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API-Based Hardware 
Fault Simulation for DNN 
Accelerators

 Continued transistor sCaling results in lower 
operating voltages that enable increased levels of inte-
gration within a given silicon area footprint. However, 
it also entails an increase in the likelihood of unin-
tended bit flips and data corruption at the device level.

The rate of these faults per computational 
resource requires special consideration when

• combining many computational resources (e.g., 
supercomputers and server farms) and

• executing applications with high dependability 
requirements, such as in automotive (requir-
ing failure rates below 10−8 failures/hour for 
safety-critical functions). 

To reduce the likelihood of data corruption, hard-
ware designers identify high-risk components and 
add protection circuitry, such as parity checks and 
error correction codes (ECCs). However, protection 
circuitry requires die area and increases power con-
sumption which could otherwise be used to increase 

performance. The more 

comprehensive the pro-

tection, the higher the 

error detection or correc-

tion capabilities, but the 

more area it occupies.

A balance must be 

found in the tradeoff between an integrated circuit’s 

dependability and performance. Experiments indicate 

that deep neural networks (DNNs) are more resilient to 

hardware faults than other programs.1 In this context, 

special “DNN accelerators” have been designed for effi-

cient DNN execution [3]. These may require lower than 

usual levels of hardware protection while satisfying the 

same dependability targets for DNN applications.

So what is the probability of output failure due to 

hardware faults for DNNs running on these DNN accel-

erators? In this work, we present a novel method for 

estimating this probability. Our approach works by 

expanding the primitives of application program inter-

faces (APIs) used by DNNs with hardware-specific fault 

simulations: First, the original primitive is run, then the 

output is modified in the way it would be corrupted due 

to faults in the target hardware. The actual hardware is 

not required. By executing a DNN with this modified 

API simulating hardware faults, statistics may be gen-

erated on output failures. Unlike existing approaches, 

our approach uniquely combines.

1Compare bit error rate thresholds found in [1] with requirements in [2].
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• Accuracy: The actual workload is run on an accu-

rate hardware fault simulation.

• Speed: The simulation time is not constrained 

by the lack of nor the speed of hardware to be 

simulated.

• Scale: By sharing the modified API implementa-

tion, accurate dependability estimates for specific 

workloads may be generated without hardware/

algorithmic knowledge.

DNN accelerators
Computing platforms tailored specifically to the 

needs of DNNs have become more common over 

the past years. Prominent examples are Google Ten-

sor Processing Units, Nvidia Tensor Cores, Intel Xeon 

Tile Matrix Multiply Units, and Intel Xe HPC graphics 

processing units (GPUs) [3].

By far, most computer operations carried out by 

DNNs are spent on matrix multiplication: In DNN 

terminology, the fully connected and convolution 

layers are calculated by algorithms using matrix 

multiplication.2 For DNNs such as ResNet-50, these 

multiplications involve large matrices with dimen-

sions, n, in the thousands. Matrix multiplication is, 

approximately, an O(n3) operation. All other com-

monly used DNN operations are O(n) operations. 

Consequently, accelerators geared toward DNNs 

specifically aim to accelerate large matrix multipli-

cations. Most of them

• adopt an architecture that consists of systolic 

arrays (SAs) operating in parallel and

• feature a memory hierarchy designed to maxi-

mize the reuse of data cached close to the SAs,

2Chetlur et al. [4] explain how to convert convolution to matrix multiplication.

where each SA computes small matrix-multiply-ac-
cumulate (MMA) operations, D = A • B + C.

We will refer to this class of accelerators as “DNN 
accelerators.” The typical architecture of a DNN 
accelerator is shown in Figure 1. The white blocks 
inside the SA represent multiply-accumulate-fused 
(MAF) units, performing the actual calculations.

When designing DNN accelerators, the relative 
robustness of DNNs with reference to hardware 
faults is taken advantage of by optimizing the level of 
hardware protection for performance gains. In this 
context, SAs and their caches present particularly 
good opportunities for such gains.

Protection circuitry for large caches (L4–L2 in 
Figure 1) requires relatively little die area. In com-
parison, the SA caches (L1 in Figure 1) are very small 
and there may be thousands of them—here, protec-
tion carries a high-performance cost. Analogously, 
while an ALU on the “slice level” in Figure 1 may be 
implemented with hardware protection, doing the 
same for each of the dozens of MAF units comprising 
a single SA places a large burden on performance.

Related work
Many methods of estimating the likelihood of pro-

gram failure due to hardware faults exist. Below, we 
present the most prominent ones.

Statistical fault injection
In statistical fault injection, faults are injected at 

program runtime. These faults may be injected at 
different system abstraction levels (gate, microar-
chitecture, and so on). In general, lower-level fault 
injection provides more accurate results but may not 
be scalable in practice due to long execution times, 
while higher-level fault injection may run much 
faster, but at the price of lower accuracy [5].

Figure 1. Typical architecture of a DNN accelerator. Memory hierarchy depth (L4–L1) 
and the number of units on each level (4, 8, 16) chosen arbitrarily.
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Hierarchical simulations have been applied to 
address this tradeoff by simulating different parts 
of the system at different abstraction levels so that 
required details are modeled only for the parts of 
interest [5]. The proposed method in this work fol-
lows a similar concept as hierarchical simulations.

Vulnerability factors
In the vulnerability factor approach, simulat-

ing lower system abstraction levels individually for 
each program is avoided by estimating the fraction 
of faults affecting a given level from the next lower 
level. Frequently used factors are the hardware vul-
nerability factor (HVF) [6], the program vulnera-
bility factor (PVF) [7], and the timing vulnerability 
factor (TVF) [8]. The overall failure rate for a pro-
gram, P, is then estimated by (1), where F denotes 
the fraction of time in a particular use condition, uc, 
itself dependent on the clock frequency, fclk

Failure Rate Fault-Rate

TVF

clk
circuits

( ) ,P F fuc P

uc

c

c

u

≈ ( ) ⋅

⋅

∑ ∑
∈

cc c uc c uc c P, , , ,⋅ ⋅HVF PVF (1)

However, not much is gained if PVFuc,c,P has to 
be estimated individually for each DNN, each use 
condition, and each circuit.3 As will be shown in the 
upcoming section, hierarchical fault injection simu-
lations not only deliver more accuracy, but may be 
implemented in a general, scalable fashion.

Evaluating vulnerability of DNN-based 
applications

To understand the vulnerability of DNN-based 
applications, many existing works (e.g., [1] and [9]) 
adopt application-level fault injection by, say, inject-
ing faults directly into the DNN model (e.g., weights). 
However, this approach does not reflect the actual 
impact of the underlying platform on which the DNN 
is executed. As will be shown in the upcoming sec-
tion, microarchitectural details of DNN accelerator 
designs have a profound impact on how hardware 
faults propagate to the level of the DNN model.

Problem statement
The task at hand is a risk assessment for DNNs 

when facing hardware faults on DNN accelerators. 

3For many central processing unit (CPU) applications, the approximation PVFuc,c,p 
≈ 1 may be used, making this approach useful for rough estimates. However, in this 
work, we are particularly interested in the PVFuc,c,p << 1 property of DNNs.

.

Generally, given a program, p, the risk of a hardware 
fault, f, causing failure with severity ∈ {0 = none, 
1, ...}, may be defined as

 risk severity severity= ( ) ⋅Pr f p,  (2)

commonly known as the risk matrix approach, where 
shorthand Pr denotes probability.

The probability on the right-hand side of (2) may 
be separated into two parts

 Pr Pr Pr
exposure cond

f p f p f p, ,severity severity( ) = ( ) ⋅ ( )��� ��
iitional failure

� ���� ����

 (3)

The “exposure probability” measures the likeli-
hood of the fault, f, occurring while a given program, 
p, is exposed to it. For instance, if a program makes 
no use of floats, and the hardware fault considered is 
a fault in an floating-point unit (FPU), the program’s 
exposure probability to that fault equals zero.

The “conditional failure probability” measures 
the likelihood of the program, p, failing with sever-
ity, conditional on it being exposed to a fault, f. For 
instance, if the program’s output is a single-pre-
cision floating-point value and the fault only ever 
flips the least significant bit of that value, the rel-
ative output error equals 2−23: For most programs, 
this error will not be considered program failure, so 
the associated conditional failure probability would 
equal zero.

As calculating the risk using (2) becomes trivial 
once the failure probability (3) has been estimated, 
moving forward, we only consider the latter problem.

Novel API-based fault simulation
Numerical programs, in particular, DNNs, rely on 

standards-based APIs to implement mathematical 
operations such as matrix multiplication. The actual 
operation is usually implemented by the hardware 
manufacturer, requiring intimate knowledge of the 
accelerator’s memory hierarchy, instruction pipe-
lining, and so on. In the proposed approach, hard-
ware fault simulations are implemented into these 
APIs for the very same reason. Also, fault simulations 
thus implemented become available immediately to 
every program linking the given API.

.
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The proposed API-based fault simulation for a 
given API comprises the following steps: For each 
API operation executed on the accelerator

1) Model of computation (MoC): Develop an MoC, 
modeling how the operation is executed on the 
actual hardware.

2) Fault MoC-scope: For the hardware fault under 
consideration, find the execution steps affected 
in the MoC by one such fault.

3) API fault simulation: Develop a fault simulation for 
these execution steps making as much use of the 
API operation’s (efficiently computed) output as 
possible and including the simulation with the 
API operation.

Without loss of generality, we provide a sample 
application with a simplified MoC, following the steps 
outlined above, to illustrate the proposed method.

Simplified model of computation
We implement the fictitious general matrix multi-

ply API function GEMM16 (A, B) = A16 × 16 • B16 × 16, on 
a DNN accelerator featuring four SAs. Each SA itself 
may execute an MMA instruction, A4 × 4 • B4 × 4 + C4 × 4. 
The generalization to arbitrary dimensions and the 
number of SAs is straightforward.

The multiplication is depicted in Figure 2. The 16 
submatrices Cmn

4 × 4 may be calculated by

 C A Bmn mk

k

k

kn
4 4 4 4

0

4
4 4× ×

=

<

×
=∑  (4).

The GEMM16 algorithm using MMA instructions 
is given by Algorithm 1. It divides C into quadrants, 
each assigned one SA (see Figure 2).

Unrolling the m, n loops for the upper right quad-
rant we get

1 for k = 0 to 3 do
2 C A B Ck k02 1 0 2 02= ( )MMA , ,

3 C A B Ck k03 1 0 3 03= ( )MMA , ,

4 C A B Ck k12 1 1 2 12= ( )MMA , ,

5 C A B Ck k13 1 1 3 13= ( )MMA , , .
Notice that each k-iteration requires only four 

different A and B inputs, namely A0k, A1k, Bk2, and 
Bk3. Now, consider the memory hierarchy in Figure 
1: For L1A (L1B) large enough to cache one (two) 
4 × 4-submatrices, data requests to L2 for these inputs 
are halved.4 Moving forward we assume just that.

Simulating transient L1 cache faults
Suppose one of the L1 caches of the upper right 

quadrant’s SA experiences a transient bit-flip—what 
is the fault’s MoC-scope? From the unrolled loop 
above, we see that any such fault is confined to one 
k-iteration (data is not reused across k-iterations) 
and affects at most two Cmn (e.g., if B12 is corrupted 
in line 2, it affects C02 and then C12 in line 4).

Next, we develop the API fault simulation. In the 
unrolled loop above, suppose the fault occurs at iter-
ation k = 2: line 4 and has the effect B B23 23� � .  The 
corresponding effect on the output, C C� �,  reads

  � �C C A B A B12 12 1 12 23 1 12 230 0= − +MMA MMA( , , ) ( , , )  

As C12 is returned by the regular API operation, we 
do not need to calculate it ourselves but can utilize 

4For real-world DNN accelerators with M × K × N-MMA: If L1A caches a single 
M × K-submatrix and L1B caches Lb K × N-submatrices, each SA may be assigned 
Lb × Lb M × N-submatrices in the output to reduce L2-requests for A, B by a factor of 
1/Lb using Algorithm 1.

.

Figure 2. Matrix multiplication on DNN 
accelerators.

Algorithm 1. GEMM16: returns A16 × 16 • B16 × 16 using 
four SAs capable of A4 × 4 • B4 × 4 + C4 × 4-MMA
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the high-performance API implementation as input 
to the simulation.

More generally, the effect of a cache fault occur-
ring in SA, at iteration (k, m, n) ∈ [0, 3] × [0, 1] × 
[0, 1] and cache index X ∈ {A, B0, B1, C}, may be 
modeled by Algorithm 2.5

Note that in Algorithm 2, timing matters: If a fault 
in L1A happens at n = 0, then two of C’s 4 × 4-subma-
trices are affected, otherwise only one. Similarly, if 
L1B suffers a fault corrupting B0 at n = m = 1, C will 
not be affected.

The API hardware fault simulation is listed in 
Algorithm 3. To inject one random fault into a pro-
gram making multiple uses of GEMM16, we count 
the overall MMA instruction calls, MMA_total, of 
that program, and pick a positive random number, 
MMA_FI ≤ MMA_total, representing one of these calls.

By far, most of the work in Algorithm 3 is per-
formed through the API call to GEMM16: This will 
be executed with maximal performance on any 
hardware with a GEMM16 implementation. In com-
parison, the up to two MMA calls from GEMM16_FI 
are insignificant—in particular, for real-world large 
GEMM operations with thousands of MMA calls.

Coming back to the original problem of estimat-
ing (3): We may approximate Pr(severity | f, p) by the 
relative failure frequency of program runs with hard-
ware fault simulation. To estimate Pr(f | p), the like-
lihood of encountering a transient fault, random in 
time and space, does not depend on the level of par-
allelization: Whether four SAs are used, or a single 
one four-times as long, does not matter. Accordingly, 

5By not using the actual Cmn-input to MMA for the given (k, m, n), Algorithm 2 does 
not account for “(a + b) + c ≠ a + (b + c).” To account for that, the k-loop needs to 
be executed as in Algorithm 4.

given the fault rate, Rf, of one L1 cache and the dura-
tion, τMMA, of one MMA execution, we may estimate

 Pr MMA( ) exp _f p Rf≈ − − ⋅ ⋅( )1 MMA total τ  (5)

where the exponential failure distribution was used 
to model the probability of fault given fault rate and 
duration.

Simulating transient faults inside SAs
The same method applied for simulating transient 

faults in the SA’s caches (previous section) may be 
used for the simulation of arbitrary faults inside the 
SAs MMA MMA��.  For the SA’s digital arithmetic, 
however, simulating the correct Cmn-input to the 
MMA instruction matters6 and thus needs to be cal-
culated by simulating the k-loop (see Algorithm 4). 
For real-world applications with large k-loops, the 
additional simulation overhead is notable.

Simulating permanent faults
A permanent fault in an SA or its caches affects 

every k, m, and n and thus Algorithm 4 needs to be 
modified accordingly. The challenge in simulating 
permanent faults lies in modeling the likelihood of 
encountering the faulty SA.

6The SA may, for instance, perform optimizations if Cmn = 0.

Algorithm 2. GEMM16_FI_C: Simulate L1A/B/C 
cache fault during GEMM16 execution.

Algorithm 3. GEMM16_FSIM: simulate fault in 
GEMM16 execution.

Algorithm 4. GEMM16_FI_L: simulate fault inside 
SA logic during GEMM16 execution.
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Suppose we execute a program with ten GEMM16 
invocations on a DNN accelerator with 16 SAs. As 
GEMM16 requires four SAs, each time GEMM16 is 
invoked, so there are 16!/(16−4)! = 43,680 ways of 
assigning four output quadrants to 16 SAs. For the 
whole program, we get 43,68010 ≈ 1046 possibilities.

One approach to handle this problem is to model 
worst- and best-case scenarios. For instance, con-
sidering Figure 1, in the worst case, the program’s 
GEMM16s might always be mapped to the same slice 
and randomly distributed among its 16 SAs, one of 
which has a permanent fault. In the best case, each 
SA might be chosen at random from the 512 SAs 
comprising Figure l’s DNN accelerator.

ResNet-50 proof of concept
We applied the method presented in the previ-

ous section to ResNet-50 [10] inference on several 
DNN accelerator configurations by modifying the 
oneDNN API. Two of the oneDNN operations used 
by ResNet-50 utilize SAs: Matrix multiplication and 
convolution.2 We analyzed the algorithms imple-
mented by oneDNN for DNN accelerators and 
developed fault models according to the method 
described above. The buffers (FP16 data format) 
were corrupted by a single random transient bitflip 
for each inference, analogous to Algorithm 2. 24.8k 
ImageNet [11] inferences were executed for each 
configuration. The results are shown in Table 1.

The simulation was run on an Intel i9-7960X 
CPU. A single inference without fault injection took 
104 ms. The overhead in Table 1 is given with refer-
ence to this duration. “M × K × N” specifies the MMA 
dimensions and “LB ” the number of K × N matrices 
cached in L1B.4 “ΔTop” lists the change in percentage 
of inputs for which the highest rated output label is 
correct with versus without fault simulation. “#MMA” 
lists the number of MMA calls for a single inference.

As expected from the previous section, the condi-
tional failure probability (3), which may be identified 
with “ΔTop,” decreased with decreasing MMA dimen-
sions. The corrupted buffer element affects fewer out-
put elements. The effect on the exposure probability 
(3) is more complicated: While smaller buffers result 
in a smaller frequency of buffer corruption, account-
ing for the time the application is exposed to these 
buffers is not straightforward. While the number of 
required MMA calls obviously increases with decreas-
ing MMA dimensions, estimating the duration of each 
such call for different dimensions requires knowl-
edge of the SA’s implementation. Consequently, one 
should not draw conclusions on the risk (2) associ-
ated with different SA configurations from Table 1 
without accounting for these factors.

In conclusion, we successfully applied our novel 
methodology to a large workload, performing hundreds 
of thousand hardware fault simulations within hours 
on a regular CPU, where more traditional approaches 
would have taken days for a single simulation.

Future work
The best- and worst-case approaches for mod-

eling permanent faults (previous section) do not 
yield the single probability for program failure we 
are after (3). Rather, it delivers upper/lower bounds 
on that probability. Moving forward, we are devel-
oping models of computation incorporating sched-
uling algorithms for DNN accelerators to accurately 
estimate this probability.

In the previous section, we suggest running a 
hardware simulation, MMA� , for the complete MMA 
instruction. When modeling permanent faults inside 
the SAs, this simulation overhead becomes signifi-
cant. In future work, we will develop methods reduc-
ing the simulation overhead to simulating single 
MAF units (previous section) only.

Finally, while our research has focused on utilizing 
DNN accelerators for the class of DNN programs, other 
classes of matrix multiplication heavy programs would 
profit from using DNN accelerators (e.g., finite-element 
methods). In upcoming work, we will investigate the 
effect of hardware protection design choices on the 
dependability of these kinds of programs. 
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Table 1. Transient buffer fault simulation for DNN 
accelerators running ResNet-50 inference.
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