
Technische Universität München
TUM School of Engineering and Design

Condition Monitoring of Machine Tool Feed Drives
and Methods for the Estimation of Remaining Use-
ful Life

Maximilian Johann Florian Benker

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Rüdiger Daub

Prüfer*innen der Dissertation:

1. Prof. Dr.-Ing. Michael Zäh

2. Prof. Kaan Erkorkmaz, Ph.D.

3. Prof. Chinedum Okwudire, Ph.D.

Die Dissertation wurde am 30.03.2023 bei der Technischen Universität München eingere-
icht und durch die TUM School of Engineering and Design am 07.06.2023 angenommen.





iii

Editors’ Preface

In times of global challenges, such as climate change, the transformation of

mobility, and an ongoing demographic change, production engineering is cru-

cial for the sustainable advancement of our industrial society. The impact of

manufacturing companies on the environment and society is highly dependent

on the equipment and resources employed, the production processes applied,

and the established manufacturing organization. The company’s full potential

for corporate success can only be taken advantage of by optimizing the interac-

tion between humans, operational structures, and technologies. The greatest

attention must be paid to becoming as resource-saving, efficient, and resilient

as possible to operate flexibly in the volatile production environment.

Remaining competitive while balancing the varying and often conflicting pri-

orities of sustainability, complexity, cost, time, and quality requires constant

thought, adaptation, and the development of new manufacturing structures.

Thus, there is an essential need to reduce the complexity of products, manufac-

turing processes, and systems. Yet, at the same time, it is also vital to gain a

better understanding and command of these aspects.

The research activities at the Institute for Machine Tools and Industrial Manage-

ment (iwb) aim to continuously improve product development and manufac-

turing planning systems, manufacturing processes, and production facilities. A

company’s organizational, manufacturing, and work structures, as well as the

underlying systems for order processing, are developed under strict considera-

tion of employee-related requirements and sustainability issues. However, the

use of computer-aided and artificial intelligence-based methods and the neces-

sary increasing degree of automation must not lead to inflexible and rigid work

organization structures. Thus, questions concerning the optimal integration of
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ecological and social aspects in all planning and development processes are of

utmost importance.

The volumes published in this book series reflect and report the results from

the research conducted at iwb. Research areas covered span from the design

and development of manufacturing systems to the application of technologies in

manufacturing and assembly. The management and operation of manufacturing

systems, quality assurance, availability, and autonomy are overarching topics

affecting all areas of our research. In this series, the latest results and insights

from our application-oriented research are published, and it is intended to

improve knowledge transfer between academia and a wide industrial sector.

Rüdiger Daub Gunther Reinhart Michael Zäh
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Geleitwort der Herausgeber

Die Produktionstechnik ist in Zeiten globaler Herausforderungen, wie der Klima-

krise, des Mobilitätswandels und der Überalterung der Gesellschaft in westlichen

Ländern, für eine nachhaltige Weiterentwicklung unserer Industriegesellschaft

von zentraler Bedeutung. Der Einfluss eines Industriebetriebs auf die Umwelt

und die Gesellschaft hängt dabei entscheidend von den eingesetzten Produk-

tionsmitteln, den angewandten Produktionsverfahren und der eingeführten

Produktionsorganisation ab. Erst das optimale Zusammenspiel von Mensch, Or-

ganisation und Technik erlaubt es, alle Potenziale für den Unternehmenserfolg

auszuschöpfen. Dabei muss größtes Augenmerk darauf gelegt werden, möglichst

ressourcenschonend, effizient und resilient zu werden, um flexibel im volatilen

Produktionsumfeld zu agieren.

Um in dem Spannungsfeld Nachhaltigkeit, Komplexität, Kosten, Zeit und Quali-

tät bestehen zu können, müssen Produktionsstrukturen ständig neu überdacht

und weiterentwickelt werden. Dabei ist es notwendig, die Komplexität von

Produkten, Produktionsabläufen und -systemen einerseits zu verringern und

andererseits besser zu beherrschen.

Ziel der Forschungsarbeiten des iwb ist die ständige Verbesserung von Produkt-

entwicklungs- und Planungssystemen, von Herstellverfahren sowie von Produk-

tionsanlagen. Betriebsorganisation, Produktions- und Arbeitsstrukturen sowie

Systeme zur Auftragsabwicklung werden unter besonderer Berücksichtigung

der Anforderungen des Personals sowie von Nachhaltigkeitsaspekten entwickelt.

Die dabei eingesetzten rechnergestützten und Künstliche-Intelligenz-basierten

Methoden und die notwendige Steigerung des Automatisierungsgrades dürfen

jedoch nicht zu einer Verfestigung arbeitsteiliger Strukturen führen. Fragen der

optimalen Einbindung ökologischer und sozialer Aspekte in alle Planungs- und

Entwicklungsprozesse spielen deshalb eine sehr wichtige Rolle.
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Die im Rahmen dieser Buchreihe erscheinenden Bände stammen thematisch

aus den Forschungsbereichen des iwb. Diese reichen von der Entwicklung von

Produktionssystemen über deren Planung bis hin zu den eingesetzten Technolo-

gien in den Bereichen Fertigung und Montage. Die Steuerung und der Betrieb

von Produktionssystemen, die Qualitätssicherung, die Verfügbarkeit und die

Autonomie sind Querschnittsthemen hierfür. In den iwb-Forschungsberichten

werden neue Ergebnisse und Erkenntnisse aus der praxisnahen Forschung des In-

stitutes veröffentlicht. Diese Buchreihe soll dazu beitragen, den Wissenstransfer

zwischen dem Hochschulbereich und den Anwendenden zu verbessern.

Rüdiger Daub Gunther Reinhart Michael Zäh
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Notations

If not indicated otherwise, vectors are written as bold type (e.g. x) and matrices

are written capitalized (e.g. X ). Unknown parameters estimated from data are

denoted with a hat symbol. For example, ω̂r is an estimated natural frequency of

mode r and θ̂ is an estimated (hyper-)parameter of a machine learning model.

notation description

a := b definition; a is defined to be equal to b

Cov(x , y) covariance of the random variables x and y; also denoted as

σ2
x ,y

D data set D = {(xi , yi)}
N
i=1 with i = 1, . . . , N pairs of inputs xi and
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1

Chapter 1

Introduction

According to a study by DEUTSCHE BUNDESBANK (2021), the growth rates of

the labour productivity, which serves as a measure of the increase of prosperity,

have significantly declined in the European manufacturing sector. The study

further states that one of the reasons for this situation is decelerated growth in

the efficiency of production processes.

Because of that, policy-makers have undertaken different attempts to reverse the

economic slowdown, one of which is the European Commission’s initiative on

artificial intelligence (AI) (EUROPEAN COMMISSION 2018). In addition to treating

socio-economic challenges and ethical issues related to AI, the initiative aims to

boost the industrial AI uptake and ultimately increase productivity and economic

growth (ANNONI et al. 2018, p. 77). A study by AGHION et al. (2017) indeed

supports the idea that further automating manufacturing activities with the help

of AI can lead to permanent and stable future economic growth rates.

Therefore, it is no surprise that the machine tool industry has already placed the

topic on its agenda. In a yearly market report, VEREIN DEUTSCHER WERKZEUG-

MASCHINENFABRIKEN E.V. (2020, p. 27) listed AI as a technological trend and de-

scribed it as a “[...] logical consequence of a constantly advancing digiti[s]ation”.

The German Academic Association for Production Technology echoed this in

its study by KRÜGER et al. (2019), in which the authors also acknowledged the

potentially large performance-enhancing effects of AI on manufacturing systems.

Examples of especially promising use cases in the context of manufacturing are

the concepts of condition monitoring and predictive maintenance (PdM), which

are meant to be an attempt to increase machine operability and availability by

assessing the current degradation level of a machine and anticipating future

breakdowns. Based on this information, maintenance actions can be scheduled
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just in time (PERES et al. 2020). In fact, companies which have already success-

fully implemented a PdM strategy reported machine availability gains of up to

9 % (BIGGIO and KASTANIS 2020).

One of the prerequisites for applying a PdM strategy is the availability of accu-

rate information about the current wear condition and, at best, even accurate

remaining useful life (RUL) estimates. The research field prognostics and health

management (PHM) addresses, amongst other issues, the derivation of such

information. Although the field has recently grown rapidly, and an increase in

scientific publications was observed (LEI et al. 2018), a widespread application

to machine tools and especially to machine tool feed drives has not yet occurred.

On the one hand, this is due to gaps in the state of the art, according to which

experiments are mainly conducted on simplified single-axis test benches in

laboratory setups and, on the other hand, industrial use cases are restrictive due

to difficult circumstances, such as the absence of sufficient historic failure data

(BUTLER et al. 2022). Hence, additional work is needed to improve the state

of the art and help to eventually exploit condition monitoring and predictive

maintenance systems for machine tool feed drives.

1.1 Objectives

The work presented in this publication-based thesis aims to contribute to the

state of the art by investigating approaches for condition monitoring of machine

tool feed drives and methods for the estimation of RUL values. In particular, the

objective of this thesis is to derive a condition monitoring approach for machine

tool feed drives, which is applicable to industrial machine tools and can assess the

condition of previously unseen feed drive components. Furthermore, this thesis

attempts to present novel approaches for the estimation of RUL values which, on

the one hand, produce accurate prediction results and, on the other hand, fulfil

the requirements from industrial use cases, for which historic run-to-failure data

are often not available.
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1.2 Thesis Structure

In order to achieve these aims, the thesis is structured as follows: Chapter 2 will

lay out the theoretical foundations. This includes machine tool feed drives, the

general PHM process and the relevant machine learning (ML) methods applied

in this thesis. Chapter 3 will review the state of the art with respect to condition

monitoring of machine tool feed drives and methods for the estimation of RUL

values. Based on this review, research gaps (RGs) will be identified, and research

targets (RTs) as well as a research approach will be derived in Chapter 4. The

publications, which this thesis is based upon and which aim at addressing the

identified RTs, will be summarised in Chapter 5 including a critical review of the

results. In Chapter 6, the economic potential of the research approach will be

investigated. In Chapter 7, a conclusion and an outlook will be given.
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Chapter 2

Theoretical Foundations

This chapter presents the theoretical foundations of the thesis. First, the compo-

nents under investigation (i.e. the critical machine tool feed drive components)

will be described in Section 2.1. Second, the general process of prognostics

and health management (PHM), which is the underlying methodology used in

this thesis, will be described in Section 2.2. Third, the machine learning (ML)

algorithms applied in this thesis will be introduced in Section 2.3.

2.1 Machine Tool Feed Drives

Feed drives are key components of modern machine tools as they significantly

determine the manufacturing accuracy and the economic efficiency. Their task

is to realise the relative positioning of the workpiece and the tool (ALTINTAS

et al. 2011). Requirements for feed drives are, among others, the following:

jerk-free movement even at low feed velocities, high positioning accuracy, the

accomplishment of small travel distances (≪ 1 mm) and high reliability.

In large-scale machine tools, rack-and-pinion, rack-and-worm and linear direct

drives are commonly used. In small to medium-sized machine tools, feed drives

with ball screws are most frequently used because of their favourable properties,

such as low rolling friction, the absence of stick-slip effects, long service life and

high positioning accuracy (WECK and BRECHER 2006b, pp. 8, 82 sqq.).

Since ball screw feed drives are the most widespread feed drive type (ALTINTAS

et al. 2011), they were selected to be the subject of this work. In the following

section, they will be described in more detail.
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spindlemotor

coupling

bearing nut

carriageguide rail runner block

bearing

Figure 2.1: Schematic illustration of a machine axis with a ball screw feed drive

2.1.1 Structure of Ball Screw Feed Drives

Ball screw feed drives generally consist of all the mechanical components that

are within the force flux between the motor and the tool or workpiece. This

includes couplings, ball screws, bearings, an optional gearbox and linear guides

(WECK and BRECHER 2006b, p. 81). In Fig. 2.1, an exemplary machine axis with

a ball screw feed drive is depicted.

The ball screw, which consists of a spindle and nut assembly, is usually mounted

between bearings at each end of the spindle. It should be noted, that the bearing

on the right-hand side of the depiction in Fig. 2.1 is optional. The nut has

recirculating balls and is usually preloaded to avoid backlash and to ensure high

rigidity (SPIESS 1970).

The linear guides allow motion in one degree of freedom only and hold a carriage

via runner blocks and guide rails. This carriage is also connected to the ball

screw nut. The ball screw spindle has a predefined pitch and is connected to a

motor through a coupling. Hence, the ball screw feed drive system transforms

the rotary motion of the motor into a linear motion of the carriage. Below, the

two sub-assemblies ball screw and linear guide will be described in more detail.

Ball Screws

As mentioned earlier, ball screws are often preloaded to avoid backlash and to

achieve higher rigidity within the feed drive system. The preload can be set either

by creating an offset in the nut, by bracing two single nuts against each other (e.g.

by introducing a spacer into the nut) or by using oversized balls (ALTINTAS et al.

2011). The latter two are depicted in Fig. 2.2 as examples. Some manufacturers

also provide ball screws with an adjustable preload screw, which allows a user to

flexibly set the preload level. The preload that is predefined by the manufacturer
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spacer nut

ball spindle

(a) Ball screw nut with preload introduced
by a spacer resulting in a two point contact
between each ball, the spindle and the nut

nut

ball spindle

(b) Ball screw nut with preload introduced
by oversized balls resulting in a four point
contact between each ball, the spindle and
the nut

Figure 2.2: Schematic illustration of two exemplary ways of introducing preload to ball screws based
on ALTINTAS et al. (2011)

is sometimes referred to as static preload. According to a study by VERL and FREY

(2010), another load component, which linearly correlates with the rotational

speed of the shaft, is added to the static preload during operation, resulting in

the so-called effective preload on the ball screw nut. In order to retain the balls

within the nut-screw-assembly, they are recirculated by either external return

tubes, or internal return channels or internal recirculation caps.

The general design and calculation of ball screw drives are strongly use case de-

pendent and are described in the International Organization for Standardization

(ISO) standards ISO 3408-2 (2021), ISO 3408-3 (2006), ISO 3408-4 (2006),

and ISO 3408-5 (2006).

Linear Guides

Similar to the ball screws, linear guides can be found in many designs. In general,

common machine tool linear guide systems can be categorised into hydrody-

namic, hydrostatic, aerostatic, electromagnetic and rolling element systems

(WECK and BRECHER 2006a, pp. 219 sq.):

Hydrodynamic linear guides In hydrodynamic linear guides, a lubricant is

applied to the contact area between the guide rails and the carriage without

additional pressure. With relative movement between the contact surfaces, the

lubricant becomes involved, and a lubricant film forms between the two surfaces.
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Hydrostatic and aerostatic linear guides In contrast to hydrodynamic linear

guides, hydrostatic and aerostatic systems provide a lubricant for the contact

area with additional pressure generated from an external pressure system. This

leads to a consistent lubricant film between the contact surfaces. In the case of a

hydrostatic system, the lubricant is a liquid. In the case of an aerostatic system,

the lubricant is a gas, mostly ambient air.

Electromagnetic linear guide systems They allow contact-free operation based

on electromagnetic levitation. The advantages include friction-free operation,

low maintenance costs and adjustable structural behaviour. They are still subject

to active research and have only been introduced to machine tool prototypes for

a long time (DENKENA et al. 2014; KRÜGER et al. 2022).

Rolling element linear guides They are the most frequently applied type of

linear guides. This is because of their many advantages, such as the absence

of stick-slip effects, high availability and low maintenance costs, as well as the

presence of rolling friction, which results in smooth running characteristics. The

available designs differ in terms of the rolling element type used (rollers or balls),

the recirculation system design and the rail type used (profiled or non-profiled

guideways).

Linear guides can also be preloaded for increased rigidity, which is achieved by

using oversized balls or by adjustable components of the rails. Depending on the

linear guide design, this results in a two point or a four point contact between

the balls, the guide rail and the runner block (see Fig. 2.3 for exemplary designs).

The latter has the advantage of allowing designs with only two rows of balls and,

therefore, has the potential of being more compact. (WECK and BRECHER 2006a,

pp. 217 sqq.)

The general design and calculation of rolling element linear guides are described

in the ISO standards ISO 12090-1 (2011) and ISO 12090-2 (2011).

2.1.2 Service Life and Wear of Ball Screw Feed Drives

For ball screws, a nominal service life L10 (in revolutions) can be calculated. This

is the value that 90 % of a group of similar components within similar operating

conditions can reach. It is defined in ISO 281 (2007) and is given by

L10 = 106 ·
�

Cr

Pr

�p

, (2.1)
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runner block

ball guide rail

(a) Preloaded linear guide with four rows of
two point contact balls

runner block

ball guide rail

(b) Preloaded linear guide with two rows of
four point contact balls

Figure 2.3: Schematic illustration of two exemplary linear guide designs based on WECK and
BRECHER (2006a, p. 365)

where Cr is the basic dynamic radial load rating and Pr is the dynamic equivalent

radial load. When balls are used as rolling elements, p = 3, whereas when rollers

are used, p = 10/3. Although the calculation of the nominal service life of ball

screw drives is widespread in the industry, feed drives can still unexpectedly fail

due to different wear mechanisms, which will be described below.

Many definitions of wear and its patterns exist in the literature, which often

leads to confusion (LUDEMA 1996). Therefore, a basic definition of wear for the

purpose of this thesis will be given in this subsection, before the relevant wear

mechanisms and patterns for machine tool feed drives will be described. The

following content is a summary of the studies by HABERKERN (1998), MATE and

CARPICK (2019), and SPATH et al. (1995). The reader is kindly referred to these

three references for an in-depth study.

Generally, wear can be described as “[...] the removal of material when one solid

surface rubs against another [...]” (MATE and CARPICK 2019, p. 389). Although

this is a rather generic and broad description, it clearly illustrates the root cause

of wear in ball screw feed drives. As both, the ball screw and the linear guide

assembly rely on rolling elements, a mixture of rolling and sliding is present

during operation, and wear naturally occurs. The relevant wear mechanisms and

patterns for this thesis are mentioned below and are illustrated in Fig. 2.4.

Fatigue When metal friction partners slide or roll at low speeds, plastic defor-

mation is the dominant wear mechanism. During this process, the mechanical

stresses evoked by sliding or rolling exceed the yield stress of either one or both
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F

crack pitting

v
ω

rolling element /
particle

contact
zone

(a) Illustration of fatigue resulting
in the wear pattern pitting

F

v

contact zone galling

rolling element /
particle

ω

(b) Illustration of adhesive wear
resulting in the wear pattern
galling

soft surface

v

hard surface
F

(c) Illustration of abrasive wear
resulting in micro-cutting and the
wear pattern scratches

Figure 2.4: Illustration of relevant wear mechanisms for ball screw feed drives

friction partners. When this contact stress is alternated by repetitively rolling

over the contact areas between the ball screw spindle, the nut and the balls,

embrittlement and subsurface cracks emerge. Such a deformation can grow over

time and eventually lead to small incoherent fractions being severed from the

material on the surface. This wear pattern is called pitting and leads to uneven

running behaviour and eventually to the fracture of the ball screw nut.

Adhesive wear Another form of plastic deformation is adhesive wear, which

occurs when the adhesive forces between two friction partners are high enough

to sever fractions of material from one or both of them. The higher these adhesive

forces are in the contact area, the higher is the risk of fragments of material

being severed from the surface. These friction partners can be not only rolling

elements and the ball screw spindle or the nut, but also pollutants from outside

the ball screw assembly. Adhesive wear can occur during rolling and sliding

friction, but it is more common for the latter. It leads to the segregation of larger

coherent fractions of material from the surface. The resulting wear pattern is

called galling.

Abrasive wear When the surface of one friction partner is substantially harder

than the surface of the other, abrasive wear can occur. In this case, small particles

are removed from the less hard friction partner. As a result, this wear mechanism

is sometimes also referred to as micro-cutting. One can further differentiate

between three-body abrasion, in which wear is caused by hard particles between

the friction partners, and two-body abrasion, in which wear is caused by the

harder friction partner directly. Abrasive wear occurs only during sliding. In ball
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screw feed drives, abrasive wear leads to a scratched wear pattern on the surface

of the ball screw spindle, the balls and the nut.

According to HABERKERN (1998), in practical applications, the three wear mech-

anisms highlighted above can lead to the following three main fault modes in

ball screw drives:

Early breakdown After a fraction of the calculated lifetime, the ball screw drive

shows uneven running behaviour, which eventually leads to its fracture. This

is due to pitting damage starting to evolve in the recirculation system, where

the motion of the balls is less characterised by rolling, but rather by sliding and

sudden impulses. With ongoing operation, the damage spreads to the rolling

elements and the spindle. This fault mode is facilitated by high spindle pitches

and high rotational speeds and is caused by fatigue and adhesive wear.

Late breakdown This fault type usually occurs only when a ball screw is op-

erated for longer than the calculated service lifetime according to Eq. (2.1). At

the beginning, uneven running behaviour is observed, which gradually becomes

worse, eventually leading to the fracture of the ball screw. This is due to pitting

damage that begins on either the surface of the spindle or the surface of the

rolling elements first, before spreading to other parts, such as the recirculation

system. This fault type is caused by fatigue and adhesive wear.

Slow preload loss The preload set at the beginning of the lifetime gradually

decreases with the operation of the ball screw. This is observed as a reduction

in the rolling elements’ diameter, which leads to a decrease in the stiffness

and rigidity of the entire feed drive system, which can lead to chatter during

machining and eventually to poor surface quality, problems with dimensional

accuracy and backlash. This fault type is facilitated by high and oscillating

acceleration and is induced by abrasive wear.

These three fault modes outlined above are regarded as the natural fault modes

of ball screw feed drives, as they occur even in cases of correct assembly, optimal

lubrication, protection against pollution and the absence of excess loads.

Designing and selecting suitable ball screw drives involve a trade-off. On the

one hand, achieving high stiffness and rigidity through a high preload is de-

sirable to fulfil dynamic requirements. On the other hand, a higher preload

level directly leads to higher friction, higher wear, accelerated degradation and
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changing dynamic behaviour (WEULE and GOLZ 1991). Hence, preload and

wear directly influence the dynamics of machine tool feed drive systems. The

following subsection will briefly introduce how to describe and quantify this

dynamic behaviour.

2.1.3 Modal Analysis and Modal Testing for Machine Tools

A common method for determining the dynamic characteristics of engineering

systems is modal analysis. It describes the dynamics of a system by quantify-

ing the so-called modal parameters: natural frequencies (or eigenfrequencies),

damping ratios and mode shapes. With the help of these modal parameters, a

mathematical model, which describes the dynamic behaviour of a system, can be

formulated. Modal analysis can be performed numerically and experimentally.

The former assumes a physical model with certain mass, stiffness and damping

properties. According to these properties, the system dynamics can be simulated

and analysed either analytically or numerically, for example, by using modern

finite element techniques. Experimental modal analysis, or sometimes also called

modal testing, aims at identifying the modal model directly from experimental

data. Both, modal analysis and modal testing are briefly described in the follow-

ing. The following content is based on the studies by ALTINTAS (2012), EWINS

(2000), and HE and FU (2001).

Modal Analysis

A machine tool can be described as a multi-degree-of-freedom system with a

mass matrix M , a viscous damping matrix C , a hysteretic damping matrix H and

a stiffness matrix K by the equation of motion1

M ẍt + C ẋt + (K + jH)xt = Ft , (2.2)

where ẍt is a vector of accelerations, ẋt is a vector of velocities, xt is a vector

of positions, Ft is a vector of applied forces, t is the time subscript and j is the

imaginary unit.

1For better readability, a time-dependent vector x(t) is denoted as xt .
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Undamped system Since the damping properties can make solving for Eq. (2.2)

difficult, damping is often neglected for weakly damped structures. Setting the

external forces Ft to zero results in

M ẍt + Kxt = 0, (2.3)

and its solution takes the form

xt = xae jωt , (2.4)

where xa is a vector of time-independent position amplitudes andω is the angular

frequency. Substituting Eq. (2.4) and

ẍt = −ω2xae jωt (2.5)

into Eq. (2.3) leads to
�

K −ω2M
�

xae jωt = 0. (2.6)

If the trivial case xa = 0 is ignored, then the solutions must fulfil

det
�

K −ω2M
�

= 0. (2.7)

Solving this eigenvalue problem leads to the natural frequencies (i.e. the square

root of the eigenvalue) ωr and mode shapes (i.e. eigenvectors) ψr of mode

r = 1, . . . , N . The eigenvalues ω2
r and mode shapes ψr can be further combined

by the eigenmatrix Ω and the so-called modal matrix Ψ:

Ω= diag(ω2
r ) =









ω2
1 · · · 0

...
. . .

...

0 · · · ω2
N









, Ψ =
�

ψ1 ψ2 · · · ψN

�

. (2.8)

With the modal matrix Ψ, the modal stiffness matrix Km and the modal mass

matrix Mm can be calculated using

Km = Ψ
⊤KΨ = diag(kr) (2.9)

and

Mm = Ψ
⊤MΨ = diag(mr). (2.10)
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Therefore, the modal stiffness kr and the modal mass mr can be obtained for

each mode separately with

kr =ψ
⊤
r Kψr (2.11)

and

mr =ψ
⊤
r Mψr . (2.12)

The ratio of the modal stiffness and modal mass provides the squared natural

frequency

ω2
r =

kr

mr
, (2.13)

and the mass-normalizsed mode shapes can be calculated using

φr =
ψrp
mr

. (2.14)

With the mass-normalised mode shapes, φ⊤r Kφr = ω2
r and φ⊤r Mφr = 1 hold.

Hence, in the absence of (or the presence of extremely low) damping, each mode

can be described by its mass-normalised mode shape and its natural frequency.

From the results above, the resulting decoupled receptance frequency response

function (FRF) for the harmonic force excitation Ft = Fae jωt at point l and

response xt = xae jωt at point k is given by

αkl(ω) =
xt,k

Ft,l
=

N
∑

r=1

Ar,kl

ω2
r −ω2

(2.15)

with Ar,kl being the so-called modal constant, which is defined as

Ar,kl = φr,k ·φr,l , (2.16)

where φr,k and φr,l are the kth and l th element of the mass-normalised mode

shape vector φr , respectively.

Proportional viscously damped system If viscous damping is added to the

system described in Eq. (2.3), then the equation of motion changes to

M ẍt + C ẋt + Kxt = 0. (2.17)
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Assuming that the viscous damping matrix C is proportional to the mass and

stiffness matrices, it can be written as

C = αM + βK , α,β ∈ R+. (2.18)

Substituting Eq. (2.18) into Eq. (2.17) leads to an equation that can be decoupled

with the same Ψ as computed in Eq. (2.8). With the viscous modal damping

matrix

Cm = Ψ
⊤
r CΨ r = diag(cr) (2.19)

containing the modal viscous damping cr of each mode, the damped system can

be uncoupled to N equations, each describing a single-degree-of-freedom system

with

ω′r =ωr

q

1− ζ2
r (2.20)

and

ζr =
cr

2
p

kr mr

=
cr

2ωr mr
, (2.21)

where ω′r is the damped natural frequency and ζr is the modal damping ratio.

The resulting receptance FRF is given by

αkl(ω) =
xt,k

Ft,l
=

N
∑

r=1

Ar,kl
�

ω2
r −ω2

�

+ j2ζrωrω
. (2.22)

In this case, assuming a proportional damping matrix C leads to a result, which

is similar to the undamped case derived in Eq. (2.15). The main difference is

that now the denominator is complex.

There are more elaborate ways for incorporating damping into the model from

Eq. (2.2), such as adding hysteretic damping to the model or discarding the

assumption of proportional damping. However, they are not within the scope

of this thesis. For further details on this topic, the reader is kindly referred to

EWINS (2000).

Modal Testing

In modal testing, the dynamic behaviour of a system can be characterised by

experimentally measuring its FRF. This can be achieved by exciting the system

with a certain dynamic force F , which leads to a dynamic system response x . In

an idealised measuring setup without noise, an experimental FRF H( jω) can be
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estimated by dividing the Fourier transform of the response x( jω) by that of the

excitation F( jω):

Ĥ( jω) =
x( jω)
F( jω)

. (2.23)

However, the measurements are usually subject to noise. With noisy measurement

results, the FRF can be estimated with

Ĥ1( jω) =
SF x ( jω)
SF F ( jω)

(2.24)

or with

Ĥ2( jω) =
Sx x ( jω)
Sx F ( jω)

, (2.25)

where SF x and Sx F are the cross-power spectra between the excitation and the

response, SF F is the power spectrum of the excitation and Sx x is the power

spectrum of the response. Under ideal conditions without noise in the signals,

the statement Ĥ( jω) = Ĥ1( jω) = Ĥ2( jω) holds.

The estimated FRF Ĥ( jω) serves as the basis for the extraction of the modal

parameters (i.e. the natural frequenciesωr , the mode shapesψr and the damping

ratios ζr). The estimation of the modal parameters from FRFs is an extensive

field within the research community and is only briefly touched in this thesis.

In general, methods for modal parameter identification have been developed for

both, the time and the frequency domain, as well as for single-degree-of-freedom

and multi-degree-of-freedom systems.

A simple method for modal parameter identification in the frequency domain is

the so-called peak-amplitude method, which identifies a system based on each

mode separately. In EWINS (2000, pp. 306 sq.) the method is described as

follows: first, the natural frequencies ω̂r are identified by picking the peaks in

the FRF. Second, for each peak, the maximum absolute value of the FRF at

the identified natural frequency
�

�Ĥ( jω̂r)
�

� is noted. Third, the frequency ranges

∆ω = ωb − ωa, which capture a decrease of the amplitude of the fraction
�

�Ĥ( jω̂r)
�

�/
p

2, are determined. The resulting damping loss factor for each mode

can then be estimated as

η̂r = 2ζ̂r =
ω2

b −ω
2
a

2ω̂2
r

, (2.26)
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Figure 2.5: Illustration of the peak-amplitude method for the estimation of the modal parameters of
a single-degree-of-freedom system based on EWINS (2000, p. 308)

and the modal constant for each mode can be calculated with

Âr =
�

�Ĥ( jω̂r)
�

� ω̂2
r η̂r . (2.27)

The peak-amplitude method is illustrated in Fig. 2.5. Another exemplary and

more advanced method for the identification of modal parameters for multi-

degree-of-freedom systems is the PolyMAX method, which was originally pre-

sented by GUILLAUME et al. (2003). The method is a generalisation of the

least-squares complex frequency domain (LSCF) method (VAN DER AUWERAER

et al. 2001) and identifies modal parameters by solving a weighted least-squares

problem.

An advantage of the PolyMAX method is its ability to identify modal parameters

for multi-degree-of-freedom systems with close and even strongly overlapping

modes.

2.2 Prognostics and Health Management

In order to ensure and conserve the productivity of a machine tool, maintenance

needs to be conducted. This can be done with a reactive maintenance strategy

to replace worn-out components after an unexpected machine breakdown. In

contrast, planned maintenance is performed according to a fixed schedule. This

avoids unplanned failures at the cost of potentially conducting maintenance too

early and more frequently than necessary. Modern maintenance strategies include
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step 1
data acquisition

and pre-processing

step 2
feature extraction

and selection

step 3
condition

monitoring

step 4
estimation of

remaining useful life

Figure 2.6: General PHM workflow as pursued in this thesis

condition-based maintenance (CBM) and predictive maintenance (PdM). The

former initiates maintenance actions depending on the current health assessment

of the machine, whereas the latter predicts the development of the machine’s

degradation level in the near future and schedules future maintenance actions

accordingly. (FARRAR and WORDEN 2012, pp. 3 sq.)

Research on PHM focusses on the health assessment and the prediction of the

degradation of a system of interest based on historic and real-time data collected

during operation. This allows for the application of a CBM or even a PdM strategy,

potentially leading to a reduction in maintenance costs. (KIM et al. 2017, pp. 1–

2)

Historically, PHM techniques were first used in defence, space and aerospace

applications. An early example is the so-called Joint Strike Fighter PHM system,

whose goal was to enhance the safety of military air planes that are operated

for longer than originally intended due to shrinking military budgets (HESS

and FILA 2002). In another study, VOLPONI et al. (2004) provided an example

for the aerospace industry. They developed a PHM system for aircraft engines.

Nowadays, PHM techniques are used in many industries and applications, such

as in wind power systems (LAU et al. 2012), lithium-ion batteries (MENG and

LI 2019) and manufacturing (VOGL et al. 2019). Such widespread application

of PHM can be explained by the necessity of further cutting operating costs on

the one hand, and the availability of cost-effective sensors, cheap computation

power and advanced algorithms, on the other hand. (SUN et al. 2012)

Many researchers have developed typical PHM workflows, such as JARDINE et al.

(2006), LEI et al. (2018) and VOGL et al. (2019). While the designed workflows

slightly differ in minor details, the general PHM workflow can be summarised

and described by the following four steps (see also Fig. 2.6): data acquisition

and pre-processing, feature extraction and selection, condition monitoring and

the estimation of the remaining useful life (RUL). However, the latter two are

often summarised as diagnosis and prognosis, hence resulting in three main

steps. Each of the three steps will be briefly introduced in the following sections.
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2.2.1 Data Acquisition and Pre-processing

The first step in every PHM workflow is the acquisition of data, upon which

the diagnosis and prognosis can later be based. Depending on the investigated

component, different measurements can be sensibly applied. A variety of common

measurements are listed in ISO 13379-1 (2012). While the selection of a specific

type of measurement and sensor is an individual decision dependent on the

specific component under investigation, LEE et al. (2014) reviewed some of the

most frequently applied ones and provided an overview thereof. They found that

vibrations, acoustic emissions, temperatures, currents and voltages are widely

used signals for monitoring mechanical and electrical components, such as gears,

bearings, shafts, pumps and alternators.

After the raw sensor signals have been acquired, a pre-processing step is often

necessary. This step is rather technical and includes all the actions needed to

clean the recorded data. This can include the alignment of different sensor

signals in time, the handling of missing or redundant data (ATAMURADOV et al.

2020) or simply the standardisation of the data formats (BEKAR et al. 2020).

2.2.2 Feature Extraction and Selection

With a data set at hand, the second step of a typical PHM workflow, which

is the extraction and selection of wear-sensitive features, can be performed.

This step is considered to be crucial, as the acquired raw data often consist of

high-frequency time series and, therefore, contain redundant information and

can thus be largely uninformative (FULCHER 2018). The goal of feature extraction

is to find wear-sensitive representations of the original raw data that can serve as

an input for diagnostic and prognostic models (KIMOTHO and SEXTRO 2014). In

general, feature extraction techniques are often divided into the following three

categories: time domain, frequency domain and time-frequency domain techniques

(TSUI et al. 2015). After the construction of features, selecting only the most

informative ones for further analysis can sometimes be reasonable. For example,

after the construction of frequency-domain features by applying a fast Fourier

transform (FFT) to the raw time series, it can be useful to further exploit only

certain frequency ranges related to the failure or wear mechanism of interest

(ELLINGER et al. 2019). Overall, the literature on feature extraction and selection

methods is vast, and a comprehensive treatment of the topic is beyond the
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Figure 2.7: Overview of the different RUL prediction models as reviewed by (LEI et al. 2018);
data-driven models were applied more often than physics model-based and hybrid approaches.

scope of this work. However, some simple feature extraction techniques will be

described in more detail and with examples in Subsection 2.3.1.

2.2.3 Diagnosis and Prognosis

From the collected data and the extracted wear-sensitive features, a diagnosis of

the current degradation state (also referred to as condition monitoring) and a

prognosis of its future development can be made. The latter ultimately leads to

an estimate of the RUL, which can be utilised within a predictive maintenance

strategy. (LEE et al. 2014)

LEI et al. (2018) conducted an extensive review of the applied models for

diagnosis and prognosis. They assigned the reviewed techniques to the following

four categories: artificial intelligence (AI) approaches, statistical model-based,

physics model-based and hybrid approaches. They also provided an overview

of the frequency of the application of the respective techniques in the literature

(see Fig. 2.7). Recently, AI approaches have received widespread popularity as

a result of the availability of large data sets and affordable computing power

(BIGGIO and KASTANIS 2020). Statistical model-based and AI approaches often

share the same models and inference principles, and the boundaries between

the two are debatable (GHAHRAMANI 2015). Therefore, both approaches can be

combined into one category and viewed as data-driven approaches (TSUI et al.

2015). The resulting three categories will be briefly described below:
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Physics model-based approaches Those approaches aim to model the failure

mechanism directly with basic physical laws in order to derive an RUL estimate.

Although this approach seems attractive because of its explainability, in many

cases it cannot be applied, as either a complete understanding of the failure

mechanism is missing or the system under investigation is too complex.

Data-driven approaches In contrast, data-driven approaches do not assume

any knowledge about the underlying failure mechanism. Rather, they solely rely

on historic data, which are fit to a probabilistic model (SI et al. 2011). This

assumes the availability of informative historic data.

Hybrid approaches The combination of the advantages of physics model-based

and data-driven approaches is referred to as hybrid approaches.

Especially deep learning (DL) models (i.e. deep artificial neural networks (ANNs))

have been established as reliable and powerful tools in the recent past (ZHANG

et al. 2019). Driven by advances from other application areas, such as computer

vision and speech recognition, DL provides a large number of promising model

architectures along with powerful software ready for application within the field

of PHM (FINK et al. 2020). The AI models applied in this thesis will be further

described in the Subsections 2.3.2 and 2.3.3.

2.3 Machine Learning

In the following subsections, feature extraction techniques and the relevant ML

models for this thesis will be introduced. Different features will be explained,

since they often serve as inputs for an ML model and can strongly influence

its prediction accuracy. Therefore, some exemplary ones will be introduced in

Subsection 2.3.1. The relevant ML models for this thesis are ANNs, which will be

described in Subsection 2.3.2, and Gaussian process (GP) models, which will be

explained in Subsection 2.3.3.

2.3.1 Feature Extraction

Extracting features is a crucial step in any data analysis process because it can

significantly influence the success of later applied ML models. The following
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aspects describe the objectives of a feature extraction process (GUYON and

ELISSEEFF 2006):

General data reduction Finding a set of features that can reduce or compress

the original data can help to save storage space and ultimately speed up the

training process of an ML model. However, compressing data may lead to an

information loss and to a decline in the predictive performance of an ML model.

Performance improvement When the main goal is to make accurate predic-

tions, feature extraction can transform the raw data into a more compact and

informative data set. This is especially the case when the raw data contain many

redundant values.

Data understanding When, instead of making accurate predictions, the main

goal is to gain a better understanding of and knowledge about the data, fea-

ture extraction can be helpful. In fact, the modal analysis and modal testing

techniques outlined in Subsection 2.1.3 are examples of a feature extraction

process that facilitates the user’s understanding of the data and the system under

investigation.

Common features from time series can be categorised into time-domain, frequency-

domain and time-frequency-domain features (LEI et al. 2020). Since in this thesis

mainly the extraction of features from time series data is relevant, some features

will be introduced and illustrated in the following Examples 2.1 to 2.3.

Example 2.1 (Time-Domain Features). Features can be directly extracted from

the raw time series in the time domain. Simple time-domain features include

estimates of statistical moments, such as the sample mean x̄ , the sample variance

s2 and the sample skewness bs. For a univariate time series xt =
�

x1 · · · xT

�⊤

with T samples, they can be estimated using (HAMILTON 1994, pp. 740 sq.)

x̄ =
1
T

T
∑

i=1

x i , (2.28)

s2 =
1

T − 1

T
∑

i=1

(x i − x̄)2 (2.29)

and (JOANES and GILL 1998)

bs =
1/T

∑T
i=1 (x i − x̄)3

�

1/(T − 1)
∑T

i=1 (x i − x̄)2
�3/2

. (2.30)
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Figure 2.8: Illustration of an exemplary time series with 200 samples; the calculated time-domain

features z =
�

x̄ s2 bs RMS ρ̂1

�⊤
=
�

−0.14 1.71 0.12 1.31 0.71
�⊤

can be
used to represent the original time series xt . This leads to a data reduction and, depending on the
use case, potentially enhances the predictive performance.

Another frequently utilised time-domain feature is the root mean square (RMS)

value, which is defined as (TSUI et al. 2015)

RMS=

√

√

√ 1
T

T
∑

i=1

x2
i . (2.31)

Among the more complex time-domain features are the parameters of an auto-

regressive integrated moving average (ARIMA)(p,d,q) model, where p, d and q

are the model orders. In its simplest form it is the ARIMA(1,0,0) model, which is

defined as (BOX et al. 2016, p. 54)

x t = ρ1 x t−1 + εt , (2.32)

where εt is a Gaussian error term and ρ1 is the only unknown model parameter.

It can be estimated from the raw time series as ρ̂1 and can serve as a time-

domain feature. In contrast to the above-mentioned time-domain features, the

ARIMA model parameters do not capture amplitude-related information but

rather auto-regressive information about the time series (i.e. information about

the correlation between the lagged time series’ values). The mentioned features

are exemplarily shown in Fig. 2.8.

In contrast, frequency-domain features are calculated on the basis of the fre-

quency components of the raw time series. Therefore, the raw time series xt

should first be transformed to the frequency domain. This can be achieved by
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Figure 2.9: Illustration of an exemplary frequency spectrum of a time series; the cal-

culated frequency-domain features are given by the vector z =
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ωD x̄ω ωC
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=

�
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rad/s.

applying a fast Fourier transform (FFT) resulting in a symmetric complex vector

from which the one-sided spectrum x( jω) can be selected. (JARDINE et al. 2006)

Example 2.2 (Frequency-Domain Features). Various features can be extracted

from the frequency-domain signal. Among the simple ones are the dominant

frequency ωD, the mean frequency x̄ω and the frequency centroid ωC , which are

defined as (LEI et al. 2010)

ωD = arg max
w.r.t.ω

|x( jω)| , (2.33)

x̄ω =
1
M

M
∑

i=1

|x( jωi)| (2.34)

and

ωC =

∑M
i=1ωi |x( jωi)|
∑M

i=1 |x( jωi)|
, (2.35)

where M is the number of frequency bins and, therefore, ω1 and ωM are the

smallest and largest frequencies, respectively. An illustration of that is shown

in Fig. 2.9. An example for a physically motivated and advanced frequency-

domain feature extraction method was already given by the introduction of

modal analysis in Subsection 2.1.3.

Finally, time-frequency-domain features are a combination of the features de-

scribed above. They represent a raw time series in both, the time domain and
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Figure 2.10: Illustration of exemplary time-frequency features; the upper plot shows a time series
with an increasing frequency. The lower plot shows the spectrogram of the time series containing
the squared absolute values of the STFT which are the time-frequency features. It can be seen that
the change in frequency is emphasised by the spectrogram.

the frequency domain. One advantage of these features compared to the above-

mentioned ones is that they can capture the non-stationary behaviour of a time

series, such as changing frequency components over time.

Example 2.3 (Time-Frequency-Domain Features). A common method for ex-

tracting time-frequency-domain features is the short-time Fourier transform

(STFT) (JARDINE et al. 2006). For a univariate time series xt it can be computed

with (OPPENHEIM et al. 1999, p. 717)

X (t,ω) =
∞
∑

m=−∞
x(m)w(m− t)e− jωm, (2.36)

which can be regarded as an FFT of the original discrete time series, weighted by

the so-called window function w(m). The STFT can be visualised in a spectrogram,

as depicted in Fig. 2.10. It can be seen, that the STFT transforms the original

one-dimensional (i.e. univariate) time series into a two-dimensional matrix of

frequencies along time, allowing changes in frequencies to become visible.

In summary, the different feature extraction methods are applied according

to the use case. For example, in the case of a stationary time series, simple

time-domain features may already be sufficient to characterise the recorded

data. When more complex, non-stationary signals with changing frequencies are

considered, more elaborate tools, such as the STFT, can be applied. Generally,
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feature extraction is widely used nowadays and modern software makes the

extraction of many features from time series straightforward (CHRIST et al.

2018). However, manually designed features, like the ones introduced, also

have some disadvantages: first, the user has to decide which features should be

extracted. This decision requires domain knowledge, which may not be or which

may only be partially present. Second, manually designed features are limited in

terms of extracting all the available information. One remedy to both of these

disadvantages is to automatically learn optimal features from the available data.

This can be achieved using ANNs, which will be described in the next subsection.

2.3.2 Artificial Neural Networks

Artificial neural networks2 are a large class of very diverse models that can be

applied to supervised and unsupervised ML problems. In the former, historic

inputs x and the corresponding outputs y (sometimes also referred to as labels
or targets) are available. In contrast to that, in the latter, only historic inputs x

are present (MACKAY 2003, p. 470). This thesis focusses on the application of

neural networks to supervised learning problems.

As stated by HASTIE et al. (2009, p. 392), “[t]here has been a great deal of

hype surrounding neural networks, making them seem magical and mysterious.

[. . .] [However,] they are just non-linear statistical models [. . .]”. This means,

that when neural networks are treated as statistical models, then the general

reasoning comprises two steps (HASTIE et al. 2009, pp. 28 sqq.): first, the

assumption is made, that a data-generating function fθ exists, that produces the

observed outputs y on the basis of the corresponding inputs x such that

y = fθ (x) . (2.37)

Second, if i = 1, . . . , N input and output pairs (xi , yi) of that function are observed

and collected in a data set D = {(xi , yi)}
N
i=1, then the true data-generating

function fθ can be approximated with fθ̂ such that

yi = fθ̂ (xi) + εi , (2.38)

where f is the neural network, θ̂ is the set of estimated network parameters (i.e.

weights w and biases b) and εi is random noise, which is independent of the

2The terms artificial neural network and neural network are used interchangeably in this thesis.
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inputs xi and which is defined as the difference between the observations yi and

the predictions ŷi:

εi = yi − fθ̂ (xi) = yi − ŷi . (2.39)

Neural networks can learn arbitrarily complex non-linear relationships from

training data by using fairly simple algorithms (DUDA et al. 2001, p. 283).

Thereby, a non-linear function is learned as a composition of several simpler

functions (GOODFELLOW et al. 2016, p. 5). Below, two types of architectures

of neural networks, a feed forward neural network and a convolutional neural

network, will be introduced. Afterwards, methods for finding suitable parameters

θ̂ , which minimise the prediction errors εi , will be presented.

Feed Forward Neural Networks

The simplest possible neural network is the feed forward neural network (FFNN)3

with one input layer of size D, one hidden layer of size M and one output layer

of size K. For the FFNN shown in Fig. 2.11a, an output value yk with k = 1, . . . , K

is defined as (BISHOP 2006, p. 228)

yk(x,θ ) = h(2)
 

M
∑

j=1

w(2)k, jh
(1)

�

D
∑

i=1

w(1)j,i x i + b(1)j,0

�

+ b(2)k,0

!

(2.40)

with the model parameters θ being the weights w(1)j,i and biases b(1)j,0 on layer

one, and the weights w(2)k, j and biases b(2)k,0 on layer two. The functions h(1)(x) and

h(2)(x) are the so-called activation functions on layer one and two, respectively.

For a more compact notation, the biases can be absorbed by additional variables

x0 = 1 and z0 = 1 (see Fig. 2.11b). This reduces Eq. (2.40) to (BISHOP 2006,

p. 229)

yk(x,θ ) = h(2)
 

M
∑

j=0

w(2)k, jh
(1)

�

D
∑

i=0

w(1)j,i x i

�

!

. (2.41)

Notably, the number of output units K can be set freely depending on the use

case. In case of a classification problem with K classes, it is common to define

K output units. However, in case of a regression problem with only one target

variable, such as an RUL value, a single output unit is sufficient.

3Sometimes, a feed forward neural network is also called multilayer perceptron or multilayer
network.
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(b) FFNN with absorbed biases; the ouput values
can be calculated according to Eq. (2.41).

Figure 2.11: Illustration of simple FFNNs with one hidden layer consisting of M hidden units based

on BISHOP (2006, p. 228); the neural network maps the input x =
�

x1 · · · xD

�⊤
to the resulting

output y=
�

y1 · · · yK

�⊤
.

Dropping the biases entirely for the sake of a simpler notation allows to denote

the model from Eq. (2.41) in a more general form as

y(x,θ ) = h(2)

















w(2)1,1 · · · w(2)1,M
...

. . .
...

w(2)K ,1 · · · w(2)K ,M









h(1)

















w(1)1,1 · · · w(1)1,D
...

. . .
...

w(1)M ,1 · · · w(1)M ,D

















x1

...

xD

























= h(2)
�

W (2)h(1)
�

W (1)x
��

:=
�

H(2) ◦H(1)
�

(x)

(2.42)

with the weight matrices W (l) for each layer l = 1,2. For more complex (i.e.

deeper) FFNNs with L layers, the general notation can be defined as follows:

y(x,θ ) =
�

H(L) ◦H(L−1) ◦ . . . ◦H(1)
�

(x) . (2.43)

One of the reasons for the success of neural networks in many engineering

applications is their expressive power. Even the simple neural network depicted

in Fig. 2.11 with only one hidden layer can represent any continuous function

as long as sufficiently many units on the hidden layer are available (DUDA et al.

2001, p. 287).
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Sometimes, however, the input data x of a neural network may slightly vary as a

result of the data gathering process. For example, several time series recordings

of a periodic signal may start at different points in time. Although the different

recordings represent exactly the same signal, they look different from the per-

spective of a neural network. In these cases, the so-called convolutional neural
networks can be advantageous, as they can extract local features from small

subregions of the signal. This makes them less sensitive to the described minor

changes in the input data (BISHOP 2006, p. 267). This type of neural network

will be briefly described below.

Convolutional Neural Networks

Convolutional neural networks (CNNs) were originally introduced in a study by

LECUN et al. (1989), whose goal was to classify handwritten postcode digits.

Nowadays, CNNs are well known for their successful application in computer

vision tasks. This is due to their ability to detect local features, such as edges and

objects, in grid-like data. Images are an example of two-dimensional grid-like

data, whereas time series are an example of one-dimensional grid-like data

(GOODFELLOW et al. 2016, p. 321). In this thesis, CNNs are applied to time series

data only. Therefore, they will be further described in that context.

CNNs are a type of FFNNs but with heavily constrained hidden layers. In contrast

to the neural networks depicted in Fig. 2.11, in which all units of the hidden

layer are connected with all units of the previous layer, convolutional layers are

restricted to combine local inputs only.

This is achieved by a convolutional kernel, which slides over the input vector

and conducts simple mathematical operations. An example of this is shown in

Fig. 2.12, in which a kernel k slides over a time series xt , resulting in a feature

vector z.

According to LECUN et al. (2015), a typical CNN consists of several convolutional

layers followed by so-called pooling layers (see Appendix A.1) and activation

functions (see below). This subsequent application of many of these layers allows

the neural network to learn from data that is composed by lower-level features.

For example, a photograph can be regarded as a composition of edges and objects

and a time series can be regarded as a composition of different periodic signals

and noise.
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Figure 2.12: Illustration of an exemplary convolution of a one-dimensional time series xt with a
convolutional kernel k =

�

1 0 1
�

and the resulting feature vector z = xt ∗k =
�

z1 · · · zM

�

;
the depicted convolutional operation yields the result z4 = (1 · 1) + (0 · 0) + (1 · 0) = 1.

Activation Functions for Neural Networks

The non-linearity of ANNs is induced by the units’ activation functions h(l)(x)

on each layer l (see Eqs. (2.40) to (2.42)). Figure 2.13 shows the ones used in

this thesis, which are also formally defined below. The most common, and from

a best practice perspective recommended, activation function is the so-called

rectified linear unit (ReLU) function, which is non-linear only at the location

x = 0 (GOODFELLOW et al. 2016, pp. 168 sq.):

h(x) =max (0, x) . (2.44)

A slightly modified version of this activation function is the leaky ReLU function,

which instead of being constant for x ≤ 0 has a negative slope (MAAS et al.

2013):

h(x) =







x if x > 0

csl x if x ≤ 0.
(2.45)

The slope csl is usually set to a small value, such as csl = 0.01.

Sometimes, bounding the output of a unit can be helpful. This can be achieved

with the sigmoid activation function, which is defined as (BISHOP 2006, p. 228)

h(x) =
1

1+ exp (−x)
, (2.46)

and which bounds the outputs h(x) to the range from zero to one. This sigmoid

function is especially helpful when the task is a binary classification problem

with the two classes zero and one. In that case, it can be applied on the output

layer. If there are more than just two classes but K classes are present, then the
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Figure 2.13: Three exemplary activation functions for ANNs

sigmoid function can be extended to the so-called softmax activation function

(BISHOP 2006, p. 198)

h(x)k =
exp (xk)

∑K
j=1 exp

�

x j

�
, (2.47)

where k = 1, . . . , K. Hence, for each class, a value between zero and one is

computed. This value can be interpreted as the probability of class k membership.

Training Neural Networks with Backpropagation

Equation (2.42) shows that even simple ANNs have many unknown parameters

(i.e. weights and biases that can be summarised in a parameter vector θ ). These

parameters are usually found with gradient-based algorithms, which optimise a

loss function J(θ ) for an available training data set D. This loss function differs

depending on the use case. For regression tasks, it is common to minimise the

sum-of-squares error function (BISHOP 2006, pp. 232 sq.)

J(θ ) =
1
2

N
∑

i=1

( fθ (xi)− yi)
2 , (2.48)

whereas in classification tasks with K classes it is common to minimise the cross

entropy loss, which is defined as (BISHOP 2006, pp. 235 sq.)

J(θ ) = −
N
∑

i=1

K
∑

k=1

�

yi,k log ( fθ (xi)k) +
�

1− yi,k

�

log (1− fθ (xi)k)
�

. (2.49)

In order to estimate the parameters θ̂ and solve

θ̂ = arg min
w.r.t.θ

J(θ ), (2.50)
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gradient-based algorithms can be used to iteratively compute

θ new = θ old −α∇J(θ old) (2.51)

until convergence. In Eq. (2.51), α is a hyper-parameter called the learning
rate and ∇J(θ old) is the partial derivative of the cost function J with respect

to the parameters θ old . The gradients ∇J(θ ) can be found using the so-called

backpropagation algorithm (RUMELHART et al. 1986). Nowadays, they no longer

need to be calculated manually, as software can now automatically calculate

them (PASZKE et al. 2017). For an in-depth treatment of the training of neural

networks, the reader is kindly referred to GOODFELLOW et al. (2016).

Generally, training neural networks with backpropagation has been well studied

and has been found to be reliable in practical applications. However, the result

obtained is only a single set of parameters, or in other words, a point estimate
for the parameter vector θ . Therefore, the parameters found may not exactly be

the true parameters of the data-generating function from Eq. (2.37). It remains

unclear how certain the set of parameters is in approximating this true function.

This uncertainty can be quantified by conducting a Bayesian inference instead

of training with backpropagation. The general idea behind this will be briefly

described below.

Bayesian Inference for Neural Networks

In a Bayesian approach, the unknown parameters θ are assumed to be a random

vector that follows the so-called posterior distribution p (θ |D, f ), which can be

computed using the Bayes’ rule (LAMPINEN and VEHTARI 2001)

p (θ |D, f )
︸ ︷︷ ︸

posterior

=

likelihood
︷ ︸︸ ︷

p (D | θ , f )

prior
︷ ︸︸ ︷

p (θ | f )
p (D | f )
︸ ︷︷ ︸

marginal likelihood

, (2.52)

where the marginal likelihood is defined as (LAMPINEN and VEHTARI 2001)

p (D | f ) =

∫

θ

p (D | θ , f ) p (θ | f ) dθ . (2.53)
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When the posterior distribution of the parameters is known, one can compute the

posterior predictive distribution of a new input x⋆ with (LAMPINEN and VEHTARI

2001)

p (y⋆ | x⋆,D, f ) =

∫

θ

p (y⋆ | x⋆,θ , f ) p (θ |D, f ) dθ . (2.54)

As f is defined as an ANN (see Eqs. (2.37) and (2.38)), the posterior predictive

distribution becomes (NEAL 1996, pp. 13 sq.)

p (y⋆ | x⋆,D, f ) =

∫

θ

fθ (x
⋆)p (θ |D, f ) dθ . (2.55)

By sampling parameters θ (m) from p (θ |D, f ), one can generate model predic-

tions fθ (m)(x⋆) and compute statistical moments, such as the mean prediction

which is given by (NEAL 1996, p. 23)

E [y⋆]≈
1
M

M
∑

m=1

fθ (m)(x
⋆). (2.56)

In models with many parameters, such as ANNs, computing the marginal likeli-

hood from Eq. (2.53) and ultimately the posterior distribution from Eq. (2.52) is

rarely tractable and often cannot be done analytically (LAMPINEN and VEHTARI

2001). Therefore, several methods have been developed to approximate the

posterior distribution. Two of these methods are applied in this thesis:

Markov chain Monte Carlo Markov chain Monte Carlo (MCMC) algorithms are

a class of algorithms whose goal is to construct a Markov chain whose stationary

distribution is equal to the posterior distribution from Eq. (2.52). When such

a Markov chain is found, one can sample from it and calculate quantities of

interest from the posterior, such as its sample mean and sample variance. A more

technical explanation can be found in Appendix A.2.

Variational inference In contrast to MCMC, variational inference (VI) algo-

rithms do not attempt to sample from the posterior distribution p directly. Instead,

they approximate it with a simpler and known variational distribution q. In this

scenario, the parameters of q are set such that the Kullback-Leibler (KL) di-

vergence between the posterior and the variational distribution is minimised.

Appendix A.3 provides more technical details on that.

In summary, the Bayesian treatment described above generates probabilistic

predictions p (y⋆ | x⋆,D, f ) based on a highly flexible and parametric function
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(i.e. a neural network) fθ , whose parameters θ are treated as a random vector.

A different Bayesian approach for generating probabilistic predictions is using

GPs. In contrast to treating the unknown parameter vector θ as random, the

function f , which represents the data generating process from Eq. (2.37), is

directly treated as random (i.e. as a random function). The details are explained

in the next subsection.

2.3.3 Gaussian Processes

According to RASMUSSEN and WILLIAMS (2006, p. 13), “[a GP] is a collection of

random variables, any finite number of which have a joint Gaussian distribution”.

A GP is fully described by its mean function m(x) and its covariance function

k (x,x′) (sometimes also referred to as the kernel), which are defined as follows:

m(x) = E [ f (x)] (2.57)

and

k
�

x,x′
�

= E
��

f (x)−m(x)
� �

f (x′)−m(x′)
��

. (2.58)

A function following a GP can be denoted as

f (x)∼ GP
�

m(x), k
�

x,x′
��

. (2.59)

This definition of a GP is indeed complete from a theoretical perspective but can

be cumbersome for the purpose of building an intuition about GPs. Therefore,

the simpler multivariate Gaussian distribution4, which is a special case of a GP,

will be introduced below.

A D-dimensional random vector x=
�

x1 x2 · · · xD

�⊤
follows a multivariate

Gaussian distribution with the mean vector

µ=













µx1

µx2

...

µxD













(2.60)

4The terms Gaussian distribution and normal distribution are used interchangeably in this
thesis.
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and the covariance matrix

Σ=













Var(x1) Cov(x1, x2) · · · Cov(x1, xD)

Cov(x2, x1) Var(x2) · · · Cov(x2, xD)
...

...
. . .

...

Cov(xD, x1) Cov(xD, x2) · · · Var(xD)













, (2.61)

when the probability density function (PDF) of the joint distribution is given by

(MARDIA et al. 1979, p. 37):

p(x | µ,Σ) =
1

p

(2π)D det (Σ)
exp

�

−
1
2
(x−µ)⊤Σ−1(x−µ)

�

. (2.62)

If x is normal, then this is denoted as x∼N (µ,Σ) or as p(x | µ,Σ) =N (µ,Σ).

The multivariate normal distribution has useful properties, which will be ex-

ploited later in this thesis, when the Gaussian process regression model will be

introduced in Subsection 2.3.4.

Partitioned notation A normal random vector x can be partitioned into x1 and

x2 such that x=
�

x1 x2

�⊤
with

µ=

�

µx1

µx2

�

(2.63)

and

Σ=

�

Σx1,x1
Σx1,x2

Σx2,x1
Σx2,x2

�

. (2.64)

This notation is a premise for the following properties.

Marginal distribution Based on the joint distribution, the marginal distribution

of x1 is N
�

µx1
,Σx1,x1

�

and the marginal distribution of x2 is N
�

µx2
,Σx2,x2

�

. As a

special case, the marginal distribution p(x i | µx i
σ2

x i
) of a single variable x i (with

i = 1, . . . , D) is given by the univariate Gaussian distribution (RENCHER 2002,

p. 87)

p(x i | µx i
,σ2

x i
) =

1
q

2πσ2
x i

exp

�

−
(x i −µx i

)2

2σ2
x i

�

, (2.65)

with σ2
x i
= Var(x i).
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Conditional distribution Given x1, the conditional distribution p(x2 | x1) of the

unobserved variables x2 is again Gaussian (RENCHER 2002, p. 88)

p(x2 | x1) =N
�

µx2|x1
,Σx2|x1

�

(2.66)

with

µx2|x1
= µx2

+Σx2,x1
Σ−1

x1,x1

�

x1 −µx1

�

(2.67)

and

Σx2|x1
= Σx2,x2

−Σx2,x1
Σ−1

x1,x1
Σx1,x2

. (2.68)

In the following example, the properties mentioned are illustrated for a special

case with D = 2, which is the bivariate Gaussian distribution.

Example 2.4 (Bivariate Gaussian Distribution). When x is two-dimensional,

namely x=
�

x1 x2

�⊤
, the mean vector µ and covariance matrix Σ become

µ=

�

µx1

µx2

�

(2.69)

and

Σ=

�

Var(x1) Cov(x1, x2)

Cov(x2, x1) Var(x2)

�

. (2.70)

An example of a bivariate Gaussian distribution with the parameters

µ=

�

µx1

µx2

�

=

�

0

0

�

(2.71)

and

Σ=

�

Var(x1) Cov(x1, x2)

Cov(x2, x1) Var(x2)

�

=

�

1 0.7

0.7 1

�

(2.72)

is depicted in Fig. 2.14a, in which the joint distribution and the marginal dis-

tributions for the two random variables x1 and x2 are shown. Before observ-

ing any data, the expected value of each variable is E (x i) = µx i
= 0 and the

variance of each variable is Var(x i) = 1. As soon as x1 is observed, the con-

ditional distribution can be computed using Eq. (2.66). This is depicted in

Fig. 2.14b for the case where x1 = 1, which leads to the conditional distribution

p (x2 | x1 = 1) =N (0.7, 0.51). Notably, the new distribution of x2 has not only a

new mean value (i.e. 0.7 instead of 0), but it also has a smaller variance (0.51
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(a) Bivariate normal distribution before observing data
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(b) Bivariate normal distribution after observing x1 = 1

Figure 2.14: Illustration of a bivariate normal distribution with mean vector µ and covariance matrix
Σ as defined in Eqs. (2.71) and (2.72); on the left side of panel (a), the joint distribution as well
as the marginal distributions of the random variables x1 and x2 before observing any data are
shown. On the right side of panel (a), the two random variables’ mean value µi and 1.96 times
their standard deviations σi , which approximately accounts for 95 % of the area under the normal
distribution, are plotted against their index i. In panel (b), the same distribution is shown after
observing x1 = 1. The marginal distribution of x2 is now a conditioned distribution depicted by the
grey shaded area. The conditional distribution has a different mean and standard deviation. On the
right side of panel (b), it can be seen that observing x1 reduces the variance (i.e. the uncertainty)
of x2. This is due to the covariance between the two defined in Σ in Eq. (2.72).
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instead of 1). Hence, because a joint normal distribution is assumed and x1 is

observed, one is more certain about the location of x2.

The fact, that the conditional distribution is simply another Gaussian distribution,

is particularly useful for regression settings, which will be demonstrated with a

higher-dimensional multivariate Gaussian distribution in the following example.

Example 2.5 (Multivariate Gaussian Distribution). Figure 2.15a shows an exam-

ple of an eight-dimensional multivariate Gaussian distribution with the following

parameters:

µ= 0=
�

0 0 0 0 0 0 0 0
�⊤

(2.73)

and

Σ=































1 0.7 0.24 0.04 0 0 0 0

0.7 1 0.7 0.24 0.04 0 0 0

0.24 0.7 1 0.7 0.24 0.04 0 0

0.04 0.24 0.7 1 0.7 0.24 0.04 0

0 0.04 0.24 0.7 1 0.7 0.24 0.04

0 0 0.04 0.24 0.7 1 0.7 0.24

0 0 0 0.04 0.24 0.7 1 0.7

0 0 0 0 0.04 0.24 0.7 1































. (2.74)

Given the value x2 = −1 in Fig. 2.15b, a new conditional distribution can be

calculated for the remaining unobserved variables. The same effect as in the

bivariate case in Fig. 2.14b can be observed: the neighbouring variables, namely

x1 and x3, have a new mean value closer to the observation x2 and a new,

smaller variance. However, the values of the variables further away from x2 do

not change their mean values or variances as much. This is due to the covariance

matrix Σ defined in Eq. (2.74), in which variables with larger distances are

defined to have a smaller covariance. In fact, the variables x6, x7 and x8 are not

affected by the observation of x2 at all. This is because their covariance with x2

is defined to be zero.

When the next value x5 = 0 in Fig. 2.15c is observed, this effect is again observed

for the neighbouring variables x4 and x6. Then, after the third observation x7 = 1

in Fig. 2.15d, the conditional distribution of the remaining unobserved values

shows even less variance. In addition, the observed values in combination with

the new conditional means of the unobserved variables adopt the shape of a

smooth, non-linear curve (i.e. function).
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Figure 2.15: Illustration of a joint multivariate Gaussian distribution for an eight-dimensional random
vector x with mean vector µ and covariance matrix Σ as defined in Eqs. (2.73) and (2.74); in panel
(a), the marginal distributions of all ten variables x i are shown before observing any data. In panels
(b) – (d), the conditional distributions are shown after observing x2, x5 and x7, respectively.

The example above shows that assuming a joint normal distribution on a vector

x can be used to probabilistically model the values of the unobserved variables

x i . In this example, only the mean vector µ and the covariance matrix Σ were

required to be defined a priori. The unobserved variables were simply predicted

by computing their conditional distributions.

The example also revealed some limitations: for instance, instead of function

values f (x), single values x i of x along an evenly spaced index i were modelled.

However, in regression problems, the goal is to model the unknown function f

directly. Furthermore, the input values of a function may not always be evenly

spaced. A time series, for example, can have irregularly spaced values as a result

of missing values or a special data acquisition routine.
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The case outlined above is one in which the concept of a GP shows its strength:

it allows to model the unknown function f (x) directly as a Gaussian random
function. In other words, a GP is a distribution over functions (as opposed to

a distribution over a vector). This can be perceived as a generalisation of the

multivariate normal distribution (RASMUSSEN and WILLIAMS 2006, p. 2). In

the following Subsection 2.3.4, it will be shown how this can be exploited for

regression and classification problems.

2.3.4 Gaussian Process Regression and Classification

In the following, the application of GPs in regression and classification problems

will be described.

Gaussian Process Regression

Given a data set D of input and output pairs, the Gaussian process regression

(GPR) model implements a function f that maps the inputs xi to the outputs yi ,

such that

yi = f (xi) + εi , εi ∼N
�

0,σ2
ε

�

, (2.75)

where εi represents random Gaussian noise and f follows a GP. Hence, f can

be denoted as f (x)∼ GP(m(x), k (x,x′)). The mean function is often set to zero,

that is m(x) = 0, which is also adopted in this thesis. (RASMUSSEN and WILLIAMS

2006, p. 13)

As in the case of the multivariate Gaussian distribution in Eqs. (2.63) and (2.64),

the joint distribution of the observed function values y=
�

y1 y2 · · · yN

�⊤

at input locations X =
�

x1 x2 · · · xN

�

and unobserved function values f⋆ =
�

f ⋆1 f ⋆2 · · · f ⋆M
�⊤

at input locations X ⋆ =
�

x⋆1 x⋆2 · · · x⋆M
�

can be denoted

as (RASMUSSEN and WILLIAMS 2006, p. 16)

�

y

f⋆

�

∼N
�

0,

�

K(X , X ) +σ2
ε I K (X , X ⋆)

K (X ⋆, X ) K (X ⋆, X ⋆)

��

, (2.76)

where I is the identity matrix and K(·, ·) is the covariance matrix5. For exam-

ple, K(X , X ⋆) denotes the covariances between the observed values X and the
5In order to be consistent with the relevant literature, K(·, ·) is used to denote the covariance

matrix in the context of a Gaussian process instead of the Σ notation which was used in the context
of the multivariate Gaussian distribution.
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unobserved values X ⋆. The conditional distribution, which in this case is also

the predictive distribution of the unknown values f⋆, can be calculated with

(RASMUSSEN and WILLIAMS 2006, p. 16)

p (f⋆ | X ,y, X ⋆) =N (f⋆ | E (f⋆ | X ,y, X ⋆) , Var (f⋆ | X ,y, X ⋆)) , (2.77)

where

E (f⋆ | X ,y, X ⋆) = K (X ⋆, X )
�

K(X , X ) +σ2
ε I
�−1

y (2.78)

and

Var (f⋆ | X ,y, X ⋆) = K (X ⋆, X ⋆)− K (X ⋆, X )
�

K(X , X ) +σ2
ε I
�−1

K (X , X ⋆) . (2.79)

Notably, the optimal prediction for any GP is given by the mean of the predictive

distribution provided in Eq. (2.78) (HAMILTON 1994, p. 100). The following

example illustrates the expressive power of GPs in a regression setting.

Example 2.6 (Gaussian Process Regression). Figure 2.16 shows the graph of

a function of one-dimensional inputs f (x) from a GP with a mean function

m(x) = 0 and the following radial basis function (RBF) kernel:

k
�

x , x ′
�

= σ2
f exp

�

−
(x − x ′)2

2ℓ2

�

, σ f = 1, ℓ= 1.18. (2.80)

The prior distribution is shown in Fig. 2.16a, and the conditional distributions

after observing data are shown in Figs. 2.16b to 2.16d. With an increasing num-

ber of observations, the conditional distribution becomes a smooth, non-linear

function. In fact, the covariance function from Eq. (2.80) was used to generate

the covariance matrix defined in Eq. (2.74). Therefore, the conditional distribu-

tions of f (x) at the input locations x = 1,2, . . . , 8 are equal to the conditional

distributions of x i with the indices i = 1, 2, . . . , 8 as shown in Fig. 2.15d.

This case highlights the advantage of the GPR model: the conditional distribution

of the unknown function f (x) can be evaluated anywhere: at locations lower

than one, larger than eight and everywhere between the evenly spaced values

of x i . Furthermore, the GPR model produces flexible functions and sensible

uncertainty bounds, which are smaller when close to observations and larger in

areas farther away from observations.

The example outlined above highlights the ability of the GPR model to probabilis-

tically model non-linear functions. The key ingredient to this is the covariance
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Figure 2.16: Illustration of a Gaussian process; the black line represents the mean value of the
function f (x) and the grey shaded area represents 1.96 standard deviations from the mean, which
approximately accounts for 95 % of the area under the normal distribution. In panel (a), the prior
distribution is shown before observing data. In panels (b) – (d), the conditional (i.e. posterior)
distribution is shown after observing f (x = 2) = −1, f (x = 5) = 0 and f (x = 7) = 1,
respectively.

function, which defines the covariance between neighbouring function values

f (x) at input locations x. Many valid covariance functions exist, which in turn

can be recombined to form even more valid ones. Depending on the selected

covariance function, the characteristics of the functions represented by the GPR

model significantly change (DUVENAUD 2014, pp. 10 sqq.). Hence, the choice of

the covariance function is crucial and considered as a way to incorporate expert

knowledge into the GPR model.

Another noteworthy aspect of the GPR model is that the need for identifying the

unknown parameters θ of a parametric function (as it was necessary for ANNs

shown in Subsection 2.3.2) is diminished by applying the rules of probability
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and directly calculating a conditional Gaussian distribution for the unknown

function values. The only two parameters that needed to be set in Example 2.6

were σ and ℓ from the covariance function defined in Eq. (2.80). However, as the

two are not parameters of the modelled function, they are referred to as hyper-

parameters. Depending on their value, the GPR model may look completely

different (see Fig. 2.17 for three different values of ℓ). Fortunately, an efficient

way to determine the values of these hyper-parameters exists, which will be

briefly described below.

Model Selection for Gaussian Process Regression

In order to find a favourable set of hyper-parameters (i.e. a favourable GPR

model), conducting the so-called type II maximum likelihood (ML-II) approxima-

tion is considered common practice. The goal of this approximation is to find the

hyper-parameters that maximise the marginal likelihood, which in the case of

the GPR model is defined as (RASMUSSEN and WILLIAMS 2006, pp. 109 sqq.)

log (p(y | X ,θ )) = −
1
2

y⊤K−1
y y−

1
2

log
�

det
�

Ky

��

−
N
2

log (2π) (2.81)

with Ky = K(X , X ) +σ2
ε I and N being the number of observations in the training

data set D. In this context, the marginal likelihood can be optimised by computing

the gradient with respect to the hyper-parameters and applying gradient-based

optimisation algorithms.

The optimal solution for ℓ in the GPR examples shown in Fig. 2.16 is given by

ℓ= 3.12. The resulting optimal GPR model is shown in Fig. 2.17b.
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Figure 2.17: Illustration of three GPR models with different hyper-parameters ℓ; the model in panel
(b) is maximizing the marginal likelihood and can be regarded as the most suitable model for the
three given observations.
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Although the explanations outlined earlier were concerned with the use of GPs

in regression tasks, GPs can also be used in (binary) classification tasks, which

will be discussed below.

Binary Gaussian Process Classification

In a binary classification task with two classes (i.e. class zero and class one), a GP

can be used to model a latent function f , which governs the class membership. As

shown in Fig. 2.18a, a GP is not bound on the interval [0,1]. This is problematic,

as the value for the class membership of an observation is either zero or one.

Hence, in order to map f onto that interval, a so-called squashing function g(·)
is applied so that the GP outputs values on the interval [0, 1], which can be read

as the probability of an observation belonging to class one. This probability p⋆

can be calculated with (RASMUSSEN and WILLIAMS 2006, p. 40)

p⋆ = p (y⋆ = 1 | X ,y, X ⋆) =

∫

g ( f ⋆) p ( f ⋆ | X ,y, X ⋆) d f ⋆. (2.82)

Among the examples of the squashing function g(·) are the logistic and the probit

functions (RASMUSSEN and WILLIAMS 2006, p. 40). In Fig. 2.18, an example of

the application of the logistic function is depicted.
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f
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))
−→

(b) Squashed Gaussian process sample g( f )

Figure 2.18: Illustration of the effect of applying the logistic function g(·) to a sample f from a
Gaussian process

As both are non-linear functions applied to the Gaussian function f , the predic-

tive distribution in Eq. (2.82) is not Gaussian anymore and usually cannot be

computed analytically. Hence, approximations such as MCMC and VI need to

be applied (RASMUSSEN and WILLIAMS 2006, p. 41). In particular, one variant
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of VI, the expectation propagation algorithm introduced by MINKA (2001), has

been found to be an accurate approximation of the predictive distribution for a

Gaussian process classification (GPC) model (KUSS and RASMUSSEN 2005). More

details on MCMC and VI can be found in the Appendices A.2 and A.3.
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Chapter 3

State of the Art

This chapter will summarise the relevant state of the art in two fields: first, the

state of the art with respect to condition monitoring of ball screw feed drives will

be presented in Section 3.1. Second, the state of the art for remaining useful life

(RUL) estimation methods will be given in Section 3.2, where the focus will be

more on the proposed methods rather than on the use cases to which they were

applied. It will be shown that in both fields, a need for action can be identified,

which will finally be summarised in Section 3.3.

3.1 Condition Monitoring of Ball Screw Feed Drives

It is notable that, although condition monitoring of machine tools with respect

to the tool has been extensively reviewed in the literature (MOHANRAJ et al.

2020; REHORN et al. 2005; SERIN et al. 2020), review papers concerned with

condition monitoring of machine tool feed drives, however, are rare. This was also

emphasised in a review paper about prognostics and health management (PHM)

for machine tools by BAUR et al. (2020), who found that, whilst considered an

important topic, publications about condition monitoring of machine tool feed

drives are scarce. In the following subsections, the relevant ones for this thesis

will be summarised.

3.1.1 Ball Screws

An early approach for automated condition monitoring of ball screws was pre-

sented by SCHOPP (2009), who developed a single-axis ball screw feed drive test
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bench. An artificial load was applied by bracing the ball screw nuts against each

other with tensile rods. With regular execution of a defined test cycle during

lifetime tests, Schopp observed a decrease in natural frequencies, which is a

sign for preload loss. With ongoing service life, however, the identified natural

frequencies also showed greater variance, resulting in a sequence of increasingly

fluctuating natural frequencies, which ultimately exacerbated the assessment

of the condition of the ball screws. This was due to the fact that the long-term

trials also provoked pitting damage on the surface of the balls. This resulted

in non-reproducible arrangements and jamming of the balls within the ball

screw nut, finally leading to strongly varying measurement results of the natural

frequencies.

Nevertheless, Schopp was able to observe a clear increase in the amplitude of

vibrations measured between the opposing ball screw nuts with ongoing pitting

damage. This was later validated on another test bench on which five ball screws

could be degraded at once. There, an increase in sound amplitudes was also

detectable. However, the progression of the increase differed significantly.

Finally, Schopp applied his approach to an industrial use case and monitored an

axis of a machine tool that was used in the automotive industry. By reassembling a

new and a worn-out ball screw from the above mentioned test bench, he showed

that the increase in sound amplitudes was also observable in an industrially used

machine tool. Based on those findings, a simple model for the diagnosis and

prognosis of the RUL was designed. Although Schopp pioneered the condition

monitoring of machine tool feed drives at that time by demonstrating that wear

can be observed in the recorded signals, shortcomings include the need for costly

additional sensors, as well as a missing validation of the proposed model for the

diagnosis and prognosis of the RUL.

VERL et al. (2009) also designed a single-axis ball screw feed drive test bench

on which they conducted run-to-failure experiments. While running a defined

test cycle, which consisted of a constant-speed movement along the axis, they

collected velocity signals from the rotary and linear encoder of the feed drive’s

computer numerical control (CNC) as well as signals from a laser-interferometer.

Their experiments showed that several frequency-domain and time-domain

features such as the vibration energy and the reversal positioning error correlated

with wear.

WALTHER (2011) extended the work by VERL et al. (2009) by showing that the

different wear mechanisms mentioned in Subsection 2.1.2 can lead to different
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patterns in the vibration energy. Walther first periodically recorded the motor

currents as well as the velocity and position signals from the rotary and linear

encoder provided by the CNC. He subsequently constructed the vibration energy

feature from the raw time series data and monitored the feature for trends. The

whole data acquisition and monitoring process was implemented on common in-

dustrial hardware in order to illustrate that there are no technical restrictions for

an industrial application. However, a validation of the approach with previously

unseen components or long-term trials was discussed only as a topic for future

work.

MAIER (2015) further extended the work by VERL et al. (2009) and WALTHER

(2011) by additionally monitoring the torque of the feed drive motor. It could be

observed that the torque of the motor for moving industrially decommissioned

ball screws was strongly dependent on the axis position, whereas the torque

for moving a new ball screw was almost constant along the entire axis length.

Furthermore, several features were extracted from and transforms such as the

Hilbert-Huang transform (HHT) were applied to the acquired signals. Overall,

he demonstrated that wear in early stages could be accurately captured by the

extracted features. Nevertheless, wear in later stages was not investigated and an

approach for automatically classifying worn-out ball screws was not presented

either.

JIA et al. (2019) retrofitted an industrial machine tool with an accelerometer

placed on the ball screw nut. Their experiments lasted for 100 days and con-

sisted of regularly operational modal analyses (OMAs) based on a free vibration

response captured by the accelerometer. After the 100 days, the ball screw was

reported to be worn out. From the OMA results, it could be observed that some

of the identified natural frequencies and damping ratios suddenly showed an

increasing variance towards the end of the lifetime. After replacing the worn-out

ball screw, pitting damage on the spindle surface was detected. This indicated

that the modal parameters were suitable features for assessing severe damage

in the ball screw drive at later stages of its service life. This has previously been

suggested by other authors as well (IMIELA 2006; MAIER 2015).

Instead of estimating modal parameters from vibration data and correlating

them with preload loss, NGUYEN et al. (2019) directly calculated the preload

level from a dynamic model designed for a single-axis feed drive test bench. After

identifying the parameters of the dynamic model, deploying current sensors to

the motor and designing and applying a test cycle for the excitation of the feed
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drive, the authors showed how to directly estimate the preload level of the ball

screw.

There are also researchers, who followed the strategy of designing novel sensors

for facilitating condition monitoring. MÖHRING and BERTRAM (2012), for exam-

ple, developed a sensory ball screw double nut system with integrated strain

gauges which can directly measure the preload inside the ball screw nut. The

additional components needed for processing the signals were mounted onto the

flange of the nut. In a long-term experiment with a single ball screw, the sensory

double nut was applied and could detect a loss in preload. However, the sensor

was also sensitive to thermally induced preload differences, which hindered the

assessment of wear.

SCHLAGENHAUF et al. (2019) presented an integrated camera system which was

mounted to the ball screw nut and took photographs of the spindle surface. Based

on those photographs, they identified pitting damage by using a convolutional

neural network (CNN) which was able to correctly classify pitting damages with

a mean accuracy of 91.50 %. In industrial use cases, where pollution due to

lubrication and dust from the manufacturing process can distort the camera

image, the approach has not yet shown to be effective.

The work presented by SCHLAGENHAUF et al. (2019) is not only an example

for the development of novel sensors but also one for the recent trend in the

literature to apply machine learning (ML) algorithms for solving the problem of

feed drive condition monitoring. LI, JIA, et al. (2018), for example, conducted

experiments on a single-axis feed drive test bench and used ML algorithms to

detect wear from the acquired signals. Similarly to MAIER (2015), they acquired

the velocities and motor torque signals from the CNC, as well as vibration

signals from three accelerometers placed on each bearing and the carriage. The

authors examined three ball screw drives and three linear guide systems with

three different preload levels. The total of nine combinations were assembled

onto the single-axis test bench for data acquisition. From this data basis, the

authors extracted a large number of time-domain and frequency-domain features

and selected the best performing ones with respect to correctly classifying the

components’ preload levels. It should be noted that the extraction of features

and the classification were conducted on the same components (i.e. a strict

separation of the training and the test data set on the component level was not

conducted). As a consequence, no statement regarding the validity of the results

for unseen components could be made.
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DENKENA et al. (2021) proposed a similar approach as LI, JIA, et al. (2018) as

they also performed experiments with ball screws with three different preload

levels on a single-axis feed drive test bench. They acquired signals from the

CNC and vibration signals from a single accelerometer mounted to the ball

screw nut. Based on many predefined features from the time and the frequency

domain, they conducted a principal component analysis (PCA) and kept the

first two principal components for further analysis. In a last step, a classification

model predicted the preload level based on the two principal components. This

was done separately for the position error signals provided by the CNC and

the vibration signals provided by the accelerometer. Although the prediction

accuracies were equal to 100 % in almost all cases, it must be noted that the

feature learning and the classification, which led to those high accuracies, were

conducted with the same components. A strict separation of training and test

data on the component level did not occur. Therefore, like in the case mentioned

before, a statement regarding the validity of the results for unseen components

could not be made.

In summary, it can be noted that the early work was mostly concerned with

identifying potentially suitable signals for condition monitoring of ball screws.

As a result, signals from the rotary encoder, the linear encoder, the torque from

the feed drive motor, and vibration signals from additional accelerometers were

selected and analysed, producing promising results in exploratory experiments.

In a next step, many authors focused on constructing features from those signals,

such that a stronger correlation with wear could be observed (i.e. construct-

ing wear-sensitive features). Additionally, non-purely data-driven approaches,

which directly estimate the preload level based on a dynamic model, were also

presented. Those models have the advantage of better interpretability but are

difficult to set up as identifying suitable parameters for them is difficult and must

be repeated for each new feed drive system. The approaches, which integrated

novel sensor systems, were indeed promising but led to additional costs. More re-

cent data-driven approaches used the already available CNC signals and applied

ML algorithms. The results were encouraging as the prediction accuracies with

respect to correctly classifying preload loss were high. However, the presented

results were not based on a strict separation between training and test data

(i.e. the same components were used for training and testing the proposed ML

approaches). Therefore, the validity of the reported results for previously unseen

components is still unclear and has yet to be shown.
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3.1.2 Linear Guides

The body of literature with respect to condition monitoring of linear guides is

even smaller than the one on condition monitoring of ball screws. The four most

relevant publications for this topic will be described below.

LI, JIA, et al. (2018), who were mentioned in the previous subsection already,

can also be mentioned in this section, as their approach also covered monitoring

the preload loss of linear guides. They collected CNC data and vibration signals,

extracted features from those signals, and applied ML algorithms to classify

linear guides by their respective preload level. As no strict training and test data

split was conducted, the results cannot yet be regarded as transferable to unseen

components.

TSAI et al. (2017) monitored preload loss of linear guides by regularly conducting

an OMA based on vibration signals collected by three accelerometers mounted

onto the carriage. The excitation of the feed drive was done by feeding a sine

chirp signal to the motor current. They showed that their OMA-based approach

could accurately yield the modal parameters which were also identified with a

traditional experimental modal analysis (EMA). Using this approach for long-

term tests and continuously monitoring the modal parameters was discussed

only as a topic for future work.

KIM et al. (2021) conducted experiments on a test bench which only consisted

of a single rail and runner block. They used a CNN for detecting faulty linear

guides based on vibration signals collected by an accelerometer mounted onto

the runner block. Their CNN was designed specifically to learn features which

can be interpreted in the frequency domain, which facilitated the analysis and

interpretation of the results. However, they used the same linear guide in their

training and test data, limiting the transferability to unseen components.

SCHWARZENBERGER et al. (2022) proposed to use the so-called isolation forests
anomaly detection method (LIU et al. 2008) for identifying wear. Their experi-

ments were done on a life cycle test bench for linear guides, which was designed

for accelerated lifetime tests, and a five-axis milling machine. In both cases, the

data were acquired with affordable micro-electrochemical systems (MEMS) ac-

celerometers mounted onto the carriage. During the experiments, pitting damage

on the linear guide and the rolling elements of the runner blocks was observed.

The isolation forests were trained on the data gathered from the life cycle test

bench and performed well in detecting anomalies on the test data collected
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from the machine tool. The anomalies were also detected when the model was

trained on the machine tool data and tested on the life cycle test bench data

demonstrating the transferability of the proposed approach. Furthermore, the

detection of anomalies indeed occurred when the linear guides were damaged.

As a conclusion, it can be stated that monitoring the condition of linear guides

is less explored in research. One reason for this might be that they do not

fail as frequently as ball screws in many use cases. With the publication of

SCHWARZENBERGER et al. (2022), however, work exists that demonstrated an

approach which is accurate in detecting wear and can be successfully applied to

unseen components. This has yet to be shown for condition monitoring of ball

screws.

3.2 Methods for Remaining Useful Life Estimation

In contrast to the state of the art on condition monitoring of ball screw feed

drives described in Section 3.1, a large number of review papers is available

discussing general methods, which are independent of a specific use case, for

RUL estimation.

LEI et al. (2018) published an extensive work reviewing methods for all four PHM

process steps depicted in Fig. 2.6 (page 18). They found that most approaches

for RUL estimation can be classified into the following categories: physics model-

based approaches, statistical model-based approaches, artificial intelligence (AI)

approaches and hybrid approaches, which combine the former three. They

assessed that artificial neural networks (ANNs) were the most commonly used

AI technique in the context of RUL estimation but concluded that there are

still issues which must be addressed in the future. Two of these are especially

important for this thesis: first, dealing with little or even no failure data; and

second, managing the uncertainty of RUL estimates.

ZHANG et al. (2019) conducted a review on the application of deep ANNs (i.e.

deep learning (DL)) in PHM (see Table 3.1). The main finding of their review

was that DL can be universally applied to different sub-fields of PHM. Examples

of such sub-fields are fault detection and diagnosis (i.e. condition monitoring)

and the estimation of RUL. However, they also identified current challenges, one

of which is especially relevant for this thesis: the data quality and data quantity

in real-world use cases are often different from those presented in many scientific
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number of publications per data type

model vibration time series image structured

RNN 5 5 – –
RBM 5 1 – 7
AE 17 – – 3
CNN 30 4 8 –

Table 3.1: Usage of the different DL model variants convolutional neural network (CNN), auto
encoder (AE), restricted Boltzmann machine (RBM) and recurrent neural network (RNN) dependent
on the available data type as reviewed by ZHANG et al. (2019); it can be seen that CNNs are the
most frequently applied ones.

papers. Industrial data could be noisier, subject to environmental disturbances

and, in general, scarce. The last is especially the case for failure data. Hence,

methods addressing this issue must be developed in the future.

FINK et al. (2020) also provided a review about DL models in the context of PHM.

In contrast to ZHANG et al. (2019), their review had a slightly wider perspective

as they briefly reviewed the progress of DL in the ML community, the natural

language processing (NLP) community and the computer vision community first,

before they discussed the application of DL models in PHM applications. Finally,

future research needs of DL in the context of PHM were identified, some of

which are the following: first, domain adaptation models must be developed

to handle tasks where the training data from the source domain differ from

the data in the application domain. An example of this would be a machine

tool feed drive on two different machines from different manufacturers. It is

not guaranteed that collecting training data from one machine (i.e. the source

domain) and applying a trained model to the other machine (i.e. the target

domain) is successful. Today’s DL approaches are vulnerable to such domain

shifts. Second, the combination of DL and expert knowledge must be further

investigated. Current approaches are still exploratory and there is no common

consensus on how they can be transferred to practical use cases yet. Third, they

found that the quantification and utilisation of uncertainty in RUL estimation

must be addressed more comprehensively.

WEN et al. (2022) provided a more recent review of general data-driven ap-

proaches to PHM. Hence, not only DL models were reviewed but also more

conventional ML methods such as support vector machines (SVMs) (BOSER et al.

1992) and decision trees (QUINLAN 1986). They emphasised that the availability

of public failure and run-to-failure data sets for rotating machinery (e.g. bear-



3.2 Methods for Remaining Useful Life Estimation 55

ings) and aircraft systems has led to the fact that most publications describe the

application of new methods to those data sets. In real industrial domains, they

concluded, that the collection of data is still very costly, and failure data are often

scarce or not available at all. This is especially the case for entire run-to-failure

data sequences. Furthermore, they agreed with the above-mentioned authors

and noted that the quantification of the uncertainty of RUL estimates is still an

open research direction for future work.

Finally, BAUR et al. (2020), a source which was already introduced in Section 3.1,

also concluded that, in the case of ball screw feed drives, future methods must

reduce the need for run-to-failure data.

Summarising all that leads to the statement, that all recent and relevant review

papers on the estimation of RUL in the context of PHM agree on the two short-

comings in the state of the art: first, many authors have developed methods

which estimate the RUL as a single value (i.e. a point estimate) and only few

have proposed methods for also quantifying the uncertainty of the RUL estimate.

Having such an uncertainty estimate could facilitate making the decision when

to replace a part before a failure occurs. Second, industrial use cases suffer from

the absence or shortage of failure and run-to-failure data. As a result, many

current methods cannot be applied to real use cases. Hence, methods are needed

which can predict an RUL value based on little or even no run-to-failure data.

The state of the art of both shortcomings will further be reviewed in more detail

in the following subsections.

3.2.1 Quantifying and Utilising Uncertainty Information

Classical approaches for estimating a probabilistic RUL value, which inherently

include uncertainty information, are statistical models for lifetime analysis. Those

models assume that the lifetime of an object can be described by a structural

degradation represented by a hazard function and noise. In so-called proportional
hazard models (COX 1972), this idea is extended by integrating sensor data into

the model, in order to explain the noise at least partially (LAWLESS 2003, pp. 8–

36).

More recent approaches apply Bayesian ML models (as described in Subsec-

tions 2.3.2 and 2.3.3) to exploit the ML model’s capability of explaining non-

linear relationships between sensor signals and the associated RUL value. Fur-
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thermore, Bayesian ML models automatically quantify the uncertainty of the RUL

estimate (GHAHRAMANI 2015).

KRAUS and FEUERRIEGEL (2019) presented a model for predicting RUL values

which consisted of three additive parts: first, a lifetime model as described

above; second, a linear model which only relies on the sensor signals at the

current time t; and third, a recurrent neural network (RNN) which relies on

the entire sequence of sensor signals up to the current time t. They estimated

the parameters with a variational inference (VI) algorithm (see Appendix A.3)

and validated the approach with the C-MAPSS benchmark data set, which was

originally published by SAXENA et al. (2008) (see Appendix C.1 for details).

Although the obtained RUL prediction results were competitive compared to

other results which were state-of-the-art at that time, the probabilistic nature of

their approach was not fully exploited. It was not shown how to utilise and how

to handle the uncertainty associated with the RUL estimates.

LI et al. (2020) also presented an approach which is based on both a lifetime

distribution and a DL model. They used the sensor signals from a hydraulic

system as inputs for an ANN which mapped them to the parameters of a life-

time distribution. Hence, their final RUL prediction was generated from the

lifetime distribution whose parameters changed with increasing wear. In their

experiments, they applied different lifetime distributions such as the Weibull dis-

tribution (see Appendix A.4) or the Gaussian distribution (see Subsection 2.3.3).

The unknown parameters of the ANN were found by conducting VI (see Ap-

pendix A.3). Their approach had the advantage that the uncertainty could be

separated into the following two sources: first, the aleatoric uncertainty, which

describes the uncertainty of the DL model’s parameters and is reflected in the

probabilistic outcomes of the ANN; and second, the epistemic uncertainty, which

describes the uncertainty due to random measurement errors and is reflected

by the lifetime distribution. However, the authors did not discuss how to benefit

from those uncertainties to enhance the decision-making process for scheduling

maintenance actions.

PENG et al. (2020) made a comparison between conventional, non-probabilis-

tic ANNs trained with backpropagation, as described in Subsection 2.3.2, and

their Bayesian counterparts trained with VI. The comparison was done with the

C-MAPSS turbofan engine data set and the FEMTO bearing data set (NECTOUX

et al. 2012), which are further described in Appendices C.1 and C.2, respectively.

The experiments showed, that the Bayesian and conventional models lead to
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acceptable results with respect to the RUL prediction accuracy. Although the

authors claimed that the additional information from the Bayesian model (i.e.

the uncertainty) could be leveraged in decision-making, they did not outline how

this can be achieved.

BIGGIO et al. (2021) proposed to apply a deep Gaussian process (GP) model,

which sequentially stacks Gaussian process regression (GPR) models to represent

more non-linear relationships between the inputs and outputs than a standard

GPR model as described in Subsection 2.3.4 (DAMIANOU and LAWRENCE 2013).

They validated their deep GP model on the N-CMAPSS data set, which is a

more recent variant of the C-MAPSS data set published by ARIAS CHAO et al.

(2021), and compared the prediction accuracy with conventional DL models

and Bayesian DL models trained with VI. As a result, they demonstrated that

the deep GP models yielded comparable prediction accuracies while providing

sensible uncertainty estimates. Also in this case, the utilisation of the uncertainty

information was not discussed.

In summary, the referenced authors have investigated the application of Bayesian

ML models to the task of RUL estimation. Three types of models were applied:

first, statistical lifetime models, which were extended with more flexible ML

models; second, Bayesian DL models; and third, GP models. All of them have

the property that they not only predict a point estimate but an entire probability

density for the RUL value. All authors reported competitive prediction accura-

cies compared to the state of the art. It is notable, however, that all authors

have used VI for model fitting and none has used Markov chain Monte Carlo

(MCMC). Furthermore, an approach for utilising the derived uncertainties was

not presented.

3.2.2 Data-Efficient Estimation of Remaining Useful Life Values

In industrial use cases, failure data and especially run-to-failure data, which

reflect sensor data along the entire life cycle of a system, are scarce. Therefore,

data-efficient methods are critical for the general applicability of RUL prediction

methods. Although this insight was emphasised by the review papers presented

in Section 3.2, there are hardly any authors who address this open issue. The

few who did are summarised below.

LV et al. (2020) proposed a special neural network architecture which they called

sequence adaption adversarial network, which was pre-trained on an auxiliary
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training data set (i.e. data from the source domain) to reduce the amount of

training data needed for the actual training data set of the use case of interest (i.e.

the target domain). They conducted experiments with the C-MAPSS data set and

showed that they could generate competitive prediction accuracies compared to

the state of the art. Although they could reduce the training data set size, they

still needed 16 run-to-failure sequences to demonstrate good results.

ZHANG et al. (2018) proposed to apply transfer learning to reduce the amount of

training data needed. They used the C-MAPSS data set and showed that, in some

cases, their transfer learning approach could indeed yield good RUL prediction

accuracies, when it was trained on one subset of the dataset and applied (i.e.

transferred) to another subset (see Appendix C.1).

Although the two above-mentioned approaches are more data-efficient than

conventional DL models, they still rely on run-to-failure data. This is due to

the fact that they map the sensor signals directly to an associated RUL value.

In contrast to that, indirect approaches map the sensor signals to a health

indicator (HI) value first. This HI value can be extrapolated into the future. With a

threshold for the HI, an RUL value can be derived (see Fig. 3.1). Consequently, the

estimated RUL values are not directly dependent on historical run-to-failure data

but are only dependent on a historic sequence of HI values. This can be exploited

to eliminate the need for entire run-to-failure sequences. The resulting task,

however, is to design a wear-sensitive HI. In the following paragraphs, examples

from the literature of indirect approaches for designing HIs and predicting RUL

values will be presented.

NGUYEN and MEDJAHER (2020) suggested finding an optimal HI by first ex-

tracting time-domain features from the raw time series and recombining them

according to predefined mathematical operations. For example, those opera-

tions included addition and subtraction. The multi-objective function of the

optimisation problem aimed at optimising several evaluation criteria at once. For

example, the resulting HI should have correlated with wear, followed a trend

and exhibited monotonicity. The optimisation problem was solved with a genetic

algorithm (ZITZLER et al. 2001). Their approach was tested with the C-MAPSS

and FEMTO data sets (see Appendices C.1 and C.2, respectively) and showed

good results with respect to maximising the objective function. However, they

did not thoroughly investigate the influence of their optimised HIs on the RUL

prediction performance.
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Figure 3.1: Illustration of direct and indirect RUL prediction approaches; on the left hand side,
a direct approach is depicted, which calculates a probability density of the RUL based on the
raw sensor signals directly. On the right hand side, an indirect approach is illustrated, which first
calculates an HI. In a second step the HI is extrapolated. With the help of a threshold, an RUL
prediction can be derived.

Finally, LI, JIA, et al. (2018), who were already mentioned in Subsections 3.1.1

and 3.1.2 as an example for condition monitoring of ball screws and linear guides,

can also be referenced in the context of data-efficient RUL estimation. Based on

a large number of features, which were extracted from the raw time series, they

selected the most useful ones and constructed a simple HI with a linear regression

model. Each parameter of the regression model was associated with one of the

selected features. The regression model was fitted with data from the beginning

and the end of the life cycle of a ball screw from their test bench. At the beginning,

the HI was defined to be one and at the end of the lifetime the HI was defined to

be zero. With this approach, entire run-to-failure sequences were not necessary

any more, as one could simply use data from a new and a degraded component.

They validated their approach with a ball screw run-to-failure experiment on

their test bench and showed that their HI indeed had a trending, accelerated

degradation pattern. The HI was extrapolated with a GPR model with the radial

basis function (RBF) kernel denoted in Eq. (2.80). Although the approach by

LI, JIA, et al. (2018) can be regarded as a big step towards an applicable and

data-efficient method for the estimation of RUL values for industrial use cases,
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such as machine tool feed drives, several open questions remain: first, the paper

does not clearly explain what data were used for constructing and training the HI

(i.e. the linear regression model). It is unclear whether a strict training and test

data split was conducted. Second, the applied RBF kernel for the extrapolation

with the GPR model is a stationary kernel (i.e. suitable for data, that does not

follow a trend). However, the HI values do follow a trend by definition. Hence,

there is still room for improvement regarding the GPR model.

Summarising all that leads to the conclusion, that the state of the art provides

approaches which aim at estimating RUL values based on little or even no run-

to-failure data. The latter is achieved by indirect approaches, which only rely on

observations at the beginning and at the end of a component’s life cycle, making

entire run-to-failure sequences dispensable. With the work by LI, JIA, et al.

(2018), even an approach exists for indirect RUL estimation for ball screw feed

drives, which is also the main focus of this thesis. Nevertheless, open questions

have been identified and gaps in the state of the art still exist. In the following

section they will be summarised and a need for action will be derived.

3.3 Summary and Research Gaps

The review of the state of the art presented in the Sections 3.1 and 3.2 revealed

that, although previous authors have contributed significantly to the field of

condition monitoring for machine tool feed drives and methods for the estimation

of RUL, there are still research gaps (RGs), which must be addressed. These

RGs can be divided into the following two research categories: first, there are

open questions regarding the practical application of methods for condition

monitoring of machine tool feed drives:

RG1 Most authors have conducted experiments on single-axis test benches, only.

This is perfectly reasonable in order to develop a basic understanding about

condition monitoring of machine tool feed drives and the relevant signals.

Nevertheless, ball screw feed drives in industrial applications are part of

larger and more complex systems, such as multi-axis machine tools. Hence,

it must be doubted that the transfer of the findings made on single-axis

feed drives to more complex systems can succeed. However, this is an

unconditional prerequisite for applying a condition monitoring system in

industrial machine tools.
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RG2 It has not yet been shown that the condition of previously unseen ball

screws can be accurately predicted. Most of the known approaches for

condition monitoring of machine tool feed drives are data-driven. Although

they have the advantage of being very flexible, they can lead to over-fitting

and subsequently to a model which fails to explain wear for previously

unseen components. This would obstruct the transferability of a data-

driven approach to industrial use cases and, hence, make it useless for

practical applications. According to the state of the art, this transferability

has only been previously shown for linear guides and has yet to be shown

for ball screws.

Second, there are methodological gaps in the literature regarding suitable ap-

proaches for the estimation of RUL values for machine tool feed drives, a use

case which goes hand in hand with the scarcity of failure observations and often

even the complete absence of run-to-failure data:

RG3 The methods proposed for RUL prediction according to the state of the art

achieved good overall performances with respect to the mean squared error

between the true and predicted RUL values. However, those approaches

usually predicted a single RUL value (i.e. a point estimate). It is almost cer-

tain that this single predicted RUL estimate differs from the true RUL value

in most cases. This uncertainty can be quantified, which has recently been

demonstrated by several authors. Nevertheless, the state of the art falls

short of an approach which can quantify the RUL prediction’s uncertainty

and, at the same time, utilise this uncertainty for better decision-making,

namely for answering the question what point in time is the optimal one

for replacing a component before it fails.

RG4 Finally, the state of the art falls short of a data-efficient approach which

is able to accurately predict the RUL values of a system for which historic

run-to-failure data are not available and historical failure observations

are scarce. This is especially critical for the estimation of RUL values

in industrial use cases. Although some authors have proposed indirect

approaches to the estimation of the RUL, which can spare the necessity of

entire historic run-to-failure sequences, most of them still relied on a large

amount of historic failure data. For machine tool feed drives, this amount

of historic failure data is restrictively expensive to collect.
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Based on the four RGs above, the next chapter derives research questions and a

research approach for answering the open questions and extending the state of

the art.
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Chapter 4

Research Approach

This chapter will explain the overall research approach. First, in Section 4.1,

research targets (RTs) will be derived based on the identified research gaps (RGs)

from the state of the art. Second, the proposed approach for addressing the RTs

and ultimately closing the RGs will be presented in Section 4.2.

4.1 Research Targets

In Section 3.3, four RGs from two categories were identified. In order to further

specify the need for action and find suitable targets, an RT will be derived for

each identified RG. The two identified research categories from Section 3.3 will

be retained.

Condition Monitoring of Machine Tool Feed Drives

RG1 was defined as the lack of publications demonstrating a condition monitor-

ing approach for machine tool feed drives on an industrial test bench, as most

authors conducted their experiments on a simplified single-axis setup. Based on

this RG, the following RT can be proposed:

RT1 Derive a condition monitoring test cycle for an industrial test bench en-

abling a user to obtain reproducible measurements which are robust against

environmental influences. This condition monitoring test cycle should in-

tegrate the insights gained from the state of the art. That includes the

recording of the signals that were identified as relevant and the excitations

that have shown to be successful in generating wear-sensitive signals.
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RG2 revealed that the data-driven condition monitoring approaches from the

state of the art have not yet demonstrated good prediction results with respect

to different failure modes for previously unseen ball screw drives. This lack of

transferability is especially problematic as it can prevent a user from believing

in a successful practical application, which ultimately hinders the adoption in

industry. Therefore, the following RT can be noted:

RT2 Deliver a data-driven condition monitoring approach which can success-

fully assess different fault modes of previously unseen ball screws. As the

application to machine tool feed drives implies the scarcity of historic

failure observations, such an approach should produce good results even

when it is trained with only few historic failure observations.

Methods for the Estimation of Remaining Useful Life

RG3 noted that the state of the art did not show how to utilise uncertainty

information for supporting the decision of when to conduct a maintenance action.

Hence, it has not been demonstrated how to use this additional information for

determining a better end-of-life time of a component, which ultimately defines

the last possible time for conducting a maintenance action. Due to that, the

following RT arises:

RT3 Develop a method for utilising the uncertainty information of the estimated

remaining useful life (RUL) value of a probabilistic machine learning model.

The method should achieve a more accurate prediction of the end-of-

life time of a component, ultimately leading to an optimised time for a

maintenance action.

RG4 stems from the conclusion that data-efficient methods for the estimation

of RUL values have not yet been sufficiently developed according to the state

of the art. Past work on RUL estimation has heavily relied on the availability

of historic failure observations and run-to-failure sequences. In many industrial

applications, run-to-failure data of a component are scarce or do not even exist.

Hence, the following RT must be achieved:

RT4 Develop a method for the estimation of RUL values based on only few

historic failure observations. The method should be able to predict RUL

values as accurately as, or close to the accuracy of, state-of-the-art methods,

which rely on many historic failure observations or run-to-failure sequences.
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By achieving the RTs defined above, the RGs are to be closed. The next section

will introduce the publications within this publication-based dissertation.

4.2 Proposed Approach

The proposed approach of this thesis consists of four publications addressing the

RTs defined in the previous section. Additionally, the economic potential of the

proposed approach was investigated and the results of that were described in

a fifth publication. Below, all publications will be briefly introduced and their

contributions to the RTs will be highlighted. Furthermore, each publication led

to findings which will further be summarised in a single key finding (KF) for

each of them in Section 7.1.

RT1 is pursued by publication 1 , which was concerned with the derivation of a

condition monitoring test cycle for machine tool feed drives on a fairly realistic,

industrial test bench (see Appendix B.1). The resulting test cycle enables the

recording of reproducible measurements which are robust against environmental

influences and capture wear-sensitive signals of machine tool feed drives.

RT2 is addressed by publication 2 , in which a data-driven condition monitoring

approach trained on only few historic failure observations was investigated. The

approach was tested on previously unseen ball screws and the data were recorded

using the test bench and test cycle derived in publication 1 . Special attention

was paid to the approach’s ability of correctly predicting different fault modes of

previously unseen ball screws.

RT3 is achieved by publication 3 , in which a new method for the utilisation

of the uncertainty of RUL estimates was introduced. The novel method was

compared to the state of the art with respect to accurately predicting RUL values.

The comparison was carried out with the C-MAPSS benchmark data set (see

Appendix C.1), and it was investigated whether the new method could enhance

the decision-making process for selecting a more suitable time for maintenance

actions.

RT4 is accomplished by publication 4 , in which a novel method for RUL

estimation was presented which can be trained with only few historic failure

observations. Based on the trained model, RUL values for previously unseen

components can be calculated. The method was validated with the C-MAPSS and
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FEMTO data sets (see Appendices C.1 and C.2) and was compared to state-of-

the-art methods, which rely on a large number of entire run-to-failure sequences.

In particular, the impact of the reduced data set with respect to RUL prediction

accuracies was quantified.

Additionally, publication 5 assessed the economic potential of the overall

research approach of this thesis.

All publications are listed below with their full bibliographic data and the research

approach is depicted in Fig. 4.1.

Publication 1 BENKER, M., JUNKER, S., ELLINGER, J., SEMM, T., and ZAEH,

M. F., (2022). “Experimental Derivation of a Condition Monitoring Test Cycle

for Machine Tool Feed Drives”. In: Production Engineering 16.1, pp. 55–64. DOI:

10.1007/s11740-021-01085-9

Publication 2 BENKER, M. and ZAEH, M. F., (2022). “Condition Monitoring of

Ball Screw Feed Drives Using Convolutional Neural Networks”. In: CIRP Annals
71.1, pp. 313–316. DOI: 10.1016/j.cirp.2022.03.017

https://doi.org/10.1007/s11740-021-01085-9
https://doi.org/10.1016/j.cirp.2022.03.017
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Publication 3 BENKER, M., FURTNER, L., SEMM, T., and ZAEH, M. F., (2021).

“Utilizing Uncertainty Information in Remaining Useful Life Estimation via

Bayesian Neural Networks and Hamiltonian Monte Carlo”. In: Journal of Manu-
facturing Systems 61, pp. 799–807. DOI: 10.1016/j.jmsy.2020.11.005

Publication 4 BENKER, M., BLIZNYUK, A., and ZAEH, M. F., (2021). “A Gaussian

Process Based Method for Data-Efficient Remaining Useful Life Estimation”. In:

IEEE Access 9, pp. 137470–137482. DOI: 10.1109/ACCESS.2021.3116813

Publication 5 BENKER, M., ROMMEL, V., and ZAEH, M. F., (2022). “An In-

vestigation into the Economic Efficiency of Different Maintenance Strategies

Based on a Discrete Event Simulation”. In: Procedia CIRP 107, pp. 428–433. DOI:

10.1016/j.procir.2022.05.003

An overview and a categorisation of the first four publications with respect to

the application they aim at and the steps of the general prognostics and health

management (PHM) process they are concerned with are given in Fig. 4.2. It

can be seen that publications 1 and 2 are exclusively concerned with the

application to machine tool feed drives, whereas publications 3 and 4 are

methodological in nature and therefore are not restricted to specific applications

or machines or components.

The next chapter will describe the details and findings of publications 1 – 4 .

The content of publication 5 will be summarised in Chapter 6.

https://doi.org/10.1016/j.jmsy.2020.11.005
https://doi.org/10.1109/ACCESS.2021.3116813
https://doi.org/10.1016/j.procir.2022.05.003


68 4 Research Approach

application

PHM process
machine tool
feed drives

other
applications

step 1
data acquisition

and pre-processing

step 2
feature extraction

and selection

step 3
condition

monitoring

step 4
estimation of re-

maining useful life

publication 1⃝

publication 2⃝

publication 3⃝

publication 4⃝

Figure 4.2: Overview and categorisation of the publications; each publication can be categorised
by one or several PHM process steps it addresses and by the application it aims at.
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Chapter 5

Research Results

This chapter will present the publications addressing the research targets (RTs)

defined in Section 4.1. In Sections 5.1 to 5.4, the content of each publication will

be summarised1, the resulting findings will be stated and assessed with respect

to achieving their respective RT.

5.1 Publication 1: Derivation of a Condition Monitoring Test

Cycle

The content of publication 1 will be summarised in Subsection 5.1.1, whereas

the findings will be stated in Subsection 5.1.2. The overall objective was to

derive a condition monitoring test cycle that is robust against environmental

influences and which is able to record reproducible data for condition monitoring

of machine tool feed drives.

5.1.1 Summary

The overall objective of publication 1 was to first derive a novel condition

monitoring test cycle for machine tool feed drives and, second, demonstrate

its applicability and ability to acquire data for a more realistic system than a

single-axis test bench, which was used in the state-of-the-art publications. In

order to achieve this objective, an experimental test bench, which is closer to a

real machine tool, was set up at the Institute for Machine Tools and Industrial
1The notations of the original publications, which can slightly differ from those used in

Chapter 2, will be retained. However, all notations will be clarified in their context.
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Management of TU Munich (in German: Institut für Werkzeugmaschinen und

Betriebswissenschaften der TU München) (iwb). The test bench consisted of a

DMG DMC duo Block 55H milling machine without a housing, a spindle system

and a rotary axis (see Appendix B.1 for details). In addition, ball screws and

runner blocks with different wear states were available for the investigated

machine’s X-axis (see Tables B.1 and B.2). All measurements were conducted

with the machine tool’s Heidenhain iTNC530 computer numerical control (CNC)

and three additional external accelerometers mounted to the ball screw nut and

onto two runner blocks. The external accelerometers provided vibration signals,

whereas the CNC delivered position signals from the rotary and linear encoder

as well as the motor current and torque. Hence, all signals considered useful for

condition monitoring by the authors mentioned in the chapter on the state of

the art were recorded.

The final condition monitoring test cycle (see Fig. 5.1) was designed so that

the system reactions to the following three excitations were captured after a

warm-up phase of 60 min:

Constant speed excitation During this excitation, the carriage was moved

back and forth along the entire axis length from −1300 mm to −700 mm2

with a commanded feed rate of 24 000 mm/min. Both signals from the internal

oscilloscope of the CNC and vibrations from the external accelerometers were

recorded during the excitation.

Direction change excitation The carriage was moved back and forth for only a

small travel distance from −1000 mm to −999 mm with a commanded feed rate

of 24 000 mm/min. This excitation was conducted around the half way position

of the ball screw spindle, and both signals from the internal oscilloscope of the

CNC and vibrations from the accelerometers were recorded.

Sine sweep excitation In order to obtain a frequency response function (FRF),

a sine sweep signal from 1 Hz to 500 Hz was fed to the motor. The excitation was

implemented as a velocity set point of the motor. Signals from the rotary and

linear encoders were recorded with the Heidenhain TNCopt software tool. They

were treated as excitation and response, respectively, and an FRF was calculated

by dividing the Fourier transform of the response by the Fourier transform of the

excitation. In addition, the vibrations from the external accelerometers were also
2Due to the machine’s reference position, the values are negative. Position −1300 mm is at the

left end of the axis, position −700 mm is at the right end of the axis and position −1000 mm is in
the middle of the axis.
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Figure 5.1: Flow chart of the resulting test cycle as described in BENKER, JUNKER, et al. (2022)

recorded. The sine sweep excitation was performed at an axis position close to

the motor (i.e. at the X-axis position −1300 mm).

In a second step, the main factors of disturbance on the measurements were

identified in order to control them and to ensure that the test cycle generated re-

producible measurements. The three main factors of disturbance were identified

as the following:

Axis position of the investigated feed drive Preliminary investigations by

authors of state-of-the-art research papers and by the author of this thesis have

indicated that modal parameters (see Subsection 2.1.3) are useful features for

condition monitoring, as they change with wear (ELLINGER et al. 2019). Hence,

accurately identifying and monitoring them is considered a promising strategy

for condition monitoring. For this purpose, the axis position of the feed drive had
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to be controlled because different axis positions lead to different distributions of

the involved masses, changed dynamic characteristics and ultimately different

modal parameters. This can be seen in Fig. 5.2a, where three FRFs from the

investigated feed drive dependent on the X-axis positions are shown. In particular,

a mode shift became visible. Hence, for the purpose of condition monitoring, the

axis position must always be the same to receive comparable and reproducible

measurements from the test cycle.

Temperature of the feed drive Thermal effects on machine tools have been

extensively studied in the past and are generally considered an important in-

fluence (MAYR et al. 2012). For example, LEE and DONMEZ (2007) showed

that with higher temperatures of the tool-holder-spindle its natural frequencies

change. Hence, for high precision machinery, the temperature is a disturbing

factor. Therefore, the temperature’s influence on the data collected with the

proposed condition monitoring test cycle had to be investigated and ultimately

controlled, too. This was done in experimental investigations, in which the con-

sidered feed drive was heated up by traversing the carriage back and forth along

the entire axis length from −1300 mm to −700 mm with a commanded feed rate

of 24 000 mm/min for approximately 90 min. During this time, the temperature

measured on the surface of the ball screw nut was observed to converge to 36 °C.

Afterwards, the test cycle was conducted every ten minutes (i.e. regularly whilst

the feed drive was cooling back down to ambient temperature). In Fig. 5.2b,

it can be seen that in a temperature range from 22.9 °C to 35.3 °C, the FRFs

were not significantly influenced by the temperature, as they are almost perfectly

aligned.

Re-assembly of the feed drive components A potentially major disturbance

factor is the re-assembly of components. In order to avoid this, a standardised

re-assembly procedure according to the manufacturer’s assembly instructions

was followed. To investigate the influence of re-assembly actions, the test cycle

was conducted before and after a ball screw and runner block re-assembly.

Figure 5.2c shows that the FRFs did not significantly change after a ball screw

re-assembly nor after a runner block re-assembly. This was not the case for the

external accelerometer measurements, which exhibit changes in the frequency

ranges from 1 Hz to 50 Hz and from 420 Hz to 500 Hz. Hence, those frequency

ranges had to be excluded from this signal for further analysis.
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Figure 5.2: Sample measurements from the final test cycle as in BENKER, JUNKER, et al. (2022); in
panel (a) it can be seen, that the calculated FRF from the test cycle strongly depends on the X-axis
position. In panels (b) and (c), the recorded data is almost perfectly aligned demonstrating that
the developed test cycle enables the acquisition of reproducible data independent of temperature
changes and the re-assembly of components. The FRFs were calculated from the velocity signals
from the rotary and linear encoder.
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5.1.2 Findings

For publication 1 , a novel condition monitoring test cycle was successfully de-

signed and implemented on a test bench, which, in contrast to the state of the art,

is comparable in complexity to a real machine tool. The derived test cycle enables

the recording of different signals during various excitations. Some of them have

already been identified as promising for the condition monitoring of machine

tool feed drives by other authors in state-of-the-art research. Furthermore, it was

shown that the test cycle is robust against environmental disturbance factors.

Hence, reproducible measurements can be recorded. In summary, the findings of

publication 1 are the following:

• A novel test cycle for the acquisition of condition monitoring data for

a realistic machine tool test bench on industrially available hardware

was defined. The test cycle considers knowledge from the state of the

art by recording signals which were already found useful for condition

monitoring of feed drives by previous authors.

• The derived test cycle is robust against the following two disturbing

factors: temperature of the axis and re-assembly of components. It is

sensitive to the machine’s axis position, which can be controlled, however.

Hence, the test cycle enables the recording of reproducible measurements.

It can serve as a basis for data acquisition and subsequent development

of novel condition monitoring approaches.

Overall, it can be noted that all objectives declared in RT1 were fully addressed

and achieved.

5.2 Publication 2: Condition Monitoring of Ball Screw Feed

Drives

The following subsections will summarise the content and findings of publication

2 . The overall objective was to develop an approach to assess the wear state

of a given, and previously unseen, ball screw with respect to preload loss and

pitting damage.
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5.2.1 Summary

The second publication in this thesis describes the application of the condition

monitoring test cycle derived in publication 1 (see Section 5.1) on the same

test bench described in Appendix B.1 for the ball screws listed in Table B.1. All

ball screws were subsequently assembled into the X-axis of the test bench. After

that, the condition monitoring test cycle was conducted for data acquisition. As

depicted in Fig. 5.1, this implied a warm-up for 60 min and subsequent recording

of signals for the following three excitation patterns: constant speed, direction

change and sine sweep excitation. The recorded signals were provided by the

machine tool’s CNC and external accelerometers. This resulted in a data set with

measurements for all available ball screws.

The ball screws were provided with different preload levels from the manufac-

turer. Furthermore, some had a pitting damage, which had been provoked before

on special test benches by the manufacturer. Hence, the ball screws showed

different fault modes (i.e. pitting damage and preload loss), and the experiments

were defined as classification tasks for the following three class definitions:

Preload loss In this setup, the ball screws with pitting damage were discarded

from the experiments. The remaining ball screws with a high preload level

(denoted as C3 by the manufacturer) were labelled healthy, and ball screws with

a low preload level (denoted as C1 by the manufacturer) were labelled degraded.

Pitting damage For this class definition, all ball screws were considered for the

experiments. The ones without a pitting damage were labelled healthy, and the

ones with pitting damage were labelled degraded.

Indistinct defect Assuming a user does not want to differentiate between a loss

in preload and pitting damage and must conduct a maintenance action in both

cases, this class definition labelled ball screws with both a high preload level and

no pitting damage as healthy and ball screws with a low preload level or pitting

damage as degraded.

In each experiment, binary labels were assigned to each component dependent

on the respective class setup (i.e. the label 0 for healthy and the label 1 for

degraded ball screws; see Table B.1 in Appendix B.1).

The data set was pre-processed according to the following steps: first, the training

and test observations were separated on the component level such that one
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component from each class (i.e. class 0 and class 1) was available for training.

The remaining components were set aside for testing. Second, the recorded time

series were cut into equally sized sub-series which covered an entire excitation.

This resulted in each original time series being cut into four sub-series with

d = 18750 samples for the constant speed excitation and 40 sub-series with

d = 1875 samples for the direction change excitation. Since the recordings of the

original time series did not always start at exactly the same position, the resulting

sub-series were slightly shifted. This was accepted on purpose to impede the

training process and to avoid over-fitting. The sub-series xi and their associated

label were fed into a convolutional neural network (CNN) model, which will be

described below.

For each combination of excitation and signal, the CNN model, as originally

presented by ROMBACH et al. (2021), was applied. The model consists of an

encoder (i.e. feature learner) and a classifier. The encoder received a sub-series

as input vector xi . The architecture of the encoder is a composition of successive

convolutional layers with kernel output sizes 64, 32, 16 and 8. Each convolutional

layer is followed by a leaky rectified linear unit (ReLU) activation function with

slope 0.1, a one-dimensional max pooling layer and a batch normalisation layer.

For better regularization, the last convolutional layer is followed by a dropout

layer with probability 0.5. The output of the encoder is reshaped to be a one-

dimensional vector, which is mapped into a two-dimensional latent space vector

zi with the help of a fully connected layer. The classifier uses the latent space

representation, normalises the latent space vector such that ∥zi∥2 = 1, and maps

it to an output vector ŷi of size two with the help of a single fully connected

layer (see Fig. 5.3 for an illustration of the approach). The model was trained

for 100 epochs with the Adam optimiser (KINGMA and BA 2017) and with an

initial learning rate of 0.01. In case the training loss did not decrease by a value

of at least 0.0001 after ten successive epochs, the learning rate was halved. The

results of the experiments on accurately predicting the class labels on the test

data set are summarised in Table 5.1.

Because the test data set was slightly imbalanced (i.e. there were not equal

numbers of observations from each class in the test data set), the reporting of

the conventional accuracy, which represents the share of the correctly predicted

observations, would have given a biased result. Therefore, the balanced accuracy,

which accounts for an imbalanced data set, was applied. It can be seen that

the different combinations of signals and excitations led to different accuracies
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Figure 5.3: Illustration of the approach followed in publication 2 based on BENKER and ZAEH

(2022); the signal Pmech from the ball screw C11 (see Table B.1) during a direction change excitation
is shown. It was cut into equally sized sub-series, which served as inputs for a CNN model. At
the bottom of the figure, the neural network’s architecture is illustrated and the output sizes of the
tensors after each layer are given.
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balanced accuracy in %

class setup signal excitation mean standard deviation

preload loss
Pmech direction change 91.90 11.76
az direction change 62.95 5.14
Pmech constant speed 52.83 13.25

pitting damage
ay constant speed 73.07 7.23
az constant speed 66.21 22.59
ax direction change 57.72 27.58

indistinct defect
Pmech direction change 98.84 1.16
Pmech constant speed 68.20 7.78
ax direction change 51.55 11.42

Table 5.1: The prediction results as in BENKER and ZAEH (2022) sorted by the highest mean
balanced accuracy of the experiments are shown. Each mean and standard deviation (std) is based
on five repetitions with random training and test data splits.

for the three class setups. The pitting damage was difficult to detect with the

proposed approach, reaching only a mean balanced accuracy of 73.07 %. In

contrast to that, a loss in preload could be detected with a mean balanced

accuracy of 91.90 %. In the case where a distinction between a pitting damage

and a loss in preload was not necessary, the mean balanced accuracy even

reached 98.84 %.

5.2.2 Findings

In publication 2 , a data-driven approach for condition monitoring of ball screw

feed drives was proposed. It relies on data recorded with the test cycle from

publication 1 and predicted the loss in preload and pitting damage of ball screws

with the help of a CNN model. A notable feature of the proposed approach is

that it could achieve high prediction accuracies, although it only had access to

a single component of each class during training. Hence, the approach can be

regarded as data-efficient, which encourages a practical application. In summary,

the findings of publication 2 are as follows:

• A purely data-driven approach is capable of accurately predicting the

current wear state of previously unseen ball screws when it is based on

data recorded with the test cycle derived in publication 1 .

• The proposed approach can be trained on a single component per class.

Even with such little historic failure data, high prediction accuracies can

be reached.
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• The overall best performing combination of signal and excitation is the

Pmech signal recorded during the direction change excitation in the indis-

tinct defect class setup. In this case, the balanced accuracy of five random

experiments has a mean value of 98.84 % and a very low standard devia-

tion of 1.16 %. Hence, in the case where a distinction between a loss in

preload and pitting damage is not necessary, which holds true as in both

cases maintenance actions must be conducted, the proposed approach is

particularly effective.

In conclusion, RT2 was fully addressed and the goals were almost reached in

full. Only the detection of pitting damage with the proposed approach must be

further investigated in the future.

5.3 Publication 3: Uncertainty Information in Remaining

Useful Life Estimation

The following subsections will summarise the content and findings of publica-

tion 3 . The overall objective was to present an approach for quantifying the

uncertainty of remaining useful life (RUL) predictions, and utilising this uncer-

tainty information to determine better end-of-life times of a component under

investigation. In order to be able to compare the results to the state of the art,

all experiments were conducted on the widely used C-MAPSS benchmark data

set (LEI et al. 2018), which consists of several subsets of simulated run-to-failure

sequences of turbofan engines (see Appendix C.1 for details).

5.3.1 Summary

For the publication, two aspects were investigated: first, it compared Bayesian

neural networks trained with variational inference (VI) and Markov chain Monte

Carlo (MCMC) (see Appendices A.2 and A.3) for the estimation of RUL predic-

tion values. Second, a novel approach for utilising the uncertainty information

provided by a Bayesian neural network was proposed and applied.

The C-MAPSS data set was pre-processed according to LI, DING, et al. (2018):

first, a label rectification step limited the maximum value of the historic RUL

values to 125 cycles, which had demonstrated to enhance the RUL prediction
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subset

FD001 FD002 FD003 FD004

observations in the training data set 17 731 48 819 21 820 57 763
observations in the test data set 100 259 100 248
number of selected features d 14 24 14 24
time window length Lw 30 20 30 15

Table 5.2: Summary of pre-processed C-MAPSS training and test data as in BENKER, FURTNER,
et al. (2021)

accuracy. Second, the sensors 1, 5, 6, 10, 16, 18 and 19 have shown to provide

little to no information about the RUL values in the subsets FD001 and FD003

and were excluded from further analysis in those subsets. Third, the data was

normalised using a min-max normalisation to ensure that the different sensor

signals were on the same scale. Finally, the run-to-failure sequences from the

training data set were cut into equally sized sub-series with the sliding window

approach presented by SATEESH BABU et al. (2016). By applying a sliding window

of size Lw onto the original time series, sub-series of size Lw×d resulted, where d

is the number of selected features (i.e. sensors). Since the training data consisted

of entire run-to-failure sequences, it was possible to assign an RUL value to each

sub-series. In Table 5.2, the pre-processed data sets for the different subsets are

summarised.

In the experiments, two neural network architectures were applied, which will

be briefly described below:

D3 The D3 model was designed as a baseline model with a one-dimensional

input layer and three fully connected hidden layers (sometimes also referred to

as dense layers (GÉRON 2019, p. 282), and hence the name D3). Each of the

hidden layers has 100 neurons with sigmoid activation functions. The output

layer consists of a single neuron which returns the RUL estimate.

C2P2 This model was originally proposed by SATEESH BABU et al. (2016) and

consists of two successive convolutional and average pooling layers (hence the

name C2P2). The convolutional layer output sizes are 8 and 14, respectively. The

convolutional kernel has the size 5× 14 in the first layer and 2× 1 in the second

layer, where d is the number of input features. Each average pooling layer has

the kernel size 2× 1 and is followed by a sigmoid activation function. After the

two convolutional layers, the output is flattened and mapped to a single output

neuron, which returns the RUL estimate.



5.3 Publication 3: Uncertainty Information in Remaining Useful Life Estimation 81

Both of the two model architectures were trained with the following four infer-

ence schemes:

Backpropagation and stochastic gradient descent (BP) For a baseline com-

parison to the Bayesian neural networks, classic neural network training with

backpropagation and gradient descent, as described in Subsection 2.3.2, was

conducted. The loss function was defined to be the mean squared error, which

can be regarded as a variant of the sum-of-squares error defined in Eq. (2.48).

The optimisation was conducted with the Adam optimiser (KINGMA and BA

2017) with an initial learning rate of 0.001. After 200 epochs, the learning rate

was reduced to 0.0001 for another 50 epochs. As a result, a single set of neural

network parameters θ was obtained.

Hamiltonian Monte Carlo (H1) The Hamiltonian Monte Carlo (HMC) algo-

rithm applied in this publication was originally proposed by NEAL (1996) and is

also often called hybrid Monte Carlo (HOFFMAN and GELMAN 2014). In contrast to

classical MCMC algorithms, HMC is faster in exploring high-dimensional spaces

and, therefore, more suitable for sampling from the unknown neural network

parameter vector θ . The HMC implementation of the hamiltorch open-source soft-

ware presented by COBB and JALAIAN (2021) was used. Four hyper-parameters

had to be set: first, the initial step size was defined as 0.0012. Second the number

of leapfrog steps was set to 10. Third, the variance of the Gaussian prior over

the parameters p(θ ) was set to 100, and, finally, the variance of the observations

was set to the sample variance of all RUL values in the training data set. In total,

500 samples were generated, from which the first 250 were discarded3.

Hamiltonian Monte Carlo pre-trained (H2) This was an extension of the H1

sampling scheme introduced above. Instead of randomly initializing the mean

of the prior of the parameter vector p(θ ), the prior mean was set to the result

of the BP inference described above. In total, 50 samples were generated, from

which the first 25 were discarded3.

Variational inference (VI) In order to compare the HMC inference approach

to a VI approach, an algorithm from the open-source software package BLiTZ
(ESPOSITO 2020) was used. The optimisation was conducted for 250 epochs

with an Adam optimiser (KINGMA and BA 2017), a mean squared error loss

function and an initial learning rate of 0.001, which was decreased to 0.0001

3When sampling from a Markov chain, it is good practice to discard the initial samples to avoid
a bias towards them. This is also referred to as burn-in (ANDRIEU et al. 2003).
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after 200 epochs. The prior over the unknown parameters p(θ ) was set to be

Gaussian with a standard deviation σ = log (1+ exp(−1)). For approximating the

loss function in each step, 10 samples were randomly drawn from the posterior.

The three Bayesian inference schemes (i.e. H1, H2 and VI) produced probabilistic

RUL predictions, and in those cases, the uncertainty of the RUL prediction was

quantified. Furthermore, in publication 3 , a novel approach for utilising this

uncertainty was proposed. The approach is illustrated in Fig. 5.4 and will be

briefly explained: first, it can be assumed, that too early maintenance actions

are less costly than unexpected failures, which is reflected in the following cost

function (SAXENA et al. 2008):

s (τ) =







s1 (τ) = e−τ/13 − 1 ∀ τ < 0

s2 (τ) = eτ/10 − 1 ∀ τ≥ 0,
(5.1)

where τ is the prediction error between the predicted RUL y⋆ and the true

RUL y. This cost function is shown in Fig. 5.4a, where it becomes visible that

early replacements cause lower costs than late replacements after unexpected

failures. This asymmetric nature of the cost function can be exploited when the

distribution of the prediction error is assumed to be Gaussian according to

p (τ | µτ,στ) = p (τ | bστ,στ) =N (bστ,στ) , (5.2)

where the mean µτ is re-parametrised and defined to be bστ. In this case,

artificially shifting the distribution of τ to the left (i.e. smaller mean values)

might increase the prediction error but decrease the overall costs. This is shown

in Fig. 5.4. Without artificially shifting the distribution of the prediction error

(i.e. b = 0) the distribution of all costs results in the illustration of Fig. 5.4b.

When shifting the distribution of the prediction error by a factor b = b̃, the

distribution of the total costs differs (see Fig. 5.4c). The area under both curves,

which can be interpreted as the total expected costs ctotal , is smaller when the

distribution is shifted. In the publication, it was further shown how to formulate

an optimisation problem for finding an optimal value for b̃. The optimisation

problem was solved numerically for some values of στ and applied to the

predictions from all Bayesian models described above.

The results for the baseline model D3 in combination with the four different

inference schemes are summarised in Table 5.3. The RMSEs, the MAEs, the
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Figure 5.4: Illustration of the proposed approach of publication 3 for utilising uncertainty in RUL
estimation based on BENKER, FURTNER, et al. (2021); in panel (a), the RUL prediction error τ,
which is assumed to be Gaussian with p (τ | bστ,στ) and b = 0, and the cost function s(τ) are
shown. Due to the asymmetric nature of the cost function, unexpected failures (i.e. τ > 0) are
more expensive than too early maintenance actions (i.e. τ < 0). This can be seen in panels (b)
and (c). In panel (b) no adjustment to the prediction is made resulting in total expected costs of
ctotal = 1.43. In panel (c) the prediction is adjusted by a factor b̃ times the variance στ resulting in
lower total expected costs of ctotal = 1.37.
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BP H1 H2 VI

subset metric mean std mean std mean std mean std

FD001

RMSE 13.84 0.25 14.63 1.01 13.98 0.57 14.01 0.10
MAE 9.69 0.22 11.07 1.49 9.86 0.53 10.07 0.03
score1×10−2 4.27 0.47 4.12 0.39 4.39 0.47 3.93 0.15
score2×10−2 – – 3.71 0.33 4.31 0.46 3.64 0.13

FD002

RMSE 20.74 0.99 37.99 4.86 20.69 0.92 19.40 0.22
MAE 14.83 0.70 33.14 4.04 14.86 0.67 15.19 0.19
score1×10−2 194.00 143.64 370.29 230.67 204.07 150.50 28.98 2.74
score2×10−2 – – 336.46 231.58 201.20 149.81 25.52 2.26

FD003

RMSE 14.41 6.00 16.11 1.69 14.18 6.06 14.90 0.27
MAE 10.05 4.55 12.68 1.72 10.05 4.61 10.88 0.18
score1×10−2 29.77 83.47 5.71 1.69 29.02 81.80 5.69 0.58
score2×10−2 – – 4.80 1.21 28.82 81.45 5.07 0.53

FD004

RMSE 22.73 0.74 39.53 3.80 22.76 0.58 23.10 0.14
MAE 16.46 0.39 33.88 3.03 16.58 0.34 17.92 0.10
score1×10−2 103.76 65.21 621.22 322.91 98.17 65.03 66.95 5.57
score2×10−2 – – 546.63 327.44 94.84 61.79 55.26 4.72

Table 5.3: The root mean squared error (RMSE), mean absolute error (MAE), score1 (i.e. without
utilising the uncertainty information) and score2 (i.e. with utilising the uncertainty information) of all
D3 models for the test data are shown (BENKER, FURTNER, et al. 2021). Each mean and std was
calculated from ten runs with different random seeds. The best results are marked bold.

score without utilisation of uncertainty information (score1) and the score

with utilisation of the uncertainty information (score2) are reported. It can be

seen that the Bayesian neural networks perform as well as their non-Bayesian

counterparts with respect to RMSE and MAE. However, in terms of the costs

(i.e. score1 and score2), they perform better. This is even more the case when

the uncertainty information is utilised with the proposed approach. As the

C2P2 model performed worse than the D3 model, its prediction results are only

reported in the publication and are omitted in this thesis.

5.3.2 Findings

In publication 3 , a novel approach for utilising uncertainty information in

RUL estimation was presented and applied to the C-MAPSS benchmark data

set. Furthermore, Bayesian neural networks were implemented and compared

to their non-Bayesian counterparts with respect to the RMSE, the MAE and

the resulting costs. The proposed approach achieved state-of-the-art prediction

accuracies and led to a reduction in costs in all cases. Summarising, the findings

of publication 3 are the following:
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• It could be demonstrated that Bayesian neural networks perform equally

well with respect to RUL prediction accuracies compared to their non-

Bayesian counterparts, whilst at the same time providing uncertainty

information. In the experiments, the Bayesian neural networks trained

with VI resulted in more accurate RUL predictions than the ones trained

with MCMC.

• The novel approach for utilising the additional information about the

uncertainty of the RUL estimate led to lower total costs in every single

experiment. Hence, the application of Bayesian neural networks and

the utilisation of uncertainty enhance the decision-making process in a

predictive maintenance strategy.

Consequently, the objectives defined in RT3 can be regarded as fully addressed

and the goals as achieved.

5.4 Publication 4: Data-Efficient Remaining Useful Life Es-

timation

In the following subsections, the content and findings of publication 4 will be

summarised. The overall objective was to present an approach for data-efficient

RUL estimation, which can achieve state-of-the-art prediction results without the

presence of historic run-to-failure sequences.

5.4.1 Summary

Instead of using run-to-failure data, only few measurements at the beginning

and the end of the lifetime of the system under investigation were used. In order

to compare the proposed method to state-of-the-art approaches which rely on

many run-to-failure sequences, the experiments were done with the C-MAPSS

(see Appendix C.1) and FEMTO (see Appendix C.2) benchmark data sets. Hence,

state-of-the-art results were available with which the novel approach could be

compared.

Both data sets were pre-processed first to reflect the targeted situation, in which

historic run-to-failure sequences are not available but only a few measurements
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at the beginning and end of the entire life cycle are. Hence, each of the training

run-to-failure sequences was manipulated in the following way: the first share ph

of the observations and the last share pd of the observations were cut from the

entire sequence and labelled as healthy and degraded, respectively. For example,

in the case of the C-MAPSS data set, the first 7.5 % of the observations of each

training run-to-failure sequence were selected and labelled healthy and the last

2 % were labelled degraded.

The C-MAPSS data set was further pre-processed by standardising the data. In

contrast, the FEMTO data set had to be pre-processed more intensively: since the

raw data consisted of high-frequency acceleration signals, different features from

the time domain, the frequency domain and the time-frequency domain were

extracted (see Subsection 2.3.1). The feature extraction techniques were adopted

from state-of-the-art approaches originally presented by KIM et al. (2016) and

SUTRISNO et al. (2012).

In all experiments, the run-to-failure sequences from only two randomly chosen

training instances4 were used. As outlined above, the first share ph of observations

and the last share pd of each instance were selected and labelled healthy and

degraded, respectively. As a result, a small training data set with only a few

healthy and degraded observations was available for training.

Based on this training data set, two models were consecutively applied. The

purpose of the first one was to construct a health indicator (HI) whereas the

purpose of the second one was to extrapolate the HI into the future and derive

an RUL value. Both are further described below and the general approach is

depicted in Fig. 5.5.

Health indicator construction A Gaussian process classification (GPC) model

was trained based on the available training data set described above. The model’s

output was the probability of an input coming from a healthy component. Hence,

it computed values close to one for healthy components and values close to zero

for degraded components. In other words, the GPC model served as a tool to

translate the sensor measurements into an HI value. The main advantages of the

GPC model are its data-efficiency (the model could be successfully trained on

the basis of only a few observations) and the fact that it outputs bounded values

on the interval [0,1], which enables the second model to predict an RUL value.

4In case of the C-MAPSS data set, an instance is a certain turbofan engine. In case of the
FEMTO data set, an instance is a certain bearing.
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Figure 5.5: Illustration of the proposed approach presented in publication 4 based on BENKER,
BLIZNYUK, et al. (2021); instead of using the entire run-to-failure sequence, only the first few
observations at time t = 0, and the last few observations at time t = T were selected for training a
Gaussian process classification (GPC) model. During the application of the model, a new sequence
of measurements of an unseen component was first translated into a health indicator (HI) value
before those HI values were extrapolated with a Gaussian process regression (GPR) model. With
the help of a threshold, an RUL value could be derived.
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C-MAPSS FEMTO

subset subset

hyper-parameter all C1 C2 C3

ph 7.5 % 6.5 % 7.5 % 7 %
pd 2 % 1.3 % 1.7 % 3 %
threshold 0.1 0.1 0.1 0.1
training instances 2 2 2 2

Table 5.4: Chosen hyper-parameters for the experiments with the C-MAPSS and FEMTO data sets
as in BENKER, BLIZNYUK, et al. (2021)

Estimation of remaining useful life A warped, monotonic Gaussian process

regression (GPR) model was used for predicting an RUL value. The enforced

monotonicity according to RIIHIMÄKI and VEHTARI (2010) led to monotonically

falling HI predictions. The conducted warping according to JENSEN et al. (2013)

enforced the monotonic prediction to be mapped onto the interval [0,1], which

is the codomain of the HIs. The HI threshold was set to 0.1 and the end-of-life

time was defined to be the point in time, at which the prediction fell below

this threshold. Finally, the resulting RUL value was computed as the difference

between the end-of-life time and the time of the latest measurement.

The chosen hyper-parameters for the different data sets are summarised in

Table 5.4.

In some cases, the estimated RUL values were very high (in fact, too high). This

is especially the case when the component under investigation is at the beginning

of its life cycle. In this situation, the HI does not exhibit a trend yet, and the GPR

model simply extrapolates a constant value, resulting in an obviously too large

RUL estimate. Therefore, a strategy for limiting the RUL value was introduced

and demonstrated for the C-MAPSS data set, where the maximum RUL estimate

was set to 125 cycles (where cycles are the time units of the C-MAPSS data set).

The experiments for the C-MAPSS data set were assessed with respect to the

RMSE, the MAE and the score (i.e. costs; see Eq. (5.1)). In the case of the FEMTO

data set, the relative error

error= 100 ·
�

y − y⋆

y

�

, (5.3)

where y is the true RUL and y⋆ is the predicted one, was calculated. The results

for the C-MAPSS data set are shown in Table 5.5. Comparing the results to those
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RMSE MAE score

subset mean std mean std mean std

FD001 32.61 219.00 16.06 1.16 1.25 × 102 3.18 × 103

FD002 68.54 1434.94 35.19 4.31 7.01 × 104 1.78 × 105

FD003 49.89 1013.54 24.81 5.82 3.51 × 103 3.71 × 103

FD004 63.93 317.72 33.45 1.82 1.09 × 104 2.70 × 103

Table 5.5: Results of the experiments conducted with the C-MAPSS data set as reported in BENKER,
BLIZNYUK, et al. (2021); each mean and std was calculated based on ten random experiments.

in Table 5.3 from publication 3 , it becomes clear that the RUL prediction results

of the data-efficient approach are less accurate in terms of the RMSE. This was

to be expected as it does not rely on any run-to-failure sequences at all and uses

only a tiny fraction of the original data instead. In fact, for the C-MAPSS data

set, less than 1 % of the original data was used. Only the mean score for the

subset FD001 outperforms the deep learning (DL) approaches from publication

3 . Furthermore, the results vary widely as indicated by the high values of the

standard deviations. This reveals a strong sensitivity of the approach to the

selection of the training data. This can be explained as follows: the recordings of

the C-MAPSS training run-to-failure sequences do not all start at the beginning

of an instance’s lifetime. Some do, others start somewhere in the middle of the

lifetime, and some start towards the end of the lifetime. When two instances

(see Footnote 4 on page 86) are chosen randomly, unfavourable selections of the

ones with recordings starting at the end of their lifetime cannot be ruled out. In

practical applications, however, this can be controlled.

The prediction accuracies for the FEMTO data set are listed in Table 5.6. It can

be seen that large prediction errors were produced, which is in line with the

benchmark results from SUTRISNO et al. (2012), who won the FEMTO data chal-

lenge of the International Conference on Prognostics and Health Management in

2012. This emphasises that the data set is more difficult for RUL prediction in

general due to the fact that the extraction of wear-sensitive features for this data

set is more complicated. However, the proposed approach is close to the state of

the art whilst relying on only a fraction of the original data, which demonstrates

its efficiency.

In summary, the proposed data-efficient approach from publication 4 showed

good RUL prediction results, although the accuracies were slightly lower than

those produced by state-of-the-art approaches, which relied on many run-to-

failure sequences. The advantage of the proposed approach, however, is that,
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condition bearing error in % benchmark error in %

C1 3 83.16 37
4 −44.21 80
5 91.99 9
6 91.48 −5
7 73.77 −2

C2 3 97.21 64
4 10.46 10
5 97.54 −440
6 0.87 49
7 −98.73 −317

C3 3 86.26 90

mean absolute error in % 70.52 100.27

Table 5.6: Results of the experiments for the FEMTO data set as reported in BENKER, BLIZNYUK,
et al. (2021); the benchmark results are taken from SUTRISNO et al. (2012).

in industrial use cases, measurements in different degradation states can be ac-

quired more easily than run-to-failure sequences. This can be done, for example,

by targeted replacements of degraded components and making measurements

(see publication 2 ).

5.4.2 Findings

In publication 4 , a novel approach for data-efficient RUL estimation was pre-

sented together with its application to the C-MAPSS and FEMTO benchmark data

sets. The proposed approach achieved good prediction accuracies close to the

state-of-the-art ones without relying on run-to-failure data. This is especially use-

ful for industrial applications, where run-to-failure data are usually not available.

Hence, the findings of publication 4 are as follows:

• A novel data-efficient method for the estimation of RUL values was pre-

sented. The method does not rely on a single historic run-to-failure se-

quence, strongly enabling the application in industrial use cases. The

method only relies on a few observations of a component under investiga-

tion in a healthy and degraded state. The former can be recorded with a

new component. The latter can be recorded by artificially inducing wear.

• The proposed approach led to good prediction accuracies compared to

the state-of-the-art results. Although the predictions were not as accurate

due to the fact that only a tiny fraction of the data was used, the pre-
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diction accuracies were still within the range reported by other authors.

Nevertheless, the absence of run-to-failure data led to a systematic loss in

prediction accuracy.

• It became visible, that the proposed approach is sensitive to the presence

of failure-sensitive features. In the case of the FEMTO data set, where

failure-sensitive features were only partially available, this led to low

prediction accuracies.

In conclusion, RT4 was only partially addressed, as the novel approach resulted

in a loss of prediction accuracy. The usefulness of the novel method for practical

applications is indisputable, however, such that RT4 can be regarded as largely

addressed.
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Chapter 6

Analysis of the Economic Potential of the

Research Results

This chapter is concerned with the investigation of the economic potential of

the research results from Chapter 5. The economic potential of a predictive

maintenance (PdM) strategy, in contrast to a planned and reactive maintenance

strategy, was quantified with the help of a discrete event simulation (DES) model

as described in publication 5 . The following Section 6.1 will outline the content

of the publication and Section 6.2 will give a summary on the economic potential

of the research results.

6.1 Publication 5: Economic Potential

In order to assess the economic potential of different maintenance strategies, a

job shop operated in single-shift operation (8 h) with three machines and three

product variants was simulated. Each product variant was assumed to have dif-

ferent processing times on each machine and having to pass a different machine

sequence. The three machines were assumed to be in one of the following states:

1. Running: in this state, a machine is producing as planned.

2. Maintenance: a planned maintenance action is conducted in this state.

3. Repairing: the machine unexpectedly fails and has to be repaired.

4. Idle: a machine is in idle state when it is ready for production and is

waiting for the next job.
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Furthermore, the following three maintenance strategies were implemented and

compared:

Reactive maintenance strategy This is the least complex maintenance strategy

implemented as there is no maintenance action planned at all. The machines

unexpectedly fail and are subsequently repaired. Hence, when this maintenance

strategy was simulated, the state maintenance was never taken by any of the

machines.

Planned maintenance strategy Maintenance actions for each machine are

planned based on a fixed schedule (e.g. every 500 h). The fixed time for conduct-

ing a maintenance action had to be set before starting the simulation. When the

planned maintenance action for a machine is scheduled before the true failure,

it goes into the state maintenance for 10 h. Otherwise, it unexpectedly fails and

goes into the state repairing for 20 h.

Predictive maintenance strategy The implemented PdM strategy consists of

two steps: first, a remaining useful life (RUL) estimate t̂RU L is sampled from a

normal distribution with a mean equal to the true RUL value tRU L and a standard

deviation σ. The latter is also referred to as the uncertainty of the RUL estimation.

Hence, the RUL estimate t̂RU L follows a normal distribution:

t̂RU L ∼N
�

tRU L ,σ2
�

. (6.1)

In other words, it is assumed that the expected values of the RUL estimate t̂RU L is

equal to the true RUL value tRU L . As the RUL estimates are uncertain, a security

factor cs ∈ ]0,1], by which the RUL estimates are multiplied, is introduced

in the second step. The security factor can be regarded as a user’s degree of

risk averseness. The lower cs, the more risk averse a user is. The result of this

multiplication is used as the time for the next planned maintenance action. If

that happens before the true machine failure, the machine goes into the state

maintenance for 10 h. Otherwise, it unexpectedly fails and goes into the state

repairing for 20 h.

At the beginning of each week of the simulation, a certain fictitious customer

demand was generated such that approximately an entire work week, which

lasted for 40 h, was filled with production orders. Together with the planned

maintenance actions, a scheduling algorithm determined an optimal mainte-

nance integrated production schedule with respect to minimal makespan for
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strategy state time in h

reactive running 7833.47
maintenance 0.00
repairing 272.23
idle 3894.30
total 12 000

planned running 7902.64
maintenance 197.51
repairing 149.43
idle 3750.42
total 12 000

predictive running 8236.77
maintenance 160.85
repairing 0.68
idle 3601.70
total 12 000

Table 6.1: Results of all experiments as reported in BENKER, ROMMEL, et al. (2022); the mean
values of 500 runs are reported. The results of the planned maintenance strategy were generated
with a fixed maintenance action every 500 h. The reported results of the PdM strategy were
generated with cs = 0.95 and σ = 0.

the upcoming week. It should be noted that the times for maintenance actions

determined by the planned and PdM strategies were allowed to be moved for-

ward to an earlier time by the scheduler if this reduced the total makespan. The

scheduler was not allowed, however, to postpone a maintenance action to a

later time. In each simulation run, 100 weeks were simulated and the event time

step of the model was set to one hour. Machine failures were sampled from a

Weibull distribution (see Appendix A.4) with α= 919.5 and β = 1.9, as this can

be assumed to be a representative failure distribution of machine tools (DAI et al.

2003; YANG et al. 2015).

In order to account for statistical fluctuations, each experiment was conducted

500 times. The results for all three maintenance strategies are shown in Table 6.1

and are reported as mean values calculated from those 500 repetitions. It can

be seen that the PdM strategy led to the highest value of total running time

of all three machines. In fact, the running time is 4 % higher than the one of

the planned maintenance strategy and 5 % higher than the one of the reactive

maintenance strategy. This amounts to 2.8 weeks and 3.4 weeks more available

production capacity within the simulated time, respectively.

However, the results are sensitive towards the choice of maintenance and repair-

ing times. The previous results assumed a maintenance action to last for 10 h

and a repair action to take 20 h. With a change in the ratio between the two, the
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results are expected to change as well. Furthermore, the question arises of how

the permissible range of viable combinations of cs and σ evolves with the differ-

ent assumptions. In other words, it is unclear whether a PdM is still economically

beneficial if the uncertainty of the RUL predictions and the repair times after an

unexpected failure are high. This is depicted and investigated in Fig. 6.1, where

it can be seen that, with higher repairing times, the area of viable combinations

of the security factor cs and the RUL prediction uncertainty σ decreases. This is

due to the fact that inaccurate RUL estimates led to late planned maintenance

actions, which in turn led to expensive, unexpected failures in the simulation.

It can also be seen, however, that the security factor cs is a parameter which

gives a user flexibility in coping with more uncertain RUL predictions. The less

accurate they become (i.e. the higher σ is), the lower is an optimal cs. In other

words, even when the RUL predictions are highly uncertain and the repair times

after an unexpected failure are high, a user can viably operate a PdM strategy by

setting an appropriate security factor.

6.2 Summary of the Economic Potential of the Research

Results

Publication 5 showed that a PdM strategy is economically superior to other,

more traditional maintenance strategies (i.e. reactive and planned maintenance).

This is even the case when the RUL estimates, upon which a PdM strategy is

based, are highly uncertain and deviate from the true RUL values. As a user can

account for high uncertainties by being more risk averse, the effect of inaccurate

RUL predictions can be attenuated.

Summarising, in a small fictitious job shop with only three machines, the simu-

lated application of a PdM strategy led to an increase in productivity of up to

5 % (compared to a reactive maintenance strategy), which was equal to 403.3 h

or 3.4 weeks of single-shift production. The latter can be expected to be even

higher for more complex production sites. Hence, it becomes clear that if the

research results of this thesis are applied in industry in the context of a PdM

strategy, considerable economic advantages can be exploited.
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Chapter 7

Conclusions

In order to continue to secure prosperity in industrial societies, the efficiency of

production processes must be continuously improved. This includes an increase

of the utilisation of production resources. Since machine tools are the backbone of

industrial manufacturing (SCHWENKE et al. 2009), ensuring their high utilisation

is especially important. With ongoing digitisation in factories, the application

of condition monitoring and novel maintenance strategies, such as predictive

maintenance, will become increasingly feasible.

Nevertheless, it can be stated that a widespread use of condition monitoring for

machine tools and predictive maintenance strategies has not yet been observed

(BUTLER et al. 2022). In part, this is due to gaps in the state of the art, which

still hinder an application today.

This thesis aimed at contributing to the literature and the state of the art of

condition monitoring for machine tool feed drives and methods for the estimation

of remaining useful life (RUL). First, this was done by thoroughly reviewing the

state of the art in Chapter 3 and subsequently identifying research gaps (RGs).

Based on these, suitable research targets (RTs) were formulated in Chapter 4.

The fulfilment of the RTs was the objective of four publications (see Appendix E).

They were outlined and summarised in Chapter 5 with the help of all findings for

each publication. The summary included a critical comparison to the established

RTs. Finally, the economic potential of the findings was investigated in a fifth

publication, which was discussed up in Chapter 6.

In the following Section 7.1, the key findings (KFs) of this thesis will be briefly

outlined and an outlook will be given in Section 7.2.
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7.1 Key Findings

The contributions and findings of publications 1 – 5 can be further summarised

as five KFs (see Fig. 4.1), which are the essential contributions of this thesis and

which are given below:

KF1 In publication 1 , a novel condition monitoring test cycle was derived,

which enables the recording of reproducible condition monitoring data

from industrial machine tools. Furthermore, it was shown that the test

cycle is robust against environmental disturbing factors.

KF2 In publication 2 , it was demonstrated that the degradation of ball screws

can be assessed with a purely data-driven approach when the data are

recorded with the test cycle from publication 1 . Notably, the proposed

approach could accurately assess wear of previously unseen ball screws.

KF3 In publication 3 , a general issue connected to RUL prediction was ad-

dressed: as most state-of-the-art methods produce a single value for the

RUL (i.e. a point estimate), users might be reluctant to base a critical deci-

sion, such as the time for the next maintenance action, on such a prediction.

In publication 3 , it was demonstrated how to not only predict a single

RUL value, but also how to quantify the uncertainty of this prediction.

Furthermore, a novel approach was presented, which utilises this uncer-

tainty information for determining a better and more reliable end-of-life

time, and which ultimately enhances the decision for scheduling the next

maintenance action.

KF4 In publication 4 , a specific but especially restrictive requirement from

industrial use cases was picked up: usually, historic run-to-failure data

are not available. Nevertheless, many state-of-the-art methods for the

estimation of RUL values assume the exact opposite – the presence of large

run-to-failure data sets. In order to resolve this discrepancy, publication 4

proposed a novel approach for the estimation of RUL values, which is not

based on any run-to-failure data. Although the novel approach came with

a loss in accuracy, the prediction accuracies were still within the range of

those reported in the state of the art based on conventional methods.

KF5 Finally, publication 5 demonstrated how to build a discrete event simu-

lation model of a job shop with different maintenance strategies. Notably,
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it was shown that a predictive maintenance strategy is viable, even in

cases where the predictions are highly uncertain. This is because a user

can introduce a security factor by which the RUL prediction is reduced

and which subsequently decreases the risk of unexpected machine failures.

In this way, job shops operated with a predictive maintenance strategy

become economically superior with respect to maintenance costs compared

to those operated with a reactive or planned maintenance strategy.

In summary, it can be stated that the thesis significantly contributed to the state

of the art with the above-mentioned KFs. Nevertheless, there are still open issues

regarding condition monitoring of machine tool feed drives and the estimation

of the RUL. The next section provides an outlook into possible future research

directions.

7.2 Outlook

From a methodological perspective, the review papers already mentioned in

Section 3.2 (e.g. FINK et al. (2020)) are a good guidance for future research

directions. One of the recurring issues with data-driven approaches is their

sensitivity towards a domain shift. A data-driven model trained on one machine

is not necessarily valid on another, similar machine. The other machine could be

operated differently or have slightly varying components assembled. Handling

such changes with domain adaptation models is a promising research direction

with the potential to significantly contribute to the task of condition monitoring

for any application and particularly for machine tool feed drives.

Another promising future research direction is fusing flexible machine learning

(ML) models such as artificial neural networks (ANNs) or Gaussian process

regressions (GPRs) models with physical models. As the physical models are

usually a very good representation of the system under investigation, this ap-

proach could reduce the number of historic observations required and enhance

the robustness of the ML model predictions. Especially in the research field of

machine tools, a deep physical understanding of the machine tool system has

already been established. Combining this knowledge with ML models should be

explored in future work.
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Finally, from an exploitation perspective, higher degrees of digitisation will be

needed in the future to enable a wide-spread application of condition monitoring

and predictive maintenance systems. Industrial software such as numeric control

software of machine tools is often restrictive and exacerbates the extraction

of data and the integration of novel algorithms, such as the ones presented

in this thesis. Therefore, future work should also focus on further developing

and establishing smart system architectures and dedicated industrial standards.

One recent example showing how such an intelligent system architecture can

be developed and what this architecture could look like is given in a study by

SCHMUCKER et al. (2021). In conclusion, this thesis contributed to the state of

the art and laid the foundation for future research in the directions outlined

above.
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Appendix A

Supplementary Theory

This appendix will present supplementary theory and details on the topics

discussed in Chapter 2.

A.1 Pooling Layers

Pooling layers are common parts of convolutional neural networks (CNNs)

(LECUN et al. 2015). They aggregate filtered data and keep only a fraction of the

information. In a maximum pooling layer, for example, only the maximum value

of a local number of units is kept. This results in the combination of semantically

similar features, which in turn makes the model more robust against shifts in

the raw data (e.g. different starting and end points of a time series or different

locations of an object in an image). Figure A.1 shows the pooling operation of a

maximum pooling layer.

2 04 1

0 3 7 4

1 2 2 0

2 0 6 3

2 6

4 7
2 x 2
pooling

Figure A.1: Illustration of a maximum pooling layer, which only keeps the maximum value at each
operation; in the illustrated operation, the maximum value in the grey shaded area is four.
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A.2 Markov Chain Monte Carlo

The application of probabilistic models to practical prediction problems often

involves a posterior distribution

p (θ |D, f )
︸ ︷︷ ︸

posterior

=

likelihood
︷ ︸︸ ︷

p (D | θ , f )

prior
︷ ︸︸ ︷

p (θ | f )
p (D | f )
︸ ︷︷ ︸

marginal likelihood

, (A.1)

which is not tractable anymore (BISHOP 2006, p. 523). As a result, the posterior

distribution of the unknown parameters θ cannot be computed. To solve this

issue, Markov chain Monte Carlo (MCMC) algorithms are used to directly sample

from the unknown posterior distribution and calculate different statistics, such

as the sample mean and variance. MCMC is a large class of algorithms involving

various approaches. In the following, to illustrate the general idea of MCMC

algorithms, a simple approach called the Metropolis-Hastings (MH) algorithm

(HASTINGS 1970; METROPOLIS et al. 1953) will be briefly explained. The follow-

ing explanations are based on the study by ANDRIEU et al. (2003), which can be

used as a reference for an in-depth treatment of the topic.

MCMC generates samples x (i) from the target distribution p(x) using a Markov

chain mechanism. The goal is to find a Markov chain which has a stationary

distribution matching the unknown distribution p (x). For this approach to work,

it must be possible to evaluate p(x) up to a normalising constant. In the case

of Eq. (A.1), for example, this means that p (θ |D, f ) ∝ p (D | θ , f ) p (θ | f )

can be evaluated and the normalising term p (D | f ) can be omitted. Hence,

the normalising constant of the denominator in Eq. (A.1) (i.e. the marginal

likelihood) does not need to be known.

For example, a discrete Markov chain consists of states x = x1, x2, . . . , xs and a

transition matrix, which provides the probability for the transition between each

of the states by p
�

x (i+1) | x (i)
�

. Hence, the evolution to the future state x (i+1)

depends only on the previous state x (i). In addition, the distribution of being

in the different states p
�

x=
�

x1 x2 · · · xs

�⊤�

is the so-called stationary
distribution, which in some cases can be calculated analytically. In practise, a

Markov chain is simulated until convergence to find p(x).
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With a one-dimensional variable x , the MH algorithm comprises two main steps:

first, a sample x⋆ from the proposal distribution q (x⋆ | x) is drawn. Second, the

Markov chain moves to the new state x⋆ with the acceptance probability

A (x , x⋆) =min
§

1,
p(x⋆)q (x | x⋆)
p(x )q (x⋆ | x )

ª

. (A.2)

Repeating this process M times can result in a stationary distribution, which

matches the unknown target distribution. Algorithm 1 outlines the pseudo code

of the MH algorithm.

Algorithm 1 Metropolis-Hastings algorithm

1: initialise x (0)

2: for i← 0 to M − 1 do
3: sample u∼ U[0,1]

4: sample x⋆ ∼ q
�

x⋆ | x (i)
�

5: if u < A
�

x (i), x⋆
�

=min
n

1,
p(x⋆)q(x (i)|x⋆)
p(x (i))q(x⋆|x (i))

o

then

6: x (i+1)← x⋆

7: else
8: x (i+1)← x (i)

9: end if
10: end for

The design of the proposal distribution q(·) is considered to be particularly critical

for a successful application of the MH algorithm. A multivariate Gaussian with

mean x (i) and a small variance is often chosen as a proposal distribution.

In high-dimensional settings (e.g. when attempting to sample from a large

neural network parameter vector θ ) the MH algorithm is usually prohibitively

slow, which is why one must resort to other sampling schemes. In such high-

dimensional use cases, Hamiltonian Monte Carlo (HMC) algorithms, which

are sometimes also referred to as hybrid Monte Carlo algorithms, can be ap-

plied. In contrast to MH algorithms, HMC algorithms make use of the posterior

distribution’s gradient, which in turn allows a more efficient exploration of

higher-dimensional spaces (HOFFMAN and GELMAN 2014). HMC was introduced

by DUANE et al. (1987) and was pioneered for applications in artificial neural

networks (ANNs) by NEAL (1996). For an in-depth examination of HMC, the

reader is kindly referred to GELMAN (2014, pp. 301 sqq.).
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A.3 Variational Inference

The following explanations are based on a review paper on variational inference

(VI) by BLEI et al. (2017), which can serve as an elaborate reference for the

reader. This section outlines the general ideas.

In contrast to the MCMC approach presented in Appendix A.2, VI approaches do

not attempt to sample from the unknown distribution p(x) directly. Rather, they

use optimisation techniques to find a simpler and known variational distribution
q(x) so that

q⋆(x) = argmin
w.r.t.q(x)

DKL(q(x) ∥ p(x | y)), (A.3)

with p(x | y) being the general form of Eq. (A.1)

p (x | y) =
p (y | x) p (x)

p (y)
, (A.4)

and DKL(q(x) ∥ p(x | y)) being the Kullback-Leibler (KL) divergence, which is

defined as (BLEI et al. 2017)

DKL(q(x) ∥ p(x | y)) = E [log (q(x))]−E [log (p(x | y))]

= E [log (q(x))]−E [log (p(x , y))] + log (p(y)) .
(A.5)

However, the KL divergence, which is to be optimised, contains the unknown

target distribution p(x | y). Hence, Eq. (A.5) cannot be computed. Instead, the

so-called evidence lower bound (ELBO), which is defined as (BLEI et al. 2017)

ELBO(q) = E [log (p(x , y))]−E [log (q(x))] , (A.6)

is maximised. The fact that maximising the ELBO is indeed minimising the KL

divergence from Eq. (A.5) becomes evident when combining Eqs. (A.5) and (A.6)

and considering that

DKL(q(x) ∥ p(x | y)) = log (p(y))− ELBO(q). (A.7)

The expectation propagation algorithm introduced by MINKA (2001) is a special

variant of VI algorithms which is used in this thesis for the Gaussian process

classification (GPC) model.
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Overall, the choice between MCMC and VI for approximate Bayesian inference is

mainly a trade-off between cost and accuracy. This is because MCMC is slow but

guarantees to asymptotically produce exact samples from the target distribution,

whereas VI is fast but offers no such guarantees.

A.4 Weibull Distribution

A random variable x follows a Weibull distribution when its probability density

function (PDF) is given by

f (x) =







β
α

�

x
α

�β−1
exp

�

−
�

x
α

�β
�

∀ x ≥ 0

0 ∀ x < 0.
(A.8)

The scale parameter α and the shape parameter β determine the form of the

resulting PDF (see Fig. A.2). As the Weibull distribution is considered suitable for

modelling failures of machine tools (DAI et al. 2003; YANG et al. 2015), it was

applied for publication 5 (see Section 6.1) to analyse the economic efficiency of

different maintenance strategies.
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Figure A.2: Illustration of several PDFs with different parameters; it can be seen that the scale and
shape parameters α and β determine the overall form of the PDF.
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Appendix B

Experimental Setup

In the following sections, the experimental setup used for publications 1 and 2

(see Sections 5.1 and 5.2, respectively) will be described. In Appendix B.1, the test

bench and the investigated components will be presented, and in Appendix B.2,

the measurement equipment will be described.

B.1 Test Bench

The investigated test bench is a DMG DMC duo Block 55H five-axis milling

machine without housing, without spindle, without workpiece table and with

only the linear axes installed (see Fig. B.1). The advantage of this reduced system

lies in the accessibility enabling a quick disassembly and re-assembly of different

components. Nevertheless, the test bench is more realistic and complex than a

single-axis feed drive test bench, which is the basis of many experiments in the

existing literature.

The investigated components were Bosch Rexroth FEM-E-C 40x16Rx6-4 ball

screws and Bosch Rexroth RWA-045-FNS-C1-U-2 runner blocks, which were

available in different preload levels as well as with and without pitting damage.

The components are listed in Tables B.1 and B.2. The runner blocks F3 with

the preload level C1 were mounted on the guide rails for the experiments in

publication 2 (see Section 5.2).
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Y

X
Z

Figure B.1: Render of the DMG DMC duo Block 55H test bench; the feed drive of the X-axis was
investigated in this thesis.

components class labels

ball
screw

preload
level

pitting
preload

loss
pitting

damage
indistinct

defect

P1 C3 (2070 N) yes – 1 1
P2 C3 (2160 N) yes – 1 1
C11 C1 (950 N) no 1 0 1
C12 C1 (845 N) no 1 0 1
C31 C3 (2390 N no 0 0 0
C32 C3 (2328 N) no 0 0 0
C33 C3 (2031 N) no 0 0 0

Table B.1: Overview of the ball screws investigated in the publications of this thesis and the
respective class labels for the following three class definitions used in publication 2 : preload loss,
pitting damage and indistinct defect
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runner block preload level pitting

C1 C1 (4060 N) no
C2 C1 (4430 N) no
C3 C1 (4430 N) no
F1 C1 (3880 N) no

A9 C3 (13 470 N) no
A10 C3 (14 530 N) no
A12 C3 (12 840 N) no
D3 C3 (12 840 N) no

Table B.2: Overview of the runner blocks investigated for the publications of this thesis; in each
preload class, four runner blocks were available.

B.2 Utilised Sensors, Measurement Equipment and Mea-

surement Software

During the experiments at the test bench described in Appendix B.1, the measure-

ments were conducted with the following hardware: all vibration measurements

were acquired with Kistler 8762A10 piezo-electric accelerometers at a frequency

of 20 kHz. For data acquisition, the National Instruments™ cDAQ-9198 system in

combination with an iwb data acquisition software toolbox based on MATLAB®

was applied. The machine tool from Fig. B.1 was equipped with a Heidenhain

iTNC530 numeric control. The Heidenhain software tool TNCopt v. 8.0.125.1

was used to excite the machine with a defined sine sweep (see Fig. 5.1). The

Heidenhain software tool TNCscope v. 4.2.37 was deployed to acquire signals

from the numeric control. The temperature measurements were conducted with

type K thermocouples.
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Appendix C

Benchmark Data Sets

This part of the appendix will present the two benchmark data sets utilised for

publications 3 and 4 .

C.1 C-MAPSS Turbofan Engine Data Set

The C-MAPSS data set was first published by SAXENA et al. (2008) and comprises

simulated data from realistically large commercial turbofan engines. It consists

of four subsets, each of which is composed of a training data set and a test data

set of simulated run-to-failure sequences. The training data set provides entire

run-to-failure sequences, such that, for every point in time, the true remaining

useful life (RUL) of an engine is known. In contrast, the test data set contains

sequences which randomly stop. However, the true RUL values for the test data

are provided. Each run-to-failure sequence is composed of different sensor signals.

The four subsets vary in the number of training sequences, test sequences, fault

modes and operating conditions (see Table C.1). An exemplary run-to-failure

sequence for the engine number 43 from the subset FD001 is depicted in Fig. C.1.

subset

FD001 FD002 FD003 FD004

number of training data sequences 100 260 100 249
number of test data sequences 100 259 100 248
operating conditions 1 6 1 6
fault modes 1 1 2 2

Table C.1: Overview of the different C-MAPSS subsets based on BENKER, FURTNER, et al. (2021)
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Figure C.1: Exemplary C-MAPSS training data of engine number 43 from subset FD001; sensors
s2, s3, s7, s8, s12, s18, s20 and s21 were omitted, as their signals are either constant or only change
slightly along time.
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C.2 FEMTO Bearing Data Set

The FEMTO data set, originally published by NECTOUX et al. (2012), consists of

run-to-failure sequences recorded at a bearing test bench. The rolling bearings

were clamped on a bearing support shaft, which was driven by a motor. The

bearings were operated without artificially inducing failures until the end of

their lifetime. During operation, a radial force was introduced by a hydraulic

actuator, which was varied for the different run-to-failure experiments. Hence,

different operating conditions were recorded for different bearings. During the

experiments, vibrations were recorded every 10 s for a duration of 0.1 s with

a sampling frequency of 25.6 kHz. Additionally, temperatures were measured

continuously with a sampling frequency of 10 Hz.

For each of the three operating conditions, at least two run-to-failure sequences

are available for training. For the conditions one and two, five sequences are

provided for testing. For condition three, one sequence is available for testing. In

Fig. C.2, an exemplary recording of the vibration data from the FEMTO data set

is shown.
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Figure C.2: Exemplary FEMTO training data recorded with the accelerometer
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Appendix D

List of Supervised Student Theses

In the context of the research performed by the author, various student theses (see

Table D.2) were intensively supervised with regard to the methodology, problem

statements, objectives, and research approach, along with the interpretation

and documentation of all results. The supervision took place in the years 2018

to 2022 at the Institute for Machine Tools and Industrial Management of TU

Munich (in German: Institut für Werkzeugmaschinen und Betriebswissenschaften

der TU München) (iwb). The findings and results of the student theses have

contributed to this dissertation. The author would like to express his gratitude

for the commitment and contributions of all supervised students.



134 D List of Supervised Student Theses

name title submission

Álvaro Gómez Asensio Unsupervised Learning for Structural Health Monitoring May 2019

Manuel Friedlhuber Condition Monitoring von Kugelgewindetrieben mit Meth-
oden des maschinellen Lernens

June 2019

Florian Trocker Prädiktion von Montagefehlern in der Automobilindustrie
mit Methoden des maschinellen Lernens

November 2019

Tobias Bremicker Untersuchung der thermischen Stabilität des dynamis-
chen Verhaltens eines Vorschubantriebs

June 2020

Sebastian Junker Feature Engineering and Machine Learning for Condition
Monitoring of Machine Tools

August 2020

Lukas Furtner Application of Bayesian Neural Networks for Remaining
Useful Life Prediction using Hamiltonian Monte Carlo and
Variational Inference

September 2020

Artem Bliznyuk Validation and Development of a Probabilistic Method for
Remaining Useful Life Estimation for Machine Tool Ball
Screws

October 2020

Leonie Müller Development of a Method to Evaluate the Economic Fea-
sibility of Predictive Maintenance and Definition of Re-
quirements on its Profitable Use

October 2020

Nico Schneucker Condition Monitoring of Machine Tool Feed Drives via
Probabilistic Machine Learning

April 2021

Benedikt Tegethoff Life Cycle Costs of Industrial Milling and Honing Ma-
chines and Identification of Risk Transfer Solution Eligibil-
ity Criteria Based on a Case Study

July 2021

Hans Stadlbauer Zustandsüberwachung von Kugelgewindetrieben mittels
maschineller Lernverfahren

August 2021

Victor Rommel Discrete Event Simulation for the Economic Assessment
of Predictive Maintenance Strategies

September 2021

Maria Stroganova Setpoint Optimization within Process Control: A Case
Study Towards Production Waste Minimization

October 2021

Leopold Beck Automatisierung der experimentellen Modalanalyse für
Werkzeugmaschinen

April 2022

Fabian Kolb Intelligent Ball Screw Fault Diagnosis Using Deep Learn-
ing Based Domain Adaptation and Transfer Learning

September 2022

Table D.2: Supervised student theses
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Appendix E

Publications and Contributions of the Au-

thor

This publication-based dissertation is based on the following five papers:

Publication 1

BENKER, M., JUNKER, S., ELLINGER, J., SEMM, T., and ZAEH, M. F., (2022).

“Experimental Derivation of a Condition Monitoring Test Cycle for Machine Tool

Feed Drives”. In: Production Engineering 16.1, pp. 55–64. DOI: 10.1007/s11740-

021-01085-9

Publication 2

BENKER, M. and ZAEH, M. F., (2022). “Condition Monitoring of Ball Screw Feed

Drives Using Convolutional Neural Networks”. In: CIRP Annals 71.1, pp. 313–316.

DOI: 10.1016/j.cirp.2022.03.017

Publication 3

BENKER, M., FURTNER, L., SEMM, T., and ZAEH, M. F., (2021). “Utilizing Un-

certainty Information in Remaining Useful Life Estimation via Bayesian Neural

Networks and Hamiltonian Monte Carlo”. In: Journal of Manufacturing Systems
61, pp. 799–807. DOI: 10.1016/j.jmsy.2020.11.005

Publication 4

BENKER, M., BLIZNYUK, A., and ZAEH, M. F., (2021). “A Gaussian Process Based

Method for Data-Efficient Remaining Useful Life Estimation”. In: IEEE Access 9,

pp. 137470–137482. DOI: 10.1109/ACCESS.2021.3116813

https://doi.org/10.1007/s11740-021-01085-9
https://doi.org/10.1007/s11740-021-01085-9
https://doi.org/10.1016/j.cirp.2022.03.017
https://doi.org/10.1016/j.jmsy.2020.11.005
https://doi.org/10.1109/ACCESS.2021.3116813
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Publication 5

BENKER, M., ROMMEL, V., and ZAEH, M. F., (2022). “An Investigation into the

Economic Efficiency of Different Maintenance Strategies Based on a Discrete

Event Simulation”. In: Procedia CIRP 107, pp. 428–433. DOI: 10.1016/j.procir.

2022.05.003

The author of this thesis is the main author of all five publications. Co-author Jo-

hannes Ellinger has contributed as a colleague at the Institute for Machine Tools

and Industrial Management of TU Munich (in German: Institut für Werkzeug-

maschinen und Betriebswissenschaften der TU München) (iwb) by brainstorming,

discussing and auditing the research results. Thomas Semm was the head of the

department for machine tools and reviewed the manuscripts. Sebastian Junker,

Lukas Furtner, Artem Bliznyuk and Victor Rommel contributed in their role as

supervised students. They supported the experimental activities, assisted during

the programming tasks and reviewed the manuscripts. Prof. Dr.-Ing. Michael F.

Zaeh contributed as the head of the iwb and the supervisor of this dissertation

project.

In Table E.1, the contributions of the author of this thesis are shown. These

are further divided into developing the ideas, execution of the experiments and

writing the publications.

idea execution publication total

publication 1 70 % 65 % 75 % 70 %
publication 2 90 % 100 % 90 % 93 %
publication 3 80 % 50 % 80 % 70 %
publication 4 75 % 50 % 80 % 68 %
publication 5 80 % 35 % 85 % 67 %

Table E.1: Summary of the contributions of the author of this thesis to the five publications

https://doi.org/10.1016/j.procir.2022.05.003
https://doi.org/10.1016/j.procir.2022.05.003
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