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Up-to-date and accurate prediction of Channel State Information (CSI) is of paramount importance in Ultra-
Reliable Low-Latency Communications (URLLC), specifically in dynamic environments where unpredictable
mobility is inherent. CSI can be meticulously tracked by means of frequent pilot transmissions, which on the
downside lead to an increase in metadata (overhead signaling) and latency, which are both detrimental for
URLLC. To overcome these issues, in this paper, we take a fundamentally different approach and propose
PEACH, a machine learning system which utilizes environmental information with depth images to predict
CSI amplitude in beyond 5G systems, without requiring metadata radio resources, such as pilot overheads or
any feedback mechanism. PEACH exploits depth images by employing a convolutional neural network to
predict the current and the next 100 ms CSI amplitudes. The proposed system is experimentally validated
with extensive measurements conducted in an indoor environment, involving two static receivers and two
transmitters, one of which is placed on top of a mobile robot. We prove that environmental information
can be instrumental towards proactive CSI amplitude acquisition of both static and mobile users on base
stations, while providing an almost similar performance as pilot-based methods, and completely avoiding the
dependency on feedback and pilot transmission for both downlink and uplink CSI information. Furthermore,
compared to demodulation reference signal based traditional pilot estimation in ideal conditions without
interference, our experimental results show that PEACH vyields the same performance in terms of average
bit error rate when channel conditions are poor (using low order modulation), while not being much worse
when using higher modulation orders, like 16-QAM or 64-QAM. More importantly, in the realistic cases with
interference taken into account, our experiments demonstrate considerable improvements introduced by
PEACH in terms of normalized mean square error of CSI amplitude estimation, up to 6 dB, when compared to
traditional approaches.
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1 INTRODUCTION

Ultra-Reliable Low-Latency Communications (URLLC) are one of the three service types supported
in 5G networks [25]. These services are characterized by very stringent traffic requirements to
deliver within a very short time (on the order of milliseconds) the vast majority of the packets.
Autonomous driving, remote surgery, remote monitoring and control, and industrial automation in
general [57] are some use cases that belong to services with URLLC traffic. The aforementioned
services are not only sensitive to abiding by those very non-flexible requirements, but also, because
of their nature, a failure to comply either with the low-latency or reliability requirement can give
rise to a serious risk on human lives. Therefore, the paramount importance of enabling (almost)
flawless operation of this type of traffic.

Although 5G networks are being deployed since recently, its shortcomings are already recognized
around enabling URLLC traffic [41, 56]. Moreover, beyond 5G/6G wireless systems are envisioned
to pave the road further for industrial automation with even more stringent latency (decreased
even more down to 1 ms) and reliability (to almost 100%) requirements [22, 58], especially for
mission-critical communications [24, 46]. This will be very strenuous to the successful operation of
wireless networks.

The fundamental problem of URLLC is to satisfy the strict requirements of reliability and
latency simultaneously. The enhancement of the reliability depends heavily on accurate channel
estimation to mitigate wireless channel distortion, which requires channel probing. On the other
hand, the reduction of latency requires lower processing times and less signaling. Given that
these two requirements are conflicting, accurate channel estimation (metadata increases) and
channel information feedback (latency increases) for the URLLC are one of the main challenges [25].
Predicting fading wireless channels correctly is of high importance for a reliable communication and
is still very challenging [29]. While the standardization for 5G targeted latency reduction via new
subcarrier spacing (SCS) structure to have shorter slot duration and allowing shorter transmission
time intervals (TTIs), the signaling overhead for control messages was initially neglected. However,
especially for URLLC where short-packet sizes are expected [1], the metadata such as channel
estimation feedback, pilot transmissions or grant-based random access procedures have to be taken
into account [20, 25, 57]. Resource allocation along with grant-based scheduling request hinders
the URLLC systems to have at most one retransmission because of the latency restriction [48].
State-of-the-art solutions propose grant-free (GF) access schemes in the uplink (UL) in order to
reduce the latency further in the current 5G systems [18, 38]. The GF access is foreseen to eliminate
the large latency and signaling overhead existing in grant-based schemes for the conventional
random access procedures [17]. Although the current 5G New Radio (5G NR) includes GF as
potential access scheme for URLLC [2], the latency reduction from GF comes with the trade-off of
having more collisions due to uncontrolled access, requiring reliability improvements by means of
alternative techniques such as successive interference cancellation (SIC) or increased power for
URLLC user [38, 50] that do not depend on retransmissions. However, practical SIC usage depends
on recent wireless channel knowledge of colliding users and the power increase for URLLC is not
fair for the users with other types of services, and is not scalable.

While the signaling component in 5G is much more flexible and reduced compared to LTE, there
is still a considerable signaling part required to enable URLLC services in 5G, mainly due to channel
estimation [41, 46, 47]. The metadata for channel estimation is not negligible when considering
the short-packet transmission in URLLC, where a higher overhead in terms of resources results in
more accurate channel estimation; thus, it yields a better reliability while leaving less resources
for the actual data which is already limited in the URLLC case [57]. For instance, for bad channel
conditions where it is vital for URLLC services to be still operating reliably, the metadata-data
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ratio is observed to be increasing up to 61% [47]. Moreover, channel estimation metadata, namely
demodulation reference signal (DMRS), is only capable of providing channel knowledge on the used
bandwidth. However, for channel dependent scheduling or link adaptation, base stations require
channel sounding where the sounding reference signal (SRS) is used. Since SRS is transmitted on a
wider bandwidth, it imposes higher energy consumption on the user side and also results in larger
radio overhead.

Along with the above UL concerns, there are several issues on the downlink (DL) as well. The
problem of obtaining DL CSI by network operators is well known in frequency-division duplex
(FDD) due to the lack of reciprocity with UL CSI [12]. Therefore, FDD systems require a CSI feedback
mechanism which consumes too much UL spectrum resource [37]. The same channel sounding
concern also applies to DL resource allocation, in terms of link adaptation and scheduling, for which
the CSI reference signal (CSI-RS) is used in a similar manner. CSI-RS also requires users to consume
more energy when communicating on a wider bandwidth. Further, the information obtained via
CSI-RS needs to be reported back to base stations. However, imperfect CSI caused by outdated CSI
knowledge was shown to be affecting the performance significantly [49]. Similar degradation in
CSI knowledge might originate from feedback delay or erroneous user CSI estimation.

In order to ensure proper functioning of URLLC in the next-generation wireless communi-
cations, Machine Learning (ML) approaches are considered to be one of the key enablers for
overcoming those concerns. Considering the above-mentioned challenges, researchers were ori-
ented to use various ML approaches to tackle fundamental limitations in URLLC for 5G/6G wireless
networks [41, 46, 56], which also constitutes the basis of our work. Further, recent works on
beyond 5G communication [24, 41, 46] claim that the stochastic channel models to verify the
techniques/algorithms on cases such as URLLC are no longer valid since the stochastic channel
models fail to model rare events for specific environments. Hence, it is advised to work on specific
radio environment data and to provide proactive decision making to enable URLLC.

There are several important questions, both from research and practical perspective, which arise
related to correct prediction of channel conditions while reducing metadata in wireless systems
using machine learning: (1) How to provide correct CSI to base stations without or with few
metadata on both UL and DL? (2) How to make intelligent scheduling and link adaptation without
channel sounding? (3) How to incorporate environment-specific information towards proactive
decision making in radio resource management (RRM)?

To answer these questions, in this paper, we address CSI amplitude acquisition without any pilot or
feedback mechanisms with look-ahead capability and environmental awareness. We build a system
for Proactive and Environment-Aware CHannel state information prediction (PEACH),
where depth images are used to provide CSI amplitudes for the current moment and 100 ms into
the future. PEACH leverages a convolutional neural network (CNN) to map depth images of the
communication environment to CSI amplitudes. The proposed system is implemented and evaluated
a proof of concept of the PEACH approach on real data obtained from extensive measurements over
SDRs in an indoor environment, with mobile robot and robotic arms, for multiple receivers and
multiple transmitters while one transmitter is being the mobile robot itself. A typical scenario for
such indoor setting would be an industrial factory floor. The performance of PEACH is compared
with the traditional DMRS-based methods. PEACH is able to maintain same bit error rate (BER)
performance in bad channel conditions with more conservative modulation schemes such as QPSK,
while not sacrificing too much on higher modulations in an ideal communication scenario without
interference. The system is also tested in a more realistic scenario with interference, where the
experimental results exposed a clear advantage of PEACH in terms of better normalized mean
squared error (NMSE) performance compared to DMRS (of up to 6 dB). The proposed solution
provides knowledge on the entire bandwidth, which makes channel sounding obsolete, and thus the
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SRS usage on UL or CSI-RS usage in DL can be avoided. Further, PEACH provides CSI knowledge into
the future, where knowing the channel reliably or having CQI knowledge for the next transmissions
was already shown to benefit the scheduling policies [26, 45].

Specifically, our main contributions in this work are:

e We propose a system solution for channel estimation based on video images that reliably
reduces the latency for radio resource management and does not require additional metadata.

e We design and evaluate an ML framework that elucidates how to benefit from environmental
awareness in wireless communications towards proactive and intelligent RRM.

e To the best of our knowledge, this is the first work that demonstrates the prediction with a
high accuracy of per-subcarrier CSI amplitude in OFDM systems, specifically in 5G NR, for
multiple receivers and multiple transmitters (including mobile transmitters) by using only
camera images.

e To the best of our knowledge, this is also the first public 5G dataset with real wireless raw
signals (I/Q samples) obtained over software defined radios (SDRs). For future research, raw
wireless 5G datasets along with the camera videos are publicly available in [10].

The remainder of this work is organized as follows. In Section 2, we provide some background
on the topic. This is followed by the description of the measurement setup in Section 3. Section 4
describes in detail our system, whereas some performance evaluation results with additional
engineering insights are provided in Section 5. Next, in Section 6, a detailed discussion on expected
and non-expected results, together with the reasons is given. Section 7 discusses some related work.
Finally, Section 8 concludes the paper.

2 BACKGROUND

In this section, we provide a brief overview on channel estimation in OFDM systems and DMRS
structure in 5G NR to facilitate the understanding of the remainder of this paper.

2.1 Channel Estimation

In this work, we applied common data-aided channel estimation with simple Least-Squares (LS)
estimation in frequency domain for CSI acquisition from measurements with OFDM signals,
specifically 5G NR signals. LS estimation is widely utilized to get initial estimates on OFDM
channels with very low complexity!. In order to apply such a technique, the receiver must have
reference information. These references are known as training symbols if the entire OFDM symbol
consists of known signals, or pilots if only a couple of subcarriers in the OFDM symbol are known
signals. The use of both training and pilot symbols is widely adopted depending on the reference
signal structure of the communication standard. Considering a pilot-based channel estimation in
frequency domain, the channel estimates are acquired over the pilot tones from

. Yi
Hisp = — (1)

X’
where I—AILS,k refers to LS estimation of the channel, Y; denotes the received signal, whereas X
the transmitted signal at subcarrier index k. For further details on channel estimation in OFDM,
readers are referred to the extensive overview in [43], and on the interpolation of pilot estimation
over the frequency-time grid with different pilot tone arrangements to [15].

ILater, estimations are used with more complex methods to improve performance since LS estimation does not use any
channel statistic knowledge among subcarriers. However, more complex methods are beyond the scope of this work as we
have reference pilots for all subcarriers throughout the measurements already.
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Fig. 1. The illustration of the measurement setup.

2.2 DMRS in5G NR

The pilots in 5G NR which are used for coherent demodulation are called DMRS, similar as in LTE.
5G NR enabled flexibility on these pilot tones by allowing various location and length options as
well as changing its mapping type. There are plenty of different options for the configuration of
DMRS in 5G, which can be found in [4]. In this work, we have used the DMRS configuration with a
length of 1 OFDM symbol, mapping type A, and configuration type 2.

3 MEASUREMENT SETUP AND IMPLEMENTATION

In this section, we first describe the environment in which the measurements were conducted as
well the hardware that was used. This is followed by the description of the autonomous mobile
robot system and the data acquisition process.

3.1 Measurement Environment and Hardware

The measurements were conducted in an indoor environment where there were various objects
consisting of multiple robotic arms, PCs, and a mobile robot. The presence of these objects leads to
a large number of multipath components in the wireless channel. A detailed representation of the
environment with all objects, including the measurement equipment, along with the corresponding
dimensions is depicted in Fig. 1. Such scenario represents a typical 5G setting in an industrial
factory floor, for example, where static and mobile objects communicate in an indoor 5G campus
network.

RGB-D cameras are selected as the Stereolabs ZED-2 stereo cameras. Both ZED-2 cameras operate
by default with 60 frames per second (fps) at the resolution mode of 720p. A higher fps, i.e., 100 fps,
is available at ZED-2 cameras but only with WVGA resolution. We observed that the resulting
depth images from 100 fps at WVGA mode are highly fluctuating. This, in turn, could hinder the
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CNN training. Another drawback of using higher resolutions, such as 1080p, is that they operate
up to 30 fps, which could reduce our time resolution and diminish the effectiveness of PEACH.

SDRs for the transmitters and receivers are selected from Ettus Universal Software Radio Periph-
eral (USRP) SDR platforms. USRP B210s are selected for both transmitters regarding compact design
and USB powered capability.? As receivers are selected USRP X410 and USRP X310, denoted as Rx1
and Rx2, respectively, in the remainder of this paper. The reason for selecting different receivers
was to test the effect and to provide data over both SDRs, which are not easily accessible due to
high cost, whereas the selection of same devices for the transmitters is to ensure equal conditions
for static and mobile users named as static tx and mobile tx, respectively. USRP X410 is used with
the default ZBX daughterboard and USRP X310 is used with the CBX-120 daughterboard. All SDRs
are equipped with an omnidirectional antenna.

3.2 Autonomous Mobile Robot System

In our experiments, we use the Kinova® MOVO robot, an industrial dual-arm robot. It is a mobile
lightweight robot with a holonomic base, designed for a multitude of research fields. The MOVO
robot comes with front and rear ground-height linear 2D Light Detection And Ranging (LiDAR)
sensors attached to its base. The sensor’s operating frequency is 10 Hz. LIDAR is mainly used to
build a sophisticated map of the environment. It is also used for 3D map and point cloud generation
as well as in object detection fields. As a result of combining the data from both the front and
rear LiIDAR, we were able to provide autonomous navigation based on the 360° scan data. The
autonomous navigation module consists of three major parts. Localization with mapping is the
first part, planning is the second part, and control is the third.

For localization, we are relying on a LIDAR-based Hector slam [32] system, which is an odometer-
free system to estimate robot’s position and rotation in two dimensions via SLAM (Simultaneous
Localization and Mapping). Hector SLAM is a relative localization method which needs to start the
robot every time from the same origin. Hector SLAM is based on the optimization of the alignment
of beam endpoints with the learned map. It uses the Gauss-Newton approach [33]. As a result, it
is fast by not requiring a data association search between beam endpoints or an exhaustive pose
search. As scans get aligned with the existing map, the matching is implicitly performed with all
previous scans. We use the A-star algorithm [16] and cost-map technique from ROS navigation
stack to avoid obstacles [68]. Our planner always considers the robot footprint, generates cost maps
around obstacles, and provides the shortest path using the A-star algorithm.

A geometric path planning approach [59] was used to reduce the final goal reaching error of the
robot. Our planned navigation path was divided into several sub-trajectories of 25 cm each. The
robot rotates to the first sub-goal before navigating there. Based on the weight of reaching the next
sub-goal, we control the robot’s rotation during navigation. In order to keep the robot on its local
trajectory and achieve the final goal, a Proportional Integral Derivative (PID) controller is used.
With the setup, we achieved an average goal tracking error of 0.04 m and 15 degrees in rotation.
During the operation of the robot, the maximum linear velocity was measured to be 0.15 m/s. Due
to the fact that robot sensors are operating at 10 Hz, an increase in robot locomotion speed will
lead to a scan matching error. Fig. 2 gives an overview of the navigation system.

Despite the fact that the navigation accuracy in real-life scenarios is satisfactory, we still have
non-deterministic behaviour between the measurement runs even applying the same mobility
pattern. The behavior visualization can be seen in Fig. 18 in Appendix A. This is because of the PID
controllers deadband thresholds as well as the non-deterministic nature of the holonomic wheels.
Due to these accumulative and non-avoidable errors, we see continuous beacon-based or tag-based

2In order to mount and power the SDR on the mobile robot platform, which was crucial for the operability.
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Fig. 2. An overview of the autonomous navigation system.

corrections in industrial applications. However, we do not have correction of non-deterministic
errors during the measurement runs in order not to introduce additional processing delay which
could affect the measurements by resulting in varying transmission intervals on the mobile robot.

3.3 Data acquisition

To provide timestamps and synchronization, a modified ZED SDK [60] is used to operate the
cameras during measurements. Open-source USRP Hardware Driver (UHD) [11] code is utilized
for continuous transmission and reception. The USRP gains are identical for both transmitters, but
differ between receivers because they have different gain ranges. The receiving code is used as
provided in raw recording to file mode; however, the transmit code is updated for synchronization
and to have timestamps for each transmission. Transmissions and receptions are performed in 5G
NR band n78, specifically at 3.74 GHz over 20 MHz bandwidth with a sampling rate of 30.72 MHz.

The programming language Matlab is used to create the 5G NR compliant waveforms for the
measurements. The waveform is at length of 10 ms, namely one radio frame. The waveform includes
a synchronization signal block (SSB), 30 kHz and 15 kHz SCS, with QPSK, 16-QAM and 64-QAM
modulation types on different slots. SSB is used at the initial slot with 30 kHz SCS for frequency
offset estimation. The assigned modulation and coding rates used in the waveform are taken from
the 3GPP standard [3]. The waveform structure is displayed in Fig. 3. As illustrated in Fig. 3, in
total 15 different PDSCH configurations are included in the waveform. The details regarding these
configurations such as Modulation and Coding Scheme (MCS) index, modulation, target code rate
and spectral efficiency are provided in Table 1. A DMRS configuration with a length of 1 OFDM
symbol, mapping type A and configuration type 2 is used for each slot. To ease the comparison,
only the results pertaining to 30 kHz SCS are considered.

A real-time clock synchronization between the hosts is required for the measurement setup so
that the timestamps from each device are aligned for mapping the image instances to the correct
transmissions. In our setup, we utilize the network time protocol (NTP) to perform the synchro-
nization. We use our measurement-dedicated Wi-Fi connection on the robot for synchronization
purposes and all the other hosts, including the NTP server, are connected to the same local area
network. We were able to achieve around 1 ms precision among the hosts and our NTP server,
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Fig. 3. The waveform structure; numbers denote slot numbers with different PDSCH configurations.

Table 1. Waveform slot PDSCH configurations [3]

Slot Number | MCS Index | Modulation | Target Code Rate x [1024] | Spectral Efficiency
1 0 QPSK 120 0.2344
2 5 QPSK 379 0.7402
3 9 QPSK 679 1.3262
4 11 16-QAM 378 1.4766
5 13 16-QAM 490 1.9141
6 16 16-QAM 658 2.5703
7 17 64-QAM 438 2.5664
8 19 64-QAM 517 3.0293
9 22 64-QAM 666 3.9023
10 0 QPSK 120 0.2344
11 9 QPSK 679 1.3262
12 11 16-QAM 378 1.4766
13 16 16-QAM 658 2.5703
14 17 64-QAM 438 2.5664
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Fig. 4. Synchronization setup and data collection details.

which is similar to the observation in [55]. The connections for the synchronization setup along
with the details of hosts’ data collection are depicted in Fig. 4.

Measurement consists of 30 different runs, each taking around 3-4 minutes. The synchronization
is corrected to ms precision before each measurement run. During each run, 30 radio transmissions
per second are sent by transmitters, but static and mobile user transmissions are separated by
16.67 ms to prevent interference and ensure each of them is linked to a camera frame. In other
words, considering the 60 fps operation, on each camera frame, there exists a transmission from
one of the users. In order to increase the similarity between runs and ease the ML training, we have
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Fig. 5. The OFDM communication system (simplified) with PEACH integrated.

used 15 different mobility patterns on the robot.> However, as explained in Section 3.2, there still
exist differences due to the non-deterministic behaviour of the navigation execution. There is an
additional measurement run for investigating the interference scenario, which is further explained
in Section 5.3. The dataset consists of approximately 190, 000 raw I/Q transmissions stored in total
per receiver from each transmitter. Therefore, for the dataset used in the CNN training we have
around 190,000 CSI estimation-camera image pairs in total per receiver and per transmitter.

4 PEACH

In this section, first we provide a system overview of PEACH. Then, we describe how data are
pre-processed. This is followed by the CNN architecture and the training process.

4.1 An Overview of PEACH

PEACH maps the depth images to the CSI amplitudes with the help of a CNN via supervised learning.
By utilizing such visual environment information, PEACH provides environmental awareness to
the RRM which allows proactive and intelligent algorithms to be employed without depending on
feedback or pilot transmission. While being a novel contribution, PEACH can be integrated into
existing 5G systems, in fact to any OFDM system, without the need to adjust to the standard in
use. The proposed architecture for an integration to the OFDM systems is depicted in Fig. 5, where
Fig. 5a and Fig. 5b illustrates UL and DL architecture, respectively.

Ensuring future CSI knowledge on base stations via our proposed architectures not only improves
the latency, which is of paramount importance in URLLC, with reduction in processing and feedback
delay and better CSI knowledge in interference scenarios (see Section 5.3) while not requiring
metadata, but also enables RRM algorithms to be optimal [26, 45].

4.2 Data Pre-processing

In order to have faster training and real-time inference possibility, data pre-processing has been
performed on the dataset before training. The applied pre-processing reduces the input sizes that
yields less complex CNN architecture, which is of course less GPU-demanding.

The collected depth images from the cameras are in 720 X 1280 resolution. First, the images are
cropped to size 700 X 800, to exclude including pixels the mobile robot never visits, and then they
are downsampled to size 117 X 134, which is the final input size.

3Two consecutive runs use the same navigation plan on the robot.

4Since we assume block-fading during a radio frame, CSI estimations per SCS are the same throughout different slots for
the same radio frame transmission.
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Fig. 6. The CNN architecture of PEACH.

The recorded raw I/Q datasets on each receiver are first analyzed to find starting transmission
instances per transmitter per measurement run. Afterwards, CSI estimations of each transmission
are parsed from the raw datasets with various estimation methods. The estimation methods used in
dataset parsing are DMRS-based pilot estimation and its variants with fewer pilots, LS estimation®
and Full-Mean estimation, which is the LS estimation averaged only over time for the entire
waveform®. Later, the amplitude of the Full-Mean estimation is used as the output of the PEACH
CNN architecture. The reason why PEACH is not trained for the CSI phase is explained in Section 6.2.

4.3 CNN Architecture and Training

The proposed PEACH CNN architecture is displayed in Fig. 6.” The details of each layer, such as the
filter size of the convolutional layers (Conv) and the dimension of fully connected (Dense) layers,
are provided at the bottom of the respective boxes.

We follow a multimodal approach in the PEACH CNN architecture such that two camera images
can be utilized in one model simultaneously to prevent any camera view blockages, where the latter
is common in one-camera approach [42]. The two branches of the architecture are symmetrical.
Hence, the input-camera images from both cameras undergo the same CNN. The outputs of the last
layers in each branch are then flattened and concatenated after a dense layer. Lastly, we have two
following dense layers while the last being the output layer with size 612 X 1 for CSI amplitudes of
30 kHz SCS. An example of CSI amplitude is illustrated at the output of the model in Fig. 6.

CSI amplitudes on the output layer and the depth images on the input layer are normalized before
training. The training code is based on Tensorflow 2.2.4 [5] and Keras [14]. Nadam optimizer [19]
is used with mean square error (MSE) loss metric with initial learning rate of 0.00005. The model is
trained for 50 epochs, which is observed to be sufficient for an appropriate learning performance.
Nevertheless, to avoid any overfitting, weights of the epoch which has the best validation set per-
formance are used for evaluation. The hyperparameters in our architecture are selected empirically.
The dataset is separated into training, validation, and test sets, where 28 measurement run datasets
are used for training, one for validation, and one measurement run dataset is used as test set.

The model is trained on an Nvidia DGX platform with Tesla V100 GPUs, where the training time
of a model is approximately two hours. The average inference time per CSI amplitude prediction is
around 1 ms over Nvidia Tesla V100 GPU. Running PEACH over a more modest Nvidia Quadro
RTX 5000 GPU, or over high-end Intel Core i7-11700K CPU, or over more modest AMD Ryzen 7
PRO 4750U CPU, the average inference time increases to 8.8 ms, 20.3 ms and 35.6 ms, respectively.
Finally, PEACH is tested in a Tensorflow serving capable edge-computing node with Quadro RTX
5000 GPU where average and maximum inference time are observed to be 9.3 ms and 15.3 ms,

SLS estimation is the ground truth among the estimation methods here as it uses every subcarrier on the entire waveform
as pilots, and to avoid noise in the estimation performs sliding window averaging over time and frequency.

The averaging is to evade noise in the estimation and to have one mean estimation per radio frame for each subcarrier.
"Note that the sample input images in Fig. 6 are not pre-processed for ease of understanding to human vision.
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respectively. Considering the inference time even on low-end devices and 100 ms future prediction
capability, PEACH can be confidently deployed in real-time critical systems.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of PEACH for each transmitter-receiver pair by
quantifying the results in terms of BER and compare them to the traditional DMRS-based channel
estimation methods. The BER results are provided for all modulations types for both transmitters
and for both current and 100 ms future CSI amplitude prediction of PEACH.® To further elaborate
the advantages of PEACH, we demonstrate the performance under interference scenario. Finally,
we provide an evaluation summary for completeness, since the performance of PEACH shows
similar trends on both static and mobile Tx.

In all evaluations, we start comparing the BER results of QPSK modulation, which is the lowest
order MCS that is robust in bad channel conditions. Further, 16-QAM and 64-QAM results are
illustrated to elicit performance on different modulation orders. The adaptive modulation and coding
(AMC) algorithms in RRM opts for more conservative MCSs in case of bad channel conditions to
enhance reliability. We foresee that the merit of PEACH is to provide accurate performance on
conservative MCSs while sensing the environment to pave the way for intelligent AMC algorithms
in RRM to be implemented. PEACH is designed to obtain efficacy for all modulation orders in
similar reliability performance while preserving the performance on lower order MCSs.

All comparisons are illustrated as box plots. On all the plots, the line shows the median and
pentagram displays the mean; y-axis is in logarithmic scale visualizing BER. The box plots are
obtained by the mean BER evaluation on each measurement run against respective estimation. In
the evaluations, Full-Mean, explained in Section 4.2, is used as the baseline estimation for PEACH’,
DMRS is the traditional pilot-based estimation, DMRS-Half is displaying the results of using half
of the actual DMRS, DMRS-Quarter denotes the results using quarter of the actual DMRS, PEACH
(Current) are the results of PEACH system predicting CSI amplitudes for the current time instant,
and lastly PEACH (Future) provides the results for using PEACH system to predict 100 ms future
CSI amplitude. The variants of DMRS are used to demonstrate how the performance is affected by
reducing the pilots further. The relation of the results are observed to be the same among different
estimations when varying the coding rate but keeping the modulation unchanged. Therefore, for
each modulation only one coding rate is selected for the plots.

It is worth mentioning that in order to ensure there is no overfitting with CNN, all the results
for PEACH are obtained over test sets. Hence, for each measurement run result with PEACH, a
new CNN is trained where the evaluated measurement run is used as a test set.

5.1 Performance of Static User

In Fig. 7, the performance in terms of BER is illustrated for static Tx with QPSK modulation.
Please note that the lower order MCSs of QPSK for static Tx resulted in no errors for most of
the measurement runs for all estimations, including PEACH. Since box plots are visualized in
logarithmic scale, the low order MCS results containing mostly no errors in the sets are omitted for
the remainder of the paper but rather provided in Appendix B in Fig. 19, for both Rx1 and Rx2'°.
The results demonstrate that PEACH is capable of providing reliability while the communication is
using QPSK modulation, i.e., during worse channel conditions. Furthermore, PEACH attains the
full potential when compared to Full-Mean.

8Note that for the reliability evaluations the CSI phase for PEACH estimations are obtained from the DMRS phase estimations.
9Since Full-Mean is the training data for PEACH, the latter is bounded by the results of Full-Mean.

10Note that for Rx1 the lowest MCS resulted in no error for all sets. Hence, the second lowest MCS result, which is MCS
index:5, is provided.
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Fig. 7. Average BER for static Tx with QPSK on both receivers.
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Fig. 8. Average BER for static Tx with 16-QAM on both receivers.
Average Bit Error Rate: Static Tx-Rx1 Average Bit Error Rate: Static Tx-Rx2
<107 _ 64-0AM, MCS:17 64-QAM, MCS:17
1 : " = : ‘ ‘ = =
12 b 003 ! :
11 o 0025 — - o H :
10- : : l ! : :
g ] « Lo : :
8o & S - ] G 002
8l - . [
. . l E 0.015¢ : ! .
7 i o e - -+ . [ — - -+ F T
& & @ g S © S & 8 g &
O N o N R S & Q & S & &
< s o © N N % o © N
DANUE NS DA SO e
S & & T & &
(a) Average BER: Static Tx-Rx1 (b) Average BER: Static Tx-Rx2

Fig. 9. Average BER for static Tx with 64-QAM on both receivers.

Fig. 8 displays the BER performance of static Tx using 16-QAM. Although DMRS results are
slightly better, PEACH performs similar on both receivers. Moreover, it is evident that for 16-QAM
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Fig. 10. Average BER for mobile Tx with QPSK on both receivers.
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Fig. 11. Average BER for mobile Tx with 16-QAM on both receivers.

PEACH did not reach its full potential compared to Full-Mean. Therefore, further improving the
CNN performance could potentially elevate the results of PEACH.

The BER performance of static Tx using 64-QAM on both receivers is visualized in Fig. 9. PEACH
performance is reduced further in 64-QAM which depends more on accurate amplitude estimations.
However, similar to the 16-QAM results, PEACH still has potential for further improvements.

5.2 Mobile User Performance

In Fig. 10, the BER performance is illustrated for mobile Tx with QPSK modulation. The results
of mobile Tx case also demonstrate that PEACH is capable of providing reliability while the
communication conditions are bad. Furthermore, PEACH reaches the full capacity similar to the
static Tx when compared to Full-Mean for QPSK.

Fig. 11 displays the BER performance of mobile Tx using 16-QAM. DMRS results are notably
better than PEACH for the mobile Tx for higher modulations. However, the performance gap
between Full-Mean and PEACH indicates there is room for improvement similarly to the static Tx.

The BER performance when using 64-QAM on both receivers is shown in Fig. 12. PEACH’s
performance is similar to the 16-QAM case of mobile Tx.
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Fig. 12. Average BER for mobile Tx with 64-QAM on both receivers.
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Fig. 13. Waveforms of static Tx alone (a), interfering waveforms of static and mobile Tx (b).

5.3 Performance under Interference Scenario

The performance of pilot-based estimations is known to be severely influenced by interference [21].
In fact, jamming approaches targeting the pilots are observed to be more malicious [40]. Both are
related with the fact that such cases prevent wireless channel estimations to obtain the actual
fading channel. However, PEACH avoids such distortions by providing CSI even without reception.
Therefore, we evaluated how PEACH could perform in a more realistic communication environment
with interference scenario. In order to observe the system behavior in an interference scenario, we
have an additional measurement run where all the transmissions are interfering. Only static Tx
results are provided since for mobile Tx the interference is 