation and provable privacy guarantees are rare, and blockchains appear in many
publications despite the lack of data exchange applications in production.

Conclusion. We conclude that there is not yet a canonical solution for building privacy-
enhancing IoT data markets, for which the practicality of PET needs to improve.
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4.2. Contribution II: Improving the Applicability of Differential
Privacy Algorithms

(P3) Towards Verifiable Differentially-Private Polling

Authors. Munilla Garrido, Gonzalo* and Sedlmeir, Johannes and Babel, Matthias.
*Technische Universität München, Chair of Software Engineering for Business Information Sys-
tems, Boltzmannstraße 3, D-85748 Garching, Germany.

Outlet. ARES ’22: Proceedings of the 17th International Conference on Availability, Reliability
and Security, Article No.: 6.

Page Number. 10.

Status. Published.

Paper Version. Published Version.

Contribution of first author. Problem definition, research design, algorithm design, verifi-
cation, writing, and reporting.

Abstract. Analyses that fulfill differential privacy provide plausible deniability to individuals
while allowing analysts to extract insights from data. However, beyond an often acceptable
accuracy tradeoff, these statistical disclosure techniques generally inhibit the verifiability of the
provided information, as one cannot check the correctness of the participants’ truthful informa-
tion, the differentially private mechanism, or the unbiased random number generation. While
related work has already discussed this opportunity, an efficient implementation with a precise
bound on errors and corresponding proofs of the differential privacy property is so far missing.
In this paper, we follow an approach based on zero-knowledge proofs (ZKPs), in specific suc-
cinct non-interactive arguments of knowledge, as a verifiable computation technique to prove
the correctness of a differentially private query output. In particular, we ensure the guarantees
of differential privacy hold despite the limitations of ZKPs that operate on finite fields and have
limited branching capabilities. We demonstrate that our approach has practical performance
and discuss how practitioners could employ our primitives to verifiably query individuals’ age
from their digitally signed ID card in a differentially private manner.

Research Gap. The few extant works bridging DP and ZKP fail to acknowledge their solution
guarantees the approximate definition of DP and not in its pure form, do not provide a cryp-
tographic validity guarantee, their performance is impractical, or have scant implementation
details.

Method. We performed a literature survey to find DP algorithms that could be adapted so
that ZKP can verify their use. Consecutively, we implemented and evaluated our adapted DP
algorithm.

Artifacts.

1. Algorithm to cryptographically verify the use of DP on the local mode.
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2. The algorithm’s open-source implementation (software component I): https://github.
com/applied-crypto/DPfeatZKP.

Results. We provide the privacy community with primitives for implementing cryptographically
verifiable DP in the local model.

Conclusion. Enabling a server to cryptographically verify the correct execution of DP noise
sampling in the local setting (i.e., a provable privacy guarantee) can prevent malicious clients
from adding “garbage” noise to their local data, which can deteriorate the accuracy of a server’s
aggregate statistics.

4.3. Contribution III: Improving the Applicability of Differential
Privacy Systems

(P4) Lessons Learned: Surveying the Practicality of Differential Privacy in the
Industry

Authors. Munilla Garrido, Gonzalo* and Liu, Xiaoyua and Song, Dawn and Matthes, Florian*.
*Technische Universität München, Chair of Software Engineering for Business Information Sys-
tems, Boltzmannstraße 3, D-85748 Garching, Germany.

Outlet. 23rd Privacy Enhancing Technologies Symposium (PETS 2023).

Page Number. 20.

Status. Published.

Paper Version. Published Version.

Contribution of first author. Problem definition, research design, data collection, data
analysis, interpretation, requirements elicitation, writing, and reporting

Abstract. Since its introduction in 2006, differential privacy has emerged as a predominant
statistical tool for quantifying data privacy in academic works. Yet despite the plethora of
research and open-source utilities that have accompanied its rise, with limited exceptions, dif-
ferential privacy has failed to achieve widespread adoption in the enterprise domain. Our study
aims to shed light on the fundamental causes underlying this academic-industrial utilization
gap through detailed interviews of 24 privacy practitioners across 9 major companies. We an-
alyze the results of our survey to provide key findings and suggestions for companies striving
to improve privacy protection in their data workflows and highlight the necessary and missing
requirements of existing differential privacy tools, with the goal of guiding researchers working
towards the broader adoption of differential privacy. Our findings indicate that analysts suffer
from lengthy bureaucratic processes for requesting access to sensitive data, yet once granted,
only scarcely-enforced privacy policies stand between rogue practitioners and misuse of private
information. We thus argue that differential privacy can significantly improve the processes of
requesting and conducting data exploration across silos, and conclude that with a few of the
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improvements suggested herein, the practical use of differential privacy across the enterprise is
within striking distance.

Research Gap. Given the lack of widespread adoption of DP tooling, we research the suitability
of DP in organizations’ workflows by interviewing practitioners unfamiliar with the technology,
in contrast to other works focusing on interviewing experts.

Method. We conducted a survey of 24 experts. We distilled key findings, proposed functional
requirements for a holistic privacy-enhancing analytics tool, and outlined the gaps in existing
open-source DP tooling.

Artifacts.

1. Set of 10 functional requirements for holistic privacy-enhancing analytics systems.

2. List of outstanding research and engineering gaps blocking the wider adoption of DP.

3. Early-Stage blueprint for the design of a holistic privacy-enhancing analytics system.

4. Early-Stage open-source implementation of a benchmarking tool to test the suitability of
DP libraries and frameworks for some of the blueprint’s components (software component
II): https://github.com/camelop/dp_lab.

Results. We provide a comprehensive summary of and key findings from the practitioners’
answers to the 24 questions revolving around analytics use cases, data access requests, and
dealing with noisy results, which may particularly interest privacy officers and legal practitioners.
Additionally, the artifacts provided throughout P4 may be helpful to software engineers and
developers.

Conclusion. We argue that DP could reduce data access request times by allowing the ex-
ploration of critically sensitive data across silos, reducing the access restrictions thanks to its
stronger privacy guarantees, and, depending on the use case requirements, a DP aggregation
analysis may directly fulfill the business request.
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CHAPTER 5

Discussion

We move on to discuss the key findings of the embedded publications (section 5.1), answer the
research questions (section 5.2), and examine the limitations of our studies (section 5.3).

5.1. Discussion of Key Findings

Our three contributions comprise four research studies with a series of key findings (see Table 5.1)
discussed in the following:

Contribution I: Revealing Opportunities and Challenges in the Applicability of
Privacy-Enhancing Technologies in Data Sharing and Analytics Applications.

Laying out the opportunities and challenges creates avenues for future work. In particular, P1
[fGS+21] conducted expert interviews to find such opportunities, and P2 [GSU+22] focused on
revealing challenges by systematically reviewing 50 studies filtered from hundreds of search hits.
These studies focused on DSAA architectures or data trading schemata (KF3.4), and charac-
terized DSAAs based on the degree of decentralization, the types and number of data domains,
and seller and consumer types (KF3.6). Moreover, the timeline of these 50 publications showed
accelerated growth of publications dedicated to studying PETs in DSAAs. The updated search
we conducted in May 2022 revealed another 24 publication: 3 more from 2020, 14 from 2021,
and—as of May—7 from 2022, indicating the trend depicted in Fig. 5.1 has not reversed. There-
fore, we can confirm that the attention of researchers in PET for DSAAs has increased notably
in recent years (KF2.1). However, despite the surge in research, privacy-oriented DSAAs are
still maturing, which is evident given the lack of production-grade implementations (KF2.2).

Based on our research, the reasons behind the lack of adoption could be the low maturity in
available PET tools (KF1.2) and the increased complexity resulting from adding PETs to a
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No. Key Findings
Contribution I: Opportunities and Challenges in the Applicability of PETs
P1 (KF1.1) There is “no-size-fits-all” PET.

(KF1.2) Given that most open-source tools are not yet ready for deployment, using PETs
requires an in-depth understanding of the technology, its limitations, and application domain.
(KF1.3) PETs increase architectural and computational complexity.

P2 (KF2.1) The attention of scientists toward privacy-enhancing technologies in data markets
for IoT devices has increased notably in recent years.
(KF2.2) Privacy-oriented IoT data markets are still maturing and have not faced many
production-grade implementations yet.
(KF2.3) Studies rarely leveraged existing PETs libraries, and therefore, it may be beneficial
for researchers to use or improve existing work instead of reinventing the wheel.
(KF2.4) IoT data markets research is divided into architectures and data trading schemata.
(KF2.5) Despite the acknowledged need for combining anonymization and secure and out-
sourced computation techniques, only two of the collected studies used a combination of PETs.
(KF2.6) Data markets are characterized based on the degree of decentralization, the types
and number of data domains, and seller and consumer types.
(KF2.7) Blockchain is frequently used as the backbone of IoT data markets despite the lack
of consensus on its use and blockchain-based applications in production.

Contribution II: Improving the Applicability of Differential Privacy Algorithms
P3 (KF3.1) There is a lack of work on the cryptographic verifiability of DP.

(KF3.2) Using Bernstein polynomials to approximate a probability density function in a
closed interval and rejection sampling is not suitable for building a verifiable DP algorithm.
(KF3.3) The truncated geometric mechanism relies on integers that could become so large
that a ZKP circuit compiler cannot handle them.

Contribution III: Improving the Applicability of Differential Privacy Systems
P4 (KF4.1) Data stewards seemed to be more concerned about security than privacy.

(KF4.2) Running analysts’ scripts without “seeing” the data is still a distant possibility.
(KF4.3) DP could have a significant impact on dataset exploration.
(KF4.4) Analysts could employ DP mechanisms to fulfill certain analytics use cases.
(KF4.5) Companies do not have an ex-post human-supported privacy auditing step.
(KF4.6) Given the six reasons analysts shared for fully accessing datasets, DP mechanisms
could help in “obtaining a holistic understanding of data” by providing summary statistics.
(KF4.7) Analysts are blocked for significant periods when requesting data access.
(KF4.8) Differential privacy could arguably reduce the time to access data.
(KF4.9) Most analysts employed aggregations and visualizations to successfully perform their
assigned tasks, while machine learning was not as predominant.
(KF4.10) SQL was more important than machine learning and was frequently used.
(KF4.11) Analysts confirm that DP would be helpful for dataset exploration, fulfilling certain
use cases, and for enabling privacy-enhancing dashboards for dataset visualization.

Table 5.1.: Overview of key findings in the embedded publications [GSU+22, MGSB22, fGS+21,
GLMS23].
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system (KF1.3). Consequently, a lack of confidence in available tools may lead researchers to re-
invent the wheel in their studies (KF2.3). Therefore, we suggest researchers focus on improving
existing open-source tools or explore the possibilities with existing tools before creating ad-hoc
PET solutions. Thus, we decided to dedicate Contribution III to guide researchers in improving
existing PET tools, specifically the ones providing DP functionality. Furthermore, we realized
that there is “no-size-fits-all” PET (KF1.1), and yet, there is a lack of work focused on combining
different PETs (KF3.5), which might be due to requiring an interdisciplinary team of researchers.
Thus, we combined the expertise on DP with the knowledge ZKP of our co-authors, resulting
in Contribution II, where we cryptographically verified the sampling of DP noise. Lastly, an
interesting key finding was the use of blockchain, i.e., a tamper-proof distributed database
whose state is stored, synchronized, and replicated by nodes in a P2P network following a
consensus algorithm [BTH20], without clear reasoning and despite the lack of blockchain-based
applications in production (KF3.7). This lack of rigor surfaces as questionable arguments in
some of the reviewed studies: “[...] researchers and technologists have found that blockchain can
be a potential solution to the privacy problem by decentralizing information [...] Blockchain can
be used to securely share private information [...]” [LF20], “Blockchain-based approaches provide
decentralized security and privacy [...]” [DKJG17], or “Blockchain has been proven to possess
security, immutability, and privacy properties, which has caused a lot of researchers to introduce
it into the privacy and security concerned IoT ” [DJG+18]. Reviewers should be mindful and
iron out these indiscretions related to blockchain technology in future work.

Figure 5.1.: Publications in the field of privacy-enhancing data markets for the IoT from January
2002 to July 2020 [GSU+22].

Contribution II: Improving the Applicability of Differential Privacy Algorithms.

Given the lack of work on combining PETs to enhance the privacy and security properties of
systems beyond their isolated use (KF2.5), we worked on cryptographically proving the sampling
of differentially-private noise with ZKP in P3 [MGSB22], which is particularly understudied
(KF3.1). By providing a zero-trust algorithm construction, we improve the applicability of DP,
as system designers will be more inclined to adopt DP if the machines involved can prove the use
of DP. Additionally, users’ trust in DSAAs can also increase. Through successfully designing
such a verifiable algorithm, we extracted a series of lessons learned.

Designing an algorithm to sample (DP) exponentially distributed noise with ZKP has two signif-
icant challenges: (i) efficiently processing floats and (ii) the finite computers’ inability to fulfill
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the definition of DP on the real line. These challenges led to failure in several of our attempts:
(1) The first (naive) attempt discretized the support of the Laplace probability distribution
function (PDF) by sampling from its inverse cumulative distribution function (CDF) with a fi-
nite input range. However, we were unable to provide a provable privacy guarantee on 𝛿, as the
resulting algorithm would fulfill approximate DP. (2) Consecutively, we resorted to the Stone-
Weierstrass theorem for approximating a polynomial to the Laplace PDF to the extent where
the approximation error would be negligible. Specifically, we used Bernstein polynomials [Far12]
for approximating the PDF in a closed interval and used rejection sampling thereafter. How-
ever, the flaws of our second approach were using a closed interval without condensing more
probability density on the bounds and that the Bernstein polynomial coefficients are, in general,
real numbers, which ZKP cannot process efficiently (KF3.2). (3) Subsequently, we tried the
truncated geometric mechanism (TGM) [GRS12], as it fulfilled pure DP even when accounting
for a truncated PDF and integers as support. However, the probabilities assigned to the integers
were real numbers, which, even though we ensured they became rational by carefully choosing
𝜀, ZKP could not handle them either because of its finite precision limitation. Likewise, we were
unable to find the 𝛿 if we chose to approximate the real numbers with finite precision (KF3.3).
We were successful in our fourth attempt, which we covered in more detail in section 5.2.

Contribution III: Improving the Applicability of Differential Privacy Systems.

Motivated by the potential low maturity of PET tooling (KF1.2), we further investigated to
confirm such finding for DP tools specifically. Indeed, despite the broad offer of open-source
tools, the expert interviews and literature review of P4 [GLMS23] revealed that DP is underused
in the broad industry, and existing tools still have remaining gaps that reduce their applicability
in systems. As the first steps towards precisely outlining the remaining gaps during this study,
we made several observations that helped draw a picture of the current situation in the industry
regarding analytics and privacy.

Firstly, we noted some shortcomings: data stewards seemed to be more careful with security
measures than with privacy (KF4.1), the interviewed companies do not have a human-in-the-
loop process for auditing ex-post the privacy precautions adopted by an analyst during their
work, and analysts are blocked for significant periods when requesting data access (KF4.7).
Additionally, we think that analyzing data without “seeing” will be standard practice in the
future as it provides an additional layer of protection. Nevertheless, based on the interviewed
experts, this vision is a distant reality. Regarding operations, most analysts did not use ML;
instead, they relied on aggregations and visualizations to fulfill their use cases (KF4.9), and in
particular, they deemed SQL as a meaningful and frequently used tool (KF4.10). These findings
favor DP, as it is more easily adapted to aggregations and has shown more accuracy in general
than when adapted to ML.

Most importantly, we made observations regarding the applicability of DP in practice, which
were predominantly positive. We noticed that upon receiving a use case or a business-related
question, analysts first had to explore many datasets, which many were inaccessible due to
their sensitivity, and they had to request permission. In the worst-case scenario, after the
lengthy request, the analyst might discover that the dataset is unsuitable. Thus, we deem DP
an appropriate tool for sensitive dataset exploration so that analysts can explore them with
reduced waiting time (KF4.8) and adversity (KF4.3) of the request process thanks to DP’s
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stronger privacy guarantees. Additionally, analysts shared some use cases that DP mechanisms
could directly fulfill (e.g., aggregations for demographics or product analytics)(KF4.4), and we
think DP can help practitioners with their need to fully access datasets “obtaining a holistic
understanding of data” by providing summary statistics. In conclusion, analysts confirmed
that DDPP would be helpful for dataset exploration, fulfilling certain use cases, and enabling
privacy-enhancing dashboards for dataset visualization.

5.2. Discussion of Results

This section presents our results by answering the researcher questions (RQ) posed in section 1.2.
Note that we created sub-RQs to help guide our discussion.

5.2.1. Contribution I: Revealing Opportunities and Challenges in the
Applicability of Privacy-Enhancing Technologies in Data Sharing and
Analytics Applications

With our two first publications: P1 [fGS+21] and P2 [GSU+22], we tackle the first research gap
by answering RQ1.

Research question 1 (RQ1)

What are the most relevant privacy-enhancing technologies and their corresponding
challenges and use cases in the scope of data sharing and analytics applications?

(RQ1.1) Which relevant PETs can enhance DSAA?
Garrido et al. [GSU+22] (P2) conducted a systematic literature review of publications focused on
using PETs for improving the privacy measures in DSAAs. Expanding on the PETs classification
of section 2.3, Fig. 5.2 is the result of the detailed study of 74 publications. Firstly, we identified
that DSAA proposals had a common set of layers in their technology stack: verification, storage,
communication, processing, and sovereignty. In all these layers, practitioners had enhanced
privacy using different PETs. In summary, as expected, encryption was the backbone of the
privacy enhancements at the verification, storage, and communication layer. In the sovereignty
layer, where rules are established and potentially enforced, practitioners defined privacy policies
and access controls. Notably, while blockchains are a privacy anti-pattern, they could be helpful
to set privacy rules so that no central authority may change them ex-post.

Furthermore, we observed that most PETs focus on processing data. On the one hand, we iden-
tified cryptographic-based techniques dedicated to secure and outsourced computation, namely:
ZKP, MPC, HE, and TEE (introduced in section 2.3). These techniques protect the input in-
formation (encryption) and the computation itself; however, they do not protect the outputs.
Practitioners can protect the outputs with anonymization and plausible deniability techniques.
The strongest guarantee is a semantic definition of privacy, i.e., the computation itself, but not
the output, fulfills a privacy property that provides plausible deniability to individual inputs.
DP is the quintessential semantic privacy definition and the focus of Contributions II and III.
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Figure 5.2.: Classification of PETs (cf. adapted [GSU+22])
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Technologies Tools
Differential privacy Google-DP (Python wrapper: PyDP), SmartNoise, diffprivlib, DiffPriv, OpenDP,

DPComp Core and Chorus (behind Uber’s DP SQL). Focused on DP and deep learn-
ing: TensorFlow privacy and PyTorch Opacus.

K-anonymity ARX, Amnesia, and Anonimatron.
Zero-Knowledge proof emmy, dizk, zkMega, libsnark, libiop, ZKRollups, ZKRP, ckb-zkp, ginger-lib, Open-

ZKP, and gnark.
Secure multiparty
computation

Multi-Protocol SPDZ, LIBSCAPI, MPyC, CrypTen, EMP-Toolkit, Multiparty,
ZoKrates and MPC-SoK.

Homomorphic encryption TFHE, fhe-toolkit-linux, Google FHE SEAL, Concrete, eclib, HElib, and PALISADE.
Trusted execution
environments

mTower, Open Enclave SDK, Trusty, TrustZone, Mystikos, Open-TEE and Intel’s
Trusted Execution Technology.

Federated Learning Fate, sherpa.ai, PaddleFL, PySft, Xaynet, fedn, FedML-AI, Flower, PyVertical, Ten-
sorFlow Federated, and federated-learning-lib.

Table 5.2.: Most prominent open-source tools for each PETs (cf. adapted [fGS+21]).

Other weaker techniques provide syntactic privacy definitions, i.e., the output (not the computa-
tion) fulfills a property, like 𝑘-anonymity or its variants, such as 𝑙-diversity or 𝑡-closeness. One of
the main reasons why a semantic definition, namely DP, is stronger than syntactic ones is DP’s
context-agnostic mathematical formulation of privacy, which syntactic definitions lack. Other
forms to anonymize data rely on perturbation without a formal guarantee or with pseudonyms.
Lastly, one PET that lays in between secure and outsourced computation and plausible deniability
is privacy-preserving data mining (PPDM), whose primary examples are the use of technologies
such as HE or MPC to train ML models, using DP in the computation so that adversaries can-
not reverse engineer the outputs, and outsourcing the training to the clients so that no central
server collects potentially sensitive information from users. We refer to P2 [GSU+22] for more
details, e.g., the inclusion, distinction, and discussion of authenticity-enhancing technologies like
blockchains, and of other not-privacy related DSAA layers: data auction, contractual, incentives,
and consensus.

(RQ1.2) Which relevant privacy-enhancing tools are available?
Amongst the most prominent PETs identified in P2 [GSU+22], Garrido et al. [fGS+21] (P1)
conducted a gray literature review to find the most relevant open-source libraries (i.e., software
that provides specific functions) and frameworks (i.e., software that provides abstractions used to
build specific applications) that enable PET functionalities. With the list compiled in Table 5.2,
we hope practitioners can quickly find the right tool for their privacy-forward systems.

(RQ1.3) What are relevant use cases (opportunities) for PETs?
In addition to identifying open-source tooling for implementing PETs, P1 [fGS+21] interviewed
experts to find potential use cases where PETs can add the most value. Among the ones
outlined in P1 [fGS+21], we selected a set of reference use cases in Table 5.3 as examples. While
these use cases are centered around the automotive industry, they can be generalized to other
sectors, e.g., data analytics in the financial sector, geoservices in mobile applications, sensitive
data management in health clinics, computer vision in identification services, asset search across
pharmaceutical companies, edge-computing in IoT, and sharing data across any organization.
With this overview, we hope to guide practitioners in finding the right match between their use
cases and a suitable PET.
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# Domain: Use Cases Descriptions PETs
1 Geoservices: charging Discovering most frequent locations on an aggregated dataset

where electric vehicles have low batteries.
Differential
privacy,
k-anonymity

2 Computer vision: at-
tentiveness detection

Training ML models across multiple vehicles and devices. Federated
learning

3 Sensitive data man-
agement: automating
anonymization

A practitioner automates the anonymization of ingested customer
vehicle data.

K-
anonymity

4 Data analytics: group
statistics

Computing aggregate business KPIs for dashboards by querying
various datasets without downloading the underlying data.

Differential
privacy

5 Asset search: tracking
components

Tracking components and parts across the value chain to optimize
supply chain management (e. g., management of stock levels).

Secure mul-
tiparty com-
putation

6 IoT: Connected car Management of vast amounts of sensor data from vehicles and
traffic infrastructure across the edge and cloud.

Homomorphic
encryption

7 Cross-organizational
data sharing: Logistics
& supply chain

Track and share data across organizations to optimize business
processes, e. g., for improved supply chain visibility.

Trusted exe-
cution envi-
ronments

Table 5.3.: Reference use cases mapped to PETs (cf. adapted [fGS+21]).

Notably, the guide we procured in P1 [GSU+22] helped us identify a use case for an industry
project (proof-of-concept) [Lab] between our industry partner and Oasis Labs that we ran in
parallel and is closely related to this dissertation: #4 “Data analytics: group statistics.” In P1
[GSU+22], we described such solution type as “using a DP-aware SQL engine and a privacy
budget that controls the number of queries allowed,” which corresponds to the middle-layer com-
ponent of step (2) in Fig. 5.3. In practice, analysts would (1) write a query using the familiar
SQL syntax. Then, (2) the middle layer component would rewrite the query so that it fulfills DP,
(3) run the rewritten query in the database engine, and (4) return and (5) forward the output to
the analyst. The proof-of-concept was successful, providing no more than 15% of computation
overhead and maintaining the query output accuracy within 10%. With the correct adaptions,
this DP middle layer could be deployed in any analytics pipeline (independently of the industry)
to serve analysts explore sensitive datasets or potentially fulfill aggregation use cases with the
highest standard for privacy.

Figure 5.3.: Differential privacy component in the industry project (cf. [Lab])

(RQ1.4) What challenges hinder privacy-enhancing DSAAs?
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Figure 5.4.: Challenges facing PETs (cf. adapted [GSU+22]).

In P2 [GSU+22], we established the foundations for understanding and categorizing the most
prominent PET. Building on this work, we then explored the remaining barriers preventing
widespread PET adoption. As depicted in Fig. 5.4, we classified the challenges into two cate-
gories: narrow and broad. Broad challenges relate to the large-scale implications of the prolifer-
ation of more smart devices, stringent laws, and the continuous and varied attacks on privacy.
For example, more devices increase the mosaic effect [Ker12], i.e., there will be more data sources
available to extract significant new personal information, miscalibrated legal fines could increase
the opportunity cost of deploying PETs, and the ever-present need to improve PETs as adver-
saries device new ways to attack personal data. On the other hand, narrow challenges are more
concrete and actionable. The most critical one is the copy problem, i.e., an entity loses control
of its data the moment it is shared, the bundling problem, i.e., subset of the copy problem where
more data than strictly needed is shared, the recursive enforcement problem, i.e., the recursive
need to include a new entity to oversee the incumbent parties, and striking the right balance
between data utility and privacy. In P2 [GSU+22], we encourage researchers to tackle these
narrow challenges, namely the copy problem. With the mapping between PETs and these nar-
row challenges in Table. 5.4, we hope to guide practitioners in navigating the challenges their
applications might face. Some PETs can directly tackle the copy problem, e.g., TEEs allow com-
putations without revealing the inputs. Other PETs tackle sub-problems, e.g., ZKP can verify
that someone is of legal age using a digital certificate without revealing other identity informa-
tion. Regarding balancing privacy and utility, some PETs can protect the inputs (identity or
data), the computation, or the outputs.

Summary. Altogether, with the above, we covered the most relevant components of RQ1: (i)
the most prominent PETs, (ii) their challenges, and (iii) use cases, and thus, we help revealing
the opportunities and challenges of PETs in DSAAs. In summary, we guided practitioners
looking into applying PETs to DSAA with a series of contributions: Practitioners can consult
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Table 5.4.: Mapping of PETs to the narrow challenges (cf. adapted [GSU+22]).

P1 [fGS+21] for an overview of possible use cases where PETs can add value; specifically, they
can consult Table 5.3 for an outline of use cases, and Table 5.2 to quickly select the right tool
(among other artifacts and insights in P1 [fGS+21]). Additionally, P2 [GSU+22] can serve as a
starting point for new practitioners in privacy thanks to its detailed introductory explanations
and classifications of PET, e.g., studying Fig. 5.2 and the detailed explanations included in
[GSU+22]. Furthermore, practitioners can quickly identify a challenge (e.g., the copy problem)
in Fig. 5.4 and the associated PET in Table 5.4 to start working on improving the applicability
of PET.
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5.2.2. Contribution II: Improving the Applicability of Differential Privacy
Algorithms

Our third publication P3 [MGSB22] investigated the answer to RQ2. In the following, we discuss
the selection of the technologies, the context of the application, and the solution’s implementa-
tion and practicality.

Research question 2 (RQ2)

What new algorithm can verify the use of formal privacy guarantees with practical
performance and bounded guarantees?

(RQ2.1) Which verifiable computation technique and formal privacy guarantee are best suited
for the task?
Verifiable computation is a technique that allows proof of the execution of a particular algorithm
using truthful inputs without revealing any private information [BSBHR19]. There are two main
approaches to verifiable computation: trusted execution environments (TEEs) [OMT09b] and
zero-knowledge proofs (ZKPs) [GMR89, Sim02, BSBHR19]. Given the known vulnerabilities
and attacks on TEEs [KM22, AVBS+22, SYG+19, Int22], we decided to focus on ZKP-based
approaches. Non-interactive ZKPs, in particular, do not require sequential messaging so that
the prover can convince multiple parties of a claim with a single message [Sim02]. Therefore,
we chose to use non-interactive ZKPs to enable the verification of the computational integrity
of the selected privacy definition. For our implementation, we use Circom [ide18a] and SnarkJS
[ide18b], a well-known open-source technology stack for implementing zero-knowledge proofs.
Regarding a formal privacy guarantee, we unequivocally chose the strongest definition avail-
able today: DP. Specifically, we chose randomized response [War65] for binary attributes and
exponentially distributed noise for continuous values [DKM+06].

(RQ2.2) What is an appropriate context to showcase the solution?
We propose a solution for a server running an anonymous poll on a series of client devices about
a given attribute, such as calculating the average age of the application’s user base. The clients
and server are not necessarily trusted, so the server requires attestations of the shared attributes
and computations. Moreover, the clients execute privacy-enhancing computations themselves,
as they do not trust the server with their sensitive information. Fig. 5.5 depicts the interacting
entities and Fig. 5.6 shows their interaction flow, where the issuer is a trusted entity (e.g., a
government or institution trusted by the server and clients) that provides a digital certificate
about a set of attributes (e.g., identity, age, gender) of the requester (client device), known
as the holder of the certificate. In our case, this certificate is an anonymous credential, which
allows an entity to attest to their attributes without revealing their identity through the use of
digital signatures and ZKPs. Once the holder stores their credential in a digital wallet (a mobile
application), the server, known as the verifier, sets the survey and cryptographic parameters for
the poll and sends the survey to the clients. The clients, now the provers, use their anonymous
credential to verify the use of their truthful polled value (e.g., their age) and employ our verifiable
differentially private (DP) algorithm to create a ZKP of the DP result (i.e., age + Noise). In
this context, where the server is also not trusted, we use local DP so that the clients can run

46



5. Discussion

Issuer
of Credential (e.g.,

Federal Printer)

Prover and Holder of
Credential (i.e., the

client run by the
survey participant)

Verifier of Credential
(i.e., the server run by

the surveyor)

Figure 5.5.: Interacting entities of the privacy-enhanced survey.

the DP computation themselves. Finally, the prover sends the ZKP to the server, which verifies
it and includes the result in the survey evaluation.

(RQ2.3) How can zero-knowledge proof verify the use of differential privacy?
In the following, we delve into the core of Contribution II; specifically, we cover applying verifiable
local DP to (i) binary and (ii) numerical attributes.

(i) Algorithm 1 contains a verifiable version of randomized response (RR) [War65, DR13]:

1. Flip a coin with bias 𝑝.

2. If Bernoulli(𝑝), answer truthfully.

3. Else, flip the coin again and respond “Yes” if Bernoulli(𝑝) and “No” otherwise.

RR provides plausible deniability in answers regarding one’s, e.g., gender, smoking habits, student
status, etc. In lines 1-4, we use two inputs (𝐴, 𝐵) corresponding to the prover’s private key and
the verifier’s challenge, and a hash function as a random oracle [CGH04]. We use two bits of
the resulting hash as unbiased coin flips for the randomized response implementation of lines
5-12.

ARES 2022, August 23–26, 2022, Vienna, Austria Gonzalo Munilla Garrido, Ma�hias Babel, and Johannes Sedlmeir

Algorithm 1: Veri�able randomized response (cf. adapted
[MGSB22]).

Data:+ : binary truthful value (“Yes” or “No”); �: prover contribution to
randomness (secret key); ⌫: veri�er contribution to randomness
(challenge).

Result: Di�erentially private answer.
1 Function VerifiableUnifRandomness(�, ⌫):
2 ( = sign(�, ⌫) // sign challenge with secret key

3 ' = hash(() // ' is an array of bits

4 return '

5 Function VerifiableRandomizedResponse(+ , �, ⌫):
6 ' = VerifiableUnifRandomness(�, ⌫)
7 if ' [0] = 0 then
8 return+
9 else if ' [1] = 0 then

10 return No
11 else
12 return Yes

key and hash the result. As the private key is determined by the
�xed prover’s public key, neither of the two parties can bias the
resulting randomness without collusion. We use Poseidon2 – a
relatively new hashing algorithm that was speci�cally developed
for use in ZKPs and that is already being used in many blockchain-
based applications on Ethereum and, therefore, to some extent
battle-tested [24]. We represent this building block as a function in
Algorithm 1 between lines 1 and 4, using existing components in
Circom for EdDSA signature veri�cation, Poseidon, and conversion
of (large) integers to binary representation. Assuming that the
Poseidon hash function is a random oracle and the keypair was
created without anticipating the survey and the veri�er’s challenge,
this gives us an array of 254 unbiased random bits.

3.2 Veri�able Randomized Response
Randomized response is simple to verify with ZKPs by utilizing the
veri�able uniform randomness function (see Algorithm 1). In prac-
tice, without loss of generality, we only consider the least two sig-
ni�cant bits of the random number generated. For the randomized
response algorithm presented in Section 2 and presented formally
in Algorithm 1, we need to sample at least once (last bit) and at most
twice (second-last bit), depending on the �rst coin �ip. The source
code from Fig. 1 implements this in Circom. As if-statements are
not natively possible in R1CS and, therefore, only available with re-
strictions in Circom, we arithmetize the corresponding statements
in lines 7 to 12 from Algorithm 1 into the lines 39 to 40 from Fig. 1.

3.3 Veri�able Exponentially Distributed Noise
The exponentially distributed noise adaptation to ZKPs is not as
straightforward as with randomized response because it typically
involves �oating point operations and rounding. After trying di�er-
ent implementations of exponentially distributed noise generation
– we brie�y cover the journey in Section 6 –we successfully adapted
the method proposed by Dwork et al. [12] to ZKP, which we present
in Algorithm 2: In their method, Dwork et al. approximated expo-
nentially distributed noise of Pr[G] / exp(� Y |G |� ) with the Poisson

2Using other hashing mechanisms is possible, yet the performance can become con-
siderably worse – for instance, in the case of SHA256, around 30x.

1 pragma circom 2.0.0;

2
3 include �./ poseidon.circom�; // Poseidon hashing

4 include �./ bitify.circom�; // Bit array conversion

5 include �./ eddsaposeidon.circom�; // Signature checking

6
7 template Main() {

8 signal input value; // v

9 signal input challenge;

10 signal input R8[2]; // elliptic curve element of

signature

11 signal input S; // field element of signature

12 signal input pk[2]; // public key

13
14 // check signature on challenge against public key

15 component eddsaVerifier = EdDSAPoseidonVerifier ();

16 eddsaVerifier.Ax <== pk[0];

17 eddsaVerifier.Ay <== pk[1];

18 eddsaVerifier.S <== S;

19 eddsaVerifier.R8x <== R8[0];

20 eddsaVerifier.R8y <== R8[1];

21 eddsaVerifier.M <== challenge;

22 eddsaVerifier.enabled <== 1; // checks signature implicitly

23
24 // hash signature and convert this randomness to bit array

25 component hash = Poseidon (3);

26 component bitify = Num2Bits_strict ();

27 hash.inputs [0] <== R8[0];

28 hash.inputs [1] <== R8[1];

29 hash.inputs [2] <== S;

30 bitify.in <== hash.out;

31 signal randSeq [254];

32 for(var i = 0; i < 254; i++) {

33 randSeq[i] <== bitify.out[i];

34 }

35
36 // determine result from randomness

37 signal rand;

38 signal output out;

39 rand <== randSeq [0] * randSeq [1];

40 out <== (1 - randSeq [0]) * value + rand;

41
42 }

43
44 component main {public [challenge , pk]} = Main();

Figure 1: Circom code for a component that implements
veri�able randomized response.

distribution, ful�lling (Y, X)-DP. Their method samples noise by
producing a sequence of biased bits equal in number to the number
of bits in the binary expansion of the noise ✓ . The algorithm �ips an
extra bit to add a sign (±✓). The bias of each bit : 2 {0, ..., nBits}
representing ✓ in binary is given in Section 4.1 of [12] by

Pr[✓: ] := Pr[✓: = 1] =
⇣
1 + exp

⇣
Y ·2:
�

⌘⌘�1
.

To generate biased bits from unbiased bits, we include in Algo-
rithm 2 a well-known technique: �rst, we expand in binary the bias
?: of a bit : . Afterward, the algorithm sequentially examines ran-
dom unbiased bits until one di�ers from the corresponding bit in the
binary expansion of ?: and, subsequently, outputs the complement
of the random unbiased bit [12]. Essentially, this approach allows to
simulate biased coins up to a pre-de�ned precision with unbiased
coins. However, the method employed has three limitations.

The �rst limitation entails several issues that relate to represent-
ing with a limited precision 3 the bias of the bits composing ?: ,

(ii) Algorithm 2 shows a verifiable version of sampling DP exponentially distributed noise.
Following the discussion of key findings of section 5.1, Algorithm 2 required a solution that
addresses the precision limitations and the difficulty of bounding 𝛿. Thus, we decided to turn to
simple sampling methods that provide bounds on 𝛿. A good candidate for adaptation was Dwork
et al.’s method [DKM+06] for sampling exponentially distributed noise based on repeatedly
flipping unbiased coins. This method is easily implemented in Circom and provides a bound for 𝛿
based on the precision achieved with Circom. However, the method from Dwork et al. [DKM+06]
had three limitations we had to address in our adaption: limited precision representation, the zero
probability assigned to values larger than the ones we could represent, and the double probability
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Figure 5.6.: Survey workflow with verifiable differential privacy (cf. adapted [MGSB22]).

on the distribution’s center derived from flipping an unbiased coin to assign the sign of the noise.
P3 [MGSB22] provides the details of our adaptations.
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Algorithm 2: Veri�able exponentially distributed noise
generation. By- mod(!,* ) we denote !+(- mod(* � !))
(cf. adapted [MGSB22]).

Data:+ : integer-valued truthful value;* : upper bound; !, lower bound;
� = |* � ! | � 0: sensitivity of query function; Y � 0: privacy
parameter; 3 � 0: precision of binary expansion; �: prover
contribution to randomness (secret key); ⌫: veri�er contribution to
randomness (challenge).

Result:+ + noise ⇠ Pois(+ | Y� ) .
1 Function VerifiableExponentialNoise(+ , �, Y , 3):
2 ⌫ = BinaryExpansion(�)
3 ⌫E = BinaryExpansion(+ )
4 ⌫A = [] // ⌫A stacks biased bits

5 for :  0 to NumBits(⌫ ) do
6 ?: = 1

1+exp(2: Y� )
7 ⌫?: = BinaryExpansion(?: )

// ' has at least 3 bits

8 ' = VerifiableUnifRandomness(�, ⌫)
9 for 9  0 to 3 do

// Where 3 is the least significant bit

10 ' 9 = r[j] // ' 9 2 {0, 1}
11 if ' 9 = ⌫ 9 ,?: then
12 continue
13 else
14 ⌫A .push(⌫ 9 ,?: )
15 break
16 if 9 = 3 then
17 return RaiseError

18 noise = DecimalExpansion(⌫A )
19 sign = Veri�ableUnifRandomness(�,⌫) [0]
20 if (noise = 0 and sign = 0) then
21 return

DecimalExpansion(Veri�ableUnifRandomness(�,⌫)) mod (!,* )

22 else
23 return [ (+ + (2 · sign � 1) · noise] mod (!,* )

Figure 2: Example histogram for l = 0, u = 128, d = 20, 9 = 10,
and true value v = 50 with a sample size of 10 000.

1
2 // include statements as before , plus modulo component

3 template Main(nBits , d) {

4 signal input challenge , value

5 signal input prob[nBits ][d]; // binary expansions of p_k

6 signal input R8[2], S, pk[2]; // signature and public key

7 // check the EdDSA signature of the challenge against pk and

put it in the hash component to create randSeq , as in

Figure 1 (lines 10 to 34).

8 ...

9
10 component isEqual[nBits][d];

11 signal noiseBits[nBits];

12 signal eval1[nBits][d];

13 signal eval2[nBits][d];

14 signal eval3[nBits][d + 1];

15 signal hit[nBits][d + 1];

16
17 // run the algorithm to create biased coins

18 for (var i = 0; i < nBits; i++) {

19 for (var j = 0; j < d; j++) {

20 isEqual[i][j] = IsEqual ();

21 }

22 }

23 for (var k = 0; k < nBits; k++) {

24 hit[k][0] <== 1;

25 eval3[k][0] <== 0;

26 for (var j = 0; j < d; j++) {

27 isEqual[k][j].in[0] <== prob[k][j];

28 isEqual[k][j].in[1] <== randSeq[k * d + j];

29 hit[k][j + 1] <==

30 hit[k][j] * isEqual[k][j].out;

31 eval1[k][j] <== hit[k][j] * (1 - isEqual[k][j].out);

32 eval2[k][j] <== eval1[k][j] * prob[k][j];

33 eval3[k][j + 1] <== eval3[k][j] + eval2[k][j];

34 }

35 noiseBits[k] <== eval3[k][d];

36 }

37
38 component numify [2];

39 // compute exponential noise from its binary representation

40 numify [0] = Bits2Num(nBits);

41 for (var i = 0; i < nBits; i++) {

42 numify [0].in[i] <== noiseBits[i];

43 }

44 signal absNoise <== numify [0]. out;

45 signal positiveNoise <== randSeq[nBits * (d + 3)] * (value +

absNoise);

46 signal noisedResult <== (1 - randSeq[nBits * (d + 3)]) * (value

- absNoise) + positiveNoise;

47 // generate uniformly distributed noise

48 numify [1] = Bits2Num(nBits);

49 for (var i = 0; i < nBits; i++) {

50 numify [1].in[i] <== randSeq [((d + 2) * nBits) + i];

51 }

52
53 component isZero = IsZero (); // check if noise == -0

54 isZero.in <== absNoise;

55 signal isUnif <== isZero.out * (1 - randSeq[nBits * (d + 3)]);

56 signal unif <== isUnif * numify [1]. out;

57 signal result <== (1 - isUnif) * noisedResult + unif;

58
59 component modulo = Modulo ();

60 modulo.in <== result;

61 modulo.mod <== 128;

62 signal output out <== modulo.out;

63 }

64
65 component main {public [challenge , pk]} = Main(7, 22);

Figure 3: Circom code for generating veri�able LDP noise
with ; = 0 and D = 128. Import statements, signal de�nitions,
and EdDSA veri�cation omitted (see also Figure 1).

Fig. 5.7 shows the resulting discrete Laplace distribution used by Algorithm 2 to sample DP
noise—the histogram was compiled by querying Algorithm 2 10000 times. Finally, Algorithms
1 and 2 (computational problems) are compiled by Circom [ide18a], i.e., Circom encodes them
into a system of polynomial equations, with which SnarkJS [ide18b] can construct a ZKP.

(RQ2.4) Are the proposed algorithms practical?
By demonstrating the reasonable performance of the more complex Algorithm 2, we concluded
that Algorithm 1 was also practical. In summary, the proof generation (in a commercial-grade
laptop) for Algorithm 2 was of only 140ms, its verification 0.8 s in JavaScript, and the size of the
verification and proving keys are close to 3.5 kB and 3.4MB. In addition, we tested deploying
a smart contract verifier on Ethereum, which could be used for blockchain-based, incentivized,
differentially private surveys and, therefore, GDPR-compliant applications on personal data. We
measured the smart contract’s deployment cost to be around 1, 150, 000 gas and its invocation to
be around 300, 000 gas. P3 [MGSB22] provides more details about the benchmark and machine
specifications.

Summary. Overall, we answered RQ2 by proposing algorithms capable of verifying the use of
DP so that practitioners are more willing to adopt DP for systems where mutually-untrusting
entities share information, and thus, we help improving the applicability of DP algorithms.
In summary, we proposed Algorithms 1 and 2 and their open-source implementation so that
practitioners can replicate our evaluation and quickly deploy our verifiable DP solution (software
component I): https://github.com/applied-crypto/DPfeatZKP.
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Figure 5.7.: Example histogram for l = 0, u = 128, d = 20, 𝜀 = 10, and true value v = 50 with
a sample size of 10000 (cf. adapted [MGSB22]).

5.2.3. Contribution III: Improving the Applicability of Differential Privacy
Systems

Our fourth publication, P4 [GLMS23], addresses RQ3 by identifying the remaining gaps in
existing differentially private (DP) tools and proposing a set of key requirements that privacy-
enhancing analytics tools should fulfill. In particular, P4 outlines the desiderata that such tools
should strive to achieve to provide strong privacy guarantees while still enabling useful data
analysis.

Research question 3 (RQ3)

Which are the existing gaps and key requirements a formal privacy-enhancing
analytics tool should fulfill to become closer to a broad industry adoption?

In P4 [GLMS23], we conduct expert interviews to understand the applicability of differentially
private (DP) methods to the analysis workflow in the broader industry. The first five sub-RQs
provide context and summarize our conclusions from these interviews.

(RQ3.1) What is the context of privacy protection in the targeted organization?
The interviewed organizations invest more resources in security than in privacy-enhancing anal-
ysis. Additionally, stewards view privacy as an asset and strive to provide the best standards for
their customers. However, these organizations still rely on traditional anonymization techniques,
which have limitations in terms of protecting privacy. Furthermore, companies today are unable
to effectively measure the privacy of their processes, and while they may have specific privacy
and security measures in place, such as access controls, these are often difficult to quantify for-
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mally. This lack of tangibility can make it challenging for organizations to accurately assess the
privacy of their data and processes. Lastly, we observed that the companies we interviewed are
far from having “data at their fingertips”, largely due to onerous dataset request processes. This
can hinder their ability to perform effective data analysis.

(RQ3.2) Could differential privacy tackle the privacy-related pain points of an analysis workflow
in an organization?
Yes, to a large extent. In essence, the main problems that hinder effective data analysis are
(i) lengthy and cumbersome dataset request processes, and (ii) the fact that once analysts are
granted access to data, they can sometimes “see”, download, and share the data, potentially
even colluding with other co-workers to link sensitive datasets. In the latter case, only policies
protect the data, which may not be sufficient. Based on our work, we argue that DP can
reduce the time it takes to access data by enabling exploration of critically sensitive data or
across third-party data sources. It can also relax current data access restrictions thanks to its
formal privacy guarantee, and is applicable to some aggregation-based use cases. For certain use
cases, engineers should consider building solutions that prevent analysts from “seeing” the data
directly, in order to protect privacy.

(RQ3.3) When does differential privacy impede an analysis?
The answer to this RQ depends heavily on the specific use case and whether the analysts
are willing to sacrifice some accuracy in order to protect privacy. On the one hand, noise
addition-based DP is useful for some the types of aggregations performed by the interviewees
(e.g., querying demographics or frequently used product features). Additionally, on average,
the interviewees were comfortable with a 98% accuracy rate for their analyses. However, it is
important to note that DP is not a perfect solution for all situations. Some of the interviewees’
use cases should not rely on DP (e.g., error analyses or critical financial estimations). Therefore,
we suggest building systems that enable DP while still providing the flexibility to allow non-
differentially private queries when the use case requires it. This would allow organizations to
balance the need for privacy with the need for accurate data analysis in critical use cases.

(RQ3.4) How would differential privacy affect the workflow of an analyst?
If DP were to enable previously unavailable data exploration and provide data for privacy-
enhanced dashboards, analysts would likely have a better user experience in their workflow,
with reduced time spent on data request processes and exploration. However, they would also
need to become accustomed to working with noisy data, which can be challenging for some types
of analysis.

(RQ3.5) Can differential privacy be applied to the frequent SQL-like queries analysts execute?
Yes, based on our research, around a third of the aggregations performed by the interviewees
were amenable to DP. This suggests that DP could be a useful tool for improving the privacy
of data analysis in some cases, but it may not be suitable for all types of aggregations. It
is important to carefully consider the specific use case and the tradeoffs involved in order to
determine whether DP is an appropriate solution.

Based on the research and conclusions presented in P4 [GLMS23], and the authors’ industry
experience in DP projects (see RQ1.3), we have extracted a set of key system desiderata for a
holistic privacy-enhancing analytics tool.
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(RQ3.6) What is the set of critical requirements that a differential privacy (DP) analytics system
should satisfy in order to be suitable for practical deployments?
From P4 [GLMS23], converged in the following 10 key desiderata:

(I) Differentially private analytics. The system adds noise to the outputs of learning functions
in order to preserve privacy, and it supports a variety of aggregation queries as well as
machine learning features. It also allows for the storage of executed queries for future
reference.

(II) Usability. The system ensures the (i) semantic consistency of queries, and offers options
for (ii) estimating sensitivity and (iii) setting privacy parameters automatically.

(III) Security. The system (i) automatically verifies that the algorithm meets privacy require-
ments using a stochastic tester or other functions. It employs (ii) cryptographically secure
pseudo-random number generation, and (iii) generates noise so that is resistant to floating-
point vulnerabilities. Additionally, the system (iv) blocks users from accessing the data
directly and (v) does not allow them to execute arbitrary code. The system executes (vi)
heuristic optimizers only at post-processing and (vii) protects against timing attacks.

(IV) Synthetic data generation. The system produces synthetic data for testing and exploring
machine learning models, and it allows analysts to proceed with real data without accessing
it directly. Synthetic data can be generated using simple techniques, machine learning, or
a combination of both. If the analyst is only interested in the data schema, the system
produces dummy data that preserves only the schema and data types.

(V) Visualization. The system’s dashboard provides interactive plots based on DP queries for
easy dataset exploration and visualization of analysis’ expected accuracy, disclosure risk,
uncertainty, statistical inference, and budget splitting.

(VI) Privacy budget. The system (i) tracks the privacy budget spent, (ii) prevents further
queries if the budget is exhausted, and (iii) accommodates for growing datasets. It also
allows data stewards to (iv) specify budgets for teams, individual analysts, and use cases
based on the sensitivity of the data.

(VII) Accuracy adjustment. The system allows the user to specify a desired accuracy level for
their query, and it provides information about the noise scales or a confidence interval
after the query is executed.

(VIII) Query sensitivity. The system allows practitioners to input the attributes’ bounds as func-
tion parameters or in the dataset schema, enabling the system to calculate the sensitivity
of the query.

(IX) Privacy-sensitive data annotation. The system allows data stewards to specify which
attributes are accessible to different teams, roles, and use cases, and it automatically
obfuscates attributes that are not on the allowlist.

(X) Authentication and access controls. As a security measure, most organizations require
data stewards and analysts to authenticate before using tools that handle data. Thus, the
system easily integrates with existing authentication and access control services and allows
data stewards to define their own access policies.
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Table 1: Mapping between open-source tools and user interfaces and the key system desiderata. Legend: 3= functionality fully
available; 7= limited functionality or not available; N/A = not applicable; P. = Privacy; DP = Di�erential P.; TF = TensorFlow;
I.i = Enables aggregation queries; I.ii = Enables machine learning; I.iii = Enables query clauses (e.g., JOIN); II.i = Query seman-
tic consistency; II.ii = DP sensitivity calculation; II.iii = Privacy parameter search; III.i = DP correctness veri�cation; III.ii =
Cryptographically secure pseudo-random number generation; III.iii = Protection against �oating-point vulnerability; III.iv =
Block data visibility; III.v = Block arbitrary code; VI.i = Budget accountant; VI.ii = Query blocker.

Table 1A: Libraries, frameworks, and systems for di�erential privacy analytics.
(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X)

Tool/Desiderata DP
Analytics Usability Security Synthetic

Data Visuals Privacy
Budget

Accuracy
Adjustment

Query
Sensitivity

Data
Annotation

Access
Controls

Libraries†

di�privlib [53] I.i, ii 3 II.i 3 III.ii, iii 3 7 N/A VI.i 3 7 3 N/A N/A
Google DP [39] I.i 3 II.ii 3 3 7 N/A VI.i 3 7 3 N/A N/A

Opacus [74] I.ii 3 7 III.ii 3 7 N/A VI.i 3 7 3 N/A N/A
OpenDP [48] I.i 3 II.iii 3 III.ii, iii 3 7 N/A VI.i, ii 3 3 3 N/A N/A

TF Privacy [41] I.ii 3 7 7 7 N/A VI.i 3 7 3 N/A N/A
Frameworks†

Chorus [61] I.i, iii 3 7 7 7 N/A VI.i 3 7 3 3 N/A
PipelineDP [83] I.i 3 7 III.ii, iii 3 7 N/A VI.i 3 7 3 7 N/A
P. on Beam [40] I.i 3 II.ii 3 3 7 N/A VI.i 3 7 3 7 N/A

Tumult Analy.[99] I.i, iii 3 7 3 7 N/A VI.i, ii 3 7 3 N/A N/A
ZetaSQL [43] I.i, iii 3 II.ii 3 3 7 N/A 7 7 3 7 N/A

Systems
Airavat [90] I.i, ii 3 7 III.iv 3 7 7 VI.i, ii 3 7 3 7 3

DJoin [78] I.i, iii 3 7 III.ii, iv, v 3 7 7 VI.i, ii 3 3 3 7 7
†Libraries’ and frameworks’ (III) Security scope is limited to three sub-desiderata (i), (ii), and (iii).

Table 1B: User interfaces for di�erential privacy analytics (cf. adapted [77]).
(V.i) (V.ii) (V.iii) (V.iv) (V.v) (V.vi)

User Interface/Desiderata Dataset
Exploration

Accuracy
Visualization

Risk
Visualization

Uncertainty
Visualization

Statistical
Inference

Budget
Splitting

Bittner et. al [12] 7 3 7 7 7 7

DPcomp [50] 3 3 7 7 7 7

DPP [57] 7 3 3 7 7 7

Overlook [97] 3 3 7 3 7 7

PSI ( ) [32] 3 7 7 7 7 3

ViP [77] 3 3 3 3 3 3

internal analysis work�ow. Furthermore, another company stated
after exploring the use of DP that, while it seemed helpful, “[De-
ploying di�erential privacy] was more expensive than doing nothing."
Instead, the department decided to upload syntactically anonymized
data to a highly secured system, with limitations on access time,
downloads, number of analysts, and audit logs. We kindly argue
that their over-statement was due to the intangible costs of the
dataset request processes and the lack of integrability of current
DP tooling, which makes deployment a complex endeavor.

Overall, our �ndings indicate a gap between the theory and
practice of DP. Working towards bridging the gap, we qualitatively
mapped in Table 1 our key system desiderata with DP tools to high-
light areas of future work for the privacy community. We selected
the tools from the related work in section 3 that o�er open-source
implementations for the central model of DP (see tool descriptions
in Appendix F). We must highlight that some of these tools are li-
braries (provide speci�c functions) or frameworks (abstractions used
to build speci�c applications) and, thus, lack functionalities that
a system (end-to-end application) like Airavat [90] could provide,
such as (III.iv) Blocking the visibility of data or (X) Authentication

and access controls. Note that libraries and frameworks assume
analysts have data access. Additionally, we regard user interfaces
(systems focused on visualizations and providing analytics meta-
data) as a set of tools that should ful�ll key desiderata speci�c to (V)
Visualization. Accordingly, we assign each open-source software to
its category in Tables 1A and B for an appropriate comparison.

We must highlight that the mapping of Table 1 provides high-
level guidance, as there are (out-of-scope) nuances Table 1 does
not capture. For example, user interfaces such as Bittner et. al [12]
and DPP [57] in Table 1B provide exploratory results for using
DP ML and for disclosure risk, respectively; however, they do not
help understanding the dataset, which is a critical requirement
for data analysts. Regarding the tools in Table 1A, di�privlib [53]
o�ers multiple ML models (PCA, Naive Bayes, liner and logistic
regression, k-means) while others focus on deep learning (Opacus
[74] and TensorFlow (TF) Privacy [41]) or MapReduce functionality
(Airavat). Additionally, the frameworks are designed for large-scale
datasets. We note that Google DP [39] provides the building blocks
for ZetaSQL [43] and Privacy on Beam [40] (and PipelineDP [83]),

Table 5.5.: Mapping between open-source tools and the key system desiderata (cf. [GLMS23]).

(RQ3.6) What are the current gaps in the state-of-the-art DP tools that prevent them from being
fully practical?
We examined the most relevant open-source libraries, frameworks, and systems to determine
whether they fulfill the key system desiderata (see Table 5.5). Based on the missing building
blocks we identified, we highlight seven gaps in usability, security, synthetic data generation, vi-
sualizations, privacy budget, and accuracy adjustment, as well as functionality for data stewards.
We strongly encourage library designers to use secure random number generation, implement
patches for the floating-point vulnerability, ensure output semantic consistency, and advance
research and development of DP synthetic data generation tools. More details about the out-
standing gaps can be found in P4 [GLMS23].

(RQ3.7) What would a comprehensive DP system design that meets all the key system desiderata
involve?
To help practitioners in the adoption of the ten system requirements, in Fig. 5.8, we depict a
blueprint of an initial design of a system that complies with all the proposed requirements—
More details can be found in the Appendix of P4 [GLMS23]. Additionally, while not the focus
of P4 [GLMS23], we developed an early-stage benchmarking tool (software component II, see
Fig. 5.9) capable of comparing DP libraries and frameworks to help practitioners decide which
one to use for some of the components in Fig. 5.8. For example, the benchmarking tool can
output which library provided the best accuracy based on an input dataset and query.

Summary. Altogether, by answering RQ3, we have contextualized and assessed the applicabil-
ity of DP in analytics workflows in the broader industry and have identified a series of critical
system requirements and outstanding gaps in state-of-the-art DP tools. These findings will help
to improve the applicability of DP systems in industry settings. In addition to delineating
a road map for DP tool improvements, we provided in Fig. 5.8 a blueprint to spark the interest
of practitioners looking into the DP systems to adopt the key desiderata and developed a tool
(see Fig. 5.9) to help them compare different DP components for their system.
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Legend: Solid lines represent communications between components triggered by all relevant query events, while dashed

lines represent communications that happen periodically or only under certain circumstances. We specify those

circumstances in the workflow description in the body.

Figure 5.8.: System design blueprint of a privacy-enhancing analytics tool (cf. [GLMS23]).

Figure 5.9.: DPLab: Benchmarking tool architecture.
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5.3. Limitations

This section describes the limitations of our scientific work and the measures we took to maintain
the validity of our studies. These limitations are more prevalent in the studies with a secondary
component (e.g., reviews or interviews) (P1 [fGS+21], P2 [GSU+22], and P4 [GLMS23]) than in
the proposed software components of P3 [MGSB22] and P4 [GLMS23], as these components are
not as strongly dependent on reviews and interviews. The four major characteristics of a valid
study, as described in previous research [Bha12, RH09, ESSD08], are:

(i) Internal validity examines how much the results of a study can be confidently attributed
to the specific cause-and-effect relationship being studied [RH09]. The works with a secondary
study type component (P1 [fGS+21], P2 [GSU+22], and P4 [GLMS23]) rely on the researchers’
analyses to extract findings and conclusions from literature reviews and expert interviews, which
can be affected by biases [ESSD08]. To counter this limitation, multiple researchers conducted
literature reviews, resolved inclusion conflicts, and collaborated on creating artifacts. However,
the software components in P3 [MGSB22] and P4 [GLMS23] are mainly free of this bias.

(ii) External validity relates to how generalizable are the study’s results [RH09]. In the
case of studies with a secondary study type component (P1, P2, P3), external validity concerns
the representativeness of the body of works included in the study. In order to mitigate this
risk, the authors of this study followed strict and inclusive search and filtering criteria. They
also reached out to as many potential respondents from a variety of industries as possible in
their expert interviews. While the number of interviewees was sufficient to extract insightful
results (17 in P1 and 24 in P4), the authors acknowledge that more interviewees would have
strengthened the findings. To address this limitation, they supported the findings and artifacts
from the interviews with insights from literature reviews. Finally, the software components in
P3 and P4 are predominantly free from this limitation.

(iii) Construct validity measures the degree to which a study’s metrics accurately repre-
sent the theoretical concepts they are intended to assess [RH09]. The publications with a
secondary study type component (P1, P2, and P4) may be subject to incompleteness due to
the limited selection of search keywords and sources for their literature reviews. Multiple re-
searchers curated the search strings for mitigation, and we used the major digital libraries
available [KB13, PVK15], e.g., ACM Digital Library, Scopus, Springer Link, and IEEE Xplore,
among others. Concerning the expert interviews, we ensured enough time to discuss as many
of the details as the interviewees could share. The researchers also refined the questionnaires
through multiple rounds of refactoring to ensure that the research questions were answered ap-
propriately. A defective design could affect the software components in P3 and P4. To mitigate
this risk, we designed the software components not only based on the authors’ experience but
also on the results of the interviews, literature reviews, and related software components.

(iv) Reliability in scientific work refers to the consistency and stability of a study’s results.
This means that a study is considered reliable if another researcher can replicate the results
under the same conditions [RH09]. To mitigate this threat in all of our publications (P1-4), we
included detailed method sections (inspired by renown studies [KC07, DKM+06, DKM19]) so
that any researcher could conduct the same study. Additionally, we open-sourced the code for
the software components I (P3) and II (P4) so that other researchers can curate the programs
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and replicate the benchmarks guided by the detailed specifications of the machines we used to
carry out the evaluations.
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CHAPTER 6

Future Work

We outline the various avenues for future work in Table 6.1.

No. Future Work
Expanding Contribution I: Opportunities and Challenges in the Applicability of PETs
P1 ∙ Extend the use cases classification to other applications and domains.

∙ Experiment with concrete PET in productive environments.
∙ Build a comprehensive decision tree to enhance the actionability of our guidance.

P2 ∙ Tackle the copy problem, i.e., the problem that occurs when an entity releases data, the data is no
longer under the original owner’s control.
∙ Improve IoT devices’ computation and storage to tackle the limitations of deploying PETs.
∙ Combine complementary PETs in meaningful use cases.
∙ Develop data exchange and privacy standards and universal privacy-forward APIs.
∙ Investigate whether monetizing privacy in a competitive market ultimately benefits society.
∙ Disambiguate data ownership to define clear privacy and monetization policies.
∙ Design an information-theoretic model of the data leakage in data exchanges and analytics.

Expanding Contribution II: Improving the Applicability of Differential Privacy Algorithms
P3 ∙ Obtain tighter 𝛿 bounds for using Poisson distribution in our solution.

∙ Develop frameworks to bound 𝛿 in approximate DP.
∙ Validate whether the verification key sizes are practical for web-based mobile applications.
∙ Improve ZKP circuit compilers’ precision limitations.
∙ Study how users perceive built-in trust and how to convey these measures.
∙ Design new primitives to verify other DP mechanisms.
∙ Design a scheme that uses ZKP to verify the use of DP in the central model.

Expanding Contribution III: Improving the Applicability of Differential Privacy Systems
P4 ∙ Tackle the outlined engineering and research gaps in DP in practice.

∙ Improve guidance to select 𝜀.
∙ Studying and communicating to non-experts how mechanism design decision affect utility.
∙ Study the unpredictable artifacts introduced by existing complex DP algorithms (e.g., bias).
∙ Increase the maturity of DP ML and synthetic data generation.

Table 6.1.: Overview of future work items (cf. [GSU+22, MGSB22, fGS+21, GLMS23]).
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We propose future work within each of the three contribution streams of this dissertation and
present ongoing work that pushes Contribution III forward and establishes a new research stream
focused on improving the applicability of DP in VR applications. We hope this section inspires
and acts as a starting point for researchers and academics looking into applied DP.

6.1. Expanding Contributions I, II, and III

Expanding Contribution I: Opportunities and Challenges in the Applicability of PETs. Cur-
rent research in the practical use of PET does not explore systematic methods and tools for
helping practitioners decide which PET is suitable for a given need and application domain
[fGS+21]. Moreover, reports and performance studies on the use of PETs in productive ap-
plications are lacking [fGS+21]. Additionally, there are numerous outstanding challenges in
the field of privacy that need urgent attention [GSU+22]. Primarily, solving the copy problem,
i.e., the loss of control over information upon unprotected data sharing, by using solutions like
TEEs (not-yet-matured [KM22, AVBS+22, SYG+19]) would empower users and enable digi-
tal platforms to use critically sensitive data for new applications, e.g., in the health industry
[ZLC+21, CGDS+20, SCS18]. Tackling the recursive enforcement problem, i.e., the recursive
need of additional third parties to supervise an incumbent party in distributed systems, by em-
ploying, e.g., data shielding PET, would eliminate some of the obstacles towards zero-trust data
exchange applications [TBG+20b]. Moreover, researchers and practitioners can tackle broader
challenges related to the current IoT devices’ limitations to spare compute for running PETs
[RRK+20, RPX+22], explore new combinations of PETs [BS23, DM23], and design models to
quantify the data leakage of data exchanges and analytics [LRYY19]. In addition to future work
items in the technical domain, there are numerous avenues for economics and legal experts to
contribute [GSU+22]. Examples of critical questions revolve around the economic impact of too-
protective privacy measures, whether monetizing privacy is beneficial for society, the ambiguity
of data ownership, and developing standards for privacy-forward data exchange and APIs.

Expanding Contribution II: Improving the Applicability of Differential Privacy Algorithms.
Throughout the writing of P3 [MGSB22], we iterated through several algorithms until we iden-
tified the most fitting to adapt for verifiability with ZKP. The main issue we encountered was
the lack of guidance on how to bound 𝛿 for approximate DP and find tighter bounds. The clarity
in these two aspects would allow researchers to contrive and adapt DP algorithms more quickly.
Concerning practical aspects, validating whether the sizes of the verification keys are suitable
for web-based mobile applications would shed light on the extended applicability of our solution.
Moreover, tailoring the ZKP techniques to our DP algorithm would increase its performance,
and overall, improving ZKP circuit compiler’s precision would help in the design and perfor-
mance of our algorithm. In terms of usability, it is worth studying what messages are most
effective for users to understand the robust privacy measures of our solution and whether that
could influence their willingness to participate. Additionally, researchers still have a plethora of
DP algorithms to adapt for verifiability with ZKPs, e.g., the exponential or the Gaussian mech-
anisms. Lastly, adapting our scheme to the central model of DP would increase the accuracy of
the outputs. With an MPC component, interviewees can share their deterministic value secretly
(e.g., their age), and, together with the server’s ZKP of the sampled DP noise verifiable by all
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clients, the scheme can calculate a verifiable DP function (e.g., the average). If a party drops
out, the process can fall back to the local mode of DP.

Expanding Contribution III: Improving the Applicability of Differential Privacy Systems.
In P4 [GLMS23], we provide an explicit set of engineering and research gaps and the most
critical DP general challenges that block the broad adoption of DP. We suggest practitioners,
researchers, and library designers work in these gaps and challenges to close the gap between
theory and practice. Among the gaps, we prompt practitioners first to ensure the security
vulnerabilities of their tools, and subsequently, we suggest improving the tools’ usability and
visualizations and including synthetic data generation capabilities. However, beyond working
on tool improvements, institutions should also become more flexible in their technology deploy-
ments. Regarding the significant challenges of DP as a technique, the community has yet to
see guidelines for the appropriate selection of the privacy parameter 𝜀, track privacy budgets
across institutions, and develop robust methods to verify the fulfillment of DP. Additionally,
the use of DP in ML and synthetic data generation is still in its initial stages. Lastly, we encour-
age researchers to study the artifacts introduced by new complex DP algorithms (e.g., biases)
and understand and communicate how algorithm design decisions affect the output utility (e.g.,
bounding outputs for semantic consistency).

We are currently working on some of the above improvements in PP1 (see Table 6.2). DP is
a complicated topic, and the number of current open-source tools is considerable enough to
overwhelm practitioners unfamiliar with DP and its utilities. Thus, we propose a framework to
benchmark DP libraries. A key feature of our framework is its extendability, i.e., other prac-
titioners can add new libraries and functions to our open-source project, which is critical to
prevent obsolescence. With this benchmarking tool, we aim to provide a comprehensive bench-
mark of the most relevant DP libraries and frameworks. These results will help practitioners
better understand the available tools’ capabilities and help library designers identify learning
across libraries.

6.2. New Research Stream: Improving the Applicability of
Differential Privacy in Virtual Reality Applications

VR and the so-called “metaverse” present a new hypothetical medium to access and interact with
the internet. However, unlike the available tools to protect user privacy in web 2.0 like VPNs,
Tor, or “incognito mode,” there is yet not an equivalent suite of privacy tools to tackle the new
attack vectors VR exposes. Particularly, given the wealth of new data VR devices can collect,
VR can increase the ease at which VR users are profiled and tracked across internet sessions.
To start tackling these issues, we drew the landscape of data privacy in VR by conducting a
systematization of knowledge (PP2). We proposed threat and defense models so that researchers
could easily frame their future work and provide a taxonomy of data attributes available in VR
to better understand the scope and gravity of future privacy attacks. Moreover, based on
existing attacks and their associated defenses, we highlighted the gaps in the research necessary
to develop a holistic defensive VR framework. our ongoing work in privacy and VR is succinctly
summarized in Table 6.2.

59



6. Future Work

No. Ongoing Work
Expanding Contribution III: Improving the Applicability of Differential Privacy Systems
PP1 ∙ Build an extendable framework to benchmark DP libraries and frameworks.

∙ Benchmark existing open-source DP libraries and frameworks.
∙ Draw insights for practitioners using and designers of DP libraries and frameworks.

New Research Stream: Improving the Applicability of Differential Privacy in VR Applications
PP2 ∙ Provide taxonomies of data attributes, and privacy attacks and defenses in VR.

∙ Outline the gaps of privacy defenses in VR.
∙ Outline the most vulnerable and easiest to protect data attributes in VR.

PP3 ∙ Show how malicious VR application design could make users reveal information unknowingly.
∙ Reveal concrete privacy attack vectors in VR applications.
∙ Measure the effectiveness of such attacks.

PP4 ∙ Design a suit of VR privacy protections with provable privacy guarantees.
∙ Evaluate the effectiveness degradation of the attacks when the privacy defenses are enabled.
∙ Measure the usability impact when the privacy defenses are enabled.

Table 6.2.: Overview of ongoing work items (cf. [GNM+21, NGS24, NMGS23, NGS23]).

VR Privacy Attacks. Having an overview of the field of data privacy in VR, we moved on
to show how adversaries could carry out these privacy attacks effectively in practice. For this
endeavor, we conducted a user study, MetaData (PP3) [NGS23]. In MetaData, thirty volunteers
participated in an innocent-looking "escape room" VR game (Fig. 6.1 shows the virtual building
where participants had to solve the escape room’s puzzles). During the playthroughs, we col-
lected in-game data to accurately infer over 25 personal data points, ranging from demographics
such as gender and age to anthropometrics like wingspan and height, within minutes of starting
the game. The attackers in a VR data flow may be other VR users or as strong as the server
running multiplayer functionality or the VR device and application running locally. By calcu-
lating the accuracy of the demonstrated attacks, we showed the potential scale and breadth of
data collection in VR could far exceed what is possible within the traditional web and mobile
applications. Overall, we aimed to bring attention to the looming privacy risks of the metaverse
by providing the first framework for understanding the potential pervasiveness of emerging VR
ecosystems.

Figure 6.1.: Virtual office building hosting the escape room.

VR Privacy Defenses. Given that privacy defenses are still understudied in the field of VR
and the increased attention VR has received by data-hungry companies, we find ourselves in a
dangerous situation where the privacy tools of the current internet cannot cover the new attack
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surface exposed by a potential surge in VR adoption. Consequently, we worked in a defense suite
to tackle the privacy issues uncovered in MetaData (PP3) [NGS23], which could soon become a
typical VR experience.

MetaGuard (PP4) [NMGS23] constitutes the implementation of a series of DP techniques to
quantifiably obfuscate user sensitive data points. Specifically, we used local DP to add noise
to geospatial telemetry data (i.e., to the headset’s and controllers’ X, Y, and Z coordinate
positions) before streaming such information to servers and other users. As a result, the would-
be adversaries could only read values that are DP. Thus, as we showed in our evaluation,
adversaries can no longer accurately infer attributes such as height, wingspan, age, gender, and
identity, effectively preventing profiling and identification (tracking across VR sessions). The
underlying DP techniques we used are randomized response [War65] for binary attributes like
handedness (i.e., we mirror the avatar based on the outcome of a series of coin flips), and
the Bounded Laplace mechanism [HABMA19], which samples noise from a bounded Laplace
distribution so that values can preserve their semantic consistency (e.g., we prevent sampling
negative height values). DP has the additional unique property to optimally balance privacy
and usability, which is critical in VR.

While protecting attributes like interpupillary distance (IPD) is straightforward because such
value types do not change throughout a playthrough, other data attributes like height and
wingspan demand more careful consideration. For IPD, we simply sampled a calibrated noise
distribution centered around the deterministic value and use the sampled value as the new IPD
for the VR session. If we employed the same technique for wingspan, when users would touch
their hands in the real world, their virtual hands would not because of the DP offset. Thus, we
added DP ly, i.e., as the user extends their arms apart, the noise becomes larger, becoming a
DP wingspan value once their arms are fully extended. This technique effectively protects the
DP offset and ameliorates the impact in user experience. In practice, the noise value would be
maintained in the same VR session but would be re-sampled in new sessions so that they are
statistically unlinkable. Assuming the use of complementary PET such as VPNs or proxies to
protect users’ IP, the risk of user tracking is effectively reduced.

We implemented our suite of DP techniques as a universal Unity (C#) plugin that virtually
any user running an application that supports Melon Loader can enable. Because any user
unfamiliar with privacy or DP should be able to use our “incognito mode,” we developed a
simple user interface that provides users with multiple options to protect their privacy. Fig. 6.2
shows MetaGuard ’s user interface. The user can enable MetaGuard with the flick of a switch,
and further select the different attributes to protect. Furthermore, we provide a privacy slider
to choose the strength of the privacy protection—the slider controls the 𝜀 values. To select the
default values set in MetaGuard, we further conducted a small empirical study to assess how the
𝜀 values affect the usability in different VR environments, ranging from competitive games to
social VR.

Overall, we hope our taxonomies (PP2), attack framework (PP3) [NGS23], and provable privacy
guarantees in MetaGuard ’s defenses (PP4) [NMGS23] help and encourage researchers to continue
developing defenses in emerging system like VR.
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Figure 6.2.: Mixed reality photo of a user enabling “MetaGuard,” our implementation of the first
proposal for a VR “incognito mode”.
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CHAPTER 7

Conclusion

As the internet has evolved and the methods for collecting and processing personal information
have become more complex, there has been a growing need for privacy-enhancing technologies
(PETs) to balance privacy and utility. Among PETs, differential privacy (DP) has become the
standard for providing a provable privacy guarantee. However, despite its promise, many PETs,
including DP, have not yet been widely adopted in practice. In this dissertation, we addressed
this issue by studying and developing the improvements necessary to increase the applicability
of PETs, particularly DP, in industry.

To help tackle the lack of widespread adoption of PETs in practice, and of DP in particular,
we make three contributions comprising four research papers (P1 [fGS+21], P2 [GSU+22], P3
[MGSB22], and P4 [GLMS23]). Our first contribution is to reveal the opportunities and chal-
lenges in the applicability of PETs in data sharing and analytics applications (DSAAs) (P1,
P2). Our second contribution is to improve the applicability of DP algorithms (P3). Finally,
our third contribution is to improve the applicability of DP systems (P4). Together, these contri-
butions aim to tackle the barriers to adopting DP by studying and developing the improvements
necessary to increase their applicability in the broader industry.

Conclusion of Contribution I. P1 [fGS+21] and P2 [GSU+22] investigate the challenges fac-
ing PETs and the opportunities of these technologies in DSAAs. P1 [fGS+21] provides guidelines
for selecting PETs based on the capabilities required by the use cases collected from expert in-
terviews. The paper highlights the need for understanding the capabilities and limitations of
PETs as well as the characteristics of the use case when choosing a PET before deploying it
in practice. We conclude in this paper that there is no one-size-fits-all PET and that caution
should be exercised when integrating PETs into systems. Moreover, in P2’s [GSU+22] system-
atic literature review of 74 publications, we found that the combination of secure computation
and provable privacy guarantees are rare in PETs in DSAAs, and that blockchains are often
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included without a clear set of reasons and despite the lack of practical examples in the indus-
try. Moreover, the study found that many researchers tend to reinvent the wheel instead of
improving and contributing to existing open-source tools, and concluded that there is not yet
a canonical solution for building privacy-enhancing DSAAs, meaning the practicality of PETs
needs to improve.

Conclusion of Contribution II. P3 [MGSB22] helps tackle one area of improving the appli-
cability of DP algorithms—verifiability. We proposed an algorithm using zero-knowledge proofs
to verify the correctness of a DP query output. Moreover, we showed that our approach had
practical performance and can be used to verifiably query individuals’ data in a DP manner.
The study’s findings provide the privacy community with primitives for implementing crypto-
graphically verifiable DP in the local model, which can prevent malicious clients from adding
noise to their local data, which could negatively impact the accuracy of a server’s aggregate
statistics.

Conclusion of Contribution III. Lastly, P4 [GLMS23] delves into DP systems and how
to improve their applicability. Specifically, after interviewing 24 practitioners from 9 major
companies, we found that analysts often face lengthy bureaucratic processes for requesting access
to sensitive data and that once granted, only scarcely-enforced privacy policies stand between
rogue practitioners and misuse of private information. In conclusion, we argue that DP could
reduce data access request times by allowing the exploration of critically sensitive data across
silos and reducing access restrictions thanks to its stronger privacy guarantees. Based on our
research, with a series of feasible yet critical improvements, the practical use of DP across the
enterprise is within reach.

As a result of our contributions, we have provided the privacy community with new insights and
tools to improve the applicability of PETs and DP in particular. By revealing the opportunities
and challenges of PETs in data sharing and analytics applications (Contribution I), improving the
applicability of DP algorithms (Contribution II), and improving the applicability of DP systems
(Contribution III), we aim to bring academia and industry closer together and advance the state
of the art in PETs. These contributions not only support the ethical pursuit of protecting user
privacy while enabling the extraction of valuable insights from data, but also provide practical
tools for practitioners to adopt and integrate PETs into their systems.
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Abstract—Privacy enhancing technologies (PETs) are becom-
ing increasingly important for securing privacy, confidentiality
and security, addressing both customer needs and regulatory re-
quirements. However, applying privacy enhancing technologies in
organizations requires a precise understanding of data, use cases,
technologies and their limitations. This study investigates several
industrial use cases and their characteristics, and the potential
applicability of PETs to these. We conduct comprehensive expert
interviews and a literature review to identify and classify uses
cases and discuss how their requirements can be addressed using
PETs as well as the trade-off associated with these solutions.
While we focus particularly on automotive use cases, the results
can be transferred to other industries.

Index Terms—Privacy-enhancing technologies (PETs),
anonymization, data exchange, platforms, gray literature review.

I. INTRODUCTION

The volume of data generated by smart devices and har-
vested by institutions is increasing [5][31], and, coincidentally,
the number of data breaches is simultaneously growing1. These
trends are partially responsible for instigating the emergence
of new privacy regulations in recent years, namely the Eu-
ropean General Data Protection Regulation (GDPR) and the
Consumer Privacy Act in the United States. The modern
paradigm of privacy and the advent of more data breaches have
driven institutions to increase their privacy-enhancing efforts
when utilizing big data and improve the privacy-compliance
of products and services [45].

This confluence of regulation, security risks, and public and
private institutions’ quest for privacy may steer society towards
a new paradigm, where users would be more in control of their
data [22]. Thus, privacy would become a foundational pillar
of any modern digital platform that employs cloud services
or machine learning (ML) [44]. For example, automotive

*Corresponding author
1From 2014 to 2020, the average total cost of a data breach is around $3.8

million [23]

service providers may find more restrictions than today to
train recommender systems for personalized driving behavior
to improve road safety or minimize emissions in millions of
vehicles.

While users may have more control over their data and
privacy is protected more strongly, privacy may also generate
benefits for the public and private institutions at the fore-
front of privacy-enhancing innovation. Counter-intuitively, a
careful deployment of privacy-enhancing technologies (PETs)
may increase the amount of data collected, because PETs
help to overcome customer concerns and address regulatory
requirements [25]. As a consequence, an increase in data
collection accelerates existing processes and unlocks new
business models [15][30]. Furthermore, privacy-enhancing im-
plementations mitigate the risk of fines [30], which may reach
as high as 4% of a company’s total annual turnover under the
GDPR [1]. Lastly, after numerous data breaches across the
globe [23], companies or institutions that wish to be perceived
as trustworthy must include the latest privacy enhancements
as their standard. Not taking such action could be interpreted
as disregard for customers, thereby exposing the organization
to reputational and financial risks [24]

Some prominent technology players are aware of these
benefits, and therefore, push their brands to signal privacy
as a core component of their products with stances, such as
”[...] customer trust is our top priority.” or ”Your privacy is
our priority.”. Despite these claims, there remains a certain
level of dissonance, as the same privacy-aware industry players
have committed the most significant privacy infringements to
date, which can rise up to e887M or e120M. Therefore, a
gap exists between specification and implementation. Given
that this gap is present even in the largest and most advanced
technology companies, one may infer that most organizations
do not have the appropriate technology deployments to ad-
equately enhance user privacy. Moreover, even if an organi-
zation adopts conventional de-identification techniques (e. g.,
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attribute deletion or pseudo-anonymization), it has been shown
that such approaches do not provide sufficient protection for
user data [32][14][26].

Goal. Because of the emerging need for institutions to
increase their privacy efforts and the inherent complexity of
such a feat [2], in this paper, we aim to provide practitioners
with an overview of privacy-enhancing products that ease the
implementation of privacy-related use cases, which we also
uncover to motivate privacy-enhancement in organizations.
While practitioners can apply our research to other industries,
we conduct the study from an automotive domain perspective.
Specifically, our results are shown in the framework of Fig. 1,
which proposes an approach to map use cases with products
in the domain of privacy. Furthermore, we have classified
privacy products into solutions devised by startup vendors (see
Table II) and open-source tooling (see Table III). Moreover,
we have classified use cases between enablers (see Table IV)
and business-oriented (see Table V). Overall, we underline
the variety of use cases an institution can pursue and the
importance of adopting PETs to remain competitive.

This paper is structured as follows. We provide terminology
in Section II and describe our methodology and research
questions in Section III. The results of our study appear in
Sections IV and V. We discuss key findings in Section VI
and related work in Section VII, concluding the paper with
Section VIII.

II. TERMINOLOGY

In this section, we define important concepts in the scope of
this study. The term product refers to either a tool or a solution.
A tool is a general-purpose implementation of an algorithm
that abstracts the deployment of a specific technology, i.e.,
the user does not need to have expertise in the underlying
technology for its use. For example, an open-source library
that abstracts the use of differential privacy to aggregate
personal data in a privacy-enhancing manner. A solution is a
commercial implementation of a single or a set of technologies
often focused on a specific purpose and domain. A solution
could be a user-friendly platform for deploying federated
learning models with secure computation to classify driving
behavior.

A use case is a particular situation where a product could
enable or directly leverage a business opportunity or improve
an existing product or service. For example, the mood of
a driver (situation) could be categorized on real time to
accordingly adapt the environment within the vehicle for a
better customer experience (business opportunity) with the use
of privacy-enhancing machine learning (product).

III. METHODOLOGY

We outline the goal of this study as follows: interview
experts to discover use cases and solutions in the domain of
privacy and analyze the gray literature to identify open-source
privacy-enhancing tools. To accomplish our goals, we devised
two research questions (RQ).

RQ1. What relevant privacy-enhancing products are avail-
able? With RQ1, we aim to uncover, characterize, and classify
the privacy-enhancing products that practitioners can leverage
(see Section IV). We divide these products into two groups (i)
solutions built by startups and (ii) open-source tooling.

(i) We include privacy-related startups because to survive
as a new industry incumbent, startups must identify significant
problems and solve them with novelty. To collect a curated list
of startups in the domain of privacy, we conducted iterative
unstructured expert interviews [36] at the end of 2020 and
during the first half of 2021 with two venture capital profes-
sionals focused on privacy solutions (see Table I). Based on the
discussions around their corpus of startups, which they built
with dozens of expert interviews, screening calls and market
searches, we created 18 categories and classified 47 startups
accordingly after examining their solutions (see Table II).

(ii) Secondly, during June and July 2021, we searched for
tools that implemented the most prevalent PETs included
in seminal surveys or implementations in the domain
of privacy [29][16][40]. We list the tools in Table III.
Furthermore, each tool had to be open-source so that
the scientific and engineering community could audit and
freely access them. However, systematically collecting peer-
reviewed publications would not capture all of the novel tools
available [21]. Thus, for our purposes, S. Hopewell and M.
Clarke and S. Mallett [21], and J. Vom Brocke et. al [41]
indicated that a gray literature review (GLR) would be a
more optimal strategy. Consequently, we included tools that
appeared within the first 100 results of a Google search for
the search string “PET name AND open-source AND tool
AND GitHub”. Two researchers independently conducted
the search (one identified 48 tools while the other 47), and
merged the results into 57 tools after removing duplicates (38).

RQ2.What are the relevant use cases in the privacy domain
of the automotive industry? With the answer to RQ2, we
provide use cases to motivate practitioners to enhance privacy
in their institutions (see Section V).

To plan and conduct the interviews to answer this RQ,
we followed guidelines from P. Runeson and M. Höst [36].
Specifically, throughout the end of 2020 and during the first
half of 2021, we interviewed 17 interested practitioners who
worked directly or indirectly in the automotive industry; all of
the participants focused on cross-company data exchange or
privacy protection (see Table I — the 17 interviewees do not
include the venture capitalists in this RQ). 7 of the interviews
were conducted verbally, while the remaining 10 through email
correspondence. The interviews were semi-structured [36], i.e.,
while we initiated the conversation with a set of introductory
questions about their background and followed up with RQ2
to collect a list of use cases, we promoted further exploration
of their ideas to help us in the use case classification.

Afterward, we aggregated all of the use cases and analyzed
the interviewees’ discussions for outlining a classification.
With the outline, we designed the framework of Fig. 1 to help
mapping over 30 use cases to the privacy-enhancing products
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TABLE I
STUDY PARTICIPANTS FROM THE AUTOMOTIVE INDUSTRY (ANONYMOUS

IDENTITIES AND RESPONSES).

Participant’s role Years

Interviews

Researcher 2 <
IT Project Manager 2 <
IT Product Owner 2 <
Privacy Officer 20 <
Privacy Officer 6 <
Data Management Officer 5 <
De-identification Specialist 2 <
Venture capital 6 <
Venture capital 6 <

Correspondence

Cloud Security Architect 10 <
Head of Research and
former Computer Science Professor 34 <
IT Program Lead 4 <
IT Product Owner 2 <
IT Product Owner 2 <
IT Product Owner 2 <
IT Project Manager 5 <
IT Project Manager 5 <
IT Product Manager 5 <
Product Manager 5 <

in Section IV (see Tables IV and V). Note that practitioners
can also apply these use cases to other industries other than
the automotive industry (e.g., building data markets for the
financial, health, or telecommunications industry).

Limitations. Even though we have followed expert in-
terview [36] and GLR [21][41] guidelines, this study has
limitations that may have undermined its effectiveness. These
threats include bias in classifications and human error in
data collection. To mitigate these threats in the GLR, two
researchers independently searched for tools, whose lists
contained around 40% of duplicates. Regarding the expert
interviews to discover use cases, we countered potential bias
by interviewing 17 experts from different departments and
institutions and summarized the findings before the conclusion
of the interview to get feedback and thus avoid misinterpreta-
tion [36]. Likewise, to identify startups, we discussed with two
venture capital experts who, in turn, had iterated interviews
with dozens of other privacy domain experts to build the
startup corpus. Furthermore, the authors of this paper were
engaged in creating the startup classification to minimize bias.

IV. PRIVACY-ENHANCING PRODUCTS (RQ1)

Privacy-Enhancing Solutions. After aggregating and dis-
secting the startups found through our interviews with the
venture capital experts, we classify in Table II the privacy so-
lutions based on six capabilities: Data management. Enterprise
applications that provide a holistic picture of an organization’s
data characteristics and life cycle. Regulation compliance
management. Enterprise platforms that support and automate
compliance with GDPR and other data privacy laws. User

governance. Enterprise applications that orchestrate users’ data
management preferences and requests, complying with data
privacy law. Privacy integration. Platforms and applications
that bring to production privacy-focused design principles [6]
and tasks such as anonymization. Data analytics. Platforms
enabling sharing and analytics of sensitive data in a privacy-
compliant manner. Consumer-facing solutions. Software that
empowers users to profit from their data, provides users better
understanding of their data on the Internet, or enables users
to communicate or share information in a secure and privacy-
enhancing environment.

The overlaps of the different solutions strengthened the
inclusion of a category within each of the six capabilities.
For example, one may observe clear overlaps between
Onetrust and BigID. Onetrust offers in their product portfolio
risk assessment automation, data mapping, or incident
management. On the other hand, BigID provides incident
reporting, data mapping or anonymization. Based on the
overlaps and offerings of the collected startups, we decided
for the 18 categories of Table II arranged across the six
capabilities, which we use as the links between use cases and
products. Lastly, note that some solution categories (e.g. data
mapping or privacy managers) do not enhance privacy directly
and often do not need a PET included in Table III. However,
such solutions enable others such as anonymization managers
to balance privacy and utility optimally by specifying the
data type, provenance, and context, among others.

Privacy-Enhancing Tools While institutions can have paid
access and ease integration of the startups’ privacy-enhancing
solutions, except for some open-source projects, institutions
can also integrate freely available tools in their stack with
engineering effort. The tools we included in Table III are
open-source, or reference implementations based on a single
PET or a cluster of PETs within the same category, for exam-
ple, k-anonymity, l-diversity or generalization (ARX), or the
Laplacian, Gaussian, or Snapping mechanism (Google DP).
Furthermore, note that PETs offer two major functionalities to
enhance privacy, anonymization (blurs the link between data
and their provenance to some degree) and confidentiality (data
are only shared with the intended parties) [16]. Notably, the
solutions proposed in ”privacy-enhancing analytics” in Table II
are based on the PETs of Table III. Furthermore, the rest of
the startups also rely on these PETs to some extent, such as
the ones included in Privacy integration, while others do not
rely on them like data management solutions.

V. MAPPING USE CASES IN THE AUTOMOTIVE VALUE
CHAIN TO PRIVACY-ENHANCING PRODUCTS (RQ2)

After the discussions with the 17 experts regarding privacy-
specific use cases and having collected the privacy-enhancing
products, we designed a framework to perform the mapping
depicted in Tables IV and V. Fig. 1 illustrates our framework
and contains some use cases for exemplification. Furthermore,
note the inclusion of benchmarks, which some interviewees
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TABLE II
PRIVACY-ENHANCING SOLUTIONS AND THEIR DESCRIPTIONS CLASSIFIED BY CAPABILITIES.

Privacy-
Enhancing
Solution

Description (Startups)

Data management

Activity
monitoring*

Determines who has access to personal data and when such data are accessed or processed within an organization (e.g.,
Onetrust, and Pkware).

Data discovery* Ascertains and classifies what kind of personal data an organization possesses to help manage privacy risk and compliance
(e.g., Onetrust, and Pkware).

Data mapping* Determines data flows throughout an enterprise (e.g., Onetrust, Datagrail, Trustarc, BigID, Wirewheel, Usercentrics, Didomi,
Cookiebot, metomic, Pkware, and 1touch.io).

Regulation compliance management

Incidence
response*

Aids in the response to data breaches by providing information to relevant stakeholders of what was compromised and what
regulatory obligations must be met (e.g., Onetrust, BigID, Wirewheel, Pkware, and 1touch.io).

Privacy
managers*

Provide organizations with extensive and often automated information on the latest privacy laws around the world (e.g., Onetrust,
Datagrail, Trustarc, Usercentrics, Didomi, Cookiebot, metomic, and 1touch.io).

Risk assessment* Automate and scale privacy compliance processes, such as privacy impact assessment generation, locating risk gaps, and
demonstrating compliance (e.g., Onetrust, Pkware, BigID, Datagrail, Privitar, Immuta, and Exate).

Website scanning* Determines what cookies, web beacons, and other trackers are embedded in a website to identify potential disagreements with
regulations and act accordingly (e.g., Onetrust, Datagrail, Trustarc, Usercentrics, Didomi, Cookiebot, metomic, 1touch.io, and
Osano).

User governance

Consent managers Collects, tracks, demonstrates and manages user consent regarding their privacy preferences (e.g., Onetrust, Datagrail, Trustarc,
BigID, Wirewheel, Usercentrics, Didomi, Cookiebot, metomic, Pkware, and Osano).

Data subject
request managers

Facilitates inquires made by individuals who wish to exercise their data rights. These requests include the right to access, rectify,
move, and erase data (e.g., Onetrust, Datagrail, Trustarc, BigID, Wirewheel, Usercentrics, Didomi, Cookiebot, metomic, Pkware,
Osano, and 1touch.io).

Personal data
account

Provides secure storage of personal data and gives ownership and control to the user over his or her data, based on which
organizations can access such data through SDKs and APIs (e.g., Dataswift, and Infosum).

Privacy integration

Anonymization
managers

Automate and scale anonymization. (e.g., Onetrust, Pkware, BigID, Datagrail, Privitar, Immuta, and Exate).

Privacy as a
service

APIs that enable the inclusion of privacy by design principles in an application or workflow, for example, performing encryption
in a proxy before data reaches the backend of an application (e.g., StrongSalt, Evervault, and Skyflow).

Video / photo
anonymization

Anti-facial recognition software to make organizations’ photos and videos unrecognizable to facial recognition tools (e.g.,
D-ID, and BrighterAI).

Data analytics

Privacy-enhancing
analytics

Allows companies to strike a balance between privacy and data utility in analysis by leveraging secure computation (e.g., Inpher,
Enveil, Arpa, Duality, Zama, Fortanix, Scontain, decentriq, Oasis Labs, Edgeless systems), anonymization like differential
privacy, k-anonymity, masking or generalization (e.g., Aircloak, Privitar, Immuta, Pkware), or a combination of the previous
technologies in addition to federated learning (e.g., OpenMined).

Synthetic data Generation of a new dataset based on the properties and relationships of existing sensitive data, in contrast to anonymizing
(e.g., Statice, Synthesized, Hazy, MostlyAI, and Tonic).

Consumer-facing applications

Personal data
economy*

Software that enables the user to profit from his or her data while preserving his sovereignty (e.g., digi.me, metame, and
meeco).

Privacy assistants Help consumers discover, understand, and effectively manage what the Internet knows about them, enabling users to reduce
unnecessary online data exposure while using mobile- or web-based applications (e.g., Jumbo, and Mine).

Private messaging Enables consumers to communicate and share information in a secure and privacy-enhancing environment (e.g., Signal, Yeo,
and Misakey).

*Flags solutions that do not enhance privacy directly but provide a supporting role.

recommended conducting under realistic settings to compare
products before deploying them.

We subdivided the use cases into two groups based on
use case types: enablers (A and B) and business-oriented

(C and D). While both groups are complementary, (A) and
(B) facilitate (C) and (D) because the former two enable the
accessibility to data for business-oriented analytics. Thus, for
the most part, the use cases from (A) and (B) are not business-
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TABLE III
PRIVACY-ENHANCING TECHNOLOGIES’ DESCRIPTIONS AND THEIR MOST RELEVANT OPEN-SOURCE TOOLS.

Privacy-Enhancing
Technology (PET)

Description Tool

Anonymization

Differential
privacy (DP)

Mathematically guarantees that the output of a dataset
analysis is “essentially” identical, despite the presence
or absence of an individual in the dataset [11][10]. An
analysis may be a statistical query like the mean or a ML
model.

Google-DP (and its Python wrapper PyDP), SmartNoise,
diffprivlib, DiffPriv, OpenDP, DPComp Core and Chorus
(behind Uber’s DP SQL). Focused on DP and deep learning:
TensorFlow privacy and PyTorch Opacus

K-anonymity Within the context of a dataset, k-anonymity guarantees
the indistinguishability of a record with k-1 number of
others [37]. K-anonymity is useful to anonymize datasets
before realising them.

ARX, Amnesia, and Anonimatron.

Secure and outsourced computation (confidentiality)

Zero-knowledge
proof (ZKP)

Proves a claim by demonstrating the authenticity of data
and integrity of a computation without revealing the data
or computation [18][17].

emmy, dizk, zkMega, libsnark, libiop, ZKRollups, ZKRP,
ckb-zkp, ginger-lib, OpenZKP, and gnark.

Secure multiparty
computation (SMC)

Parties can jointly compute a function without disclosing
their inputs by employing secret sharing or garbled
circuits [43].

Multi-Protocol SPDZ, LIBSCAPI, MPyC, CrypTen, EMP-
Toolkit, Multiparty, ZoKrates and MPC-SoK.

Homomorphic
encryption (HE)

Allows computing functions on ciphertext without prior
decryption [42][8].

TFHE, fhe-toolkit-linux, Google FHE SEAL, Concrete, eclib,
HElib, and PALISADE.

Trusted execution
environments (TEE)

Hardware and software that provide computation security
against the unwarranted retrieval of sensitive informa-
tion [33].

mTower, Open Enclave SDK, Trusty, TrustZone, Mystikos,
Open-TEE and Intel’s Trusted Execution Technology.

Federated
Learning (FL)

Distributes ML models across data sources for train-
ing and ultimately averages the weights into one
model [27][28].

Fate, sherpa.ai, PaddleFL, PySft, Xaynet, fedn, FedML-AI,
Flower, PyVertical, TensorFlow Federated, and federated-
learning-lib.
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Fig. 1. Framework to map use cases and products. We selected attentiveness
detection and data markets as examples. Legend: DP = Differential privacy;
HE = Homomorphic encryption; SMC = Secure multiparty computation; TEE
= Trusted execution environment, ZKP = Zero-knowledge proof

oriented. For example, creating a pipeline for automated risk
and utility assessment and anonymization enables the use of
data within an organization without measurable revenue.

Furthermore, the data exposure scope has a significant im-
pact on the classification of the enabler-type products: internal
(A) and external (B), because data markets and public dataset
releases do not entirely apply internally. Without mastering
(A), institutions would find (B) hard to tackle because (B)
poses more restrictions, despite requiring similar products.
Although the data exposure scope also applies to the business-
oriented use cases (C) and (D), this dimension has more impact
classifying their level of privacy risk than providing a sharp
classification of business-oriented use cases. For example,
attentiveness detection should require prior anonymization
and confidentiality for user data, irrespective of whether
the analysis is performed with data exposed internally or
externally. However, executing analysis with attention data
exposed externally (e.g., in a data market) would require a
higher degree of perturbation and confidentiality because the
probability of re-identification is higher, i.e., more potential
attackers.

On the other hand, data provenance provides a sharper
classification for business-oriented use cases because, for
example, with enterprise data (D) there are often no customers
(C) to protect under GDPR. Moreover, (D) often requires more
authenticity to comply with a business need (e.g., fault analysis
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TABLE IV
USE CASES (ENABLERS) AND DESCRIPTIONS.

Use Case (Enablers) Description Required Capabilities

A) Exposing data internally

1. Websites and apps
In-car apps*

Connected car*

Customer-facing applications should first, empower
users regarding data sovereignty and privacy and,
secondly, enable institutions to leverage user data
to improve their products and services in a privacy-
enhancing manner. Furthermore, if the app shares
data with third parties (e.g., connected cars inter-
facing with apps to provide new services) then this
category A.1 would also pertain to Category B:
exposing data externally.

Because this use case is user-focus, the solution capa-
bilities chiefly needed are user governance, consumer-
facing applications, and privacy integration. Further-
more, specific solutions such as website scanning can
help the app provider with regulation compliance man-
agement. For the anonymization and analytics side of
the applications, one may leverage different tools from
Table III depending on the app’s architecture and the
goal of the app provider — analytics is covered more
in detail in Table V.

2. Automate privacy functions
Automated risk assessment
Automated anonymization
Automated breach detection
Utility assessment tooling

Creating, streamlining, or automating parts of exist-
ing data pipelines to anonymize data and assess pri-
vacy leakage risk increases productivity (shorter de-
lay to access data) and reduces human-error. Further-
more, detecting breaches and acting timely reduce
user harm and legal backlash [30]. Lastly, tools that
measure data utility before and after anonymization
can help tune privacy thresholds, e.g., ε in DP or k
in k-anonymity.

As the focus is the data privacy compliance of an
enterprise, the solutions should be capable of data
and regulation compliance management, and privacy
integration. User governance tools such as consent and
data subject request managers are also necessary to
dynamically adapt to new regulatory requirements im-
posed by users. Furthermore, anonymization tools can
replace or support some components of the solutions.

3. Prolong data access/storage Based on current regulations like GDPR, organiza-
tions cannot access or store data longer than a pre-
defined period. However, privacy-enhancing products
can prolong access and storage and therefore benefit
analytics about past events, predictions, and prescrip-
tions. In addition to deploying products to monitor
privacy-related activities like consent management,
as long as there are strong anonymization and con-
fidentiality guarantees, data may be accessed, e.g.,
using DP to prevent singling-out individuals and FL
to train models without storing customer data.

Similarly to A.2, the solutions require data and regula-
tion compliance management, and privacy integration.
Moreover, given that customer consent is necessary for
storage, user governance capabilities are also needed.
Tools that allow to work with data confidentially chiefly
match this use case: SMC, HE, TEE, and FL.

B) Exposing data externally

1. Public dataset release
Research
Cross-enterprise projects

Releasing datasets publicly or confidentially for re-
search or collaborative projects between institutions
can lead an adversary to re-identify individuals [12].

Because the identity of individuals is directly threat-
ened, the main capability is privacy integration
(anonymization managers and video/photo anonymiza-
tion); thus, organization can also employ tools based
on DP and k-anonymity.

2. Data markets
Health data markets
Automotive data markets*

Financial data markets
<Industry> data markets
Cross-industry markets

Data have become products in the electronic mar-
ketplace [38] in which institutions plan to exchange
or trade data for profit. Initiatives such as GAIA-X
or the automotive-related venture Catena-X endorse
this type of ecosystems in Europe.

Data markets require a confluence of privacy products,
as these ecosystems need privacy in different domains
(e.g., storage, processing, verification, communication,
among others) and involve different participants (users,
companies, brokers, among others) [16]. Thus, data
markets can benefit from many of the solutions from
Table II and tools from Table III. Nonetheless, the
primary capabilities that should be fulfilled are privacy
integration and data analytics; without them, a data
market would not be possible or alluring, respectively.

*Flags use cases prevalent in the automotive industry.
Legend: DP = Differential privacy; SMC = Secure multiparty computation; ZKP = Zero-knowledge proof; HE = Homomorphic encryption;
TEE = Trusted execution environments; FL = Federated learning.

or set intersection). Thus, enterprise-data-driven use cases rely
more often on secure and outsourced computation than on
anonymization PETs. Examples of user data are geoposition or
driving behavior, and instances of enterprise data are business
secrets, performance metrics, or suppliers.

Each use case calls for a set of required capabilities
(introduced in Section IV), which helped to narrow down the
products necessary to enhance privacy in a particular use case.
For example, prolonging data access/storage chiefly requires

regulation compliance management because storing user data
is strongly subject to data privacy law. Furthermore, to support
such compliance, one must know what data are stored and
how they will be handled and execute the appropriate privacy-
enhancing software, thus, the solution should also incorporate
data management and privacy integration capabilities. Lastly,
because we require to monitor the type of consent given by
the user, user governance capabilities should be present.

Finally, while the solutions provided by the startups already
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TABLE V
BUSINESS-ORIENTED USE CASES AND DESCRIPTIONS

Use Case
(Business-Oriented)

Description Required Capabilities

C) User data analytics

1. Recommender Systems
Driving behaviour*

Eco-friendly driving*

Entertainment systems

ML models capable of training and recommending behavioural im-
provements (e.g., to reduce aggressive driving), provide scores (e.g.,
level of eco-friendly driving), or personalized options (e.g., which
film to play) in a privacy-enhancing manner.

The main capabilities required are data an-
alytics, and user governance. The open-
source tools can be based on FL, DP, SMC,
HE, or TEEs.

2. Across silos
Cross-app learning

Analytics or ML models trained from different applications with
different features can bring new insights that otherwise would not be
possible, e.g., how does a home-entertainment system affect driving
behavior or sleep.

The main capabilities are the same as in the
case of C.1; furthermore, the added com-
plexity of interacting with multiple com-
panies requires stronger privacy integration
capabilities.

3. Private search
Tailored Car Insurance*

Internet browsing

Finding assets on datasets without disclosing information from the
query or accessing the dataset in plain text (e.g., comparing insurance
prices without being tracked or disclosing one’s driving history).

Solutions proposed with data analytics ca-
pabilities focused on secure and outsourced
computation. Tools based on ZKP, SMC,
HE, or TEEs.

4. Aggregate statistics
Users’ statistics
Employees’ statistics
Car dealerships*

Vehicle tracing*

Statistics help to understand how customers use products or services,
how employees manage their hours or employ the facilities, or, more
specifically, what customers care about and how they buy a car.
However, most importantly, their data must be analyzed in a secure
and privacy-enhancing manner (e.g., embedding DP in SQL queries).

Privacy integration capabilities, namely de-
ployed with anonymization managers and
some data analytics focused on anonymiza-
tion. Tools capable of aggregating statistics
can be based on DP or k-anonymity.

5. Attentiveness/mood de-
tection
In-car environment
adaption*

Driving assistance*

Assessing the attention of the driver can improve safety and facial
micro-expressions can enhance the experience of a product or service
(e.g., by adapting the lighting, music, or aroma of a car’s interior).
However, these expressions are highly sensitive information.

The capabilities and useful tools are equiv-
alent to the ones in C.1.

6. Advertisement
Billboard advertisement

Advertising in a privacy-enhancing manner can avoid price discrim-
ination or unwarranted tracking. Furthermore, automakers can lever-
age demographics and geo-positioning data to propose advertisers’
billboard locations without disclosing personal information.

The capabilities and useful tools are equiv-
alent to the ones in C.1, in addition to k-
anonymity.

D) Enterprise data analytics

1. Set intersection
Merging logistics’ data*

Finding a common set of elements (e.g., vehicles’ parts IDs) in private
datasets across different entities without revealing any other element
outside of the set (e.g., different automakers could order identical
parts together to save costs).

The capabilities and useful tools are equiv-
alent to the ones in C.3.

2. Across organizations
Cross-enterprise learning

Leveraging databases across enterprises increases the training data of
each enterprise (e.g., autonomous driving).

The capabilities and useful tools are equiv-
alent to the ones in C.2.

3. KPI comparison
Supplier ranking*

Industry benchmarking

Compare KPIs from a set of entities without revealing the values,
for instance, revealing the best offer without disclosing prices among
suppliers or ranking industry competitors based on internal authenti-
cated metrics.

The capabilities and useful tools are equiv-
alent to the ones in C.3.

4. Computer Vision
Autonomous driving*

Quality checks in produc-
tion lines*

De-identification of video material that contains people and training
in a privacy-enhancing manner.

The main capability is privacy integration,
namely video/photo material anonymiza-
tion, and some data analytics capable solu-
tions based on FL. Tools based on FL and
DP can support or replace aspects of the
solutions.

5. Fault analysis
Fault reporting*

Predictive maintenance*

Automakers could share information of parts common in their prod-
ucts if faults are detected in their supply chain or in vehicles to
accelerate countermeasures. Moreover, automakers can use behavioral
indicators of, for example, mechanical or electronic components, to
predict performance deficiencies or failures. However, these indicators
can sometimes be manufacturers’ proprietary information.

The capabilities and useful tools are equiv-
alent to the ones in C.3.

*Flags use cases prevalent in the automotive industry.
Legend: DP = Differential privacy; SMC = Secure multiparty computation; ML = Machine learning; ZKP = Zero-knowledge proof; HE =
Homomorphic encryption; TEE = Trusted execution environments; FL = Federated learning.

include either the appropriate PETs or other software (e.g. data
managers), institutions that desire to rely on open-source tools
should enhance anonymity and confidentiality on any use case
concerning analytics. The level of protection would depend on

the privacy risk of the use case, which depends heavily on the
data exposure scope.

The following is an end-to-end example of how we clas-
sified and mapped a use case to products; we selected the
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public dataset release use case. Such release is an enabler
because it does not directly leverage a business opportunity
but facilitates data scientists to analyze the material. The data
exposure scope is external, and the data provenance could
be either from users or enterprise-specific. Assuming user
data, we must enhance their anonymity (privacy integration
capability), and, therefore, we need anonymization managers
to devoid any links with the underlying users and video/photo
anonymization in case the data are of such nature. Lastly, as
this use case is focused on anonymization, tools employing
DP or k-anonymity are most suitable, and because the data
exposure scope is external, the values of ε for DP and k should
be more restrictive. Lastly, note that as the data consumers are
the public, PETs ensuring confidentiality are not necessarily
required.

VI. DISCUSSION

Based on our interviews and gray literature review, we have
distilled the following key findings:

• There are products and use cases that enable others with-
out directly enhancing privacy or producing measurable
revenue, respectively.

• Business-oriented use cases are analytics-driven.
• There is no “one-size-fits-all” privacy-enhancing product.
• For the most part, enterprise data analytics use cases rely

on secure and outsourced computation rather than on
anonymization because these uses cases do not contain
user data and require accuracy in the analysis, which is
deteriorated with anonymization.

• Use cases requiring strong user sovereignty rely more
heavily on secure and outsourced computation, as the data
consumers should not host the data.

• Because exposing data internally (A) or externally (B) are
“enabler” use cases and not business-specific, one may
transfer most use cases in Table IV beyond the automotive
domain.

• Because exposing data externally requires tighter privacy
measures than exposing them within an organization, to
engage in use cases such as data markets, institutions
should consider first to be internally agile and confident
with user data management and analytics.

VII. RELATED WORK

Most research focuses on applying specific PETs to address
a particular use case, or investigate the use cases that a single
PET can address. Examples include applying SMC for privacy-
preserving deep learning [4], implementing DP in the context
of sensitive health data [9], or identifying applications for
which practitioners can employ TEEs [3]. However, these
publications do not provide an overview of privacy use cases
for different PETs or products thereof.

Other publications have surveyed how PETs fulfill privacy
requirements in general [20] or from a particular context like
data exchanges [35], or they highlight market opportunities
for PETs to solve business problems (e.g., build trust or
establish a competitive advantage [24]. However, mapping

PETs with requirements or opportunities does not provide
immediate insights regarding privacy use cases. The last set of
publications we identified proposes industry use cases without
explicitly mapping them to a list of privacy-enhancing prod-
ucts. Another set of publications proposes industry use cases
without explicitly mapping them to a list of privacy-enhancing
products. Examples range from outlining privacy use cases
in the supply chain [19], the role of PETs in predictive
maintenance in the automotive industry [39], or the use of
PETs in the context of IoT [34] or smart cities [curzon2019].

We identified few publications that survey applications of
PETs. There is a repository of implemented PET use cases [7]
from different sectors (e.g., heath, transport, finance) and a list
of case studies that used PETs to reach their objectives [13]
in the financial sector. However, these surveys do not focus
on production and industry use cases.

While the publications covering the domain of privacy and
use cases are varied, to the best of our knowledge, they do not
(i) identify patterns of PETs to classify and map privacy use
cases to corresponding privacy-enhancing products, (ii) present
a list of open-source tools for PETs, or (iii) present actionable
use cases in the production industry.

VIII. CONCLUSION

We have conducted expert interviews and a gray literature
review to uncover, describe, classify, and map use cases to
their corresponding privacy-enhancing products, consisting
of solutions from startups and open-source tooling. We
encourage practitioners the use of the three-pronged approach
depicted in our framework of Fig 1 to map privacy-enhancing
products with use cases and consider performing benchmarks
among the potentially suitable products. Furthermore,
through the mappings of Tables II, III, IV, and V, we help
practitioners understand the landscape of privacy from an
industry perspective and swiftly select privacy-enhancing
products based on a use case. Moreover, we provide a list
of key findings beyond the gathered solutions and use cases.
From these findings we underline the importance of engaging
in “enabler” use cases first, otherwise analytics will be
hindered and potentially subject to regulation infringements,
and the elegant fit of secure and outsourced computation
with enterprise-data analytics and strong user governance use
cases. Given the landscape of privacy in the industry, we
conclude that privacy-enhancing efforts should increase and
that institutions should consider leveraging privacy products
to enhance their competitive advantage and unlock new
business models.

Future work. Overall, we recommend that practitioners
expand the classification of use cases and privacy solutions
with other categories, capabilities, industry domains, and
examples. Additionally, practitioners can create more fine-
grained decision trees based on this study to decide which
PET to use according to a use case. Finally, using the existing
tooling and privacy solutions, institutions can implement the
use cases herein.
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A B S T R A C T

IoT data markets in public and private institutions have become increasingly relevant in recent years because
of their potential to improve data availability and unlock new business models. However, exchanging data in
markets bears considerable challenges related to disclosing sensitive information. Despite considerable research
focused on different aspects of privacy-enhancing data markets for the IoT, none of the solutions proposed
so far seems to find a practical adoption. Thus, this study aims to organize the state-of-the-art solutions,
analyze and scope the technologies that have been suggested in this context, and structure the remaining
challenges to determine areas where future research is required. To accomplish this goal, we conducted a
systematic literature review on privacy enhancement in data markets for the IoT, covering 50 publications
dated up to July 2020, and provided updates with 24 publications dated up to May 2022. Our results
indicate that most research in this area has emerged only recently, and no IoT data market architecture has
established itself as canonical. Existing solutions frequently lack the required combination of anonymization
and secure computation technologies. Furthermore, there is no consensus on the appropriate use of blockchain
technology for IoT data markets and a low degree of leveraging existing libraries or reusing generic data market
architectures. We also identified significant challenges remaining, such as the copy problem and the recursive
enforcement problem that – while solutions have been suggested to some extent – are often not sufficiently
addressed in proposed designs. We conclude that privacy-enhancing technologies need further improvements
to positively impact data markets so that, ultimately, the value of data is preserved through data scarcity and
users’ privacy and businesses-critical information are protected.

1. Introduction

IoT devices have been improved, mass-produced, and deployed in
the past few decades through steady progress in information and com-
munication technologies (ICTs) and motivated by a trend of data-driven
decision-making, automation, and the opportunity for new business
models. IoT devices’ primary collective purpose is to interact with
the physical world and enable the measurement and collection of
events and interactions [S23]. These characteristics apply to IoT devices
deployed in, for example, a factory or a powerline network and many
devices employed by people, such as cell phones, laptops, or wearables.
The volume, velocity, and variety of the information generated by the IoT
is immense, which drove practitioners to coin the term big data and
develop tools for their analysis [S4]. Public and private institutions use

∗ Correspondence to: Boltzmannstrasse 3, 85748, Garching, Germany.
E-mail addresses: gonzalo.munilla-garrido@tum.de (G.M. Garrido), johannes.sedlmeir@fit.fraunhofer.de (J. Sedlmeir).

big data to promote the public good, innovations, and improve products
and services. Big data has become the foundation of the emerging data
economy, which in Europe was worth nearly 2% of its GDP in 2016,
close to 300 billion Euros [1]. However, the generation, collection,
storage, processing, distribution, and analysis of big data to realize
such economic potential also come with challenges for enterprises and
responsibilities toward society.

Big data needs to be accessible to institutions that can harness
their potential and develop innovations, lest society fails to materialize
their advantages. Unfortunately, a significant share of the world’s
data is siloed and exploited solely by the institutions that host them
[2], consequently locking the untapped potential of the data economy
and hindering progress in science, business, and society. To surmount
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this obstacle, a paradigm shift toward openness emerged in the form
of electronic data markets for the IoT, i.e., mediums for the trade
of information across the Internet based on electronic infrastructure
[3]. This paradigm brings potential benefits, such as increasing the
efficiency of business processes, facilitating growth by unlocking new
business models [4], and profiting from trading. Decision-makers in
governments and businesses have recognized the economic potential
of data markets and hence recently supported significant projects that
provide a shared digital infrastructure for data-sharing initiatives such
as GAIA-X [5] or the automotive-related Catena-X, which promote the
collaboration of large enterprises in data markets.

Despite data markets’ promise to benefit society by fostering in-
novation and collaboration across enterprises, these markets hold the
risk of exposing individuals’ and businesses’ sensitive information [6,7].
Moreover, confidence in privacy protection is an essential driver of
users’ willingness to share their data [S8]. Similarly, businesses are
unwilling to bear the risk of unintentionally leaking their customers’
private or business-critical information. Consequently, the adoption of
data markets is generally hampered. Additionally, while a corpora-
tion may have taken security measures to protect collected data from
unauthorized access or unintended use, data buyers might not have
the same standards. Hence, in this case, exchanging data entails an
additional risk that the seller needs to mitigate before the data are
shared. Furthermore, blockchains are expected to play an essential
role in the ability of institutions to trade data in tokenized form [8],
but their inherent transparency further increases the need to make
data exchanged in markets less sensitive [S25]. Additional trends that
aggravate the negative consequences of lacking data protection for
institutions are recent privacy laws such as the GDPR in Europe or
the CCPA in California with their increasingly expensive fines for data
breaches [9].

As a first reaction to these risks, practitioners and corporations
have increased their systems’ security. However, if data are sold and,
thus, replicated, confidentiality is not sufficient to protect privacy:
Only managing or modifying the data in a way that enhances privacy
while preserving as much utility as possible is effective [10]. Thus,
institutions have started to allocate more resources to balance data
utility and privacy, employing privacy-enhancing technologies (PETs)
[S27]. The term PET was coined in 1995 in a report by the Dutch
Data Protection Authority and the Ontario Information Commissioner
[11] that explored a novel approach to privacy protection [186]. These
technologies take the form of architectures built with privacy-by-design
principles and policies [S39,S6], or data modifications based on heuris-
tics or mathematical privacy guarantees. Prominent examples of PETs
are differential privacy [12,13], syntactic anonymization definitions
like 𝑘-anonymity [14], homomorphic encryption [15–17], trusted ex-
ecution environments [18], secure multiparty computation [19], zero-
knowledge proofs [20,21], and a set of conventional de-identification
approaches such as masking, rounding, or hashing [22].

The relevance of PETs in data markets also increases with the
growing adoption of IoT devices, such as in vehicles, wearables, smart-
phones, and the applications that stream data daily from millions
of individuals’ private lives to data marketplaces [23]. Despite their
current relevance and growing attention [S27], researchers and institu-
tions still find PETs challenging to understand, integrate, and deploy in
IoT data markets because most PETs are technically complex and have
a wide range of variations and combinations with different tradeoffs
[24]. Regarding research addressing these challenges, primary studies
are predominant, i.e., studies based on original designs developed or
data collected by their authors, while secondary studies collecting and
systematizing existing knowledge are less frequent. The applications
proposed by primary studies range from funneling data from markets
into machine learning (ML) algorithms [S2,S25,S43], crowdsourcing
data into markets [S16,S22,S24,S47], adopting data markets for smart
mobility ecosystems [S3], smart manufacturing [S19], smart homes
[S11], and smart wearables in the health industry [S48].

On the other hand, 9 out of the 50 studies that we identified
in our systematic literature review (SLR) are secondary, and out of
these, four studies [S19,S23,S35,S48] cover some of the PETs available
for data markets for the IoT, yet without giving a detailed compar-
ison of their functionalities, benefits, and limitations. The other five
secondary studies [S4,S8,S14,S27,S38] perform high-level surveys re-
volving around challenges, non-technical privacy strategies, and user-
centric perspectives on data markets for the IoT. However, none of
these secondary studies provided a rigorous, systematic review that
collected and mapped PETs and challenges comprehensively. Moreover,
as we discuss in Section 9, we noted a low level of re-using existing
components to build a more holistic architecture for data markets in
related work, which may indicate the need for systematically analyzing
the current seminal components, strengths, and weaknesses of solutions
proposed for privacy-enhancing IoT data markets.

Consequently, we tackle the research gaps mentioned above with a
comprehensive and detailed SLR that aims to guide decision-makers,
privacy officers, policymakers, and researchers in the challenge of
employing PETs to build or participate in privacy-enhancing IoT data
markets. We guide these stakeholders by identifying, classifying, and
describing how PETs are leveraged in the current body of scientific
knowledge (see Sections 6 and 7) and presenting key findings from
our SLR (see Section 9). Moreover, for the benefit of the reader,
we distill terminology from the extant literature to differentiate and
navigate the concepts of PETs in the scope of this SLR (see Section 5).
We also organize related work into a reference model for the use of
PETs in IoT data markets in distinct categories (see Fig. 10 and Fig.
C.11) and identify narrow and broad challenges that PETs can tackle
or circumvent (see Fig. 8). Through mapping PETs to the distilled
terminology and the identified narrow challenges, we want to support
practitioners in making informed decisions about the appropriate PETs
to employ in the context of IoT data markets (see Table 3).

The remainder of the paper is structured as follows. Section 2
introduces the main concepts of privacy, data markets, and the IoT.
Section 3 portrays how we conducted our SLR on publications dated
before July 2020, followed by a discussion of related work in Section 4
and a distillation of terminology in Section 5. Sections 6 and 7 present
the main results from analyzing the content of the studies in our SLR,
followed by a structured review of challenges in Section 8. Based on
these results and the studies’ metadata, we extract a set of key findings
and artifacts in Section 9, where we also provide future work and
discuss the limitations of our research. Finally, Section 10 updates our
study by including new selected publications from May 2022 to July
2020, and Section 11 concludes with a summary of the results.

2. Background

2.1. Privacy

Given the increased attention and relevance of privacy during the
past decades, practitioners have provided many acknowledged defini-
tions. For example, [25] stated that ‘‘[Privacy is] the claim of individuals
[...] to determine for themselves when, how and to what extent information
about them is communicated [...]’’. Similar definitions have been given
by other authors like [26] or [27]. Despite these efforts, D. J. Solove
argued that any attempt to distill a unique, timeless definition is infea-
sible due to privacy’s multifaceted concept [28]. However, in the field
of computer science, a narrower definition may be possible by adopting
an attack model perspective, as the concept of privacy would likely not
have emerged if transgressors would not exist: attackers of one’s secrets
tacitly give meaning to privacy. Therefore, a helpful definition in the
context of computer science may be F. T. Wu’s [29]: ‘‘[Privacy] is defined
not by what it is, but by what it is not – it is the absence of a privacy
breach that defines a state of privacy’’. F. T. Wu hence defined privacy as
a product of a threat model, the one from [30], in which a practitioner
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needs to determine what information to hide, from whom, and what
harms should be prevented before defining legal and technical tools.

Once IT architectures and tools enhance privacy appropriately,
other advantages emerge. For example, from an economic perspective,
privacy enables data utilization across organizations and applications
to create new fair products and services and prevent price discrimi-
nation [31]. Furthermore, employing PETs may increase the number
of sources and data harvested by institutions because PETs help to
overcome regulatory barriers [32], in addition to mitigating the risk
of fines and differentiating and appreciating a brand [4]. Moreover,
political freedom and stability may only be achieved by unobtrusive
forms of governments [33], privacy-enhancing journalism, and less
pervasive forms of digital products such as social media that can enable
malicious social engineering [S38]. Moreover, research indicates that
compromising privacy can result in negative long-term economic effects
[34].

Despite these benefits, and while consumers emphasize that privacy
is important to them, they are typically not willing to make small
additional efforts or pay for privacy [35], the so-called privacy paradox.
Thus, in the past decades, governments have enacted rules and laws to
protect consumers against violations of their privacy, specifically for
data captured through advanced ICTs such as personal computers, the
world wide web, or smartphones. Examples include the European Data
Protection Directive in 1995, the HIPAA Privacy and Security Rule of
1996, the APEC cross-border privacy rules of 2011, the GDPR of 2016,
and the Consumer Privacy Act of 2020 in the USA, which comprises
Acts such as the CCPA of 2018 in California.

2.2. Data markets

According to [3], there is a misconception in everyday language
between the terms ‘‘market’’ and ‘‘marketplace’’: A marketplace is the
implementation of a market in terms of infrastructure, time, and location
(virtual or physical) where the participants transact. Markets are the
environments where buyers and sellers set the price and quantity of a
particular good. Marketplaces have evolved over millennia; however,
the most drastic changes arguably have happened in the past few
decades. ICT has driven the costs of instant and ubiquitous communi-
cation to an often negligible amount, which has led to the digitization
of many existing transaction-based ecosystems, including marketplaces
[3]. Moreover, ICT has enabled the creation of virtual marketplaces
that did not exist before [36] – the most prominent example being e-
commerce. In this context, data have become goods themselves [3].
Data markets incentivize institutions to collect more data and to profit
from trading, and, in turn, the resulting improvements and innovations
benefit the public good [37].

Beyond the above formal definition, from the selected studies, we
can carve out several characteristics of data marketplaces: [S1] indi-
cated that most of the data marketplaces in operation are centralized,
where the platform is run by either a trusted third party (a broker)
that coordinates buyers and sellers or by the data owner (e.g., a
large institution) who is also selling the data. Another 15 selected
studies also proposed decentralized architectures employing distributed
ledger technology to counter the drawbacks of centralized systems
(e.g., single point of failure or trust on a potentially malicious entity).
On the other hand, [S46] took another perspective, characterizing
data trading platforms depending on the number and type of data
domains: general platforms include data from any source type, while
specialized platforms focus on one domain, e.g., financial, healthcare,
or social media. [S27] identified two categories for data markets based
on the type of participant: companies or private individual customers,
e.g., owners of a smart home. Altogether, we distilled three dimensions
for characterizing data markets: (i) the degree of centralization, (ii) the
types and number of data domains, and (iii) the types of sellers and
consumers. These dimensions permeate most of the identified solutions
in this study, and all exhibit individual privacy trade-offs of which
practitioners need to be aware (see Section 9).

2.3. The internet of things

The IoT is considered a network of physical devices that leverages
sensors to measure and collect information from the real world and
support the access and exchange of data via the Internet instantly
and ubiquitously [38]. IoT devices are considered essential for gath-
ering big data [39], which in turn brings new opportunities such as
targeted advertisement, predictive maintenance, and quality improve-
ments. Consequently, many companies have introduced the IoT in their
strategy for participating in the data economy [38] and make substan-
tial investments in the technologies that make them possible: sensors,
wireless networks, and cloud computing infrastructure [39]. In this
SLR, the definition of the IoT includes any device with a CPU connected
to the Internet, including sensors in factories, supply chains, or vehicles,
and devices such as smartphones, wearables, and computers that people
use daily. These devices act as data collectors and as the gateway to a
plethora of applications that collect users’ actions and behavior, such
as browsers, social media, e-commerce, or media entertainment, as well
as sensor data generated in business processes like manufacturing and
predictive maintenance, and use them for analyzes and predictions.

The design and implementation of data markets are dependent on
the IoT. The ubiquity of IoT devices generates many constellations
for different degrees of decentralization, with a myriad of possible
sources and prosumer types. Furthermore, while such ubiquity will
likely boost the data economy and its products and services, IoT devices
also permeate many aspects of an individual’s life, e.g., dealing with
highly sensitive healthcare data or capturing sensitive information from
a business perspective. Hence, the sensitivity of the data gathered from
IoT devices calls for the implementation of PETs.

3. Research process

3.1. Goal and research questions

We employed the Goal-Question-Metric paradigm [40] to formulate
the focus of this study as follows: we systematically analyze peer-
reviewed literature to provide an overview of the state-of-the-art con-
cerning available research and trade-offs on privacy-enhancing data
markets for the IoT as well as potential research gaps from the point
of view of both scholars and practitioners. Based on this paradigm, the
research questions (RQs) we pursued were:

RQ1. What relevant PETs enable IoT data markets?
By answering this RQ, we aim to reveal, describe, and classify PETs

in the context of data markets for the IoT based on their fundamentals
and applications to give researchers and practitioners an overview of
the PETs researched and employed so far.

RQ2. What challenges and trade-offs hinder privacy-enhancing IoT data
markets?

Through answering this RQ, we account for explicit and implicit
challenges depicted and tackled in existing work so that researchers
may quickly identify pain points in the field and focus their research.

3.2. SLR execution

We conducted a SLR based on the guidelines of [41]. SLRs aim to
collect, structure, and summarize the existing evidence and gaps in a
particular research field to pave the way for future research. Further-
more, SLRs need to provide a rigorous and auditable methodology that
can be reviewed and replicated [42]. SLRs define research questions,
and a set of predefined inclusion and exclusion criteria that assess
potentially relevant primary studies to answer them [43,44]. Table F.10
of the Appendix F contains the criteria for this SLR related to focus,
quality, and accessibility.

To conduct the study search, we identified the most relevant publi-
cations in the field of privacy-enhancing data markets for the IoT to
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Fig. 1. Study selection process.

answer our research questions [45,46]. To obtain a corpus of high-
quality publications, we defined a search strategy based on the work
of [46]. Accordingly, our strategy consisted of three phases:

(i) A preliminary search of the base literature. The base literature
includes representative papers (8) in the field of privacy-enhancing
data markets for the IoT known to the researchers before the SLR,
and some other publications found manually in the digital library
of the researchers’ university, which also complied with the criteria
described in Table F.10. We created preliminary search strings based on
identified keywords and synonyms that we found in the base literature
and research questions. Afterward, we parsed our base literature with
a tool to analyze frequent phrases and keywords. Using the results of
this analysis, we refined our search terms [47]. Finally, we clustered the
search terms into three strings based on the field of this SLR: Privacy,
data markets, and IoT. Altogether, we composed the following search
strings:

C1: privacy OR private OR encryption OR encrypted OR encrypt OR
data protection

C2: data market OR data marketplace OR data trading OR data broker
OR data trader OR data auction

C3: Internet of things OR Internet of everything OR IoT OR sensor OR
connected devices OR networked devices OR smart devices OR controller
OR edge computing OR cloud infrastructure OR machine to machine OR
M2M OR web-of-things OR WoT OR mobility OR automotive OR vehicle
OR car OR automobile OR industry 4.0 OR smart grids OR V2V OR IIoT
OR machine learning OR mobile OR cyber–physical OR microservice OR
microcontroller OR micro-service OR micro-controller OR blockchain OR
neural network OR smart learning OR automated driving OR autonomous
driving OR smart city OR smart factory.

Consequently, we defined our final search string as C1 AND C2 AND
C3.

(ii) The main search. Since no single source may contain all the
high-quality, relevant publications [48,49], we selected seven elec-
tronic databases (see Table F.9 that focus on computer science or
software engineering and, according to L. Chen et al. cover the most
relevant databases in these fields [50]. The time frame that we spec-
ified covers any publication included in the selected digital libraries
before the 13th of July 2020. With the defined search string, time
interval, databases, and following the process Fig. 1 depicts, we col-
lected 1291 studies (1136 after duplicates removal), which two re-
searchers filtered independently and redundantly by title (119 selected

out of 1136), abstract (79 selected out of 119), and body (37 selected
out of 79) following the predefined inclusion and exclusion criteria of
Table F.10 to reduce bias. After each of the three filtering phases, both
researchers resolved conflicts in an informed discussion and attended
to the criteria.

(iii) A backward search of the references of the 37 studies resulting
from the main search. After filtering by title, abstract, and body, consid-
ering our inclusion and exclusion criteria, we included another 11 stud-
ies in our corpus. The process resulted in a total of 50 studies from
which we subsequently extracted and synthesized data. Hence, the SLR
yielded a considerable but not excessive number of results. Further-
more, thanks to the multiple synonyms in the search string, the 37 stud-
ies only missed two studies from the base literature. Moreover, the
backward search only added a modest number of new works (11). Thus,
the process suggests that the choice of search terms was suitable.

To answer the research questions, we performed a data extraction
of key information from the 50 publications in a structured manner
[51]. To reduce the degree of bias, two scientists defined and inde-
pendently followed an extraction card, which contained the following
twenty fields: Authors, cite count, year, country, publication channel,
publication type, publication source, research type, research approach,
contribution type, tags, topic, subtopic, sub-subtopic, research goal,
research questions, study findings, privacy-enhancing architecture or
technologies, challenges, and future work. After the two scientists
completed the data extraction, they held an informed discussion to
resolve any possible conflicts on the extracted information. For the data
synthesis necessary to answer RQ1 and RQ2, we adapted the ‘‘narrative
synthesis’’ method described by [41] and performed the following
synthesis procedure: (i) we developed a preliminary synthesis of the
findings, followed by (ii) exploring relationships in the data and (iii)
refining the preliminary synthesis with the newly acquired knowledge.
After the refinement, we returned to the second step until we deemed
the RQs answered.

Finally, with the goal of including significant updates and reaffirm
the findings extracted from our initial research process, we conducted
the same systematic search process for publications dated between July
2020 and May 2022 (24 new publications) and included the findings in
Section 10.
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Table 1
Short description of the involved layers.

Layer Description

Storage Persists data for future use.
Processing Uses data from storage and runs algorithms on it, typically

to extract information.
Communication Exchange of data with other devices.
Verification Checking via processing whether the data received and the

identities involved are authentic.
Sovereignty Ability to govern which (sensitive) information the

communication with others exposes.
Consensus A special case of communication and verification in which

data is compared and synchronized with other devices’ data.

4. Related work

In our SLR, we found nine secondary studies, i.e., studies that
systematize and organize existing knowledge, conducted in the con-
text of privacy enhancements for IoT data markets [S4,S8,S14,S19,
S23,S27,S35,S38,S48], which Table B.4 summarizes. Some of these
studies focused on privacy-related challenges in data markets for the
IoT [S14,S19,S27,S38], while others delved into PETs from a technical
perspective and discussed their challenges and opportunities [S23,S48,
S35]. Lastly, [S8] analyzed users’ preferences in privacy-enhancing data
markets, and [S4] listed technical design choices for data markets for
the IoT.

These secondary studies provided valuable contributions and built
the foundation of our work; however, they focused on different as-
pects of IoT data markets and, therefore, lacked depth in the concepts
we present in this study. For example, [S23,S35] and [S48] briefly
discussed, altogether, blockchain technology, secure and outsourced
computation, 𝑘-anonymity, and differential privacy and sketched their
implications without considering other PETs that we identified in our
SLR. Furthermore, although [S19] provided an overview of the avail-
able technologies and their challenges, the authors did not discuss
PETs in detail, e.g., the study mentioned anonymization but did not
delve into 𝑘-anonymity or differential privacy. Additionally, the authors
only discussed three out of the six challenges we found: the recursive
enforcement problem, the utility and privacy trade-off, and attacks
on privacy. Moreover, [S19] based their results on observations from
exemplary use cases and, therefore, cannot provide the scientific rigor
and comprehensiveness of a SLR. The remaining secondary studies
focused on privacy strategies instead of technology, discussed digital
rights, described challenges at a high level, or provided a user-centric
view of data markets.

Regarding PETs classification, some selected papers included in
our SLR provided a framework. Notably, [S48] considered two cate-
gories for classification (outsourced computations and information shar-
ing), whereas [S19] provided a more involved classification than [S48]
with five layers: data security, data processing, proving support, platform
capabilities, and external measures. Furthermore, outside of our SLR,
a notable framework developed by [10], which was heavily inspired
by H. Nissenbaum’s work on contextual integrity [52], dissected an
information flow into input, computation, and output, and assessed
privacy and verifiability in each step. They also wrapped their frame-
work with flow governance, i.e., the information flow rules upon which
participants agree. To provide an improved classification of PETs, we
inspired some components of our classification from [10] and [S19]
and distilled from the 50 selected papers the set of layers necessary
to build a privacy-enhancing IoT data market: verification, storage,
communication, processing, and sovereignty, which Table 1 describes
succinctly. Moreover, we also considered important layers necessary for
a functional data market that do not require PETs (see Fig. 10).

Furthermore, not all of the technologies included in [S19] enhance
privacy, e.g., version control and most distributed ledger technolo-
gies. Therefore, unlike in [S19], we have introduced another branch

Fig. 2. Overview of the categories of our classification of the identified technologies
among the selected studies. Note that some PETs also enhance authenticity.

for technologies focused on authenticity, which we call authenticity-
enhancing technologies (AET). Note that some PETs accomplish data
authenticity or integrity while enhancing privacy or confidentiality,
e.g., zero-knowledge proofs, homomorphic encryption, or some digital
signatures (see terminology in Section 5). Specifically, some PETs can
also be AETs, but AETs are not always PETs. Lastly, we classified
the identified AETs into the verification and consensus layers, which
are strongly associated with distributed ledger technology, as they
coordinate entities and provide verification guarantees. We display
our classification framework in Fig. 2. Accordingly, we structure our
key results into privacy-enhancing technologies (PETs, Section 6), and
authenticity-enhancing technologies (AETs, Section 7). The authors
of the selected 41 primary studies jointly employed the technologies
included in our classification to create holistic or parts of data market
architectures for the IoT; Tables D.5, D.6, and D.7 describe the most
salient architectures.

Overall, none of the related work conducted a SLR to create a holis-
tic view of the body of scientific knowledge in privacy-enhancing IoT
data markets, which, therefore, indicates the lack of an academically
rigorous secondary study in this field [41]. Furthermore, despite the ef-
forts in [S48,S19] and [10], there is not yet a comprehensive classification
and fine-grained analysis of technologies and challenges that researchers
have studied in the context of privacy-enhancing IoT data markets (see
Sections Section 6, 7, and 8). Lastly, unlike other secondary studies,
we also provide a detailed mapping of technologies, IoT data market
layers, and challenges in Table 3.

5. Terminology

To help the reader follow our SLR, we first provide some termi-
nology. These definitions are the distillation of the concepts found in
the 50 selected studies and other seminal studies regarding utility and
integrity [53], and confidentiality and privacy [54]. When we use the
word assure, a technology fully guarantees the quality of the data or
computation. In contrast, when we use the term enhance, a technology
improves the quality of the data or computation to some extent. These
qualities concern with authenticity, integrity, confidentiality, privacy, and
utility. In line with the definition of privacy of Section 2.1 in the context
of computer science, we define these qualities by the absence of an
attack against them, if applicable.

Data authenticity is preserved when a malicious entity has not tam-
pered with the truthfulness of the original data; truthfulness covers both
provenance and integrity. In the context of PETs, the degree of authentic-
ity of data can be reduced to enhance privacy. Correspondingly, identity
authenticity is preserved when a malicious entity has not impersonated
another entity. If identity authenticity is assured, then the provenance
of the data is also assured. In the context of PETs, the identity of an
entity can be concealed to enhance privacy. Data integrity is preserved
if data that have been copied and stored or are in motion are equal
to the original [53]. In practical scenarios where data are exchanged,
if integrity is not preserved, then data authenticity is also inherently
violated. Computational integrity is preserved when, even in the presence
of malicious entities, the output of an algorithm that runs on data is
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Fig. 3. Classification of PETs employed for data processing. Any other privacy approach encountered in the SLR without explicit inclusion of the underlying technology was either
not included in a leaf node but in a parent node or completely dismissed if too vague. *The publication reviews or briefly comments on the technology without delving in-depth
or using it as a building block of the architecture concept, e.g., included for future work.

computed correctly. In the context of PETs, the computation can be
concealed to enhance privacy. Furthermore, some technologies enhance
confidentiality, i.e., ensure that data or specific properties thereof are
only shared only with the intended parties. Furthermore, we refer
to utility as a measure of the usefulness of data for the successful

completion of a task; it is high when the data is authentic. While PETs
reduce authenticity, they are helpful in the balancing act between utility
and privacy, as PETs may help to facilitate the sharing of data, which
otherwise would not have been revealed (zero utility).
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We briefly give some illustrative examples of the interplay of con-
cepts: A digital signature can assure data integrity provided the cor-
responding private key is not accessible to an adversary, and identity
authenticity if the signature includes a digital certificate that a trusted
third party issued; otherwise, digital signatures cannot assure identity
authenticity. Distributed ledgers can assure data and computational in-
tegrity by replicated storage and computation [55], but these ledgers
cannot enhance data authenticity ; additionally, replication is often prob-
lematic regarding confidentiality and, hence, privacy [56]. Furthermore,
zero-knowledge proofs can provide evidence for data and identity au-
thenticity and computational integrity without violating privacy, and truth
discovery can enhance these qualities independent of privacy consider-
ations. Moreover, privacy-preserving data mining can enhance privacy;
however, if the right PETs are not employed, qualities such as com-
putational integrity may not be enhanced or assured. As last examples,
technologies such as differential privacy or 𝑘-anonymization enhance
privacy by reducing data authenticity, and onion routing or ring sig-
natures enhance privacy by forgoing or reducing identity authenticity,
respectively. These latter technologies consequently reduce data utility
in exchange for privacy.

Lastly, we are mindful of the term tackling, which refers to a
technology that directly and fully or partially solves a current challenge
in the context of privacy enhancement, e.g., the copy problem or the
recursive enforcement problem (REP) (see challenges in Section 8). We
use the term circumvent when a technology bypasses a problem, i.e., the
technology does not directly address the issue. However, the entities
that leverage the circumventing technology are still not affected by
the problem. For example, obscuring the data and computation in a
third-party server with homomorphic encryption (HE) does not tackle
the REP; instead, HE circumvents such problem because the third-party
server cannot see the contents. On the other hand, distributed ledger
technology tackles the REP with a redundant and hence tamper-evident
storage and execution.

The following Sections 6 and 7 describe the technologies that we
identified in our SLR. We provide a new categorization of these tech-
nologies based on the characteristics emphasized in the corresponding
selected publications and the technical properties described in this
Section.

6. Privacy-enhancing technologies

6.1. Processing layer

The PETs we included in data processing aim to enhance the privacy
of either data inputs, outputs, the intermediate steps of a computation,
or a combination thereof while maintaining a high degree of utility.
This Section follows the structure of Fig. 3.

6.1.1. Secure and outsourced computation
Secure and outsourced computation comprises PETs that enhance

privacy through confidentiality. Furthermore, if the PET also employs
digital signatures and their cryptography primitives, then the PET can
also assure the integrity of the data and computation and identity
authenticity in the presence of a digital certificate.

Zero-knowledge proofs (ZKPs). With ZKPs, a technology firstly con-
ceived in the 1980s by [20], a verifier can verify the authenticity of the
data and the integrity of a computation conducted by a prover without
the need to access the data or replicate the computation itself [21].
If the statement that is proven is about claims attested in a digital
certificate signed by a trusted entity (e.g., age over 18), ZKPs can verify
identity authenticity while keeping the information leaked about the
identity minimal.

Specifically, ZKPs exhibit (i) zero-knowledgeness, i.e., the verifier
learns nothing new from the prover beyond the correctness of their
statement, (ii) completeness, i.e., the prover can convince the veri-
fier of a correct statement with high probability, and (iii) soundness,

i.e., the prover cannot convince the verifier of a wrong statement with
high probability [57,S43]. Furthermore, there are interactive and non-
interactive ZKP protocols. With the latter, there is no need to engage
in sequential message exchange, and the prover can convince multiple
parties of a claim with a single, potentially short, message [57]. These
characteristics make non-interactive ZKPs highly attractive for use in
blockchains [56]. ZKPs are also the building block of many anonymous
credentials, which are also known as privacy-preserving attributed-
based credentials [58]. They allow the verification of information in
a digital certificate without disclosing any unnecessary data, including
the highly correlating value of the signature. Anonymous credentials
were initially proposed in 1985 by [59], and developed further with
ZKPs and blind signatures [60] chiefly by [61,62] and by [63]. Lately,
anonymous credentials have seen renewed interest also in the context
of digital wallets for end users’ identity management [64,65].

Within our SLR in IoT data markets, [S43] employ non-interactive
ZKPs to verify the correct computation of outputs, which, in turn,
unlocks the payment from a smart contract in the Agora blockchain,
eliminating a third-party verifier. While ZKPs have their limitations
due to computational complexity, typically for the prover, and there is
still a considerable gap between cryptographers and software engineers
[66], we expect to see more publications such as [S43]. This projection
is justified by the significant improvements in ZKPs’ performance, and
ease of use in recent years [67,68] and the availability of an increasing
variety of domain-specific programming languages to implement ZKPs,
such as bellman or circom in combination with snarkjs. Recently, first
research has emerged that uses ZKPs to prove that a machine learning
model was trained correctly on specific data [69], and there are many
opportunities to leverage them in data markets, such as demonstrating
that the input data of a computation was signed by a sensor that
received a certificate from a trusted third party without revealing the
sensor’s identity or the data. In this case, the digital signature and
certificate can be regarded as AETs, while their verification inside a
ZKP enhances privacy and, hence, qualifies ZKPs as a PET.

Secure multiparty computation (MPC). In broad terms, MPC enables
multiple parties to exchange information obliviously and jointly com-
pute a function without revealing individual inputs to each other
[19,70]. The MPC implementations that we observed in our SLR employ
either secret sharing [S5,S10,S34] or garbled circuits [S34]. In secret-
sharing-based MPC, each party first obfuscates the input by splitting
it into shares. Secondly, this party distributes the shares among the
other computing parties. Afterward, each party executes arithmetic
operations independently on these shares, and finally, all parties share
the outputs to reconstruct the result [19].

In Shamir’s scheme [71], one can specify a minimum of shares that
the recipient needs to reconstruct the output, and any combination of
fewer shares does not reveal anything about the secret to the receiving
entity [S19,187,188,S48]. On the other hand, in additive secret sharing,
all the shares are needed. Outside MPC, Shamir’s scheme has been com-
monly used for key management schemata for cryptographic systems so
that if some shares that represent a private key are lost, one can still
reconstruct the key with the remaining shares [71]. On the other hand,
MPC can also be implemented by garbled circuits [19], for only two
[72] or multiple [73] parties. Garbled circuits are protocols that enable
secure computation by using functions translated into Boolean circuits,
i.e., a sequence of basic logic gates such as AND, XOR, and OR that may
be combined to construct any function [19,74,S48]. Garbled circuits
make use of oblivious transfer [75], which in turn utilizes asymmetric
encryption, and symmetric encryption for encrypting and decrypting
each gate’s truth table. Lastly, there are MPC hybrids that combine
these approaches [76].

MPC allows computing functions without revealing the inputs to
other participating parties. MPC protects inputs against brute force
attacks and it is to date considered less computationally expensive than
alternatives such as fully homomorphic encryption [77]. Drawbacks of
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MPC include its high processing and communication costs [58] and
sensitivity to network latency, which can considerably decrease the
performance [S5,S9,S48]. Additionally, MPC protocols often need to be
supplemented by mechanisms that prevent collusion [S5]. Moreover,
since the individually provided inputs are only locally available, one
cannot stop malicious entities from jeopardizing the authenticity of
the input with false inputs. MPC can only prevent curious entities
from learning information. A countermeasure for this reduction in
accountability is zero-knowledge proofs to enforce the authenticity of
participants’ local computations while maintaining them confidential
[78].

Three of the papers in our SLR implement MPC in their architec-
ture: [S5] uses additive secret sharing, [S10] employs Shamir’s secret
sharing, and [S34] leverages a combination of garbled circuits an
additive secret sharing. Additionally, other publications acknowledge
the importance of MPC schemata by including them in their review
[S19,S23,S48]. We provide additional details in Table D.5. While sev-
eral frameworks for MPC are available, the MPC solutions employed by
these three publications were handcrafted. This may indicate that the
integration of MPC into existing systems requires features that are not
yet available with generic tools, such as performance aspects.

Homomorphic encryption (HE). HE allows performing operations on
encrypted data (ciphertext) as if they were not encrypted. After the
computation, the entities with the corresponding secret key can de-
crypt the output [189]. There are variations of HE depending on
the diversity of operations it can perform [15,16]: Fully homomor-
phic encryption (FHE) schemata support addition and multiplication,
while partially homomorphic encryption (PHE) schemata allow for only
one of these alternatives — typically in exchange for drastically im-
proved performance. Any other schema in-between is called somewhat
homomorphic encryption [S48].

Five out of the six studies that use HE in our SLR use a PHE
variation [S41,S26,S7,S34,S46]. Each of the former four specifies the
name of the employed schema, namely the Paillier cryptosystem in
the first two [17], Boneh–Goh–Nissim [79], and Hash–ElGamal [80].
The latter study only briefly mentions the additive homomorphic prop-
erty of their handled data. On the other hand, [S10] uses FHE with
a schema called fully homomorphic non-interactive verifiable secret
sharing [81]. Several other articles in our SLR underline the importance
of HE [S4,S19,S48]. On the other hand, [S43] suggested the use of
multi-client functional encryption [82,83] instead of HE so that the
scheme combines data from some individuals with others, and, in turn,
malicious entities cannot trace back the output of the computation to
a single user, as it may happen in HE. Furthermore, there is a related
scheme called functional encryption [S43] that allows to retrieve a pre-
specified function executed on a set of cyphertexts [82], e.g., decrypt
only the mean of a set of encrypted numbers by deriving a function-
specific decryption key from the secret key that was used for encrypting
the data. A summary of papers from our SLR that mention or use HE is
given in Table D.5.

The major limitation of FHE is its high computational complexity
and the comparatively large storage needs of its cyphertext, which
poses a significant challenge for its use and is aggravated in the context
of IoT devices’ limitations [S41,S7,S48,S24]. Therefore, the approach
adopted by most authors is the use of PHE instead of FHE [84], which,
while still not as efficient as other PETs, consumes significantly more
computing resources than PHE [85].

As observed for the case of MPC, while there exist generic frame-
works such as SEAL, HElib, or TFHE, the authors of the publications
in our SLR utilized handcrafted solutions, which may indicate the
lack of framework versatility or performance. Overall, practitioners
and companies may use HE to perform lightweight functions on data
privately on non-local resources, e.g., computing in the cloud, which
otherwise would be too expensive to maintain in-house. MPC would
usually be preferred over HE when the inputs to the function belong to
multiple parties. Nonetheless, some selected publications also employ
HE in these cases, e.g., when data brokers determine the winner of an
auction [S26,S34,S41].

Trusted execution environments (TEE). TEEs were first defined in
2009 by the Open Mobile Terminal Platform as ‘‘hardware and soft-
ware components providing facilities necessary to support applications’’
that are secure against attacks that aim to retrieve cryptographic key
material or other sensitive information. These features include defense
against more sophisticated hardware attacks such as probing external
memory [18] or measuring execution times and energy consumption.
Moreover, TEEs defend against adversaries who are legitimate owners
of the hardware or remote access to the operating system that can
run the code themselves. TEEs allow a user to define secure areas
of memory (‘‘enclaves’’) that enhance confidentiality and assure data
and computation integrity of the code and data loaded in the TEE
[S2], i.e., any other program outside the enclave cannot act on the
data. Specifically, TEEs associate unique encryption keys to computer
hardware, making software tampering at least as hard as hardware
tampering and certifying the computation results within the TEE. The
reason is that the only way to hacking a TEE is physical access to
the hardware and, consequently, performing manipulations so that the
hardware provides false certifications to bypass remote attestation and
sealed storage [S45]. Seal-stored data may not be accessed unless the
user employs the correct hardware and software, and remote attestation
is a process whereby a trusted third-party assures that the execution of
a program in a specific piece of hardware is correct [S45].

Four of the selected papers in our SLR leverage TEEs [S2,S12,
S25,S45], and a review mentions their importance [S19]. [S2,S25]
and [S45] proposed TEEs to confidentially train and evaluate machine
learning models on data available through a data market. While the
role of TEEs in data markets overlaps with the use of HE and MPC,
authors have preferred the latter technologies to enhance confidential-
ity in auctions and data processing, which may be due to the limited
memory TEEs offered at the time. The reviewed four studies used Intel’s
Software Guard Extension (SGX) [86], where Intel is the trusted third
party, and, therefore, the single point of failure. However, practitioners
should be mindful of the numerous vulnerabilities present in TEEs [87–
89], and Intel’s SGX deprecation in 2022 [90], which affects many of
the designs found in this SLR dated before July 2020. Therefore, we
suggest practitioners to explore Sanctum [91], Keystone [92] and AWS
Nitro [93]. Specifically, [S2,S25] and [S45] used SGX for confidential
computing, and [S12], employed SGX for their blockchain architecture
to perform ‘‘Proof of Useful Work’’. In this type of consensus mecha-
nism, nodes perform useful computations instead of computing hashes
like in Bitcoin or Ethereum mining. Moreover, [S2] decided to use TEEs
to enhance data and computation confidentiality for machine learning
algorithms because of the low performance of MPC and HE on machine
learning [94].

On the other hand, we noted that TEEs designed for resource-
constrained devices – potentially at the cost of offering less function-
ality – were not prominently discussed in the selected papers. This
includes, for instance, ARM TrustZone [95], which is relevant as many
IoT devices run on ARM processors, and trusted execution modules
[96].

Privacy-preserving data mining (PPDM). [S23] describe PPDM as a
means to enhance privacy while extracting useful information from
data mining. Data mining includes ML and conventional statistical anal-
yses such as aggregations (e.g., mean or quantiles). PPDM is achieved
by performing the computation where the data reside, protecting the
computation with cryptographic or data perturbation means, or a
combination thereof. As a comprehensive example, suppose the clients’
local data and computation are cryptographically protected and the
clients have the capability to perturb data. In that case, the computation
can run anywhere, which is accomplished by deploying a ML model and
input data in a trusted execution environment (TEE) or implementing a
ML model using MPC or HE. With input or computation perturbation,
the clients also enhance the privacy of the outputs.

A popular tool for PPDM is federated learning (FL) [97–99], as
it avoids collecting users’ data. Specifically, FL collaboratively trains
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a seed ML model across multiple clients’ local data, after which a
server aggregates the resulting weights to form a unique model (process
repeated across rounds). Researchers have increased the privacy of
FL by sharing weights with secure aggregation protocols [100] (MPC,
Shamir’s secret sharing), and protected the privacy in client selection
[101] and update parameter sharing [102] with additive HE (i.e., par-
tial HE). Alternatively, split learning approaches [103,104] decompose
neural networks’ layers into elements and, thus, the input data and
labels do not need to be within the same machine. Split learning
presents advantages over FL when the local hardware for computations
belongs to different network speeds or hardware configurations [105].
Additionally, gossip learning [106,107] proposes a framework whereby
multiple models perform a random walk over clients, where they are
trained and merged with other models they encounter.

Another way to achieve PPDM is by perturbing input data or
weights of the ML model with anonymization techniques such as
differential privacy (DP), resulting in privacy-enhancing optimization
schemata like DP-stochastic-gradient-descent (DP-SGD) [108]. DP-SGD
perturbs the weights’ updates with noise and, therefore, one may not re-
construct the inputs based on the outputs, which may happen in ML or
stand-alone FL [94]. Practitioners can plug in weight DP perturbation
in central ML, FL, gossip learning, or split learning, in combination with
MPC as well. We depict such leverage of anonymization technologies
for PPDM with the dashed line connecting both elements in Fig. 3.

With PPDM, individuals may enjoy a higher degree of privacy than
outsourcing the computation transparently to a trusted third party.
Data markets can offer an infrastructure leveraged by PPDM, where
data prosumers and consumers only need to provide the input data
and ML models, much like the studies in our SLR propose [S2,S25,S45]
using TEEs to train models with DP. Like data, trained ML models could
also be exchanged in markets.

6.1.2. Anonymization
While the previously presented PETs hide sensitive data from un-

solicited parties and, thus, provide confidentiality while enhancing
or assuring data and computation integrity, the authorized receiver
of the plaintext may reverse engineer the output and correlate data
records with individuals (re-identification attack). Consequently, em-
ploying only secure and outsourced computation PETs is insufficient
to provide the required degree of privacy in cases where the recipient
may not be fully trusted. Anonymization technologies can help in these
situations by protecting non-explicit identifiers and sensitive attributes
[S47,S44]. The cost of this protection is forgoing data authenticity and
thus decreasing utility. Given the frequency of re-identification attacks,
anonymization should be a critical element of any survey or modern
online application, and, in particular, IoT data markets [S8]. One may
observe that anonymization technologies rely on statistics, probabil-
ity theory, and heuristics, while secure and outsourced computation
usually employs cryptography and trusted hardware.

This sub-section describes our findings for the most employed
anonymization technologies identified in our SLR. We categorize most
of them into two groups [190]. Syntactic technologies provide a numer-
ical value to the degree of individuals’ protection in a dataset, resulting
in a perceptible perturbation of data, e.g., generalizing the values 42,
44, and 45 to the interval [40, 45] such that it is harder for an attacker
to distinguish between the three individuals. Semantic technologies
enforce a privacy definition to a learning mechanism executed over a
dataset, namely differential privacy, whereby the output distribution of
the mechanism should be insensitive to the removal or addition of an
individual in the dataset. Typically, the property is fulfilled by adding
calibrated noise to the output of a mechanism, yielding a result that is
not syntactically different from the original value, e.g., 42 could become
45 after noise addition.

Semantic technologies have an advantage over syntactic technolo-
gies, as they provide a mathematical guarantee of privacy agnostic to

background information, i.e., an attacker cannot use related informa-
tion to re-identify an individual in the dataset. Additionally, we discuss
other anonymization technologies not covered in these two groups,
namely noise perturbation and pseudonym creation. Perturbation, in
this context, is not classified as semantic because its process does
not necessarily provide a formal semantic privacy guarantee (such
as in differential privacy) and, simultaneously, the outputs are not
syntactically modified. In essence, anonymization techniques obfuscate
information by perturbing the data during measurement or processing
[58]. From this perspective, anonymization can be understood as a
kind of statistical disclosure control [109], and, thus, also encompasses
semantic techniques such as differential privacy.

Syntactic technologies. We identify the implementation of the privacy
definitions of 𝑘-anonymity and its variations 𝑙-diversity and 𝑡-closeness,
a newly proposed model called 𝛽-likeness, and also their building-
blocks: generalization, and suppression. The most frequently utilized
model for syntactic anonymization in our SLR is 𝑘-anonymity [S3,S28,
S33,S36,S47], which was also reviewed or highlighted by [S8,S27,S49]
and [S35]. 𝐾-anonymity is a privacy model that guarantees any indi-
vidual in a dataset to be indistinguishable from at least 𝑘 − 1 others.
𝐾-anonymization, i.e., altering a dataset to fulfill 𝑘-anonymity, clusters
a set of sensitive attribute values into equivalence classes of size 𝑘.
However, finding an optimal value of 𝑘 for minimum information
loss is NP-hard. Thus, researchers have proposed alternative heuristics
[191]. Nonetheless, some of the selected studies used the building
blocks of 𝑘-anonymization (transformations): generalization [S21,S36]
and suppression [S36]. Suppression deletes selected data points, while
generalization substitutes data points for others that belong to a higher
level in a manually pre-defined hierarchy, e.g., substituting a city by a
country to make the location less detailed.

The selected studies [S28,S33] applied 𝑘-anonymization to aggre-
gate data from a set of entities. [S47] innovated upon [S28] and
[S33] by also employing the 𝑙-diversity model to ensure at least 𝑙
different values in sensitive attributes, and 𝑡-closeness so that the
distribution of the sensitive attributes within each equivalence class
was at most at a distance 𝑡 from the overall dataset distribution of that
attribute. These two models have their own limitations, they prevent
homogeneity and external knowledge attacks (𝑙-diversity) and skewness
and similarity attacks (𝑡-closeness) [190], to which 𝑘-anonymity is
vulnerable. Furthermore, [S36] tailored the use of 𝑘-anonymity based
on record history, privacy policies, and disclosure context. Their new
approach prevented a significant decrease in the data utility compared
to homogeneously applying 𝑘-anonymity to all individuals’ records
equally.

Nonetheless, there are detractors of syntactic technologies in data
markets because of the need for a centralized intermediary that sees
and aggregates the data in a, e.g., 𝑘-anonymous fashion [S18]. More-
over, [S44] stated that these conventional syntactic approaches are not
sufficient because they lack an attacker perspective in the model. For
this reason, they designed a novel model called 𝛽-likeness that explicitly
bounds the additional knowledge that an adversary gains from seeing
the released data.

In the context of this SLR, 𝑘-anonymization is mainly employed
before sharing data in an IoT data market. However, researchers also
employ 𝑘-anonymity for privacy-enhancing location-based services that
exchange location data in IoT data markets, whereby similar fake loca-
tions hide the real ones. This type of approach fits well with IoT devices
embedded in phones, vehicles, and laptops, among other mobile things.
Some of the approaches named by [S3] were cloaking, which consists
of sending a more extensive region that encompasses the real one, and
geomasking, whereby the real location is randomly displaced outside
of an inner circle but within an outer one. [S3] adopted geomasking
for situations where low accuracy is sufficient, and a high degree of
privacy is required. A modern alternative to releasing anonymized data
is synthetic data generation, which creates data by randomly sampling
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from a distribution representative of the real data. Practitioners can
employ generative adversarial networks (GANs) [110], or GANs with
differential privacy for a higher protection [111] to synthesize data.
Synthetic data could be helpful in some contexts as they ‘‘look’’ sim-
ilar to the real data (unlike fulfilling 𝑘-anonymity), e.g., developing
applications before testing them with the real data.

Altogether, anonymization technologies and PPDM compose the
building blocks of statistical disclosure control [112], which organiza-
tions may leverage internally in their privacy-preserving data manage-
ment and analysis solutions, or externally, by using privacy-enhancing
publishing solutions [113] in, e.g., data markets. Among past surveys
focused on the latter solutions (namely 𝑘-anonymity and related mod-
els, in addition to a few cryptographic primitives), the reader may refer
to [113–116] and [117] for further specialized reading. Most notably,
[115] provide a comprehensive survey of syntactic models and differ-
ential privacy and their attacks, and [117] compile a helpful mapping
of data types to the appropriate syntactic and semantic techniques for
anonymization.

Semantic technologies. Introduced by [12] in 2006, differential privacy
(DP) proposes a formal guarantee of privacy that has become the
golden standard for researchers [S37]. DP appears in its pure form or
one of its flavors in 13 of the 35 studies that propose a solution in
our SLR. Furthermore, another seven studies refer to DP to underline
its importance or drawbacks. The potential reasons behind the high
number of references and use of DP are multifaceted. While HE or
MPC may protect the inputs’ and computations’ confidentiality, they do
not prevent reverse-engineering the outputs (re-identification attacks).
Moreover, syntactic technologies or other conventional anonymization
technologies, e.g., additive noise, lack a mathematical guarantee of
privacy and are subject to background knowledge attacks. DP, however,
tackles these issues.

In broad terms, DP guarantees that the output distribution of an
analysis (a statistical query or a ML model) over a dataset is ‘‘essen-
tially’’ identical, irrespective of the presence or absence of an individual
in the dataset. Additionally, DP is agnostic to auxiliary information
available in the present or the future. DP is typically achieved by
adding random noise sampled from a probability distribution such as
the Laplacian or the Gaussian. Specifically, the noise limits the output
distribution difference of an analysis executed over two datasets (one
with and one without an individual) to be no greater than an upper
bound, making the outputs ‘‘differentially’’ indistinguishable. Overall,
DP bounds the amount of new information gained by an attacker after
observing the output of an analysis.

The set of selected studies of our SLR that used DP in their pro-
posed solutions are [S2,S3,S9,S15,S16,S18,S22,S24,S25,S28,S37,S42,
S50]. Tables D.6 and D.7 summarize their proposed architectures. Six
of these studies employ DP locally [S3,S9,S15,S16,S37,S42], i.e., the
noise is added to the data of an individual on the client-side. In contrast,
the rest of the studies apply DP centrally, i.e., on aggregated data on
the server-side. Furthermore, we can cluster the studies into those that
focus on a data trading design for data markets [S22,S37,S15,S50],
crowdsensing data markets [S42,S9,S16,S24], and architectures that
host a data market in an attempt to achieve end-to-end privacy [S2,
S3,S18,S25,S28].

While DP offers a mathematical privacy guarantee, DP is not a
panacea. DP still holds flaws in its real-world implementations [118]
that the research community and practitioners should address. More-
over, DP’s combination with ML needs further improvements regarding
balancing privacy and accuracy [109]. In our SLR, [S48] and [S36]
identify two specific problems with DP: firstly, DP cannot be used
when a high level of accuracy is required [S48], e.g., analyzing data
from the brakes of vehicles to improve safety. Secondly, releasing an
entire dataset with current DP approaches is troublesome. Despite these
challenges, the authors of [S2] and [S50] argue that the benefits of
DP predominate, as DP can adapt to many use-cases and allows a
practitioner to fine-tune the added noise to enhance privacy.

Fig. 4. Classification of PETs employed for communication.

As we already noted with ZKP, MPC and HE, the authors of the
selected publications that used DP did not employ open-source DP
libraries such as OpenDP, Google-DP, diffprivlib, TensorFlowprivacy,
or Chorus. Instead, they used handcrafted implementations of DP. Aside
from syntactic and semantic technologies, other anonymization tech-
nologies are simpler to implement, e.g., sampled data release, character
masking, truncation, rounding, top and bottom coding, data swapping,
randomization, creating pseudonyms, character scrambling, microag-
gregation, or noise perturbation [22,119]. Moreover, [120] designed
an algorithm that combines the syntactic definition of 𝑘-anonymity
with DP. The two other anonymization technologies employed by an-
other three studies were noise perturbation [S36,S47] and pseudonym
creation [S7].

Perturbative anonymization. Perturbation relies on the use of noise
to obfuscate sensitive information. One of the simplest forms of per-
turbation is additive noise, employed in [S36] and [S47]. Additive
noise consists of adding to a deterministic value a random value
sampled from a uniform distribution whose bounds are set by a spe-
cific percentage of the deterministic value. Furthermore, [S48] reviews
two novel perturbative technologies: First, random space perturbation
[121], which strives to protect the privacy of cloud-stored data by
utilizing a confluence of order-preserving encryption, dimensionality
expansion, random noise injection, and projection. Second, geometric
perturbation [122], which is motivated by the idea of protecting the
geometric transformations that a machine learning model may perform
on a dataset rather than the data itself. While perturbative technologies
aim to tackle the same problems, unlike DP, they do not provide
mathematical guarantees of privacy, even though some are also based
on noise addition.

Pseudonym creation. Pseudonym creation is applied to direct identi-
fiers, e.g., names or social security numbers, to enhance privacy while
uniquely identifying each record. Practitioners create pseudonyms by
hashing or deterministically encrypting an identifier, e.g., using order-
preserving encryption [S48], or by applying asymmetric key encryp-
tion like ElGamal [S7]. However, researchers have demonstrated that
pseudo-anonymization falters against some attacks like profiling, task
tracing, or re-identification [S35].

6.2. Communication layer

The PETs included in this Section enhance the confidentiality of data
in transit or of the sender’s identity (see Fig. 4). These PETs rely on
cryptography.
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Encryption. Encryption is one of the most fundamental technologies to
enhance confidentiality [S19] because after encrypting a piece of data
(cipher), only the anointed holders of a decryption key can decipher
such data. We underline that encryption cannot guarantee privacy
because nothing stops an intended receiver from publicly sharing the
decrypted message; this also emphasizes employing anonymization
PETs. Encryption may be symmetric (one key to both encrypt and
decrypt data) or asymmetric, known as public-key cryptography (two
keys, a public key to encrypt and a private key to decrypt, or vice
versa). Encryption is the building block of virtually every secure com-
munication established through a network and takes a key role in
digital signatures.

While some publications from our SLR employed asymmetric en-
cryption for the confidential communication of data [S1,S2,S3,S10,
S17,S25,S33,S41,S42,S46] (most of these publications also employed
asymmetric encryption for digital signatures, hence the high frequency
of digital signatures in Fig. G.14), other publications such as [S1,
S25,S32,S33,S41] and [S45] employed symmetric encryption to also
confidentially store data. Naturally, encryption is also a building block
for digital signatures (verification layer) and for the storage layer to
maintain data at rest confidential. We depict this relationship with the
dashed lines connecting these elements in Fig. 5.

Onion routing . Onion routing, the backbone of the P2P network re-
sulting from the Tor project [123], consists of a series of re-transmission
steps through the network’s nodes. A sender’s message is encrypted
once for each step. The intermediaries decrypt only their appointed
encryption layer. Thus, the node only knows the immediate sender and
receiver but not the origin of the chain of messages. As the messages
are encrypted, the nodes cannot see the contents either. Overall, onion
routing renders one’s messages unreadable and untraceable. The paper
that suggests employing onion routing in a data market context is
[S26], which some of the identified reviews equally appreciate [S4,S27,
S35].

However, some drawbacks exist. Implementations backed by Tor
have high-latency and redundant communication that challenges band-
width, which can be hard to align with high transactional environ-
ments, such as IoT data markets. Moreover, if an architecture decides to
use Tor, the network is often blocked by IT departments within organi-
zations or even subject to state-level censorship by some governments
[123]. Therefore, practitioners can use alternative technologies such
as a VPN to enhance entities’ privacy in a network in these contexts.
However, these typically centralized alternatives generally offer lower
anonymity guarantees, e.g., a VPN provider can identify a user [58].

Because there is no central authority to set privacy policies uni-
laterally, one must remember that onion routing enhances privacy by
preventing malicious entities from collecting IP addresses to identify
users. Onion routing will not help if the data that users submit to
the network is intrinsically sensitive or correlating. To tackle these
limitations, practitioners may use onion routing as a building block of
a more extensive privacy-enhancing system that leverages other PETs
[S26].

Notably, the publications surveyed in our SLR did not include many
other untraceability protocols, which would include mixnet-based al-
ternatives to onion routing (e.g., anonymous remailers, Chaum’s mixes
[124]), DC-nets [125], or peer-to-peer anonymous communication sys-
tems. An extensive overview of these systems is given by [126].

6.3. Storage layer

The authors of the selected papers that propose confidential stor-
age functionality in their architecture leverage symmetric encryption,
mostly AES [S1,S25,S32,S33,S41,S45] (encryption is described in the
communication layer). Furthermore, researchers could leverage Inter-
Planetary File Systems (IPFS) [127] to compensate for the lack of
storage capacity in blockchains to some extent. Specifically, IPFS is a

Fig. 5. Classification of PETs employed for verification.

peer-to-peer protocol for data storage and access in a distributed file
system. Among the PETs in the processing layer, practitioners could
employ homomorphic encryption [128] to encrypt and store certain
types of data, so that data are readily available to compute confidential
operations. Furthermore, unless strictly necessary, practitioners should
store encrypted data that are, in turn, anonymized with syntactic or
semantic technologies. In case of a breach that leaks the decryp-
tion key, anonymized data would reduce the likelihood of attackers
re-identifying individuals.

6.4. Verification layer

Some of the PETs that support data processing cannot verify the
authenticity of data, identities, or the integrity of data [S19] by them-
selves. The PETs we include in this Section accomplish these verifica-
tions with different levels of privacy enhancement. The data processing
PETs that can assure identity authenticity and data integrity use the
digital signatures of the verification layer and the encryption tech-
nologies of the communication layer as building blocks. Furthermore,
the credibility associated with verifying the information exchanged,
analysis outputs, and identities can increase the willingness of users
to share data [S8]. To navigate this Section, we refer to Fig. 5.

Privacy-enhancing digital signatures (DSs). DS schemata assure data
integrity and identity authenticity if accompanied by a digital cer-
tificate. As a consequence, DSs also provide non-repudiation [S1],
i.e., actions that an entity cannot deny later. The steps that usually con-
stitute a DS scheme are private and public key generation, encrypting a
digest of data with a private key, and a signature verifier that employs
the public key to check whether the sender signed the data with the
private key.

DSs and the encryption primitives of the communication layer are
so fundamental that one of the selected studies solely relies on HTTPS
for their data market architecture [S17]. However, this architecture
does not consider privacy beyond data in transit. Hence, most selected
studies rely on multiple PETs. Moreover, although not all of the selected
studies explicitly mention DSs, we can safely assume that since DSs are
already a living part of virtually any enterprise IT system, most selected
studies employ them in their architectures (hence the high frequency
of DS utilization in Fig. G.14). Nonetheless, while DSs allow verifying
the integrity of data or the authentic identity of the sender, users still
need to trust the sender with the authenticity of the data.

So far, we have only described DS as an authenticity-enhancing
technology. However, some of the studies selected in this SLR employed
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Fig. 6. Classification of PETs used for sovereignty purposes.

two DS schemata based on asymmetric encryption primitives that make
DSs privacy-enhancing:

• Ring signatures [S32], whereby any party within a pre-defined
set of parties could have been the signer of a message. Thus, the
identity of the authentic signer is kept hidden [192,193].

• Blind signatures [S20,S26], whereby the signer does not have
access to the content being signed [60]. It is possible to use
blind signatures in combination with zero-knowledge proofs to
convince the signer that the content to be signed has the expected
properties. Also, one can make an entity sign multiple contents
and allow for spot checks to detect fraud. The latter procedure has
been employed in the first approaches toward privacy-enhancing
payments [59].

Hashing . Hashing is a tool to deterministically map data of an arbi-
trary length to a fixed output length. In the context of privacy and
verification, and aligned explicitly with some of the selected studies
[S1,S10,S33,S46], hashing is used to verify the integrity of transferred
data by hashing the data and making the hash public before transferring
the data. In this manner, the recipient can verify the integrity of the
confidentially transferred data by comparing the hash of the received
data with the previously published hash. Provided the entropy of the
data is sufficiently high, nobody except the intended recipient can
determine the data from the published hashed value. Hence, hashing
can be considered a form of version control with a privacy component.

The hash function employed by the publications mentioned above
was SHA-256. Their authors commonly use the published hashed data
on distributed ledger technologies to ensure immutability and availabil-
ity. In this setting, hashing enhances the confidentiality of the sender’s
data while the parties (network nodes) ensuring the ledger’s integrity
(and inherently the persisted hash) cannot unveil the original data. The
original data is only viewed by the intended receiver, which validates
the integrity of the data received through another channel with the
hash persisted in the ledger.

6.5. Sovereignty layer

The sovereignty layer deals with the concept of information control,
the perceived ability to govern what is exposed from one’s data [54].
Specifically, based on an entity’s requirements, this layer defines the
entity’s rules and guidelines regarding ownership and management that
can indirectly govern data processing, verification, and other IoT data
market layers. Furthermore, to prevent entities’ violation of privacy,

practitioners should map these rules to the PETs capable of fulfilling
them. For example, GAIA-X’s high-level architecture contemplates pri-
vacy policies in their data sovereignty layer [5]. Privacy policies (closely
related to access controls), have been predominant across publications,
and, thus, dominate the sovereignty layer depicted in Fig. 6, which
illustrates the three identified types.

Privacy policies and privacy by design. Privacy policies embody the
requirements and guidelines of a data governance model and are meant
to be part of any privacy-enhancing application. To define them, given
the regulatory and human aspects of privacy policies, it is also helpful
to adopt perspectives from definitions beyond computer science, such
as the one underlined in Section 2. [129] indicates that the privacy
requirements depend on the recipient of the information, e.g., an indi-
vidual can have different reservations when disclosing information to a
family member than to the government. Privacy policies should reflect
this definition, which means that individuals should express the privacy
policies they expect. Several studies in our SLR explicitly proposed poli-
cies as part of their solution [S6,S21,S25,S28,S29,S33,S36], while many
others reviewed privacy policies [S19,S35,S40] or mentioned similar
ideas. For example, [S8] did not provide a concrete implementation
or explicitly named privacy policies. However, they mentioned that,
in data sharing scenarios, the data owners should be able to control
some fundamental aspects: data types to share, with whom to share,
the required degree of trust in another party, the purpose of sharing,
and for which benefit.

Among the publications discussing privacy policies, there is a dis-
cernible classification. Four of these publications [S6,S28,S29,S33] con-
sidered privacy policies as a negotiation between the user and a third
party, such as the data consumer or data broker. [S6] provided a set
of legal requirements and high-level technical solutions that facilitated
the introduction of policies in international data markets, e.g., writing
policies in a standard language. On the other hand, [S29] presented
an approach where the data owner could choose among a set of four
privacy policies, which included how data was aggregated, and [S33]
relied on a privacy policy manager that acted as a gatekeeper and
managed the privacy settings from a set of users. Furthermore, another
set employs a pre-defined logic to execute PETs based on the desires
and track record of the data shared by the individual [S21,S36], while
the last set relied on smart contracts for decentralized pre-defined
[S2,S25] or negotiated [S28] policies.

Nonetheless, the implementation of policies faces challenges. Firstly,
there may be multiple colliding policies, i.e., applications must pri-
oritize policies depending on the context [S21]. Secondly, there is
no uniformly accepted global standard for electronic privacy policies
[S6]. [S40] investigate how practitioners model privacy policies in
different domains, focusing on IoT applications. They point to the
lack of a uniform standard and propose to utilize ontology-based
privacy-knowledge modeling. Thirdly, policy enforcement also causes
overhead and an increase in latency due to the need for compliance
checks and a lack of automation [S21]. Furthermore, conventional
users should include their privacy preferences with minimal manual
effort, as they could be overwhelmed otherwise. [S40] suggested using
recommender systems based on similar users’ data to address this
issue. However, this solution may incur a biased recommendation.
Moreover, data acquisition expenditure for privacy policies should not
incur costly computational resources as they scale to a growing number
of transactions [S40].

Privacy policies are crucial to protect users’ privacy; however, they
are not enough. Organizations must consider privacy issues at each
stage of the data pipeline (i.e., processing data end-to-end with the
extract-transform-load framework [130]), contemplating aspects that
escape user-defined or mutually-agreed policies, and taking into ac-
count that typically, neither users nor data brokers will be privacy
experts. If a user does not know the potential harms of sharing sensitive
information such as DNA data, a data consumer may take advantage

107



G.M. Garrido et al.

of the user. Therefore, while privacy policies are a stepping stone
toward end-to-end privacy, practitioners must develop systems with a
privacy-by-design philosophy [S36,S4].

Privacy by design is a term coined in the ’90s by the former
information and privacy commissioner for the Canadian province of
Ontario, A. Cavoukian, who created seven principles [131]. Privacy by
design claims that privacy goes beyond current regulations and must be
an ever-present concern in the minds of organizations [131]. Following
privacy-by-design principles entails, for example, preventing sensitive
information extraction by default [S36], minimizing the amount of
shared data at each exchange (proportionality) [194], and increas-
ing the price of large data packages [194], among others. However,
adopting these design principles comes with effort, forcing developers
to adapt their design patterns. For example, current homomorphic
encryption techniques force data scientists to express their analysis in
terms of additions and multiplications, and differential privacy requires
new software engineering design patterns that track the privacy budget
of individuals or data scientists.

Smart contracts (SCs). A SC alone is mainly equivalent to conven-
tional scripts. Nevertheless, because SCs are executed in distributed-
ledger-technology-based architectures (DLT) (see Section 7.1), SCs in-
herit from DLT their enhanced availability and integrity guarantees
[55]. DLTs execute SCs synchronously on every node of a P2P net-
work if an arbitrary transaction demands a function’s execution. Once
deployed, no one can change the script, not even the creators (unless
there is an intended call of the script that enables modification), and the
script will remain in the network as long as the network exists unless
specified differently (e.g., through a self-destruct call). This inherited
integrity property of SCs makes them a unique tool to specify and
enforce policies between parties or any other process where no trusted
third party is available.

Within this review, all the studies that used the Ethereum, Quorum,
Hyperledger Iroha, or Ekiden blockchains relied on SCs to declare
privacy policies [S2,S25] (Ekiden) [S28] (Ethereum), fair auctions [S3]
(Hyperledger Iroha), or payments or incentives [S32] (Ethereum) [S43]
(Agora) [S3] (Hyperledger Iroha). However, while SCs ease verification
and enable democratic proposals of privacy policies, SCs also inherit the
privacy flaws of DLT, i.e., SCs by default imply the disclosure of data
and computations to all DLT network nodes [56,132]. For example, the
architecture from [S25] employed SCs to set user-defined policies, yet
it relied on trusted execution environments to enforce them. SCs alone
cannot enforce privacy policies without relying on other PETs. The only
privacy-related feature that a SC can offer to an IoT data market is
declaring privacy policies.

Data access control. Data access control refers to allowing an organi-
zation or an individual to choose who has access to which data. Access
control represents a subset of privacy policies in data markets and may
utilize different PETs to enforce access rights. While access control is a
long-established approach, [S25] propose a novel method, using a key-
rotation system [195] in combination with a key manager. Thus, the
potential impact of a leaked key is only temporal, with the downside
of shorter access permissions.

7. Authenticity-enhancing technologies

The included authenticity-enhancing technologies (AET) focus on
enhancing the authenticity of data and identities and also cover data
integrity as described in Section 5. Some of the AETs that we describe
incorporate privacy-enhancing features, while others do not address
or even aggravate privacy protection issues and, thus, need to be
combined with PETs.

7.1. Consensus layer

Distributed ledger technology (DLT). While DLT may take different
forms, most architectures follow the blockchain design pattern, except
for IOTA, which uses the so-called Tangle [196]. A blockchain is a
tamper-proof distributed database whose state is stored, synchronized,
and replicated by nodes in a P2P network following a consensus al-
gorithm [55]. By its distributed nature, the shared ledger becomes a
medium to verify claims, data, payments, or contracts, as once an entity
writes something on the ledger, it is practically impossible to modify
or erase this record in the future. This property makes blockchain a
decentralized and highly reliable alternative to conventional auditing
methods like version control [S19].

Benefits of DLT in IoT data markets are the ability to represent
the governance, distribution, and roles of authorities on a technical
basis [S3], and the enforcement or transparent storage of pre-defined
rules by the architects of the respective platform [S25]. Other benefits
include eliminating the need for a trusted third party, which removes
a single point of failure, improves censorship resistance, and provides
more robust data and computational integrity guarantees. DLTs also
enable payments through their often built-in cryptocurrencies or other
payment systems implemented via smart contracts [S32,S46].

However, some of the studies in our SLR also point at the challenges
of current DLT designs: IOTA fails to deliver regarding throughput
[S28], is still centralized [S20], and provably has security flaws [133].
Furthermore, blockchains exhibit low transaction throughput [S25],
high latency [S11], limited storage [S1] and scalability [S11,S25], com-
putational overhead [S25], high energy consumption [S12], and, most
importantly, excessive information exposure that can entail a privacy
violation [134]. However, some of these aspects can be mitigated.
For example, the energy consumption issue only concerns proof-of-
work blockchains [135], and performance can be improved to some
extent by private permissioned blockchains that restrict participation in
consensus and read access to a small number of nodes in a consortium
[136].

Despite the possible operational improvements, employing a DLT
for a privacy-enhancing IoT data market needs in-depth consideration.
Firstly, through highly replicated storage, a DLT is not suitable for
storing large amounts of data produced by IoT devices, not even in
a privacy-compliant manner. Consequently, most architectures of the
selected studies transfer data through interplanetary file systems [S28],
employ a hashing verification approach as described in the communica-
tion layer [S1,S10,S33] or use Merkle trees [S46]. Secondly, while DLT
allows for disintermediation and verification in a trust-less manner, it
exposes to the network whatever information someone writes on the
ledger for as long as the network exists, which may, among others,
violate GDPR’s Article 17 ‘‘Right to be forgotten’’ for personally identifi-
able information [137]. Lastly, even if an organization uses a DLT only
for the matching and clearing steps of an auction, potentially sensitive
business information such as turnover can become available to other
network participants, which can conflict with antitrust regulation.

Despite the privacy and performance issues of DLT, 31% of the
included papers implemented a DLT as the backbone of IoT data market
architectures, employing the Ethereum blockchain [S1,S13,S20,S28,
S31,S32,S45,S46], Quorum [S18], the Agora blockchain [S43], Hyper-
ledger Iroha [S3], Hyperledger Fabric [S10,S33], IOTA [S20,S28,S30],
Intel’s TEE-based consensus Rem [S12], and Ekiden [S2,S25]. Other
publications only considered them agnostically [S11,S49] or in a review
[S19,S23]. The most salient architectures are described in Table D.7.

Some of the selected studies included privacy-enhancing features
in their stack. For example, Quorum supports private transactions and
private contracts through a public–private state separation and P2P
encrypted message exchange for the direct transfer of private data
[S18]. However, the interaction between the private and public ledgers
is thus naturally limited and cannot be directly applied, for example, to
an on-chain payment system. Another example is Ekiden, which offers a
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Fig. 7. Classification of the identified authenticity-enhancing technologies in the selected studies of this SLR.

horizontally scalable blockchain potentially capable of hosting end-to-
end privacy-enhancing applications through key management protocols
and Intel’s TEEs [S25] (Note that [S12] uses these TEEs only for
consensus, not privacy). Like the solution that [S45] presented, Ekiden
allows for smart contracts to execute data analysis in TEEs. However,
it is essential to note that these DLTs accomplish the described privacy
and integrity functionalities not because of the DLT characteristics but
by leveraging the PETs described throughout Section 6.

7.2. Verification layer

This verification layer corresponds to AETs that can be employed
for the verification of data and identities. We structure this Section
according to Fig. 7.

Truth discovery (TD). TD encompasses algorithms aiming to find the
authentic value when different data sources provide conflicting infor-
mation. As a consequence, TD enhances data and computation integrity
and can also enhance identity authenticity, e.g., through reputation
systems [S9]. In our SLR, we found that TD takes different forms. For
example, the survey by [S23] mentioned a mechanism called peer-
prediction-based trustable data aggregation [197], in which the system
administrator rewards participants for predicting outcomes of arbitrary
events based on other participants’ data. This design created incentives
for honest reports and therefore enhanced data correctness, resulting
in almost all participants choosing to report their bids truthfully [S23].
Moreover, [S23] also proposed mutual validation in which an IoT de-
vice compares its data with that of other nearby IoT devices. However,
this only applies to specific measurements that are positively correlated

for neighboring devices, e.g., temperature, speed of a vehicle, or loca-
tion in particular settings. It also seems challenging to establish generic
handling of differences. Other TD approaches are majority voting,
implemented by [S9] in their crowdsourcing architecture and by [S45]
in their data processing-as-a-service model. Specifically, given the use
of differential privacy in the former approach, they systematically
discovered high-quality data with an estimated measure of utility that
compares individual data points with an aggregate (the ‘‘majority’’).
The latter publication created a reputation system based on the quality
of previously sold data.

While most TD approaches leverage transparency to enhance data
and identity authenticity and data and computation integrity, TDs are
flexible to include PETs such as ZKPs, MPC, HE, TEEs, and DP such as
in [S9]. Furthermore, TD can also tackle the oracle problem of DLT,
i.e., nodes within the network cannot assure the authenticity of data
from outside the network, e.g., the price of a physical asset or the result
of an election. For example, ChainLink [138] is an initiative that utilizes
incentives to create a trusted oracle network and incorporates many of
the principles of TD.

Digital signatures (DS). While DS1 schemata are commonplace for
authentication purposes in today’s IT architectures, we have found
in selected studies the use of two notable public key cryptography
(PKC) schemata that offer some convenience-related advantages over
conventional PKC systems:

1 We introduced the fundamentals of DSs in the verification layer within the
PETs branch.
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• Identity-based [S7], where a key generation center (KGC) creates
a secret key in a way that the entity’s public key can be a publicly
available unique string, e.g., the entity’s email address. The KGC
must be trusted because it holds the master secret key from
which all parties’ secret keys can be derived. This digital signature
assures identity authenticity as the signature is digitally certified
by the KGC.

• Certificateless [S12] DS schemata are a special form of identity-
based PKC whereby an entity’s private key is generated by both
the entity and a KGC so that the KGC is not aware of the private
key of the entity. However, the entity can prove that the KGC was
involved in the key generation [139]. This approach assures the
authenticity of an entity while tackling the single point of failure
of the KGC.

Decentralized identifiers (DIDs). Identifiers can link an entity elec-
tronically across multiple IT systems, such as mobile phone numbers, ID
cards, user names, or emails. These links are sometimes but not always
unique and are facilitated by identity providers that centrally host reg-
istries of these identifiers’ [140]. In contrast, DIDs are globally unique
(with certainty through publishing them on a DLT or probabilistically
through randomized generation) identifiers decoupled from centralized
registries. DIDs essentially correspond to URLs linked to a file contain-
ing one or several public keys and associated metadata that specifies
the policies of controlling or interacting with the associated identity.
There are two studies in our SLR that employed DIDs in combination
with DLT in their conceptual frameworks [S3,S20], described in Table
D.7.

Digital fingerprints (DF). DFs are unique physical identifiers that can
be attached to or are inherent of items, and thus, one can be sure to
interact with, e.g., the right IoT device [S19]. DFs can be seen as a
form of version control at a high level. However, attaching an identifier
securely to a physical object is difficult unless it has a unique property,
e.g., unique metal patterns in the soldering of a chip. However, even
if the attachment is relatively tamper-proof, e.g., with a crypto-chip,
the same problem also pervades the items that interact with the digital
fingerprinted item, e.g., tracking scanners. Therefore, despite the au-
thenticity assurance of DFs, their authentication can only be as truthful
as the honesty of the devices that scan the DF.

8. Privacy challenges in IoT data markets

This Section aims to answer RQ2 by distilling the implicit and ex-
plicit challenges unveiled in our SLR and other seminal studies [10,24]
concerning privacy in the context of IoT data markets. We further
classify them into narrow and broad challenges depending on the scope
of their definition. Fig. 8 summarizes and outlines the structure of this
Section.

8.1. Narrow challenges

Aside from the inherent complexity and low maturity of some PETs
and the compatibility issues with legacy systems [24], we identified an-
other specific set of challenges tackled or circumvented by the selected
studies.

8.1.1. The trade-off between utility and privacy
Practitioners working with personal data face the challenge of bal-

ancing the enhancement of individuals’ privacy with the preservation
of data’s utility [S14]. This challenge is explicitly mentioned by some
of the selected studies [S6,S9,S13] and implicitly tackled by others
[S2,S24,S25,S35,S47]. This dichotomy is the underlying reason behind
the tension between data owners and consumers: the former aim to
maximize privacy while the latter intends to maximize utility, which, in
turn, is frequently determined by data authenticity (see terminology in
Section 5). Furthermore, privacy officers should consider balancing this

trade-off at each stage of an information flow [10]: input, computation,
output, in transit, and at rest, which increases the complexity of the
task. On the other hand, decision makers’ or data scientists’ quality of
judgment depends on computational integrity and the authenticity of
data and identities, which is affected by the privacy-utility trade-off.

While PETs from the secure and outsourced computation category
seem to circumvent the utility-privacy trade-off by concealing inputs,
computation, and outputs, the anointed recipients of these outputs can
still perform a re-identification attack. Thus, anonymization PETs, such
as differential privacy, should also be included in the stack as they
lower the probability of successful re-identification attacks [10].

Data and identity authenticity and accountability bring another
problem in the utility-privacy trade-off. Some PETs, namely anonymiza-
tion technologies, increase plausible deniability at the expense of reduc-
ing authenticity and, therefore, accountability [S14,S43]. If the data is
fuzzy, the data owner may claim that such a result is not resembling the
truth, which is favorable for individual users. However, such protection
is not beneficial for society in some contexts, e.g., in criminal contexts.
Regarding authentic data from fuzzy identities, if an authority cannot
trace data back to the origin, an individual could try to claim plausible
deniability, which would hinder processes such as tracking COVID-19
patients to improve pandemic countermeasures. For practitioners to
find a balance in these contexts, the requirements of any application or
platform should first define the accountability of the involved entities
to strike an optimal balance between utility and privacy.

Regarding accountability in data markets specifically, mechanisms
to punish misbehavior, such as banning an entity for re-selling or not
selling authentic data [S7], can be beneficial to enhance the utility of
the market. While AETs such as truth discovery, e.g., majority voting
[S9,S45] or reputation systems [S9], incentivize market participants to
report honestly about the exchanged data, their identity, and compu-
tation integrity, among others, the privacy of the entities is not neces-
sarily enhanced. Additional related issues that may arise are verifying
the purchased data’s authenticity without violating the individuals’
privacy [S7]. For example, if a data broker sells analysis outputs
(insights) and not the (privacy-enhanced) original data, the original
data owner’s digital signature is not valid to authenticate the insights
[S7]. Nevertheless, systems could use zero-knowledge-proof-based au-
thentication of data and computation, coupled with value deposits
locked in smart contracts to hold participants accountable through en-
forcing reimbursement across intermediaries. Moreover, other nascent
solutions exploit the ubiquity and proximity of IoT devices in specific
contexts because the data gathered is likely to be correlated, which
allows for mutual data authenticity verification among IoT devices
[S23]. However, exploiting correlation can only be used for specific
measurements, e.g., weather conditions, vehicle speed, and location,
among others.

8.1.2. The recursive enforcement problem
Trust is an essential component in distributed systems that involve

different stakeholders and, thus, trust is specifically relevant in the
context of IoT data markets. Definitions of trust generally refer to a
‘‘[...] directional relationship between two entities’’ [S49] where one entity
(the trustor) has subjective expectations on the behavior of the other
entity (the trustee) based on previously observed behavior (reputation-
based trust) [141] or the belief in competencies and corresponding
actions — often within a specific context [142,143] and incentivized
by joint interests [144]. Following this definition, we can consider
users as trustors of application owners protecting their data when they
engage in digital activity. However, the number of data breaches [9]
and privacy scandals such as Cambridge Analytica indicate that this
trust is not always deserved. The recursive enforcement problem (REP)
encompasses the underlying problem of third-party trust with more
nuance: Given a third-party authority (𝐴), there ought to be another
authority (𝐵) to supervise 𝐴, so that 𝐴 can be trusted. In turn, there
should be yet another authority 𝐶 to supervise 𝐵 [10], and so forth.
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Fig. 8. Overview of the narrow and broad challenges facing privacy-enhancing IoT data markets.

The REP is a significant challenge that has been covered and tackled
implicitly by some of the studies in our review [S1,S3,S4,S7,S10,S16,
S25,S41]. Additionally, others tackle a sub-set of the REP, which is
the single point of failure of trusting a unique third party [S6,S12].
According to [S8], the hesitation in trusting third parties is one of the
main reasons for the slow adoption of IoT data markets. Indeed, it
is hard to technically ensure and prove that the third party will not
use one’s data for purposes other than those agreed [S8]. Additionally,
adoption is further slowed down because the use of third parties to
supervise other parties incurs costs [S46]. Furthermore, users’ daily
interactions with ‘‘trusted’’ third parties can be regarded as a product
of contrived trust, another form of the REP. For instance, applications
from large service providers with negligible competitors push users to
accept the sometimes poor privacy conditions, e.g., GPS apps. Note that
contrived trust is different from the trust users have on cryptography,
open-source code, or consensus mechanisms that the broad scientific
community has audited over the years.

Tackling the REP requires reducing the power and the responsibility
of the third party in a particular aspect of a specific service by,
e.g., distributing such responsibility among other parties or distributing
the power among multiple parties that enforce rules on each other.
These measures can ease the hesitation to trust a single third party,
tackle contrived trust, and reduce the single point of failure because
the third party would be supervised and held accountable by other third
parties in a flat hierarchy. Fortunately, the PETs included in this study
can also circumvent – only onion routing can tackle – the REP, which,
in turn, reduces the need for third-party trust and, therefore, reduce
contrived trust and a single point of failure. Additionally, 5 of the 7
AETs included in this study can tackle the REP, primarily distributed
ledger technology, whose architecture was purposefully built to tackle
the byzantine generals’ problem [145,146], a manifestation of the REP.

8.1.3. The copy problem
Once an entity releases data freely or for profit-seeking, the data

is no longer under the original owner’s control. Consequently, the
recipients of such data can copy and, e.g., re-sell or use the entity’s
data for a non-agreed purpose without informing or acknowledging the
original owner [10]. Beyond the privacy threats the copy problem (CP)
entails for users of service providers under poor privacy conditions, the
CP is a major obstacle for organizations to engage in data markets,
which some of the selected studies implicitly tackle [S2,S25,S45]. The
CP leads companies to either hoard or sell data as fast as organizations
obtain the data, lest its value drops [10]. Nonetheless, secure and
outsourced computation PETs such as trusted execution environments
or homomorphic encryption can tackle the CP by allowing other entities

to extract value without losing control over the input data beyond the
specific information sold, such as an algorithm’s evaluated output on
this data. This paradigm is profound because tackling the CP makes
data scarce (to some extent), as the original data is not shared, and the
data owner would not allow a non-agreed computation. Thus, selling
the access to data can be more attractive to companies, as data would
preserve their value longer than releasing the data.

A subset of the CP is the bundling problem (BP) [10], which is an
attack vector different from re-identification that occurs when an entity
requests actively or passively more data than strictly needed to (i)
prove a claim or (ii) perform an analysis. Harvesting more information
than needed worsens data breaches’ consequences for individuals and
companies and indicates questionable business ethics. For instance, (i)
to prove one’s age with an ID card, the prover usually shares all the
information in the ID instead of only the age and proof of the card’s
authenticity. The BP is a subset of the CP because if one tackles the
CP, neither necessary nor additional information is released beyond the
required computation. For example, tackling the CP by restricting veri-
fication and processing to a trusted execution environment also tackles
the BP. In this setting, the data consumers cannot copy the necessary
data or metadata for other unsolicited analyses, despite being able to
process metadata to verify the authenticity of the data and the integrity
of the computation and obtaining the desired outputs of the analysis.
Additionally, (ii) anonymization-based PETs such as differential privacy
or 𝑘-anonymity reduce data authenticity to tackle the BP. For instance,
in a demographic analysis that only requires the first digits of the
ZIP code to perform clustering, data curators can generalize the ZIP
codes with 𝑘-anonymity, so only the strictly necessary information is
revealed to data scientists. Nonetheless, anonymization can suffer from
background-knowledge-based attacks [S48,156] and does not solve the
CP because the data consumers can replicate the privacy-enhanced
data.

8.2. Broad challenges

8.2.1. The IoT impact on privacy
The paradigm brought by the IoT brings significant amounts of

data to markets. However, this paradigm also bears some of the short-
comings of IoT devices [198]. Table 2 contains an overview of these
challenges and briefly discusses their impact on privacy. In summary,
privacy is always affected by the context and employed technologies,
which underlines the importance of adhering to privacy-by-design prin-
ciples [131] and the need for practitioners in other fields such as
software engineering, economics, law, and politics to tackle together
the diverse issues that IoT entails for privacy.
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Table 2
Overview of challenges brought by the IoT paradigm into data markets explicitly covered by some of the studies included in this SLR.

Challenge Studies Description Impact on privacy

Heterogeneity and
Interoperability

[S36]
and [S39]

The IoT consists of billions of IoT devices from
different manufacturers, running different software on
different local networks and geographic regions, with
different computation power and storage capacity
[147]. Furthermore, different communications
standards, connectivity and availability aggravate the
interplay of IoT devices.

An IoT data market should be agnostic to these
differences and minimize any additional requirements;
however, it is unclear how global data markets should
harmonize data coming from different jurisdictions
with different privacy regulations and how an IoT
device can interact with another whose, e.g.,
verification schemata are considered inadequate. In
addition to these obstacles, a lack of interoperability
may restrain PETs that involve the communication
between many devices, e.g., MPC.

Computation power [S5],
[S11]
and [S48]

Manufacturers produce many IoT devices designed to
consume low energy and require minimal volume,
limiting these IoT devices to the core functionalities
of monitoring and communication [S11].

Any additional computation requires a higher
investment in resources and manufacturing, and
running some PETs becomes infeasible without this
extra investment. Consequently, a set of PETs is
excluded without more computation power, e.g.,
cryptography-based PETs such as HE, MPC, ZKP, some
digital signatures, or consensus algorithms. This
limitation, however, may only apply to contexts
where it might not be possible to connect IoT devices
acting as clients with proprietary or trusted
third-party nodes where these PETs are executed.

Storage capacity and
real-time
communication

[S1],
[S5],
[S11],
[S17],
[S29]
and [S48]

Minimizing the physical volume of an IoT device
reduces their price but limits their storage capacity,
forcing IoT devices to transmit the data to a data
warehouse or a data market as quickly as possible.
This tendency intensifies in some IoT applications
where the time delay tolerance is low to enhance the
utility of real-time information [S17].

Processing time constrains the number of usable PETs,
excluding those that require long execution times,
such as fully HE or creating a ZKP.

Data quality [S14] An unreliable IoT design may afflict thousands of IoT
devices mass-produced by a manufacturer, which at
deployment may lead to millions of unreliable data
points. Furthermore, networks may also be unreliable,
further worsening the quality [S14].

The impact may seem beneficial in terms of privacy;
however, unreliable data leads to verification and
secure computation schemata to fail and
anonymization technologies to over-perturb the data
as the underlying data is not entirely truthful.

Ambiguous data
ownership

[S4],
[S10]
and [S14]

When purchasing a device or a cluster of IoT devices,
e.g., a phone, consumers also expect to own the data
they are generating. However, the phone
manufacturer and service providers expect to receive
parts of this data nowadays with meager consent. In
addition to this clash of interests, there are scholars
that ponder whether data belongs to anyone in the
first place, like [148].

Having unclear data ownership leads to a misguided
deployment of PETs, which may cause detrimental
consequences if the privacy measures fall short. On
the other hand, if the practitioner knows who has the
right to the data and what the owner is reticent to
share with a third party, then selected PETs and their
privacy tuning can be optimized accordingly.

Privacy disparity [S4]
and [S40]

Depending on the IoT devices’ deployment location,
the degree of privacy measures should be higher or
lower, e.g., sensors in vehicles, smart homes, phones,
and wearables. Furthermore, IoT deployments should
adapt the monitoring time to an adequate amount
depending on the context [S40].

Some PETs, such as semantic and syntactic
technologies, allow adjusting the degree of privacy;
however, others are more rigid. Selecting and
adapting a PET to the IoT devices’ deployment
context requires expertise.

Pricing [S4],
[S14],
[S17]
and [S50]

There are multiple variables imposing the price of
data aside from supply and demand: the truthfulness,
the source, either purchasing the data or the access
[S17], and the privacy level. These factors add
additional complexity to pricing, e.g., the sources
have become disparate with the IoT, which drives
pricing to a more granular task than before, when
aggregated data could be sold as a unit [S17].

Aside from payment enforcement mechanisms, pricing
involves negotiations, which frequently must ensure
privacy. This adds an extra layer of complexity to the
deployment of PETs. Furthermore, as data markets
trade with more granular data points, PETs that need
aggregation might be excluded in some contexts, e.g.,
syntactic technologies such as k-anonymity.

Scalability [S25]
and [S36]

The number of IoT devices and streamed data grow
exponentially across industries [147,149], which
extends data collection and improves analytics across
different domains, e.g., health, insurance, or finance.
To gain these benefits, there is a need to increase
networks’ communication and overall storage capacity
as well as interoperability and security efforts.

As the IoT scales, analysts will access more datasets
from different domains to create new products and
services, e.g., linking driving behavior with insurance
in pay-how-you-drive schemata [150]. Such
innovations stem from the ‘‘mosaic effect ’’ [151],
where disparate datasets with limited information
value can obtain significance when combined with
other datasets. However, malicious entities can
leverage such an effect to extract sensitive personal
information not explicitly contained in a dataset
[152].
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8.2.2. Attacks on privacy
Adversaries can be malicious, actively trying to breach users’ pri-

vacy through hacking, or honest but curious, passively gathering data
from users to reveal hidden insights [S35]. Both of these entities can
carry re-identification attacks with the collected information. Within
the context of the IoT, the list of security and privacy attacks is ex-
tensive (sniffing, cache poisoning, DoS/DDoS, sinkhole attacks, replay
attacks, among others) [153]. Furthermore, within our SLR, [S45]
discuss some of the additional attack vectors these malicious or curious
entities may execute in the context of IoT data markets to learn sen-
sitive information from users. Notable ones include: Data forwarding,
which is one way the copy problem materializes; roles collision, where
data brokers and buyers may be the same or collaborating entities,
and, therefore, the broker could rig the auction for its benefit and
access the sold data; and side channel attacks, where attackers exploit
the physical properties of the hardware or its power consumption to
extract knowledge from the hidden computations (trusted execution
environments suffer mainly from this attack).

Such attacks make the possession of data intrinsically risky because
if attackers are successful, data re-identification is possible [S38], even
if data have undergone some form of privacy enhancement [154].
There are common attacks used to re-identify data, e.g., reconstruction,
tracing, or linkage attacks [118,155]. Some of the most famous re-
identification white-hat attacks involve [156] who deanonymized the
Netflix Prize dataset with IMDB’s public dataset in 2008, [157] who
performed the same feat with Amazon’s public review data, and [6]
(the inventor of 𝑘-anonymity) who re-identified participants within a
genome sequence dataset in 2013. Furthermore, in 2014, [7] tracked
drivers with home address and vehicle speed as inputs, and in 2020,
[154] matched users with large-scale mobility datasets from a mobile
network operator and transportation smart card usage.

Overall, IoT data markets will facilitate access to large quantities of
data from different domains, including biometrics, which will increase
the impact of these attacks and the potential harms to individuals,
e.g., insurance, employment, or price discrimination. Therefore, IoT
data markets require a more robust adoption of PETs and security
standards.

8.2.3. Legal challenges
Progressively along the past decades, governmental institutions

have released laws to protect the privacy of their citizens (see Sec-
tion 2.1). These laws also refer to an individual’s and businesses’ right
to exploit their data commercially, which provides leeway for data
markets [S28] and aims to uncover the untapped potential of data for
innovations.

Nonetheless, research points out the sometimes unrealistic expec-
tation to monitor the entirety of the Internet for privacy violations
[S45], and the dexterity of hackers to find novel deception methods
[S3], and that laws are more reactive than preventative. Well-known
networks of illegal proprietary digital asset exchanges, e.g., scientific
works and how users of digital services give away data, tacitly provide
testimony of the failure of data-related legal measures today, and the
problems will likely increase with the accruing number of IoT devices
[S38]. Moreover, privacy regulations can strangle free markets and
innovations if they are too stringent [S45].

Aligned with these deficiencies, [S38] introduced privacy regulation
pitfalls that the IoT unfolds in data markets in 2013. They note that
(i) definitions of personally identifiable information will be depre-
cated as unprecedented amounts of data can be aggregated, easing
re-identification, (ii) the development and audit of PETs is costly, which
may limit business models and potentially make disregarding privacy
regulation profitable [199], (iii) privacy violations result on small fines
or remain unpunished, (iv) technology tends to outpace regulation,
and (v) the ubiquity of IoT devices will yield more illegal secondary
personal data markets. After almost a decade of further research, (i)
seems valid, at least in some scenarios. The ambiguity of privacy

regulation is a barrier in some cases, as practitioners may default to
weaker forms of privacy if their architecture appears to comply. This
leads to re-identification – an attack that is also more practical with the
increasing number of IoT devices [156] – being more likely to succeed.
However, in defense of these practitioners, while PETs have improved
since 2013, some PETs that offer better privacy enhancements are still
complex and not yet performant in 2021.

Based on the prior arguments, pitfall (ii) seems to hold; however,
(iii) is no longer a strong pitfall. Since the enforcement of GDPR [137]
in 2018, GDPR has punished multiple corporations with considerable
fines ranging between e20 million and up to 4% of a corporation’s
annual worldwide turnover of the preceding financial year. As of the
writing of this publication, GDPR has harvested considerable fines
assigned to Google in France on two occasions [200], Amazon [158],
H&M [159] or the telecommunications operator TIM [160]. These
fines alone accumulate to e282 million. These statistics are a sign that
PETs are not appropriately introduced in production applications even
by big technology companies and that not complying with privacy
regulations in an IoT data market has dire economic consequences.
While these fines could indicate how profitable it still is to violate
privacy regulation (iii), one can no longer vigorously defend (iii). Pitfall
(iv) seems to materialize as long as the nature of law-making does not
change. Lastly, pitfall (v) is concerning, given the existence of legal
personal data markets that store up to 750 million user profiles and
trade 75 million online auctions daily like BlueKai [23], whose data
could leak to the increasing number of illegal shadow markets [S6].

9. Discussion

This Section presents a set of key findings (KF) distilled from the
two research questions answered in Sections 6 and 7 as well as 8,
the content and metadata of the 50 publications included in our SLR,
and other seminal studies that we encountered throughout our SLR but
which do not necessarily address IoT data markets directly. Lastly, we
cover the limitations of this study and future work.

9.1. Key findings

(KF1) The attention of scientists toward privacy-enhancing technologies in
the field of data markets for iot devices has increased notably in recent
years. The selected publications are modern, as 49 of the 50 studies
were published between 2012 and 2020, and 34 of them (68%) were
published either in 2018, 2019, or during the first half of 2020. While
the absolute number of publications in 2020 is lower than in 2019
because we captured only the first seven months of 2020, Fig. 9
illustrates the arguably accelerating trend of the cumulative curve of
publications in the field of privacy-enhancing IoT data markets.

(KF2) The most frequent research type (design and creation ) and least com-
mon research contribution ( lessons learned) suggest that privacy-oriented
iot data markets are still maturing and have not faced many production-
grade implementations yet. According to Fig. G.13, around 76% of the
publications use a design and creation research approach, while only
4% perform a case study. A further indication of field novelty is that
only one out of the 50 publications had the contribution type lessons
learned [S40]. Furthermore, while 35 studies (70%) were of research
type solution proposal, to the best of the author’s knowledge, only one
solution appears to have an implemented system that is applied in
production [S25].

(KF3) The selected studies rarely leverage existing libraries that provide
PETs and often only build upon architectures developed in previous work
to a small degree. Therefore, to gain more practical relevance, it may be
beneficial for researchers to improve and extend existing work instead of
reinventing the wheel. The research community and industry have de-
veloped many open-source libraries to employ zero-knowledge proofs,
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Table 3
A mapping of privacy- and authenticity-enhancing technologies (PET and AET) to the narrow challenges using the terminology defined for this
review. The extent of enhancement of privacy, utility, and characteristics of the different PETs and AETs varies from significantly increasing ++,
over +, +−, − to significantly decreasing − −. na denotes not applicable. w/ denotes with. *Considering a digital certificate when using digital
signatures, if applicable. The privacy column assumes data and identity are authentic.

homomorphic encryption, secure multiparty computation, or differen-
tial privacy (see Section 6). However, none of the studies have indicated
their use. Furthermore, studies often do not build upon each other,
leading to overlapping further. For example, [S41] and [S34] both
showcase an auction that obscures the bids by employing partially
homomorphic encryption. However, W. Gao et al. only refers to the
work from Z. Chen et al. in one line, noting that ‘‘[...] there is only few lit-
eratures on designing privacy-preserving schemes in data market auctions’’.
Moreover, [S42] builds upon [S27] and [S2] upon [S25], but each of
these two sets belongs to the same group of researchers. In conclusion,
it may be beneficial for researchers to incorporate building blocks

from previous data market architectures to advance privacy-oriented
research.

Moreover, many studies included in Table D.7 aim to create an
IoT data marketplace employing distributed ledger technology (DLT).
However, there seems not to be a consensus about which DLT to use for
IoT data markets, as the authors build upon Ethereum, IOTA, Hyper-
ledger Iroha, Fabric, Agora, or Quorum, among others. Specifically, as
an example, [S32] uses Ethereum smart contracts for payments while
[S28] only uses these contracts for safelisting and employs IOTA for
payments instead.
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Fig. 9. Publications in the field of privacy-enhancing data markets for the IoT from January 2002 to July 2020.

Fig. 10. Reference model for the layers of a privacy-enhancing IoT data market.

(KF4) The content of the selected studies can be categorized into two main
orthogonal research streams within the context of privacy-enhancing iot
data markets: architectures and data trading schemata. The first research
stream is dedicated to the design of privacy-enhancing architectures for
the exchange of data in IoT data markets (25 studies, 50%), and the sec-
ond one focuses on the design of privacy-enhancing data trading such
as auctions (12 studies, 24%). The remaining studies can be associated
with domains like legal [S6], user preferences [S8], or IoT data market
challenges [S14,S19]. The selected studies, and also international ini-
tiatives such as the European GAIA-X [5], hence envision data markets
beyond matchmaking and auction capabilities. Specifically, the studies
that we analyzed structure the software, hardware, abstract entities,
and their coordination, data processing, storage, communication, and
the offered services to build a holistic or part of a privacy-enhancing
IoT data market that includes PETs to tackle some of the challenges
described in Section 8.

(KF5) Despite the acknowledged need for combining anonymization and se-
cure and outsourced computation techniques, none of the researchers behind

the 12 studies proposing data trading schemata, and only two publications
out of the 25 designing data market architectures employ both PET categories
in combination. Although PETs such as homomorphic encryption (HE)
or secure multiparty computation conceal inputs and computation, the
outputs can leak information about the underlying data and hence may
be exposed to re-identification attacks [10]. Combining secure and out-
sourced computation techniques with anonymization-based PETs like
differential privacy (DP) can help to make the outputs less sensitive.
Moreover, leveraging only anonymization PETs does not sufficiently
address the copy problem.

Within the 12 selected studies focused on data trading, DP is the
most frequently used PET in auctions to enhance the privacy of the
exchanged data. [S16,S22,S24] and [S37] employ DP in various forms
to set the privacy levels and, subsequently, the price of the traded IoT
data. Researchers might choose DP over other anonymization technolo-
gies because DP is the only PET with a mathematical guarantee of
privacy [13]. At the same time, partially HE (PHE) is the PET of choice
to enhance the privacy of the bidding process. A group of authors
[S26,S34,S41] chose PHE primarily for hiding the bids, confidentially
computing the winner, and only revealing the output to the auction’s
winner. Researchers might decide to use PHE over other forms of
HE, secure multiparty computation, or trusted execution environments
(TEEs) despite PHE’s significantly less general scope because PHE has
relatively high performance and is conceptually simple.

Together, DP and PHE can holistically enhance the privacy of auc-
tions, which is a contribution we have not found in this review. [S48]
emphasize that some HE schemata, such as Paillier’s, must complement
other methods to guarantee more protection. Moreover, while HE
protects the input and the computation itself, if the intended recipients
of the decrypted output are malicious, they may reverse engineer the
output to learn properties about the input. An additional modification
employing, e.g., differential privacy, of inputs or decrypted outputs
before sharing may help prevent this attack in exchange for accuracy
and thus utility. The same argument applies to other secure and out-
sourced computation methods when used in isolation. We consequently
point to a lack of combination in the research stream of data market
architectures, except for two publications from the same group of
researchers [S2,S25], which use TEEs to train machine learning models
with DP.

(KF6) The selected studies employ three dimensions to characterize data
markets that entail privacy concerns: the degree of decentralization, the
types and number of data domains, and the types of sellers and consumers.
Each of these dimensions, for example, characterized by [S1,S27] and
[S46] respectively, brings privacy concerns. Data may be stored by
the seller, the platform provider, or a decentralized platform using,
e.g., a combination of commercial cloud storage, interplanetary file
systems, or blockchains. Depending on the degree of decentraliza-
tion and replication, practitioners need to consider different leakage
risks. In particular, if the architecture relies on a blockchain, PETs are
particularly important [134].
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An increase in the number and types of data domains opens ad-
ditional attack vectors and more possibilities for malicious entities
to link an individual’s data across databases. This hyper-connectivity
between datasets can render the definitions of de-identified data, such
as HIPAA’s, obsolete and suggests that privacy enhancements in the
data economy should be defined globally and not locally.

The degree of privacy enhancement should depend on the type
of seller and consumer, e.g., consumers may expect higher privacy
guarantees when a health insurance company gathers their data than
when the collector is a renowned health research institution.

(KF7) Based on our classifications in Sections 6 and 7 and inspired by a set
of seminal selected studies, we have created a reference model for the design
of iot data markets in Fig. 10, and detailed in Table 3. Most of the studies
included in this SLR proposed solutions without following a reference
model, except for [S3] and [S7], who developed their own without
a systematic research. [S7] condense their architecture into two lay-
ers: data acquisition and trading. On the other hand, [S3] present a
more holistic view of privacy-enhancing IoT data markets with six
layers (identification, privacy, contractual, communication, consensus, and
incentive) inspired by the Open System Interconnection model and
heavily conditioned by the use of blockchain technology. This model,
however, lacks essential steps of an IoT data market that several
publications in our SLR focused on, namely storage [S1,S12,S25,S28]
and processing [S7,S19,S20,S45]. Furthermore, the identification layer
[S3] can be regarded as a subset of verification, which also includes
data verification. Other studies base their market design on the type of
participants [S15,S24,S27,S33,S43], e.g., sellers, aggregators, brokers,
among others, and the type of data domain [S46], e.g., health, financial,
or a combination. However, these categories cannot be transferred to
other contexts as easily as a reference model agnostic to entity and data
domain types.

Our reference model hence combines and generalizes some of the
layers from [S3,S7] and complements them with additional layers such
as the data auction, storage, verification, processing, and sovereignty
layer (see Fig. 10). Most of these layers need multiple PETs, as there
is no ‘‘one-size-fits-all’’ technology to enhance privacy. To navigate
these layers in detail, refer to Table 3 amd Fig. C.11. Furthermore,
we distinguish between a contractual and sovereignty-related design to
separate formal agreements from privacy and ownership policies. Fur-
thermore, given the distinct purpose and implementation that auction
schemata play in a data market, they should be respected by a unique
IoT data market layer (auction dedicated studies: S16,S22,S24,S37,
among others). Lastly, incentives are necessary to encourage behavior
that preserves the pre-defined qualities of the IoT data market, e.g., op-
timized prices [S3,S16], data authenticity [S16,S23], or maintaining
the infrastructure like a permissionless DLT.

(KF8) Aside from the ubiquity of digital signatures in IT systems, in this slr,
distributed ledger technology (DLT) is most frequently employed as the back-
bone of iot data market design (see fig. g.14), despite the lack of consensus
on its use and DLT-based applications in production. Although centralized
systems seem more efficient and easier to deploy, and despite the seem-
ingly few industrial applications running on blockchain today, many
researchers in this SLR still advocate for distributed systems using DLT.
Within the 35 solution proposals, around 31% chose permissionless
DLT, 14% consortium DLTs, and the authors of the remaining 55%
either reviewed DLT, implemented a centralized solution, or focused
on designing narrow features. However, we noted that within the 45%
of DLT-based designs, many authors still relied on single entities for
data processing or storage. Specifically, only one of the 50 studies [S25]
has a public blockchain-based ecosystem in production, yet without a
real-world use case running. These statistics indicate a lack of adoption
despite substantial research efforts.

Furthermore, while blockchains enhance authenticity, assure in-
tegrity, and enable payments without the need for a trusted third
party, blockchains are limited in storage capacity [S1], computation

power [S25], and can exacerbate privacy issues because of their tamper
proof-quality and inherent data and computation replication [56,132,
136,161]. Consequently, almost all studies that include blockchain
technology to support an IoT data market require PETs to protect
users’ data and identities. These studies go as far as creating innovative
privacy-enhancing blockchain architectures with other PETs as building
blocks, e.g., trusted execution environments [S25,S45], or adding a
privacy layer to their market design based on differential privacy [S3].
However, within the literature, there are also questionable statements
such as ‘‘[...] researchers and technologists have found that blockchain can
be a potential solution to the privacy problem by decentralizing information
[...] Blockchain can be used to securely share private information [...]’’
[S3], ‘‘Blockchain-based approaches provide decentralized security and
privacy [...]’’ [S11], or ‘‘Blockchain has been proven to possess security,
immutability, and privacy properties, which has caused a lot of researchers
to introduce it into the privacy and security concerned IoT ’’ [S23]. These
statements, coupled with the current excitement around blockchain,
can lead practitioners in the industry to wrongfully push blockchain
for ‘‘privacy’’. Therefore, the community would benefit from clear
explanations of why authors employ blockchain and clearly state the
need for other technologies to enhance privacy.

9.2. Limitations

Even though we have adopted a rigorous research design and paid
particular attention to the selection and analysis of published studies,
SLRs have limitations that may have undermined our effectiveness.
These threats include (i) incompleteness of study search, (ii) bias in
study selection and (iii) inaccuracy of data extraction.

(i) Some relevant publications might be absent. To mitigate this
limitation, we searched in several highly reputed digital libraries,
performed a preliminary search to determine suitable search strings,
conducted a backward search to identify additional related work, and
included studies in advance that met the standards and filters of this
SLR. These measures reduce the probability of missing relevant pub-
lications. (ii) The experience and knowledge of the researchers may
drive the study selection with an inherent bias. Nonetheless, following
Kitchenham [43], we aimed to create a set of explicit inclusion and
exclusion criteria to maximize the degree of objectivity. To mitigate
different appreciations of these criteria, we conducted a preliminary
search to ensure researchers have a consistent understanding of the
requirements. Furthermore, two researchers conducted the selection
process independently and resolved the conflicts between their deci-
sions interactively. (iii) There might be a bias in selecting the extracted
data, which may affect the classification results of the selected studies.
To mitigate this potential limitation, the two researchers specified a set
of data extraction cards (see Section 3.2) to eliminate any misalignment
in the data extraction process results.

9.3. Future work

The opportunities and need for future work in the context of pri-
vacy and data markets for the IoT highlighted by the selected studies
resonate with the challenges covered in Section 8. Most notably, there
is a need to solve the copy problem [10,S4,S17] and to lessen IoT
devices’ limitations regarding computation [S5,S11], storage and ca-
pacity [S29,S48] to tackle or circumvent the constraints PETs may
induce. Moreover, to decrease the probability of re-identification at-
tacks, further work is needed to advance the maturity of PETs and
combine them, e.g., bringing together differential privacy and secure
and outsourced computation efficiently. Additional research is also
necessary to create standards for data markets, such as a language
to describe privacy requirements, universal APIs to interact between
different IoT devices with various degrees and techniques for privacy
protection, and machine-readable definitions of privacy, e.g., using
ontologies [S40]. In this context, a more detailed description and
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classification of the layers that we found relevant for classifying privacy
and authenticity enhancing technologies (see Fig. 10) constitutes a
promising and relevant avenue for future research. Nonetheless, we
want to emphasize that privacy is not the only challenge that needs
to be addressed, as future research must also consider, for instance,
scalability.

If society considers privacy a necessity, it should be enhanced by
default and optimally in any system without attaching price tags to
one’s privacy, as some of the selected studies pursued suggest [S16,S15,
S22]. We find this posture a worthy research endeavor and encourage
researchers to ponder whether monetizing privacy in a competitive
market ultimately benefits society. Furthermore, legal practitioners
have ample ground to develop legislation specifically around privacy
in IoT data markets and for economists to delve into data pricing and
decentralized market interactions. Legal researchers could investigate
how stringent privacy regulations should be, as heavy regulation may
strangle free markets and innovations [S45]. Additionally, the legal,
pricing and privacy aspects hinge around data sovereignty. As long
as ownership is ambiguous, researchers’ efforts will struggle to max-
imize impact. Furthermore, the relevance of our results may reach
beyond IoT data markets, as the analysis of PETs and derived insights,
e.g., how IoT impacts privacy, can permeate other research areas such
as privacy-by-design software engineering, policy-making, and data
governance, politics, and economics. Moreover, most PETs have specific
performance-, complexity- or utility-related shortcomings (which we
describe in Section 6) that researchers can address.

Lastly, we recommend that researchers derive decision trees based
on Table 3 to enhance the decision-making of privacy officers be-
yond our work. Moreover, we could not find any formulation of an
information-theoretic quantification of the data leaked from a data
market. We also encourage social scientists to focus on questions re-
lated to data sovereignty. To realize a vision of data markets that
benefit society, we suggest researchers concentrate on roadblocks such
as the copy problem. Finally, institutions should consider updating
their privacy-enhancing processes to effectively participate in IoT data
markets.

10. Reassessment of the results

This section provides and discusses new key publications since the
research process ended. Accordingly, we conducted a research process
as per Section 3 for studies dated between July 2020 and May 2022
and, among them, picked for discussion the ones providing the most sig-
nificant updates to our systematic literature review or, on the contrary,
underlining our previous findings. Note that the references included in
this section correspond only to the newly found publications.

In our new search, we again selected primary and secondary studies.
Overall, our new search resulted in 24 publications: 3 more from 2020,
14 from 2021, and – as of May – 7 from 2022. These statistics indicate
that the trend depicted in Fig. 9 (consolidating KF1) has not reversed.
Notably, we could still not find publications discussing production-
ready deployments of privacy-enhancing architectures or auction
schemata and no reference to open-source tooling despite PETs being
more mature since July 2020 (underlining KF2 and KF3).

Among the secondary studies, [162] explored the concept of privacy
in the digital economy more broadly and pointed out the need for
interdisciplinary research to supplement the purely technical PET con-
structions with the economic (tradeoff between accuracy and privacy)
and governance perspectives (privacy policies) that we elaborate on in
our paper. [163] systematically investigated privacy-oriented identity
management in the context of the IoT, such as anonymous creden-
tials and other techniques that our review covers. Moreover, [164]
conducted a less systematic survey of standards and future challenges,
including discussions regarding authentication and access control, and
highlighted a subset of the privacy challenges of IoT that we present
in Table 2. Additionally, [165] presented a recent systematic literature

review on designing data markets. However, their work did not focus
on privacy.

More secondary studies, such as from [166] considered blockchain
and smart contracts beneficial for privacy. Furthermore, [167] re-
viewed PETs in the context of crowdsensing and emphasized the pri-
vacy issues with smart contracts, along with practical challenges in
security and feed-in of reliable data. They suggested a subset of the
anonymization techniques that we present in Section 6, such as privacy-
oriented digital signatures, anonymous networking, 𝑘-anonymity, 𝑙-
diversity, 𝑡-closeness, and differential privacy (DP), and some more spe-
cific ones in the context of location. While they also mentioned ZKPs,
there is no detailed discussion of the secure computing techniques we
survey. [168] considered privacy mechanisms in data sharing for col-
laborative forecasting and discussed the tradeoff between privacy and
accuracy. They distinguished between perturbative techniques (‘‘data
transformation’’), MPC-based protocols, and distributed or federated
approaches (‘‘decomposition’’) combined with DP. Lastly, [169] pro-
vided a survey that examined the privacy risks that machine learning
poses on IoT data markets supported by blockchains. Hence, our SLR,
with its comprehensive focus on privacy, still fills the gaps that we
discussed in Section 4.

The primary studies followed a similar pattern to the previously
collected studies. Above all, many still employed blockchains and often
did not provide clear explanations the corresponding benefits and ac-
knowledgments of the corresponding challenges, specifically regarding
privacy (reaffirming KF8). We again encountered questionable claims
such as ‘‘[...] a decentralized approach based on distributed ledger tech-
nologies (DLT) enables data trading while ensuring trust, security, and
privacy’’ [170], without discussing why DLT enhances privacy in the
rest of the publication about benchmarking IoT data trading protocols
in blockchains. Others followed suit on the use of blockchain to support
electric vehicle trading marketplaces with IPFS and a scheme to hide
payment sources [171] and cloaking location with 𝑘-anonymity [172]
or proposing a new blockchain architecture with permissioned domains
to enhance privacy for data market places [173]. Another presented
several building blocks (blockchain, trusted execution environments,
gossip learning) without an evaluation of the proposal [174].

A notable exception is the comprehensive details provided by [175]
in their blockchain architecture. Their architecture stores encrypted
sensor data in cloud storage, and smart contracts support sensor reg-
istration, data auctioning, and payments. While the smart contract
emits notifications and displays the endpoint for retrieving proxy re-
encrypted data, the data are exchanged off-chain confidentially via
proxy re-encryption. This construction addresses transparency and scal-
ability issues regarding sensor data. Nevertheless, bidding and payment
processes may still reveal sensitive information and require future
research by combining this approach with some of the PETs we sur-
veyed. [176] also acknowledged the aggravation of privacy issues on
blockchains and combined federated learning with DP to obfuscate
clients’ weights and use ZKPs to prove the integrity of the training and
evaluation process, which they required for providing fair incentives
managed by a smart contract. Another related publication by [177] pre-
sented a blockchain-based solution for tracking IoT sensor data across
marketplaces and, thus, only detecting but not preventing illegitimate
replication and resale.

These publications fall into the category of architectures identified
in KF4. We also found papers in the data trading schemata category
(or related): two new data auction schemata enhanced with DP [178,
179], a task assignment scheme in crowdsensing that hides the tasks’
content with homomorphic encryption (HE) for crowdsensing [180],
and another where they employ DP on billing data [181]. The latter
publication, however, does not discuss fairness, which is critical in
monetary use cases as a noisy bill can make data prosumers profit
less from their data on some occasions. Furthermore, [182] and [183]
focused on determining fair prices for end users’ datasets that are
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anonymized with DP according to their accuracy and, correspondingly,
risks of revealing sensitive information.

One interesting development that explored the paradigm in ML
markets comes from [184]. They developed a privacy-enhanced frame-
work to evaluate the quality of ML models and data for sale with
functional encryption, achieving improvements over similar schemata
implemented with HE. Another novel concept by [185] strives to em-
power users with tools to help them determine the risk of sharing their
information and, accordingly, make an informed decision about their
data framework. It is thus closely related to enforcing privacy policies
in the sovereignty layer. Except for [176], who focused narrowly on
federated learning, the rest of the new (notable) primary studies did not
leverage the combination of anonymization and outsourced computa-
tion technologies, underlining KF5. Notably, the new publications have
not altered the data market characterization of KF6 or the reference
model of KF7.

11. Conclusion

With this review, we reveal the landscape of PETs in data mar-
kets for the IoT. We have conducted a systematic literature review
(SLR) to identify and filter the studies aiming to solve this landscape’s
challenges. Consecutively, we formulated terminology to dissect the
selected studies’ architectures and findings and identified the PETs that
related work employed and which specific challenges they addressed.

The authors of the selected studies in this SLR have devised propos-
als for privacy-enhancing IoT data marketplaces to comply with privacy
requirements while maintaining utility, profitability, and fair and seam-
less data exchange. Since this is a relatively new, multidisciplinary
research field, the optimal combination of technologies and theoretical
foundations employed in these proposals is still in the development
phase. Therefore, no proposal has established itself as canonical yet.
Moreover, we observed that the research community needs to further
explore the balancing act of utility and privacy before data markets
flourish. We conclude that the practicality of PETs needs to advance
further to positively impact data markets for the IoT. Additionally,
we suggest researchers solve the copy problem and improve privacy-
enhancing verification as their absence discourages data markets from
forming. We also discovered that research on privacy-oriented data
markets could benefit from increased reuse of components from pre-
vious articles and existing open-source libraries and a more explicit
description of critical objectives. For example, the benefits of utilizing
distributed ledger technology (DLT) in data markets for IoT architec-
tures often remain unclear, and authors do not sufficiently consider
DLT’s lack of maturity and inherent privacy challenges.

The IoT’s particular characteristics bring new challenges for privacy
enhancement, most notably, the consequences of a lack of interoper-
ability, computation and storage constraints, and the privacy disparity
across jurisdictions. We have also observed the importance of first
determining the sovereignty layer in data market design, as the par-
ticipants’ ownership and management rules impact the PETs in the
rest of the layers. We also must underline that there is no ‘‘one-
size-fits-all’’ PET. Only a combination may tackle the various privacy
challenges facing data markets for the IoT. Lastly, we recommend that
institutions invest resources in the research and adoption of PETs to
remain competitive in the advent of a more privacy-enhancing IoT.
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Appendix A. Acronyms

AET Authenticity-enhancing technologies
BP Bundling problem
CP Copy problem
DF Digital fingerprint
DID Decentralized identifier
DLT Distributed ledger technology
DP Differential privacy
DS Digital signature
FHE Fully homomorphic encryption
FL Federated learning
GAN Generative adversarial networks
GDPR General Data Protection Regulation
HE Homomorphic encryption
ICT Information and communication technology
IoT Internet of things
KGC Key generation center
ML Machine learning
PET Privacy-enhancing technology
PHE Partially homomorphic encryption
PKI Public key infrastructure
PPDM Privacy-preserving data mining
REP Recursive enforcement problem
RQ Research question
SC Smart contract
SLR Systematic literature review
MPC Secure multiparty computation
TD Truth discovery
TEE Trusted execution environment
ZKP Zero-knowledge proof
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Appendix B. Summaries of the selected secondary studies

Table B.4: Secondary studies on privacy in data markets.

Year Study Topic Description

2020 [S8] Privacy-enhancing design of
data markets

Analyzes internet users’ preferences for privacy in data sharing to uncover mental models of these
preferences and their motives, barriers, and conditions for a privacy-enhancing data market. It
provides a set of key findings, the two most notable ones being that the primary barrier to creating
data markets is privacy and moral concerns and that the level of anonymization has the largest
effect on the willingness to share.

2019 [S19] Privacy and security data flow
challenges in an internet of
production

Introduces the internet of production and illustrates its inter-organizational data flows. It also
identifies security and privacy demands and challenges within these data flows: authenticity, data
access scope, and anonymity. Furthermore, it provides a survey of PETs to tackle these chal-
lenges: provide confidentiality, hide information during computation (data processing), verify the
authenticity of information (providing support), deploy mechanisms that enforce rules (platform
capabilities), and support approaches that focus on the security of data flows (external measures).

2019 [S14] Challenges and research oppor-
tunities in data markets for the
IoT

A short study that identifies three research opportunities in IoT data markets: Procurement, pric-
ing, and privacy. Significant identified challenges are: ambiguity in data ownership that hinders
trading, the difficulty to detect data piracy, and that privacy must be considered before trading.

2018 [S23] Privacy enhancing in IoT ap-
plications

Introduces and surveys privacy-enhancing technologies in the processes of data aggregation,
trading, and analysis; in particular, it discusses outsourced computation, data validation, and
blockchain technology. Additionally, it describes types of privacy breaches and their countermea-
sures. Furthermore, it reviews relevant aspects of pricing procedures as well as game-theoretical
approaches and auction schemes.

2018 [S4] Pricing, trading, and protection
in data markets for the IoT

Surveys the three fields of pricing models and strategies, design of platforms and data trading, and
digital copyright mechanisms with a focus on privacy enhancement.

2018 [S48] Privacy-enhancing analytics
for IoT and cloud-based sys-
tems

Summarizes privacy-enhancing technologies in the specific use case of a health data collecting
app in the health industry. More specifically, it separates privacy-enhancing technologies into two
scenarios: Outsourced computation and information sharing.

2016 [S35] Privacy enhancing in crowd-
sourcing task management

Surveys privacy-enhancing technologies and the challenges of crowdsourcing task management.
The proposed technologies are anonymization, such as k-anonymity, spatio-temporal privacy ap-
proaches, such as spatial cloaking or aggregated location via differential privacy, and policy-
based privacy preferences. The challenges that they present revolve around trust and credibil-
ity, reward-based tasking, utility, efficiency, enforcing privacy-enhancing technologies, and raise
privacy awareness.

2015 [S27] Privacy enhancing and chal-
lenges in data markets for the
IoT

The study introduces privacy enhancing for data markets for IoT devices, focusing on sensing-as-
a-service (data analysis of user-aggregated data). It identifies three challenges: Developing IoT
middleware for data analysis and autonomous privacy enhancing, autonomous end-user consent
acquisition and negotiation, and the autonomous modeling and negotiation of privacy risk and
economic reward. The most prevalent privacy-enhancing technologies and strategies they intro-
duce are personal information hubs, onion routing, and data aggregation via differential privacy or
k-anonymity.

2014 [S38] Privacy threats and challenges
in the IoT

Classifies the threats and challenges that come along with privacy in IoT applications for individ-
uals into seven categories: Re-identification of individuals through persistent pseudo-identifiers,
localization and tracking, profiling for social engineering and price discrimination, information
disclosure in life cycle transitions, information linkage of previously separated systems, inventory
attacks, and the disclosure of private information to an uninvited audience.
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Appendix C. Mappings of privacy- and authenticity-enhancing technologies

 Privacy- and authenticity-
 enhancing technologies for 

 IoT data markets

 Authenticity-enhancing  
 technologies

 Consensus layer
 Distributed ledger 
 technology
 [S11][S19*][23*][S49]

 Permissioned

 Hyperledger Iroha 
 [S3]

 Hyperledger Fabric* 
 [S10][S33]

 Rem (SGX)
 [S12]

 Quorum* 
 (Private Ethereum) 
 [S18]

 Permissionless

 Ethereum 
 [S1][S13][S20][S28]
 [S32][S45][S46]

 Agora*
 [S43]

 IOTA 
 [S20][S28][S30]

 Ekiden* 
 [S2][S25]

 Verification layer

 Truth discovery 

 Majority voting 
 [S9][S45]

 Reputation system 
 [S9]

 Peer-prediction-based 
 trustable data aggregation
 [S23*]

 Mutual validation 
 [S23*]

 Digital signatures
 [S19*]

 Identity-based
 [S7]

 Certificateless
 [S12]

 Assures identity authenticity.

 Assures identity authenticity. 
 Tackles the recursive enforcement problem. 

 Decentralized identifiers 
 [S3][S20]

 Version control
 [S19*]

 Digital fingerprint 
 [S19*]

 Enhance data and identity authenticity, and 
 integrity of computation and data. 

 Tackle the recursive enforcement problem 
 by removing the dependence on a single 

 trust anchor. (Forgo privacy)

 Assure data and identity authenticity, and 
 integrity of data. (Forgo privacy)

 Assure identity authenticity. Tackle the recursive enforcement 
 problem by removing the dependence on a single trust anchor.

 Enhance identity and data authenticity, and the integrity of computation 
 and data. 

 Tackle the recursive enforcement problem by removing the dependence on 
 a single trust anchor. 

 Distributed ledger technology forgoes privacy due to its inherent 
 transparency and replication; however, undesired information exposure can 
 be mitigated through the inclusion of PETs *(Ekiden employs TEEs, Agora 
 employs functional encryption, Quorum and Fabric restrict the visibility of 

 transactions).

 Privacy-enhancing 
 technologies

 Verification layer

 Hashing  SHA-256 
 [S1][S10][S33][S46]

 Assures data integrity while enhancing the confidentiality of the input data. 
 Circumvents the recursive enforcement problem.

 Digital signatures
 [S19*]

 Ring signatures 
 [S32]

 Blind signatures 
 [S20][S26]

 Enhances privacy further by concealing the identity's 
 authenticity. Tackles the bundling problem

 Can assure identity authenticity. Enhances privacy further by concealing 
 the sent data. Tackles the bundling problem

 Storage layer

 Communication layer

 Encryption

 Symmetric encryption 
 [S25][S42]

 AES 
 [S1][S32][S33][S41][S45]

 Asymmetric encryption 
 [S1][S2][S3][S10]
 [S17][S25][S33]
 [S41][S42][S46]

 Onion Routing 
 [S4*][S26*][S27*][S35*]

 Enhance confidentiality.

 Enhances the privacy of the data sender's identity. Tackle the recursive 
 enforcement problem by removing the dependence on a single trust anchor.

 Processing layer

 Secure and 
 outsourced 
 computation

 Zero-knowledge proofs

 Non-interactive
 [S43]

 Interactive
 [S43*]

 Secure multiparty 
 computation 
 [S23*][S48*]

 Secret sharing 
 [S19*]

 Additive 
 [S5][S34]

 Shamir  ECIES 
 [S10]

 Garbled circuits 
 [S34] 

 Homomorphic 
 encryption 
 [S4*][S19*][S48*]

 Partial 
 [S46]

 Paillier 
 [S26][S41]

 Boneh-Goh-Nissim 
 [S7]

 Hash-ElGamal 
 [S34]

 Fully 
 [S10]

 Functional encryption

 Multi-client
 [S43]

 Single

 Trusted execution environments
 [S19*]

 SGX 
 [S2][S25][S45]

 Keystone 
 [S25*]

 Sanctum
 [S25*]

 Privacy-preserving data mining
 [S23*][S2][S25][S45]

 Tackle the copy problem by computing without disclosing the inputs.
 Circumvent the recursive enforcement problem.

 Can provide proof of data and identity authenticity leveraging zero-
 knowledge proofs or digital signatures with digital certificates.

 Can provide proof of data and computation integrity.
 Enhance confidentiality.

 Anonymization

 Semantic
 Differential privacy 
 [S4*][S8*][S19*][S27*]
 [S48*][S35*][S49*]

 Local
 [S3][S9][S15]
 [S16][S37][S42]

 Global
 [S2][S18][S22][S24]
 [S25][S28][S50]

 Syntactic

 K-Anonymity 
 [S3][S8*][S27*][S28][S33]
 [S49*] [S35*][S36][S47]

 Non-sensitive 
 attribute re-
 identification 
 prevention

 L-Diversity 
 [S47]

 T-Closeness 
 [S47]

 Generalization 
 ß-likeness 
 [S44]

 Suppression 
 [S36]

 Generalization 
 [S21][S36]

 Perturbative

 Categorical
 Perturbation 
 ß-likeness 
 [S44]

 Numerical

 Additive noise 
 [S19*][S36]
 [S47][S48*]

 Random space 
 perturbation
 [S48*]

 Geometric 
 perturbation
 [S48*]

 Pseudonym 
 creation 
 [S29*]

 Asymmetric encryption  ElGamal 
 [S7]

 Deterministic encryption 
 Order-preserving 
 encryption 
 [S48*]

 Tackle the bundling problem by 
 reducing data authenticity.

 Sovereignty layer
 Privacy policies
 (Access control)
 [S19*][S35*][S40*]

 Decentralized
 Smart contracts
 (Distributed ledger 
 technology)

 Ekiden 
 [S2][S25]

 Ethereum
 [S28]

 Negotiated 
 [S6*][S28][S29][S33]

 Pre-defined logic 
 [S21][S36]

 Determine the privacy requirements that should be enforced by PETs.
 If policies are decentralized, then they tackle the recursive enforcement 

 problem by removing the dependence on a single trust anchor.

 *Some PETs 
 also contain 
 authenticity-
 enhancing 
 properties.

Figure C.11: Classification of the identified privacy- and authenticity-enhancing technologies in this SLR, together with the challenges they tackle. Any other
privacy approach encountered in the SLR without a succinct inclusion of the underlying technology was either not included in a leaf node but in a parent node
or completely dismissed if too vague. *The publication reviews the technology without delving into it in-depth or using it as a building block of the architecture
concept, e.g., the technology is only mentioned in the opportunities for future work.
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Appendix D. Summaries of the selected primary studies

Table D.5: Set of examples from the selected studies describing different data marketplace
architectures and auctions based on PETs and AETs with a focus on secure computation
technologies.

Year Study Privacy-enhancing ap-
proaches

Description

2020 [S41] Partially homomorphic en-
cryption, symmetric encryp-
tion, and digital signatures

Develops a privacy-enhancing auction for big data trading using Paillier’s cryptosystem [18] and
a one-time pad. They consider four entities: sellers, buyers, an auctioneer, and an intermediary
platform. A data auction is carried out without any entity seeing the data (except the auction win-
ner) or the bid values, which are ordered obliviously by the auctioneer thanks to the homomorphic
properties of the ciphertext. Furthermore, to efficiently encrypt the data, the authors use symmetric
encryption (AES). Lastly, digital signatures are created with the same homomorphic cryptosystem,
which the authors use to encrypt the symmetric keys.

2018 [S7] Partially homomorphic en-
cryption, digital signatures,
and pseudonym creation

Implements a platform for data markets that facilitates data processing and outcome verification
while enhancing the privacy of identities and their data. The authors consider four entities: data
contributor, service provider, data consumer, and a registration center; in a two-layer system model:
data acquisition and trading. Furthermore, the platform synchronizes data processing and signa-
ture verification into the same homomorphic ciphertext space (encrypt and then sign). Addition-
ally, they tightly integrate data processing with outcome verification via a set of homomorphic
properties. To achieve a trade-off between functionality and performance, they selected a partially
homomorphic scheme called Boneh-Goh-Nissim cryptosystem [84].

2018 [S10] Fully homomorphic encryp-
tion, secure multiparty com-
putation, distributed ledger
technology, and hashing

Provides a distributed outsourcing computation architecture, whereby data owners may request
fully homomorphic computations with a schema called fully homomorphic non-interactive veri-
fiable secret sharing [86]. Moreover, the proposed architecture allows transactions to be verified
by the participants of the permissioned blockchain thanks to the immutability properties of the
blockchain; Hyperledger Fabric was the selected blockchain architecture. Moreover, the hash
value of the shared data is stored in the blockchain, for data recipients to verify the truthfulness of
the received data. Furthermore, for secure multiparty computation, the authors implement Shamir’s
secret sharing [72] with ECIES by leveraging the distributed nature of the blockchain. In this man-
ner, the data owner may share verifiable pieces of information with a set of servers. Then, the
servers execute the necessary computations, and when several verified responses are received by
the agreed data consumer, the true result is recovered.

2016 [S34] Partially homomorphic en-
cryption, and secure multi-
party computation

Develops an auction cloud-based framework that cryptographically hides the bids from all auction
participants until a winner is determined. It achieves this by combining PHE based on the hashed
scheme [85] of ElGamal [202], and secure two-party computation through garble circuits and
additive secret sharing.

2015 [S26] Partially homomorphic en-
cryption, digital signatures,
and onion routing

Proposes a combinatorial auction [203] mechanism that ensures the privacy of the bidders. The
bidders bids are blindly signed through the third party [61] so that the third party does not learn
the contents. Later, these signatures are used by the bidder to prove the authenticity of the bids.
The winner is determined by the third party through a partially homomorphically encrypted com-
putation using the Paillier cryptosystem [18]. Lastly, the identities of the bidders are enhanced by
using onion routing [204].

2012 [S5] Secure multiparty computation Implements a privacy-enhancing data mining service market, whereby data donors distribute confi-
dential data among a set of participants employing additive secret sharing. The miners collectively
perform secure multiparty computation based on the author’s algorithm [205]. Finally, the results
are in turn sent to the previously agreed analyst, who combines them to obtain the intelligible
output.
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Table D.6: Set of examples from the selected studies describing different data marketplace
architectures and trading mechanisms based on PETs and AETs with a focus on anonymiza-
tion technologies.

Year Study Privacy-enhancing
approaches

Description

2020 [S24] Differential privacy Designs a privacy-enhancing crowd-sensed data trading mechanism. First, the data broker orches-
trates an auction whereby data consumers bid in a differentially private manner for a data asset.
Secondly, to form a data asset, the data broker creates a set of data generation tasks, some of which
are fake to protect the privacy of the auction winner. Lastly, the data broker selects data owner
outputs in a differentially private manner. More specifically, both the auction-based data pricing
and the data collection are based on the differentially private exponential mechanism.

2019 [S37] Differential privacy Proposes a differentially private data market auction framework with a fair negotiation method to
set the price and noise; this study is extended in [S42]. The entities involved are a data provider,
a consumer, and a trusted market manager that matches providers with consumers and enforces
Rubinstein bargaining. Firstly, the data provider and consumer enter a negotiation phase that
involves the data query, the ε values, and the unit price for ε. Once the negotiation is over, the data
provider answers the query with the agreed ε with local differential privacy.

2019 [S42] Differential privacy and digital
signatures

Proposes a differentially private data market framework. This study extends [S37] by specifying
the type of differential privacy algorithm, and the digital signature schemata followed to deploy
the framework in practice. The authors use local differential privacy for numeric [206] and for
categorical [207] data types.

2019 [S15] Differential privacy Designs contracts for a data marketplace whereby a data broker matches the required accuracy from
a data consumer with the degree of privacy that data owners desire. Furthermore, by handpicking
the data sources, the differentially private algorithm incurs a bias that makes the output more
accurate while maintaining the desired privacy from the data owners. Lastly, the authors derive an
optimal data contract to minimize payment while satisfying accuracy and privacy.

2019 [S50] Differential privacy Proposes a framework for counting trading range query results, and designs a pricing approach for
the traded results. Firstly, the framework calculates the range counts approximately, and secondly,
it protects the results further by using differential privacy, while satisfying the accuracy demands
of data consumers. The authors also design the pricing scheme in a way that prevents arbitrage.

2019 [S22] Differential privacy Designs an online auction with two stages, whereby a trusted auctioneer aggregates data from data
owners and applies differential privacy before selling the data to consumers. In the first stage,
the auctioneer selects data owners based on their privacy requirements to maximize profit. In the
second stage, the auctioneer applies differential privacy to the aggregated data and subsequently
sells the data to a consumer in an auction.

2018 [S2] Differential privacy, distributed
ledger technology, smart con-
tracts, privacy policies, asym-
metric encryption, and trusted
execution environments

Implements an end-to-end privacy-enhancing decentralized data marketplace for data consumers
to train machine learning algorithms. The authors achieve end-to-end privacy by protecting in-
puts with asymmetric encryption and differential privacy, and the execution with trusted execution
environments. More specifically, differential privacy prevents the weights of machine learning al-
gorithms from overfitting to the inputs. Because of the privacy limitations of current distributed
ledger technology applications, the authors of this study and of the subsequent publication [S25]
created a novel concept unlike any other blockchain-based system. For example, in principle, the
smart contracts of their architecture may contain machine learning algorithms which may be ex-
ecuted in trusted execution environments, hold privacy policies and payment logic, and point to
where encrypted data and decryption keys are stored privately. On the other hand, data consumers
also deploy smart contracts that may interact with the data owners.

2018 [S16] Differential privacy Develops an auction framework for privacy-enhancing data aggregation for mobile crowdsensing.
The auctioneer chooses data owners based on their sensing capabilities, and the data owners apply
differential privacy to their inputs sampling from a noise distribution tailored by the auctioneer for
each data owner based on its qualities. The goal of the platform is to optimize task allocation to
a set of data owners while minimizing their payment, taking into account accuracy and privacy
constraints.

2018 [S9] Differential privacy and truth
discovery

Designs two locally differentially private mechanisms for truth discovery in crowd sensing, so
that the answers from edge devices are protected while being useful in aggregate. The second
mechanism provides more utility for an equal degree of privacy, and consists on the users randomly
selecting a probability distribution, and in turn, adding noise sampled thereof to their truthful
answer.

40 129



Table D.6: PETs and AETs in the context of anonymization (continued).

Year Study Privacy-enhancing
approaches

Description

2018 [S21] Privacy policies and general-
ization

Proposes a data market framework that models and enforces privacy policies dynamically for data-
intensive applications. More specifically, the authors implement a data-flow-focused system with
a policy enforcement algorithm defined by users and a context. In data-flow computing, directed
graphs embody the application, where edges represent data streams and nodes represent functional
operators and data sources or sinks. The data is anonymized based on policies and enforced by
generalization, e.g., substituting Munich with Germany. To formalize a language to model the
privacy policies, the authors use metric first-order temporal logic.

2017 [S47] K-anonymity and additive
noise

Models a data marketplace in which groups of users may actively monetize their data through a
mediator and a set of mobile crowd sensing service providers. The authors use a reverse auc-
tion, where users bid for performing sensing tasks. Individual users may set their own privacy
preferences, and if they are a coalition of users, they are protected by k-anonymity, t-closeness,
l-diversity and local noise addition approaches. The total coalition payoff is divided among the
cooperative users based on their marginal contributions to the total data quality at the end of the
sensing service.

2016 [S36] K-anonymity, additive noise,
and privacy policies

Designs a one-to-one privacy enhancing paradigm for a data market place in which privacy policies
and data requirements are defined based on the publication record of the data owner. Because
published records of a user aggregate over time and thus accrue privacy risk, the paradigm relies
on privacy risk management, which is enforced by evaluating the risk associated with revealing yet
another piece of information with regard to the privacy requirements. This evaluation is based on
the preferences of the user, or if unfeasible, based on current regulation; furthermore, it is based on
an assessment of the background information, achieved by semantically analyzing attributes that
if released could be linked to externally available information. Ultimately, to privatise the data, the
authors propose syntactic technologies such as k-anonymity, suppression, and generalization, and
semantic ones like additive noise.
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Table D.7: Set of examples from the selected studies describing different data marketplace
architectures based on PETs and AETs with an underlying distributed ledger technology.

Year Study Privacy-enhancing
approaches

Description

2020 [S3] Distributed ledger technology,
smart contracts, decentralized
identifiers, digital signatures,
k-anonymity, and differential
privacy

Implements a framework for mobility data markets with six layers, each with a purpose and a
technology to execute. Furthermore, the framework focuses on location-based services. The iden-
tity layer uses asymmetric identity keys, i.e. a key issued only to a real person, to verify that an
entity is a real individual. The privacy layer leverages k-anonymity for Geomasking (low utility
and high privacy), and when the service needs an exact location, differential privacy for Geo-
Indistinguishability (high utility and low privacy). Moreover, the contract layer is based on smart
contracts that enforce fair trade and the resolve disputes automatically. For the private communi-
cation layer, the authors use decentralized identifiers (DID) [153] issued by the device of a person
itself. When devices communicate, the communication has a unique ID based on both of the DIDs,
thus, even though the communication data is persisted in a blockchain, it is nontrivial to track the
locations of a user. Consecutively, the incentive layer uses smart contracts and data brokers to
promote data exchange for a profit; however, this architecture does not tackle the copy problem.
The consensus layer is based on a consortium blockchain for distributed governance among non-
anonymous honest entities. The blockchain selected was Hyperledger Iroha, chiefly because of its
lightweight quality that couples with deployments in IoT devices.

2020 [S43] Distributed ledger technology,
smart contracts, functional en-
cryption, and zero-knowledge
proofs

Proposes a privacy-enhancing decentralized data marketplace employing the Agora blockchain
with verification technology that enable data prosumers to monetize their data. The privacy-
enhancing aspect is achieved by sending encrypted data to brokers employing a primitive called
multi-client functional encryption [87][88], which ensures that the receiver may only decrypt the
output of a formerly agreed-on function. Moreover, consumers may purchase these outputs, to-
gether with a proof of correctness from the broker by using non-interactive zero-knowledge proofs.
For the decentralized architecture, the authors employ the Agora blockchain, and atomic payments
are performed via smart contracts.

2020 [S45] Distributed ledger technology,
smart contracts, trusted execu-
tion environments, truth dis-
covery, digital signatures

Proposes a data processing-as-a-service model based on a blockchain-based data trading ecosys-
tem, whereby neither data brokers nor consumers have access to the raw data, only to the analysis.
The use of a blockchain (Ethereum) prevents a single point of failure and allows for immutability
and transparency in transactions. Furthermore, to protect the data, the analysis results, and the pro-
cessing itself, the authors use Intel’s SGX trusted execution environment [95], in addition to the
symmetric encryption algorithm AES-256 to provide encryption and decryption within and outside
the secure environment. The architecture uses the conventional Ethereum Virtual Machine (EVM)
for traditional smart contracts, while the data analysis contracts are executed in a SGX-protected
EVM where an initial key exchange is needed. Lastly, the nodes in the network form a compute
market, i.e. multiple nodes execute the analysis and only the most frequent result is delivered to
the data consumer, and the corresponding nodes are rewarded.

2020 [S28] Distributed ledger technology,
privacy policies, differential
privacy, k-anonymity, and dig-
ital signatures

Proposes an architecture for a personal data marketplace in which personal data is stored decen-
trally in a allegedly GDPR compliant manner. To accomplish this, transactions and pointers to
the data are encrypted and stored using a distributed ledger technology, namely IOTA. The data
is stored either in an interplanetary file system, or in an IOTA-based storage format. In order to
access such data, a data aggregator must request permissions through Ethereum-based smart con-
tracts (whitelists) owned by data consumers. Once the permission has been granted, the trusted
data aggregator, whose mutually agreed privacy policies are persisted in another Ethereum-based
smart contract, waits until enough data owners exist to fulfill a particular analysis, so that the ag-
gregator may perform k-anonymity. The data aggregator sells the anonymized data to consumers
and remunerates data owners accordingly. However, the presence of a trusted aggregator defeats to
some extent the purpose of a decentralized platform. Furthermore, the link between Ethereum and
IOTA is carried out by trusted authentication services, which allow data aggregators to decrypt the
data. Lastly, in order for data owners to grant access to their data, the authors recommend dynamic
threshold encryption [208] over centralized forms of authentication services.

2020 [S18] Distributed ledger technology,
smart contracts, and differen-
tial privacy

Proposes a data trading approach in which privacy loss is publicly auditable and data owners set
their privacy requirements on publicly available contracts. To accomplish this, the author uses a
private Ethereum blockchain called Quorum that supports a set of built-in privacy measures, such
as private transactions, messaging, and contracts; however, this design also restricts the interactions
that are possible with smart contracts outside the private subset. Furthermore, the data owner
applies differential privacy locally before sharing the data with the consumer.
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Table D.7: PETs and AETs in the context of DLT (continued).

Year Study Privacy-enhancing
approaches

Description

2019 [S25] Distributed ledger technology,
trusted execution environ-
ments, smart contracts, privacy
policies, digital signatures, and
differential privacy

Implements an end-to-end privacy-enhancing decentralized data marketplace for data consumers
to train machine learning algorithms, among other Turing-complete tasks. The architecture pro-
posed is a mature version of [S2]. Containing all the features of [S2], R. Cheng, et al. [S25]
improve the performance of a newly designed distributed ledger technology to allow for horizontal
scaling, i.e. the more nodes are added to the network, the more performant the network is, un-
like e.g. Bitcoin or Ethereum; furthermore, the authors tackle the problem of confidentiality by
separating consensus from execution, whose computations are performed in a trusted execution
environment. Horizontal scaling is achieved by allowing for parallel transaction execution, which
is, in turn, accomplished by a set of transaction schedulers, and by creating dedicated committees
for computation, storage, merging outputs, key management, and consensus. However, scalability
through restricting the degree of redundancy entails a security/integrity tradeoff. Key management
committees are necessary for the use of trusted execution environments to enable confidential com-
putations. The architecture uses symmetric keys for state encryption and asymmetric encryption
for concealing user inputs. The authors achieve end-to-end privacy by protecting inputs with asym-
metric encryption and differential privacy, and the execution with trusted execution environments.
More specifically, differential privacy prevents the weights of machine learning algorithms from
overfitting to the inputs. Because of the privacy limitations of current distributed ledger technol-
ogy applications, they created a new concept so that smart contracts allow for privacy-enhancing
features; this concept was introduced by [S2].

2019 [S32] Distributed ledger technology,
smart contracts, and digital sig-
natures

Proposes a privacy-enhancing fair data trading protocol. The protocol relies on the Ethereum
blockchain to achieve a decentralized nature, however, the authors claim the protocol is blockchain
agnostic. Nonetheless, despite using a decentralized network, the market manager holds non-
negligible authority, as it may trace the identity of sellers so that they can be punished monetarily
in case they misbehave. Furthermore, once the buyers have decided which data asset to purchase,
the sellers use symmetric keys to encrypt data in chunks before sending it to the buyers. Upon
receiving the data chunks, the buyer (i) challenges a set of data chunks, and upon verification
of truthful data, (ii) employs similarity learning, a machine learning technology [209], to decide
whether to finally purchase the data. Consequently, once the buyer decides to purchase the data,
the seller and buyer interact via a payment smart contract and double-authentication-preventing
signatures [210] to ensure payment and data decryption. Lastly, in order to enhance the anonymity
of the actors, the protocol uses ring signatures [136][137].

2019 [S20] Distributed ledger technology,
smart contracts, digital signa-
tures, and decentralized identi-
fiers

Implements a decentralized data market architecture with secure data processing for the IoT.
To achieve decentralization, the authors rely on the distributed ledger technology IOTA, and
Ethereum-based smart contracts for subscribing to data streams. The constellation of actors con-
sists of three entities: a data provider, a consumer, and a broker; the former two entities are included
in a registry via decentralized identifiers [153]. The product that the consumers purchase is a key
to a data stream for a predetermined period of time, created but not accessible by the data broker.
For the consumer to attain data access in a private manner, blind signatures [61] are employed,
which enable a data broker to verify stream access keys from the data provider without ever ac-
cessing these keys. More specifically, the data provider ”blinds” the session key with the broker’s
public key and sends the blinded key to the broker, consequently, the broker certifies the key with
its signature and returns the signature to the provider who removes the blinding factor to access
the stream. Lastly, to exchange stream data, an inter-planetary file system is employed.

2019 [S12] Distributed ledger technology,
trusted execution environ-
ments, and digital signatures

Proposes a distributed IoT data storage system and a data trading scheme. The authors use the
blockchain for its distributed nature, immutability, and requester authentication; moreover, their
solution is blockchain agnostic. However, for the consensus algorithm, the authors rely on In-
tel’s Software Guard Extension (SGX) [95] to deploy a trusted execution environment, to per-
form ”Proof of Useful Work”. The blockchain only contains pointers (addresses) to a distributed
hash table, where the data is stored off-chain by peers of the network. Only certified data con-
sumers, e.g. other IoT devices, would be able to query addresses in the blockchain. Furthermore,
the authors employ certificateless cryptography so that the key generation center of conventional
identity-based encryption does not need to be trusted [152]. To perform the cryptographic opera-
tions, edge devices are deployed. Lastly, to share data with purchasers, the authors propose to use
either asymmetric encryption or re-encryption [211].

2019 [S1] Distributed ledger technology,
digital signatures, and hashing

Prototypes a decentralized fair data trading platform. The authors rely on the Ethereum blockchain
to avoid third-party data brokers and to leverage the ledger’s immutability properties. Moreover,
data sellers utilize smart contracts to propose their data offers and to interact with sellers. Sellers
include the hash of the data in the ledger so that the buyer may initiate a rebuttal if there is an
expectation mismatch. Additionally, to ensure accountability the authors rely on digital signatures
to verify that the data was encrypted using a specific key that belongs to the seller, and encrypt the
data efficiently using symmetric encryption. The asset traded are decryption keys, and buyers may
retrieve data as ciphertexts from untrusted storage.
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Table D.7: PETs and AETs in the context of DLT (continued).

Year Study Privacy-enhancing
approaches

Description

2018 [S46] Distributed ledger technology,
smart contracts, partially ho-
momorphic encryption, hash-
ing, and digital signatures

Proposes two secure, and fair data trading decentralized schemata built on the Ethereum
blockchain. One scheme enables entities to trade raw data, while the other scheme enables them
to exchange statistics. The authors chose blockchain in both schemata for its immutability, smart
contracts, P2P payment, and disintermediation. Furthermore, for the second scheme, the authors
use partially homomorphic encryption to perform confidential statistics. For the data structure
to compute the statistics, the authors chose a Merkle Accumulative Tree, where the leaf nodes
hold the encrypted data and the non-leaf nodes contain the hash values and a cumulative sum of
homomorphic ciphertexts. The data exchanged is verifiable through digital signatures based on
asymmetric encryption.

2017 [S33] Distributed ledger technol-
ogy, privacy policies, digital
signatures, hashing, and
k-anonymity

Prototypes a decentralized data market platform for anonymized data. The underlying distributed
ledger technology is Hyperledger Fabric, whose peers act as data brokers. The data brokers may
only handle datasets based on a set of privacy policies in the interest of the data owner and dic-
tated by a data domain-specific privacy policy manager. The blockchain acts as an auditable
ledger for transactions between data brokers and consumers, while the exchange of data is han-
dled off-chain. Furthermore, the anonymization of data is suggested to be performed employing
k-anonymity by the broker upon dataset reception from a secure channel, however, the solution
remains anonymization-agnostic. For every actor to verify that the correct anonymized dataset
has been shared, the broker sends its hash value using SHA-256 to the blockchain before send-
ing it to the consumer. Upon reception, both the policy manager and data receiver may verify
the dataset. Lastly, cryptography technologies are employed to encrypt the dataset symmetrically
(128-bit AES) before sharing the dataset to the consumer, and the actors use ECDSA to sign con-
firmations and transactions.
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Appendix E. Distribution of selected studies by publication channels

Table E.8: Publication channels for the studies from our SLR.

# Publication source Type No. %

1 ACM International Conference Proceeding Series Conference 2 4
2 IEEE International Conference on Internet of Things Conference 2 4
3 VLDB Endowment Journal 2 4
4 ACM Conference on Computer and Communications Security Conference 1 2
5 ACM International Workshop on Mobile Commerce Workshop 1 2
6 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Conference 1 2
7 ACM SIGMOD Record Journal 1 2
8 CEUR Workshop Workshop 1 2
9 Computer Law and Security Review Journal 1 2

10 Computer Networks Journal 1 2
11 Concurrency Computation: Practice and Experience Journal 1 2
12 Conference on Information and Knowledge Management Conference 1 2
13 Electronic Markets Journal 1 2
14 IACR Cryptology ePrint Archive Journal 1 2
15 IEEE Access Journal 1 2
16 IEEE Cloud Computing Journal 1 2
17 IEEE Communications Magazine Journal 1 2
18 IEEE Computer Journal 1 2
19 IEEE Eurasia Conference on IOT, Communication and Engineering Conference 1 2
20 IEEE European Symposium on Security and Privacy Conference 1 2
21 IEEE International Conference on Big Data Conference 1 2
22 IEEE International Conference on Blockchain and Cryptocurrency Conference 1 2
23 IEEE International Conference on Collaboration and Internet Computing Conference 1 2
24 IEEE International Conference on Pervasive Computing and Communications Workshops Conference 1 2
25 IEEE International Conference on Software Engineering Research, Management and Applications Conference 1 2
26 IEEE Internet Computing Journal 1 2
27 IEEE Internet of Things Journal Journal 1 2
28 IEEE International Conference on Parallel and Distributed Processing with Applications, Big Data and Conference 1 2

Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking
29 IEEE Symposium on Reliable Distributed Systems Conference 1 2
30 IEEE Transactions on Information Forensics and Security Journal 1 2
31 IEEE Transactions on Knowledge and Data Engineering Journal 1 2
32 IEEE Transactions on Network Science and Engineering Journal 1 2
33 IEEE Transactions on Services Computing Journal 1 2
34 IEEE Wireless Communications Journal 1 2
35 Information Sciences Journal 1 2
36 International Conference on Distributed Computing Systems Conference 1 2
37 International Conference on Smart Systems and Technologies Conference 1 2
38 International Conference on Software Engineering Conference 1 2
39 International Symposium on Mobile Ad Hoc Networking and Computing Conference 1 2
40 International Workshop on Security and Privacy in Big Data Workshop 1 2
41 International Workshop on Social Sensing Workshop 1 2
42 LNCS 7299 – Intelligence and Security Informatics Journal 1 2
43 Online Information Review Journal 1 2
44 Security and Communication Networks Journal 1 2
45 Sensors Journal 1 2
46 Transportation Research Part C: Emerging Technologies Journal 1 2
47 Workshop on the Economics of Networks, Systems and Computation Workshop 1 2

Total 50 100
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Appendix F. Electronic data sources and inclusion and exclusion criteria

Table F.9: Electronic data sources (SDS) used in automated search.

ID Name (Acronym) Website

EDS1 IEEE Xplore (IEEE) https://ieeexplore.ieee.org/

EDS2 ACM Digital Library (ACM) https://dl.acm.org/

EDS3 ISI Web of Science (WoS) https://www.webofknowledge.com

EDS4 ScienceDirect (SD) https://www.sciencedirect.com/

EDS5 SpringerLink (SL) https://link.springer.com/

EDS6 Wiley InterScience (WIS) https://onlinelibrary.wiley.com/

EDS7 SCOPUS (SCOPUS) https://www.scopus.com/

Table F.10: Selection criteria used to identify relevant papers. Fulfilling only one exclusion criterion discards the publication from being included.

ID Facet Inclusion criterion Exclusion criterion

F1 Coarse focus The privacy and data market topic must be within the
field of computer science and technology

Any other privacy and data market sub-
field

F2 Narrow focus The paper must explicitly focus on privacy within data
marketplaces within the defined applications

The paper does not explicitly address
this research direction

F3 Publication channel type Conference publication OR journal publication (full
text) OR workshop publication

The paper is any other type of publica-
tion

F4 Language English Non-English

F5 Duplicates Publications are new to the filtering process Publication has already been processed

F6 Peer-review The publication has been peer-reviewed The publication is a grey publication

F7 Full-text access TUM-Access granted TUM-Access not granted
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Appendix G. Figures of the metadata analysis

United States
13

 Canada
1

 Germany
4

China
14

United Kingdom
3

 Australia
2

Finland
1

 Spain
1

Singapore
2

Japan
1

Taiwan
1

Estonia
1

Italy
2

Croatia
1

 Austria
1

Korea
2

© 2020 Mapbox © OpenStreetMapFigure G.12: Map of most active countries in the field of privacy-enhancing data markets for the IoT research.

Table G.11: Classification scheme of research types as described by [212].

Research type Description

Evaluation research The authors implement existing techniques, and the solutions are evaluated in practice.

Philosophical papers These studies present a new perspective on existing research by organizing the domain into a
taxonomy or a conceptual framework.

Solution proposal The authors propose a solution to a problem. The solution can be either novel or a significantly
enhanced version of an existent technique. A small example or argumentation demonstrates the
benefit and applicability of the solution.
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ABSTRACT
Analyses that fulfill differential privacy provide plausible deniabil-
ity to individuals while allowing analysts to extract insights from
data. However, beyond an often acceptable accuracy tradeoff, these
statistical disclosure techniques generally inhibit the verifiability
of the provided information, as one cannot check the correctness
of the participants’ truthful information, the differentially private
mechanism, or the unbiased random number generation. While
related work has already discussed this opportunity, an efficient
implementation with a precise bound on errors and correspond-
ing proofs of the differential privacy property is so far missing.
In this paper, we follow an approach based on zero-knowledge
proofs (ZKPs), in specific succinct non-interactive arguments of
knowledge, as a verifiable computation technique to prove the
correctness of a differentially private query output. In particular,
we ensure the guarantees of differential privacy hold despite the
limitations of ZKPs that operate on finite fields and have limited
branching capabilities. We demonstrate that our approach has prac-
tical performance and discuss how practitioners could employ our
primitives to verifiably query individuals’ age from their digitally
signed ID card in a differentially private manner.
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1 INTRODUCTION
Gathering information through polls to produce statistics regarding,
e.g., the health, financial status, or demographics of a population
bears the risk of exposing individuals’ sensitive data during and
after the survey. One approach is to anonymize the gathered data
centrally, which implies high costs for implementing security mea-
sures and still carries ethical risks. Moreover, since interviewees
cannot control that their data is adequately anonymized and pro-
tected in this paradigm and their level of trust in the surveyor is
limited, their response may be subject to bias, specifically with
highly sensitive or embarrassing questions.

A simple means to enhance privacy by design and reduce the
risk of bias in such polls is through randomized response [57],
its variations [6, 25, 30, 41, 58], or more involved forms of local
differential privacy (DP) [3, 31–33, 37, 38], which provide plausible
deniability by adding noise to interviewees’ answers. The noise
distribution of these techniques is typically centered around 0 with
finite variance [14], so according to the law of large numbers, the
mean of the noisy data converges towards the original mean as the
sample size increases, improving accuracy. However, in this local
approach, there is a lack of response verifiability – the interviewer
has no assurance that the interviewee, i.e., the adversary in our
system, answered truthfully. This lack of verifiability is arguably
severe when rewards encourage malicious participation, e.g., there
is a monetary incentive to participate but no willingness to answer
truthfully.

Verifiable computation can prove the execution of a particular
algorithm from truthful inputs without revealing private informa-
tion [4]. Accordingly, we suggest combining verifiable computation
with local differential privacy (LDP) techniques to prove (i) the
interviewees’ plausible deniability guarantee derived from random-
ness and (ii) the truthfulness of their deterministic answer, i.e., the
value has been signed by a reputed authority. Similar approaches
have been discussed, for instance, in [44, 47]. Our approach hence
targets polls where there is cryptographic evidence for the answers,
e.g., a digital ID card signed by a government, digital diplomas
issued by a certified university, or COVID-19 immunity passports
certified by pharmacies or doctors. Such attestations are considered,
for instance, in the European digital wallet initiative [15, 46, 48].
In this context, it is particularly helpful that the digital certificates
involved in the many implementations of digital wallets are in fact
anonymous credentials [7, 50, 52], which allows us to extract a
user’s attribute values without revealing strongly correlating infor-
mation. Moreover, we believe that in the private sector, attestations
derived, for instance, from cryptographically signed statements
of bank accounts or insurance claims and their use in verifiable
differentially private surveys could have considerable economic
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potential, as data markets require technologies that provide verifia-
bility despite privacy protection [20].

There are two main approaches for verifiable computation: trusted
execution environments (TEEs) [45], and non-interactive or interac-
tive zero-knowledge proofs (ZKPs) [4, 23, 53]. Given the numerous
known vulnerabilities and attacks on TEEs [1, 40, 54] and Intel’s
SGX SDK deprecation [35], we decided to focus on ZKP-based ap-
proaches. Moreover, non-interactive ZKPs do not require to engage
into sequential messaging, so – unlike with interactive ZKP – the
prover can convince multiple parties of a claim with a single mes-
sage [53]. Thus, we opted to use non-interactive ZKPs to enable
the verifiability of the computational integrity in the selected DP
mechanism.

This paper’s scope covers both binary answers, e.g., “Are you
older than 18?”, and numerical answers, e.g., “How old are you?”.
We provide plausible deniability for interviewees with differential
privacy (DP) mechanisms in the local model, specifically, employing
randomized response [57] and exponentially distributed noise [12].
Lastly, we adapt these mechanism such that we can verify their
correct execution with ZKPs by employing succinct non-interactive
arguments of knowledge (SNARKs) [5, 27], resulting in the primi-
tives represented in Algorithms 1 and 2. We implement the corre-
sponding circuits and evaluate their performance characteristics to
assess our approach’s practicality.1

As randomized response and exponential noise are building
blocks for other more complex mechanisms, our scheme could also
be extended to prove their verifiability, such as in two-stage ran-
domized response models [30, 41], unrelated question models [25],
forced response models [6], LDP models [31–33, 37, 38], private
weighted histogram aggregation in crowdsourcing by leveraging
multivariate randomized response [58], building histograms [3], or
using exponential noise distributions in the central model of DP.
Such verifiable forms of DP are also relevant in multilateral proto-
cols that provide economic incentives for participation based on
the participants’ contribution. In such settings, one should compute
fair rewards from the original data without noise, requiring that
the computation of both their deterministic contribution and the
shared noisy value is verifiable. An example for such a scenario
is fair blockchain-based federated learning, studied by Rückel et
al. [47].

This paper is structured as follows. We provide preliminaries in
Section 2, discuss the SNARK-based approach and its implementa-
tion in Section 3, and evaluate it in Section 4. Lastly, we comment
on related work in Section 5, discuss our approach in Section 6, and
conclude the paper in Section 7.

2 PRELIMINARIES
2.1 Differential Privacy
We consider a collection of records from a population (dataset) 𝐷 to
belong to the universe of possible datasetsD. We let 𝐷 ′ ∼ 𝐷 denote
neighboring datasets, i.e., 𝐷 and 𝐷 ′ differ by only one record. Differ-
ential privacy, introduced by Dwork et al. in 2006 [13], formalizes
a mathematical definition of privacy whereby an analysis’ output
distribution is nearly the same across all neighboring datasets. The

1The source code can be found at https://github.com/applied-crypto/DPfeatZKP.

indistinguishability between datasets is parameterized by Y > 0.
The higher Y, the easier it is to identify datasets.

Definition 1. ((Y, 𝛿)-Differential Privacy [14]). A randomized
mechanismM is (Y, 𝛿)-differentially private iff for any neighboring
dataset 𝐷 ′ ∼ 𝐷 , and any set of possible outputs S ⊆ 𝑅𝑎𝑛𝑔𝑒 (M),

Pr[M(𝐷) ∈ S] ≤ 𝑒Y · Pr[M(𝐷 ′) ∈ S] + 𝛿 .

Having a non-zero 𝛿 relaxes the strict Y bound for possible but
unlikely events; this type of guarantee is called approximate DP,
whereas with 𝛿 = 0, we obtain pure DP. A randomized mecha-
nismM typically ensures DP by adding carefully calibrated random
noise to the output of a deterministic function 𝑓 (·), for example, by
adding exponentially distributed noise [12] to a count, average, or
median. Furthermore, another factor beyond Y that calibrates noise
is the sensitivity of 𝑓 (·), which measures the maximum variation
of the output as the input dataset 𝐷 changes (denoted as Δ).

Lastly, it is important to note that a DP mechanismM follows
sequential composition [14], i.e., if M is computed 𝑛 times over
a dataset D with Y𝑖 , in effect, the total Y is given by

∑
Y𝑖 . Thus,

the results become less private with every query. Yet, a system
can effectively impede an attacker from averaging out the noise
through a sequence of DP results by blocking subsequent queries
or deterministically generating the randomness based on the query
parameters.

2.2 Local Differential Privacy
Definition 1 corresponds to the central model, in which a trusted
curator collects data points and adds noise from a distribution
whose variance is tuned by the function’s sensitivity (Δ) and the
required degree of plausible deniability (Y). In this paper, we focus on
the local model, whereby the data subject obfuscates the data points
directly before sharing. While the local model typically provides
less accuracy than the central model, the data subject does not need
to trust the curator from a privacy perspective.

For the local setting, we adopt similar notation to [22, 36]. We
let X contain all the possible records of a population, where 𝑥 ∈ X
holds a particular individual’s data. We let 𝑓 : X → [𝑙, 𝑢] be a
function that maps each element of 𝑥 ∈ X to 𝑓 (𝑥) ∈ [𝑙, 𝑢], where
[𝑙, 𝑢] is the set of integers between the lower bound 𝑙 ∈ N and the
upper bound 𝑢 ∈ N. In practice, 𝑓 (·) provides information about
an individual, e.g., their age, income, height, or blood pressure. Let
M : 𝑓 (𝑥) → [0, 𝑛] denote a randomized mechanism that maps
each deterministic query output 𝑓 (𝑥) = 𝑖 ∈ [𝑙, 𝑢] to each possible
value 𝑗 ∈ [𝑙, 𝑢] following a probability distribution that depends on
the value 𝑖 . In this setting, a randomized mechanismM provides
local (Y, 𝛿)-DP iff for every pair of inputs 𝑥, 𝑥 ′ ∈ X, and for every
possible output 𝑗 ∈ [𝑙, 𝑢]:

Pr[M(𝑥, 𝑓 ) = 𝑗] ≤ 𝑒Y · Pr[M(𝑥 ′, 𝑓 ) = 𝑗] + 𝛿 .
We will cover two mechanisms that satisfy local DP: random-

ized response [57] for binary data and exponentially distributed
noise [12] for numerical data.
Randomized response. Warner [57] introduced randomized re-
sponse in 1965 to provide plausible deniability to interviewees,
which encouraged them to answer truthfully, thus reducing bias
in surveys. The interviewees would answer queries 𝑓 (·) of the
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form “Are you a [...]?". The following algorithm is well-known to
be (ln 3, 0)-differentially private [14]:

(1) Flip a coin.
(2) If heads, answer truthfully.
(3) Else, flip the coin again and answer “Yes" if heads and “No"

otherwise.
Exponentially distributed noise. Early work by Dwork et al. [12]
shows that noise distributed as Pr[𝑥] ∝ exp(− Y |𝑥 |Δ ) fulfills (Y, 0)-DP.
We leverage exponentially distributed noise for locally obfuscating
numerical data to answer queries 𝑓 (·) of the form “How many [...]?”,
i.e., count queries, by adding noise to the deterministic output of
𝑓 (·) in this manner:M(𝑥, 𝑓 ) = 𝑓 (𝑥) + noise. As the responses are
local, we must ensure indistinguishability between any 𝑓 (𝑥) and
𝑓 (𝑥 ′); thus, we must set Δ according to the output range of 𝑓 (·).
In practice, to ensure that an attacker cannot easily distinguish
individuals in the extreme-case scenario, e.g., a newborn from a
128-year old person, with the query “How old are you?,” we set
Δ = |max

𝑥
𝑓 (𝑥) −min

𝑥
𝑓 (𝑥) | = |128 − 0|.

As presented above, both mechanisms fulfill pure DP; however,
generating exponentially distributed noise is subject to approxima-
tion errors in practical implementations and, thus, we only achieve
approximate DP instead [21]. We shed more light on this issue in
Section 3.

2.3 Proof Systems and SNARKs
There have been several key milestones in the work towards cryp-
tographically verifiable computations. Babai [2] studied interactive
proofs between a prover and a verifier and analyzed which problems
can be checked by a polynomially bounded verifier when adding
randomness and interaction. Fiat and Shamir [17] then introduced
a heuristic to replace the verifier with a random oracle, which one
can implement with a secure hash function. Nonetheless, one uses
the word “argument” instead of “proof” in this case because the exis-
tence of a secure hash function has not been proven mathematically
so far and is rather a working hypothesis, also bound to today’s
compute and (differential) cryptanalysis capabilities. Goldwasser
et al. [23] proved that one could verify a large class of problems
probabilistically in this way, where the verifier additionally does
not even need to learn anything beyond the statement’s correctness.
While practical applications of the accordingly termed ZKPs were
rare after these early developments, a period of rapid improvements
started in the mid-2000s and led to the computationally efficient
(quasi-linear complexity) generation of succinct arguments of loga-
rithmic size and verification time, called SNARKs [5, 27].

The research community has since developed other flavors such
as scalable transparent arguments of knowledge (STARKs), which
differ in the setup procedure, proof size, and cryptographic assump-
tions, but have similar functional aspects. These new approaches
allow succinct or scalable zero-knowledge proofs for the correctness
of arbitrary statements and, thus, practical verifiable computation,
i.e., proofs for the correct execution of a program without display-
ing all inputs, outputs, or intermediate steps. Additionally, one can
reveal Merkle proofs or other cryptographic relations like the public
keys corresponding to a digital signatures by a reputed institution
on the inputs to force the prover to use unknown but fixed variables.
Arguably, the core area of application of ZKPs today is in distributed

Table 1: Notation

X Universe of records
𝑥 ∈ X Individual record

𝑓 : X → [𝑙, 𝑢] Query function
𝑙 Lower bound, min

𝑥
𝑓 (𝑥)

𝑢 Upper bound, max
𝑥

𝑓 (𝑥)
M : [𝑙, 𝑢] → [𝑙, 𝑢] Randomized mechanism

Δ Sensitivity of 𝑓 (·), |𝑢 − 𝑙 |
ℓ Noise added to 𝑓 (·)

nBits Number of bits representing ℓ

𝑝𝑘 Bias of bit 𝑘 , Pr[ℓ𝑘 = 1]
𝑑 Precision

ledgers, where because of redundant execution, cheap (succinct)
verification without revealing sensitive data is important to solve
scalability issues and mitigate excessive data visibility [4, 51].

3 IMPLEMENTATION
In this section, we first describe how to adapt standard implementa-
tions of uniform randomness generation, randomized response, and
exponentially distributed noise (see Section 2) such that ZKPs can
verify their use. For our implementation, we employ Circom, a well-
known, open-source technology stack for implementing ZKPs [34].
Circom is a domain specific programming language and compiler
that translates JavaScript-like arithmetic circuits in a rank one con-
straint system (R1CS), on behalf of which further libraries (e.g.,
SnarkJS) can generate SNARKs. A circom-specific variable type to
explicitly define constraints is called Signal. The programming of
these signals is restricted by the underlying quadratic arithmetic
program (QAP), which the R1CS encodes, to use only quadratic
constraints inside one Signal. Therefore, a Signal can only be as-
signed once and is immutable. For this reason, calculations often
have to be split into multiple sub-calculations. Moreover, branch-
ings and loops can only be used in a restricted way, for instance,
the maximum number of iterations must be specified by a constant
instead of a variable or Signal.

In what follows, we will use the roles prover for the survey par-
ticipant and verifier for the surveyor, and the notation specified
in Table 1. We also assume that both of them have a dedicated
key-pair that they can use for end-to-end encrypted, authenticated
communication and for recognizing each other, or another means
to bind them to a specific secret key, for instance, through an anony-
mous credential with private holder binding [7]. Such anonymous
credentials can be implemented with specific-purpose ZKPs [7] and
with SNARKs [11, 49]. Key-pairs are a common way to facilitate
the generation of verifiable randomness, for instance, in Algorand’s
consensus mechanism [10].

3.1 Verifiable Uniform Randomness
To achieve uniform randomness that cannot be spoiled unilaterally
by either the prover or the verifier, we employ two inputs and a
hash function as a random oracle [8]. More specifically, we sign
a challenge that the verifier specifies with the prover’s private
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Algorithm 1: Verifiable randomized response for binary
data and uniform randomness (“unbiased coins”).

Data: 𝑣: binary truthful value (“Yes” or “No”); 𝑎: prover contribution to
randomness (secret key); 𝑏: verifier contribution to randomness
(challenge).

Result: Differentially private answer.
1 Function VerifiableUnifRand(𝑎, 𝑏):
2 𝑠 = sign(𝑎, 𝑏) // sign challenge with secret key

3 𝑟 = hash(𝑠) // 𝑟 is an array of bits

4 return 𝑟

5 Function VerifiableRandomizedResponse(𝑣, 𝑎, 𝑏):
6 𝑟 = VerifiableUnifRand(𝑎, 𝑏)
7 if 𝑟 [0] = 0 then
8 return 𝑣
9 else if 𝑟 [1] = 0 then

10 return No
11 else
12 return Yes

key and hash the result. As the private key is determined by the
fixed prover’s public key, neither of the two parties can bias the
resulting randomness without collusion. We use Poseidon2 – a
relatively new hashing algorithm that was specifically developed
for use in ZKPs and that is already being used in many blockchain-
based applications on Ethereum and, therefore, to some extent
battle-tested [24]. We represent this building block as a function in
Algorithm 1 between lines 1 and 4, using existing components in
Circom for EdDSA signature verification, Poseidon, and conversion
of (large) integers to binary representation. Assuming that the
Poseidon hash function is a random oracle and the keypair was
created without anticipating the survey and the verifier’s challenge,
this gives us an array of 254 unbiased random bits.

3.2 Verifiable Randomized Response
Randomized response is simple to verify with ZKPs by utilizing the
verifiable uniform randomness function (see Algorithm 1). In prac-
tice, without loss of generality, we only consider the least two sig-
nificant bits of the random number generated. For the randomized
response algorithm presented in Section 2 and presented formally
in Algorithm 1, we need to sample at least once (last bit) and at most
twice (second-last bit), depending on the first coin flip. The source
code from Fig. 1 implements this in Circom. As if-statements are
not natively possible in R1CS and, therefore, only available with re-
strictions in Circom, we arithmetize the corresponding statements
in lines 7 to 12 from Algorithm 1 into the lines 39 to 40 from Fig. 1.

3.3 Verifiable Exponentially Distributed Noise
The exponentially distributed noise adaptation to ZKPs is not as
straightforward as with randomized response because it typically
involves floating point operations and rounding. After trying differ-
ent implementations of exponentially distributed noise generation
– we briefly cover the journey in Section 6 –we successfully adapted
the method proposed by Dwork et al. [12] to ZKP, which we present
in Algorithm 2: In their method, Dwork et al. approximated expo-
nentially distributed noise of Pr[𝑥] ∝ exp(− Y |𝑥 |Δ ) with the Poisson

2Using other hashing mechanisms is possible, yet the performance can become con-
siderably worse – for instance, in the case of SHA256, around 30x.

1 pragma circom 2.0.0;

2
3 include "./ poseidon.circom"; // Poseidon hashing

4 include "./ bitify.circom"; // Bit array conversion

5 include "./ eddsaposeidon.circom"; // Signature checking

6
7 template Main() {

8 signal input value; // v

9 signal input challenge;

10 signal input R8[2]; // elliptic curve element of

signature

11 signal input S; // field element of signature

12 signal input pk[2]; // public key

13
14 // check signature on challenge against public key

15 component eddsaVerifier = EdDSAPoseidonVerifier ();

16 eddsaVerifier.Ax <== pk[0];

17 eddsaVerifier.Ay <== pk[1];

18 eddsaVerifier.S <== S;

19 eddsaVerifier.R8x <== R8[0];

20 eddsaVerifier.R8y <== R8[1];

21 eddsaVerifier.M <== challenge;

22 eddsaVerifier.enabled <== 1; // checks signature implicitly

23
24 // hash signature and convert this randomness to bit array

25 component hash = Poseidon (3);

26 component bitify = Num2Bits_strict ();

27 hash.inputs [0] <== R8[0];

28 hash.inputs [1] <== R8[1];

29 hash.inputs [2] <== S;

30 bitify.in <== hash.out;

31 signal randSeq [254];

32 for(var i = 0; i < 254; i++) {

33 randSeq[i] <== bitify.out[i];

34 }

35
36 // determine result from randomness

37 signal rand;

38 signal output out;

39 rand <== randSeq [0] * randSeq [1];

40 out <== (1 - randSeq [0]) * value + rand;

41
42 }

43
44 component main {public [challenge , pk]} = Main();

Figure 1: Circom code for a component that implements
verifiable randomized response.

distribution, fulfilling (Y, 𝛿)-DP. Their method samples noise by
producing a sequence of biased bits equal in number to the number
of bits in the binary expansion of the noise ℓ . The algorithm flips an
extra bit to add a sign (±ℓ). The bias of each bit 𝑘 ∈ {0, ..., nBits}
representing ℓ in binary is given in Section 4.1 of [12] by

Pr[ℓ𝑘 ] := Pr[ℓ𝑘 = 1] =
(
1 + exp

(
Y ·2𝑘
Δ

))−1
.

To generate biased bits from unbiased bits, we include in Algo-
rithm 2 a well-known technique: first, we expand in binary the bias
𝑝𝑘 of a bit 𝑘 . Afterward, the algorithm sequentially examines ran-
dom unbiased bits until one differs from the corresponding bit in the
binary expansion of 𝑝𝑘 and, subsequently, outputs the complement
of the random unbiased bit [12]. Essentially, this approach allows to
simulate biased coins up to a pre-defined precision with unbiased
coins. However, the method employed has three limitations.

The first limitation entails several issues that relate to represent-
ing with a limited precision 𝑑 the bias of the bits composing 𝑝𝑘 ,
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i.e., 𝑑 is the number of bits available for representation. Nonethe-
less, the probability of the inner loop not terminating for 𝑗 < 𝑑

and, therefore, raising an error decays with 2−𝑑 . Thus, we can
easily choose 𝑑 such that the likelihood of this event is negligible
(line 17 of Algorithm 2). Furthermore, we show that we can pro-
vide enough precision in our circuit: The randomness generated
from a single Poseidon hash could provide a precision of around
2252 ≈ 1075, i.e., 𝑑 ≈ 75. By using multiple rounds of hashing and
signing, we could also generate more random bits and account for
higher precision needs. Additionally, we restrict noise values ℓ to
the interval [𝑙, 𝑢], where 𝑢 and 𝑙 are the deterministic function’s
output upper and lower bounds, respectively. For our experiment
on polling individuals’ age, we employed the algorithm with 𝑑 = 20
and Δ = |𝑢 − 𝑙 | = 128. These example values require the algorithm
to represent ℓ with nBits=7 bits and, in turn, generate one instance
of noise with 𝑑 · 7 + 1 = 141 < 256 bits (“times 𝑑” because each of
the 7 bits’ bias will be expanded to 𝑑 bits and one more for the sign).
In other words, a single round of hashing and signature verification
is sufficient (and would still be sufficient for 𝑑 = 35, which corre-
sponds to an error bound of 2−35 ≈ 10−10 when approximating
probabilities [12]), and a negligible probability to raise an error
(upper bound 7 · 2−20). We could also aim for the typical machine
accuracy of 10−16 by using 𝑑 > 16 · log2 (10) ≈ 53.1, i.e., 𝑑 ≥ 54,
which would involve the creation of two independent random bit
arrays.

These design decisions allow us to approximate the Poisson dis-
tribution with an error bound that we can determine and control
ex-ante, when designing the survey. Thus, we achieve (Y, 𝛿)-DP
with a statistical difference of 𝛿 = nBits·2−𝑑 = 7 · 2−20 [12]. Con-
sequently, for improving the DP guarantee on Y, we only need to
increase 𝑑 . Moreover, the probability mass outside the considered
interval [−2𝑑 , 2𝑑 ] is redistributed inside the interval, leading to an
additional statistical difference of 2 exp(−(Y · 2𝑑 )/Δ) that we let the
term nBits absorb [12].

The second limitation is the zero probability assigned to noise
values of a binary expansions with more bits than nBits (i.e., noise
outside of [𝑙, 𝑢]). Dwork et al. proposed to constrain the algorithm’s
output, i.e., deterministic answer + noise, to nBits and return the
deterministic answer in case there is an overflow. According to
Dwork et al. [12], as the distribution in the range [𝑙, 𝑢] is expo-
nential, we maintain the same privacy guarantee by increasing the
probability of not adding noise by a trivial amount (i.e., 𝛿 increases).
We execute a modulo operation to remap any output value outside
[𝑙, 𝑢] back in that range to reduce such an increase (lines 21 and 23
of Algorithm 2). Intuitively, a modulo operation on the output pre-
serves DP as it is a post-processing step and, also, will re-distribute
the outputs in the range instead of on one value. Formally, the proof
may be found in Lemma 3 of Wang et al. [56].

The third limitation comes with flipping an unbiased bit to assign
the sign of the noise, which converts a Poisson distribution into
a two-sided distribution with double the probability on its center,
i.e., of noise = 0. While Dwork et al. did not address this issue
in [12], we could follow the approach of Champion et al. [9] of
rejecting −0 and executing the algorithm again (section 3.3 of [9]).
DP is maintained as the number of failures is independent of the
noise. However, instead, to remain computationally performant,

we output a uniformly sampled value within [𝑙, 𝑢] if −0 (lines 19 to
23 of Algorithm 2), effectively removing the excess probability at
0. Intuitively, we preserve DP by adding more noise to the output
distribution. Formally, we provide this justification: Let 𝑃old be
some DP distribution on 𝑁 discrete values and 𝑃new such that
𝑃new (𝑥) = 𝛼𝑃old (𝑥) + (1 − 𝛼)/𝑁 . Obviously, this is a probability
distribution. In our case, 1 − 𝛼 is the probability of obtaining noise
−0. For any 𝐷 and 𝐷 ′ that differ in at most one record,

Pr[Mnew (𝐷) ∈ S]

= 𝛼 · Pr[Mold (𝐷) ∈ S] + (1 − 𝛼) ·
|𝐷 |
𝑁

≤ 𝛼𝑒Y · Pr[Mold (𝐷 ′) ∈ S] + 𝛼𝛿 + (1 − 𝛼) ·
|𝐷 |
𝑁

= 𝛼𝑒Y ·
(

Pr[Mnew (𝐷 ′) ∈ S]
𝛼

− |𝐷
′ | · (1 − 𝛼)
𝑁𝛼

)
+ 𝛼𝛿 + (1 − 𝛼) · |𝐷 |

𝑁

= 𝑒Y · Pr[Mnew (𝐷 ′) ∈ S] + 𝛼𝛿 + (1 − 𝛼) · |𝐷 | − 𝑒
Y |𝐷 ′ |

𝑁

≤ 𝑒Y · Pr[Mnew (𝐷 ′) ∈ S] + 𝛼𝛿 + (1 − 𝛼) · 1
𝑁
.

Given that Y ≥ 0, then 𝑒Y ≥ 1. Moreover, |𝐷 |− |𝐷 ′ | ≤ 1 because they
are neighboring. Thus, since we choose to re-distribute the excess
weight for noise −0 (𝛼 = 1 − 1

2 Prob(0)), 𝛿 may grow to at most
1
2 Prob(0) · 1

𝑁 . The above formulation is a universal upper bound:
Essentially, it proves that the convex combination of an (Y, 𝛿1)
mechanism and a uniform distribution with pointwise weight 𝛿2 =
1
𝑁 (which is obviously (0, 𝛿2)-DP) is (Y, 𝛿)-DP, where 𝛿 is the convex
combination of 𝛿1 and 𝛿2. Future work could focus on obtaining a
tighter 𝛿 bound specifically for the Poisson distribution or employ
the method from Champion et al. [9], which would maintain a 𝛿

upper bound of nBits · 2−𝑑 . Altogether, this approximation allows
us to sample exponentially distributed noise preserving (Y, 𝛿)-DP
in a way that we can successfully verify with ZKPs. We depict an
example of the resulting output distribution in Fig. 2.

As Circom does not allow for branching, i.e., implementing
conditional checks and breaking or continuing loops, besides the
workaround for if-statements, we had to introduce some additional
Signals (see Fig. 3). These Signals allow us to determine the correct
return value although all iterations from the loop are simulated in
the circuit. We did this by introducing Signal arrays hit1...nBits with
length 𝑑 that help to identify the firsts unequal pair of bits in one ( 𝑗 )
loop, where the loop would break in Algorithm 2. This approach
ensures that only the first occurrence of unequal bits (index 𝑖) is
taken into account for the calculation of the biased randomness.
Moreover, we multiply the inverted binary result from isEqual,
which compares the corresponding bits of the random sequence 𝑟 𝑗
and the probability 𝐵 𝑗,𝑝𝑘 , with the bit of the probability and the hit
bit-value, which is 1 as long as the result of isEqual of the last iter-
ation of the loop was 1, essentially [10, . . . , 1𝑖−1, 1𝑖 , 0𝑖+1, . . . , 0𝑑−1].
Therefore, only at the first inequality of those two bits the proba-
bility bit is not multiplied with zero, and, thus, can be taken into
account for the noise. In other words, 𝑒𝑣𝑎𝑙3[𝑘] [ 𝑗] is the “running
return value” after the 𝑗 + 1st iteration of the loop, and is set to 1
only if the 𝑗 th bit of the probability is one, the 𝑗 th bit of the random
sequence is 0, and the first time that the probability and random
bit array are different occurs at position 𝑗 as well.
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Algorithm 2: Verifiable exponentially distributed noise
generation for numerical data. By 𝑥 mod(𝑙, 𝑢) we denote
𝑙 + (𝑥 mod(𝑢 − 𝑙)).

Data: 𝑣: integer-valued truthful value; 𝑢: upper bound; 𝑙 , lower bound;
Δ = |𝑢 − 𝑙 | ≥ 0: sensitivity of query function; Y ≥ 0: privacy
parameter; 𝑑 ≥ 0: precision of binary expansion; 𝑎: prover
contribution to randomness (secret key); 𝑏: verifier contribution to
randomness (challenge).

Result: 𝑣 + noise ∼ Pois(𝑣 | YΔ ) .
1 Function VerifiableExponentialNoise(𝑣, Δ, Y , 𝑑):
2 𝐵𝐾 = BinaryExpansion(Δ)
3 𝐵𝑣 = BinaryExpansion(𝑣)
4 𝐵𝑟 = [] // 𝐵𝑟 stacks biased bits

5 for 𝑘 ← 0 to NumBits(𝐵𝐾 ) do
6 𝑝𝑘 = 1

1+exp(2𝑘 YΔ )
7 𝐵𝑝𝑘 = BinaryExpansion(𝑝𝑘 )

// 𝑟 has at least 𝑑 bits

8 𝑟 = VerifiableUnifRand(𝑎, 𝑏)
9 for 𝑗 ← 0 to 𝑑 do

// Where 𝑑 is the least significant bit

10 𝑟 𝑗 = r[j] // 𝑟 𝑗 ∈ {0, 1}
11 if 𝑟 𝑗 = 𝐵 𝑗,𝑝𝑘 then
12 continue
13 else
14 𝐵𝑟 .push(𝐵 𝑗,𝑝𝑘 )
15 break
16 if 𝑗 = 𝑑 then
17 return RaiseError

18 noise = DecimalExpansion(𝐵𝑟 )
19 sign = VerifiableUnifRand(𝑎,𝑏) [0]
20 if (noise = 0 and sign = 0) then
21 return

DecimalExpansion(VerifiableUnifRand(𝑎,𝑏)) mod (𝑙,𝑢)
22 else
23 return [ (𝑣 + (2 · sign − 1) · noise] mod (𝑙,𝑢)
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Figure 2: Example histogram for l = 0, u = 128, d = 20, 𝜺 = 10,
and true value v = 50 with a sample size of 10 000.

1
2 // include statements as before , plus modulo component

3 template Main(nBits , d) {

4 signal input challenge , value

5 signal input prob[nBits][d]; // binary expansions of p_k

6 signal input R8[2], S, pk[2]; // signature and public key

7 // check the EdDSA signature of the challenge against pk and

put it in the hash component to create randSeq , as in

Figure 1 (lines 10 to 34).

8 ...

9
10 component isEqual[nBits][d];

11 signal noiseBits[nBits];

12 signal eval1[nBits][d];

13 signal eval2[nBits][d];

14 signal eval3[nBits][d + 1];

15 signal hit[nBits][d + 1];

16
17 // run the algorithm to create biased coins

18 for (var i = 0; i < nBits; i++) {

19 for (var j = 0; j < d; j++) {

20 isEqual[i][j] = IsEqual ();

21 }

22 }

23 for (var k = 0; k < nBits; k++) {

24 hit[k][0] <== 1;

25 eval3[k][0] <== 0;

26 for (var j = 0; j < d; j++) {

27 isEqual[k][j].in[0] <== prob[k][j];

28 isEqual[k][j].in[1] <== randSeq[k * d + j];

29 hit[k][j + 1] <==

30 hit[k][j] * isEqual[k][j].out;

31 eval1[k][j] <== hit[k][j] * (1 - isEqual[k][j].out);

32 eval2[k][j] <== eval1[k][j] * prob[k][j];

33 eval3[k][j + 1] <== eval3[k][j] + eval2[k][j];

34 }

35 noiseBits[k] <== eval3[k][d];

36 }

37
38 component numify [2];

39 // compute exponential noise from its binary representation

40 numify [0] = Bits2Num(nBits);

41 for (var i = 0; i < nBits; i++) {

42 numify [0].in[i] <== noiseBits[i];

43 }

44 signal absNoise <== numify [0]. out;

45 signal positiveNoise <== randSeq[nBits * (d + 3)] * (value +

absNoise);

46 signal noisedResult <== (1 - randSeq[nBits * (d + 3)]) * (value

- absNoise) + positiveNoise;

47 // generate uniformly distributed noise

48 numify [1] = Bits2Num(nBits);

49 for (var i = 0; i < nBits; i++) {

50 numify [1].in[i] <== randSeq [((d + 2) * nBits) + i];

51 }

52
53 component isZero = IsZero (); // check if noise == -0

54 isZero.in <== absNoise;

55 signal isUnif <== isZero.out * (1 - randSeq[nBits * (d + 3)]);

56 signal unif <== isUnif * numify [1]. out;

57 signal result <== (1 - isUnif) * noisedResult + unif;

58
59 component modulo = Modulo ();

60 modulo.in <== result;

61 modulo.mod <== 128;

62 signal output out <== modulo.out;

63 }

64
65 component main {public [challenge , pk]} = Main(7, 22);

Figure 3: Circom code for generating verifiable LDP noise
with 𝑙 = 0 and 𝑢 = 128. Import statements, signal definitions,
and EdDSA verification omitted (see also Figure 1).
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3.4 Application: Verifiable
Differentially-Private Polling with
Anonymous Credentials

With the primitives presented in Algorithms 1 and 2, and an imple-
mentation of anonymous credentials with Circom, we can now
implement verifiable, differentially private polling. Note that a
Circom-based implementation of anonymous credentials allows
to selectively disclose attributes from a digital certificate that cor-
responds to a Merkle tree with a signed root, and incorporate au-
thenticity checks, private holder binding, expiration, revocation,
and predicate proofs such as range proofs. We first sketch an ex-
ample of a hypothetical setting. Digitally signed attestations of a
person’s attributes are stored in their “digital wallet” – a mobile
application – in the form of an anonymous credential, which could
contain personal information such as the holder’s name, age, and
gender, as well as a digital signature from an institution that the
surveyor trusts regarding the authenticity of the information, e.g., a
government or hospital. The digital wallet can respond to so-called
proof requests [50] that include requirements from the verifier’s
side what the survey participant should prove. In our case, this
could include the following requirements:

• Prove knowledge of (i) an authentic anonymous credential,
issued by some institution, and (ii) knowledge of the secret
key associated with the public key for the private holder,
which is a binding included as one of the attributes in the
anonymous credential.
• Prove that the anonymous credential is (i) not expired (range

proof on expiration attribute) and (ii) not revoked (proof
about set-inclusion or exclusion, referring to some public
accumulator value as specified by the verifier).
• Reveal the result of our implementation of verifiable ran-

domized response or exponentially distributed noise, applied
to one of the (boolean or integer-valued) attributes in the
credential. The attribute is represented by the issuer’s signa-
ture on the anonymous credential, for instance, the attribute
could be a leaf in a Merkle tree whose root is signed by the
issuer.

In the case of a SNARK, the wallet (or the proof request) would
also need to contain the structured reference string (proving key)
generated in a setup procedure. It is important that while generally
this proving key must be generated in a multi-party computation, in
this case, it can be generated by the surveyor alone: Any party that
knows how the structured reference string was created can fake
proofs, but the privacy guarantees are not harmed in this case [18].

When the surveyor does not leak the “toxic waste” used for creat-
ing the structured reference string, the ZKP’s soundness guarantee
provides a chain of trust for the attribute, which is not directly
revealed but modified through verifiable noise. Lastly, the verifier
(surveyor) can cryptographically check that the attribute and the
survey participant’s secret key for private holder binding are used
as private inputs for the LDP mechanism, and that the challenge as
specified by the surveyor is used. We illustrate the survey process
with anonymous credentials and verifiable differential privacy in
Fig. 4.

4 EVALUATION
In this section, we discuss the performance and practicality of our
approach for verifiable LDP. We restrict the discussion to verifiable
exponentially distributed noise because it includes strictly more
complex operations, so by demonstrating its reasonable perfor-
mance, we can conclude that verifiable randomized response also
is practical. The implementation process of our verifiable LDP ap-
proach with exponentially distributed noise was two-tiered. First,
we implemented Algorithm 2 in Javascript and verified that it in-
deed yields an exponential distribution, where values that – after
adding the LDP noise – exceed the range of the output are instead
displayed without added noise. Secondly, we employed the Poseidon
hash function to create a random Oracle that generates verifiable
randomness jointly from the prover’s and the verifier’s input. Next,
we implemented the corresponding circuits in Circom.

Our choice of Algorithm 2 and our choice of implementation
as displayed in Fig. 3 yielded a highly efficient implementation for
creating verifiable, Poisson-distributed LDP: Using the Poseidon
hash function, our circuit has 5997 R1CS constraints. On an Ubuntu
20.04 virtual machine with 4 virtual cores that runs on a commercial
standard Laptop (Dell Latitude 7400 with an Intel i7 8665U CPU),
proof creation – which is typically the bottleneck for using ZKPs –
takes around 2.2 s when using the Groth16 proof system [26] on
the Barreto-Naehrig curve over a 254 bit prime field (bn128), Web
assembly for witness generation, and Javascript for proof genera-
tion. The size of the proving and verification key are around 3.4 MB
and 3.5 kB, respectively. These sizes suggest that proof generation
would also be practical on a web-based mobile application, although
future research should validate this assumption.

With an optimized tool, performance is even better: Using an
optimized C++-based witness generation and a proof generation
based on x86 Assembly for Intel processors (“Rapidsnark”, see [28]),
proof generation is reduced to only 140 ms. Because to date there
is no available optimized tool for proof verification, this operation
still takes around 0.8 s in Javascript. Proof verification in a complex,
combined survey may even reduce complexity on the surveyor’s
side because the complexity of SNARK verification is not dependent
on the complexity of the original computation for which the survey
participant proves integrity. Moreover, we tested the deployment
of a smart contract verifier on Ethereum, which could be used for
blockchain-based, incentivized differentially private surveys and,
therefore, general data protection regulation (GDPR)-compliant
applications on personal data. We measured the smart contract’s
deployment cost at around 1, 150, 000 gas and its invocation at
around 300, 000 gas.

5 RELATED WORK
While there is current and extensive research in the local model
of DP [3, 31–33, 37, 38] and in ZKPs [4, 5, 27], there are only few
publications that bridge both technologies.

We identified four studies that are close to ours. Rückel et al. [47]
propose an architecture to share weights from federated learning
models in a verifiable DP manner and add verifiable noise to the pri-
vate weights. However, their approach does not acknowledge that
their discretization of the Laplace distribution only fulfills approxi-
mate DP, and does not propose a bound for 𝛿 or an approach that

145



ARES 2022, August 23–26, 2022, Vienna, Austria Gonzalo Munilla Garrido, Matthias Babel, and Johannes Sedlmeir

Issuer (e.g., Federal Printer) Holder / Prover (Survey Participant) Verifier (Surveyor)

Creates binding keypair
 in digital wallet app

Send binding public key
Request digital certificate
(anonymous credential)

Signs anonymous credential
that contains the holder's
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and binding public key
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 credential
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Figure 4: Process of participating in a survey with verifiable differential privacy.

works for high precision requirements, as they use the approximate
inverse cumulative distribution function (CDF) as input for the
circuit. Moreover, Tsaloli et al. [55] only provide a high-level mo-
tivation for using ZKPs for verifiable differential privacy, without
implementation details. Furthermore, while Kato et al. [39] provide
details on how to create fair randomness with a related technol-
ogy (secure-multiparty computation), they do not attempt to make
the result of the algorithm verifiable, i.e., they cannot provide a
cryptographic check of the truthful value from, e.g., an anonymous
credential, before adding LDP noise.

Lastly, Narayan et al. [44] discuss the opportunities of verifiable
differential privacy, yet they provide no details of their ZKP-based
implementation. For instance, they do not elaborate how they con-
sider rounding and how they achieve guarantees on the accuracy
of their verifiable pure DP proposal. Additionally, their approach
focuses on the central model of DP instead and shows impracti-
cal performance, as it requires 2 hours of proof generation for 32
servers. Nonetheless, when implemented with more recent ZKP
libraries, their performance may be closer to ours as advances in
proving times over the last years have been dramatic.

6 DISCUSSION
While adapting randomized response to ZKPs is straightforward, we
investigated several approaches before successfully implementing
exponentially distributed noise with ZKPs. This section discusses
the process we followed to arrive to the implementation described
in Section 3.

Adapting a DP mechanism that leverages exponential noise to
ZKP has two significant challenges. Conceptually, since ZKPs can

verify an arbitrary program, sampling from an exponential distribu-
tion may seem straightforward. Unfortunately, in practice, repeated
operations with floats that involve rounding in classical software
are challenging to implement because the range of numbers in
the nominator and denominator is bounded by a large prime, and
repeated rounding is costly since the complexity of the ZKP always
needs to account for the worst possible case. Furthermore, the prop-
agation of the corresponding errors becomes challenging to control.
Thus, the generality of computations that ZKPs can cover well is
initially limited to arithmetic operations on prime fields and their
corresponding primitives such as hash functions and signatures.

The second major challenge is the inability of finite computers
to fulfill the definition of DP on the real line. Mironov [43] was the
first to demonstrate that implementing a DP mechanism with the
floating-point arithmetic of finite computers does not guarantee DP.
Mironov proposed to solve this issue while maintaining Y-DP with
the Snapping mechanism [43], and recently, Naoise et al. proposed
secure random sampling [29]. However, while their output noise
is discrete, we must still handle floats that ZKPs cannot process
efficiently.

Therefore, we first thought of discretizing the support of the
Laplace distribution (well-known to be Y-DP [14]) by sampling from
its inverse CDF with a finite input range {1, ..., 𝑑}, where 𝑑 denotes
the precision Circom [34] can handle – similarly to Rückel et al. [47].
However, we were not able to determine provable guarantees on 𝛿
for the approximate DP mechanism. Thus, we turned to the Stone-
Weierstrass theorem to approximate a polynomial so close to the
Laplacian probability density function (PDF) that the approximation
error would be negligible. Furthermore, because the approximated
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PDF would be a polynomial itself, we thought to elegantly prove its
use with ZKP. We employed Bernstein polynomials [16] to approx-
imate the PDF in a closed interval and, subsequently, performed
rejection sampling. However, we encountered two problems: (i) our
approximation was limited to a closed interval, whereas the Lapla-
cian PDF has unbounded support, and (ii) the Bernstein coefficients
are in general real numbers, which ZKP cannot process efficiently,
and the propagation of errors when rounding with fixed precision
is again complex to handle. Specifically, the complexity stems from
the very high degree of the polynomials and the lack of homogene-
ity, i.e., there are many different degrees of monomials that all scale
differently for a specific accuracy when multiplying inputs with a
large power of 10 and rounding afterward.

Subsequently, we turned to the truncated geometric mecha-
nism (TGM) [22], which coincidentally has the advantage to provide
better accuracy for count queries [19], the focus of this study. Ad-
ditionally, the truncation solved the problem of working with a
closed interval (also a limitation of finite computers) by condensing
the probability mass outside the interval in its lower and upper
bounds. Moreover, the support of the geometric mechanism are
integers, which ZKPs can process efficiently. Overall, TGM adapts
to finite computers while still providing pure Y-DP. However, the
probabilities assigned to each integer still fall on the real line. While
we ensured these probabilities became rational numbers by care-
fully choosing Y [3], which a conventional computer can handle,
the integers necessary to represent them were too large for the
limited precision available in Circom [34] and other libraries for im-
plementing ZKPs, and we were unable to write a theoretical bound
for 𝛿 if we approximated the real numbers with finite precision.

To cope with precision limitations and the difficulty to bound 𝛿 ,
we then looked for simple sampling methods that provide bounds
on 𝛿 , which finally led us to Dwork et al. [12] (see Section 3). This
concluded our search, as their method for sampling exponentially
distributed noise consists on repeatedly flipping unbiased coins
(which is easily implemented in Circom with hashing and conver-
sion to bit arrays), and provides a bound for 𝛿 based on the precision
we can afford with Circom.

In our implementation, we used verifiable randomness co-created
by the verifier (surveyor) and the prover (survey participant). As
we noted in Section 2, when a surveyor repeatedly conducts the
query in our implementation with different challenges, they could
get additional information because by the law of large numbers,
the truthful query value without noise can be determined with
increasing accuracy. Consequently, in many scenarios, it may be
appropriate to use a challenge that is hard coded, derived from
the surveyor institution’s public key, or even derived solely from
the attribute (e.g., the index of the age in the anonymous creden-
tial), such that repeated queries, even from different but colluding
institutions, would not decrease the degree of plausible deniabil-
ity Y. Furthermore, note that our verifiable randomized response
implementation could be easily extended to flip biased coins by, e.g.,
generating a verifiable hash and checking whether its normalized
value is lower than the desired bias.

7 CONCLUSION
We introduce primitives for implementing verifiable differentially
private polls in the local setting. To achieve verifiability, we carefully
selected DP mechanisms for binary and numerical data and adapted
their implementations to SNARKs. Thanks to these primitives, we
can achieve cryptographically verifiable survey responses while
providing plausible deniability for survey participants and, in turn,
not only reduce but entirely prevent bias in survey participants’
answers while giving them the needed privacy guarantees. Further-
more, note that our primitive for verifiable exponentially distributed
noise allows for different aggregation queries beyond the count,
as it can ingest arbitrary sensitivity – we limited our narrative to
count queries for the simplicity of the explanations. Finally, thanks
to the evaluations we performed, we conclude that practitioners
can deploy our primitives with acceptable performance

We encourage practitioners to develop further primitives that can
adapt to other DP mechanisms, e.g., the exponential mechanism for
categorical data [42], and other randomized-response [6, 25, 30, 41,
58] and LDP [3, 31–33, 37, 38] approaches. Furthermore, conducting
studies about how interviewees would perceive the built-in trust
would allow the research community to understand how to frame
polls and reassure candidates of their privacy. Lastly, improving
the precision limitations of ZKP circuit compilers such as Circom
and more literature on frameworks for bounding 𝛿 in approximate
LDP would open the range of practical LDP mechanisms.
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ABSTRACT
Since its introduction in 2006, differential privacy has emerged as
a predominant statistical tool for quantifying data privacy in aca-
demic works. Yet despite the plethora of research and open-source
utilities that have accompanied its rise, with limited exceptions,
differential privacy has failed to achieve widespread adoption in
the enterprise domain. Our study aims to shed light on the funda-
mental causes underlying this academic-industrial utilization gap
through detailed interviews of 24 privacy practitioners across 9
major companies. We analyze the results of our survey to provide
key findings and suggestions for companies striving to improve
privacy protection in their data workflows and highlight the nec-
essary and missing requirements of existing differential privacy
tools, with the goal of guiding researchers working towards the
broader adoption of differential privacy. Our findings indicate that
analysts suffer from lengthy bureaucratic processes for requesting
access to sensitive data, yet once granted, only scarcely-enforced
privacy policies stand between rogue practitioners and misuse of
private information. We thus argue that differential privacy can
significantly improve the processes of requesting and conducting
data exploration across silos, and conclude that with a few of the
improvements suggested herein, the practical use of differential
privacy across the enterprise is within striking distance.

KEYWORDS
Privacy-enhancing technology, data sharing, data analytics, plat-
form, SQL, machine learning, case study, interviews, survey

1 INTRODUCTION
Several factors have spurred the development of more advanced
privacy-enhancing technologies (PETs) in the past years. On the
one hand, from an adversarial perspective, (i) multiple white-hat
attacks have shown that “traditional” anonymization techniques
such as suppressing names are vulnerable to re-identification across
industries [8, 29, 33, 67, 79, 94]. Additionally, between 2020 and
2021, (ii) the total cost of data breaches have increased by 10%
on average [87]. Moreover, (iii) governments have promulgated
data protection laws in the past years, such as the European General
Data Protection Regulation (GDPR) [30] or the California Consumer
Privacy Act [80]. In particular, the GDPR has issued fines as high
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as $887M [54] and $120M [20]. Furthermore, (iv) beyond the ethical
and moral obligations of companies to protect people’s privacy,
providing the best privacy protection available could (v) differentiate
and appreciate their brands [72], (vi) provide fairer products and
services that avoid price discrimination [35], and (vii) increase data
collection as PETs help to surmount regulatory barriers fairly [61].
Aiming to materialize these benefits while mitigating the privacy
risks, researchers have turned to differential privacy (DP), which,
since its inception in 2006 by Dwork et al. [28], has become the
golden privacy standard in academia due to its unique privacy
guarantees.

However, despite numerous open-source utilities, only a few tech
companies [6, 7, 24] and the US Census Bureau [57] have adopted
DP. Accordingly, our work addresses the research gap in bringing
DP into organizations’ workflows and reaching broader adoption.
Dwork et al. [27] partly covered the gap by interviewing DP experts,
while our study closes the remaining gap by bringing non-experts
into the spotlight. Thus, we interviewed 24 practitioners (19 analysts
and 5 data stewards) across 9 major companies that have not yet
deployed DP. Overall, our main contributions are:

(i) Survey Results. We formulated 5 research questions and
derived 24 interview questions thereof. The results of the
interviews provide an overview of the current state of data
access models (§ 5.1), privacy practices (§ 5.2), motivation
behind privacy protection (§ 5.3), and analysis workflows
(§ 5.4) in the industry.

(ii) Key Findings. From the survey results, we extract 11 key
findings, suggest improvements, and answer the 5 research
questions about the practicality of DP in the industry (§ 6).

(iii) Functional Requirements. Based on the key findings, we
propose 10 key desiderata to guide organizations in building
privacy-enhancing analytics systems that tackle the privacy-
related pain points in their workflows (§ 7.1).

(iv) Missing Building Blocks. Given the identified key desider-
ata, we outline 7 gaps in state-of-the-art DP tooling (§ 7.2).

Privacy officers and legal practitioners will find (i) and (ii) help-
ful in understanding the landscape of privacy and analysis work-
flows in the industry. Software engineers and developers will also
appreciate (iii) and (iv) as these contributions focus on tooling,
and, additionally, will find our early-stage privacy-enhancing an-
alytics system design presented in Appendix H helpful. Overall,
notable findings reveal that cumbersome data request processes
block analysts for significant periods for every new project. Ad-
ditionally, we note that SQL was more important than machine
learning, and data stewards are more concerned with security than
privacy. We conclude that DP could shorten data access processes,
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enable data exploration across silos, and is applicable to specific
use cases. Moreover, DP tool designers can learn from one another
as no tool outperforms the rest in every aspect, and, most impor-
tantly, bridging the gap between theory and practice is primarily
an engineering problem within striking distance.

2 DIFFERENTIAL PRIVACY
Unlike traditional privacy techniques, which are vulnerable to aux-
iliary information attacks [8, 29, 33, 67, 79, 94], differential pri-
vacy [28] mathematically formalizes a privacy guarantee agnostic
to background information. A function guarantees differential pri-
vacy (e.g., an analytics query or a machine learning (ML) model) if
it bounds the information gain that an attacker can expect from its
outputs. Aligned with this adversarial perspective, for the context
of this study, we define privacy as the prevention of an individual’s
re-identification [108].

In practice, the outputs of a differentially private function are
similarly likely, regardless of an individual’s contribution to the
input data. This similarity is bounded by the parameter ε , which is
inversely proportional to the strength of the privacy protection. A
randomized functionM(·) satisfies differential privacy by adding
calibrated random noise, typically to a deterministic function’s
output. Formally, differential privacy is defined as [26]:

Definition 1. (ε-Differential Privacy). A randomized function
M(·) is ε-differentially private iff for any two datasets D and D ′
differing on at most one element, and any set of possible outputs
S ⊆ Ranдe(M):

Pr[M (D) ∈ S] ≤ eε × Pr[M (D ′) ∈ S].
We introduce other concepts useful in the context of this paper:
Sensitivity. Beyond ε , the other parameter that affects the scale
of the noise is the sensitivity of the deterministic function, which
determines the maximum difference of the function’s outputs over
all possible neighboring datasets D and D ′.
Central/Local Model. An application can add differentially pri-
vate noise in the central model after aggregating data points from
different clients or in the local model by adding noise to each data
point individually. While the local model requires less trust as-
sumptions with the aggregator, it is usually noisier than the central
model.
Sequential Composition. Differential privacy algorithms follow
sequential composition [26], i.e., if one executes a sequence of (possi-
bly different) DP mechanisms n times over D with εi , the consumed
privacy budget ε =

∑
εi .

Privacy Budget Tracker. Because the added noise is centered
around 0, an attacker could reverse engineer the n outputs by av-
eraging out the noise. Thus, systems should implement privacy
budget trackers to prevent this attack.
Floating-Point Vulnerability. Proofs of differential privacy mech-
anisms work on continuous distributions, which leads to privacy
bugs in practice as the implementations rely on floating-point arith-
metic [76]. There are a few solutions to this problem. In short,
Mironov’s Snapping mechanism [76] discards the least-significant
bit in a post-processing step, Naoise et. al [51] combine four random
samples, and Haney et. al [46] designed a variant of the Laplace
mechanism that avoids a precision-based attack.

3 RELATED WORK
Some organizations have developed and deployed differential pri-
vacy tooling and have documented their purpose. Specifically, Ap-
ple [6, 7], Google [6], and Microsoft [24] employ algorithms based
on the local model of differential privacy to collect information
from users. The local model is not as predominant in the indus-
try as the global model (our focus), which has seen more deploy-
ments in the past years: Google’s Plume [4] enables simple statis-
tics (count, mean, sum, variancer, and quantile) over large-scale
datasets. Moreover, LinkedIn [63, 88, 89] proposed an API to anal-
yse user data, and the U.S. Census Bureau in 2020 [57] released
microdata; however, these two approaches only considered count
queries. Additionally, there exist open-source differential privacy
libraries, frameworks, and systems from Google [39–42, 107], Har-
vard [31, 47], IBM [52], Meta [74], OpenMined [83] (experimen-
tal product), Tumult Labs [99], and the University of Pennsylva-
nia [78] and Texas [90]. Note that OpenDP encapsulates Smart-
Noise core [82]. Additionally, researchers have also developed open-
source systems focused on user interfaces for differentially private
analytics: Bittner et. al [12], DPcomp [49], DPP [56], Overlook [97],
PSI (Ψ) [32], and ViP [77]. However, only a few libraries have been
discussed in a utility benchmark [36]. Moreover, Johnson et al.’s
work on differentially private SQL [60] at Uber [59] focused on a
quantitative evaluation of the queries without discussing its practi-
cality with practitioners. Unlike the previous literature above, we
aim to qualitatively understand the practicality and adaptability of
differential privacy in the central model to existing data analysis
pipelines within an organization beyond count queries.

Among top searches of surveys related to differential privacy in
digital libraries such as IEEE [53], ACM [3], ScienceDirect [92], or
ArXiv [19], one may notably find surveys of applications or analysis
models for differential privacy in the context of social networks [55],
cyber physical systems such as IoT [48], statistical learning [93],
location-based services [65], a user survey about privacy in data
sharing [15], and lessons learned from employing differential pri-
vacy in the US Census [34]. Notably, Kifer et al. [64] distills a set
of best practices and implementation details from their experience
designing differential privacy systems at Meta, which we consider
in our key system desiderata proposal (see section 7.1). However,
our work instead explores systems from companies unfamiliar with
differential privacy and focuses on answering whether differential
privacy could help data analysts in the broader industry. Lastly, the
closest work to ours is from Dwork et al. [27]. They interviewed
differential privacy experts regarding their implementation specifi-
cations. We differentiate from Dwork et al. [27] in that the hereby
interviewed practitioners and the organizations as a whole had no
significant technical expertise on differential privacy, which are the
vast majority in any industry, and, specifically, we sought to un-
derstand whether differential privacy could lift the privacy-related
roadblocks in their data analysis workflow.

4 RESEARCH METHOD
While a few organizations have successfully deployed differential
privacy for data analysis [6, 7, 24, 57, 63], the large majority have
not. To understand whether differential privacy in the central model
is practical in their analysis workflow, following a method inspired

152

150



Lessons Learned: Surveying the Practicality of Differential Privacy in the Industry Proceedings on Privacy Enhancing Technologies 2023(2)

by Dwork et al. [27], we performed an empirical study of a set
of institutions that have not deployed differential privacy yet for
their internal analysis workflows in production. Since the focus is
learning whether institutions could benefit from differential privacy,
the unit of analysis is the institutions themselves.

Our study captures the answers of 24 practitioners from 9 orga-
nizations (19 data analysts/engineers and 5 data stewards). These
organizations belong to different industries and are of different
sizes (see details in Table 2 of Appendix A). The jurisdictions under
which the companies operate contextualize our key findings to the
EU (5 companies) and the USA (4 companies). In some organiza-
tions, we interviewed multiple practitioners to produce a holistic
picture of their data analysis ecosystem. Most interviewees held
the title of data analyst, while a few were data engineers or team
leaders. Irrespective of their title, all practitioners had at least two
years and at most 10 years of experience in the field (around 5 years
on average) and a comprehensive knowledge of their organization’s
tools and workflows for data analysis.
Interview Format and Research Questions. We interviewed
each of the 19 data analysts for approximately one hour through
a video conference, except for three via email correspondence, be-
tween November 2021 and August 2022. We produced the research
questions (RQs) and the questionnaire prior to the interviews and
based on the authors’ knowledge of differential privacy and feed-
back from practitioners other than the ones interviewed. The re-
search questions aimed to understand whether differential privacy
could enhance their corresponding institutions’ analysis workflow
by identifying missing opportunities, assessing the impact of differ-
ential privacy in their workflow, and identifying roadblocks.

We carefully formulated the questions broadly to enable intervie-
wees to express their views freely, recount their experiences fully,
and reduce response bias and priming. Because the organizations
have not deployed differential privacy, most interviewees were not
familiar with differential privacy; only two had some non-technical
familiarity. We tackled this challenge by explaining differential
privacy at a high level before starting the questionnaire. We pro-
duced the questionnaire for data analysts in Appendix C, whose
results are collected in section 5. Only 4 of the 24 questions con-
tained the word “differential privacy”, which the interviewees could
nonetheless answer without a deeper technical understanding (see
Appendix C).

Furthermore, we performed a deep dive in one corporation by
interviewing 10 analysts. Additionally, to understand the process
and motivation behind this corporation’s privacy protection, we
interviewed five data stewards via video conference or email cor-
respondence with a second questionnaire (see Appendix B). Data
stewards control access to and minimize the risk of data interac-
tions, e.g., auditing analysts’ purposes before granting them access.
Altogether, we distill key findings and answer these 5 RQs:
RQ1: What is the context of privacy protection in the targeted orga-
nization? The data stewards provided a perspective of their data
protection practices, shedding light on their motivation, concerns,
and possible improvements of their methods in privacy protection.
RQ2: Could differential privacy tackle the privacy-related pain points
of an analysis workflow in an organization? The answer draws a
picture of the workflow and the improvements analysts would

welcome. This holistic picture helps us identify opportunities for
differential privacy in organizations’ analytics workflows.
RQ3: When does differential privacy impede an analysis? Differ-
ential privacy is not a silver bullet; thus, we aim to explore the
limitations of differential privacy in an organization. Moreover, as
the mechanisms to make SQL-like queries fulfill differential privacy
are well-understood [40, 59, 60], we investigate whether this type
of query is common in analysts’ workflows and bring significant
benefits in exchange for moderate effort.
RQ4: How would differential privacy affect the workflow of an an-
alyst? Analysts are not accustomed to the noisy outputs of differ-
entially private mechanisms. With this RQ, we aim to understand
the impact of noise in their analysis and explore their views on
different uses of differential privacy.
RQ5: Can differential privacy be applied to the frequent SQL-like
queries analysts execute? To exclude the impossibility of using dif-
ferential privacy, we must assess whether analysts can use it in
their queries.

5 RESULTS OF THE PRIVACY STUDY
To frame the research questions in the appropriate context, we
first depict how the interviewed organizations usually access data
and present the state-of-the-art anonymization techniques in the
industry. Subsequently, to provide a perspective on the motivation
behind privacy protection, we summarize the results of the inter-
views with the data stewards from the deep-dive organization (RQ1).
Finally, we delve into the data analysts’ answers to assess whether
deploying differential privacy is useful and possible (RQ2-6).
5.1 Data Access Models
This study focuses on practitioners performing data analysis inter-
nally, i.e., without publicly releasing the results. The interviewed
organizations used one of two models for accessing data internally:
segregated and federated [13]. Fig. 1 provides an informal diagram
for a quick intuition of the models. These models used distinct
roles: data owners in charge of collecting data, data engineers build-
ing pipelines, data stewards assigned to overseeing the data access
request processes, and data analysts fulfilling analytics use cases.

Analytics teams in the segregated model engaged directly with
data owners, whose data are stored in different data centers and
regions running different systems. The data owners would provide
the data and also act as stewards. Without an established system for
automated data exchange and preparation, the analytics teams had
data engineers to prepare data for every use case. An improvement
over the segregated model is its federation. After collection from
multiple sources and pre-processing and anonymization, in the fed-
erated model, data from all domains (e.g., demographics, financial,
health, etc.) are stored and easily accessible from a single applica-
tion interface. The data engineers build such data pipeline and are
not usually part of an analytics team. Data stewards guard multiple
data sources, interact with analysts, and are detached from the data
owner role, which is dedicated exclusively to data collection.

In both models, data protection officers from the legal department
could interact in the dataset request process, namely when analysts
requested data for the first time or data were highly sensitive.

While the initial monetary investment to build a federated sys-
tem could be larger than for the segregated model, the federated
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Figure 1: Informal diagram depicting a segregated (left) vs. a
federated (right) models for accessing data.

model holds some advantages: it (i) curtails overhead by eliminat-
ing the repetition of some tasks in the dataset access request pro-
cess (e.g., user identification or analysis’ purpose specification) and
(ii) reduces time-intensive and cumbersome dataset exploration
across different systems. Moreover, it (iii) streamlines building
data pipelines and defining access request processes by follow-
ing the same standards across domains and sources. A federated
model (iv) simplifies providing precise access control across sources
and enforcing policies. Furthermore, it allows to (v) assign non-
overlapping roles to practitioners, and (vi) establish re-usable chan-
nels between data and analysts. Finally, it could (vii) log the different
analyses that other analytics teams have already performed such
that others may use them (preventing work duplication). Nonethe-
less, while the federated model holds such advantages over the
segregated model, we observed a similar analyst workflow (see Q7)
and an adversarial position for the dataset request process.

5.2 Current Anonymization in the Industry
In this section, we discuss the status quo of the anonymization that
companies used to remain compliant without differential privacy,
providing a baseline in the context of this work.

Companies can use data collected with user consent exclusively
for the agreed primary purpose. If companies choose to use data for
purposes other than the one agreed (secondary purpose), data must
be anonymized. All companies had not deployed differential privacy
in production or other advanced privacy-enhancing technologies,
and employed traditional means of anonymization: suppressing di-
rect identifiers such as names, emails, or social security numbers,
truncation of, e.g., GPS locations and traces, generalization (e.g.,
transforming 28 into [20, 30]), and dropping unnecessary attributes
and outliers. We consider these techniques syntactic [21] because
an algorithm transforms the data’s syntax following a predeter-
mined model (e.g., GPS locations must only have three decimals).
Additionally, data were always encrypted at rest.

Beyond anonymization, to avoid merging multiple sources that
could re-identify individuals, some companies did not allow ana-
lysts to access multiple datasets at once. In one company, depending
on the purpose, stewards granted access solely to a subset of the
dataset or a mock dataset for experimenting purposes. Further-
more, for critically sensitive datasets (e.g., illnesses), one company
provided access only to an anointed small set of analysts, limited
access times, applied anonymization, and restricted analyses to
cloud environments. These environments produced logs for later
auditing (if needed) and blocked analysts from downloading data.
On the other hand, based on user consent for primary use, analysts
from one company could access detailed client profiles (names,
house prices, mortgages, income, among others). Despite having
user consent, we recommend decoupling direct identifiers from the
rest of the data (e.g., hashing the direct identifiers) to minimize
the consequences of malicious analysts’ actions, and encourage the
integration of an automated process (or another practitioner) that
can only access the analysis output and the direct identifiers to
serve the customer (e.g., linked by a hash table only known to the
additional process/practitioner).

Altogether, companies applied the principles of factual anonymity
(i.e., the effort of re-identification is disproportionate to the upside
potential of an attacker learning about the individual), proportional-
ity (i.e., collection restricted to data necessary to fulfill the primary
purpose) [13], audit logging, data sharing on a need-to-know ba-
sis, data retention and purging [13], access controls, and traditional
anonymization. However, the companies could not measure the
privacy achieved by their systems and could only rely on their
experience of what is compliant with regulation [30, 80].

5.3 Motivating Privacy
RQ1: What is the context of privacy protection in the targeted orga-
nization?
(Q1) What is the institution’s motivation for privacy protection? The
five stewards agreed on two main motivations: (i) organizations
have a legal and moral duty to abide by data-protection laws, (ii)
privacy protection is an asset whose “quality has to be equal to the
premium product offered.”
(Q2) What are your privacy concerns when an analyst has full dataset
access? When proceeding with data protection risk assessments
of dataset requests, stewards are predominantly concerned with
misappropriation (i.e., unauthorized use of data) and data leakage.
While stewards do not expect analysts to be malicious, they are
apprehensive of a potential lack of privacy skills, privacy-oriented
mindset, and dataset understanding or pure negligence. Specifically,
stewards strive to prevent attacks such as unsolicited customer
profiling, disclosing data to, or colluding with third parties to take
advantage of the customer, combining datasets for re-identification,
or using the data for purposes other than the one consented.
(Q3) At what level of data granularity are you protecting and measur-
ing privacy? The granularity of privacy protection is at the attribute
level, and stewards measure privacy based on the fulfillment of data
protection regulation. For example, attackers could use the attribute
location to re-identify individuals; thus, according to GDPR [30],
the attribute must be obfuscated so that their home, work, and
other points of interest cannot be linked to the individual. Further-
more, the corporation must guarantee the “security, transparency,
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and legitimacy of the [data] processing.” Overall, the anonymization
approach strives to achieve the factual anonymity principle.
(Q4) What could be improved in the dataset request process? Data
stewards suggested to (i) perform an audit to verify that the exe-
cuted analysis aligns with the previous commitment, (ii) increase
the quality of the datasets’ metadata so that analysts can better
define a purpose, (iii) increase the privacy training of analysts, (iv)
produce privacy-enhanced dataset reports so that after the per-
mission expires analysts can still retain some information, and (v)
increment efforts in request process automation.
(Q5) What are your typical questions for the current interview-based
full dataset access authorization? To help other practitioners in the
development of their risk assessment process, we gathered the most
frequently asked questions from data stewards to data analysts dur-
ing the dataset request process (see Appendix E). Notably, without
a clearly defined data usage purpose, the data stewards would not
grant access to analysts.
(Q6) Instead of the interview process, would you be capable to run a
program provided by the analyst such that the analysis is carried out
without the analyst ever “seeing” the dataset? While most considered
this an efficient, plausible, and necessary step in the future, the five
data stewards did not yet have the required technical training, and
their system did not enable the functionality. “At the moment, it is
not possible, but it will be a necessary step in the future, if not already
today.” One steward remarked the importance of this functionality,
as in some cases, e.g., requesting data from a branch of the company
in another country, is extremely challenging.

5.4 The Practicality of Differential Privacy
RQ2: Could differential privacy tackle the privacy-related pain points
of an analysis workflow in an organization?

(Q7) What is your workflow to analyze data? Despite the use of
either a segregated or a federated model, the workflow was similar
across organizations and employed common practices and tools;
the main differences were in dataset exploration.
(1) Business Use Case Demand. A business unit asked an ana-
lytics unit to conduct a study for supporting a business need, or
analysts continuously studied data from a specific (customer’s) do-
main.
(2) Dataset Exploration. Only the companies using the federated
model for accessing data could explore datasets’ metadata through
a data portal without requesting access first (unless the dataset
was tagged as critically sensitive), making the identification of the
suitable dataset for the business need easier. Analysts would find
datasets using keywords in a search bar, and datasets provided
descriptions, depicted their schema, and had data owners’ con-
tact information (analysts sometimes interviewed them to further
understand the suitability of the dataset).

In the deep-dive organization, analysts could additionally per-
form any SQL aggregation query on the anonymized dataset prior to
access (e.g., counts, averages, etc.), which they used for data under-
standing and quality checking (e.g., number of nulls and duplicates
or measuring skewness). However, for privacy reasons, analysts
could only retrieve a few rows when executing SELECT * query
types and aggregations could time out (preventing excessive exe-
cution costs). Analysts used this preview functionality frequently
“[...] to get a feeling for the data” and found it useful for exploration

“The preview query is the best feature.” Companies without a feder-
ated model could not explore datasets, required data engineers for
each use case, and analysts relied either on leveraging their contact
network or on an experienced team lead to find promising datasets
within the company.
(3) Dataset Access Request. Once the analysts identified a promis-
ing dataset, they formally requested access, which involved filling
standard forms about the details and purpose of the analysis so that
data stewards could assess the privacy risks. Except for three small
companies, the request entailed interviewing with stewards, where
they asked questions such as the ones in Appendix E.
(4) Visual Inspection and Preparation. With full dataset access,
analysts would sometimes visually inspect the data values, types
and schema. Analysts deemed these checks necessary because of
the flaws sometimes found in the pipelines and dataset descriptions
of the federated data portal or the data provided by the data owners
in the segregated model. Moreover, as datasets consisted of many
tables, analysts often checked which joins were possible and which
attributes were most suitable for primary and foreign keys. With
this information, they performed retrieval SQL queries with GROUP
BY, WHERE, and JOIN clauses to build a sub-dataset fine-tuned
for their analysis. Many analysts also performed quality (double)
checks and data wrangling using the Python’s Pandas library [84]
instead of SQL.
(5) Data Analysis. Once analysts had checked the quality and
wrangled the data, they primarily performed their analysis or ML
model training in Python Jupyter Notebooks [5], and if the analyst
dealt with big data, they employed PySpark clusters [85].
(6) Output Interpretation and Model Deployment. If the use
case required building a model for online prediction, the analysts
would sometimes load the model into a more performant language
like Scala before deployment. However, analysts frequently only
needed to report statistics and visualizations, from which the busi-
ness units drew actionable information.

Most of the platforms and workflows employed AWS analyt-
ics tools [9] namely S3 buckets (storage), Glue (data preparation),
Athena (SQL querying), Sage Maker (data analyses), and analysts
also used Python for visualization (one used R) and two of them
complemented their results with Tableau [95]. Additionally, two
analysts used Knime [66] for drag-and-drop analysis and visualiza-
tion, and another two employed SAP data management software
tailored to their department’s needs.

The small interviewed companies had a few major differences,
namely, they used a hybrid between the central (all datasets stored
in a single data warehouse) and the segregated model. Because of
their small customer pool (managed centrally), they collected data
from their customers or purchased user-data products from other
companies to analyse or train ML models with more data, which
required interaction with a segregated set of external data owners.
Furthermore, because of the small size of some companies, they had
no need for formal dataset request processes as most employees
were aware of the activities of the rest; their overhead was at the
time of signing the initial contract with customers, which included
data access policies and non-disclosure agreements. They also em-
ployed traditional anonymization techniques and only retrieved
with SQL data stored in, e.g., Google Cloud [38], if strictly needed
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(less data for building the model and testing, and more data for the
final training or analysis).
(Q8) Why do you need full dataset access? The main reasons given
for accessing all the records of a dataset instead of, e.g., through
solely a query interface, were:

(i) Obtaining a Holistic Understanding of Data. All analysts
worked uncomfortably if they could not make preliminary
statistics or visualizations that encompassed all records “I
need to see the entire dataset to understand the data,” “I am
not necessarily sure of what I need to look at until I look at
it. It is an improvisation, you start with a broad question and
then you delve into it.”

(ii) Less Effort. A few analysts could fulfill their analysis with
only SQL aggregation queries (e.g., counts and averages) and
produced visualizations afterward; however, some found
using other tools easier: “Having access to the entire dataset
allows me to use Pandas.”

(iii) Cleaning Data. Given that there could be flaws in previous
data preparation steps, analysts tended to (double) check all
data for quality.

(iv) Wrangling Data. In the federated model, data engineers often
built datasets without precisely knowing the purpose of a
data analyst; thus, analysts sometimes took an engineering
role, creating features for ML models or further tailor the
dataset for their analysis by grouping or executing queries
with JOIN clauses.

(v) Debugging ML Models. Analysts frequently needed to debug
their ML models when testing and training, as there might
be corrupted data points.

(vi) Visually Inspecting Values. Some use cases, such as root-cause
analysis, required analysts to check specific IDs and attribute
values, and at times analysts needed to check whether an
output table is feasible or map (truncated) GPS traces to
street names for the analysis to be interpreted.

Other analysts, however, did not always require access to all
records because their ML model already converged, did not overfit,
and provided enough accuracy: “Since I am normally only doing
exploratory work, I usually do not need access to the full dataset to
prove that the given problem can be solved.”
(Q9) How often do you request full dataset access? How long does it
usually take? Among the large companies, the request frequency
varied widely between 4 times a month to once every 6 months, with
an average between once and twice a month. Likewise, regarding
waiting times, the minimum hovered around one to three days,
while the maximum was two months, with an average between one
to two weeks. If another country hosted the data, the first request
could take 9 months. Overall, analysts from the interviewed large
organizations were blocked for at least one week for every new
requested dataset, which they solicited on average once a month.
Specifically, in the deep-dive organization, analysts requested 5073
datasets altogether in 2021 (around 14 requests per day, which
increased to 18 as of 2022). Out of all the requests in 2021, stewards
rejected around 5.6%, amounting to fruitless weeks of revisions1.

1The daily rejection rate went from 0.8 in 2021 to 0.9 in 2022, potentially indicating
updated stricter policies.

Moreover, the number of requests was more than double the number
of available datasets in the deep-dive organization in 2021 (a sign of
significant duplication of work, accruing more costs). On the other
hand, three of the small organizations did not have such a formal
request process, making them agile.
(Q10) What do you think about the process to request full dataset
access in your organization? While analysts at small and US-based
organizations were satisfied with the request process, there was
an overall consensus at the EU-based large organizations on the
following statement: “The process to get customer data is slow. It
might take from three days to weeks, to months” and for some, even
“Two to three days is too slow.” In the worst-case scenario, an analyst
could wait weeks for a rejection.

Some analysts thought the interviews with stewards were pri-
marily for building trust, and once built “I always receive access.
I do not see the point of waiting and interviewing every time.” Fur-
thermore, frequently there were too many practitioners involved,
leading to lengthy discussions about which dataset to use and often
suffered a dilemma because responsibility entailed accountability in
one organization “If there is more than one data steward responsible,
then it seems no one takes full responsibility for the acceptance or
rejection of the request.” On the other hand, there were bottlenecks
in the vacation season when only one steward was responsible.

Analysts agreed that accessing data has become better since they
moved from a segregated model to a federated model; however, the
process was still cumbersome, so much so that some teams incurred
into the malpractice of entrusting a single analyst to manage the
process. One analyst summarized the inefficiency of the segregated
model: “There is a lot of bureaucracy and everyone is extremely
reluctant to grant access to a full dataset. Even for internal problems
and non-sensitive data. It is cumbersome to request full dataset access
because there is no central point where the dataset access can be
requested and no central entity which manages access control and
usage control for all datasets. For every instance, the process is a
bit different depending on the responsible department, underlying
workflow and data pipeline.” In the segregated setting, the process
was lengthier, and an analyst could not explore what others had
analyzed or requested, sometimes leading to redundant work.
(Q11) What features do you think are missing in your organization’s
data analysis workflow? The most notable proposed improvements
were: (i) including rich information regarding dataset metadata
(preferably with visualizations) and their access request process,
(ii) improve real-time analytics performance, (iii) enabling full ana-
lytics in data portals such that an analyst does not need to transfer
data to other tools, (iv) limiting access times to improve security,
and, from a data engineering perspective, (v) automating sensitive
data detection and (vi) improving quality and automated checks to
minimize visual inspections.

RQ3: When does differential privacy impede an analysis?

(Q12) In which analytics use cases have you been involved? Most
analysts worked on descriptive use cases. Some of these use cases
focused on reporting conclusions from the past by performing
root cause (error), cost down, and warranty costs analysis. Other
analysts strove to increase the situational awareness of the com-
pany by analyzing location-based time series of users (identify
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points-of-interest or common traces), their behavior when using a
product or a service (frequently used features, A/B tests, purchases
or component performance), and demographics (user-base analysis
or advertisement). Additionally, some analysts focused on alerting
internal stakeholders of quality defects in real-time, and another
analyst performed correlation analysis to better understand the
interplay of different variables in products and services. Most of
these use cases required performing aggregate statistics (including
visualizations to report to management), namely for situational
awareness, while others demanded visually inspecting exact values
(namely for error detection or financial data), and one analyst used
classification ML models for quality checks.

The minority of interviewed analysts were involved in predictive
use cases: forecasting product lifetime, labelling spam and inappro-
priate images, user behavior, the company’s profit and loss, claim
costs, and predictive maintenance and creating automated under-
writing models. While these use cases relied on basic statistics, some
used vanilla ML such as linear regression (for underwriting models).
Nonetheless, the interviewed analysts agreed that using ML was
rare; thus, most analysts relied on aggregation and visualizations, as
the business units demanded quick and easily interpretable results.
(Q13) Is SQL-meaningful for your work? How many SQL-like queries
do you make weekly? Most of the interviewees employed SQL,
chiefly during exploration, and they deemed SQL an important
part of their workflow “SQL is amazing, everyone who tells you
SQL is going away is wrong,” because they could quickly look into
rows and performed preliminary statistics, and, with JOIN clauses,
prepare a dataset for their use case. The least adept analyst executed
5 weekly queries, while the most assiduous SQL user performed
250, being the average around 50 queries per week.
(Q14) How often do you need machine learning to fulfill your analysis
in contrast to using SQL? Two interviewees always needed ML to
fulfill their analysis, while another 4 used ML for some of their
use cases. The analysts who were allowed to explore datasets used
SQL for exploration, and three used SQL to generate statistics and
completely fulfill their analysis (complemented with visualizations),
while the rest preferred Python or other tools for analysis. Further-
more, analysts often visualized data to accompany their results
with other tools (see Q7) and employed retrieval SQL queries for
visual data inspections (e.g., for error analysis) or building tailored
datasets for their analysis.
(Q15) What are your most used machine learning models? The 6
analysts employing ML most often resourced to decision trees
and linear regression because they are easy to debug, interpret
and visualize the results. These analysts also mentioned the use
of random forests or XGboost (preferred), Bayesian approaches,
support-vector machines, and, for time series, they used outlier de-
tection techniques for error analysis and autoregressive integrated
moving average for forecasting. Analysts avoided neural networks
because they are hard to interpret; nonetheless, one practitioner
indicated they were working on deploying neural networks in the
future for underwriting models. In particular, one analyst employed
PyCaret [86] for automated ML workflows, as in the corresponding
department “It is more important to be quick and give a good-enough
overview than having well trained precise models,” “Complex machine

learning is often never required.” Other analysts voiced that such is
often the case.
(Q16) If you were to use differential privacy to fulfill your analysis,
when and how much accuracy would you be willing to forgo? The
willingness to forgo accuracy depended on the use case, with a spec-
trum ranging from the need for absolute accuracy for quality, error,
or financial analyses, to indifference for accuracy in exploratory
use cases (only enough accuracy to prove a solution works). For
the rest of the use cases, while the interviewees would need to
estimate the minimum accuracy formally, they informally reported
on average that an accuracy of around 98% would be sufficient, and
none reported below 95%. Some financial analyses could also allow
errors in the magnitude of cents of a monetary unit, and one ana-
lyst reported the need for at least 99% accuracy for finding suitable
primary keys for joins. Additionally, comments such as “I am scared
of introducing noise into the analysis. [...] From all the analyses I do
every year, there will be some that will be wrong. [...] How well you
are compensated depends on how well you do. [...] Because you are
paid to have an opinion, you are not allowed to be wrong,” suggest
that organizations’ incentive systems for data scientists, e.g., bonuses,
should change to account for errors due to differential privacy.

RQ4: How would differential privacy affect the workflow of an
analyst?

(Q17) How much would the noise affect your analysis? Depending on
how much the noise could affect an analysis, we observed three cat-
egories for use cases: (i) suffer adverse effects, (ii) reach a tradeoff,
and (iii) robust to noise. The first one relates to analyses reporting
error, quality, or financial results, where noise could have cata-
strophic consequences, e.g., a defective component is installed in a
product, or yearly budgets are inflated. Moreover, analysts some-
times dealt with low data quality (notably from sensors) that noise
could worsen, e.g., GPS locations may already have a 10m error,
making a points-of-interest analysis noisy in itself. Adding noise
to the aggregation might produce unusable results.

The second type concerns aggregation and visualization reports,
where, given enough data, the noise would not affect the inter-
viewees’ analysis workflow (e.g., demographics or product usage
studies); however, analysts would prefer working with error bounds
to report confidently to management. The third type of noise relates
to analysts testing solutions “Since my work is exploratory and we
mostly try to prove that the problem can potentially be solved, noise
would not have any negative effects for my analysis.”
(Q18) Would you find it helpful to execute differentially private SQL
queries to explore and fully analyse datasets without the standard
permissions? We theorized that given the plausible deniability guar-
antees of a differentially private analysis, which can be argued to
comply with the identifiability notion in GDPR [30, 50], some uses
cases that heavily rely on aggregation might abate or not need the
standard dataset request processes. From this perspective, most
analysts found differentially private SQL queries helpful, in sum-
mary, because “If having differentially private SQL queries for data
exploration implies reduced bureaucracy and easier access, then this
would save a lot of time and discussions.”

Notably, one interviewee saw the potential of differentially pri-
vate queries for data exploration: companies could expose data
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externally through an API, allowing others to understand their
data products by conducting preliminary analyses. Another analyst
favored integrating differential privacy into, e.g., AWS Athena [9].
On the other hand, few analysts did not see the value of differential
privacy because their use cases required, e.g., visual inspections
for error detection, or their organizations were already agile in
accessing data. Lastly, two analysts voiced a general concern “[Dif-
ferential privacy] is a double edge sword. You could get quick [data]
access, but then [results are] noisy,” “I think I would find it annoy-
ing, since it adds an additional step and obfuscates the results,” and it
could lead to confusion as analysts usually work with accurate data.

(Q19) Only based on the information extracted from a dataset ex-
ploration with differential privacy, could you write a script to fulfill
your analysis goal? A couple of interviewees shared their inability
to program their script as they needed to see the data (e.g., error
analysis), and the others shared their skepticism by highlighting the
problem of low data quality. Even if an analyst developed an intu-
ition for the data through differentially private aggregation queries,
programming other statistics, visualizations, or ML models would
likely require debugging, which may lead to visual inspections.
(Q20) What are the minimum properties for you as an analyst such
that you are confident to write an analysis script without full dataset
access? Assuming enough data quality and a use case that does not
require visually inspecting data, the interviewees indicated that
for tentatively writing code without dataset access, they needed:
good metadata from the dataset, such as attribute descriptions,
knowledge about the events that trigger data collection, primary
keys, data types (IDs, dates, timestamps, floats, strings), dataset size
(number of rows and columns), and attribute distributions to learn
about sparsity in the form of histograms or box plots.
(Q21) Would you find it helpful to use a dynamic dashboard that
visualizes dataset information with differential privacy? Since data
platforms may not expose sensitive data on a dashboard for explo-
ration, we conceptualized enabling this functionality with differen-
tial privacy. All but one interviewee considered such a dashboard
helpful for finding a suitable dataset faster and with a better user
experience than their available utilities (static and scant summaries
or using SQL). Specifically, an interviewee commented that, in gen-
eral, one should be able to visualize the data and get basic statistics
before requesting access, and another analyst would have liked to
preview similar information as the “describe” method of a Pandas
dataframe [84] (count, mean, standard deviation, minimum, quar-
tiles, maximum). Nonetheless, one analyst noted that a dashboard is
a nice-to-have because it is only more convenient than SQL. Lastly,
another interviewee underlined a problem that may arise when
an analyst does not trust the data provided by the visualization,
e.g., when the plot seems implausible. The interviewee suggested
that a dashboard should enable the analyst to drill down or provide
contact information from a data owner to verify correctness.

RQ5: Can differential privacy enhance the privacy of the frequent
SQL-like queries analysts execute?

(Q22) What are your top SQL-like queries before you have full dataset
access? If analysts could explore datasets, most would usually con-
duct a metadata analysis with SQL to assess data quality: finding the

number of duplicates, outliers, nulls, and not-a-number values and
measuring the skewness. Analysts would also explore the dataset
for data understanding using COUNT, DISTINCT, MAX, MIN, AVG, and
VARIANCE functions with WHERE and GROUP BY clauses. Analysts
were typically interested in frequent values within a column (see
details in Appendix D). Furthermore, the deep-dive organization
allowed to use SELECT * LIMIT(X) for a few X rows so that ana-
lysts could have a “feeling” for the data. On the other hand, fewer
analysts performed retrieval queries (limited in output rows) to
verify whether an ID was present or two tables could be joined.
(Q23) What are your top SQL-like queries after you have full dataset
access? Analysts who could not explore the dataset prior to having
dataset access would execute queries such as those in Q22 first (see
Appendix D for details). Afterward, if they did not already retrieve
the necessary information from the exploration, they resorted to
Python and other visualization tools to fulfill the use case. Some
analysts performed additional retrieval SQL queries with JOIN and
SELECT * clauses with different filters to visually inspect data
points (e.g., IDs or potential errors), identify cut-offs (e.g., where an
attribute data type changes), or fetch the specific data they needed.
(Q24) What is the ratio between aggregation queries and queries
to retrieve items? While the interviewees would need to calculate
the percentage formally, they reported informally, on average, that
around 30% of their queries were for aggregation, being the low-
est 0% and the highest 90%. Another three analysts used SQL for
retrieval and Python for aggregation or vice versa.

6 DISCUSSION
In this section, we present selected key findings (KF) distilled from
the data stewards’ and analysts’ answers to the 24 interview ques-
tions of section 5, most accompanied by succinct recommendations.
Lastly, we answer the research questions proposed in section 4.

6.1 Key Findings
(KF1) Data stewards seem to be more concerned about security than
privacy.2 Data misappropriation and leakage retain the most at-
tention (Q2), which is reflected in the established cumbersome
dataset request processes that dictate access controls and account-
ability in the name of building trust with analysts. However, we
highlight that privacy lacks such attention, even when some com-
panies still allow their analysts to “see” or download sensitive data.
Attacks on privacy (Q2) could enable malicious analysts to mis-
use data for spying on or leaking secret information of celebri-
ties, acquaintances, “friends”, or relatives [100], blackmailing, or
discriminating individuals in social or commercial transactions
online [35]. Despite the risks, companies predominantly use tradi-
tional and potentially vulnerable anonymization techniques (e.g.,
pseudo-anonymization or k-anonymity), as demonstrated by the
research community [8, 29, 33, 67, 79, 94]. Thus, we suggest compa-
nies increase efforts to research and deploy more advanced PETs.
(KF2) Running analysts’ scripts without “seeing” the data is a dis-
tant reality for the interviewed companies. We explored multiple
ways for analysts to run scripts without direct dataset access. In

2In the context of this work, we refer to security as the measures for blocking unautho-
rized data access, while privacy focuses on limiting harm by authorized analysts [13].
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Q6, stewards declared their technical inability to execute scripts
that analysts could share and, thus, avoid granting them access
(saving time). With the proper tooling, a non-technical steward
could potentially run the script; however, current systems do not
offer such abstracted functionality and this option would relay the
responsibility to the stewards instead. An alternative to transfer-
ring the trust to stewards consists on executing analytics in trusted
execution environments3. Additionally, analysts altogether gave
six reasons why they needed full dataset access (Q8) and reported
skepticism when asked about writing a script (beyond aggregation)
based on a differentially private exploration (Q19 and Q20).

The main impediment reported was data quality, which often
led to visual inspections of dataset values. As encouraged by point
Q11-(v), we suggest companies prioritize increasing data quality as
it will indirectly improve privacy and increase the technical training
of data stewards and owners, enabling more data security options.
(KF3) Given the analysis workflow, differential privacy could have
a significant impact on dataset exploration (see Q7). As long as ex-
ploration does not require visually inspecting a particular ID or
an exact attribute value, differential privacy can provide noisy sta-
tistics for the analyst to familiarize with the data (e.g., number of
rows, averages, quantiles, etc.), which is often enough to assess the
dataset’s suitability. Furthermore, while analysts were not allowed
to explore critically sensitive datasets with SQL, employing differ-
ential privacy could arguably enable their exploration by adding
an extra layer of protection. Additionally, platforms could provide
privacy-enhanced dataset previews (e.g., only revealing a few rows
or producing dummy or synthetic data with or without differential
privacy). Overall, differential privacy could facilitate exploration
that otherwise might not be possible or timely.
(KF4) Analysts could employ differentially private mechanisms to
fulfill certain use cases (see Q7). If the analysis requires summary
statistics and visualizations, a differentially private analysis could
fulfill the privacy-utility tradeoff given enough data. Consequently,
analysts could fulfill use cases without exact outputs, avoiding po-
tential privacy leaks. Regarding ML, while its differentially private
implementations are at an early stage, researchers and practitioners
could explore systems to assess whether a model shows signs of
converging with enough accuracy after training on a sample of the
target dataset. Such a system could help analysts to determine the
validity of the model or the dataset. Lastly, we suggest exploring
whether differential privacy can enable more accurate analyses
than the current organizations’ anonymization processes.
(KF5) After fulfilling the use cases, the interviewed companies do not
have a human-supported privacy auditing step. The last reported
step of the workflow in Q7 was “output interpretation and model
deployment”. Aligned with a steward in Q4: “perform an audit to
verify [alignment with analysis commitment],” we suggest privacy
officers in companies add a randomly-sampled auditing step with
a human in the loop after the conclusion of the use case. We also
suggest audit logs, which one of the interviewed companies pro-
duced for every execution on sensitive data in secured machines,
where analysts could not download data or install new software.

3Hardware and software designed to run applications securely against unsolicited
retrieval of sensitive information or key material [81].

(KF6) Given the six reasons analysts shared for fully accessing datasets,
differentially private mechanisms could help in (i) “obtaining a holis-
tic understanding of data” by providing dataset summary statistics
(see Q8). Additionally, we suggest substituting tedious SQL analy-
ses with dashboards for visualization, so that tasks require (ii) “less
effort”. We also suggest engineers develop and integrate tools that
enable analysts to (iii) “clean” and (iv) “wrangle data” without visu-
ally inspecting the values (i.e., no complete data access required).
With such tools, filtering values, imputing, removing duplicates
and outliers, fixing wrong formattings, handling missing data, or
creating new attributes would also help with (v) “debugging ML.”
Moreover, aligning data engineers with analysts could improve
data quality, e.g., by involving engineers in the conversations be-
tween stewards and analysts. Lastly, researchers could investigate
how differentially private set union mechanisms [22, 45] could help
analysts to (vi) “visually inspect values.” Meanwhile, we suggest
increased security measures for such cases.
(KF7) Analysts are frequently blocked for significant periods every
time they request access to datasets (see Q9). There are a few conse-
quences of such delays. Data stewards and privacy officers must
also invest their time in reviewing the requests. From our conversa-
tions with the interviewees, we also learned that long waiting times
could hamper analysts’ bursts of creativity and productivity, which
indirectly negatively affect the quality of work. Additionally, an
interviewee recounted the malpractice of deferring all the dataset
request process responsibility to a single analyst in the team (see
Q10). Such practice overburdens an individual with the responsibili-
ties of the entire team for, e.g., a data leakage, creating an unhealthy
imbalance in accountability. This practice further increases the com-
pany’s privacy risk by potentially having the other analysts handle
data without privacy training. We suspect this malpractice is a sign
of over-complicated dataset request processes and long waiting
times; thus, we suggest privacy officers streamline their processes
and prompt teams to refrain from overburdening a single analyst.

Differential privacy’s stronger guarantee could reduce the com-
plexity of the interactions between practitioners by offloading their
data protection demands and, thus, reduce the costs accrued by
these human-intensive processes. Lastly, given that there were
multiple requests for the same datasets from different teams, we en-
courage companies to build interfaces depicting privacy-enhanced
summaries of past fulfilled use cases per dataset. An example is the
repository designed by Johnson et al. [58] in the health industry.
(KF8) Differential privacy could arguably reduce the time to access
data. As differential privacy brings a higher and formal guarantee of
privacy, it could relax the inquisitiveness of data stewards, eliminate
(steps of) the request process, and enable exploration that was
otherwise not possible. By enabling exploration, analysts reduce
the likelihood of investing time in request processes that could even
result in accessing a non-suitable dataset. With exploration and
higher privacy guarantees, differential privacy could also speed
up requesting data from other countries, which seemed the most
significant bottleneck (see Q9). Additionally, differential privacy
could potentially prolong access times (if these are limited) and
shorten development cycles with an earlier data access by testing
algorithms and applications with noisy data or outputs. Regarding
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applications specifically, once finished, the customers can confirm
whether the product works appropriately with real data.

We have also observed that, once analysts have access, much of
the data protection and accountability lies on their shoulders, which
differential privacy could lift to a degree by protecting beyond trust
and policy. However, the analyst somewhat familiar with differen-
tial privacy pointed out that, unless data quality is improved (as also
suggested in Q11), "There is a still a ways to go to deploy differential
privacy," because the need to debug by visually inspecting data will
prevail. To increase privacy protection in those cases, we suggest
using differential privacy with limited visual inspection.
(KF9) Most analysts employed aggregations and visualizations to
fulfill their use case in a timely manner, while machine learning was
not as predominant (see Q12). We found that analysts could employ
differential privacy to explore datasets suitable for all the identified
use cases. However, for the analysis itself, the interviewees voiced
that the noise would invalidate the use cases related to quality, error,
and (some) financial analyses because mistakes in safety decisions
and financial planning are company critical. Nonetheless, for the
use cases that required aggregation and visualization, with enough
data, we suggest analysts fulfill these use cases with differentially
private queries such as counts, averages, and percentiles, among
others (e.g., user behavior, demographics, and some location-based
analyses). However, the available tools for differentially private
ML are not mature for widespread adoption. Thus, we encourage
researchers and practitioners to improve and build systems around
existing proposals in future work, e.g., location-date analysis [105],
heavy hitter identification [71], mining frequent itemsets [114],
deep and supervised learning, random forests, and linear regression,
among others [1, 52, 70, 111, 113].
(KF10) For the interviewed companies, SQL was more important
than machine learning and was considered a meaningful tool fre-
quently employed in their workflow (see Q13 and Q14). Additionally,
on average, 30% of the top SQL queries executed before and af-
ter full dataset access were for aggregation (see Q22, Q23, and
Q24), which researchers have already adapted to fulfill differential
privacy [40, 59, 60]. Therefore, there is still a gap between what re-
searchers have enabled and what practitioners need for enhancing
the privacy of their frequently used SQL queries—a gap we intend
to partly cover in section 7 by proposing 10 key system desider-
ata that an integrable privacy-enhancing analysis system should
fulfill. Beyond SQL, differential privacy and its available tools are
also suitable even when analysts preferred using Python for ag-
gregation and ML use cases that allowed for lower precision. In
particular, we encourage using Python libraries such as IBM’s diff-
privlib [36, 52] that provide many off-the-shelf differentially private
ML models that could provide enough precision for the intended
purpose, such as for the linear regression model one company used
for underwriting (see Q15). However, practitioners will require
further engineering to limit Python to strictly privacy-enhancing
libraries and amenable standard functionalities (e.g. by using policy
enforcement paradigms such as Wang et al.’s Data Capsule [102]).
(KF11) Analysts confirm that differential privacy would be helpful
for dataset exploration, fulfill certain use cases, and for enabling
privacy-enhancing dashboards for dataset visualization (see Q18
and Q21). For aggregation-based use cases where noise has no

detrimental effects, analysts informally reported, on average, a
required accuracy of 98% (see Q16 and Q17). While such a figure
might seem high, given the large amount of data handled, analysts
could potentially find enough for aggregations that fulfill their
privacy/utility tradeoff. For example, as of early 2022, the deep-
dive organization had roughly 2260 datasets in its federated system
amounting to 3.4PB (1.5TB per dataset on average) with an average
daily query execution of over 900TB. However, size might not be
enough for some use cases, as the analysis could be sensitive to
outliers or corrupted data. Lastly, we observe that it is critical for
analysts to know whether the accuracy is above their required level,
which would consume privacy budget and be hard to estimate, e.g.,
when the analysis needs post-processing (clamping or truncation).

6.2 Answers to the Research Questions
RQ1: What is the context of privacy protection in the targeted orga-
nization? The deep-dive organization invests more resources to se-
curity than privacy-enhancing analysis—pattern also present in the
other organizations. Moreover, stewards consider privacy an asset
and strive to provide the best standard for their customers. However,
organizations still employ traditional anonymization techniques.
Furthermore, companies today are unable to tangibly measure the
privacy of their process (see Q3), and while there are specific pri-
vacy and security measures such as access controls, they are hard to
quantify formally. Lastly, we observed that the interviewed compa-
nies are far from having “data at their fingertips”, one of the reasons
being the onerous dataset request processes, which confuse access
hardship with access protection.
RQ2: Could differential privacy tackle the privacy-related pain points
of an analysis workflow in an organization? Yes, to a large extent—In
essence, the main problems are (i) lengthy and cumbersome dataset
request processes. Moreover, given that analysts can sometimes
“see”, download, and share the data once they are granted access, and
even collude with other co-workers with access to linkable datasets,
(ii) only policy protects data once stewards grant access. Based on
our work, we argue that differential privacy can reduce time-to-data
by enabling exploration of critically sensitive data or across third-
party data sources, relax the current data access restrictions thanks
to its formal privacy guarantee, is applicable to some aggregation-
based use cases, and, for some use cases, engineers should consider
building solutions that block analysts from “seeing” the data.
RQ3: When does differential privacy impede an analysis? The an-
swer to this RQ heavily depends on the use case and whether the
analysts are willing to forgo accuracy. On the one hand, noise
addition-based differential privacy is useful in aggregations per-
formed by the interviewees (e.g., querying demographics or fre-
quently used product features). Moreover, on average, interviewees
were comfortable with 98% accuracy. However, differential privacy
is not a silver bullet, as some of the interviewees’ use cases can-
not rely on it (e.g., error analyses or critical financial estimations).
Therefore, we suggest building systems that enable differential pri-
vacy while maintaining the flexibility of allowing non-differentially
private queries when the use case strictly needs them.
RQ4: How would differential privacy affect the workflow of an ana-
lyst? If differential privacy enabled previously unavailable explo-
ration and provided data for privacy-enhanced dashboards, analysts
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would have a better user experience in their workflow and lower
time spent on processes and exploration, but would also need to
accustom to working with noisy data.
RQ5: Can differential privacy be applied to the frequent SQL-like
queries analysts execute? Yes—While not as frequent as retrievals,
around a third were aggregations amenable to differential privacy.

7 TOWARDS PRACTICAL DIFFERENTIAL
PRIVACY

This section provides a set of critical system desiderata a differ-
ential privacy (DP) analytics system should satisfy for practical
deployments. Subsequently, we identify requirements fulfilled by
state-of-the-art tools (see Table 1) and highlight the gaps in practice.

7.1 Key System Desiderata
In secondary use cases, an alternative to syntactic anonymization
(see section 5.2) for sharing data is an inherently private analy-
sis, i.e., the analysis satisfies a semantic privacy definition such as
DP [21], which uniquely provides a measure of privacy (ε). With
DP, organizations do not necessarily need to use potentially vul-
nerable syntactic techniques (e.g., rounding or truncation) because
the analysis itself already enhances individuals’ privacy. Based on
the (i) interviewees’ description of their analytics workflows and
systems, (ii) the authors’ knowledge in the domain of privacy, and
(iii) the feedback provided by additional privacy practitioners and
researchers who work closely with/in our lab, we propose 10 key
desiderata. The desiderata correspond to a system that enables
differentially-private analyses in the central model and focuses on
dataset exploration and fulfilling use cases requiring aggregations
(see use cases in Q12). These use cases often rely on SQL-like queries
such as counts, averages, etc. Additionally, we inspired some of the
characteristics of the key desiderata related to (III) Security and (V)
Visualization from Kifer. et. al [64] and Nanayakkara. et. al [77].
(I) Differentially Private Analytics. The system bestows DP to a
learning function (e.g., a query or an ML algorithm) by adding
calibrated noise to the deterministic outputs (or by other means).
The system supports the (i) aggregation queries: COUNT, MAX, MIN,
AVG, VAR, and SUM, (ii) provides a complementary ML feature, and
stores executed queries for future retrieval. The queries (iii) allow
for WHERE, GROUP BY, and JOIN clauses.
(II) Usability. The system provides logic to preserve (i) the semantic
consistency of queries (e.g., variance > 0) and across overlapping
domains (e.g., the sum of noisy element counts is not larger than
the noisy total). Moreover, the system presents the option to (ii)
estimate the sensitivity of a query without user input, and (iii) rec-
ommends or sets privacy parameters automatically depending on
the dataset and query.
(III) Security. The system (i) provides a stochastic tester or other
functions to automatically verify whether the algorithm fulfills
DP, (ii) employs cryptographically secure pseudo-random number
generation with careful seed management, (iii) generates noise
impervious to floating-point vulnerabilities [46, 76]. Furthermore,
the system (iv) blocks the user from “seeing” the data, i.e., while
analysts can execute queries, they cannot download or visually
inspect the dataset, (v) does not allow to execute arbitrary code,
(vi) executes heuristic optimizers only at post-processing, and (vii)

protects against timing attacks [64]. A libraries’ and frameworks’
scope limits to fulfilling (i), (ii), and (iii).
(IV) Synthetic Data Generation. When the goal is to develop an
application or explore whether an ML model is suitable for a task,
the system produces synthetic data. After testing, the analyst can
proceed with the real data (without “seeing” it). Synthetic data
generation could rely on simple techniques (e.g., sampling from a
normal distribution with the same mean and standard deviation as
the target attribute), ML [18, 96, 112], or combining DP with either.
If the analyst is only interested in the data schema, the system
produces dummy data, preserving only the schema and data types.
(V) Visualization. The system presents a dashboard depicting in-
teractive plots (e.g., histograms) relying on DP queries for quick
and intuitive (i) dataset exploration. Additionally, the dashboard
visualizes an analysis’ expected (ii) accuracy and (iii) disclosure
risk, (iv) uncertainty (i.e., a measure of how the same mechanism
can produce different outputs with the same input arguments), (v)
statistical inference (i.e., privacy parameter estimation with confi-
dence intervals), and (vi) budget splitting (i.e., help in splitting the
privacy budget across queries) [77].
(VI) Privacy Budget. The system (i) tracks the budget spent (ε
“odometer”), (ii) blocks further queries if analysts exhaust their
budget, and (iii) accommodates the budget for growing datasets.
(iv) It should enable data stewards to specify budgets for teams, in-
dividual analysts, and use cases depending on the data’s sensitivity.
(VII) Accuracy Adjustment. The system allows the user to propose a
desired accuracy level. Alternatively, after the query execution, the
system provides either information about the noise scales (without
additional budget) or a confidence interval (spending budget) [101].
(VIII) Query Sensitivity. The system enables a practitioner, e.g., a
data analyst or steward, to input the attributes’ bounds (maximum
and minimum values) as function parameters or in the dataset
schema so that the system calculates the query’s sensitivity.
(IX) Privacy-Sensitive Data Annotation. The system enables data
stewards to allowlist attributes based on teams, roles, and use cases.
The system automatically obfuscates attributes outside the allowlist.
(X) Authentication and Access Controls. The system easily integrates
with existing authentication and access control services and enables
data stewards to define their access policies.

7.2 Gaps in Differential Privacy Practice
Despite available open-source tooling, one company found it hard
to find external partners that could bring DP into practice in their
internal analysis workflow. Furthermore, another company stated
after exploring the use of DP that, while it seemed helpful, “[De-
ploying differential privacy] was more expensive than doing nothing."
Instead, the department decided to upload syntactically anonymized
data to a highly secured system, with limitations on access time,
downloads, number of analysts, and audit logs. We kindly argue
that their over-statement was due to the intangible costs of the
dataset request processes and the lack of integrability of current
DP tooling, which makes deployment a complex endeavor.

Overall, our findings indicate a gap between the theory and
practice of DP. Working towards bridging the gap, we qualitatively
mapped in Table 1 our key system desiderata with DP tools to high-
light areas of future work for the privacy community. We selected
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Table 1: Mapping between open-source tools and user interfaces and the key system desiderata. Legend: ✓= functionality fully
available; ✗= limited functionality or not available; N/A = not applicable; P. = Privacy; DP = Differential P.; TF = TensorFlow;
I.i = Enables aggregation queries; I.ii = Enables machine learning; I.iii = Enables query clauses (e.g., JOIN); II.i = Query seman-
tic consistency; II.ii = DP sensitivity calculation; II.iii = Privacy parameter search; III.i = DP correctness verification; III.ii =
Cryptographically secure pseudo-random number generation; III.iii = Protection against floating-point vulnerability; III.iv =
Block data visibility; III.v = Block arbitrary code; VI.i = Budget accountant; VI.ii = Query blocker.

Table 1A: Libraries, frameworks, and systems for differential privacy analytics.
(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X)

Tool/Desiderata DP
Analytics Usability Security Synthetic

Data Visuals Privacy
Budget

Accuracy
Adjustment

Query
Sensitivity

Data
Annotation

Access
Controls

Libraries†

diffprivlib [52] I.i, ii ✓ II.i ✓ III.ii, iii ✓ ✗ N/A VI.i ✓ ✗ ✓ N/A N/A
Google DP [41] I.i ✓ II.ii ✓ ✓ ✗ N/A VI.i ✓ ✗ ✓ N/A N/A

Opacus [74] I.ii ✓ ✗ III.ii ✓ ✗ N/A VI.i ✓ ✗ ✓ N/A N/A
OpenDP [47] I.i ✓ II.iii ✓ III.ii, iii ✓ ✗ N/A VI.i, ii ✓ ✓ ✓ N/A N/A

TF Privacy [39] I.ii ✓ ✗ ✗ ✗ N/A VI.i ✓ ✗ ✓ N/A N/A
Frameworks†

Chorus [60] I.i, iii ✓ ✗ ✗ ✗ N/A VI.i ✓ ✗ ✓ ✓ N/A
PipelineDP [83] I.i ✓ ✗ III.ii, iii ✓ ✗ N/A VI.i ✓ ✗ ✓ ✗ N/A
P. on Beam [42] I.i ✓ II.ii ✓ ✓ ✗ N/A VI.i ✓ ✗ ✓ ✗ N/A

Tumult Analy.[99] I.i, iii ✓ ✗ ✓ ✗ N/A VI.i, ii ✓ ✗ ✓ N/A N/A
ZetaSQL [40] I.i, iii ✓ II.ii ✓ ✓ ✗ N/A ✗ ✗ ✓ ✗ N/A

Systems
Airavat [90] I.i, ii ✓ ✗ III.iv ✓ ✗ ✗ VI.i, ii ✓ ✗ ✓ ✗ ✓

DJoin [78] I.i, iii ✓ ✗ III.ii, iv, v ✓ ✗ ✗ VI.i, ii ✓ ✓ ✓ ✗ ✗
†Libraries’ and frameworks’ (III) Security scope is limited to three sub-desiderata (i), (ii), and (iii).

Table 1B: User interfaces for differential privacy analytics (cf. adapted [77]).
(V.i) (V.ii) (V.iii) (V.iv) (V.v) (V.vi)

User Interface/Desiderata Dataset
Exploration

Accuracy
Visualization

Risk
Visualization

Uncertainty
Visualization

Statistical
Inference

Budget
Splitting

Bittner et. al [12] ✗ ✓ ✗ ✗ ✗ ✗

DPcomp [49] ✓ ✓ ✗ ✗ ✗ ✗

DPP [56] ✗ ✓ ✓ ✗ ✗ ✗

Overlook [97] ✓ ✓ ✗ ✓ ✗ ✗

PSI (Ψ) [32] ✓ ✗ ✗ ✗ ✗ ✓

ViP [77] ✓ ✓ ✓ ✓ ✓ ✓

the tools from the related work in section 3 that offer open-source
implementations for the central model of DP (see tool descriptions
in Appendix F). We must highlight that some of these tools are li-
braries (provide specific functions) or frameworks (abstractions used
to build specific applications) and, thus, lack functionalities that
a system (end-to-end application) like Airavat [90] could provide,
such as (III.iv) Blocking the visibility of data or (X) Authentication
and access controls. Note that libraries and frameworks assume
analysts have data access. Additionally, we regard user interfaces
(systems focused on visualizations and providing analytics meta-
data) as a set of tools that should fulfill key desiderata specific to (V)
Visualization. Accordingly, we assign each open-source software to
its category in Tables 1A and B for an appropriate comparison.

We must highlight that the mapping of Table 1 provides high-
level guidance, as there are (out-of-scope) nuances Table 1 does
not capture. For example, user interfaces such as Bittner et. al [12]
and DPP [56] in Table 1B provide exploratory results for using
DP ML and for disclosure risk, respectively; however, they do not
help understanding the dataset, which is a critical requirement
for data analysts. Regarding the tools in Table 1A, diffprivlib [52]

offers multiple ML models (PCA, Naive Bayes, liner and logistic
regression, k-means) while others focus on deep learning (Opacus
[74] and TensorFlow (TF) Privacy [39]) or MapReduce functionality
(Airavat). Additionally, the frameworks are designed for large-scale
datasets. We note that Google DP [41] provides the building blocks
for ZetaSQL [40] and Privacy on Beam [42] (and PipelineDP [83]),
which add more functionality for considering datasets with multi-
ple individual’s contributions. Lastly, most tools provide only an
“odometer” for privacy budgeting, while a few block new queries if
the budget is spent (e.g., OpenDP [47] and Tumult Analytics [99]),
and Google DP offers functionality to distribute budget across differ-
ent DP mechanisms [14, 23]. None, however, account for growing
datasets, which is a challenge recently tackled in [68]. One may
find more of these nuances in [36].

Based on the non-availability or limited implementations of
some desiderata in Table 1, we conclude that differential privacy
tool designers can learn from one another, no tool outperforms the
rest in every aspect, and, most importantly, that bridging the gap
is primarily an engineering problem. Subsequently, we identify the
major gaps in differential privacy practice:
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Gap 1: (II) Usability. While semantic consistency is sometimes de-
sirable for analysts, it can also introduce more error/bias in some
scenarios. Only diffprivlib implements mechanisms to fulfill DP and
consistency for specific queries (e.g., variance > 0), whereas Google
DP or Tumult Analytics only truncate values in post-processing.
Furthermore, only Google DP can calculate the query sensitivity in
a privacy-enhancing manner without any user input, which is nec-
essary when an analyst lacks domain knowledge of the application
(i.e., input bounds). Thus, none of the tools in Table 1 completely
fulfill the usability desiderata. Guidance: [2, 41, 52, 88, 89, 103, 104]
Gap 2: (III) Security. The tools do not provide many security fea-
tures individually. E.g., most lack stochastic testers to verify that
an analysis fulfills DP, and none implement protections against
time-attacks [64]. Wrt to secure random number generation: TF
Privacy inherits TF’s insecure RNG [43, 44] and Airavat employs
the insecure utility java.util.Random [91] in contrast to DJoin,
which relies on FairplayMP [10, 11]. Moreover, while TF Privacy
developers are aware [73], we encourage them to include floating-
point protections in their deep learning models or rely on discrete
noise distributions [16, 37]. Moreover, most tools should tackle
their precision-based attack vulnerability [46]. Lastly, we highlight
some of the good practices Kifer et. al [64] proposed: open-sourcing
systems (the community can check for vulnerabilities) and perform-
ing code audits and unit tests to ensure correctness in DP, privacy
accounting, and noise sampling. Guidance: [4, 41, 64]
Gap 3: (IV) Synthetic Data Generation (SDG). Similarly to tools
offering DP ML [39, 52, 74, 90], we suggest developers package and
include DP SDG logic. Guidance: [17, 18, 96, 98, 106, 109, 110, 112].
Gap 4: (V) Visualization. While there is enough research on user
interfaces, the most popular frameworks and libraries do not adopt
them. We suggest packaging available DP user interfaces for patch-
ing analytics tools. Guidance: [77, 97].
Gap 5: (VI) Privacy Budget. A surprisingly high number of tools
implement privacy “odometers” without a logic to block queries
after exceeding the budget. Guidance: [42, 78, 90].
Gap 6: (VII) Accuracy Adjustment. While most user interfaces pro-
vide some form of accuracy calculation and visualization, many
other tools overlook such feature. Guidance: [77, 101].
Gap 7: (IX & X) Functionality for Data Stewards. Only a few tools
enable data stewards and owners to (IX) annotate sensitive data
and (X) define and enforce access controls. Developers do not need
to reinvent the wheel, as they adopt current best practices from
popular cloud platforms [9, 38, 75]. Guidance: [56, 60, 90].

Given that most functional requirements are fulfilled in compo-
nents across tools, we conclude that engineering efforts are within
striking distance. To complement these building blocks, we offer an
early stage, high-level system design blueprint in Appendix H. The
blueprint aims to spark interest in practitioners to develop holistic
analytics tooling that follows the identified key system desiderata.

8 FURTHER CHALLENGES
Beyond the engineering and organizational challenges discussed in
the previous sections, there exist other critical technical challenges
in DP. In combination: Managing privacy budgets on large-scale
user data streams [68] with unknown domains and user contribu-
tions on multiple records [4] across different systems while adapt-
ing the noise level as the budget diminishes. Furthermore, fitting

a mathematical model to such a system’s semantics and verifying
DP fulfillment with, e.g., unit tests, poses additional difficulties [64].
Additionally, DP might not be fair [62] in some use cases where a
DP calculation determines a critical outcome, e.g., a user’s financial
support in an underwriting model (see challenges in Appendix G).

Our work highlights the challenges blocking the broader adop-
tion of DP in organizations’ workflows. Dwork et al. [27] partly
studied these challenges by interviewing DP experts, while our
study brings non-experts into the discussion. Dwork et. al distilled
four main challenges from their interviews (section 3.6 [27]), which
overlap with a few of our findings: (i) Part of the challenges deploy-
ing DP were design based. In section 7, we highlight that current
DP tools still require engineering effort to be easily deployable in
organizations. (ii) DP deployment complexity is also institutionally
based. A common theme of the interviewed companies was their
intricate networks of stakeholders and processes, which hamper
goal alignment and technology deployments. (iii) There was no con-
sistency in DP approaches across institutions, indicating a need for
shared learning. One of our conclusions in section 7 signals that tool
designers can learn from one another. (iv) Transparency and testable
privacy statements can benefit companies in the regulatory landscape.
Similarly, section 7 advocates for transparency in system designs
and moving towards DP-centered systems and away from syntactic
privacy definitions that only guarantee factual anonymity.
Future work. We suggest privacy practitioners fill the gaps high-
lighted in section 7 and tackle the challenges of Appendix G. More-
over, specifically for privacy researchers, we encourage (i) improv-
ing guidance on selecting ε [27, 56] and (ii) studying and communi-
cating to non-experts how mechanism designs affect utility. For ex-
ample, studying how output consistency can imbue bias [2, 103, 104]
or floating-point protection may provide less utility. As new DP de-
ployments increasingly resort to more complicated algorithms [69],
we suggest (iii) studying the unpredictable artifacts these algo-
rithms may introduce (e.g., in the 2020 US Census [34]). Lastly, we
encourage improving current proposals of differentially private (iv)
ML and (v) synthetic data generation.

9 CONCLUSION
We conclude that DP can improve the work of data scientists across
industries by enabling sensitive data exploration across silos, po-
tentially shortening data access times by relaxing the adversity of
data request processes, and can fulfill some types of use cases. Fur-
thermore, analysts meaningfully and frequently employed analyses
amenable to DP and, on average, would feel comfortable with a 98%
of accuracy. Therefore, we suggest companies focus on privacy-
enhancing analysis to harvest these benefits, not mainly on security.
Moreover, we regard enabling analysts to work without “seeing”
data and providing analysis accuracy expectation as critical, mul-
tifaceted challenges for the research community to solve. We also
highlight that current open-source tools do not facilitate easy de-
ployments, a problem requiring engineering effort within striking
distance. Consequently, we encourage the community of privacy
practitioners to tackle this engineering problem and ease deploy-
ments by enabling interactive dashboards, accuracy expectation
measurements, improving usability and security, and integration
of data annotation and access control capabilities, for ultimately
bridging the identified gap between theory and practice.
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A INTERVIEWED COMPANIES OVERVIEW
Table 2 presents a summary of the characteristics of the interviewed
companies. The companies belong to a diverse set of industries,
predominantly SW development, and 4 of the 9 companies are
significantly large, with over 100, 000 employees. 5 companies are
under the jurisdiction of the EU with regulations such as the General
Data Protection Regulation [30], and 4 companies operate under
US law, e.g., the California Consumer Privacy Act [80].

Table 2: Overview of the interviewed companies. Legend: SW
dev. = Software development

Industry (focus) Size
(employees)

Team’s
Location

Team operates internationally
Automotive (car manufacturer) > 100, 000 Germany

Insurance (health) > 100, 000 Germany
SW dev. (data processing) < 2, 000 Germany

SW dev. (subscription newsletters) < 2, 000 USA
Team operates nationally
Consultancy (banking and big pharma) > 100, 000 Spain

Entertainment (finance) < 2, 000 USA
SW dev. (business operations) > 100, 000 Germany

SW dev. (data processing) < 2, 000 USA
SW dev. (smart sound system) < 2, 000 USA

B INTERVIEW QUESTIONNAIRE FOR DATA
STEWARDS

RQ1: What is the context of privacy protection in the targeted
organization?

Q1: What is the institution’s motivation for privacy protec-
tion?
Q2: What are your privacy concerns when an analyst has
full dataset access?
Q3: At what level of data granularity are you protecting
and measuring privacy?
Q4: What could be improved in the dataset request process?
Q5: What are your typical questions for the current interview-
based full dataset access authorization?
Q6: Instead of the interview process, would you be capable
to run a program provided by the analyst s.t. the analysis is
carried out without the analyst ever “seeing” the dataset?
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C INTERVIEW QUESTIONNAIRE FOR DATA
ANALYSTS

As we interviewed non-experts in differential privacy, we mini-
mized the number of questions that contained the words or required
knowledge of “differential privacy”. We kept a few because we aimed
to assess whether systems offering differential privacy functionality
could be valuable to analysts. First, we briefly explained differential
privacy in a simplified manner: “Differential privacy is a technique
that adds noise to analytics results so that one cannot reverse engineer
the outputs to a specific person.” Additionally, if we perceived the
interviewees were disoriented with Q18 or Q19, we explained that
the hypothetical system would be the same as the one they used
every day, the only difference being that the results would slightly
differ from the deterministic outputs. Picturing the system they
used daily was very helpful for imagining one where the outputs
are noisy. Furthermore, we carefully parsed their answers to assess
whether they understood the concept or its integration into their
system. If they did not, we kindly repeated the procedure above.

RQ2: Could differential privacy tackle the privacy-related pain
points of an analysis workflow in an organization?

Q7: What is your workflow to analyze data?
Q8: Why do you need full dataset access?
Q9: How often do you request full dataset access? How long
does it usually take?
Q10: What do you think about the process to request full
dataset access in your organization?
Q11: What features do you think are missing in your orga-
nization’s data analysis workflow?

RQ3: When does differential privacy impede an analysis?
Q12: In which analytics use cases have you been involved?
Q13: Is SQL-meaningful for your work? How many SQL-like
queries do you make weekly?
Q14: How often do you need machine learning to fulfill your
analysis in contrast to using SQL?
Q15: What are your most used machine learning models?
Q16: If you were to use differential privacy to fulfill your
analysis, when and how much accuracy would you be willing
to forgo?

RQ4: How would differential privacy affect the workflow of
an analyst?

Q17: How much would the noise affect your analysis?
Q18: Would you find it helpful to execute differentially pri-
vate SQL queries to explore and fully analyse datasets with-
out the standard permissions?
Q19: Only based on the information extracted from a dataset
exploration with differential privacy, could you write a script
to fulfill your analysis goal?
Q20: What are the minimum properties for you as an ana-
lyst such that you are confident to write an analysis script
without full dataset access?
Q21: Would you find it helpful to use a dynamic dashboard
that visualizes dataset information with differential pri-
vacy?

RQ5: Can differential privacy be applied to the frequent SQL-
like queries analysts execute?

Q22: What are your top SQL-like queries before you have
full dataset access?
Q23: What are your top SQL-like queries after you have full
dataset access?
Q24: What is the ratio between aggregation queries and
queries to retrieve items?

D FREQUENT QUERIES
In Table 3, we include the most frequent SQL queries recorded dur-
ing the interviews with the data analysts before and after accessing
a dataset. Note that not all analysts were allowed to explore datasets
and a few did not employ SQL for data preparation or analytics;
instead, they resorted to Python scripts for statistical analysis, ML,
and visualization or tools such as Tableau [95], Knime [66], or pro-
prietary SAP data management software. For exploring the dataset
prior to access, 14 analysts resourced to SELECT * to get a “feeling”
for the data. Furthermore, COUNT and DISTINCT, and WHERE and
GROUP BY were the most frequently used functions and clauses,
respectively.

Table 3: Most frequent queries before (data exploration) and
after (data preparation/analysis) data access. Legend: Freq. =
Frequency (i.e., number of analysts who used such query).

Query Freq. before Freq. after
access access

Function
COUNT 7 7

DISTINCT 6 4
MAX 4 5
MIN 4 5
AVG 4 4
VAR 2 3

Statement
SELECT * LIMIT 14 12
Clause

WHERE 13 10
GROUP BY 12 9

JOIN 2 8

E FREQUENTLY ASKED QUESTIONS FROM
DATA STEWARDS TO ANALYSTS

We compiled the most frequently asked questions data stewards
make to data analysts during the data access request process.
• Could you describe in detail the analytics use case?
• Is the use case approved by the corresponding internal stake-

holders?
• Why is the dataset needed?
• Is the dataset adequate regarding quality, volume, and use

case?
• Could you reach the goal without dataset access?
• Is the entire dataset needed or only a set of attributes?
• Is the dataset already available, or must a data engineer

create a new dataset?
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• Is the dataset classified as very sensitive? If affirmative, ad-
ditional access control measures and monitoring must be
defined in detail.

F OPEN-SOURCE TOOLS DESCRIPTIONS
We provide a quick description of each of the selected open-source
tools mapped to the key system desiderata in section 7 appearing
in Table 1.
Libraries
diffprivlib: IBM researchers developed a general-purpose Python
library to execute differentially private aggregation queries and
machine learning in the context of data science (namely Note-
books) [52].
Google DP: Google researchers developed a library in multiple
languages (C++, Go, and Java) that an expert may use to build new
applications supporting differential privacy [41].
Opacus: Meta researchers developed a library dedicated to train-
ing machine learning models offered by PyTorch in a differentially
private manner [74].
OpenDP: Harvard implemented a flexible architecture for differen-
tially private analysis, consisting of a (pluggable) runtime in Rust
wrapped around a Python API, in addition to a “validator” that
calculates parameters such as the sensitivity of a query. [47].
TensorFlow Privacy: Google researchers developed a library that
includes TensorFlow differentially-private optimizers for training
machine learning models [39].

Frameworks
Chorus: Johnson et al.’s [59, 60] wrote a framework in Scala that
works in cooperation with existing infrastructure (a SQL database)
to explore the use of differentially private SQL queries at scale.
PipelineDP (experimental): OpenMined, in collaboration with
Google, propose a framework to execute differentially private ag-
gregations in large-scale datasets using batch processing systems
(Apache Spark and Apache Beam) [83].
Privacy on Beam: Similarly to PipelineDP, Privacy on Beam [42]
proposes a solution based on Apache Beam and Google DP [41] for
executing differentially private analytics at scale.
Tumult Analytics: Tumult Labs provides a Python library built
atop a framework similar to OpenDP for computing aggregate sta-
tistics over tabular data at scale [99].
ZetaSQL: Google researchers wrote a framework for SQL that de-
fines a language, a parser, and an analyzer meant to work with an
existing database engine [40].

Systems:
Airavat: Roy et al. [90] designed a MapReduce-base system written
in Java for distributed computations on sensitive data that integrates
differential privacy and access control with policies defined by data
owners/stewards.
DJoin: Narayan et al. [78] built a system capable of processing a
wide range of differentially private SQL queries across datasets from
different organizations and leverages homomorphic primitives to
hide inputs.
User Interfaces:
Bittner et. al [12]: With a focus on ML, Bittner et. al aim to help

researchers decide which algorithm to use by offering an interface
that quantifies the disclosure risk of different algorithms.
DPcomp: A web-based system enabling researchers to assess the
utility of differentially private algorithms and understand their re-
spective incurred error [49].
DPP: This user interface specifically helps data owners to set the
noise level per the disclosure risk of an attribute. The underlying
mechanism relies on a novel parameter selection procedure for
differential privacy [56].
Overlook: Thaker et al. [97] designed a system for differentially
private data exploration that supports counts with an interactive
browser-interfacing dashboard (namely visualizing histograms).
PSI (Ψ): Harvard’s Privacy Tools Project works on a data sharing
interfaces for researchers to explore datasets with differential pri-
vacy [32].
ViP: Visualizing Privacy is an interface that provides informa-
tion about the relationships between utility, ε , and disclosure risk
(among others), allowing users to adjust the privacy parameters
of their analysis based on visualizations of expected risk and accu-
racy [77].

G DIFFERENTIAL PRIVACY CHALLENGES
This section enumerates other critical challenges we encourage
researchers and system designers to investigate.
(1) While DP is highly adaptable to use cases (e.g., using the local
or central model) and algorithms (e.g., queries or ML), the adap-
tations are non-trivial and have often led to erroneous implemen-
tations [25]. Thus, practitioners should exercise extreme care to
ensure the correctness of their DP implementation with the same
sentiment as “do not write your own crypto.”
(2) Fairness could be another obstacle to DP adoption, which Har-
vard researchers also highlighted when referring to the US Census
of 2020 [62]. Specifically, one analyst underlined the topic of fairness
when asked about how noise would affect their analysis (Q17). If
analysts add differentially private noise during training underwrit-
ing linear regression models, users might be over- or under-funded.
While the company would not incur a loss as the predictions would
be “right” on average, the effect noise has on their users could
impact their brand perception.
(3) Managing user-level privacy budgets in user data streams [68].
(4) Tracking the privacy budget across systems and adapting the
noise level based on the remaining budget.
(5) There is a significant difference between the local and central
model noise levels.
(6) Choosing ε and other privacy parameters [27].
(7) Building systems that fulfill DP for (i) large-scale datasets (ii)
when users make contributions to multiple records (iii) with un-
known domains [4].
(8) Verifying DP compliance of a complex system by proving and
fitting a mathematical model to the system’s semantics [64] and
developing unit tests to ensure the system conforms to such model.

H SYSTEM DESIGN
Although there are many potential ways to construct privacy-
enhancing analytics systems, to show the feasibility of covering all
system desiderata presented in section 7, this section discusses one

168

166



Lessons Learned: Surveying the Practicality of Differential Privacy in the Industry Proceedings on Privacy Enhancing Technologies 2023(2)

design to guide practitioners in their development. The design is
in an early stage, and, thus, we cannot discuss the components in
detail. Instead, we sketch the system’s primary components, aiming
to spark interest in further system development and research in the
community.

We consider two roles interacting with the system: (i) data stew-
ards have the authority to access the original data and the legal
background for data management. Stewards can authorize data
access inside an organization and ensure compliance. (ii) Data ana-
lysts analyze data to fulfill use cases. Analysts often need to access
data by employing SQL aggregation or retrieval and python scripts.
In the current system design, we mainly consider SQL aggregation
and retrieval. Lastly, we assume that analysts cannot share query
results with unauthorized recipients. In such a setting, we present
our high-level system design blueprint in Fig. 2.

The components are the following:
Database Schema: The system requires one dedicated component
to manage the database schema and ensure its consistency at all
places to make sure all components have a consistent view of the
processed data format.
Policy Panel: Data stewards create and update the configuration
stored in the policy panel to authorize data access from data ana-
lysts to satisfy desiderata (X), annotate data sensitivity to satisfy
desiderata (VIII) and (IX), and ensure compliance. Other system
components rely on the configuration in the policy panel to decide
whether to proceed with particular requests or queries.
User Registration Service: The user registration service compo-
nent maintains a user system to standardize the onboarding pro-
cedure of data analysts to satisfy desiderata (X); thus, the system
can distinguish between different data analysts with different data
access requirements and permissions.
Statistic Dashboard: The statistic dashboard is a privacy-enhanced
visualization for database statistics, which will help authorized data
analysts explore datasets, thus satisfying desiderata (V).
Query Gateway: The query gateway reads annotated data schema
from the policy panel and uses it to analyze the query structure,
parsing the query for later stages. The system can thus run a pre-
liminary policy check on the incoming query and route it to the
corresponding database proxy.
Original Database: The database service stores the original sensi-
tive data securely to satisfy desiderata (III), ideally with encrypted
storage and restricted access for the data steward and other neces-
sary system security components to fully comply with (III).
Budget Manager: With the information about both the database
schema and the sensitivity annotation from the policy panel, the
budget manager models the differential privacy budget and keeps
track of the budget consumption in various queries.
Differentially Private Database Proxy: Before executing the
query from the data analyst on the tables in the original database,
the proxy analyzes how to apply differential privacy by transform-
ing the query and also calculates the budget consumption to satisfy
desiderata (I), (II) and (VI). Before returning the query result, it
also outputs the query’s accuracy estimation to satisfy (VII).
Synthesized Database: The synthesized database maintains the
dummy or differential-privately synthesized versions of tables in
the original database to satisfy desiderata (IV).
Synthetic Database Proxy: Upon receiving queries to the dummy

or differential-privately synthesized data, the proxy checks whether
the required version of the tables has already been generated in the
synthesized database. If the required version is missing, the proxy
orchestrates the generation procedure from the original database
on-demand.

Lastly, we describe the communication between system compo-
nents to explain the workflow to access different privacy-enhancing
analytic functionalities.
(1) Data Analyst User Registration. Once the system is correctly
set up, data analysts should begin to create their user accounts in
the system with the user registration service.
(2) Submission of the Query Request. The request should in-
clude both the SQL query and a piece of metadata that specify the
privacy details like accuracy requirements or whether to use the
dummy or synthesized data. The query gateway checks the query
request to see if it is compliant with the system policy and routes it
to the corresponding database proxy.
(3) Exploring Data Statistics on the Dashboard. Data analysts
can use the dashboard to explore dataset statistics that are periodi-
cally gathered from the original database.
(4) Data Steward Adjustment for Data Access Policy. In addi-
tion to allowing the data steward to configure the data access policy
manually, ideally, the policy panel should also make suggestions on
potentially useful policy changes. Such suggestions can be based
on the data access application or frequently rejected requests to
other system components during user registration.
(5) User Registration Following Policies in the Policy Panel.
If the data steward decides to include specific steps during the
registration procedure (e.g., signing acknowledgments, reading ma-
terials, finishing tutorials), the registration procedure would reflect
such requirements.
(6) User Access to Query and Dashboard Service Determined
by Policy. Considering both queries and the statistic dashboard
exploration reveal information about the original data, the policy
panel should control the access of data analysts to both services.
(7) Query Execution With One Proxy. Depending on the privacy-
related metadata, one of the proxies executes the query with its
transformation and returns the query result with privacy details
like result accuracy or budget consumption. If the result consumes
the privacy budget, the proxy also notifies the budget manager to
track the change.
(8) On-Demand Data Synthesis. If the synthetic database proxy
cannot find the required version of the dummy of synthetic tables
from the synthesized database, it triggers the generation of that
required version.
(9) Unified Schema Synchronization Between System Com-
ponents. The database schema component enforces consistency
by tracking the changes in the original database. It locks the whole
system for schema changes until the updates are applied to all
system components.

As of September 2022, our GitHub hosts an early-stage open-
source effort to benchmark libraries and frameworks suitable for
some of the system components in Fig. 2:

https://github.com/camelop/dp-lab
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Figure 2: High-level system design blueprint of a privacy-enhancing analytics tool. The components and communication links
are described in Appendix H. Solid lines represent communications between components triggered by all relevant query events,
while dashed lines represent communications that happen periodically or only under certain circumstances. We specify those
circumstances in the workflow description.

170

168


	Table of Content
	List of Figures
	List of Tables
	Part A
	1 Introduction
	1.1 Motivation
	1.2 Research Questions & Related Work
	1.3 Contributions & Publications Summary
	1.3.1 Dissertation Contributions & Publications
	1.3.2 Additional Related Publications

	1.4 Structure of the Dissertation

	2 Background
	2.1 Privacy
	2.2 Data Sharing & Analytics Applications
	2.3 Privacy-Enhancing Technologies
	2.4 Differential Privacy

	3 Research Design
	3.1 Research Strategy
	3.2 Research Methods


	Part B
	4 Contributions
	4.1 Contribution I: Revealing Opportunities and Challenges in the Applicability of Privacy-Enhancing Technologies in Data Sharing and Analytics Applications
	4.2 Contribution II: Improving the Applicability of Differential Privacy Algorithms
	4.3 Contribution III: Improving the Applicability of Differential Privacy Systems


	Part C
	5 Discussion
	5.1 Discussion of Key Findings
	5.2 Discussion of Results
	5.2.1 Contribution I: Revealing Opportunities and Challenges in the Applicability of Privacy-Enhancing Technologies in Data Sharing and Analytics Applications
	5.2.2 Contribution II: Improving the Applicability of Differential Privacy Algorithms
	5.2.3 Contribution III: Improving the Applicability of Differential Privacy Systems

	5.3 Limitations

	6 Future Work
	6.1 Expanding Contributions I, II, and III
	6.2 New Research Stream: Improving the Applicability of Differential Privacy in Virtual Reality Applications

	7 Conclusion
	Bibliography
	Publications
	Abbreviations
	A Embedded Publications


