
752168-2364/22©2022 IEEECopublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTCMarch/April 2023

API-Based Hardware
Fault Simulation for DNN
Accelerators

 Continued transistor sCaling results in lower
operating voltages that enable increased levels of inte-
gration within a given silicon area footprint. However,
it also entails an increase in the likelihood of unin-
tended bit flips and data corruption at the device level.

The rate of these faults per computational
resource requires special consideration when

• combining many computational resources (e.g.,
supercomputers and server farms) and

• executing applications with high dependability
requirements, such as in automotive (requir-
ing failure rates below 10−8 failures/hour for
safety-critical functions).

To reduce the likelihood of data corruption, hard-
ware designers identify high-risk components and
add protection circuitry, such as parity checks and
error correction codes (ECCs). However, protection
circuitry requires die area and increases power con-
sumption which could otherwise be used to increase

performance. The more

comprehensive the pro-

tection, the higher the

error detection or correc-

tion capabilities, but the

more area it occupies.

A balance must be

found in the tradeoff between an integrated circuit’s

dependability and performance. Experiments indicate

that deep neural networks (DNNs) are more resilient to

hardware faults than other programs.1 In this context,

special “DNN accelerators” have been designed for effi-

cient DNN execution [3]. These may require lower than

usual levels of hardware protection while satisfying the

same dependability targets for DNN applications.

So what is the probability of output failure due to

hardware faults for DNNs running on these DNN accel-

erators? In this work, we present a novel method for

estimating this probability. Our approach works by

expanding the primitives of application program inter-

faces (APIs) used by DNNs with hardware-specific fault

simulations: First, the original primitive is run, then the

output is modified in the way it would be corrupted due

to faults in the target hardware. The actual hardware is

not required. By executing a DNN with this modified

API simulating hardware faults, statistics may be gen-

erated on output failures. Unlike existing approaches,

our approach uniquely combines.

1Compare bit error rate thresholds found in [1] with requirements in [2].

Digital Object Identifier 10.1109/MDAT.2022.3180977

Date of publication: 8 June 2022 ; date of current version:

10 March 2023.

Patrik Omland, Yang Peng, and
Michael Paulitsch
Dependability Research Laboratory
Intel Deutschland GmbH
85579 Neubiberg, Germany

Jorge Parra, Gustavo Espinosa, and
Abishai Daniel
Intel Corporation, Santa Clara, CA 95054 USA

Editor’s notes:
This article presents an application program interface (API)-based
hardware fault simulation method to investigate the effect of hardware
faults on the failure probability of deep neural network (DNN) accelerators.

—Fei Su, Intel Corporation

Gereon Hinz
STTech
82031 Grünwald, Germany

Alois Knoll
Department of Informatics
Technical University Munich
85748 Munich, Germany

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on April 11,2023 at 08:22:55 UTC from IEEE Xplore. Restrictions apply.

76 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

• Accuracy: The actual workload is run on an accu-

rate hardware fault simulation.

• Speed: The simulation time is not constrained

by the lack of nor the speed of hardware to be

simulated.

• Scale: By sharing the modified API implementa-

tion, accurate dependability estimates for specific

workloads may be generated without hardware/

algorithmic knowledge.

DNN accelerators
Computing platforms tailored specifically to the

needs of DNNs have become more common over

the past years. Prominent examples are Google Ten-

sor Processing Units, Nvidia Tensor Cores, Intel Xeon

Tile Matrix Multiply Units, and Intel Xe HPC graphics

processing units (GPUs) [3].

By far, most computer operations carried out by

DNNs are spent on matrix multiplication: In DNN

terminology, the fully connected and convolution

layers are calculated by algorithms using matrix

multiplication.2 For DNNs such as ResNet-50, these

multiplications involve large matrices with dimen-

sions, n, in the thousands. Matrix multiplication is,

approximately, an O(n3) operation. All other com-

monly used DNN operations are O(n) operations.

Consequently, accelerators geared toward DNNs

specifically aim to accelerate large matrix multipli-

cations. Most of them

• adopt an architecture that consists of systolic

arrays (SAs) operating in parallel and

• feature a memory hierarchy designed to maxi-

mize the reuse of data cached close to the SAs,

2Chetlur et al. [4] explain how to convert convolution to matrix multiplication.

where each SA computes small matrix-multiply-ac-
cumulate (MMA) operations, D = A • B + C.

We will refer to this class of accelerators as “DNN
accelerators.” The typical architecture of a DNN
accelerator is shown in Figure 1. The white blocks
inside the SA represent multiply-accumulate-fused
(MAF) units, performing the actual calculations.

When designing DNN accelerators, the relative
robustness of DNNs with reference to hardware
faults is taken advantage of by optimizing the level of
hardware protection for performance gains. In this
context, SAs and their caches present particularly
good opportunities for such gains.

Protection circuitry for large caches (L4–L2 in
Figure 1) requires relatively little die area. In com-
parison, the SA caches (L1 in Figure 1) are very small
and there may be thousands of them—here, protec-
tion carries a high-performance cost. Analogously,
while an ALU on the “slice level” in Figure 1 may be
implemented with hardware protection, doing the
same for each of the dozens of MAF units comprising
a single SA places a large burden on performance.

Related work
Many methods of estimating the likelihood of pro-

gram failure due to hardware faults exist. Below, we
present the most prominent ones.

Statistical fault injection
In statistical fault injection, faults are injected at

program runtime. These faults may be injected at
different system abstraction levels (gate, microar-
chitecture, and so on). In general, lower-level fault
injection provides more accurate results but may not
be scalable in practice due to long execution times,
while higher-level fault injection may run much
faster, but at the price of lower accuracy [5].

Figure 1. Typical architecture of a DNN accelerator. Memory hierarchy depth (L4–L1)
and the number of units on each level (4, 8, 16) chosen arbitrarily.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on April 11,2023 at 08:22:55 UTC from IEEE Xplore. Restrictions apply.

77March/April 2023

Hierarchical simulations have been applied to
address this tradeoff by simulating different parts
of the system at different abstraction levels so that
required details are modeled only for the parts of
interest [5]. The proposed method in this work fol-
lows a similar concept as hierarchical simulations.

Vulnerability factors
In the vulnerability factor approach, simulat-

ing lower system abstraction levels individually for
each program is avoided by estimating the fraction
of faults affecting a given level from the next lower
level. Frequently used factors are the hardware vul-
nerability factor (HVF) [6], the program vulnera-
bility factor (PVF) [7], and the timing vulnerability
factor (TVF) [8]. The overall failure rate for a pro-
gram, P, is then estimated by (1), where F denotes
the fraction of time in a particular use condition, uc,
itself dependent on the clock frequency, fclk

Failure Rate Fault-Rate

TVF

clk
circuits

() ,P F fuc P

uc

c

c

u

≈ () ⋅

⋅

∑ ∑
∈

cc c uc c uc c P, , , ,⋅ ⋅HVF PVF (1)

However, not much is gained if PVFuc,c,P has to
be estimated individually for each DNN, each use
condition, and each circuit.3 As will be shown in the
upcoming section, hierarchical fault injection simu-
lations not only deliver more accuracy, but may be
implemented in a general, scalable fashion.

Evaluating vulnerability of DNN-based
applications

To understand the vulnerability of DNN-based
applications, many existing works (e.g., [1] and [9])
adopt application-level fault injection by, say, inject-
ing faults directly into the DNN model (e.g., weights).
However, this approach does not reflect the actual
impact of the underlying platform on which the DNN
is executed. As will be shown in the upcoming sec-
tion, microarchitectural details of DNN accelerator
designs have a profound impact on how hardware
faults propagate to the level of the DNN model.

Problem statement
The task at hand is a risk assessment for DNNs

when facing hardware faults on DNN accelerators.

3For many central processing unit (CPU) applications, the approximation PVFuc,c,p
≈ 1 may be used, making this approach useful for rough estimates. However, in this
work, we are particularly interested in the PVFuc,c,p << 1 property of DNNs.

.

Generally, given a program, p, the risk of a hardware
fault, f, causing failure with severity ∈ {0 = none,
1, ...}, may be defined as

 risk severity severity= () ⋅Pr f p, (2)

commonly known as the risk matrix approach, where
shorthand Pr denotes probability.

The probability on the right-hand side of (2) may
be separated into two parts

 Pr Pr Pr
exposure cond

f p f p f p, ,severity severity() = () ⋅ ()��� ��
iitional failure

� ���� ����

 (3)

The “exposure probability” measures the likeli-
hood of the fault, f, occurring while a given program,
p, is exposed to it. For instance, if a program makes
no use of floats, and the hardware fault considered is
a fault in an floating-point unit (FPU), the program’s
exposure probability to that fault equals zero.

The “conditional failure probability” measures
the likelihood of the program, p, failing with sever-
ity, conditional on it being exposed to a fault, f. For
instance, if the program’s output is a single-pre-
cision floating-point value and the fault only ever
flips the least significant bit of that value, the rel-
ative output error equals 2−23: For most programs,
this error will not be considered program failure, so
the associated conditional failure probability would
equal zero.

As calculating the risk using (2) becomes trivial
once the failure probability (3) has been estimated,
moving forward, we only consider the latter problem.

Novel API-based fault simulation
Numerical programs, in particular, DNNs, rely on

standards-based APIs to implement mathematical
operations such as matrix multiplication. The actual
operation is usually implemented by the hardware
manufacturer, requiring intimate knowledge of the
accelerator’s memory hierarchy, instruction pipe-
lining, and so on. In the proposed approach, hard-
ware fault simulations are implemented into these
APIs for the very same reason. Also, fault simulations
thus implemented become available immediately to
every program linking the given API.

.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on April 11,2023 at 08:22:55 UTC from IEEE Xplore. Restrictions apply.

78 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

The proposed API-based fault simulation for a
given API comprises the following steps: For each
API operation executed on the accelerator

1) Model of computation (MoC): Develop an MoC,
modeling how the operation is executed on the
actual hardware.

2) Fault MoC-scope: For the hardware fault under
consideration, find the execution steps affected
in the MoC by one such fault.

3) API fault simulation: Develop a fault simulation for
these execution steps making as much use of the
API operation’s (efficiently computed) output as
possible and including the simulation with the
API operation.

Without loss of generality, we provide a sample
application with a simplified MoC, following the steps
outlined above, to illustrate the proposed method.

Simplified model of computation
We implement the fictitious general matrix multi-

ply API function GEMM16 (A, B) = A16 × 16 • B16 × 16, on
a DNN accelerator featuring four SAs. Each SA itself
may execute an MMA instruction, A4 × 4 • B4 × 4 + C4 × 4.
The generalization to arbitrary dimensions and the
number of SAs is straightforward.

The multiplication is depicted in Figure 2. The 16
submatrices Cmn

4 × 4 may be calculated by

 C A Bmn mk

k

k

kn
4 4 4 4

0

4
4 4× ×

=

<

×
=∑ (4).

The GEMM16 algorithm using MMA instructions
is given by Algorithm 1. It divides C into quadrants,
each assigned one SA (see Figure 2).

Unrolling the m, n loops for the upper right quad-
rant we get

1 for k = 0 to 3 do
2 C A B Ck k02 1 0 2 02= ()MMA , ,

3 C A B Ck k03 1 0 3 03= ()MMA , ,

4 C A B Ck k12 1 1 2 12= ()MMA , ,

5 C A B Ck k13 1 1 3 13= ()MMA , , .
Notice that each k-iteration requires only four

different A and B inputs, namely A0k, A1k, Bk2, and
Bk3. Now, consider the memory hierarchy in Figure
1: For L1A (L1B) large enough to cache one (two)
4 × 4-submatrices, data requests to L2 for these inputs
are halved.4 Moving forward we assume just that.

Simulating transient L1 cache faults
Suppose one of the L1 caches of the upper right

quadrant’s SA experiences a transient bit-flip—what
is the fault’s MoC-scope? From the unrolled loop
above, we see that any such fault is confined to one
k-iteration (data is not reused across k-iterations)
and affects at most two Cmn (e.g., if B12 is corrupted
in line 2, it affects C02 and then C12 in line 4).

Next, we develop the API fault simulation. In the
unrolled loop above, suppose the fault occurs at iter-
ation k = 2: line 4 and has the effect B B23 23� � . The
corresponding effect on the output, C C� �, reads

 � �C C A B A B12 12 1 12 23 1 12 230 0= − +MMA MMA(, ,) (, ,)

As C12 is returned by the regular API operation, we
do not need to calculate it ourselves but can utilize

4For real-world DNN accelerators with M × K × N-MMA: If L1A caches a single
M × K-submatrix and L1B caches Lb K × N-submatrices, each SA may be assigned
Lb × Lb M × N-submatrices in the output to reduce L2-requests for A, B by a factor of
1/Lb using Algorithm 1.

.

Figure 2. Matrix multiplication on DNN
accelerators.

Algorithm 1. GEMM16: returns A16 × 16 • B16 × 16 using
four SAs capable of A4 × 4 • B4 × 4 + C4 × 4-MMA

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on April 11,2023 at 08:22:55 UTC from IEEE Xplore. Restrictions apply.

79March/April 2023

the high-performance API implementation as input
to the simulation.

More generally, the effect of a cache fault occur-
ring in SA, at iteration (k, m, n) ∈ [0, 3] × [0, 1] ×
[0, 1] and cache index X ∈ {A, B0, B1, C}, may be
modeled by Algorithm 2.5

Note that in Algorithm 2, timing matters: If a fault
in L1A happens at n = 0, then two of C’s 4 × 4-subma-
trices are affected, otherwise only one. Similarly, if
L1B suffers a fault corrupting B0 at n = m = 1, C will
not be affected.

The API hardware fault simulation is listed in
Algorithm 3. To inject one random fault into a pro-
gram making multiple uses of GEMM16, we count
the overall MMA instruction calls, MMA_total, of
that program, and pick a positive random number,
MMA_FI ≤ MMA_total, representing one of these calls.

By far, most of the work in Algorithm 3 is per-
formed through the API call to GEMM16: This will
be executed with maximal performance on any
hardware with a GEMM16 implementation. In com-
parison, the up to two MMA calls from GEMM16_FI
are insignificant—in particular, for real-world large
GEMM operations with thousands of MMA calls.

Coming back to the original problem of estimat-
ing (3): We may approximate Pr(severity | f, p) by the
relative failure frequency of program runs with hard-
ware fault simulation. To estimate Pr(f | p), the like-
lihood of encountering a transient fault, random in
time and space, does not depend on the level of par-
allelization: Whether four SAs are used, or a single
one four-times as long, does not matter. Accordingly,

5By not using the actual Cmn-input to MMA for the given (k, m, n), Algorithm 2 does
not account for “(a + b) + c ≠ a + (b + c).” To account for that, the k-loop needs to
be executed as in Algorithm 4.

given the fault rate, Rf, of one L1 cache and the dura-
tion, τMMA, of one MMA execution, we may estimate

 Pr MMA() exp _f p Rf≈ − − ⋅ ⋅()1 MMA total τ (5)

where the exponential failure distribution was used
to model the probability of fault given fault rate and
duration.

Simulating transient faults inside SAs
The same method applied for simulating transient

faults in the SA’s caches (previous section) may be
used for the simulation of arbitrary faults inside the
SAs MMA MMA��. For the SA’s digital arithmetic,
however, simulating the correct Cmn-input to the
MMA instruction matters6 and thus needs to be cal-
culated by simulating the k-loop (see Algorithm 4).
For real-world applications with large k-loops, the
additional simulation overhead is notable.

Simulating permanent faults
A permanent fault in an SA or its caches affects

every k, m, and n and thus Algorithm 4 needs to be
modified accordingly. The challenge in simulating
permanent faults lies in modeling the likelihood of
encountering the faulty SA.

6The SA may, for instance, perform optimizations if Cmn = 0.

Algorithm 2. GEMM16_FI_C: Simulate L1A/B/C
cache fault during GEMM16 execution.

Algorithm 3. GEMM16_FSIM: simulate fault in
GEMM16 execution.

Algorithm 4. GEMM16_FI_L: simulate fault inside
SA logic during GEMM16 execution.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on April 11,2023 at 08:22:55 UTC from IEEE Xplore. Restrictions apply.

80 IEEE Design&Test

Testability and Dependability of Artificial Intelligence Hardware

Suppose we execute a program with ten GEMM16
invocations on a DNN accelerator with 16 SAs. As
GEMM16 requires four SAs, each time GEMM16 is
invoked, so there are 16!/(16−4)! = 43,680 ways of
assigning four output quadrants to 16 SAs. For the
whole program, we get 43,68010 ≈ 1046 possibilities.

One approach to handle this problem is to model
worst- and best-case scenarios. For instance, con-
sidering Figure 1, in the worst case, the program’s
GEMM16s might always be mapped to the same slice
and randomly distributed among its 16 SAs, one of
which has a permanent fault. In the best case, each
SA might be chosen at random from the 512 SAs
comprising Figure l’s DNN accelerator.

ResNet-50 proof of concept
We applied the method presented in the previ-

ous section to ResNet-50 [10] inference on several
DNN accelerator configurations by modifying the
oneDNN API. Two of the oneDNN operations used
by ResNet-50 utilize SAs: Matrix multiplication and
convolution.2 We analyzed the algorithms imple-
mented by oneDNN for DNN accelerators and
developed fault models according to the method
described above. The buffers (FP16 data format)
were corrupted by a single random transient bitflip
for each inference, analogous to Algorithm 2. 24.8k
ImageNet [11] inferences were executed for each
configuration. The results are shown in Table 1.

The simulation was run on an Intel i9-7960X
CPU. A single inference without fault injection took
104 ms. The overhead in Table 1 is given with refer-
ence to this duration. “M × K × N” specifies the MMA
dimensions and “LB ” the number of K × N matrices
cached in L1B.4 “ΔTop” lists the change in percentage
of inputs for which the highest rated output label is
correct with versus without fault simulation. “#MMA”
lists the number of MMA calls for a single inference.

As expected from the previous section, the condi-
tional failure probability (3), which may be identified
with “ΔTop,” decreased with decreasing MMA dimen-
sions. The corrupted buffer element affects fewer out-
put elements. The effect on the exposure probability
(3) is more complicated: While smaller buffers result
in a smaller frequency of buffer corruption, account-
ing for the time the application is exposed to these
buffers is not straightforward. While the number of
required MMA calls obviously increases with decreas-
ing MMA dimensions, estimating the duration of each
such call for different dimensions requires knowl-
edge of the SA’s implementation. Consequently, one
should not draw conclusions on the risk (2) associ-
ated with different SA configurations from Table 1
without accounting for these factors.

In conclusion, we successfully applied our novel
methodology to a large workload, performing hundreds
of thousand hardware fault simulations within hours
on a regular CPU, where more traditional approaches
would have taken days for a single simulation.

Future work
The best- and worst-case approaches for mod-

eling permanent faults (previous section) do not
yield the single probability for program failure we
are after (3). Rather, it delivers upper/lower bounds
on that probability. Moving forward, we are devel-
oping models of computation incorporating sched-
uling algorithms for DNN accelerators to accurately
estimate this probability.

In the previous section, we suggest running a
hardware simulation, MMA� , for the complete MMA
instruction. When modeling permanent faults inside
the SAs, this simulation overhead becomes signifi-
cant. In future work, we will develop methods reduc-
ing the simulation overhead to simulating single
MAF units (previous section) only.

Finally, while our research has focused on utilizing
DNN accelerators for the class of DNN programs, other
classes of matrix multiplication heavy programs would
profit from using DNN accelerators (e.g., finite-element
methods). In upcoming work, we will investigate the
effect of hardware protection design choices on the
dependability of these kinds of programs.

Acknowledgments
We would like to thank Yue Qi, Fangwen Fu, and

Mourad Gouicem for technical insights on DNN accel-
erators and algorithms utilizing their architecture.

Table 1. Transient buffer fault simulation for DNN
accelerators running ResNet-50 inference.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on April 11,2023 at 08:22:55 UTC from IEEE Xplore. Restrictions apply.

81March/April 2023

 References
 [1] B. Reagen et al., “Ares: A framework for quantifying the

resilience of deep neural networks,” in Proc. 55th ACM/

ESDA/IEEE Design Autom. Conf. (DAC), Jun. 2018,

pp. 1–6.

 [2] H. T. Nguyen et al., “Chip-level soft error estimation

method,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3,

pp. 365–381, Sep. 2005.

 [3] A. Rodriguez, Deep Learning Systems: Algorithms,

Compilers, and Processors for Large-Scale Production.

San Rafael, CA, USA: Morgan & Claypool, 2020.

 [4] S. Chetlur et al., “CuDNN: Efficient primitives for deep

learning,” Oct. 2014, arXiv:1410.0759.

 [5] Z. Kalbarczyk et al., “Hierarchical simulation approach

to accurate fault modeling for system dependability

evaluation,” IEEE Trans. Softw. Eng., vol. 25, no. 5,

pp. 619–632, Oct. 1999.

 [6] V. Sridharan and D. R. Kaeli, “Using hardware

vulnerability factors to enhance AVF analysis,” in Proc.

Int. Symp. Comput. Archit. (ISCA), 2010, pp. 461–472.

 [7] V. Sridharan and D. R. Kaeli, “Eliminating

microarchitectural dependency from architectural

vulnerability,” in Proc. Int. Symp. High Perform. Comput.

Archit. (HPCA), 2009, pp. 117–128.

 [8] N. Seifert and N. Tam, “Timing vulnerability factors of

sequentials,” IEEE Trans. Device Mater. Rel., vol. 4,

no. 3, pp. 516–522, Sep. 2004.

 [9] G. Li et al., “Understanding error propagation in deep

learning neural network (DNN) accelerators and

applications,” in Proc. Int. Conf. High Perform. Comput.,

Netw., Storage Anal. (ACM), 2017, pp. 1–12.

 [10] K. He et al., “Deep residual learning for image

recognition,” 2015, arXiv:1512.03385.

 [11] J. Deng et al., “ImageNet: A large-scale hierarchical

image database,” in Proc. CVPR, 2009, pp. 248–255.

Patrik Omland is a research scientist with Intel
Deutschland GmbH, 85579 Neubiberg, Germany. He
is pursuing a PhD with the Department of Informat-
ics, Technical University Munich, Munich, Germany.
His research interests include the effect of hard-
ware faults on program execution and digital arith-
metic/numerical algorithms. Omland has a master’s
in mathematical physics from the Ludwig-Maximil-
ians-University Munich, Munich.

Yang Peng is a research scientist and system
architect with Intel Deutschland GmbH, 85579 Neu-
biberg, Germany. His research interest includes sys-
tem architecture for dependable artificial intelligence/
machine learning (AI/ML)-based systems. Peng has

a PhD in electrical engineering from the Technical
University of Munich, Munich, Germany.

Michael Paulitsch is a principal engineer
with Intel Deutschland GmbH, 85579 Neubiberg,
Germany, where he leads the Dependability Research
Laboratories. His research interests include novel
architectures for dependable systems and machine
learning. Paulitsch has a PhD from Technical Uni-
versity Vienna, Vienna, Austria, and a PhD from
the Vienna University of Economics and Business,
Vienna. He is a Senior Member of IEEE.

Jorge Parra is a computer architect with Intel Cor-
poration, Santa Clara, CA 95054 USA, working on Intel’s
Xe GPU products. His research interests include com-
puter architecture, machine learning hardware archi-
tectures, and artificial intelligence. Parra has a PhD and
an MSc in electrical engineering from the University of
New Mexico, Albuquerque, NM, USA.

Gustavo Espinosa is a senior principal engineer
with Intel Corporation, Santa Clara, CA 95054 USA,
where he leads reliability and security architecture
development for discrete GPU products. Espinosa
has a master’s in computer engineering from Boston
University, Boston, MA, USA. He is a member of IEEE.

Abishai Daniel is a staff reliability, availability
and serviceability (RAS) quality and reliability engi-
neer with Intel Corporation, Santa Clara, CA 95054
USA, with a focus on statistical predictive model
development and application of novel machine
learning techniques to reliability modeling. Abishai
has an MSEE and a PhD from the University of Mich-
igan, Ann Arbor, MI, USA.

Gereon Hinz is the CEO of STTech, 82031 Grünwald,
Germany, providing solutions to current and upcoming
technological challenges in the autonomous systems
domain. Hinz has a master’s in cybernetics from the
University of Stuttgart, Stuttgart, Germany.

Alois Knoll is a professor of computer science
with the Department of Informatics, Technical Univer-
sity Munich, 85748 Munich, Germany. His research
interests include robotics, artificial intelligence, and
realtime systems. He is a Senior Member of IEEE.

 Direct questions and comments about this article
to Patrik Omland, Dependability Research Laboratory,
Intel Deutschland GmbH, 85579 Neubiberg, Germany;
patrik.omland@intel.com.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on April 11,2023 at 08:22:55 UTC from IEEE Xplore. Restrictions apply.

