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Abstract. Information-rich BIM models are rarely usable off-the-shelf
for operations tasks. Change decisions made on the construction site can
lead to significant differences between the as-designed and as-built state
of buildings. The responsibility for keeping the digital representation
in sync with its physical twin is not defined and will likely only fully
be assigned when automatic methods facilitate the geometric update
process. To this end, previous research succeeded in (1) identifying if an
element was erected at the time and position it was initially designed, and
(2) updating the parametric design geometry to fit its LIDAR-measured
as-built state under a set of assumptions and threshold values.

The research presented in this paper aims at updating the as-designed
model in case of significant pose differences between the as-designed and
as-built state. The method leverages graphs to encode the topological
connectivity between geometric elements, once for the as-designed BIM
model and once for the as-built point cloud. A similarity metric, namely
the cosine distance, allows for a quantitative comparison of the topologi-
cally enriched point cloud clusters and their corresponding BIM element.
The results show that a convincing type-wise similarity can be found in
the feature space between the as-built point cloud clusters and the BIM
elements. This similarity score becomes meaningful once the element’s
topological arrangements are included. An instance-wise similarity score
of above 90% is achieved for matching-pairs of free-standing columns and
allows for a large-scale pose update in the as-designed BIM model.

Keywords: Scan-vs-BIM - knowledge-driven as-built reconstruction -
GNN.

1 Introduction

Geometrically accurate and information-rich BIM models are indispensable in
compliance-driven building projects. Whilst the information depth of such mod-
els increases with the growing adoption of digital planning methods, the risk
of significant discrepancies during construction stays high. The slight geometric
deviations accumulating during the on-site construction process can result in
geometric conflicts [14] and require fast and reactive mitigation measures at the
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time and place of construction [15]. In most cases, the need for a belated change
request results in delays, exceeding costs, and material waste for matching com-
pliance initially set out for the project. Although most geometrical discrepancies
are expected to stay within a specific tolerance range, it happens that the as-built
construction shows building elements with significant positional differences from
their as-designed representation in the BIM model. Geometric deviations chal-
lenge the delivery of reliable as-built design documents [1] and lead to significant
model rework times.

Spatial and visual data acquired by LIDAR scans and cameras offer an accu-
rate yet unstructured representation of the as-built status. The process of using
the resulting point clouds for updating the as-designed BIM model is currently
supported by point cloud semantic segmentation (PCSS) results. The point cloud
shows clusters of points assigned to a set of semantic labels. In current based
practice, a manual workflow follows to move the as-designed geometries into
place. The match between the as-designed and its matching as-built point repre-
sentation is the modeller’s responsibility. Existing approaches have investigated
BIM parametrization and show to automatically update elements for which the
deviations lie within a certain threshold. This work aims to present a method
for automatically finding geometric and topological similarity-based matches be-
tween the point cloud data (PCD) and as-planned BIM data in an encoded vector
space. The results show the first step in extending the current research body of
automated dynamic BIM model updates to cover large-scale pose deviations.
More precisely, the method aims to break the limitation of tolerance (threshold)
values. At the method’s core lies the geometric and topological encoding with
graph structures for either input format into a comparable vector space.

2 Background

2.1 Updating the as-planned

Finding matches between the as-designed BIM models and as-built point clouds
has been a topic in the research fields of progress track and Scan-vs-BIM related
contributions. The first focuses on detecting an element at a given moment and
location in time to verify the overall construction progress. The second explores
methods for geometrical updates in the as-designed BIM model. Accurately cap-
turing the on-site construction progress has been vigorously investigated with
spatial and visual data acquisition methods such as LiDAR scans and photos.
A point cloud is either generated by Time-of-Flight sensors or photogramme-
try and offers an accurate 3D geometric representation of the visible as-built
construction. A control-point-based acquisition [18,13] or an Iterative Closest
Point (ICP) approach allows for point cloud to BIM registration. To validate
the presence of a building element at a given point in time, Tuttas et al. [17]
compare a set of metrics between the triangulated planes from 4D BIM elements
and the local fitted planes from the point cloud that lie in the distance d from
the object. Braun et al. [2] measure the point density within a stage-dependant
threshold of a building element. Turkan et al. [16] compare the scanned point
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clouds with their orthogonal projection point on the as-planned surfaces. Braun
et al. [3] enhance the detection by point surface comparison with an additional
artificial intelligence (AI) approach involving a visibility analysis and element
detection in images.

Having detected that an element is or is not present at a given time at its
design location answers the use case of progress tracking. However, it might occur
that the construction is well on time, yet the element is built with deviations from
its designed geometric shape or pose. To that end, [13] introduce the concept
of a Dyna-BIM (dynamic BIM) where both the element pose and the element
shape in BIM are parameterized. Two metaheuristic optimization techniques
show the ability of parametric slabs (in the article referred to as footings) to
adapt to the as-built point cloud. In their approach, a previous point cloud
processing crops the point cloud into segments of just the vicinity of each footing,
thereby minimizing the effects of different footings on the optimization of one.
For bridges, Mafipour et al. [11] further explore parametric shape fitting into
point clouds previously processed with PCSS. All the above-explored automatic
contributions are limited when it comes to large-scale deviations or rely on a
previous point cloud slicing which induces assumptions about the element match.
Bosché et al. [1] apply Circle Hough transform to compare as-planned piping
systems to their as-built equivalent. Thanks to the shape prior they introduce,
they can cover large-scale pose deviations to a certain degree. The described
state-of-the-art is illustrated in Fig. 1 and Fig. 2.

Point-element Al-based image
. R e Precedence
prox. (+adaptive detection within knowledge
thresholds) projected hull g
As-planned element
verified ?
No ﬁ yes
v
Similar unlabeled Geometric
point clusters optimization on as-
present? planned
no l—‘— yes
Delete as-planned Similarity based
element pose update

Fig. 1: State-of-the-art workflow for as-built progress track and design model
fitting. The contribution of this work is highlighted in bolt.
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Fig. 2: As-built point cloud overlay with as-designed BIM model: 1) Column
validated with point proximity, 2) Column validated with extended methods s.a.
adaptive thresholds or with precedence knowledge 3) as-designed column not
validated, two point clusters of potential columns remain.

2.2 Spatial relationships and dependencies

Using graphs to capture the relationship and dependencies between different
building elements has been helpful as a concept. Characterized by their flex-
ibility to represent complex relationships and heterogenous attributes, graphs
have become the favored way of expressing information from BIM enriched with
the insights of as-built point cloud acquisitions [22]. The connections (edges)
allow for conditional semantic links between the elements (nodes), which host
rich feature representations of the latter. Braun et al. [4], for instance, assemble
a precedence relationship graph from as-planned BIM models where the tech-
nological temporal dependencies of an advancing construction are encoded as
directed edges from an object (predecessor) to the depending object (succes-
sor). While recording the construction progress, the certainty of identifying a
successor is significantly decreased if its corresponding predecessor has not been
detected yet. Wang et al. [21] show that spatial encoding in a graph structure
helps predict simple room layouts.

On the other hand, spatial encoding with graphs is also an important topic
in AT research for performing PCSS. Graphs allow to encode both, local geom-
etry [20] as well as topological element connections [10]. The super point graph
approach suggested by [10] utilizes the hypothesis that a large amount of in-
formation needed for semantic element segmentation is contained in topological
relationships.

2.3 Similarity-based object queries

Retrieving the most similar data object based on the content of the query ob-
ject has found many applications in other areas, such as content-based image
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retrieval (CBIR) in search engines or Graph similarity search for chemical com-
pound retrieval. Retrieving entities informed with global scene information has
yielded better results than entity-based retrievals alone. Maheshwari et al. [12],
for instance, show that encoding images as scene graphs allow the image match
to return more intuitive results — e.g., capturing object interactions such as
human-animal interaction.

Some research has focused on retrieving the best matching CAD geome-
try from a point cloud object in the context of buildings. Bosché et al. [1], for
instance, use a similarity-based criterion integrating location, radius, and orien-
tation for retrieving cylindrical MEP components. Wang et al. [19] retrieve the
most similar CAD models from a furniture shape database to align them with
the input point cloud. A set of rotation-invariant key point features is used.
The mentioned approaches have a shortcoming in that contextual information
is largely neglected.

2.4 Contribution

Little work exists on adequately updating as-designed BIM models geometri-
cally to their as-built equivalent while preserving initial model semantics [13].
More specifically, no automatic method can capture large-scale pose deviations
between the as-planned model and the as-built point cloud. In this work, the
described benefits of spatial relationships are used in formulating topological
graphs to create more informed matches between the as-designed and as-built
representations. The contribution of this article is summarized as follows:

— A method to perform similarity-based matches to provide pose updates for
the outdated as-designed model

— The formulation of a graph matching problem for two fundamentally dif-
ferent yet often jointly used data sources (as-designed BIM geometry and
as-built point clouds)

3 Method

The proposed approach to find correspondence between as-built and as-designed
building elements across large-scale pose deviations is presented in three steps:
1. Graph formulations 2. Topological enrichment with GCNs 2. Similarity com-
putation. The straightforward next step of updating the as-designed element is
out of the scope of this work.

3.1 Graph formulation for as-designed and as built

The two corresponding yet different graphs are defined as Ggesign and Gy
with the set of vertices Vgesign, Viuir and edges Egesign, Ebuite respectively.

Ggesign: The building elements’ shape characteristics and topological relation-
ships are extracted from the BIM model represented as IFC' model to represent

! Industry Foundation Classes — A standardized BIM data exchange format
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the as-designed facility in a graph format. The vertices v; = (¢i, fgeom) € Viesign
are defined as the elements geometrical centroids ¢; and each include a set of
features fgeom. The feature vector fyeom is a compact vector representation of
the element’s shape, summarized with a set of computed features as suggested
by [7] (see Fig. 3b). The element’s neighborhood information is extracted from
the IFC files with the spatial query language QL4ABIM suggested by [6] and the
topological operator ”touching”. Accordingly, elements adjacent to each other
will share an edge in Ggesign. The resulting graph is illustrated in Fig. 3a.
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(a) (b)

Fig. 3: Topological connections in graph representation of the as-designed model
Gdesign- The nodes include the generated shape representation, and the edges
denote "touching” elements. For a better visibility, the top slab is not included
in the illustration.

Gyttt To generate the graph-based as-built representation, we assume a seg-
mented point cloud as an input. The preceding point cloud segmentation (PCS)
assigns points to semantically homogeneous clusters. This step can be performed
with a conventional geometric clustering algorithm or a supervised (semantic)
segmentation using Artificial Neural Networks such as suggested by [9]. An as-
built element might be represented by one or several point clusters. Furthermore,
depending on the regularisation strength of the clustering method as well as the
geometric noise and occlusions in the source point cloud, these clusters might
be more or less fine-grained. Figure 4a and b show results of such clustering
with different regularization strengths. For our experiments the noise level is
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set to 0.005 in the simulation, and the regularization strength in Landrieu and
Simonovsky’s [9] method to 0.08.

(a) Strong regularization (b) Regularization r=0.08 and
exemplary visualization of

Guuilt-

Fig. 4: Point cloud geometric clustering results with the method by Landrieu and
Simonovsky [10]

Similarly, as for the as-designed, the clusters’ centroids ¢; and the same set
of features fyeom are computed for each cluster, forming the v; = (¢;, fyeom) €
Viuirt- To achieve the topological connectivity between the clusters, the graph for-
mulation method from [10] is used. As the authors suggest, a symmetric Voronoi
adjacency graph Gyoronoi = (P, Eyoronoi) is defined for the whole point cloud
P,s_puir first. Two point clusters S and Sy are adjacent and marked with an
edge in Gy if there is at least one edge in Ey,prono; With one end in S7 and
one end in Sy (see Fig. 5).

The experimental set-up is structured according to two possible PCS results:

— One single point cluster represents one building element (idealistic setting)
— Several point clusters represent one building element (see Fig. 4b, left col-
umn).

3.2 Topological enrichment of both graphs with GCNs

In the graph formulation described above, the edges represent topology, yet the
nodes’ features contain no information about their neighborhood. In buildings,
topology (here encoded as graph neighborhoods) is highly relevant for any type
of scene interpretation. It is thus essential to include not only the elements shape
characteristics but also what connectivity it has to its surroundings.
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82 86

(a) Evoronoi (b) Gbuilt

Fig.5: Graph formulation as proposed by Landrieu and Simonovsky [10]

Furthermore, in this work, we use a similarity score based solely on the node
features (see Sec. 3.3 for further detail). It is, therefore, necessary to propagate
the node features along the graph edges. Hence a 2-layered Graph Neural Net-
work (GNN) as in [8] is assembled for message passing along the graph edges.
The GCN learns to transform the input feature vector of node v; together with
an aggregate of the nodes neighboring messages to produce the predicted node
label closest to the true label?. For a detailed description of GCNs, the reader is
referred to [5]. Here the training is formulated as a fully-supervised node classi-
fication problem. Following an inductive training setting, the GCN is optimized
on a set of 15 design graphs deduced from 15 different design models. Testing is
performed on a different set of 4 design graphs. On average, the graphs contain
1300 nodes representing the classes Wall, Slab, Stairs, Door, Window, Furniture,
Column, and Beam. Once the network achieves a balanced accuracy in node clas-
sification performance of over 85% on the test set, the network is used to perform
inference on the showcase building presented in Section 4. The inference results
are once computed for Ggesign and once for Gy, without retraining, resulting
in the node-wise feature vectors f; design and f;ybmlt. The final node embedding
vectors of the predictions can be regarded as an element representation, including
shape characteristics and topology.

3.3 Similarity computation

To find matching building elements between the as-designed model and the as-
built point cloud, we compute the similarity between the nodes of the respec-
tive graphs. Computing the similarity score between the initial feature vectors
Ji design and fi;, ., hints at how many geometrical similarities the two elements
have. Comparing the enriched vectors f; design With their corresponding f;built,
topological characteristics will complement the shape representation and thus
influence the similarity score. The cosine similarity is computed between pairs

2 Wall, Slab, Stairs, Door, Window, Furniture, Column, and Beam
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of features as shown in Eq. 1. Figure 6 illustrates how nodes between the two
graphs are matched for a case when one point cluster represents one building
element. The analysis is conducted similarly when more than one point cloud
clusters represent one building element.

In this research, we compute the node-wise similarity across all node pairs in
the two graphs. Instead, in practice, the similarity computation could be limited
to the unverified as-designed elements or the point clusters for which no design
element was found in immediate proximity.

Sim(A, B) i cos(0) — 2B _ iz tibi (1)

AlBI /Y a2/ b

where A and B stand for fi’f design and fi’fbmlt; the two feature vectors to be com-

pared. Note that when k=0, l-’fdesi gn 18 simply the input feature vector f; design-

In this research, we compute the node-wise similarity across all node pairs
in the two graphs, resulting in quadratic complexity of the algorithm. In prac-
tice, however, the similarity computation could be limited to the unverified as-
designed elements or the point clusters for which no design element was found
in immediate proximity.

, f design

k
[3, design
Gdesign

Gpuit
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Fig.6: Multi-fold graph correspondence between the as-designed and the as-
built graph (schematic graphs follow the scenario outlined in Fig. 2). Nodes with
green outlines are verified design elements according to state-of-the-art methods.
For the unverified node, the most similar nodes in the as-built are found and
indicated with black dashed lines. The other way around (grey dashed lines),
the most similar design element is returned for each point cloud cluster.
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4 Experiments

The method is demonstrated for a simplistic showcase building consisting of
walls, slabs, windows, doors, and columns. The BIM model used for the image
material of this article is the same as used for the experiments (see Fig. 3a) and
2. To demonstrate the effectiveness of our method, we introduce pose deviations
to the column elements. The columns all have typical thicknesses of 250x250mm,
and their pose deviations were all made in the aligning direction of all columns.
For column 2, a discrepancy of 0.2m is set between the as-designed and as-built
status. Column 3 is duplicated, and either as-built column equivalent is situated
at a 1m distance from its as-planned equivalent. We will refer to the respective
as-built column equivalent with a subscripted alphabetic letter after the number.

The graphs are constructed as described in Section 3.1 and 3.1, before the
similarity score is computed as described in Section 3.3 with or without topo-
logical enrichment (see Section 3.2. In two experiments, we set out to show (1)
the importance of topology for the similarity score and (2) the methods’ gener-
alization potential to apply to the state-of-the-art clustering methods.

For simplification, a simulated point cloud is used as input instead of a real
point cloud, complementing the as-designed BIM model. The LiDAR scan simu-
lation tool of Winiwarter et al. [23] is used. For simulating the as-built capturing
process, a conventional Terrestrial Laser Scanner (TLS) is defined, important
hardware parameters are set and scan positions are placed.

4.1 Importance of topology

In this experiment, we assume the point-cloud clusters to represent the BIM ele-
ments one-to-one. Some sophisticated point cloud clustering methods can achieve
this when little noise and obstacles are present in scenes. The clustered as-built
point cloud is compared to the as-designed BIM equivalent element-wise. Fig. 7
shows the pair-wise results of the similarity score, once for the computed node
features f; (a) and once for the topologically enriched node features f! (b). The
heatmaps are not rectangular since the as-built point cloud includes one addi-
tional column, as shown in Fig. 2.

Without topological enrichment, the similarity scores for matching and con-
gruent pairs are noticeably high, with similarity scores around 95%. For elements
where the majority of element faces are captured by the LiDAR scanner (e.g. for
columns 4 large faces are captured) the score lies higher than for such that have
unilateral occluded faces (e.g. walls, slabs where the LiDAR scanner captures
only one visible face). However, for the elements with deviations, the similarity
score decrease with the distance the column has moved (e.g., the similarity score
of 2_a - 2 is slightly higher than the one of 3_a - 3 ). The centroid features have
the biggest influence on the similarity score. If the pose discrepancies between
the as-designed and as-built are significant, as outlined in the paper introduc-
tion, these scores will not suffice for similarity-based updates across large-scale
distances.
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Fig. 7: Computed cosine similarity scores. For visualization purposes, only a part
of the elements is displayed. The brighter the color, the higher the similarity
score. Abbreviations COL: Column, WL: Wall, SLB: Slab, DR: Door, WIN:
Window.

When the node features of both graphs are enriched with topological infor-
mation via graph convolutions, the results look more promising. The topological
enrichment increased the similarity score of the non-congruent, yet the same
columns averaged 80 to 92%. Since all the columns have a rectangular format
and are modelled identically, the high similarity score of e.g. column 2_a* with
column 1 and 3 is also explicable. From the results it can be deduced that col-
umn 2_a is indeed the same as column 2a and column 3_a and 3_b the same
as column 3. The similarity scores across types mostly decrease further and are
less correlated to the exact location. In some cases the similarity score for wall
- column pairs increases. The common connection to a slab element could cause
this behaviour.

As suggested by the results above, it can be said that the topological most
likely decreases the importance of the location-based features and increases the
influence of the shape and topological features. In our experiments this happens
in a favorable way such that the as-built columns can be matched with their
as-designed equivalent.

4.2 Sub-element clusters

For this experiment, a common output of a point clustering algorithm is used to
formulate the graph. The used 2-layered GCN is capable of propagating feature
information as far as two clusters. For evaluation, the similarity score was com-
puted between all cluster embeddings (f; or f;) matching to one as-built ground



12 F. C. Collins et al.

truth and their matching as-designed element. Depending on how many clusters
the algorithm made, the mean of all the similarity scores was computed. For the
left column in Fig. 4b for example, the mean was calculated, whereas for the
right column it was not neaded. The average per-type matching scores for each
element cluster with it’s matching as-designed embedding is reported in Table
1.

Table 1: Averaged similarity scores over all elements of the type based on shape
alone and the addition of topological information (*).

Class |mean similarity score|mean similarity score*
Slab 0.78 0.91

Column |0.45 0.78

Wall 0.62 0.9

Window|0.32 0.52

Door 0.56 0.61

Again it becomes visible that including topological information propagated
across the edges of the graphs increases the similarity scores. With topological
enrichment, the average scores for columns are slightly lower than for the other
well-performing types, such as slabs and walls. Especially slabs and walls and,
to a lesser degree also, columns are typically clustered in large point clusters
due to their rather homogenous flat surfaces. This allows our 2-layered GCN to
inform each cluster about the relevant across-building-element typologies.

Likewise windows and doors would typically show as multiple point clusters
because of their frames which is most likely the reason for the worse results.
Deeper graph networks might be able to increase the results in cases where finer
segments are present in the clustered point cloud.

5 Conclusion and outlook

The detection of the deviations between as-designed and as-built status to up-
date the digital representation of the building under construction promises sig-
nificant added value while remaining one of the main challenges of automation.
However, the difficulty of reconstructing accurate information-rich BIM models
from as-built point clouds can impede the usability of such reconstructed mod-
els. A combination of large-scale similarity-based pose updates and metaheuristic
geometric optimization techniques could prove top-down approaches favorable
over bottom-up reconstruction in terms of the information depth of the resulting
models.

Our suggested method shows the first evidence that similarity-based geome-
try retrieval is very promising for solving Scan-vs-BIM problems with significant
pose deviations and is apt to complement state-of-the-art methods. We pro-
pose using graph representations of both the as-designed model and the as-built



Finding building element similarities for pose updates in Scan-vs-BIM 13

representation, where node feature vectors reflect the individual element’s char-
acteristics and their adjacency relationships to other building elements. Based
on this, we apply a cosine similarity metric to assess the similarity between the
nodes of both graphs. This enables us to find matching pairs among the elements
having deviations between as-designed and as-built, which subsequently allows
updating the BIM model correspondingly. The method shows stable similarity
scores above 90% for columns in simulated as-built representations. The method
entirely relies on propagating topological information in a GCN inference sce-
nario. Formulating the similarity score to include edge features instead of only
features could further make the method more robust.

To fully prove the method as applicable, the experiments will be conducted
on real PCD in the future. Given the extensive application fields of a similarity-
based object (as presented in Section 2.3) retrieval from queries, the authors
suggest formulating the graph matching as a learning problem. Thereby, even
less obvious matching elements, such as in the case of severe occlusions, might
be automized.
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