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Abstract

Recent developments in computational wind engineering, nu-
merical methods, and high-performance computing have matured
to model and compute wind effects on structures accurately and
efficiently. However, modeling real-world problems is always associ-
ated with uncertainties, and an engineering decision-maker must be
aware of and consider these uncertainties. In this context, this thesis
explores uncertainty quantification (UQ) and optimization under
uncertainty (OUU) for uncertain structures under uncertain wind
conditions.

The uncertainties of the wind parameters, wind direction, and
the inherent randomness of the wind flow are considered in the un-
certainty quantification problem. The uncertain damping and eigen
frequency of the structure are also modeled in the UQ analysis. The
uncertainty propagation is investigated by Polynomial Chaos, Monte
Carlo, Multi-level Monte Carlo, and Neural network surrogates. The
efficacy of the methods is demonstrated and compared for the prac-
tical computational wind engineering problem.The UQ workflow is
demonstrated for the benchmark Commonwealth Advisory Aeronau-
tical Council (CAARC) building B under uncertain wind conditions.
Conditional value at risk (CVaR) as a risk measure is introduced and
proposed as a superior measure for decision-making under uncer-
tainties of wind flow. The thesis also demonstrates the benefit of CVaR
for design selection of tall buildings.

Aerodynamic shape modification is a common strategy to re-
duce the wind effects on tall buildings. This thesis proposes a novel
approach to risk-averse shape optimization of tall buildings that in-
corporates location-specific uncertainties in wind conditions. The
bending moment of the building is minimized, resulting in a building
with lower construction and maintenance costs, lower material use,
and a reduced carbon footprint. CVaR of the quantity of interest (QoI)
is minimized for the high-consequence events in the worst 10% of
the wind conditions. A gradient-based optimization pipeline with
an adaptive sampling strategy to reduce computational cost is pro-
posed. The improved performance of the final risk-averse building
demonstrates the significance of the novel risk-averse design work-
flow. By performing UQ and OUU tasks for structures under uncertain
wind conditions, a safer and superior-performing structure in the real
world is achieved.





Zusammenfassung

Die jüngsten Entwicklungen im Bereich des computergestützten
Windingenieurwesens, der numerischen Methoden und des Hoch-
leistungsrechnens erlauben es, Windwirkungen auf Strukturen reali-
tätsnäher und effizient zu modellieren und zu berechnen. Die Model-
lierung von realen Problemen ist jedoch immer mit Unsicherheiten
verbunden, und ein technischer Entscheidungsträger muss sich die-
ser Unsicherheiten bewusst sein und sie berücksichtigen. In diesem
Zusammenhang untersucht und entwickelt diese Arbeit Methoden
zur Unsicherheitsquantifizierung (UQ) und zur Optimierung unter
Unsicherheit (OUU) für windbelastete Strukturen unter Berücksich-
tigung der für das Problem charakteristischen unsicheren Parameter.

Die Unsicherheiten der Windparameter, der Windrichtung und
die inhärente Zufälligkeit der Windströmung werden in dem Un-
sicherheitsquantifizierungsproblem berücksichtigt. Die unsichere
Dämpfung und Eigenfrequenz der Struktur werden ebenfalls in der
UQ-Analyse modelliert. Die Unsicherheitsübertragung wird mit Hilfe
von Polynomial Chaos, Monte Carlo, Multi-level Monte Carlo und
Neural Network Surrogates untersucht. Die Wirksamkeit der Metho-
den wird für ein praktisches Problem im Windingenieurwesen de-
monstriert und verglichen. Der vorgeschlagene UQ-Arbeitsablauf
wird für das Referenzgebäude CAARC unter unsicheren Windbedin-
gungen demonstriert. Der Conditional Value at Risk (CVaR) wird als
Risikomaß eingeführt und als überlegenes Maß für die Entscheidungs-
findung bei unsicheren Windverhältnissen vorgeschlagen. In dieser
Arbeit wird auch eine Studie vorgestellt, die den Nutzen des Condi-
tional Value at Risk für die Entwurfsauswahl demonstriert.

Die Veränderung der aerodynamischen Form ist eine gängige
Strategie zur Verringerung der Windauswirkungen auf hohe Gebäude.
In dieser Arbeit wird ein neuartiger Ansatz zur risikoaversen Formop-
timierung von hohen Gebäuden vorgeschlagen, der standortspezifi-
sche Unsicherheiten bei den Windbedingungen berücksichtigt. Das
Biegemoment des Gebäudes wird minimiert, was zu einem Gebäude
mit geringeren Bau- und Instandhaltungskosten, einem geringeren
Materialverbrauch, einer besseren CO2-Bilanz und einem höheren
Komfort für die Bewohner führt. Der bedingte Risikowert der interes-
sierenden Größe (Quantity of Interest, QoI) wird für die folgenschwe-
ren Ereignisse unter den schlechtesten 10% der Windbedingungen
minimiert.



In dieser Arbeit wird eine gradientenbasierte Optimierungsme-
thodik mit einer adaptiven Sampling-Strategie vorgeschlagen, um
den Berechnungsaufwand zu reduzieren. Die verbesserte Performanz
des final resultierenden risikoaversen Gebäudes demonstriert die
Leistungsfähigkeit des neuartigen risikoaversen Entwurfsprozesses.
Durch die Umsetzung von UQ- und OUU-Prozeduren für Bauwerke
unter unsicheren Windbedingungen wird ein sichereres und leis-
tungsfähigeres Bauwerk in der realen Welt erreicht.
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In theory, there’s no
difference between theory
and practice. But in practice,
there is

Benjamin Brewster
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INTRODUCTION

Structures in civil engineering are conceptualized, analyzed, designed,
and built from the results and predictions of computational models in
recent decades. In structural engineering practice, it so happens that the
structure to be designed is unique, and no information or measurement
data is available about the responses of structures under dynamic loads,
such as wind loads, during the analysis and design phase. In some cases,
the situation continues even after constructing the structure. This scenario
is unlike machine components or other design scenarios, where multiple
entities of the same structure will be manufactured. An approach followed
in structural wind engineering practice is performing scaled-down testing.
The scaled-down test results may be associated with measurement and
modeling errors. A full-scale test is impossible prior to the construction
of the structure. This forces structural engineers and researchers to rely
more on computational modeling.

Equally crucial to modeling structural behavior is load modeling. It
is vital to estimate the load scenarios that may happen in the lifetime
of the structure to make a realistic and reliable prediction of responses.

1



1 Introduction

When it comes to simulating and predicting real-world behavior, nothing
is uncertainty-free. Structural analysis and design are no exception since
they involve structures built by humans and acted upon by a variety of
actions that are natural and/or man-made. Both natural and man-made
actions on structures (not yet built) are not known with certainty during
the analysis and design phase.

What precautions and considerations are needed if some of the param-
eters of computational models are not known with certainty? This thesis
primarily explores this question in the context of structures subjected to
wind loads.

1.1 Background

The design of structures is realized in practice by obeying the design codes.
In modern design codes, such as the Euro code [1], a reliability-based
approach is adopted. The codes estimate and try to minimize the uncer-
tainties through safety factors. Uncertainties in the loading are considered
in the design codes by considering a load factor (> 1). The value of the
load factor is higher for load cases with more significant variability. This
is the reason for having a low load factor for dead load compared to wind
or earthquake loads in load combinations in design codes. Similarly, the
calculated strength of structure is divided by a factor for resistance (< 1).
Considering the uncertainty of the material properties and the connec-
tions, the factors of resistance are determined. The resistance factor is low
for materials with larger variability and is closer to 1 for materials with
lower variation and higher quality control. Hence, a higher resistance fac-
tor for steel and a lower resistance factor for concrete in design codes is
adopted. The considerations of uncertainty and variability are done in the
codes in the background, and an intelligent user should be aware of the
consideration given to the variability and these hidden considerations.

The lack of such understanding may lead to the collapse of structures
due to underestimating unfortunate events of enormous wind, snow, earth-
quakes, etc., or by overestimating the strength of a given structure. Fig-
ure 1.1 shows some failures due to structural mishaps in the past. Many
of these catastrophic events could have been prevented with a better un-
derstanding of structural behaviors. These unfortunate events may lead to
immense economic loss or irreplaceable loss of human lives. It is the re-

2



1.2 Motivation

Figure 1.1 : Structural failures have had catastrophic con-
sequences in the past, such as Collapse of the Tacoma Narrow
Bridge [2] (left); the tragic collapse of a walkway at the Hyatt Re-
gency in Kansas City in 1981, causing human casualties [3] (middle);
and the failure of AquaDom aquarium at hotel Radisson in Berlin
2022 causing around 1500 aquatic life casualties [4] (right).

sponsibility of a structural engineer to be aware of such risks and minimize
errors, including uncertainty in the analysis and design.

The considerations of variability or lack of certainty in load and strength
become exceedingly crucial for structures where exact code recommenda-
tions are not available. For example, in the case of structures with a height
of more than 250m, Euro Code [1] recommendations for wind are not well
defined. When the geometry of the building is of unusual shape due to
architectural requirements, the drag coefficient values, dynamic factors
(Cs .Cd ), etc., may not be available in the design codes. It is the responsi-
bility of the design engineer to make realistic design decisions in these
cases.

1.2 Motivation

With increasing storm events and changing climate due to human inter-
ference, the importance of wind effects on structures is of great concern in
recent times [5]. Traditionally, wind tunnels and reduced scale testing are
employed to understand the wind effects on structures [6]. Complementary
to these traditional approaches, Computational Wind Engineering (CWE)
has gained attention in application to flow problems, including structural
wind engineering, in the past 50 years [6]. This has shifted the attention
of researchers from the traditional approach of wind tunnels. Numerical
wind tunnels based on CWE offer various advantages over traditional wind
tunnels and have been employed in various studies [7–10]. CWE may be de-

3



1 Introduction

fined as the use of computational approaches, specifically Computational
Fluid Dynamcis (CFD) for wind engineering applications. The basic idea
of CWE is to determine the velocity and pressure fields around the build-
ing and further analysis of the same. There have been several studies that
utilized CWE tools to determine the pressure and velocity fields around
the structure [11–15]. Even though huge advancements are happening in
CWE, the simulation using CWE tools for the wind effects of structures still
faces challenges. Murakami et al. [9] indicates these challenges to include
the high Reynolds number in wind engineering application, complex 3D
flow around the structure, numerical issues associated with sharp corners,
and the challenges associated with inlet and outlet boundary conditions.
These challenges are tackled with domain expertise and are an active re-
search area. Wind effects on structures have been studied and applied
in various studies to include in structural wind engineering [16–24]. Also,
CWE has been used for other domains like wind energy [25–27], and pedes-
trian comfort around buildings [28–31]. To gain confidence in the CWE
model, verification and validation are imperative to simulations for wind
effects on the structure. Code verification and solution verification is also
required for CFD solver [32]. Wind tunnel results are used to validate the
CWE results in practice.

Structures subjected to wind undergo complex interactions and require
in-depth analysis. This is particularly true for the case of flexible structures
such as tall buildings or long-span bridges. It is well known that a fully
coupled fluid-structure interaction analysis is needed for such problems.
Here, the analysis considers the mutual interaction between the structure
and the fluid flow around the structure. Such a coupled analysis is of great
importance in estimating the accurate structural effects of wind loading.
There are a couple of recent studies [33, 34] that indicate the algorithms
and methodologies for wind structure interaction. The field broadly is
termed Structural Wind Engineering (SWE).

Like other engineering disciplines, structural wind engineering prac-
tice also follows a deterministic approach to analysis and design. However,
real-world structural wind engineering problems have many uncertainties
associated with them, and deterministic models alone are not sufficient for
making predictions under these uncertainties. Wind flow at a given loca-
tion itself is uncertain inherently. A computational model of the structure
that takes into account the uncertainties from various sources can provide

4



1.3 An Introduction to Stochastic Computational Wind Engineering

deeper insight into the structural response and make reliable predictions
of Quantities of Interest (QoI). The uncertainties of the QoI are evaluated
from the uncertainties of the inputs in the forward propagation of un-
certainty. This is also known as the push-forward problem. The known
uncertainties of the inputs are forward propagated through the model to
obtain the uncertainties of the output QoI [35]. Hence, forward uncertainty
propagation is fundamental in structural wind engineering problems with
inherent uncertainties.

The stochastic model provides a better understanding of physics and
provides a reliable prediction with quantified uncertainties in these cases.
This thesis aims to include the various uncertainties from wind and struc-
ture and then determine the quantified uncertainties of the structural
responses. When this uncertain wind is acted upon a structure with un-
certain material parameters, the QoI is stochastic and needs additional
considerations that are not present in CWE. These additional consider-
ations to CWE are referred to in this thesis as Stochastic Computational
Wind Engineering (SCWE). In SCWE, the uncertainties arising in CWE
from various sources are accounted for. The motivation of the thesis is to
incorporate the rich knowledge of UQ to CWE and enrich SCWE insights.

1.3 An Introduction to Stochastic Computational Wind
Engineering

Structural wind engineering deals with analyzing structural responses,
safety and serviceability evaluations, and control of structures subjected
to wind loads. The QoI are the internal forces, deformations, accelerations,
or any other quantities that are relevant for engineering decision making.
As explained earlier, wind at a location itself is stochastic and time-varying.
Stochastic computational wind engineering insight is required in these
cases.

For example, one apparent randomness to be considered when analyz-
ing a structure subjected to the wind is the wind turbulence at the atmo-
spheric boundary layer. It can be observed that the wind speed recorded
at the exact location but at different time intervals shows different char-
acteristics. However, the statistics of a large number of such wind data at
a location over a considerable duration show some stable probabilistic
characteristics, as shown in Figure 1.2.

5
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Figure 1.2 : Time series of wind velocities at three
heights(increasing from bottom to top) with mean and standard
deviation evolution over time is shown. The statistics are observed
to converge over time.

1.3.1 Quantifying sources of uncertainty for stochastic
computational wind engineering

Uncertainty can be classified as aleatory and epistemic depending upon its
characteristics. Epistemic are reducible uncertainty, whereas aleatoric un-
certainties are irreducible and are inherent to the system considered [35].

The Figure 1.3 represents the matrix of knowledge adapted from [36].
Here, the different aspects of uncertainty are depicted for an SCWE scenario.
The matrix of knowledge is divided into four quadrants. It includes a fully
deterministic simulation, either aleatoric or epistemic uncertainty, and
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Figure 1.3 : The matrix of knowledge - a visualization of the
interrelation between different types of uncertainties in the context
of wind effects on structure adapted from [36].

the field known as Black swan events. In CWE, a deterministic simulation
is used as all the information about the numerical model is known. This is
true for cases where the geometry, boundary conditions, and properties
of the fluid are known with certainty. Model uncertainty is also ignored
when a fixed fidelity of the model is used to approximate the solution of a
Partial Differential Equation (PDE). A fixed numerical scheme is used to
solve the problem in that case. A deterministic CWE simulation is where
the epistemic and aleatoric uncertainty are known fully, assumed to be
known fully, or just ignored.

Epistemic uncertainty is reducible. A typical example of this category
is turbulence. This type of uncertainty can be reduced entirely by doing a
Direct Numerical Simulation (DNS) where the turbulence is resolved nu-
merically. However, for other simulations, this source of uncertainty exists.
Model uncertainty falls in this category. It can be reduced by adopting a
high-fidelity model.

Aleatoric uncertainty is inherent and can not be reduced. For example,
the wind loading acting on the structure is inherently stochastic. This can
be characterized by probabilistic definitions, such as a random variable.
The fourth quadrant represents the situation where the epistemic and
aleatoric uncertainties are not known with complete certainty. Moreover, a
high-risk, low-probability event may probably happen in this case. These
are termed as Black swan events.
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1 Introduction

This thesis mainly focuses on the aleatoric uncertainties of wind load-
ing on uncertain structures as they are of prime importance to SCWE
applications.

1.3.2 Stochastic wind load chain
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Figure 1.4 : Stochastic wind load chain - Davenport wind load
chain is enriched with UQ knowledge to result in the stochastic
wind load chain.

Figure 1.4 represents how the well-known Davenport wind load chain
can be enriched with uncertainties considered in the inputs. The workflow
starts with the uncertain input wind parameters as well as uncertain input
structural parameters. This will result in an uncertain aeroelastic response
of the structures. Now, the design criteria also need to be in the stochastic
domain. This stochastic workflow serves as a basis for the analysis proce-
dure followed in this study.

1.4 Objective and Contributions

The main objectives and contributions of the thesis are listed below.
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1.4 Objective and Contributions

• A systematic review of the most used numerical methods for un-
certainty quantification is carried out with a clear focus of SCWE
application.

• A comparative study of the various methods in uncertainty quantifi-
cation for the coupled problem of wind-structure interaction is pre-
sented. The efficacies of various methods for the benchmark cases
are systematically presented and discussed. The advantages, disad-
vantages, and applicability of each of the methods are discussed.

• A framework that uses adjoint sensitivity information for the uncer-
tainty quantification in polynomial chaos is presented. A two-step
surrogate approach that reduces the computational efforts using
this is proposed and is presented for geometric uncertainty in flow
problems. The applicability to wind engineering is discussed.

• The effect of uncertainties on a benchmark Commonwealth Advisory
Aeronautical Council (CAARC) building under uncertain wind load
is studied using the polynomial chaos approach.

• The effects of uncertainties of various parameters for wind effects
on structure are quantified using global sensitivity analysis.

• Conditional value at risk is proposed as a measure for the perfor-
mance evaluation of a time-varying quantity of interest for a complex
phenomenon like wind engineering. The applicability in wind en-
gineering is demonstrated for benchmark CAARC building under
uncertain wind conditions.

• A significance testing based on the conditional value at risk between
structural design options is proposed for the performance-based
design selection of structures under uncertain wind loads.

• A novel workflow with risk-averse optimization based on conditional
value at risk for Optimization Under Uncertainty (OUU) is presented.

• An adaptive sampling strategy for OUU for CWE problems at hand is
used in this thesis and the efficacy of this novel approach is demon-
strated.

9



1 Introduction

• The proposed OUU workflow is applied for the shape optimization of
buildings under location-specific uncertain wind loads. It is shown
that the risk-averse strategy results in better-performing building
shapes, indicating the significance of the proposed OUU strategy.

1.5 Outline of the thesis

The rest of the chapters are structured as below.

Chapter 2 presents various methods and their formulation for the for-
ward propagation of uncertainties.

Chapter 3 presents various sources of uncertainty for wind engineering
problems and how they can be represented. The chapter also discusses
various quantities of interest for a time-varying complex phenomenon
like that of wind engineering and proposes conditional value at risk as an
efficient risk measure.

Chapter 4 presents the novel OUU framework developed and adopted
for shape optimization of buildings under location-specific wind condi-
tions.

Chapter 5 compares the approaches presented in chapter 2 for coupled
FSI benchmark cases, the results are compared, and the applicability of
each of the methods is presented for the coupled problem under consider-
ation. The various forward UQ methodologies are explored and elaborated
in this chapter. The advantages and applicability of the various methods
are elaborated.

Chapter 6 describes the improvements of UQ for structural problems
with sensitivity information by the adjoint approach. The proposed work-
flow is elaborated for a series of test case examples and demonstrates the
computational efficiency.

Chapter 7 presents the verification and validation of the CAARC bench-
mark case, which is used as the demonstrator example in the later sections
of the thesis.

Chapter 8 presents the uncertainty quantification for the benchmark
test case CAARC building. A one-way coupled simulation is used for the
wind-structure interaction. It also introduces a novel significance testing
based on the conditional value at risk between design options for the
performance-based design selection.

10



1.5 Outline of the thesis

Chapter 9 discusses the OUU framework for shape optimization under
location-specific wind conditions. The twist and tapering of a building are
optimized such that the force resultant on the structure is minimized. A
comparison is made between deterministic, risk-neutral, and risk-averse
optimization designs, demonstrating the superior performance of the risk-
averse design.

Chapter 10 summarizes the outcome of the thesis and provides recom-
mendations for future studies.
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All models are wrong, some
are useful

George Box

C
H

A
P

T
E

R

2
UQ IN STRUCTURAL WIND ENGINEERING: A

REVIEW OF METHODOLOGIES

Uncertainty quantification has gained much attention in the past decade.
The developments happening in the applied mathematics community
need to be adapted to engineering disciplines. This comes with its own
unique challenges from a specific application. The basics of various uncer-
tainty quantification methods are introduced in this chapter. The theory,
implementation, and other details of these methods are described in detail.
The chapter starts with the classic Monte Carlo method and its implementa-
tion. Multi-level Monte Carlo method is introduced as a variance reduction
technique to Monte Carlo. Generalized polynomial chaos and neural net-
work as a cheaper surrogate is also presented here in this chapter. The UQ
workflow based on each of these four methods is elaborated.
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2 UQ in structural wind engineering: a review of methodologies

2.1 Uncertainty quantification in engineering
applications

A real-world engineering simulation problem has many uncertainties as-
sociated with it; hence, a deterministic model is not sufficient to make
realistic predictions. A computer simulation that incorporates the uncer-
tainties from various sources also into consideration is closer to reality.
Uncertainty quantification is the realistic and common way of represent-
ing the uncertainties from various sources, which cannot be assigned for a
deterministic analysis and hence is not included in the deterministic pre-
diction. This takes into account the uncertainties appearing in the input
parameters as well as the modeling of the physical system for studying the
impact of these uncertainties on the system response quantity of interest.

In structural engineering practice, the deterministic approach is com-
monly adopted for analysis and design. In a deterministic approach, a
single value is used to define a parameter. However, neither the computa-
tional model nor the input parameters of the model are not known with
full certainty in the real-world scenario. Observations clearly show the ran-
dom characteristics of input parameters. A deterministic model assumes
its output to be not uncertain as long as its input is fixed, whereas, for a
stochastic model, a single input may give different outputs at different
runs. Hence, a probability measure such as a Probability Density Func-
tion (PDF) represents the uncertain parameter. In the stochastic concept,
each parameter is called a random variable, and the associated uncertainty
is quantified in terms of a probability measure such as the PDF. Readers
are referred to [35] for the basics of uncertainty quantification, probability
theory, and different random variables.

2.1.1 Forward propagation of uncertainty

Figure 2.1 gives a schematic representation of the forward propagation of
uncertainty in structural wind engineering. The three steps of the forward
propagation of uncertainty are also indicated in Figure 2.1. The main steps
of forward propagation of uncertainty are:

i. development of an accurate deterministic/stochastic model,

ii. identification and characterization of input parameters, and

14



2.1 Uncertainty quantification in engineering applications
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Figure 2.1 : Steps for forward propagation of uncertainties in
structural wind engineering.

iii. forward propagation of uncertainty.

In the first step, theoretical/mathematical models are developed to
represent the real-world problem. The computational model is derived
from this mathematical model and is used to predict quantities of interest.
There can be several outputs from a computational model. However, for an
engineer/researcher, specific quantities are of more interest than others
because they govern decision-making. These are referred to as Quantities
of interest (QoI). The computational model may be stochastic or determin-
istic. Developing a new stochastic model for each new problem may be
time-consuming and require expert knowledge. The uncertainty quantifi-
cation methods may be intrusive or non-intrusive. Intrusive methods gen-
erally need access to the model and reworking the existing deterministic
numerical and computational models. In many engineering applications,
the computational model/code may be closed source, or the user has lim-
ited understanding, knowledge, or access to the inside of the model. In
these cases, non-intrusive uncertainty quantification methods that use
well-tested deterministic models or legacy codes come in handy.

Let’s consider the deterministic model to be of the form,

Y = F (x ). (2.1)

where, x is the vector of input parameters, and Y is the output QoI. The
function that produces the QoI from the input parameters can be as simple
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2 UQ in structural wind engineering: a review of methodologies

as a mathematical function to as complex as a complete finite element
model or a coupled finite element model in the case of structural wind
engineering.

In the second step, uncertain input parameters are identified, and un-
certainty for each input is well characterized by probability measures such
as probability density functions. Since the input parameters are uncertain,
x is modeled as a random variable, and hence Y automatically becomes a
random variable as well.

Uncertainties in structural wind engineering problems can arise from
various sources such as,

• The geometric parameters of the structural system, such as the cross-
sectional area, moment of inertia, length, etc., of the structural ele-
ments.

• The material properties such as the modulus of elasticity, Poisson’s
ratio, other non-linear material parameters, etc., of the different ma-
terials used in the model.

• The parameters that define the various loading of the system, such as,
but not limited to, the velocity of the wind, terrain condition, amount
of live loads acting on the structure, snow and earthquake loading
conditions, etc.

• The boundary and initial conditions imposed on the model, such as
the support reactions, wind load profile, etc.

The sources of these input uncertainties are identified, and the respec-
tive uncertainties are characterized by the information on inputs obtained
from experimental observations, expert knowledge, etc. A distinction be-
tween aleatoric and epistemic uncertainties is made for the above-listed
items. The geometric parameters of the system can be classified as epis-
temic since they can be reduced by improved measurements. The others
in the above list are mostly aleatoric. Here, this thesis discussion mainly fo-
cuses on the uncertainties of the wind and structural parameters modeled
as aleatoric as argued in Section 1.3.1.
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2.2 Forward propagation of uncertainty – an introduction to different approaches

2.2 Forward propagation of uncertainty – an introduction
to different approaches

The various methods available for forward propagation of uncertainty are
briefly explored in this section.

The computation of output response uncertainties can be done explic-
itly for the linear parameterized models. Stochastic quantities such as the
mean and standard deviation of the QoI can be obtained explicitly from
the probabilistic description of the input parameters (mean and standard
deviation). These are applied to X-ray tomography problems in [37].

A truncated multi-dimensional Taylor expansion for the output quanti-
ties of interest yields approximate uncertainty criteria in the perturbation
method. The order of the Taylor series determines the accuracy of the
method [38]. In the perturbation method, the series expansion is formed
around the mean value of each input parameter. The method is used widely
in structural mechanics [39]. The perturbation method can be used for
FEM models as well. Formulations for higher-order moments are presented
in [38]. An application to a multi-degree of freedom system can be found
in [40].

Reliability-based methods focus on the tail of the PDF. The probability
of failure is computed as the probability of exceedance of the prescribed
failure criteria. First-order-reliability-methods (FORM) and second-order-
reliability-methods (SORM) are widely used in structural engineering appli-
cations due to the simplicity of the method. They use a linear and second-
order approximation of the failure domain, respectively. These methods
focus on the failure domain alone and do not provide a complete stochastic
picture of the QoI.

One of the most widely used and easy-to-implement uncertainty quan-
tification methods is the sampling method. The frequently used sampling
is the classical Monte Carlo (MC). The method was presented first in [41].
A sampling from the input uncertain parameter space is carried out, and
the model is evaluated at each of these sampling points. MC then evalu-
ates the statistical quantities and probability measures of the QoI, from
the ensemble of QoI obtained by computing the statistics of these values.
The sampling method is non-intrusive since they consider the model as a
black box. They also do not suffer from the curse of dimensionality and,
hence, can be used for cases with a large number of uncertain parameters.
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2 UQ in structural wind engineering: a review of methodologies

Various improvements have been proposed to the standard Monte Carlo
methods. One of the major research directions is to use non-random sam-
pling strategies like quasi-Monte Carlo sampling [42] and Latin hypercube
sampling [43]. Another way to reduce the mean square error is to use vari-
ance reduction techniques. Here, different levels of discretization in the
FEM models are used. This is referred to as the Multi-level Monte Carlo
method. It has been proposed in [44] and has attained much attention in
recent times [44, 45]. Another approach is to use multi-fidelity methods,
where instead of different discretization levels, different fidelities of the
computational model are used.

Another class of methods is called surrogate models. In the surrogate
method, the actual model is replaced by an approximate input-output
relation. Once the surrogate models are available, it is possible to sample
practically at negligible additional cost from these surrogate models. How-
ever, creating an accurate surrogate model is challenging and depends
mainly on the kind of problem at hand. The response surface method de-
scribes the relationship between various input parameters and one output
using a polynomial function [46]. Spectral methods are another class of
methods where the uncertain parameters are represented as a series expan-
sion called spectral expansion [47]. Polynomial Chaos (PC) expansion is
presented to describe functions of Gaussian random processes in [48]. The
terminology of chaos is a misnomer here as the model under consideration
is not really chaotic.

Neural networks can also be used as an effective surrogate method
to represent input-output relations. The choice of the experimental de-
sign that is used to generate data for neural network training is of great
importance when it comes to the accuracy of these surrogates. The re-
cent developments happening in artificial intelligence, machine learning,
neural networks, etc., are promising to look into this method for uncer-
tainty quantification. The accuracy and computational cost largely depend
on the construction of surrogates and their performance in the region of
interest.

2.3 Monte Carlo method for uncertainty propagation

The Monte Carlo algorithm is the most widely used method in uncertainty
quantification and probably the universal tool for this purpose. The Monte
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2.3 Monte Carlo method for uncertainty propagation

Carlo simulation method is a sampling method that relies on repeated
random sampling from inputs to obtain the stochastic response of a model.
The first step in MC simulation is to generate random numbers to follow
the given probabilistic description of input parameters. A chosen random
number generator tool is used to achieve this task. In direct MC simulation,
corresponding to each generated input, the deterministic model is evalu-
ated, and the QoI is collected. From the set of QoI, probabilistic measures
such as the PDF, CDF, mean and standard deviation, etc., of the uncertain
output parameter can be evaluated.

2.3.1 Details of Monte Carlo methods

The Monte Carlo(MC) estimate of a QoI Y is the average of N samples.
The random vector x represents the input uncertainties. The quantity of
interest Y is approximated in a FEM approximation of Yh . Using this FEM
approximation, the MC estimator is given by

E [Yh ] =
1

N

N
∑

n=1

Y (n )h (2.2)

where, Y (n )h = Yh (x (n )).
The mean square error of an MC estimator is given by

e r r 2
m s (Yh ) =

1

N
V a r (Yh ) + (E [Yh −Y ])2 (2.3)

The RMS error of the estimator is O (N −1/2). To get an accuracy twice the
initial one, one needs to quadruple the number of samples. This can be
a trouble in cases with a large FEM model with an enormous number
of degrees of freedom. In Eq. 2.3 the second term is the bias due to finite
element discrimination. This term decreases with the decrease of the mesh
size h . The first term is the variance error. To achieve this condition, one
needs to choose a small enough mesh size to reduce the second term
and a large enough sample size to reduce the first term. The classical MC
algorithm is shown in Algorithm 1
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Algorithm 1 Monte Carlo Algorithm

1: Set the number of samples, N
2: Set a tolerance level, ε
3: Set the sample mean, µ0, and sample variance,σ2

0, to zero
4: For i = 1 to N
5: Generate a random sample from the input distribution
6: Evaluate the QoI
7: Update the sample mean and sample variance
8: If Convergence criteria met (Eq. 2.3)
9: break
10: End If
11: End For
12: Post-process to obtain probabilistic measures of QoI

2.4 Multi-Level Monte Carlo (MLMC) method

The idea of MLMC was introduced and used extensively by [44] and [45].
The basic concept of MLMC for a finite element model is explained here
in this section. The goal of MLMC is to decrease the overall computational
cost. The QoI is computed from several finite element meshes. A hierarchi-
cal system of finite element spaces is created hence the name ’multi-level’.
All of these FE meshes give a good approximation of the QoI. Now the sam-
pling is done from these multiple levels of approximations. It is cheaper to
compute the QoI in the coarse mesh and is expensive to compute the same
in the fine mesh. However, the coarse mesh convergence is slow compared
to the fine mesh. MLMC method exploits these facts. The method uses
more samples from the coarse grid and a low number of samples from the
fine grid. The number of samples from each level is inversely proportional
to the cost of evaluation of the QoI at that level. This strategy allows getting
an overall convergence at a lesser cost by sampling from multiple levels of
the model.

Figure 2.2 shows the multiple levels of meshes as an indication com-
pared to standard Monte Carlo, where sampling is done from the finest
level alone. It may also be observed that the number of samples in MLMC
is distributed all along the various grid levels.
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2.4 Multi-Level Monte Carlo (MLMC) method

Figure 2.2 : MC v/s MLMC - Multiple levels used in MLMC v/s
single finest level in MC. The dots indicate the number of samples
drawn at each level.

2.4.1 Two-level Monte Carlo

To reduce the RMS error in Eq. 2.3 is to either increase the number of
samples or reduce the variance. MLMC tries to reduce the variance and
hence tries to bound the error to ε2.

In two-level Monte Carlo, there are two discretizations, 1 and 0. Y0 is
coarser compared to Y1. It is much cheaper to evaluate Y0 compared to Y1,
then the two-level Monte Carlo estimator is given by

E [P1] = E [P0] +E [P1−P0] (2.4)

E [P1] =
1

N0

N0
∑

n=1

P (n )0 +
1

N1

N1
∑

n=1

(P (n )1 −P (n )0 ). (2.5)

If we define C0 and C1 as the cost of computing a single sample of Y0

and Y1−Y0, then the total cost of computing the MLMC estimator is

C =N0C0+N1C1. (2.6)

If we define V0 and V1 to be the variance of Y0 and Y1−Y0, then the overall
variance is

C =N −1
0 V0+N −1

1 V1. (2.7)
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The variance is minimized for a fixed cost by choosing

N1

N0
=

p

V1/C1
p

V0/C0

. (2.8)

2.4.2 Multi-level Monte Carlo formulation

The Multi-level is a generalization of the two-level explained in the previous
section. Given a sequence of Y0, ..., YL−1, the multi-level estimator is given
by

E [YL ] = E [Y0] +
L
∑

l=1

E [Yl −Yl−1] (2.9)

E [YL ] =
1

N0

L
∑

n=1

{
Nl
∑

n=1

(Y (n )l −Y (n )l−1)}. (2.10)

Where Y0, ..., YL−1 are approximations of YL with increasing accuracy and
also of increasing cost. The variance of the MLMC estimator is minimized
for a fixed computational cost by choosing

Nl =
Æ

V [Yl ]/Cl . (2.11)

The expression for optimal Nl is given by

Nl = [2ε
−2
Æ

Vl /Cl (
L
∑

l=0

p

Vl Cl )] (2.12)

To reduce the mean square error of the estimator to ε2 it is enough to
bound the error of each terms to ε2/2. While the variance at levels and
weak error decreases exponentially, we state the following theorem for
details.
Theorem 1 [44, 49]
Given the positive constants α,β ,γ, c1, c2, c3 such that α≥ 1

2 mi n (β ,γ) and
assume that the following conditions hold:
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2.5 Generalized Polynomial Chaos Method

1. E [Pl −P ]≤ c12−αl

2. Vl ≤ c22−β l

3. Cl ≤ c32γl

Then, there exists a positive constant c4 such that for any ε< e −1 there
exists an L and a sequence {Nl } for which the multi-level estimator has
a mean square error e r r 2

m s ≤ ε
2, and computational complexity C with

bounds

E [C ]≤











c4ε
−2 β > γ,

c4ε
−2(l o g ε)2 β = γ

c4ε
−2−(γ−β )/α β < γ.

(2.13)

[44] can be referred for proof.

2.4.3 MLMC Algorithm

The MLMC algorithm implemented is adopted from [49]. The same is
presented in Algorithm 2.

Algorithm 2 MLMC algorithm

1: Start with L = 2, and the initial target of N0 samples on levels l = 0,1,2
2: While Extra samples need to be evaluated do
3: Evaluate extra samples on each level
4: Compute/update estimates for Vl , l = 0, 1, ..., L
5: Define optimal Nl , l = 0, 1, .., L
6: Test weak convergence
7: If not converged , set L = L +1, and initialize target NL

8: End if
9: End While

2.5 Generalized Polynomial Chaos Method

The polynomial chaos approach is a surrogate method that computes
the forward propagation of uncertainty at a faster rate than sampling ap-
proaches. In the generalized polynomial chaos (PC) method, a spectral
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representation of uncertainties, both the input and output uncertain pa-
rameters are represented by a PC expansion. PC expansion is a truncated
polynomial series, and it consists of coefficients that are deterministic and
orthogonal basis [47]. In the PC method, the random variable of interest
is projected into a stochastic space defined by the orthogonal base func-
tions (Ψ). These base functions are functions of random vectors (ξ). The
random vector consists of multiple random variables depending on the
problem at hand. Each random variable has a random space associated
with it. ξi ∈Ωi . The random variables are assumed to be independent and
identically distributed (i.i.d). The uncertain parameters are represented
by PC expansion as

X j =
∞
∑

i=0

xi Ψi (ξ j ) , (2.14)

for practical purposes Eq. 2.14 may be truncated to a finite number of P
terms.

X j ≈
P
∑

i=0

xi Ψi (ξ j ) , (2.15)

P is a function of the order (p ), and dimensionality (n) of PC expansion.

P =
(n +p )!

n ! p !
−1 (2.16)

The dimensionality of the problem is equal to the number of uncertain
inputs. It may be observed that the total number of PC expansion terms
rapidly grows with the number of dimensions. This is referred to as the
curse of dimensionality. Hence, applying the PC expansion to high dimen-
sional problems will be challenging [50].

Orthogonality of basis function

There exists the orthogonality property for the random base function such
that

E [Ψi ,Ψ j ] = E [Ψ2
i ]δi j (2.17)
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where,δi j represents the Kronecker delta function and E is the expectation
defined as,

E [Ψi ,Ψ j ] =

∫

Ω

ΨiΨ jρ(ξ)dξ (2.18)

where ρ is the probability distribution function (PDF) of ξ.

There exists an orthogonal polynomial basis corresponding to each
random variable of standard distribution [50] called the optimal polyno-
mial. For normally distributed random variables, a Hermite representation
may be used. For other standard distributions [50]may be referred. The
optimal representation has a minimum number of terms, as higher-order
coefficients are zeros.

2.5.1 UQ workflow based on PC expansion

In this section, the details of the steps involved in the UQ workflow based
on PC expansion are elaborated. In forward propagation of uncertainty
with PC expansion, both the input and output uncertain parameters are
represented by the PC expansion.

PC expansion of the inputs

Firstly the uncertain input parameters are represented as PC expansion as
in Eq. 2.15. The probability distribution of these input parameters is known.
The probabilistic description of these inputs is obtained from experimental
data or selected as standard distributions with known parameters based
on experience or expertise. The basis function Ψ is chosen such that they
are the optimal polynomial for the PDF of the random input variables, as
explained in the previous section.

In the case of Hermite polynomials, few Hermite polynomials are

H0(ξi ) = 1,

H1(ξi ) = ξi ,

H2(ξi ) = ξ
2
i −1,

H3(ξi ) = 1ξ3
i −3ξi ,

H4(ξi ) = ξ
4
i −6ξ2

i +3 etc.
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The PC expansion coefficients of Eq. 2.15 can be found out using the
orthogonality property of the Hermite polynomials as,

x j
i =

1

<H 2
i >

∫ ∞

−∞
X j Hi (ξ( j ))ρ(ξ j )dξ j . (2.19)

Where <Hi > denotes the inner product and ρ(ξ j ) is PDF of the the j t h

input parameter. For normally distributed random variables, the Hermite
polynomial is the optimal polynomial, and hence the PC representation is
reduced to

x j
i =µ j +σ jξ j (2.20)

where µ is the mean of the j t h random variable and σ is the standard
deviation of the random variable. Hermite polynomials can also be used
for lognormal distributions, and the representation is presented in [51].

PC expansion of the outputs

In the next step, the output parameter is also represented by a PC expansion
as

Y ≈
P
∑

i=0

yi Ψi (ξ) , (2.21)

here ξ is a multi-dimensional random vector. P can be found out from
Eq. 2.16. Since the order of the expansion is n , it is called a PC−n repre-
sentation. The coefficients of polynomial expansion can be obtained by
various intrusive and non-intrusive methods such as stochastic Galerkin,
discrete projection, or least square regression. Focus is given more on the
collocation method based on the least square regression. More details of
stochastic Galerkin and discreet projection can be found in [50, 52–54]

Collocation method based on least square regression

Unlike the intrusive method, the non-intrusive method treats the problem
as a black box. No knowledge of governing equations is needed in this
solution technique. Hence this method is quite useful for FEM models
where the governing equations are not explicitly known. Systems having
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nonlinearity or systems with complex stochastic equations can also be
determined with ease in this class of methods. A well-known strategy is
the collocation method, which is based on the least square minimization
of the discrepancy between the uncertain parameter and its truncated PC
expansion.

In collocation methods, the error is forced to make zero at certain points
of the random space, and these points are called collocation points. The
collocation points are selected in the random space. Let ξ1,ξ2, ...ξn , are
n collocation points and Y1, Y2, ..., Yn be the response at these collocation
points. A linear regression approach is adopted for finding out the PC
coefficients. At each chosen collocation point, Eq. 2.21 results in a set of
linear equations,

Ψα= Y . (2.22)

where α is a vector of unknown PC coefficients, Ψ matrix of base function
values at the collocation points, and Y is the vector of responses at the
collocation points as,
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(2.23)

The number of collocation points should be at least equal to the num-
ber of unknown PC coefficients. If the number of available equations is
greater than the number of unknowns, regression analysis based on the
least square approach is adopted to solve for α in Eq. 2.22.

As mentioned above, to determine the unknown coefficient yi , the
response of the system has to be evaluated at a set of input parameters
obtained for specific values of the uncertain random variable, known as
the collocation points. For a univariate system, the collocation points are
selected as zero, and the roots of one order higher polynomial that is used
to approximate the response. If more points are needed, they are chosen in
such a way that they are distributed symmetrically about the mean value
from the PDF of the random variable. The stochastic collocation method
is easy to implement and leads to solutions easily, even for problems with
nonlinearity, much more efficiently compared to intrusive methods.
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2 UQ in structural wind engineering: a review of methodologies

For multivariate problems, a common methodology adopted is to find
the collocation points from the full tensor product space. Since the number
of points in the full tensor product grid increases exponentially with the
dimension, these grids suffer from the curse of dimensionality. Sparse
grids may be used to tackle these problems. Another strategy to choose a
collocation point is based on the invertibility of the matrix Ψ , [52]which
will be referred to in detail in Section 6.2.2.

Input parameter 
identification

Sensitivity analysis
(global)

Statistics of 
quantities of 

interest

Yes

Choose base 
functions

Collocation points 
are chosen

PC expansion of 
the inputs

Input parameter 
values

Output parameter 
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Form PC expansion 
of the output 

Solve the system of
 linear equation

Representation of outputs 
as PC expansion

Are the convergence 
criteria met ? 

Add PC 
expansion terms 

PC expansion of 
QoI (final) 

No
Structural model

CFD model

Figure 2.3 : Workflow of PC expansion based on collocation
method.
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2.5 Generalized Polynomial Chaos Method

Convergence criteria of polynomial chaos expansion

Based on the accuracy demand of the user, the order of the PC represen-
tation is chosen for the given problem. The solution process starts with
a first-order PC expansion of the output random variable. The PC coeffi-
cients are determined for this expansion. Once the PC expansion of the
output is determined, convergence criteria are checked with the previous
expansion to determine how good the representation is. If convergence
criteria are not met, the order of the PC expansion is increased, and new
terms are added to the expansion. The process is continued until the cho-
sen convergence criteria are met. The mean and variance, the first two
moments, are considered to be important parameters in estimating the
accuracy of PC expansion [47]. Since the convergence of PC approximation
is in the mean square sense, the convergence of higher-order moments
is not guaranteed. Different convergence requirements suggest different
convergence criteria for the random variable. Increasing the number of
terms in the PC expansion improves the convergence of the random vari-
able. Please refer to [50] for a detailed discussion on convergence. The PC
expansion of an uncertain parameter Y is said to converge if,

lim
P→∞

�

P
∑

i=0

yiΨi (ξ)

�

= Y (2.24)

Post-process of results

The post-processing can be done easily from the obtained PC expansion
to get the mean, standard deviation, and other moments as in Eq. 2.25.
Also, the obtained PC expansion can be used to sample from as model
evaluations are cheaper to evaluate. This can, hence, be used for reliability
computation, PDF estimation, etc.

µ= y0 (2.25)

σ2(Y ) =
P
∑

i=0

y 2
i − y 2

0 (2.26)

Sensitivity analysis explores the sensitivity of the QoI to the inputs. The
variability of the QoI with respect to the inputs is quantified. Sobol’ indices
are a variance-based sensitivity analysis. The Sobol’ indices are computed
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2 UQ in structural wind engineering: a review of methodologies

from polynomial chaos expansion as in [52]. The Sobol’ indices can be
found out from the polynomial chaos expansion easily with negligible
additional computational cost. The variance from the PC expansion can
be found out as,

DPC =
P
∑

j=1

y 2
j E
�

ψ2
j

�

(2.27)

The response expansion coefficients are gathered according to the depen-
dency (α) of each basis polynomial on j t h input, which is square summed
and normalized to obtain the sensitivity indices. The total PC-based Sobol’
indices can be found out as,

S T
j =
∑

y 2
α E
�

ψ2
α

�

/DPC (2.28)

2.6 Neural network (NN) surrogate for uncertainty
quantification

Neural networks can be used as an effective surrogate model and hence
used for uncertainty quantification. This is based on the mapping between
input-output pairs. The data generation for creating input-output pairs
is achieved by running multiple deterministic simulations and can be
expensive, like the sampling approaches. The trained NN surrogate is used
for UQ by sampling from the surrogate in a Monte Carlo fashion. The
details and applicability of the methodology for UQ are elaborated on and
critically evaluated here in this section. Recently Physics Informed Neural
Network (PINN) has been used to combine prior knowledge of the partial
differential equation and the NN[55, 56].

The governing PDE for a continuous solution field u with respective
boundary conditions on the domain Ωd is described in Eq. 2.29. A system
of equations has resulted in the numerical approximation in the Galerkin-
based finite element method as Eq. 2.30.

L(u ) = 0 in Ωd (2.29)

K (u h )u h = F (2.30)
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2.6 Neural network (NN) surrogate for uncertainty quantification

where, K (u h ) is the stiffness matrix, u h is the discretized solution field,
and F is the force vector. The system of the equation may be rewritten in
residual form as

r (u h ) = K (u h )u h − F (2.31)

An iterative strategy like the Newton-Raphson Method is used for the solu-
tion of u h . For a large problem with thousands of degrees of freedom, this
linear solver step is expensive and time-consuming.

2.6.1 NN surrogate construction and backpropagation

A neural network surrogate can be created as a mapping from input ran-
dom variables x= [x1, x2, ...xm ] to output random variables Y= [y1, y2, ...yn ]
for the purpose of uncertainty quantification where L is the number of
hidden layers in the network. Each layer has trainable weights wl and
biases bl associated with them. Neural network training is an optimization
problem that aims to find the best-suited weights and biases that mini-
mize the discrepancy (called loss function) between the true value and the
prediction of the output random variable. Backpropagation is a specific
algorithm used in training neural networks that adjusts the weights and
biases to minimize the loss function δ. In backpropagation, the gradient
of loss function δ with respect to weights and biases are calculated, and
then they are updated as,

wl =wl −η
∂ δ

∂ wl
(2.32)

where η is the learning rate chosen by the user. The gradients in Eq. 2.32
are computed using chain rules.

∂ δ

∂ wl
=
∂ δ

∂ y

∂ y

∂ wl
(2.33)

Eq. 2.33 is dependent on the loss function chosen by the user. The mean

square error (MSE) δM S E =
1

m

∑m
i=i (yi − y t

i )
2 is chosen as the loss function

in this study. Here, y t are the true values of output random variables.
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Figure 2.4 : Workflow of neural network used as a surrogate
for uncertainty quantification in structural wind engineering ap-
plications.

2.6.2 UQ workflow based on Neural Network surrogate

The NN-based workflow for uncertainty quantification is presented here in
this section. The NN can be used as an effective surrogate for uncertainty
quantification, and the workflow is shown in Figure 2.4. The whole process
has two stages. In the first phase, the NN surrogate is created. For this
purpose, the deterministic model is run at selected experimental designs,
and the data is generated. The experimental design also follows the ran-
dom input variables. At least they should cover the support of the input
uncertain variables. This is the most expensive step for problems with high
computational costs. Once the data is available, one could train a NN for
the input-output data pair created. The second phase is the UQ phase,
where the NN surrogate is used for uncertainty quantification. Here, firstly,
sampling is done from the inputs to follow the known distribution. Instead
of the PDE, sampling is carried out from the surrogate to obtain the output
QoI. Once the QoI is collected, the post-processing can be done in a Monte
Carlo way, and the probabilistic description of the QoI can be obtained.
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Wind extinguishes a candle
and energizes fire. Likewise,
with randomness,
uncertainty, and chaos, you
want to use them, not hide
from them. You want to be
the fire and wish for the wind.

Nassim Nicholas Taleb
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3
UNCERTAINTIES IN STRUCTURAL WIND

ENGINEERING

Two important decisions in uncertainty quantification are identifying and
characterizing the input uncertainties as well as defining the quantities
of interests. This chapter describes the various input uncertainties, both
from wind and structures, that must be considered for wind engineering
applications and the QoIs relevant for structural wind engineering. A com-
prehensive description of location-specific input uncertainty characteriza-
tion is presented and elaborated. Equally important to input uncertainties
is defining the quantity of interest. In many cases, a simple average is
inadequate for engineering applications. It is essential to look at the dis-
tribution’s tails for this matter. A detailed description of the quantities of
interest for structural engineers is also presented here. Conditional value at
risk as a risk measure is presented and its suitability for wind engineering
applications is discussed.
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3 Uncertainties in structural wind engineering

3.1 Multi-challenges of UQ in structural wind engineering

The current work focuses on identifying and quantifying the uncertain-
ties in the structural wind engineering problem with wind modeled using
the Finite Element Method (FEM) for the Large Eddy Simulation (LES).
The application of uncertainty quantification for wind effects on struc-
tures has multiple challenges and is referred to as multi-challenges in
this thesis as depicted in Figure 3.1. The multi-physics challenge comes
from the fact that the analysis under consideration deals with the coupled
wind-structure interaction problem. In recent times, there have been many
advancements in the deterministic analysis of wind-structure interaction
analysis. The fluid-structure interaction analysis can be done in a mono-
lithic or a partitioned way. The partitioned approach has its advantages.
A one-way coupling, a weak coupling, and a strong coupling can be em-
ployed in the analysis depending on the requirement of the problem. The
field of coupling strategies and analysis methods for FSI has matured into
its own research field [57].

The wind phenomenon at a location over a few years has two time scales
- a micro scale and a macro scale. If we want to accurately capture both
the climate and the weather effects on the structures during simulation, a
multi-scale simulation is required. This brings some unique challenges
in combining the two models. The independence assumption of the two
scales is used in this thesis to define the inlet wind conditions.

The multi-dimensionality challenge comes from uncertainty quantifi-
cation. The uncertainty may be coming from more than one source. This
will lead to the fact that the dimension of the problem in the uncertain
domain is not one but multi-dimensional. The high dimensionality of
the stochastic problem will lead to unique challenges like the curse of
dimensionality [50].

The multi-process challenge comes from high-performance computing
as we need to run substantial CWE problems in multiple cores in parallel.
Hence, this problem at hand is multidisciplinary and requires a multidisci-
plinary solution.
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Multi-
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Figure 3.1 : Multi-challenges in uncertainty quantification for
wind effects on structures

3.2 Uncertainties in wind parameters

There are various uncertainties in the wind parameters employed in this
thesis. Here, the wind model used and the various uncertain parameters
of the model are briefly described.

Due to the roughness of the surface of the earth, a strong friction effect
is present retarding the uniform wind flow and forming the atmospheric
boundary layer. The wind effects in the Atmospheric Boundary Layer (ABL)
are modeled by decomposing the incoming wind velocity field as Reynolds
decomposition, u = u+u ′, where, u is the steady mean profile component
and u ′ is the unsteady turbulent fluctuations component.

The mean wind profile u is an average contribution to the overall wind
field u . It changes in the time scale of a couple of hours to days [58]. Hence
the mean profile is considered to remain consistent for the numerical sim-
ulation. The turbulent fluctuations of wind u ′ represent the wind gusts
with a time span of seconds to a couple of minutes. The gust wind speed
induces temporary states of maximum overall wind loading. It can induce
resonant effects in large structures if their structural eigenfrequencies coin-
cide with frequencies in the gust-induced wind load pattern. Two different
models are used for each term u and u ′. Similarly, the uncertainties of the
two terms are dealt with separately in this work. Since these terms are of
two different time scales, this modeling choice is justified.
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3 Uncertainties in structural wind engineering

3.2.1 Wind uncertainty modeling: mean profile

Almost all civil engineering structures exist inside the ABL flow. The terrain,
adjacent structures, type of vegetation, etc., result in shear stress, affecting
the wind flow at the specific location. These resulting air movements are of
interest to the analysis and characterization of wind. The ABL is associated
with the three regions along the height from the surface of the earth. The
viscous sublayer is the closest to the earth, with low velocity and high
shear stresses. The Prandtl layer is characterized by larger vortices with
almost constant shear stresses. The third one is the Ekman layer, where
the effects of Coriolis forces appear to take effect. The shear stresses tend
to be negligible in this layer [59].

A logarithmic law is adopted here in this thesis. The wind shear is
represented as

d u

d z
z

√

√ρa i r

τ0
=

1

k
. (3.1)

The frictional velocity, u∗ is expressed from the shear stress on the ground
τ0 by the formula τ0 =ρa i r u 2

∗ [60]. We then have

d u

d z

z

u ∗
=

1

k
= constant (3.2)

Integrating results in the logarithmic law for mean wind speed.

u (z ) =
u ∗

κ
ln (

z

z0
). (3.3)

Whereκ is the Von Kármán constant. The value ofκ is found to be 0.41. z0 is
the roughness length. Depending on the local terrain, the frictional forces
will vary across the grass, vegetation, forest, water, or urban areas. These
changes in local terrain type are adequately described by this roughness
length parameter z0 > 0. The value of this parameter for varying terrain
types is available in code books [1]. The uncertainty of the roughness
parameters is assumed to have a uniform distribution.
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3.2 Uncertainties in wind parameters

The mean velocity u = u (z ) can be modeled by the following quasi-
logarithmic profile [60] furthermore considering the correction factor due
to Coriolis effect as:

u (z ) =







1
κ

�

u∗ ln
�

z
z0

�

+34.5 f z
�

e (θ ) if z ≥ zmin,

u (zmin)e (θ ) otherwise.
(3.4)

Let’s denote (x , y , z ) as the Cartesian coordinates in the ABL around the
structure to be designed. The direction of the mean wind is denoted by the
unit normal vector e (θ ) = (cos(θ ), sin(θ ), 0) ∈R 3. zmi n > z0 is the minimum
height defined in [1], and f = 10−4 is the Coriolis parameter.

The wind profile parameters u∗, θ , and z0 in Eq. 3.4 are uncertain and
therefore regarded as random variables in this study. The frictional ve-
locity u∗ and the incidence angle of wind θ are correlated variables. The
windrose diagram characterizes the dependence of these two uncertain
parameters. Analysis for the roughness length z0 has been investigated in
detail recently [61, 62]. In this thesis, we assume that z0 is independent of
the incidence angle, as well as the wind velocity. No details are available to
imply the dependency between these parameters at given locations. There-
fore, a uniform distribution, z0 ∼ [zL , zU ], where zL and zU are obtained
from [63] depending on the terrain category used. In this thesis, we assume
that z0 is independent of u∗ and θ , since no information is available on
the dependence of these parameters.

3.2.2 Wind uncertainty modeling: directionality effects

The mean wind speed at reference height is correlated to the direction of
the wind flow. It is incorporated in the adopted mean profile as in Eq. 3.4.

A windrose diagram illustrates the mean wind velocity along all direc-
tions at a location. The windrose represents the historical wind data at a
given location. This historical wind data is employed to capture the depen-
dency wind velocity and the incidence angle. A bivariate copula [30, 64]
is employed to capture this dependence between θ and u∗ in this thesis.
It is well known and used in earlier studies that the mean wind velocity,
averaged over all incidence angles θ , found to follow a Weibull distribution,
Weib(λ, k ), with a scale parameter λ and shape parameters k [58].
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3 Uncertainties in structural wind engineering

Similar to a windrose, a roughnessrose, which captures the relationship
between z0 and θ is also studied [58], but the data to calibrate such models
is not available. Hence, the modeling assumption of independence of z0

with u∗ andθ is made in this thesis. As elaborated earlier, a bivariate copula
is used to model the dependence between the random variables u∗ and θ .

The bivariate copula model is calibrated with measurement data from
the windrose diagram for location Basel, Switzerland at z = 80m from
2010-01-01 to 2015-12-31. The windrose data is available at https://
www.meteoblue.com. The relation u∗ = (κu−34.5 f z )/ ln

�

z/z0

�

by Eq. 3.4
implies that a copula model for θ and u can be used to represent the
correlation between θ and u∗.

Multivariate copulas are used to create low-dimensional statistical mod-
els for random variables with complex dependencies [30, 64]. Sklar’s the-
orem [65] is employed for generating the bivariate copula. A bivariate
copula C (·, ·) is a distribution on the unit square [0, 1]2 having uniform [0, 1]
marginals. For random variables X and Y , Sklar’s theorem states that for
all joint distribution FX ,Y (·, ·), a copula C (·, ·) can be defined such that

FX ,Y (x , y ) =C (FX (x ), FY (y )) , (3.5)

where FX (·) and FY (·) are the marginals of FX ,Y (·, ·). An empirical copula is
employed, Ĉn (·, ·) [66] in this thesis. More details on the copula creation
can be found in Appendix A of [67].

Let Fθ ,ū (x , y ) represent the bivariate distribution function for the wind
angle and mean velocity at reference height. Let {(θi , ūi )}ni=1 be a set of
samples from the joint distribution of (θ , ū ). Next, define {(ui , vi )}ni=1 to
be the transformed samples (ui , vi ) = (F̂θ (θi ), F̂ū (ūi )), where F̂θ ≈ Fθ and
F̂ū ≈ Fū are consistent estimators of the true marginals. Here, F̂θ is con-
structed using a maximum likelihood estimate of a mixture of von Mises
distributions with a prescribed orientation, and F̂ū was constructed from
the maximum likelihood estimate of a Weibull distribution. The empirical
copula is defined from the set {(ui , vi )}ni=1 as follows:

Ĉn (u , v ) =
1

n

n
∑

i=1

I (ui ≤ u , vi ≤ v ) , (3.6)
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Figure 3.2 : Wind rose diagram representing the dependency
between mean wind speed ū and incidence angle θ . The figure
shown is for location Basel, Switzerland at z = 80m from 2010-01-
01 to 2015-12-31. The field data (left) is used to generate a copula
surrogate, and the copula is sampled to generate the synthetic data
(right).

where I (a ≤ b , c ≤ d ) is the indicator function

I (a ≤ b , c ≤ d ) =

(

1 if a ≤ b , c ≤ d ,

0 otherwise.
(3.7)

The set of transformed samples is in the unit square [0, 1]2.

With these definitions, the empirical, copula-based distribution func-
tion is defined as

F̂(θ ,ū )(θ , ū ) = Ĉn (F̂θ (θ ), F̂ū (ū )) . (3.8)

This function can be used to draw dependent samples of θ and ū .

Figure 3.2 shows the actual windrose for Basel and the bivariate copula
model we calibrated for the location. It can be observed that they both
agree well. The developed model can accurately capture the dependence
between wind velocity and direction for the given location for historical
data. The bivariate copula may be employed to generate the correlated
samples needed for the UQ task while running the CDF simulations.
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3 Uncertainties in structural wind engineering

Generated wind Flow field

Figure 3.3 : Synthetic turbulent wind gusts u ′(t , y , z ) are
generated in the (t , y , z )-space (left) with Mann model. The 2D
cuts of the wind block (y , z ) are imposed on the inlet at time t as
u (t , x = 0, y , z ) = u (z ) +u ′(t , y , z ) for the CFD simulation (right).

3.2.3 Wind uncertainty modeling: turbulent fluctuations of
wind

The wind fluctuations u ′(t , y , z ) are modeled such that the wind statistics
at the location of interest are captured. Different numerical models are
used to handle this problem [68–71].

The widely used Mann model is employed in this thesis to model the
wind gust fluctuations [60, 72]. The model is a well-established and widely
used spectral model for wind generation in structural wind engineering [14,
73–75].

In the Mann model, the random velocity field is defined through the
Fourier transform of the covariance tensor R (r ); namely, the so-called
velocity-spectrum tensor Φi j (k ) =

1
(2π)3
∫

C 3 e−ik ṙ Ri j (r )d r . As such, the syn-
thetic turbulent fluctuations u ′ = (u ′1, u ′2, u ′3) are defined by the inverse
Fourier transform,

u ′i (x ) =

∫

R 3

eik ẋ
3
∑

j=1

Ci j (k )ξ j (k )d k , (3.9)

C ∗(k ) = Φ(k ) and each ξi ∼ N (0,1) is an i.i.d. complex standard normal
random variable. Where the positive-definite second-order tensor C (k )
is defined by the velocity-spectrum Φ via C (k )C †(k ) = Φ(k ), with † denot-
ing complex conjugation of a matrix. Above, ξ j , j = 1,2,3, denotes Gaus-
sian noise in R 3, i.e., each ξ j (k )∼N (0,1) is independent and identically
distributed complex standard normal random variable, and the integral
in (3.9) is understood in the Fourier–Stieltjes sense. On a uniform tensorial
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3.3 Uncertainties in structural parameters

grid in C 3, with periodic boundary conditions, this integral can be approx-
imated using the Fast Fourier transform; see, e.g., [60] for discretization
details. Then, after generating a three-dimensional block of wind, the wind
velocity can be mapped to the inlet of the computational domain of a
CFD simulation as shown in Figure 3.3. Note that generating ξ j requires a
pseudorandom number generator. Without loss of generality, we assume
that the corresponding seed r is uniformly distributed in [rL , rU ] (up to
machine precision). Please refer to [60, 71, 73] for the explicit formula for
Φ(k ) and further details of the implementation of the wind generation pro-
cess based on Eq. 3.9. The Mann model is calibrated to match the wind
generated at a given location by matching the turbulence intensity profile,
length scale, and wind spectra.

3.3 Uncertainties in structural parameters

Another source of uncertainty in structural wind engineering is the uncer-
tainties arising from the structures. Structures may be built with various
material properties that are associated with uncertainties. Some of the
previous studies in the field have considered these uncertainties into ac-
count [76–79]. The various structural parameters may also not be known
exactly in the modeling. The geometry of the structure or parameters of the
system, such as the area of cross-section, moment of inertia, and length
of the members, can be uncertain [76]. The material parameters, such as
the modulus of elasticity and Poisson’s ratio of the construction material,
possess inherent uncertainties. The material properties assumed to have
a unique value in the computational model are impossible to achieve in
execution. The uncertainties in the strength of the material during the seis-
mic analysis are considered in [77]. Another major source of uncertainty in
structural engineering is the loads acting on the system. The various loads
acting on the structure, such as the velocity of the wind, the earthquake
magnitude, the amount of icing loads, the amount of live loads, etc., are
associated with considerable variation.

An analysis of suspension bridges considering the uncertainties in wind
velocity, geometry, and materials is presented in [78]. The various boundary
conditions and initial conditions applied to the computational model
also contribute to the uncertainties of the model. The support condition
modeled in a computational model is impossible to achieve under real-
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3 Uncertainties in structural wind engineering

world conditions. A study considering uncertainties in foundation reaction
is presented in [79].

The associated uncertainties of the structure are also considered in
this thesis. Since a simplified model is used for the structure, the various
parameters of the structure, like the stiffness and damping, are considered
uncertain. These parameters are independent and hence can be consid-
ered as independent random variables. The distribution and associated
probability definitions of each of these parameters are described later in
each example. The uncertainty in the modeling is not considered in the
study. Also, the uncertainties from the boundary conditions of the building,
like the support reactions, are not considered. The assumption of fixed
support at the ground for a building is found to be used largely in practice
and widely accepted. Focus is given more on the parameter uncertainties
that arise from the variation of the materials.

3.4 QoI in structural wind engineering

Let’s focus our attention on the quantities of interest for structural engi-
neering practice. Two main criteria need to be considered in the design of
tall buildings: the strength and the serviceability criteria. The strength crite-
ria deal with the capacity of the structure to resist the loads and guarantee
that the building will not fail under the design load combinations. The
serviceability criteria majorly ensure that the occupants are comfortable
in the building. The various QoI from CFD are the forces and moments at
the bases, called the shear forces and base moments. Since the building
problem is in 3D, there are various components to this. One approach
would be to take the magnitude of these forces as a QoI. These global
forces represent the strength criteria of the building in consideration. The
mechanical moment created at the center (O ) of the base of the building
Bz by the fluid pressure p (x ), simply called the base moment is defined as

Mz =

∫

Bz

(x −O )p (x )n (x )d S (x ), (3.10)

where n (x ) is the unit normal to the building surface. Another QoI will
be the pressure along the various forces. Absolute pressure may be used
for the design of local features, such as glass facades in all buildings or
structures. The pressure may be represented as the normalized pressure

42



3.4 QoI in structural wind engineering

called the Coefficient of Pressure (Cp ). Here in this thesis, the base forces
and moments are considered as QoI. Also, the pressures on the various
faces are also considered. The Cp can also be estimated by normalizing
the surface pressure values. All these QoI are obtained as an output from
the CFD analysis.

Another QoI of the structures is the displacement and acceleration at
the top of the building. These QoI are of particular interest to engineers
concerning the serviceability limit state. Here in this thesis, these two
quantities are extracted from the structural model. All of the QoI mentioned
above are time series in each simulation. It is challenging to treat these
time-varying QoI’s from each sample during the UQ analysis.

3.4.1 QoI of time series

All of the quantities of interest in wind engineering are time series. It is
interesting to know which quantities be extracted from this time series
that may be used for decision-making in the design stages. This section
deals with the various risk measures that can be extracted from the time
series of QoI.

Mean of a time series:
The average of a time series represents the central tendency and is com-
puted as

E
�

X
�

=
1

N

N
∑

i=1

X (ti ) (3.11)

Variance:
The standard deviation of a time series is a measure of the variation from
the central tendency (mean). The variance may be computed as

V a r
�

X
�

=
1

N −1

N
∑

i=1

(X (ti )−µ)2 (3.12)

The risk measure of QoI could be mean plus standard deviation.

Maximum:
The absolute maximum is the largest number of a time series. It may be
estimated as

M a x
�

X
�

=ma x (X (ti )) (3.13)
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However, for a finite time series, the absolute maximum is not always the
same. We will arrive at a higher maximum if we have larger data or longer
time series. This makes this QoI troublesome for engineering applications.
For this purpose, there are ways to estimate the maximum.

Estimate of the maximum:
An estimate of the maximum is proposed in [80] and is widely used for
wind engineering. Here, we fit a Gaussian distribution to the tail of the
distribution, and the maximum is estimated as the 80t h percentile of the
Gaussian distribution.

Value at risk:
The value at risk is also called as a quantile. Let FX (x ) := P (X ≤ x ) be the
CDF of a real-valued random variable X defined on a probability space
(Ω, A, P ). The value at risk (VaR) of X , at confidence level 0 < β < 1 is
defined as

VaRβ (X ) := inf{s ∈R : FX (s )≥β} . (3.14)

This is also known as a β quantile.

Conditional value at risk:
Conditional Value at Risk (CVaR) is defined as the conditional expectation
above a quantile. The CVaR of X , at confidence level β , is the expected
value of X in the largest (1−β ) ·100 percent of possible events. If X ∈ L 1(P )
and FX (x ) is continuous, then CVaR is the conditional expectation

CVaRβ (X ) := E [X |X >VaRβ (X )] . (3.15)

3.4.2 Details of Conditional value at risk

Here we introduce and use conditional value at risk as a measure of the
tail of the distribution for structural wind engineering. This is particularly
interesting where the PDF is not symmetric. Two risk measures, the ex-
pected value and the conditional value at risk [81, 82] for structural wind
engineering, are explored and then used to formulate the optimization
objective function later.

From the above definition of CVaR,

lim
β→0

CVaRβ (X ) = E [X ]. (3.16)
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3.4 QoI in structural wind engineering

Figure 3.4 : Comparison of the mean, mean ± sd, and con-
ditional value at risk CVaRβ for β = 0.5,0.75,0.9,0.95 of the base
moment MZ (t ,ξ)when Z =Z0 in Numerical example 7B 9.4.2.

CVaRβ (X ) may also be defined as the solution of a scalar optimization
problem [81],

CVaRβ (X ) =
1

1−β

∫ 1

β

VaRα(X )dα= inf
s∈R

n

s +
1

1−β
E [(X − s )+]
o

,

(3.17)

where (x )+ :=max{0, x }. We use this definition of the CVaR for computa-
tions and later in the optimization problem.

The risk measure CVaR has many mathematical properties that are
appealing [81–84]. For structural wind engineering purposes, CVaRβ (X ) is
a more reasonable measure of risk than the mean, variance, or standard
deviation because it is a measure that quantifies the weight of the tail of
X . Using this risk measure in optimization will allow us to minimize the
expected value of limit states that generally cause failure.

In Figure 3.4, we illustrate the mean, variance, and CVaR for the QoI
(base moment) X =MZ (t ,ξ) estimated from 30 independent samples of
ξ= (u∗,θ , z0, r ) at the initial design state z = z0 in Numerical example 7b,
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3 Uncertainties in structural wind engineering

presented in Section 9.4. A pseudo-random sampling strategy is used, and
the probability density function (PDF) is estimated using kernel density
estimation (KDE). It is observed that the distribution of base moment is
multi-modal and highly skewed towards large values. Hence, a symmetric
measure of risk, like the mean or mean + standard deviation, may not be
adequate for decision-making. With this observation, we focus more on
risk-averse optimization, where we try to minimize the CVaR of the QoI
later in the thesis.

3.4.3 A note on averages

Here, we discuss various notations of averages we use in this thesis. Let
u and p represent the fluid velocity and pressure, respectively, and let
X (t ) = ϕ(u (t ), p (t )) ∈ R be a time-varying QoI like base moment as in
Eq. 3.10.

More than one notion of average is used to investigate the random
variables. The first is the mean with respect to an invariant probability
measure Pt at time t . We assume that X (t ): t ∈ (0,∞) is a stochastic pro-
cess, with each sample path X (t ) = X (t ;ω) indexed byω ∈Ω. The average
of X , with respect to Pt , at time t , is defined as in Eq. 3.18.

〈X (t )〉=
∫

Ω

X (t ;ω)d Pt (ω) . (3.18)

For statistically stationary processes, i.e., stochastic processes whose joint
cumulative distribution function (CDF) does not change when translated
in time, the integral in Eq. 3.18 is constant for all time t . It is often assumed
that there is a unique measure P⋆ such that Pt = P⋆ for all t and, furthermore,
that for almost every sample path X (·,ω), Eq. 3.18 may be rewritten as the
(infinite) temporal average. Note that the lower bound, T1, is arbitrary.

〈X 〉= lim
T→∞

1

T

∫ T1+T

T1

X (t ;ω)d t . (3.19)

The validity of Eq. 3.19 is an open problem in most cases, except some
special situations [85]. Nevertheless, the ergodic hypothesis (i.e.,Eq. 3.19)
remains widely accepted in the fluid dynamics community for many prob-
lem types and is made use of. In the context of wind engineering, this
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3.4 QoI in structural wind engineering

assumption means that the statistical properties of wind can be inferred
from a single time series of wind at a given location.

To compress the following notation, let’s denoteξ= (u∗,θ , z0, r ) and use
ϱ(ξ) to represent the joint probability density function (PDF) of its compo-
nents. It is clear that the system observables depend on ξ, X (t ) = X (t ,ξ),
or, in other words, for every sample of ξ, a different stochastic process
{X (t ,ξ): t ∈ (0,∞)} is encountered. Each sample path in the process is
written as X (t ,ξ;ω).

The presence of ξ needs a second notion of average. The mean of
X (t ,ξ), with respect to the uncertain parameter vector ξ= (u∗,θ , z0, r ), is
determined

E
�

X
�

=

∫ 1

0

∫ zR

zL

∫ 2π

0

∫ ∞

0

X (·,ξ)ϱ(ξ)d u∗dθd z0d r . (3.20)

E
�

X
�

(t ) is a stochastic process in t . Combining the two notions of average,
Eq. 3.19, Eq. 3.20, we arrive at what now referred to as the expected value
of X :

E
�

X
�

= E
�

〈X 〉
�

. (3.21)

To estimate the expected value of observables X (t ,ξ), the (finite) tem-
poral average is presented first as,

〈X (·,ξ)〉T =
1

T

∫ T1+T

T1

X (t ,ξ)d t , T > 0. (3.22)

Secondly, the (finite) ensemble average is presented,

ES

�

X
�

=
1

N

N
∑

i=1

X (·,ξi ), N = |S |> 0, (3.23)

where S = {ξi }Ni=1 is a finite sample set of i.i.d. realizations of the random
variable ξ. In this work, the estimator

ES

�

〈X 〉T
�

≈ E [X ] , (3.24)

will be our approximation of choice for estimating Eq. 3.21.
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3 Uncertainties in structural wind engineering

Since the expected value is defined, other statistics can be defined as
well. For instance, we define the variance as follows:

Var[X ] = E
�

(X −E [X ])2
�

, (3.25)

and, likewise, the standard deviationσ=
p

Var[X ]. The variance and stan-
dard deviation measure how spread out realizations of the observable X
are to time t and the parameters in ξ. We may use the variance Eq. 3.25 to
derive an expression of the variance of the estimator ES

�

〈X 〉T
�

. Indeed, a
straightforward computation shows that

E
�

(ES

�

〈X 〉T
�

−E [X ])2
�

=
Var[〈X 〉T ]
|S |

. (3.26)

In general, the numerator Var[〈 f 〉T ] will decrease as T →∞. However, be-
cause of the presence of the random vectorξ, Var[〈 f 〉T ] cannot be expected
to vanish in the T →∞ limit.

3.4.4 Concluding remarks on the risk measures

Of the various risk measures of the QoI introduced earlier, the building
design may be carried out based on the design decision with any of the
risk measures. A robust building design should have a low probability of
extreme limit states.

A robust building design may have a low variance in a random load
X simply because a low variance implies a low probability of extreme X -
values. However, directly controlling the variance/standard deviation is
not optimal for structural wind engineering as we are interested in only
one part of the tail of the distribution.

One significant motivation for seeking alternative risk measures is that
Var[X ] penalizes variation both below and above the average E [X ]. Mean-
while, in typical structural engineering practice, only extreme values on
one side of the mean have to be reduced; cf. Figure 3.4. Multiple other draw-
backs of optimizing for the variance and standard deviation are discussed
in [82].

As an alternative to Var[X ], we consider the conditional value at risk [81,
82] as a risk measure in decision-making. All the failure states are more
important than simply controlling the most optimistic failure state. Let’s
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3.4 QoI in structural wind engineering

consider when X can be identified with a stress acting on/within a physical
system. Here, lower values of X are generally preferable to higher values of
X . Thus, VaRβ (X ) represents the most optimistic value that X can achieve
in the worst (1−β ) ·100 percent of possible events. Alternatively, CVaRβ (X )
represents the expected value of X in the worst (1− β ) · 100 percent of
possible events. Hence CVaR is explored s risk measure in this thesis.
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Everything should be made
as simple as possible, but not
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4
OPTIMIZATION UNDER UNCERTAINTY

Once we accomplish an uncertainty quantification, the next level of com-
plexity would be to optimize considering the uncertainties. An optimiza-
tion under uncertainties framework for structures under uncertain wind is
presented in this chapter. We start off the chapter with a state-of-the-art in
civil engineering for OUU. A novel framework for shape optimization con-
sidering the uncertainties is presented here. A risk-neutral and risk-averse
optimization framework is explored and presented. The problem descrip-
tion and theoretical aspects of optimization under uncertainty for building
design are explored. We use a finite difference approach for sensitivities.
An adaptive sampling for optimization is proposed to reduce the number
of model evaluations. The adaptive sampling is presented in Section 4.4.
We apply the proposed framework in wind engineering application later
in Chapter 9.
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4 Optimization under uncertainty

4.1 OUU: state of the art in building design

Wind displays inherent uncertainty in its flows. This is particularly true
for the fluctuating component of the wind. Nevertheless, the mean wind
velocity and mean wind direction are also associated with uncertainty and
can be considered as random variables as in Section 3.2. Similarly, the mean
wind profile is associated with uncertainties coming from the influences of
the terrain conditions. To reach at a robust and reliable design, the designer
needs to take these uncertainties into consideration during analysis [86].
The quantification of these inlet wind conditions is well studied in wind
turbine response in the literature [26, 27].

However, uncertainty quantification of tall structures offers room for
improvement, and this improved building design process, considering the
uncertainties in the wind response of the structure, is presented. The litera-
ture does not investigate the stochastic optimization of building geometry
under the uncertainties arising from site-specific wind conditions.

This chapter is a comprehensive framework for optimizing structure
geometries under the uncertainty of the incoming wind conditions. The
global geometric parameters are optimized to reduce the base reaction
forces resulting from uncertain wind flows. The geometric change in build-
ing structures can be global and local. The local changes generally adopted
are corner modifications like stepping, chamfering, and rounding of cor-
ners. The most used global geometric modifications are twisting, tapering,
adapting the dimensions and shape of an opening, and modifying the size
and location of "stepping" features [87]. The proposed optimization work-
flow can consider all of these geometric modifications. However, focus is
given more on the tapering and twisting in numerical examples inspired
by the tall building shown in Figure. 4.1. A methodical optimization under
uncertainty procedure for designing global geometric features in buildings
is developed and presented here.

Given the uncertain nature of the incoming wind, different stochastic
optimization problems can be formulated. For example, it is possible to
consider a "risk-neutral" optimization formulation, wherein we try to op-
timize for only the mean of the quantity of interest. Alternatively, a robust
optimization can be considered where the objective is to minimize for the
mean plus standard deviation [91] or a reliability-based optimization [25]
where the reliability is minimized.
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4.1 OUU: state of the art in building design

Figure 4.1 : Modern tall buildings with unconventional shapes
- Absolute World Towers, Mississauga, Canada have an elliptical
cross-section with twist along the height [88] (left); (b) F&F tower,
Panama has a twist along the height [89] (middle); and (c) 30 St
Mary Axe tower, London has a circular dome at the roof [90] (right).

In this thesis, a risk-averse optimization is presented by minimizing
the CVaR [81, 83, 84]. Although CVaR is a measure of risk that originally
emerged in finance [81], it has been seen in recent years to be reasonable
for engineering design applications [82–84, 92]. It is argued in [82] that
CVaR is mathematically superior to robust and reliability-based optimiza-
tion formulations when used to control low-probability events [82, 93, 94].
Focus is given to risk-averse optimization in this thesis, and the results are
compared against a risk-neutral optimization problem.

All statistics in the presented optimization workflow are estimated via
the Monte Carlo method. A stochastic gradient descent method [95] is used
for numerical optimization. A novel adaptive sampling strategy is intro-
duced [92, 96–98] in order to reduce the cost of stochastic optimization.
This is very useful since each of the deterministic simulations is computa-
tionally expensive.

An elliptical geometry parametrized by fewer design parameters is
chosen for the optimization problem. Previous studies that considered
uncertainties in the wind do not consider the directionality of wind account.
A site-specific design of buildings considering the historical wind data is
proposed, including the directionality as elaborated in Section 3.2.2.
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4 Optimization under uncertainty

4.2 OUU problem formulation

4.2.1 Optimization problems

In this thesis, the following three optimization problems are presented.

min
Z∈C

n

J (Z) := E [MZ ]
o

, (Problem 1)

min
Z∈C

n

J (Z ;β ) :=CVaRβ [MZ ]
o

, (Problem 2)

min
Z∈C

n

J (Z) := 〈MZ 〉
o

subject to ξ= ξPWD. (Problem 3)

Where, Z is the design variable, and C is the design space for optimiza-
tion. β = 0.90 unless specified otherwise. ξPWD denotes θ = θPWD the
predominant wind direction (PWD), and with all remaining wind field
parameters at their mean values. The base moment is used as the QoI for
the optimization in the numerical example. The optimum of Problem 1
is a risk neutral optimum design with the lowest expected value for the
QoI. The optimum of Problem 2 is a risk-averse optimum design with the
lowest 10%-tail expectation of the QoI. The optimum of Problem 3 is a
deterministic optimum design that has the lowest time average of the QoI
for ξ= ξPWD. The optimization problem of Problem 3 does not consider
uncertainty. In exceptional cases, the optimal designs for all three prob-
lems, Problem 1, Problem 2, and Problem 3, can be close to each other.
However, for complex geometries and uncertain environments, the result-
ing optimum designs of all three problems may be quite different; [92].

4.3 OUU workflow based on FD sensitivity

This section describes the gradient-based, iterative, adaptive stochastic
optimization algorithm we have employed to solve Problem 1 and Prob-
lem 2. The developed OUU algorithm reduces the computational cost of
optimization by adapting the number of samples N =Nk in each gradient
estimate based on the accuracy of the present design iterate Zk analogous
to [92, 96–98]. In particular, the accuracy of each gradient is determined
by an estimate of its variance.
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4.3 OUU workflow based on FD sensitivity

4.3.1 MC approximation of the objective functions

It is already presented how to approximate J (Z) in Section 3.4.1. By invok-
ing Eq. 3.24, we have that J (Zk )≈ JSk

(Zk )where Sk = {ξi }
Nk

i=1,

JSk
(Zk ) =

1

Nk

Nk
∑

i=1

Ji (Zk ), (4.1)

and

Ji (Z) =
1

T

∫ T1+T

T1

MZ (t ,ξi )d t . (4.2)

The gradient of the objective function with respect to the design variable
at each of the samples, Ji (Z), can be computed via finite differences in
the design variable z ∈ C ⊂ R d at the cost of d + 1 independent CFD
simulations. Since the flow is of high Reynold’s Number (Re), and is chaotic,
an accurate estimate of the gradient for each sample requires a long time
interval [99]. The exact length is dependent on the specific problem at hand.
Since the flow is chaotic, extra care is taken when selecting an appropriate
finite difference increment in each design variable. The empirical mean of
sample gradients is an estimate of the gradient of J (Z), namely,

∇J (Zk )≈∇JSk
(Zk ) =

1

Nk

Nk
∑

i=1

∇Ji (Zk ), (4.3)

where,∇ denotes the gradient.

For notational simplicity, let J (Z) denote either J1(Z) or J2(Z). At each
design iterate Zk , we choose to approximate J (Z) with a sample aver-
age approximation; this is one of the more common procedures used in
stochastic optimization [84].

The modifications involved in generalizing Eq. 4.1, 4.3 to the objective
function J (Z ;β ) require that we invoke Eq. 3.17 to rewrite

J (Z ;β ) =min
s∈R

n

s +
1

1−β
E [(MZ − s )+]
o

. (4.4)
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4 Optimization under uncertainty

and note that the optimal values of x on both the left- and right-hand sides
coincide. We now define the following generalization of Eq. 4.2:

Ji (Z , s ) =
1

T

∫ T1+T

T1

�

MZ (t ,ξi )− s
�

+d t . (4.5)

Then, after defining s ⋆ = s ⋆(Zk ,Sk ,β ) via the one-dimensional minimiza-
tion problem

s ⋆ = arg min
s∈R

n

s +
1

1−β
1

Nk

Nk
∑

i=1

Ji (Zk , s )
o

, (4.6)

we approximate J (Zk ;β ) ≈ JSk
(Zk ;β ), as well as its gradient ∇J (Zk ;β ) ≈

∇JSk
(Zk ;β ), as follows:

JSk
(Zk ;β ) =

1

Nk

Nk
∑

i=1

Ji (Zk , s ⋆), ∇JSk
(Zk ;β ) =

1

Nk

Nk
∑

i=1

∇Ji (Zk , s ⋆).

(4.7)

As before, we choose to generate the following iterate Zk via the standard
gradient descent strategy, From now on, for notational simplicity, let J (Z)
denote both J (Z) and J (Z;β ) in Problem 1 and Problem 2. Likewise, we
will write JSk

(Z) for both JSk
(Z) and JSk

(Z ;β ).

Once the gradients above have been obtained at the current design Zk ,
we use the stochastic gradient descent method [95] to determine the next
iterate,

Zk+1 =Zk −α∇JSk
(Zk ), α> 0 . (4.8)

For greater robustness, efficiency, and computational saving, we select
each batch size Nk = |Sk | adaptively based on a posteriori estimate of the
statistical error described in [92, 96–98].

Owing to the presence of the non-smooth operator ( · )+ in Eq. 4.5, the
functions Ji (Z , s ) are not continuously differentiable with respect to z or s .
Even though the gradient∇Ji (Z , s ) can be computed uniquely at almost
every design point x , the non-differentiability can present issues if a naive
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gradient descent algorithm is used [81, 83]. However, in our numerical
simulations, these issues with gradient descent were not observed, likely
because the step size used was small enough that the optimization errors
remained lower than other simulation errors. If this is not the case in other
problems, it is recommend to replace ( · )+ with a smooth approximation;
for further details, see, e.g., [83].

4.4 Adaptive sampling

It is observed from Eq. 3.26 that the variance in the gradient estimator
∇JSk

(Zk ) is inversely proportional to the batch size Nk = |Sk |. Hence, a
bigger batch size Nk at each of the stochastic gradient descent iteration
Eq. 4.8 results in a high probability of lowering the objective function value,
i.e., J (Zk+1)< J (Zk ). This will reduce the total number of iterations needed
to arrive at the optimal design. However, using a bigger batch size for all
optimization iterations is computationally expensive for the number of
samples. It turns out that linear convergence can be accomplished by start-
ing with a smaller batch size that increases as ∥∇J (Zk )∥→ 0.

This thesis uses an adaptive sampling strategy based on the "norm
test" presented in [96, 97] to tune this batch size. The adaptive sampling
strategy consists of the subsequent steps. The algorithm starts off with a
relatively small batch of samples S0, and before each successive iteration
k +1, an evaluation is made if the computed gradient is likely to reduce the
objective function or not. If it is judged that the accuracy of the gradient is
sufficient, the next batch will have the same size, i.e., |Sk+1|= |Sk |; otherwise,
a larger batch size will be chosen at the next iteration, i.e., |Sk+1|> |Sk |. In
the latter case, the ratio |Sk+1|/|Sk | > 1 is determined by the "norm test"
described below.
The norm test delivers a posteriori control of the variance of the sample
gradient ∇JSk

(Zk ). It is built around the observation that ∇JSk
(Zk ) is a

descent direction Zk , for sufficiently smooth J , if

∥∇JSk
(Zk )−∇J (Zk )∥2 ≤ ϑ2∥∇JSk

(Zk )∥2, for some ϑ ∈ (0, 1). (4.9)

Computing the left-hand size exactly is infeasible, but if we replace the
expression with its expectation, i.e.,
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E
�

∥∇JSk
(Zk )−∇J (Zk )∥2

�

=Var(∇JSk
(Zk )) =

Var(∇Ji (Zk ))
|Sk |

, (4.10)

then it may be accurately estimated. Indeed, the true variance of the gradi-
ent samples, Var(∇Ji (Zk )), can be approximated by the sample variance

VarSk
(∇Ji (Zk )) =

1

|Sk | −1

Nk
∑

i=1

∥∇Ji (Zk )−∇JSk
(Zk )∥2. (4.11)

Using this expression, we arrive at the norm test:

VarSk
(∇Ji (Zk ))
|Sk |

≤ ϑ2∥∇JSk
(Zk )∥2 . (4.12)

Algorithm 3 Adaptive sampling algorithm.

1: initial design Z0, initial sample set S0, constant c > 0.
2: Set k ← 0.
3: Repeat
4: If convergence test is satisfied
5: compute dk =−∇JSk

(Zk )
6: choose step size αk > 0
7: compute new design iterate: Zk+1 =Zk −αk dk

8: set k ← k +1
9: set |Sk |= |Sk−1| and choose a new sample set Sk

10: Else
11: update |Sk | using Eq. 4.13 and compute remaining samples

It has been shown that an idealized norm test gives optimal conver-
gence rates for the convex objective function and is robust enough to
efficiently deal with many non-convex problems [96, 97].

At an iteration k where Eq. 4.12 is violated, the subsequent batch Sk+1

is prescribed to have a sample size satisfying

|Sk+1|=Ceiling

�

VarSk
(∇Ji (Zk ))

ϑ2∥∇JSk
(Zk )∥2

�

, (4.13)
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where Ceiling[·] returns the least integer greater than or equal to its argu-
ment. On the other hand, if Eq. 4.12 is satisfied, the next batch size remains
unchanged. The entire procedure is summarized in Algorithm 3.

4.5 Concluding remarks on OUU workflow for tall
buildings under wind

The main benefit of the adaptive algorithm is that the smaller sample size
in initial optimization steps reduces the overall cost and leads to faster
progress towards the optimal design. The optimization error dominates in
the first steps, and the smaller batch size will not hinder the optimization
progress. The sample size grows progressively, allowing the logical growth
of samples which keeps the sampling error in line with the optimization
error. The chance of oversampling is less as the algorithm adapts to the
correct sample size, even for a bad initial guess.

The numerical example of building design considering the workflow
elaborated above is presented in Chapter 9. Optimization under uncer-
tainty for structural wind engineering problems is associated with sub-
stantial computational costs. However, this effort and computational costs
are justified considering the fact that tall buildings are built only once,
and the cost of failure is enormous. The building foundation and other
structural members are extremely challenging to retrofit due to changes in
loading, extreme weather, or design errors. Considering the uncertainties
during the design optimization phase will minimize the risks and reduce
the possible risk of failures and retrofits.
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The only certainty is that
nothing is certain.
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5
UQ IN WIND EFFECTS ON STRUCTURES

The different uncertainty quantification approaches detailed in Chapter 2
are compared against each other here for wind engineering applications
with a special focus on structural responses. This chapter discusses the
basics of uncertainty quantification for coupled problems and their associ-
ated challenges. Various methods used for uncertainty quantification are
compared for three numerical examples. Section 5.1 starts with the Monte
Carlo method and discusses the practical implementation for the fluid
problem in Kratos. Section 5.2 uses the polynomial chaos method based
on the collocation approach. Section 5.3 presents the multilevel Monte
Carlo method. Observations are made on the method’s applicability to
structural wind engineering problems. Two problems, one in low Re num-
ber and one in high Re number, are presented in this section. Section 5.5
presents and discusses UQ with neural networks and their limitations for
practical applications. The efficacy of different UQ methods is presented,
and comments are made on the applicability of each of these methods to
structural wind engineering.
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5 UQ in wind effects on structures

5.1 Monte Carlo Method

The Monte Carlo simulation method is a sampling method that relies on
repeated random sampling from inputs to obtain the stochastic response
of the model. The Monte Carlo method is one of the uncertainty quantifi-
cation approaches that can handle high dimensionality. It is non-intrusive,
robust, and simple to implement. Here in this section, MC is used and the
implementation described in Section 2.3 for uncertainty quantification
for a benchmark fluid problem realized in Kratos Multiphysics.

5.1.1 Numerical example 1A

The widely used DFG flow around cylinder benchmark problem is adopted
in the first numerical example [100]. The benchmark simulates a fluid in a
pipe with the cylinder in the flow in 2D. The geometry of the problem is
shown in Figure 5.1. The fluid density of ρ = 1.0 and a kinematic viscosity
of ν= 0.001 is used. The upper and lower ends have a no-slip boundary
condition. A parabolic velocity profile is applied in the inlet. The readers
are referred to [100] for more details on the benchmark example. The inlet
boundary condition is,

u (0, y ) =
4U y (0.41− y )

0.412
(5.1)

where U is the maximum velocity at the center. The problem is simulated
in Kratos Multiphysics. The Reynolds number of the problem is Re= 20. A
fractional step VMS formulation of Navier Stokes equation is used in Kratos
Multiphysics. The flow problem is solved and the QoIs are evaluated.

0.41

2.2

0.2

0.21

0.2

Figure 5.1 : Details of the geometry and boundary condition
used in Numerical example 1A
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5.1 Monte Carlo Method

5.1.2 Sources of uncertainty

Figure 5.2 : KL expansion used for the random geometry
of the structure - Random geometry scaled by a factor of 3 (left);
and Random geometry realized in Kratos Multiphysics scaled by a
factor of 6 (right).

The geometry of the cylinder is considered uncertain in this study. The
geometric uncertainty is motivated from the practical cases of icing in
cables or other operational considerations of dusting and wear and tear
resulting in uncertain geometry.

The main source of uncertainty is the random geometry of the original
circle under flow, which is modeled as a random field. The random field is
represented by the Karhunen-Loeve (KL) expansion.

Y = Yme a n +Yp e r t (5.2)

where Yme a n is the original geometry coordinates The perturbations in the
Y coordinate Yp e r t are represented as a KL expansion as

Y = Yme a n +0.001
m
∑

i=1

p

λiφiξi (5.3)

where λi ,φi are the eigenvalues and the eigenvectors of the covariance
function. A Gaussian random field with an exponential covariance function
of e −

∆Y
l is assumed for the KL expansion. A covariance length of l = 0.05
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5 UQ in wind effects on structures

is used in the numerical study. The first 8 modes of the KL expansion
are considered in Numerical example 1A. The QoI is the time-averaged
coefficient of drag. It is important to note that Gaussian random fields are
unbounded, which can introduce modeling errors for shape uncertainties.
Figure 5.2 depicts the geometric perturbations realized in the CFD solver.
They are incorporated in the CDF using a mesh moving strategy in Kratos
Multiphysics. The mesh is solved in the first time step, and then by fixing
the mesh, the deterministic problem is solved for the perturbed geometry.

5.1.3 Results and discussions
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Figure 5.3 : Comparison of PDF of coefficient of drag with
increasing number of samples in MC.
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Figure 5.4 : Normalized moments of the coefficient of drag
with increasing number of samples in MC.

Uncertainty quantification for the problem described in the previous
section is carried out with the algorithm specified in Section 2.3. The quan-
tity of interest is the coefficient of drag, defined as

Cd =
2Fd

ρu 2A
(5.4)

where, ρ is the mass density of the fluid and u is the average flow velocity
at the inlet, and A is the reference area.

Figure 5.3 shows the PDF of Cd as the number of samples is varied.
The reference PDF is shown with 5000 samples. It can be seen that the
PDF converges to the reference values as the number of samples increases.
This shows the large number of MC samples required for the convergence.
The PDF is obtained from samples using kernel density estimation. In
Figure 5.4, the convergence of mean, standard deviation, and higher or-
ders are plotted against the number of samples. They are normalized with
the final value for a better comparison. It can be seen that the mean and
standard deviation converges faster compared to higher-order moments.

65



5 UQ in wind effects on structures

5.2 PC expansion method

The polynomial chaos method, as explained in Section 2.5, is used for the
uncertainty quantification of Numerical example 1A here. The collocation-
based approach elaborated in Section 2.3 is adopted in this study.

5.2.1 Numerical example 1A

The same example as used for MC and described in Section 5.1.3 is evalu-
ated with the generalized polynomial chaos method here in this section.
A second-order PC expansion denoted as PC 2 is used in this numerical
example. The KL expansion is used to model the uncertain inputs. Since
the random inputs are Gaussian, a Hermite polynomial is used for the PC
expansion as explained in Section 2.5.1. The collocation points are iden-
tified as the roots of the basis functions, and the deterministic model is
evaluated on these collocation points to obtain the stochastic results. The
obtained PDF is shown and compared with the MC results in Figure 5.5.
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Figure 5.5 : PDF and CDF of coefficient of drag compared
with PC and MC

5.2.2 Results and discussions

The PDF and CDF of the coefficient of drag obtained from second-order
polynomial chaos expansion (PC 2) are compared with MC simulation
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5.3 Multilevel Monte Carlo methods MLMC

Table 5.1 : Comparison of moments between PC and MC.

MC 5000 PC 2

Mean 5.5871 5.5880

Standard deviation 0.0690 0.0692

Skewness 0.0916 0.0930

Number of model evaluations 5000 92

with 5000 samples. The results are plotted in Figure 5.5. It can be seen that
the PC 2 can accurately capture the stochastic behaviors of the problem
at hand. Not only the mean and standard deviation but the PDF and CDF
of the QoI are predicted accurately. The mean, standard deviation, and
computational cost required are compared for both PC and MC in Table 5.1.
It is observed that the PC can capture the stochastic nature of the problem
at a fraction of the computational cost.

5.3 Multilevel Monte Carlo methods MLMC

The Multilevel Monte Carlo (MLMC) method is a recent variance reduction
technique. The idea of MLMC was introduced and used extensively by [44]
and [45]. The goal of MLMC is to decrease the overall computational cost
by sampling from a hierarchical system of finite element spaces (levels). All
of the FE meshes give a good approximation of the QoI. Now sampling is
done from these multi-levels. It is cheaper to compute the QoI in the coarse
mesh and is expensive to compute the same in the fine mesh. However, the
coarse mesh convergence is slow compared to the fine mesh. The method
uses more samples from the coarse grid and fewer samples from the fine
grid. The number of samples from each level is inversely proportional to
the cost of evaluating the QoI at that level. This strategy allows to get an
overall convergence at a lesser cost by sampling from multiple levels of the
model, as we have seen in the formulation in Section 2.4

The fluid-structure interaction problem is a complex multi-physics sys-
tem. In real-world models, the fluid and structural parameters are found
to have some inherent variations. These uncertainties in the input param-
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5 UQ in wind effects on structures

eters are taken into consideration in stochastic fluid-structure interaction
(SFSI). The Multilevel Monte Carlo method is found to be efficient and is
applicable to SFSI problems [101]. SFSI problems, in general, have both
fluid and structure parameters that are uncertain. So it should be noted
that the coupling variable is also uncertain.

There are, in general, four steps to MLMC for SFSI problems:

1. Creating the hierarchy of discretization

2. Sampling

3. Evaluation of the partitioned FSI problem

4. Determination of the statistics of QoI

Details of each of these steps are presented in detail in Section 5.3.1.

5.3.1 Numerical example 2

Figure 5.6 represents a specific FSI problem of a cylinder kept in flow with
the single degree of freedom structural solver in the vertical direction, so
as to capture motion induced by vortex shedding in wind engineering. The
CFD domain and details are similar to Numerical example 1A.

The problem consists of two subdomains, fluid subdomain Ω f and
structural subdomain Ωs with their boundaries Γ f and Γs , respectively.
The fluid-structure interface Γi is given by Γi = Γ f ∩Γs = Γs .

Γf

Ωf
Ωs
Γi ck

x

Figure 5.6 : General fluid-structure interaction problem (left);
and details of coupling with the SDoF(right).
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5.3 Multilevel Monte Carlo methods MLMC

The governing flow equation, structural equation, and the coupling
conditions at the interface for a general FSI problem are briefly explained.

The unsteady flow of an incompressible fluid for domainΩ f is governed
by the conservation of mass and the Navier-Stokes equations, given by

∇·u = 0 (5.5)

∂ u

∂ t
+u ·∇u −ν∇2u +

1

ρ
∇p = f f (5.6)

for x ∈ Ω f . Where u is the velocity, p is the pressure, ν is the kinematic
viscosity, and f f is the external force per unit volume. The deformation u y

of the structure is determined by the conservation of momentum

ρs

d 2u y

d 2t
−∇·σs = fs (5.7)

for x ∈ Ωs . Where ρs represents the density of structure, σs the Cauchy
stress tensor, and fs the body forces per structure volume.

The conditions on the fluid-structure interface are the kinematic con-
dition and the dynamic condition.

u =
d u y

d t
σ f ·n f =σs ·ns

(5.8)

for x ∈ Γi , where ni is the normal unit vector that points outwards from
the domain Γi .

In the case of strongly coupled partitioned FSI simulation, the interface
conditions are ensured at each time step. A Dirichlet-Neumann coupling is
used for the current strongly coupled FSI problem. A Dirichlet-Neumann
coupling is the type of coupling in which Dirichlet conditions are applied
to the fluid domain and the Neumann condition on the structure. In the
interface Γi from Figure 5.6, let the displacement of the interface be repre-
sented by x and the stress on the interface by y . So the fluid solver can be
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5 UQ in wind effects on structures

written as y = F (x ) and structural solver as x = S(y ). Relaxation schemes
are also used to improve the stability and convergence of the iteration.
A simple and efficinet way to invoke relaxation is to blend the current
solution step with the previous solution step.

x k+1 = (1−w k )x k +w k x̃ k+1 (5.9)

where k denotes the iteration number at each time loop, w is the relaxation
factor which is a function of the residual R , and x̃ k+1 denotes the structural
displacement at the interface calculated by the structural solver at k +1
iteration. The partitioned procedure is detailed in Algorithm 4.

Algorithm 4 Partitioned FSI procedure
1: For n = 1 to Ne nd Do
2: Initialise x n ,0

3: Solve the fluid problem, y n ,0 = F (x n ,0)
4: Solve the structure problem, x̃ n ,0 = S(y n ,0)
5: Initialize the residual
6: Apply relaxation as Eq. 5.9
7: Solve the fluid problem, y n ,k+1 = F (x n ,k )
8: Solve the structure problem, x̃ n ,k+1 = S(y n ,k+1)
9: Update the residual
10: If converged Then
11: Go to next time step n = n +1
12: Else
13: Increase k and go to 6
14: End if
15: End for

A benchmark example of CFD problem [100] is considered in this study.
The uncertainties are considered in both the structure as well as in the
fluid parameters. The uncertain input parameters considered are shown
in Table 5.2. The fluid problem is coupled with an SDoF solver in the
vertical direction so as to capture the vortex-shedding phenomenon. The
governing equation of motion of an SDoF system instead of Eq. 5.7 is

m ẍ + c ẋ +k x = fs (5.10)
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Table 5.2 : Details of the input parameters.

Parameter Mean [mm] standard deviation

Inlet velocity 1 0.1

Fluid density 0.5 0.05

Kinematic viscosity 0.2 0.02

Mass 0.001 0.0001

Eigen frequency 0.5 -

Table 5.3 : Details of the MLMC grid hierarchy.

Level Mesh size - circle [mm] Number of nodes Computation time [s]

L0 0.01 503 5.02

L1 0.005 1030 10.47

L2 0.002 2000 20.47

L3 0.001 4014 25.83

L4 0.0005 6570 47.15

where m, c, and k are the mass, damping, and stiffness of the system. The
mass and eigen frequency are shown in Table 5.2. The stiffness and damp-
ing are calculated from the eigen frequency.

Navier-Stokes equation is solved in the open-source platform of Kratos
Multiphysics as before. The Single Degree of Freedom (SDoF) solver is
solved with a generalized alpha scheme. An Aitken under relaxation is
used for the current study. Reynold’s number computed for the mean val-
ues of the parameter is R e = 100. The QoI is the time-averaged drag force
coefficient(Cd ) of the circular cylinder. The time average is computed from
the time when the simulation starts to become oscillatory. The lift coeffi-
cient is found to be zero as the motion is periodic.

The deterministic results on each of these meshes are shown in Fig-
ure 5.8. The four steps explained in Section 5.3 are elaborated for the given
problem. For creating the hierarchy of discretization in the first step, the
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L0

L1

L2

Figure 5.7 : Details of the adopted mesh levels for multilevel
Monte Carlo

meshes are non-nested. The fine mesh is decided, and the coarser meshes
are developed from the fine mesh by considering larger mesh sizes. The
mesh hierarchies in this study are chosen such that the number of nodes
approximately doubles at each level. The coarsest mesh should also be able
to capture the global flow behavior. The number of nodes, elements, and
cost of evaluating the QoI in each of the levels are tabulated in Table 5.3.
Figure 5.7 shows the first three mesh levels. The flow fields in each of these
mesh level sets are plotted in Figure 5.8. It can be seen that the coarsest
level can also capture the global flow behaviors pretty accurately. Now, an
initial number of 32 simulations is done at the first three levels to estimate
the parameters α,β from Eq. 2.13. Figure 5.9 shows the values obtained by
least square regression as α,βand γ= 2 for the current study.
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L0

VELOCITY PRESSURE

L1

L2

Figure 5.8 : Details of QoI at each of the adopted mesh levels
for the mean value of the uncertain parameters.

Both the fluid and structural parameters are assumed to be uncertain.
The details of the uncertain input parameters are tabulated in Table 5.2,
and the normal distribution is truncated at 3 times the standard deviation.
At each level, the samples are taken independently. It should be noted that
the same sample is used for the levels l and l −1 in Eq. 2.13. A partitioned
evaluation of the FSI problem is done in the next step.

The evaluation of the deterministic system is done. The pressure and
velocity snapshots are presented in Figure 5.8. The results are collected,
and a UQ analysis is done. The results of the same are presented in the
next section.

5.3.2 Results and discussions

This section presents and discusses the results of MLMC for fluid-structure
interaction problems with uncertain inputs. The MLMC estimator for the
coefficient of drag is evaluated for the problem at hand at three different
error bounds. The exponent of bounds of cost, variance, and the QoI is
determined numerically in the current study. The variance at each level
is plotted in Figure 5.9 and is found to be nearly the same for all levels.
The difference in variance is found to decrease, implying less number of
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samples required at higher levels. The variance of the coarsest level is more
compared to other levels.
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Figure 5.9 : Variance reduction observed for MLMC

500 1000 2000 4000 8000
Number of Nodes

100

101

102

103

104

N
u
m

b
er

of
sa

m
p
le

s

ε = 0.02
ε = 0.01
ε = 0.005

0.005 0.010 0.025 0.050 0.100
Accuracy ε

102

103

104

105

106

C
os

t
[s

]

MC
MLMC

Figure 5.10 : Number of samples required in MLMC for
different target accuracies (left); and comparison of cost for MC
and MLMC (right)

Therefore most of the samples are drawn from the coarsest level. The
number of samples required for each of the levels is plotted in Figure 5.9,
and it can be seen that the number of samples reduces as the levels are
increased. Most of the samples are drawn from the coarsest level as ex-
pected. As the error bound are decreased, the required number of samples
increases for all levels. Thus the total cost is increased as error bounds are
decreased. Figure 5.11 shows the cost of MLMC compared to MC simu-

74



5.4 Numerical example 3

L0 L1 L2 L3 L4

Level

100

101

102

103

104

N
u
m

b
e
r

o
f

s
a
m

p
le

s
ε = 0.02

MLMC

MC

L0 L1 L2 L3 L4

Level

ε = 0.01

L0 L1 L2 L3 L4

Level

ε = 0.005

Figure 5.11 : MC v/s MLMC - number of samples required at
each level

lations at the finest mesh. The costs are obtained as Nl Cl where Cl is the
cost at level l . One can see that the cost of MLMC is less than the MC for
all error levels. An average factor of five times saving is obtained for the FSI
problem. Setting up the MLMC grid hierarchy and initial computations
also contribute to overall cost and effort, which are not accounted for in
this cost comparison.

Comparison of computational cost

The cost of standard MC with MLMC is compared. It can be seen from
Table 5.4 that a considerable computational saving of up to 8.9 is achieved
by adopting the MLMC method. This is done by sampling more from the
coarsest level and only running the finest level for a few number samples.
The computational gain is shown for all the target error levels. Hence,
it can be concluded that the MLMC is promising for UQ in low Re flow
structure interaction problems. However, the next section presents more
investigations into high Re flows.

5.4 Numerical example 3

The numerical study presented in Numerical example 2 is made to a high
Re number problem by making the velocity larger. The inlet velocity of
10m/s is used in this numerical example. Hence, the Re is of the order
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Table 5.4 : MLMC comparison of cost with standard MC.

Error MLMC cost [s] MC cost [s] Gain factor

0.1 182 262 3.2

0.05 285 1242 4.4

0.02 1272 11420 8.9

0.01 4465 35100 7.9

0.005 22401 140400 6.3

104. It may be seen that the inputs are now varying at higher levels as well.
The problem at hand is similar to the previous one. The solution can be
computed as explained in Section 5.3.

5.4.1 Results and discussions
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Figure 5.12 : Variance reduction is not observed in MLMC for
high Re flows

In order to investigate the flow behavior at high Reynold flows, studies
were conducted that measured the convergence versus the interpolation
error at different levels of meshes. Figure 5.12 demonstrates the difference
of the levels E [C dL −C dL−1] estimated using a sample average over 50
realizations. It can be observed from the figure that geometric decay of this
estimate of the difference with fine mesh is not observed. The variation of
the variance of the difference is also shown in Figure 5.12. It may also be
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noted that this quantity does not decay with the increasing fineness of the
mesh.

On further detailed investigation, it was uncovered that bias and vari-
ance decay could be challenging to obtain for high Reynolds number flows
due to the chaotic nature of the high Re flow. This makes retaining the
correlation between fine and coarse samples in an MLMC setting difficult.
Hence, the MLMC hypotheses of Section 2.4 are unlikely to be satisfied.
These factors make applying MLMC for the target final application in struc-
tural wind engineering impossible. The Re in the actual wind flow is of the
order of 108 and this makes the problem more complex.

5.5 Neural Networks

Neural networks as explained in Section 2.6 are used as a surrogate for un-
certainty quantification for a structural wind engineering problem here. As
an upcoming and promising field of research this application was explored
with a computationally less challenging problem. A physics-informed neu-
ral network was also explored collaboratively for uncertainty quantification
applications [56].

5.5.1 Numerical example 4

A simplified structural model of the CAARC building is explored in this
numerical example. The wind is not modeled in CFD, instead a bluff body
definition of the drag coefficient is used here. Knowing the Cd at each
cross-section, rectangular in this case, the total force in each section can
be found as,

Fd (z ) =
ρV (z )2ACd

2
(5.11)

where,ρ is the air density, V (z ) is the velocity at height z , A is the reference
area and cd is the coefficient of drag for the cross-section. The structure is
modeled as an Euler-Bernoulli beam. The input parameters are tabulated
in Table 5.5. A similar geometry to CAARC benchmark building is adopted
in this numerical example.
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Table 5.5 : Input parameters for the building structure under
wind loads

Inputs Distribution Values

Natural frequency (f) - 0.2Hz

Density - 160 k g /m 3

Damping ratio - 0.05

Mean wind velocity Weibull Mean = 20 m/s, shape parameters = 2

Roughness length Uniform [0.1, 0.7]

Figure 5.13 : Comparison of NN surrogate with MC PDF (left);
and CDF (right) of the top displacement

5.5.2 Results and discussions

The UQ analysis is carried out with the NN surrogate method and MC
with 10,000 and reference solution with 100,000 samples. The QoI is the
horizontal displacement at the top of the building. The probability den-
sity function (PDF) and cumulative density function (CDF) of the QoI are
shown in Figure 5.13. It can be seen that the results match each other. To
quantify the results better, the first four moments are tabulated in Table 5.6.
The error in the mean is less than 0.01% showing a close agreement with
the reference results. Other higher-order moments are captured accurately
by the method. The deviation in the kurtosis from the reference value may
be attributed to the sampling error, as the values of MC 10000 and FEM-NN
are comparable.
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However, the training time for the Neural network is relatively high
compared to the problem at hand. Once the surrogate is created, it is eas-
ier to sample from the surrogate. However, the number of training data
required is higher compared to other surrogate methods with more math-
ematical support. Each training point required is also associated with the
deterministic evaluation of the underlying model. Hence, creating a good
NN surrogate model can be costly during the data creation phase and the
training phase. Also, to identify the optimum neural network parameters,
hyperparameter tuning may be required, which is also not straightforward
and requires computational resources. Hence, due to the complexity of
the underlying physics and deterministic problem, it may be concluded
that this approach is not the best suited for structural wind engineering.

Table 5.6 : Comparison of moments for NN surrogate with
MC.

Mean Standard deviation Skewness Kurtosis

Reference 0.092774 0.094128 2.08002 6.61567

MC 10,000 0.093232 0.095423 2.20634 8.17860

FEM-NN 0.092765 0.094416 2.22340 8.32967

5.6 Concluding remarks - comparison for FSI

The Monte Carlo method is found to be universal. However, the large
number of model evaluations required for the method makes it challenging
for wind engineering applications. The variance reduction technique of
the Multi-level Monte Carlo method is found to be effective at low Re
numbers but is found unsuitable for high Re number flow cases. This
makes the method unsuitable for practical structural wind engineering
problems. The polynomial surrogate is found to be a good alternative
for low-dimensional problems in wind engineering. However, the curse
of dimensionality makes it challenging for high-dimensional problems.
The NN is found to be computationally expensive for training and data
generation for practical structural wind engineering problems. Hence, it
will not be explored further in this thesis. The PC and MC will be used going
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forward in the thesis for the ’real’ wind problem and later in optimization
under uncertainties.
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An approximate answer to
the right problem is worth a
good deal more than an exact
answer to an approximate
problem.

John Tukey
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6
UNCERTAINTY QUANTIFICATION USING

GRADIENT ENHANCED POLYNOMIAL CHAOS

Here, in this chapter, the proposed two-step uncertainty quantification us-
ing the gradient information is elaborated. The PC expansion we present
in Chapter 2 and used for the FSI benchmark example in Chapter 5 is
enhanced with the sensitivity information to accelerate the surrogate cre-
ation. Also, sensitivity information is used for screening in the beginning
to reduce the stochasticity of the problem. Hence, a two-step approach
is proposed in this chapter. The proposed method is presented for a nu-
merical study of the cylinder in flow. The computational gain achieved
compared to MC and the polynomial chaos approach is demonstrated.
The method’s applicability to UQ for wind engineering is discussed in the
summary of the chapter.
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6.1 Introduction to gradient enhanced surrogate models

As elaborated in Section 2.5, surrogate models have been used for simple,
efficient relations between input and output parameters. These models
are convenient where the deterministic simulations they are based on are
computationally expensive, or the data is available from measurements.
To infer the relationship between the inputs and outputs is expensive
when the number of input stochastic dimensions grows to large numbers
and all surrogate models suffer from this shortcoming. It is helpful, in
this case, to use all the information available in the deterministic model
for surrogate creation. One of the most common and useful pieces of
information available in addition to QoI is the gradients. The gradients refer
to the sensitivity of outputs with respect to the inputs. By using the gradient
information, the number of model evaluations can be reduced for surrogate
models. Alternatively, this gradient information can be used to increase
the accuracy of the surrogate with the same number of model evaluations.
Gradient-enhanced kriging has been used in [102] and shows that the
gradient-enhanced version is faster and more accurate. The efficacy of
the gradient-enhanced version of the kriging has been shown in various
studies [103] [104].

The gradient information for improving the regression in polynomial
chaos is used in [105]. Gradient-enhanced polynomial chaos with L1 mini-
mization for constructing sparse polynomial chaos approach is presented
in [106].

6.2 Sensitivity analysis and gradient enhanced
polynomial chaos

The sensitivity analysis can be done via different approaches. Direct sensi-
tivity, adjoint approach, and automatic differentiation are the most com-
mon approaches.

In the adjoint approach for the time-varying problems, the primal is
solved forward in time, while the adjoint is a linear equation solved back-
ward in time. The main advantage of the adjoint approach is that the back-
ward adjoint solves a linear operation, and all the sensitivity information
is obtained almost at no additional cost. Kratos Multiphysics has built-in
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additional solvers for the computation of adjoint sensitivities for structural
and fluid applications. These adjoint solvers are made use of in this thesis.

One drawback, as discussed in the previous chapter, for polynomial
chaos surrogates is that the number of collocation points grows rapidly
with an increase in input parameters. This can be troublesome for engi-
neering problems with large input parameters that are uncertain since
it requires a large number of deterministic evaluations. One way to over-
come the curse of dimensionality is to use gradient information to build
surrogate models. We propose and use the gradient information for the
least square minimization problem and reduce the number of model eval-
uations. This gradient-enhanced polynomial chaos method is elaborated
on in the next section.

Using the adjoint method for evaluating the gradients, the sensitivity
information can be obtained at a considerably low additional cost. This
sensitivity information is used to reduce the training effort of the poly-
nomial chaos expansion. Figure 6.5 shows the additional computational
resources required for the adjoint solves compared to the primal ones in
Kratos Multiphysics for the numerical study of consideration. It can be
seen that the ratio is around 1.4, and it is independent of the stochastic
dimension. This implies that almost all the gradient information at the se-
lected collocation point can be obtained at practically negligible additional
cost.

In this thesis, a two-step approach is employed, whereby the number
of random input variables is reduced and, hence, solves the curse of di-
mensionality partially. This dimensionality reduction strategy employed is
elaborated and illustrated in detail in Section 6.3.

6.2.1 Formulation of GESC

In the regression approach, the polynomial coefficients are evaluated by
solving the least square problem as in Eq. 2.22. Here, in Gradient Enhanced
Stochastic Collocation (GESC), we have additional information on gradi-
ents at each of the collocation points. Hence, the information matrix can
be enhanced to include this information. The Eq. 2.23 then becomes
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. (6.1)

The least-square approach requires us to choose the number of collo-
cation points where the deterministic model needs to be evaluated.

6.2.2 Selection of collocation points

As mentioned above, to determine the unknown coefficient yi , the response
of the system (both QoI and the gradients) has to be evaluated at a set of
input parameters obtained for specific values of the uncertain random
variable, known as the collocation points. For a univariate system, the
collocation points are selected as zero, and the roots of one order higher
polynomial that is used to approximate the response [52].

If more points are needed, they are chosen in such a way that they
are distributed symmetrically around the mean value from the PDF of a
random variable. The stochastic collocation method can be easily imple-
mented and leads to solutions easily, even for problems with nonlinearity,
much more efficiently compared to intrusive methods.

For multivariate problems, a common methodology adopted is to find
the collocation points from the full tensor product space. Since the number
of points in the full tensor product grid increases exponentially with the
dimension, these grids suffer from the curse of dimensionality. Here, in
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start Assemble information
 matrix - A

Determine the rank 
of information matrix 

Check Rank(A) = P

Return number of 
collocation points (N) 
information matrix A

Add new collocation 
point

Select number of collocation
 points (N) such that 

Yes

No

Figure 6.1 : Details of the workflow adopted to choose collo-
cation points in GESC.

this work, we chose the collection points from the full tensor grid such
that the rank of the information matrix is more than the rank required as
elaborated in [52]. The workflow adopted in this work for the choice of the
collocation point is shown in Figure 6.1.
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6.2.3 Required computational efforts

The number of collocation points obtained from the above algorithm for
different dimensions for the PC and gradient-enhanced version are shown
in Figure 6.2. The number of collocation points required increases as the
number of dimensions increases in both the PC and GESC. However, for
order 2 GESC, the number of collocation points required increases linearly,
while for the PC, it increases quadratically. Hence, the difference between
the two is clearly evident for higher dimensional problems. For a dimension
of 15, the number of collocation points in GESC is approximately 1/15
times the number required for PC. The difference becomes approximately
1/80 th, showing the effectiveness of the method for higher order higher
dimensional problems.

6.3 Two-step approach

The proposed two-step approach with dimensionality reduction and ba-
sis reduction is elaborated in the following Figure 6.3. The core concept
of the two-step approach is to make a pre-selection of the important in-
puts in step 1 and then only consider the uncertainties of the important
parameters in the analysis for GESC in step 2. The first step is to do a sen-
sitivity analysis of the mean parameters and sort the parameters based on
their importance. We make three categories of inputs. High-importance
parameters, medium-importance parameters, and low-importance pa-
rameters. The high-importance parameters have larger impacts on the
outputs. Hence, they are included in the UQ analysis. The low-importance
parameters are neglected since they have lower sensitivity values. This
results in a reduction of the overall dimensionality of the stochastic space.
The reduction of dimensionality is of prime importance for surrogate con-
struction since the resulting problem is of lower dimension, and hence,
a lower number of collocation points are required in the UQ analysis. A
basis reduction is proposed for the medium-importance parameters. The
higher-order terms of the medium-importance parameters are neglected
from the PC expansion, resulting in a basis reduction. This will also result
in a reduced number of collocation points. After the first step, the number
of PC terms is reduced. It can be seen that the dimensionality reduction
and basis reduction dramatically reduce the computational cost. This is
clearly justified in the numerical example shown below. The choice of the
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sensitivity thresholds for categorizing the input parameters needs to be
made by the user. This choice has a major role to play since we make a
dimensionality reduction based on this categorization. However, the exis-
tence of medium-importance parameters will still include the lower-order
PC terms of those parameters even if the threshold for high-importance
parameters is too large.

Getting adjoint sensitivities 
at the mean value

Ranking the inputs 
based on sensitivites 

Fixing selection criteria -
identify low and 

medium ranking inputs 

Dimensionality
reduction

Stage 1Stage 2

Basis reduction

Omit low ranking inputs 

Omit higher order 
combinatorial  terms of

 medium ranking 
inputs in PC expansion

Use  gradient enhanced
PC expansion for UQ

Gradient Enhanced 
Polynomial Chaos (GEPC)

Figure 6.3 : Details of the two-step approach elaborating the
various steps.

6.4 Numerical study

The gradient-enhanced polynomial chaos and the two-step approach are
applied to the cylinder in the flow problem we elaborated on in Section 5.1.
The Numerical example 1A is explored with GESC, and a comparison is
made with GESC, PC, and MC approaches. The accuracy and computa-
tional costs are compared and commented on.

6.4.1 Uncertain geometry description

The uncertain geometry is modeled with a KL expansion. The details of KL
expansion and parameters are described in section 5.1. Two numerical
examples are introduced here. Numerical example 1A with a correlation
length, l = 0.05, and Numerical example 1B with a correlation length,
l = 0.02. In Figure 6.4, we plot the weighted eigenvalues and average vari-
ance error against the number of modes in the KL expansion. For an av-
erage variance error of 5% we choose the number of modes as 8 and 20
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6 Uncertainty quantification using Gradient Enhanced Polynomial Chaos

for Numerical example 1A and 1B, respectively. It can also be seen that
the weighted eigenvalues are also very low for these mode numbers cho-
sen to truncate the KL expansion. Hence, Numerical example 1A has 8
dimensions, and 1B has 20 dimensions. We show the GESC approach for
Numerical example 1A and the two-step approach for Numerical example
1B since it is a high-dimensional problem.

The uncertain geometry realized in Kratos via mesh motion solver is
shown in Figure 5.2. The uncertain geometry definition may be found in
Section 5.1.
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Figure 6.4 : Choice of the number of modes in the KL expansion
for Numerical example 1A and Numerical example 1B.
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6.4.2 Quantities of interest and their sensitivities

The QoI is the time-averaged drag coefficient as in Eq. 5.4. The input uncer-
tainties are in the geometry of the circle. The Reynolds number considered
is 20 and hence the flow is laminar. An adjoint approach is used to com-
pute the sensitivities. Figure 6.6 shows the time average pressure, adjoint
pressure, and drag sensitivities with respect to the nodes. The drag sensi-
tivities are larger at the extreme vertical points, as expected. The additional
computational time required in our implementation for the calculation
of sensitivity for varying stochastic dimensions is shown in Figure 6.5. It
is observed that for adjoint sensitivities, the additional effort required is
40% more than the QoI alone. However, this factor is found to be almost
the same for all the dimensions. This gradient information obtained at
a small additional cost for a higher dimensional UQ problem is used for
the two-step approach to result in a computationally efficient forward
propagation of uncertainties.

Pressure Adjoint pressure Sensitivity

a b c

Figure 6.6 : Sensitivities with respect to nodal coordinates for
cylinder in flow problem evaluated with Kratos Multiphysics.

6.4.3 Numerical example 1A - Results and discussion

The uncertainties of the geometry are quantified using GESC elaborated in
Section 6.2.1 and the results are quantified here. The moments of the QoI
for the PC, MC, and GESC are tabulated in Table 6.1. It can be seen that the
first two moments match really well for all three approaches. However, the
third moment differs significantly. The GESC requires only 0.47% of effort
compared to MC. This improved performance at the cost of accuracy in
higher-order moments is a justifiable compromise. The computational
time required for the GESC approach is 25% of the computational time
required for PC. There is also an additional cost of computing sensitivities
using the adjoint approach in GESC. This 75% computational saving with
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6 Uncertainty quantification using Gradient Enhanced Polynomial Chaos

Table 6.1 : Comparison of moments for GESC, PC, and MC.

MC 5000 PC 2 GESC 2

Mean 5.5871 5.5880 5.5881

Standard deviation 0.0690 0.0692 0.0735

Skewness 0.0916 0.0930 0.0274

Number of model evaluations 5000 92 11

Computation time (s) 145000 2678 687

Computation time (%) 100 1.85 0.47

comparable accuracy in moments shows the applicability of the gradient-
enhanced polynomial chaos. The PDF and CDF of the QoI for all three
approaches are also plotted in Figure 6.7. It can be seen that the GESC is
able to predict the mean and standard deviation pretty accurately com-
pared to PC and MC at a fraction of the cost, as inferred in Table 6.1. The
higher-order moments, like the skewness, are observed to have larger er-
rors.
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Figure 6.7 : PDF and CDF of coefficient of drag evaluated with
GESC, PC, and MC.

6.4.4 Numerical example 1B - Results and discussions

For the covariance length of l = 0.02 we have a 20-dimensional problem as
shown in Figure 6.4. Here, the two-step approach described in Section 6.3
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Table 6.2 : Identification of high, medium, and low importance
parameters based on normalized sensitivities.

mode no. Normalized sensitivities Sum of normalized sensitivities

1 0.55 0.55

H
ig

h2 0.14 0.69

4 0.12 0.81

3 0.12 0.92

6 0.04 0.97

M
ed

iu
m

8 0.01 0.98

5 0.01 0.99

10 0.00 0.99

12 0.00 0.99

14 0.00 0.99

... ... ... lo
w

is used. A threshold is set for medium and high dimensions, and the iden-
tifications are based on their local sensitivities at the mean values. This is
shown in Table 6.2.

Once the modes are sorted, the dimensionality reduction is applied and
the basis reduction is done as before. The stochastic analysis is carried out
and compared in Table 6.3 and Figure 6.8. It can be observed that the two-
step approach is able to capture the first two moments pretty accurately at
a reduced cost of 30% compared to GESC, showing the effectiveness of the
two-step approach. The deviation in the skewness is also observed here
similar to Numeical example 1A.

6.4.5 Two-step approach - results and discussion

For the Two-step approach, the surrogate for the full basis and the reduced
basis with GESC are tabulated in Table 6.3 and plotted in Figure 6.8. It can
be seen that they match really well, and the observables are predicted very
accurately. This shows the efficacy of the proposed two-step approach for
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Figure 6.8 : Comparison of PDF and CDF between GESC and
two-step approach.

forward propagation of uncertainties. However, the higher moments were
not captured with higher accuracy in the reduced basis model.
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Figure 6.9 : Comparison of Sobol’indices between GESC and
two-step approach.

6.4.6 Comparison of computational effort

Figure 6.10 shows how efficient the GESC is for each step. It can be seen
that the major saving is from the dimensionality reduction. Extra savings
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Table 6.3 : Comparison of moments between GESC and
two-step approach.

GESC. two-step approach % difference

Mean 5.5908 5.5880 0.19

STD 0.1439 0.1387 3.613

Skewness 0.1047 0.0327 68.7

Numer of model evaluation 241 74 30

in computation are obtained from the basis reduction. It can be clearly
observed that the two-step approach is an efficient way to build a surrogate
for the problem where sensitivity information is available.

Full basis
 model

Dimensionality
reduction

 Stage 1 saving
*P is the number of PC coefficients and N is the number of model evaluations required 

 Stage 2 saving

Basis reduction
Gradient Enhanced 

Stochastic 
Collocation (GESC)

P = 1771P = 364P = 287

PC-3, N = 8498
GESC-3, N = 241

PC-3, N = 1248
GESC-3, N = 89

PC-3, N = 984
GESC-3, N = 74

Figure 6.10 : Details of the computational savings achieved
using the two-step approach and GESC.

6.4.7 Challenges for application to full-scale wind scenario

We show that the gradient-enhanced polynomial chaos with a pre-selection
(two-step) approach is a computationally efficient way to build a surrogate
for uncertainty quantification. However, the major challenge is to have
local sensitivity information available for all the quantities of interest with
respect to all the input parameters under consideration. This may require
modifying the existing adjoint element formulations or writing new ones.
The adjoint information may not be available in commercial codes for all
the QoI with respect to inputs of interest. This is a major challenge when it
comes to the applicability of the method. Also, the sensitivity evaluation
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for Navier-Stokes is found to diverge for high Reynolds numbers due to
the chaotic inherent nature of the flow problem and butterfly effect. We
do not have sensitivity information available for high Re flows that are
of interest to practitioners in this thesis, hence, even though the method
is promising, it will not be used for the showcase example of wind flow
around the building as in Chapter 8.
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"Prediction is very difficult,
especially if it is about the
future"
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7
VERIFICATION AND VALIDATION IN WIND

EFFECTS ON TALL BUILDING

The first step of uncertainty quantification is to get a good deterministic
model representative of the physics as elaborated in Figure 2.1. Verifica-
tion and validation ensure the quality of the deterministic simulation and
the correctness of the solution to the deterministic problem. Here in this
chapter, the various verification and validation methods are explored for
structural wind engineering. A numerical example of a well-known CAARC
benchmark building is demonstrated, and the validation of the numerical
wind tunnel for this benchmark structure is carried out, ensuring the qual-
ity of the deterministic simulation used for uncertainty quantification in
Chapter 8.

7.1 Verification and Validation

The basic terminology and concept of verification and validation in the
context of computational structural wind engineering problems are de-
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scribed here. The verification and validation concept is widely popular
in the computational fluid dynamics community [107]. In scientific com-
puting and simulation, a modeler primarily tries to model reality with
computer models developed based on the conceptual model and uses
the available computational resources to predict the quantities of interest.
These predictions are about the real world. The conceptual model is de-
veloped from the theory and mathematical formulation of the real world
based on the physics of the real-world problem. The conceptual model
consists of all the information, mathematical formulation, and mathemat-
ical equations that describe the physics of the real-world problem at hand.
In CWE, the conceptual model includes a mathematical description of
the physics of the fluid domain and structural domain and the coupling
between these two. The partial differential equation (PDE) describing the
two physics and the coupling strategy is the basic building block of the
conceptual model. The auxiliary equations, like the turbulence model, the
initial conditions, the boundary conditions, etc., are also part of the con-
ceptual model. A computational model is the computer implementation
of the conceptual model. The computational model also referred to as the
computer model or code, is operational and solves the PDEs described in
the conceptual model to result in numerical values of the output QoI.

Verification and validation ensure the accuracy of these two, conceptual
and computer models and ultimately ensure the accuracy of the predic-
tion of the quantity of interest. The American Institute of Aeronautics
and Astronautics (AIAA) definitions of verification and validation are as
follows [107]

"Verification: the process of determining that a model imple-
mentation accurately represents the developer’s conceptual
description of the model and the solution to the model.

Validation: The process of determining the degree to which a
model is an accurate representation of the real world from the
perspective of the intended uses of the model."

For structural wind engineering, verification provides a confirmation
that the computer model/code correctly implements the fluid and struc-
tural physics and that the implementation solves the equation correctly.
This step does not have any role to play in the real-world application of

96



7.1 Verification and Validation

the problem, whereas validation offers an idea of how accurately the com-
putational model and simulation represent reality. Validation is a check of
how much the prediction and the reality are in consensus with each other.
Verification is assessing if the equation is solved right, whereas validation
is assessing if the right equation is being solved [108]. There are two steps
in verification. The first is code verification, and the second is solution
verification. Code verification refers to ensuring the computational code
tests are implemented and are functioning as intended, whereas solution
verification ensures the computational models give the correct results for
the benchmark test problems. Code verification aims at uncovering the
bugs in the code, checking computed results against benchmark problems
with known solutions, and assessing the performance of the algorithm.
Solution verification amounts to producing a posteriori error estimate for
the output QoIs. Verification will not be looked upon in much detail in
this thesis. Refer to this thesis [109] for details on solutions and code verifi-
cations in Kratos Multiphysics. The validation of the fluid and structural
code for the SWE application is also explored in [109]with CAARC bench-
mark as a showcase example. The focus is on validation methodology and
uncertainty quantification in the rest of the chapter.

7.1.1 Validation

As the AIAA guide defines, validation is the process of determining how
much a model is an accurate representation of the real world from the
perspective of the intended use of the model [107]. In SWE, hence, valida-
tion deals with the assessment of the comparison between computational
results and experimental data from measurements. The measurements
may be done scaled down on a wind tunnel or on real scale for a few bench-
mark cases. Validation does not explicitly answer how the computational
model may be changed to improve the agreement between the computa-
tional result and the experimental measurements. It only shows how much
agreement there is between the two.

In many cases, for structural wind engineering, it is not possible to con-
duct validation experiments on the complete system due to the complexity
of the problem. As elaborated in Chapter 1, the structure we analyze may
be unique and, in many cases, not built yet, making a full-scale valida-
tion impossible. Also, not all the cases may not be possible to model in
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wind tunnels. This is particularly true for scaled-down aero-elastic mod-
els. In these cases, a hierarchy approach is used in which the SWE model
is subdivided into simpler subdomains. Validation tests are done, and
the results are compared for the computational and experimental results
for the subsystems, benchmark cases, or unit problems. It may be noted
here that individual computational outcomes of a model are validated,
and codes/models are not validated [108]. Hence, promising data for an
individual outcome of one validation experiment does not ensure that
the entire SWE model is validated. However, these validation experiments
give overall confidence in the predictions made from the computational
models, showing that the model has achieved a given level of accuracy in
solving the specific problem at hand for a specific QoI.

The basic approach of validation involves the identification and quan-
tification of the error and uncertainty in the conceptual and computational
models, estimation of the numerical error in the computational imple-
mentation, estimation of the experimental error, and checking how much
agreement is there between the computational prediction and the experi-
mental measurement.

Error in experiments and simulation

The different sources of error in a computer simulation are discussed
by [110]. Error in the simulation Es i m is defined by

Esim = ysim− yreal-world

= (ysim− ycomputer) + (ycomputer− ymodel)

+ (ymodel− yexp) + (yexp− yreal-world)

= E1+E2+E3+E4

(7.1)

where, ycomputer is the QoI that could be theoretically computed on a
flawless computer with unlimited speed, precision, and memory. Hence,
E1 denotes numerical error resulting from the discrete solution and the
perfect computer solution. It is, hence, a solution or calculation error. These
types of errors can be minimized by solution verification procedures.

E2 symbolizes the error due to the algorithm and is handled by the code
verification process. E3 depicts the error that arises from the difference
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between the mathematical model and the experimental measurement,
referred to as the model error. The computation of E3 is more challeng-
ing than E1 and E2 since experimental measurements are always associ-
ated with uncertainties. For example, the same wind tunnel experiment
repeated at different times or in different facilities will deliver slightly dif-
ferent results. Another problem with experimental measurement is that
they also provide the necessary input data for the simulation model. The
boundary conditions, initial conditions, excitation measurements, etc.,
depend on these uncertain measurements. This may result in E3 becoming
a closed loop.

E4 shows the errors due to the difference between the true value of
the real world and the measurement of the quantity of interest. This is
referred to as an experimental error. The true value from the real world
is seldom deterministic, as in most cases, especially in wind engineering
problems, the reproduction of the exact same physical condition cannot
be accomplished from one realization to the next. It is interesting to note
that a zero total error does not mean the errors E1 to E4 are all zeros. An
error of one term can cancel out the error of the other term and result in
the total error becoming zero.

An estimate of E1 and E2 is obtained through verification, and an esti-
mate of E3 and E4 is obtained through validation. Hence, it is important
to do verification and validation so that not only an idea of the total error
can be obtained, but also an estimate of the individual terms can be made.
Hence, an informed decision about the trustworthiness of predictions from
computational models can be made.

7.1.2 Validation metric

The concept of validation metrics originated from the requirement of a
mathematical operator that calculates the difference between the pre-
diction of scientific computing and the experimental measurement in a
validation scenario. Validation metric is defined in [111] as a mathematical
operator that measures the difference between a system response quanti-
ties obtained from a simulation result and one obtained from experimental
measurements. The validation metric is used as an objective measure of
the distance in some sense between prediction and experimental mea-
surement. The validation metric is, hence, a non-negative quantity.
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Hypothesis testing is used traditionally for model validation. In hypoth-
esis testing, the model is tested for a large number of trials to see if it meets
the hypothesis test condition to desired statistical accuracy. If the hypoth-
esis is satisfied, the computational model is said to be validated, and if
not, the model is invalidated. This approach gives the idea that the model
passes or fails a particular hypothesis and is not a qualitative measure. An-
other simplified approach used is a comparison of the mean values. This
approach compares the mean values of the experimental and the simula-
tion results. In literature [112–114] the vector norms, L1 and L2 norms, have
been used as validation matrices. This method focuses only on specific
statistical quantities other than the whole probability distribution of the
parameter. In many previous studies, even the uncertainty propagation
through the model has not been executed.

7.1.3 Comparison of probability distributions and p-boxes

In a non-deterministic study, the validation metric is the difference be-
tween the probability distribution of the experiment and the simulation.
A useful tool for this comparison for the validation exercise is based on
comparing the shapes of the cumulative density function (CDF) of the two
distributions [115]. The uncertainty of the system can be purely aleatory
or mixed (a combination of aleatory and epistemic). In cases where the
uncertainty is purely aleatory, the probability measure will be a CDF, and
in cases where there is an interval estimate of the parameters of the proba-
bility density function, the probability measure will be a p-box. A detailed
description of the comparison of shapes of CDF and p-boxes for validation
exercise is available in [115].

A method of propagation of P-boxes through the system using a sparse
polynomial chaos approach is presented in [116]. In the study, the param-
eter uncertainty is considered as p-boxes. Both the aleatory and epistemic
uncertainty of the input parameters are considered. The algorithm is based
on the polynomial chaos approach. A mathematical model considering
the quantified uncertainties is close to a real scenario. A brief review of
computer predictions with quantified uncertainty is presented in [117],
where the use of uncertainty quantification for validation is emphasized.

A comprehensive framework for verification, validation, and uncer-
tainty quantification in scientific computing is presented in [111]. The val-
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7.2 Validation of the CAARC building B

idation metric explained above is extended to a framework. Both aleatory
and epistemic uncertainty are addressed in the framework. In cases where
both epistemic and aleatory uncertainties are present, the concept of prob-
ability box (p-box) is used. Key steps for validation are presented, and an
example of a hypersonic nozzle flow was presented for better understand-
ing in [111].

In the upcoming section, we validate the CFD solver used by Kratos
Multiphysics using the well-studied and documented benchmark case,
Commonwealth Advisory Aeronautical Council (CAARC) benchmark build-
ing B [21]. The results are compared with published studies, and we explore
the validation metric in this benchmark example to ensure the quality of
our deterministic simulation.

7.2 Validation of the CAARC building B

The validation of the well-documented benchmark CAARC benchmark
building B will be carried out and presented in this section. Kratos Multi-
physics is used in the current study to model the wind effects on benchmark
tall building. The building geometry is modeled at full scale, even though
many experimental and few numerical studies have done scaled-down
testing. This benchmark example will then later be used for the UQ task
in Chapter 8. It is important to make sure the physics is solved correctly
before doing the UQ task as elaborated in Section 7.1.1.

Building B of the CAARC benchmark study has been widely researched
and simulated in CWE and CFD in the past [16, 17, 21, 23]. The benchmark
building B of CAARC has a classical bluff body shape with a flat top and
rectangular cross-section. The lateral surfaces are also flat without any
parapets or additional geometric features. The simplicity of the geometry
makes it a perfect choice for a benchmark case. The plan dimensions are
45 m x 30 m. The height of the benchmark building is 180 m.

7.2.1 Details of reference measurements

Previous investigations have been conducted both in the wind tunnel and
using CFD for the CAARC benchmark building B [16, 17, 21, 23]. Among
these studies, we use the numerical study on the aerodynamic and aero-
elastic response of CAARC building B from [22]. The study also compares
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7 Verification and validation in wind effects on tall building

its results with previous studies and all these results are made use of in the
validation. We refer to [22] for reference values for validation of the CFD
model in Kratos Multiphysics.

The quantity of interest reported in [22] are the pressure coefficients at
the height of 2/3 of the total height and the force and moment coefficients
at the base. All these coefficients are normalized quantities to the free
stream velocity. This makes the setting up of the CFD and validation easier.

The pressure coefficient at any point is the normalized pressure with
free stream velocity described as

CPi
=

Pi −P0

1/2ρV 2
H

. (7.2)

The force and moment coefficients are found from the shear force and
moments at the base by normalizing with respect to the free stream velocity
as,

CFX
=
∑N T N

i=1 FXi

1/2ρV 2
H W H

; CσFX
=
∑N T N

i=1 σFXi

1/2ρV 2
H W H

CFY
=
∑N T N

i=1 FYi

1/2ρV 2
H W H

; CσFY
=
∑N T N

i=1 σFYi

1/2ρV 2
H W H

CMX
=
∑N T N

i=1 MXi

1/2ρV 2
H W H 2 ; CσMX

=
∑N T N

i=1 σMXi

1/2ρV 2
H W H 2

CMY
=
∑N T N

i=1 MYi

1/2ρV 2
H W H 2 ; CσMY

=
∑N T N

i=1 σMYi

1/2ρV 2
H W H 2

(7.3)

where, ρ is the density of the air, VH is the velocity at height H, and W is
the building width. CFX

represents the force coefficients in the direction X
and MFX

is the moment coefficient. CσFX
represents the root mean square

of the fluctuation of FX .

7.2.2 Setting up of numerical simulation in Kratos

As elaborated earlier, we conducted the numerical simulation to model the
wind flow around the rectangular CAARC building B model with Kratos
Multiphysics. The fluid properties are listed in Table 7.1. The high Reynolds
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7.2 Validation of the CAARC building B

number in the present simulation causes the flow to be extremely turbu-
lent.

A finite element method formulation for flow problems based upon a
variational multi-scale (VMS) formulation [118] is used. The fluid domain
is discretized with fractional step elements. Figure 7.1 shows the computa-
tional domain setup adopted in the current simulation. The boundaries of
the fluid domain and the applied boundary conditions are also depicted
in the figure.

Inlet   
   
Outlet
  
Bottom  
Structure
Top        
Wall  

 imposed velocity 
  (logarithmic)    
 imposed pressure
 (0Pa)
 no slip condition
 no slip condition
 slip condition      
 slip condition     

2.5H
2.5H 2.5H

7.5H

L W

H

Wall

Top

Outlet

Bottom

Inlet 

    

CFD domain conditions

3.3H

VH

Figure 7.1 : Details of the CFD simulation domain and boundary
conditions.

Table 7.1 : Fluid properties and problem data for CAARC
simulation in Kratos Multiphysics.

Parameter Value

Density ρ[K g /m 3] 1.225

Viscosity µ[m 2/s ] 1.507E −05

Dynamic viscosity ν [Kg/m s] 1.846E −05

Characteristic length w [m] 45

Reynolds number R e 9.7E 07
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7 Verification and validation in wind effects on tall building

Boundary condition at the inlet

A steady inlet condition is used in the simulation, similar to the original
study. The wind inlet does not change with respect to time, however the
profile varies over the height. A logarithmic profile is adopted here as
elaborated in Section 3.2.1, in contrast to an exponential profile in the
original study [22].

In the current study, a corrected logarithmic profile as Eq. 3.4 is adopted.
In practice, the wind measurements are carried out at a reference height
and for a duration of 10 minutes (600s).

The mean velocity of 40 m/s as in [22] at a reference height of 180 m is
used in the inlet boundary. The roughness length value of 2 m is chosen
for the logarithmic profile so that both the adopted wind profile and the
exponential profile with an exponent of 0.3 as defined in [21] are in good
agreement.

7.2.3 Validation of the CFD results

The results of the CDF simulation are compared with the previous litera-
ture [22]. A quantitative comparison is compiled with the force and mo-
ment coefficients defined in Eq. 7.3 and the pressure coefficient at 2/3H. A
qualitative comparison of the pressure and velocity field is also presented
here.

Pressure coefficients at reference height

The pressure coefficient is the normalized pressure with respect to the free
stream velocity as in Eq. 5.4. The time average of pressure coefficients at
the reference height of 2/3 H is visualized for comparison in Figure 7.2.
The RMS value of fluctuation of the coefficient of pressure is also visualized
in the same figure. The Cp plots obtained from the current simulation are
compared with numerous previous studies. These include both numerical
and experimental studies. The figure compiles data from four wind tunnel
experiments and three numerical simulations and compares it with the
present study. The Cp plots obtained are in good agreement with the Cp

distribution from earlier studies. An identical distribution is seen in the
front and back faces. However, the present simulation does not accurately
capture a jump seen in the Cp distribution at the front corner. Similar
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Figure 7.2 : Comparison with previous studies Mean (left) and
RMS (right) of coefficient of pressure at height of 2/3H

statements can be made regarding the RMS of pressure fluctuations as
well. Adequate agreement of cp values can be seen at the back face of
the building. However, the RMS value at the front face of the building
is under-predicted in the current simulation. It is evident that the RMS
value is dependent on the turbulent characteristics of the incoming wind.
Moreover, since we normalized the pressure with the free stream velocity
for the Cp computation, the fluctuations on the front face were not well
captured in our simulation.

Validation of force and moment coefficients

The force and moment coefficients are normalized base shear and base
moment values as in Eq. 3.10. The time history plots of the aerodynamic
force and moment coefficients for the present study are compared with pre-
vious literature [22] for validation. The comparison is shown in Figure 7.3.
It may be observed that the two plots agree well. To quantify, we present the
time average and RMS in time of these coefficients in Table 7.2. The mean
values of the force and moment coefficients exhibit a lower error compared
to [22]. Nevertheless, the RMS values of the force and moment coefficients
are higher in the present study, which could be due to the higher Reynolds
number compared to [22], making the flow more turbulent, hence more
variation in the QoIs. Overall the correlation observed between the two
studies is commendable.
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Figure 7.3 : Comparison with previous studies Time histories
of coefficient of forces and moments reported in [22] (top), and the
ones obtained in the present study (bottom).

Table 7.2 : Validation of force and moment coefficients -
comparison with previous studies.

References CFX CσFX CFY CσFY

Present work 1.648 0.102 -0.015 0.238

Braun [22] 1.660 0.076 0.008 0.106

Obasaju [119] 1.490 0.060 -0.039 0.092

Huang et al. [120] 1.830 0.060 0.006 0.134

- CMX CσMX CMY CσMY

Present work 0.005 0.083 0.634 0.039

Braun [22] 0.004 0.048 0.570 0.038

Obasaju [119] 0.000 0.043 0.640 0.030
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7.2.4 Results of validation studies for CAARC building B

The CAARC benchmark building B is simulated in Kratos Multiphysics
and results are compared with previous studies [22]. A valid agreement is
found between the two studies with respect to the coefficient of pressure,
force coefficients, moment coefficients, and pressure fields. The time mean
and time RMS of the quantities are used for the validation as a QoI, and a
linear distance between them is used as a validation metric. The validation
exercise ensures that the deterministic simulation used later for UQ is of
superior quality. We present the UQ task on the same benchmark building
in Chapter 8.

To improve the validation results, it is always possible to spend more el-
ements on the mesh, use larger domains, smaller time steps, etc. Also, many
local features may not be accurately modeled when validating against real
measurements. The computational resources available are limited in prac-
tical cases. For SWE, it is the choice of the modeler to spend this resource
on uncertainty quantification or making finer meshes and modeling de-
tailed geometric features, etc. This particular choice is referred to as the
quandary of resource allocation in this thesis. A detailed deterministic
simulation, modeling all details, is not always possible or practical. One
detailed deterministic model may not be able to cover all the design scenar-
ios. In many cases, it is advantageous to do an uncertainty quantification
with the available resources than to perfect the deterministic model to
model local features or do simulations with the finest models. However, in
the end, the quandary of resource allocation is up to the decision maker,
designer, engineer, or researcher.
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"Structural engineering is the
art of molding materials we
don’t wholly understand into
shapes we cannot fully
analyze, so as to withstand
forces we can’t really assess,
in such a way that the
community at large has no
reason to suspect the extent
of our ignorance."

Dr. A. R. Dykes C
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8
UQ OF TALL BUILDINGS SUBJECTED TO

UNCERTAIN WIND LOADS

The design of a tall building requires analysis of the forces that are experi-
enced by the same during the lifetime of the structure. There can be many
sources of uncertainty in such a design scenario. The uncertainties can be
from estimating the load components (such as the weight of the structure,
or the change in live loads), environmental loads (wind, earthquake, snow
loads, etc.), material properties, and geometry (type of material, compo-
sition, manufacturing process, and quality control in construction). The
various uncertainties from both wind and structural parameters, as dis-
cussed in Chapter 1 and 3, are quantified for the validated benchmark
problem in Chapter 7 here using high fidelity CFD simulations. Two exam-
ples are presented, one with a time-independent inlet and one considering
fluctuating components of the wind.
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8 UQ of tall buildings subjected to uncertain wind loads

8.1 Wind effects on structure - Fluid modeling

The building considered for this study is the same as from Chapter 7, the
CAARC benchmark building. To study the effect of uncertainties, the de-
terministic simulation is verified and validated first as in Chapter 7. To
analyze the wind effect on this structure, a numerical wind tunnel is used.
The high Reynolds number of the wind flow problem in the current simula-
tion makes it highly turbulent. Since natural wind is being assessed in this
work, the incompressible Navier-Stokes PDE is used for the physical mod-
eling (Eq. 5.5 and Eq. 5.5). Appropriate initial and boundary conditions are
prescribed. The boundary conditions are depicted in Chapter 7.1.

The wind flow around the building is simulated using CFD analysis
with the open-source Kratos Multiphysics solver. This involves a FEM
solution for flow problems based upon a VMS formulation from [118].
The fluid domain is discretized with tetrahedral elements, and a BDF2
time integration scheme is used. The computational domain, as well as
the boundary conditions, are described in Figure 7.1. The chosen size of
the domain is similar to previous studies [12]. The blockage ratio is less
than 0.8 % of the domain. The velocity and pressure snapshot at T = 300
seconds is shown for the deterministic simulation at the mean values of
the uncertain parameters in Figure 8.1 and 8.2.

Figure 8.1 : Pressure along the vertical cut at time, t = 300
seconds.

8.2 Details of Structural modeling and analysis

The structural model of the CAARC B is modeled as a prismatic cantilever
beam supported at the bottom, with continuous mass and stiffness. It is im-
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Figure 8.2 : Velocity along the vertical cut at time, t = 300
seconds.

possible to capture the modes prescribed in the benchmark with modeling
as a full cross-section. For the study, a custom parametrizable Timoshenko
beam with FEM formulation is co-developed and used as in [121]. This
model is able to capture the modes prescribed by the benchmark study.
The 3-dimensional (3D) building is modeled by a simplified structural
model considering both bending and shear deformations. The 3D Timo-
shenko beam theory is hence used to capture the equivalent structural sys-
tem. [122] presented a simplified methodology for the analysis of framed
structure shear wall interaction problem. It can be seen that the Timo-
shenko beam model can effectively model various structural systems used
for tall buildings in practice. Hence this structural choice is justified.

Timoshenko beam model

The Timoshenko beam theory is used to model the simplified structural
system to analyze CAARC building B. A 3D prismatic, homogeneous, and
isotropic beam element is used for the element formulation. The element
considers both shear deformation and rotational inertia. Since the shear
deformations are taken into account, the planes that were initially perpen-
dicular to the neutral axis are no longer perpendicular to it after deforma-
tion.

E I u ′′(b)y (x ) =M (x ) =−M1

�

1−
x

L

�

+M2

�

x

L

�

(8.1)
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8 UQ of tall buildings subjected to uncertain wind loads

G (A/α)u ′(s)y (x ) = S (x ) =−
1

L

�

M1+M2

�

(8.2)

where A/α denotes the effective area in shear. The bending and shear
deformations add up to the total deformation.

u y (x , t ) = u(b)y (x , t ) +u(s)y (x , t ) (8.3)

where, u(b)y is the bending component and u(s)y is the shear component.
A consistent mass formulation is used here. Both the stiffness and mass
matrix, therefore, depend on the relative importance of the shear defor-
mations to the contribution from bending. This ratio is

Φ=
12E I

G (A/α)L 2
e

(8.4)

Where E and G are the moduli of elasticity and shear of the material, I is
the moment of inertia of the cross-section, A/α is the effective shear area,
and Le is the length of the discrete beam element. In 3D two relative shear
importance factors are defined corresponding to each bending direction.

For the dynamic problem at hand, the governing Equation of Motion
(EOM) is

M ü y (t ) +C u̇ y (t ) +K u y (t ) = F (t ) (8.5)

where, M , C and K are the global mass, damping and stiffness matrices
and F is the external force. The external force is the wind time history
in our case. This force corresponds to each of the Degree of Freedom
(DoF), resulting from the computational wind engineering model. u y (t )
is the displacement, u̇ y (t ) the velocity and ü y (t ) the acceleration vector,
respectively.

Implementation details of the structural model

The Timoshenko beam model implemented in the present work is ca-
pable of carrying out a 3D analysis of tall buildings subjected to wind
forces. A linear geometric and material model is used for the system, and a
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Figure 8.3 : Simplified structural model adopted for the current
study.

Generalized-alpha time integration scheme is used for the time integration.
The sway modes and torsional modes are uncoupled in the analysis. The
torsional stiffness is calculated from the polar inertia of the equivalent
cross-section. A Rayleigh damping model is assumed for computing the
damping. The numerical structural models of the arrangement are set up
such that the eigenfrequencies can be matched to the prescribed values.

8.3 Coupling of fluid and structure
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Figure 8.4 : Transfer of wind forces from CFD to the structure.

A coupled fluid-structure interaction needs to be evaluated for the
analysis of wind effects on the structure. In the current study, a one-way
coupled analysis is carried out. The fluid flow around the structure results
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in pressure distribution on the surface and, hence, in nodal forces in the
structure. These fluid forces are assigned to the structural model described
in Figure 8.4. A one-way coupling is adopted; hence the deformations of
the structure are not transferred back to the CFD model.

This assumption of fluid forces having a considerable effect on struc-
tural deformations compared to the impact of the deformations on the
pressure field of the fluid is justified for tall buildings.

8.4 Numerical study 5A

8.4.1 Source of uncertainty

As discussed in Section 3.2, there are various uncertainties present in the
wind effects on the structure. The Mean and RMS of the input wind ve-
locity are considered uncertain. The roughness length, which depicts the
roughness of terrain in the location, is also considered uncertain in the
current study. These parameters determine the inlet boundary condition
of the wind simulation. From the structure side, the natural frequencies
and the damping of the structure are considered uncertain. The various
uncertainties are tabulated in Table 8.1. The mean and standard deviation
of the inputs are shown in the same table.

Table 8.1 : Uncertain input parameters and their distributions.

input parameters Mean standard deviation distribution type

Mean wind velocity 40 4 normal

RMS velocity 4 0.4 normal

Roughness length 0.3 0.03 normal

1st mode eigen frequency 0.23 0.023 truncated normal

damping % 1 0.1 truncated normal

8.4.2 Propagation methods

A polynomial chaos method based on a regression approach is adopted
for the current study. The theory is detailed in Chapter 2. The details of
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the methods and steps for PC surrogate construction are briefly described
here.

Once the deterministic model is prepared, verified, and validated, as
elaborated in Section 7.2, the uncertain input parameters are quantified.
This step involves the probabilistic characterization of the inputs. The PDF
of the input uncertain parameters is identified through experiments. In
cases where experimental data is not available, expertise or experience
may be the basis for such a selection. In the PC method, the input uncer-
tain parameters with a given PDF are represented by a PC expansion. Here
a Hermite polynomial is chosen. The output PC parameters are also repre-
sented by a PC expansion. A Hermite polynomial is also used for the output
parameters here. The order of the PC expansion is chosen, and the work-
flow is determined as in Figure 2.3. The PC coefficient d of the equation
is determined through a regression approach, as shown in Eq. 2.22. The
deterministic model is evaluated at each of the collocation points to get
the output quantities of interest. In regression, at least the number of collo-
cation points should be more than the unknown PC coefficients. When the
number of collocation points is more, as oversampling, a common strategy
adopted is to use least square regression. In this thesis, an oversampling
of 3 is used for PC expansions. The post-processing to obtain the global
sensitivity analysis, mean, standard deviation, etc., can be obtained from
this without much additional effort. The details of the adopted workflow
are shown in Figure 2.3.

8.4.3 Results and discussions

To start with, we first model the wind loads on the structure by a bluff
body formulation from the Cd value of the building. Here the wind force is
obtained from the formulae Eq. 5.4. The uncertainties of the mean wind
profile and structure, as in Table 8.1, are used for this study.

Quantities of Interest

The base moment and base forces are the principal quantities of interest
to the limit state of strength. The displacement and acceleration at the top
floor are also of great interest to the designer as they govern the limit state
of serviceability. Another QoI is the Cp distribution at 2/3 of the total height
and the building’s base moment and force. Since all these are time series,
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it is essential to choose a quantity best representative of its behavior for
decision making. One QoI is the mean of the time series. The second is the
maximum of the time series. Another QoI is the expected maximum of the
time series, which is the 90 % quantile of the distribution of the extrema
for the time series as explained in Section 3.4.1

Convergence of standard MC

An extensive MC analysis is performed to obtain the stochastic response
of the structure. The uncertainties tabulated in Table 8.1 are propagated
through the structural model, and the various QoIs listed above are ob-
served. The QoI analyzed are the drag force and the bending moment,
as well as the top floor acceleration and the top floor displacement. The
mean, maxima, and the maxima estimated of these quantities are observed
through the MC analysis. The PDF of these quantities is plotted in Figure 8.5
with a varying number of MC samples. The convergence is checked for the
drag force. The other quantities are observed. It can be seen that all the
QoI are approaching their convergence values as the number of samples
is increased.

Convergence of PC expansion

The stochastic response of the QoI is observed via PC through regression
for the given problem. The PC order is increased from 2, 3, and 4. The PDFs
of each QoI are plotted in Figure 8.6. The output uncertain parameters have
a PC order of 2,3, and 4, and the MC 1100 simulations are also compared in
this picture. It can be seen that the PC converges faster, and the stochastic
response is captured by the PC surrogate pretty accurately.

The moments of the PC order and MC are compared in Table 8.2. It can
be seen that the moments converge for the higher-order PC, and they match
with the MC values. This shows the effectiveness of PC expansion in solving
stochastic structural analysis problems. It can be seen that PC 2 is enough
to predict the mean and standard deviation of all the quantities pretty
accurately. Hence for the rest of this study, a PC 2 is used. The PC expansion
can diverge for problems that lack smoothness. However, such behavior
is not observed here. The PC 2, PC 3, and PC 4 are in close agreement
with each other. They also match with the MC results. This shows the
convergence of PC expansion results. The probability distributions shown
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Figure 8.5 : PDF of responses evaluated with varying number
of samples with MC.
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Figure 8.6 : PDF of responses for PC 2, 3 and 4 compared
against MC results.
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8.5 Response of uncertain structure under uncertain mean wind

in Figure 8.6 indicate that the PC is an efficient way to determine the
stochastic response of buildings under the stochastic wind.

Computational costs

The number of model evaluations of the PC and MC is compared here. It
can be seen that the PC expansion is an efficient way to determine the
stochastic response. However, it suffers from the curse of dimensionality.
It grows exponentially when the number of input parameters grows, and it
becomes prohibitive. It can be seen that PC is an efficient way where the
number of input parameters is less. The computational gain offered by the
PC is such that the post-process of the PC expansion can be done cheaply.

Table 8.2 : Responses PC vs MC for base moments (N m) and
drag forces (N )

My - Mean My - Max My - Max est

- Mean STD Mean STD Mean STD

PC 2 4.76e+08 1.25e+08 5.13e+08 1.35e+08 4.90e+08 1.29e+08

PC 3 4.76e+08 1.25e+08 5.10e+08 1.35e+08 4.90e+08 1.29e+08

PC 4 4.77e+08 1.25e+08 5.12e+08 1.34e+08 4.29e+08 1.96e+08

MC 4.78e+08 1.25e+08 5.11e+08 1.34e+08 4.91e+08 1.28e+08

Fx - Mean Fx - Max Fx - Max est

- Mean STD Mean STD Mean STD

PC 2 4.52e+06 1.19e+06 4.80e+06 1.26e+06 4.63e+06 1.21e+06

PC 3 4.52e+06 1.19e+06 4.78e+06 1.26e+06 4.62e+06 1.21e+06

PC 4 4.53e+06 1.18e+06 4.79e+06 1.25e+06 4.05e+06 1.85e+06

MC 4.54e+06 1.19e+06 4.79e+06 1.25e+06 4.64e+06 1.21e+06

8.5 Response of uncertain structure under uncertain
mean wind

Here in this section, a CFD is used with PC 2 for evaluating the stochastic
response of the building under wind loads. The details of the CFD are
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8 UQ of tall buildings subjected to uncertain wind loads

Table 8.3 : Responses PC vs MC for top displacement (m) and
top accelerations (m/s 2)

dx - Mean dx - Max dx - Max est

MC No. Mean STD Mean STD Mean STD

PC 2 1.07e-01 3.66e-02 1.16e-01 4.15e-02 1.11e-01 3.87e-02

PC 3 1.07e-01 3.72e-02 1.16e-01 4.19e-02 1.11e-01 3.94e-02

PC 4 1.08e-01 3.67e-02 1.16e-01 4.12e-02 9.65e-02 4.94e-02

MC 1.07e-01 3.65e-02 1.16e-01 4.07e-02 1.11e-01 3.84e-02

ax - Mean ax - Max ax - Max est

MC No. Mean STD Mean STD Mean STD

PC 2 2.36e-03 1.36e-03 1.80e-02 8.17e-03 7.15e-03 3.89e-03

PC 3 2.37e-03 1.43e-03 1.74e-02 8.11e-03 7.09e-03 3.97e-03

PC 4 2.38e-03 1.42e-03 1.77e-02 8.16e-03 6.17e-03 4.20e-03

MC 2.33e-03 1.36e-03 1.70e-02 7.71e-03 6.95e-03 3.80e-03

shown in the Section 8.1. The PC 3 is also plotted for reference in Figure 8.7.
It can be seen that PC 2 and PC 3 are in close agreement with each other.
The mean value and the deterministic value corresponding to the mean of
each of the QoI are also plotted in the figure. It can be seen that the mean
of the PDF is always more than the deterministic value. This indicates
the need for a stochastic analysis of the problem at hand. To do a full MC
for the CFD is not possible for the industry due to the prohibitive cost.
Hence PC solution like the one proposed above may be employed. It is still
manageable to do 40 CFD simulations to obtain a pretty accurate estimate
of the QoI as shown here. The top floor acceleration as QoI dealt in detail in
numerical study 5B, and hence, we do not focus on top floor accelerations
here. While comparing the stochastic response of the equivalent wind load
and CFD, it may be observed that the equivalent wind load estimates are
conservative. They are also unable to capture the other wind effects like
the vibration across the direction in the flow.
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Figure 8.7 : PDF of responses evaluated with PC 2 and PC 3
for wind simulated in CFD.
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Figure 8.8 : Cp distribution as QoI along the reference height
(top); across the flow(middle); and along the flow (bottom).

8.5.1 Global sensitivity analysis

A global sensitivity analysis is done in order to find out how uncertainties in
the QoI are affected by the input parameters. Unlike local sensitivity analy-
sis, global sensitivity measures are incorporated over the entire range of the
input parameters. In the global sensitivity analysis, uncertainties due to
the combination of the parameters are also considered. Global sensitivity
analysis methods can be classified into two groups as (a) regression-based
methods and (b) variance-based methods. Sobol’ indices are a variance-
based method, and they provide accurate information of sensitivity in
most of the models [52]. The Sobol’ indices based on polynomial chaos
are determined from the PC expansion with negligible additional compu-
tational cost as shown in Eq. 2.28. The total sensitivity indices of all the
parameters are stabilized in Table 8.4. dx and ax refer to the displacement
and acceleration at the top of the building. It can be seen that for the forces
and moments, the Sobol’ indices are high for the wind parameters com-
pared to the structural parameters. It is common knowledge that the wind
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Figure 8.9 : Sobol’indices for Cp distribution at three cross
sections.

parameter has more uncertainty compared to that of the structural pa-
rameters. When this is combined with the fact that Sobol’ sensitivities are
more for the wind parameters, it is important to quantify the uncertainties
of the incoming wind during the design of tall buildings.

8.5.2 Pressure coefficient

The mean and standard deviation of the Cp distribution is plotted in Fig-
ure 8.8. This covers the deterministic simulation as well. The sensitivity
indices of the QoI are also plotted in the figure. This shows that the rough-
ness parameter has an increased contribution in the front face. However,
the effect of this parameter on the rear and side face is negligible.
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8 UQ of tall buildings subjected to uncertain wind loads

Table 8.4 : Total Sobol’ indices for wind effects on CAARC
building responses.

Uncertain parameters Fx My dx ax

Mean velocity 0.808 0.813 0.875 0.941

RMS velocity 0.607 0.609 0.736 0.871

Roughness length 0.143 0.160 0.114 0.114

Frequency 0.0441 0.0446 0.049 0.452

Damping 0.264 0.259 0.177 0.197

Note: dx and ax refer to the displacement and acceleration at the
top of the building.

8.6 Numerical study 5B

Here, focus is given to the numerical study with wind uncertainties of both
the mean parameters as well as the fluctuations considered. Since this is
a high-dimensional problem, the standard MC method is used for uncer-
tainty quantification. The quantities of interest are similar to the previous
study. To reduce the redundancy with Numerical study 5A focus is not on
the base forces and moments. Instead, the focus is on the top-floor acceler-
ation for the serviceability of the structure. This example demonstrates the
CVaR as a risk measure for acceleration at the top for performance-based
design selection.

8.6.1 Response of uncertain structure under natural wind
condition

It is common knowledge that wind is intrinsically stochastic. Here a natu-
ral wind scenario is considered, where the uncertainties arising from the
mean wind parameters, as well as that of the fluctuating component, are
considered. The uncertainties of the fluctuating part are modeled with the
Mann model as elaborated in Section 3.2. The uncertainties considered
in this study are tabulated in Table 8.5. The uncertainties are considered
from the code book [63]. Since the Mann model has a large number of
uncertain variables, it is not possible to use PC as in Numerical example
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8.6 Numerical study 5B

5A. The Reynolds number is of the order of 108. The standards MC method
is used as elaborated in Section 2.3 for uncertainty quantification. The
convergence of the MC algorithm is evaluated by assessing the statistical
error. The QoI is the time-averaged drag force, and other quantities like the
pressure, top displacement, top acceleration, etc., are also computed. The
conditional value of risk of the acceleration is also computed. To demon-

Table 8.5 : Details of two designs demonstrating the selection
based on CVaR of acceleration

Design option 1st mode frequency µ+3σ CVaR

Design 1 0.18 0.09306 0.07816

Design 2 0.25 0.09570 0.07608

strate the engineering application of the CVaR as a performance measure,
two designs of the structure are compared. The structural parameters of
both designs are tabulated in Table 8.5. The same wind scenarios are ap-
plied and computed against these two designs, and the structural QoI is
evaluated.

Results and discussions

It is known that the accelerations at the top of a tall building may make
the occupants uncomfortable due to their high values. Hence the design
codes [1] try to have some specific criteria on this performance matrix.
The various criteria are generally RMS or standard deviation [123]. The
RMS for both designs are evaluated and shown in the figure in relation
to the design criteria. It may be observed that both these designs follow
the regulatory design criteria. Now as a designer, if one needs to choose
between these two designs, we propose to use CVaR as a risk measure to
compare the performance of the two designs.

CVaR as a performance measure for servicibility

We propose to use CVaR as a performance measure for evaluating the
serviceability of occupant comfort in a tall building. It is safe to have the
acceleration go higher than the prescribed values for a structure as long
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Figure 8.10 : Performance comparison of two designs: based
on the code criteria (top); PDF and CVaR of top floor acceleration
in design 1 (left bottom); in design 2 (right bottom).

as the safety criteria are met. However, the occupants do not feel safe
in those cases. By choosing the CVaR as a performance measure, we are
choosing a design that, in the worst case, tries to reduce the expectation of
those exceeded values rather than simply reducing the amount of those
exceedance as in VaR.

Acceleration limits in code books are a function of the frequency of the
vibration. The widely used upper limits for residential and office buildings
are shown in Figure 8.10. We also plot the two designs we used in this study
in the plot. Assuming we have an office building, both designs are under
acceptable limits. Peak acceleration limits are used in these reference plots.
The peak acceleration is computed as the mean and 3 times the standard
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8.7 Concluding remarks on the UQ application for wind effects on structures

deviation here. We demonstrate this in Table 8.5 and Figure 8.10. It can be
seen that even though both design 1 and design 2 are similarly performing,
as a designer, it is useful to use Design 1 as a favorable choice since it has a
lower CvaR of the accelerations.

8.7 Concluding remarks on the UQ application for wind
effects on structures

We demonstrated the use of a PC for a low-dimensional simplified wind
problem. However, when the fluctuations of the wind need to be consid-
ered, standard MC is used since the dimensions are larger. Various QoIs
are quantified, and the use of UQ for wind engineering problems is demon-
strated. We also propose to use CVaR as a performance measure for the
serviceability of designs, and the CVaR-based design selection of tall build-
ings is demonstrated. A similar CFD setup and MC and uncertainties of
the mean and fluctuations are used for the OUU example in Chapter 9.
The uncertainties in the wind direction are also considered there.
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" Uncertainty is an
uncomfortable position. But
certainty is an absurd one. "

Voltaire
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9
OPTIMIZATION OF TALL BUILDING UNDER

UNCERTAIN WIND

The wind load on a structure can be reduced by optimizing the shape of
the building. However, this optimization procedure becomes challenging
when some input parameters are uncertain. Here in this chapter, the re-
sults of the OUU procedure presented in Chapter 4 for a wind engineering
application at a high Reynolds number flow are presented. The uncer-
tainties of the incoming wind at the specific location of consideration are
considered. The location-specific design of the building with uncertainties
specific to the location results in a more suitable design with reduced loads.
This, in turn, will result in a design with reduced cost of construction and
hence reduced carbon footprint. The two OUU problems, mean optimiza-
tion and risk-averse CVaR optimization, are presented in this chapter for
two design scenarios, one with only the twist as design parameters and
the second with a twist and tapering as design parameters. The results
show the superiority in the performance of CVaR optimization against
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Figure 9.1 : Adopted workflow for shape optimization under
uncertainty for tall buildings.

mean value optimization. The contents of this chapter are similar to the
publication [67].

9.1 Optimization under uncertainty workflow

The developed stochastic optimization workflow based on finite differ-
ence sensitivities and adaptive sampling is detailed here. The optimization
workflow tries to minimize the observables of the selected QoI by searching
for the best combination of design parameters while taking into account
the uncertainties present in the incoming wind.

A flow chart of the optimization workflow is presented in Figure 9.1. The
workflow begins by defining the objective function J , design parameters
Z , and uncertain variables ξ. The objective function J is based on the base
moment MZ and is defined to be either the expected value J (Z ) = E [MZ ]
( Problem 1) or the conditional value at risk at confidence level β = 0.90,
J (Z) =CVaR0.90(MZ ) (Problem 2) as defined earlier. The objective function
J (Z) depends on the geometry of the building (Figure 9.2), which in turn
depends on the design parameters - Z .

Whenever the CAD building geometry or incidence angle (θ ) is al-
tered, the background CFD mesh is remeshed to capture the new geometry
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9.2 Details of building designs and CFD

and/or the new wind incidence angle. In cases where the incidence angle
(θ ) of the wind is also an uncertain input parameter, each uncertainty quan-
tification sample within an optimization iteration requires re-meshing of
the domain.

Samples of the objective function, Ji (Zk ), are obtained by simulating the
wind flow around the building in Kratos multiphysics [124]. These 3D CFD
simulations are computationally expensive. Hence, an adaptive sampling
strategy (i.e., Algorithm 3) is implemented to minimize the number of
samples required as much as possible.

A finite-difference approach estimates the gradients ∇Ji (Zk ). As the
number of design parameters is low, the extra effort required to estimate
these gradients is manageable. Once ∇Ji (Zk ) is computed, it is used to
update the building geometry via the stochastic gradient descent update
rule(Eq. 4.8). Multiple iterations are required for the optimization algo-
rithm to converge to the final design. A relative tolerance of 0.01 is chosen
to evaluate the convergence of the algorithm.

9.2 Details of building designs and CFD

Since they are complex, detailed and accurate modeling and analysis of
tall buildings are required for wind loads. The geometric features of the
building greatly influence the flow around it. For this reason, high-fidelity
computational fluid dynamics (CFD) are typically required to predict the
effects of wind flow around tall buildings accurately. The OUU example
is implemented in Kratos Multiphysics [124, 125] and the MMG domain
meshing tool [126].

9.2.1 Modeling and simulating complex geometries

Wind flow around a tall building is modeled by the incompressible Navier-
Stokes equations and solved in Kratos Multiphysics as elaborated in Sec-
tion 8.1. The specific LES formulation used is the variational multiscale
(VMS) formulation described in [118].

The corresponding boundary conditions and domain D are the same
as that we used in the validation study in Section 7.2. One significant
difference from the benchmark case is the use of a fluctuating inlet in
the study. This additional complexity is taken care of by a time-varying
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Figure 9.2 : Parameterized geometry of the tall building.

boundary condition at the inlet from the wind snapshots generated as
elaborated in Section 3.2. The length scale is the same as the height of the
building. The flow domain is chosen in such a way that the inflow region
develops the flow from the inlet, and a sufficiently large outflow is available
to capture the development and dissipation of vortices. A blockage ratio
of approximately 0.8% is maintained in the current domain.

The design parameters in the optimization workflow are incorporated
into the geometry of the tall building through the parameterization of the
tall building. The base geometry of the tall building is an elliptical cross-
section with a dome at the top. The geometry is inspired by real-world
tall buildings as elaborated in Section 1.2. The two design parameters
considered for the tower are the tapering and twisting of the elliptical
cross-section along the height. The building is constructed based on these
two parameters. In cases where the angle of the incident wind is also an
uncertain parameter, the tall building is rotated to match this parameter.

The details of the computational mesh are shown in Figure 9.3. The
domain is meshed with tetrahedral elements. More elements are present
in the inner refinement zones close to the building to capture the flow
characteristics better. The total number of elements is around 7×105. The
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9.2 Details of building designs and CFD

Table 9.1 : Fluid and flow domain details.

Parameter Value Unit

Density 1.225 k g /m 3

Viscosity 1.507×10−5 m 2/s

Dynamic viscosity (ν) 1.846×10−5 N s/m 2

Reynolds number (R e ) 2.9×107

Height of the building (H ) 180 m

Time window [50, 200] s

inlet boundary condition is time-varying and is a superposition of the
mean profile u and the fluctuating component u ′ described in Section 3.2.
Since the incidence angle of the wind is also considered uncertain in this
study, the building is rotated inside the domain for each wind direction θ .
The domain is then locally remeshed, ensuring the inflow is at the intended
angle θ . A remeshing is also needed when the geometry is updated at the
beginning of each optimization step. The air and flow domain parameter
values used in the simulations are tabulated in 9.1.

The high Reynolds number of the problem makes it very turbulent. The
fluid domain is modeled with a fractional step element with a second-order
backward differentiation formula (BDF) for time integration. The time step
used for the simulation is chosen such that the Courant-Friedrichs-Lewy
(CFL) number remains less than 1 in the smallest element near the building
domain, where the largest velocity is also expected.

As the geometry changes at each optimization iteration, the meshing
process is automated. A mesh moving strategy similar to the one used
in Section 5.1.3 may not be optimal here since the geometry updates are
large enough to cause distortion of fluid elements and produce meaning-
less results. Hence, a re-meshing approach is explored here to generate
body-fitted fluid meshes. MMG remesher [126] is used for this purpose.
The geometry is remeshed with multiple refinement zones as shown in
Figure 9.3. However, the remeshing is only done in the inner zones, preserv-
ing the overall mesh structure across simulations. The remeshing is also
required for each of the uncertain wind direction θ samples. The whole
fluid domain is initialized with a zero velocity initial condition.
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Figure 9.3 : Details of the adopted mesh for the base simulation
used for refinement to result in each direction samples in each
optimization step.

The total time of the simulation is 200 seconds. This is such that to
capture 10-15 cycles of vortex shedding. Even though a 10-minute (600s)
simulation is an industry practice, this reduced time window is found to
be enough to capture interesting phenomena (vortex shedding) accurately.
The inlet velocity is ramped up gradually in time by rescaling it by t /10
between t = 0 and t = 10. The results and flow field to estimate the QoI
are used only for t ∈ [50,200] to filter out the transient effects of the flow
development.

9.2.2 Details of the QoI

There are two main criteria that need to be considered in the design of tall
buildings: the strength criteria and the serviceability criteria. The strength
criteria deal with the strength of the structure and guarantee that the build-
ing will not fail under the maximum design load. The serviceability criteria
deals with the comfort of the occupants in the building.

The quantity of interest considered here is the norm of the base mo-
ment, which associates with the strength criteria as elaborated in Sec-
tion 7.2 and in Equation 3.10. This quantity is of specific interest to us
because it decides the amount and type of foundation and structural sys-
tem required for the building and amounts to a significant fraction of the
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Table 9.2 : Details of the random variables in the velocity field
model, u = u +u ′.

Random variable Distribution Parameters

Friction velocity (u∗) Weibull See 3.2.2.

Wind direction (θ ) von Mises See 3.2.2.

Roughness length (z0) Uniform zL = 0.01, zU = 0.1.

Random seed for turbulence fluctuations (r ) Uniform rL = 0, rU = 1.

total cost. Hence, minimizing this quantity could lead to a direct cost saving
in the project.

9.3 Details of the uncertain inputs

The uncertainties are associated with the incoming wind. All the uncertain-
ties are considered in this demonstrator OUU example. The uncertainties
of both the mean profile u and the fluctuations u ′ are modeled. Also, the
uncertainties arising from the incidence angle, as elaborated in Section 3.2
are also accounted for. The various uncertainties considered in the OUU
examples are tabulated in Table 9.2.

9.4 Results of Numerical study

The optimization algorithm developed and presented in Section 4.4 is
applied in two numerical investigations here. Numerical study 6A employs
only one design parameter, the angle of twist of the building Z =ψ. Nu-
merical study 6B employs two design parameters, the twist and minor axis
length of the top cross-section of the building geometry Z = (ψ, a ). The
top area is kept constant and is added as a constraint πa b /4= c , for some
fixed constant c > 0. This is closer to reality since the client would not
be happy to reduce the usable floor area of the building. The multi-todo
challenge introduced in Chapter 3 is addressed by using the task scheduler
Compass [127–129]. The computations were run on the Karolina super-
computer of the IT4Innovations cluster located in Ostrava, Czech Republic.
The entire optimization under uncertainty run is expensive. To present
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9 Optimization of tall building under uncertain wind

Table 9.3 : Numerical study 6A and 6B - details of initial
building design.

Study 6A Study 6B

Angle of twist (ψ0) 160◦ 295◦

Major diameter at top (a0) 35m 30m

Minor diameter at top (b0) 20m 30m

a scale of the computational cost, the CVaR optimization required more
than 4.36×105 CPU hours in the cluster. This expense is justified for prac-
tical design scenarios since the tall buildings are one-time builds and the
savings in material and repair expenditures from the superior performance
of the OUU final design.

9.4.1 Numerical study 6A

The first numerical study is a single parameter optimization under uncer-
tainty. The uncertain parameters elaborated in Table 9.2 are considered.
The only design parameter in this example is the twist of the buildingZ =ψ.
The major and minor diameters, a and b , are fixed in all the optimization
steps. For this configuration, the optimization problems Problem 1, Prob-
lem 2, and Problem 3 are solved. The results are presented in Figure 9.4.
As explained in Section 4.3 Problem 3 is a deterministic optimization with
ξ= ξPWD, which corresponds to the predominant wind direction θ = θPWD

with all other wind field parameters fixed at their mean values, u∗ = E [u∗]
and z0 = E [z0], and for a specified random seed r = rPWD.

ξPWD = (E [u∗],θPWD, E [z0], rPWD). (9.1)

Here, as in Table 9.2, θPWD = 260◦, E [z0] = 0.05, and E [u∗] = 10m/s. The
random seed rPWD was specified arbitrarily.

Table 9.4 and Figure 9.4 present the optimization logs for the three opti-
mization problems. It can be observed that the final geometry of the PWD
design differs significantly from the mean and CVaR designs. The PWD
optimization was essentially a deterministic one and did not consider the
uncertain wind (direction, magnitude, and fluctuations). This optimization
problem, hence, misses much important information about the physical
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Figure 9.4 : Numerical study 6A- optimization records for
the risk-neutral (Problem 1), risk-averse (Problem 2), and PWD
(Problem 3) problems.

environment where the build resides. Problem 1 and Problem 2 do take
these uncertainties into consideration and return a more robust design
against variability in input parameters. In Table 9.4, the respective objec-
tive function for optimization are presented, and it can be seen that each of
the optimizations has minimized respective objective functions. In the last
column, the objective function for the deterministic problem is presented
for comparison for the other two problems Problem 1 and Problem 2.
For one specific wind direction (PWD), the final designs of the stochastic
optimization problem perform worse compared to Problem 3. However, it
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9 Optimization of tall building under uncertain wind

Table 9.4 : Numerical study 6A - details of the final building
designs.

Optimization type JFinal 1− JFinal
JInitial

Twist (ψ) JFinal,ξ=ξPWD

Risk-neutral Problem 1 34.09×106Nm 13.6% 214.08◦ 37.36×106Nm

Risk-averse Problem 2 56.40×106Nm 16.0% 216.97◦ 58.49×106Nm

PWD Problem 3 19.79×106Nm 23.4% 231.24◦ 19.79×106Nm

is interesting to note that when uncertainties are considered, the PWD is
not sufficient.

The time series and PDFs of the base moments for each optimization
problem are shown in Figure 9.5. For both the stochastic optimization
problems, the time series for mean and CVaR solutions have shifted to-
wards a lower base moment distribution. To check the performance of
the final PWD design under the uncertain wind, the time series and PDF
are plotted similarly. The mean and CVaR are evaluated and shown in the
figure. It may be observed that these stochastic objective functions have
not improved much from the initial design for the case of the PWD design.
This demonstrates the need for stochastic design for tall buildings under
the uncertain wind.

The final building designs are collected together for further comparison
in Figure 9.7. Figure 9.6 shows the shape evolution of all three problems
as observed from the top. Both the stochastic optimization Problem 1
and Problem 2 produce practically the same building design. This is po-
tentially due to the fact that there is only one design parameter. This low-
dimensional nature of the design space forces both the optimization to
proceed in the same direction.

Hence, a two-parameter optimization under an uncertainty problem
is explored in Numerical study 6B, where the final designs of mean and
CVaR optimization significantly differ.

9.4.2 Numerical study 6B

In this example, the stochastic optimization for a twisted tapered building
with a fixed roof area is elaborated. The design parameters are Z = (ψ, a , b )
with πa b /4 = c . The two optimizations under uncertainty problem are
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9.4 Results of Numerical study

Figure 9.5 : Numerical study 6A- time series and PDFs of the
base moment for the risk-neutral (Problem 1), risk-averse (Prob-
lem 2), and PWD (Problem 3) problems.
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Figure 9.6 : Numerical study 6A- progress of optimization
for the risk-neutral (Problem 1), risk-averse (Problem 2), and PWD
(Problem 3) problems viewed from the top.
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9 Optimization of tall building under uncertain wind

Initial Design Final Design
Mean

Final Design
CVaR 

Final Design
PWD

Figure 9.7 : Numerical study 6A: initial and final building
designs.

Table 9.5 : Numerical study 6B - details of the final building
designs.

Optimization type JFinal 1− JFinal
JInitial

Twist (ψ) Minor axis (a )

Risk-neutral Problem 1 46.36×106Nm 5.811% 298.019◦ 24.383m

Risk-averse Problem 2 69.55×106Nm 17.084% 307.675◦ 21.904m

presented, namely the risk-neutral optimization Problem 1 and the risk-
averse optimization Problem 2. In both cases, the QoI is the base moment,
similar to Numerical study 6A. The stochastic gradient descent with adap-
tive sampling (Algorithm 3) is employed in this example as well, and it
converges around ∼ 25 iterations in both cases. The improvement in the
objective function is illustrated in Figure 9.8 and 9.9. It can be seen from 9.5
that the objective function improves by ∼ 6% for the mean optimization
problem. The plot also showcases the number of samples required for each
optimization step. The performance of the adaptive sampling strategy is
illustrated here. As we approach the optima, an accurate estimate of the
objective function is made, and the number of samples increases, showing
the effectiveness of the adaptive algorithm adopted. The evolution of the
two design parameters considered for the optimization is also shown in
the figure.
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Figure 9.8 : Numerical study 6B: optimization record of risk-
averse (Problem 2) optimization.

Although the objective function does not improve significantly, the
sequence of designs in Figure 9.12 clearly illustrates the most critical shape
changes. Indeed, the top cross-section becomes more tapered, and the
twist aligns close to the PWD to reduce the wind effects on the building. The
tapering of the cross-section is found to reduce wind loading. Interestingly,
the twisting is less prominent than the tapering in the final building design.

The optimization log of the risk-averse design optimization is given
in Figure 9.8. An ∼ 17% improvement in the objective function J (Z)was
observed. The progress of the design parameters with optimization itera-
tion is also shown in Figure 9.8. We observe that the number of samples
required increases as the design converges to the optimum, similar to the
mean optimization, showing the effectiveness of the adaptive sampling
algorithm employed. The adaptive sampling approach is found to be 62.8%
cheaper compared to the cost of performing each iteration with the highest
number of samples without an adaptive sampling approach.
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Figure 9.9 : Numerical study 6B: optimization record for mean
problem Problem 1.
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Figure 9.10 : Numerical study 6B: initial and final building
designs.
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Figure 9.11 : Numerical study 6B: CDF of the base moment at
various optimization iterations. CVaR0.90(MZ ) is represented as a
dot in right plot.

Compared to the mean problem earlier, the number of samples is al-
most three times higher for the risk-averse problem. This is reasonable
since more samples are required to estimate the tails accurately in the
risk-averse problem. The shape change in the risk-averse problem is more
than the mean problem. Figure 9.12 depicts the evolution of the geometry
through the optimization steps, and Figure 9.11 shows the respective evo-
lution of the CDF. Interestingly, the mean optimization has fewer shape
changes than CVaR. Both the 3D view and a plan view of the building are
shown in Figure 9.10. Similar to the mean optimization problem here also,
tapering is very prominent, as seen in Figure 9.12. As before, this parameter
may be the major contributing factor to the reduction in the objective func-
tion. The initial top cross-section is circular and then changes to a strongly
elliptical cross-section as the optimization progresses. The different steps
of this process are shown in Figure 9.12.

The time series and PDFs of the base moments are shown in Figure 9.13
for both problems. Additional samples and time series are computed so
that all three comparisons have a similar number of samples. The statistics
are recomputed with the same number of samples for the initial and the
two final designs. For the CVaR optimization, it can be seen that the PDF is
shrunk to reduce the CVaR of the QoI compared to the initial design. Since
the PDF is non-symmetric, a mean-plus-standard-deviation type of risk
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Initial Step 5 Step 10 Step 15 Step 20 Final Final Step 20 Step 15 Step 10 Step 5 Initial

Mean Optimization CVaR Optimization

Figure 9.12 : Numerical study 6B: shape change for risk-neutral
and risk-averse base moment optimization.

measure will not be ideal for this problem, as seen in Figure 3.4. Hence, it is
demonstrated that a non-symmetric measure like CVaR is more optimal for
the objective function for these kinds of problems. As in Numerical study
6A, the base moment distribution is improved. The final building designs
of both risk-neutral and risk-averse optimization are collected together
in Figure 9.10. The shape changes in optimization steps are depicted in
Figure 9.14.

9.4.3 Conclusions

The optimization under uncertainty using the developed OUU framework
was carried out to design the building under uncertain winds. The adap-
tive sampling algorithm adopted is effective and reduces the large com-
putational cost required for the OUU. The effectiveness of the adaptive
algorithm is demonstrated through the two numerical examples. It was
observed that the deterministic optimization (PWD) performs worse than
the stochastic designs when the uncertainties in the wind parameters are
considered. This emphasizes the need for OUU, especially for problems
with the presence of uncertainty, such as the wind flows around a building.
The risk-averse and risk-neutral optimization leads to different designs
when the number of design parameters is more. Risk-averse optimization
is found to be more suitable for the kind of problems where the PDF is
non-symmetric.
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9.4 Results of Numerical study

Figure 9.13 : Numerical study 6B: time series and PDFs of the
base moment for Problem 2.

Initial Step - 5 Step - 10 Step - 15 Step - 20 Final

Mean

CVaR

Figure 9.14 : Numerical study 6B: Optimization steps as
observed from the top.
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10
CONCLUSION

This thesis presents high-fidelity modeling and simulation for uncertainty
quantification in wind effects on structures. A novel risk-averse optimiza-
tion framework for shape optimization of tall buildings under uncertain
wind is also presented in the thesis. Our findings contribute to more ef-
ficient and effective methods for UQ and OUU in structural wind engi-
neering. The novel contributions and conclusions are categorized into the
following three subsections.

10.1 Contributions

10.1.1 Uncertainty quantification for wind effects on structures

A systematic review of UQ methods for uncertainty quantification is car-
ried out with a clear focus on SCWE application. A comparative study
of Monte Carlo, Multi-level Monte Carlo, polynomial chaos, and Neural
network in uncertainty quantification for the coupled problem of wind-
structure interaction is carried out. The efficacies of these methods for the
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benchmark cases are systematically presented and discussed. It is found
that for high Reynolds number flows, MC and PC can be used depending
on the dimensionality of the problem.

MLMC is found to be effective compared to standard Monte Carlo
for coupled problems, and a computational saving by a factor of 8-10 is
observed for the numerical example. However, the method is not applicable
for high Reynolds flows since the variance reduction is not observed due
to the chaotic nature of the flow.

A two-step framework that uses adjoint sensitivity information for un-
certainty quantification in polynomial chaos is presented. A two-step sur-
rogate approach that reduces the computational efforts using this is pre-
sented for geometric uncertainty in flow problems. The method is found to
be effective in creating surrogates at a fraction of the computational cost
compared to PC and Monte Carlo methods. However, the method is not
applicable for high Reynold flows due to the lack of accurate sensitivities
for Navier-Stokes at high Reynolds numbers.

The effect of uncertainties on a benchmark CAARC building B under
uncertain wind load is studied using the polynomial chaos approach. PC
surrogate is found to be efficient at UQ for SCWE applications. The effects
of uncertainties of various parameters for wind effects on structure are
quantified using global sensitivity analysis. The load parameters are found
to be more sensitive compared to system parameters. Combining this ob-
servation with increased uncertainties of the loads, it is critical to quantify
uncertainties of the wind in practical applications.

10.1.2 Risk-averse design selection of tall buildings

Conditional value at risk is proposed as a measure for the performance eval-
uation of a time-varying quantity of interest for a complex phenomenon
like wind flow around a tall building. The applicability in wind engineering
is demonstrated for benchmark CAARC building under uncertain wind
conditions. A significance testing based on the conditional value at risk be-
tween structural design options is proposed for the performance-based de-
sign selection of structures. The proposed performance measure is demon-
strated for serviceability criteria.
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10.1.3 Optimization under uncertainty

A novel workflow with risk-averse optimization based on conditional value
at risk for optimization under uncertainty is presented. The proposed OUU
workflow is applied for the shape optimization of buildings under location-
specific uncertain wind loads. It is shown that the risk-averse strategy
results in better-performing building shapes, indicating the significance
of the proposed OUU workflow.

10.2 Outlook

A few possible extensions for future research that may follow this thesis
are described.

The computational efforts required for high-fidelity wind simulation
with uncertainty quantification are still large for wide industrial adoption.
OUU for day-to-day civil engineering applications is still a long way to
go for practicing engineers due to a lack of resources and expertise. This
thesis is one of the first works in this direction. Complex and accurate wind
models with quantified uncertainties and a risk-averse design philosophy
make structures safer and offer additional protection to the society they
serve.

A typical practice in wind engineering is to estimate the wind velocity
at a location from historical measurements. However, variations in flow
patterns resulting from the effects of climate change may result in larger
uncertainties in these wind load parameters. This falls in the fourth box
in the matrix of knowledge presented in Figure 1.3. Since structures are
built for a design life of 50-100 years, quantifying this uncertainty is both
critical and challenging.

The roughness length and direction are assumed independent in the
OUU example presented in Chapter 9. However, it would be possible to
create a copula that takes these correlations into account when data is
available on this aspect. Including this correlation will improve inlet wind
uncertainty modeling. More complex wind models may also be used for
the wind fluctuations in place of the Mann model in Section 3.2, providing
a better representation of the physics.

An embedded approach may be used for the CFD for the directionality
and optimization in place of the body-fitted mesh creation adopted in this
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thesis. This makes it easier to generate and change the geometries and the
direction of wind flow.

The finite difference approach used for OUU is prohibitive for large
design spaces. Adjoint-based approaches can be solved and used for high
Reynolds flow using stabilization methods. This is an interesting develop-
ment in wind engineering and can also be used for the two-step approach
and gradient enhanced surrogate from Chapter 6.

The physics-informed neural network hinted in Chapter 5 has great
potential since the NN surrogate can be enhanced by the physics of the
problem. This class of methods is promising and has enormous potential
in the future. However, specific challenges regarding the performance of
training for large degrees of freedom system needs to be tackled for their
adaptation to practical problems.

Instead of multi-level Monte Carlo for UQ for wind engineering, Multi-
fidelity Monte Carlo is a better alternative for UQ for high Reynolds number
flows due to the lower correlation between the levels.

These above-proposed extensions of the current thesis have the po-
tential to open up new opportunities in stochastic computational wind
engineering. We hope this thesis provides a foundation for research in
uncertainty quantification for structural wind engineering and results in
exciting new developments.
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